Rifai, Damhuji; Abdalla, Ahmed N.; Ali, Kharudin; Razali, Ramdan
2016-01-01
Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper. PMID:26927123
Rifai, Damhuji; Abdalla, Ahmed N; Ali, Kharudin; Razali, Ramdan
2016-02-26
Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.
Eddy Current Testing for Detecting Small Defects in Thin Films
NASA Astrophysics Data System (ADS)
Obeid, Simon; Tranjan, Farid M.; Dogaru, Teodor
2007-03-01
Presented here is a technique of using Eddy Current based Giant Magneto-Resistance sensor (GMR) to detect surface and sub-layered minute defects in thin films. For surface crack detection, a measurement was performed on a copper metallization of 5-10 microns thick. It was done by scanning the GMR sensor on the surface of the wafer that had two scratches of 0.2 mm, and 2.5 mm in length respectively. In another experiment, metal coatings were deposited over the layers containing five defects with known lengths such that the defects were invisible from the surface. The limit of detection (resolution), in terms of defect size, of the GMR high-resolution Eddy Current probe was studied using this sample. Applications of Eddy Current testing include detecting defects in thin film metallic layers, and quality control of metallization layers on silicon wafers for integrated circuits manufacturing.
GMR-based eddy current probe for weld seam inspection and its non-scanning detection study
NASA Astrophysics Data System (ADS)
Gao, Peng; Wang, Chao; Li, Yang; Wang, Libin; Cong, Zheng; Zhi, Ya
2017-04-01
Eddy current testing is one of the most important non-destructive testing methods for welding defects detection. This paper presents the use of a probe consisting of 4 giant magneto-resistive (GMR) sensors to detect weld defects. Information from four measuring points above and on both sides of the weld seam is collected at the same time. By setting the GMR sensors' sensing axes perpendicular to the direction of the excitation magnetic field, the information collected mainly reflects the change in the eddy current which is caused by defects. Digital demodulation technology is applied to extract the real part and imaginary part of the GMR sensors' output signals. The variables containing directional information of the magnetic field are introduced. Based on the data from the four GMR (4-GMR) sensors' output signals, four values, Ran, Mean, Var and k are selected as the feature quantities for defect recognition. Experiments are carried out on weld seams with and without defects, and the detection outputs are given in this paper. The 4-GMR probe is also employed to investigate non-scanning weld defect detection and the four feature quantities (Ran, Mean, Var and k) are studied to evaluate weld quality. The non-scanning weld defect detection is presented. A support vector machine is used to classify and discriminate welds with and without defects. Experiments carried out show that through the method in this paper, the recognition rate is 92% for welds without defects and 90% for welds with defects, with an overall recognition rate of 90.9%, indicating that this method could effectively detect weld defects.
Magnetoresistive flux focusing eddy current flaw detection
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor); Namkung, Min (Inventor)
2005-01-01
A giant magnetoresistive flux focusing eddy current device effectively detects deep flaws in thick multilayer conductive materials. The probe uses an excitation coil to induce eddy currents in conducting material perpendicularly oriented to the coil's longitudinal axis. A giant magnetoresistive (GMR) sensor, surrounded by the excitation coil, is used to detect generated fields. Between the excitation coil and GMR sensor is a highly permeable flux focusing lens which magnetically separates the GMR sensor and excitation coil and produces high flux density at the outer edge of the GMR sensor. The use of feedback inside the flux focusing lens enables complete cancellation of the leakage fields at the GMR sensor location and biasing of the GMR sensor to a location of high magnetic field sensitivity. In an alternate embodiment, a permanent magnet is positioned adjacent to the GMR sensor to accomplish the biasing. Experimental results have demonstrated identification of flaws up to 1 cm deep in aluminum alloy structures. To detect deep flaws about circular fasteners or inhomogeneities in thick multilayer conductive materials, the device is mounted in a hand-held rotating probe assembly that is connected to a computer for system control, data acquisition, processing and storage.
Magnetoresistive Flux Focusing Eddy Current Flaw Detection
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor)
2005-01-01
A giant magnetoresistive flux focusing eddy current device effectively detects deep flaws in thick multilayer conductive materials. The probe uses an excitation coil to induce eddy currents in conducting material perpendicularly oriented to the coil s longitudinal axis. A giant magnetoresistive (GMR) sensor, surrounded by the excitation coil, is used to detect generated fields. Between the excitation coil and GMR sensor is a highly permeable flux focusing lens which magnetically separates the GMR sensor and excitation coil and produces high flux density at the outer edge of the GMR sensor. The use of feedback inside the flux focusing lens enables complete cancellation of the leakage fields at the GMR sensor location and biasing of the GMR sensor to a location of high magnetic field sensitivity. In an alternate embodiment, a permanent magnet is positioned adjacent to the GMR sensor to accomplish the biasing. Experimental results have demonstrated identification of flaws up to 1 cm deep in aluminum alloy structures. To detect deep flaws about circular fasteners or inhomogeneities in thick multi-layer conductive materials, the device is mounted in a hand-held rotating probe assembly that is connected to a computer for system control, data acquisition, processing and storage.
Determination of crack depth in aluminum using eddy currents and GMR sensors
NASA Astrophysics Data System (ADS)
Lopes Ribeiro, A.; Pasadas, D.; Ramos, H. G.; Rocha, T.
2015-03-01
In this paper we use eddy currents to determine the depth of linear cracks in aluminum plates. A constant field probe is used to generate the spatially uniform excitation field and a single axis giant magneto-resistor (GMR) sensor is used to measure the eddy currents magnetic field. Different depths were machined in one aluminum plate with 4 mm of thickness. By scanning those cracks the magnetic field components parallel and perpendicular to the crack's line were measured when the eddy currents were launched perpendicularly to the crack's line. To characterize one crack in a plate of a given thickness and material, the experimental procedure was defined. The plate surface is scanned to detect and locate one crack. The acquired data enables the determination of the crack's length and orientation. A second scanning is performed with the excitation current perpendicular to the crack and the GMR sensing axis perpendicular and parallel to the crack's line.
Rifai, Damhuji; Abdalla, Ahmed N; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A
2017-03-13
The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient.
Rifai, Damhuji; Abdalla, Ahmed N.; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A.
2017-01-01
The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient. PMID:28335399
Electromagnetic Detection of Fatigue Cracks under Protruding Head Ferromagnetic Fasteners
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Namkung, Min
2004-01-01
The detection of fatigue cracks under installed fasteners has been a major goal of the aging aircraft NDE community. The Sliding Probe, Magneto-Optic Imager, Rotating Self-Nulling Probe, Low Frequency Eddy Current Array, and Eddyscan systems are among the instruments developed for this inspection. It has been verified that the detection of fatigue cracks under flush head aluminum and titanium fasteners can be accomplished with a high resolution by the above techniques. The detection of fatigue cracks under ferromagnetic and protruding head fasteners, however, has been found to be much more difficult. For the present work, the inspection for fatigue cracks under SAE 4340 Steel Hi-Lok fasteners is explored. Modifications to the Rotating Self-Nulling Eddy Current Probe System are presented which enable the detection of fatigue cracks hidden under the protruding head of the ferromagnetic fastener. Inspection results for samples with varying length EDM notches are shown, as well as a comparison between the signature from an EDM notch and an actual fatigue crack. Finite Element Modeling is used to investigate the effect of the ferromagnetic fastener on the induced eddy current distribution in order to help explain the detection characteristics of the system. This paper will also introduce a modification to the Rotating Probe System designed specifically for the detection of deeply buried flaws in multilayer conductors. The design change incorporates a giant magnetoresistive (GMR) sensor as the pickup device to improve the low frequency performance of the probe. The flaw detection capabilities of the GMR based Self- Nulling Probe are presented along with the status of the GMR based Rotating Probe System for detection of deeply buried flaws under installed fasteners.
Determination of linear defect depths from eddy currents disturbances
NASA Astrophysics Data System (ADS)
Ramos, Helena Geirinhas; Rocha, Tiago; Pasadas, Dário; Ribeiro, Artur Lopes
2014-02-01
One of the still open problems in the inspection research concerns the determination of the maximum depth to which a surface defect goes. Eddy current testing being one of the most sensitive well established inspection methods, able to detect and characterize different type of defects in conductive materials, is an adequate technique to solve this problem. This paper reports a study concerning the disturbances in the magnetic field and in the lines of current due to a machined linear defect having different depths in order to extract relevant information that allows the determination of the defect characteristics. The image of the eddy currents (EC) is paramount to understand the physical phenomena involved. The EC images for this study are generated using a commercial finite element model (FLUX). The excitation used produces a uniform magnetic field on the plate under test in the absence of defects and the disturbances due to the defects are compared with those obtained from experimental measurements. In order to increase the limited penetration depth of the method giant magnetoresistors (GMR) are used to lower the working frequency. The geometry of the excitation planar coil produces a uniform magnetic field on an area of around the GMR sensor, inducing a uniform eddy current distribution on the plate. In the presence of defects in the material surface, the lines of currents inside the material are deviated from their uniform direction and the magnetic field produced by these currents is sensed by the GMR sensor. Besides the theoretical study of the electromagnetic system, the paper describes the experiments that have been carried out to support the theory and conclusions are drawn for cracks having different depths.
High Resolution Eddy-Current Wire Testing Based on a Gmr Sensor-Array
NASA Astrophysics Data System (ADS)
Kreutzbruck, Marc; Allweins, Kai; Strackbein, Chris; Bernau, Hendrick
2009-03-01
Increasing demands in materials quality and cost effectiveness have led to advanced standards in manufacturing technology. Especially when dealing with high quality standards in conjunction with high throughput quantitative NDE techniques are vital to provide reliable and fast quality control systems. In this work we illuminate a modern electromagnetic NDE approach using a small GMR sensor array for testing superconducting wires. Four GMR sensors are positioned around the wire. Each GMR sensor provides a field sensitivity of 200 pT/√Hz and a spatial resolution of about 100 μm. This enables us to detect under surface defects of 100 μm in size in a depth of 200 μm with a signal-to-noise ratio of better than 400. Surface defects could be detected with a SNR of up to 10,000. Besides this remarkably SNR the small extent of GMR sensors results in a spatial resolution which offers new visualisation techniques for defect localisation, defect characterization and tomography-like mapping techniques. We also report on inverse algorithms based on either a Finite Element Method or an analytical approach. These allow for accurate defect localization on the urn scale and an estimation of the defect size.
NASA Astrophysics Data System (ADS)
Safdernejad, Morteza S.; Karpenko, Oleksii; Ye, Chaofeng; Udpa, Lalita; Udpa, Satish
2016-02-01
The advent of Giant Magneto-Resistive (GMR) technology permits development of novel highly sensitive array probes for Eddy Current (EC) inspection of multi-layer riveted structures. Multi-frequency GMR measurements with different EC pene-tration depths show promise for detection of bottom layer notches at fastener sites. However, the distortion of the induced magnetic field due to flaws is dominated by the strong fastener signal, which makes defect detection and classification a challenging prob-lem. This issue is more pronounced for ferromagnetic fasteners that concentrate most of the magnetic flux. In the present work, a novel multi-frequency mixing algorithm is proposed to suppress rivet signal response and enhance defect detection capability of the GMR array probe. The algorithm is baseline-free and does not require any assumptions about the sample geometry being inspected. Fastener signal suppression is based upon the random sample consensus (RANSAC) method, which iteratively estimates parameters of a mathematical model from a set of observed data with outliers. Bottom layer defects at fastener site are simulated as EDM notches of different length. Performance of the proposed multi-frequency mixing approach is evaluated on finite element data and experimental GMR measurements obtained with unidirectional planar current excitation. Initial results are promising demonstrating the feasibility of the approach.
Metallic Bead Detection by Using Eddy-Current Probe with SV-GMR Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, S.; Chomsuwan, K.; Hagino, T.
2005-04-09
The progress of the ECT probe with micro magnetic sensor becomes possible to apply to various applications. The detection of micro metallic bead used for electric packaging has been reported in this paper. We proposed micro ECT probes with meander coil as exciter and spin-valve giant magneto-resistance (SV-GMR) as receiver. Micro metallic bead(solder ball) with the diameter of 0.25 to 0.76 mm is used as a measuring object. We discuss the detection and alignment of metallic bead by using ECT technique.
Benefits of GMR sensors for high spatial resolution NDT applications
NASA Astrophysics Data System (ADS)
Pelkner, M.; Stegemann, R.; Sonntag, N.; Pohl, R.; Kreutzbruck, M.
2018-04-01
Magneto resistance sensors like GMR (giant magneto resistance) or TMR (tunnel magneto resistance) are widely used in industrial applications; examples are position measurement and read heads of hard disk drives. However, in case of non-destructive testing (NDT) applications these sensors, although their properties are outstanding like high spatial resolution, high field sensitivity, low cost and low energy consumption, never reached a technical transfer to an application beyond scientific scope. This paper deals with benefits of GMR/TMR sensors in terms of high spatial resolution testing for different NDT applications. The first example demonstrates the preeminent advantages of MR-elements compared with conventional coils used in eddy current testing (ET). The probe comprises one-wire excitation with an array of MR elements. This led to a better spatial resolution in terms of neighboring defects. The second section concentrates on MFL-testing (magnetic flux leakage) with active field excitation during and before testing. The latter illustrated the capability of highly resolved crack detection of a crossed notch. This example is best suited to show the ability of tiny magnetic field sensors for magnetic material characterization of a sample surface. Another example is based on characterization of samples after tensile test. Here, no external field is applied. The magnetization is only changed due to external load and magnetostriction leading to a field signature which GMR sensors can resolve. This gives access to internal changes of the magnetization state of the sample under test.
Bailey, Joseph; Hunze, Arvid
2017-01-01
This work investigates an eddy current-based non-destructive testing (NDT) method to characterize corrosion of pipes under thermal insulation, one of the leading failure mechanisms for insulated pipe infrastructure. Artificial defects were machined into the pipe surface to simulate the effect of corrosion wall loss. We show that by using a giant magnetoresistance (GMR) sensor array and a high current (300 A), single sinusoidal low frequency (5–200 Hz) pipe-encircling excitation scheme it is possible to quantify wall loss defects without removing the insulation or weather shield. An analysis of the magnetic field distribution and induced currents was undertaken using the finite element method (FEM) and analytical calculations. Simple algorithms to remove spurious measured field variations not associated with defects were developed and applied. The influence of an aluminium weather shield with discontinuities and dents was ascertained and found to be small for excitation frequency values below 40 Hz. The signal dependence on the defect dimensions was analysed in detail. The excitation frequency at which the maximum field amplitude change occurred increased linearly with the depth of the defect by about 3 Hz/mm defect depth. The change in magnetic field amplitude due to defects for sensors aligned in the azimuthal and radial directions were measured and found to be linearly dependent on the defect volume between 4400–30,800 mm3 with 1.2 × 10−3−1.6 × 10−3 µT/mm3. The results show that our approach is well suited for measuring wall loss defects similar to the defects from corrosion under insulation. PMID:28956855
Bailey, Joseph; Long, Nicholas; Hunze, Arvid
2017-09-28
This work investigates an eddy current-based non-destructive testing (NDT) method to characterize corrosion of pipes under thermal insulation, one of the leading failure mechanisms for insulated pipe infrastructure. Artificial defects were machined into the pipe surface to simulate the effect of corrosion wall loss. We show that by using a giant magnetoresistance (GMR) sensor array and a high current (300 A), single sinusoidal low frequency (5-200 Hz) pipe-encircling excitation scheme it is possible to quantify wall loss defects without removing the insulation or weather shield. An analysis of the magnetic field distribution and induced currents was undertaken using the finite element method (FEM) and analytical calculations. Simple algorithms to remove spurious measured field variations not associated with defects were developed and applied. The influence of an aluminium weather shield with discontinuities and dents was ascertained and found to be small for excitation frequency values below 40 Hz. The signal dependence on the defect dimensions was analysed in detail. The excitation frequency at which the maximum field amplitude change occurred increased linearly with the depth of the defect by about 3 Hz/mm defect depth. The change in magnetic field amplitude due to defects for sensors aligned in the azimuthal and radial directions were measured and found to be linearly dependent on the defect volume between 4400-30,800 mm³ with 1.2 × 10 -3 -1.6 × 10 -3 µT/mm³. The results show that our approach is well suited for measuring wall loss defects similar to the defects from corrosion under insulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Zhenchao; Yamamoto, Tatsuya; Kubota, Takahide
2016-06-06
Current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) heterostructure devices using half-metallic NiMnSb Heusler alloy electrodes with single, dual, and triple Ag spacers were fabricated. The NiMnSb alloy films and Ag spacers show (001) epitaxial growth in all CPP-GMR multilayer structures. The dual-spacer CPP-GMR nanojunction exhibited an enhanced CPP-GMR ratio of 11% (a change in the resistance-area product, ΔRA, of 3.9 mΩ μm{sup 2}) at room temperature, which is approximately twice (thrice) of 6% (1.3 mΩ μm{sup 2}) in the single-spacer device. The enhancement of the CPP-GMR effects in the dual-spacer devices could be attributed to improved interfacial spin asymmetry. Moreover, it was observedmore » that the CPP-GMR ratios increased monotonically as the temperatures decreased. At 4.2 K, a CPP-GMR ratio of 41% (ΔRA = 10.5 mΩ μm{sup 2}) was achieved in the dual-spacer CPP-GMR device. This work indicates that multispacer structures provide an efficient enhancement of CPP-GMR effects in half-metallic material-based CPP-GMR systems.« less
NASA Astrophysics Data System (ADS)
Dhani, H. S.; Aminudin, A.; Waslaluddin
2018-05-01
Electric current is the basic variable of measurement in instrumentation system. One of the current measurements had been developed was based on magnetic sensor. Giant Magnetoresistance (GMR) produces an output voltage when it detects the magnetic field from electric current flow. The purpose of this study was to characterize the response of GMR when variation number of coil was given. The characterization was the GMR voltage response to the AC current values from 0.01 A to 5.00 A. The linearity of the relation was reaching saturation point when the magnetic field measured higher than 10.5 Oe at room temperature. As the number of coil increased, the earlier saturation occurred. To see the sensitivity of the sensor response, the data graph was cut off at 1.56 A AC. From this research, we got single coil was ideal to measure electric current higher than 1.56 A AC, as the relation of GMR voltage to the current tended to maintain its linearity. For measurement of 1.56 A AC and less, coil number addition would increase the sensitivity of sensor response. This research hopefully will be benefit for further development using an electric current measurement based on GMR magnetic sensor for power meter design.
Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X.
2012-01-01
Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A−1, linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C−1 with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids. PMID:23202221
Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X
2012-11-09
Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.
Reig, Candid; Cubells-Beltran, María-Dolores; Muñoz, Diego Ramírez
2009-01-01
The 2007 Nobel Prize in Physics can be understood as a global recognition to the rapid development of the Giant Magnetoresistance (GMR), from both the physics and engineering points of view. Behind the utilization of GMR structures as read heads for massive storage magnetic hard disks, important applications as solid state magnetic sensors have emerged. Low cost, compatibility with standard CMOS technologies and high sensitivity are common advantages of these sensors. This way, they have been successfully applied in a lot different environments. In this work, we are trying to collect the Spanish contributions to the progress of the research related to the GMR based sensors covering, among other subjects, the applications, the sensor design, the modelling and the electronic interfaces, focusing on electrical current sensing applications. PMID:22408486
Development of adapted GMR-probes for automated detection of hidden defects in thin steel sheets
NASA Astrophysics Data System (ADS)
Pelkner, Matthias; Pohl, Rainer; Kreutzbruck, Marc; Commandeur, Colin
2016-02-01
Thin steel sheets with a thickness of 0.3 mm and less are the base materials of many everyday life products (cans, batteries, etc.). Potential inhomogeneities such as non-metallic inclusions inside the steel can lead to a rupture of the sheets when it is formed into a product such as a beverage can. Therefore, there is a need to develop automated NDT techniques to detect hidden defects and inclusions in thin sheets during production. For this purpose Tata Steel Europe and BAM, the Federal Institute for Materials Research and Testing (Germany), collaborate in order to develop an automated NDT-system. Defect detection systems have to be robust against external influences, especially when used in an industrial environment. In addition, such a facility has to achieve a high sensitivity and a high spatial resolution in terms of detecting small inclusions in the μm-regime. In a first step, we carried out a feasibility study to determine which testing method is promising for detecting hidden defects and inclusions inside ferrous thin steel sheets. Therefore, two methods were investigated in more detail - magnetic flux leakage testing (MFL) using giant magneto resistance sensor arrays (GMR) as receivers [1,2] and eddy current testing (ET). The capabilities of both methods were tested with 0.2 mm-thick steel samples containing small defects with depths ranging from 5 µm up to 60 µm. Only in case of GMR-MFL-testing, we were able to detect parts of the hidden defects with a depth of 10 µm trustworthily with a SNR better than 10 dB. Here, the lift off between sensor and surface was 250 µm. On this basis, we investigated different testing scenarios including velocity tests and different lift offs. In this contribution we present the results of the feasibility study leading to first prototypes of GMR-probes which are now installed as part of a demonstrator inside a production line.
Design and Fabrication of Full Wheatstone-Bridge-Based Angular GMR Sensors.
Yan, Shaohua; Cao, Zhiqiang; Guo, Zongxia; Zheng, Zhenyi; Cao, Anni; Qi, Yue; Leng, Qunwen; Zhao, Weisheng
2018-06-05
Since the discovery of the giant magnetoresistive (GMR) effect, GMR sensors have gained much attention in last decades due to their high sensitivity, small size, and low cost. The full Wheatstone-bridge-based GMR sensor is most useful in terms of the application point of view. However, its manufacturing process is usually complex. In this paper, we present an efficient and concise approach to fabricate a full Wheatstone-bridge-based angular GMR sensor by depositing one GMR film stack, utilizing simple patterned processes, and a concise post-annealing procedure based on a special layout. The angular GMR sensor is of good linear performance and achieves a sensitivity of 0.112 mV/V/Oe at the annealing temperature of 260 °C in the magnetic field range from -50 to +50 Oe. This work provides a design and method for GMR-sensor manufacturing that is easy for implementation and suitable for mass production.
NASA Astrophysics Data System (ADS)
Bae, Seongtae
Since giant magnetoresistance (GMR) and tunneling magnetoresistance (TMR) spinvalve effects were developed for the last two decades after discovered, world wide researches on applying these effects for various kinds of solid state active devices has provided a strong impact on challenging new functional micro-magnetoelectronic devices. In particular, recently developed nano-structured magnetic spin-valve thin film materials for spin-electronic devices are now considered as building blocks of state-of-the-art electronic engineering. This research has been concentrated on developing and designing magneto-electronic solid state devices with high thermal and electrical stability using an alpha-Fe 2O3 and NiO oxide anti-ferromagnetic exchange biased GMR bottom spin-valves (BSV), NiFe/Cu/Co and NiFe/Cu/CoFe based closed-flux metallic pseudo spin-valves, and PtMn exchange biased TMR spin-valves. The category covering this research is divided into four main research steps. First is to investigate exchange bias coupling characteristics of alpha-Fe2 O3 and NiO oxide Anti-ferromagnetic materials (AF)/Ferromagnetic (F) layer systems for optimizing exchange biased BSV and to study magnetic properties of various kinds of magnetic thin films including single through multi-layered structures for the fundamental research on NiFe/Cu/Co and NiFe/Cu/CoFe closed-flux metallic pseudo spin-valves. Second is to develop and improve new kinds of BSVs and closed-flux metallic spinvalves by controlling process parameters in terms of crystalline orientation texture of AF and F layers, interfacial surface roughness, grain size (its size distribution), chemical composition, and kinetics of sputtering film growth. Third is to design, to fabricate, and to investigate the magnetic and electrical properties of magneto-electronic devices as well as their applications such as GMR magnetoresistive random access memory (MRAM), GMR read head, TMR read head, and new kinds of GMR solid state devices, which can be promisingly substituted for current microelectronic devices. Finally, the last is to focus on studying electrical reliability of GMR read sensor and GMR MRAM cell in terms of electromigration-induced failures of various kinds of magnetic thin films, which are currently used in GMR spin-valve materials, and is to investigate the effects of current (or voltage) induced dielectric breakdown in aluminum oxide tunnel barrier under various testing conditions on the electrical stability of real TMR read sensors.
Routes for GMR-Sensor Design in Non-Destructive Testing
Pelkner, Matthias; Neubauer, Andreas; Reimund, Verena; Kreutzbruck, Marc; Schütze, Andreas
2012-01-01
GMR sensors are widely used in many industrial segments such as information technology, automotive, automation and production, and safety applications. Each area requires an adaption of the sensor arrangement in terms of size adaption and alignment with respect to the field source involved. This paper deals with an analysis of geometric sensor parameters and the arrangement of GMR sensors providing a design roadmap for non-destructive testing (NDT) applications. For this purpose we use an analytical model simulating the magnetic flux leakage (MFL) distribution of surface breaking defects and investigate the flux leakage signal as a function of various sensor parameters. Our calculations show both the influence of sensor length and height and that when detecting the magnetic flux leakage of μm sized defects a gradiometer base line of 250 μm leads to a signal strength loss of less than 10% in comparison with a magnetometer response. To validate the simulation results we finally performed measurements with a GMR magnetometer sensor on a test plate with artificial μm-range cracks. The differences between simulation and measurement are below 6%. We report on the routes for a GMR gradiometer design as a basis for the fabrication of NDT-adapted sensor arrays. The results are also helpful for the use of GMR in other application when it comes to measure positions, lengths, angles or electrical currents.
In, Myung-Ho; Posnansky, Oleg; Speck, Oliver
2016-05-01
To accurately correct diffusion-encoding direction-dependent eddy-current-induced geometric distortions in diffusion-weighted echo-planar imaging (DW-EPI) and to minimize the calibration time at 7 Tesla (T). A point spread function (PSF) mapping based eddy-current calibration method is newly presented to determine eddy-current-induced geometric distortions even including nonlinear eddy-current effects within the readout acquisition window. To evaluate the temporal stability of eddy-current maps, calibration was performed four times within 3 months. Furthermore, spatial variations of measured eddy-current maps versus their linear superposition were investigated to enable correction in DW-EPIs with arbitrary diffusion directions without direct calibration. For comparison, an image-based eddy-current correction method was additionally applied. Finally, this method was combined with a PSF-based susceptibility-induced distortion correction approach proposed previously to correct both susceptibility and eddy-current-induced distortions in DW-EPIs. Very fast eddy-current calibration in a three-dimensional volume is possible with the proposed method. The measured eddy-current maps are very stable over time and very similar maps can be obtained by linear superposition of principal-axes eddy-current maps. High resolution in vivo brain results demonstrate that the proposed method allows more efficient eddy-current correction than the image-based method. The combination of both PSF-based approaches allows distortion-free images, which permit reliable analysis in diffusion tensor imaging applications at 7T. © 2015 Wiley Periodicals, Inc.
Monolithic integration of GMR sensors for standard CMOS-IC current sensing
NASA Astrophysics Data System (ADS)
De Marcellis, A.; Reig, C.; Cubells-Beltrán, M.-D.; Madrenas, J.; Santos, J. D.; Cardoso, S.; Freitas, P. P.
2017-09-01
In this work we report on the development of Giant Magnetoresistive (GMR) sensors for off-line current measurements in standard integrated circuits. An ASIC has been specifically designed and fabricated in the well-known AMS-0.35 μm CMOS technology, including the electronic circuitry for sensor interfacing. It implements an oscillating circuit performing a voltage-to-frequency conversion. Subsequently, a fully CMOS-compatible low temperature post-process has been applied for depositing the GMR sensing devices in a full-bridge configuration onto the buried current straps. Sensitivity and resolution of these sensors have been investigated achieving experimental results that show a detection sensitivity of about 100 Hz/mA, with a resolution of about 5 μA.
Detection of magnetic microbeads and ferrofluid with giant magnetoresistance sensors
NASA Astrophysics Data System (ADS)
Feng, J.; Wang, Y. Q.; Li, F. Q.; Shi, H. P.; Chen, X.
2011-01-01
Giant magnetoresistance sensors based on multilayers [Cu/NiFeCo]×10/ Ta were fabricated by microfabrication technology. A GMR-bridge was used to detect the magnetic MyOne beads and Ferro fluid. The dependence of the GMR-bridge signals on the surface coverage of MyOne beads was studied. The results show that the GMR sensor is capable of detecting the magnetic beads. The detectable limit of MyOne beads is about 100, and the corresponding signal output is 8 μV. The GMR bridge signal is proportional to the surface coverage of the MyOne beads. The sensitivity of the GMR bridge is inversely proportional to the feature size of the GMR sensor. The GMR bridge integrated with microfludic channel was also used for dynamic detection of ferrofluid (suspension of Fe3O4 particles). The results show that the GMR bridge is capable of detecting the flow of ferrofluid, and the sensor signals are proportional to the concentration of the ferrofluid. The detection limit of concentration of the ferrofluid is 0.56 mg/ml, and the corresponding signal is 6.2 μV.
Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses
NASA Astrophysics Data System (ADS)
Tekgül, Atakan; Alper, Mürsel; Kockar, Hakan
2017-01-01
The CoFe/Cu magnetic multilayers were produced by changing CoFe ferromagnetic layers from 3 nm to 10 nm using electrodeposition. By now, the thinnest Cu (0.5 nm) layer thicknesses were used to see whether the GMR effect in the multilayers can be obtained or not since the pinning of non-magnetic layer between the ferromagnetic layers is required. For the proper depositions, the cyclic voltammograms was used, and the current-time transients were obtained. The Cu and CoFe layers were deposited at a cathode potential of -0.3 and -1.5 V with respect to saturated calomel electrode, respectively. From the XRD patterns, the multilayers were shown to be fcc crystal structures. For the magnetization measurements, saturation magnetization increases from 160 to 600 kA/m from 3 to 8 nm ferromagnetic layer thicknesses. And, the coercivity values increase until the 8 nm of the CoFe layer thickness. It is seen that the thin Cu layer (fixed at 0.5 nm) and pinholes support the random magnetization orientation and thus all multilayers exhibited the giant magnetoresistance (GMR) effect, and the highest GMR value was observed about 5.5%. And, the variation of GMR field sensitivity was calculated. The results show that the GMR and GMR sensitivity are compatible among the multilayers. The CoFe/Cu magnetic multilayers having GMR properties are used in GMR sensors and hard disk drive of the nano-technological devices.
Magnetocardiography with sensors based on giant magnetoresistance
NASA Astrophysics Data System (ADS)
Pannetier-Lecoeur, M.; Parkkonen, L.; Sergeeva-Chollet, N.; Polovy, H.; Fermon, C.; Fowley, C.
2011-04-01
Biomagnetic signals, mostly due to the electrical activity in the body, are very weak and they can only be detected by the most sensitive magnetometers, such as Superconducting Quantum Interference Devices (SQUIDs). We report here biomagnetic recordings with hybrid sensors based on Giant MagnetoResistance (GMR). We recorded magnetic signatures of the electric activity of the human heart (magnetocardiography) in healthy volunteers. The P-wave and QRS complex, known from the corresponding electric recordings, are clearly visible in the recordings after an averaging time of about 1 min. Multiple recordings at different locations over the chest yielded a dipolar magnetic field map and allowed localizing the underlying current sources. The sensitivity of the GMR-based sensors is now approaching that of SQUIDs and paves way for spin electronics devices for functional imaging of the body.
NASA Astrophysics Data System (ADS)
Gui Zeng, Ding; Lee, Kyoung-il; Chung, Kyung-Won; Bae, Seongtae
2012-05-01
Effects of magnetic stray field retrieved from both longitudinal and perpendicular magnetic recording media (denoted by "media stray field") on electromigration (EM) characteristics of current-perpendicular-to-plane (CPP) giant magnetoresistance spin-valve (GMR SV) read sensors have been numerically studied to explore the electrical and magnetic stability of the read sensor under real operation. The mean-time-to-failure (MTTF) of the CPP GMR SV read sensors was found to have a strong dependence on the physical parameters of the recording media and recorded information status, such as the pulse width of media stray field, the bit length, and the head moving velocity. According to the numerical calculation results, it was confirmed that in the longitudinal media, the shorter the stray field pulse width (i.e., the sharper the media transition) allows for the longer MTTF of the CPP GMR SV read sensors; while in the perpendicular media, the sharper the media transition gives rise to a shorter MTTF. Interestingly, it was also revealed that the MTTF could be improved by reducing the bit length as well as increasing the head velocity in both longitudinal and perpendicular media. Furthermore, the bit distribution patterns, especially the number of consecutive `0' bits strongly affected the MTTF of GMR SV read sensors. The strong dependences of MTTF on the media stray field during CPP GMR SV sensor operation are thought to be mainly attributed to the thermal cycling (temperature rise and fall) caused by the resistance change due to GMR effects.
One-step sol-gel imprint lithography for guided-mode resonance structures.
Huang, Yin; Liu, Longju; Johnson, Michael; C Hillier, Andrew; Lu, Meng
2016-03-04
Guided-mode resonance (GMR) structures consisting of sub-wavelength periodic gratings are capable of producing narrow-linewidth optical resonances. This paper describes a sol-gel-based imprint lithography method for the fabrication of submicron 1D and 2D GMR structures. This method utilizes a patterned polydimethylsiloxane (PDMS) mold to fabricate the grating coupler and waveguide for a GMR device using a sol-gel thin film in a single step. An organic-inorganic hybrid sol-gel film was selected as the imprint material because of its relatively high refractive index. The optical responses of several sol-gel GMR devices were characterized, and the experimental results were in good agreement with the results of electromagnetic simulations. The influence of processing parameters was investigated in order to determine how finely the spectral response and resonant wavelength of the GMR devices could be tuned. As an example potential application, refractometric sensing experiments were performed using a 1D sol-gel device. The results demonstrated a refractive index sensitivity of 50 nm/refractive index unit. This one-step fabrication process offers a simple, rapid, and low-cost means of fabricating GMR structures. We anticipate that this method can be valuable in the development of various GMR-based devices as it can readily enable the fabrication of complex shapes and allow the doping of optically active materials into sol-gel thin film.
NASA Astrophysics Data System (ADS)
Yukino, Ryoji; Sahoo, Pankaj K.; Sharma, Jaiyam; Takamura, Tsukasa; Joseph, Joby; Sandhu, Adarsh
2017-01-01
We describe wavelength tuning in a one dimensional (1D) silicon nitride nano-grating guided mode resonance (GMR) structure under conical mounting configuration of the device. When the GMR structure is rotated about the axis perpendicular to the surface of the device (azimuthal rotation) for light incident at oblique angles, the conditions for resonance are different than for conventional GMR structures under classical mounting. These resonance conditions enable tuning of the GMR peak position over a wide range of wavelengths. We experimental demonstrate tuning over a range of 375 nm between 500 nm˜875 nm. We present a theoretical model to explain the resonance conditions observed in our experiments and predict the peak positions with show excellent agreement with experiments. Our method for tuning wavelengths is simpler and more efficient than conventional procedures that employ variations in the design parameters of structures or conical mounting of two-dimensional (2D) GMR structures and enables a single 1D GMR device to function as a high efficiency wavelength filter over a wide range of wavelengths. We expect tunable filters based on this technique to be applicable in a wide range of fields including astronomy and biomedical imaging.
Monthly streamflow forecasting based on hidden Markov model and Gaussian Mixture Regression
NASA Astrophysics Data System (ADS)
Liu, Yongqi; Ye, Lei; Qin, Hui; Hong, Xiaofeng; Ye, Jiajun; Yin, Xingli
2018-06-01
Reliable streamflow forecasts can be highly valuable for water resources planning and management. In this study, we combined a hidden Markov model (HMM) and Gaussian Mixture Regression (GMR) for probabilistic monthly streamflow forecasting. The HMM is initialized using a kernelized K-medoids clustering method, and the Baum-Welch algorithm is then executed to learn the model parameters. GMR derives a conditional probability distribution for the predictand given covariate information, including the antecedent flow at a local station and two surrounding stations. The performance of HMM-GMR was verified based on the mean square error and continuous ranked probability score skill scores. The reliability of the forecasts was assessed by examining the uniformity of the probability integral transform values. The results show that HMM-GMR obtained reasonably high skill scores and the uncertainty spread was appropriate. Different HMM states were assumed to be different climate conditions, which would lead to different types of observed values. We demonstrated that the HMM-GMR approach can handle multimodal and heteroscedastic data.
GMR-based PhC biosensor: FOM analysis and experimental studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syamprasad, Jagadeesh; Narayanan, Roshni; Joseph, Joby
2014-02-20
Guided Mode Resonance based Photonic crystal biosensor has a lot of potential applications. In our work, we are trying to improve their figure of merit values in order to achieve an optimum level through design and fabrication techniques. A robust and low-cost alternative for current biosensors is also explored through this research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, S.; Holody, P.; Loloee, R.
1997-03-01
From data on (Fe{sub 1-x}V{sub x}/Cu/Co/Cu){sub N} multilayers, we show that Fe doped with V gains a negative spin asymmetry for bulk scattering ({beta}{lt}0), which, combined with the positive asymmetry of Co, accounts for the inverse current perpendicular to the plane (CPP) giant magnetoresistance (GMR) we observe. More precisely, the competition between positive and negative asymmetries for interface and bulk scatterings in FeV leads to inverse (normal) GMR for layers thicker (thinner) than a compensation thickness. The negative {beta} of FeV is consistent with theoretical predictions and bulk alloy data. The current in the plane (CIP) GMR is not reversed,more » which illustrates the role of channeling in CIP. {copyright} {ital 1997} {ital The American Physical Society}« less
Liu, Jui-Nung; Schulmerich, Matthew V.; Bhargava, Rohit; Cunningham, Brian T.
2011-01-01
An alternative to the well-established Fourier transform infrared (FT-IR) spectrometry, termed discrete frequency infrared (DFIR) spectrometry, has recently been proposed. This approach uses narrowband mid-infrared reflectance filters based on guided-mode resonance (GMR) in waveguide gratings, but filters designed and fabricated have not attained the spectral selectivity (≤ 32 cm−1) commonly employed for measurements of condensed matter using FT-IR spectroscopy. With the incorporation of dispersion and optical absorption of materials, we present here optimal design of double-layer surface-relief silicon nitride-based GMR filters in the mid-IR for various narrow bandwidths below 32 cm−1. Both shift of the filter resonance wavelengths arising from the dispersion effect and reduction of peak reflection efficiency and electric field enhancement due to the absorption effect show that the optical characteristics of materials must be taken into consideration rigorously for accurate design of narrowband GMR filters. By incorporating considerations for background reflections, the optimally designed GMR filters can have bandwidth narrower than the designed filter by the antireflection equivalence method based on the same index modulation magnitude, without sacrificing low sideband reflections near resonance. The reported work will enable use of GMR filters-based instrumentation for common measurements of condensed matter, including tissues and polymer samples. PMID:22109445
Electron transport theory in magnetic nanostructures
NASA Astrophysics Data System (ADS)
Choy, Tat-Sang
Magnetic nanostructure has been a new trend because of its application in making magnetic sensors, magnetic memories, and magnetic reading heads in hard disks drives. Although a variety of nanostructures have been realized in experiments in recent years by innovative sample growth techniques, the theoretical study of these devices remain a challenge. On one hand, atomic scale modeling is often required for studying the magnetic nanostructures; on the other, these structures often have a dimension on the order of one micrometer, which makes the calculation numerically intensive. In this work, we have studied the electron transport theory in magnetic nanostructures, with special attention to the giant magnetoresistance (GMR) structure. We have developed a model that includes the details of the band structure and disorder, both of which are both important in obtaining the conductivity. We have also developed an efficient algorithm to compute the conductivity in magnetic nanostructures. The model and the algorithm are general and can be applied to complicated structures. We have applied the theory to current-perpendicular-to-plane GMR structures and the results agree with experiments. Finally, we have searched for the atomic configuration with the highest GMR using the simulated annealing algorithm. This method is computationally intensive because we have to compute the GMR for 103 to 104 configurations. However it is still very efficient because the number of steps it takes to find the maximum is much smaller than the number of all possible GMR structures. We found that ultra-thin NiCu superlattices have surprisingly large GMR even at the moderate disorder in experiments. This finding may be useful in improving the GMR technology.
O'Brien, Kieran; Daducci, Alessandro; Kickler, Nils; Lazeyras, Francois; Gruetter, Rolf; Feiweier, Thorsten; Krueger, Gunnar
2013-08-01
Clinical use of the Stejskal-Tanner diffusion weighted images is hampered by the geometric distortions that result from the large residual 3-D eddy current field induced. In this work, we aimed to predict, using linear response theory, the residual 3-D eddy current field required for geometric distortion correction based on phantom eddy current field measurements. The predicted 3-D eddy current field induced by the diffusion-weighting gradients was able to reduce the root mean square error of the residual eddy current field to ~1 Hz. The model's performance was tested on diffusion weighted images of four normal volunteers, following distortion correction, the quality of the Stejskal-Tanner diffusion-weighted images was found to have comparable quality to image registration based corrections (FSL) at low b-values. Unlike registration techniques the correction was not hindered by low SNR at high b-values, and results in improved image quality relative to FSL. Characterization of the 3-D eddy current field with linear response theory enables the prediction of the 3-D eddy current field required to correct eddy current induced geometric distortions for a wide range of clinical and high b-value protocols.
NASA Astrophysics Data System (ADS)
Hashimoto, Y.; Yamamoto, N.; Kato, T.; Oshima, D.; Iwata, S.
2018-03-01
Giant magneto-resistance (GMR) spin-valve films with an FeSiB/CoFeB free layer were fabricated to detect applied strain in a GMR device. The magnetostriction constant of FeSiB was experimentally determined to have 32 ppm, which was one order of magnitude larger than that of CoFeB. In order to detect the strain sensitively and robustly against magnetic field fluctuation, the magnetic field modulation technique was applied to the GMR device. It was confirmed that the output voltage of the GMR device depends on the strain, and the gauge factor K = 46 was obtained by adjusting the applied DC field intensity and direction. We carried out the simulation based on a macro-spin model assuming uniaxial anisotropy, interlayer coupling between the free and pin layers, strain-induced anisotropy, and Zeeman energy, and succeeded in reproducing the experimental results. The simulation predicts that improving the magnetic properties of GMR films, especially reducing interlayer coupling, will be effective for increasing the output, i.e., the gauge factor, of the GMR strain sensors.
Electromagnetically induced transparency in planar metamaterials based on guided mode resonance
NASA Astrophysics Data System (ADS)
Sun, Yaru; Chen, Hang; Li, Xiangjun; Hong, Zhi
2017-06-01
We present and numerically demonstrate a novel, electromagnetically induced transparency (EIT) in planar metamaterials (MMs) based on guided mode resonance (GMR). The unit cell of the MM consists of two metallic ring resonators. The GMR with high quality factor (Q) is achieved by changing the distance between the two rings of the MM. Narrow EIT-like spectral response is realized by coupling between a high Q GMR and a low Q dipolar resonance of the MM. Our work could provide another efficient way towards the realization of EIT with large group index using very simple structures.
Machnicka, Magdalena A; Kaminska, Katarzyna H; Dunin-Horkawicz, Stanislaw; Bujnicki, Janusz M
2015-10-23
GmrSD is a modification-dependent restriction endonuclease that specifically targets and cleaves glucosylated hydroxymethylcytosine (glc-HMC) modified DNA. It is encoded either as two separate single-domain GmrS and GmrD proteins or as a single protein carrying both domains. Previous studies suggested that GmrS acts as endonuclease and NTPase whereas GmrD binds DNA. In this work we applied homology detection, sequence conservation analysis, fold recognition and homology modeling methods to study sequence-structure-function relationships in the GmrSD restriction endonucleases family. We also analyzed the phylogeny and genomic context of the family members. Results of our comparative genomics study show that GmrS exhibits similarity to proteins from the ParB/Srx fold which can have both NTPase and nuclease activity. In contrast to the previous studies though, we attribute the nuclease activity also to GmrD as we found it to contain the HNH endonuclease motif. We revealed residues potentially important for structure and function in both domains. Moreover, we found that GmrSD systems exist predominantly as a fused, double-domain form rather than as a heterodimer and that their homologs are often encoded in regions enriched in defense and gene mobility-related elements. Finally, phylogenetic reconstructions of GmrS and GmrD domains revealed that they coevolved and only few GmrSD systems appear to be assembled from distantly related GmrS and GmrD components. Our study provides insight into sequence-structure-function relationships in the yet poorly characterized family of Type IV restriction enzymes. Comparative genomics allowed to propose possible role of GmrD domain in the function of the GmrSD enzyme and possible active sites of both GmrS and GmrD domains. Presented results can guide further experimental characterization of these enzymes.
Wen, Zhenchao; Kubota, Takahide; Yamamoto, Tatsuya; Takanashi, Koki
2015-01-01
Remarkable magnetic and spin-dependent transport properties arise from well-designed spintronic materials and heterostructures. Half-metallic Heusler alloys with high spin polarization exhibit properties that are particularly advantageous for the development of high-performance spintronic devices. Here, we report fully (001)-epitaxial growth of a high-quality half-metallic NiMnSb half-Heusler alloy films, and their application to current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with Ag spacer layers. Fully (001)-oriented NiMnSb epitaxial films with very flat surface and high magnetization were prepared on Cr/Ag-buffered MgO(001) single crystalline substrates by changing the substrate temperature. Epitaxial CPP-GMR devices using the NiMnSb films and a Ag spacer were fabricated, and room-temperature (RT) CPP-GMR ratios for the C1b-type half-Heusler alloy were determined for the first time. A CPP-GMR ratio of 8% (21%) at RT (4.2 K) was achieved in the fully epitaxial NiMnSb/Ag/NiMnSb structures. Furthermore, negative anisotropic magnetoresistance (AMR) ratio and small discrepancy of the AMR amplitudes between RT and 10 K were observed in a single epitaxial NiMnSb film, indicating robust bulk half metallicity against thermal fluctuation in the half-Heusler compound. The modest CPP-GMR ratios could be attributed to interface effects between NiMnSb and Ag. This work provides a pathway for engineering a new class of ordered alloy materials with particular emphasis on spintronics. PMID:26672482
NASA Astrophysics Data System (ADS)
Seo, Sukho; Choi, Gyudong; Eom, Tae Jhoun; Lee, Bokwon; Lee, Soo Yeol
2017-07-01
The eddy current responses of Electrical Discharge Machining (EDM) notches and fatigue cracks are directly compared to verify the reliability of eddy current inspection. The fatigue crack growth tests using a constant load range control mode were conducted to obtain a variety of edge crack sizes, ranging from 0.9 to 6.6 mm for Al alloy and from 0.1 to 3 mm for Ti alloy. EDM notch specimens of Al and Ti alloys were accordingly prepared in lengths similar to that of the fatigued specimen. The crack length was determined by optical microscope and scanning electron microscope. The eddy current responses between the EDM and fatigued specimens with varying notch/crack length were examined using probe sensors at (100-500) kHz and (1-2) MHz for Al and Ti alloys, respectively. The results show a significant difference in the eddy current signal between the two specimens, based on the correlation between the eddy current response and notch/crack length. This suggests that eddy current inspection using the EDM reference specimen is inaccurate in determining the precise crack size, unless the eddy current response data base is obtained from a fatigue-cracked specimen.
Determinants of endotoxin levels in carpets in New Zealand homes.
Wickens, K; Douwes, J; Siebers, R; Fitzharris, P; Wouters, I; Doekes, G; Mason, K; Hearfield, M; Cunningham, M; Crane, J
2003-06-01
Endotoxin in house dust has been shown to be associated with asthma severity. Little is known about the influence of housing characteristics on endotoxin distribution. Using standardized methods, dust was sampled from a 1m(2) site and the whole accessible carpet area in selected Wellington, New Zealand homes (n = 77). Endotoxin was measured using a Limulus Amoebocyte Lysate assay. Relative humidity and temperature were recorded using sensors placed in carpet bases. Questionnaires were used to collect information on housing characteristics. All analyses were performed for endotoxin units (EU)/mg and EU/m2 for each site. Geometric mean endotoxin levels were 22.7 EU/mg [geometric standard deviation (GSD) = 2.4] or 30,544 EU/m2 (GSD = 3.2) from the 1m(2) site, and 28.4 EU/mg (GSD = 3.4) or 5653 EU/m2 (GSD = 6.4) from the whole room. After controlling for confounding, endotoxin was positively associated with dogs inside [geometric mean ratio (GMR): 0.9-2.0], total household occupants (GMR: 1.7-2.0, for 1 m2 sample only), vacuum cleaners <1-year old (GMR: 2.3-2.7), reusing vacuum dust collection bags (GMR: 1.4-3.1), steamcleaning or shampooing the carpet (GMR: 1.4-2.2) and high relative humidity (GMR: 1.4-1.6). Lower endotoxin was associated with floor insulation (GMR: 0.4-0.8), and north-facing living rooms (GMR: 0.4-0.8). This study has identified home characteristics that could be modified to reduce endotoxin exposure.
NASA Astrophysics Data System (ADS)
Qu, Guanxiong; Cheng, P.-H.; Du, Ye; Sakuraba, Yuya; Kasai, Shinya; Hono, Kazuhiro
2017-11-01
We have fabricated fully epitaxial current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices using C1b-half Heusler compound NiMnSb, the first candidate of the half-metallic material, as the electrode with a Ag spacer. The device shows magnetoresistance ratios of 25% at 4.2 K and 9.6% at 290 K, which are one of the highest values for the CPP-GMR with half-Heusler compounds. However, these values are much lower compared to those reported for CPP-GMR devices with L21-full Heusler compounds. Careful analysis of the microstructure using scanning transmission electron microscopy and energy dispersive spectroscopy through the upper NiMnSb/Ag interface indicates the heterogeneous formation of Ag-rich solid solution or the island growth of Ag on top of NiMnSb, which clarified a difficulty in evaluating an intrinsic spin-polarization in NiMnSb from CPP-GMR devices. Thus, to evaluate a spin-polarization of a NiMnSb thin film, we fabricated non-local spin valve (NLSV) devices using NiMnSb with Cu channel wires, which is free from the diffusion of Cu to NiMnSb because of no annealing proccess after deposition of Cu. Finally, intrinsic spin polarization of the NiMnSb single layer was extrapolated to be around 50% from NLSV, suggesting a difficulty in obtaining half-metallic nature in the NiMnSb epitaxial thin film.
NASA Astrophysics Data System (ADS)
Nam, Chunghee; Jang, Youngman; Lee, Ki-Su; Shim, Jungjin; Cho, B. K.
2006-04-01
Based upon a bulk scattering model, we investigated the variation of giant magnetoresistance (GMR) behavior after thermal annealing at Ta=250 °C as a function of the top free layer thickness of a GMR spin valve with nano-oxide layers (NOLs). It was found that the enhancement of GMR ratio after thermal annealing is explained qualitatively in terms of the increase of active GMR region in the free layer and, simultaneously, the increase of intrinsic spin-scattering ratio. These effects are likely due to the improved specular reflection at the well-formed interface of NOL. Furthermore, we developed a modified phenomenological model for sheet conductance change (ΔG) in terms of the top free layer thickness. This modified model was found to be useful in the quantitative analysis of the variation of the active GMR region and the intrinsic spin-scattering properties. The two physical parameters were found to change consistently with the effects of thermal annealing on NOL.
NASA Astrophysics Data System (ADS)
Fart, Albart; Gruntbug, Peter; Siegel, Edward
2011-03-01
Proton/Hydrogen-ion Diffusive-Magnetoresistance(DMR) of Siegel[APS March-Mtgs.(70s)] based upon Siegel[Int'l. Conf. Mag.-Alloys and Oxides("ICMAO"), The Technion(77); J. Mag. Mag. Mtls. 7, 312(78)] FIRST experimental-discovery of GMR and FIRST theoretical prediction of CMR[ibid. 7, 338 (78)], facilitates NEW water production in global-warming exacerbated dry arid/semi-arid regions: Only HYDROGEN is/can be "FLYING-WATER"!!! (aka "chemical-rain-in-pipelines"). EMET/TRUTH-in-the-``SEANCES'', would-be "Sciences": C. Perelman-Corredoira [Against the Tide(07)] featuring Martin-Bradshaw ["Healing the SHAME That BINDS You"(80s)] systemic sociological-dysfunctionality(S-D), and Grigory Perelman's HEROIC ETHICS (refusal of both pure-maths Poincare-conjecture proof 2007 Fields-medal and 2010 Clay-Institute so-called/media-hyped/P.Red/spin-doctored millennium-prize million-dollar would-be award, militates as well in the current "SEANCE" of physics/maths politics/media-hype/P.R /spin-doctoring VS. Siegel FIRST experimental GMR a never-acknowledged full decade PRE-"Fert"(88) /"Grunberg(89)" ``Phales-GroPE''/Thompson-CSF/ KFZ-JEWlich 2007 physics Wolf/Japan/Nobel-prizes!!!
Automated eddy current analysis of materials
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1991-01-01
The use of eddy current techniques for characterizing flaws in graphite-based filament-wound cylindrical structures is described. A major emphasis was also placed upon incorporating artificial intelligence techniques into the signal analysis portion of the inspection process. Developing an eddy current scanning system using a commercial robot for inspecting graphite structures (and others) was a goal in the overall concept and is essential for the final implementation for the expert systems interpretation. Manual scans, as performed in the preliminary work here, do not provide sufficiently reproducible eddy current signatures to be easily built into a real time expert system. The expert systems approach to eddy current signal analysis requires that a suitable knowledge base exist in which correct decisions as to the nature of a flaw can be performed. A robotic workcell using eddy current transducers for the inspection of carbon filament materials with improved sensitivity was developed. Improved coupling efficiencies achieved with the E-probes and horseshoe probes are exceptional for graphite fibers. The eddy current supervisory system and expert system was partially developed on a MacIvory system. Continued utilization of finite element models for predetermining eddy current signals was shown to be useful in this work, both for understanding how electromagnetic fields interact with graphite fibers, and also for use in determining how to develop the knowledge base. Sufficient data was taken to indicate that the E-probe and the horseshoe probe can be useful eddy current transducers for inspecting graphite fiber components. The lacking component at this time is a large enough probe to have sensitivity in both the far and near field of a thick graphite epoxy component.
Nalladega, V; Sathish, S; Jata, K V; Blodgett, M P
2008-07-01
We present a high resolution electrical conductivity imaging technique based on the principles of eddy current and atomic force microscopy (AFM). An electromagnetic coil is used to generate eddy currents in an electrically conducting material. The eddy currents generated in the conducting sample are detected and measured with a magnetic tip attached to a flexible cantilever of an AFM. The eddy current generation and its interaction with the magnetic tip cantilever are theoretically modeled using monopole approximation. The model is used to estimate the eddy current force between the magnetic tip and the electrically conducting sample. The theoretical model is also used to choose a magnetic tip-cantilever system with appropriate magnetic field and spring constant to facilitate the design of a high resolution electrical conductivity imaging system. The force between the tip and the sample due to eddy currents is measured as a function of the separation distance and compared to the model in a single crystal copper. Images of electrical conductivity variations in a polycrystalline dual phase titanium alloy (Ti-6Al-4V) sample are obtained by scanning the magnetic tip-cantilever held at a standoff distance from the sample surface. The contrast in the image is explained based on the electrical conductivity and eddy current force between the magnetic tip and the sample. The spatial resolution of the eddy current imaging system is determined by imaging carbon nanofibers in a polymer matrix. The advantages, limitations, and applications of the technique are discussed.
NASA Astrophysics Data System (ADS)
Swiderski, Waldemar
2016-10-01
Eddy current thermography is a new NDT-technique for the detection of cracks in electro conductive materials. It combines the well-established inspection techniques of eddy current testing and thermography. The technique uses induced eddy currents to heat the sample being tested and defect detection is based on the changes of induced eddy currents flows revealed by thermal visualization captured by an infrared camera. The advantage of this method is to use the high performance of eddy current testing that eliminates the known problem of the edge effect. Especially for components of complex geometry this is an important factor which may overcome the increased expense for inspection set-up. The paper presents the possibility of applying eddy current thermography method for detecting defects in ballistic covers made of carbon fiber reinforced composites used in the construction of military vehicles.
The eddy current probe array for Keda Torus eXperiment.
Li, Zichao; Li, Hong; Tu, Cui; Hu, Jintong; You, Wei; Luo, Bing; Tan, Mingsheng; Adil, Yolbarsop; Wu, Yanqi; Shen, Biao; Xiao, Bingjia; Zhang, Ping; Mao, Wenzhe; Wang, Hai; Wen, Xiaohui; Zhou, Haiyang; Xie, Jinlin; Lan, Tao; Liu, Adi; Ding, Weixing; Xiao, Chijin; Liu, Wandong
2016-11-01
In a reversed field pinch device, the conductive shell is placed as close as possible to the plasma so as to balance the plasma during discharge. Plasma instabilities such as the resistive wall mode and certain tearing modes, which restrain the plasma high parameter operation, respond closely with conditions in the wall, in essence the eddy current present. Also, the effect of eddy currents induced by the external coils cannot be ignored when active control is applied to control instabilities. One diagnostic tool, an eddy current probe array, detects the eddy current in the composite shell. Magnetic probes measuring differences between the inner and outer magnetic fields enable estimates of the amplitude and angle of these eddy currents. Along with measurements of currents through the copper bolts connecting the poloidal shield copper shells, we can obtain the eddy currents over the entire shell. Magnetic field and eddy current resolutions approach 2 G and 6 A, respectively. Additionally, the vortex electric field can be obtained by eddy current probes. As the conductivity of the composite shell is high, the eddy current probe array is very sensitive to the electric field and has a resolution of 0.2 mV/cm. In a bench test experiment using a 1/4 vacuum vessel, measurements of the induced eddy currents are compared with simulation results based on a 3D electromagnetic model. The preliminary data of the eddy currents have been detected during discharges in a Keda Torus eXperiment device. The typical value of toroidal and poloidal eddy currents across the magnetic probe coverage rectangular area could reach 3.0 kA and 1.3 kA, respectively.
Deep Flaw Detection with Giant Magnetoresistive (GMR) Based Self-Nulling Probe
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Namkung, Min
2004-01-01
In this paper a design modification to the Very-Low Frequency GMR Based Self-Nulling Probe has been presented to enable improved signal to noise ratio for deeply buried flaws. The design change consists of incorporating a feedback coil in the center of the flux focusing lens. The use of the feedback coil enables cancellation of the leakage fields in the center of the probe and biasing of the GMR sensor to a location of high magnetic field sensitivity. The effect of the feedback on the probe output was examined, and experimental results for deep flaw detection were presented. The experimental results show that the modified probe is capable of clearly identifying flaws up to 1 cm deep in aluminum alloy structures.
Quantifying mesoscale eddies in the Lofoten Basin
NASA Astrophysics Data System (ADS)
Raj, R. P.; Johannessen, J. A.; Eldevik, T.; Nilsen, J. E. Ø.; Halo, I.
2016-07-01
The Lofoten Basin is the most eddy rich region in the Norwegian Sea. In this paper, the characteristics of these eddies are investigated from a comprehensive database of nearly two decades of satellite altimeter data (1995-2013) together with Argo profiling floats and surface drifter data. An automated method identified 1695/1666 individual anticyclonic/cyclonic eddies in the Lofoten Basin from more than 10,000 altimeter-based eddy observations. The eddies are found to be predominantly generated and residing locally. The spatial distributions of lifetime, occurrence, generation sites, size, intensity, and drift of the eddies are studied in detail. The anticyclonic eddies in the Lofoten Basin are the most long-lived eddies (>60 days), especially in the western part of the basin. We reveal two hotspots of eddy occurrence on either side of the Lofoten Basin. Furthermore, we infer a cyclonic drift of eddies in the western Lofoten Basin. Barotropic energy conversion rates reveals energy transfer from the slope current to the eddies during winter. An automated colocation of surface drifters trapped inside the altimeter-based eddies are used to corroborate the orbital speed of the anticyclonic and cyclonic eddies. Moreover, the vertical structure of the altimeter-based eddies is examined using colocated Argo profiling float profiles. Combination of altimetry, Argo floats, and surface drifter data is therefore considered to be a promising observation-based approach for further studies of the role of eddies in transport of heat and biomass from the slope current to the Lofoten Basin.
Fractional Modeling of the AC Large-Signal Frequency Response in Magnetoresistive Current Sensors
Arias, Sergio Iván Ravello; Muñoz, Diego Ramírez; Moreno, Jaime Sánchez; Cardoso, Susana; Ferreira, Ricardo; de Freitas, Paulo Jorge Peixeiro
2013-01-01
Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function Zt(if) is obtained considering it as the relationship between sensor output voltage and input sensing current, Zt(jf)=Vo,sensor(jf)/Isensor(jf). The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR), spin-valve (GMR-SV) and tunnel magnetoresistance (TMR). The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications. PMID:24351648
Magnetic detection of mercuric ion using giant magnetoresistance-based biosensing system.
Wang, Wei; Wang, Yi; Tu, Liang; Klein, Todd; Feng, Yinglong; Li, Qin; Wang, Jian-Ping
2014-04-15
We have demonstrated a novel sensing strategy employing a giant magnetoresistance (GMR) biosensor and DNA chemistry for the detection of mercuric ion (Hg(2+)). This assay takes advantages of high sensitivity and real-time signal readout of GMR biosensor and high selectivity of thymine-thymine (T-T) pair for Hg(2+). The assay has a detection limit of 10 nM in both buffer and natural water, which is the maximum mercury level in drinking water regulated by U.S. Environmental Protection Agency (EPA). The magnitude of the dynamic range for Hg(2+) detection is up to three orders (10 nM to 10 μM). Herein, GMR sensing technology is first introduced into a pollutant monitoring area. It can be foreseen that the GMR biosensor could become a robust contender in the areas of environmental monitoring and food safety testing.
Costa, Tiago; Cardoso, Filipe A; Germano, Jose; Freitas, Paulo P; Piedade, Moises S
2017-10-01
The development of giant magnetoresistive (GMR) sensors has demonstrated significant advantages in nanomedicine, particularly for ultrasensitive point-of-care diagnostics. To this end, the detection system is required to be compact, portable, and low power consuming at the same time that a maximum signal to noise ratio is maintained. This paper reports a CMOS front-end with integrated magnetoresistive sensors for biomolecular recognition detection applications. Based on the characterization of the GMR sensor's signal and noise, CMOS building blocks (i.e., current source, multiplexers, and preamplifier) were designed targeting a negligible noise when compared with the GMR sensor's noise and a low power consumption. The CMOS front-end was fabricated using AMS [Formula: see text] technology and the magnetoresistive sensors were post-fabricated on top of the CMOS chip with high yield ( [Formula: see text]). Due to its low circuit noise (16 [Formula: see text]) and overall equivalent magnetic noise ([Formula: see text]), the full system was able to detect 250 nm magnetic nanoparticles with a circuit imposed signal-to-noise ratio degradation of only -1.4 dB. Furthermore, the low power consumption (6.5 mW) and small dimensions ([Formula: see text] ) of the presented solution guarantees the portability of the detection system allowing its usage at the point-of-care.
44 CFR 334.5 - GMR system description.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false GMR system description. 334.5 Section 334.5 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS GRADUATED MOBILIZATION RESPONSE § 334.5 GMR system description. The GMR...
NASA Astrophysics Data System (ADS)
Abu-Nabah, Bassam A.
Recent research results indicated that eddy current conductivity measurements can be exploited for nondestructive evaluation of near-surface residual stresses in surface-treated nickel-base superalloy components. Most of the previous experimental studies were conducted on highly peened (Almen 10-16A) specimens that exhibit harmful cold work in excess of 30% plastic strain. Such high level of cold work causes thermo-mechanical relaxation at relatively modest operational temperatures; therefore the obtained results were not directly relevant to engine manufacturers and end users. The main reason for choosing peening intensities in excess of recommended normal levels was that in low-conductivity engine alloys the eddy current penetration depth could not be forced below 0.2 mm without expanding the measurements above 10 MHz which is beyond the operational range of most commercial eddy current instruments. As for shot-peened components, it was initially felt that the residual stress effect was more difficult to separate from cold work, texture, and inhomogeneity effects in titanium alloys than in nickel-base superalloys. In addition, titanium alloys have almost 50% lower electric conductivity than nickel-base superalloys; therefore require proportionally higher inspection frequencies, which was not feasible until our recent breakthrough in instrument development. Our work has been focused on six main aspects of this continuing research, namely, (i) the development of an iterative inversion technique to better retrieve the depth-dependent conductivity profile from the measured frequency-dependent apparent eddy current conductivity (AECC), (ii) the extension of the frequency range up to 80 MHz to better capture the peak compressive residual stress in nickel-base superalloys using a new eddy current conductivity measuring system, which offers better reproducibility, accuracy and measurement speed than the previously used conventional systems, (iii) the lift-off effect on high frequency eddy current spectroscopy, (iv) the development of custom-made spiral coils to allow eddy current conductivity characterization over the whole frequency range of interest with reduced coil sensitivity to lift off, (v) the benefits of implementing a semi-quadratic system calibration in reducing the coil sensitivity to lift-off, and (vi) the feasibility of adapting high-frequency eddy current residual stress characterization for shot-peened titanium alloys.
Moon, Seol Ju; Kim, Sun-Young; Lim, Cheol-Hee; Jang, Hwan Bong; Kim, Min-Gul; Jeon, Ji-Young
2017-07-01
We investigated botanical drug-pharmaceutical drug interactions between DW1029M (a botanical extract of Morus alba linne root bark and Puerariae radix) and metformin, losartan, and linagliptin in the steady state. Three studies were conducted as randomized, open-label, 2-period, 2-treatment, multiple-dose, 2-way crossover designs. Eligible subjects received metformin (500 mg twice daily), losartan (50 mg once daily), or linagliptin (5 mg once daily) with DW1029M (300 mg × 2T twice daily) every 12 hours on days 1 through 6 and a single dose on the morning of day 7. Coadministration of DW1029M with metformin, losartan, or linagliptin had no clinically relevant effects based on the area under the plasma concentration-time curve (AUC τ ) geometric least-squares mean ratio (GMR) - AUC τ GMR, 89.7; 90% confidence interval (CI), 81.0-99.4 for metformin; AUC τ GMR, 96.2; 90%CI, 86.3-107.1 for losartan; and AUC τ GMR, 89.7; 90%CI, 83.2-96.6 for linagliptin. In addition, coadministration of DW1029M did not have any clinically meaningful effect on the maximum plasma concentration (C max,ss ) - C max,ss GMR, 87.3; 90%CI, 76.2-100.0 for metformin; C max,ss GMR, 90.5; 90%CI, 78.3-104.6 for losartan; and C max,ss GMR, 81.4; 90%CI, 69.5-95.3 for linagliptin. Coadministration of DW1029M with metformin, losartan, or linagliptin was well tolerated. © 2016, The American College of Clinical Pharmacology.
The numeric calculation of eddy current distributions in transcranial magnetic stimulation.
Tsuyama, Seichi; Hyodo, Akira; Sekino, Masaki; Hayami, Takehito; Ueno, Shoogo; Iramina, Keiji
2008-01-01
Transcranial magnetic stimulation (TMS) is a method to stimulate neurons in the brain. It is necessary to obtain eddy current distributions and determine parameters such as position, radius and bend-angle of the coil to stimulate target area exactly. In this study, we performed FEM-based numerical simulations of eddy current induced by TMS using three-dimentional human head model with inhomogeneous conductivity. We used double-cone coil and changed the coil radius and bend-angle of coil. The result of computer simulation showed that as coil radius increases, the eddy current became stronger everywhere. And coil with bend-angle of 22.5 degrees induced stronger eddy current than the coil with bendangle of 0 degrees. Meanwhile, when the bend-angle was 45 degrees, eddy current became weaker than these two cases. This simulation allowed us to determine appropriate parameter easier.
Formation of CCP-NOL in CPP-GMR spin valve structure for the enhancement of magnetoresistance
NASA Astrophysics Data System (ADS)
Kang, Y. M.; Isogami, S.; Tsunoda, M.; Takahashi, M.; Yoo, S. I.
2007-03-01
For the MR enhancement in current perpendicular to plane-giant magetoresistance spin valve (CPP-GMR SV), a current-confined path—nano-oxide layer (CCP-NOL)—AlO x was formed on the Cu spacer of half SV structure. In order to form effective current-confining paths, an ultra-thin AlO x layer was deposited on a Cu spacer layer by O 2 reactive sputtering of Al with infra-red (IR) heat treatment on the substrate, and that enable to form an island-structured insulating AlO x layer having holes between AlO x islands. By controlling PO 2 and substrate temperature in the NOL deposition, AlO x layer formation without an oxidizing bottom layer could be achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furubayashi, T., E-mail: furubayashi.takao@nims.go.jp; Takahashi, Y. K.; Sasaki, T. T.
2015-10-28
Enhancement of magnetoresistance output was attained in current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices by using a bcc CuZn alloy for the spacer. Pseudo spin valves that consisted of the Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5}) Heusler alloy for ferromagnetic layers and CuZn alloy with the composition of Cu{sub 52.4}Zn{sub 47.6} for a spacer showed the large change of the resistance-area products, ΔRA, up to 8 mΩ·μm{sup 2} for a low annealing temperature of 350 °C. The ΔRA value is one of the highest reported so far for the CPP-GMR devices for the low annealing temperature, which is essential for processing read heads for hardmore » disk drives. We consider that the enhancement of ΔRA is produced from the spin-dependent resistance at the Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5})/CuZn interfaces.« less
CPP-GMR films with a current-confined-path nano-oxide layer (CCP-NOL)
NASA Astrophysics Data System (ADS)
Fukuzawa, Hideaki; Yuasa, Hiromi; Iwasaki, Hitoshi
2007-03-01
We investigated the film performance and nanostructure of current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) spin-valve film with a current-confined-path nano-oxide layer (CCP-NOL). By applying ion-assisted oxidation (IAO) for the CCP-NOL formation, we enhanced the MR ratio to 5.4% at a small RA value of 500 mΩ µm2 for conventional Co90Fe10 layers. Furthermore, the use of bcc-Fe50Co50 also increased the MR ratio to 8.2% at a small RA value of 580 mΩ µm2. A modified Valet-Fert model for the CCP-NOL showed that the MR enhancement by the IAO is due to the improvement in resistivity of the CCP, and that by Fe50Co50 is due to a larger spin-dependent interface scattering effect. Analysis by cross-sectional TEM and three-dimensional atom probe confirmed the formation of the CCP-NOL structure. A reliability test for test element devices showed almost no change even under acceleration stress. The CPP-GMR spin-valve film with the CCP-NOL is extendable to future high-density recording heads due to its potential for a higher MR ratio at a small value of RA.
Analysis and numerical modelling of eddy current damper for vibration problems
NASA Astrophysics Data System (ADS)
Irazu, L.; Elejabarrieta, M. J.
2018-07-01
This work discusses a contactless eddy current damper, which is used to attenuate structural vibration. Eddy currents can remove energy from dynamic systems without any contact and, thus, without adding mass or modifying the rigidity of the structure. An experimental modal analysis of a cantilever beam in the absence of and under a partial magnetic field is conducted in the bandwidth of 01 kHz. The results show that the eddy current phenomenon can attenuate the vibration of the entire structure without modifying the natural frequencies or the mode shapes of the structure itself. In this study, a new inverse method to numerically determine the dynamic properties of the contactless eddy current damper is proposed. The proposed inverse method and the eddy current model based on a lineal viscous force are validated by a practical application. The numerically obtained transfer function correlates with the experimental one, thus showing good agreement in the entire bandwidth of 01 kHz. The proposed method provides an easy and quick tool to model and predict the dynamic behaviour of the contactless eddy current damper, thereby avoiding the use of complex analytical models.
Scarsi, Kimberly K; Darin, Kristin M; Nakalema, Shadia; Back, David J; Byakika-Kibwika, Pauline; Else, Laura J; Dilly Penchala, Sujan; Buzibye, Allan; Cohn, Susan E; Merry, Concepta; Lamorde, Mohammed
2016-03-15
Levonorgestrel subdermal implants are preferred contraceptives with an expected failure rate of <1% over 5 years. We assessed the effect of efavirenz- or nevirapine-based antiretroviral therapy (ART) coadministration on levonorgestrel pharmacokinetics. This nonrandomized, parallel group, pharmacokinetic evaluation was conducted in three groups of human immunodeficiency virus-infected Ugandan women: ART-naive (n = 17), efavirenz-based ART (n = 20), and nevirapine-based ART (n = 20). Levonorgestrel implants were inserted at baseline in all women. Blood was collected at 1, 4, 12, 24, 36, and 48 weeks. The primary endpoint was week 24 levonorgestrel concentrations, compared between the ART-naive group and each ART group by geometric mean ratio (GMR) with 90% confidence interval (CI). Secondary endpoints included week 48 levonorgestrel concentrations and unintended pregnancies. Week 24 geometric mean levonorgestrel concentrations were 528, 280, and 710 pg/mL in the ART-naive, efavirenz, and nevirapine groups, respectively (efavirenz: ART-naive GMR, 0.53; 90% CI, .50, .55 and nevirapine: ART-naive GMR, 1.35; 90% CI, 1.29, 1.43). Week 48 levonorgestrel concentrations were 580, 247, and 664 pg/mL in the ART-naive, efavirenz, and nevirapine groups, respectively (efavirenz: ART-naive GMR, 0.43; 90% CI, .42, .44 and nevirapine: ART-naive GMR, 1.14; 90% CI, 1.14, 1.16). Three pregnancies (3/20, 15%) occurred in the efavirenz group between weeks 36 and 48. No pregnancies occurred in the ART-naive or nevirapine groups. Within 1 year of combined use, levonorgestrel exposure was markedly reduced in participants who received efavirenz-based ART, accompanied by contraceptive failures. In contrast, nevirapine-based ART did not adversely affect levonorgestrel exposure or efficacy. NCT01789879. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America.
Scarsi, Kimberly K.; Darin, Kristin M.; Nakalema, Shadia; Back, David J.; Byakika-Kibwika, Pauline; Else, Laura J.; Dilly Penchala, Sujan; Buzibye, Allan; Cohn, Susan E.; Merry, Concepta; Lamorde, Mohammed
2016-01-01
Background. Levonorgestrel subdermal implants are preferred contraceptives with an expected failure rate of <1% over 5 years. We assessed the effect of efavirenz- or nevirapine-based antiretroviral therapy (ART) coadministration on levonorgestrel pharmacokinetics. Methods. This nonrandomized, parallel group, pharmacokinetic evaluation was conducted in three groups of human immunodeficiency virus–infected Ugandan women: ART-naive (n = 17), efavirenz-based ART (n = 20), and nevirapine-based ART (n = 20). Levonorgestrel implants were inserted at baseline in all women. Blood was collected at 1, 4, 12, 24, 36, and 48 weeks. The primary endpoint was week 24 levonorgestrel concentrations, compared between the ART-naive group and each ART group by geometric mean ratio (GMR) with 90% confidence interval (CI). Secondary endpoints included week 48 levonorgestrel concentrations and unintended pregnancies. Results. Week 24 geometric mean levonorgestrel concentrations were 528, 280, and 710 pg/mL in the ART-naive, efavirenz, and nevirapine groups, respectively (efavirenz: ART-naive GMR, 0.53; 90% CI, .50, .55 and nevirapine: ART-naive GMR, 1.35; 90% CI, 1.29, 1.43). Week 48 levonorgestrel concentrations were 580, 247, and 664 pg/mL in the ART-naive, efavirenz, and nevirapine groups, respectively (efavirenz: ART-naive GMR, 0.43; 90% CI, .42, .44 and nevirapine: ART-naive GMR, 1.14; 90% CI, 1.14, 1.16). Three pregnancies (3/20, 15%) occurred in the efavirenz group between weeks 36 and 48. No pregnancies occurred in the ART-naive or nevirapine groups. Conclusions. Within 1 year of combined use, levonorgestrel exposure was markedly reduced in participants who received efavirenz-based ART, accompanied by contraceptive failures. In contrast, nevirapine-based ART did not adversely affect levonorgestrel exposure or efficacy. Clinical Trials Registration. NCT01789879. PMID:26646680
A quantitative comparison of two methods to correct eddy current-induced distortions in DT-MRI.
Muñoz Maniega, Susana; Bastin, Mark E; Armitage, Paul A
2007-04-01
Eddy current-induced geometric distortions of single-shot, diffusion-weighted, echo-planar (DW-EP) images are a major confounding factor to the accurate determination of water diffusion parameters in diffusion tensor MRI (DT-MRI). Previously, it has been suggested that these geometric distortions can be removed from brain DW-EP images using affine transformations determined from phantom calibration experiments using iterative cross-correlation (ICC). Since this approach was first described, a number of image-based registration methods have become available that can also correct eddy current-induced distortions in DW-EP images. However, as yet no study has investigated whether separate eddy current calibration or image-based registration provides the most accurate way of removing these artefacts from DT-MRI data. Here we compare how ICC phantom calibration and affine FLIRT (http://www.fmrib.ox.ac.uk), a popular image-based multi-modal registration method that can correct both eddy current-induced distortions and bulk subject motion, perform when registering DW-EP images acquired with different slice thicknesses (2.8 and 5 mm) and b-values (1000 and 3000 s/mm(2)). With the use of consistency testing, it was found that ICC was a more robust algorithm for correcting eddy current-induced distortions than affine FLIRT, especially at high b-value and small slice thickness. In addition, principal component analysis demonstrated that the combination of ICC phantom calibration (to remove eddy current-induced distortions) with rigid body FLIRT (to remove bulk subject motion) provided a more accurate registration of DT-MRI data than that achieved by affine FLIRT.
Use of eddy current mixes to solve a weld examination application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, R.C.; LaBoissonniere, A.
1995-12-31
The augmentation of typical nondestructive (i.e., ultrasound) weld inspection techniques by the use of eddy current tools may significantly enhance the quality and reliability of weld inspections. One recent example is the development of an eddy current technique for use in the examination of BWR core shroud welds, where multi-frequency mixes are used to eliminate signals coming from the weld material so that the examination of the heat affected zone is enhanced. An analysis tool most commonly associated with ultrasound examinations, the C-Scan based on gated information, may be implemented with eddy current data to enhance analysis.
NASA Astrophysics Data System (ADS)
Seyfpour, M.; Ghanei, S.; Mazinani, M.; Kashefi, M.; Davis, C.
2018-04-01
The recovery process in steel is usually investigated by conventional destructive tests that are expensive, time-consuming and also cumbersome. In this study, an alternative non-destructive test technique (based on eddy current testing) is used to characterise the recovery process during annealing of cold-rolled low-carbon steels. For assessing the reliability of eddy current results corresponding to different levels of recovery, X-ray line broadening analysis is also employed. It is shown that there is a strong relationship between eddy current outputs and the extent to which recovery occurs at different annealing temperatures. Accordingly, the non-destructive eddy current test technique represents the potential to be used as a reliable process for detection of the occurrence of recovery in the steel microstructure.
Motion-induced eddy current thermography for high-speed inspection
NASA Astrophysics Data System (ADS)
Wu, Jianbo; Li, Kongjing; Tian, Guiyun; Zhu, Junzhen; Gao, Yunlai; Tang, Chaoqing; Chen, Xiaotian
2017-08-01
This letter proposes a novel motion-induced eddy current based thermography (MIECT) for high-speed inspection. In contrast to conventional eddy current thermography (ECT) based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday's law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.
3D analysis of eddy current loss in the permanent magnet coupling.
Zhu, Zina; Meng, Zhuo
2016-07-01
This paper first presents a 3D analytical model for analyzing the radial air-gap magnetic field between the inner and outer magnetic rotors of the permanent magnet couplings by using the Amperian current model. Based on the air-gap field analysis, the eddy current loss in the isolation cover is predicted according to the Maxwell's equations. A 3D finite element analysis model is constructed to analyze the magnetic field spatial distributions and vector eddy currents, and then the simulation results obtained are analyzed and compared with the analytical method. Finally, the current losses of two types of practical magnet couplings are measured in the experiment to compare with the theoretical results. It is concluded that the 3D analytical method of eddy current loss in the magnet coupling is viable and could be used for the eddy current loss prediction of magnet couplings.
Eddy Current Sensing of Torque in Rotating Shafts
NASA Astrophysics Data System (ADS)
Varonis, Orestes J.; Ida, Nathan
2013-12-01
The noncontact torque sensing in machine shafts is addressed based on the stress induced in a press-fitted magnetoelastic sleeve on the shaft and eddy current sensing of the changes of electrical conductivity and magnetic permeability due to the presence of stress. The eddy current probe uses dual drive, dual sensing coils whose purpose is increased sensitivity to torque and decreased sensitivity to variations in distance between probe and shaft (liftoff). A mechanism of keeping the distance constant is also employed. Both the probe and the magnetoelastic sleeve are evaluated for performance using a standard eddy current instrument. An eddy current instrument is also used to drive the coils and analyze the torque data. The method and sensor described are general and adaptable to a variety of applications. The sensor is suitable for static and rotating shafts, is independent of shaft diameter and operational over a large range of torques. The torque sensor uses a differential eddy current measurement resulting in cancellation of common mode effects including temperature and vibrations.
Apparatus and method for imaging metallic objects using an array of giant magnetoresistive sensors
Chaiken, Alison
2000-01-01
A portable, low-power, metallic object detector and method for providing an image of a detected metallic object. In one embodiment, the present portable low-power metallic object detector an array of giant magnetoresistive (GMR) sensors. The array of GMR sensors is adapted for detecting the presence of and compiling image data of a metallic object. In the embodiment, the array of GMR sensors is arranged in a checkerboard configuration such that axes of sensitivity of alternate GMR sensors are orthogonally oriented. An electronics portion is coupled to the array of GMR sensors. The electronics portion is adapted to receive and process the image data of the metallic object compiled by the array of GMR sensors. The embodiment also includes a display unit which is coupled to the electronics portion. The display unit is adapted to display a graphical representation of the metallic object detected by the array of GMR sensors. In so doing, a graphical representation of the detected metallic object is provided.
High yield Cu-Co CPP GMR multilayer sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spallas, J.; Mao, M.; Law, B.
1997-01-15
We have fabricated and tested GMR magnetic flux sensors that operate in the CPP mode. This work is a continuation of the ultra-high density magnetic sensor research introduced at INTERMAG 96. We have made two significant modifications to the process sequence. First, contact to the sensor is made through a metal conduit deposited in situ with the multilayers. This deposition replaces electroplating. This configuration ensures a good electrical interface between the top of multilayer stack and the top contact, and a continuous, conductive current path to the sensor. The consequences of this modification are an increase in yield of operationalmore » devices to {ge}90% per wafer and a significant reduction of the device resistance to {le}560 milliohms and of the uniformity of the device resistance to {le}3%. Second, the as-deposited multilayer structure has been changed from [Cu 30 {angstrom}/Co 20 {angstrom}]{sub 18} (third peak) to [Cu 20.5 {angstrom}/Co 12 {angstrom}]{sub 30} (second peak) to increase the CPP and CIP responses. The sheet film second peak CIP GMR response is 18% and the sensitivity is 0.08 %/Oe. The sheet film third peak CIP GMR response is 8% and the sensitivity is 0. 05 %/Oe. The second peak CPP GMR response averaged over twenty devices on a four inch silicon substrate is 28% {+-} 6%. The response decreases radially from the substrate center. The average response at the center of the substrate is 33% {+-} 4%. The average second peak CPP sensitivity is 0.09 %/Oe {+-} 0.02 %/Oe. The best second peak CPP response from a single device is 39%. The sensitivity of that device is 0.13 %/Oe. The third peak CPP GMR response is approximately 14 %. The third peak CPP response sensitivity is 0.07 %/Oe. 6 refs., 3 figs.« less
Transient tidal eddy motion in the western Gulf of Maine, part 1: Primary structure
NASA Astrophysics Data System (ADS)
Brown, W. S.; Marques, G. M.
2013-07-01
High frequency radar-derived surface current maps of the Great South Channel (GSC) in the western Gulf of Maine in 2005 revealed clockwise (CW) and anticlockwise (ACW) eddy motion associated with the strong regional tidal currents. To better elucidate the kinematics and dynamics of these transient tidal eddy motions, an observational and modeling study was conducted during the weakly stratified conditions of winter 2008-2009. Our moored bottom pressure and ADCP current measurements in 13m depth were augmented by historical current measurements in about 30m in documenting the dominance of highly polarized M2 semidiurnal currents in our nearshore study region. The high-resolution finite element coastal ocean model (QUODDY) - forced by the five principal tidal constituents - produced maps depicting the formation and evolution of the CW and ACW eddy motions that regularly follow maximum ebb and flood flows, respectively. Observation versus model current comparison required that the model bottom current drag coefficient be set to at an unusually high Cd=0.01 - suggesting the importance of form drag in the study region. The observations and model results were consistent in diagnosing CW or ACW eddy motions that (a) form nearshore in the coastal boundary layer (CBL) for about 3h after the respective tidal current maxima and then (b) translate southeastward across the GSC along curved 50m isobath at speeds of about 25m/s. Observation-based and model-based momentum budget estimates were consistent in showing a first order forced semidiurnal standing tidal wave dynamics (like the adjacent Gulf of Maine) which was modulated by adverse pressure gradient/bottom stress forcing to generate the eddy motions. Observation-based estimates of terms in the transport vorticity budget showed that in the shallower Inner Zone subregion (average depth=23m) that the diffusion of nearshore vorticity was dominant in feeding the growth of eddy motion vorticity; while in the somewhat deeper Outer Zone subregion (33m) bottom current lateral shear and water column stretching/squashing was significant in modulating the eddy motion. We conclude that the transient eddy motions in the GSC region are phase eddies that accompany the change of tide across the GSC and are (1) generated by bottom stress gradients in the shallower nearshore - an issue which needs to be better understood for improved future forecasting.
Macha, Sreeraj; Lang, Benjamin; Pinnetti, Sabine; Broedl, Uli C
2014-11-01
This study was undertaken to investigate potential drugdrug interactions between the sodium glucose cotransporter 2 inhibitor empagliflozin and simvastatin. In this open-label, randomized crossover trial, healthy volunteers (median (range) age 36.5 (20 - 50) years) received 3 single-dose treatments: 25 mg empagliflozin (n = 18), 40 mg simvastatin (n = 17), and 25 mg empagliflozin with 40 mg simvastatin (n = 18). Based on standard criteria, simvastatin had no effect on empagliflozin area under the plasma concentration-time curve (AUC(0-∞), adjusted geometric mean ratio (GMR): 102.05; 90% CI: 98.90 - 105.29) or maximum plasma concentration (C(max), GMR: 109.49; 90% CI: 96.91 - 123.69). There were only minor deviations in simvastatin AUC(0-∞) (GMR: 101.26; 90% CI: 80.06 - 128.07) and C(max) (GMR: 97.18; 90% CI: 76.30 - 123.77) when co-administered with empagliflozin. Empagliflozin had no effect on AUC(0-∞) (GMR: 104.87; 90% CI: 90.09 - 122.07) or C(max) (GMR: 97.27; 90% CI: 84.90 - 111.44) of simvastatin acid, the active metabolite of simvastatin. Adverse events (AEs) were reported for 6 subjects on empagliflozin, 4 on simvastatin, and 5 on co-administered treatment. No serious AEs or investigator-defined drug-related AEs were reported. No relevant drug-drug interaction was observed, and pharmacokinetic results suggest that no dose adjustments for either drug are necessary when empagliflozin and simvastatin are co-administered. Empagliflozin was well tolerated when administered alone or in combination with simvastatin.
Quantitative multi-modal NDT data analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heideklang, René; Shokouhi, Parisa
2014-02-18
A single NDT technique is often not adequate to provide assessments about the integrity of test objects with the required coverage or accuracy. In such situations, it is often resorted to multi-modal testing, where complementary and overlapping information from different NDT techniques are combined for a more comprehensive evaluation. Multi-modal material and defect characterization is an interesting task which involves several diverse fields of research, including signal and image processing, statistics and data mining. The fusion of different modalities may improve quantitative nondestructive evaluation by effectively exploiting the augmented set of multi-sensor information about the material. It is the redundantmore » information in particular, whose quantification is expected to lead to increased reliability and robustness of the inspection results. There are different systematic approaches to data fusion, each with its specific advantages and drawbacks. In our contribution, these will be discussed in the context of nondestructive materials testing. A practical study adopting a high-level scheme for the fusion of Eddy Current, GMR and Thermography measurements on a reference metallic specimen with built-in grooves will be presented. Results show that fusion is able to outperform the best single sensor regarding detection specificity, while retaining the same level of sensitivity.« less
Research of Steel-dielectric Transition Using Subminiature Eddy-current Transducer
NASA Astrophysics Data System (ADS)
Dmitriev, S. F.; Malikov, V. N.; Sagalakov, A. M.; Ishkov, A. V.
2018-05-01
The research aims to develop a subminiature transducer for electrical steel investigation. The authors determined the capability to study steel characteristics at different depths based on variations of eddy-current transducer amplitude at the steel-dielectric boundary. A subminiature transformer-type transducer was designed, which enables to perform local investigations of ferromagnetic materials using an eddy-current method based on local studies of the steel electrical conductivity. Having the designed transducer as a basis, a hardware-software complex was built to perform experimental studies of steel at the interface boundary. Test results are reported for a specimen with continuous and discrete measurements taken at different frequencies. The article provides the key technical information about the eddy current transformer used and describes the methodology of measurements that makes it possible to control steel to dielectric transition.
Determination of plasma displacement based on eddy current diagnostics for the Keda Torus eXperiment
NASA Astrophysics Data System (ADS)
Tu, Cui; Li, Hong; Liu, Adi; Li, Zichao; Zhang, Yuan; You, Wei; Tan, Mingsheng; Luo, Bing; Adil, Yolbarsop; Hu, Jintong; Wu, Yanqi; Yan, Wentan; Xie, Jinlin; Lan, Tao; Mao, Wenzhe; Ding, Weixing; Xiao, Chijin; Zhuang, Ge; Liu, Wandong
2017-10-01
The measurement of plasma displacement is one of the most basic diagnostic tools in the study of plasma equilibrium and control in a toroidal magnetic confinement configuration. During pulse discharge, the eddy current induced in the vacuum vessel and shell will produce an additional magnetic field at the plasma boundary, which will have a significant impact on the measurement of plasma displacement using magnetic probes. In the newly built Keda Torus eXperiment (KTX) reversed field pinch device, the eddy current in the composite shell can be obtained at a high spatial resolution. This device offers a new way to determine the plasma displacement for KTX through the multipole moment expansion of the eddy current, which can be obtained by unique probe arrays installed on the inner and outer surfaces of the composite shell. In an ideal conductor shell approximation, the method of multipole moment expansion of the poloidal eddy current for measuring the plasma displacement in toroidal coordinates, is more accurate than the previous method based on symmetrical magnetic probes, which yielded results in cylindrical coordinates. Through an analytical analysis of many current filaments and numerical simulations of the current distribution in toroidal coordinates, the scaling relation between the first moment of the eddy current and the center of gravity of the plasma current is obtained. In addition, the origin of the multipole moment expansion of the eddy current in KTX is retrieved simultaneously. Preliminary data on the plasma displacement have been collected using these two methods during short pulse discharges in the KTX device, and the results of the two methods are in reasonable agreement.
Automated eddy current analysis of materials
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1990-01-01
This research effort focused on the use of eddy current techniques for characterizing flaws in graphite-based filament-wound cylindrical structures. A major emphasis was on incorporating artificial intelligence techniques into the signal analysis portion of the inspection process. Developing an eddy current scanning system using a commercial robot for inspecting graphite structures (and others) has been a goal in the overall concept and is essential for the final implementation for expert system interpretation. Manual scans, as performed in the preliminary work here, do not provide sufficiently reproducible eddy current signatures to be easily built into a real time expert system. The expert systems approach to eddy current signal analysis requires that a suitable knowledge base exist in which correct decisions as to the nature of the flaw can be performed. In eddy current or any other expert systems used to analyze signals in real time in a production environment, it is important to simplify computational procedures as much as possible. For that reason, we have chosen to use the measured resistance and reactance values for the preliminary aspects of this work. A simple computation, such as phase angle of the signal, is certainly within the real time processing capability of the computer system. In the work described here, there is a balance between physical measurements and finite element calculations of those measurements. The goal is to evolve into the most cost effective procedures for maintaining the correctness of the knowledge base.
Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections
Shen, Hui-Min; Hu, Liang; Fu, Xin
2018-01-01
With the extensive applications of biomagnetic signals derived from active biological tissue in both clinical diagnoses and human-computer-interaction, there is an increasing need for approachable weak biomagnetic sensing technology. The inherent merits of giant magnetoresistance (GMR) and its high integration with multiple technologies makes it possible to detect weak biomagnetic signals with micron-sized, non-cooled and low-cost sensors, considering that the magnetic field intensity attenuates rapidly with distance. This paper focuses on the state-of-art in integrated GMR technology for approachable biomagnetic sensing from the perspective of discipline fusion between them. The progress in integrated GMR to overcome the challenges in weak biomagnetic signal detection towards high resolution portable applications is addressed. The various strategies for 1/f noise reduction and sensitivity enhancement in integrated GMR technology for sub-pT biomagnetic signal recording are discussed. In this paper, we review the developments of integrated GMR technology for in vivo/vitro biomagnetic source imaging and demonstrate how integrated GMR can be utilized for biomagnetic field detection. Since the field sensitivity of integrated GMR technology is being pushed to fT/Hz0.5 with the focused efforts, it is believed that the potential of integrated GMR technology will make it preferred choice in weak biomagnetic signal detection in the future. PMID:29316670
Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections.
Shen, Hui-Min; Hu, Liang; Fu, Xin
2018-01-07
With the extensive applications of biomagnetic signals derived from active biological tissue in both clinical diagnoses and human-computer-interaction, there is an increasing need for approachable weak biomagnetic sensing technology. The inherent merits of giant magnetoresistance (GMR) and its high integration with multiple technologies makes it possible to detect weak biomagnetic signals with micron-sized, non-cooled and low-cost sensors, considering that the magnetic field intensity attenuates rapidly with distance. This paper focuses on the state-of-art in integrated GMR technology for approachable biomagnetic sensing from the perspective of discipline fusion between them. The progress in integrated GMR to overcome the challenges in weak biomagnetic signal detection towards high resolution portable applications is addressed. The various strategies for 1/ f noise reduction and sensitivity enhancement in integrated GMR technology for sub-pT biomagnetic signal recording are discussed. In this paper, we review the developments of integrated GMR technology for in vivo/vitro biomagnetic source imaging and demonstrate how integrated GMR can be utilized for biomagnetic field detection. Since the field sensitivity of integrated GMR technology is being pushed to fT/Hz 0.5 with the focused efforts, it is believed that the potential of integrated GMR technology will make it preferred choice in weak biomagnetic signal detection in the future.
NASA Astrophysics Data System (ADS)
Jaffrès, Henri; LeMaitre, Yves; Collin, Sophie; Nguyen Vandau, Frédéric; Sergeeva-Chollet, Natalia; Decitre, Jean-Marc
2015-09-01
We will present our last development of GMR-based magnetic sensors devoted to sensing application for non-destructive control application. In these first realizations, we have chosen a so-called shape anisotropy - exchange biased strategy to fulfill the field-sensing criteria in the μT range in devices made of micronic single elements. Our devices realized by optical lithography, and whose typical sizes range from 150 μm x 150 μm to 500 μm x 500 μm elements, are made of trilayers GMR-based technology and consist of several circuitries of GMR elements of different lengths, widths and gaps. To obtain a full sensing linearity and reversibility requiring a perpendicular magnetic arrangement between both sensitive and hard layer, the magnetization of the latter have been hardened by pinning it with an antiferromagnetic material. The specific geometry of the design have been engineered in order to optimize the magnetic response of the soft layer via the different magnetic torques exerted on it essentially played by the dipolar fields or shape anisotropy, and the external magnetic field to detect. The smaller dimensions in width and in gap are then respectively of 2 μm and 3 μm to benefit of the full shape anisotropy formatting the magnetic response.
NASA Astrophysics Data System (ADS)
Zhang, D. L.; Xu, X. G.; Wu, Y.; Miao, J.; Jiang, Y.
2011-03-01
We studied the pseudo-spin-valves (PSVs) with a structure of Ta/Co 2FeAl/NOL 1/Co 2FeAl/Cu/Co 2FeAl/NOL 2/Ta, where NOL represents the nano-oxide layer. Compared with the normal Co 2FeAl (CFA) PSV with a structure of Ta/Co 2FeAl/Cu/Co 2FeAl/Ta, which shows only a current-in-plane (CIP) giant magnetoresistance (GMR) of 0.03%, the CFA PSV with NOLs shows a large CIP-GMR of 5.84%. The enhanced GMR by the NOLs inserted in the CFA PSV is due to the large specular reflection caused by [(CoO)(Fe 2O 3)(Al 2O 3)] in NOL 1 and [(Fe 2O 3)(Al 2O 3)(Ta 2O 5)] in NOL 2. Another reason is that the roughness of the interface between Ta and CFA is improved by the oxidation procedure.
Largest global shark biomass found in the northern Galápagos Islands of Darwin and Wolf.
Salinas-de-León, Pelayo; Acuña-Marrero, David; Rastoin, Etienne; Friedlander, Alan M; Donovan, Mary K; Sala, Enric
2016-01-01
Overfishing has dramatically depleted sharks and other large predatory fishes worldwide except for a few remote and/or well-protected areas. The islands of Darwin and Wolf in the far north of the Galapagos Marine Reserve (GMR) are known for their large shark abundance, making them a global scuba diving and conservation hotspot. Here we report quantitative estimates of fish abundance at Darwin and Wolf over two consecutive years using stereo-video surveys, which reveal the largest reef fish biomass ever reported (17.5 t [Formula: see text] on average), consisting largely of sharks. Despite this, the abundance of reef fishes around the GMR, such as groupers, has been severely reduced because of unsustainable fishing practices. Although Darwin and Wolf are within the GMR, they were not fully protected from fishing until March 2016. Given the ecological value and the economic importance of Darwin and Wolf for the dive tourism industry, the current protection should ensure the long-term conservation of this hotspot of unique global value.
NASA Astrophysics Data System (ADS)
Brown, Alexander; Eviston, Connor
2017-02-01
Multiple FEM models of complex eddy current coil geometries were created and validated to calculate the change of impedance due to the presence of a notch. Capable realistic simulations of eddy current inspections are required for model assisted probability of detection (MAPOD) studies, inversion algorithms, experimental verification, and tailored probe design for NDE applications. An FEM solver was chosen to model complex real world situations including varying probe dimensions and orientations along with complex probe geometries. This will also enable creation of a probe model library database with variable parameters. Verification and validation was performed using other commercially available eddy current modeling software as well as experimentally collected benchmark data. Data analysis and comparison showed that the created models were able to correctly model the probe and conductor interactions and accurately calculate the change in impedance of several experimental scenarios with acceptable error. The promising results of the models enabled the start of an eddy current probe model library to give experimenters easy access to powerful parameter based eddy current models for alternate project applications.
NASA Astrophysics Data System (ADS)
Li, Zhao; Wang, Dazhi; Zheng, Di; Yu, Linxin
2017-10-01
Rotational permanent magnet eddy current couplers are promising devices for torque and speed transmission without any mechanical contact. In this study, flux-concentration disk-type permanent magnet eddy current couplers with double conductor rotor are investigated. Given the drawback of the accurate three-dimensional finite element method, this paper proposes a mixed two-dimensional analytical modeling approach. Based on this approach, the closed-form expressions of magnetic field, eddy current, electromagnetic force and torque for such devices are obtained. Finally, a three-dimensional finite element method is employed to validate the analytical results. Besides, a prototype is manufactured and tested for the torque-speed characteristic.
Eddy current compensation for delta relaxation enhanced MR by dynamic reference phase modulation.
Hoelscher, Uvo Christoph; Jakob, Peter M
2013-04-01
Eddy current compensation by dynamic reference phase modulation (eDREAM) is a compensation method for eddy current fields induced by B 0 field-cycling which occur in delta relaxation enhanced MR (dreMR) imaging. The presented method is based on a dynamic frequency adjustment and prevents eddy current related artifacts. It is easy to implement and can be completely realized in software for any imaging sequence. In this paper, the theory of eDREAM is derived and two applications are demonstrated. The theory describes how to model the behavior of the eddy currents and how to implement the compensation. Phantom and in vivo measurements are carried out and demonstrate the benefits of eDREAM. A comparison of images acquired with and without eDREAM shows a significant improvement in dreMR image quality. Images without eDREAM suffer from severe artifacts and do not allow proper interpretation while images with eDREAM are artifact free. In vivo experiments demonstrate that dreMR imaging without eDREAM is not feasible as artifacts completely change the image contrast. eDREAM is a flexible eddy current compensation for dreMR. It is capable of completely removing the influence of eddy currents such that the dreMR images do not suffer from artifacts.
Domain wall assisted GMR head with spin-Hall effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arun, R., E-mail: arunbdu@gmail.com; Sabareesan, P., E-mail: sendtosabari@gmail.com; Daniel, M., E-mail: danielcnld@gmail.com
2016-05-06
We theoretically study the dynamics of a field induced domain wall in the Py/Pt bi-layer structure in the presence of spin-Hall effect (SHE) by solving the Landau-Lifshitz-Gilbert (LLG) equation along with the adiabatic, nonadiabatic and SHE spin-transfer torques (STTs). It is observed that a weak magnetic field moves the domain wall with high velocity in the presence of SHE and the direction of the velocity is changed by changing the direction of the weak field. The numerical results show that the magnetization of the ferromagnetic layer can be reversed quickly through domain wall motion by changing the direction of amore » weak external field in the presence of SHE while the direction of current is fixed. The SHE reduces the magnetization reversal time of 1000 nm length strip by 14.7 ns. This study is extended to model a domain wall based GMR (Giant Magnetoresistance) read head with SHE.« less
A versatile nondestructive evaluation imaging workstation
NASA Technical Reports Server (NTRS)
Chern, E. James; Butler, David W.
1994-01-01
Ultrasonic C-scan and eddy current imaging systems are of the pointwise type evaluation systems that rely on a mechanical scanner to physically maneuver a probe relative to the specimen point by point in order to acquire data and generate images. Since the ultrasonic C-scan and eddy current imaging systems are based on the same mechanical scanning mechanisms, the two systems can be combined using the same PC platform with a common mechanical manipulation subsystem and integrated data acquisition software. Based on this concept, we have developed an IBM PC-based combined ultrasonic C-scan and eddy current imaging system. The system is modularized and provides capacity for future hardware and software expansions. Advantages associated with the combined system are: (1) eliminated duplication of the computer and mechanical hardware, (2) unified data acquisition, processing and storage software, (3) reduced setup time for repetitious ultrasonic and eddy current scans, and (4) improved system efficiency. The concept can be adapted to many engineering systems by integrating related PC-based instruments into one multipurpose workstation such as dispensing, machining, packaging, sorting, and other industrial applications.
A versatile nondestructive evaluation imaging workstation
NASA Astrophysics Data System (ADS)
Chern, E. James; Butler, David W.
1994-02-01
Ultrasonic C-scan and eddy current imaging systems are of the pointwise type evaluation systems that rely on a mechanical scanner to physically maneuver a probe relative to the specimen point by point in order to acquire data and generate images. Since the ultrasonic C-scan and eddy current imaging systems are based on the same mechanical scanning mechanisms, the two systems can be combined using the same PC platform with a common mechanical manipulation subsystem and integrated data acquisition software. Based on this concept, we have developed an IBM PC-based combined ultrasonic C-scan and eddy current imaging system. The system is modularized and provides capacity for future hardware and software expansions. Advantages associated with the combined system are: (1) eliminated duplication of the computer and mechanical hardware, (2) unified data acquisition, processing and storage software, (3) reduced setup time for repetitious ultrasonic and eddy current scans, and (4) improved system efficiency. The concept can be adapted to many engineering systems by integrating related PC-based instruments into one multipurpose workstation such as dispensing, machining, packaging, sorting, and other industrial applications.
Software compensation of eddy current fields in multislice high order dynamic shimming.
Sengupta, Saikat; Avison, Malcolm J; Gore, John C; Brian Welch, E
2011-06-01
Dynamic B(0) shimming (DS) can produce better field homogeneity than static global shimming by dynamically updating slicewise shim values in a multislice acquisition. The performance of DS however is limited by eddy current fields produced by the switching of 2nd and 3rd order unshielded shims. In this work, we present a novel method of eddy field compensation (EFC) applied to higher order shim induced eddy current fields in multislice DS. This method does not require shim shielding, extra hardware for eddy current compensation or subject specific prescanning. The interactions between shim harmonics are modeled assuming steady state of the medium and long time constant, cross and self term eddy fields in a DS experiment and 'correction factors' characterizing the entire set of shim interactions are derived. The correction factors for a given time between shim switches are shown to be invariable with object scanned, shim switching pattern and actual shim values, allowing for their generalized prospective use. Phantom and human head, 2nd and 3rd order DS experiments performed without any hardware eddy current compensation using the technique show large reductions in field gradients and offsets leading to significant improvements in image quality. This method holds promise as an alternative to expensive hardware based eddy current compensation required in 2nd and 3rd order DS. Copyright © 2011 Elsevier Inc. All rights reserved.
2016-02-10
using bolt hole eddy current (BHEC) techniques. Data was acquired for a wide range of crack sizes and shapes, including mid- bore , corner and through...to select the most appropriate VIC-3D surrogate model for subsequent crack sizing inversion step. Inversion results for select mid- bore , through and...the flaw. 15. SUBJECT TERMS Bolt hole eddy current (BHEC); mid- bore , corner and through-thickness crack types; VIC-3D generated surrogate models
Non-Destructive Techniques Based on Eddy Current Testing
García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto
2011-01-01
Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754
Non-destructive techniques based on eddy current testing.
García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto
2011-01-01
Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.
Hodel-Christian, S L; Murray, B E
1992-01-01
The genetic determinant encoding gentamicin resistance (Gmr) on the beta-lactamase encoding plasmid pBEM10 of Enterococcus faecalis HH22 is carried on a transposon, termed Tn5281, that is highly related to the staphylococcal Gmr transposons Tn4001 found in Australian isolates of Staphylococcus aureus and Tn4031 found in United States isolates of Staphylococcus epidermidis. We have now studied plasmid DNA from Gmr strains of E. faecalis isolated from diverse geographical locations (Houston, Pennsylvania, Thailand, and Chile) by using restriction endonuclease analysis and DNA-DNA hybridization to determine whether other Gmr E. faecalis carry Tn5281 or a similar type of element. We also compared these enterococci to several United States isolates of Staphylococcus aureus with nonmobile Gmr determinants. Three E. faecalis isolates (from Houston and Chile) carried Tn5281-like elements, whereas two isolates (from Houston and Pennsylvania) had restriction endonuclease and DNA-DNA hybridization patterns more similar to those of the Tn4001-IS257 hybrid found in the nonmobile Gmr determinants in United States isolates of S. aureus. A strain from Thailand had a third pattern unrelated to either Tn5281 or the nonmobile Gmr determinants present in United States isolates of S. aureus. Our results demonstrate that there is both similarity and diversity between the Gmr determinant of strains of E. faecalis isolated in diverse geographic locations. Images PMID:1332593
Eddy current analysis of cracks grown from surface defects and non-metallic particles
NASA Astrophysics Data System (ADS)
Cherry, Matthew R.; Hutson, Alisha; Aldrin, John C.; Shank, Jared
2018-04-01
Eddy current methods are sensitive to any discrete change in conductivity. Traditionally this has been used to determine the presence of a crack. However, other features that are not cracks such as non-metallic inclusions, carbide stringers and surface voids can cause an eddy current indication that could potentially lead to a reject of an in-service component. These features may not actually be lifelimiting, meaning NDE methods could reject components with remaining useful life. In-depth analysis of signals from eddy current sensors could provide a means of sorting between rejectable indications and false-calls from geometric and non-conductive features. In this project, cracks were grown from voids and non-metallic inclusions in a nickel-based super-alloy and eddy current analysis was performed on multiple intermediate steps of fatigue. Data were collected with multiple different ECT probes and at multiple frequencies, and the results were analyzed. The results show how cracks growing from non-metallic features can skew eddy current signals and make characterization a challenge. Modeling and simulation was performed with multiple analysis codes, and the models were found to be in good agreement with the data for cracks growing away from voids and non-metallic inclusions.
Non-Contact EDDY Current Hole Eccentricity and Diameter Measurement
NASA Technical Reports Server (NTRS)
Chern, E. James
1998-01-01
Precision holes are among the most critical features of a mechanical component. Deviations from permissible tolerances can impede operation and result in unexpected failure. We have developed an automated non-contact eddy current hole diameter and eccentricity measuring system. The operating principle is based on the eddy current lift-off effect, which is the coil impedance as a function of the distance between the coil and the test object. An absolute eddy current probe rotates in the hole. The impedance of each angular position is acquired and input to the computer for integration and analysis. The eccentricity of the hole is the profile of the impedance as a function of angular position as compared to a straight line, an ideal hole. The diameter of the hole is the sum of the diameter of the probe and twice the distance-calibrated impedance. An eddy current image is generated by integrating angular scans for a plurality of depths between the top and bottom to display the eccentricity profile. This system can also detect and image defects in the hole. The method for non-contact eddy current hole diameter and eccentricity measurement has been granted a patent by the U.S. Patent and Trademark Office.
De Geeter, Nele; Crevecoeur, Guillaume; Dupre, Luc
2011-02-01
In many important bioelectromagnetic problem settings, eddy-current simulations are required. Examples are the reduction of eddy-current artifacts in magnetic resonance imaging and techniques, whereby the eddy currents interact with the biological system, like the alteration of the neurophysiology due to transcranial magnetic stimulation (TMS). TMS has become an important tool for the diagnosis and treatment of neurological diseases and psychiatric disorders. A widely applied method for simulating the eddy currents is the impedance method (IM). However, this method has to contend with an ill conditioned problem and consequently a long convergence time. When dealing with optimal design problems and sensitivity control, the convergence rate becomes even more crucial since the eddy-current solver needs to be evaluated in an iterative loop. Therefore, we introduce an independent IM (IIM), which improves the conditionality and speeds up the numerical convergence. This paper shows how IIM is based on IM and what are the advantages. Moreover, the method is applied to the efficient simulation of TMS. The proposed IIM achieves superior convergence properties with high time efficiency, compared to the traditional IM and is therefore a useful tool for accurate and fast TMS simulations.
Zevenhoven, Koos C J; Busch, Sarah; Hatridge, Michael; Oisjöen, Fredrik; Ilmoniemi, Risto J; Clarke, John
2014-03-14
Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field-applied before each signal acquisition sequence to increase the signal-induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures.
Zevenhoven, Koos C. J.; Busch, Sarah; Hatridge, Michael; Öisjöen, Fredrik; Ilmoniemi, Risto J.; Clarke, John
2014-01-01
Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field—applied before each signal acquisition sequence to increase the signal—induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures. PMID:24753629
Optimization and Validation of Rotating Current Excitation with GMR Array Sensors for Riveted
2016-09-16
distribution. Simulation results, using both an optimized coil and a conventional coil, are generated using the finite element method (FEM) model...optimized coil and a conventional coil, are generated using the finite element method (FEM) model. The signal magnitude for an optimized coil is seen to be...optimized coil. 4. Model Based Performance Analysis A 3D finite element model (FEM) is used to analyze the performance of the optimized coil and
Nano-oxide-layer insertion and specular effects in spin valves: Experiment and theory
NASA Astrophysics Data System (ADS)
Wang, L.; Qiu, J. J.; McMahon, W. J.; Li, K. B.; Wu, Y. H.
2004-06-01
We report a systematic study of NOL (nano-oxide-layer) insertion and specular effects on the giant magnetoresistance (GMR) of single, synthetic, and dual spin valves, using a semiclassical Boltzmann theory. It is confirmed that the GMR ratio is enhanced by NOL insertion inside the pinned layer or after the free layer. The enhancements are primarily due to the contribution of the majority carriers. The NOL insertions inside the inactive layers of spin valves such as the seed, under, and capping layers reduce the GMR ratio. Though introducing a NOL before or after the Cu spacer would, in principle, significantly suppress the GMR ratio due to the blocking effect or the average effect of different spin channels, large positive or negative (inverse) GMR is found by assuming spin-dependent NOL specular reflections. We have also demonstrated that specular reflection, even beyond a capping layer, may result in reduction of GMR. Upon appropriate NOL insertion, the amplitude of curve of GMR versus thickness of individual layer of spin valves may be generally enhanced, but the shape may change, depending on whether the distance of the NOL to the layer is small or large (distance effect). Finally, it is found that most results obtained for the single realistic spin valves are applicable to synthetic and dual spin valves.
Integration of GMR Sensors with Different Technologies
Cubells-Beltrán, María-Dolores; Reig, Càndid; Madrenas, Jordi; De Marcellis, Andrea; Santos, Joana; Cardoso, Susana; Freitas, Paulo P.
2016-01-01
Less than thirty years after the giant magnetoresistance (GMR) effect was described, GMR sensors are the preferred choice in many applications demanding the measurement of low magnetic fields in small volumes. This rapid deployment from theoretical basis to market and state-of-the-art applications can be explained by the combination of excellent inherent properties with the feasibility of fabrication, allowing the real integration with many other standard technologies. In this paper, we present a review focusing on how this capability of integration has allowed the improvement of the inherent capabilities and, therefore, the range of application of GMR sensors. After briefly describing the phenomenological basis, we deal on the benefits of low temperature deposition techniques regarding the integration of GMR sensors with flexible (plastic) substrates and pre-processed CMOS chips. In this way, the limit of detection can be improved by means of bettering the sensitivity or reducing the noise. We also report on novel fields of application of GMR sensors by the recapitulation of a number of cases of success of their integration with different heterogeneous complementary elements. We finally describe three fully functional systems, two of them in the bio-technology world, as the proof of how the integrability has been instrumental in the meteoric development of GMR sensors and their applications. PMID:27338415
NASA Astrophysics Data System (ADS)
Kelly, R. W.; Chalk, C.; Dorrell, R. M.; Peakall, J.; Burns, A. D.; Keevil, G. M.; Thomas, R. E.; Williams, G.
2016-12-01
In the natural environment, gravity currents transport large volumes of sediment great distances and are often considered one of the most important mechanisms for sediment transport in ocean basins. Deposits from many individual submarine gravity currents, turbidites, ultimately form submarine fan systems. These are the largest sedimentary systems on the planet and contain valuable hydrocarbon reserves. Moreover, the impact of these currents on submarine technologies and seafloor infrastructure can be devastating and therefore they are of significant interest to a wide range of industries. Here we present experimental, numerical and theoretical models of time-averaged turbulent shear stresses, i.e. Reynolds stresses. Reynolds stresses can be conceptually parameterised by an eddy viscosity parameter that relates chaotic fluid motion to diffusive type processes. As such, it is a useful parameter for indicating the extent of internal mixing and is used extensively in both numerical and analytical modelling of both open-channel and gravity driven flows. However, a lack of knowledge of the turbulent structure of gravity currents limits many hydro- and morphodynamic models. High resolution 3-dimensional experimental velocity data, gathered using acoustic Doppler profiling velocimetry, enabled direct calculation of stresses and eddy viscosity. Comparison of experimental data to CFD and analytical models allowed the testing of eddy viscosity-based turbulent mixing models. The calculated eddy viscosity profile is parabolic in nature in both the upper and lower shear layers. However, an apparent breakdown in the Boussinesq hypothesis (used to calculate the eddy viscosity and upon which many numerical models are based) is observed in the region of the current around the velocity maximum. With the use of accompanying density data it is suggested that the effect of stratification on eddy viscosity is significant and alternative formulations may be required.
NASA Astrophysics Data System (ADS)
Kuru, Hilal; Kockar, Hakan; Alper, Mursel
2017-12-01
Giant magnetoresistance (GMR) behavior in electrodeposited NiFe/Cu multilayers was investigated as a function of non-magnetic (Cu) and ferromagnetic (NiFe) layer thicknesses, respectively. Prior to the GMR analysis, structural and magnetic analyses of the multilayers were also studied. The elemental analysis of the multilayers indicated that the Cu and Ni content in the multilayers increase with increasing Cu and NiFe layer thickness, respectively. The structural studies by X-ray diffraction revealed that all multilayers have face centred cubic structure with preferred (1 1 0) crystal orientation as their substrates. The magnetic properties studied with the vibrating sample magnetometer showed that the magnetizations of the samples are significantly affected by the layer thicknesses. Saturation magnetisation, Ms increases from 45 to 225 emu/cm3 with increasing NiFe layer thickness. The increase in the Ni content of the multilayers with a small Fe content causes an increase in the Ms. And, the coercivities ranging from 2 to 24 Oe are between the soft and hard magnetic properties. Also, the magnetic easy axis of the multilayers was found to be in the film plane. Magnetoresistance measurements showed that all multilayers exhibited the GMR behavior. The GMR magnitude increases with increasing Cu layer thickness and reaches its maximum value of 10% at the Cu layer thickness of 1 nm, then it decreases. And similarly, the GMR magnitude increases and reaches highest value of pure GMR (10%) for the NiFe layer thickness of 3 nm, and beyond this point GMR decreases with increasing NiFe layer thickness. Some small component of the anisotropic magnetoresistance was also observed at thin Cu and thick NiFe layer thicknesses. It is seen that the highest GMR values up to 10% were obtained in electrodeposited NiFe/Cu multilayers up to now. The structural, magnetic and magnetoresistance properties of the NiFe/Cu were reported via the variations of the thicknesses of Cu and NiFe layers with stressing the role of layer thicknesses on the high GMR behavior.
Electromagnetic Modeling of the Passive Stabilization Loop at EAST
NASA Astrophysics Data System (ADS)
Ji, Xiang; Song, Yuntao; Wu, Songtao; Wang, Zhibin; Shen, Guang; Liu, Xufeng; Cao, Lei; Zhou, Zibo; Peng, Xuebing; Wang, Chenghao
2012-09-01
A passive stabilization loop (PSL) has been designed and manufactured in order to enhance the control of vertical instability and accommodate the new stage for high-performance plasma at EAST. Eddy currents are induced by vertical displacement events (VDEs) and disruption, which can produce a magnetic field to control the vertical instability of the plasma in a short timescale. A finite element model is created and meshed using ANSYS software. Based on the simulation of plasma VDEs and disruption, the distribution and decay curve of the eddy currents on the PSL are obtained. The largest eddy current is 200 kA and the stress is 68 MPa at the outer current bridge, which is the weakest point of the PSL because of the eddy currents and the magnetic fields. The analysis results provide the supporting data for the structural design.
NASA Astrophysics Data System (ADS)
Wu, Yanhui; Han, Mangui; Tang, Zhongkai; Deng, Longjiang
2014-04-01
The effective permeability values of composites containing Fe-Cu-Nb-Si-B nanocrystalline flakes have been studied within 0.5-10 GHz. Obvious differences in microwave permeability have been observed between large flakes (size range: 23-111 μm, average thickness: 4.5 μm) and small flakes (size range: 3-21 μm, average thickness: 1.3 μm). The initial real part of microwave permeability of large flakes is larger but it is decreasing faster. The larger flakes also show a larger magnetic loss. Taking into account the eddy current effect, the intrinsic microwave permeability values have been extracted based on the modified Maxwell-Garnet law, which have also been verified by the Acher's law. The dependences of skin depth on frequency have been calculated for both kinds of flakes. It is shown that the eddy current effect in the large flakes is significant. However, the eddy current effect can be ignored in the small flakes.
Investigation of welded joints of aluminium alloys using subminiature eddy-current transducers
NASA Astrophysics Data System (ADS)
Dmitriev, S. F.; Ishkov, A. V.; Katasonov, A. O.; Malikov, V. N.; Sagalakov, A. M.
2018-03-01
The authors developed a measuring system based on subminiaturized eddy-current transducers aimed at examining locally the defects of welded joints in aluminium-magnesium alloy plates connected by means of friction stir welding. The authors made a modification of the Delyann filter, which allowed them to increase considerably the signal-noise relations. The dependency of the eddy-current transducer response on defects was provided, i.e. concealed cuts and openings inside the welded joint, at the frequencies of 100-10000 Hz of the exciting winding.
Characterizing the performance of eddy current probes using photoinductive field-mapping
NASA Astrophysics Data System (ADS)
Moulder, John C.; Nakagawa, Norio
1992-12-01
We present a new method for characterizing the performance of eddy current probes by mapping their electromagnetic fields. The technique is based on the photoinductive effect, the change in the impedance of an eddy current probe induced by laser heating of the material under the probe. The instrument we developed maps a probe's electric field distribution by scanning an infrared laser beam over a thin film of gold lying underneath the probe. Measurements of both photoinductive signals and flaw signals for a series of similar probes demonstrates that the impedance change caused by an electrical-discharge-machined notch or a fatigue crack is proportional to the strength of the photoinductive signal. Thus, photoinductive measurements can supplant the use of artifact standards to calibrate eddy current probes.
Computational Analysis of Static and Dynamic Behaviour of Magnetic Suspensions and Magnetic Bearings
NASA Technical Reports Server (NTRS)
Britcher, Colin P. (Editor); Groom, Nelson J.
1996-01-01
Static modelling of magnetic bearings is often carried out using magnetic circuit theory. This theory cannot easily include nonlinear effects such as magnetic saturation or the fringing of flux in air-gaps. Modern computational tools are able to accurately model complex magnetic bearing geometries, provided some care is exercised. In magnetic suspension applications, the magnetic fields are highly three-dimensional and require computational tools for the solution of most problems of interest. The dynamics of a magnetic bearing or magnetic suspension system can be strongly affected by eddy currents. Eddy currents are present whenever a time-varying magnetic flux penetrates a conducting medium. The direction of flow of the eddy current is such as to reduce the rate-of-change of flux. Analytic solutions for eddy currents are available for some simplified geometries, but complex geometries must be solved by computation. It is only in recent years that such computations have been considered truly practical. At NASA Langley Research Center, state-of-the-art finite-element computer codes, 'OPERA', 'TOSCA' and 'ELEKTRA' have recently been installed and applied to the magnetostatic and eddy current problems. This paper reviews results of theoretical analyses which suggest general forms of mathematical models for eddy currents, together with computational results. A simplified circuit-based eddy current model proposed appears to predict the observed trends in the case of large eddy current circuits in conducting non-magnetic material. A much more difficult case is seen to be that of eddy currents in magnetic material, or in non-magnetic material at higher frequencies, due to the lower skin depths. Even here, the dissipative behavior has been shown to yield at least somewhat to linear modelling. Magnetostatic and eddy current computations have been carried out relating to the Annular Suspension and Pointing System, a prototype for a space payload pointing and vibration isolation system, where the magnetic actuator geometry resembles a conventional magnetic bearing. Magnetostatic computations provide estimates of flux density within airgaps and the iron core material, fringing at the pole faces and the net force generated. Eddy current computations provide coil inductance, power dissipation and the phase lag in the magnetic field, all as functions of excitation frequency. Here, the dynamics of the magnetic bearings, notably the rise time of forces with changing currents, are found to be very strongly affected by eddy currents, even at quite low frequencies. Results are also compared to experimental measurements of the performance of a large-gap magnetic suspension system, the Large Angle Magnetic Suspension Test Fixture (LAMSTF). Eddy current effects are again shown to significantly affect the dynamics of the system. Some consideration is given to the ease and accuracy of computation, specifically relating to OPERA/TOSCA/ELEKTRA.
Interface or bulk scattering in the semiclassical theory for spin valves
NASA Astrophysics Data System (ADS)
Wang, L.; McMahon, W. J.; Liu, B.; Wu, Y. H.; Chong, C. T.
2004-06-01
By taking into account spin asymmetries of the interface transmissions and the bulk mean free paths, we have treated pure interface, non-pure interface, bulk, and interface plus bulk scattering within the semiclassical Boltzmann theory. First, the optimizations of NOL (nano-oxide-layers) insertions in bottom, synthetic, and dual spin valves and the variations of the giant magnetoresistance (GMR) with the thickness of the free layer have been examined. For non-pure interface, bulk, and interface plus bulk scattering, qualitative trends of GMR versus NOL positions in spin valves are similar to each other. For pure interface scattering, there is no optimized NOL insertion positions and the blocking effect of the NOL inserted in the spacer remains effective as other three kinds of scattering. The GMR ratio for bulk scattering simply approaches zero when the free layer thickness becomes short; in contrast, for interface scattering or interface plus bulk scattering, the GMR ratio is nonzero at zero thickness of the free layer. Second, the relationships between GMR and specular and diffusive scattering have been explored. As far as specular reflection is concerned, our results imply that for a realistic bottom spin filter spin valve, Ta/NiFe/IrMn/CoFe/Cu/CoFe/Cu/Ta, roughness of the surfaces of Ta and the interfaces of Ta/NiFe, NiFe/IrMn, pinned layer/spacer, and spacer/free layer may lead to large GMR. We also find that the enhancement of GMR due to surface specular reflection is only a pure interface effect. The dependences of GMR on the specular transmissions roughly follow square relations. The trends of GMR against the spin-down diffusive scattering depend on the values of the spin-up transmission. Finally, impurity scattering was investigated and our semiclassical results are in qualitative agreement with the experiments and the quantum theory.
Fast solver for large scale eddy current non-destructive evaluation problems
NASA Astrophysics Data System (ADS)
Lei, Naiguang
Eddy current testing plays a very important role in non-destructive evaluations of conducting test samples. Based on Faraday's law, an alternating magnetic field source generates induced currents, called eddy currents, in an electrically conducting test specimen. The eddy currents generate induced magnetic fields that oppose the direction of the inducing magnetic field in accordance with Lenz's law. In the presence of discontinuities in material property or defects in the test specimen, the induced eddy current paths are perturbed and the associated magnetic fields can be detected by coils or magnetic field sensors, such as Hall elements or magneto-resistance sensors. Due to the complexity of the test specimen and the inspection environments, the availability of theoretical simulation models is extremely valuable for studying the basic field/flaw interactions in order to obtain a fuller understanding of non-destructive testing phenomena. Theoretical models of the forward problem are also useful for training and validation of automated defect detection systems. Theoretical models generate defect signatures that are expensive to replicate experimentally. In general, modelling methods can be classified into two categories: analytical and numerical. Although analytical approaches offer closed form solution, it is generally not possible to obtain largely due to the complex sample and defect geometries, especially in three-dimensional space. Numerical modelling has become popular with advances in computer technology and computational methods. However, due to the huge time consumption in the case of large scale problems, accelerations/fast solvers are needed to enhance numerical models. This dissertation describes a numerical simulation model for eddy current problems using finite element analysis. Validation of the accuracy of this model is demonstrated via comparison with experimental measurements of steam generator tube wall defects. These simulations generating two-dimension raster scan data typically takes one to two days on a dedicated eight-core PC. A novel direct integral solver for eddy current problems and GPU-based implementation is also investigated in this research to reduce the computational time.
NASA Technical Reports Server (NTRS)
Davis, Despina (Inventor); Mannam, Raja Sekharam (Inventor); Bellamkonda, Ramya (Inventor)
2013-01-01
A thermoelectrically cooled GMR sensor having a first thermoelectric layer with an array of nanowires, wherein the nanowires include a diameter of about 1 nanometer to about 1000 nanometers. A plurality of alternating layers of magnetic and nonmagnetic material are positioned over and extend the nanowires to form a GMR assembly. A second thermoelectric layer is positioned over the GMR assembly and extends the nanowires, such that the nanowires have a length of between about 100 nanometers and about 500 microns. Conductors are placed in contact with the first and second thermoelectric layers for connecting the thermoelectric layers to a voltage source.
He, Wenjing; Zhu, Yuanzhong; Wang, Wenzhou; Zou, Kai; Zhang, Kai; He, Chao
2017-04-01
Pulsed magnetic field gradients generated by gradient coils are widely used in signal location in magnetic resonance imaging (MRI). However, gradient coils can also induce eddy currents in final magnetic field in the nearby conducting structures which lead to distortion and artifact in images, misguiding clinical diagnosis. We tried in our laboratory to measure the magnetic field of gradient-induced eddy current in 1.5 T superconducting magnetic resonance imaging device; and extracted key parameters including amplitude and time constant of exponential terms according to inductance-resistance series mathematical module. These parameters of both self-induced component and crossing component are useful to design digital filters to implement pulse pre-emphasize to reshape the waveform. A measure device that is a basement equipped with phantoms and receiving coils was designed and placed in the isocenter of the magnetic field. By applying testing sequence, contrast experiments were carried out in a superconducting magnet before and after eddy current compensation. Sets of one dimension signal were obtained as raw data to calculate gradient-induced eddy currents. Curve fitting by least squares method was also done to match inductance-resistance series module. The results also illustrated that pulse pre-emphasize measurement with digital filter was correct and effective in reducing eddy current effect. Pre-emphasize waveform was developed based on system function. The usefulness of pre-emphasize measurement in reducing eddy current was confirmed and the improvement was also presented. All these are valuable for reducing artifact in magnetic resonance imaging device.
Performance of current-in-plane pseudo-spin-valve devices on CMOS silicon-on-insulator underlayers
NASA Astrophysics Data System (ADS)
Katti, R. R.; Zou, D.; Reed, D.; Schipper, D.; Hynes, O.; Shaw, G.; Kaakani, H.
2003-05-01
Prior work has shown that current-in-plane (CIP) giant magnetoresistive (GMR) pseudo-spin-valve (PSV) devices grown on bulk Si wafers and bulk complementary metal-oxide semiconductor (CMOS) underlayers exhibit write and read characteristics that are suitable for application as nonvolatile memory devices. In this work, CIP GMR PSV devices fabricated on silicon-on-insulator CMOS underlayers are shown to support write and read performance. Reading and writing fields for selected devices are shown to be approximately 25%-50% that of unselected devices, which provides a margin for reading and writing specific bits in a memory without overwriting bits and without disturbing other bits. The switching characteristics of experimental devices were compared to and found to be similar with Landau-Lifschitz-Gilbert micromagnetic modeling results, which allowed inferring regions of reversible and irreversible rotations in magnetic reversal processes.
Field-angle and DC-bias dependence of spin-torque diode in giant magnetoresistive microstripe
NASA Astrophysics Data System (ADS)
Li, X.; Zhou, Y.; Zheng, C.; Chan, P. H.; Chan, M.; Pong, Philip W. T.
2016-11-01
The spin torque diode effect in all metal spintronic devices has been proposed as a microwave detector with a high power limit and resistivity to breakdown. The previous works have revealed the field-angle dependence of the rectified DC voltage (VDC) in the ferromagnetic stripe. The giant magnetoresistive (GMR) microstripe exhibits higher sensitivity compared with the ferromagnetic stripe. However, the influence of the magnetic field direction and bias current in the spin rectification of GMR microstripe is not yet reported. In this work, the angular dependence and bias dependence of resonant frequency (fR) and VDC are investigated. A macrospin model concerning the contribution of magnetic field, shape anisotropy, and unidirectional anisotropy is engaged to interpret the experimental data. fR exhibits a |sin δH| dependence on the in-plane field angle (δH). VDC presents either |sin δH| or |sin2 δH cos δH | relation, depending on the magnitude of Hext. Optimized VDC of 24 μV is achieved under 4 mT magnetic field applied at δH = 170°. Under out-of-plane magnetic field, fR shows a cos 2θH reliance on the polar angle (θH), whereas VDC is sin θH dependent. The Oersted field of the DC bias current (IDC) modifies the effective field, resulting in shifted fR. Enhanced VDC with increasing IDC is attributed to the elevated contribution of spin-transfer torque. Maximum VDC of 35.2 μV is achieved, corresponding to 47% increase compared with the optimized value under zero bias. Higher IDC also results in enlarged damping parameter in the free layer, resulting in increased linewidth in the spin torque diode spectra. This work experimentally and analytically reveals the angular dependence of fR and VDC in the GMR microstripe. The results further demonstrate a highly tunable fR and optimized VDC by bias current without the external magnetic field. GMR microstripe holds promise for application as a high-power, frequency-tunable microwave detector that works under small or zero magnetic field.
Eddy Current Testing, RQA/M1-5330.17.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.
As one in the series of classroom training handbooks, prepared by the U.S. space program, instructional material is presented in this volume concerning familiarization and orientation on eddy current testing. The subject is presented under the following headings: Introduction, Eddy Current Principles, Eddy Current Equipment, Eddy Current Methods,…
Parallel transmission RF pulse design for eddy current correction at ultra high field.
Zheng, Hai; Zhao, Tiejun; Qian, Yongxian; Ibrahim, Tamer; Boada, Fernando
2012-08-01
Multidimensional spatially selective RF pulses have been used in MRI applications such as B₁ and B₀ inhomogeneities mitigation. However, the long pulse duration has limited their practical applications. Recently, theoretical and experimental studies have shown that parallel transmission can effectively shorten pulse duration without sacrificing the quality of the excitation pattern. Nonetheless, parallel transmission with accelerated pulses can be severely impeded by hardware and/or system imperfections. One of such imperfections is the effect of the eddy current field. In this paper, we first show the effects of the eddy current field on the excitation pattern and then report an RF pulse the design method to correct eddy current fields caused by the RF coil and the gradient system. Experimental results on a 7 T human eight-channel parallel transmit system show substantial improvements on excitation patterns with the use of eddy current correction. Moreover, the proposed model-based correction method not only demonstrates comparable excitation patterns as the trajectory measurement method, but also significantly improves time efficiency. Copyright © 2012. Published by Elsevier Inc.
Monotonicity based imaging method for time-domain eddy current problems
NASA Astrophysics Data System (ADS)
Su, Z.; Ventre, S.; Udpa, L.; Tamburrino, A.
2017-12-01
Eddy current imaging is an example of inverse problem in nondestructive evaluation for detecting anomalies in conducting materials. This paper introduces the concept of time constants and associated natural modes in eddy current imaging. The monotonicity of time constants is then described and applied to develop a non-iterative imaging method. The proposed imaging method has a low computational cost which makes it suitable for real-time operations. Full 3D numerical examples prove the effectiveness of the method in realistic scenarios. This paper is dedicated to Professor Guglielmo Rubinacci on the occasion of his 65th Birthday.
Effect of early measles vaccine on pneumococcal colonization: A randomized trial from Guinea-Bissau
Byberg, Stine; Hervig Jacobsen, Lars; Bjerregaard-Andersen, Morten; Jensen, Aksel Karl Georg; Martins, Cesario; Aaby, Peter; Skov Jensen, Jørgen; Stabell Benn, Christine; Whittle, Hilton
2017-01-01
Background Measles vaccine (MV) may have non-specific beneficial effects for child health and particularly seems to prevent respiratory infections. Streptococcus pneumoniae is the leading cause of bacterial pneumonia among children worldwide, and nasopharyngeal colonization precedes infection. Objective We investigated whether providing early MV at 18 weeks of age reduced pneumococcal colonization and/or density up to 9 months of age. Method The study was conducted in 2013–2014 in Guinea-Bissau. Pneumococcal vaccine was not part of the vaccination program. Infants aged 18 weeks were block-randomized 2:1 to early or no early MV; at age 9 months, all children were offered MV as per current policy. Nasopharyngeal swabs were taken at baseline, age 6.5 months, and age 9 months. Pneumococcal density was determined by q-PCR. Prevalence ratios of pneumococcal colonization and recent antibiotic treatment (yes/no) by age 6.5 months (PR6.5) and age 9 months (PR9) were estimated using Poisson regression with robust variance estimates while the pneumococcal geometric mean ratio (GMR6.5 and GMR9) was obtained using OLS regression. Results Analyses included 512 children; 346 early MV-children and 166 controls. At enrolment, the pneumococcal colonization prevalence was 80% (411/512). Comparing early MV-children with controls, the PR6.5 was 1.02 (95%CI = 0.94–1.10), and the PR9 was 1.04 (0.96–1.12). The GMR6.5 was 1.02 (0.55–1.89), and the GMR9 was 0.69 (0.39–1.21). Early MV-children tended to be less frequently treated with antibiotics prior to follow up (PR6.5 0.60 (0.34–1.05) and PR9 0.87 (0.50–1.53)). Antibiotic treatment was associated with considerably lower colonization rates, PR6.5 0.85 (0.71–1.01) and PR9 0.66 (0.52–0.84), as well as lower pneumococcal density, GMR6.5 0.32 (0.12–0.86) and GMR9 0.52 (0.18–1.52). Conclusion Early MV at age 18 weeks had no measurable effect on pneumococcal colonization prevalence or density. Higher consumption of antibiotics among controls may have blurred an effect of early MV. Trial registration clinicaltrials.gov NCT01486355 PMID:28545041
Recent and Future Enhancements in NDI for Aircraft Structures
2015-11-30
accomplish NDI of aircraft structure. This includes improved eddy current probes, improved eddy current instrumentation, as well as other...Aircraft Structures,” which is currently in Revision C [8]. The document divides various inspection methods, such as eddy current and fluorescent...efforts at AFRL to address technology shortfalls include improved eddy current probes, improved eddy current instrumentation, as well as other
Recent and Future Enhancements in NDI for Aircraft Structures (Postprint)
2015-11-30
accomplish NDI of aircraft structure. This includes improved eddy current probes, improved eddy current instrumentation, as well as other...Aircraft Structures,” which is currently in Revision C [8]. The document divides various inspection methods, such as eddy current and fluorescent...efforts at AFRL to address technology shortfalls include improved eddy current probes, improved eddy current instrumentation, as well as other
Recent and Future Enhancements in NDI for Aircraft Structures (Postprint)
2015-11-01
accomplish NDI of aircraft structure. This includes improved eddy current probes, improved eddy current instrumentation, as well as other...Aircraft Structures,” which is currently in Revision C [8]. The document divides various inspection methods, such as eddy current and fluorescent...efforts at AFRL to address technology shortfalls include improved eddy current probes, improved eddy current instrumentation, as well as other
Recent and Future Enhancements in NDI for Aircraft Structures (POSTPRINT)
2015-11-16
accomplish NDI of aircraft structure. This includes improved eddy current probes, improved eddy current instrumentation, as well as other...Aircraft Structures,” which is currently in Revision C [8]. The document divides various inspection methods, such as eddy current and fluorescent...efforts at AFRL to address technology shortfalls include improved eddy current probes, improved eddy current instrumentation, as well as other
Detecting defects in marine structures by using eddy current infrared thermography.
Swiderski, W
2016-12-01
Eddy current infrared (IR) thermography is a new nondestructive testing (NDT) technique used for the detection of cracks in electroconductive materials. By combining the well-established inspection methods of eddy current NDT and IR thermography, this technique uses induced eddy currents to heat test samples. In this way, IR thermography allows the visualization of eddy current distribution that is distorted in defect sites. This paper discusses the results of numerical modeling of eddy current IR thermography procedures in application to marine structures.
A Steel Ball Surface Quality Inspection Method Based on a Circumferential Eddy Current Array Sensor.
Zhang, Huayu; Xie, Fengqin; Cao, Maoyong; Zhong, Mingming
2017-07-01
To efficiently inspect surface defects on steel ball bearings, a new method based on a circumferential eddy current array (CECA) sensor was proposed here. The best probe configuration, in terms of the coil quality factor (Q-factor), magnetic field intensity, and induced eddy current density on the surface of a sample steel ball, was determined using 3-, 4-, 5-, and 6-coil probes, for analysis and comparison. The optimal lift-off from the measured steel ball, the number of probe coils, and the frequency of excitation current suitable for steel ball inspection were obtained. Using the resulting CECA sensor to inspect 46,126 steel balls showed a miss rate of ~0.02%. The sensor was inspected for surface defects as small as 0.05 mm in width and 0.1 mm in depth.
49 CFR 180.209 - Requirements for requalification of specification cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Requalification period (years) Eddy current examination combined with visual inspection Eddy current—In accordance... performing eddy current must be familiar with the eddy current equipment and must standardize (calibrate) the system in accordance with the requirements provided in Appendix C to this part. 2 The eddy current must...
49 CFR 180.209 - Requirements for requalification of specification cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Requalification period (years) Eddy current examination combined with visual inspection Eddy current—In accordance... performing eddy current must be familiar with the eddy current equipment and must standardize (calibrate) the system in accordance with the requirements provided in Appendix C to this part. 2 The eddy current must...
49 CFR 180.209 - Requirements for requalification of specification cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Requalification period (years) Eddy current examination combined with visual inspection Eddy current—In accordance... performing eddy current must be familiar with the eddy current equipment and must standardize (calibrate) the system in accordance with the requirements provided in Appendix C to this part. 2 The eddy current must...
Characterizing frontal eddies along the East Australian Current from HF radar observations
NASA Astrophysics Data System (ADS)
Schaeffer, Amandine; Gramoulle, A.; Roughan, M.; Mantovanelli, A.
2017-05-01
The East Australian Current (EAC) dominates the ocean circulation along south-eastern Australia, however, little is known about the submesoscale frontal instabilities associated with this western boundary current. One year of surface current measurements from HF radars, in conjunction with mooring and satellite observations, highlight the occurrence and propagation of meanders and frontal eddies along the inshore edge of the EAC. Eddies were systematically identified using the geometry of the high spatial resolution (˜1.5 km) surface currents, and tracked every hour. Cyclonic eddies were observed irregularly, on average every 7 days, with inshore radius ˜10 km. Among various forms of structures, frontal eddies associated with EAC meanders were characterized by poleward advection speeds of ˜0.3-0.4 m/s, migrating as far as 500 km south, based on satellite imagery. Flow field kinematics show that cyclonic eddies have high Rossby numbers (0.6-1.9) and enhance particle dispersion. Patches of intensified surface divergence at the leading edge of the structures are expected to generate vertical uplift. This is confirmed by subsurface measurements showing temperature uplift of up to 55 m over 24 h and rough estimates of vertical velocities of 10s of meters per day. While frontal eddies propagate through the radar domain independently of local wind stress, upfront wind can influence their stalling and growth, and can also generate large cold core eddies through intense shear. Such coherent structures are a major mechanism for the transport and entrainment of nutrient rich coastal or deep waters, influencing physical and biological dynamics, and connectivity over large distances.
Li, Jianwei; Zhang, Weimin; Zeng, Weiqin; Chen, Guolong; Qiu, Zhongchao; Cao, Xinyuan; Gao, Xuanyi
2017-01-01
Estimation of the stress distribution in ferromagnetic components is very important for evaluating the working status of mechanical equipment and implementing preventive maintenance. Eddy current testing technology is a promising method in this field because of its advantages of safety, no need of coupling agent, etc. In order to reduce the cost of eddy current stress measurement system, and obtain the stress distribution in ferromagnetic materials without scanning, a low cost eddy current stress measurement system based on Archimedes spiral planar coil was established, and a method based on BP neural network to obtain the stress distribution using the stress of several discrete test points was proposed. To verify the performance of the developed test system and the validity of the proposed method, experiment was implemented using structural steel (Q235) specimens. Standard curves of sensors at each test point were achieved, the calibrated data were used to establish the BP neural network model for approximating the stress variation on the specimen surface, and the stress distribution curve of the specimen was obtained by interpolating with the established model. The results show that there is a good linear relationship between the change of signal modulus and the stress in most elastic range of the specimen, and the established system can detect the change in stress with a theoretical average sensitivity of -0.4228 mV/MPa. The obtained stress distribution curve is well consonant with the theoretical analysis result. At last, possible causes and improving methods of problems appeared in the results were discussed. This research has important significance for reducing the cost of eddy current stress measurement system, and advancing the engineering application of eddy current stress testing.
Li, Jianwei; Zeng, Weiqin; Chen, Guolong; Qiu, Zhongchao; Cao, Xinyuan; Gao, Xuanyi
2017-01-01
Estimation of the stress distribution in ferromagnetic components is very important for evaluating the working status of mechanical equipment and implementing preventive maintenance. Eddy current testing technology is a promising method in this field because of its advantages of safety, no need of coupling agent, etc. In order to reduce the cost of eddy current stress measurement system, and obtain the stress distribution in ferromagnetic materials without scanning, a low cost eddy current stress measurement system based on Archimedes spiral planar coil was established, and a method based on BP neural network to obtain the stress distribution using the stress of several discrete test points was proposed. To verify the performance of the developed test system and the validity of the proposed method, experiment was implemented using structural steel (Q235) specimens. Standard curves of sensors at each test point were achieved, the calibrated data were used to establish the BP neural network model for approximating the stress variation on the specimen surface, and the stress distribution curve of the specimen was obtained by interpolating with the established model. The results show that there is a good linear relationship between the change of signal modulus and the stress in most elastic range of the specimen, and the established system can detect the change in stress with a theoretical average sensitivity of -0.4228 mV/MPa. The obtained stress distribution curve is well consonant with the theoretical analysis result. At last, possible causes and improving methods of problems appeared in the results were discussed. This research has important significance for reducing the cost of eddy current stress measurement system, and advancing the engineering application of eddy current stress testing. PMID:29145500
Determination of eddy current response with magnetic measurements.
Jiang, Y Z; Tan, Y; Gao, Z; Nakamura, K; Liu, W B; Wang, S Z; Zhong, H; Wang, B B
2017-09-01
Accurate mutual inductances between magnetic diagnostics and poloidal field coils are an essential requirement for determining the poloidal flux for plasma equilibrium reconstruction. The mutual inductance calibration of the flux loops and magnetic probes requires time-varying coil currents, which also simultaneously drive eddy currents in electrically conducting structures. The eddy current-induced field appearing in the magnetic measurements can substantially increase the calibration error in the model if the eddy currents are neglected. In this paper, an expression of the magnetic diagnostic response to the coil currents is used to calibrate the mutual inductances, estimate the conductor time constant, and predict the eddy currents response. It is found that the eddy current effects in magnetic signals can be well-explained by the eddy current response determination. A set of experiments using a specially shaped saddle coil diagnostic are conducted to measure the SUNIST-like eddy current response and to examine the accuracy of this method. In shots that include plasmas, this approach can more accurately determine the plasma-related response in the magnetic signals by eliminating the field due to the eddy currents produced by the external field.
Development and Application of Wide Bandwidth Magneto-Resistive Sensor Based Eddy Current Probe
NASA Technical Reports Server (NTRS)
Wincheski, Russell A.; Simpson, John
2010-01-01
The integration of magneto-resistive sensors into eddy current probes can significantly expand the capabilities of conventional eddy current nondestructive evaluation techniques. The room temperature solid-state sensors have typical bandwidths in the megahertz range and resolutions of tens of microgauss. The low frequency sensitivity of magneto-resistive sensors has been capitalized upon in previous research to fabricate very low frequency eddy current sensors for deep flaw detection in multilayer conductors. In this work a modified probe design is presented to expand the capabilities of the device. The new probe design incorporates a dual induction source enabling operation from low frequency deep flaw detection to high frequency high resolution near surface material characterization. Applications of the probe for the detection of localized near surface conductivity anomalies are presented. Finite element modeling of the probe is shown to be in good agreement with experimental measurements.
Improved Imaging With Laser-Induced Eddy Currents
NASA Technical Reports Server (NTRS)
Chern, Engmin J.
1993-01-01
System tests specimen of material nondestructively by laser-induced eddy-current imaging improved by changing method of processing of eddy-current signal. Changes in impedance of eddy-current coil measured in absolute instead of relative units.
Giant magnetoresistive biosensors for molecular diagnosis: surface chemistry and assay development
NASA Astrophysics Data System (ADS)
Yu, Heng; Osterfeld, Sebastian J.; Xu, Liang; White, Robert L.; Pourmand, Nader; Wang, Shan X.
2008-08-01
Giant magnetoresistive (GMR) biochips using magnetic nanoparticle as labels were developed for molecular diagnosis. The sensor arrays consist of GMR sensing strips of 1.5 μm or 0.75 μm in width. GMR sensors are exquisitely sensitive yet very delicate, requiring ultrathin corrosion-resistive passivation and efficient surface chemistry for oligonucleotide probe immobilization. A mild and stable surface chemistry was first developed that is especially suitable for modifying delicate electronic device surfaces, and a practical application of our GMR biosensors was then demonstrated for detecting four most common human papillomavirus (HPV) subtypes in plasmids. We also showed that the DNA hybridization time could potentially be reduced from overnight to about ten minutes using microfluidics.
Largest global shark biomass found in the northern Galápagos Islands of Darwin and Wolf
Acuña-Marrero, David; Rastoin, Etienne; Friedlander, Alan M.; Donovan, Mary K.; Sala, Enric
2016-01-01
Overfishing has dramatically depleted sharks and other large predatory fishes worldwide except for a few remote and/or well-protected areas. The islands of Darwin and Wolf in the far north of the Galapagos Marine Reserve (GMR) are known for their large shark abundance, making them a global scuba diving and conservation hotspot. Here we report quantitative estimates of fish abundance at Darwin and Wolf over two consecutive years using stereo-video surveys, which reveal the largest reef fish biomass ever reported (17.5 t \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\mathrm{ha}}^{-1}$\\end{document}ha−1 on average), consisting largely of sharks. Despite this, the abundance of reef fishes around the GMR, such as groupers, has been severely reduced because of unsustainable fishing practices. Although Darwin and Wolf are within the GMR, they were not fully protected from fishing until March 2016. Given the ecological value and the economic importance of Darwin and Wolf for the dive tourism industry, the current protection should ensure the long-term conservation of this hotspot of unique global value. PMID:27190701
Nanostructure and giant magnetoresistive properties of granular systems.
Kooi, B J; Vystavel, T; De Hosson, J T
2001-03-01
This article aims to make a connection between the microstructures of various nanostructured alloys and giant magnetoresistive (GMR) properties. The GMR behavior of nanoclusters embedded in a nonmagnetic matrix differs considerably from an alloy with the content of a magnetic phase above the percolation threshold; that is to say, an increase of GMR effect upon going from 300 to 10 K for the former and a decrease of the GMR effect for the latter. The following materials systems were examined with high-resolution transmission electron microscopy and magnetoelectrical resistance measurements: magnetic Co and CoFe nanoclusters in a Au matrix, NiFe clusters in a Cu matrix, and NiFe/Cu spinodal decomposition waves with interconnection of the magnetic phase. After annealing (> or = 300 degrees C), Co particles in Au become semi- or incoherent, whereas under other conditions and in all other systems, the interfaces remain coherent. This state of coherency at the interface between magnetic particles and a nonmagnetic matrix turned out to have a detectable influence on the GMR behavior.
Isoscalar giant monopole resonance in Sn isotopes using a quantum molecular dynamics model
NASA Astrophysics Data System (ADS)
Tao, C.; Ma, Y. G.; Zhang, G. Q.; Cao, X. G.; Fang, D. Q.; Wang, H. W.; Xu, J.
2013-12-01
The isoscalar giant monopole resonance (GMR) in Sn isotopes and other nuclei is investigated in the framework of the isospin-dependent quantum molecular dynamics (IQMD) model. The spectrum of GMR is calculated by taking the rms radius of a nucleus as its monopole moment. The peak energy, the FWHM, and the strength of the GMR extracted by a Gaussian fit to the spectrum have been studied. The GMR peak energies for Sn isotopes from the calculations using a mass-number-dependent Gaussian wave-packet width σr for nucleons are found to be overestimated and show a weak dependence on the mass number compared with the experimental data. However, it is found that experimental data of the GMR peak energies for 56Ni, 90Zr, and 208Pb as well as Sn isotopes can be nicely reproduced after taking into account the isospin dependence in isotope chains in addition to the mass-number dependence of σr for nucleons in the IQMD model calculation.
Influence of magnet eddy current on magnetization characteristics of variable flux memory machine
NASA Astrophysics Data System (ADS)
Yang, Hui; Lin, Heyun; Zhu, Z. Q.; Lyu, Shukang
2018-05-01
In this paper, the magnet eddy current characteristics of a newly developed variable flux memory machine (VFMM) is investigated. Firstly, the machine structure, non-linear hysteresis characteristics and eddy current modeling of low coercive force magnet are described, respectively. Besides, the PM eddy current behaviors when applying the demagnetizing current pulses are unveiled and investigated. The mismatch of the required demagnetization currents between the cases with or without considering the magnet eddy current is identified. In addition, the influences of the magnet eddy current on the demagnetization effect of VFMM are analyzed. Finally, a prototype is manufactured and tested to verify the theoretical analyses.
High resolution eddy current microscopy
NASA Astrophysics Data System (ADS)
Lantz, M. A.; Jarvis, S. P.; Tokumoto, H.
2001-01-01
We describe a sensitive scanning force microscope based technique for measuring local variations in resistivity by monitoring changes in the eddy current induced damping of a cantilever with a magnetic tip oscillating above a conducting sample. To achieve a high sensitivity, we used a cantilever with an FeNdBLa particle mounted on the tip. Resistivity measurements are demonstrated on a silicon test structure with a staircase doping profile. Regions with resistivities of 0.0013, 0.0041, and 0.022 Ω cm are clearly resolved with a lateral resolution of approximately 180 nm. For this range of resistivities, the eddy current induced damping is found to depend linearly on the sample resistivity.
Method and apparatus for correcting eddy current signal voltage for temperature effects
Kustra, Thomas A.; Caffarel, Alfred J.
1990-01-01
An apparatus and method for measuring physical characteristics of an electrically conductive material by the use of eddy-current techniques and compensating measurement errors caused by changes in temperature includes a switching arrangement connected between primary and reference coils of an eddy-current probe which allows the probe to be selectively connected between an eddy current output oscilloscope and a digital ohm-meter for measuring the resistances of the primary and reference coils substantially at the time of eddy current measurement. In this way, changes in resistance due to temperature effects can be completely taken into account in determining the true error in the eddy current measurement. The true error can consequently be converted into an equivalent eddy current measurement correction.
Chan, Rachel W; von Deuster, Constantin; Giese, Daniel; Stoeck, Christian T; Harmer, Jack; Aitken, Andrew P; Atkinson, David; Kozerke, Sebastian
2014-07-01
Diffusion tensor imaging (DTI) of moving organs is gaining increasing attention but robust performance requires sequence modifications and dedicated correction methods to account for system imperfections. In this study, eddy currents in the "unipolar" Stejskal-Tanner and the velocity-compensated "bipolar" spin-echo diffusion sequences were investigated and corrected for using a magnetic field monitoring approach in combination with higher-order image reconstruction. From the field-camera measurements, increased levels of second-order eddy currents were quantified in the unipolar sequence relative to the bipolar diffusion sequence while zeroth and linear orders were found to be similar between both sequences. Second-order image reconstruction based on field-monitoring data resulted in reduced spatial misalignment artifacts and residual displacements of less than 0.43 mm and 0.29 mm (in the unipolar and bipolar sequences, respectively) after second-order eddy-current correction. Results demonstrate the need for second-order correction in unipolar encoding schemes but also show that bipolar sequences benefit from second-order reconstruction to correct for incomplete intrinsic cancellation of eddy-currents. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Parameter Analysis for Arc Snubber of EAST Neutral Beam Injector
NASA Astrophysics Data System (ADS)
Wang, Haitian; Li, Ge; Cao, Liang; Dang, Xiaoqiang; Fu, Peng
2010-08-01
According to the B-H curve and structural dimensions of the snubber by the Fink-Baker Method, the inductive voltage and the eddy current of any core tape with the thickness of the saturated regions are derived when the accelerator breakdown occurs. Using the Ampere's law, in each core tape, the eddy current of the core lamination is equal to the arc current, and the relation of the thickness of the saturated regions for different laminations can be deduced. The total equivalent resistance of the snubber can be obtained. The transient eddy current model based on the stray capacitance and the equivalent resistance is analyzed, and the solving process is given in detail. The exponential time constant and the arc current are obtained. Then, the maximum width of the lamination and the minimum thickness of the core tape are determined. The experimental time constant of the eddy current obtained, with or without the bias current, is approximately the same as that by the analytical method, which proves the accuracy of the adopted assumptions and the analysis method.
Oran, Omer Faruk; Ider, Yusuf Ziya
2017-05-01
To investigate the feasibility of low-frequency conductivity imaging based on measuring the magnetic field due to subject eddy currents induced by switching of MRI z-gradients. We developed a simulation model for calculating subject eddy currents and the magnetic fields they generate (subject eddy fields). The inverse problem of obtaining conductivity distribution from subject eddy fields was formulated as a convection-reaction partial differential equation. For measuring subject eddy fields, a modified spin-echo pulse sequence was used to determine the contribution of subject eddy fields to MR phase images. In the simulations, successful conductivity reconstructions were obtained by solving the derived convection-reaction equation, suggesting that the proposed reconstruction algorithm performs well under ideal conditions. However, the level of the calculated phase due to the subject eddy field in a representative object indicates that this phase is below the noise level and cannot be measured with an uncertainty sufficiently low for accurate conductivity reconstruction. Furthermore, some artifacts other than random noise were observed in the measured phases, which are discussed in relation to the effects of system imperfections during readout. Low-frequency conductivity imaging does not seem feasible using basic pulse sequences such as spin-echo on a clinical MRI scanner. Magn Reson Med 77:1926-1937, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Continuous control of spin polarization using a magnetic field
NASA Astrophysics Data System (ADS)
Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y.
2016-05-01
The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.
GMR effect in CuCo annealed melt-spun ribbons.
Murillo, N; Grande, H; Etxeberria, I; Del Val, J J; González, J; Arana, S; Gracia, F J
2004-11-01
A thorough microstructural and magnetic analysis has been performed on as-quenched and annealed (475 and 525 degrees C, 1 hour) melt-spun Cu100-xCox (x = 10 and 15) granular alloys, presenting a giant magnetoresistance (GMR) effect. The annealed samples are inhomogeneous with respect to the Co-particle sizes and interparticles distances and, therefore, these particles present superparamagnetic and ferromagnetic behaviours, which determine the GMR response. The samples x = 15, treated at 525 degrees C during 1 hour, presented the best GMR ratio (approximately 5% at room temperature to be the highest value approaching roughly to the saturation under an applied magnetic field of 15 KOe), with the coexistence of Co-particles with both kinds of magnetic behaviour.
78 FR 27001 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-09
... one-time mid- frequency eddy current (MFEC) inspection, a low-frequency eddy current (LFEC) inspection... new AD instead requires repetitive external eddy current inspections for cracking of certain fuselage crown lap joints, and corrective actions if necessary; internal eddy current and detailed inspections...
Finite element analysis of gradient z-coil induced eddy currents in a permanent MRI magnet.
Li, Xia; Xia, Ling; Chen, Wufan; Liu, Feng; Crozier, Stuart; Xie, Dexin
2011-01-01
In permanent magnetic resonance imaging (MRI) systems, pulsed gradient fields induce strong eddy currents in the conducting structures of the magnet body. The gradient field for image encoding is perturbed by these eddy currents leading to MR image distortions. This paper presents a comprehensive finite element (FE) analysis of the eddy current generation in the magnet conductors. In the proposed FE model, the hysteretic characteristics of ferromagnetic materials are considered and a scalar Preisach hysteresis model is employed. The developed FE model was applied to study gradient z-coil induced eddy currents in a 0.5 T permanent MRI device. The simulation results demonstrate that the approach could be effectively used to investigate eddy current problems involving ferromagnetic materials. With the knowledge gained from this eddy current model, our next step is to design a passive magnet structure and active gradient coils to reduce the eddy current effects. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Claycomb, James Ronald
1998-10-01
Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic FEM calculations are then used to model the electromagnetic response of eight probe designs, consisting of an eddy current drive coil coupled to a SQUID surrounded by superconducting and/or high permeability magnetic shielding. Simulations are carried out with the eddy current probes located a finite distance above a conducting surface. Results are quantified in terms of shielding and focus factors for each probe design.
Yuan, Samuel W.; Rottmayer, Robert Earl; Carey, Matthew J.
1999-01-01
A compact read/write head having a biased giant magnetoresistive sensor. Permanent magnet films are placed adjacent to the giant magnetoresistive sensor operating in the current-perpendicular-to the-plane (Cpp) mode and spaced with respect to the sensor by conducting films. These permanent magnet films provide a magnetic bias. The bias field is substantial and fairly uniform across sensor height. Biasing of the giant magnetoresistive sensor provides distinguishable response to the rising and falling edges of a recorded pulse on an adjacent recording medium, improves the linearity of the response, and helps to reduce noise. This read/write head is much simpler to fabricate and pattern and provides an enhanced uniformity of the bias field throughout the sensor.
Minichilli, Fabrizio; Bianchi, Fabrizio; Ronchi, Anna Maria; Gorini, Francesca; Bustaffa, Elisa
2018-02-09
Arsenic is ubiquitous and has a potentially adverse impact on human health. We compared the distribution of concentrations of urinary inorganic arsenic plus methylated forms (uc(iAs+MMA+DMA)) in four Italian areas with other international studies, and we assessed the relationship between uc(iAs+MMA+DMA) and various exposure factors. We conducted a human biomonitoring study on 271 subjects (132 men) aged 20-44, randomly sampled and stratified by area, gender, and age. Data on environmental and occupational exposure and dietary habits were collected through a questionnaire. Arsenic was speciated using chromatographic separation and inductively coupled mass spectrometry. Associations between uc(iAs+MMA+DMA) and exposure factors were evaluated using the geometric mean ratio (GMR) with a 90% confidence interval by stepwise multiple regression analysis. The 95th percentile value of uc(iAs+MMA+DMA) for the whole sample (86.28 µg/L) was higher than other national studies worldwide. A statistical significant correlation was found between uc(iAs+MMA+DMA) and occupational exposure (GMR: 2.68 [1.79-4.00]), GSTT gene (GMR: 0.68 [0.52-0.80]), consumption of tap water (GMR: 1.35 [1.02-1.77]), seafood (GMR: 1.44 [1.11-1.88]), whole milk (GMR: 1.34 [1.04-1.73]), and fruit/vegetables (GMR: 1.37 [1.03-1.82]). This study demonstrated the utility of uc(iAs+MMA+DMA) as a biomarker to assess environmental exposure. In a public health context, this information could be used to support remedial action, to prevent individuals from being further exposed to environmental arsenic sources.
Minichilli, Fabrizio; Bianchi, Fabrizio; Ronchi, Anna Maria; Gorini, Francesca; Bustaffa, Elisa
2018-01-01
Arsenic is ubiquitous and has a potentially adverse impact on human health. We compared the distribution of concentrations of urinary inorganic arsenic plus methylated forms (uc(iAs+MMA+DMA)) in four Italian areas with other international studies, and we assessed the relationship between uc(iAs+MMA+DMA) and various exposure factors. We conducted a human biomonitoring study on 271 subjects (132 men) aged 20–44, randomly sampled and stratified by area, gender, and age. Data on environmental and occupational exposure and dietary habits were collected through a questionnaire. Arsenic was speciated using chromatographic separation and inductively coupled mass spectrometry. Associations between uc(iAs+MMA+DMA) and exposure factors were evaluated using the geometric mean ratio (GMR) with a 90% confidence interval by stepwise multiple regression analysis. The 95th percentile value of uc(iAs+MMA+DMA) for the whole sample (86.28 µg/L) was higher than other national studies worldwide. A statistical significant correlation was found between uc(iAs+MMA+DMA) and occupational exposure (GMR: 2.68 [1.79–4.00]), GSTT gene (GMR: 0.68 [0.52–0.80]), consumption of tap water (GMR: 1.35 [1.02–1.77]), seafood (GMR: 1.44 [1.11–1.88]), whole milk (GMR: 1.34 [1.04–1.73]), and fruit/vegetables (GMR: 1.37 [1.03–1.82]). This study demonstrated the utility of uc(iAs+MMA+DMA) as a biomarker to assess environmental exposure. In a public health context, this information could be used to support remedial action, to prevent individuals from being further exposed to environmental arsenic sources. PMID:29425136
NASA Astrophysics Data System (ADS)
Mandache, C.; Khan, M.; Fahr, A.; Yanishevsky, M.
2011-03-01
Probability of detection (PoD) studies are broadly used to determine the reliability of specific nondestructive inspection procedures, as well as to provide data for damage tolerance life estimations and calculation of inspection intervals for critical components. They require inspections on a large set of samples, a fact that makes these statistical assessments time- and cost-consuming. Physics-based numerical simulations of nondestructive testing inspections could be used as a cost-effective alternative to empirical investigations. They realistically predict the inspection outputs as functions of the input characteristics related to the test piece, transducer and instrument settings, which are subsequently used to partially substitute and/or complement inspection data in PoD analysis. This work focuses on the numerical modelling aspects of eddy current testing for the bolt hole inspections of wing box structures typical of the Lockheed Martin C-130 Hercules and P-3 Orion aircraft, found in the air force inventory of many countries. Boundary element-based numerical modelling software was employed to predict the eddy current signal responses when varying inspection parameters related to probe characteristics, crack geometry and test piece properties. Two demonstrator exercises were used for eddy current signal prediction when lowering the driver probe frequency and changing the material's electrical conductivity, followed by subsequent discussions and examination of the implications on using simulated data in the PoD analysis. Despite some simplifying assumptions, the modelled eddy current signals were found to provide similar results to the actual inspections. It is concluded that physics-based numerical simulations have the potential to partially substitute or complement inspection data required for PoD studies, reducing the cost, time, effort and resources necessary for a full empirical PoD assessment.
Note: Void effects on eddy current distortion in two-phase liquid metal.
Kumar, M; Tordjeman, Ph; Bergez, W; Cavaro, M
2015-10-01
A model based on the first order perturbation expansion of magnetic flux in a two-phase liquid metal flow has been developed for low magnetic Reynolds number Rem. This model takes into account the distortion of the induced eddy currents due to the presence of void in the conducting medium. Specific experiments with an eddy current flow meter have been realized for two periodic void distributions. The results have shown, in agreement with the model, that the effects of velocity and void on the emf modulation are decoupled. The magnitude of the void fraction and the void spatial frequency can be determined from the spectral density of the demodulated emf.
Moon, Katherine A; Rule, Ana M; Magid, Hoda S; Ferguson, Jacqueline M; Susan, Jolie; Sun, Zhuolu; Torrey, Christine; Abubaker, Salahaddin; Levshin, Vladimir; Çarkoglu, Asli; Radwan, Ghada Nasr; El-Rabbat, Maha; Cohen, Joanna E; Strickland, Paul; Breysse, Patrick N; Navas-Acien, Ana
2018-03-06
Most smoke-free legislation to reduce secondhand smoke (SHS) exposure exempts waterpipe (hookah) smoking venues. Few studies have examined SHS exposure in waterpipe venues and their employees. We surveyed 276 employees of 46 waterpipe tobacco venues in Istanbul, Moscow, and Cairo. We interviewed venue managers and employees and collected biological samples from employees to measure exhaled carbon monoxide (CO), hair nicotine, saliva cotinine, urine cotinine, urine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), and urine 1-hydroxypyrene glucuronide (1-OHPG). We estimated adjusted geometric mean ratios (GMR) of each SHS biomarker by employee characteristics and indoor air SHS measures. There were 73 nonsmoking employees and 203 current smokers of cigarettes or waterpipe. In nonsmokers, the median (interquartile) range concentrations of SHS biomarkers were 1.1 (0.2, 40.9) µg/g creatinine urine cotinine, 5.5 (2, 15) ng/mL saliva cotinine, 0.95 (0.36, 5.02) ng/mg hair nicotine, 1.48 (0.98, 3.97) pg/mg creatinine urine NNAL, 0.54 (0.25, 0.97) pmol/mg creatinine urine 1-OHPG, and 1.67 (1.33, 2.33) ppm exhaled CO. An 8-hour increase in work hours was associated with higher urine cotinine (GMR: 1.68, 95% CI: 1.20, 2.37) and hair nicotine (GMR: 1.22, 95% CI: 1.05, 1.43). Lighting waterpipes was associated with higher saliva cotinine (GMR: 2.83, 95% CI: 1.05, 7.62). Nonsmoking employees of waterpipe tobacco venues were exposed to high levels of SHS, including measurable levels of carcinogenic biomarkers (tobacco-specific nitrosamines and PAHs). Smoke-free regulation should be extended to waterpipe venues to protect nonsmoking employees and patrons from the adverse health effects of SHS.
Macha, Sreeraj; Sennewald, Regina; Rose, Peter; Schoene, Katja; Pinnetti, Sabine; Woerle, Hans J; Broedl, Uli C
2013-03-01
Empagliflozin is a sodium glucose cotransporter 2 inhibitor in clinical development as a treatment for type 2 diabetes mellitus. The goal of this study was to investigate potential drug-drug interactions between empagliflozin and verapamil, ramipril, and digoxin in healthy volunteers. The potential drug-drug interactions were evaluated in 3 separate trials. In the first study, 16 subjects were randomized to receive single-dose empagliflozin 25 mg alone or single-dose empagliflozin 25 mg with single-dose verapamil 120 mg. In the second study, 23 subjects were randomized to receive empagliflozin 25 mg once daily (QD) for 5 days, ramipril (2.5 mg on day 1 then 5 mg QD on days 2-5) for 5 days or empagliflozin 25 mg with ramipril (2.5 mg on day 1 then 5 mg QD on days 2-5) for 5 days. In the third study, 20 subjects were randomized to receive single-dose digoxin 0.5 mg alone or empagliflozin 25 mg QD for 8 days with single-dose digoxin 0.5 mg on day 5. Exposure of empagliflozin was not affected by coadministration with verapamil (AUC0-∞: geometric mean ratio [GMR], 102.95%; 90% CI, 98.87-107.20; Cmax: GMR, 92.39%; 90% CI, 85.38-99.97) or ramipril (AUC over a uniform dosing interval τ at steady state [AUCτ,ss]: GMR, 96.55%; 90% CI, 93.05-100.18; Cmax at steady state [Cmax,ss]: GMR, 104.47%; 90% CI 97.65-111.77). Empagliflozin had no clinically relevant effect on exposure of ramipril (AUCτ,ss: GMR, 108.14%; 90% CI 100.51-116.35; Cmax,ss: GMR, 103.61%; 90% CI, 89.73-119.64) or its active metabolite ramiprilat (AUCτ,ss: GMR, 98.67%; 90% CI, 96.00-101.42; Cmax,ss: GMR, 98.29%; 90% CI, 92.67-104.25). Coadministration of empagliflozin had no clinically meaningful effect on digoxin AUC0-∞ (GMR, 106.11%; 90% CI, 96.71-116.41); however, a slight increase in Cmax was observed that was not considered clinically relevant (GMR, 113.94%; 90% CI, 99.33-130.70). All treatments were well tolerated. There were no serious adverse events or adverse events leading to discontinuation in any of the studies. No dose adjustment of empagliflozin is required when coadministered with ramipril or verapamil, and no dose adjustment of digoxin or ramipril is required when coadministered with empagliflozin. ClinicalTrials.gov identifiers: NCT01306175 (digoxin), NCT01276301 (verapamil), and NCT01284621 (ramipril). Copyright © 2013 Elsevier HS Journals, Inc. All rights reserved.
Unified Ultrasonic/Eddy-Current Data Acquisition
NASA Technical Reports Server (NTRS)
Chern, E. James; Butler, David W.
1993-01-01
Imaging station for detecting cracks and flaws in solid materials developed combining both ultrasonic C-scan and eddy-current imaging. Incorporation of both techniques into one system eliminates duplication of computers and of mechanical scanners; unifies acquisition, processing, and storage of data; reduces setup time for repetitious ultrasonic and eddy-current scans; and increases efficiency of system. Same mechanical scanner used to maneuver either ultrasonic or eddy-current probe over specimen and acquire point-by-point data. For ultrasonic scanning, probe linked to ultrasonic pulser/receiver circuit card, while, for eddy-current imaging, probe linked to impedance-analyzer circuit card. Both ultrasonic and eddy-current imaging subsystems share same desktop-computer controller, containing dedicated plug-in circuit boards for each.
River reach classification for the Greater Mekong Region at high spatial resolution
NASA Astrophysics Data System (ADS)
Ouellet Dallaire, C.; Lehner, B.
2014-12-01
River classifications have been used in river health and ecological assessments as coarse proxies to represent aquatic biodiversity when comprehensive biological and/or species data is unavailable. Currently there are no river classifications or biological data available in a consistent format for the extent of the Greater Mekong Region (GMR; including the Irrawaddy, the Salween, the Chao Praya, the Mekong and the Red River basins). The current project proposes a new river habitat classification for the region, facilitated by the HydroSHEDS (HYDROlogical SHuttle Elevation Derivatives at multiple Scales) database at 500m pixel resolution. The classification project is based on the Global River Classification framework relying on the creation of multiple sub-classifications based on different disciplines. The resulting classes from the sub-classification are later combined into final classes to create a holistic river reach classification. For the GMR, a final habitat classification was created based on three sub-classifications: a hydrological sub-classification based only on discharge indices (river size and flow variability); a physio-climatic sub-classification based on large scale indices of climate and elevation (biomes, ecoregions and elevation); and a geomorphological sub-classification based on local morphology (presence of floodplains, reach gradient and sand transport). Key variables and thresholds were identified in collaboration with local experts to ensure that regional knowledge was included. The final classification is composed 54 unique final classes based on 3 sub-classifications with less than 15 classes each. The resulting classifications are driven by abiotic variables and do not include biological data, but they represent a state-of-the art product based on best available data (mostly global data). The most common river habitat type is the "dry broadleaf, low gradient, very small river". These classifications could be applied in a wide range of hydro-ecological assessments and useful for a variety of stakeholders such as NGO, governments and researchers.
Effect of blueberry juice on clearance of buspirone and flurbiprofen in human volunteers
Hanley, Michael J; Masse, Gina; Harmatz, Jerold S; Cancalon, Paul F; Dolnikowski, Gregory G; Court, Michael H; Greenblatt, David J
2013-01-01
Aim The present study evaluated the possibility of drug interactions involving blueberry juice (BBJ) and substrate drugs whose clearance is dependent on cytochromes P4503A (CYP3A) and P4502C9 (CYP2C9). Methods A 50:50 mixture of lowbush and highbush BBJ was evaluated in vitro as an inhibitor of CYP3A activity (hydroxylation of triazolam and dealkylation of buspirone) and of CYP2C9 activity (flurbiprofen hydroxylation) using human liver microsomes. In clinical studies, clearance of oral buspirone and oral flurbiprofen was studied in healthy volunteers with and without co-treatment with BBJ. Results BBJ inhibited CYP3A and CYP2C9 activity in vitro, with 50% inhibitory concentrations (IC50) of less than 2%, but without evidence of mechanism-based (irreversible) inhibition. Grapefruit juice (GFJ) also inhibited CYP3A activity, but inhibitory potency was increased by pre-incubation, consistent with mechanism-based inhibition. In clinical studies, GFJ significantly increased area under the plasma concentration−time curve (AUC) for the CYP3A substrate buspirone. The geometric mean ratio (GMR = AUC with GFJ divided by AUC with water) was 2.12. In contrast, the effect of BBJ (GMR = 1.39) was not significant. In the study of flurbiprofen (CYP2C9 substrate), the positive control inhibitor fluconazole significantly increased flurbiprofen AUC (GMR = 1.71), but BBJ had no significant effect (GMR = 1.03). Conclusion The increased buspirone AUC associated with BBJ is quantitatively small and could have occurred by chance. BBJ has no effect on flurbiprofen AUC. The studies provide no evidence for concern about clinically important pharmacokinetic drug interactions of BBJ with substrate drugs metabolized by CYP3A or CYP2C9. PMID:22943633
Eddy-Current Inspection Of Graphite-Fiber Composites
NASA Technical Reports Server (NTRS)
Workman, G. L.; Bryson, C. C.
1993-01-01
NASA technical memorandum describes initial research on, and proposed development of, automated system for nondestructive eddy-current inspection of parts made of graphite-fiber/epoxy-matrix composite materials. Sensors in system E-shaped or U-shaped eddy-current probes like those described in "Eddy-Current Probes For Inspecting Graphite-Fiber Composites" (MFS-26129).
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-18
... doing internal eddy current inspections, or repairing the crack. As an alternative to the external eddy current inspections, the AD provides for internal eddy current and detailed inspections for cracks in the... 5, 2011, we issued Emergency AD 2011-08-51, which requires repetitive external eddy current...
Large Eddy Simulations using oodlesDST
2016-01-01
Research Agency DST-Group-TR-3205 ABSTRACT The oodlesDST code is based on OpenFOAM software and performs Large Eddy Simulations of......maritime platforms using a variety of simulation techniques. He is currently using OpenFOAM software to perform both Reynolds Averaged Navier-Stokes
A novel eddy current damper: theory and experiment
NASA Astrophysics Data System (ADS)
Ebrahimi, Babak; Khamesee, Mir Behrad; Golnaraghi, Farid
2009-04-01
A novel eddy current damper is developed and its damping characteristics are studied analytically and experimentally. The proposed eddy current damper consists of a conductor as an outer tube, and an array of axially magnetized ring-shaped permanent magnets separated by iron pole pieces as a mover. The relative movement of the magnets and the conductor causes the conductor to undergo motional eddy currents. Since the eddy currents produce a repulsive force that is proportional to the velocity of the conductor, the moving magnet and the conductor behave as a viscous damper. The eddy current generation causes the vibration to dissipate through the Joule heating generated in the conductor part. An accurate, analytical model of the system is obtained by applying electromagnetic theory to estimate the damping properties of the proposed eddy current damper. A prototype eddy current damper is fabricated, and experiments are carried out to verify the accuracy of the theoretical model. The experimental test bed consists of a one-degree-of-freedom vibration isolation system and is used for the frequency and transient time response analysis of the system. The eddy current damper model has a 0.1 m s-2 (4.8%) RMS error in the estimation of the mass acceleration. A damping coefficient as high as 53 Ns m-1 is achievable with the fabricated prototype. This novel eddy current damper is an oil-free, inexpensive damper that is applicable in various vibration isolation systems such as precision machinery, micro-mechanical suspension systems and structure vibration isolation.
A magnetic bearing based on eddy-current repulsion
NASA Technical Reports Server (NTRS)
Nikolajsen, J. L.
1987-01-01
This paper describes a new type of electromagnetic bearing, called the Eddy-Current Bearing, which works by repulsion between fixed AC-electromagnets and a conducting rotor. The following advantages are expected: inherent stability, higher load carrying capacity than DC-electromagnetic bearings, simultaneous radial, angular and thrust support, motoring and generating capability, and backup mode of operation in case of primary power failure. A prototype is under construction.
Energy loss due to eddy current in linear transformer driver cores
NASA Astrophysics Data System (ADS)
Kim, A. A.; Mazarakis, M. G.; Manylov, V. I.; Vizir, V. A.; Stygar, W. A.
2010-07-01
In linear transformer drivers [Phys. Rev. ST Accel. Beams 12, 050402 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050402; Phys. Rev. ST Accel. Beams 12, 050401 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050401] as well as any other linear induction accelerator cavities, ferromagnetic cores are used to prevent the current from flowing along the induction cavity walls which are in parallel with the load. But if the core is made of conductive material, the applied voltage pulse generates the eddy current in the core itself which heats the core and therefore also reduces the overall linear transformer driver (LTD) efficiency. The energy loss due to generation of the eddy current in the cores depends on the specific resistivity of the core material, the design of the core, as well as on the distribution of the eddy current in the core tape during the remagnetizing process. In this paper we investigate how the eddy current is distributed in a core tape with an arbitrary shape hysteresis loop. Our model is based on the textbook knowledge related to the eddy current generation in ferromagnetics with rectangular hysteresis loop, and in usual conductors. For the reader’s convenience, we reproduce some most important details of this knowledge in our paper. The model predicts that the same core would behave differently depending on how fast the applied voltage pulse is: in the high frequency limit, the equivalent resistance of the core reduces during the pulse whereas in the low frequency limit it is constant. An important inference is that the energy loss due to the eddy current generation can be reduced by increasing the cross section of the core over the minimum value which is required to avoid its saturation. The conclusions of the model are confirmed with experimental observations presented at the end of the paper.
NASA Technical Reports Server (NTRS)
Sun, Yushi; Sun, Changhong; Zhu, Harry; Wincheski, Buzz
2006-01-01
Stress corrosion cracking in the relief radius area of a space shuttle primary reaction control thruster is an issue of concern. The current approach for monitoring of potential crack growth is nondestructive inspection (NDI) of remaining thickness (RT) to the acoustic cavities using an eddy current or remote field eddy current probe. EDM manufacturers have difficulty in providing accurate RT calibration standards. Significant error in the RT values of NDI calibration standards could lead to a mistaken judgment of cracking condition of a thruster under inspection. A tool based on eddy current principle has been developed to measure the RT at each acoustic cavity of a calibration standard in order to validate that the standard meets the sample design criteria.
Tian, Gui Yun; Gao, Yunlai; Li, Kongjing; Wang, Yizhe; Gao, Bin; He, Yunze
2016-06-08
This paper reviews recent developments of eddy current pulsed thermography (ECPT) for material characterization and nondestructive evaluation (NDE). Due to the fact that line-coil-based ECPT, with the limitation of non-uniform heating and a restricted view, is not suitable for complex geometry structures evaluation, Helmholtz coils and ferrite-yoke-based excitation configurations of ECPT are proposed and compared. Simulations and experiments of new ECPT configurations considering the multi-physical-phenomenon of hysteresis losses, stray losses, and eddy current heating in conjunction with uniform induction magnetic field have been conducted and implemented for ferromagnetic and non-ferromagnetic materials. These configurations of ECPT for metallic material and defect characterization are discussed and compared with conventional line-coil configuration. The results indicate that the proposed ECPT excitation configurations can be applied for different shapes of samples such as turbine blade edges and rail tracks.
Zhuang, H D; Zhang, X D
2015-05-01
A fast valve based on the double-layer eddy-current repulsion mechanism has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to a double-layer eddy-current coil, a preload system was added to improve the security of the valve, whereby the valve opens more quickly and the open-valve time becomes shorter, making it much safer than before. In this contribution, testing platforms, open-valve characteristics, and throughput of the fast valve are discussed. Tests revealed that by choosing appropriate parameters the valve opened within 0.15 ms, and open-valve times were no longer than 2 ms. By adjusting working parameter values, the maximum number of particles injected during this open-valve time was estimated at 7 × 10(22). The fast valve will become a useful tool to further explore disruption mitigation experiments on EAST in 2015.
NASA Astrophysics Data System (ADS)
Rykova, Tatiana; Oke, Peter R.; Griffin, David A.
2017-06-01
Using output from a near-global eddy-resolving ocean model, we analyse the properties and characteristics of quasi-isotropic eddies in five Western Boundary Current (WBC) regions, including the extensions of the Agulhas, East Australian Current (EAC), Brazil-Malvinas Confluence (BMC), Kuroshio and Gulf Stream regions. We assess the model eddies by comparing to satellite and in situ observations, and show that most aspects of the model's representation of eddies are realistic. We find that the mean eddies differ dramatically between these WBC regions - all with some unique and noteworthy characteristics. We find that the vertical displacement of isopycnals of Agulhas eddies is the greatest, averaging 350-450 m at depths of over 800-900 m. EAC (BMC) eddies are the least (most) barotropic, with only 50% (85-90%) of the velocity associated with the barotropic mode. Kuroshio eddies are the most stratified, resulting in small isopycnal displacement, even for strong eddies; and Gulf Stream eddies carry the most heat. Despite their differences, we explicitly show that the source waters for anticyclonic eddies are a mix of the WBC water (from the boundary current itself) and water that originates equatorward of the WBC eddy-field; and cyclonic eddies are a mix of WBC water and water that originates poleward of the WBC eddy-field.
Eddy current correction in volume-localized MR spectroscopy
NASA Technical Reports Server (NTRS)
Lin, C.; Wendt, R. E. 3rd; Evans, H. J.; Rowe, R. M.; Hedrick, T. D.; LeBlanc, A. D.
1994-01-01
The quality of volume-localized magnetic resonance spectroscopy is affected by eddy currents caused by gradient switching. Eddy currents can be reduced with improved gradient systems; however, it has been suggested that the distortion due to eddy currents can be compensated for during postprocessing with a single-frequency reference signal. The authors propose modifying current techniques for acquiring the single-frequency reference signal by using relaxation weighting to reduce interference from components that cannot be eliminated by digital filtering alone. Additional sequences with T1 or T2 weighting for reference signal acquisition are shown to have the same eddy current characteristics as the original signal without relaxation weighting. The authors also studied a new eddy current correction method that does not require a single-frequency reference signal. This method uses two free induction decays (FIDs) collected from the same volume with two sequences with opposite gradients. Phase errors caused by eddy currents are opposite in these two FIDs and can be canceled completely by combining the FIDs. These methods were tested in a phantom. Eddy current distortions were corrected, allowing quantitative measurement of structures such as the -CH = CH- component, which is otherwise undetectable.
Nondestructive Testing Eddy Current Basic Principles RQA/M1-5330.12 (V-I).
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.
As one in the series of programmed instruction handbooks, prepared by the U.S. space program, home study material is presented in this volume concerning familiarization and orientation on basic eddy current principles. The subject is presented under the following headings: Basic Eddy Current Concepts, Eddy Current Generation and Distribution,…
Calculation of Eddy Currents In the CTH Vacuum Vessel and Coil Frame
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Zolfaghari, A. Brooks, A. Michaels, J. Hanson, and G. Hartwell
2012-09-25
Knowledge of eddy currents in the vacuum vessel walls and nearby conducting support structures can significantly contribute to the accuracy of Magnetohydrodynamics (MHD) equilibrium reconstruction in toroidal plasmas. Moreover, the magnetic fields produced by the eddy currents could generate error fields that may give rise to islands at rational surfaces or cause field lines to become chaotic. In the Compact Toroidal Hybrid (CTH) device (R0 = 0.75 m, a = 0.29 m, B ≤ 0.7 T), the primary driver of the eddy currents during the plasma discharge is the changing flux of the ohmic heating transformer. Electromagnetic simulations are usedmore » to calculate eddy current paths and profile in the vacuum vessel and in the coil frame pieces with known time dependent currents in the ohmic heating coils. MAXWELL and SPARK codes were used for the Electromagnetic modeling and simulation. MAXWELL code was used for detailed 3D finite-element analysis of the eddy currents in the structures. SPARK code was used to calculate the eddy currents in the structures as modeled with shell/surface elements, with each element representing a current loop. In both cases current filaments representing the eddy currents were prepared for input into VMEC code for MHD equilibrium reconstruction of the plasma discharge. __________________________________________________« less
NASA Astrophysics Data System (ADS)
Dmitriev, S. F.; Ishkov, A. V.; Katasonov, A. O.; Malikov, V. N.; Sagalakov, A. M.
2018-01-01
The research aims to develop a microminiature eddy current transducer for aluminum alloys. The research topic is considered relevant due to the need for evaluation and forecasting of safe operating life of aluminum. A microminiature transformer-type transducer was designed, which enables to perform local investigations of unferromagnetic materials using eddy-current method based on local studies conductivity. Having the designed transducer as a basis, a hardware-software complex was built to perform experimental studies of aluminium. Cores with different shapes were used in this work. Test results are reported for a flaws in the form of hidden slits and apertures inside the slabs is derived for excitation coil frequencies of 300-700 Hz.
The influence of eddy currents on magnetic actuator performance
NASA Technical Reports Server (NTRS)
Zmood, R. B.; Anand, D. K.; Kirk, J. A.
1987-01-01
The present investigation of the effects of eddy currents on EM actuators' transient performance notes that a transfer function representation encompassing a first-order model of the eddy current influence can be useful in control system analysis. The method can be extended to represent the higher-order effects of eddy currents for actuators that cannot be represented by semiinfinite planes.
Expert system for analyzing eddy current measurements
Levy, Arthur J.; Oppenlander, Jane E.; Brudnoy, David M.; Englund, James M.; Loomis, Kent C.
1994-01-01
A method and apparatus (called DODGER) analyzes eddy current data for heat exchanger tubes or any other metallic object. DODGER uses an expert system to analyze eddy current data by reasoning with uncertainty and pattern recognition. The expert system permits DODGER to analyze eddy current data intelligently, and obviate operator uncertainty by analyzing the data in a uniform and consistent manner.
Effect of mesoscale eddies on the Taiwan Strait Current
NASA Astrophysics Data System (ADS)
Chang, Y. L.; Miyazawa, Y.; Guo, X.
2016-02-01
This study shows that mesoscale eddies can alter the Taiwan Strait current. The 20-year data-assimilated Japan Coastal Ocean Predictability Experiment 2 (JCOPE2) reanalysis data are analyzed, and the results are confirmed with idealized experiments. The leading wind-forced seasonal cycle is excluded to focus on the effect of the eddy. The warm eddy southwest of Taiwan is shown to generate a northward flow, whereas the cold eddy produces a southward current. The effect of the eddy penetrates onto the shelf through the Joint Effect of Baroclinicity and Relief (JEBAR). The cross-isobath fluxes lead to shelfward convergence and divergence, setting up the modulation of the sea level slope. The resulting along-strait current anomaly eventually affects a wide area of the Taiwan Strait. The stronger eddy leads to larger modification of the cross-shelf flows and sea level slope, producing a greater transport anomaly. The composite Sea-Viewing Wide Field-of-view Sensor chlorophyll-a (Chl-a) serves as an indicator to show the change in Chl-a concentration in the strait in response to the eddy-induced current. During the warm eddy period, the current carries the southern water of lower concentration northward, reducing Chl-a concentration in the strait. In contrast, Chl-a is enhanced because the cold eddy-induced southward current carries the northern water of higher concentration southward into the strait.
Zhao, Yujuan; Zhao, Tiejun; Raval, Shailesh B; Krishnamurthy, Narayanan; Zheng, Hai; Harris, Chad T; Handler, William B; Chronik, Blaine A; Ibrahim, Tamer S
2015-11-01
To optimize the design of radiofrequency (RF) shielding of transmit coils at 7T and reduce eddy currents generated on the RF shielding when imaging with rapid gradient waveforms. One set of a four-element, 2 × 2 Tic-Tac-Toe head coil structure was selected and constructed to study eddy currents on the RF coil shielding. The generated eddy currents were quantitatively studied in the time and frequency domains. The RF characteristics were studied using the finite difference time domain method. Five different kinds of RF shielding were tested on a 7T MRI scanner with phantoms and in vivo human subjects. The eddy current simulation method was verified by the measurement results. Eddy currents induced by solid/intact and simple-structured slotted RF shielding significantly distorted the gradient fields. Echo-planar images, B1+ maps, and S matrix measurements verified that the proposed slot pattern suppressed the eddy currents while maintaining the RF characteristics of the transmit coil. The presented dual-optimization method could be used to design RF shielding and reduce the gradient field-induced eddy currents while maintaining the RF characteristics of the transmit coil. © 2014 Wiley Periodicals, Inc.
The use of fractional order derivatives for eddy current non-destructive testing
NASA Astrophysics Data System (ADS)
Sikora, Ryszard; Grzywacz, Bogdan; Chady, Tomasz
2018-04-01
The paper presents the possibility of using the fractional derivatives for non-destructive testing when a multi-frequency method based on eddy current is applied. It is shown that frequency characteristics obtained during tests can be approximated by characteristics of a proposed model in the form of fractional order transfer function, and values of parameters of this model can be utilized for detection and identification of defects.
Eddy Current System for Material Inspection and Flaw Visualization
NASA Technical Reports Server (NTRS)
Bachnak, R.; King, S.; Maeger, W.; Nguyen, T.
2007-01-01
Eddy current methods have been successfully used in a variety of non-destructive evaluation applications including detection of cracks, measurements of material thickness, determining metal thinning due to corrosion, measurements of coating thickness, determining electrical conductivity, identification of materials, and detection of corrosion in heat exchanger tubes. This paper describes the development of an eddy current prototype that combines positional and eddy-current data to produce a C-scan of tested material. The preliminary system consists of an eddy current probe, a position tracking mechanism, and basic data visualization capability. Initial test results of the prototype are presented in this paper.
Eddy Current Assessment of Engineered Components Containing Nanofibers
NASA Astrophysics Data System (ADS)
Ko, Ray T.; Hoppe, Wally; Pierce, Jenny
2009-03-01
The eddy current approach has been used to assess engineered components containing nanofibers. Five specimens with different programmed defects were fabricated. A 4-point collinear probe was used to verify the electrical resistivity of each specimen. The liftoff component of the eddy current signal was used to test two extreme cases with different nano contents. Additional eddy current measurements were also used in detecting a missing nano layer simulating a manufacturing process error. The results of this assessment suggest that eddy current liftoff measurement can be a useful tool in evaluating the electrical properties of materials containing nanofibers.
Eddy current probe with foil sensor mounted on flexible probe tip and method of use
Viertl, John R. M.; Lee, Martin K.
2001-01-01
A pair of copper coils are embedded in the foil strip. A first coil of the pair generates an electromagnetic field that induces eddy currents on the surface, and the second coil carries a current influenced by the eddy currents on the surface. The currents in the second coil are analyzed to obtain information on the surface eddy currents. An eddy current probe has a metal housing having a tip that is covered by a flexible conductive foil strip. The foil strip is mounted on a deformable nose at the probe tip so that the strip and coils will conform to the surface to which they are applied.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Eddy Current Examination With Visual Inspection... PACKAGINGS Pt. 180, App. C Appendix C to Part 180—Eddy Current Examination With Visual Inspection for DOT 3AL... procedure applicable to the test equipment it uses to perform eddy current examinations. 2. Visual...
Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy.
Stigliano, Robert V; Shubitidze, Fridon; Petryk, James D; Shoshiashvili, Levan; Petryk, Alicia A; Hoopes, P Jack
2016-11-01
Magnetic nanoparticle hyperthermia therapy is a promising technology for cancer treatment, involving delivering magnetic nanoparticles (MNPs) into tumours then activating them using an alternating magnetic field (AMF). The system produces not only a magnetic field, but also an electric field which penetrates normal tissue and induces eddy currents, resulting in unwanted heating of normal tissues. Magnitude of the eddy current depends, in part, on the AMF source and the size of the tissue exposed to the field. The majority of in vivo MNP hyperthermia therapy studies have been performed in small animals, which, due to the spatial distribution of the AMF relative to the size of the animals, do not reveal the potential toxicity of eddy current heating in larger tissues. This has posed a non-trivial challenge for researchers attempting to scale up to clinically relevant volumes of tissue. There is a relative dearth of studies focused on decreasing the maximum temperature resulting from eddy current heating to increase therapeutic ratio. This paper presents two simple, clinically applicable techniques for decreasing maximum temperature induced by eddy currents. Computational and experimental results are presented to understand the underlying physics of eddy currents induced in conducting, biological tissues and leverage these insights to mitigate eddy current heating during MNP hyperthermia therapy. Phantom studies show that the displacement and motion techniques reduce maximum temperature due to eddy currents by 74% and 19% in simulation, and by 77% and 33% experimentally. Further study is required to optimise these methods for particular scenarios; however, these results suggest larger volumes of tissue could be treated, and/or higher field strengths and frequencies could be used to attain increased MNP heating when these eddy current mitigation techniques are employed.
Yamada, Haruyasu; Abe, Osamu; Shizukuishi, Takashi; Kikuta, Junko; Shinozaki, Takahiro; Dezawa, Ko; Nagano, Akira; Matsuda, Masayuki; Haradome, Hiroki; Imamura, Yoshiki
2014-01-01
Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and eddy currents. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or eddy-current induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, "eddy_correct" and the combination of "eddy" and "topup" in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non-diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non-diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with eddy and topup possessed higher FA values than images uncorrected and corrected with eddy_correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of eddy and topup as a superior correction tool in diffusion imaging rather than the eddy_correct tool, especially with trilinear interpolation, using 60 directions encoding scheme.
Measurement of Spindle Rigidity by using a Magnet Loader
NASA Astrophysics Data System (ADS)
Yamazaki, Taku; Matsubara, Atsushi; Fujita, Tomoya; Muraki, Toshiyuki; Asano, Kohei; Kawashima, Kazuyuki
The static rigidity of a rotating spindle in the radial direction is investigated in this research. A magnetic loading device (magnet loader) has been developed for the measurement. The magnet loader, which has coils and iron cores, generates the electromagnetic force and attracts a dummy tool attached to the spindle. However, the eddy current is generated in the dummy tool with the spindle rotation and reduces the attractive force at high spindle speed. In order to understand the magnetic flux and eddy current in the dummy tool, the electromagnetic field analysis by FEM was carried out. Grooves on the attraction surface of the dummy tool were designed to cut the eddy current flow. The dimension of the groove were decided based on the FEM analysis, and the designed tool were manufactured and tested. The test result shows that the designed tool successfully reduces the eddy current and recovers the attractive force. By using the magnet loader and the grooved tool, the spindle rigidity can be measured when the spindle rotates with a speed up to 10,000 min-1.
NASA Technical Reports Server (NTRS)
Wincheski, Russell A.
2008-01-01
As part of the health assessment of flight spare 40in diameter Kevlar composite overwrapped pressure vessels (COPVs) SN002 and SN027 an eddy current characterization of the composite and liner thickness change during pressurization was requested under WSTF-TP-1085-07.A, "Space Shuttle Orbiter Main Propulsion System P/N MC282-0082-0101 S/N 002 and Orbital Maneuvering System P/N MC282-0082-001 S/N 027 COPV Health Assessment." The through the thickness strains have been determined to be an important parameter in the analysis of the reliability and likelihood of stress rupture failure. Eddy current techniques provide a means to measure these thicknesses changes based upon the change in impedance of an eddy current sensor mounted on the exterior of the vessel. Careful probe and technique design have resulted in the capability to independently measure the liner and overwrap thickness changes to better than +/- 0.0005 in. at each sensor location. Descriptions of the inspection system and test results are discussed.
Using eddy currents for noninvasive in vivo pH monitoring for bone tissue engineering.
Beck-Broichsitter, Benedicta E; Daschner, Frank; Christofzik, David W; Knöchel, Reinhard; Wiltfang, Jörg; Becker, Stephan T
2015-03-01
The metabolic processes that regulate bone healing and bone induction in tissue engineering models are not fully understood. Eddy current excitation is widely used in technical approaches and in the food industry. The aim of this study was to establish eddy current excitation for monitoring metabolic processes during heterotopic osteoinduction in vivo. Hydroxyapatite scaffolds were implanted into the musculus latissimus dorsi of six rats. Bone morphogenetic protein 2 (BMP-2) was applied 1 and 2 weeks after implantation. Weekly eddy current excitation measurements were performed. Additionally, invasive pH measurements were obtained from the scaffolds using fiber optic detection devices. Correlations between the eddy current measurements and the metabolic values were calculated. The eddy current measurements and pH values decreased significantly in the first 2 weeks of the study, followed by a steady increase and stabilization at higher levels towards the end of the study. The measurement curves and statistical evaluations indicated a significant correlation between the resonance frequency values of the eddy current excitation measurements and the observed pH levels (p = 0.0041). This innovative technique was capable of noninvasively monitoring metabolic processes in living tissues according to pH values, showing a direct correlation between eddy current excitation and pH in an in vivo tissue engineering model.
Mesoscale Eddy Activity and Transport in the Atlantic Water Inflow Region North of Svalbard
NASA Astrophysics Data System (ADS)
Crews, L.; Sundfjord, A.; Albretsen, J.; Hattermann, T.
2018-01-01
Mesoscale eddies are known to transport heat and biogeochemical properties from Arctic Ocean boundary currents to basin interiors. Previous hydrographic surveys and model results suggest that eddy formation may be common in the Atlantic Water (AW) inflow area north of Svalbard, but no quantitative eddy survey has yet been done for the region. Here vorticity and water property signatures are used to identify and track AW eddies in an eddy-resolving sea ice-ocean model. The boundary current sheds AW eddies along most of the length of the continental slope considered, from the western Yermak Plateau to 40°E, though eddies forming east of 20°E are likely more important for slope-to-basin transport. Eddy formation seasonality reflects seasonal stability properties of the boundary current in the eastern portion of the study domain, but on and immediately east of the Yermak Plateau enhanced eddy formation during summer merits further investigation. AW eddies tend to be anticyclonic, have radii close to the local deformation radius, and be centered in the halocline. They transport roughly 0.16 Sv of AW and, due to their warm cores, 1.0 TW away from the boundary current. These findings suggest eddies may be important for halocline ventilation in the Eurasian Basin, as has been shown for Pacific Water eddies in the Canadian Basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jiamin; Hono, K., E-mail: kazuhiro.hono@nims.go.jp; Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-2-1, Sengen, Tsukuba 305-0047
2015-05-07
We have experimentally investigated the crystal orientation dependence of band matching in current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo-spin-valves using Co{sub 2}Fe(Ge{sub 0.5}Ga{sub 0.5}) (CFGG) Heusler alloy ferromagnetic layer and NiAl spacer. The high quality epitaxial CFGG/NiAl/CFGG all-B2-trilayers structure devices were fabricated on both MgO(001) and sapphire (112{sup ¯}0) single crystal substrates to create (001) and (110) crystal orientations. Same magneto-transport properties were observed from these two differently orientated devices indicating that there is no or little orientation dependence of band matching on MR output. We also found that all-B2-trilayer structure was free of lattice matching influence depending on the crystal orientation,more » which made it a good candidate for CPP-GMR device.« less
3D Magnetic Field Analysis of a Turbine Generator Stator Core-end Region
NASA Astrophysics Data System (ADS)
Wakui, Shinichi; Takahashi, Kazuhiko; Ide, Kazumasa; Takahashi, Miyoshi; Watanabe, Takashi
In this paper we calculated magnetic flux density and eddy current distributions of a 71MVA turbine generator stator core-end using three-dimensional numerical magnetic field analysis. Subsequently, the magnetic flux densities and eddy current densities in the stator core-end region on the no-load and three-phase short circuit conditions obtained by the analysis have good agreements with the measurements. Furthermore, the differences of eddy current and eddy current loss in the stator core-end region for various load conditions are shown numerically. As a result, the facing had an effect that decrease the eddy current loss of the end plate about 84%.
Design of permanent magnet eddy current brake for a small scaled electromagnetic launch model
NASA Astrophysics Data System (ADS)
Zhou, Shigui; Yu, Haitao; Hu, Minqiang; Huang, Lei
2012-04-01
A variable pole-pitch double-sided permanent magnet (PM) linear eddy current brake (LECB) is proposed for a small scaled electromagnetic launch model. A two-dimensional (2D) analytical steady state model is presented for the double-sided PM-LECB, and the expression for the braking force is derived. Based on the analytical model, the material and eddy current skin effect of the conducting plate are analyzed. Moreover, a variable pole-pitch double-sided PM-LECB is proposed for the effective braking of the moving plate. In addition, the braking force is predicted by finite element (FE) analysis, and the simulated results are in good agreement with the analytical model. Finally, a prototype is presented to test the braking profile for validation of the proposed design.
Measurement of eddy-current distribution in the vacuum vessel of the Sino-UNIted Spherical Tokamak.
Li, G; Tan, Y; Liu, Y Q
2015-08-01
Eddy currents have an important effect on tokamak plasma equilibrium and control of magneto hydrodynamic activity. The vacuum vessel of the Sino-UNIted Spherical Tokamak is separated into two hemispherical sections by a toroidal insulating barrier. Consequently, the characteristics of eddy currents are more complex than those found in a standard tokamak. Thus, it is necessary to measure and analyze the eddy-current distribution. In this study, we propose an experimental method for measuring the eddy-current distribution in a vacuum vessel. By placing a flexible printed circuit board with magnetic probes onto the external surface of the vacuum vessel to measure the magnetic field parallel to the surface and then subtracting the magnetic field generated by the vertical-field coils, the magnetic field due to the eddy current can be obtained, and its distribution can be determined. We successfully applied this method to the Sino-UNIted Spherical Tokamak, and thus, we obtained the eddy-current distribution despite the presence of the magnetic field generated by the external coils.
NASA Astrophysics Data System (ADS)
Nadai, A.
2016-02-01
The HF ocean surface radar (HFOSR) is one of the powerful tools to measure the ocean current parameters like surface currents. Three observations of the Kuroshio current in the Tokara straight using HFOSR had done by the National Institute of Information and Comunications Technology (NICT: the former name is the Communications Research Laboratory). The first-order echoes on Doppler spectra of HFOSR shows broaden and splitting shape in the region of the border between the Kuroshio currents and coastal waters. The surface velocity maps show the existence of eddy on the border. The investigation of the mechanism of broadening first order-echoes by Nadai (2006) revealed that the modulation of wave fields from surface currents like eddy is the cause of broadening and the measured current fields also influenced the modulated wave fields. Moreover, Nadai (2006) also suggested that the influence is able to reduce using the average of two radial velocities extracted by the first-order echoes. In this paper, the results of current field observation around the border between the Kuroshio current and coastal waters are presented. Many small scale eddies are observed at the border of the Kuroshio current and coastal waters. The typical radius of the eddies is about 10km. Usury the observation of such a small scale eddy is difficult, but the eddies with same scale are observed by airborne synthetic aperture radar in the same area at different time. The eddies shows strong rotation as the typical tangential speed is about 1m/s. While the typical speed of the Kuroshio current is about 1.5m/s, the typical speed of the eddy movements is about 0.7m/s. No eddies generated in the radar coverage, but one or two eddies entered in the radar coverage a day. Therefore the origin of these eddies will exist in the upstream area of the radar coverage. Using the compensation method for the influence of the modulated wave field suggested by Nadai (2006), the eddies shows weak divergence. It is important to consider the mixing between the water of Kuroshio region and East China Sea. However the vertical structure is needed for more precise discussion.
Portable guided-mode resonance biosensor platform for point-of-care testing
NASA Astrophysics Data System (ADS)
Sung, Gun Yong; Kim, Wan-Joong; Ko, Hyunsung; Kim, Bong K.; Kim, Kyung-Hyun; Huh, Chul; Hong, Jongcheol
2012-10-01
It represents a viable solution for the realization of a portable biosensor platform that could screen/diagnose acute myocardial infarction by measuring cardiac marker concentrations such as cardiac troponin I (cTnI), creatine kinase MB (CK-MB), and myoglobin (MYO) for application to u-health monitoring system. The portable biosensor platform introduced in this presentation has a more compact structure and a much higher measuring resolution than a conventional spectrometer system. Portable guided-mode resonance (GMR) biosensor platform was composed of a biosensor chip stage, an optical pick-up module, and a data display panel. Disposable plastic GMR biosensor chips with nano-grating patterns were fabricated by injection-molding. Whole blood filtration and label-free immunoassay were performed on these single chips, automatically. Optical pick-up module was fabricated by using the miniaturized bulk optics and the interconnecting optical fibers and a tunable VCSEL (vertical cavity surface emitting laser). The reflectance spectrum from the GMR biosensor was measured by the optical pick-up module. Cardiac markers in human serum with concentrations less than 0.1ng/mL were analyzed using a GMR biosensor. Analysis time was 30min, which is short enough to meet clinical requirements. Our results show that the GMR biosensor will be very useful in developing lowcost portable biosensors that can screen for cardiac diseases.
Lefèvre, Gilbert; Bhad, Prafulla; Jain, Jay Prakash; Kalluri, Sampath; Cheng, Yi; Dave, Hardik; Stein, Daniel S
2013-09-08
Artemether-lumefantrine (Coartem; AL) is a standard of care for malaria treatment as an oral six-dose regimen, given twice daily over three days with one to four tablets (20/120 mg) per dose, depending on patient body weight. In order to reduce the pill burden at each dose and potentially enhance compliance, two novel fixed-dose tablet formulations (80/480 mg and 60/360 mg) have been developed and tested in this study for bioequivalence with their respective number of standard tablets. A randomized, open-label, two-period, single-dose, within formulation crossover bioequivalence study comparing artemether and lumefantrine exposure between the novel 80/480 mg tablet and four standard tablets, and the novel 60/360 mg tablet and three standard tablets, was conducted in 120 healthy subjects under fed conditions. Artemether, dihydroartemisinin, and lumefantrine were measured in plasma by HPLC/UPLC-MS/MS. Pharmacokinetic (PK) parameters were determined by non-compartmental analyses. Adjusted geometric mean AUClast for artemether were 345 and 364 ng·h/mL (geometric mean ratio (GMR) 0.95; 90% CI 0.89-1.01) and for lumefantrine were 219 and 218 μg·h/mL (GMR 1.00; 90% CI 0.93-1.08) for 80/480 mg tablet versus four standard tablets, respectively. Corresponding Cmax for artemether were 96.8 and 99.7 ng/mL (GMR 0.97; 90% CI 0.89-1.06) and for lumefantrine were 8.42 and 8.71 μg/mL (GMR 0.97; 90% CI 0.89-1.05). For the 60/360 mg tablet versus three standard tablets, adjusted geometric mean AUClast for artemether were 235 and 231 ng·h/mL (GMR 1.02; 90% CI 0.94-1.10), and for lumefantrine were 160 and 180 μg·h/mL (GMR 0.89; 90% CI 0.83-0.96), respectively. Corresponding Cmax for artemether were 75.5 and 71.5 ng/mL (GMR 1.06; 90% CI 0.95-1.18), and for lumefantrine were 6.64 and 7.61 μg/mL (GMR 0.87; 90% CI 0.81-0.94), respectively. GMR for Cmax and AUClast for artemether and lumefantrine for all primary comparisons were within the bioequivalence acceptance criteria (0.80-1.25). In addition, secondary PK parameters also met bioequivalence criterion. Both of the novel artemether-lumefantrine tablet formulations evaluated are bioequivalent to their respective standard Coartem tablet doses. These novel formulations are easy to administer and may improve adherence in the treatment of uncomplicated malaria caused by Plasmodium falciparum. CTRI/2011/12/002256.
Eddy Currents: Levitation, Metal Detectors, and Induction Heating
ERIC Educational Resources Information Center
Wouch, G.; Lord, A. E., Jr.
1978-01-01
A simple and accessible calculation is given of the effects of eddy currents for a sphere in the field of a single circular loop of alternating current. These calculations should help toward the inclusion of eddy current effects in upper undergraduate physics courses. (BB)
Healing of Fatigue Crack in 1045 Steel by Using Eddy Current Treatment
Yang, Chuan; Xu, Wenchen; Guo, Bin; Shan, Debin; Zhang, Jian
2016-01-01
In order to investigate the methods to heal fatigue cracks in metals, tubular specimens of 1045 steel with axial and radial fatigue cracks were treated under the eddy current. The optical microscope was employed to examine the change of fatigue cracks of specimens before and after the eddy current treatment. The results show that the fatigue cracks along the axial direction of the specimen could be healed effectively in the fatigue crack initiation zone and the crack tip zone under the eddy current treatment, and the healing could occur within a very short time. The voltage breakdown and the transient thermal compressive stress caused by the detouring of eddy current around the fatigue crack were the main factors contributing to the healing in the fatigue crack initiation zone and the crack tip zone, respectively. Eddy current treatment may be a novel and effective method for crack healing. PMID:28773761
Healing of Fatigue Crack in 1045 Steel by Using Eddy Current Treatment.
Yang, Chuan; Xu, Wenchen; Guo, Bin; Shan, Debin; Zhang, Jian
2016-07-29
In order to investigate the methods to heal fatigue cracks in metals, tubular specimens of 1045 steel with axial and radial fatigue cracks were treated under the eddy current. The optical microscope was employed to examine the change of fatigue cracks of specimens before and after the eddy current treatment. The results show that the fatigue cracks along the axial direction of the specimen could be healed effectively in the fatigue crack initiation zone and the crack tip zone under the eddy current treatment, and the healing could occur within a very short time. The voltage breakdown and the transient thermal compressive stress caused by the detouring of eddy current around the fatigue crack were the main factors contributing to the healing in the fatigue crack initiation zone and the crack tip zone, respectively. Eddy current treatment may be a novel and effective method for crack healing.
Electronic Structure and Transport in Magnetic Multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2008-02-18
ORNL assisted Seagate Recording Heads Operations in the development of CIPS pin Valves for application as read sensors in hard disk drives. Personnel at ORNL were W. H. Butler and Xiaoguang Zhang. Dr. Olle Heinonen from Seagate RHO also participated. ORNL provided codes and materials parameters that were used by Seagate to model CIP GMR in their heads. The objectives were to: (1) develop a linearized Boltzmann transport code for describing CIP GMR based on realistic models of the band structure and interfaces in materials in CIP spin valves in disk drive heads; (2) calculate the materials parameters needed asmore » inputs to the Boltzmann code; and (3) transfer the technology to Seagate Recording Heads.« less
Equilibrium reconstruction with 3D eddy currents in the Lithium Tokamak eXperiment
Hansen, C.; Boyle, D. P.; Schmitt, J. C.; ...
2017-04-18
Axisymmetric free-boundary equilibrium reconstructions of tokamak plasmas in the Lithium Tokamak eXperiment (LTX) are performed using the PSI-Tri equilibrium code. Reconstructions in LTX are complicated by the presence of long-lived non-axisymmetric eddy currents generated by a vacuum vessel and first wall structures. To account for this effect, reconstructions are performed with additional toroidal current sources in these conducting regions. The eddy current sources are fixed in their poloidal distributions, but their magnitude is adjusted as part of the full reconstruction. Eddy distributions are computed by toroidally averaging currents, generated by coupling to vacuum field coils, from a simplified 3D filamentmore » model of important conducting structures. The full 3D eddy current fields are also used to enable the inclusion of local magnetic field measurements, which have strong 3D eddy current pick-up, as reconstruction constraints. Using this method, equilibrium reconstruction yields good agreement with all available diagnostic signals. Here, an accompanying field perturbation produced by 3D eddy currents on the plasma surface with a primarily n = 2, m = 1 character is also predicted for these equilibria.« less
Development of and Improved Magneto-Optic/Eddy-Current Imager
DOT National Transportation Integrated Search
1997-04-01
Magneto-optic/eddy-current imaging technology has been developed and approved for inspection of cracks in aging aircraft. This relatively new nondestructive test method gives the inspector the ability to quickly generate real-time eddy-current images...
Intelligence and Changes in Regional Cerebral Glucose Metabolic Rate Following Learning.
ERIC Educational Resources Information Center
Haier, Richard J.; And Others
1992-01-01
A study of eight normal right-handed men demonstrates widespread significant decreases in brain glucose metabolic rate (GMR) following learning a complex computer task, a computer game. Correlations between magnitude of GMR change and intelligence scores are also demonstrated. (SLD)
GMR sensors with linear and unhysteretic R(H) dependences
NASA Astrophysics Data System (ADS)
Stobiecki, F.; Szymański, B.; Luciński, T.; Dubowik, J.; Urbaniak, M.; Schmidt, M.; Röll, K.
2004-05-01
Magnetoresistance effect of Ni-Fe/Au/Co/Au sputtered multilayers was investigated. These new GMR structures, consisting of ferromagnetic layers with alternating in-plane (Ni-Fe) and out-of-plane (Co) magnetization configurations at remanence show magnetoresistive behavior attractive for some applications.
Subminiature eddy current transducers for studying metal- dielectric junctions
NASA Astrophysics Data System (ADS)
Dmitriev, S.; Katasonov, A.; Malikov, V.; Sagalakov, A.; Davydchenko, M.; Shevtsova, L.; Ishkov, A.
2016-11-01
Based on an eddy current transducer (ECT), a probe has been designed to research metal-dielectric structures. The measurement procedure allowing one to detect defects in laminate composites with a high accuracy is described. The transducer was tested on the layered structure consisting of paper and aluminum layers with a thickness of 100 μm each in which the model defect was placed. The dependences of the ECT signal on the defect in this structure are given.
Effects of Angular Variation on Split D Differential Eddy Current Probe Response (Postprint)
2016-02-10
AFRL-RX-WP-JA-2016-0327 EFFECTS OF ANGULAR VARIATION ON SPLIT D DIFFERENTIAL EDDY CURRENT PROBE RESPONSE (POSTPRINT) Ryan D...March 2014 – 22 September 2015 4. TITLE AND SUBTITLE EFFECTS OF ANGULAR VARIATION ON SPLIT D DIFFERENTIAL EDDY CURRENT PROBE RESPONSE (POSTPRINT...last few years have seen increased levels of complexity added to push the state-of-the-art modeling software used in eddy current NDE today. The added
Natural Crack Sizing Based on Eddy Current Image and Electromagnetic Field Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endo, H.; Uchimoto, T.; Takagi, T.
2006-03-06
An eddy current testing (ECT) system with multi-coil type probes is applied to size up cracks fabricated on austenite stainless plates. We have developed muti-channel ECT system to produce data as digital images. The probes consist of transmit-receive type sensors as elements to classify crack directions, working as two scan direction modes simultaneously. Template matching applied to the ECT images determines regions of interest in sizing up cracks. Finite element based inversion sizes up the crack depth from the measured ECT signal. The present paper demonstrates this approach for fatigue crack and stress corrosion cracking.
2010-05-24
The northern portion of the Gulf of Mexico Loop Current, shown in red, appears about to detach a large ring of current, creating a separate eddy. An eddy is a large, warm, clockwise-spinning vortex of water -- the ocean version of a cyclone.
Yamada, Haruyasu; Abe, Osamu; Shizukuishi, Takashi; Kikuta, Junko; Shinozaki, Takahiro; Dezawa, Ko; Nagano, Akira; Matsuda, Masayuki; Haradome, Hiroki; Imamura, Yoshiki
2014-01-01
Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and eddy currents. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or eddy-current induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, “eddy_correct” and the combination of “eddy” and “topup” in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non–diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non–diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with eddy and topup possessed higher FA values than images uncorrected and corrected with eddy_correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of eddy and topup as a superior correction tool in diffusion imaging rather than the eddy_correct tool, especially with trilinear interpolation, using 60 directions encoding scheme. PMID:25405472
44 CFR 334.5 - GMR system description.
Code of Federal Regulations, 2010 CFR
2010-10-01
... more levels as suits its needs. (a) Stage 3, Planning and Preparation. During the planning and preparation stage, Federal departments and agencies develop their GMR plans and maintain capability to carry... departments and agencies may need to gather additional data on selected resources or increase their...
Enhanced spin-valve giant magneto-resistance in non-exchange biased sandwich films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, M; Cerjan, C; Law, B
2000-02-17
A large giant magnetoresistance (GMR) value of 7.5% has been measured in simple NiFeCo(1)/Cu/NiFeCo(2) sandwich films grown on a 30 {angstrom} Cr seed layer. This spin-valve GMR effect is consistent with the differential switching of the two NiFeCo layers due to an enhanced coercivity of the NiFeCo(1) layer grown on the Cr seed layer. A change in growth texture of the NiFeCo(1) layer from fcc (111) to bcc (110) crystallographic orientation leads to an increase in magnetic anisotropy and an enhancement in coercivity. The GMR value increases to 8.7% when a thin CoFe interfacial enhancing layer is incorporated. Further enhancementmore » in GMR values up to 14% is seen in the sandwich films by nano-oxide layer formation. The specular reflection at oxide/magnetic layer interface further extends the mean free path of spin-polarized electrons.« less
Post-tensioning tendon force loss detection using low power pulsed eddy current measurement
NASA Astrophysics Data System (ADS)
Kim, Ji-Min; Lee, Jun; Sohn, Hoon
2018-04-01
In the field of bridge engineering, pre-fabrication of a bridge member and its construction in site have been issued and studied, which achieves improved quality and rapid construction. For integration of those pre-fabricated segments into a structural member (i.e., a concrete slab, girder and pier), post-tensioning (PT) technique is adopted utilizing a high-strength steel tendon, and an effective investigation of the remaining PT tendon force is essential to assure an overall structural integrity. This study proposes a pulsed eddy current based tendon force loss detection system. A compact eddy current sensor is designed to be installed on the surface of an anchor holding a steel PT tendon. The intensity of the induced eddy current varies with PT tendon force alteration due to the magnetostriction effect of a ferromagnetic material. The advantages of the proposed system are as follows: (1) low power consumption, (2) rapid inspection, and (3) simple installation. Its performance was validated experimentally in a full-scale lab test of a 3.3-m long, 15.2-mm diameter mono-tendon that was tensioned using a universal testing machine. Tendon force was controlled from 20 to 180 kN with 20 kN interval, and eddy current responses were measured and analyzed at each force condition. The proposed damage index and the amount of force loss of PT tendon were monotonically related, and an excessive loss as much as 30 % of an initially-introduced tendon force was successfully predicted.
NASA Astrophysics Data System (ADS)
Borie, B.; Kehlberger, A.; Wahrhusen, J.; Grimm, H.; Kläui, M.
2017-08-01
We study the key domain-wall properties in segmented nanowire loop-based structures used in domain-wall-based sensors. The two reasons for device failure, namely, distribution of the domain-wall propagation field (depinning) and the nucleation field are determined with magneto-optical Kerr effect and giant-magnetoresistance (GMR) measurements for thousands of elements to obtain significant statistics. Single layers of Ni81 Fe19 , a complete GMR stack with Co90 Fe10 /Ni81Fe19 as a free layer, and a single layer of Co90 Fe10 are deposited and industrially patterned to determine the influence of the shape anisotropy, the magnetocrystalline anisotropy, and the fabrication processes. We show that the propagation field is influenced only slightly by the geometry but significantly by material parameters. Simulations for a realistic wire shape yield a curling-mode type of magnetization configuration close to the nucleation field. Nonetheless, we find that the domain-wall nucleation fields can be described by a typical Stoner-Wohlfarth model related to the measured geometrical parameters of the wires and fitted by considering the process parameters. The GMR effect is subsequently measured in a substantial number of devices (3000) in order to accurately gauge the variation between devices. This measurement scheme reveals a corrected upper limit to the nucleation fields of the sensors that can be exploited for fast characterization of the working elements.
Eriksen, Helle Brander; Lund, Najaaraq; Biering-Sørensen, Sofie; Correia, Cizete; Barbosa, Amarildo; Andersen, Andreas; Aaby, Peter; Jeppesen, Dorthe L; Benn, Christine Stabell
2014-05-30
There is increasing evidence that vaccines have an effect on general mortality which goes beyond specific disease protection. Oral polio vaccine (OPV) is widely used in low-income countries, but in observational studies in Guinea-Bissau we observed that not receiving OPV at birth was associated with reduced overall male infant mortality and enhanced immune response to BCG vaccine. We therefore initiated a randomized trial to test the overall effect of OPV at birth (OPV0). A small thymic gland is a predictor of mortality in high-mortality settings. Within the trial we aimed to test whether no-OPV0 was associated with increased thymic size. In 511 normal birth weight infants who were randomized to receive or not receive OPV0, thymic index and thymus/weight index were measured before randomization and after 2 weeks (N=49), 4 weeks (N=308) or 6 weeks (N=27). The association between OPV0 and the log transformed thymic size indicators were analyzed in ANCOVA models with thymic size at follow-up as the outcome and adjusting for thymic size at enrollment and age at follow-up. Estimates were reported as geometric mean ratios (GMR) with 95% confidence intervals, comparing no-OPV0 to OPV0. No-OPV0 was not associated with thymic index after 2 weeks (GMR: 1.14 (0.99-1.30)), after 4 weeks (GMR: 0.98 (0.93-1.05)) or after 6 weeks (GMR: 1.00 (0.81-1.23)). However, no-OPV0 was associated with increased thymus/weight index after 2 weeks (GMR: 1.22 (1.06-1.40)), but the effect was not seen after 4 weeks (GMR: 0.97 (0.92-1.03)) and 6 weeks (GMR: 0.99 (0.82-1.19)). There were no strong sex-differences. Overall there was no effect on thymic size of OPV0 when administered with BCG. The results could indicate that if an effect occurs, it is only within the first weeks after vaccination. Copyright © 2014 Elsevier Ltd. All rights reserved.
Preliminary results on passive eddy current damper technology for SSME turbomachinery
NASA Technical Reports Server (NTRS)
Cunningham, R. E.
1985-01-01
Some preliminary results have been obtained for the dynamic response of a rotor operating over a speed range of 800 to 10,000 rpm. Amplitude frequency plots show the lateral vibratory response of an unbalanced rotor with and without external damping. The mode of damping is by means of eddy currents generated with 4 c shaped permanent magnets installed at the lower bearing of a vertically oriented rotor. The lower ball bearing and its damper assembly are totally immersed in liquid nitrogen at a temperature of -197 deg C (-320 deg F). These preliminary results for a referenced or base line passive eddy current damper assembly show that the amplitude of synchronous vibration is reduced at the resonant frequency. Measured damping coefficients were calculated to phi = .086; this compares with a theoretically calculated value of phi = .079.
Eddy-driven nutrient transport and associated upper-ocean primary production along the Kuroshio
NASA Astrophysics Data System (ADS)
Uchiyama, Yusuke; Suzue, Yota; Yamazaki, Hidekatsu
2017-06-01
The Kuroshio is one of the most energetic western boundary currents accompanied by vigorous eddy activity both on mesoscale and submesoscale, which affects biogeochemical processes in the upper ocean. We examine the primary production around the Kuroshio off Japan using a climatological ocean modeling based on the Regional Oceanic Modeling System (ROMS) coupled with a nitrogen-based nutrient, phytoplankton and zooplankton, and detritus (NPZD) biogeochemical model in a submesoscale eddy-permitting configuration. The model indicates significant differences of the biogeochemical responses to eddy activities in the Kuroshio Region (KR) and Kuroshio Extension Region (KE). In the KR, persisting cyclonic eddies developed between the Kuroshio and coastline are responsible for upwelling-induced eutrophication. However, the eddy-induced vertical nutrient flux counteracts and promotes pronounced southward and downward diapycnal nutrient transport from the mixed-layer down beneath the main body of the Kuroshio, which suppresses the near-surface productivity. In contrast, the KE has a 23.5% higher productivity than the KR, even at comparable eddy intensity. Upward nutrient transport prevails near the surface due to predominant cyclonic eddies, particularly to the north of the KE, where the downward transport barely occurs, except at depths deeper than 400 m and to a much smaller degree than in the KR. The eddy energy conversion analysis reveals that the combination of shear instability around the mainstream of the Kuroshio with prominent baroclinic instability near the Kuroshio front is essential for the generation of eddies in the KR, leading to the increase of the eddy-induced vertical nitrate transport around the Kuroshio.
2016-02-10
a wide range of part, environmental and damage conditions. Best practices of using models are presented for both an eddy current NDE sizing and...to assess the reliability of NDE and SHM characterization capability. Best practices of using models are presented for both an eddy current NDE... EDDY CURRENT NDE CASE STUDY An eddy current crack sizing case study is presented to highlight examples of some of these complex characteristics of
Outreach impact study: the case of the Greater Midwest Region*
Huber, Jeffrey T; Kean, Emily B; Fitzgerald, Philip D; Altman, Trina A; Young, Zach G; Dupin, Katherine M; Leskovec, Jacqueline; Holst, Ruth
2011-01-01
Objectives: The purpose of the study was to assess the impact that funding from the National Network of Libraries of Medicine (NN/LM), Greater Midwest Region (GMR), has on member institutions' ability to conduct outreach on behalf of NN/LM. Methods: The study employed both content analysis and survey methodologies. The final reports from select GMR-funded outreach projects (n = 20) were analyzed based on a set of evaluation criteria. Project principal investigators (n = 13) were then surveyed using the same evaluation criteria. Results: Results indicated that outreach projects supported by GMR funding improved access to biomedical information for professionals and the general public. Barriers to conducting outreach projects included time constraints or commitments, staffing, scheduling and absenteeism, inadequate space, and issues associated with technology (e.g., hardware and software, Internet connectivity and firewall issues, and creation and use of new technologies). Conclusions: The majority of project principal investigators indicated that their attempts to conduct outreach were successful. Moreover, most noted that outreach had a positive impact on professionals as well as the general public. In general, it seems that negative outcomes, as with most barriers to conducting outreach, can be mitigated by more thorough planning. PMID:22022223
Outreach impact study: the case of the Greater Midwest Region.
Huber, Jeffrey T; Kean, Emily B; Fitzgerald, Philip D; Altman, Trina A; Young, Zach G; Dupin, Katherine M; Leskovec, Jacqueline; Holst, Ruth
2011-10-01
The purpose of the study was to assess the impact that funding from the National Network of Libraries of Medicine (NN/LM), Greater Midwest Region (GMR), has on member institutions' ability to conduct outreach on behalf of NN/LM. The study employed both content analysis and survey methodologies. The final reports from select GMR-funded outreach projects (n = 20) were analyzed based on a set of evaluation criteria. Project principal investigators (n = 13) were then surveyed using the same evaluation criteria. Results indicated that outreach projects supported by GMR funding improved access to biomedical information for professionals and the general public. Barriers to conducting outreach projects included time constraints or commitments, staffing, scheduling and absenteeism, inadequate space, and issues associated with technology (e.g., hardware and software, Internet connectivity and firewall issues, and creation and use of new technologies). The majority of project principal investigators indicated that their attempts to conduct outreach were successful. Moreover, most noted that outreach had a positive impact on professionals as well as the general public. In general, it seems that negative outcomes, as with most barriers to conducting outreach, can be mitigated by more thorough planning.
Aliotta, Eric; Moulin, Kévin; Ennis, Daniel B
2018-02-01
To design and evaluate eddy current-nulled convex optimized diffusion encoding (EN-CODE) gradient waveforms for efficient diffusion tensor imaging (DTI) that is free of eddy current-induced image distortions. The EN-CODE framework was used to generate diffusion-encoding waveforms that are eddy current-compensated. The EN-CODE DTI waveform was compared with the existing eddy current-nulled twice refocused spin echo (TRSE) sequence as well as monopolar (MONO) and non-eddy current-compensated CODE in terms of echo time (TE) and image distortions. Comparisons were made in simulations, phantom experiments, and neuro imaging in 10 healthy volunteers. The EN-CODE sequence achieved eddy current compensation with a significantly shorter TE than TRSE (78 versus 96 ms) and a slightly shorter TE than MONO (78 versus 80 ms). Intravoxel signal variance was lower in phantoms with EN-CODE than with MONO (13.6 ± 11.6 versus 37.4 ± 25.8) and not different from TRSE (15.1 ± 11.6), indicating good robustness to eddy current-induced image distortions. Mean fractional anisotropy values in brain edges were also significantly lower with EN-CODE than with MONO (0.16 ± 0.01 versus 0.24 ± 0.02, P < 1 x 10 -5 ) and not different from TRSE (0.16 ± 0.01 versus 0.16 ± 0.01, P = nonsignificant). The EN-CODE sequence eliminated eddy current-induced image distortions in DTI with a TE comparable to MONO and substantially shorter than TRSE. Magn Reson Med 79:663-672, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Louie, Richard Nam
2002-12-01
Aircraft fuselages suffer alternating stress during takeoffs and landings, and fatigue cracks begin to grow, usually at rivet holes. The detection of these fatigue cracks under installed fasteners in aging aircraft is a major goal of the nondestructive evaluation (NDE) community. The use of giant magnetoresistance (GMR) sensors in electromagnetic (EM) NDE has been increasing rapidly. For example, here at Langley Research Center, a Rotating Probe System (RPS) containing a GMR element has been incorporated into a product to detect deeply buried flaws in aerospace structures. In order to advance this eddy current probe application and many similar ones, research to create smaller, more sensitive and energy-efficient EM sensors has been aggressively pursued. Recent theoretical and experimental work on spin coherent transport supports the feasibility of carbon nanotube (CNT) based magnetic tunnel junctions. In this study, a spatial filtering scheme is presented that improves the signal to noise ratio of the RPS and does not significantly impact the number of false alarms. Signals due to buried flaws occur at higher frequencies than do signals due to rivet tilt or probe misalignment, and the strategy purposefully targets this fact. Furthermore, the spatial filtering scheme exploits decreases in the probe output that are observed immediately preceding and following the peak in output due to a fatigue crack. Using the new filters, an enhanced probability of flaw detection is expected. In the future, even tinier, more sensitive, low-power sensors are envisioned for the rotating probe and other nondestructive inspection systems. These may be comprised of single-walled carbon nanotubes (SWCNTs) that connect two ferromagnetic (FM) electrodes. Theoretical work has been done at Langley to model the electrical and magnetoconductance behavior of such junctions, for systems containing short "armchair" nanotubes. The present work facilitates the modeling of more realistic system sizes, through the re-writing of a critical code segment that gives a hundredfold improvement in speed. Furthermore, the tight-binding model calculations are now generalized to include all types of nanotubes, not merely armchair tubes. On the experimental side, innovative junction fabrication procedures are investigated, including diamond-tip scanning probe lithography and e-beam lithography. Programs are written for the Nanometer Pattern Generation System to effect the creation of many junctions at once, to increase the chances of a CNT connecting two FM electrodes. As it is not prudent to rely solely on luck, the capability for tube nanomanipulation with an unprecedented level of control is also shown, and a procedure for controlled deposition upon chemically functionalized lithographic patterns is discussed. All of the techniques demonstrated can be used to create a magnetic tunnel junction to be refrigerated for extensive magnetoconductance studies.
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Wang, Morgan
1992-01-01
The recognition of materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques.
Jiang, Y Z; Tan, Y; Gao, Z; Wang, L
2014-11-01
The vacuum vessel of Sino-UNIted Spherical Tokamak was split into two insulated hemispheres, both of which were insulated from the central cylinder. The eddy currents flowing in the vacuum vessel would become asymmetrical due to discontinuity. A 3D finite elements model was applied in order to study the eddy currents. The modeling results indicated that when the Poloidal Field (PF) was applied, the induced eddy currents would flow in the toroidal direction in the center of the hemispheres and would be forced to turn to the poloidal and radial directions due to the insulated slit. Since the eddy currents converged on the top and bottom of the vessel, the current densities there tended to be much higher than those in the equatorial plane were. Moreover, the eddy currents on the top and bottom of vacuum vessel had the same direction when the current flowed in the PF coils. These features resulted in the leading phases of signals on the top and bottom flux loops when compared with the PF waveforms.
NASA Astrophysics Data System (ADS)
Sun, Liang; Li, Qiu-Yang
2017-04-01
The oceanic mesoscale eddies play a major role in ocean climate system. To analyse spatiotemporal dynamics of oceanic mesoscale eddies, the Genealogical Evolution Model (GEM) based on satellite data is developed, which is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, a mononuclear eddy detection method was firstly developed with simple segmentation strategies, e.g. watershed algorithm. The algorithm is very fast by searching the steepest descent path. Second, the GEM uses a two-dimensional similarity vector (i.e. a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the ''missing eddy" problem (temporarily lost eddy in tracking). Third, for tracking when an eddy splits, GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O (LM(N+1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distribution in the Northern Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". GEM is useful not only for satellite-based observational data but also for numerical simulation outputs. It is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.
Analysis of eddy current induced in track on medium-low speed maglev train
NASA Astrophysics Data System (ADS)
Li, Guanchun; Jia, Zhen; He, Guang; Li, Jie
2017-06-01
Electromagnetic levitation (EMS) maglev train relies on the attraction between the electromagnets and rails which are mounted on the train to achieve suspension. During the movement, the magnetic field generated by the electromagnet will induce the eddy current in the orbit and the eddy current will weaken the suspended magnetic field. Which leads to the attenuation of the levitation force, the increases of suspension current and the degradation the suspension performance. In this paper, the influence of eddy current on the air gap magnetic field is solved by theoretical analysis, and the correction coefficient of air gap magnetic field is fitted according to the finite element data. The levitation force and current are calculated by the modified formula, and the velocity curves of the levitation force and current are obtained. The results show that the eddy current effect increases the load power by 61.9% in the case of heavy loads.
Eddy current modeling in linear and nonlinear multifilamentary composite materials
NASA Astrophysics Data System (ADS)
Menana, Hocine; Farhat, Mohamad; Hinaje, Melika; Berger, Kevin; Douine, Bruno; Lévêque, Jean
2018-04-01
In this work, a numerical model is developed for a rapid computation of eddy currents in composite materials, adaptable for both carbon fiber reinforced polymers (CFRPs) for NDT applications and multifilamentary high temperature superconductive (HTS) tapes for AC loss evaluation. The proposed model is based on an integro-differential formulation in terms of the electric vector potential in the frequency domain. The high anisotropy and the nonlinearity of the considered materials are easily handled in the frequency domain.
NASA Astrophysics Data System (ADS)
Hobbins, M.; McEvoy, D.; Huntington, J. L.; Wood, A. W.; Morton, C.; Verdin, J. P.
2015-12-01
We have developed a physically based, multi-scalar drought index—the Evaporative Demand Drought Index (EDDI)—to improve treatment of evaporative dynamics in drought monitoring. Existing popular drought indices—such as the Palmer Drought Severity Index that informs much of the US Drought Monitor (USDM)—have primarily relyied on precipitation and temperature (T) to represent hydroclimatic anomalies, leaving evaporative demand (E0) most often derived from poorly performing T-based parameterizations then used to derive actual evapotranspiration (ET) from LSMs. Instead, EDDI leverages the inter-relations of E0 and ET, measuring E0's physical response to surface drying anomalies due to two distinct land surface/atmosphere interactions: (i) in sustained drought, limited moisture availability forces E0 and ET into a complementary relation, whereby ET declines as E0 increases; and (ii) in "flash" droughts, E0 increases due to increasing advection or radiation. E0's rise in response to both drought types suggests EDDI's robustness as a monitor and leading indicator of drought. To drive EDDI, we use for E0 daily reference ET from the ASCE Standardized Reference ET equation forced by North American Land Data Assimilation System drivers. EDDI is derived by aggregating E0 anomalies from its long-term mean across a period of interest and normalizing them to a Z-score. Positive EDDI indicates drier than normal conditions (and so drought). We use the current historic California drought as a test-case in which to examine EDDI's performance in monitoring agricultural and hydrologic drought. We observe drought development and decompose the behavior of drought's evaporative drivers during in-drought intensification periods and wetting events. EDDI's performance as a drought leading indicator with respect to the USDM is tested in important agricultural regions. Comparing streamflow from several USGS gauges in the Sierra Nevada to EDDI, we find that EDDI tracks most major hydrologic droughts, with correlations to water-year streamflow that are highest at the 9- to 12-month aggregation periods, and during the summer. EDDI shows significant promise as a leading indicator of drought, thereby providing a valuable planning window for growers and water resource managers.
Combined Wave and Current Bottom Boundary Layers: A Review
2016-03-01
18 3.2 Wave and currents at arbitrary angles ....................................................................... 19 3.3 Eddy viscosity ...closure ................................................................................................. 22 3.3.1 Eddy viscosity for stratified fluids...23 3.3.2 Time-dependent eddy viscosities
Detection and sizing of cracks in structural steel using the eddy current method
DOT National Transportation Integrated Search
2000-11-01
This report summarizes research pertaining to the application of the Eddy Current method as a means of crack detection in structural steel members of highway bridges. Eddy currents are induced when an energized coil is placed near the surface of a co...
78 FR 15281 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-11
... horizontal stabilizer. This AD requires repetitive high frequency eddy current (HFEC) inspections for... repetitive high frequency eddy current (HFEC) inspections for cracking of the left and right rib hinge... high frequency eddy current (HFEC) inspection for cracking of the left and right rib hinge bearing lugs...
78 FR 46536 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-01
... eddy current inspection of the fastener holes for defects and repair if necessary. We are proposing... also includes doing a high frequency eddy current inspection of the fastener holes for defects and... frequency eddy current inspection of the fastener holes for defects and all applicable repairs, in...
77 FR 26993 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-08
... high frequency eddy current (HFEC) inspections for cracking in holes common to the splice strap and... tasks required by this paragraph: Before further flight, do a high frequency eddy current (HFEC... approval must specifically refer to this AD. (h) Detailed and High Frequency Eddy Current Inspections...
78 FR 71998 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-02
... initial and repetitive [detailed or eddy current] inspections [for cracking and damage and replacement if... the detailed or eddy current inspection for cracking of the pilot-side rudder pedal tubes, specified... within 600 flight cycles thereafter. (2) If the most recent inspection was an eddy current inspection...
77 FR 61550 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-10
... inspection required by AD 2003-14-06 only terminates the external eddy current inspections required by..., which should not terminate the detailed or eddy current inspection, as specified. We find that... terminating action ``before the effective date of this AD'' terminates the eddy current inspections required...
HYPERSPECTRAL CHANNEL SELECTION FOR WATER QUALITY MONITORING ON THE GREAT MIAMI RIVER, OHIO
During the summer of 1999, spectral data were collected with a hand-held spectroradiometer, a laboratory spectrometer and airborne hyperspectral sensors from the Great Miami River (GMR), Ohio. Approximately 80 km of the GMR were imaged during a flyover with a Compact Airborne Sp...
Measurement of toroidal vessel eddy current during plasma disruption on J-TEXT.
Liu, L J; Yu, K X; Zhang, M; Zhuang, G; Li, X; Yuan, T; Rao, B; Zhao, Q
2016-01-01
In this paper, we have employed a thin, printed circuit board eddy current array in order to determine the radial distribution of the azimuthal component of the eddy current density at the surface of a steel plate. The eddy current in the steel plate can be calculated by analytical methods under the simplifying assumptions that the steel plate is infinitely large and the exciting current is of uniform distribution. The measurement on the steel plate shows that this method has high spatial resolution. Then, we extended this methodology to a toroidal geometry with the objective of determining the poloidal distribution of the toroidal component of the eddy current density associated with plasma disruption in a fusion reactor called J-TEXT. The preliminary measured result is consistent with the analysis and calculation results on the J-TEXT vacuum vessel.
Boron nitride nanotubes for spintronics.
Dhungana, Kamal B; Pati, Ranjit
2014-09-22
With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.
Boron Nitride Nanotubes for Spintronics
Dhungana, Kamal B.; Pati, Ranjit
2014-01-01
With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics. PMID:25248070
Longitudinal gradient coil optimization in the presence of transient eddy currents.
Trakic, A; Liu, F; Lopez, H Sanchez; Wang, H; Crozier, S
2007-06-01
The switching of magnetic field gradient coils in magnetic resonance imaging (MRI) inevitably induces transient eddy currents in conducting system components, such as the cryostat vessel. These secondary currents degrade the spatial and temporal performance of the gradient coils, and compensation methods are commonly employed to correct for these distortions. This theoretical study shows that by incorporating the eddy currents into the coil optimization process, it is possible to modify a gradient coil design so that the fields created by the coil and the eddy currents combine together to generate a spatially homogeneous gradient that follows the input pulse. Shielded and unshielded longitudinal gradient coils are used to exemplify this novel approach. To assist in the evaluation of transient eddy currents induced within a realistic cryostat vessel, a low-frequency finite-difference time-domain (FDTD) method using the total-field scattered-field (TFSF) scheme was performed. The simulations demonstrate the effectiveness of the proposed method for optimizing longitudinal gradient fields while taking into account the spatial and temporal behavior of the eddy currents.
Eddy properties in the Southern California Current System
NASA Astrophysics Data System (ADS)
Chenillat, Fanny; Franks, Peter J. S.; Capet, Xavier; Rivière, Pascal; Grima, Nicolas; Blanke, Bruno; Combes, Vincent
2018-05-01
The California Current System (CCS) is an eastern boundary upwelling system characterized by strong eddies that are often generated at the coast. These eddies contribute to intense, long-distance cross-shelf transport of upwelled water with enhanced biological activity. However, the mechanisms of formation of such coastal eddies, and more importantly their capacity to trap and transport tracers, are poorly understood. Their unpredictability and strong dynamics leave us with an incomplete picture of the physical and biological processes at work, their effects on coastal export, lateral water exchange among eddies and their surrounding waters, and how long and how far these eddies remain coherent structures. Focusing our analysis on the southern part of the CCS, we find a predominance of cyclonic eddies, with a 25-km radius and a SSH amplitude of 6 cm. They are formed near shore and travel slightly northwest offshore for 190 days at 2 km day-1. We then study one particular, representative cyclonic eddy using a combined Lagrangian and Eulerian numerical approach to characterize its kinematics. Formed near shore, this eddy trapped a core made up of 67% California Current waters and 33% California Undercurrent waters. This core was surrounded by other waters while the eddy detached from the coast, leaving the oldest waters at the eddy's core and the younger waters toward the edge. The eddy traveled several months as a coherent structure, with only limited lateral exchange within the eddy.
Test and Evaluation of an Eddy Current Clutch/Brake Propulsion System
DOT National Transportation Integrated Search
1975-01-01
This report covers the Phase II effort of a program to develop and test a 15 hp eddy-current clutch propulsion system. Included in the Phase 2 effort are the test and evaluation of the eddy-current clutch propulsion system on board a test vehicle. Th...
78 FR 4042 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-18
... provides an option for a high frequency eddy current inspection for cracking of the critical fastener holes... for a high frequency eddy current inspection for cracking of the critical fastener holes, and repair..., August 9, 2007)), do a high frequency eddy current (HFEC) inspection for cracking of the four critical...
77 FR 5724 - Airworthiness Directives; Fokker Services B.V. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
... proposed AD would require repetitive low frequency eddy current inspections of the forward fuselage butt... repetitive [low frequency eddy current] inspections of the forward fuselage butt joints for cracks and, when... effective date of this AD, whichever occurs later, do a low frequency eddy current inspection of the forward...
76 FR 38072 - Airworthiness Directives; The Boeing Company Model 777 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
... above. This proposed AD would require repetitive detailed inspection and high frequency eddy current... high frequency eddy current (HFEC) inspection for cracks in the WCS web pockets of spanwise beams... = 160 frequency eddy current inspection per hour = $4,250 inspection cycle. airplanes x $4,250 of...
77 FR 37788 - Airworthiness Directives; Fokker Services B.V. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-25
... Model F.28 Mark 0100 airplane. This AD requires repetitive low frequency eddy current inspections of the... described above, this [EASA] AD requires repetitive [low frequency eddy current] inspections of the forward... eddy current inspection of the forward fuselage butt-joints for cracks, in accordance with the...
78 FR 40050 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
... inspections or high frequency eddy current inspections for cracks of the blended area of the fuselage skin... repetitive external detailed inspections or high frequency eddy current inspections for cracks of the blended..., 2009) is August 3, 2009. (h) Repetitive High Frequency Eddy Current (HFEC) Inspections For airplanes on...
NASA Astrophysics Data System (ADS)
Liu, Tonghua; Wang, Wei; Qiang, Wenjiang; Shu, Guogang
2018-04-01
To study the thermal aging embrittlement of Z3CN20.09M duplex stainless steel produced in China, accelerated thermal aging experiments were carried out at 380 °C up to 9000 h. Microhardness measurements, Charpy impact and eddy current tests were performed on aged samples to characterize their thermal aging embrittlement. The results showed that the signal amplitude of eddy current decreased with the increase in aging time. Two quantitative correlations of the eddy current signal amplitude with both the Charpy impact energy, and the Vickers microhardness of the ferrite phase are obtained. The study showed that eddy current testing could be used to non-destructively evaluate the thermal aging embrittlement of cast duplex stainless steels.
NASA Astrophysics Data System (ADS)
Sukhanov, D. Ya.; Zav'yalova, K. V.
2018-03-01
The paper represents induced currents in an electrically conductive object as a totality of elementary eddy currents. The proposed scanning method includes measurements of only one component of the secondary magnetic field. Reconstruction of the current distribution is performed by deconvolution with regularization. Numerical modeling supported by the field experiments show that this approach is of direct practical relevance.
Determining confounding sensitivities in eddy current thin film measurements
NASA Astrophysics Data System (ADS)
Gros, Ethan; Udpa, Lalita; Smith, James A.; Wachs, Katelyn
2017-02-01
Eddy current (EC) techniques are widely used in industry to measure the thickness of non-conductive films on a metal substrate. This is done by using a system whereby a coil carrying a high-frequency alternating current is used to create an alternating magnetic field at the surface of the instrument's probe. When the probe is brought near a conductive surface, the alternating magnetic field will induce ECs in the conductor. The substrate characteristics and the distance of the probe from the substrate (the coating thickness) affect the magnitude of the ECs. The induced currents load the probe coil affecting the terminal impedance of the coil. The measured probe impedance is related to the lift off between coil and conductor as well as conductivity of the test sample. For a known conductivity sample, the probe impedance can be converted into an equivalent film thickness value. The EC measurement can be confounded by a number of measurement parameters. It was the goal of this research to determine which physical properties of the measurement set-up and sample can adversely affect the thickness measurement. The eddy-current testing was performed using a commercially available, hand-held eddy-current probe (ETA3.3H spring-loaded eddy probe running at 8 MHz) that comes with a stand to hold the probe. The stand holds the probe and adjusts the probe on the z-axis to help position the probe in the correct area as well as make precise measurements. The signal from the probe was sent to a hand-held readout, where the results are recorded directly in terms of liftoff or film thickness. Understanding the effect of certain factors on the measurements of film thickness, will help to evaluate how accurate the ETA3.3H spring-loaded eddy probe was at measuring film thickness under varying experimental conditions. This research studied the effects of a number of factors such as i) conductivity, ii) edge effect, iii) surface finish of base material and iv) cable condition.
Robotic NDE inspection of advanced solid rocket motor casings
NASA Technical Reports Server (NTRS)
Mcneelege, Glenn E.; Sarantos, Chris
1994-01-01
The Advanced Solid Rocket Motor program determined the need to inspect ASRM forgings and segments for potentially catastrophic defects. To minimize costs, an automated eddy current inspection system was designed and manufactured for inspection of ASRM forgings in the initial phases of production. This system utilizes custom manipulators and motion control algorithms and integrated six channel eddy current data acquisition and analysis hardware and software. Total system integration is through a personal computer based workcell controller. Segment inspection demands the use of a gantry robot for the EMAT/ET inspection system. The EMAT/ET system utilized similar mechanical compliancy and software logic to accommodate complex part geometries. EMAT provides volumetric inspection capability while eddy current is limited to surface and near surface inspection. Each aspect of the systems are applicable to other industries, such as, inspection of pressure vessels, weld inspection, and traditional ultrasonic inspection applications.
Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah
2016-01-01
The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented. PMID:26891305
Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah
2016-02-16
The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented.
Observations of the interaction between near-inertial waves and mesoscale eddies
NASA Astrophysics Data System (ADS)
Martínez-Marrero, Antonio; Sangrá, Pablo; Caldeira, Rui; Aguiar-González, Borja; Rodríguez-Santana, Ángel
2014-05-01
Trajectories of eight drifters dragged below the surface mixed layer and current meter data from a mooring are used to analyse the interaction between near-inertial waves and mesoscale eddies. Drifters were deployed within eddies generated downstream of Canary and Madeira islands between 1998 and 2007. The mooring was installed in the passage of cyclonic eddies induced by Gran Canaria island during 2006. Rotatory wavelet analysis of Lagrangian velocities shows a clear relationship between the near-inertial waves' intrinsic frequencies and the eddy angular velocities. The results reveal that near-inertial waves reach a minimum frequency of half the planetary vorticity (f/2) in the inner core of young anticyclonic eddies rotating with its maximum absolute angular speed of f/2. The highest amplitudes of the observed inertial motions are also found within anticyclonic eddies evidencing the trapping of inertial waves. Finally, the analysis of the current meter series show frequency fluctuations of the near-inertial currents in the upper 500 meters that are related to the passage of cyclonic eddies. These fluctuations appear to be consistent with the variation of the background vorticity produced by the eddies.
Pulsed Eddy Current Probe Design Based on Transient Circuit Analysis
NASA Astrophysics Data System (ADS)
Cadeau, Trevor J.; Krause, Thomas W.
2009-03-01
Probe design parameters affecting depth of penetration of pulsed eddy currents in multi-layer aluminum 2024-T3 were examined. Several probe designs were evaluated for their ability to detect a discontinuity at the bottom of a stack of aluminum plates. The reflection type probes, consisting of pick-up coil and encircling drive coil, were characterized based on their transient response to a square pulse excitation. Probes with longer fundamental time constants, equivalent to a lower driving frequency, generated greater depth of penetration. However, additional factors such as inductive and resistive load, and excessive coil heating were also factors that limited signal-to-noise response with increasing layer thickness.
Research on defects inspection of solder balls based on eddy current pulsed thermography.
Zhou, Xiuyun; Zhou, Jinlong; Tian, Guiyun; Wang, Yizhe
2015-10-13
In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT). Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.
A new method for electric impedance imaging using an eddy current with a tetrapolar circuit.
Ahsan-Ul-Ambia; Toda, Shogo; Takemae, Tadashi; Kosugi, Yukio; Hongo, Minoru
2009-02-01
A new contactless technique for electrical impedance imaging, using an eddy current managed along with the tetrapolar circuit method, is proposed. The eddy current produced by a magnetic field is superimposed on a constant current that is normally used in the tetrapolar circuit method, and thus is used to control the current distribution in the body. By changing the current distribution, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in the image reconstruction of the resistivity distribution. The least square error minimization method is used in the reconstruction algorithm. The principle of this method is explained theoretically. A backprojection algorithm was used to get 2-D images. Based on this principle, a measurement system was developed and model experiments were conducted with a saline-filled phantom. The estimated shape of each model in the reconstructed image was similar to that of the corresponding model. From the results of these experiments, it is confirmed that the proposed method is applicable to the realization of electrical conductivity imaging.
Eddy formation and surface flow field in the Luzon Strait area during the summer of 2009
NASA Astrophysics Data System (ADS)
Liu, Ze; Hou, Yijun; Xie, Qiang
2015-09-01
The formation of mesoscale eddies and the structure of the surface flow field in the Luzon Strait area were examined using in-situ CTD data, Argo float data, and multi-satellite remote sensing data collected from May to August 2009. The results show that vigorous water exchange between Kuroshio water and South China Sea (SCS) water began to emerge over the 200 m water column throughout the strait. Based on an objective definition of surface currents, float A69 tracked an anti-cyclonic eddy southwest of Taiwan Island under a Lagrangian current measurement. The salinity inside the anti-cyclonic eddy was higher than in typical SCS water but lower than in Kuroshio mainstream water, indicating that this eddy was induced by Kuroshio frontal intrusion through the Luzon Strait and into the SCS. From hydrographic data, we propose that continuous horizontal diffusion with high-salinity characteristics in the subsurface layer could extend to 119°E or even further west. The high-temperature filament, large positive sea level anomaly and clockwise geostrophic current all confirmed the existence of this warm eddy in May and June. A strongly negative wind stress curl maintained the eddy until it died. The surface flow field during July and August was rather complicated. Float A83 described an east-west orientated shuttle run in the 20°N section that was not reported by previous studies. At the same time, float A80 indicated a Kuroshio bend into the north-central region of Luzon Strait but it did not cross 120.5°E. The water mass rejoining the Kuroshio mainstream from the southern tip of Taiwan Island was less saline, indicating an entrainment of water from SCS by the Kuroshio bend.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, S.; Takahashi, Y. K.; Sakuraba, Y., E-mail: Sakuraba.Yuya@nims.go.jp
2016-03-21
We have investigated the structure and magneto-transport properties of Co{sub 2}Mn(Ge{sub 0.75}Ga{sub 0.25}) (CMGG) Heusler alloy thin films with near-stoichiometric and Mn-rich compositions in order to understand the effect of Co-Mn anti-sites on bulk spin polarization. Anomalous x-ray diffraction measurements using synchrotron radiated x-rays confirmed that Co{sub Mn} anti-sites easily form in the near-stoichiometric CMGG compound at annealing temperature higher than 400 °C, while it can be suppressed in Mn-rich CMGG films. Accordingly, large enhancement in negative anisotropic magnetoresistance of CMGG films and giant magnetoresistance (GMR) in current-perpendicular-to-plane (CPP) pseudo spin valves were observed in the Mn-rich composition. A large resistance-areamore » product change (ΔRA) of 12.8 mΩ μm{sup 2} was demonstrated in the CPP-GMR pseudo spin valves using the Mn-rich CMGG layers after annealing at 600 °C. It is almost twice of the maximum output observed in the CPP-GMR pseudo spin valves using the near-stoichiometric CMGG. These indicate that the spin polarization of CMGG is enhanced in the Mn-rich composition through suppressing the formation of Co{sub Mn}-antisites in CMGG films, being consistent with first-principle calculation results.« less
A novel CMOS transducer for giant magnetoresistance sensors.
Luong, Van Su; Lu, Chih-Cheng; Yang, Jing-Wen; Jeng, Jen-Tzong
2017-02-01
In this work, an ASIC (application specific integrated circuits) transducer circuit for field modulated giant magnetoresistance (GMR) sensors was designed and fabricated using a 0.18-μm CMOS process. The transducer circuits consist of a frequency divider, a digital phase shifter, an instrument amplifier, and an analog mixer. These comprise a mix of analog and digital circuit techniques. The compact chip size of 1.5 mm × 1.5 mm for both analog and digital parts was achieved using the TSMC18 1P6M (1-polysilicon 6-metal) process design kit, and the characteristics of the system were simulated using an HSpice simulator. The output of the transducer circuit is the result of the first harmonic detection, which resolves the modulated field using a phase sensitive detection (PSD) technique and is proportional to the measured magnetic field. When the dual-bridge GMR sensor is driven by the transducer circuit with a current of 10 mA at 10 kHz, the observed sensitivity of the field sensor is 10.2 mV/V/Oe and the nonlinearity error was 3% in the linear range of ±1 Oe. The performance of the system was also verified by rotating the sensor system horizontally in earth's magnetic field and recording the sinusoidal output with respect to the azimuth angle, which exhibits an error of less than ±0.04 Oe. These results prove that the ASIC transducer is suitable for driving the AC field modulated GMR sensors applied to geomagnetic measurement.
Key factors of eddy current separation for recovering aluminum from crushed e-waste.
Ruan, Jujun; Dong, Lipeng; Zheng, Jie; Zhang, Tao; Huang, Mingzhi; Xu, Zhenming
2017-02-01
Recovery of e-waste in China had caused serious pollutions. Eddy current separation is an environment-friendly technology of separating nonferrous metallic particles from crushed e-waste. However, due to complex particle characters, separation efficiency of traditional eddy current separator was low. In production, controllable operation factors of eddy current separation are feeding speed, (ωR-v), and S p . There is little special information about influencing mechanism and critical parameters of these factors in eddy current separation. This paper provided the special information of these key factors in eddy current separation of recovering aluminum particles from crushed waste refrigerator cabinets. Detachment angles increased as the increase of (ωR-v). Separation efficiency increased with the growing of detachment angles. Aluminum particles were completely separated from plastic particles in critical parameters of feeding speed 0.5m/s and detachment angles greater than 6.61deg. S p /S m of aluminum particles in crushed waste refrigerators ranged from 0.08 to 0.51. Separation efficiency increased as the increase of S p /S m . This enlightened us to develop new separator to separate smaller nonferrous metallic particles in e-waste recovery. High feeding speed destroyed separation efficiency. However, greater S p of aluminum particles brought positive impact on separation efficiency. Greater S p could increase critical feeding speed to offer greater throughput of eddy current separation. This paper will guide eddy current separation in production of recovering nonferrous metals from crushed e-waste. Copyright © 2016 Elsevier Ltd. All rights reserved.
Characterization and optimization of spiral eddy current coils for in-situ crack detection
NASA Astrophysics Data System (ADS)
Mandache, Catalin
2018-03-01
In-situ condition-based maintenance is making strides in the aerospace industry and it is seen as an alternative to scheduled, time-based maintenance. With fatigue cracks originating from fastener holes as the main reason for structural failures, embedded eddy current coils are a viable non-invasive solution for their timely detection. The development and potential broad use of these coils are motivated by a few consistent arguments: (i) inspection of structures of complicated geometries and hard to access areas, that often require disassembly, (ii) alternative to regular inspection actions that could introduce inadvertent damage, (iii) for structures that have short inspection intervals, and (iv) for repaired structures where fastener holes contain bushings and prevent further bolt-hole inspections. Since the spiral coils are aiming at detecting radial cracks emanating from the fastener holes, their design parameters should allow for high inductance, low ohmic losses and power requirements, as well as optimal size and high sensitivity to discontinuities. In this study, flexible, surface conformable, spiral eddy current coils are empirically investigated on mock-up specimens, while numerical analysis is performed for their optimization and design improvement.
Measurement of toroidal vessel eddy current during plasma disruption on J-TEXT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, L. J.; Yu, K. X.; Zhang, M., E-mail: zhangming@hust.edu.cn
2016-01-15
In this paper, we have employed a thin, printed circuit board eddy current array in order to determine the radial distribution of the azimuthal component of the eddy current density at the surface of a steel plate. The eddy current in the steel plate can be calculated by analytical methods under the simplifying assumptions that the steel plate is infinitely large and the exciting current is of uniform distribution. The measurement on the steel plate shows that this method has high spatial resolution. Then, we extended this methodology to a toroidal geometry with the objective of determining the poloidal distributionmore » of the toroidal component of the eddy current density associated with plasma disruption in a fusion reactor called J-TEXT. The preliminary measured result is consistent with the analysis and calculation results on the J-TEXT vacuum vessel.« less
Methane fluxes above the Hainich forest by True Eddy Accumulation and Eddy Covariance
NASA Astrophysics Data System (ADS)
Siebicke, Lukas; Gentsch, Lydia; Knohl, Alexander
2016-04-01
Understanding the role of forests for the global methane cycle requires quantifying vegetation-atmosphere exchange of methane, however observations of turbulent methane fluxes remain scarce. Here we measured turbulent fluxes of methane (CH4) above a beech-dominated old-growth forest in the Hainich National Park, Germany, and validated three different measurement approaches: True Eddy Accumulation (TEA, closed-path laser spectroscopy), and eddy covariance (EC, open-path and closed-path laser spectroscopy, respectively). The Hainich flux tower is a long-term Fluxnet and ICOS site with turbulent fluxes and ecosystem observations spanning more than 15 years. The current study is likely the first application of True Eddy Accumulation (TEA) for the measurement of turbulent exchange of methane and one of the very few studies comparing open-path and closed-path eddy covariance (EC) setups side-by-side. We observed uptake of methane by the forest during the day (a methane sink with a maximum rate of 0.03 μmol m-2 s-1 at noon) and no or small fluxes of methane from the forest to the atmosphere at night (a methane source of typically less than 0.01 μmol m-2 s-1) based on continuous True Eddy Accumulation measurements in September 2015. First results comparing TEA to EC CO2 fluxes suggest that True Eddy Accumulation is a valid option for turbulent flux quantifications using slow response gas analysers (here CRDS laser spectroscopy, other potential techniques include mass spectroscopy). The TEA system was one order of magnitude more energy efficient compared to closed-path eddy covariance. The open-path eddy covariance setup required the least amount of user interaction but is often constrained by low signal-to-noise ratios obtained when measuring methane fluxes over forests. Closed-path eddy covariance showed good signal-to-noise ratios in the lab, however in the field it required significant amounts of user intervention in addition to a high power consumption. We conclude, based on preliminary evidence, that the Hainich forest acted as a moderate net sink for methane during the investigation. This supports earlier findings from chamber measurements at the Hainich forest site and is similar to findings from other forest sites. Our observations will be continued through 2016 and beyond to provide longer-term methane flux time series spanning entire seasons. However, the current data set already provides a basis for further consolidating methods of measurements and analysis of turbulent methane fluxes using eddy covariance and true eddy accumulation.
Eddy Current System and Method for Crack Detection
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor)
2012-01-01
An eddy current system and method enables detection of sub-surface damage in a cylindrical object. The invention incorporates a dual frequency, orthogonally wound eddy current probe mounted on a stepper motor-controlled scanning system. The system is designed to inspect for outer surface damage from the interior of the cylindrical object.
Eddy-Current Inspection of Ball Bearings
NASA Technical Reports Server (NTRS)
Bankston, B.
1985-01-01
Custom eddy-current probe locates surface anomalies. Low friction air cushion within cone allows ball to roll easily. Eddy current probe reliably detects surface and near-surface cracks, voids, and material anomalies in bearing balls or other spherical objects. Defects in ball surface detected by probe displayed on CRT and recorded on strip-chart recorder.
77 FR 64709 - Airworthiness Directives; MD Helicopters, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-23
... visual inspection, and if necessary, an eddy current inspection of the main rotor lower hub assembly... specifies an initial 100-hour and recurring 300-hour visual and eddy current inspections of the lower hub... a total cost per helicopter of $85 and a total cost of $1,020 for the fleet. Eddy current inspecting...
77 FR 37332 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-21
... the high frequency eddy current inspection for cracking of the critical fastener holes, and repair if... of the bulkhead, and repair if necessary; and proposed an option to the high frequency eddy current...-15152 (72 FR 44753, August 9, 2007)), do a high frequency eddy current (HFEC) inspection for cracking of...
Revolving Eddy-Current Probe Detects Cracks Near Rivets
NASA Technical Reports Server (NTRS)
Namkung, Min; Wincheski, Buzz; Fulton, James P.; Nath, Shridhar; Simpson, John
1995-01-01
Scanning eddy-current probe in circular pattern increases sensitivity with which probe indicates fatigue cracks and other defects in metal surfaces in vicinity of rivets. Technique devised to facilitate inspection of riveted joints in aircraft. Eddy-current probe in question described in "Electro-magnetic Flaw Detector Is Easier To Use" (LAR-15046).
77 FR 43178 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-24
... eddy current high frequency (ETHF) inspections for cracking on the aft side of the left and right wing... NPRM proposed to require repetitive eddy current high frequency (ETHF) inspections for cracking on the...,000 flight cycles after the effective date of this AD, whichever occurs later, do an eddy current high...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-16
... (FC). For the reasons described above, this AD requires initial and repetitive eddy current... requires initial and repetitive eddy current inspections, and depending on findings, accomplishment of... (landings) on the MLG after the effective date of this AD, whichever occurs later, eddy current inspect all...
78 FR 73457 - Airworthiness Directives; the Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-06
... frequency eddy current inspections for cracking of the tension tie at BS 760 or 780, as applicable, and do... ties, including doing an open-hole high frequency eddy current inspection for cracks, as applicable...) and paragraph (i) of this AD, but not as AMOCs for the high frequency eddy current inspections...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-20
... subsequent Eddy Current inspection (NDI) [non-destructive inspection] of the same area to detect cracks... inspections are eddy current inspections. The modification includes cold expansion of the former lower wing... with consequent loss of control. * * * * * The new inspections are eddy current inspections. The...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-21
... specifies a bolt hole eddy current inspection to verify the cracking. The corrective actions for cracking... specified in paragraph (k) of this AD, do eddy current non-destructive inspections (NDI) and detailed... secondary eddy current inspection to detect cracking of fastener holes with suspected crack indications; in...
77 FR 18963 - Airworthiness Directives; MD Helicopters, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-29
...) Model MD900 helicopters. The existing AD requires a visual inspection, and if necessary, an eddy current... with an airworthy lower hub. If there is no crack as a result of the visual inspection, eddy current... nondestructive eddy current inspection of the lower hub. That AD was prompted by cracks found on four lower hubs...
77 FR 21402 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
... option is to conduct an eddy current inspection and the other option is to conduct a visual inspection... blade sanding inspection rather than the eddy current inspection, at an average labor rate of $85 per.... (1) Inspect by using either an eddy current inspection in accordance with paragraphs B.(1)(a) through...
Bias and uncertainty of δ13CO2 isotopic mixing models
Zachary E. Kayler; Lisa Ganio; Mark Hauck; Thomas G. Pypker; Elizabeth W. Sulzman; Alan C. Mix; Barbara J. Bond
2009-01-01
The goal of this study was to evaluate how factorial combinations of two mixing models and two regression approaches (Keeling-OLS, MillerâTans-OLS, Keeling-GMR, MillerâTans-GMR) compare in small [CO2] range versus large[CO2] range regimes, with different combinations of...
Quantification and Compensation of Eddy-Current-Induced Magnetic Field Gradients
Spees, William M.; Buhl, Niels; Sun, Peng; Ackerman, Joseph J.H.; Neil, Jeffrey J.; Garbow, Joel R.
2011-01-01
Two robust techniques for quantification and compensation of eddy-current-induced magnetic-field gradients and static magnetic-field shifts (ΔB0) in MRI systems are described. Purpose-built 1-D or 6-point phantoms are employed. Both procedures involve measuring the effects of a prior magnetic-field-gradient test pulse on the phantom’s free induction decay (FID). Phantom-specific analysis of the resulting FID data produces estimates of the time-dependent, eddy-current-induced magnetic field gradient(s) and ΔB0 shift. Using Bayesian methods, the time dependencies of the eddy-current-induced decays are modeled as sums of exponentially decaying components, each defined by an amplitude and time constant. These amplitudes and time constants are employed to adjust the scanner’s gradient pre-emphasis unit and eliminate undesirable eddy-current effects. Measurement with the six-point sample phantom allows for simultaneous, direct estimation of both on-axis and cross-term eddy-current-induced gradients. The two methods are demonstrated and validated on several MRI systems with actively-shielded gradient coil sets. PMID:21764614
Quantification and compensation of eddy-current-induced magnetic-field gradients.
Spees, William M; Buhl, Niels; Sun, Peng; Ackerman, Joseph J H; Neil, Jeffrey J; Garbow, Joel R
2011-09-01
Two robust techniques for quantification and compensation of eddy-current-induced magnetic-field gradients and static magnetic-field shifts (ΔB0) in MRI systems are described. Purpose-built 1-D or six-point phantoms are employed. Both procedures involve measuring the effects of a prior magnetic-field-gradient test pulse on the phantom's free induction decay (FID). Phantom-specific analysis of the resulting FID data produces estimates of the time-dependent, eddy-current-induced magnetic field gradient(s) and ΔB0 shift. Using Bayesian methods, the time dependencies of the eddy-current-induced decays are modeled as sums of exponentially decaying components, each defined by an amplitude and time constant. These amplitudes and time constants are employed to adjust the scanner's gradient pre-emphasis unit and eliminate undesirable eddy-current effects. Measurement with the six-point sample phantom allows for simultaneous, direct estimation of both on-axis and cross-term eddy-current-induced gradients. The two methods are demonstrated and validated on several MRI systems with actively-shielded gradient coil sets. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Feiran; Sun, Zhenguo; Chen, Qiang
2016-02-01
In order to improve the ultrasonic wave amplitude excited by electromagnetic acoustic transducers (EMATs), many researchers have proposed models. But they always ignored displacement current or the effect of the permittivity of the air or the metal sample during modeling, due to its low permittivity. However, more durable dielectric materials are replacing or coating with metals in many applications which have a much higher permittivity than air or metal sample so that the effect of permittivity cannot be ignored. Based on an analytical model, the effect of the permittivity of coating layer on the eddy current generated in an aluminum sample by EMAT has been studied. The analytical analysis indicates that the eddy current density excited by the spiral coil of EMAT slowly increases in the beginning and then decreases rapidly while the permittivity increases, and it has much relation to the thickness of the coating layer and the exciting frequency, which is verified by the simulation result.
NASA Astrophysics Data System (ADS)
Hoffman, R.; Siegel, E.
2010-03-01
(So MIScalled) ``Fert"-``Grunberg"[PRL(1988;1989)] GMR 2007 physics Nobel/Wolf/Japan-Prizes VS. decade-earlier(1973-1977) KEY FIRST Siegel at:Westin"kl"ouse/PSEG/IAEA/ABB[google:``Martin Ebner"(94-04) in financial media]/Vattenfall/Wallenbergs/nuc"el"ar-DoE Labs[at flickr.com, search on ``Giant- Magnotoresistance''; find: Intl.Conf.Mag.Alloys & Oxides(ICMAO), Haifa(Aug./1977); J.Mag.Mag.Mtls,(JMMM)7,312(1978)``unavailable: not yet scanned''/modified(last R(H) GMR Figs(7;8) deleted!!!) on JMMM/Reed-Elsevier website until 7/29/08 conveniently one- half-year after last (Nobel)award(12/2007); conveniently effectively deleted!!!; google: ``If Leaks Could Kill''; many APS/MRS Mtgs(1970s)<<<1988/1989] decade-earlier GMR: (1978)<<< (1988); 1988-1978 =10 years = one full decadeprecedence!!!] first experimental discovery in (so MIScalled) ``super''alloys [182/82, Hastelloy-X, 600, 690(!!!), Stainless-Steels: ANY/ALL!!!] generic endemic Wigner's[JAP,17,857(1946)]- disease/Ostwald-ripening/spinodal-decomposition/overageing- embrittlement/ thermo-mechanical-INstability!
An avenue of eddies: Quantifying the biophysical properties of mesoscale eddies in the Tasman Sea
NASA Astrophysics Data System (ADS)
Everett, J. D.; Baird, M. E.; Oke, P. R.; Suthers, I. M.
2012-08-01
The Tasman Sea is unique - characterised by a strong seasonal western boundary current that breaks down into a complicated field of mesoscale eddies almost immediately after separating from the coast. Through a 16-year analysis of Tasman Sea eddies, we identify a region along the southeast Australian coast which we name ‘Eddy Avenue’ where eddies have higher sea level anomalies, faster rotation and greater sea surface temperature and chlorophyll a anomalies. The density of cyclonic and anticyclonic eddies within Eddy Avenue is 23% and 16% higher respectively than the broader Tasman Sea. We find that Eddy Avenue cyclonic and anticyclonic eddies have more strongly differentiated biological properties than those of the broader Tasman Sea, as a result of larger anticyclonic eddies formed from Coral Sea water depressing chl. a concentrations, and for coastal cyclonic eddies due to the entrainment of nutrient-rich shelf waters. Cyclonic eddies within Eddy Avenue have almost double the chlorophyll a (0.35 mg m-3) of anticyclonic eddies (0.18 mg m-3). The average chlorophyll a concentration for cyclonic eddies is 16% higher in Eddy Avenue and 28% lower for anticyclonic eddies when compared to the Tasman Sea. With a strengthening East Australian Current, the propagation of these eddies will have significant implications for heat transport and the entrainment and connectivity of plankton and larval fish populations.
Eddy current inspection of graphite fiber components
NASA Technical Reports Server (NTRS)
Workman, G. L.; Bryson, C. C.
1990-01-01
The recognition of defects in materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques. The unique capabilities of E-probes and horseshoe probes for inspecting probes for inspecting graphite fiber materials were evaluated and appear to hold great promise once the technology development matures. The initial results are described of modeling eddy current interactions with certain flaws in graphite fiber samples.
Eddy current testing probe with dual half-cylindrical coils
NASA Astrophysics Data System (ADS)
Bae, Byung-Hoon; Choi, Jung-Mi; Kim, Soo-Yong
2000-02-01
We have developed a new eddy current probe composed of a dual half-cylindrical (2HC) coil as an exciting coil and a sensing coil that is placed in the small gap of the 2HC coil. The 2HC coil induces a linear eddy current on the narrow region within the target medium. The magnitude of eddy current has a maximum peak with the narrow width, underneath the center of the exciting 2HC coil. Because of the linear eddy current, the probe can be used to detect not only the existence of a crack but also its direction in conducting materials. Using specimen with a machined crack, and varying the exciting frequency from 0.5 to 100 kHz, we investigated the relationships between the direction of crack and the output voltage of the sensing coil.
Eddy energy and shelf interactions in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Ohlmann, J. Carter; Niiler, P. Peter; Fox, Chad A.; Leben, Robert R.
2001-02-01
Sea surface height anomaly data from satellite are continuously available for the entire Gulf of Mexico. Surface current velocities derived from these remotely sensed data are compared with surface velocities from drifting buoys. The comparison shows that satellite altimetry does an excellent job resolving gulf eddies over the shelf rise (depths between ˜200 and 2000 m) if the proper length scale is used. Correlations between altimeter- and drifter-derived velocities are statistically significant (r>0.5) when the surface slope is computed over 125 km, indicating that remotely sensed sea surface height anomaly data can be used to aid the understanding of circulation over the shelf rise. Velocity variance over the shelf rise from the altimetry data shows regions of pronounced eddy energy south of the Mississippi outflow, south of the Texas-Louisiana shelf, and in the northwest and northeast corners of the gulf. These are the same locations where surface drifters are most likely to cross the shelf rise, suggesting gulf eddies promote cross-shore flows. This is clearly exemplified with both warm and cold eddies. Finally, the contribution of gulf eddies and wind stress to changes in the mean circulation are compared. Results indicate that the eddy-generated vorticity flux to the mean flow is greater than the contribution from the surface wind stress curl, especially in the region of the Loop current and along the shelf rise base in the western gulf. Future modeling efforts must not neglect the role of eddies in driving gulf circulation over the shelf rise.
NASA Astrophysics Data System (ADS)
Oerder, V.; Colas, F.; Echevin, V.; Masson, S.; Lemarié, F.
2018-02-01
The ocean dynamical responses to the surface current-wind stress interaction at the oceanic mesoscale are investigated in the South-East Pacific using a high-resolution regional ocean-atmosphere coupled model. Two simulations are compared: one includes the surface current in the wind stress computation while the other does not. In the coastal region, absolute wind velocities are different between the two simulations but the wind stress remains very similar. As a consequence, the mean regional oceanic circulation is almost unchanged. On the contrary, the mesoscale activity is strongly reduced when taking into account the effect of the surface current on the wind stress. This is caused by a weakening of the eddy kinetic energy generation near the coast by the wind work and to intensified offshore eddy damping. We show that, above coherent eddies, the current-stress interaction generates eddy damping through Ekman pumping and eddy kinetic energy dissipation through wind work. This alters significantly the coherent eddy vertical structures compared with the control simulation, weakening the temperature and vorticity anomalies and increasing strongly the vertical velocity anomalies associated to eddies.
Innate immune responses following Kawasaki disease and toxic shock syndrome
Messina, Nicole; Germano, Susie; Bonnici, Rhian; Freyne, Bridget; Cheung, Michael; Goldsmith, Greta; Kollmann, Tobias R.; Levin, Michael; Burgner, David; Curtis, Nigel
2018-01-01
The pathogenesis of Kawasaki disease (KD) remains unknown and there is accumulating evidence for the importance of the innate immune system in initiating and mediating the host inflammatory response. We compared innate immune responses in KD and toxic shock syndrome (TSS) participants more than two years after their acute illness with control participants to investigate differences in their immune phenotype. Toxic shock syndrome shares many clinical features with KD; by including both disease groups we endeavoured to explore changes in innate immune responses following acute inflammatory illnesses more broadly. We measured the in vitro production of interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-1 receptor antagonist (IL-1ra), and IL-10 following whole blood stimulation with toll-like receptor and inflammasome ligands in 52 KD, 20 TSS, and 53 control participants in a case-control study. Analyses were adjusted for age, sex, and unstimulated cytokine concentrations. Compared to controls, KD participants have reduced IL-1ra production in response to stimulation with double stranded RNA (geometric mean ratio (GMR) 0.37, 95% CI 0.15, 0.89, p = 0.03) and increased IL-6 production in response to incubation with Lyovec™ (GMR 5.48, 95% CI 1.77, 16.98, p = 0.004). Compared to controls, TSS participants have increased IFN-γ production in response to peptidoglycan (GMR 4.07, 95% CI 1.82, 9.11, p = 0.001), increased IL-1β production to lipopolysaccharide (GMR 1.64, 95% CI 1.13, 2.38, p = 0.01) and peptidoglycan (GMR 1.61, 95% CI 1.11, 2.33, p = 0.01), and increased IL-6 production to peptidoglycan (GMR 1.45, 95% CI 1.10, 1.92, p = 0.01). Years following the acute illness, individuals with previous KD or TSS exhibit a pro-inflammatory innate immune phenotype suggesting a possible underlying immunological susceptibility or innate immune memory. PMID:29447181
Acuña-Marrero, David; Smith, Adam N H; Hammerschlag, Neil; Hearn, Alex; Anderson, Marti J; Calich, Hannah; Pawley, Matthew D M; Fischer, Chris; Salinas-de-León, Pelayo
2017-01-01
The potential effectiveness of marine protected areas (MPAs) as a conservation tool for large sharks has been questioned due to the limited spatial extent of most MPAs in contrast to the complex life history and high mobility of many sharks. Here we evaluated the movement dynamics of a highly migratory apex predatory shark (tiger shark Galeocerdo cuvier) at the Galapagos Marine Reserve (GMR). Using data from satellite tracking passive acoustic telemetry, and stereo baited remote underwater video, we estimated residency, activity spaces, site fidelity, distributional abundances and migration patterns from the GMR and in relation to nesting beaches of green sea turtles (Chelonia mydas), a seasonally abundant and predictable prey source for large tiger sharks. Tiger sharks exhibited a high degree of philopatry, with 93% of the total satellite-tracked time across all individuals occurring within the GMR. Large sharks (> 200 cm TL) concentrated their movements in front of the two most important green sea turtle-nesting beaches in the GMR, visiting them on a daily basis during nocturnal hours. In contrast, small sharks (< 200 cm TL) rarely visited turtle-nesting areas and displayed diurnal presence at a third location where only immature sharks were found. Small and some large individuals remained in the three study areas even outside of the turtle-nesting season. Only two sharks were satellite-tracked outside of the GMR, and following long-distance migrations, both individuals returned to turtle-nesting beaches at the subsequent turtle-nesting season. The spatial patterns of residency and site fidelity of tiger sharks suggest that the presence of a predictable source of prey and suitable habitats might reduce the spatial extent of this large shark that is highly migratory in other parts of its range. This highly philopatric behaviour enhances the potential effectiveness of the GMR for their protection.
Smith, Adam N. H.; Hammerschlag, Neil; Hearn, Alex; Anderson, Marti J.; Calich, Hannah; Pawley, Matthew D. M.; Fischer, Chris; Salinas-de-León, Pelayo
2017-01-01
The potential effectiveness of marine protected areas (MPAs) as a conservation tool for large sharks has been questioned due to the limited spatial extent of most MPAs in contrast to the complex life history and high mobility of many sharks. Here we evaluated the movement dynamics of a highly migratory apex predatory shark (tiger shark Galeocerdo cuvier) at the Galapagos Marine Reserve (GMR). Using data from satellite tracking passive acoustic telemetry, and stereo baited remote underwater video, we estimated residency, activity spaces, site fidelity, distributional abundances and migration patterns from the GMR and in relation to nesting beaches of green sea turtles (Chelonia mydas), a seasonally abundant and predictable prey source for large tiger sharks. Tiger sharks exhibited a high degree of philopatry, with 93% of the total satellite-tracked time across all individuals occurring within the GMR. Large sharks (> 200 cm TL) concentrated their movements in front of the two most important green sea turtle-nesting beaches in the GMR, visiting them on a daily basis during nocturnal hours. In contrast, small sharks (< 200 cm TL) rarely visited turtle-nesting areas and displayed diurnal presence at a third location where only immature sharks were found. Small and some large individuals remained in the three study areas even outside of the turtle-nesting season. Only two sharks were satellite-tracked outside of the GMR, and following long-distance migrations, both individuals returned to turtle-nesting beaches at the subsequent turtle-nesting season. The spatial patterns of residency and site fidelity of tiger sharks suggest that the presence of a predictable source of prey and suitable habitats might reduce the spatial extent of this large shark that is highly migratory in other parts of its range. This highly philopatric behaviour enhances the potential effectiveness of the GMR for their protection. PMID:28829820
Innate immune responses following Kawasaki disease and toxic shock syndrome.
Chen, Katherine Y H; Messina, Nicole; Germano, Susie; Bonnici, Rhian; Freyne, Bridget; Cheung, Michael; Goldsmith, Greta; Kollmann, Tobias R; Levin, Michael; Burgner, David; Curtis, Nigel
2018-01-01
The pathogenesis of Kawasaki disease (KD) remains unknown and there is accumulating evidence for the importance of the innate immune system in initiating and mediating the host inflammatory response. We compared innate immune responses in KD and toxic shock syndrome (TSS) participants more than two years after their acute illness with control participants to investigate differences in their immune phenotype. Toxic shock syndrome shares many clinical features with KD; by including both disease groups we endeavoured to explore changes in innate immune responses following acute inflammatory illnesses more broadly. We measured the in vitro production of interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-1 receptor antagonist (IL-1ra), and IL-10 following whole blood stimulation with toll-like receptor and inflammasome ligands in 52 KD, 20 TSS, and 53 control participants in a case-control study. Analyses were adjusted for age, sex, and unstimulated cytokine concentrations. Compared to controls, KD participants have reduced IL-1ra production in response to stimulation with double stranded RNA (geometric mean ratio (GMR) 0.37, 95% CI 0.15, 0.89, p = 0.03) and increased IL-6 production in response to incubation with Lyovec™ (GMR 5.48, 95% CI 1.77, 16.98, p = 0.004). Compared to controls, TSS participants have increased IFN-γ production in response to peptidoglycan (GMR 4.07, 95% CI 1.82, 9.11, p = 0.001), increased IL-1β production to lipopolysaccharide (GMR 1.64, 95% CI 1.13, 2.38, p = 0.01) and peptidoglycan (GMR 1.61, 95% CI 1.11, 2.33, p = 0.01), and increased IL-6 production to peptidoglycan (GMR 1.45, 95% CI 1.10, 1.92, p = 0.01). Years following the acute illness, individuals with previous KD or TSS exhibit a pro-inflammatory innate immune phenotype suggesting a possible underlying immunological susceptibility or innate immune memory.
Eddy-Current Inspection Of Tab Seals On Beverage Cans
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph
1994-01-01
Eddy-current inspection system monitors tab seals on beverage cans. Device inspects all cans at usual production rate of 1,500 to 2,000 cans per minute. Automated inspection of all units replaces visual inspection by microscope aided by mass spectrometry. System detects defects in real time. Sealed cans on conveyor pass near one of two coils in differential eddy-current probe. Other coil in differential eddy-current probe positioned near stationary reference can on which tab seal is known to be of acceptable quality. Signal of certain magnitude at output of probe indicates defective can, automatically ejected from conveyor.
Fratila, Radu; Benabou, Abdelkader; Tounzi, Abdelmounaïm; Mipo, Jean-Claude
2014-05-14
NdFeB permanent magnets (PMs) are widely used in high performance electrical machines, but their relatively high conductivity subjects them to eddy current losses that can lead to magnetization loss. The Finite Element (FE) method is generally used to quantify the eddy current loss of PMs, but it remains quite difficult to validate the accuracy of the results with complex devices. In this paper, an experimental test device is used in order to extract the eddy current losses that are then compared with those of a 3D FE model.
NASA Astrophysics Data System (ADS)
Yamazaki, Katsumi; Kanou, Yuji; Fukushima, Yu; Ohki, Shunji; Nezu, Akira; Ikemi, Takeshi; Mizokami, Ryoichi
In this paper, we present the development of interior magnet motors with concentrated windings, which reduce the eddy current loss of the magnets. First, the mechanism of the magnet eddy current loss generation is investigated by a simple linear magnetic circuit. Due to the consideration, an automatic optimization method using an adaptive finite element method is carried out to determine the stator and rotor shapes, which decrease the eddy current loss of the magnet. The determined stator and rotor are manufactured in order to proof the effectiveness by the measurement.
Nilsson, Markus; Szczepankiewicz, Filip; van Westen, Danielle; Hansson, Oskar
2015-01-01
Conventional motion and eddy-current correction, where each diffusion-weighted volume is registered to a non diffusion-weighted reference, suffers from poor accuracy for high b-value data. An alternative approach is to extrapolate reference volumes from low b-value data. We aim to compare the performance of conventional and extrapolation-based correction of diffusional kurtosis imaging (DKI) data, and to demonstrate the impact of the correction approach on group comparison studies. DKI was performed in patients with Parkinson's disease dementia (PDD), and healthy age-matched controls, using b-values of up to 2750 s/mm2. The accuracy of conventional and extrapolation-based correction methods was investigated. Parameters from DTI and DKI were compared between patients and controls in the cingulum and the anterior thalamic projection tract. Conventional correction resulted in systematic registration errors for high b-value data. The extrapolation-based methods did not exhibit such errors, yielding more accurate tractography and up to 50% lower standard deviation in DKI metrics. Statistically significant differences were found between patients and controls when using the extrapolation-based motion correction that were not detected when using the conventional method. We recommend that conventional motion and eddy-current correction should be abandoned for high b-value data in favour of more accurate methods using extrapolation-based references.
Chen, Tao; He, Yuting; Du, Jinqiang
2018-06-01
This paper develops a high-sensitivity flexible eddy current array (HS-FECA) sensor for crack monitoring of welded structures under varying environment. Firstly, effects of stress, temperature and crack on output signals of the traditional flexible eddy current array (FECA) sensor were investigated by experiments that show both stress and temperature have great influences on the crack monitoring performance of the sensor. A 3-D finite element model was established using Comsol AC/DC module to analyze the perturbation effects of crack on eddy currents and output signals of the sensor, which showed perturbation effect of cracks on eddy currents is reduced by the current loop when crack propagates. Then, the HS-FECA sensor was proposed to boost the sensitivity to cracks. Simulation results show that perturbation effect of cracks on eddy currents excited by the HS-FECA sensor gradually grows stronger when the crack propagates, resulting in much higher sensitivity to cracks. Experimental result further shows that the sensitivity of the new sensor is at least 19 times that of the original one. In addition, both stress and temperature variations have little effect on signals of the new sensor.
NASA Astrophysics Data System (ADS)
Savrai, R. A.; Makarov, A. V.; Gorkunov, E. S.; Soboleva, N. N.; Kogan, L. Kh.; Malygina, I. Yu.; Osintseva, A. L.; Davydova, N. A.
2017-12-01
The possibilities of the eddy-current method for testing the fatigue degradation under contact loading of gas powder laser clad NiCrBSi-Cr3C2 composite coating with 15 wt.% of Cr3C2 additive have been investigated. It is shown that the eddy-current testing of the fatigue degradation under contact loading of the NiCrBSi-15%Cr3C2 composite coating can be performed at high excitation frequencies 72-120 kHz of the eddy-current transducer. At that, the dependences of the eddy-current instrument readings on the number of loading cycles have both downward and upward branches, with the boundary between the branches being 3×105 cycles in the given loading conditions. This is caused, on the one hand, by cracking, and, on the other hand, by cohesive spalling and compaction of the composite coating, which affect oppositely the material resistivity and, correspondingly, the eddy-current instrument readings. The downward branch can be used to monitor the processes of crack formation and growth, the upward branch - to monitor the degree of cohesive spalling, while taking into account in the testing methodology an ambiguous character of the dependences of the eddy-current instrument readings on the number of loading cycles.
Eddy Current System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose
NASA Astrophysics Data System (ADS)
Wincheski, Buzz; Simpson, John; Hall, George
2009-03-01
In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.
Eddy Current System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Simpson, John; Hall, George
2008-01-01
In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.
A western boundary current eddy characterisation study
NASA Astrophysics Data System (ADS)
Ribbe, Joachim; Brieva, Daniel
2016-12-01
The analysis of an eddy census for the East Australian Current (EAC) region yielded a total of 497 individual short-lived (7-28 days) cyclonic and anticyclonic eddies for the period 1993 to 2015. This was an average of about 23 eddies per year. 41% of the tracked individual cyclonic and anticyclonic eddies were detected off southeast Queensland between about 25 °S and 29 °S. This is the region where the flow of the EAC intensifies forming a swift western boundary current that impinges near Fraser Island on the continental shelf. This zone was also identified as having a maximum in detected short-lived cyclonic eddies. A total of 94 (43%) individual cyclonic eddies or about 4-5 per year were tracked in this region. The census found that these potentially displaced entrained water by about 115 km with an average displacement speed of about 4 km per day. Cyclonic eddies were likely to contribute to establishing an on-shelf longshore northerly flow forming the western branch of the Fraser Island Gyre and possibly presented an important cross-shelf transport process in the life cycle of temperate fish species of the EAC domain. In-situ observations near western boundary currents previously documented the entrainment, off-shelf transport and export of near shore water, nutrients, sediments, fish larvae and the renewal of inner shelf water due to short-lived eddies. This study found that these cyclonic eddies potentially play an important off-shelf transport process off the central east Australian coast.
NASA Astrophysics Data System (ADS)
Pichevin, Thierry; Nof, Doron
1996-09-01
A new nonlinear mechanism for the generation of "Meddies" by a cape is proposed. The essence of the new process is that the flow-force associated with any steady current that curves back on itself around a cape cannot be balanced without generating and shedding eddies. The process is modeled as follows. A westward flowing density current advances along a zonal wall and turns eastward after reaching the edge of the wall (i.e. the Cape of St Vincent). Integration of the steady (and inviscid) momentum equation along the wall gives the long-shore flow-force and shows that, no matter what the details of the turning process are, such a scenario is impossible. It corresponds to an unbalanced flow-force and, therefore, cannot exist. Namely, in an analogy to a rocket, the zonal longshore current forces the entire system to the west. A flow field that can compensate for such a force is westward drifting eddies that push the system to the east. In a similar fashion to the backward push associated with a firing cannon, the westward moving eddies (bullets) balance the integrated momentum of the flow around the cape. Nonlinear solutions are constructed analytically using an approach that enables one to compute the eddies' size and generation frequency without solving for the incredibly complicated details of the generation process itself. The method takes advantage of the fact that, after each eddy is generated, the system returns to its original structure. It is based on the integration of the momentum equation (for periodic flows) over a control volume and a perturbation expansion in ɛ, the ratio between the eddies' westward drift and the parent current speed. It is found that, because of the relatively small size of the Mediterranean eddies, β is not a sufficiently strong mechanism to remove the eddies (from the Cape of St Vincent) at the observed frequency. It is, therefore, concluded that westward advection must also take place. Specifically, it is found that an advection of 2 cm s -1 will remove (and generate) a Meddy once every 50 days or so and an advection of 5 cm s -1 will remove a Meddy every 17 days. "Kitchen-type" laboratory experiments on a rotating table show that, indeed, a flow that curves back on itself produces an eddy next to the tip of the cape. However, since neither significant β nor advection was present in the laboratory, the laboratory eddy was not shed during the limited time that the experiment was in progress. Numerical simulations (using the Bleck and Boudra isopycnic model) demonstrate, however, that eddies are constantly shed as predicted by the model.
Rita Roars Through a Warm Gulf September 22, 2005
2005-09-22
This sea surface height map of the Gulf of Mexico, with the Florida peninsula on the right and the Texas-Mexico Gulf Coast on the left, is based on altimeter data from four satellites including NASA’s Topex/Poseidon and Jason. Red indicates a strong circulation of much warmer waters, which can feed energy to a hurricane. This area stands 35 to 60 centimeters (about 13 to 23 inches) higher than the surrounding waters of the Gulf. The actual track of a hurricane is primarily dependent upon steering winds, which are forecasted through the use of atmospheric models. However, the interaction of the hurricane with the upper ocean is the primary source of energy for the storm. Hurricane intensity is therefore greatly affected by the upper ocean temperature structure and can exhibit explosive growth over warm ocean currents and eddies. Eddies are currents of water that run contrary to the direction of the main current. According to the forecasted track through the Gulf of Mexico, Hurricane Rita will continue crossing the warm waters of a Gulf of Mexico circulation feature called the Loop Current and then pass near a warm-water eddy called the Eddy Vortex, located in the north central Gulf, south of Louisiana. http://photojournal.jpl.nasa.gov/catalog/PIA06427
Vertical structure of mean cross-shore currents across a barred surf zone
Haines, John W.; Sallenger, Asbury H.
1994-01-01
Mean cross-shore currents observed across a barred surf zone are compared to model predictions. The model is based on a simplified momentum balance with a turbulent boundary layer at the bed. Turbulent exchange is parameterized by an eddy viscosity formulation, with the eddy viscosity Aυ independent of time and the vertical coordinate. Mean currents result from gradients due to wave breaking and shoaling, and the presence of a mean setup of the free surface. Descriptions of the wave field are provided by the wave transformation model of Thornton and Guza [1983]. The wave transformation model adequately reproduces the observed wave heights across the surf zone. The mean current model successfully reproduces the observed cross-shore flows. Both observations and predictions show predominantly offshore flow with onshore flow restricted to a relatively thin surface layer. Successful application of the mean flow model requires an eddy viscosity which varies horizontally across the surf zone. Attempts are made to parameterize this variation with some success. The data does not discriminate between alternative parameterizations proposed. The overall variability in eddy viscosity suggested by the model fitting should be resolvable by field measurements of the turbulent stresses. Consistent shortcomings of the parameterizations, and the overall modeling effort, suggest avenues for further development and data collection.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... if necessary. This proposed AD would also add an option for the high frequency eddy current... also adds an optional ultrasonic inspection for the high frequency eddy current inspection to detect... proposed AD would also add an option for the high frequency eddy current inspection for cracking of the...
77 FR 21395 - Airworthiness Directives; Fokker Services B.V. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
... would require performing a low frequency eddy current inspection for cracks of the lap joint of the rear...-frequency eddy current inspection of the lap joint for cracks and, depending on findings, repair of the lap... AD: Do a low frequency eddy current (LFEC) inspection for cracks of the lap joint of the rear...
76 FR 41662 - Airworthiness Directives; MD Helicopters, Inc. Model MD900 Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
... different compliance time; adds an eddy current inspection; retains the requirement to replace a cracked... and recurring 300-hour visual and eddy current inspections of the lower hub for a crack and, if there... AD requires a visual inspection, and if necessary, an eddy current inspection of the lower hub for a...
Advanced Magnetic Head Development Revision 1 Final Report CRADA No. TC-0840-94
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerjan, C.; Shi, S.
The specific go,il of this research was the development of a prototype read magnetic sensor head using the Current:Perpendicular-to-Plane (CPP) geometry with known GMR (Giant Magneto-Resistive) multilayered structures to achieve read densities greater than 10 Gbit/in2, field sensitivities greater than 1%/Oe, switching fields less than 20 Oe, and total MR response greater than 10%. The specific materials needed for this idcnl behavior had to be determined, as did the eventual design of the sensor (placement of contact leads, shields, and biasing magnets). Thus the thrust of the rescnrch required a search for the proper multilayer material combination und the developmentmore » of a simulation capability to guide sensor design. Issues i:elated to device integration, such as media noise and lead contact resistance, were also recognized as important technological hurdles but these items were deferred until the operating conditions of the-prototype GMR sensor were more precisely determined.« less
Technique for temperature compensation of eddy-current proximity probes
NASA Technical Reports Server (NTRS)
Masters, Robert M.
1989-01-01
Eddy-current proximity probes are used in turbomachinery evaluation testing and operation to measure distances, primarily vibration, deflection, or displacment of shafts, bearings and seals. Measurements of steady-state conditions made with standard eddy-current proximity probes are susceptible to error caused by temperature variations during normal operation of the component under investigation. Errors resulting from temperature effects for the specific probes used in this study were approximately 1.016 x 10 to the -3 mm/deg C over the temperature range of -252 to 100 C. This report examines temperature caused changes on the eddy-current proximity probe measurement system, establishes their origin, and discusses what may be done to minimize their effect on the output signal. In addition, recommendations are made for the installation and operation of the electronic components associated with an eddy-current proximity probe. Several techniques are described that provide active on-line error compensation for over 95 percent of the temperature effects.
Eddy current imaging for electrical characterization of silicon solar cells and TCO layers
NASA Astrophysics Data System (ADS)
Hwang, Byungguk; Hillmann, Susanne; Schulze, Martin; Klein, Marcus; Heuer, Henning
2015-03-01
Eddy Current Testing has been mainly used to determine defects of conductive materials and wall thicknesses in heavy industries such as construction or aerospace. Recently, high frequency Eddy Current imaging technology was developed. This enables the acquirement of information of different depth level in conductive thin-film structures by realizing proper standard penetration depth. In this paper, we summarize the state of the art applications focusing on PV industry and extend the analysis implementing achievements by applying spatially resolved Eddy Current Testing. The specific state of frequency and complex phase angle rotation demonstrates diverse defects from front to back side of silicon solar cells and characterizes homogeneity of sheet resistance in Transparent Conductive Oxide (TCO) layers. In order to verify technical feasibility, measurement results from the Multi Parameter Eddy Current Scanner, MPECS are compared to the results from Electroluminescence.
NASA Astrophysics Data System (ADS)
Ozkaya, Efe; Yilmaz, Cetin
2017-02-01
The effect of eddy current damping on a novel locally resonant periodic structure is investigated. The frequency response characteristics are obtained by using a lumped parameter and a finite element model. In order to obtain wide band gaps at low frequencies, the periodic structure is optimized according to certain constraints, such as mass distribution in the unit cell, lower limit of the band gap, stiffness between the components in the unit cell, the size of magnets used for eddy current damping, and the number of unit cells in the periodic structure. Then, the locally resonant periodic structure with eddy current damping is manufactured and its experimental frequency response is obtained. The frequency response results obtained analytically, numerically and experimentally match quite well. The inclusion of eddy current damping to the periodic structure decreases amplitudes of resonance peaks without disturbing stop band width.
Eddy-Current Measurement Of Turning Or Curvature
NASA Technical Reports Server (NTRS)
Chern, Engmin J.
1993-01-01
Rotatable conductive plate covers sensing coil to varying degree. Curvature of pipe at remote or otherwise inaccessible location inside pipe measured using relatively simple angular-displacement eddy-current probe. Crawler and sensor assemblies move along inside of pipe on wheels. Conductive plate pivots to follow curvature of pipe, partly covering one of eddy-current coils to degree depending on local curvature on pipe.
76 FR 9495 - Airworthiness Directives; Air Tractor, Inc. Models AT-802 and AT-802A Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-18
...-18, which requires you to repetitively inspect (using the eddy current method) the two outboard... through 0101 and AT-802A-0092 through 0101: To perform, using the eddy current method, two inspections at... through 0178 and AT-802A-0102 through 0178 to perform using the eddy current method, two inspections at 5...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-13
... this AD, perform an external eddy current inspection of the forward fuselage skin to detect cracking... paragraphs (j)(1), (j)(2), and (j)(3) of this AD, do an external eddy current inspection of the forward... this AD, do an external eddy current inspection of the forward fuselage skin to detect cracking, in...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-26
... option is to conduct an eddy current inspection and the other option is to conduct a visual inspection... eddy current inspection, at an average labor rate of $85 per work hour. Required parts would cost about... using either an eddy current inspection in accordance with paragraphs B.(1)(a) through B.(1)(o) or using...
75 FR 5692 - Airworthiness Directives; The Boeing Company Model 747-200C and -200F Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-04
... all Model 747-200C and -200F series airplanes. This AD requires a high frequency eddy current (HFEC... on July 6, 2009 (74 FR 31894). That NPRM proposed to require a high frequency eddy current inspection..., whichever occurs later: Do an open-hole high frequency eddy current (HFEC) inspection of all the fastener...
Eddy current technique for predicting burst pressure
Petri, Mark C.; Kupperman, David S.; Morman, James A.; Reifman, Jaques; Wei, Thomas Y. C.
2003-01-01
A signal processing technique which correlates eddy current inspection data from a tube having a critical tubing defect with a range of predicted burst pressures for the tube is provided. The method can directly correlate the raw eddy current inspection data representing the critical tubing defect with the range of burst pressures using a regression technique, preferably an artificial neural network. Alternatively, the technique deconvolves the raw eddy current inspection data into a set of undistorted signals, each of which represents a separate defect of the tube. The undistorted defect signal which represents the critical tubing defect is related to a range of burst pressures utilizing a regression technique.
NASA Astrophysics Data System (ADS)
Krauter, N.; Stefani, F.
2017-10-01
Eddy current flow meters are widely used for measuring the flow velocity of electrically conducting fluids. Since the flow induced perturbations of a magnetic field depend both on the geometry and the conductivity of the fluid, extensive calibration is needed to get accurate results. Transient eddy current flow metering has been developed to overcome this problem. It relies on tracking the position of an impressed eddy current system that is moving with the same velocity as the conductive fluid. We present an immersed version of this measurement technique and demonstrate its viability by numerical simulations and a first experimental validation.
NASA Astrophysics Data System (ADS)
Qu, Zilian; Meng, Yonggang; Zhao, Qian
2015-03-01
This paper proposes a new eddy current method, named equivalent unit method (EUM), for the thickness measurement of the top copper film of multilayer interconnects in the chemical mechanical polishing (CMP) process, which is an important step in the integrated circuit (IC) manufacturing. The influence of the underneath circuit layers on the eddy current is modeled and treated as an equivalent film thickness. By subtracting this equivalent film component, the accuracy of the thickness measurement of the top copper layer with an eddy current sensor is improved and the absolute error is 3 nm for sampler measurement.
An integrated eddy current detection and imaging system on a silicon chip
NASA Technical Reports Server (NTRS)
Henderson, H. Thurman; Kartalia, K. P.; Dury, Joseph D.
1991-01-01
Eddy current probes have been used for many years for numerous sensing applications including crack detection in metals. However, these applications have traditionally used the eddy current effect in the form of a physically wound single or different probe pairs which of necessity must be made quite large compared to microelectronics dimensions. Also, the traditional wound probe can only take a point reading, although that point might include tens of individual cracks or crack arrays; thus, conventional eddy current probes are beset by two major problems: (1) no detailed information can be obtained about the crack or crack array; and (2) for applications such as quality assurance, a vast amount of time must be taken to scan a complete surface. Laboratory efforts have been made to fabricate linear arrays of single turn probes in a thick film format on a ceramic substrate as well as in a flexible cable format; however, such efforts inherently suffer from relatively large size requirements as well as sensitivity issues. Preliminary efforts to fully extend eddy current probing from a point or single dimensional level to a two dimensional micro-eddy current format on a silicon chip, which might overcome all of the above problems, are presented.
A numerical study of the acoustic radiation due to eddy current-cryostat interactions.
Wang, Yaohui; Liu, Feng; Zhou, Xiaorong; Li, Yu; Crozier, Stuart
2017-06-01
To investigate the acoustic radiation due to eddy current-cryostat interactions and perform a qualitative analysis on noise reduction methods. In order to evaluate the sound pressure level (SPL) of the eddy current induced warm bore wall vibration, a Finite Element (FE) model was created to simulate the noises from both the warm bore wall vibration and the gradient coil assembly. For the SPL reduction of the warm bore wall vibration, we first improved the active shielding of the gradient coil, thus reducing the eddy current on the warm bore wall. A damping treatment was then applied to the warm bore wall to control the acoustic radiation. Initial simulations show that the SPL of the warm bore wall is higher than that of the gradient assembly with typical design shielding ratios at many frequencies. Subsequent simulation results of eddy current control and damping treatment application show that the average SPL reduction of the warm bore wall can be as high as 9.6 dB, and even higher in some frequency bands. Combining eddy current control and suggested damping scheme, the noise level in a MRI system can be effectively reduced. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Uchiyama, Yusuke; McWilliams, James C.; Akan, Cigdem
2017-07-01
The ROMS-WEC model [Uchiyama et al., 2010] based on an Eulerian wave-averaged vortex-force asymptotic theory of McWilliams et al. (2004) is applied to analyze 3-D transient wave-driven rip currents and associated intrinsic very low-frequency (VLF) variability in the surf zone on a surveyed bathymetry under spatiotemporally uniform offshore incident waves. The 3-D rip currents are substantially depth-dependent due to the vertical recirculation, composed of pairs of counter-rotating longitudinal overturning roll cells that promote surface convergence. The vortex force plays an important role in vorticity budget, preconditioning overall vorticity reduction. These rip currents are intrinsically unstable and contribute about 70% to kinetic energy (KE) as eddy kinetic energy (EKE), consistent with observations. The dominant fluctuation period fits the VLF band, at about 18 min. The current effect on waves (CEW) alters not only the mean rip structure, but also the associated turbulence as the modified cross-shore EKE profile with considerable accentuation in the inner surf zone. Increased alongshore bathymetric variability proportionally intensifies KE and intrinsic EKE, whereas it reduces the VLF period. With a guide of a pseudo 2D model, we reveal that vortex tilting effect due to the horizontal vorticity inherent in the 3-D rip currents promotes collapse of the 3-D eddies through an enhanced forward kinetic energy cascade, leading to short-lived, laterally-stretched 3-D eddies resulting in elongated filaments that decay more quickly than coherent, long-lived, circular 2-D eddies.
NASA Astrophysics Data System (ADS)
Fukuzawa, Hideaki; Yuasa, Hiromi; Hashimoto, Susumu; Iwasaki, Hitoshi; Tanaka, Yoichiro
2005-08-01
We have realized a large magnetoresistance (MR) ratio of 10.2% by current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) spin-valve films having current-confined-path (CCP) structure formed by AlCu-NOL (nano-oxide-layer). CPP-GMR with conventional Co90Fe10 pinned and free layers showed an MR ratio and a ΔRA (the change of resistance area product) were 4% and 20mΩμm2, respectively, at a small RA (resistance area product) of 500mΩμm2. By replacing the Co90Fe10 layers by Fe50Co50 layers both for pinned and free layers, we have successfully realized a MR ratio and a ΔRA of 7.5% and 37.5mΩμm2, respectively, at a small RA of 500mΩμm2. Moreover, a large MR ratio of 10.2% and a large ΔRA of 418mΩμm2 were realized at a relatively large RA of 4100mΩμm2. This large MR ratio by using Fe50Co50 layers was due to a larger spin-dependent interface scattering factor γ of 0.72 for the interface between Fe50Co50 and Cu, which was improved from a γ of 0.62 for the interface between Co90Fe10 and Cu.
Schwartz, Jules I; Agrawal, Nancy G B; Wong, P H; Miller, Jutta; Bachmann, Kenneth; Marbury, Thomas; Hoelscher, David; Cavanaugh, Paul F; Gottesdiener, Keith
2009-10-01
The authors designed 2 randomized controlled studies to examine the effects of etoricoxib 60 to 120 mg daily on methotrexate pharmacokinetics in 50 rheumatoid arthritis (RA) patients on stable doses of methotrexate (7.5-20 mg). Patients received oral methotrexate at baseline and on days 7 and 14. In study 1, patients received etoricoxib 60 mg (days 1-7) and then 120 mg (days 8-14); in study 2, patients received etoricoxib 90 mg (days 1-7) and then 120 mg (days 8-14). For study 1, the AUC(0-infinity) geometric mean ratio (GMR) (90% confidence interval [CI]) for day 7 versus baseline was 1.01 (0.91, 1.12) for etoricoxib 60 mg; the area under the plasma concentration-time curve from zero to infinity (AUC(0-infinity)) GMR (90% CI) for day 14 was 1.28 (1.15, 1.42) for etoricoxib 120 mg. For study 2, the AUC(0-infinity) GMR (90% CI) for day 7 versus baseline was 1.07 (1.01, 1.13) for etoricoxib 90 mg; the AUC(0-infinity) GMR (90% CI) for day 14 was 1.05 (0.99, 1.11) for etoricoxib 120 mg. In summary, etoricoxib 60 and 90 mg had no effect on methotrexate plasma concentrations. Although no effect on methotrexate pharmacokinetics was observed with etoricoxib 120 mg in study 2, GMR AUC(0-infinity) fell outside the prespecified bounds in study 1. Standard monitoring of methotrexate-related toxicity should be continued when etoricoxib and methotrexate are administered concurrently, especially with doses >90 mg etoricoxib.
NASA Astrophysics Data System (ADS)
Kourafalou, Vassiliki; Androulidakis, Yannis; Le Hénaff, Matthieu; Kang, HeeSook
2017-10-01
Mesoscale anticyclonic eddies along the northern Cuban coast (CubANs) have been identified in the Straits of Florida, associated with the northward shift of the Florida Current (FC) and the anticyclonic curvature of the Loop Current (LC) at the western entrance of the Straits. The dynamics of CubAN eddies and their interaction with the LC/FC system are described for the first time using satellite, drifter and buoy data, and a high-resolution model. It is shown that the evolution of CubANs to the south of the FC front complements the evolution of cyclonic eddies to the north of the FC, advancing previous studies on synergy between FC meandering and eddy activity. Two types of CubAN eddies are characterized: (a) a main anticyclonic cell (type "A") within the core of the LC during retracted phase conditions, associated with the process of LC Eddy (LCE) shedding from an extended LC, and (b) an individual, distinct anticyclonic eddy that is released from the main LC core and is advected eastward, along the northern Cuban coast (type "B"). There are also mixed cases, when the process of LCE shedding has started, so a type "A" CubAN is being formed, in the presence of one or more eastward progressing type "B" eddies. CubAN evolution is associated with an increased mixed layer and weaker stratification of the upper ocean along the eddy's track. The cyclonic activity along the Cuban coast and wind-induced upwelling events also contribute to the evolution and fate of the CubAN eddies.
Formation of Maximum Eddy Current Force by Non Ferrous Materials
NASA Astrophysics Data System (ADS)
Kader, M. M. A.; Razali, Z. B.; Yasin, N. S. M.; Daud, M. H.
2018-03-01
This project is concerned with the study of eddy current effects on various materials such as aluminum, copper and magnesium. Two types of magnets used in this study; magnetic ferrite (ZnFe+2O4) and magnetic neodymium (NdFeBN42). Eddy current force will be exerted to these materials due to current flows along the magnet. This force depends on the type of magnet, type of material and the gap between the magnet and the material or between the two magnets. The results show that at constant magnet to material gap, the eddy current force decreases as the magnet to magnet gap increases. Similarly, at constant magnet to magnet gap, the eddy current force decreases as the magnet to material gap increases. The minimum force was achieved when the gap of magnet to material is maximum, similarly to the gap of magnet to magnet. The weakest force was between Copper and Neodymium at a magnet to material gap of 20 mm and magnet to magnet gap of 40 mm; the eddy current force was 0.00048 N. The strongest force (maximum) was between Magnesium and Ferrite and 0.42273 N at a magnet to material gap of 3 mm and magnet to magnet gap of 5 mm.
Schaaf, H. S.; Draper, H. R.; van der Laan, L.; Murray, S.; Wiesner, L.; Donald, P. R.; McIlleron, H. M.; Hesseling, A. C.
2016-01-01
There are limited pharmacokinetic data for use of the first-line antituberculosis drugs during infancy (<12 months of age), when drug disposition may differ. Intensive pharmacokinetic sampling was performed in infants routinely receiving antituberculosis treatment, including rifampin, isoniazid, pyrazinamide, and ethambutol, using World Health Organization-recommended doses. Regulatory-approved single-drug formulations, including two rifampin suspensions, were used on the sampling day. Assays were conducted using liquid chromatography-mass spectrometry; pharmacokinetic parameters were generated using noncompartmental analysis. Thirty-nine infants were studied; 14 (36%) had culture-confirmed tuberculosis. Fifteen (38%) were premature (<37 weeks gestation); 5 (13%) were HIV infected. The mean corrected age and weight were 6.6 months and 6.45 kg, respectively. The mean maximum plasma concentrations (Cmax) for rifampin, isoniazid, pyrazinamide, and ethambutol were 2.9, 7.9, 41.9, and 1.3 μg/ml, respectively (current recommended adult target concentrations: 8 to 24, 3 to 6, 20 to 50, and 2 to 6 μg/ml, respectively), and the mean areas under the concentration-time curves from 0 to 8 h (AUC0–8) were 12.1, 24.7, 239.4, and 5.1 μg · h/ml, respectively. After adjusting for age and weight, rifampin exposures for the two formulations used differed in Cmax (geometric mean ratio [GMR], 2.55; 95% confidence interval [CI], 1.47 to 4.41; P = 0.001) and AUC0–8 (GMR, 2.52; 95% CI, 1.34 to 4.73; P = 0.005). HIV status was associated with lower pyrazinamide Cmax (GMR, 0.85; 95% CI, 0.75 to 0.96; P = 0.013) and AUC0–8 (GMR, 0.79; 95% CI, 0.69 to 0.90; P < 0.001) values. No other important differences were observed due to age, weight, prematurity, ethnicity, or gender. In summary, isoniazid and pyrazinamide concentrations in infants compared well with proposed adult target concentrations; ethambutol concentrations were lower but similar to previously reported pediatric studies. The low rifampin exposures require further investigation. (This study has been registered at ClinicalTrials.gov under registration no. NCT01637558.) PMID:26810651
Giant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications
Ennen, Inga; Kappe, Daniel; Rempel, Thomas; Glenske, Claudia; Hütten, Andreas
2016-01-01
The giant magnetoresistance (GMR) effect is a very basic phenomenon that occurs in magnetic materials ranging from nanoparticles over multilayered thin films to permanent magnets. In this contribution, we first focus on the links between effect characteristic and underlying microstructure. Thereafter, we discuss design criteria for GMR-sensor applications covering automotive, biosensors as well as nanoparticular sensors. PMID:27322277
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, J. C.; Bialek, J.; Lazerson, S.
2014-11-01
The Lithium Tokamak eXperiment is a spherical tokamak with a close-fitting low-recycling wall composed of thin lithium layers evaporated onto a stainless steel-lined copper shell. Long-lived non-axisymmetric eddy currents are induced in the shell and vacuum vessel by transient plasma and coil currents and these eddy currents influence both the plasma and the magnetic diagnositc signals that are used as constraints for equilibrium reconstruction. A newly installed set of re-entrant magnetic diagnostics and internal saddle flux loops, compatible with high-temperatures and lithium environments, is discussed. Details of the axisymmetric (2D) and non-axisymmetric (3D) treatments of the eddy currents and themore » equilibrium reconstruction are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, J. C., E-mail: jschmitt@pppl.gov; Lazerson, S.; Majeski, R.
2014-11-15
The Lithium Tokamak eXperiment is a spherical tokamak with a close-fitting low-recycling wall composed of thin lithium layers evaporated onto a stainless steel-lined copper shell. Long-lived non-axisymmetric eddy currents are induced in the shell and vacuum vessel by transient plasma and coil currents and these eddy currents influence both the plasma and the magnetic diagnostic signals that are used as constraints for equilibrium reconstruction. A newly installed set of re-entrant magnetic diagnostics and internal saddle flux loops, compatible with high-temperatures and lithium environments, is discussed. Details of the axisymmetric (2D) and non-axisymmetric (3D) treatments of the eddy currents and themore » equilibrium reconstruction are presented.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-04
... detailed and eddy current inspections to detect cracks and corrosion of certain midspar fuse pins, and... addition to longitudinal cracks. In addition, eddy current inspection of the midspar fuse pins in..., 311T3102-3, 311T3102-4, 311T2102-1 or 311T2102-2: Do a detailed inspection and an eddy current inspection...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-23
... one-time high frequency eddy current inspection of fastener holes for cracks at the left and right... frequency eddy current inspection of fastener holes for cracks at the left and right side wing rear spar... frequency eddy current inspection for cracking of fastener holes at the left and right side wing rear spar...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
... dimensional measurement of the holes, and doing corrective actions if necessary; doing an eddy current... dimensional measurement of the holes, doing an eddy current inspection of the holes for cracking, doing a cold... the effective date of this AD, prior to doing any cold working process, determine if an eddy current...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-19
... proposed AD would require a one-time high frequency eddy current inspection of fastener holes for cracks at... high frequency eddy current inspection of fastener holes for cracking at the left and right side wing... of this AD, do a one-time high frequency eddy current inspection for cracking of fastener holes at...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
... eddy current inspection for cracking of the keyway of the fuel tank access door cutout on the left and... frequency eddy current (HFEC) inspection for cracking at the keyway of the fuel tank access door cutout on... frequency eddy current (HFEC) inspection for cracking of the keyway of the fuel tank access door cutout on...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-12
... eddy current and visual inspections of the upper wing strut fitting for evidence of cracks, wear and/or... permitted extending the intervals for the repetitive eddy current and visual inspections from 100 Flight... the applicability and to require repetitive eddy current and visual inspections of the upper wing...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
... the applicability and to require repetitive eddy current and visual inspections of the upper wing... the applicability and to require repetitive eddy current and visual inspections of the upper wing... Emergency AD 2007-0241-E to extend the applicability and to require repetitive eddy current and visual...
Order of magnitude improvement of nano-contact spin torque nano-oscillator performance.
Banuazizi, Seyed Amir Hossein; Sani, Sohrab R; Eklund, Anders; Naiini, Maziar M; Mohseni, Seyed Majid; Chung, Sunjae; Dürrenfeld, Philipp; Malm, B Gunnar; Åkerman, Johan
2017-02-02
Spin torque nano-oscillators (STNO) represent a unique class of nano-scale microwave signal generators and offer a combination of intriguing properties, such as nano sized footprint, ultrafast modulation rates, and highly tunable microwave frequencies from 100 MHz to close to 100 GHz. However, their low output power and relatively high threshold current still limit their applicability and must be improved. In this study, we investigate the influence of the bottom Cu electrode thickness (t Cu ) in nano-contact STNOs based on Co/Cu/NiFe GMR stacks and with nano-contact diameters ranging from 60 to 500 nm. Increasing t Cu from 10 to 70 nm results in a 40% reduction of the threshold current, an order of magnitude higher microwave output power, and close to two orders of magnitude better power conversion efficiency. Numerical simulations of the current distribution suggest that these dramatic improvements originate from a strongly reduced lateral current spread in the magneto-dynamically active region.
Subregional characterization of mesoscale eddies across the Brazil-Malvinas Confluence
NASA Astrophysics Data System (ADS)
Mason, Evan; Pascual, Ananda; Gaube, Peter; Ruiz, Simón; Pelegrí, Josep L.; Delepoulle, Antoine
2017-04-01
Horizontal and vertical motions associated with coherent mesoscale structures, including eddies and meanders, are responsible for significant global transports of many properties, including heat and mass. Mesoscale vertical fluxes also influence upper ocean biological productivity by mediating the supply of nutrients into the euphotic layer, with potential impacts on the global carbon cycle. The Brazil-Malvinas Confluence (BMC) is a western boundary current region in the South Atlantic with intense mesoscale activity. This region has an active role in the genesis and transformation of water masses and thus is a critical component of the Atlantic meridional overturning circulation. The collision between the Malvinas and Brazil Currents over the Patagonian shelf/slope creates an energetic front that translates offshore to form a vigorous eddy field. Recent improvements in gridded altimetric sea level anomaly fields allow us to track BMC mesoscale eddies with high spatial and temporal resolutions using an automated eddy tracker. We characterize the eddies across fourteen 5° × 5° subregions. Eddy-centric composites of tracers and geostrophic currents diagnosed from a global reanalysis of surface and in situ data reveal substantial subregional heterogeneity. The in situ data are also used to compute the evolving quasi-geostrophic vertical velocity (QG-ω) associated with each instantaneous eddy instance. The QG-ω eddy composites have the expected dipole patterns of alternating upwelling/downwelling, however, the magnitude and sign of azimuthally averaged vertical velocity varies among subregions. Maximum eddy values are found near fronts and sharp topographic gradients. In comparison with regional eddy composites, subregional composites provide refined information about mesoscale eddy heterogeneity.
Giant magnetoresistance in ion beam deposited spin-valve films with specular enhancement
NASA Astrophysics Data System (ADS)
Sant, S.; Mao, M.; Kools, J.; Koi, K.; Iwasaki, H.; Sahashi, M.
2001-06-01
Three different techniques, natural oxidation, remote plasma oxidation and low energy ion beam oxidation, have been proved to be equally effective in forming nano-oxide layers (NOLs) in spin-valve films for specular enhancement of giant magnetoresistance (GMR) effect. GMR values over 12% have been routinely obtained in spin-valve films with NOL, corresponding to a 30% specular enhancement over those without NOL. The consistency and robustness of the oxidation processes has been demonstrated by a very large GMR value ˜19% in a dual spin-valve film with the NOLs formed in both pinned layers, the oscillatory dependence of the interlayer coupling field on Cu layer thickness in specular enhanced spin-valve films and the uniform and repeatable film performance over 5 in. substrates.
Degradation of the Giant Magnetoresistance in Fe/Cr Multilayers Due to Ar-Ion Beam Mixing
NASA Astrophysics Data System (ADS)
Kopcewicz, M.; Stobiecki, F.; Jagielski, J.; Szymański, B.; Schmidt, M.; Kalinowska, J.
2002-12-01
The influence of 200 keV Ar-ion irradiation on the interlayer coupling in the Fe/Cr multilayer system exhibiting the giant magnetoresistance effect (GMR) is studied by conversion electron Mössbauer spectroscopy (CEMS), VSM hysteresis loops, magnetoresistivity and electric resistivity measurements and supplemented by the small-angle X-ray diffraction (SAXRD). The increase of Ar ion dose causes an increase of interface roughness, as evidenced by the increase of the Fe step-sites detected by CEMS as a result of which the GMR gradually decreases and vanishes at doses exceeding 1×1014 Ar/cm2. A degradation of GMR with increasing Ar-ion dose is related to the formation of pinholes between Fe layers and the decrease of the antiferromagnetically coupled fraction.
The Leeuwin Current and its eddies: An introductory overview
NASA Astrophysics Data System (ADS)
Waite, A. M.; Thompson, P. A.; Pesant, S.; Feng, M.; Beckley, L. E.; Domingues, C. M.; Gaughan, D.; Hanson, C. E.; Holl, C. M.; Koslow, T.; Meuleners, M.; Montoya, J. P.; Moore, T.; Muhling, B. A.; Paterson, H.; Rennie, S.; Strzelecki, J.; Twomey, L.
2007-04-01
The Leeuwin Current (LC) is an anomalous poleward-flowing eastern boundary current that carries warm, low-salinity water southward along the coast of Western Australia. We present an introduction to a new body of work on the physical and biological dynamics of the LC and its eddies, collected in this Special Issue of Deep-Sea Research II, including (1) several modelling efforts aimed at understanding LC dynamics and eddy generation, (2) papers from regional surveys of primary productivity and nitrogen uptake patterns in the LC, and (3) the first detailed field investigations of the biological oceanography of LC mesoscale eddies. Key results in papers collected here include insight into the source regions of the LC and the Leeuwin Undercurrent (LUC), the energetic interactions of the LC and LUC, and their roles in the generation of warm-core (WC) and cold-core (CC) eddies, respectively. In near-shore waters, the dynamics of upwelling were found to control the spatio-temporal variability of primary production, and important latitudinal differences were found in the fraction of production driven by nitrate (the f-ratio). The ubiquitous deep chlorophyll maximum within LC was found to be a significant contributor to total water column production within the region. WC eddies including a single large eddy studied in 2000 contained relatively elevated chlorophyll a concentrations thought to originate at least in part from the continental shelf/shelf break region and to have been incorporated during eddy formation. During the Eddies 2003 voyage, a more detailed study comparing the WC and CC eddies illuminated more mechanistic details of the unusual dynamics and ecology of the eddies. Food web analysis suggested that the WC eddy had an enhanced "classic" food web, with more concentrated mesozooplankton and larger diatom populations than in the CC eddy. Finally, implications for fisheries management are addressed.
Eddy currents in a conducting sphere
NASA Technical Reports Server (NTRS)
Bergman, John; Hestenes, David
1986-01-01
This report analyzes the eddy current induced in a solid conducting sphere by a sinusoidal current in a circular loop. Analytical expressions for the eddy currents are derived as a power series in the vectorial displacement of the center of the sphere from the axis of the loop. These are used for first order calculations of the power dissipated in the sphere and the force and torque exerted on the sphere by the electromagnetic field of the loop.
NASA Astrophysics Data System (ADS)
Ro, Y.; Kim, E.
2008-12-01
The East (Japan) Sea is drawing keen international attentions from broad spectrum of groups such as scientists, diplomats, and defense officers for its geopolitical situation, peculiar scientific assets recognized as miniature ocean. From physical oceanographic aspect, it is very rich with many features such as basin-wide circulation pattern, boundary currents, sub-polar front, meso-scale eddy activities and deep water formation. The circulation pattern in the East (Japan) Sea has been of major interests for its peculiar gyre, a western boundary current and its separation that resembles the currents such as Kuroshio and Gulf Stream. In relation to the gyre system in the East Sea, the formation of the East Korea Warm Current (EKWC) has brought up with many numerical experiments. Numerical experiments suggested a new idea to explain the formation of the EKWC in that the potential energy supply into the Ulleung Basin (UB) from the meso-scale eddy is a key process. This is closely linked with the baroclinic instability and the meandering of offshore component of Tsushima Warm Current. The UB has drawn attentions for its role of the formation of two major boundary currents, EKWC, North Korea Warm Current (NKCC), their interaction with the mesoscale UWE, watermass exchange between the Northern Japan Basin and UB. Numerical experiments along with hydrographic and other satellite datasets such as AVHRR, altimeter and ARGO profiles have been analyzed to understand the formation of the UWE. We found that the influence of the bottom topography and frictional forcing against lateral boundary are all closely associated with the sub-polar front. Meandering of the axis of the sub-polar front is closely linked with the separation point of the EKWC, Ulleung Warm Eddy, and other small and meso-scale eddies on the sub-polar front. These will be demonstrated with results of the numerical modeling experiments and animation movie will be presented.
Mesoscale eddies control meridional heat flux variability in the subpolar North Atlantic
NASA Astrophysics Data System (ADS)
Zhao, Jian; Bower, Amy; Yang, Jiayan; Lin, Xiaopei; Zhou, Chun
2017-04-01
The meridional heat flux in the subpolar North Atlantic is vital to the climate of the high-latitude North Atlantic. For the basinwide heat flux across a section between Greenland and Scotland, much of the variability occurs in the Iceland basin, where the North Atlantic Current (NAC) carries relatively warm and salty water northward. As a component of the Overturning in the Subpolar North Atlantic Program (OSNAP), WHOI and OUC are jointly operating gliders in the Iceland Basin to continuously monitor the circulation and corresponding heat flux in this eddy-rich region. Based on one year of observations, two circulation regimes in the Iceland basin have been identified: a mesoscale eddy like circulation pattern and northward NAC circulation pattern. When a mesoscale eddy is generated, the rotational currents associated with the eddy lead to both northward and southward flow in the Iceland basin. This is quite different from the broad northward flow associated with the NAC when there is no eddy. The transition between the two regimes coupled with the strong temperature front in the Iceland basin can modify the meridional heat flux on the order of 0.3PW, which is the dominant source for the heat flux change the Iceland Basin. According to high-resolution numerical model results, the Iceland Basin has the largest contribution to the meridional heat flux variability along the section between Greenland and Scotland. Therefore, mesoscale eddies in the Iceland Basin provide important dynamics to control the meridional heat flux variability in the subpolar North Atlantic.
Internal and forced eddy variability in the Labrador Sea
NASA Astrophysics Data System (ADS)
Bracco, A.; Luo, H.; Zhong, Y.; Lilly, J.
2009-04-01
Water mass transformation in the Labrador Sea, widely believed to be one of the key regions in the Atlantic Meridional Overturning Circulation (AMOC), now appears to be strongly impacted by vortex dynamics of the unstable boundary current. Large interannual variations in both eddy shedding and buoyancy transport from the boundary current have been observed but not explained, and are apparently sensitive to the state of the inflowing current. Heat and salinity fluxes associated with the eddies drive ventilation changes not accounted for by changes in local surface forcing, particularly during occasional years of extreme eddy activity, and constitute a predominant source of "internal" oceanic variability. The nature of this variable eddy-driven restratification is one of the outstanding questions along the northern transformation pathway. Here we investigate the eddy generation mechanism and the associated buoyancy fluxes by combining realistic and idealized numerical modeling, data analysis, and theory. Theory, supported by idealized experiments, provides criteria to test hypotheses as to the vortex formation process (by baroclinic instability linked to the bottom topography). Ensembles of numerical experiments with a high-resolution regional model (ROMS) allow for quantifying the sensitivity of eddy generation and property transport to variations in local and external forcing parameters. For the first time, we reproduce with a numerical simulation the observed interannual variability in the eddy kinetic energy in the convective region of the Labrador Basin and along the West Greenland Current.
1980-02-01
base of the ice. Hourly averages pertaining to the fixed-mast current meters can be obtained through the National Oceano - graphic Data Center. The...431 441 451 461 471 481 49t 50 40 ’II 421 431 441 j 461 4 481 491 Sol , 71ME :N :AYs Fig’ure 11. Speed and direction plotted for the manned AIDJEX...EDDIES Swift mesoscale undercurrents are one of the most notable oceano - graphic features observed in the AIDJEX area of the Arctic Ocean. The eddy form
Inspection of cup-shaped steel parts from the I.D. side using eddy current
NASA Astrophysics Data System (ADS)
Griffiths, Erick W.; Pearson, Lee H.
2018-04-01
An eddy current method was developed to inspect cup-shaped steel parts from the I.D. side. During the manufacturing process of these parts, a thin Al tape foil is applied to the I.D. side of the part. One of the critical process parameters is that only one foil layer can be applied. An eddy current inspection system was developed to reject parts with more than one foil layer. The Al tape foil is cut to length to fit the inner diameter, however, after application of the foil there is a gap created between the beginning and end of the foil. It was found that this gap interfered with the eddy current inspection causing a false positive indication. To solve this problem a sensor design and data analysis process were developed to overcome the effects of these gaps. The developed system incorporates simultaneous measurements from multiple eddy current sensors and signal processing to achieve a reliable inspection.
Design and Application of Hybrid Magnetic Field-Eddy Current Probe
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Wallace, Terryl; Newman, Andy; Leser, Paul; Simpson, John
2013-01-01
The incorporation of magnetic field sensors into eddy current probes can result in novel probe designs with unique performance characteristics. One such example is a recently developed electromagnetic probe consisting of a two-channel magnetoresistive sensor with an embedded single-strand eddy current inducer. Magnetic flux leakage maps of ferrous materials are generated from the DC sensor response while high-resolution eddy current imaging is simultaneously performed at frequencies up to 5 megahertz. In this work the design and optimization of this probe will be presented, along with an application toward analysis of sensory materials with embedded ferromagnetic shape-memory alloy (FSMA) particles. The sensory material is designed to produce a paramagnetic to ferromagnetic transition in the FSMA particles under strain. Mapping of the stray magnetic field and eddy current response of the sample with the hybrid probe can thereby image locations in the structure which have experienced an overstrain condition. Numerical modeling of the probe response is performed with good agreement with experimental results.
Radially Focused Eddy Current Sensor for Detection of Longitudinal Flaws in Metallic Tubes
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor); Fulton, James P. (Inventor); Nath, Shridhar C. (Inventor); Todhunter, Ronald G. (Inventor); Namkung, Min (Inventor)
1999-01-01
A radially focused eddy current sensor detects longitudinal flaws in a metal tube. A drive coil induces eddy currents within the wall of the metal tube. A pick-up cod is spaced apart from the drive coil along the length of the metal tube. The pick@up coil is positioned with one end thereof lying adjacent the wall of the metal tube such that the pick-up coil's longitudinal axis is perpendicular to the wall of the metal tube. To isolate the pick-up coil from the magnetic flux of the drive coil and the flux from the induced eddy currents. except the eddy currents diverted by a longitudinal flaw. an electrically conducting material high in magnetic permeability surrounds all of the pick-up coil except its one end that is adjacent the walls of the metal tube. The electrically conducting material can extend into and through the drive coil in a coaxial relationship therewith.
Double-spin-echo diffusion weighting with a modified eddy current adjustment.
Finsterbusch, Jürgen
2010-04-01
Magnetic field inhomogeneities like eddy current-related gradient fields cause geometric distortions in echo-planar imaging (EPI). This in particular affects diffusion-weighted imaging where these distortions vary with the direction of the diffusion weighting and hamper the accurate determination of diffusion parameters. The double-spin-echo preparation often used aims to reduce the cumulative eddy current effect by adjusting the diffusion-weighting gradient pulse durations to the time constant of the dominant eddy current contribution. However, eddy currents with a variety of time constants may be present and cause residual distortions. Here, a modification is proposed where the two bipolar gradient pairs of the preparation are adjusted independently to different time constants. At the expense of a slightly prolonged echo time, residual geometric distortions and correspondingly increased values of the diffusion anisotropy can be reduced as is demonstrated in phantoms and the human brain. Thus, it may help to improve the reliability of diffusion-weighted EPI. Copyright 2010 Elsevier Inc. All rights reserved.
Thin film eddy current impulse deicer
NASA Technical Reports Server (NTRS)
Smith, Samuel O.; Zieve, Peter B.
1990-01-01
Two new styles of electrical impulse deicers has been developed and tested in NASA's Icing Research Tunnel. With the Eddy Current Repulsion Deicing Boot (EDB), a thin and flexible spiral coil is encapsulated between two thicknesses of elastomer. The coil, made by an industrial printed circuit board manufacturer, is bonded to the aluminum aircraft leading edge. A capacitor bank is discharged through the coil. Induced eddy currents repel the coil from the aluminum aircraft structure and shed accumulated ice. A second configuration, the Eddy Current Repulsion Deicing-Strip (EDS) uses an outer metal erosion strip fastened over the coil. Opposite flowing eddy currents repel the strip and create the impulse deicing force. The outer strip serves as a surface for the collection and shedding of ice and does not require any structural properties. The EDS is suitable for composite aircraft structures. Both systems successfully dispelled over 95 percent of the accumulated ice from airfoils over the range of the FAA icing envelope.
Brodsky, Ethan K.; Klaers, Jessica L.; Samsonov, Alexey A.; Kijowski, Richard; Block, Walter F.
2014-01-01
Non-Cartesian imaging sequences and navigational methods can be more sensitive to scanner imperfections that have little impact on conventional clinical sequences, an issue which has repeatedly complicated the commercialization of these techniques by frustrating transitions to multi-center evaluations. One such imperfection is phase errors caused by resonant frequency shifts from eddy currents induced in the cryostat by time-varying gradients, a phenomemon known as B0 eddy currents. These phase errors can have a substantial impact on sequences that use ramp sampling, bipolar gradients, and readouts at varying azimuthal angles. We present a method for measuring and correcting phase errors from B0 eddy currents and examine the results on two different scanner models. This technique yields significant improvements in image quality for high-resolution joint imaging on certain scanners. The results suggest that correction of short time B0 eddy currents in manufacturer provided service routines would simplify adoption of non-Cartesian sampling methods. PMID:22488532
Method for removal of random noise in eddy-current testing system
Levy, Arthur J.
1995-01-01
Eddy-current response voltages, generated during inspection of metallic structures for anomalies, are often replete with noise. Therefore, analysis of the inspection data and results is difficult or near impossible, resulting in inconsistent or unreliable evaluation of the structure. This invention processes the eddy-current response voltage, removing the effect of random noise, to allow proper identification of anomalies within and associated with the structure.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... effective date of this AD: Perform an in situ eddy current inspection for cracks on the forward lug of the...-6B11 (CL-415 Variant) airplanes). Thereafter, repeat the in situ eddy current inspection at intervals not to exceed 165 land landings. (2) If no crack is found: Repeat the in situ eddy current inspection...
NASA Astrophysics Data System (ADS)
Suzuki, Masao; Aiba, Masayuki; Takahashi, Noriyuki; Ota, Satoru; Okada, Shigenori
In a magnetically levitated transportation (MAGLEV) system, a huge number of ground coils will be required because they must be laid for the whole line. Therefore, stable performance and reduced cost are essential requirements for the ground coil development. On the other hand, because the magnetic field changes when the superconducting magnet passes by, an eddy current will be generated in the conductor of the ground coil and will result in energy loss. The loss not only increases the magnetic resistance for the train running but also brings an increase in the ground coil temperature. Therefore, the reduction of the eddy current loss is extremely important. This study examined ground coils in which both the eddy current loss and temperature increase were small. Furthermore, quantitative comparison for the eddy current loss of various magnet wire samples was performed by bench test. On the basis of the comparison, a round twisted wire having low eddy current loss was selected as an effective ground coil material. In addition, the ground coils were manufactured on trial. A favorable outlook to improve the size accuracy of the winding coil and uneven thickness of molded resin was obtained without reducing the insulation strength between the coil layers by applying a compression molding after winding.
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Williams, Phillip; Simpson, John
2007-01-01
The use of eddy current techniques for the detection of outer diameter damage in tubing and many complex aerospace structures often requires the use of an inner diameter probe due to a lack of access to the outside of the part. In small bore structures the probe size and orientation are constrained by the inner diameter of the part, complicating the optimization of the inspection technique. Detection of flaws through a significant remaining wall thickness becomes limited not only by the standard depth of penetration, but also geometrical aspects of the probe. Recently, an orthogonal eddy current probe was developed for detection of such flaws in Space Shuttle Primary Reaction Control System (PRCS) Thrusters. In this case, the detection of deeply buried stress corrosion cracking by an inner diameter eddy current probe was sought. Probe optimization was performed based upon the limiting spatial dimensions, flaw orientation, and required detection sensitivity. Analysis of the probe/flaw interaction was performed through the use of finite and boundary element modeling techniques. Experimental data for the flaw detection capabilities, including a probability of detection study, will be presented along with the simulation data. The results of this work have led to the successful deployment of an inspection system for the detection of stress corrosion cracking in Space Shuttle Primary Reaction Control System (PRCS) Thrusters.
NASA Technical Reports Server (NTRS)
Wincheski, Russell A.
2008-01-01
Thick, multi-layer aluminum structure has been widely used in aircraft design in critical wing splice areas. The multi-layer structure generally consists of three or four aluminum layers with different geometry and varying thickness, which are held together with fasteners. The detection of cracks under fasteners with ultrasonic techniques in subsurface layers away from the skin is impeded primarily by interlayer bonds and faying sealant condition. Further, assessment of such sealant condition is extremely challenging in terms of complexity of structure, limited access, and inspection cost. Although Eddy current techniques can be applied on in-service aircraft from the exterior of the skin without knowing sealant condition, the current eddy current techniques are not able to detect defects with wanted sensitivity. In this work a series of low frequency eddy current probes have been designed, fabricated and tested for this application. A probe design incorporating a shielded magnetic field sensor concentrically located in the interior of a drive coil has been employed to enable a localized deep diffusion of the electromagnetic field into the part under test. Due to the required low frequency inspections, probes have been testing using a variety of magnetic field sensors (pickup coil, giant magneto-resistive, anisotropic magneto-resistive, and spin-dependent tunneling). The probe designs as well as capabilities based upon a target inspection for sub-layer cracking in an airframe wing spar joint is presented.
Observational evidence of seasonality in the timing of loop current eddy separation
NASA Astrophysics Data System (ADS)
Hall, Cody A.; Leben, Robert R.
2016-12-01
Observational datasets, reports and analyses over the time period from 1978 through 1992 are reviewed to derive pre-altimetry Loop Current (LC) eddy separation dates. The reanalysis identified 20 separation events in the 15-year record. Separation dates are estimated to be accurate to approximately ± 1.5 months and sufficient to detect statistically significant LC eddy separation seasonality, which was not the case for previously published records because of the misidentification of separation events and their timing. The reanalysis indicates that previously reported LC eddy separation dates, determined for the time period before the advent of continuous altimetric monitoring in the early 1990s, are inaccurate because of extensive reliance on satellite sea surface temperature (SST) imagery. Automated LC tracking techniques are used to derive LC eddy separation dates in three different altimetry-based sea surface height (SSH) datasets over the time period from 1993 through 2012. A total of 28-30 LC eddy separation events were identified in the 20-year record. Variations in the number and dates of eddy separation events are attributed to the different mean sea surfaces and objective-analysis smoothing procedures used to produce the SSH datasets. Significance tests on various altimetry and pre-altimetry/altimetry combined date lists consistently show that the seasonal distribution of separation events is not uniform at the 95% confidence level. Randomization tests further show that the seasonal peak in LC eddy separation events in August and September is highly unlikely to have occurred by chance. The other seasonal peak in February and March is less significant, but possibly indicates two seasons of enhanced probability of eddy separation centered near the spring and fall equinoxes. This is further quantified by objectively dividing the seasonal distribution into two seasons using circular statistical techniques and a k-means clustering algorithm. The estimated spring and fall centers are March 2nd and August 23rd, respectively, with season boundaries in May and December.
GEM: a dynamic tracking model for mesoscale eddies in the ocean
NASA Astrophysics Data System (ADS)
Li, Qiu-Yang; Sun, Liang; Lin, Sheng-Fu
2016-12-01
The Genealogical Evolution Model (GEM) presented here is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish between different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, the GEM first uses a two-dimensional (2-D) similarity vector (i.e., a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the "missing eddy" problem (temporarily lost eddy in tracking). Second, for tracking when an eddy splits, the GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as the birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O(LM(N + 1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distributions in the North Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". The GEM is useful not only for satellite-based observational data, but also for numerical simulation outputs. It is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.
NASA Astrophysics Data System (ADS)
Antarnusa, G.; Elda Swastika, P.; Suharyadi, E.
2018-04-01
A Wheatstone bridge-giant magnetoresistance (GMR) sensor was successfully developed for a potential biomaterial detection. In order to achieve this, a giant magnetoresistive [Co(1.5nm/Cu(1.0nm)]20 multilayer structures have been fabricated by DC magnetron sputtering method, showing a magnetoresistance (MR) of 2.7%. The X-Ray diffraction (XRD) patterns showed that Co/Cu film multilayer has a high degree of crystallinity with a single peak corresponding to face-centered cubic (111) structure at 2θ = 44.1°. Co/Cu multilayers exhibit a soft magnetic behavior with the saturation magnetization (Ms) of 1489 emu/cc and the coercivity (Hc) of 11.2 Oe. The magnetite Fe3O4 nanoparticles used as a bimolecular labels (nanotags) were synthesized via co-precipitation method, exhibiting a soft magnetic behavior with Ms of 77.16 emu/g and Hc of 49 Oe. XRD patterns and transmission electron microscopy (TEM) images showed that Fe3O4 was well crystallized and it grew in their inverse spinel structure with an average size of around 10 nm. The GMR sensor design was used to detect a biomolecules of streptavidin magnetic particles with concentration 10, 20, 30, and 40 μl/ml and α-amylase enzyme with consentration 10, 20, 30, and 40 μl/ml captured using polyethylene glycol (PEG)/Fe3O4 nanoparticles. Various applied magnetic fields of 0-650 Gauss have been performed using electromagnetic with the various currents of 0-5 A. Here, the final value of the output voltage signals for the streptavidin magnetic particles concentration is 1.2 mV (10 μl/ml). The output voltage changes with the increase of concentration. It was reported that the output voltage signal of the Wheatstone bridge exhibits log-linear function in real time measurement of the concentration of streptavidin magnetic particles and α-amylase enzyme respectively, making the sensor suitable for use as a biomolecule concentration detector. Thus, the combination of Co/Cu multilayer, Wheatstone bridge, magnetite and PEG polymer has potential application to be used in bio-detection applications where ultra-small bio-labels are needed.
NASA Astrophysics Data System (ADS)
Ji, Jinghua; Luo, Jianhua; Lei, Qian; Bian, Fangfang
2017-05-01
This paper proposed an analytical method, based on conformal mapping (CM) method, for the accurate evaluation of magnetic field and eddy current (EC) loss in fault-tolerant permanent-magnet (FTPM) machines. The aim of modulation function, applied in CM method, is to change the open-slot structure into fully closed-slot structure, whose air-gap flux density is easy to calculate analytically. Therefore, with the help of Matlab Schwarz-Christoffel (SC) Toolbox, both the magnetic flux density and EC density of FTPM machine are obtained accurately. Finally, time-stepped transient finite-element method (FEM) is used to verify the theoretical analysis, showing that the proposed method is able to predict the magnetic flux density and EC loss precisely.
Eddy Current Testing and Sizing of Deep Cracks in a Thick Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, H.; Endo, H.; Uchimoto, T.
2004-02-26
Due to the skin effect of eddy current testing, target of ECT restricts to thin structure such as steam generator tubes with 1.27mm thickness. Detecting and sizing of a deep crack in a thick structure remains a problem. In this paper, an ECT probe is presented to solve this problem with the help of numerical analysis. The parameters such as frequency, coil size etc. are discussed. The inverse problem of crack sizing is solved by applying a fast simulator of ECT based on an edge based finite element method and steepest descent method, and reconstructed results of 5, 10 andmore » 15mm depth cracks from experimental signals are shown.« less
Determining Confounding Sensitivities In Eddy Current Thin Film Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gros, Ethan; Udpa, Lalita; Smith, James A.
Determining Confounding Sensitivities In Eddy Current Thin Film Measurements Ethan Gros, Lalita Udpa, Electrical Engineering, Michigan State University, East Lansing MI 48824 James A. Smith, Experiment Analysis, Idaho National Laboratory, Idaho Falls ID 83415 Eddy current (EC) techniques are widely used in industry to measure the thickness of non-conductive films on a metal substrate. This is done using a system whereby a coil carrying a high-frequency alternating current is used to create an alternating magnetic field at the surface of the instrument's probe. When the probe is brought near a conductive surface, the alternating magnetic field will induce ECs inmore » the conductor. The substrate characteristics and the distance of the probe from the substrate (the coating thickness) affect the magnitude of the ECs. The induced currents load the probe coil affecting the terminal impedance of the coil. The measured probe impedance is related to the lift off between coil and conductor as well as conductivity of the test sample. For a known conductivity sample, the probe impedance can be converted into an equivalent film thickness value. The EC measurement can be confounded by a number of measurement parameters. It is the goal of this research to determine which physical properties of the measurement set-up and sample can adversely affect the thickness measurement. The eddy current testing is performed using a commercially available, hand held eddy current probe (ETA3.3H spring loaded eddy probe running at 8 MHz) that comes with a stand to hold the probe. The stand holds the probe and adjusts the probe on the z-axis to help position the probe in the correct area as well as make precise measurements. The signal from the probe is sent to a hand held readout, where the results are recorded directly in terms of liftoff or film thickness. Understanding the effect of certain factors on the measurements of film thickness, will help to evaluate how accurate the ETA3.3H spring loaded eddy probe is at measuring film thickness under varying experimental conditions. This research will study the effects of a number of factors such as i) calibration, ii) conductivity, iii) edge effect, iv) surface finish of base material and v) cable condition and compare with the long term reproducibility of a standard measurement. This work was performed with support from the Department of Energy under the United States National Nuclear Security Administration (NNSA) at the Idaho National Laboratory.« less
Varki, Roslyn; Pequignot, Ed; Leavitt, Mark C; Ferber, Andres; Kraft, Walter K
2009-01-01
Background AVI-014 is an egg white-derived, recombinant, human granulocyte colony-stimulating factor (G-CSF). This healthy volunteer study is the first human investigation of AVI-014. Methods 24 male and female subjects received a single subcutaneous injection of AVI-014 at 4 or 8 mcg/kg. 16 control subjects received 4 or 8 mcg/kg of filgrastim (Neupogen, Amgen) in a partially blinded, parallel fashion. Results The Geometric Mean Ratio (GMR) (90% CI) of 4 mcg/kg AVI-014/filgrastim AUC(0–72 hr) was 1.00 (0.76, 1.31) and Cmax was 0.86 (0.66, 1.13). At the 8 mcg/kg dose, the AUC(0–72) GMR was 0.89 (0.69, 1.14) and Cmax was 0.76 (0.58, 0.98). A priori pharmacokinetic bioequivalence was defined as the 90% CI of the GMR bounded by 0.8–1.25. Both the white blood cell and absolute neutrophil count area under the % increase curve AUC(0–9 days) and Cmax (maximal % increase from baseline)GMR at 4 and 8 mcg/kg fell within the 0.5–2.0 a priori bound set for pharmacodynamic bioequivalence. The CD 34+ % increase curve AUC(0–9 days) and Cmax GMR for both doses was ~1, but 90% confidence intervals were large due to inherent variance, and this measure did not meet pharmacodynamic bioequivalence. AVI-014 demonstrated a side effect profile similar to that of filgrastim. Conclusion AVI-014 has safety, pharmacokinetic, and pharmacodynamic properties comparable to filgrastim at an equal dose in healthy volunteers. These findings support further investigation in AVI-014. PMID:19175929
Portable, one-step, and rapid GMR biosensor platform with smartphone interface.
Choi, Joohong; Gani, Adi Wijaya; Bechstein, Daniel J B; Lee, Jung-Rok; Utz, Paul J; Wang, Shan X
2016-11-15
Quantitative immunoassay tests in clinical laboratories require trained technicians, take hours to complete with multiple steps, and the instruments used are generally immobile-patient samples have to be sent in to the labs for analysis. This prevents quantitative immunoassay tests to be performed outside laboratory settings. A portable, quantitative immunoassay device will be valuable in rural and resource-limited areas, where access to healthcare is scarce or far away. We have invented Eigen Diagnosis Platform (EDP), a portable quantitative immunoassay platform based on Giant Magnetoresistance (GMR) biosensor technology. The platform does not require a trained technician to operate, and only requires one-step user involvement. It displays quantitative results in less than 15min after sample insertion, and each test costs less than US$4. The GMR biosensor employed in EDP is capable of detecting multiple biomarkers in one test, enabling a wide array of immune diagnostics to be performed simultaneously. In this paper, we describe the design of EDP, and demonstrate its capability. Multiplexed assay of human immunoglobulin G and M (IgG and IgM) antibodies with EDP achieves sensitivities down to 0.07 and 0.33 nanomolar, respectively. The platform will allow lab testing to be performed in remote areas, and open up applications of immunoassay testing in other non-clinical settings, such as home, school, and office. Copyright © 2016 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-10-01
... for DOT 3AL Cylinders Manufactured of Aluminum Alloy 6351-T6 C Appendix C to Part 180 Transportation... Pt. 180, App. C Appendix C to Part 180—Eddy Current Examination With Visual Inspection for DOT 3AL... with CGA pamphlet C-6.1 (IBR; see § 171.7 of this subchapter). 3. Eddy Current Equipment. A reference...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-10
... repetitive detailed inspections for disbonding and cracking of the fuselage inner doubler; eddy current and... detailed inspections for disbonding and cracking of the fuselage inner doubler; eddy current and ultrasonic... or Modification if Necessary (g) For airplanes on which an eddy current inspection of the ``special...
Eddy current simulation in thick cylinders of finite length induced by coils of arbitrary geometry.
Sanchez Lopez, Hector; Poole, Michael; Crozier, Stuart
2010-12-01
Eddy currents are inevitably induced when time-varying magnetic field gradients interact with the metallic structures of a magnetic resonance imaging (MRI) scanner. The secondary magnetic field produced by this induced current degrades the spatial and temporal performance of the primary field generated by the gradient coils. Although this undesired effect can be minimized by using actively and/or passively shielded gradient coils and current pre-emphasis techniques, a residual eddy current still remains in the MRI scanner structure. Accurate simulation of these eddy currents is important in the successful design of gradient coils and magnet cryostat vessels. Efficient methods for simulating eddy currents are currently restricted to cylindrical-symmetry. The approach presented in this paper divides thick conducting cylinders into thin layers (thinner than the skin depth) and expresses the current density on each as a Fourier series. The coupling between each mode of the Fourier series with every other is modeled with an inductive network method. In this way, the eddy currents induced in realistic cryostat surfaces by coils of arbitrary geometry can be simulated. The new method was validated by simulating a canonical problem and comparing the results against a commercially available software package. An accurate skin depth of 2.76 mm was calculated in 6 min with the new method. The currents induced by an actively shielded x-gradient coil were simulated assuming a finite length cylindrical cryostat consisting of three different conducting materials. Details of the temporal-spatial induced current diffusion process were simulated through all cryostat layers, which could not be efficiently simulated with any other method. With this data, all quantities that depend on the current density, such as the secondary magnetic field, are simply evaluated. Copyright © 2010 Elsevier Inc. All rights reserved.
Giant magnetoresistive heterogeneous alloys and method of making same
Bernardi, Johannes J.; Thomas, Gareth; Huetten, Andreas R.
1999-01-01
The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties.
Giant magnetoresistive heterogeneous alloys and method of making same
Bernardi, J.J.; Thomas, G.; Huetten, A.R.
1999-03-16
The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by (a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and (b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties. 7 figs.
Giant magnetoresistive heterogeneous alloys and method of making same
Bernardi, Johannes J.; Thomas, Gareth; Huetten, Andreas R.
1998-01-01
The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties.
Giant magnetoresistive heterogeneous alloys and method of making same
Bernardi, J.J.; Thomas, G.; Huetten, A.R.
1998-10-20
The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by (a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and (b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties. 7 figs.
NASA Astrophysics Data System (ADS)
MacDonald, H. S.; Roughan, M.; Baird, M. E.; Wilkin, J.
2013-01-01
Eddy energy sources and mesoscale eddies in the Sea of Okhotsk
NASA Astrophysics Data System (ADS)
Stepanov, Dmitry V.; Diansky, Nikolay A.; Fomin, Vladimir V.
2018-05-01
Based on eddy-permitting ocean circulation model outputs, the mesoscale variability is studied in the Sea of Okhotsk. We confirmed that the simulated circulation reproduces the main features of the general circulation in the Sea of Okhotsk. In particular, it reproduced a complex structure of the East-Sakhalin current and the pronounced seasonal variability of this current. We established that the maximum of mean kinetic energy was associated with the East-Sakhalin Current. In order to uncover causes and mechanisms of the mesoscale variability, we studied the budget of eddy kinetic energy (EKE) in the Sea of Okhotsk. Spatial distribution of the EKE showed that intensive mesoscale variability occurs along the western boundary of the Sea of Okhotsk, where the East-Sakhalin Current extends. We revealed a pronounced seasonal variability of EKE with its maximum intensity in winter and its minimum intensity in summer. Analysis of EKE sources and rates of energy conversion revealed a leading role of time-varying (turbulent) wind stress in the generation of mesoscale variability along the western boundary of the Sea of Okhotsk in winter and spring. We established that a contribution of baroclinic instability predominates over that of barotropic instability in the generation of mesoscale variability along the western boundary of the Sea of Okhotsk. To demonstrate the mechanism of baroclinic instability, the simulated circulation was considered along the western boundary of the Sea of Okhotsk from January to April 2005. In April, the mesoscale anticyclonic eddies are observed along the western boundary of the Sea of Okhotsk. The role of the sea ice cover in the intensification of the mesoscale variability in the Sea of Okhotsk was discussed.
Pinholes and Nano-oxide Specular Layers in Spin Valves
NASA Astrophysics Data System (ADS)
Fry, R. A.; Egelhoff, W. F., Jr.; McMichael, R. D.; Chen, P. J.; Powell, C. J.; Beach, G.; Berkowitz, A. E.
2001-03-01
Recently, nano-oxide layers (NOL) in giant magnetoresistance (GMR) spin valves have attracted interest as a method of achieving increased GMR associated with specular reflection at Co/oxide interfaces. The NOL must be thin enough so that strong magnetic coupling across it exists; otherwise, the films separated by NOL could switch separately. We have investigated the structure NiO/2.5 nm Co/2.5 nm Cu/2 nm Co/NOL/2 nm Co/10 nm IrMn. The bottom Co is pinned by NiO more strongly than the top Co is pinned by IrMn; thus the top Co film can be switched to observe GMR loops. With no NOL, the GMR loop obtained by switching the 4 nm top Co film is shifted 300 Oe by the exchange bias of IrMn. Using CoO as a NOL, at thickness of 1 nm there is a sudden drop from 300 Oe to <10 Oe. It appears that pinhole coupling at CoO<1 nm forces the two Co films to switch together, but at CoO 1 nm the pinholes close up and the Co films switch separately. Such observations constitute a new approach to the study of pinholes, and we use it to investigate several oxides and metal spacer layers.
Effects of Substrate Surface Topology on NiFe/Cu/Co Spin Valve Characteristics
NASA Astrophysics Data System (ADS)
Kim, Hyeong-Jun; Jeong, Won-Cheol; Cho, Kwon-Ku; Kim, Young-Keun; Joo, Seung-Ki
2000-08-01
In order to control the crystallinity of sputter-deposited NiFe/Cu/Co spin valve thin films, surface topology of 4°tilt-cut Si(111) substrates was modified in various ways prior to formation of the spin valves. In case of the mirror polished substrate, NiFe and Co showed fcc (110) preferred orientation with in-plane uniaxial magnetic anisotropy. The easy axes of these magnetic layers were aligned in 90° to each other and giant magnetoresistance (GMR) was measured to be 4.5% at room temperature. The spin valves formed on the amorphized substrate by Ar ion mass doping, however, did not show magnetic anisotropy due to the loss of crystallinity and no appreciable GMR could be observed. The spin valves deposited on the unpolished substrate, of which the average surface roughness was measured to be a few microns, turned out to show a sound multilayeredness as well as crystallinity, but GMR was reduced to 3.5%. Tailing in the magnetoresistance (R-H) curve occurred in the spin valves formed on the unpolished substrate, and it was thought to be attributed to the shape anisotropy related to the interface roughness of the films. Detailed discussion on the relationship between GMR and crystallinity of the magnetic layers has been made with the results of simple simulation.
Eddy-Current Reference Standard
NASA Technical Reports Server (NTRS)
Ambrose, H. H., Jr.
1985-01-01
Magnetic properties of metallic reference standards duplicated and stabilized for eddy-current coil measurements over long times. Concept uses precisely machined notched samples of known annealed materials as reference standards.
NASA Astrophysics Data System (ADS)
Fontchastagner, Julien; Lubin, Thierry; Mezani, Smaïl; Takorabet, Noureddine
2018-03-01
This paper presents a design optimization of an axial-flux eddy-current magnetic coupling. The design procedure is based on a torque formula derived from a 3D analytical model and a population algorithm method. The main objective of this paper is to determine the best design in terms of magnets volume in order to transmit a torque between two movers, while ensuring a low slip speed and a good efficiency. The torque formula is very accurate and computationally efficient, and is valid for any slip speed values. Nevertheless, in order to solve more realistic problems, and then, take into account the thermal effects on the torque value, a thermal model based on convection heat transfer coefficients is also established and used in the design optimization procedure. Results show the effectiveness of the proposed methodology.
Berger, Dietrich; Lanza, Gisela
2017-12-21
This publication presents the realisation of a sensor concept, which is based on eddy current testing, to detect textile defects during preforming of semi-finished carbon fibre parts. The presented system has the potential for 100% control of manufactured carbon fibre based components, allowing the immediate exclusion of defective parts from further process steps. The core innovation of this system is given by the high degree of process integration, which has not been implemented in the state of the art. The publication presents the functional principle of the sensor that is based on half-transmission probes as well as the signals that can be gained by its application. Furthermore, a method to determine the optimum sensor resolution is presented as well as the sensor housing and its integration in the preforming process.
NASA Astrophysics Data System (ADS)
Rühs, Siren; Zhurbas, Victor; Durgadoo, Jonathan V.; Biastoch, Arne
2017-04-01
The Lagrangian description of fluid motion by sets of individual particle trajectories is extensively used to characterize connectivity between distinct oceanic locations. One important factor influencing the connectivity is the average rate of particle dispersal, generally quantified as Lagrangian diffusivity. In addition to Lagrangian observing programs, Lagrangian analyses are performed by advecting particles with the simulated flow field of ocean general circulation models (OGCMs). However, depending on the spatio-temporal model resolution, not all scale-dependent processes are explicitly resolved in the simulated velocity fields. Consequently, the dispersal of advective Lagrangian trajectories has been assumed not to be sufficiently diffusive compared to observed particle spreading. In this study we present a detailed analysis of the spatially variable lateral eddy diffusivity characteristics of advective drifter trajectories simulated with realistically forced OGCMs and compare them with estimates based on observed drifter trajectories. The extended Agulhas Current system around South Africa, known for its intricate mesoscale dynamics, serves as a test case. We show that a state-of-the-art eddy-resolving OGCM indeed features theoretically derived dispersion characteristics for diffusive regimes and realistically represents Lagrangian eddy diffusivity characteristics obtained from observed surface drifter trajectories. The estimates for the maximum and asymptotic lateral single-particle eddy diffusivities obtained from the observed and simulated drifter trajectories show a good agreement in their spatial pattern and magnitude. We further assess the sensitivity of the simulated lateral eddy diffusivity estimates to the temporal and lateral OGCM output resolution and examine the impact of the different eddy diffusivity characteristics on the Lagrangian connectivity between the Indian Ocean and the South Atlantic.
System for evaluating weld quality using eddy currents
Todorov, Evgueni I.; Hay, Jacob
2017-12-12
Electromagnetic and eddy current techniques for fast automated real-time and near real-time inspection and monitoring systems for high production rate joining processes. An eddy current system, array and method for the fast examination of welds to detect anomalies such as missed seam (MS) and lack of penetration (LOP) the system, array and methods capable of detecting and sizing surface and slightly subsurface flaws at various orientations in connection with at least the first and second weld pass.
Modelling of eddy currents related to large angle magnetic suspension test fixture
NASA Technical Reports Server (NTRS)
Britcher, Colin P.; Foster, Lucas E.
1994-01-01
This report presents a preliminary analysis of the mathematical modelling of eddy current effects in a large-gap magnetic suspension system. It is shown that eddy currents can significantly affect the dynamic behavior and control of these systems, but are amenable to measurement and modelling. A theoretical framework is presented, together with a comparison of computed and experimental data related to the Large Angle Magnetic Suspension Test Fixture at NASA Langley Research Center.
NASA Technical Reports Server (NTRS)
Dever, Timothy P.; Palazzolo, Alan B.; Thomas, Erwin M., III; Jansen, Ralph H.; McLallin, Kerry (Technical Monitor); Soeder, James (Technical Monitor)
2001-01-01
Eddy current position sensor performance is evaluated for use in a high-speed flywheel development system. The flywheel utilizes a five axis active magnetic bearing system. The eddy current sensors are used for position feedback for the bearing controller. Measured characteristics include sensitivity to multiple target materials and susceptibility to noise from the magnetic bearings and from sensor-to-sensor crosstalk. Improvements in axial sensor configuration and techniques for noise reduction are described.
Meakin, James A; Jezzard, Peter
2013-03-01
Velocity-selective (VS) arterial spin labeling is a promising method for measuring perfusion in areas of slow or collateral flow by eliminating the bolus arrival delay associated with other spin labeling techniques. However, B(0) and B(1) inhomogeneities and eddy currents during the VS preparation hinder accurate quantification of perfusion with VS arterial spin labeling. In this study, it is demonstrated through simulations and experiments in healthy volunteers that eddy currents cause erroneous tagging of static tissue. Consequently, mean gray matter perfusion is overestimated by up to a factor of 2, depending on the VS preparation used. A novel eight-segment B(1) insensitive rotation VS preparation is proposed to reduce eddy current effects while maintaining the B(0) and B(1) insensitivity of previous preparations. Compared to two previous VS preparations, the eight-segment B(1) insensitive rotation is the most robust to eddy currents and should improve the quality and reliability of VS arterial spin labeling measurements in future studies. Copyright © 2012 Wiley Periodicals, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-02
... airplanes. This AD requires repetitive detailed and high frequency eddy current inspections of the forward... high frequency eddy current (HFEC) inspections of the forward and aft sides of the strut front spar... date of this AD, whichever occurs later: Perform a detailed inspection and a high frequency eddy...
Multiple-channel guided mode resonance Brewster filter with controllable spectral separation.
Ma, Jianyong; Cao, Hongchao; Zhou, Changhe
2014-05-01
In this work, a single-layer, multiple-channel guided mode resonance (GMR) Brewster filter with controllable spectral separation is proposed using the plane waveguide method and rigorous coupled-wave analysis. Based on the normalized eigenvalue equation, the controllability of the spectral separation is analyzed when the fill ratio of the grating layer is changed while its effective index is identical to that of the substrate. The location and the separation between resonances can be specifically controlled by modifying the fill ratio of the grating layer. In contrast to the ordinary GMR filter, where the location of the resonances is material dependent, it is demonstrated that the spectral separation for the first and second resonances can be linearly controlled by altering the fill ratio of the grating layer. In addition, the maximal shift of the second resonance is up to 5% of the first resonant wavelength using the single-layer Brewster filter.
Kuo, Wen-Kai; Syu, Siang-He; Lin, Peng-Zhi; Yu, Hsin Her
2016-02-01
This paper reports on a transmitted-type dual-channel guided-mode resonance (GMR) sensor system that uses phase-shifting interferometry (PSI) to achieve tunable phase detection sensitivity. Five interference images are captured for the PSI phase calculation within ∼15 s by using a liquid crystal retarder and a USB web camera. The GMR sensor structure is formed by a nanoimprinting process, and the dual-channel sensor device structure for molding is fabricated using a 3D printer. By changing the rotation angle of the analyzer in front of the camera in the PSI system, the sensor detection sensitivity can be tuned. The proposed system may achieve high throughput as well as high sensitivity. The experimental results show that an optimal detection sensitivity of 6.82×10(-4) RIU can be achieved.
View of cold water eddies in Falkland Current off southern Argentina
1973-12-14
SL4-137-3608 (14 Dec. 1973) --- A view of cold water eddies in the Falkland Current off the South Atlantic coast of southern Argentina as seen from the Skylab space station in Earth orbit. This picture was taken by one of the Skylab 4 crewmen using a hand-held 70mm Hasselblad camera. This land area (left corner) extends south along the coast from Puerto Deseado (center left border) for about 50 miles. Within the ocean, several light blue areas are visible and represent the occurrence of plankton with the Falkland Current. Over the ocean, the cold water eddies are identified by the circular cloud-free areas within the cloud street pattern and bordered by cumulus cloud buildup (white). The cloud streets indicate the wind is from the southwest and do not form over eddies because energy form the atmosphere is absorbed by the cold ocean water. On the downwind side of the eddies, cumulus clouds tend to form as the cold moist air flows over the warmer water. Similar cloud and eddy features have been observed by the Skylab 4 crewmen in the Yucatan Current off Yucatan Peninsula and in some parts of the South Pacific. Studies are underway by Dr. George Maul, NOAA, and Dr. Robert Stevenson, ONR, to determine the significance of the cold water eddies to ocean dynamics. Photo credit: NASA
Voysey, Merryn; Sadarangani, Manish; Clutterbuck, Elizabeth; Bolgiano, Barbara; Pollard, Andrew J
2016-07-25
Protein-polysaccharide conjugate vaccines such as Haemophilus influenzae type b (Hib), meningococcal, and pneumococcal vaccine, induce immunological memory and longer lasting protection than plain polysaccharide vaccines. The most common proteins used as carriers are tetanus toxoid (TT) and cross reacting material-197 (CRM), a mutant form of diphtheria toxoid. CRM conjugate vaccines have been reported to suppress antibody responses to co-administered Hib-TT vaccine. We conducted a systematic review and meta-analysis of randomised controlled trials in which infants were randomised to receive meningococcal or pneumococcal conjugate vaccines along with Hib-TT. Trials of licensed vaccines with different carrier proteins were included for group C meningococcal (MenC), quadrivalent ACWY meningococcal (MenACWY), and pneumococcal vaccines. Twenty-three trials were included in the meta-analyses. Overall, administration of MenC-CRM in a 2 or 3 dose schedule resulted in a 45% reduction in Hib antibody concentrations (GMR 0.55, 95% CI 0.49-0.62). MenACWY-CRM boosted Hib antibody responses by 22% (GMR 1.22, 95% CI 1.06-1.41) whilst pneumococcal CRM conjugate vaccines had no impact on Hib antibody responses (GMR 0.91, 95% CI 0.68-1.22). The effect of CRM protein-polysaccharide conjugate vaccines on Hib antibody responses varies greatly between vaccines. Co-administration of a CRM conjugate vaccine can produce either positive or negative effects on Hib antibody responses. These inconsistencies suggest that CRM itself may not be the main driver of variability in Hib responses, and challenge current perspectives on this issue. Copyright © 2016 Elsevier Ltd. All rights reserved.
Variability of the Somali Current and eddies during the southwest monsoon regimes
NASA Astrophysics Data System (ADS)
Trott, Corinne B.; Subrahmanyam, Bulusu; Murty, V. S. N.
2017-09-01
The meso-scale eddies and currents in the Arabian Sea are analyzed using different satellite observations, Simple Oceanic Data Assimilation (SODA) reanalysis, and Ocean Reanalysis System 4 (ORAS4) from 1993 to 2016 to investigate the impacts of Southwest (SW) Monsoon strength on Somali Current (SC) mesoscale circulations such as the Great Whirl (GW), the Socotra Eddy (SE), the Southern Gyre (SG), and smaller eddies. Increased Ekman pumping during stronger SW monsoons strengthens coastal upwelling along the Somali coast. The Arabian Sea basin-wide anticyclonic circulation and presence of the GW form mesoscale circulation patterns favourable to advection of upwelled waters eastward into the central Arabian Sea. In September, after the SW monsoon winds reach peak strength in July and August, a higher number of discrete anticyclonic eddies with higher (> 20 cm) sea surface height anomalies develop in strong and normal intensity SW monsoon seasons than weaker SW monsoon seasons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlueter, R.D.; Halbach, K.
1991-12-04
This memo presents the formulation of an expression for eddy currents induced in a thin-walled conductor due to a time-dependent electromagnet field excitation. Then follows an analytical development for prediction of vacuum chamber eddy current induced field harmonics in iron-core electromagnets. A passive technique for harmonics suppression is presented with specific application to the design of the Superconducting Super Collider (SSC) Low Energy B (LEB) Magnets.
Eddy current NDE performance demonstrations using simulation tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurice, L.; Costan, V.; Guillot, E.
2013-01-25
To carry out performance demonstrations of the Eddy-Current NDE processes applied on French nuclear power plants, EDF studies the possibility of using simulation tools as an alternative to measurements on steam generator tube mocks-up. This paper focuses on the strategy led by EDF to assess and use code{sub C}armel3D and Civa, on the case of Eddy-Current NDE on wears problem which may appear in the U-shape region of steam generator tubes due to the rubbing of anti-vibration bars.
Procedure for Automated Eddy Current Crack Detection in Thin Titanium Plates
NASA Technical Reports Server (NTRS)
Wincheski, Russell A.
2012-01-01
This procedure provides the detailed instructions for conducting Eddy Current (EC) inspections of thin (5-30 mils) titanium membranes with thickness and material properties typical of the development of Ultra-Lightweight diaphragm Tanks Technology (ULTT). The inspection focuses on the detection of part-through, surface breaking fatigue cracks with depths between approximately 0.002" and 0.007" and aspect ratios (a/c) of 0.2-1.0 using an automated eddy current scanning and image processing technique.
NASA Astrophysics Data System (ADS)
Cherry, Aaron; Knopp, Jeremy; Aldrin, John C.; Sabbagh, Harold A.; Boehnlein, Thomas; Mooers, Ryan
2013-01-01
There is a need to improve the understanding of the role of interface conditions on eddy current inspections for cracks in multilayer aircraft structures. This paper presents initial experimental and simulated results studying the influence of gaps and contact conditions between two plates with a notch in the second layer. Simulations show an amplification of the eddy current signal for a subsurface notch adjacent to an air gap as opposed to a submerged notch in a solid plate.
NASA Technical Reports Server (NTRS)
Ellis, R. C.; Fink, R. A.; Rich, R. W.
1989-01-01
A high torque capacity eddy current damper used as a rate limiting device for a large solar array deployment mechanism is discussed. The eddy current damper eliminates the problems associated with the outgassing or leaking of damping fluids. It also provides performance advantages such as damping torque rates, which are truly linear with respect to input speed, continuous 360 degree operation in both directions of rotation, wide operating temperature range, and the capability of convenient adjustment of damping rates by the user without disassembly or special tools.
Casimir Interaction from Magnetically Coupled Eddy Currents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Intravaia, Francesco; Henkel, Carsten
2009-09-25
We study the quantum and thermal fluctuations of eddy (Foucault) currents in thick metallic plates. A Casimir interaction between two plates arises from the coupling via quasistatic magnetic fields. As a function of distance, the relevant eddy current modes cross over from a quantum to a thermal regime. These modes alone reproduce previously discussed thermal anomalies of the electromagnetic Casimir interaction between good conductors. In particular, they provide a physical picture for the Casimir entropy whose nonzero value at zero temperature arises from a correlated, glassy state.
Sabouni, Abas; Pouliot, Philippe; Shmuel, Amir; Lesage, Frederic
2014-01-01
This paper introduce a fast and efficient solver for simulating the induced (eddy) current distribution in the brain during transcranial magnetic stimulation procedure. This solver has been integrated with MRI and neuronavigation software to accurately model the electromagnetic field and show eddy current in the head almost in real-time. To examine the performance of the proposed technique, we used a 3D anatomically accurate MRI model of the 25 year old female subject.
Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array.
Xie, Ruifang; Chen, Dixiang; Pan, Mengchun; Tian, Wugang; Wu, Xuezhong; Zhou, Weihong; Tang, Ying
2015-12-21
The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM), the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm.
Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array
Xie, Ruifang; Chen, Dixiang; Pan, Mengchun; Tian, Wugang; Wu, Xuezhong; Zhou, Weihong; Tang, Ying
2015-01-01
The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM), the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm. PMID:26703608
Benchmarking the mesoscale variability in global ocean eddy-permitting numerical systems
NASA Astrophysics Data System (ADS)
Cipollone, Andrea; Masina, Simona; Storto, Andrea; Iovino, Doroteaciro
2017-10-01
The role of data assimilation procedures on representing ocean mesoscale variability is assessed by applying eddy statistics to a state-of-the-art global ocean reanalysis (C-GLORS), a free global ocean simulation (performed with the NEMO system) and an observation-based dataset (ARMOR3D) used as an independent benchmark. Numerical results are computed on a 1/4 ∘ horizontal grid (ORCA025) and share the same resolution with ARMOR3D dataset. This "eddy-permitting" resolution is sufficient to allow ocean eddies to form. Further to assessing the eddy statistics from three different datasets, a global three-dimensional eddy detection system is implemented in order to bypass the need of regional-dependent definition of thresholds, typical of commonly adopted eddy detection algorithms. It thus provides full three-dimensional eddy statistics segmenting vertical profiles from local rotational velocities. This criterion is crucial for discerning real eddies from transient surface noise that inevitably affects any two-dimensional algorithm. Data assimilation enhances and corrects mesoscale variability on a wide range of features that cannot be well reproduced otherwise. The free simulation fairly reproduces eddies emerging from western boundary currents and deep baroclinic instabilities, while underestimates shallower vortexes that populate the full basin. The ocean reanalysis recovers most of the missing turbulence, shown by satellite products , that is not generated by the model itself and consistently projects surface variability deep into the water column. The comparison with the statistically reconstructed vertical profiles from ARMOR3D show that ocean data assimilation is able to embed variability into the model dynamics, constraining eddies with in situ and altimetry observation and generating them consistently with local environment.
Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epstein, Arthur J.
2013-09-10
Breakthrough results were achieved during the reporting period in the areas of organic spintronics. (A) For the first time the giant magnetic resistance (GMR) was observed in spin valve with an organic spacer. Thus we demonstrated the ability of organic semiconductors to transport spin in GMR devices using rubrene as a prototype for organic semiconductors. (B) We discovered the electrical bistability and spin valve effect in a ferromagnet /organic semiconductor/ ferromagnet heterojunction. The mechanism of switching between conducting phases and its potential applications were suggested. (C) The ability of V(TCNE)x to inject spin into organic semiconductors such as rubrene wasmore » demonstrated for the first time. The mechanisms of spin injection and transport from and into organic magnets as well through organic semiconductors were elucidated. (D) In collaboration with the group of OSU Prof. Johnston-Halperin we reported the successful extraction of spin polarized current from a thin film of the organic-based room temperature ferrimagnetic semiconductor V[TCNE]x and its subsequent injection into a GaAs/AlGaAs light-emitting diode (LED). Thus all basic steps for fabrication of room temperature, light weight, flexible all organic spintronic devices were successfully performed. (E) A new synthesis/processing route for preparation of V(TCNE)x enabling control of interface and film thicknesses at the nanoscale was developed at OSU. Preliminary results show these films are higher quality and what is extremely important they are substantially more air stable than earlier prepared V(TCNE)x. In sum the breakthrough results we achieved in the past two years form the basis of a promising new technology, Multifunctional Flexible Organic-based Spintronics (MFOBS). MFOBS technology enables us fabrication of full function flexible spintronic devices that operate at room temperature.« less
Drag and Lift Forces Between a Rotating Conductive Sphere and a Cylindrical Magnet
NASA Technical Reports Server (NTRS)
Nurge, Mark A.; Youngquist, Robert C.
2017-01-01
Modeling the interaction between a non-uniform magnetic field and a rotating conductive object allows study of the drag force which is used in applications such as eddy current braking and linear induction motors as well as the transition to a repulsive force that is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two step mathematics process is developed to find a closed form solution in terms of only two eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.
Drag and lift forces between a rotating conductive sphere and a cylindrical magnet
NASA Astrophysics Data System (ADS)
Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.
2018-06-01
Modeling the interaction between a non-uniform magnetic field and a rotating conductive object provides insight into the drag force, which is used in applications such as eddy current braking and linear induction motors, as well as the transition to a repulsive force, which is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two-step mathematical process is developed to find a closed-form solution in terms of only three eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate-level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.
Scanning the welded joints of aluminium alloys using subminiature eddy-current transducers
NASA Astrophysics Data System (ADS)
Dmitriev, Sergey; Ishkov, Alexey; Malikov, Vladimir; Sagalakov, Anatoly
2018-03-01
Aluminium has a reputation for ease of use, strength and durability. In addition to its exceptional aesthetic properties, solid aluminium does not burn. As architects, contractors, consultants and real estate owners look to meet stringent safety requirements in the construction and refurbishment of high-rise constructions for both residential and commercial uses, aluminium cladding provides an alternative that is not only safe but that is also durable and attractive. One of the ways to connect elements into a aluminium construction is welding. friction stir welding is one of the most efficient. The authors developed a measuring system based on subminiaturized eddy-current transducers aimed at examining locally the defects of welded joints in aluminium-magnesium alloy plates connected by means of friction stir welding. The authors made a modification of the Delyann filter, which allowed them to increase considerably the signal-noise relations. The dependency of the eddy-current transducer response on defects was provided, i.e. concealed cuts and openings inside the welded joint, at the frequencies of 100-10000 Hz of the exciting winding.
Non-destructive inspection using HTS SQUID on aluminum liner covered by CFRP
NASA Astrophysics Data System (ADS)
Hatsukade, Y.; Yotsugi, K.; Sakaguchi, Y.; Tanaka, S.
2007-10-01
An eddy-current-based SQUID non-destructive inspection (NDI) system to detect deep-lying cracks in multi-layer composite-Al vessels was developed taking advantage of the uncontested sensitivity of HTS-SQUID in low-frequency range. An HTS-SQUID gradiometer was mounted in a pulse tube cryocooler. A pair of differential coils with C-shaped ferrite cores was employed to induce an enhanced eddy current in an Al vessel wrapped in a carbon fiber reinforced plastic (CFRP) cover. Ellipsoidal dome-shaped Al liners containing through cracks, which were made by pressure cycle tests, in the CFRP covers with total thickness of 6 mm (CFPR 3 mm, and Al 3 mm) were inspected by the system. While inducing eddy currents in the vessels with excitation fields at 100 Hz or 7 kHz, the vessels were rotated under the HTS-SQUID. Above the cracks, anomalous signals due to the cracks were clearly detected at both frequencies. These results suggested the SQUID-NDI technique would be a possible candidate for inspection of high-pressure multi-layer composite-Al vessels.
Eddy current testing for blade edge micro cracks of aircraft engine
NASA Astrophysics Data System (ADS)
Zhang, Wei-min; Xu, Min-dong; Gao, Xuan-yi; Jin, Xin; Qin, Feng
2017-10-01
Based on the problems of low detection efficiency in the micro cracks detection of aircraft engine blades, a differential excitation eddy current testing system was designed and developed. The function and the working principle of the system were described, the problems which contained the manufacture method of simulated cracks, signal generating, signal processing and the signal display method were described. The detection test was carried out by taking a certain model aircraft engine blade with simulated cracks as a tested specimen. The test data was processed by digital low-pass filter in the computer and the crack signals of time domain display and Lissajous figure display were acquired. By comparing the test results, it is verified that Lissajous figure display shows better performance compared to time domain display when the crack angle is small. The test results show that the eddy current testing system designed in this paper is feasible to detect the micro cracks on the aeroengine blade and can effectively improve the detection efficiency of micro cracks in the practical detection work.
Mesosacle eddies in a high resolution OGCM and coupled ocean-atmosphere GCM
NASA Astrophysics Data System (ADS)
Yu, Y.; Liu, H.; Lin, P.
2017-12-01
The present study described high-resolution climate modeling efforts including oceanic, atmospheric and coupled general circulation model (GCM) at the state key laboratory of numerical modeling for atmospheric sciences and geophysical fluid dynamics (LASG), Institute of Atmospheric Physics (IAP). The high-resolution OGCM is established based on the latest version of the LASG/IAP Climate system Ocean Model (LICOM2.1), but its horizontal resolution and vertical resolution are increased to 1/10° and 55 layers, respectively. Forced by the surface fluxes from the reanalysis and observed data, the model has been integrated for approximately more than 80 model years. Compared with the simulation of the coarse-resolution OGCM, the eddy-resolving OGCM not only better simulates the spatial-temporal features of mesoscale eddies and the paths and positions of western boundary currents but also reproduces the large meander of the Kuroshio Current and its interannual variability. Another aspect, namely, the complex structures of equatorial Pacific currents and currents in the coastal ocean of China, are better captured due to the increased horizontal and vertical resolution. Then we coupled the high resolution OGCM to NCAR CAM4 with 25km resolution, in which the mesoscale air-sea interaction processes are better captured.
NASA Astrophysics Data System (ADS)
Chatterjee, Tanmoy; Peet, Yulia T.
2017-07-01
A large eddy simulation (LES) methodology coupled with near-wall modeling has been implemented in the current study for high Re neutral atmospheric boundary layer flows using an exponentially accurate spectral element method in an open-source research code Nek 5000. The effect of artificial length scales due to subgrid scale (SGS) and near wall modeling (NWM) on the scaling laws and structure of the inner and outer layer eddies is studied using varying SGS and NWM parameters in the spectral element framework. The study provides an understanding of the various length scales and dynamics of the eddies affected by the LES model and also the fundamental physics behind the inner and outer layer eddies which are responsible for the correct behavior of the mean statistics in accordance with the definition of equilibrium layers by Townsend. An economical and accurate LES model based on capturing the near wall coherent eddies has been designed, which is successful in eliminating the artificial length scale effects like the log-layer mismatch or the secondary peak generation in the streamwise variance.
Sanchez Lopez, Hector; Freschi, Fabio; Trakic, Adnan; Smith, Elliot; Herbert, Jeremy; Fuentes, Miguel; Wilson, Stephen; Liu, Limei; Repetto, Maurizio; Crozier, Stuart
2014-05-01
This article aims to present a fast, efficient and accurate multi-layer integral method (MIM) for the evaluation of complex spatiotemporal eddy currents in nonmagnetic and thin volumes of irregular geometries induced by arbitrary arrangements of gradient coils. The volume of interest is divided into a number of layers, wherein the thickness of each layer is assumed to be smaller than the skin depth and where one of the linear dimensions is much smaller than the remaining two dimensions. The diffusion equation of the current density is solved both in time-harmonic and transient domain. The experimentally measured magnetic fields produced by the coil and the induced eddy currents as well as the corresponding time-decay constants were in close agreement with the results produced by the MIM. Relevant parameters such as power loss and force induced by the eddy currents in a split cryostat were simulated using the MIM. The proposed method is capable of accurately simulating the current diffusion process inside thin volumes, such as the magnet cryostat. The method permits the priori-calculation of optimal pre-emphasis parameters. The MIM enables unified designs of gradient coil-magnet structures for an optimal mitigation of deleterious eddy current effects. Copyright © 2013 Wiley Periodicals, Inc.
77 FR 68050 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-15
... repetitive [high frequency eddy current] inspections [for cracks] of certain crossbeams including those... actions have already been done. (g) Repetitive High Frequency Eddy Current Inspections (1) For airplanes... AD, whichever occurs first. FedEx stated that the current repetitive inspection interval is ten times...
Eddy-Current Probes For Inspecting Graphite-Fiber Composites
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Wang, Morgan
1992-01-01
Eddy-current probes with E-shaped and U-shaped magnetic cores developed to detect flaws in graphite-fiber/epoxy and other composites. Magnetic fields more concentrated, yielding better coupling with specimens.
Lechner-Greite, Silke M; Hehn, Nicolas; Werner, Beat; Zadicario, Eyal; Tarasek, Matthew; Yeo, Desmond
2016-01-01
The study aims to investigate different ground plane segmentation designs of an ultrasound transducer to reduce gradient field induced eddy currents and the associated geometric distortion and temperature map errors in echo-planar imaging (EPI)-based MR thermometry in transcranial magnetic resonance (MR)-guided focused ultrasound (tcMRgFUS). Six different ground plane segmentations were considered and the efficacy of each in suppressing eddy currents was investigated in silico and in operando. For the latter case, the segmented ground planes were implemented in a transducer mockup model for validation. Robust spoiled gradient (SPGR) echo sequences and multi-shot EPI sequences were acquired. For each sequence and pattern, geometric distortions were quantified in the magnitude images and expressed in millimeters. Phase images were used for extracting the temperature maps on the basis of the temperature-dependent proton resonance frequency shift phenomenon. The means, standard deviations, and signal-to-noise ratios (SNRs) were extracted and contrasted with the geometric distortions of all patterns. The geometric distortion analysis and temperature map evaluations showed that more than one pattern could be considered the best-performing transducer. In the sagittal plane, the star (d) (3.46 ± 2.33 mm) and star-ring patterns (f) (2.72 ± 2.8 mm) showed smaller geometric distortions than the currently available seven-segment sheet (c) (5.54 ± 4.21 mm) and were both comparable to the reference scenario (a) (2.77 ± 2.24 mm). Contrasting these results with the temperature maps revealed that (d) performs as well as (a) in SPGR and EPI. We demonstrated that segmenting the transducer ground plane into a star pattern reduces eddy currents to a level wherein multi-plane EPI for accurate MR thermometry in tcMRgFUS is feasible.
NASA Astrophysics Data System (ADS)
Bull, Christopher Y. S.; Kiss, Andrew E.; Jourdain, Nicolas C.; England, Matthew H.; van Sebille, Erik
2017-12-01
The East Australian Current (EAC), like many other subtropical western boundary currents, is believed to be penetrating further poleward in recent decades. Previous observational and model studies have used steady state dynamics to relate changes in the westerly winds to changes in the separation behavior of the EAC. As yet, little work has been undertaken on the impact of forcing variability on the EAC and Tasman Sea circulation. Here using an eddy-permitting regional ocean model, we present a suite of simulations forced by the same time-mean fields, but with different atmospheric and remote ocean variability. These eddy-permitting results demonstrate the nonlinear response of the EAC to variable, nonstationary inhomogeneous forcing. These simulations show an EAC with high intrinsic variability and stochastic eddy shedding. We show that wind stress variability on time scales shorter than 56 days leads to increases in eddy shedding rates and southward eddy propagation, producing an increased transport and southward reach of the mean EAC extension. We adopt an energetics framework that shows the EAC extension changes to be coincident with an increase in offshore, upstream eddy variance (via increased barotropic instability) and increase in subsurface mean kinetic energy along the length of the EAC. The response of EAC separation to regional variable wind stress has important implications for both past and future climate change studies.
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Peng, Chich Y.; Schumacher, James D.
1994-01-01
High resolution Esa Remote Sensing Satellite-1 (ERS-1) Synthetic Aperture Radar (SAR) images are used to detect a mesoscale eddy. Such features limit dispersal of pollock larvae and therefore likely influence recruitment of fish in the Gulf of Alaska. During high sea states and high winds, the direct surface signature of the eddy was not clearly visible, but the wave refraction in the eddy area was observed. The rays of the wave field are traced out directly from the SAR image. The ray pattern gives information on the refraction pattern and on the relative variation of the wave energy along a ray through wave current interaction. These observations are simulated by a ray-tracing model which incorporates a surface current field associated with the eddy. The numerical results of the model show that the waves are refracted and diverge in the eddy field with energy density decreasing. The model-data comparison for each ray shows the model predictions are in good agreement with the SAR data.
NASA Astrophysics Data System (ADS)
Ixetl Garcia Gomez, Beatriz; Pallas Sanz, Enric; Candela Perez, Julio
2017-04-01
The near-inertial oscillations (NIOs), generated by the wind stress on the surface mixed layer, are the inertia gravity waves with the lowest frequency and the highest kinetic energy. NIOs are important because they drive vertical mixing in the interior ocean during wave breaking events. Although the interaction between NIOs and mesoscale eddies has been reported by several authors, these studies are mostly analytical and numerical, and only few observational studies have attempted to show the differences in near-inertial kinetic energy (KEi) between anticyclonic and cyclonic eddies. In this work the spatial structure of the KEi inside the mesoscale eddies is computed using daily satellite altimetry and observations of horizontal velocity from 23 moorings equipped with acoustic Doppler current profilers in the western Gulf of Mexico. Consistent to theory, the obtained four-year KEi-composites show two times more KEi inside the anticyclonic eddies than inside the cyclonic ones. The vertical and horizontal cross-sections of the KEi-composites show that the KEi is mainly located near to the surface of the cyclonic eddies (positive vorticity), whereas the KEi in anticyclonic eddies (negative vorticity) is maximum in the eddy's center near to the base of the eddy where the NIOs become more inertial, are trapped, and amplified. The mean vertical profiles show that the cyclonic eddies present a maximum of KEi near to the surface at 50, while the maximum of KEi in the anticyclonic eddies occurs between 900 and 1100 m. Inside anticyclonic eddies another two relative maximums are observed, one in the mixed layer and the second at 300 m. In contrast, the mean profile of KEi outside the mesoscale eddies has the maximum value at the surface ( 50 m), with high values of KEi in the first 200 m and negligible energy beneath that depth. A different mean distribution of the KEi is observed depending on the type of wind generator: tropical storms or unidirectional wind.
Foam-machining tool with eddy-current transducer
NASA Technical Reports Server (NTRS)
Copper, W. P.
1975-01-01
Three-cutter machining system for foam-covered tanks incorporates eddy-current sensor. Sensor feeds signal to numerical controller which programs rotational and vertical axes of sensor travel, enabling cutterhead to profile around tank protrusions.
Process Specification for Eddy Current Inspection
NASA Technical Reports Server (NTRS)
Koshti, Ajay
2011-01-01
This process specification establishes the minimum requirements for eddy current inspection of flat surfaces, fastener holes, threaded fasteners and seamless and welded tubular products made from nonmagnetic alloys such as aluminum and stainless steel.
78 FR 22215 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-15
... necessary; a one-time eddy current inspection of certain fastener holes for cracking, and repair if... realignment if necessary; a one-time eddy current inspection of certain fastener holes for cracking, and...
78 FR 19743 - Government-Owned Inventions, Available for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-02
... Eddy Current Minimization for Metering, Mixing, and Conditioning; NASA Case No.: MFS-32761-1-CON: Multi-Channel Flow Plug with Eddy Current Minimization for Meeting, Mixing, and Conditioning. Sumara M. Thompson...
NASA Astrophysics Data System (ADS)
Ren, Xiaotao; Corcolle, Romain; Daniel, Laurent
2016-02-01
The use of soft magnetic composites (SMCs) in electrical engineering applications is growing. SMCs provide an effective alternative to laminated steels because they exhibit a high permeability with low eddy current losses. Losses are a critical feature in the design of electrical machines, and it is necessary to evaluate the role of microstructure and constitutive properties of SMCs during the predesign stage. In this paper we propose a simplified finite element approach to compute eddy current losses in these materials. The computations allow to quantify the role of exciting source and material properties on eddy current losses. This analysis can later be used in the development of homogenization models for SMC. Contribution to the topical issue "Numelec 2015 - Elected submissions", edited by Adel Razek
The atmospheric ocean: eddies and jets in the Antarctic Circumpolar Current.
Thompson, Andrew F
2008-12-28
Although the Antarctic Circumpolar Current (ACC) is the longest and the strongest oceanic current on the Earth and is the primary means of inter-basin exchange, it remains one of the most poorly represented components of global climate models. Accurately describing the circulation of the ACC is made difficult owing to the prominent role that mesoscale eddies and jets, oceanic equivalents of atmospheric storms and storm tracks, have in setting the density structure and transport properties of the current. The successes and limitations of different representations of eddy processes in models of the ACC are considered, with particular attention given to how the circulation responds to changes in wind forcing. The dynamics of energetic eddies and topographically steered jets may both temper and enhance the sensitivity of different aspects of the ACC's circulation to changes in climate.
An application of eddy current damping effect on single point diamond turning of titanium alloys
NASA Astrophysics Data System (ADS)
Yip, W. S.; To, S.
2017-11-01
Titanium alloys Ti6Al4V (TC4) have been popularly applied in many industries. They have superior material properties including an excellent strength-to-weight ratio and corrosion resistance. However, they are regarded as difficult to cut materials; serious tool wear, a high level of cutting vibration and low surface integrity are always involved in machining processes especially in ultra-precision machining (UPM). In this paper, a novel hybrid machining technology using an eddy current damping effect is firstly introduced in UPM to suppress machining vibration and improve the machining performance of titanium alloys. A magnetic field was superimposed on samples during single point diamond turning (SPDT) by exposing the samples in between two permanent magnets. When the titanium alloys were rotated within a magnetic field in the SPDT, an eddy current was generated through a stationary magnetic field inside the titanium alloys. An eddy current generated its own magnetic field with the opposite direction of the external magnetic field leading a repulsive force, compensating for the machining vibration induced by the turning process. The experimental results showed a remarkable improvement in cutting force variation, a significant reduction in adhesive tool wear and an extreme long chip formation in comparison to normal SPDT of titanium alloys, suggesting the enhancement of the machinability of titanium alloys using an eddy current damping effect. An eddy current damping effect was firstly introduced in the area of UPM to deliver the results of outstanding machining performance.
NASA Astrophysics Data System (ADS)
Mutlu, Ilven; Ekinci, Sinasi; Oktay, Enver
2014-06-01
This study presents nondestructive characterization of microstructure and mechanical properties of heat treated Ti, Ti-Cu, and Ti-6Al-4V titanium-based alloys and 17-4 PH stainless steel alloy for biomedical implant applications. Ti, Ti-Cu, and 17-4 PH stainless steel based implants were produced by powder metallurgy. Ti-6Al-4V alloy was investigated as bulk wrought specimens. Effects of sintering temperature, aging, and grain size on mechanical properties were investigated by nondestructive and destructive tests comparatively. Ultrasonic velocity in specimens was measured by using pulse-echo and transmission methods. Electrical conductivity of specimens was determined by eddy current tests. Determination of Young's modulus and strength is important in biomedical implants. Young's modulus of specimens was calculated by using ultrasonic velocities. Calculated Young's modulus values were compared and correlated with experimental values.
Non-contact FBG sensing based steam turbine rotor dynamic balance vibration detection system
NASA Astrophysics Data System (ADS)
Li, Tianliang; Tan, Yuegang; Cai, Lin
2015-10-01
This paper has proposed a non-contact vibration sensor based on fiber Bragg grating sensing, and applied to detect vibration of steam turbine rotor dynamic balance experimental platform. The principle of the sensor has been introduced, as well as the experimental analysis; performance of non-contact FBG vibration sensor has been analyzed in the experiment; in addition, turbine rotor dynamic vibration detection system based on eddy current displacement sensor and non-contact FBG vibration sensor have built; finally, compared with results of signals under analysis of the time domain and frequency domain. The analysis of experimental data contrast shows that: the vibration signal analysis of non-contact FBG vibration sensor is basically the same as the result of eddy current displacement sensor; it verified that the sensor can be used for non-contact measurement of steam turbine rotor dynamic balance vibration.
An Effective Electrical Resonance-Based Method to Detect Delamination in Thermal Barrier Coating
NASA Astrophysics Data System (ADS)
Kim, Jong Min; Park, Jae-Ha; Lee, Ho Girl; Kim, Hak-Joon; Song, Sung-Jin; Seok, Chang-Sung; Lee, Young-Ze
2017-12-01
This research proposes a simple yet highly sensitive method based on electrical resonance of an eddy-current probe to detect delamination of thermal barrier coating (TBC). This method can directly measure the mechanical characteristics of TBC compared to conventional ultrasonic testing and infrared thermography methods. The electrical resonance-based method can detect the delamination of TBC from the metallic bond coat by shifting the electrical impedance of eddy current testing (ECT) probe coupling with degraded TBC, and, due to this shift, the resonant frequencies near the peak impedance of ECT probe revealed high sensitivity to the delamination. In order to verify the performance of the proposed method, a simple experiment is performed with degraded TBC specimens by thermal cyclic exposure. Consequently, the delamination with growth of thermally grown oxide in a TBC system is experimentally identified. Additionally, the results are in good agreement with the results obtained from ultrasonic C-scanning.
An Effective Electrical Resonance-Based Method to Detect Delamination in Thermal Barrier Coating
NASA Astrophysics Data System (ADS)
Kim, Jong Min; Park, Jae-Ha; Lee, Ho Girl; Kim, Hak-Joon; Song, Sung-Jin; Seok, Chang-Sung; Lee, Young-Ze
2018-02-01
This research proposes a simple yet highly sensitive method based on electrical resonance of an eddy-current probe to detect delamination of thermal barrier coating (TBC). This method can directly measure the mechanical characteristics of TBC compared to conventional ultrasonic testing and infrared thermography methods. The electrical resonance-based method can detect the delamination of TBC from the metallic bond coat by shifting the electrical impedance of eddy current testing (ECT) probe coupling with degraded TBC, and, due to this shift, the resonant frequencies near the peak impedance of ECT probe revealed high sensitivity to the delamination. In order to verify the performance of the proposed method, a simple experiment is performed with degraded TBC specimens by thermal cyclic exposure. Consequently, the delamination with growth of thermally grown oxide in a TBC system is experimentally identified. Additionally, the results are in good agreement with the results obtained from ultrasonic C-scanning.
A Novel Defect Inspection Method for Semiconductor Wafer Based on Magneto-Optic Imaging
NASA Astrophysics Data System (ADS)
Pan, Z.; Chen, L.; Li, W.; Zhang, G.; Wu, P.
2013-03-01
The defects of semiconductor wafer may be generated from the manufacturing processes. A novel defect inspection method of semiconductor wafer is presented in this paper. The method is based on magneto-optic imaging, which involves inducing eddy current into the wafer under test, and detecting the magnetic flux associated with eddy current distribution in the wafer by exploiting the Faraday rotation effect. The magneto-optic image being generated may contain some noises that degrade the overall image quality, therefore, in this paper, in order to remove the unwanted noise present in the magneto-optic image, the image enhancement approach using multi-scale wavelet is presented, and the image segmentation approach based on the integration of watershed algorithm and clustering strategy is given. The experimental results show that many types of defects in wafer such as hole and scratch etc. can be detected by the method proposed in this paper.
NASA Astrophysics Data System (ADS)
Wang, M.; O'Rorke, R.; Waite, A. M.; Beckley, L. E.; Thompson, P.; Jeffs, A. G.
2014-03-01
The recent dramatic decline in settlement in the population of the spiny lobster, Panulirus cygnus, may be due to changes in the oceanographic processes that operate offshore of Western Australia. It has been suggested that this decline could be related to poor nutritional condition of the post-larvae, especially lipid which is accumulated in large quantities during the preceding extensive pelagic larval stage. The current study focused on investigations into the lipid content and fatty acid (FA) profiles of lobster phyllosoma larvae from three mid to late stages of larval development (stages VI, VII, VIII) sampled from two cyclonic and two anticyclonic eddies of the Leeuwin Current off Western Australia. The results showed significant accumulation of lipid and energy storage FAs with larval development regardless of location of capture, however, larvae from cyclonic eddies had more lipid and FAs associated with energy storage than larvae from anticyclonic eddies. FA food chain markers from the larvae indicated significant differences in the food webs operating in the two types of eddy, with a higher level of FA markers for production from flagellates and a lower level from copepod grazing in cyclonic versus anticyclonic eddies. The results indicate that the microbial food web operating in cyclonic eddies provides better feeding conditions for lobster larvae despite anticyclonic eddies being generally more productive and containing greater abundances of zooplankton as potential prey for lobster larvae. Gelatinous zooplankton, such as siphonophores, may play an important role in cyclonic eddies by accumulating dispersed microbial nutrients and making them available as larger prey for phyllosoma. The markedly superior nutritional condition of lobster larvae feeding in the microbial food web found in cyclonic eddies, could greatly influence their subsequent settlement and recruitment to the coastal fishery.
NASA Astrophysics Data System (ADS)
Fannin, Alexander L.; Wenner, Brett R.; Allen, Jeffery W.; Allen, Monica S.; Magnusson, Robert
2017-12-01
We treat fundamental resonance effects in hybridized metal-dielectric elements that may find applications in absorption, sensing, and displays. The hybrid structures support guided-mode resonance (GMR) and surface plasmon resonance (SPR) operating independently or in unison. Numerical simulations of periodic resonant films coated in gold that effectively combine principles of both resonance effects show viability of absorbers with equalized spectra and hybrid waveguides. The experimentally measured spectra show qualitative agreement with theoretical models. We introduce a hybrid GMR/SPR refractive-index sensor consisting of a thin aluminum film integrated with a subwavelength silicon-dioxide grating. The sensor operates between the Rayleigh wavelengths of the cover and the substrate. A GMR is excited by TE-polarized light and is subsequently attenuated by the Rayleigh anomaly as the cover index increases. In transverse-magnetic-polarized light, it operates as a Rayleigh sensor with sharp spectral features that would be easily monitored with a spectrum analyzer. As a final device example, we present simulation results pertaining to a one-dimensional color filter utilizing SPR, GMR, and the Rayleigh anomaly and convert it into a polarization insensitive two-dimensional device. With dual periods along orthogonal directions, two resonant peaks are induced within the visible spectrum for unpolarized input light rendering a color-mixing effect. The output color of the dual pixel is tunable with the input polarization state.
Macha, Sreeraj; Dieterich, Sabine; Mattheus, Michaela; Seman, Leo J; Broedl, Uli C; Woerle, Hans J
2013-02-01
This open-label study investigated potential drug-drug interactions between empagliflozin and metformin. 16 healthy men received treatment A (empagliflozin 50 mg q.d. for 5 days), treatment B (empagliflozin 50 mg q.d. for 4 days with metformin 1,000 mg b.i.d. for 3 days and 1,000 mg q.d. on Day 4) and treatment C (metformin 1,000 mg b.i.d. for 3 days and 1,000 mg q.d .on Day 4) in the sequence AB then C, or C then AB. Metformin had no clinically relevant effect on the area under the steady state plasma concentration-time curve (AUC(τ,ss) geometric mean ratio (GMR): 96.9; 90% CI: 92.3 - 101.7) or the maximum plasma concentration at steady state (C(max,ss) GMR: 100.5; 90% CI: 88.8 - 113.7) of empagliflozin. Similarly, empagliflozin had no clinically relevant effect on AUC(τ,ss) (GMR: 100.7; 90% CI: 95.9 - 105.6) or C(max,ss) (GMR: 103.6; 90% CI: 96.5 - 111.2) of metformin. The renal clearance of empagliflozin and metformin were unaffected by co-administration. Both drugs were well tolerated alone and in combination and did not cause hypoglycemia. These data support co-administration of empagliflozin and metformin without dose adjustment.
Ji, Y; Jin, H H; Wang, M D; Cao, W X; Bao, J L
2016-10-07
The retracted article is: Ji Y, Jin HH, Wang MD, Cao WX, et al. (2016). Methylation of the RASSFIA promoter in breast cancer. Genet. Mol. Res. 15: gmr.15028261. There are significant parts of this article (particularly, in the discussion section) that are copied from "Methylation of HIN-1, RASSF1A, RIL and CDH13 in breast cancer is associated with clinical characteristics, but only RASSF1A methylation is associated with outcome", by Jia Xu, Priya B Shetty, Weiwei Feng, Carol Chenault, Robert C Bast Jr, Jean-Pierre J Issa, Susan G Hilsenbeck and Yinhua Yu, published in BMC Cancer 2012; 12: 243. DOI: 10.1186/1471-2407-12-243. The first paragraphs of both discussions are identical. This is concerning. The abstract and introduction sections have much of their text plagiarized. Overall, there is high plagiarism detected. The GMR editorial staff was alerted and after a thorough investigation, we have strong reason to believe that the peer review process was failure and, after review and contacting the authors, the editors of Genetics and Molecular Research decided to retract the article in accordance with the recommendations of the Committee on Publication Ethics (COPE). The authors and their institutions were advised of this serious breach of ethics.
NASA Astrophysics Data System (ADS)
Berloff, P. S.
2016-12-01
This work aims at developing a framework for dynamically consistent parameterization of mesoscale eddy effects for use in non-eddy-resolving ocean circulation models. The proposed eddy parameterization framework is successfully tested on the classical, wind-driven double-gyre model, which is solved both with explicitly resolved vigorous eddy field and in the non-eddy-resolving configuration with the eddy parameterization replacing the eddy effects. The parameterization focuses on the effect of the stochastic part of the eddy forcing that backscatters and induces eastward jet extension of the western boundary currents and its adjacent recirculation zones. The parameterization locally approximates transient eddy flux divergence by spatially localized and temporally periodic forcing, referred to as the plunger, and focuses on the linear-dynamics flow solution induced by it. The nonlinear self-interaction of this solution, referred to as the footprint, characterizes and quantifies the induced eddy forcing exerted on the large-scale flow. We find that spatial pattern and amplitude of each footprint strongly depend on the underlying large-scale flow, and the corresponding relationships provide the basis for the eddy parameterization and its closure on the large-scale flow properties. Dependencies of the footprints on other important parameters of the problem are also systematically analyzed. The parameterization utilizes the local large-scale flow information, constructs and scales the corresponding footprints, and then sums them up over the gyres to produce the resulting eddy forcing field, which is interactively added to the model as an extra forcing. Thus, the assumed ensemble of plunger solutions can be viewed as a simple model for the cumulative effect of the stochastic eddy forcing. The parameterization framework is implemented in the simplest way, but it provides a systematic strategy for improving the implementation algorithm.
Eddy current compensated double diffusion encoded (DDE) MRI.
Mueller, Lars; Wetscherek, Andreas; Kuder, Tristan Anselm; Laun, Frederik Bernd
2017-01-01
Eddy currents might lead to image distortions in diffusion-weighted echo planar imaging. A method is proposed to reduce their effects on double diffusion encoding (DDE) MRI experiments and the thereby derived microscopic fractional anisotropy (μFA). The twice-refocused spin echo scheme was adapted for DDE measurements. To assess the effect of individual diffusion encodings on the image distortions, measurements of a grid of plastic rods in water were performed. The effect of eddy current compensation on μFA measurements was evaluated in the brains of six healthy volunteers. The use of an eddy current compensation reduced the signal variation. As expected, the distortions caused by the second encoding were larger than those of the first encoding, entailing a stronger need to compensate for them. For an optimal result, however, both encodings had to be compensated. The artifact reduction strongly improved the measurement of the μFA in ventricles and gray matter by reducing the overestimation. An effect of the compensation on absolute μFA values in white matter was not observed. It is advisable to compensate both encodings in DDE measurements for eddy currents. Magn Reson Med 77:328-335, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
76 FR 78574 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-19
... box and failure of the wing. This proposed AD would require repetitive high frequency eddy current..., dated August 12, 2011: Do a high frequency eddy current (HFEC) inspection to detect cracking of the...
NASA Astrophysics Data System (ADS)
Filippov, A. V.; Tarasov, S. Yu.; Filippova, E. O.; Chazov, P. A.; Shamarin, N. N.; Podgornykh, O. A.
2016-11-01
Monitoring of the edge clamped workpiece deflection during milling has been carried our using acoustic emission, accelerometer and eddy current sensors. Such a monitoring is necessary in precision machining of vital parts used in air-space engineering where a majority of them made by milling. The applicability of the AE, accelerometers and eddy current sensors has been discussed together with the analysis of measurement errors. The appropriate sensor installation diagram has been proposed for measuring the workpiece elastic deflection exerted by the cutting force.
Eddy current standards - Cracks versus notches
NASA Astrophysics Data System (ADS)
Hagemaier, D. J.; Collingwood, M. R.; Nguyen, K. H.
1992-10-01
Eddy current tests aimed at evaluating cracks and electron-discharge machined (EDM) notches in 7075-T6 aluminum specimens are described. A comparison of the shape and amplitude of recordings made from both transverse and longitudinal scans of small EDM notches and fatigue cracks showd almost identical results. The signal amplitude and phase angle increased with an increase of EDM notch and crak size. It is concluded that equivalent eddy current results obtained from similar-size surface cracks and notches in aluminum can be used to establish a desired sensitivity level for inspection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, M.; French Atomic Energy and Alternative Energies Commission; Tordjeman, Ph.
2015-07-01
This study was carried out to understand the response of an eddy current type flowmeter in two phase liquid-metal flow. We use the technique of ellipse fit and correlate the fluctuations in the angle of inclination of this ellipse with the void fraction. The effects of physical parameters such as coil excitation frequency and flow velocity have been studied. The results show the possibility of using an eddy current flowmeter as a gas detector for large void fractions. (authors)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, M.; CEA, DEN, Nuclear Technology Department, F-13108 Saint-Paul-lez-Durance; Tordjeman, Ph.
2015-07-01
This study was carried out to understand the response of an eddy current type flowmeter in two phase liquid-metal flow. We use the technique of ellipse fit and correlate the fluctuations in the angle of inclination of this ellipse with the void fraction. The effects of physical parameters such as coil excitation frequency and flow velocity have been studied. The results show the possibility of using an eddy current flowmeter as a gas detector for large void fractions. (authors)
Enhanced Eddy-Current Detection Of Weld Flaws
NASA Technical Reports Server (NTRS)
Van Wyk, Lisa M.; Willenberg, James D.
1992-01-01
Mixing of impedances measured at different frequencies reduces noise and helps reveal flaws. In new method, one excites eddy-current probe simultaneously at two different frequencies; usually, one of which integral multiple of other. Resistive and reactive components of impedance of eddy-current probe measured at two frequencies, mixed in computer, and displayed in real time on video terminal of computer. Mixing of measurements obtained at two different frequencies often "cleans up" displayed signal in situations in which band-pass filtering alone cannot: mixing removes most noise, and displayed signal resolves flaws well.
Perturbations of the magnetic induction in a bubbly liquid metal flow
NASA Astrophysics Data System (ADS)
Guichou, Rafael; Tordjeman, Philippe; Bergez, Wladimir; Zamansky, Remi; Paumel, Kevin
2017-11-01
The presence of bubbles in liquid metal flow subject to AC magnetic field modifies the distribution of eddy currents in the fluid. This situation is encountered in metallurgy and nuclear industry for Sodium Fast Reactors. We will show that the perturbation of the eddy currents can be measured by an Eddy Current Flowmeter coupled with a lock-in amplifier. The experiments point out that the demodulated signal allows to detect the presence of a single bubble in the flow. The signal is sensitive both to the diameter and the relative position of the bubble. Then, we will present a model of a potential perturbation of the current density caused by a bubble and the distortion of the magnetic field. The eddy current distribution is calculated from the induction equation. This model is derived from a potential flow around a spherical particle. The total vector potential is the sum of the vector potential in the liquid metal flow without bubbles and the perturbated vector potential due to the presence of a bubble. The model is then compared to the experimental measurements realized with the eddy current flow meter for various bubble diameters in galinstan. The very good agreement between model and experiments validates the relevance of the perturbative approach.
NASA Astrophysics Data System (ADS)
Schulze, Martin H.; Heuer, Henning
2012-04-01
Carbon fiber based materials are used in many lightweight applications in aeronautical, automotive, machine and civil engineering application. By the increasing automation in the production process of CFRP laminates a manual optical inspection of each resin transfer molding (RTM) layer is not practicable. Due to the limitation to surface inspection, the quality parameters of multilayer 3 dimensional materials cannot be observed by optical systems. The Imaging Eddy- Current (EC) NDT is the only suitable inspection method for non-resin materials in the textile state that allows an inspection of surface and hidden layers in parallel. The HF-ECI method has the capability to measure layer displacements (misaligned angle orientations) and gap sizes in a multilayer carbon fiber structure. EC technique uses the variation of the electrical conductivity of carbon based materials to obtain material properties. Beside the determination of textural parameters like layer orientation and gap sizes between rovings, the detection of foreign polymer particles, fuzzy balls or visualization of undulations can be done by the method. For all of these typical parameters an imaging classification process chain based on a high resolving directional ECimaging device named EddyCus® MPECS and a 2D-FFT with adapted preprocessing algorithms are developed.
Probing of multiple magnetic responses in magnetic inductors using atomic force microscopy.
Park, Seongjae; Seo, Hosung; Seol, Daehee; Yoon, Young-Hwan; Kim, Mi Yang; Kim, Yunseok
2016-02-08
Even though nanoscale analysis of magnetic properties is of significant interest, probing methods are relatively less developed compared to the significance of the technique, which has multiple potential applications. Here, we demonstrate an approach for probing various magnetic properties associated with eddy current, coil current and magnetic domains in magnetic inductors using multidimensional magnetic force microscopy (MMFM). The MMFM images provide combined magnetic responses from the three different origins, however, each contribution to the MMFM response can be differentiated through analysis based on the bias dependence of the response. In particular, the bias dependent MMFM images show locally different eddy current behavior with values dependent on the type of materials that comprise the MI. This approach for probing magnetic responses can be further extended to the analysis of local physical features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krause, T. W.; Harlley, D.; Babbar, V. K.
Nickel Aluminum Bronze (NAB) is a material with marine environment applications that under certain conditions can undergo selective phase corrosion (SPC). SPC involves the removal of minority elements while leaving behind a copper matrix. Pulsed eddy current (PEC) was evaluated for determination of SPC thickness on a NAB valve section with access from the surface corroded side. A primarily linear response of PEC amplitude, up to the maximum available SPC thickness of 4 mm was observed. The combination of reduced conductivity and permeability in the SPC phase relative to the base NAB was used to explain the observed sensitivity ofmore » PEC to SPC thickness variations.« less
NASA Astrophysics Data System (ADS)
Ahmed, Shamim; Miorelli, Roberto; Calmon, Pierre; Anselmi, Nicola; Salucci, Marco
2018-04-01
This paper describes Learning-By-Examples (LBE) technique for performing quasi real time flaw localization and characterization within a conductive tube based on Eddy Current Testing (ECT) signals. Within the framework of LBE, the combination of full-factorial (i.e., GRID) sampling and Partial Least Squares (PLS) feature extraction (i.e., GRID-PLS) techniques are applied for generating a suitable training set in offine phase. Support Vector Regression (SVR) is utilized for model development and inversion during offine and online phases, respectively. The performance and robustness of the proposed GIRD-PLS/SVR strategy on noisy test set is evaluated and compared with standard GRID/SVR approach.
Nonlinear, non-stationary image processing technique for eddy current NDE
NASA Astrophysics Data System (ADS)
Yang, Guang; Dib, Gerges; Kim, Jaejoon; Zhang, Lu; Xin, Junjun; Udpa, Lalita
2012-05-01
Automatic analysis of eddy current (EC) data has facilitated the analysis of large volumes of data generated in the inspection of steam generator tubes in nuclear power plants. The traditional procedure for analysis of EC data includes data calibration, pre-processing, region of interest (ROI) detection, feature extraction and classification. Accurate ROI detection has been enhanced by pre-processing, which involves reducing noise and other undesirable components as well as enhancing defect indications in the raw measurement. This paper presents the Hilbert-Huang Transform (HHT) for feature extraction and support vector machine (SVM) for classification. The performance is shown to significantly better than the existing rule based classification approach used in industry.
Subduction in an Eddy-Resolving State Estimate of the Northeast Atlantic Ocean
NASA Technical Reports Server (NTRS)
Gebbie, Geoffrey
2004-01-01
Are eddies an important contributor to subduction in the eastern subtropical gyre? Here, an adjoint model is used to combine a regional, eddy-resolving numerical model with observations to produce a state estimate of the ocean circulation. The estimate is a synthesis of a variety of in- situ observations from the Subduction Experiment, TOPEX/POSEIDON altimetry, and the MTI General Circulation Model. The adjoint method is successful because the Northeast Atlantic Ocean is only weakly nonlinear. The state estimate provides a physically-interpretable, eddy-resolving information source to diagnose subduction. Estimates of eddy subduction for the eastern subtropical gyre of the North Atlantic are larger than previously calculated from parameterizations in coarse-resolution models. Furthermore, eddy subduction rates have typical magnitudes of 15% of the total subduction rate. Eddies contribute as much as 1 Sverdrup to water-mass transformation, and hence subduction, in the North Equatorial Current and the Azores Current. The findings of this thesis imply that the inability to resolve or accurately parameterize eddy subduction in climate models would lead to an accumulation of error in the structure of the main thermocline, even in the relatively-quiescent eastern subtropical gyre.
The Detection and Discrimination of Small Munitions using Giant Magnetoresistive (OMR) Sensors
2010-09-01
Suffield, Canada. McGlone, D.T., 1998, Magnetometer Comparison Smoke Creek Instruments’ GMR SCIMAG- 01 & Bartington Fluxgate MAG-03MC70, A...a magnetometer and frequency domain or time domain electromagnetic induction sensor. Both the Honeywell and NVE GlvlR sensors studied have si.m ilar...field sensor. In p0ssive mode, the GMR sensor, which has a resolution of Jess than l 0 nT, perfom1ed similarly to a cesium vapor magnetometer . When
Microfluidic platform for detection and quantification of magnetic markers
NASA Astrophysics Data System (ADS)
Kokkinis, Georgios; Cardoso, Susana; Giouroudi, Ioanna
2017-05-01
This paper reports on a microfluidic platform with an integrated spin valve giant magneto-resistance (GMR) sensor used for the detection and quantification of single magnetic micromarkers. A microfluidic channel containing the magnetic fluid, microconductors (MCs) for collection of the magnetic markers and a spin valve GMR sensor for detecting the presence of their magnetic stray field were integrated on a single chip. The results show that the sensor is capable of detecting a single magnetic marker with 2.8 μm diameter.
Eddy-current non-inertial displacement sensing for underwater infrasound measurements.
Donskoy, Dimitri M; Cray, Benjamin A
2011-06-01
A non-inertial sensing approach for an Acoustic Vector Sensor (AVS), which utilizes eddy-current displacement sensors and operates well at Ultra-Low Frequencies (ULF), is described here. In the past, most ULF measurements (from mHertz to approximately 10 Hertz) have been conducted using heavy geophones or seismometers that must be installed on the seafloor; these sensors are not suitable for water column measurements. Currently, there are no readily available compact and affordable underwater AVS that operate within this frequency region. Test results have confirmed the validity of the proposed eddy-current AVS design and have demonstrated high acoustic sensitivity. © 2011 Acoustical Society of America
NASA Astrophysics Data System (ADS)
Bennett, P. F. D.; Underhill, P. R.; Morelli, J.; Krause, T. W.
2018-04-01
Fuel channels in CANDU® (CANada Deuterium Uranium) nuclear reactors consist of two non-concentric tubes; an inner pressure tube (PT) and a larger diameter calandria tube (CT). Up to 400 horizontally mounted fuel channels are contained within a calandria vessel, which also holds the heavy water moderator. Certain fuel channels pass perpendicularly over horizontally oriented tubes (nozzles) that are part of the reactor's liquid injection shutdown system (LISS). Due to sag, these fuel channels are at risk of coming into contact with the LISS nozzles. In the event of contact between the LISS nozzle and CT, flow-induced vibrations from within the moderator could lead to fretting and deformation of the CT. LISS nozzle proximity to CTs is currently measured optically from within the calandria vessel, but from outside the fuel channels. Measurement by an independent means would provide confidence in optical results and supplement cases where optical observations are not possible. Separation of PT and CT, known as gap, is monitored from within the PT using a transmit-receive eddy current probe. Investigation of the eddy current based gap probe as a tool to also measure proximity of LISS nozzles was carried out experimentally in this work. Eddy current response as a function of LISS-PT proximity was recorded. When PT-CT gap, PT wall thickness, PT resistivity and probe lift-off variations were not present this dependence could be used to determine the LISS-PT proximity. This method has the potential to provide LISS-CT proximity using existing gap measurement data. Obtaining LISS nozzle proximity at multiple inspection intervals could be used to provide an estimate of the time to LISS-CT contact, and thereby provide a means of optimizing maintenance schedules.
Dynamical analysis of a satellite-observed anticyclonic eddy in the northern Bering Sea
NASA Astrophysics Data System (ADS)
Li, Yineng; Li, Xiaofeng; Wang, Jia; Peng, Shiqiu
2016-05-01
The characteristics and evolution of a satellite-observed anticyclonic eddy in the northern Bering Sea during March and April 1999 are investigated using a three-dimensional Princeton Ocean Model (POM). The anticyclonic-like current pattern and asymmetric feature of the eddy were clearly seen in the synthetic aperture radar (SAR), sea surface temperature, and ocean color images in April 1999. The results from model simulation reveal the three-dimensional structure of the anticyclonic eddy, its movement, and dissipation. Energy analysis indicates that the barotropic instability (BTI) is the main energy source for the growth of the anticyclonic eddy. The momentum analysis further reveals that the larger magnitude of the barotropic pressure gradient in the meridional direction causes the asymmetry of the anticyclonic eddy in the zonal and meridional directions, while the different magnitudes of the meridional baroclinic pressure gradient are responsible for the different intensity of currents between the northern and southern parts of the anticyclonic eddy. This article was corrected on 23 JUL 2016. See the end of the full text for details.
Koelle, A.R.; Landt, J.A.
An instrument is disclosed for mapping vertical conductive fractures in a resistive bedrock, magnetically inducing eddy currents by a pair of vertically oriented, mutually perpendicular, coplanar coils. The eddy currents drive magnetic fields which are picked up by a second, similar pair of coils.
Tools and Methods for Visualization of Mesoscale Ocean Eddies
NASA Astrophysics Data System (ADS)
Bemis, K. G.; Liu, L.; Silver, D.; Kang, D.; Curchitser, E.
2017-12-01
Mesoscale ocean eddies form in the Gulf Stream and transport heat and nutrients across the ocean basin. The internal structure of these three-dimensional eddies and the kinematics with which they move are critical to a full understanding of their transport capacity. A series of visualization tools have been developed to extract, characterize, and track ocean eddies from 3D modeling results, to visually show the ocean eddy story by applying various illustrative visualization techniques, and to interactively view results stored on a server from a conventional browser. In this work, we apply a feature-based method to track instances of ocean eddies through the time steps of a high-resolution multidecadal regional ocean model and generate a series of eddy paths which reflect the life cycle of individual eddy instances. The basic method uses the Okubu-Weiss parameter to define eddy cores but could be adapted to alternative specifications of an eddy. Stored results include pixel-lists for each eddy instance, tracking metadata for eddy paths, and physical and geometric properties. In the simplest view, isosurfaces are used to display eddies along an eddy path. Individual eddies can then be selected and viewed independently or an eddy path can be viewed in the context of all eddy paths (longer than a specified duration) and the ocean basin. To tell the story of mesoscale ocean eddies, we combined illustrative visualization techniques, including visual effectiveness enhancement, focus+context, and smart visibility, with the extracted volume features to explore eddy characteristics at multiple scales from ocean basin to individual eddy. An evaluation by domain experts indicates that combining our feature-based techniques with illustrative visualization techniques provides an insight into the role eddies play in ocean circulation. A web-based GUI is under development to facilitate easy viewing of stored results. The GUI provides the user control to choose amongst available datasets, to specify the variables (such as temperature or salinity) to display on the isosurfaces, and to choose the scale and orientation of the view. These techniques allow an oceanographer to browse the data based on eddy paths and individual eddies rather than slices or volumes of data.
Energy Cascade Analysis: from Subscale Eddies to Mean Flow
NASA Astrophysics Data System (ADS)
Cheikh, Mohamad Ibrahim; Wonnell, Louis; Chen, James
2017-11-01
Understanding the energy transfer between eddies and mean flow can provide insights into the energy cascade process. Much work has been done to investigate the energy cascade at the level of the smallest eddies using different numerical techniques derived from the Navier-Stokes equations. These methodologies, however, prove to be computationally inefficient when producing energy spectra for a wide range of length scales. In this regard, Morphing Continuum Theory (MCT) resolves the length-scales issues by assuming the fluid continuum to be composed of inner structures that play the role of subscale eddies. The current study show- cases the capabilities of MCT in capturing the dynamics of energy cascade at the level of subscale eddies, through a supersonic turbulent flow of Mach 2.93 over an 8× compression ramp. Analysis of the results using statistical averaging procedure shows the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding rotational kinetic energy of the subscale eddies, indicating a multiscale transfer of energy. The results show that MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.
Seasonal and Interannual Variability of Eddy Field and Surface Circulation in the Gulf of Aden
NASA Astrophysics Data System (ADS)
Al Saafani, M. A.; Shenoi, S. S. C.
2006-07-01
The circulation in the Gulf of Aden is inferred from three different data sets: h istorical sh ip drifts , hydrography , and satellite altimeter derived sea level (Topex/Poseidon, Jason and ERS) . The circulation in th is semi-enclosed basin is marked with strong seasonality with reversals in the direction of flows twice a year follow ing the reversal in mon soonal winds. During the win ter mon soon (November - February) there is an inflow from Arabian Sea; an extension of Arabian Coastal Current (ACC) . During sou thwest mon soon (June - August) the flow is generally towards east especially along the northern coast of Gulf of Aden. The geostrophic currents also show that the circulation in the gulf is embedded with mesoscale eddies. These westward propagating eddies appear to enter the Gulf of Aden from the western Arabian Sea in win ter. The relative contribu tion of mesoscale eddies to the circulation in the gulf were estimated using altimeter derived Sea level anomaly (SLA) for the years 1993 to 2003 . The effect of these mesoscale eddies extend over the entire water colu mn . The propagation speeds, of these eddies, estimated using weekly spaced altimeter derived SLA (2002 - 2003) is ~ 4 .0 - 5 .3 cm s . The sum of the speeds of second mode Ro ssby wave and the mean current (4.8 cm s ) matches with the propagation speeds of eddies estimated using SLA . Hence, second mode baroclin ic Rossby waves appear to be responsib le for the westward propagation of eddies in the Gulf of Aden. The presence of these eddies in the temperaturesalin ity climato logy confirms that they are no t transient features.
2013-09-30
bottom form stress (pressure force) and bottom boundary layers – all the aspects associated with turbulent flows over steep topography in the presence of...filaments, and eddies; topographic current separation, form stress , and submesoscale vortex generation; Our work on isoneutral diffusion for tracers...Bump region, are due to the contribution of the bottom stress curl. Fig. 4 shows how the Gulf Stream path is directly linked to the Bottom Pressure
The Death of Two Eddies, Against the Shelf
NASA Astrophysics Data System (ADS)
Zavala-Trujillo, B.; Badan, A.; Rivas, D.; Ochoa, J.; Sheinbaum, J.; Candela, J.
2007-05-01
A set of five moorings deployed in front of the coast of Tamaulipas, western Gulf of Mexico, provided fourteen months (from August 2004 to November 2005) of surface to bottom observations of currents and temperature that document the processes associated with the collision and dissipation of two warm mesoscale eddies with the continental slope. Two Loop Current eddies (Titanic and Ulysses) were identified reaching the study area during the observation period. On September 2004, the two southernmost 2000-m moorings show that temperature and salinity increases throughout the entire water column, related to eddy Titanic; similarily; on April 2005, eddy Ulysses caused a strong increase of temperature in the 3500-m mooring. The velocity field suggests three different régimes: a coastal region, the continental slope currents, and the abyssal circulation. Over the slope, three different layers can be identified: a surface layer (above 500 m depth), influenced by eddies and transients, a deep layer (under de 1900 m) with a persistent southerly current and a transition layer (from 500 to 1900 m) that separates them. The variance ellipses at ~ 700 m at the 3500-m mooring have no a predominant orientation of the mayor axis. At the northernmost 2000-m mooring, the axis of maximum variation is oriented with the bathymetry, but at the southernmost 2000-m mooring it is perpendicular to the coast. The spectral characteristics of the measurements are also discussed.
76 FR 63172 - Airworthiness Directives; The Boeing Company Model 767 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-12
... repetitive detailed and high frequency eddy current (HFEC) inspections of the station (STA) 1809.5 bulkhead... detailed and high frequency eddy current (HFEC) inspections for cracking as specified in Parts 1, 2, 3, and... rule to provide the applicable, current SRMs; we have re-identified subsequent tables accordingly. We...
The Galapagos Marine Reserve (GMR) is one of the most diverse ecosystems in the world. Phytoplankton are the base of the ecosystem food chain for many higher trophic organisms, so identifying phytoplankton biomass distribution is the first step in understanding the dynamic envir...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-04
... AD using a drawdown plan that includes a borescope inspection (BSI) or eddy current inspection (ECI... inspection (BSI) or eddy current inspection (ECI) of the disk rim according to the following schedule: (i...
LLWBCS changes through surface mesoscale activity and baroclinic tides in the Solomon Sea
NASA Astrophysics Data System (ADS)
Gourdeau, L.; Djath, B.; Ganachaud, A. S.; Tchilibou, M. L.; Verron, J. A.; Jouanno, J.
2016-02-01
In the south west Pacific, the Solomon Sea is on the pathway of the Low Latitudes Western Boundary Currents that connect the subtropics to the equator. Changes in their strengths, or in their water mass properties may have implication for ENSO and its low frequency modulation. During their transit in the Solomon Sea, the salinity maximum at thermocline level, characteristic of the South Pacific Tropical Waters (SPTW), is largely eroded. Different mechanisms could explain such salt erosion whose current/bathymetry interaction, internal tides, eddy activity. The Solomon Sea is an area of high level of eddy kinetic energy (EKE), especially in the surface layers, and its complex bathymetry is favourable for generation and dissipation of internal tides. Based on high resolution modelling, glider, and altimetric data mesoscale eddies observed at the surface are analysed in their 4D aspects. Their role on water mass transformation is explored. These eddies may affect the surface layers (σ<23.3) and the upper thermocline waters (23.3< σ <24.3), but they cannot explained the erosion of the salinity maximum below. Simulations with and without explicit tides provide a description of baroclinic tides in the Solomon Sea. Their role on water mixing is evaluated, especially for the SPTW.
NASA Astrophysics Data System (ADS)
Okafor, A. C.; Natarajan, S.
2007-03-01
Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented.
Prince, J.M.; Dodson, M.G.; Lechelt, W.M.
1989-07-18
A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis. 14 figs.
Prince, James M.; Dodson, Michael G.; Lechelt, Wayne M.
1989-01-01
A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis.
Field analysis & eddy current losses calculation in five-phase tubular actuator
NASA Astrophysics Data System (ADS)
Waindok, Andrzej; Tomczuk, Bronislaw
2017-12-01
Field analysis including eddy currents in the magnetic core of five-phase permanent magnet tubular linear actuator (TLA) has been carried out. The eddy currents induced in the magnetic core cause the losses which have been calculated. The results from 2D finite element (FE) analysis have been compared with those from 3D calculations. The losses in the mover of the five-phase actuator are much lower than the losses in its stator. That is why the former ones can be neglected in the computer aided designing. The calculation results have been verified experimentally
A constitutive model for the forces of a magnetic bearing including eddy currents
NASA Technical Reports Server (NTRS)
Taylor, D. L.; Hebbale, K. V.
1993-01-01
A multiple magnet bearing can be developed from N individual electromagnets. The constitutive relationships for a single magnet in such a bearing is presented. Analytical expressions are developed for a magnet with poles arranged circumferencially. Maxwell's field equations are used so the model easily includes the effects of induced eddy currents due to the rotation of the journal. Eddy currents must be included in any dynamic model because they are the only speed dependent parameter and may lead to a critical speed for the bearing. The model is applicable to bearings using attraction or repulsion.
NASA Astrophysics Data System (ADS)
Liu, Guoxi; Zhang, Chunli; Chen, Weiqiu; Dong, Shuxiang
2013-07-01
An analytical model of resonant magnetoelectric (ME) coupling in magnetostrictive (MS)-piezoelectric (PE) laminated composites in consideration of eddy-current effect in MS layer using equivalent circuit method is presented. Numerical calculations show that: (1) the eddy-current has a strong effect on ME coupling in MS-PE laminated composites at resonant frequency; and (2) the resonant ME coupling is then significantly dependent on the sizes of ME laminated composites, which were neglected in most previous theoretical analyses. The achieved results provide a theoretical guidance for the practice engineering design, manufacture, and application of ME laminated composites and devices.
Truong, Trong-Kha; Song, Allen W; Chen, Nan-Kuei
2015-01-01
In most diffusion tensor imaging (DTI) studies, images are acquired with either a partial-Fourier or a parallel partial-Fourier echo-planar imaging (EPI) sequence, in order to shorten the echo time and increase the signal-to-noise ratio (SNR). However, eddy currents induced by the diffusion-sensitizing gradients can often lead to a shift of the echo in k-space, resulting in three distinct types of artifacts in partial-Fourier DTI. Here, we present an improved DTI acquisition and reconstruction scheme, capable of generating high-quality and high-SNR DTI data without eddy current-induced artifacts. This new scheme consists of three components, respectively, addressing the three distinct types of artifacts. First, a k-space energy-anchored DTI sequence is designed to recover eddy current-induced signal loss (i.e., Type 1 artifact). Second, a multischeme partial-Fourier reconstruction is used to eliminate artificial signal elevation (i.e., Type 2 artifact) associated with the conventional partial-Fourier reconstruction. Third, a signal intensity correction is applied to remove artificial signal modulations due to eddy current-induced erroneous T2(∗) -weighting (i.e., Type 3 artifact). These systematic improvements will greatly increase the consistency and accuracy of DTI measurements, expanding the utility of DTI in translational applications where quantitative robustness is much needed.
Correction for Eddy Current-Induced Echo-Shifting Effect in Partial-Fourier Diffusion Tensor Imaging
Truong, Trong-Kha; Song, Allen W.; Chen, Nan-kuei
2015-01-01
In most diffusion tensor imaging (DTI) studies, images are acquired with either a partial-Fourier or a parallel partial-Fourier echo-planar imaging (EPI) sequence, in order to shorten the echo time and increase the signal-to-noise ratio (SNR). However, eddy currents induced by the diffusion-sensitizing gradients can often lead to a shift of the echo in k-space, resulting in three distinct types of artifacts in partial-Fourier DTI. Here, we present an improved DTI acquisition and reconstruction scheme, capable of generating high-quality and high-SNR DTI data without eddy current-induced artifacts. This new scheme consists of three components, respectively, addressing the three distinct types of artifacts. First, a k-space energy-anchored DTI sequence is designed to recover eddy current-induced signal loss (i.e., Type 1 artifact). Second, a multischeme partial-Fourier reconstruction is used to eliminate artificial signal elevation (i.e., Type 2 artifact) associated with the conventional partial-Fourier reconstruction. Third, a signal intensity correction is applied to remove artificial signal modulations due to eddy current-induced erroneous T 2 ∗-weighting (i.e., Type 3 artifact). These systematic improvements will greatly increase the consistency and accuracy of DTI measurements, expanding the utility of DTI in translational applications where quantitative robustness is much needed. PMID:26413505
Coupled circuit numerical analysis of eddy currents in an open MRI system.
Akram, Md Shahadat Hossain; Terada, Yasuhiko; Keiichiro, Ishi; Kose, Katsumi
2014-08-01
We performed a new coupled circuit numerical simulation of eddy currents in an open compact magnetic resonance imaging (MRI) system. Following the coupled circuit approach, the conducting structures were divided into subdomains along the length (or width) and the thickness, and by implementing coupled circuit concepts we have simulated transient responses of eddy currents for subdomains in different locations. We implemented the Eigen matrix technique to solve the network of coupled differential equations to speed up our simulation program. On the other hand, to compute the coupling relations between the biplanar gradient coil and any other conducting structure, we implemented the solid angle form of Ampere's law. We have also calculated the solid angle for three dimensions to compute inductive couplings in any subdomain of the conducting structures. Details of the temporal and spatial distribution of the eddy currents were then implemented in the secondary magnetic field calculation by the Biot-Savart law. In a desktop computer (Programming platform: Wolfram Mathematica 8.0®, Processor: Intel(R) Core(TM)2 Duo E7500 @ 2.93GHz; OS: Windows 7 Professional; Memory (RAM): 4.00GB), it took less than 3min to simulate the entire calculation of eddy currents and fields, and approximately 6min for X-gradient coil. The results are given in the time-space domain for both the direct and the cross-terms of the eddy current magnetic fields generated by the Z-gradient coil. We have also conducted free induction decay (FID) experiments of eddy fields using a nuclear magnetic resonance (NMR) probe to verify our simulation results. The simulation results were found to be in good agreement with the experimental results. In this study we have also conducted simulations for transient and spatial responses of secondary magnetic field induced by X-gradient coil. Our approach is fast and has much less computational complexity than the conventional electromagnetic numerical simulation methods. Copyright © 2014 Elsevier Inc. All rights reserved.
The Solomon Sea eddy activity from a 1/36° regional model
NASA Astrophysics Data System (ADS)
Djath, Bughsin; Babonneix, Antoine; Gourdeau, Lionel; Marin, Frédéric; Verron, Jacques
2013-04-01
In the South West Pacific, the Solomon Sea exhibits the highest levels of eddy kinetic energy but relatively little is known about the eddy activity in this region. This Sea is directly influenced by a monsoonal regime and ENSO variability, and occupies a strategical location as the Western Boundary Currents exiting it are known to feed the warm pool and to be the principal sources of the Equatorial UnderCurrent. During their transit in the Solomon Sea, meso-scale eddies are suspected to notably interact and influence these water masses. The goal of this study is to give an exhaustive description of this eddy activity. A dual approach, based both on altimetric data and high resolution modeling, has then been chosen for this purpose. First, an algorithm is applied on nearly 20 years of 1/3° x 1/3° gridded SLA maps (provided by the AVISO project). This allows eddies to be automatically detected and tracked, thus providing some basic eddy properties. The preliminary results show that two main and distinct types of eddies are detected. Eddies in the north-eastern part shows a variability associated with the mean structure, while those in the southern part are associated with generation/propagation processes. However, the resolution of the AVISO dataset is not very well suited to observe fine structures and to match with the numerous islands bordering the Solomon Sea. For this reason, we will confront these observations with the outputs of a 1/36° resolution realistic model of the Solomon Sea. The high resolution numerical model (1/36°) indeed permits to reproduce very fine scale features, such as eddies and filaments. The model is two-way embedded in a 1/12° regional model which is itself one-way embedded in the DRAKKAR 1/12° global model. The NEMO code is used as well as the AGRIF software for model nestings. Validation is realized by comparison with AVISO observations and available in situ data. In preparing the future wide-swath altimetric SWOT mission that is expected to provide observations of small-scale sea level variability, spectral analysis is performed from the 1/36° resolution realistic model in order to characterize the finer scale signals in the Solomon sea region. The preliminary SSH spectral analysis shows a k-4 slope, in good agreement with the suface quasigeostrophic (SQG) turbulence theory. Keywords: Solomon Sea; meso-scale activity; eddy detection, tracking and properties; wavenumber spectrum.
Analysis of the Distribution of Magnetic Fluid inside Tumors by a Giant Magnetoresistance Probe
Gooneratne, Chinthaka P.; Kurnicki, Adam; Yamada, Sotoshi; Mukhopadhyay, Subhas C.; Kosel, Jürgen
2013-01-01
Magnetic fluid hyperthermia (MFH) therapy uses the magnetic component of electromagnetic fields in the radiofrequency spectrum to couple energy to magnetic nanoparticles inside tumors. In MFH therapy, magnetic fluid is injected into tumors and an alternating current (AC) magnetic flux is applied to heat the magnetic fluid- filled tumor. If the temperature can be maintained at the therapeutic threshold of 42°C for 30 minutes or more, the tumor cells can be destroyed. Analyzing the distribution of the magnetic fluid injected into tumors prior to the heating step in MFH therapy is an essential criterion for homogenous heating of tumors, since a decision can then be taken on the strength and localization of the applied external AC magnetic flux density needed to destroy the tumor without affecting healthy cells. This paper proposes a methodology for analyzing the distribution of magnetic fluid in a tumor by a specifically designed giant magnetoresistance (GMR) probe prior to MFH heat treatment. Experimental results analyzing the distribution of magnetic fluid suggest that different magnetic fluid weight densities could be estimated inside a single tumor by the GMR probe. PMID:24312280
Eddy-current inversion in the thin-skin limit: Determination of depth and opening for a long crack
NASA Astrophysics Data System (ADS)
Burke, S. K.
1994-09-01
A method for crack size determination using eddy-current nondestructive evaluation is presented for the case of a plate containing an infinitely long crack of uniform depth and uniform crack opening. The approach is based on the approximate solution to Maxwell's equations for nonmagnetic conductors in the limit of small skin depth and relies on least-squares polynomial fits to a normalized coil impedance function as a function of skin depth. The method is straightforward to implement and is relatively insensitive to both systematic and random errors. The procedure requires the computation of two functions: a normalizing function, which depends both on the coil parameters and the skin depth, and a crack-depth function which depends only on the coil parameters in addition to the crack depth. The practical perfomance of the method was tested using a set of simulated cracks in the form of electro-discharge machined slots in aluminum alloy plates. The crack depths and crack opening deduced from the eddy-current measurements agree with the actual crack dimensions to within 10% or better. Recommendations concerning the optimum conditions for crack sizing are also made.
Nanolaminated Permalloy Core for High-Flux, High-Frequency Ultracompact Power Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J; Kim, M; Galle, P
2013-09-01
Metallic magnetic materials have desirable magnetic properties, including high permeability, and high saturation flux density, when compared with their ferrite counterparts. However, eddy-current losses preclude their use in many switching converter applications, due to the challenge of simultaneously achieving sufficiently thin laminations such that eddy currents are suppressed (e.g., 500 nm-1 mu m for megahertz frequencies), while simultaneously achieving overall core thicknesses such that substantial power can be handled. A CMOS-compatible fabrication process based on robot-assisted sequential electrodeposition followed by selective chemical etching has been developed for the realization of a core of substantial overall thickness (tens to hundreds ofmore » micrometers) comprised of multiple, stacked permalloy (Ni80Fe20) nanolaminations. Tests of toroidal inductors with nanolaminated cores showed negligible eddy-current loss relative to total core loss even at a peak flux density of 0.5 T in the megahertz frequency range. To illustrate the use of these cores, a buck power converter topology is implemented with switching frequencies of 1-2 MHz. Power conversion efficiency greater than 85% with peak operating flux density of 0.3-0.5 T in the core and converter output power level exceeding 5 W was achieved.« less
Novel Techniques for Pulsed Field Gradient NMR Measurements
NASA Astrophysics Data System (ADS)
Brey, William Wallace
Pulsed field gradient (PFG) techniques now find application in multiple quantum filtering and diffusion experiments as well as in magnetic resonance imaging and spatially selective spectroscopy. Conventionally, the gradient fields are produced by azimuthal and longitudinal currents on the surfaces of one or two cylinders. Using a series of planar units consisting of azimuthal and radial current elements spaced along the longitudinal axis, we have designed gradient coils having linear regions that extend axially nearly to the ends of the coil and to more than 80% of the inner radius. These designs locate the current return paths on a concentric cylinder, so the coils are called Concentric Return Path (CRP) coils. Coils having extended linear regions can be made smaller for a given sample size. Among the advantages that can accrue from using smaller coils are improved gradient strength and switching time, reduced eddy currents in the absence of shielding, and improved use of bore space. We used an approximation technique to predict the remaining eddy currents and a time-domain model of coil performance to simulate the electrical performance of the CRP coil and several reduced volume coils of more conventional design. One of the conventional coils was designed based on the time-domain performance model. A single-point acquisition technique was developed to measure the remaining eddy currents of the reduced volume coils. Adaptive sampling increases the dynamic range of the measurement. Measuring only the center of the stimulated echo removes chemical shift and B_0 inhomogeneity effects. The technique was also used to design an inverse filter to remove the eddy current effects in a larger coil set. We added pulsed field gradient and imaging capability to a 7 T commercial spectrometer to perform neuroscience and embryology research and used it in preliminary studies of binary liquid mixtures separating near a critical point. These techniques and coil designs will find application in research areas ranging from functional imaging to NMR microscopy.
Ocean Modeling in an Eddying Regime
NASA Astrophysics Data System (ADS)
Hecht, Matthew W.; Hasumi, Hiroyasu
This monograph is the first to survey progress in realistic simulation in a strongly eddying regime made possible by recent increases in computational capability. Its contributors comprise the leading researchers in this important and constantly evolving field. Divided into three parts, • Oceanographic Processes and Regimes: Fundamental Questions • Ocean Dynamics and State: From Regional to Global Scale, and • Modeling at the Mesoscale: State of the Art and Future Directions the volume details important advances in physical oceanography based on eddy resolving ocean modeling. It captures the state of the art and discusses issues that ocean modelers must consider in order to effectively contribute to advancing current knowledge, from subtleties of the underlying fluid dynamical equations to meaningful comparison with oceanographic observations and leading-edge model development. It summarizes many of the important results which have emerged from ocean modeling in an eddying regime, for those interested broadly in the physical science. More technical topics are intended to address the concerns of those actively working in the field.
A new eddy current model for magnetic bearing control system design
NASA Technical Reports Server (NTRS)
Feeley, Joseph J.; Ahlstrom, Daniel J.
1992-01-01
This paper describes a new VLSI-based controller for the implementation of a Linear-Quadratic-Gaussian (LQG) theory-based control system. Use of the controller is demonstrated by design of a controller for a magnetic bearing and its performance is evaluated by computer simulation.
Macha, Sreeraj; Koenen, Rüdiger; Sennewald, Regina; Schöne, Katja; Hummel, Noemi; Riedmaier, Stephan; Woerle, Hans J; Salsali, Afshin; Broedl, Uli C
2014-02-01
Empagliflozin is a potent, oral, selective inhibitor of sodium glucose cotransporter 2 in development for the treatment of type 2 diabetes mellitus. The goal of these studies was to investigate potential drug-drug interactions between empagliflozin and gemfibrozil (an organic anion-transporting polypeptide 1B1 [OATP1B1]/1B3 and organic anion transporter 3 [OAT3] inhibitor), rifampicin (an OATP1B1/1B3 inhibitor), or probenecid (an OAT3 and uridine diphosphate glucuronosyltransferase inhibitor). Two open-label, randomized, crossover studies were undertaken in healthy subjects. In the first study, 18 subjects received the following in 1 of 2 randomized treatment sequences: a single dose of empagliflozin 25 mg alone and gemfibrozil 600 mg BID for 5 days with a single dose of empagliflozin 25 mg on the third day. In the second study, 18 subjects received a single dose of empagliflozin 10 mg, a single dose of empagliflozin 10 mg coadministered with a single dose of rifampicin 600 mg, and probenecid 500 mg BID for 4 days with a single dose of empagliflozin 10 mg on the second day in 1 of 6 randomized treatment sequences. In the gemfibrozil study, 11 subjects were male, mean age was 35.1 years and mean body mass index (BMI) was 23.47 kg/m(2). In the rifampicin/probenecid study, 10 subjects were male, mean age was 32.7 years and mean BMI was 23.03 kg/m(2). Exposure to empagliflozin was increased by coadministration with gemfibrozil (AUC0-∞: geometric mean ratio [GMR], 158.50% [90% CI, 151.77-165.53]; Cmax: GMR, 115.00% [90% CI, 106.15-124.59]), rifampicin (AUC0-∞: GMR, 135.20% [90% CI, 129.58-141.06]; Cmax: GMR, 175.14% [90% CI, 160.14-191.56]), and probenecid (AUC0-∞: GMR, 153.47% [90% CI, 146.41-160.88]; Cmax: GMR, 125.60% [90% CI, 113.67-138.78]). All treatments were well tolerated. Increases in empagliflozin exposure were <2-fold, indicating that the inhibition of the OATP1B1/1B3, OAT3 transporter, and uridine diphosphate glucuronosyltransferases did not have a clinically relevant effect on empagliflozin exposure. No dose adjustments of empagliflozin were necessary when it was coadministered with gemfibrozil, rifampicin, or probenecid. ClinicalTrials.gov identifiers: NCT01301742 and NCT01634100. Copyright © 2014 Elsevier HS Journals, Inc. All rights reserved.
Cleavage of a Gulf of Mexico Loop Current eddy by a deep water cyclone
NASA Astrophysics Data System (ADS)
Biggs, D. C.; Fargion, G. S.; Hamilton, P.; Leben, R. R.
1996-09-01
Eddy Triton, an anticyclonic eddy shed by the Loop Current in late June 1991, drifted SW across the central Gulf of Mexico in the first 6 months of 1992, along the ``southern'' of the three characteristic drift paths described by Vukovich and Crissman [1986] from their analyses of 13 years of advanced very high resolution radiometer sea surface temperature data. An expendable bathythermograph (XBT) and conductivity-temperature-depth (CTD) transect of opportunity through Triton at eddy age 7 months in January 1992 found that eddy interior stood 23 dyn. cm higher than periphery; this gradient drove an anticyclonic swirl transport of 9-10 Sv relative to 800 dbar. At eddy age 9-10 months and while this eddy was in deep water near 94°W, it interacted with a mesoscale cyclonic circulation and was cleaved into two parts. The major (greater dynamic centimeters) piece drifted NW to end up in the ``eddy graveyard'' in the NW corner of the gulf, while the minor piece drifted SW and reached the continental margin of the western gulf off Tuxpan. This southern piece of Eddy Triton then turned north to follow the 2000-m isobath to about 24°N and later coalesced with what remained of the major fragment. Because Eddy Triton's cleavage took place just before the start of marine mammals (GulfCet) and Louisiana-Texas physical oceanography (LATEX) field programs, the closely spaced CTD, XBT, and air dropped XBT (AXBT) data that were gathered on the continental margin north of 26°N in support of these programs allow a detailed look at the northern margin of the larger fragment of this eddy. Supporting data from the space-borne altimeters on ERS 1 and TOPEX/POSEIDON allow us to track both pieces of Eddy Triton in the western Gulf and follow their spin down in dynamic height, coalescence, and ultimate entrainment in January 1993 into another anticyclonic eddy (Eddy U).
Bender, M.; Bennett, F.K.; Kuckes, A.F.
1963-09-17
A fast-acting electric switch is described for rapidly opening a circuit carrying large amounts of electrical power. A thin, conducting foil bridges a gap in this circuit and means are provided for producing a magnetic field and eddy currents in the foil, whereby the foil is rapidly broken to open the circuit across the gap. Advantageously the foil has a hole forming two narrow portions in the foil and the means producing the magnetic field and eddy currents comprises an annular coil having its annulus coaxial with the hole in the foil and turns adjacent the narrow portions of the foil. An electrical current flows through the coil to produce the magnetic field and eddy currents in the foil. (AEC)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-24
... (BSI) or eddy current inspection (ECI) of the disk outer rim front rail for cracks prior to... date of this AD. (ii) Perform a borescope inspection (BSI) or eddy current inspection (ECI) of the...
Differential-Coil Eddy-Current Material Sorter
NASA Technical Reports Server (NTRS)
Nummelin, J.; Buckley, D.
1985-01-01
Small metal or other electrically conductive parts of same shape but different composition quickly sorted with differential-coil eddy-current sorter. Developed to distinguish between turbine blades of different alloys, hardnesses, and residual stress, sorter generally applicable to parts of simple and complex shape.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-23
... frequency eddy current inspection for cracking of the keyway of the fuel tank access door cutout on the left... NPRM proposed to require doing a high frequency eddy current inspection for [[Page 35610
GMR in magnetic multilayers from a first principles band structure Kubo-Greenwood approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, F.; Freeman, A.J.
1998-07-01
The authors employ the Kubo-Greenwood formula to investigate from first-principles the giant magnetoresistance in Fe{sub m}M{sub n} (M = V, Cr, Mn and Cu) superlattices. The results indicate that MR can arise from band structure changes from ferromagnetic to anti-ferromagnetic alignments. Quantum confinement in the perpendicular direction is induced by the potential steps between the Fe and spacer layers and causes a much larger MR in the current-perpendicular-to-the-plane (CPP) geometry than in the current-in-plane (CIP) geometry. In the presence of the spin-orbit coupling interaction, MR is found to be reduced by spin-channel mixing.
Solution of magnetic field and eddy current problem induced by rotating magnetic poles (abstract)
NASA Astrophysics Data System (ADS)
Liu, Z. J.; Low, T. S.
1996-04-01
The magnetic field and eddy current problems induced by rotating permanent magnet poles occur in electromagnetic dampers, magnetic couplings, and many other devices. Whereas numerical techniques, for example, finite element methods can be exploited to study various features of these problems, such as heat generation and drag torque development, etc., the analytical solution is always of interest to the designers since it helps them to gain the insight into the interdependence of the parameters involved and provides an efficient tool for designing. Some of the previous work showed that the solution of the eddy current problem due to the linearly moving magnet poles can give satisfactory approximation for the eddy current problem due to rotating fields. However, in many practical cases, especially when the number of magnet poles is small, there is significant effect of flux focusing due to the geometry. The above approximation can therefore lead to marked errors in the theoretical predictions of the device performance. Bernot et al. recently described an analytical solution in a polar coordinate system where the radial field is excited by a time-varying source. A discussion of an analytical solution of the magnetic field and eddy current problems induced by moving magnet poles in radial field machines will be given in this article. The theoretical predictions obtained from this method is compared with the results obtained from finite element calculations. The validity of the method is also checked by the comparison of the theoretical predictions and the measurements from a test machine. It is shown that the introduced solution leads to a significant improvement in the air gap field prediction as compared with the results obtained from the analytical solution that models the eddy current problems induced by linearly moving magnet poles.
Detection and location of metal fragments in the human body
NASA Technical Reports Server (NTRS)
Brown, R. L.; Neuschaefer, R. W.
1970-01-01
Portable electronic device, based on the design of an eddy current gage, detects ferrous and nonferrous metal fragments. Device is more easily transported than X-ray equipment and does not present a radiation hazard.
Moving magnets in a micromagnetic finite-difference framework
NASA Astrophysics Data System (ADS)
Rissanen, Ilari; Laurson, Lasse
2018-05-01
We present a method and an implementation for smooth linear motion in a finite-difference-based micromagnetic simulation code, to be used in simulating magnetic friction and other phenomena involving moving microscale magnets. Our aim is to accurately simulate the magnetization dynamics and relative motion of magnets while retaining high computational speed. To this end, we combine techniques for fast scalar potential calculation and cubic b-spline interpolation, parallelizing them on a graphics processing unit (GPU). The implementation also includes the possibility of explicitly simulating eddy currents in the case of conducting magnets. We test our implementation by providing numerical examples of stick-slip motion of thin films pulled by a spring and the effect of eddy currents on the switching time of magnetic nanocubes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, D; Fasenfest, B; Rieben, R
2006-09-08
We are concerned with the solution of time-dependent electromagnetic eddy current problems using a finite element formulation on three-dimensional unstructured meshes. We allow for multiple conducting regions, and our goal is to develop an efficient computational method that does not require a computational mesh of the air/vacuum regions. This requires a sophisticated global boundary condition specifying the total fields on the conductor boundaries. We propose a Biot-Savart law based volume-to-surface boundary condition to meet this requirement. This Biot-Savart approach is demonstrated to be very accurate. In addition, this approach can be accelerated via a low-rank QR approximation of the discretizedmore » Biot-Savart law.« less
NASA Astrophysics Data System (ADS)
Li, Youping; Lu, Jinsong; Cheng, Jian; Yin, Yongzhen; Wang, Jianlan
2017-04-01
Based on the summaries of the rules about the vibration measurement for hydro-generator sets with respect to relevant standards, the key issues of the vibration measurement, such as measurement modes, the transducer selection are illustrated. In addition, the problems existing in vibration measurement are pointed out. The actual acquisition data of head cover vertical vibration respectively obtained by seismic transducer and eddy current transducer in site hydraulic turbine performance tests during the rising of the reservoir upstream level in a certain hydraulic power plant are compared. The difference of the data obtained by the two types of transducers and the potential reasons are presented. The application conditions of seismic transducer and eddy current transducer for hydro-generator set vibration measurement are given based on the analysis. Research subjects that should be focused on about the topic discussed in this paper are suggested.
Method and apparatus for deflection measurements using eddy current effects
NASA Astrophysics Data System (ADS)
Chern, Engmin J.
1993-05-01
A method and apparatus for inserting and moving a sensing assembly with a mechanical positioning assembly to a desired remote location of a surface of a specimen under test and measuring angle and/or deflection by sensing the change in the impedance of at least one sensor coil located in a base plate which has a rotatable conductive plate pivotally mounted thereon so as to uncover the sensor coil(s) whose impedance changes as a function of deflection away from the center line of the base plate in response to the movement of the rotator plate when contacting the surface of the specimen under test is presented. The apparatus includes the combination of a system controller, a sensing assembly, an eddy current impedance measuring apparatus, and a mechanical positioning assembly driven by the impedance measuring apparatus to position the sensing assembly at a desired location of the specimen.
Method and apparatus for deflection measurements using eddy current effects
NASA Technical Reports Server (NTRS)
Chern, Engmin J. (Inventor)
1993-01-01
A method and apparatus for inserting and moving a sensing assembly with a mechanical positioning assembly to a desired remote location of a surface of a specimen under test and measuring angle and/or deflection by sensing the change in the impedance of at least one sensor coil located in a base plate which has a rotatable conductive plate pivotally mounted thereon so as to uncover the sensor coil(s) whose impedance changes as a function of deflection away from the center line of the base plate in response to the movement of the rotator plate when contacting the surface of the specimen under test is presented. The apparatus includes the combination of a system controller, a sensing assembly, an eddy current impedance measuring apparatus, and a mechanical positioning assembly driven by the impedance measuring apparatus to position the sensing assembly at a desired location of the specimen.
NASA Astrophysics Data System (ADS)
Barnier, B.; Akuetevi, C. Q.; Verron, J. A.; Molines, J. M.; Lecointre, A.
2016-02-01
During the summer monsoon, the ocean circulation of the northwestern Indian Ocean is characterized by large anticyclonic circulation features that are part of the Somali Current system. In the vicinity of the equator is the Southern Gyre (SG), a large retroflection loop of the East African Coastal Current, generated after this current (pushed by the southwesterly winds) has crossed the equator. North of it is the Great Whirl (GW), a large anticyclone which exhibits intense swirling currents. Eddy-resolving hindcast simulations of the global ocean circulation are used to study the fast interactions between these large anticyclonic eddies. The present investigation identifies the origin and the subsequent development of the cyclones flanked upon the Great Whirl (GW) previously identified by in satellite observations and establishes that similar cyclones are also flanked upon the Southern Gyre (SG). These cyclones are identified as major actors in mixing water masses within the large eddies and offshore the coast of Somali. All simulations bring to light that during the period when the Southwest Monsoon is well established, the SG moves northward along the Somali coast and encounters the GW. The interaction between the SG and the GW is a collision without merging, collision during which the GW is pushed to the east of Socotra Island, sheds several smaller patches of anticyclonic vorticity, and often reforms into the Socotra Eddy, thus proposing a formation mechanism for the Socotra Eddy. During this process, the GW gives up its place to the SG which in turn becomes a new Great Whirl. This process is robust throughout the three simulations.
Ocean eddy structure by satellite radar altimetry required for iceberg towing
Campbell, W.J.; Cheney, R.E.; Marsh, J.G.; Mognard, N.M.
1980-01-01
Models for the towing of large tabular icebergs give towing speeds of 0.5 knots to 1.0 knots relative to the ambient near surface current. Recent oceanographic research indicates that the world oceans are not principally composed of large steady-state current systems, like the Gulf Stream, but that most of the ocean momentum is probably involved in intense rings, formed by meanders of the large streams, and in mid-ocean eddies. These rings and eddies have typical dimensions on the order of 200 km with dynamic height anomalies across them of tens-of-centimeters to a meter. They migrate at speeds on the order of a few cm/sec. Current velocities as great as 3 knots have been observed in rings, and currents of 1 knot are common. Thus, the successful towing of icebergs is dependent on the ability to locate, measure, and track ocean rings and eddies. To accomplish this systematically on synoptic scales appears to be possible only by using satelliteborne radar altimeters. Ocean current and eddy structures as observed by the radar altimeters on the GEOS-3 and Seasat-1 satellites are presented and compared. Several satellite programs presently being planned call for flying radar altimeters in polar or near-polar orbits in the mid-1980 time frame. Thus, by the time tows of large icebergs will probably be attempted, it is possible synoptic observations of ocean rings and eddies which can be used to ascertain their location, size, intensity, and translation velocity will be a reality. ?? 1980.
Ware, Joseph A; Dalziel, Gena; Jin, Jin Y; Pellett, Jackson D; Smelick, Gillian S; West, David A; Salphati, Laurent; Ding, Xiao; Sutton, Rebecca; Fridyland, Jane; Dresser, Mark J; Morrisson, Glenn; Holden, Scott N
2013-11-04
GDC-0941 is an orally administered potent, selective pan-inhibitor of phosphatidylinositol 3-kinases (PI3Ks) with good preclinical antitumor activity in xenograft models and favorable pharmacokinetics and tolerability in phase 1 trials, and it is currently being investigated in phase II clinical trials as an anti-cancer agent. In vitro solubility and dissolution studies suggested that GDC-0941, a weak base, displays significant pH-dependent solubility. Moreover, preclinical studies conducted in famotidine-induced hypochlorhydric dog suggested that the pharmacokinetics of GDC-0941 may be sensitive to pharmacologically induced hypochlorhydria. To investigate the clinical significance of food and pH-dependent solubility on GDC-0941 pharmacokinetics a four-period, two-sequence, open-label, randomized, crossover study was conducted in healthy volunteers. During the fasting state, GDC-0941 was rapidly absorbed with a median Tmax of 2 h. The presence of a high-fat meal delayed the absorption of GDC-0941, with a median Tmax of 4 h and a modest increase in AUC relative to the fasted state, with an estimated geometric mean ratio (GMR, 90% CI) of fed/fasted of 1.28 (1.08, 1.51) for AUC0-∞ and 0.87 (0.70, 1.06) for Cmax. The effect of rabeprazole (model PPI) coadministration on the pharmacokinetics of GDC-0941 was evaluated in the fasted and fed state. When comparing the effect of rabeprazole + GDC-0941 (fasted) to baseline GDC-0941 absorption in a fasted state, GDC-0941 median Tmax was unchanged, however, both Cmax and AUC0-∞ decreased significantly after pretreatment with rabeprazole, with an estimated GMR (90% CI) of 0.31 (0.21, 0.46) and 0.46 (0.35, 0.61), respectively for both parameters. When rabeprazole was administered in the presence of the high-fat meal, the impact of food did not fully reverse the pH effect; the overall effect of rabeprazole on AUC0-∞ was somewhat attenuated by the high-fat meal (estimate GMR of 0.57, with 90% CI, 0.50, 0.65) but unchanged for the Cmax (estimate of 0.43, with 90% CI, 0.37, 0.50). The results of the current investigations emphasize the complex nature of physicochemical interactions and the importance of gastric acid for the dissolution and solubilization processes of GDC-0941. Given these findings, dosing of GDC-0941 in clinical trials was not constrained relative to fasted/fed states, but the concomitant use of ARAs was restricted. Mitigation strategies to limit the influence of pH on exposure of molecularly targeted agents such as GDC-0941 with pH-dependent solubility are discussed.
Development and Test of an Eddy-Current Clutch-Propulsion System
DOT National Transportation Integrated Search
1973-10-01
This report covers the Phase 1 effort which is to develop and to test an/AC-propulsion system for personal rapid- transit vehicles. This propulsion system incorporates an AC-induction motor in conjunction with an eddy-current clutch and brake. Also i...
NASA Astrophysics Data System (ADS)
Beszczynska-Moeller, A.; Gürses, Ö.; Sidorenko, D.; Goessling, H.; Volodin, E. M.; Gritsun, A.; Iakovlev, N. G.; Andrzejewski, J.
2017-12-01
Enhancing the fidelity of climate models in the Arctic and North Atlantic in order to improve Arctic predictions requires better understanding of the underlying causes of common biases. The main focus of the ERA.Net project NAtMAP (Amending North Atlantic Model Biases to Improve Arctic Predictions) is on the dynamics of the key regions connecting the Arctic and the North Atlantic climate. The study aims not only at increased model realism, but also at a deeper understanding of North Atlantic-Arctic links and their contribution to Arctic predictability. Two complementary approaches employing different global coupled climate models, ECHAM6-FESOM and INMCM4/5, were adopted. The first approach is based on a recent development of climate models with ocean components based on unstructured meshes, allowing to resolve eddies and narrow boundary currents in the most crucial regions while keeping a moderate resolution elsewhere. The multi-resolution sea ice-ocean component of ECHAM6-FESOM allows studying the benefits of very high resolution in key areas of the North Atlantic. An alternative approach to address the North Atlantic and Arctic biases is also tried by tuning the performance of the relevant sub-grid-scale parameterizations in eddy resolving version the CMIP5 climate model INMCM4. Using long-term in situ and satellite observations and available climatologies we attempt to evaluate to what extent a higher resolution, allowing the explicit representation of eddies and narrow boundary currents in the North Atlantic and Nordic Seas, can alleviate the common model errors. The effects of better resolving the Labrador Sea area on reducing the model bias in surface hydrography and improved representation of ocean currents are addressed. Resolving eddy field in the Greenland Sea is assessed in terms of reducing the deep thermocline bias. The impact of increased resolution on the modeled characteristics of Atlantic water transport into the Arctic is examined with a special focus on separation of Atlantic inflow between Fram Strait and the Barents Sea, lateral exchanges in the Nordic Seas, and a role of eddies in modulating the poleward flow of Atlantic water. We also explore the effects of resolving boundary currents in the Arctic basin on the representation of the adjacent sea ice.
NASA Astrophysics Data System (ADS)
Kato, Takuya; Sekino, Masaki; Matsuzaki, Taiga; Nishikawa, Atsushi; Saitoh, Youichi; Ohsaki, Hiroyuki
2012-04-01
Repetitive transcranial magnetic stimulation (rTMS) is effective for treatment of several neurological and psychiatric diseases. We proposed an eccentric figure-eight coil, which induces strong eddy currents in the target brain tissue. In this study, numerical analyses were carried out to obtain magnetic field distribution of the eccentric figure-eight coil and eddy current in the brain. The analyses were performed with various coil design parameters, such as the outer and inner diameters and number of turns, to investigate the influence of these parameters on the coil characteristics. Increases in the inner diameter, outer diameter, and number of turns caused increases in the maximum eddy current densities. Coil inductance, working voltage, and heat generation also became higher with the increases in these design parameters. In order to develop a compact stimulator system for use at home, we need to obtain strong eddy current density, keeping the working voltage as low as possible. Our results show that it is effective to enlarge the outer diameter.
Correction of eddy current distortions in high angular resolution diffusion imaging.
Zhuang, Jiancheng; Lu, Zhong-Lin; Vidal, Christine Bouteiller; Damasio, Hanna
2013-06-01
To correct distortions caused by eddy currents induced by large diffusion gradients during high angular resolution diffusion imaging without any auxiliary reference scans. Image distortion parameters were obtained by image coregistration, performed only between diffusion-weighted images with close diffusion gradient orientations. A linear model that describes distortion parameters (translation, scale, and shear) as a function of diffusion gradient directions was numerically computed to allow individualized distortion correction for every diffusion-weighted image. The assumptions of the algorithm were successfully verified in a series of experiments on phantom and human scans. Application of the proposed algorithm in high angular resolution diffusion images markedly reduced eddy current distortions when compared to results obtained with previously published methods. The method can correct eddy current artifacts in the high angular resolution diffusion images, and it avoids the problematic procedure of cross-correlating images with significantly different contrasts resulting from very different gradient orientations or strengths. Copyright © 2012 Wiley Periodicals, Inc.
Corrosion Detection in Airframes Using a New Flux-Focusing Eddy Current Probe
NASA Technical Reports Server (NTRS)
Fulton, James P.; Wincheski, Buzz; Nath, Shridhar; Namkung, Min
1994-01-01
A new flux-focusing eddy current probe was recently developed at NASA Langley Research Center. The new probe is similar in design to a reflection type eddy current probe, but is unique in that it does not require the use of an impedance bridge for balancing. The device monitors the RMS output voltage of a pickup coil and, as a result, is easier to operate and interpret than traditional eddy current instruments. The unique design feature of the probe is a ferromagnetic cylinder, typically 1020 steel, which separates a concentrically positioned drive and pickup coil. The increased permeability of the steel causes the magnetic flux produced by the drive coil to be focused in a ring around the pickup coil. At high frequencies the eddy currents induced in both the sample and the cylinder allow little or no flux to link with the pickup coil. This results in a self-nulling condition which has been shown to be useful for the unambiguous detection of cracks in conducting materials. As the frequency is lowered the flux produced by the drive coil begins to link with the pickup coil causing an output which, among other things, is proportional to the thickness of the test specimen. This enables highly accurate measurements of the thickness of conducting materials and helps to facilitate the monitoring of thickness variations in a conducting structure such as an aircraft fuselage. Under ideal laboratory conditions the probe can sense thickness changes on the order of 1% as illustrated. However, this is highly dependent upon the thickness, and the geometric complexity of the sample being tested and for practical problems the sensitivity is usually much less. In this presentation we highlight some of the advantages and limitations in using the probe to inspect aircraft panels for corrosion and other types of material nonuniformities. In particular, we present preliminary results which illustrate the probes capabilities for detecting first and second layer corrosion in aircraft panels which may contain air gaps between the layers. Since the probe utilized eddy currents its corrosion detection capabilities are similar to convectional eddy current techniques, but the new probe is much easier to use.