Science.gov

Sample records for gmti radar system

  1. Airborne MIMO GMTI Radar

    DTIC Science & Technology

    2011-03-31

    applications [1], [2], [3], [4]. [5]. [6]. [7]. [8]. [9]. [10]. [11]. [12]. Conventional phased array radars form a single coherent transmit beam and...intentionally left blank. 1. INTRODUCTION Conventional phased - array radars form a single coherent transmit beam and measure the backscattered response... steering vector for a SI MO array with nr"/? receiver phase centers located at positions xm + y„. This is how the MIMO virtual array arises. The waveforms

  2. Performance limits for exo-clutter Ground Moving Target Indicator (GMTI) radar.

    SciTech Connect

    Doerry, Armin Walter

    2010-09-01

    The performance of a Ground Moving Target Indicator (GMTI) radar system depends on a variety of factors, many which are interdependent in some manner. It is often difficult to 'get your arms around' the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall GMTI radar system. While the information herein is not new to the literature, its collection into a single report hopes to offer some value in reducing the 'seek time'.

  3. Gmti Motion Compensation

    DOEpatents

    Doerry, Armin W.

    2004-07-20

    Movement of a GMTI radar during a coherent processing interval over which a set of radar pulses are processed may cause defocusing of a range-Doppler map in the video signal. This problem may be compensated by varying waveform or sampling parameters of each pulse to compensate for distortions caused by variations in viewing angles from the radar to the target.

  4. Circular SAR GMTI

    NASA Astrophysics Data System (ADS)

    Page, Douglas; Owirka, Gregory; Nichols, Howard; Scarborough, Steven

    2014-06-01

    We describe techniques for improving ground moving target indication (GMTI) performance in multi-channel synthetic aperture radar (SAR) systems. Our approach employs a combination of moving reference processing (MRP) to compensate for defocus of moving target SAR responses and space-time adaptive processing (STAP) to mitigate the effects of strong clutter interference. Using simulated moving target and clutter returns, we demonstrate focusing of the target return using MRP, and discuss the effect of MRP on the clutter response. We also describe formation of adaptive degrees of freedom (DOFs) for STAP filtering of MRP processed data. For the simulated moving target in clutter example, we demonstrate improvement in the signal to interference plus noise (SINR) loss compared to more standard algorithm configurations. In addition to MRP and STAP, the use of tracker feedback, false alarm mitigation, and parameter estimation techniques are also described. A change detection approach for reducing false alarms from clutter discretes is outlined, and processing of a measured data coherent processing interval (CPI) from a continuously orbiting platform is described. The results demonstrate detection and geolocation of a high-value target under track. The endoclutter target is not clearly visible in single-channel SAR chips centered on the GMTI track prediction. Detections are compared to truth data before and after geolocation using measured angle of arrival (AOA).

  5. Performance evaluation of SAR/GMTI algorithms

    NASA Astrophysics Data System (ADS)

    Garber, Wendy; Pierson, William; Mcginnis, Ryan; Majumder, Uttam; Minardi, Michael; Sobota, David

    2016-05-01

    There is a history and understanding of exploiting moving targets within ground moving target indicator (GMTI) data, including methods for modeling performance. However, many assumptions valid for GMTI processing are invalid for synthetic aperture radar (SAR) data. For example, traditional GMTI processing assumes targets are exo-clutter and a system that uses a GMTI waveform, i.e. low bandwidth (BW) and low pulse repetition frequency (PRF). Conversely, SAR imagery is typically formed to focus data at zero Doppler and requires high BW and high PRF. Therefore, many of the techniques used in performance estimation of GMTI systems are not valid for SAR data. However, as demonstrated by papers in the recent literature,1-11 there is interest in exploiting moving targets within SAR data. The techniques employed vary widely, including filter banks to form images at multiple Dopplers, performing smear detection, and attempting to address the issue through waveform design. The above work validates the need for moving target exploitation in SAR data, but it does not represent a theory allowing for the prediction or bounding of performance. This work develops an approach to estimate and/or bound performance for moving target exploitation specific to SAR data. Synthetic SAR data is generated across a range of sensor, environment, and target parameters to test the exploitation algorithms under specific conditions. This provides a design tool allowing radar systems to be tuned for specific moving target exploitation applications. In summary, we derive a set of rules that bound the performance of specific moving target exploitation algorithms under variable operating conditions.

  6. SAR based adaptive GMTI

    NASA Astrophysics Data System (ADS)

    Vu, Duc; Guo, Bin; Xu, Luzhou; Li, Jian

    2010-04-01

    We consider ground moving target indication (GMTI) and target velocity estimation based on multi-channel synthetic aperture radar (SAR) images. Via forming velocity versus cross-range images, we show that small moving targets can be detected even in the presence of strong stationary ground clutter. Moreover, the velocities of the moving targets can be estimated, and the misplaced moving targets can be placed back to their original locations based on the estimated velocities. Adaptive beamforming techniques, including Capon and generalizedlikelihood ratio test (GLRT), are used to form velocity versus cross-range images for each range bin of interest. The velocity estimation ambiguities caused by the multi-channel array geometry are analyzed. We also demonstrate the effectiveness of our approaches using the Air Force Research Laboratory (AFRL) publicly-released Gotcha SAR based GMTI data set.

  7. GMTI processing using back projection.

    SciTech Connect

    Doerry, Armin Walter

    2013-07-01

    Backprojection has long been applied to SAR image formation. It has equal utility in forming the range-velocity maps for Ground Moving Target Indicator (GMTI) radar processing. In particular, it overcomes the problem of targets migrating through range resolution cells.

  8. Limits to Clutter Cancellation in Multi-Aperture GMTI Data

    SciTech Connect

    Doerry, Armin W.; Bickel, Douglas L.

    2015-03-01

    Multi-aperture or multi-subaperture antennas are fundamental to Ground Moving Target Indicator (GMTI) radar systems in order to detect slow-moving targets with Doppler characteristics similar to clutter. Herein we examine the performance of several subaperture architectures for their clutter cancelling performance. Significantly, more antenna phase centers isn’t always better, and in fact is sometimes worse, for detecting targets.

  9. Effects of Analog-to-Digital Converter Nonlinearities on Radar Range-Doppler Maps

    SciTech Connect

    Doerry, Armin Walter; Dubbert, Dale F.; Tise, Bertice L.

    2014-07-01

    Radar operation, particularly Ground Moving Target Indicator (GMTI) radar modes, are very sensitive to anomalous effects of system nonlinearities. These throw off harmonic spurs that are sometimes detected as false alarms. One significant source of nonlinear behavior is the Analog to Digital Converter (ADC). One measure of its undesired nonlinearity is its Integral Nonlinearity (INL) specification. We examine in this report the relationship of INL to GMTI performance.

  10. RADAR WARNING SYSTEM,

    DTIC Science & Technology

    RADAR TRACKING, *AIRCRAFT DEFENSE SYSTEMS, RADAR EQUIPMENT, AIR TO AIR, SEARCH RADAR, GUIDED MISSILES, HIGH SPEED BOMBING, EARLY WARNING SYSTEMS, FIRE CONTROL SYSTEM COMPONENTS, AIRCRAFT, TIME, CHINA.

  11. Kronecker STAP and SAR GMTI

    NASA Astrophysics Data System (ADS)

    Greenewald, Kristjan H.; Zelnio, Edmund G.; Hero, Alfred O.

    2016-05-01

    As a high resolution radar imaging modality, SAR detects and localizes non-moving targets accurately, giving it an advantage over lower resolution GMTI radars. Moving target detection is more challenging due to target smearing and masking by clutter. Space-time adaptive processing (STAP) is often used on multiantenna SAR to remove the stationary clutter and enhance the moving targets. In (Greenewald et al., 2016),1 it was shown that the performance of STAP can be improved by modeling the clutter covariance as a space vs. time Kronecker product with low rank factors, providing robustness and reducing the number of training samples required. In this work, we present a massively parallel algorithm for implementing Kronecker product STAP, enabling application to very large SAR datasets (such as the 2006 Gotcha data collection) using GPUs. Finally, we develop an extension of Kronecker STAP that uses information from multiple passes to improve moving target detection.

  12. Computer Simulations of Canada’s RADARSAT2 GMTI

    DTIC Science & Technology

    2000-10-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP010837 TITLE: Computer Simulations of Canada’s RADARSAT2 GMTI...ADPO10842 UNCLASSIFIED 45-1 Computer Simulations of Canada’s RADARSAT2 GMTI Shen Chiu and Chuck Livingstone Space Systems and Technology Section, Defence...Associates Ltd. 13800 Commerce Parkway, Richmond, B.C., Canada V6V 2J3 Abstract The detection probability and the estimation accuracy Canada’s RADARSAT2

  13. Effect of wind turbine micro-Doppler on SAR and GMTI signatures

    NASA Astrophysics Data System (ADS)

    Bhalla, Rajan; Ling, Hao

    2014-05-01

    In this paper, we present the results of a modeling study to examine the interference effect of microDopplers caused by offshore wind farms on airborne sensors operating in the synthetic aperture radar (SAR) and ground moving target indicator (GMTI) modes. The modeling is carried out by generating CAD instantiations of the dynamic wind turbine and using the high-frequency electromagnetic code Xpatch to perform the scattering calculations. Artifacts in the resulting SAR and GMTI signatures are evaluated for interference with tracking of boats in coastal waters. Results of signal filtering algorithms to reduce the dynamic turbine clutter in both SAR images and GMTI displays are presented.

  14. Clutter in the GMTI range-velocity map.

    SciTech Connect

    Doerry, Armin Walter

    2009-04-01

    Ground Moving Target Indicator (GMTI) radar maps echo data to range and range-rate, which is a function of a moving target's velocity and its position within the antenna beam footprint. Even stationary clutter will exhibit an apparent motion spectrum and can interfere with moving vehicle detections. Consequently it is very important for a radar to understand how stationary clutter maps into radar measurements of range and velocity. This mapping depends on a wide variety of factors, including details of the radar motion, orientation, and the 3-D topography of the clutter.

  15. Noncooperative rendezvous radar system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A fire control radar system was developed, assembled, and modified. The baseline system and modified angle tracking system are described along with the performance characteristics of the baseline and modified systems. Proposed changes to provide additional techniques for radar evaluation are presented along with flight test data.

  16. Simultaneous SAR and GMTI using ATI/DPCA

    NASA Astrophysics Data System (ADS)

    Deming, Ross; Best, Matthew; Farrell, Sean

    2014-06-01

    In previous work, we presented GMTI detection and geo-location results from the AFRL Gotcha challenge data set, which was collected using a 3-channel, X-band, circular SAR system. These results were compared against GPS truth for a scripted vehicle target. The algorithm used for this analysis is known as ATI/DPCA, which is a hybrid of along-track interferometry (ATI) and the displaced phase center antenna (DPCA) technique. In the present paper the use of ATI/DPCA is extended in order to detect and geo-locate all observable moving targets in the Gotcha challenge data, including both the scripted movers and targets of opportunity. In addition, a computationally efficient SAR imaging technique is presented, appropriate for short integration times, which is used for computing an image of the scene of interest using the same pulses of data used for the GMTI processing. The GMTI detections are then overlaid on the SAR image to produce a simultaneous SAR/GMTI map.

  17. GMTI for Squint Looking XTI-SAR with Rotatable Forward-Looking Array

    PubMed Central

    Jing, Kai; Xu, Jia; Huang, Zuzhen; Yao, Di; Long, Teng

    2016-01-01

    To realize ground moving target indication (GMTI) for a forward-looking array, we propose a novel synthetic aperture radar (SAR) system, called rotatable cross-track interferometry SAR (Ro-XTI-SAR), for squint-looking application in this paper. By changing the angle of the cross-track baseline, the interferometry phase component of squint-looking Ro-XTI-SAR caused by the terrain height can be approximately adjusted to zero, and then the interferometry phase of Ro-XTI-SAR is only sensitive to targets’ motion and can be equivalent to the along track interferometry SAR (ATI-SAR). Furthermore, the conventional displaced phase center array (DPCA) method and constant false alarm (CFAR) processing can be used to accomplish the successive clutter suppression, moving targets detection and relocation. Furthermore, the clutter suppressing performance is discussed with respect to different system parameters. Finally, some results of numerical experiments are provided to demonstrate the effectiveness of the proposed system. PMID:27314350

  18. GMTI Direction of Arrival Measurements from Multiple Phase Centers.

    SciTech Connect

    Doerry, Armin W.; Bickel, Douglas L.

    2015-03-01

    Ground Moving Target Indicator (GMTI) radar attempts to detect and locate targets with unknown motion. Very slow-moving targets are difficult to locate in the presence of surrounding clutter. This necessitates multiple antenna phase centers (or equivalent) to offer independent Direction of Arrival (DOA) measurements. DOA accuracy and precision generally remains dependent on target Signal-to-Noise Ratio (SNR), Clutter-toNoise Ratio (CNR), scene topography, interfering signals, and a number of antenna parameters. This is true even for adaptive techniques like Space-Time-AdaptiveProcessing (STAP) algorithms.

  19. Systems and Methods for Radar Data Communication

    NASA Technical Reports Server (NTRS)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  20. Verification of target motion effects on SAR imagery using the Gotcha GMTI challenge dataset

    NASA Astrophysics Data System (ADS)

    Hack, Dan E.; Saville, Michael A.

    2010-04-01

    This paper investigates the relationship between a ground moving target's kinematic state and its SAR image. While effects such as cross-range offset, defocus, and smearing appear well understood, their derivations in the literature typically employ simplifications of the radar/target geometry and assume point scattering targets. This study adopts a geometrical model for understanding target motion effects in SAR imagery, termed the target migration path, and focuses on experimental verification of predicted motion effects using both simulated and empirical datasets based on the Gotcha GMTI challenge dataset. Specifically, moving target imagery is generated from three data sources: first, simulated phase history for a moving point target; second, simulated phase history for a moving vehicle derived from a simulated Mazda MPV X-band signature; and third, empirical phase history from the Gotcha GMTI challenge dataset. Both simulated target trajectories match the truth GPS target position history from the Gotcha GMTI challenge dataset, allowing direct comparison between all three imagery sets and the predicted target migration path. This paper concludes with a discussion of the parallels between the target migration path and the measurement model within a Kalman filtering framework, followed by conclusions.

  1. An application of space-time adaptive processing to airborne and spaceborne monostatic and bistatic radar systems

    NASA Astrophysics Data System (ADS)

    Czernik, Richard James

    A challenging problem faced by Ground Moving Target Indicator (GMTI) radars on both airborne and spaceborne platforms is the ability to detect slow moving targets due the presence of non-stationary and heterogeneous ground clutter returns. Space-Time Adaptive Processing techniques process both the spatial signals from an antenna array as well as radar pulses simultaneously to aid in mitigating this clutter which has an inherent Doppler shift due to radar platform motion, as well as spreading across Angle-Doppler space attributable to a variety of factors. Additional problems such as clutter aliasing, widening of the clutter notch, and range dependency add additional complexity when the radar is bistatic in nature, and vary significantly as the bistatic radar geometry changes with respect to the targeted location. The most difficult situation is that of a spaceborne radar system due to its high velocity and altitude with respect to the earth. A spaceborne system does however offer several advantages over an airborne system, such as the ability to cover wide areas and to provide access to areas denied to airborne platforms. This dissertation examines both monostatic and bistatic radar performance based upon a computer simulation developed by the author, and explores the use of both optimal STAP and reduced dimension STAP architectures to mitigate the modeled clutter returns. Factors such as broadband jamming, wind, and earth rotation are considered, along with their impact on the interference covariance matrix, constructed from sample training data. Calculation of the covariance matrix in near real time based upon extracted training data is computer processor intensive and reduced dimension STAP architectures relieve some of the computation burden. The problems resulting from extending both monostatic and bistatic radar systems to space are also simulated and studied.

  2. Goldstone solar system radar

    NASA Technical Reports Server (NTRS)

    Jurgens, Raymond F.

    1991-01-01

    Caltech/Jet Propulsion Laboratory (JPL) radar astronomers made use of the Very Large Array (VLA) at Socorro, NM, during February 1990, to receive radio echoes from the planet Venus. The transmitter was the 70 meter antenna at the Goldstone complex northwest of Barstow, CA. These observations contain new information about the roughness of Venus at cm to decimeter scales and are complementary to information being obtained by the Magellan spacecraft. Asteroid observations are also discussed.

  3. Meteorological radar facility. Part 1: System design

    NASA Technical Reports Server (NTRS)

    Brassaw, L. L., Jr.; Hamren, S. D.; Mullins, W. H.; Schweitzer, B. P.

    1976-01-01

    A compilation of information regarding systems design of space shuttles used in meteorological radar probes is presented. Necessary radar equipment is delineated, while space system elements, calibration techniques, antenna systems and other subsystems are reviewed.

  4. Goldstone solar system radar signal processing

    NASA Technical Reports Server (NTRS)

    Jurgens, R. F.; Satorius, E.; Sanchez, O.

    1992-01-01

    A performance analysis of the planetary radar data acquisition system is presented. These results extend previous computer simulation analysis and are facilitated by the development of a simple analytical model that predicts radar system performance over a wide range of operational parameters. The results of this study are useful to both the radar systems designer and the science investigator in establishing operational radar data acquisition parameters which result in the best systems performance for a given set of input conditions.

  5. Goldstone solar system radar signal processing

    NASA Technical Reports Server (NTRS)

    Jurgens, R.; Satorius, E.; Sanchez, O.

    1992-01-01

    A performance analysis of the planetary radar data acquisition system is presented. These results extend previous computer simulation analysis and are facilitated by the development of a simple analytical model that predicts radar system performance over a wide range of operational parameters. The results of this study are useful to both the radar system designer and the science investigator in establishing operational radar data acquisition parameters which result in the best systems performance for a given set of input conditions.

  6. Obstacle penetrating dynamic radar imaging system

    DOEpatents

    Romero, Carlos E.; Zumstein, James E.; Chang, John T.; Leach, Jr.. Richard R.

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  7. Mars Radar Observations with the Goldstone Solar System Radar

    NASA Technical Reports Server (NTRS)

    Haldemann, A. F. C.; Jurgens, R. F.; Larsen, K. W.; Arvidson, R. E.; Slade, M. A.

    2002-01-01

    The Goldstone Solar System Radar (GSSR) has successfully collected radar echo data from Mars over the past 30 years. As such, the GSSR has played a role as a specific mission element within Mars exploration. The older data provided local elevation information for Mars, along with radar scattering information with global resolution. Since the upgrade to the 70-m Deep Space Network (DSN) antenna at Goldstone completed in 1986, Mars data has been collected during all but the 1997 Mars opposition. Radar data, and non-imaging delay-Doppler data in particular, requires significant data processing to extract elevation, reflectivity and roughness of the reflecting surface. The spatial resolution of these experiments is typically some 20 km in longitude by some 150 km in latitude. The interpretation of these parameters while limited by the complexities of electromagnetic scattering, do provide information directly relevant to geophysical and geomorphic analyses of Mars. The usefulness of radar data for Mars exploration has been demonstrated in the past. Radar data were critical in assessing the Viking Lander 1 site as well as, more recently, the Pathfinder landing site. In general, radar data have not been available to the Mars exploration community at large. A project funded initially by the Mars Exploration Directorate Science Office at the Jet Propulsion Laboratory (JPL), and later funded by NASA's Mars Data Analysis Program has reprocessed to a common format a decade's worth of raw GSSR Mars delay-Doppler data in aid of landing site characterization for the Mars Program. These data will soon be submitted to the Planetary Data System (PDS). The radar data used were obtained between 1988 and 1995 by the GSSR, and comprise some 63 delay-Doppler radar tracks. Of these, 15 have yet to be recovered from old 9-track tapes, and some of the data may be permanently lost.

  8. Monitoring by holographic radar systems

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Crocco, Lorenzo; Affinito, Antonio; Gennarelli, Gianluca; Soldovieri, Francesco

    2013-04-01

    Nowadays, radar technology represents a significant opportunity to collect useful information for the monitoring and conservation of critical infrastructures. Radar systems exploit the non-invasive interaction between the matter and the electromagnetic waves at microwave frequencies. Such an interaction allows obtaining images of the region under test from which one can infer the presence of potential anomalies such as deformations, cracks, water infiltrations, etc. This information turns out to be of primary importance in practical scenarios where the probed structure is in a poor state of preservation and renovation works must be planned. In this framework, the aim of this contribution is to describe the potentialities of the holographic radar Rascan 4/4000, a holographic radar developed by Remote Sensing Laboratory of Bauman Moscow State Technical University, as a non-destructive diagnostic tool capable to provide, in real-time, high resolution subsurface images of the sounded structure [1]. This radar provides holograms of hidden anomalies from the amplitude of the interference signal arising between the backscattered signal and a reference signal. The performance of the holographic radar is appraised by means of several experiments. Preliminary tests concerning the imaging below the floor and inside wood structures are carried out in controlled conditions at the Electromagnetic Diagnostic Laboratory of IREA-CNR. After, with reference to bridge monitoring for security aim, the results of a measurement campaign performed on the Musmeci bridge are presented [2]. Acknowledgments This research has been performed in the framework of the "Active and Passive Microwaves for Security and Subsurface imaging (AMISS)" EU 7th Framework Marie Curie Actions IRSES project (PIRSES-GA-2010-269157). REFERENCES [1] S. Ivashov, V. Razevig, I. Vasilyev, A. Zhuravlev, T. Bechtel, L. Capineri, The holographic principle in subsurface radar technology, International Symposium to

  9. Enhanced Weather Radar (EWxR) System

    NASA Technical Reports Server (NTRS)

    Kronfeld, Kevin M. (Technical Monitor)

    2003-01-01

    An airborne weather radar system, the Enhanced Weather Radar (EWxR), with enhanced on-board weather radar data processing was developed and tested. The system features additional weather data that is uplinked from ground-based sources, specialized data processing, and limited automatic radar control to search for hazardous weather. National Weather Service (NWS) ground-based Next Generation Radar (NEXRAD) information is used by the EWxR system to augment the on-board weather radar information. The system will simultaneously display NEXRAD and on-board weather radar information in a split-view format. The on-board weather radar includes an automated or hands-free storm-finding feature that optimizes the radar returns by automatically adjusting the tilt and range settings for the current altitude above the terrain and searches for storm cells near the atmospheric 0-degree isotherm. A rule-based decision aid was developed to automatically characterize cells as hazardous, possibly-hazardous, or non-hazardous based upon attributes of that cell. Cell attributes are determined based on data from the on-board radar and from ground-based radars. A flight path impact prediction algorithm was developed to help pilots to avoid hazardous weather along their flight plan and their mission. During development the system was tested on the NASA B757 aircraft and final tests were conducted on the Rockwell Collins Sabreliner.

  10. Radar volcano monitoring system in Iceland

    NASA Astrophysics Data System (ADS)

    Arason, Þórður; Yeo, Richard F.; Sigurðsson, Geirfinnur S.; Pálmason, Bolli; von Löwis, Sibylle; Nína Petersen, Guðrún; Bjornsson, Halldór

    2013-04-01

    Weather radars are valuable instruments in monitoring explosive volcanic eruptions. Temporal variations in the eruption strength can be monitored as well as variations in plume and ash dispersal. Strength of the reflected radar signal of a volcanic plume is related to water content and droplet sizes as well as type, shape, amount and the grain size distribution of ash. The Icelandic Meteorological Office (IMO) owns and operates three radars and one more is planned for this radar volcano monitoring system. A fixed position 250 kW C-band weather radar was installed in 1991 in SW-Iceland close to Keflavík International Airport, and upgraded to a doppler radar in 2010. In cooperation with the International Civil Aviation Organization (ICAO), IMO has recently invested in two mobile X-band radars and one fixed position C-band radar. The fixed position 250 kW doppler C-band weather radar was installed in April 2012 at Fljótsdalsheiði, E-Iceland, and in June 2012 IMO received a mobile 65 kW dual-polarization doppler X-band radar. Early in 2013 IMO will acquire another mobile radar of the same type. Explosive volcanic eruptions in Iceland during the past 22 years were monitored by the Keflavík radar: Hekla 1991, Gjálp 1996, Grímsvötn 1998, Hekla 2000, Grímsvötn 2004, Eyjafjallajökull 2010 and Grímsvötn 2011. Additionally, the Grímsvötn 2011 eruption was mointored by a mobile X-band radar on loan from the Italian Civil Protection Authorities. Detailed technical information is presented on the four radars with examples of the information acquired during previous eruptions. This expanded network of radars is expected to give valuable information on future volcanic eruptions in Iceland.

  11. Radar Attitude Sensing System (RASS)

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The initial design and fabrication efforts for a radar attitude sensing system (RASS) are covered. The design and fabrication of the RASS system is being undertaken in two phases, 1B1 and 1B2. The RASS system as configured under phase 1B1 contains the solid state transmitter and local oscillator, the antenna system, the receiving system, and the altitude electronics. RASS employs a pseudo-random coded cw signal and receiver correlation techniques to measure range. The antenna is a planar, phased array, monopulse type, whose beam is electronically steerable using diode phase shifters. The beam steering computer and attitude sensing circuitry are to be included in Phase 1B2 of the program.

  12. Penn State Radar Systems: Implementation and Observations

    NASA Astrophysics Data System (ADS)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  13. Kharkiv Meteor Radar System (the XX Age)

    NASA Astrophysics Data System (ADS)

    Kolomiyets, S. V.

    2012-09-01

    Kharkiv meteor radar research are of historic value (Kolomiyets and Sidorov 2007). Kharkiv radar observations of meteors proved internationally as the best in the world, it was noted at the IAU General Assembly in 1958. In the 1970s Kharkiv meteor automated radar system (MARS) was recommended at the international level as a successful prototype for wide distribution. Until now, this radar system is one of the most sensitive instruments of meteor radars in the world for astronomical observations. In 2004 Kharkiv meteor radar system is included in the list of objects which compose the national property of Ukraine. Kharkiv meteor radar system has acquired the status of the important historical astronomical instrument in world history. Meteor Centre for researching meteors in Kharkiv is a analogue of the observatory and performs the same functions of a generator and a battery of special knowledge and skills (the world-famous studio). Kharkiv and the location of the instrument were brand points on the globe, as the place where the world-class meteor radar studies were carried out. They are inscribed in the history of meteor astronomy, in large letters and should be immortalized on a world-wide level.

  14. Radar System Classification Using Neural Networks

    DTIC Science & Technology

    1991-12-01

    This study investigated methods of improving the accuracy of neural networks in the classification of large numbers of classes. A literature search...revealed that neural networks have been successful in the radar classification problem, and that many complex problems have been solved using systems...of multiple neural networks . The experiments conducted were based on 32 classes of radar system data. The neural networks were modelled using a program

  15. Knowledge Based Systems and Metacognition in Radar

    NASA Astrophysics Data System (ADS)

    Capraro, Gerard T.; Wicks, Michael C.

    An airborne ground looking radar sensor's performance may be enhanced by selecting algorithms adaptively as the environment changes. A short description of an airborne intelligent radar system (AIRS) is presented with a description of the knowledge based filter and detection portions. A second level of artificial intelligence (AI) processing is presented that monitors, tests, and learns how to improve and control the first level. This approach is based upon metacognition, a way forward for developing knowledge based systems.

  16. Radar Studies in the Solar System

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.

    1996-01-01

    We aid in a study of the solar system by means of ground-based radar. We have concentrated on (1) developing the ephemerides needed to acquire radar data at Arecibo Observatory and (2) analyzing the resultant data to: test fundamental laws of gravitation; determine the size, shape, topography, and spin vectors of the targets; and study the surface properties of these objects, through their scattering law and polarization characteristics.

  17. NEXRAD - An advanced Doppler weather radar system

    NASA Astrophysics Data System (ADS)

    Durham, A. F.

    The WSR-57 system, which was first placed into operation in 1957, forms the backbone of the current radar observation network of the National Weather Service. However, in connection with its age, it has become increasingly difficult and expensive to maintain this system. The present investigation is concerned with the replacement of the WSR-57 by a new system which incorporates important advances made in radar technology since the 1950s. The new system considered, called the Next Generation Weather Radar (NEXRAD) makes use of highly automated Doppler techniques to measure the radial velocity of air movement within the internal structure of a storm system. Attention is given to background regarding the NEXRAD system development, the four phases of the NEXRAD program, NEXRAD system capabilities, operational (display) products, and questions of siting.

  18. Phased-array radar for airborne systems

    NASA Astrophysics Data System (ADS)

    Tahim, Raghbir S.; Foshee, James J.; Chang, Kai

    2003-09-01

    Phased array antenna systems, which support high pulse rates and high transmit power, are well suited for radar and large-scale surveillance. Sensors and communication systems can function as the eyes and ears for ballistic missile defense applications, providing early warning of attack, target detection and identification, target tracking, and countermeasure decision. In such applications, active array radar systems that contain solid-state transmitter sources and low-noise preamplifiers for transmission and reception are preferred over the conventional radar antennas, because the phased array radar offers the advantages of power management and efficiency, reliability, signal reception, beam steering target detection. The current phased array radar designs are very large, complex and expensive and less efficient because of high RF losses in the phase control circuits used for beam scan. Several thousands of phase shifters and drivers may be required for a single system thus making the system very complex and expensive. This paper describes the phased array radar system based on high power T/R modules, wide-band radiating planar antenna elements and very low loss wide-band phase control circuits (requiring reduced power levels) for beam scan. The phase shifter design is based on micro-strip feed lines perturbed by the proximity of voltage controlled piezoelectric transducer (PET). Measured results have shown an added insertion loss of less than 1 dB for a phase shift of 450 degrees from 2 to 20 GHz. The new wideband phased array radar design provides significant reduction in size cost and weight. Compared to the conventional phased array systems, the cost saving is more than 15 to 1.

  19. Radar Studies in the Solar System

    NASA Technical Reports Server (NTRS)

    Shaprio, Irwin I.

    1998-01-01

    We aid in study of the solar system by means of ground-based radar. We have concentrated on: (1) developing the ephemerides needed to acquire radar data at Arecibo Observatory and (2) analyzing the resultant data to: test fundamental laws of gravitation; determine the size , shape, topography, and spin vectors of the targets; and study the surface properties of these objects, through their scattering law and polarization characteristics. We are engaged in radar observations of asteroids and comets, both as systematically planned targets and as "targets of opportunity." In the course of the program, we have prepared ephemerides for about 80 asteroids and three comets, and the radar observations have been made or attempted at the Arecibo Observatory, in most cases successfully, and in some cases on more than one apparition. The results of these observations have included echo spectra for the targets and, in some cases, delay - Doppler images and measurements of the total round-trip delay to the targets. Perhaps the most dramatic of these results are the images obtained for asteroids (4179) Toutatis and 1989PB (Castalia), which were revealed to be double-lobed objects by the radar images. Besides these direct results, the radar observations have furnished information on the sizes and shapes of the targets through analysis of the Doppler width of the echoes as a function of time, and on the surface properties (such as composition, bulk density, and roughness) through analysis of the reflectivity and of the polarization state of the echoes. We have also refined the orbits of the observed asteroids as a result of the Doppler (and in some cases delay) measurements from the radar observations. Although the orbits of main-belt asteroids accessible to ground-based radar are quite well known from the available optical data, some near-Earth objects have been seen by radar very soon after their optical discovery (for example, 199OMF, just eight days after discovery). In such

  20. Urban Flood Warning Systems using Radar Technologies

    NASA Astrophysics Data System (ADS)

    Fang, N.; Bedient, P. B.

    2013-12-01

    There have been an increasing number of urban areas that rely on weather radars to provide accurate precipitation information for flood warning purposes. As non-structural tools, radar-based flood warning systems can provide accurate and timely warnings to the public and private entities in urban areas that are prone to flash floods. The wider spatial and temporal coverage from radar increases flood warning lead-time when compared to rain and stream gages alone. The Third Generation Rice and Texas Medical Center (TMC) Flood Alert System (FAS3) has been delivering warning information with 2 to 3 hours of lead time and a R2 value of 93% to facility personnel in a readily understood format for more than 50 events in the past 15 years. The current FAS utilizes NEXRAD Level II radar rainfall data coupled with a real-time hydrologic model (RTHEC-1) to deliver warning information. The system has a user-friendly dashboard to provide rainfall maps, Google Maps based inundation maps, hydrologic predictions, and real-time monitoring at the bayou. This paper will evaluate its reliable performance during the recent events occurring in 2012 and 2013 and the development of a similar radar-based flood warning system for the City of Sugar Land, Texas. Having a significant role in the communication of flood information, FAS marks an important step towards the establishment of an operational and reliable flood warning system for flood-prone urban areas.

  1. Three-channel processing for improved geo-location performance in SAR-based GMTI interferometry

    NASA Astrophysics Data System (ADS)

    Deming, Ross W.; MacIntosh, Scott; Best, Matthew

    2012-05-01

    This paper describes a method for accurately geo-locating moving targets using three-channel SAR-based GMTI interferometry. The main goals in GMTI processing are moving target detection and geo-location. In a 2011 SPIE paper we showed that reliable target detection is possible using two-channel interferometry, even in the presence of main-beam clutter. Unfortunately, accurate geo-location is problematic when using two-channel interferometry, since azimuth estimation is corrupted by interfering clutter. However, we show here that by performing three-channel processing in an appropriate sequence, clutter effects can be diminished and significant improvement can be obtained in geo-location accuracy. The method described here is similar to an existing technique known as Clutter Suppression Interferometry (CSI), although there are new aspects of our implementation. The main contribution of this paper is the mathematical discussion, which explains in a straightforward manner why three-channel CSI outperforms standard two-channel interferometry when target signatures are embedded in main-beam clutter. Also, to our knowledge this paper presents the first results of CSI applied to the Gotcha Challange data set, collected using an X-band circular SAR system in an urban environment.

  2. Radar Performance Improvement. Angle Tracking Modification to Fire Control Radar System for Space Shuttle Rendezvous

    NASA Technical Reports Server (NTRS)

    Little, G. R.

    1976-01-01

    The AN/APQ-153 fire control radar modified to provide angle tracking was evaluated for improved performance. The frequency agile modifications are discussed along with the range-rate improvement modifications, and the radar to computer interface. A parametric design and comparison of noncoherent and coherent radar systems are presented. It is shown that the shuttle rendezvous range and range-rate requirements can be made by a Ku-Band noncoherent pulse radar.

  3. Noise sources in laser radar systems.

    PubMed

    Letalick, D; Renhorn, I; Steinvall, O; Shapiro, J H

    1989-07-01

    To understand the fundamental limit of performance with a given laser radar system, the phase noise of a testbed laser radar has been investigated. Apart from the phase noise in the transmitter laser and the local oscillator laser, additional phase noise was introduced by vibrations caused by fans in power supplies and cooling systems. The stability of the mechanical structure of the platform was also found to be of great importance. Furthermore, a model for the signal variations from diffuse targets has been developed. This model takes into account the stray light, the speckle decorrelation, and Doppler shift due to moving targets.

  4. The instrumental principles of MST radars and incoherent scatter radars and the configuration of radar system hardware

    NASA Technical Reports Server (NTRS)

    Roettger, Juergen

    1989-01-01

    The principle of pulse modulation used in the case of coherent scatter radars (MST radars) is discussed. Coherent detection and the corresponding system configuration is delineated. Antenna requirements and design are outlined and the phase-coherent transmitter/receiver system is described. Transmit/receive duplexers, transmitters, receivers, and quadrature detectors are explained. The radar controller, integrator, decoder and correlator design as well as the data transfer and the control and monitoring by the host computer are delineated. Typical operation parameters of some well-known radars are summarized.

  5. A dual-threshold radar detection system

    NASA Astrophysics Data System (ADS)

    Hammerle, K. J.

    It is known that the beam agility of a phased-array radar can be utilized to enhance target detection capability as compared to a radar which has the same power but which radiates its energy uniformly over the solid angle being surveilled. A dual-threshold approach for realizing this enhancement is examined. Quantitative results are presented parametrically for four signal fluctuation models. The study also identifies the optimum combination of dual-threshold design parameters for each target model under a wide range of imposed system constraints such as the allowed number of false alarms per beam position. It is shown that under certain imposed constraints, no enhancement is possible.

  6. 29 CFR 1915.85 - Vessel radar and communication systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Vessel radar and communication systems. 1915.85 Section... Working Conditions § 1915.85 Vessel radar and communication systems. (a) The employer shall service each vessel's radar and communication systems in accordance with 29 CFR 1915.89, Control of Hazardous...

  7. 29 CFR 1915.85 - Vessel radar and communication systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Vessel radar and communication systems. 1915.85 Section... Working Conditions § 1915.85 Vessel radar and communication systems. (a) The employer shall service each vessel's radar and communication systems in accordance with 29 CFR 1915.89, Control of Hazardous...

  8. 29 CFR 1915.85 - Vessel radar and communication systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Vessel radar and communication systems. 1915.85 Section... Working Conditions § 1915.85 Vessel radar and communication systems. (a) The employer shall service each vessel's radar and communication systems in accordance with 29 CFR 1915.89, Control of Hazardous...

  9. Multistatic radar: Synchronization and time reference system

    NASA Astrophysics Data System (ADS)

    Jubrink, H. G.

    1994-08-01

    A synchronization and time reference system for multistatic radar (MSR) is presented. The report also gives a summary of the most important parameter values of the synchronization process in MSR. Some reference oscillator systems using Loran C and global positioning system (GPS) receivers have been briefly analyzed. The synchronization method is based on a multioscillator system from the HP time and frequency standard system, the HP 55000 system. The multioscillator concept gives a more robust and redundant solution of the synchronization problem. The synchronization system can also be given external support by other time precision systems, for instance the GPS system.

  10. Goldstone Solar System Radar Waveform Generator

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    Due to distances and relative motions among the transmitter, target object, and receiver, the time-base between any transmitted and received signal will undergo distortion. Pre-distortion of the transmitted signal to compensate for this time-base distortion allows reception of an undistorted signal. In most radar applications, an arbitrary waveform generator (AWG) would be used to store the pre-calculated waveform and then play back this waveform during transmission. The Goldstone Solar System Radar (GSSR), however, has transmission durations that exceed the available memory storage of such a device. A waveform generator capable of real-time pre-distortion of a radar waveform to a given time-base distortion function is needed. To pre-distort the transmitted signal, both the baseband radar waveform and the RF carrier must be modified. In the GSSR, this occurs at the up-conversion mixing stage to an intermediate frequency (IF). A programmable oscillator (PO) is used to generate the IF along with a time-varying phase component that matches the time-base distortion of the RF carrier. This serves as the IF input to the waveform generator where it is mixed with a baseband radar waveform whose time-base has been distorted to match the given time-base distortion function producing the modulated IF output. An error control feedback loop is used to precisely control the time-base distortion of the baseband waveform, allowing its real-time generation. The waveform generator produces IF modulated radar waveforms whose time-base has been pre-distorted to match a given arbitrary function. The following waveforms are supported: continuous wave (CW), frequency hopped (FH), binary phase code (BPC), and linear frequency modulation (LFM). The waveform generator takes as input an IF with a time varying phase component that matches the time-base distortion of the carrier. The waveform generator supports interconnection with deep-space network (DSN) timing and frequency standards, and

  11. The 94 GHz MMW imaging radar system

    NASA Technical Reports Server (NTRS)

    Alon, Yair; Ulmer, Lon

    1993-01-01

    The 94 GHz MMW airborne radar system that provides a runway image in adverse weather conditions is now undergoing tests at Wright-Patterson Air Force Base (WPAFB). This system, which consists of a solid state FMCW transceiver, antenna, and digital signal processor, has an update rate of 10 times per second, 0.35x azimuth resolution and up to 3.5 meter range resolution. The radar B scope (range versus azimuth) image, once converted to C scope (elevation versus azimuth), is compatible with the standard TV presentation and can be displayed on the Head Up Display (HUD) or Head Down Display (HDD) to aid the pilot during landing and takeoff in limited visibility conditions.

  12. Laser Docking System Radar flight experiment

    NASA Technical Reports Server (NTRS)

    Erwin, Harry O.

    1986-01-01

    Flight experiments to verify the Laser Docking System Radar are discussed. The docking requirements are summarized, and the breadboarded hardware is described, emphasizing the two major scanning concepts being utilized: a mechanical scanning technique employing galvanometer beamsteerers and an electronic scanning technique using an image dissector. The software simulations used to apply hardware solutions to the docking requirements are briefly discussed, the tracking test bed is described, and the objectives of the flight experiment are reviewed.

  13. Validation of GPM Ka-Radar Algorithm Using a Ground-based Ka-Radar System

    NASA Astrophysics Data System (ADS)

    Nakamura, Kenji; Kaneko, Yuki; Nakagawa, Katsuhiro; Furukawa, Kinji; Suzuki, Kenji

    2016-04-01

    GPM led by the Japan Aerospace Exploration Agency (JAXA) and the National Aeronautics and Space Administration of US (NASA) aims to observe global precipitation. The core satellite is equipped with a microwave radiometer (GMI) and a dual-frequency radar (DPR) which is the first spaceborne Ku/Ka-band dual-wavelength radar dedicated for precipitation measurement. In the DPR algorithm, measured radar reflectivity is converted to effective radar reflectivity by estimating the rain attenuation. Here, the scattering/attenuation characteristics of Ka-band radiowaves are crucial, particularly for wet snow. A melting layer observation using a dual Ka-band radar system developed by JAXA was conducted along the slope of Mt. Zao in Yamagata Prefecture, Japan. The dual Ka-band radar system consists of two nearly identical Ka-band FM-CW radars, and the precipitation systems between two radars were observed in opposite directions. From this experiment, equivalent radar reflectivity (Ze) and specific attenuation (k) were obtained. The experiments were conducted for two winter seasons. During the data analyses, it was found that k estimate easily fluctuates because the estimate is based on double difference calculation. With much temporal and spatial averaging, k-Ze relationship was obtained for melting layers. One of the results is that the height of the peak of k seems slightly higher than that of Ze. The results are compared with in-situ precipitation particle measurements.

  14. A radar data processing and enhancement system

    NASA Technical Reports Server (NTRS)

    Anderson, K. F.; Wrin, J. W.; James, R.

    1986-01-01

    This report describes the space position data processing system of the NASA Western Aeronautical Test Range. The system is installed at the Dryden Flight Research Facility of NASA Ames Research Center. This operational radar data system (RADATS) provides simultaneous data processing for multiple data inputs and tracking and antenna pointing outputs while performing real-time monitoring, control, and data enhancement functions. Experience in support of the space shuttle and aeronautical flight research missions is described, as well as the automated calibration and configuration functions of the system.

  15. Laser radar in a system perspective

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl; Kamerman, Gary; Steinvall, Ove

    2011-06-01

    As a result of recent achievements in the field of laser radars, new options are available for their operation as system components. In addition to complementing and cross-checking one another, system components can generate new synergetic values. In this article, we address various roles and functions that laser radar may perform in a complete system context. Special attention is paid to range-gated imaging ladars operating in conjunction with infrared 2D sensors providing target recognition/identification at long distances and under adverse conditions of natural illumination. The multi- or hyper-spectral features of passive IR or visible sensors may be complemented by multispectral, broadband, tunable or switchable 3D imaging ladar in order to exploit the differences in target reflectance and absorption. This option opens another possibility for multi-spectral, mid-IR ladar to differentiate targets of various types, or to enhance the visualization potential and to facilitate the scene description with small targets like mines or mine-like objects. The recently discovered specificity of Raman scattering in the perturbed sea water makes the long-standing efforts in submarine wake detection more viable. Furthermore, the combination of microwave radar and laser radar, when amplified with new achievements in the fourth generation dual-mode imaging sensors, creates the possibility of single payload configurations suitable for small platforms. Emphasis is also made of the efficiency of Doppler velocimetry for precise vehicle navigation, such as for advance cruise missile control or autonomous landing. Finally, recent advances in coherent micro-ladars for optical coherence tomography now permit the reconstruction of time resolved 3D (i.e., 4D) dynamics of blood flow in heart vessels.

  16. Radar altimetry systems cost analysis

    NASA Technical Reports Server (NTRS)

    Escoe, D.; Heuring, F. T.; Denman, W. F.

    1976-01-01

    This report discusses the application and cost of two types of altimeter systems (spaceborne (satellite and shuttle) and airborne) to twelve user requirements. The overall design of the systems defined to meet these requirements is predicated on an unconstrained altimetry technology; that is, any level of altimeter or supporting equipment performance is possible.

  17. Radar Imaging with a Network of Digital Noise Radar Systems

    DTIC Science & Technology

    2009-03-01

    by the name of Dr. Ross became interested in describing the transient response of a type of microwave network through its characteristic impulse...Professor Peter ... Collins. %The code has been slightly modified since its orginal creation. %% Form image from arbitrary number of radar units % [img ,ximg... RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (include area code ) Standard Form 298 (Rev. 8–98) Prescribed by ANSI Std. Z39.18 12–03–2009 Master’s Thesis Sept

  18. Solid-state coherent laser radar wind shear measuring systems

    NASA Technical Reports Server (NTRS)

    Huffaker, R. Milton

    1992-01-01

    Coherent Technologies, Inc. (CTI) was established in 1984 to engage in the development of coherent laser radar systems and subsystems with applications in atmospheric remote sensing, and in target tracking, ranging and imaging. CTI focuses its capabilities in three major areas: (1) theoretical performance and design of coherent laser radar system; (2) development of coherent laser radar systems for government agencies such as DoD and NASA; and (3) development of coherent laser radar systems for commercial markets. The topics addressed are: (1) 1.06 micron solid-state coherent laser radar system; (2) wind measurement using 1.06 micron system; and flashlamp-pumped 2.09 micron solid-state coherent laser radar system.

  19. U.S. Navy Radar Systems Survey

    DTIC Science & Technology

    1949-09-27

    1949 2. REPORT TYPE 3. DATES COVERED 00-09-1949 to 00-09-1949 4. TITLE AND SUBTITLE U.S. Navy Radar Systems Survey 5a. CONTRACT NUMBER 5b...Ant. Total 90Reflector ~~KnotLobe Lobe ._. Weight System Wind Range aDiBn DB Type Size (lbs) Weight Load Resolution Gain Down Tp (rt) ____ (lbs) (ibs...SECTION 32 28 PAAOA 25 x13 7 TONS -- --5 - STABILIZATION PO`ER SOURCE, TYPE ACCURACY LIM IT PHASEFREQ. VOLTS KVA -_ __ -- - 1 60 115 3.8

  20. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    PubMed Central

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  1. Detecting and mitigating wind turbine clutter for airspace radar systems.

    PubMed

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  2. Integrated laser/radar satellite ranging and tracking system

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.

    1974-01-01

    A laser satellite ranging system that is mounted upon and integrated with a microwave tracking radar is reported. The 1-pulse/sec ruby laser transmitter is attached directly to the radar's elevation axis and radiates through a new opening in the radar's parabolic dish. The laser photomultiplier tube receiver utilizes the radar's existing 20-cm diam f/11 boresight telescope and observes through a similar symmetrically located opening in the dish. The laser system possesses separate ranging system electronics but shares the radar's timing, computer, and data handling/recording systems. The basic concept of the laser/radar is outlined together with a listing of the numerous advantages over present singular laser range-finding systems. The developmental laser hardware is described along with preliminary range-finding results and expectations.

  3. Radar systems for the water resources mission, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    The state of the art determination was made for radar measurement of: soil moisture, snow, standing and flowing water, lake and river ice, determination of required spacecraft radar parameters, study of synthetic-aperture radar systems to meet these parametric requirements, and study of techniques for on-board processing of the radar data. Significant new concepts developed include the following: scanning synthetic-aperture radar to achieve wide-swath coverage; single-sideband radar; and comb-filter range-sequential, range-offset SAR processing. The state of the art in radar measurement of water resources parameters is outlined. The feasibility for immediate development of a spacecraft water resources SAR was established. Numerous candidates for the on-board processor were examined.

  4. Southwest PAVE PAWS radar system: Environmental assessment

    NASA Astrophysics Data System (ADS)

    Everett, S. J.; Edson, W. A.; Heynick, L. N.; Pierce, S. R.; Shepherd, R. A.; Wlaklet, T. H.

    1983-03-01

    This document describes the probable environmental impacts of constructing and operating a new surveillance and tracking radar that would operate between 420 and 450 MHz. Four candidate sites in the vicinity of Goodfellow Air Force Base were considered. The impact analysis found that chronic exposure of humans to the radiofrequency radiation levels outside the exclusion fence is not likely to be harmful. No hazards would be associated with fuel handling or cardiac pacemakers at ground level beyond the exclusion fence. Interference with TV reception and other home electronic systems and with UHF land mobile and amateur radios is possible, depending on the site. Handling and use of electro-explosive devices (EEDs) would be safe beyond about 1.2 miles for the basic system and about 2.4 miles for the optional, higher power system. Electromagnetic interference with radar altimeters, air navigation, and air-ground communication is not likely except at two candidate sites, where interference and EED and pacemaker hazards may exist for aircraft operating into or out of a nearby landing strip. No significant adverse biophysical impacts are expected in any location.

  5. The SIR-C/X-SAR synthetic aperture radar system

    NASA Technical Reports Server (NTRS)

    Jordan, Rolando L.; Huneycutt, Bryan L.; Werner, Marian

    1991-01-01

    SIR-C/X-SAR, a three-frequency radar to be flown on the Space Shuttle in September 1993, is described. The SIR-C system is a two-frequency radar operating at 1250 MHz (L-band) and 5300 MHz (C-band), and is designed to get four-polarization radar imagery at multiple surface angles. The X-SAR system is an X-band imaging radar operating at 9600 MHz. The discussion covers the mission concept; system design; hardware; RF electronics; digital electronics; command, timing, and telemetry; and testing.

  6. Study to investigate and evaluate means of optimizing the radar function. [systems engineering of pulse radar for the space shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The investigations for a rendezvous radar system design and an integrated radar/communication system design are presented. Based on these investigations, system block diagrams are given and system parameters are optimized for the noncoherent pulse and coherent pulse Doppler radar modulation types. Both cooperative (transponder) and passive radar operation are examined including the optimization of the corresponding transponder design for the cooperative mode of operation.

  7. Multi-Antenna Radar Systems for Doppler Rain Measurements

    NASA Technical Reports Server (NTRS)

    Durden, Stephen; Tanelli, Simone; Siqueira, Paul

    2007-01-01

    Use of multiple-antenna radar systems aboard moving high-altitude platforms has been proposed for measuring rainfall. The basic principle of the proposed systems is a variant of that of along-track interferometric synthetic-aperture radar systems used previously to measure ocean waves and currents.

  8. Advanced meteor radar installed at Tirupati: System details and comparison with different radars

    NASA Astrophysics Data System (ADS)

    Rao, S. Vijaya Bhaskara; Eswaraiah, S.; Venkat Ratnam, M.; Kosalendra, E.; Kishore Kumar, K.; Sathish Kumar, S.; Patil, P. T.; Gurubaran, S.

    2014-11-01

    An advanced meteor radar, viz, Sri Venkateswara University (SVU) meteor radar (SVU MR) operating at 35.25 MHz, was installed at Sri Venkateswara University (SVU), Tirupati (13.63°N, 79.4°E), India, in August 2013 for continuous observations of horizontal winds in the mesosphere and lower thermosphere (MLT). This manuscript describes the purpose of the meteor radar, system configuration, measurement techniques, its data products, and operating parameters, as well as a comparison of measured mean winds in the MLT with contemporary radars over the Indian region. It is installed close to the Gadanki (13.5°N, 79.2°E) mesosphere-stratosphere-troposphere (MST) radar to fill the region between 85 and 100 km where this radar does not measure winds. The present radar provides additional information due to its high meteor detection rate, which results in accurate wind information from 70 to 110 km. As a first step, we made a comparison of SVU MR-derived horizontal winds in the MLT region with those measured by similar and different (MST and MF radars) techniques over the Indian region, as well as model (horizontal wind model 2007) data sets. The comparison showed an exquisite agreement between the overlapping altitudes (82-98 km) of different radars. Zonal winds compared very well, as did the meridional winds. The observed discrepancies and limitations in the wind measurement are discussed in the light of different measuring techniques and the effects of small-scale processes like gravity waves. This new radar is expected to play an important role in our understanding of the vertical and lateral coupling of different regions of the atmosphere that will be possible when measurements from nearby locations are combined.

  9. Radar systems for a polar mission, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Komen, M. J.; Mccauley, J.; Mcmillan, S. B.; Parashar, S. K.

    1977-01-01

    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources is examined. Synthetic aperture radars form a class of side-looking airborne radar, often referred to as coherent SLAR, which permits fine-resolution radar imagery to be generated at long operating ranges by the use of signal processing techniques. By orienting the antenna beam orthogonal to the motion of the spacecraft carrying the radar, a one-dimensional imagery ray system is converted into a two-dimensional or terrain imaging system. The radar's ability to distinguish - or resolve - closely spaced transverse objects is determined by the length of the pulse. The transmitter components receivers, and the mixer are described in details.

  10. The evaluation of satellite-borne weather radar system designs using real ground-based radar data

    NASA Technical Reports Server (NTRS)

    Dobson, E. B.; Kalshoven, J. E., Jr.

    1977-01-01

    The paper presents method of evaluating proposed satellite radar systems using real radar data, and discusses methods of displaying the results which will hopefully facilitate easy comparison of systems. A single pencil beam pulsed radar system is considered while the precipitation data base comes from six rain days observed by SPANDAR. The many additional factors that must be considered in the radar equation such as attenuation and scattering (Mie and Rayleigh) are discussed along with some indication where possible errors lie.

  11. A SEASAT-A synthetic aperture imaging radar system

    NASA Technical Reports Server (NTRS)

    Jordan, R. L.; Rodgers, D. H.

    1975-01-01

    The SEASAT, a synthetic aperture imaging radar system is the first radar system of its kind designed for the study of ocean wave patterns from orbit. The basic requirement of this system is to generate continuous radar imagery with a 100 km swath with 25m resolution from an orbital altitude of 800 km. These requirements impose unique system design problems. The end to end data system described including interactions of the spacecraft, antenna, sensor, telemetry link, and data processor. The synthetic aperture radar system generates a large quantity of data requiring the use of an analog link with stable local oscillator encoding. The problems associated in telemetering the radar information with sufficient fidelity to synthesize an image on the ground is described as well as the selected solutions to the problems.

  12. Improvement of antenna decoupling in radar systems

    NASA Astrophysics Data System (ADS)

    Anchidin, Liliana; Topor, Raluca; Tamas, Razvan D.; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban

    2015-02-01

    In this paper we present a type of antipodal Vivaldi antenna design, which can be used for pulse radiation in UWB communication. The Vivaldi antenna is a special tapered slot antenna with planar structure which is easily to be integrated with transmitting elements and receiving elements to form a compact structure. When the permittivity is very large, the wavelength of slot mode is so short that the electromagnetic fields concentrate in the slot to form an effective and balanced transmission line. Due to its simple structure and small size the Vivaldi antennas are one of the most popular designs used in UWB applications. However, for a two-antenna radar system, there is a high mutual coupling between two such antennas due to open configuration. In this paper, we propose a new method for reducing this effect. The method was validated by simulating a system of two Vivaldi antennas in front of a standard target.

  13. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    NASA Astrophysics Data System (ADS)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the

  14. A very wide frequency band pulsed/IF radar system

    NASA Technical Reports Server (NTRS)

    Jones, D. N.; Burnside, W. D.

    1988-01-01

    A pulsed/IF radar for compact range radar cross section measurements has been developed which converts RF returns to a fixed IF, so that amplification and grating may be performed at one frequency. This permits the use of components which have optimal performance at this frequency which results in a corresponding improvement in performance. Sensitivity and dynamic range are calculated for this system and compared with our old radar, and the effect of pulse width on clutter level is also studied. Sensitivity and accuracy tests are included to verify the performance of the radar.

  15. The Goldstone Solar System Radar: 1988-2003 Earth-based Mars Radar Observations

    NASA Technical Reports Server (NTRS)

    Haldemann, A. F. C.; Jurgens, R. F.; Slade, M. A.; Larsen, K. W.

    2005-01-01

    The Goldstone Solar System Radar (GSSR) has successfully collected radar echo data from Mars over the past 30 years. The older data provided local elevation information for Mars, along with radar scattering information with global resolution. Since the upgrade to the 70-m DSN antenna at Goldstone completed in 1986, Mars data has been collected during all but the 1997 Mars opposition. Radar data, and non-imaging delay- Doppler data in particular, requires significant data processing to extract elevation, reflectivity and roughness of the reflecting surface. The spatial resolution of these experiments is typically some 10 km in longitude by some 150 km in latitude. The interpretation of these parameters while limited by the complexities of electromagnetic scattering, do provide information directly relevant to geophysical and geomorphic analyses of Mars.

  16. 29. Perimeter acquisition radar building room #318, data processing system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Perimeter acquisition radar building room #318, data processing system area; data processor maintenance and operations center, showing data processing consoles - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  17. Beamforming for Radar Systems on COTS Heterogeneous Computing Platforms

    DTIC Science & Technology

    2004-08-20

    Beamforming for Radar Systems on COTS Heterogeneous Computing Platforms Mr. Jeffrey Rudin Mercury Computer Systems, Inc. Phone: (978) 967-1686...ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Mercury ...allocation and the resulting system topologies. © 2003 Mercury Computer Systems, Inc. Beamforming for Radar Systems on COTS Heterogeneous

  18. The 3D laser radar vision processor system

    NASA Technical Reports Server (NTRS)

    Sebok, T. M.

    1990-01-01

    Loral Defense Systems (LDS) developed a 3D Laser Radar Vision Processor system capable of detecting, classifying, and identifying small mobile targets as well as larger fixed targets using three dimensional laser radar imagery for use with a robotic type system. This processor system is designed to interface with the NASA Johnson Space Center in-house Extra Vehicular Activity (EVA) Retriever robot program and provide to it needed information so it can fetch and grasp targets in a space-type scenario.

  19. Advanced Meteor radar at Tirupati: System details and first results

    NASA Astrophysics Data System (ADS)

    Sunkara, Eswaraiah; Gurubaran, Subramanian; Sundararaman, Sathishkumar; Venkat Ratnam, Madineni; Karanam, Kishore Kumar; Eethamakula, Kosalendra; Vijaya Bhaskara Rao, S.

    An advanced meteor radar viz., Enhanced Meteor Detection Radar (EMDR) operating at 35.25 MHz is installed at Sri Venkateswara University (SVU), Tirupati (13.63oN, 79.4oE), India, in the month of August 2013. Present communication describes the need for the meteor radar at present location, system description, its measurement techniques, its variables and comparison of measured mean winds with contemporary radars over the Indian region. The present radar site is selected to fill the blind region of Gadanki (13.5oN, 79.2oE) MST radar, which covers mesosphere and lower thermosphere (MLT) region (70-110 km). By modifying the receiving antenna structure and elements, this radar is capable of providing accurate wind information between 70 and 110 km unlike other similar radars. Height covering region is extended by increasing the meteor counting capacity by modifying the receiving antenna structure and elements and hence its wind estimation limits extended below and above of 80 and 100 km, respectively. In the present study, we also made comparison of horizontal winds in the MLT region with those measured by similar and different (MST and MF radars) techniques over the Indian region including the model (HWM 07) data sets. The comparison showed a very good agreement between the overlapping altitudes (82-98 km) of different radars. Zonal winds compared very well as that of meridional winds. The observed discrepancies and limitations in the wind measurement are discussed. This new radar is expected to play important role in understanding the vertical and lateral coupling by forming a unique local network.

  20. A digital calibration method for synthetic aperture radar systems

    NASA Technical Reports Server (NTRS)

    Larson, Richard W.; Jackson, P. L.; Kasischke, Eric S.

    1988-01-01

    A basic method to calibrate imagery from synthetic aperture radar (SAR) systems is presented. SAR images are calibrated by monitoring all the terms of the radar equation. This procedure includes the use of both external (calibrated reference reflectors) and internal (system-generated calibration signals) sources to monitor the total SAR system transfer function. To illustrate the implementation of the procedure, two calibrated SAR images (X-band, 3.2-cm wavelength) are presented, along with the radar cross-section measurements of specific scenes within each image. The sources of error within the SAR image calibration procedure are identified.

  1. Ultrawideband radar imaging system for biomedical applications

    SciTech Connect

    Jafari, H.M.; Liu, W.; Hranilovic, S.; Deen, M.J.

    2006-05-15

    Ultrawideband (UWB) (3-10 GHz) radar imaging systems offer much promise for biomedical applications such as cancer detection because of their good penetration and resolution characteristics. The underlying principle of UWB cancer detection is a significant contrast in dielectric properties, which is estimated to be greater than 2:1 between normal and cancerous tissue, compared to a few-percent contrast in radiographic density exploited by x rays. This article presents a feasibility study of the UWB imaging of liver cancer tumors, based on the frequency-dependent finite difference time domain method. The reflection, radiation, and scattering properties of UWB pulses as they propagate through the human body are studied. The reflected and back-scattered electromagnetic energies from cancer tumors inside the liver are also investigated. An optimized, ultrawideband antenna was designed for near field operation, allowing for the reduction of the air-skin interface. It will be placed on the fat-liver tissue phantom with a malignant tumor stimulant. By performing an incremental scan over the phantom and removing early time artifacts, including reflection from the antenna ends, images based on the back-scattered signal from the tumor can be constructed. This research is part of our effort to develop a UWB cancer detection system with good detection and localization properties.

  2. Integrated laser/radar satellite ranging and tracking system.

    PubMed

    Hoge, F E

    1974-10-01

    A laser satellite ranging system that is mounted upon and integrated with a microwave tracking radar is reported. The 1-pulse sec/ruby laser transmitter is attached directly to the radar's elevation axis and radiates through a new opening in the radar's parabolic dish. The laser photomultiplier tube receiver utilizes the radar's existing 20-cm diam f11 boresight telescope and observes through a similar symmetrically located opening in the dish. The laser system possesses separate ranging system electronics but shares the radar's timing, computer, and data handling[equation]recording systems. The basic concept of the laser[equation]radar is outlined together with a listing of the numerous advantages over present singular laser rangefinding systems. The developmental laser hardware is described along with preliminary rangefinding results and expectations. The prototype system was assembled to investigate the feasibility of such systems and aid in the development of detailed specifications for an operational system. Both the feasibility and desirability of such systems integrations have been adequately demonstrated.

  3. Environmental Impact Analysis Process. Draft Environmental Impact Statement Proposed Alaskan Radar System Over-the-Horizon Backscatter Radar Program

    DTIC Science & Technology

    1986-08-01

    distibution is = im ited. _ Environmental Impact Analysis Process Draft Environmental Impact Statement Proposed Alaskan Radar System Over-the-Horizon...Backscatter Radar Program August 1986 DEPARTMENT OF THE AIR FORCE AIR FORCE SYSTEMS COMMAND ELECTRONIC SYSTEMS DIVISION YU-~v930:2FROMI HO LIS~iFCER...Fish and Wildlife Service. (b) Proposed Action: Construction and operation of the Alaskan Radar System , an Over-the-Horizon Backscatter (OTH-B

  4. Signal Processing System for the CASA Integrated Project I Radars

    SciTech Connect

    Bharadwaj, Nitin; Chandrasekar, V.; Junyent, Francesc

    2010-09-01

    This paper describes the waveform design space and signal processing system for dual-polarization Doppler weather radar operating at X band. The performance of the waveforms is presented with ground clutter suppression capability and mitigation of range velocity ambiguity. The operational waveform is designed based on operational requirements and system/hardware requirements. A dual Pulse Repetition Frequency (PRF) waveform was developed and implemented for the first generation X-band radars deployed by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). This paper presents an evaluation of the performance of the waveforms based on simulations and data collected by the first-generation CASA radars during operations.

  5. Modeling and experiments with a subsea laser radar system

    NASA Astrophysics Data System (ADS)

    Bjarnar, Morten L.; Klepsvik, John O.; Nilsen, Jan E.

    1991-12-01

    Subsea laser radar has a potential for accurate 3-D imaging in water. A prototype system has been developed at Seatex A/S in Norway as a prestudy for the design of an underwater laser radar scanning system. Parallel to the experimental studies, a numerical radiometric model has been developed as an aid in the system design. This model simulates a raster scanning laser radar system for in-water use. Thus this parametric model allows for analysis and predictions of the performance of such a sensor system. Experiments have been conducted to test a prototype laser radar system. The experimental system tested uses a Q-switched, frequency doubled, Nd:YAG solid state laser operating at a wavelength of 532 nm, which is close to optimal for use in water due to the small light attenuation around this wavelength in seawater. The laser has an energy output of 6 (mu) J per pulse 1 kHz pulse repetition frequency (PRF) and the receiver aperture is approximately 17 cm2. The laser radar prototype was mounted onto an accurate pan and tilt unit in order to test the 3-D imaging capabilities. The ultimate goal of the development is to provide an optical 3-D imaging tool for distances comparable to high frequency sonars with a range capability of approximately 30 - 50 m. The results from these experiments are presented. The present implementation of the scanning laser radar model is described and some outputs from the simulation are shown.

  6. The Addition of Enhanced Capabilities to NATO GMTIF STANAG 4607 to Support RADARSAT-2 GMTI Data

    DTIC Science & Technology

    2007-12-01

    L’augmentation du format est requis afin d’accommoder de nouveaux capteurs ou modes d’opération, ainsi que des nouvelles techniques de traitement...données GMTI entre différents capteurs et utilisateurs. Elles continueront à évoluer afin d’augmenter davantage l’aise de traitement de données et...augmentations avancées ont été développées suite aux interventions du groupe RADARSAT-2 GMTI de RDDC Ottawa. Elles permettent le soutien complet de capteurs

  7. A 10 cm dual frequency Doppler weather radar. Part 1: The radar system

    NASA Astrophysics Data System (ADS)

    Bishop, A. W.; Armstrong, G. M.

    1982-10-01

    Design concepts and test results are summarized for a Doppler weather radar system suitable for precipitation measurements over a wide span of radial velocities and slant ranges, even in the presence of ground clutter. The radar transmits two uniform pulse trains at 2.710 and 2.760 GHz. Uniformly spaced pulses permit ground clutter cancellation of up to 50 dB to be achieved with a three-pole elliptic filter. Pulse spacing at one frequency is consistent with long-range coverage in reflectivity, while spacing of the second is consistent with a wide unambiguous velocity measurement span.

  8. Radar systems for the water resources mission, volume 2

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources was examined. The function of spaceborne radar is to provide maps and map imagery to be used for earth resource and oceanographic applications. Spaceborne radar has the capability of mapping the entire United States regardless of inclement weather; however, the imagery must have a high degree of resolution to be meaningful. Attaining this resolution is possible with the SAR system. Imagery of the required quality must first meet mission parameters in the following areas: antenna patterns, azimuth and range ambiguities, coverage, and angle of incidence.

  9. Preliminary radar systems analysis for Venus orbiter missions

    NASA Technical Reports Server (NTRS)

    Brandenburg, R. K.; Spadoni, D. J.

    1971-01-01

    A short, preliminary analysis is presented of the problems involved in mapping the surface of Venus with radar from an orbiting spacecraft. Two types of radar, the noncoherent sidelooking and the focused synthetic aperture systems, are sized to fulfill two assumed levels of Venus exploration. The two exploration levels, regional and local, assumed for this study are based on previous Astro Sciences work (Klopp 1969). The regional level is defined as 1 to 3 kilometer spatial and 0.5 to 1 km vertical resolution of 100 percent 0 of the planet's surface. The local level is defined as 100 to 200 meter spatial and 50-10 m vertical resolution of about 100 percent of the surfAce (based on the regional survey). A 10cm operating frequency was chosen for both radar systems in order to minimize the antenna size and maximize the apparent radar cross section of the surface.

  10. A system model and inversion for synthetic aperture radar imaging.

    PubMed

    Soumekh, M

    1992-01-01

    A system model and its corresponding inversion for synthetic aperture radar (SAR) imaging are presented. The system model incorporates the spherical nature of a radar's radiation pattern at far field. The inverse method based on this model performs a spatial Fourier transform (Doppler processing) on the recorded signals with respect to the available coordinates of a translational radar (SAR) or target (inverse SAR). It is shown that the transformed data provide samples of the spatial Fourier transform of the target's reflectivity function. The inverse method can be modified to incorporate deviations of the radar's motion from its prescribed straight line path. The effects of finite aperture on resolution, reconstruction, and sampling constraints for the imaging problem are discussed.

  11. Micropower radar systems for law enforcement technology

    SciTech Connect

    Azevedo, S.G.; Mast, J.; Brase, J.

    1994-11-15

    LLNL researchers have pioneered a unique compact low-power and inexpensive radar technology (microradar) that has enormous potential in various industries. Some licenses are currently in place for motion sensors and stud finders. The ultra-wideband characteristics of the microradar (4 to 10 GHz) make it difficult to detect, yet provide potential range resolution of 1 cm at ranges of greater than 20 meters. Real and synthetic apertures arrays of radar elements can address imaging applications behind walls at those distances. Personnel detection applications are currently being tested.

  12. Millimeter Wave Radar Applications to Weapons Systems

    DTIC Science & Technology

    1976-06-01

    Georgia In3titute of Technology for the U.S. Army Signal Corps. TABLE III UNITED AIRCRAFT CO., NORDEN DIV., 70-GHz RADAR Power, SO0 watts peak, 0.25 watts... Georgia Institute of Technology, iI Atlanta, GA Cross Section Measurement Instrumentation Radar, RATSCAT Air Force Special Weapons Command, Holloman AFB...Branch Mr. R. Iliguera Box 15 Dr. .J. Battles • !FPO New York, NY 09510 Code b014 China Lake , CA 93555 .1 " ~123 Li . I" DISTRIBUI’ION LlbT A No. of No

  13. A Potential Integrated Multiwavelength Radar System at the Medicina Radiotelescopes

    NASA Astrophysics Data System (ADS)

    Montebugnoli, S.; Salerno, E.; Pupillo, G.; Pluchino, S.

    2009-03-01

    Ground-based radars provide a powerful tool for detection, tracking and identification of the space debris fragments orbiting around Earth at different altitudes. The Medicina Radioastronomical Station is an Italian radio observation facility that is here proposed as receiving part of a bistatic radar system for detecting and tracking space debris at different orbital regions (from Low Earth Orbits up to Geostationary Earth Orbits).

  14. Integration of WERA Ocean Radar into Tsunami Early Warning Systems

    NASA Astrophysics Data System (ADS)

    Dzvonkovskaya, Anna; Helzel, Thomas; Kniephoff, Matthias; Petersen, Leif; Weber, Bernd

    2016-04-01

    High-frequency (HF) ocean radars give a unique capability to deliver simultaneous wide area measurements of ocean surface current fields and sea state parameters far beyond the horizon. The WERA® ocean radar system is a shore-based remote sensing system to monitor ocean surface in near real-time and at all-weather conditions up to 300 km offshore. Tsunami induced surface currents cause increasing orbital velocities comparing to normal oceanographic situation and affect the measured radar spectra. The theoretical approach about tsunami influence on radar spectra showed that a tsunami wave train generates a specific unusual pattern in the HF radar spectra. While the tsunami wave is approaching the beach, the surface current pattern changes slightly in deep water and significantly in the shelf area as it was shown in theoretical considerations and later proved during the 2011 Japan tsunami. These observed tsunami signatures showed that the velocity of tsunami currents depended on a tsunami wave height and bathymetry. The HF ocean radar doesn't measure the approaching wave height of a tsunami; however, it can resolve the surface current velocity signature, which is generated when tsunami reaches the shelf edge. This strong change of the surface current can be detected by a phased-array WERA system in real-time; thus the WERA ocean radar is a valuable tool to support Tsunami Early Warning Systems (TEWS). Based on real tsunami measurements, requirements for the integration of ocean radar systems into TEWS are already defined. The requirements include a high range resolution, a narrow beam directivity of phased-array antennas and an accelerated data update mode to provide a possibility of offshore tsunami detection in real-time. The developed software package allows reconstructing an ocean surface current map of the area observed by HF radar based on the radar power spectrum processing. This fact gives an opportunity to issue an automated tsunami identification message

  15. Synthetic aperture radar: not just a sensor of last resort

    NASA Astrophysics Data System (ADS)

    Wells, Lars M.; Doerry, Armin W.

    2003-08-01

    Modern high-performance Synthetic Aperture Radar (SAR) systems have evolved into highly versatile, robust, and reliable tactical sensors, offering images and information not available from other sensor systems. For example, real-time images are routinely formed by the Sandia-designed General Atomics (AN/APY-8) Lynx SAR yielding 4-inch resolution at 25 km range (representing better than arc-second resolutions) in clouds, smoke, and rain. Sandia's Real-Time Visualization (RTV) program operates an Interferometric SAR (IFSAR) system that forms three-dimensional (3D) topographic maps in near real-time with National Imagery and Mapping Agency (NIMA) Digital Terrain Elevation Data (DTED) level 4 performance (3 meter post spacing with 0.8-meter height accuracy) or better. When exported to 3-D rendering software, this data allows remarkable interactive fly-through experiences. Coherent Change Detection (CCD) allows detecting tire tracks on dirt roads, foot-prints, and other minor, otherwise indiscernible ground disturbances long after their originators have left the scene. Ground Moving Target Indicator (GMTI) radar modes allow detecting and tracking moving vehicles. A Sandia program known as "MiniSAR" is developing technologies that are expected to culminate in a fully functioning, high-performance, real-time SAR that weighs less than 20 lbs. The purpose of this paper is to provide an overview of recent technology developments, as well as current on-going research and development efforts at Sandia National Laboratories.

  16. Solid-State Cloud Radar System (CRS) Upgrade and Deployment

    NASA Technical Reports Server (NTRS)

    McLinden, Matt; Heymsfield, Gerald; Li, Lihua; Racette, Paul; Coon, Michael; Venkatesh, Vijay

    2015-01-01

    The recent decade has brought rapid development in solid-state power amplifier (SSPA) technology. This has enabled the use of solid-state precipitation radar in place of high-power and high-voltage systems such as those that use Klystron or Magnetron transmitters. The NASA Goddard Space Flight Center has recently completed a comprehensive redesign of the 94 gigahertz Cloud Radar System (CRS) to incorporate a solid-state transmitter. It is the first cloud radar to achieve sensitivity comparable to that of a high-voltage transmitter using solid-state. The NASA Goddard Space Flight Center's Cloud Radar System (CRS) is a 94 gigahertz Doppler radar that flies on the NASA ER-2 high-altitude aircraft. The upgraded CRS system utilizes a state-of-the-art solid-state 94 gigahertz power amplifier with a peak transmit power of 30 watts. The modernized CRS system is detailed here with data results from its deployment during the 2014 Integrated Precipitation and Hydrology Experiment (IPHEX).

  17. 78 FR 68861 - Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ..., Navigational Aids, Mapping Systems and Related Software; Institution of Investigation Pursuant to 19 U.S.C... and display systems, radar systems, navigational aids, mapping systems and related software by reason... products, including GPS devices, navigation and display systems, radar systems, navigational aids,...

  18. Development of land based radar polarimeter processor system

    NASA Technical Reports Server (NTRS)

    Kronke, C. W.; Blanchard, A. J.

    1983-01-01

    The processing subsystem of a land based radar polarimeter was designed and constructed. This subsystem is labeled the remote data acquisition and distribution system (RDADS). The radar polarimeter, an experimental remote sensor, incorporates the RDADS to control all operations of the sensor. The RDADS uses industrial standard components including an 8-bit microprocessor based single board computer, analog input/output boards, a dynamic random access memory board, and power supplis. A high-speed digital electronics board was specially designed and constructed to control range-gating for the radar. A complete system of software programs was developed to operate the RDADS. The software uses a powerful real time, multi-tasking, executive package as an operating system. The hardware and software used in the RDADS are detailed. Future system improvements are recommended.

  19. A fully photonics-based coherent radar system

    NASA Astrophysics Data System (ADS)

    Ghelfi, Paolo; Laghezza, Francesco; Scotti, Filippo; Serafino, Giovanni; Capria, Amerigo; Pinna, Sergio; Onori, Daniel; Porzi, Claudio; Scaffardi, Mirco; Malacarne, Antonio; Vercesi, Valeria; Lazzeri, Emma; Berizzi, Fabrizio; Bogoni, Antonella

    2014-03-01

    The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution. Today's digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves, and the detection of such signals and their precise direct digitization without downconversion. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system.

  20. A fully photonics-based coherent radar system.

    PubMed

    Ghelfi, Paolo; Laghezza, Francesco; Scotti, Filippo; Serafino, Giovanni; Capria, Amerigo; Pinna, Sergio; Onori, Daniel; Porzi, Claudio; Scaffardi, Mirco; Malacarne, Antonio; Vercesi, Valeria; Lazzeri, Emma; Berizzi, Fabrizio; Bogoni, Antonella

    2014-03-20

    The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution. Today's digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves, and the detection of such signals and their precise direct digitization without downconversion. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system.

  1. Fiber optic coherent laser radar 3d vision system

    SciTech Connect

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-12-31

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  2. Data acquisition system for Doppler radar vital-sign monitor.

    PubMed

    Vergara, Alexander M; Lubecke, Victor M

    2007-01-01

    Automatic gain control (AGC) units increase the dynamic range of a system to compensate for the limited dynamic range of analog to digital converters. This problem is compounded in wireless systems in which large changes in signal strength are effects of a changing environment. These issues are evident in the direct-conversion Doppler radar vital-sign monitor. Utilizing microwave radar signals reflecting off a human subject, a two-channel quadrature receiver can detect periodic movement resulting from cardio-pulmonary activity. The quadrature signal is analyzed using an arctangent demodulation that extracts vital phase information. A data acquisition (DAQ) system is proposed to deal with issues inherent in arctangent demodulation of a quadrature radar signal.

  3. THz impulse radar for biomedical sensing: nonlinear system behavior

    NASA Astrophysics Data System (ADS)

    Brown, E. R.; Sung, Shijun; Grundfest, W. S.; Taylor, Z. D.

    2014-03-01

    The THz impulse radar is an "RF-inspired" sensor system that has performed remarkably well since its initial development nearly six years ago. It was developed for ex vivo skin-burn imaging, and has since shown great promise in the sensitive detection of hydration levels in soft tissues of several types, such as in vivo corneal and burn samples. An intriguing aspect of the impulse radar is its hybrid architecture which combines the high-peak-power of photoconductive switches with the high-responsivity and -bandwidth (RF and video) of Schottky-diode rectifiers. The result is a very sensitive sensor system in which the post-detection signal-to-noise ratio depends super-linearly on average signal power up to a point where the diode is "turned on" in the forward direction, and then behaves quasi-linearly beyond that point. This paper reports the first nonlinear systems analysis done on the impulse radar using MATLAB.

  4. A 449 MHz modular wind profiler radar system

    NASA Astrophysics Data System (ADS)

    Lindseth, Bradley James

    This thesis presents the design of a 449 MHz radar for wind profiling, with a focus on modularity, antenna sidelobe reduction, and solid-state transmitter design. It is one of the first wind profiler radars to use low-cost LDMOS power amplifiers combined with spaced antennas. The system is portable and designed for 2-3 month deployments. The transmitter power amplifier consists of multiple 1-kW peak power modules which feed 54 antenna elements arranged in a hexagonal array, scalable directly to 126 elements. The power amplifier is operated in pulsed mode with a 10% duty cycle at 63% drain efficiency. The antenna array is designed to have low sidelobes, confirmed by measurements. The radar was operated in Boulder, Colorado and Salt Lake City, Utah. Atmospheric wind vertical and horizontal components at altitudes between 200m and 4km were calculated from the collected atmospheric return signals. Sidelobe reduction of the antenna array pattern is explored to reduce the effects of ground or sea clutter. Simulations are performed for various shapes of compact clutter fences for the 915-MHz beam-steering Doppler radar and the 449-MHz spaced antenna interferometric radar. It is shown that minimal low-cost hardware modifications to existing compact ground planes of 915-MHz beam-steering radar allow for reduction of sidelobes of up to 5dB. The results obtained on a single beam-steering array are extended to the 449 MHz triple hexagonal array spaced antenna interferometric radar. Cross-correlation, transmit beamwidth, and sidelobe levels are evaluated for various clutter fence configurations and array spacings. The resulting sidelobes are as much as 10 dB below those without a clutter fence and can be incorporated into existing and future 915 and 449 MHz wind profiler systems with minimal hardware modifications.

  5. 78. View of radar systems technical publication library, transmitter building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. View of radar systems technical publication library, transmitter building no. 102, second floor. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  6. Development of a Low-Cost UAV Doppler Radar Data System

    NASA Technical Reports Server (NTRS)

    Knuble, Joseph; Li, Lihua; Heymsfield, Gerry

    2005-01-01

    A viewgraph presentation on the design of a low cost unmanned aerial vehicle (UAV) doppler radar data system is presented. The topics include: 1) Science and Mission Background; 2) Radar Requirements and Specs; 3) Radar Realization: RF System; 4) Processing of RF Signal; 5) Data System Design Process; 6) Can We Remove the DSP? 7) Determining Approximate Speed Requirements; 8) Radar Realization: Data System; 9) Data System Operation; and 10) Results.

  7. Methods And System Suppressing Clutter In A Gain-Block, Radar-Responsive Tag System

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2006-04-18

    Methods and systems reduce clutter interference in a radar-responsive tag system. A radar transmits a series of linear-frequency-modulated pulses and receives echo pulses from nearby terrain and from radar-responsive tags that may be in the imaged scene. Tags in the vicinity of the radar are activated by the radar's pulses. The tags receive and remodulate the radar pulses. Tag processing reverses the direction, in time, of the received waveform's linear frequency modulation. The tag retransmits the remodulated pulses. The radar uses a reversed-chirp de-ramp pulse to process the tag's echo. The invention applies to radar systems compatible with coherent gain-block tags. The invention provides a marked reduction in the strength of residual clutter echoes on each and every echo pulse received by the radar. SAR receiver processing effectively whitens passive-clutter signatures across the range dimension. Clutter suppression of approximately 14 dB is achievable for a typical radar system.

  8. Gadanki Ionospheric Radar Interferometer (GIRI): System Description, Capabilities and Observations

    NASA Astrophysics Data System (ADS)

    Durga rao, Meka; Jayaraman, Achuthan; Patra, Amit; Kamaraj, Pandian; Jayaraj, Katta; Raghavendra, J.; Yasodha, Polisetti

    2016-07-01

    A 30-MHz radar has been developed at National Atmospheric Research Laboratory for dedicated probing of ionosphere and to study the low latitude ionospheric plasma irregularities. The radar has the beam steering capability to scan a larger part of the sky up to ±45o in East-West direction, which will overcome the limitation of slit camera picture obtained by the fixed beam of the Gadanki MST radar on the ionospheric plasma irregularity/structures. The system is also configured for pulse-to-pulse beam steering, employs multi-channel receiving system to carryout Interferometry/Imaging experiments. The radar system employs 20x8 phased antenna array, Direct Digital Synthesizers to generate pulse coded excitation signals, high power solid-state Transmit-Receive modules to generate a peak power of 150 kW, low loss coaxial beam forming and feeder network and multi-channel direct IF digital receiver. Round-the-clock observations are being made with uninterrupted operations and high quality E-and F-Region Range-Time-Intensity and conical maps are obtained with the system. In this paper we present, the system design philosophy, realization, initial observations and also the capability of the system to augment for Meteor observations.

  9. Modern colour display and processing system for meteorological radars

    NASA Astrophysics Data System (ADS)

    Cunningham, N. A.

    1981-02-01

    The paper describes a color display and data processing system for use on conventional weather radars. It also discusses aspects of the meteorological echo characteristics, the implications on data processing equipment, and the implementation adopted in the Plessey Colourscan equipment to meet the requirements for quantitative analysis and storm warning applications.

  10. Antenna dimensions of synthetic aperture radar systems on satellites

    NASA Technical Reports Server (NTRS)

    Richter, K. R.

    1973-01-01

    Design of a synthetic aperture radar (SAR) for a satellite must take into account the limitation in weight and dimensions of the antenna. The lower limits of the antenna area are derived from the conditions of unambiguity of the SAR system. This result is applied to estimate the antenna requirements for SARs on satellites in circular orbits of various altitudes around Earth and Venus.

  11. 76 FR 67017 - Notice to Manufacturers of Airport Avian Radar Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... Federal Aviation Administration Notice to Manufacturers of Airport Avian Radar Systems AGENCY: Federal Aviation Administration (FAA), U.S. DOT. ACTION: Notice to Manufacturers of Airport Avian Radar Systems... waivers to foreign manufacturers of airport avian radar systems that meet the requirements of FAA...

  12. 76 FR 35176 - Operation of Radar Systems in the 76-77 GHz Band

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... emission limits be modified for vehicular radar systems operating within the 76- 77 GHz band. Specifically... proposes to modify its rules for vehicular radar systems operating in the 76-77 GHz band as TMC requests... there is very little likelihood that vehicular radar systems operating at either the current or...

  13. A challenge problem for SAR-based GMTI in urban environments

    NASA Astrophysics Data System (ADS)

    Scarborough, Steven M.; Casteel, Curtis H., Jr.; Gorham, LeRoy; Minardi, Michael J.; Majumder, Uttam K.; Judge, Matthew G.; Zelnio, Edmund; Bryant, Michael; Nichols, Howard; Page, Douglas

    2009-05-01

    This document describes a challenge problem whose scope is the detection, geolocation, tracking and ID of moving vehicles from a set of X-band SAR data collected in an urban environment. The purpose of releasing this Gotcha GMTI Data Set is to provide the community with X-band SAR data that supports the development of new algorithms for SAR-based GMTI. To focus research onto specific areas of interest to AFRL, a number of challenge problems are defined. The data set provided is phase history from an AFRL airborne X-band SAR sensor. Some key features of this data set are two-pass, three phase center, one-foot range resolution, and one polarization (HH). In the scene observed, multiple vehicles are driving on roads near buildings. Ground truth is provided for one of the vehicles.

  14. Doppler radar sensor positioning in a fall detection system.

    PubMed

    Liu, Liang; Popescu, Mihail; Ho, K C; Skubic, Marjorie; Rantz, Marilyn

    2012-01-01

    Falling is a common health problem for more than a third of the United States population over 65. We are currently developing a Doppler radar based fall detection system that already has showed promising results. In this paper, we study the sensor positioning in the environment with respect to the subject. We investigate three sensor positions, floor, wall and ceiling of the room, in two experimental configurations. Within each system configuration, subjects performed falls towards or across the radar sensors. We collected 90 falls and 341 non falls for the first configuration and 126 falls and 817 non falls for the second one. Radar signature classification was performed using a SVM classifier. Fall detection performance was evaluated using the area under the ROC curves (AUCs) for each sensor deployment. We found that a fall is more likely to be detected if the subject is falling toward or away from the sensor and a ceiling Doppler radar is more reliable for fall detection than a wall mounted one.

  15. Multibeam monopulse radar for airborne sense and avoid system

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo

    2016-10-01

    The multibeam monopulse radar for Airborne Based Sense and Avoid (ABSAA) system concept is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. In the proposed system the multibeam monopulse radar with an array of directional antennas is positioned on a small aircaraft or Unmanned Aircraft System (UAS). Radar signals are simultaneously transmitted and received by multiple angle shifted directional antennas with overlapping antenna patterns and the entire sky, 360° for both horizontal and vertical coverage. Digitizing of amplitude and phase of signals in separate directional antennas relative to reference signals provides high-accuracy high-resolution range and azimuth measurement and allows to record real time amplitude and phase of reflected from non-cooperative aircraft signals. High resolution range and azimuth measurement provides minimal tracking errors in both position and velocity of non-cooperative aircraft and determined by sampling frequency of the digitizer. High speed sampling with high-accuracy processor clock provides high resolution phase/time domain measurement even for directional antennas with wide Field of View (FOV). Fourier transform (frequency domain processing) of received radar signals provides signatures and dramatically increases probability of detection for non-cooperative aircraft. Steering of transmitting power and integration, correlation period of received reflected signals for separate antennas (directions) allows dramatically decreased ground clutter for low altitude flights. An open architecture, modular construction allows the combination of a radar sensor with Automatic Dependent Surveillance - Broadcast (ADS-B), electro-optic, acoustic sensors.

  16. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  17. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  18. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  19. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  20. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  1. Radar based rainfall forecast for sewage systems control.

    PubMed

    Aspegren, H; Bailly, C; Mpé, A; Bazzurro, N; Morgavi, A; Prem, E; Jensen, N E

    2001-01-01

    There has been an increasing demand for accurate rainfall forecast in urban areas from the water industry. Current forecasting systems provided mainly by meteorological offices are based on large-scale prediction and are not well suited for this application. In order to devise a system especially designed for the dynamic management of a sewerage system the "RADAR" project was launched. The idea of this project was to provide a short-term small-scale prediction of rain based on radar images. The prediction methodology combines two methods. An extrapolation method based on a sophisticated cross correlation of images is optimised by a neural network technique. Three different application sites in Europe have been used to validate the system.

  2. Remote sensing at the University of Kansas in radar systems

    NASA Technical Reports Server (NTRS)

    Moore, R. K.

    1970-01-01

    Demonstration that a spectral response across an octave bandwidth in the microwave region is as variable as the comparable response in the visible and infrared region is a major mile-stone and indicates the potential of polypanchromatic radar systems is analogous with that of color photography. Averaging of the returns from a target element appears necessary to obtain a grey scale adequate for many earth-science applications of radar systems. This result can be obtained either by azimuth averaging or by the use of panchromatic techniques (range averaging). Improvement with panchromatic techniques has been demonstrated both with a landbased electromagnetic system and with an ultrasonic simulator. The advantage of the averaging achieved in azimuth with the real-aperture version of the DPD-2 when compared with the synthetic aperture version confirms the concept.

  3. Random Noise Monopulse Radar System for Covert Tracking of Targets

    NASA Astrophysics Data System (ADS)

    Narayanan, Ram M.

    2002-07-01

    The University of Nebraska is currently developing a unique monopulse radar concept based on the use of random noise signal for covert tracking applications. This project is funded by the Missile Defense Agency (MDA). The advantage of this system over conventional frequency-modulated continuous wave (FMCW) or short pulse systems is its covertness resulting from the random waveform's immunity from interception and jamming. The system integrates a novel heterodyne correlation receiver with conventional monopulse architecture. Based on the previous work such as random noise interferometry, a series of theoretical analysis and simulations were conducted to examine the potential performance of this monopulse system. Furthermore, a prototype system is under development to exploit practical design aspects of phase comparison angle measurement. It is revealed that random noise monopulse radar can provide the same function as traditional monopulse radar, i.e., implement range and angular estimation and tracking in real time. The bandwidth of random noise signal can be optimized to achieve the best range resolution as well as the angular accuracy.

  4. High temperature superconducting generator for a mobile radar system

    SciTech Connect

    Singh, S.K.; Christianson, O.R.; Lamm, P.L.; Beam, J.E.

    1998-07-01

    A cryogenically cooled power system for mobile radars (MR) offers advantages in power density and performance over conventional technology. A conventional power system for a MR system consists of a diesel engine coupled to a conventional generator producing electrical power which is converted into radar power by power conditioning electronics, transmit/receive (T/R) modules, and an antenna. Cooling subsystems, including the generator, power conditioning, and possibly T/R modules, will improve the system performance through increased efficiencies and device capabilities. The improved MR performance due to cryogenic cooling results in increased radar output for the same amount of fuel consumption and reduced overall mass and volume of a MR system. This study evaluates the use of a high temperature superconducting generator in a cryogenically cooled power system for mobile radars. The baseline high temperature superconducting generator design consists of a high temperature superconducting rotating field winding and an ambient temperature stator winding. The generator is rated at 1 MW and driven by a 1800 rpm diesel engine. The generator consists of two windings producing 850 kW at 50 V, 12 phase, 60 Hertz and 150 kW at 120 V, 3 phase, 60 Hertz. The radar power is 850 kW, while the auxiliaries consisting of coolers, electrical equipment, and air conditioners consume 150 kW. Cooling of the generator is provided by a heat exchange with helium gas cooled by a Gifford-McMahon cryocooler. An iterative computer model is developed to evaluate the HTS generator and MR system performance. Cooling subsystems will not only improve the efficiency of the subsystem being cooled, but at the same time the power required to cool the subsystem will also increase. This computer model includes cryocooler performance models in evaluating the impact of cooling the subsystem. Cryocooler characteristics including coefficient of performance (COP), mass, and volume are used as inputs to the

  5. Considerations for integration of a physiological radar monitoring system with gold standard clinical sleep monitoring systems.

    PubMed

    Singh, Aditya; Baboli, Mehran; Gao, Xiaomeng; Yavari, Ehsan; Padasdao, Bryson; Soll, Bruce; Boric-Lubecke, Olga; Lubecke, Victor

    2013-01-01

    A design for a physiological radar monitoring system (PRMS) that can be integrated with clinical sleep monitoring systems is presented. The PRMS uses two radar systems at 2.45 GHz and 24 GHz to achieve both high sensitivity and high resolution. The system can acquire data, perform digital processing and output appropriate conventional analog outputs with a latency of 130 ms, which can be recorded and displayed by a gold standard sleep monitoring system, along with other standard sensor measurements.

  6. Charge-coupled device data processor for an airborne imaging radar system

    NASA Technical Reports Server (NTRS)

    Arens, W. E. (Inventor)

    1977-01-01

    Processing of raw analog echo data from synthetic aperture radar receiver into images on board an airborne radar platform is discussed. Processing is made feasible by utilizing charge-coupled devices (CCD). CCD circuits are utilized to perform input sampling, presumming, range correlation and azimuth correlation in the analog domain. These radar data processing functions are implemented for single-look or multiple-look imaging radar systems.

  7. Quantization Errors in Digital Signal Processors of Radar Systems

    DTIC Science & Technology

    1976-06-01

    QUANTIZATION ERRORS IN DIGITAL SIGNAL PROCESSORS, ~ ~OF RADAR SYSTEMS ) Final Technical Report 00 B v Jerry D. Moore Principal Investigator 0 Brian P...under Grant DAAG29-76-G-0072 THE UNIVERSITY OF ALABAMA ___ BER Report No. 205-125 Approved for Public Release: Distribution Unlimited 47.7 DISCLAIMER...THE FINDINGS OF THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENIT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS

  8. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    PubMed

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.

  9. Transponder-Aided Joint Calibration and Synchronization Compensation for Distributed Radar Systems

    PubMed Central

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results. PMID:25794158

  10. Low probability of intercept-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems

    NASA Astrophysics Data System (ADS)

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2016-12-01

    In this paper, we investigate the problem of low probability of intercept (LPI)-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems, where the radar system optimizes the transmitted waveform such that the interference caused to the cellular communication systems is strictly controlled. Assuming that the precise knowledge of the target spectra, the power spectral densities (PSDs) of signal-dependent clutters, the propagation losses of corresponding channels and the communication signals is known by the radar, three different LPI based criteria for radar waveform optimization are proposed to minimize the total transmitted power of the radar system by optimizing the multicarrier radar waveform with a predefined signal-to-interference-plus-noise ratio (SINR) constraint and a minimum required capacity for the cellular communication systems. These criteria differ in the way the communication signals scattered off the target are considered in the radar waveform design: (1) as useful energy, (2) as interference or (3) ignored altogether. The resulting problems are solved analytically and their solutions represent the optimum power allocation for each subcarrier in the multicarrier radar waveform. We show with numerical results that the LPI performance of the radar system can be significantly improved by exploiting the scattered echoes off the target due to cellular communication signals received at the radar receiver.

  11. Low probability of intercept-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems.

    PubMed

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2016-01-01

    In this paper, we investigate the problem of low probability of intercept (LPI)-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems, where the radar system optimizes the transmitted waveform such that the interference caused to the cellular communication systems is strictly controlled. Assuming that the precise knowledge of the target spectra, the power spectral densities (PSDs) of signal-dependent clutters, the propagation losses of corresponding channels and the communication signals is known by the radar, three different LPI based criteria for radar waveform optimization are proposed to minimize the total transmitted power of the radar system by optimizing the multicarrier radar waveform with a predefined signal-to-interference-plus-noise ratio (SINR) constraint and a minimum required capacity for the cellular communication systems. These criteria differ in the way the communication signals scattered off the target are considered in the radar waveform design: (1) as useful energy, (2) as interference or (3) ignored altogether. The resulting problems are solved analytically and their solutions represent the optimum power allocation for each subcarrier in the multicarrier radar waveform. We show with numerical results that the LPI performance of the radar system can be significantly improved by exploiting the scattered echoes off the target due to cellular communication signals received at the radar receiver.

  12. An interactive system for compositing digital radar and satellite data

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Ghosh, K. K.; Chen, L. C.

    1983-01-01

    This paper describes an approach for compositing digital radar data and GOES satellite data for meteorological analysis. The processing is performed on a user-oriented image processing system, and is designed to be used in the research mode. It has a capability to construct PPIs and three-dimensional CAPPIs using conventional as well as Doppler data, and to composite other types of data. In the remapping of radar data to satellite coordinates, two steps are necessary. First, PPI or CAPPI images are remapped onto a latitude-longitude projection. Then, the radar data are projected into satellite coordinates. The exact spherical trigonometric equations, and the approximations derived for simplifying the computations are given. The use of these approximations appears justified for most meteorological applications. The largest errors in the remapping procedure result from the satellite viewing angle parallax, which varies according to the cloud top height. The horizontal positional error due to this is of the order of the error in the assumed cloud height in mid-latitudes. Examples of PPI and CAPPI data composited with satellite data are given for Hurricane Frederic on 13 September 1979 and for a squall line on 2 May 1979 in Oklahoma.

  13. Radar Transponder Antenna Systems Evaluation Handbook

    DTIC Science & Technology

    2006-07-01

    Figure 4-10. Haigh - Farr wraparound. .................................................................................. 4-7 Figure 5-1. Area centered...4-10. Haigh - Farr wraparound. 4-3 Figure 4-1. Tecom cavity backed helix. Figure 4-2. Vega cavity backed helix. 4-4 Figure 4-3...band wraparound. Figure 4-10. Haigh - Farr wraparound. 4-8 4.4 Antenna System Design Considerations The following paragraphs describe

  14. Necessity to adapt land use and land cover classification systems to readily accept radar data

    NASA Technical Reports Server (NTRS)

    Drake, B.

    1977-01-01

    A hierarchial, four level, standardized system for classifying land use/land cover primarily from remote-sensor data (USGS system) is described. The USGS system was developed for nonmicrowave imaging sensors such as camera systems and line scanners. The USGS system is not compatible with the land use/land cover classifications at different levels that can be made from radar imagery, and particularly from synthetic-aperture radar (SAR) imagery. The use of radar imagery for classifying land use/land cover at different levels is discussed, and a possible revision of the USGS system to more readily accept land use/land cover classifications from radar imagery is proposed.

  15. Electronic Warfare and Radar Systems Engineering Handbook

    DTIC Science & Technology

    1999-04-01

    Agreement System TEAMS Tactical EA-6B Mission Support TWSRO Track While Scan on Receive Only TECHEVAL Technical Evaluation TWT Travelling Wave Tube TEL...Center frequencyC Broadband by ratio, An antenna is considered broadband if F / F > 2. The table at the right showsU L the equivalency of the...two, however the shaded values are not normally used because of the aforementioned difference in broadband /narrowband. n8/2 n8/2 n8/2 or VERTICAL

  16. Southeast PAVE PAWS Radar System. Environmental Assessment.

    DTIC Science & Technology

    1983-03-01

    2 imTRANMIT2 Mm TRANSMIT FIGURE A-6 TRACK RESOURCES FOR EXISTING SYSTEMS 4 , 223 i bT 3 ; only one pulse can occur in the 2 -ms transmit...of ten, are not included in Figure 4 - 2 . Figure 4 - 3 supplements Figure 4 - 2 by providing values of peak power density and peak electric-field...821711 effect when the PAVE PAWS power density is about -8 dBm/ I + 24 d3 = 16 dBm/m 2

  17. Temporal Statistics of Scintillation for Satellite Communication and Radar Systems

    DTIC Science & Technology

    1982-04-01

    DNA-TR-81-129 TEMPORAL STATISTICS OF SCINTILLATION v FOR SATELLITE COMMUNICATION AND RADAR SYSTEMS • Roger A. Dana I Mission Research Corporation P.O...k, I ,1A6NIZATION NAMI ANI) A(I) I) Q f IY ,I, Iu I M I ’ T FI F11) CT TA’,K AIL[ A 4 WI)L, UNIT NWIMII WL’, Mission Research Corporation P. 0. Drawer...factor 6 differs from unity in general if the PSD is not Gaussian. 2.4 FIRST ORDER STATISTICS FOR DUAL CHANNEL COMMUNICATIO ?’ SYSTEMS Dual channel

  18. Viability Assessment Report on TTRDP GMTI Constallation Study

    DTIC Science & Technology

    2004-12-01

    satellite orientation . Figure 12. Comparative detection analysis on selected targets 5.2.4 Detection Gap Assessment Besides the constellation size...ground segment from assigning existing tracks to radar sensors. • The satellite orientation at the simulation epoch time. 0 5 10 15 20 25 30 Ta nk...configuration with its larger constellation size still falls behind 27/9/3 3600 RAAN configurations. This again is attributed to the satellite

  19. Experimental 0.22 THz Stepped Frequency Radar System for ISAR Imaging

    NASA Astrophysics Data System (ADS)

    Liang, Mei Yan; Zhang, Cun Lin; Zhao, Ran; Zhao, Yue Jin

    2014-09-01

    High resolution inverse synthetic aperture radar (ISAR) imaging is demonstrated by using a 0.22 THz stepped-frequency (SF) imaging radar system. The synthesis bandwidth of the terahertz (THz) SF radar is 12 GHz, which are beneficial for high resolution imaging. The resolution of ISAR image can reach centimeter-scale with the use of Range-Doppler algorithm (RDA). Results indicate that high resolution ISAR imaging is realized by using 0.22THz SF radar coupled with turntable scanning, which can provide foundations for further research on high-resolution radar image in the THz band.

  20. Ambiguities in spaceborne synthetic aperture radar systems

    NASA Technical Reports Server (NTRS)

    Li, F. K.; Johnson, W. T. K.

    1983-01-01

    An examination of aspects of spaceborne SAR time delay and Doppler ambiguities has led to the formulation of an accurate method for the evaluation of the ratio of ambiguity intensities to that of the signal, which has been applied to the nominal SAR system on Seasat. After discussing the variation of this ratio as a function of orbital latitude and attitude control error, it is shown that the detailed range migration-azimuth phase history of an ambiguity is different from that of a signal, so that the images of ambiguities are dispersed. Seasat SAR dispersed images are presented, and their dispersions are eliminated through an adjustment of the processing parameters. A method is also presented which uses a set of multiple pulse repetition sequences to determine the Doppler centroid frequency absolute values for SARs with high carrier frequencies and poor attitude measurements.

  1. Final Environmental Statement. Continental United States Over-the-Horizon Backscatter Radar System.

    DTIC Science & Technology

    1975-01-01

    radar systems. a. Radiated Radio Frequency Energy. The transmitter site is the only source of radiated radio frequency (RF) energy in the radar system. It... negative and positive economic impact the proposed radar system has uTcrn tile local and surrounding communities. c. Site Surveys. Based upon the... mealworms , mice and pigs, no organic damage has been recorded other than minor body 1;cit.Lriu , due to energy absorption whicr. was so minimal that

  2. Modelling a C-Band Space Surveillance Radar using Systems Tool Kit

    DTIC Science & Technology

    2013-02-01

    Orbit LOS Line of Sight PRF Pulse Repetition Frequency PSD Power Spectral Density RCS Radar Cross Section RF Radio Frequency SAR Synthetic...Simulation of both monostatic and bistatic radar systems.  Modelling of system characteristics (e.g. transmitter power, frequency, antenna size) and...system definition, search/track modes, refraction and constraints. Synthetic aperture radar ( SAR ) and jammers can be modelled but are not applicable in

  3. The Cyclone meteor radar system for routine wind measurements in the lower thermosphere

    NASA Technical Reports Server (NTRS)

    Lysenko, I. A.; Mikhailiek, P. P.; Petrov, B. I.

    1987-01-01

    A new meteor wind radar system called Cyclone was devised to extend and update the meteor radar network and for unattended operation. The Cyclone meteor radar system obtains information from four directions simultaneously. To automate data processing a special digital device was developed. An algorithm used to determine the Doppler shifts was adopted, which makes it possible to eliminate selectivity with respect to slow velocity meteor drifts. The operation of the Cyclone system is described.

  4. Radar data processing using a distributed computational system

    NASA Astrophysics Data System (ADS)

    Mota, Gilberto F.

    1992-06-01

    This research specifies and validates a new concurrent decomposition scheme, called Confined Space Search Decomposition (CSSD), to exploit parallelism of Radar Data Processing algorithms using a Distributed Computational System. To formalize the specification, we propose and apply an object-oriented methodology called Decomposition Cost Evaluation Model (DCEM). To reduce the penalties of load imbalance, we propose a distributed dynamic load balance heuristic called Object Reincarnation (OR). To validate the research, we first compare our decomposition with an identified alternative using the proposed DCEM model and then develop a theoretical prediction of selected parameters. We also develop a simulation to check the Object Reincarnation Concept.

  5. A multiparameter radar examination of a mesoscale convective system

    NASA Technical Reports Server (NTRS)

    Wright, P. D.; Goodman, S. J.

    1991-01-01

    Differences in the rainrates of various cells embedded within a mesoscale convective system on July 13, 1986 during the Cooperative Huntsville Meteorological experiment are examined. The NCAR CP2 S-band polarimetric radar deployed near Huntsville, Alabama, is used to characterize the rainfall field. Rainfall estimates are compared and contrasted using the single-parameter Marshall and Palmer (1948) method with the Illingworth and Caylor (1989) dual-polarization technique (ILC). The primary differences in the rainrate estimates are shown to be associated with the differences in the drop size distributions, derived from the ILC technique, that occur within the various storms.

  6. Three-dimensional radar imaging techniques and systems for near-field applications

    SciTech Connect

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.; Jones, Anthony M.; Tedeschi, Jonathan R.

    2016-05-12

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar cross-section (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, through-barrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  7. Three-dimensional radar imaging techniques and systems for near-field applications

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.; Jones, A. Mark; Tedeschi, Jonathan R.

    2016-05-01

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar crosssection (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, throughbarrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  8. A novel ultra-wideband 80 GHz FMCW radar system for contactless monitoring of vital signs.

    PubMed

    Wang, Siying; Pohl, Antje; Jaeschke, Timo; Czaplik, Michael; Köny, Marcus; Leonhardt, Steffen; Pohl, Nils

    2015-01-01

    In this paper an ultra-wideband 80 GHz FMCW-radar system for contactless monitoring of respiration and heart rate is investigated and compared to a standard monitoring system with ECG and CO(2) measurements as reference. The novel FMCW-radar enables the detection of the physiological displacement of the skin surface with submillimeter accuracy. This high accuracy is achieved with a large bandwidth of 10 GHz and the combination of intermediate frequency and phase evaluation. This concept is validated with a radar system simulation and experimental measurements are performed with different radar sensor positions and orientations.

  9. MARA (Multimode Airborne Radar Altimeter) system documentation. Volume 1: MARA system requirements document

    NASA Astrophysics Data System (ADS)

    Parsons, C. L.

    1989-07-01

    The Multimode Airborne Radar Altimeter (MARA), a flexible airborne radar remote sensing facility developed by NASA's Goddard Space Flight Center, is discussed. This volume describes the scientific justification for the development of the instrument and the translation of these scientific requirements into instrument design goals. Values for key instrument parameters are derived to accommodate these goals, and simulations and analytical models are used to estimate the developed system's performance.

  10. MARA (Multimode Airborne Radar Altimeter) system documentation. Volume 1: MARA system requirements document

    NASA Technical Reports Server (NTRS)

    Parsons, C. L. (Editor)

    1989-01-01

    The Multimode Airborne Radar Altimeter (MARA), a flexible airborne radar remote sensing facility developed by NASA's Goddard Space Flight Center, is discussed. This volume describes the scientific justification for the development of the instrument and the translation of these scientific requirements into instrument design goals. Values for key instrument parameters are derived to accommodate these goals, and simulations and analytical models are used to estimate the developed system's performance.

  11. The Goldstone solar system radar: A science instrument for planetary research

    NASA Technical Reports Server (NTRS)

    Dvorsky, J. D.; Renzetti, N. A.; Fulton, D. E.

    1992-01-01

    The Goldstone Solar System Radar (GSSR) station at NASA's Deep Space Communications Complex in California's Mojave Desert is described. A short chronological account of the GSSR's technical development and scientific discoveries is given. This is followed by a basic discussion of how information is derived from the radar echo and how the raw information can be used to increase understanding of the solar system. A moderately detailed description of the radar system is given, and the engineering performance of the radar is discussed. The operating characteristics of the Arcibo Observatory in Puerto Rico are briefly described and compared with those of the GSSR. Planned and in-process improvements to the existing radar, as well as the performance of a hypothetical 128-m diameter antenna radar station, are described. A comprehensive bibliography of referred scientific and engineering articles presenting results that depended on data gathered by the instrument is provided.

  12. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  13. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  14. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  15. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system...

  16. A Portable Low-Power Harmonic Radar System and Conformal Tag for Insect Tracking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harmonic radar systems provide an effective modality for tracking insect behavior. This paper presents a harmonic radar system proposed to track the migration of the Emerald Ash Borer (EAB). The system offers a unique combination of portability, low power and small tag design. It is comprised of a...

  17. Fiber optic coherent laser radar 3D vision system

    SciTech Connect

    Clark, R.B.; Gallman, P.G.; Slotwinski, A.R.; Wagner, K.; Weaver, S.; Xu, Jieping

    1996-12-31

    This CLVS will provide a substantial advance in high speed computer vision performance to support robotic Environmental Management (EM) operations. This 3D system employs a compact fiber optic based scanner and operator at a 128 x 128 pixel frame at one frame per second with a range resolution of 1 mm over its 1.5 meter working range. Using acousto-optic deflectors, the scanner is completely randomly addressable. This can provide live 3D monitoring for situations where it is necessary to update once per second. This can be used for decontamination and decommissioning operations in which robotic systems are altering the scene such as in waste removal, surface scarafacing, or equipment disassembly and removal. The fiber- optic coherent laser radar based system is immune to variations in lighting, color, or surface shading, which have plagued the reliability of existing 3D vision systems, while providing substantially superior range resolution.

  18. The Goldstone Solar System Radar: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Slade, M. A.; Benner, L. A.; Teitelbaum, L.

    2012-12-01

    The Deep Space Network (DSN) primarily uses the 70-m antenna at Goldstone — DSS -14 — for tracking, telemetry, and commanding National Aeronautics and Space Administration (NASA) spacecraft. However, for a small percentage of its time DSS-14 also provides NASA with the only fully steerable, high-power ground-based radar in the world. The Goldstone Solar System Radar (GSSR) has been used extensively for high-resolution radar ranging and imaging of planetary and small-body targets, including more than 160 asteroids, four comets, the Moon, Mercury, Venus, Mars, the Galilean satellites, Titan, and small orbital debris. The GSSR operates at a wavelength of 3.5 cm with a typical transmitter power of 450 kW, and provides radar imagery, surface topography, rotational information, and ice distribution on this wide variety of solar system objects. The bulk of current GSSR work centers on radar imaging, astrometry, and characterization of near-Earth asteroids (NEAs). GSSR has discovered binary and ternary NEAs (six to date); contact binary NEAs, and NEAs in non-principal axis rotation states. The GSSR has observed the following small-body mission targets: 4 Vesta (Dawn), 433 Eros (NEAR-Shoemaker), 25143 Itokawa (Hayabusa), 101955 1999 RQ36 (OSIRIS-REx), and 4179 Toutatis (Chang'e 2). Recently the highest range resolution improved by a factor of five from 18.75 meters to 3.75 meters. The first major application of this resolution increase was with imaging of 400-meter-diameter (308635) 2005 YU55 during the asteroid's 0.85 lunar distance flyby in November 2011. The images placed tens of thousands of pixels on the asteroid, and even revealed small surface boulders. The limitation to ~4-meter range resolution is driven by the bandwidth of the transmitter. However, by using chirp waveforms and klystrons with ~150 MHz bandwidth, the range resolution could be as fine as 1-meter. JPL is exploring methods of transmitting such wider bandwidths and potentially reaching 1-meter range

  19. GeoSAR: A Radar Terrain Mapping System for the New Millennium

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas; vanZyl, Jakob; Hensley, Scott; Reis, James; Munjy, Riadh; Burton, John; Yoha, Robert

    2000-01-01

    GeoSAR Geographic Synthetic Aperture Radar) is a new 3 year effort to build a unique, dual-frequency, airborne Interferometric SAR for mapping of terrain. This is being pursued via a Consortium of the Jet Propulsion Laboratory (JPL), Calgis, Inc., and the California Department of Conservation. The airborne portion of this system will operate on a Calgis Gulfstream-II aircraft outfitted with P- and X-band Interferometric SARs. The ground portions of this system will be a suite of Flight Planning Software, an IFSAR Processor and a Radar-GIS Workstation. The airborne P-band and X-band radars will be constructed by JPL with the goal of obtaining foliage penetration at the longer P-band wavelengths. The P-band and X-band radar will operate at frequencies of 350 Mhz and 9.71 Ghz with bandwidths of either 80 or 160 Mhz. The airborne radars will be complemented with airborne laser system for measuring antenna positions. Aircraft flight lines and radar operating instructions will be computed with the Flight Planning Software The ground processing will be a two-step step process. First, the raw radar data will be processed into radar images and interferometer derived Digital Elevation Models (DEMs). Second, these radar images and DEMs will be processed with a Radar GIS Workstation which performs processes such as Projection Transformations, Registration, Geometric Adjustment, Mosaicking, Merging and Database Management. JPL will construct the IFSAR Processor and Calgis, Inc. will construct the Radar GIS Workstation. The GeoSAR Project was underway in November 1996 with a goal of having the radars and laser systems fully integrated onto the Calgis Gulfstream-II aircraft in early 1999. Then, Engineering Checkout and Calibration-Characterization Flights will be conducted through November 1999. The system will be completed at the end of 1999 and ready for routine operations in the year 2000.

  20. Photoelectric radar servo control system based on ARM+FPGA

    NASA Astrophysics Data System (ADS)

    Wu, Kaixuan; Zhang, Yue; Li, Yeqiu; Dai, Qin; Yao, Jun

    2016-01-01

    In order to get smaller, faster, and more responsive requirements of the photoelectric radar servo control system. We propose a set of core ARM + FPGA architecture servo controller. Parallel processing capability of FPGA to be used for the encoder feedback data, PWM carrier modulation, A, B code decoding processing and so on; Utilizing the advantage of imaging design in ARM Embedded systems achieves high-speed implementation of the PID algorithm. After the actual experiment, the closed-loop speed of response of the system cycles up to 2000 times/s, in the case of excellent precision turntable shaft, using a PID algorithm to achieve the servo position control with the accuracy of + -1 encoder input code. Firstly, This article carry on in-depth study of the embedded servo control system hardware to determine the ARM and FPGA chip as the main chip with systems based on a pre-measured target required to achieve performance requirements, this article based on ARM chip used Samsung S3C2440 chip of ARM7 architecture , the FPGA chip is chosen xilinx's XC3S400 . ARM and FPGA communicate by using SPI bus, the advantage of using SPI bus is saving a lot of pins for easy system upgrades required thereafter. The system gets the speed datas through the photoelectric-encoder that transports the datas to the FPGA, Then the system transmits the datas through the FPGA to ARM, transforms speed datas into the corresponding position and velocity data in a timely manner, prepares the corresponding PWM wave to control motor rotation by making comparison between the position data and the velocity data setted in advance . According to the system requirements to draw the schematics of the photoelectric radar servo control system and PCB board to produce specially. Secondly, using PID algorithm to control the servo system, the datas of speed obtained from photoelectric-encoder is calculated position data and speed data via high-speed digital PID algorithm and coordinate models. Finally, a

  1. HF Over-the-Horizon Radar System Performance Analysis

    DTIC Science & Technology

    2007-09-01

    3,500 km at cf = 14.5 MHz. A model of the maximum detection range for the Chinese FMCW OTH backscatter (OTH-B) radar was developed in MATLAB . An...calculation of the maximum usable frequency (MUF), and footprint prediction. Also, radar equation analysis was done in MATLAB to study the signal-to- noise...target detection technique and radar equations are applied. Chapter V uses PROPLAB model simulation to bring in the principle of raytracing and

  2. Wuhan Atmosphere Radio Exploration (WARE) radar: System design and online winds measurements

    NASA Astrophysics Data System (ADS)

    Zhengyu, Zhao; Chen, Zhou; Haiyin, Qing; Guobin, Yang; Yuannong, Zhang; Gang, Chen; Yaogai, Hu

    2013-05-01

    The basic configuration of the Wuhan MST (mesosphere-stratosphere-troposphere) radar, which was designed and constructed by the School of Electronic Information, Wuhan University, is preliminarily described in this paper. The Wuhan MST radar operates at very high frequency (VHF) band (53.8 MHz) by observing the real-time characteristics of turbulence and the wind field vector in the height range of 3.5-90 km (not including 25-60 km) with high temporal and height resolutions. This all-solid-state, all-coherent pulse Doppler radar is China's first independent development of an MST radar focusing on atmospheric observation. The subsystems of the Wuhan MST radar include an antenna system, a feeder line system, all-solid-state radar transmitters, digital receivers, a beam control system, a signal processing system, a data processing system, a product generation system, and a user terminal. Advanced radar technologies are used, including highly reliable all-solid-state transmitters, low-noise large dynamic range digital receivers, an active phased array, high-speed digital signal processing, and real-time graphic terminals. This paper describes the design and implementation of the radar. Preliminary online wind measurements and results of the comparison to simultaneous observations by a GPS rawinsonde are presented as well.

  3. Auxiliary signal processing system for a multiparameter radar

    NASA Technical Reports Server (NTRS)

    Chandrasekar, V.; Gray, G. R.; Caylor, I. J.

    1993-01-01

    The design of an auxiliary signal processor for a multiparameter radar is described with emphasis on low cost, quick development, and minimum disruption of radar operations. The processor is based around a low-cost digital signal processor card and personal computer controller. With the use of such a concept, an auxiliary processor was implemented for the NCAR CP-2 radar during a 1991 summer field campaign and allowed measurement of additional polarimetric parameters, namely, the differential phase and the copolar cross correlation. Sample data are presented from both the auxiliary and existing radar signal processors.

  4. Small battery operated unattended radar sensor for security systems

    NASA Astrophysics Data System (ADS)

    Plummer, Thomas J.; Brady, Stephen; Raines, Robert

    2013-06-01

    McQ has developed, tested, and is supplying to Unattended Ground Sensor (UGS) customers a new radar sensor. This radar sensor is designed for short range target detection and classification. The design emphasis was to have low power consumption, totally automated operation, a very high probability of detection coupled with a very low false alarm rate, be able to locate and track targets, and have a price compatible with the UGS market. The radar sensor complements traditional UGS sensors by providing solutions for scenarios that are difficult for UGS. The design of this radar sensor and the testing are presented in this paper.

  5. Application of Radar Data to Remote Sensing and Geographical Information Systems

    NASA Technical Reports Server (NTRS)

    vanZyl, Jakob J.

    2000-01-01

    The field of synthetic aperture radar changed dramatically over the past decade with the operational introduction of advance radar techniques such as polarimetry and interferometry. Radar polarimetry became an operational research tool with the introduction of the NASA/JPL AIRSAR system in the early 1980's, and reached a climax with the two SIR-C/X-SAR flights on board the space shuttle Endeavour in April and October 1994. Radar interferometry received a tremendous boost when the airborne TOPSAR system was introduced in 1991 by NASA/JPL, and further when data from the European Space Agency ERS-1 radar satellite became routinely available in 1991. Several airborne interferometric SAR systems are either currently operational, or are about to be introduced. Radar interferometry is a technique that allows one to map the topography of an area automatically under all weather conditions, day or night. The real power of radar interferometry is that the images and digital elevation models are automatically geometrically resampled, and could be imported into GIS systems directly after suitable reformatting. When combined with polarimetry, a technique that uses polarization diversity to gather more information about the geophysical properties of the terrain, a very rich multi-layer data set is available to the remote sensing scientist. This talk will discuss the principles of radar interferometry and polarimetry with specific application to the automatic categorization of land cover. Examples will include images acquired with the NASA/JPL AIRSAR/TOPSAR system in Australia and elsewhere.

  6. Road-Aided Ground Slowly Moving Target 2D Motion Estimation for Single-Channel Synthetic Aperture Radar.

    PubMed

    Wang, Zhirui; Xu, Jia; Huang, Zuzhen; Zhang, Xudong; Xia, Xiang-Gen; Long, Teng; Bao, Qian

    2016-03-16

    To detect and estimate ground slowly moving targets in airborne single-channel synthetic aperture radar (SAR), a road-aided ground moving target indication (GMTI) algorithm is proposed in this paper. First, the road area is extracted from a focused SAR image based on radar vision. Second, after stationary clutter suppression in the range-Doppler domain, a moving target is detected and located in the image domain via the watershed method. The target's position on the road as well as its radial velocity can be determined according to the target's offset distance and traffic rules. Furthermore, the target's azimuth velocity is estimated based on the road slope obtained via polynomial fitting. Compared with the traditional algorithms, the proposed method can effectively cope with slowly moving targets partly submerged in a stationary clutter spectrum. In addition, the proposed method can be easily extended to a multi-channel system to further improve the performance of clutter suppression and motion estimation. Finally, the results of numerical experiments are provided to demonstrate the effectiveness of the proposed algorithm.

  7. Road-Aided Ground Slowly Moving Target 2D Motion Estimation for Single-Channel Synthetic Aperture Radar

    PubMed Central

    Wang, Zhirui; Xu, Jia; Huang, Zuzhen; Zhang, Xudong; Xia, Xiang-Gen; Long, Teng; Bao, Qian

    2016-01-01

    To detect and estimate ground slowly moving targets in airborne single-channel synthetic aperture radar (SAR), a road-aided ground moving target indication (GMTI) algorithm is proposed in this paper. First, the road area is extracted from a focused SAR image based on radar vision. Second, after stationary clutter suppression in the range-Doppler domain, a moving target is detected and located in the image domain via the watershed method. The target’s position on the road as well as its radial velocity can be determined according to the target’s offset distance and traffic rules. Furthermore, the target’s azimuth velocity is estimated based on the road slope obtained via polynomial fitting. Compared with the traditional algorithms, the proposed method can effectively cope with slowly moving targets partly submerged in a stationary clutter spectrum. In addition, the proposed method can be easily extended to a multi-channel system to further improve the performance of clutter suppression and motion estimation. Finally, the results of numerical experiments are provided to demonstrate the effectiveness of the proposed algorithm. PMID:26999140

  8. A survey of airborne radar systems for deployment on a High Altitude Powered Platform (HAPP)

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Leung, K. C.

    1979-01-01

    A survey was conducted to find out the system characteristics of commercially available and unclassified military radars suitable for deployment on a stationary platform. A total of ten domestic and eight foreign manufacturers of the radar systems were identified. Questionnaires were sent to manufacturers requesting information concerning the system characteristics: frequency, power used, weight, volume, power radiated, antenna pattern, resolution, display capabilities, pulse repetition frequency, and sensitivity. A literature search was also made to gather the system characteristics information. Results of the survey are documented and comparisons are made among available radar systems.

  9. Linear Frequency Modulated Signals VS Orthogonal Frequency Division Multiplexing Signals for Synthetic Aperture Radar Systems

    DTIC Science & Technology

    2014-06-01

    OFDM ) signal versus a linear frequency modulated or chirp signal on simulated synthetic aperture radar (SAR) imagery. Various parameters of the...transmitted signal, such as pulse duration, transmitted signal energy, bandwidth, and (specifically for the OFDM signal) number of subcarriers and...SAR system design cost. 14. SUBJECT TERMS Synthetic aperture radar (SAR), orthogonal frequency division multiplexing ( OFDM ), linear

  10. Ionospheric Effects Related to the Performance of an Orbital Debris Radar System,

    DTIC Science & Technology

    An orbital debris radar system is designed to detect the presence of small objects in low earth orbit by reflecting radio waves off of the objects...altitude, also. The ionospheric noise of a 9 GHz orbital debris radar receiver is computed using these concepts. Annual and diurnal variations of the noise are included.

  11. A Doppler Radar System for Sensing Physiological Parameters in Walking and Standing Positions

    PubMed Central

    Pour Ebrahim, Malikeh; Sarvi, Majid; Yuce, Mehmet Rasit

    2017-01-01

    Doppler radar can be implemented for sensing physiological parameters wirelessly at a distance. Detecting respiration rate, an important human body parameter, is essential in a range of applications like emergency and military healthcare environments, and Doppler radar records actual chest motion. One challenge in using Doppler radar is being able to monitor several patients simultaneously and in different situations like standing, walking, or lying. This paper presents a complete transmitter-receiver Doppler radar system, which uses a 4 GHz continuous wave radar signal transmission and receiving system, to extract base-band data from a phase-shifted signal. This work reports experimental evaluations of the system for one and two subjects in various standing and walking positions. It provides a detailed signal analysis of various breathing rates of these two subjects simultaneously. These results will be useful in future medical monitoring applications. PMID:28257039

  12. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  13. An experimental 0.2 THz stepped frequency radar system for the target detection

    NASA Astrophysics Data System (ADS)

    Zeng, Bangze; Liang, Meiyan; Zhang, Cunlin; Zhao, Yuejin

    2012-12-01

    Compared with traditional microwave and millimeter wave radars, Terahertz radar has wide signal bandwidth and a very narrow antenna beam, which is beneficial to the realization of high resolution imaging. And as an instantaneous narrowband and synthetic wideband waveform, stepped frequency radar signal has been widely exploited in many applications, since it allows high range resolution with modest requirements of the system bandwidth. As an instantaneous narrowband and synthetic wideband waveform, stepped frequency radar signal has been widely exploited in many applications, since it allows high range resolution with modest requirements of the system bandwidth. This paper presents the design of a 0.2THz stepped frequency imaging radar system with operating bandwidth of 12 GHz, thus, a theoretical range resolution below 1.25 cm. The simulation of the system is implemented by using system design parameters. An experimental trial has been performed, and one-dimensional range profile of the stationary target is obtained by Imaging Experiment using THz radar. Results show that the THz radar imaging system could achieve the target detection and centimeter-level range resolution.

  14. A system for the real-time display of radar and video images of targets

    NASA Technical Reports Server (NTRS)

    Allen, W. W.; Burnside, W. D.

    1990-01-01

    Described here is a software and hardware system for the real-time display of radar and video images for use in a measurement range. The main purpose is to give the reader a clear idea of the software and hardware design and its functions. This system is designed around a Tektronix XD88-30 graphics workstation, used to display radar images superimposed on video images of the actual target. The system's purpose is to provide a platform for tha analysis and documentation of radar images and their associated targets in a menu-driven, user oriented environment.

  15. System aspects of the Indian MST radar facility

    NASA Technical Reports Server (NTRS)

    Viswanathan, G.

    1986-01-01

    One of the major objectives of the Indian Middle Atmosphere Program is to investigate the motions of the middle atmosphere on temporal and spatial scales and the interaction between the three height regions of the middle atmosphere. Realizing the fact that radar technique has proven to be a very powerful tool for the study of Earth atmosphere, the Indian Middle Atmosphere Program has recommended establishing a mesosphere-stratosphere-troposphere (MST) radar as a national facility for atmospheric research. The major landmarks in this attempt to setup the MST radar as a national facility are described.

  16. Comparison of lightning observations from the KSC LDAR system with radar observations from the NCAR CP-2 radar

    NASA Technical Reports Server (NTRS)

    Krehbiel, Paul; Rison, William

    1996-01-01

    This grant supported observations of thunderstorms at Kennedy Space Center during the summer of 1995. In particular, we obtained detailed observations of lightning-producing storms over KSC with the CP2 radar of the National Center for Atmospheric Research (NCAR), for the purpose of comparing these with observations from KSC's Lightning Detection and Ranging (LDAR) system. The NCAR radar was a special purpose dual-polarization system for studying the development of precipitation in storms and was at KSC for another project, the Small Cumulus Microphysics Study - SCMS. We used the radar on a non-interference basis to obtain the desired observations. In addition we recorded the electrostatic field change of the lightning discharges at two locations. Subsequent to the field observational period we compared the LDAR lightning observations with the storm structure as indicated by the radar. The results obtained to date are summarized briefly as follows: (1) The initial lightning sequence in a small developing storm was observed to occur in a region of the storm where supercooled raindrops had frozen within the previous few minutes. This is consistent with the idea that the storm electrification is produced by interactions between ice particles. (2) The lightning discharges tended to avoid regions of supercooled liquid raindrops, possibly indicating that corona from the drops reduces any electrification in the vicinity of the drops. (3) 'Bilevel' lightning discharges within storms have been confirmed to be between the level of negative charge at mid-levels in the storm and the upper storm level. This is consistent with and expands upon our understanding that storms have a basic dipolar charge structure. (4) The upward channels of the intracloud lightning discharges are often aligned with shafts of strong precipitation, and often begin just above the upper extent of 40 dBZ reflectivity in the precipitation shaft. This is consistent with a precipitation-based mechanism of

  17. Performance of the NASA Airborne Radar with the Windshear Database for Forward-Looking Systems

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Britt, Charles L.

    1996-01-01

    This document describes the simulation approach used to test the performance of the NASA airborne windshear radar. An explanation of the actual radar hardware and processing algorithms provides an understanding of the parameters used in the simulation program. This report also contains a brief overview of the NASA airborne windshear radar experimental flight test results. A description of the radar simulation program shows the capabilities of the program and the techniques used for certification evaluation. Simulation of the NASA radar is comprised of three steps. First, the choice of the ground clutter data must be made. The ground clutter is the return from objects in or nearby an airport facility. The choice of the ground clutter also dictates the aircraft flight path since ground clutter is gathered while in flight. The second step is the choice of the radar parameters and the running of the simulation program which properly combines the ground clutter data with simulated windshear weather data. The simulated windshear weather data is comprised of a number of Terminal Area Simulation System (TASS) model results. The final step is the comparison of the radar simulation results to the known windshear data base. The final evaluation of the radar simulation is based on the ability to detect hazardous windshear with the aircraft at a safe distance while at the same time not displaying false alerts.

  18. RADAR Based Collision Avoidance for Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Moses, Allistair A.

    Unmanned Aircraft Systems (UAS) have become increasingly prevalent and will represent an increasing percentage of all aviation. These unmanned aircraft are available in a wide range of sizes and capabilities and can be used for a multitude of civilian and military applications. However, as the number of UAS increases so does the risk of mid-air collisions involving unmanned aircraft. This dissertation aims to present one possible solution for addressing the mid-air collision problem in addition to increasing the levels of autonomy of UAS beyond waypoint navigation to include preemptive sensor-based collision avoidance. The presented research goes beyond the current state of the art by demonstrating the feasibility and providing an example of a scalable, self-contained, RADAR-based, collision avoidance system. The technology described herein can be made suitable for use on a miniature (Maximum Takeoff Weight < 10kg) UAS platform. This is of paramount importance as the miniature UAS field has the lowest barriers to entry (acquisition and operating costs) and consequently represents the most rapidly increasing class of UAS.

  19. Earth resources shuttle imaging radar. [systems analysis and design analysis of pulse radar for earth resources information system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A report is presented on a preliminary design of a Synthetic Array Radar (SAR) intended for experimental use with the space shuttle program. The radar is called Earth Resources Shuttle Imaging Radar (ERSIR). Its primary purpose is to determine the usefulness of SAR in monitoring and managing earth resources. The design of the ERSIR, along with tradeoffs made during its evolution is discussed. The ERSIR consists of a flight sensor for collecting the raw radar data and a ground sensor used both for reducing these radar data to images and for extracting earth resources information from the data. The flight sensor consists of two high powered coherent, pulse radars, one that operates at L and the other at X-band. Radar data, recorded on tape can be either transmitted via a digital data link to a ground terminal or the tape can be delivered to the ground station after the shuttle lands. A description of data processing equipment and display devices is given.

  20. Radar based Ground Level Reconstruction Utilizing a Hypocycloid Antenna Positioning System

    NASA Astrophysics Data System (ADS)

    Baer, Christoph; Musch, Thomas

    2015-01-01

    In this contribution we introduce a novel radar positioning system. It makes use of a mathematical curve, called hypocycloid, for a slanting movement of the radar antenna. By means of a planetary gear, a ball, and a universal joint as well as a stepping motor, a two dimensional positioning is provided by a uniaxial drive shaft exclusively. The fundamental position calculation and different signal processing algorithms are presented. By means of an 80 GHz FMCW radar system we performed several measurements on objects with discrete heights as well as on objects with continuous surfaces. The results of these investigations are essential part of this contribution and are discussed in detail.

  1. Estimation of Microphysical and Radiative Parameters of Precipitating Cloud Systems Using mm-Wavelength Radars

    NASA Astrophysics Data System (ADS)

    Matrosov, Sergey Y.

    2009-03-01

    A remote sensing approach is described to retrieve cloud and rainfall parameters within the same precipitating system. This approach is based on mm-wavelength radar signal attenuation effects which are observed in a layer of liquid precipitation containing clouds and rainfall. The parameters of ice clouds in the upper part of startiform precipitating systems are then retrieved using the absolute measurements of radar reflectivity. In case of the ground-based radar location, these measurements are corrected for attenuation in the intervening layer of liquid hydrometers.

  2. System for Automatic Detection and Analysis of Targets in FMICW Radar Signal

    NASA Astrophysics Data System (ADS)

    Rejfek, Luboš; Mošna, Zbyšek; Urbář, Jaroslav; Koucká Knížová, Petra

    2016-01-01

    This paper presents the automatic system for the processing of the signals from the frequency modulated interrupted continuous wave (FMICW) radar and describes methods for the primary signal processing. Further, we present methods for the detection of the targets in strong noise. These methods are tested both on the real and simulated signals. The real signals were measured using the developed at the IAP CAS experimental prototype of FMICW radar with operational frequency 35.4 GHz. The measurement campaign took place at the TU Delft, the Netherlands. The obtained results were used for development of the system for the automatic detection and analysis of the targets measured by the FMICW radar.

  3. Optical-network-connected multi-channel 96-GHz-band distributed radar system

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Kuri, Toshiaki; Kawanishi, Tetsuya

    2015-05-01

    The millimeter-wave (MMW) radar is a promising candidate for high-precision imaging because of its short wavelength and broad range of available bandwidths. In particular in the frequency range of 92-100 GHz, which is regulated for radiolocation, an atmospheric attenuation coefficient less than 1 dB/km limits the imaging range. Therefore, a combination of MMW radar and distributed antenna system directly connected to optical fiber networks can realize both high-precision imaging and large-area surveillance. In this paper, we demonstrate a multi-channel MMW frequency-modulated continuous-wave distributed radar system connected to an analog radio-over-fiber network.

  4. A Reduced Power Digital Electronics System for a Digital Beamforming Space Exploration Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Rincon, R. F.; Novak, M.

    2016-10-01

    We will discuss design of an orbital P-band (70 cm wavelength) digital beamforming radar system that is modular and can be used for imaging polarimetry of Earth and rocky planets and moons, as well as asteroids and comets.

  5. 7. CLOSEUP FRONT VIEW OF RADAR SYSTEM EMITTER/ANTENNA (TYPICAL DEVICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. CLOSE-UP FRONT VIEW OF RADAR SYSTEM EMITTER/ANTENNA (TYPICAL DEVICE PHOTOGRAPH). - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  6. Microwave Imaging Radar Reflectometer System Utilizing Digital Beam Forming

    NASA Astrophysics Data System (ADS)

    Hu, Fengqi; Li, Meijiao; Domier, Calvin W.; Liu, Xiaoguang; Luhmann, Neville C., Jr.

    2016-10-01

    Microwave Imaging Reflectometry is a radar-like technique developed to measure the electron density fluctuations in fusion plasmas. Phased Antenna Arrays can serve as electronically controlled ``lenses'' that can generate the required wavefronts by phase shifting and amplitude scaling, which is being realized in the digital domain with higher flexibility and faster processing speed. In the transmitter, the resolution of the phase control is 1.4 degrees and the amplitude control is 0.5 dB/ step. A V-band double-sided, printed bow tie antenna which exhibits 49% bandwidth (46 - 76 GHz) is employed. The antenna is fed by a microstrip transmission line for easy impedance matching. The simple structure and the small antenna are suitable for low cost fabrication, easy circuit integration, and phased antenna array multi-frequency applications. In the receiver part, a sub-array of 32 channels with 200 mil spacing is used to collect the scattered reflected signal from one unit spot on the plasma cutoff surface. Pre-amplification is used to control the noise level of the system and wire bondable components are used to accommodate the small spacing between each channel. After down converting, base band signals are digitized and processed in an FPGA module. U.S. Department of Energy Grant No. DE-FG02-99ER54531.

  7. Autonomous system for initializing synthetic aperture radar seeker acquisition

    SciTech Connect

    Hamilton, P.C.

    1993-08-03

    A method is described of guiding a missile having an active seeker including a synthetic aperture radar operating in a squint mode to a target aircraft having a search radar therein the maximum range of active seeker acquisition being within said missile's maneuver capability to intercept, and the maximum range of active seeker acquisition not exceeding the capability of the active seeker, said method comprising the steps of: launching said missile in response to detection of the search radar; implementing a passive seeker mode of operation to passively guide said missile towards said target aircraft in a manner to avoid detection of said missile by said target aircraft; transferring from said passive seeker mode to an active seeker mode in response to detected shutdown of said search radar; maneuvering said missile to execute a turn angle away from said target aircraft such that the search field of said synthetic aperture radar sweeps through an entire target uncertainty volume, said turn angle being within a first preselected limit and a second preselected limit such that said target aircraft does not cross over said missile's terminal flight path; and intercepting said target aircraft within a lethal range of said missile.

  8. Sea clutter reduction and target enhancement by neural networks in a marine radar system.

    PubMed

    Vicen-Bueno, Raúl; Carrasco-Álvarez, Rubén; Rosa-Zurera, Manuel; Nieto-Borge, José Carlos

    2009-01-01

    The presence of sea clutter in marine radar signals is sometimes not desired. So, efficient radar signal processing techniques are needed to reduce it. In this way, nonlinear signal processing techniques based on neural networks (NNs) are used in the proposed clutter reduction system. The developed experiments show promising results characterized by different subjective (visual analysis of the processed radar images) and objective (clutter reduction, target enhancement and signal-to-clutter ratio improvement) criteria. Moreover, a deep study of the NN structure is done, where the low computational cost and the high processing speed of the proposed NN structure are emphasized.

  9. Development of software application dedicated to impulse- radar-based system for monitoring of human movements

    NASA Astrophysics Data System (ADS)

    Miękina, Andrzej; Wagner, Jakub; Mazurek, Paweł; Morawski, Roman Z.; Sudmann, Tobba T.; Børsheim, Ingebjørg T.; Øvsthus, Knut; Jacobsen, Frode F.; Ciamulski, Tomasz; Winiecki, Wiesław

    2016-11-01

    The importance of research on new technologies that could be employed in care services for elderly and disabled persons is highlighted. Advantages of radar sensors, when applied for non-invasive monitoring of such persons in their home environment, are indicated. A need for comprehensible visualisation of the intermediate results of measurement data processing is justified. Capability of an impulse-radar-based system to provide information, being of crucial importance for medical or healthcare personnel, are investigated. An exemplary software interface, tailored for non-technical users, is proposed, and preliminary results of impulse-radar-based monitoring of human movements are demonstrated.

  10. Dual-Frequency Airborne Scanning Rain Radar Antenna System

    NASA Technical Reports Server (NTRS)

    Hussein, Ziad A.; Green, Ken

    2004-01-01

    A compact, dual-frequency, dual-polarization, wide-angle-scanning antenna system has been developed as part of an airborne instrument for measuring rainfall. This system is an upgraded version of a prior single-frequency airborne rain radar antenna system and was designed to satisfy stringent requirements. One particularly stringent combination of requirements is to generate two dual-polarization (horizontal and vertical polarizations) beams at both frequencies (13.405 and 35.605 GHz) in such a way that the beams radiated from the antenna point in the same direction, have 3-dB angular widths that match within 25 percent, and have low sidelobe levels over a wide scan angle at each polarization-and-frequency combination. In addition, the system is required to exhibit low voltage standing-wave ratios at both frequencies. The system (see figure) includes a flat elliptical scanning reflector and a stationary offset paraboloidal reflector illuminated by a common-aperture feed system that comprises a corrugated horn with four input ports one port for each of the four frequency-and-polarization combinations. The feed horn is designed to simultaneously (1) under-illuminate the reflectors 35.605 GHz and (2) illuminate the reflectors with a 15-dB edge taper at 13.405 GHz. The scanning mirror is rotated in azimuth to scan the antenna beam over an angular range of 20 in the cross-track direction for wide swath coverage, and in elevation to compensate for the motion of the aircraft. The design of common-aperture feed horn makes it possible to obtain the required absolute gain and low side-lobe levels in wide-angle beam scanning. The combination of the common-aperture feed horn with the small (0.3) focal-length-to-diameter ratio of the paraboloidal reflector makes it possible for the overall system to be compact enough that it can be mounted on a DC-8 airplane.

  11. A general interactive system for compositing digital radar and satellite data

    NASA Technical Reports Server (NTRS)

    Ghosh, K. K.; Chen, L. C.; Faghmous, M.; Heymsfield, G. M.

    1981-01-01

    Reynolds and Smith (1979) have considered the combined use of digital weather radar and satellite data in interactive systems for case study analysis and forecasting. Satellites view the top of clouds, whereas radar is capable of observing the detailed internal structure of clouds. The considered approach requires the use of a common coordinate system. In the present investigation, it was decided to use the satellite coordinate system as the base system in order to maintain the fullest resolution of the satellite data. The investigation is concerned with the development of a general interactive software system called RADPAK for remapping and analyzing conventional and Doppler radar data. RADPAK is implemented as a part of a minicomputer-based image processing system, called Atmospheric and Oceanographic Image Processing System. Attention is given to a general description of the RADPAK system, remapping methodology, and an example of satellite remapping.

  12. Remote Sensing of Precipitation and Electrification with a Dual- Polarization, Coherent, Wideband Radar System

    DTIC Science & Technology

    1993-07-10

    now engaged in detailed analyses of selected storm cases for preparation of his doctoral dissertation. Radar Scientist/ Engineer : Mr. Grant Gray, a radar... engineer starting 1 July, 1991. Publications/Presentations: The following publication and presentations have result- ed from the work on this grant...frequency mode is used for coherent measurements, such as Doppler ye - 4. DSPs locity or complex cross-polar correlation magni- The system employs the

  13. Standoff concealed weapon detection using a 350 GHz radar imaging system

    SciTech Connect

    Sheen, David M.; Hall, Thomas E.; Severtsen, Ronald H.; McMakin, Douglas L.; Hatchell, Brian K.; Valdez, Patrick LJ

    2010-04-01

    The Pacific Northwest National Laboratory is currently developing a 350 GHz, active, wideband, three-dimensional, radar imaging system to evaluate the feasibility of active sub-mm imaging for standoff concealed weapon detection. The prototype radar imaging system is based on a wideband, heterodyne, frequency-multiplier-based transceiver system coupled to a quasi-optical focusing system and high-speed rotating conical scanner. The wideband operation of this system provides accurate ranging information, and the images obtained are fully three-dimensional. Recent improvements to the system include increased imaging speed using improved balancing techniques, wider bandwidth, and image display techniques.

  14. Target Classification for the Installation Security Radar System

    DTIC Science & Technology

    1981-11-01

    NUMBER 2. GOVT ACCESSION No. 3. RECIPIENT’S CATALOG NUMBER 4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED Target Classification for the...INSECTS MEASURED != .,EE FLIGHT (ref 10) L-band radarInsect target cross section (dBsm) Wingless Hawkmoth -60 Honeybee -63 Dragonfly -67 Since no studies

  15. Spaceborne radar

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Eckerman, J.; Meneghini, R.; Atlas, D.; Boerner, W. M.; Cherry, S.; Clark, J. F.; Doviak, R. J.; Goldhirsh, J.; Lhermitte, R. M.

    1981-01-01

    The spaceborne radar panel considered how radar could be used to measure precipitation from satellites. The emphasis was on how radar could be used with radiometry (at microwave, visible (VIS), and infrared (IR) wavelengths) to reduce the uncertainties of measuring precipitation with radiometry alone. In addition, the fundamental electromagnetic interactions involved in the measurements were discussed to determine the key work areas for research and development to produce effective instruments. Various approaches to implementing radar systems on satellites were considered for both shared and dedicated instruments. Finally, a research and development strategy was proposed for establishing the parametric relations and retrieval algorithms required for extracting precipitation information from the radar and associated radiometric data.

  16. High-resolution imaging using a wideband MIMO radar system with two distributed arrays.

    PubMed

    Wang, Dang-wei; Ma, Xiao-yan; Chen, A-Lei; Su, Yi

    2010-05-01

    Imaging a fast maneuvering target has been an active research area in past decades. Usually, an array antenna with multiple elements is implemented to avoid the motion compensations involved in the inverse synthetic aperture radar (ISAR) imaging. Nevertheless, there is a price dilemma due to the high level of hardware complexity compared to complex algorithm implemented in the ISAR imaging system with only one antenna. In this paper, a wideband multiple-input multiple-output (MIMO) radar system with two distributed arrays is proposed to reduce the hardware complexity of the system. Furthermore, the system model, the equivalent array production method and the imaging procedure are presented. As compared with the classical real aperture radar (RAR) imaging system, there is a very important contribution in our method that the lower hardware complexity can be involved in the imaging system since many additive virtual array elements can be obtained. Numerical simulations are provided for testing our system and imaging method.

  17. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system operating... section is limited to GPRs and wall imaging systems operated for purposes associated with law enforcement...) A GPR that is designed to be operated while being hand held and a wall imaging system shall...

  18. Impulse radar imaging system for concealed object detection

    NASA Astrophysics Data System (ADS)

    Podd, F. J. W.; David, M.; Iqbal, G.; Hussain, F.; Morris, D.; Osakue, E.; Yeow, Y.; Zahir, S.; Armitage, D. W.; Peyton, A. J.

    2013-10-01

    Electromagnetic systems for imaging concealed objects at checkpoints typically employ radiation at millimetre and terahertz frequencies. These systems have been shown to be effective and provide a sufficiently high resolution image. However there are difficulties and current electromagnetic systems have limitations particularly in accurately differentiating between threat and innocuous objects based on shape, surface emissivity or reflectivity, which are indicative parameters. In addition, water has a high absorption coefficient at millimetre wavelength and terahertz frequencies, which makes it more difficult for these frequencies to image through thick damp clothing. This paper considers the potential of using ultra wideband (UWB) in the low gigahertz range. The application of this frequency band to security screening appears to be a relatively new field. The business case for implementing the UWB system has been made financially viable by the recent availability of low-cost integrated circuits operating at these frequencies. Although designed for the communication sector, these devices can perform the required UWB radar measurements as well. This paper reports the implementation of a 2 to 5 GHz bandwidth linear array scanner. The paper describes the design and fabrication of transmitter and receiver antenna arrays whose individual elements are a type of antipodal Vivaldi antenna. The antenna's frequency and angular response were simulated in CST Microwave Studio and compared with laboratory measurements. The data pre-processing methods of background subtraction and deconvolution are implemented to improve the image quality. The background subtraction method uses a reference dataset to remove antenna crosstalk and room reflections from the dataset. The deconvolution method uses a Wiener filter to "sharpen" the returned echoes which improves the resolution of the reconstructed image. The filter uses an impulse response reference dataset and a signal

  19. Space shuttle Ku-band integrated rendezvous radar/communications system study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The results are presented of work performed on the Space Shuttle Ku-Band Integrated Rendezvous Radar/Communications System Study. The recommendations and conclusions are included as well as the details explaining the results. The requirements upon which the study was based are presented along with the predicted performance of the recommended system configuration. In addition, shuttle orbiter vehicle constraints (e.g., size, weight, power, stowage space) are discussed. The tradeoffs considered and the operation of the recommended configuration are described for an optimized, integrated Ku-band radar/communications system. Basic system tradeoffs, communication design, radar design, antenna tradeoffs, antenna gimbal and drive design, antenna servo design, and deployed assembly packaging design are discussed. The communications and radar performance analyses necessary to support the system design effort are presented. Detailed derivations of the communications thermal noise error, the radar range, range rate, and angle tracking errors, and the communications transmitter distortion parameter effect on crosstalk between the unbalanced quadriphase signals are included.

  20. Integration of differential global positioning system with ultrawideband synthetic aperture radar for forward imaging

    NASA Astrophysics Data System (ADS)

    Wong, David C.; Bui, Khang; Nguyen, Lam H.; Smith, Gregory; Ton, Tuan T.

    2003-09-01

    The U.S. Army Research Laboratory (ARL), as part of a customer and mission-funded exploratory development program, has been evaluating low-frequency, ultra-wideband (UWB) imaging radar for forward imaging to support the Army's vision for increased mobility and survivability of unmanned ground vehicle missions. As part of the program to improve the radar system and imaging capability, ARL has incorporated a differential global positioning system (DGPS) for motion compensation into the radar system. The use of DGPS can greatly increase positional accuracy, thereby allowing us to improve our ability to focus better images for the detection of small targets such as plastic mines and other concealed objects buried underground. The ability of UWB radar technology to detect concealed objects could provide an important obstacle avoidance capability for robotic vehicles, which would improve the speed and maneuverability of these vehicles and consequently increase the survivability of the U.S. forces. This paper details the integration and discusses the significance of integrating a DGPS into the radar system for forward imaging. It also compares the difference between DGPS and the motion compensation data collected by the use of the original theodolite-based system.

  1. Comparing Goldstone Solar System Radar Earth-based Observations of Mars with Orbital Datasets

    NASA Technical Reports Server (NTRS)

    Haldemann, A. F. C.; Larsen, K. W.; Jurgens, R. F.; Slade, M. A.

    2005-01-01

    The Goldstone Solar System Radar (GSSR) has collected a self-consistent set of delay-Doppler near-nadir radar echo data from Mars since 1988. Prior to the Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) global topography for Mars, these radar data provided local elevation information, along with radar scattering information with global coverage. Two kinds of GSSR Mars delay-Doppler data exist: low 5 km x 150 km resolution and, more recently, high (5 to 10 km) spatial resolution. Radar data, and non-imaging delay-Doppler data in particular, requires significant data processing to extract elevation, reflectivity and roughness of the reflecting surface. Interpretation of these parameters, while limited by the complexities of electromagnetic scattering, provide information directly relevant to geophysical and geomorphic analyses of Mars. In this presentation we want to demonstrate how to compare GSSR delay-Doppler data to other Mars datasets, including some idiosyncracies of the radar data. Additional information is included in the original extended abstract.

  2. Receive Channel Architecture and Transmission System for Digital Array Radar

    DTIC Science & Technology

    2005-12-01

    to radar designers . The quadrature demodulation scheme and the basic transmit and receive architecture for a digital phased array antenna are also...Genetic algorithm design and testing of a random element 3- D 2.4 GHz phased array transmit antenna constructed of commercial RF microchips,” Master’s...December 2004. [5] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design , 2nd Edition, Wiley, New York, 1998. [6] R. C. Hansen, Phased Array

  3. A new active array MST radar system with enhanced capabilities for high resolution atmospheric observations

    NASA Astrophysics Data System (ADS)

    Durga rao, Meka; Jayaraman, Achuthan; Patra, Amit; Venkat Ratnam, Madineni; Narayana Rao, T.; Kamaraj, Pandian; Jayaraj, Katta; Kmv, Prasad; Kamal Kumar, J.; Raghavendra, J.; Prasad, T. Rajendra; Thriveni, A.; Yasodha, Polisetti

    2016-07-01

    A new version of the 53-MHz MST Radar, using the 1024 solid state Transmit-Receive Modules (TRM), necessary feeder network, multi-channel receiver and a modified radar controller has been established using the existing antenna array of 1024 crossed Yagis. The new system has been configured for steering the beam on a pulse-to-pulse basis in all 360o azimuth and 20o zenith angle, providing enhanced capability to study the Mesosphere-Stratosphere-Troposphere and Ionosphere. The multi channel receiver system has been designed for Spaced Antenna (SA) and Interferometry/ Iamging applications. The new system has also been configured for radiating in circular polarization for its application in the Ionosphere Incoherent Scatter mode. The new active array MST radar at Very-High-Frequency (53-MHz) located at Gadanki (13.45°N, 79.18°E), a tropical station in India, will be used to enhance the observations of winds, turbulence during the passage of convective events over the radar site as deep convection occurs very often at tropical latitudes. The new configuration with enhanced average power, beam agility with multi-channel experiments will be a potential source for studying middle atmosphere and ionosphere. In this paper, we present the system configuration, new capabilities and the first results obtained using the new version of the MST Radar.

  4. Required energy for a laser radar system incorporating a fiber amplifier or an avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Overbeck, Jay A.; Salisbury, Michael S.; Mark, Martin B.; Watson, Edward A.

    1995-11-01

    The transmitted energy required for an airborne laser radar system to be able to image a target at 20 km is investigated. Because direct detection is being considered, two methods of using an avalanche photodiode (APD) as the detector and (2) using a commercial fiber amplifier as a preamplifier before a photodetector. For this analysis a specified signal-to-noise ratio was used in conjunction with the radar range equation, which includes the effects of atmospheric transmission and turbulence. Theoretical analysis reveals that a system with a fiber amplifier performs nearly the same as a system incorporating an APD.

  5. Design of an FMCW radar baseband signal processing system for automotive application.

    PubMed

    Lin, Jau-Jr; Li, Yuan-Ping; Hsu, Wei-Chiang; Lee, Ta-Sung

    2016-01-01

    For a typical FMCW automotive radar system, a new design of baseband signal processing architecture and algorithms is proposed to overcome the ghost targets and overlapping problems in the multi-target detection scenario. To satisfy the short measurement time constraint without increasing the RF front-end loading, a three-segment waveform with different slopes is utilized. By introducing a new pairing mechanism and a spatial filter design algorithm, the proposed detection architecture not only provides high accuracy and reliability, but also requires low pairing time and computational loading. This proposed baseband signal processing architecture and algorithms balance the performance and complexity, and are suitable to be implemented in a real automotive radar system. Field measurement results demonstrate that the proposed automotive radar signal processing system can perform well in a realistic application scenario.

  6. The absolute amplitude calibration of the SEASAT synthetic aperture radar - An intercomparison with other L-band radar systems

    NASA Technical Reports Server (NTRS)

    Held, D.; Werner, C.; Wall, S.

    1983-01-01

    The absolute amplitude calibration of the spaceborne Seasat SAR data set is presented based on previous relative calibration studies. A scale factor making it possible to express the perceived radar brightness of a scene in units of sigma-zero is established. The system components are analyzed for error contribution, and the calibration techniques are introduced for each stage. These include: A/D converter saturation tests; prevention of clipping in the processing step; and converting the digital image into the units of received power. Experimental verification was performed by screening and processing the data of the lava flow surrounding the Pisgah Crater in Southern California, for which previous C-130 airborne scatterometer data were available. The average backscatter difference between the two data sets is estimated to be 2 dB in the brighter, and 4 dB in the dimmer regions. For the SAR a calculated uncertainty of 3 dB is expected.

  7. On the Use of Low-Cost Radar Networks for Collision Warning Systems Aboard Dumpers

    PubMed Central

    González-Partida, José-Tomás; León-Infante, Francisco; Blázquez-García, Rodrigo; Burgos-García, Mateo

    2014-01-01

    The use of dumpers is one of the main causes of accidents in construction sites, many of them with fatal consequences. These kinds of work machines have many blind angles that complicate the driving task due to their large size and volume. To guarantee safety conditions is necessary to use automatic aid systems that can detect and locate the different objects and people in a work area. One promising solution is a radar network based on low-cost radar transceivers aboard the dumper. The complete system is specified to operate with a very low false alarm rate to avoid unnecessary stops of the dumper that reduce its productivity. The main sources of false alarm are the heavy ground clutter, and the interferences between the radars of the network. This article analyses the clutter for LFM signaling and proposes the use of Offset Linear Frequency Modulated Continuous Wave (OLFM-CW) as radar signal. This kind of waveform can be optimized to reject clutter and self-interferences. Jointly, a data fusion chain could be used to reduce the false alarm rate of the complete radar network. A real experiment is shown to demonstrate the feasibility of the proposed system. PMID:24577521

  8. On the use of low-cost radar networks for collision warning systems aboard dumpers.

    PubMed

    González-Partida, José-Tomás; León-Infante, Francisco; Blázquez-García, Rodrigo; Burgos-García, Mateo

    2014-02-26

    The use of dumpers is one of the main causes of accidents in construction sites, many of them with fatal consequences. These kinds of work machines have many blind angles that complicate the driving task due to their large size and volume. To guarantee safety conditions is necessary to use automatic aid systems that can detect and locate the different objects and people in a work area. One promising solution is a radar network based on low-cost radar transceivers aboard the dumper. The complete system is specified to operate with a very low false alarm rate to avoid unnecessary stops of the dumper that reduce its productivity. The main sources of false alarm are the heavy ground clutter, and the interferences between the radars of the network. This article analyses the clutter for LFM signaling and proposes the use of Offset Linear Frequency Modulated Continuous Wave (OLFM-CW) as radar signal. This kind of waveform can be optimized to reject clutter and self-interferences. Jointly, a data fusion chain could be used to reduce the false alarm rate of the complete radar network. A real experiment is shown to demonstrate the feasibility of the proposed system.

  9. Sensitivity of S- and Ka-band matched dual-wavelength radar system for detecting nonprecipitating cloud

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Politovich, Marcia; Rilling, Robert; Ellis, Scott; Pratte, Frank

    2004-12-01

    Remote detection of cloud phase in either liquid, ice or mixed form a key microphysical observation. Evolution of a cloud system and associated radiative properties depend on microphysical characteristics. Polarization radars rely on the shape of the particle to delineate the regions of liquid and ice. For specified transmitter and receiver characteristics, it is easier to detect a high concentrations of larger atmospheric particles than a low concentration of small particles. However, the radar cross-section of a given hydrometeor increases as the transmit frequency of the radar increases. Thus, in spite of a low transmit power, the sensitivity of a millimeter-wave radar might be better than high powered centimeter-wave radars. Also, ground clutter echoes and receiver system noise powers are sensitive functions of radar transmit frequency. For example, ground clutter in centimeter-wave radar sample volumes might mask non-precipitating or lightly precipitating clouds. An optimal clutter filter or signal processing technique can be used to suppress clutter masking its effects and/or enhanced weak cloud echoes that have significantly different Doppler characteristics than stationary ground targets. In practice, it is imperative to investigate the actual performance of S and Ka-band radar systems to detect small-scale, weak cloud reflectivity. This paper describes radar characteristics and the sensitivity of the new system in non-precipitating conditions. Recently, a dual-wavelength S and Ka-band radar system with matched resolution volume and sensitivity was built to remotely detect supercooled liquid droplets. The detection of liquid water content was based on the fact that the shorter of the two wavelengths is more strongly attenuated by liquid water. The radar system was deployed during the Winter Icing Storms Project 2004 (WISP04) near Boulder, Colorado to detect and estimate liquid water content. Observations by dual-wavelength radar were collected in both non

  10. System Concepts for the Advanced Post-TRMM Rainfall Profiling Radars

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Smith, Eric A.

    2000-01-01

    Global rainfall is the primary distributor of latent heat through atmospheric circulation. The recently launched Tropical Rainfall Measuring Mission satellite is dedicated to advance our understanding of tropical precipitation patterns and their implications on global climate and its change. The Precipitation Radar (PR) aboard the satellite is the first radar ever flown in space and has provided. exciting, new data on the 3-D rain structures for a variety of scientific uses. However, due to the limited mission lifetime and the dynamical nature of precipitation, the TRMM PR data acquired cannot address all the issues associated with precipitation, its related processes, and the long-term climate variability. In fact, a number of new post-TRMM mission concepts have emerged in response to the recent NASA's request for new ideas on Earth science missions at the post 2002 era. This paper will discuss the system concepts for two advanced, spaceborne rainfall profiling radars. In the first portion of this paper, we will present a system concept for a second-generation spaceborne precipitation radar for operations at the Low Earth Orbit (LEO). The key PR-2 electronics system will possess the following capabilities: (1) A 13.6/35 GHz dual frequency radar electronics that has Doppler and dual-polarization capabilities. (2) A large but light weight, dual-frequency, wide-swath scanning, deployable antenna. (3) Digital chirp generation and the corresponding on-board pulse compression scheme. This will allow a significant improvement on rain signal detection without using the traditional, high-peak-power transmitters and without sacrificing the range resolution. (4) Radar electronics and algorithm to adaptively scan the antenna so that more time can be spent to observe rain rather than clear air. and (5) Built-in flexibility on the radar parameters and timing control such that the same radar can be used by different future rain missions. This will help to reduce the overall

  11. Weather Radar Technology Development

    DTIC Science & Technology

    1990-08-15

    uelocitV WMs ) data processing systems such as NEXRAD to have a reliable technique for removing ambiguities due to velocity aliasing. Performance of many...intended for automated implementation on radar systems such as the NEXt generation weather RADar ( NEXRAD ) system. Several research areas were addressed...with Doppler radar will soon be realized with the deployment of the NEXRAD radar systems. Some of these large scale storms can have devastating wind

  12. Capability of patch antennas in a portable harmonic radar system to track insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring technologies are needed to track insects and gain a better understanding of their behavior, population, migration and movement. A portable microwave harmonic-radar tracking system that utilizes antenna miniaturization techniques was investigated to achieve this goal. The system mainly con...

  13. Support of imaging radar for the shuttle system and subsystem definition study, phase 2

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An orbital microwave imaging radar system suggested for use in conjunction with the space shuttle is presented. Several applications of the system are described, including agriculture, meteorology, terrain analysis, various types of mapping, petroleum and mineral exploration, oil spill detection and sea and lake ice monitoring. The design criteria, which are based on the requirements of the above applications, are discussed.

  14. Acquisition and use of Orlando, Florida and Continental Airbus radar flight test data

    NASA Technical Reports Server (NTRS)

    Eide, Michael C.; Mathews, Bruce

    1992-01-01

    Westinghouse is developing a lookdown pulse Doppler radar for production as the sensor and processor of a forward looking hazardous windshear detection and avoidance system. A data collection prototype of that product was ready for flight testing in Orlando to encounter low level windshear in corroboration with the FAA-Terminal Doppler Weather Radar (TDWR). Airborne real-time processing and display of the hazard factor were demonstrated with TDWR facilitated intercepts and penetrations of over 80 microbursts in a three day period, including microbursts with hazard factors in excess of .16 (with 500 ft. PIREP altitude loss) and the hazard factor display at 6 n.mi. of a visually transparent ('dry') microburst with TDWR corroborated outflow reflectivities of +5 dBz. Range gated Doppler spectrum data was recorded for subsequent development and refinement of hazard factor detection and urban clutter rejection algorithms. Following Orlando, the data collection radar was supplemental type certified for in revenue service on a Continental Airlines Airbus in an automatic and non-interferring basis with its ARINC 708 radar to allow Westinghouse to confirm its understanding of commercial aircraft installation, interface realities, and urban airport clutter. A number of software upgrades, all of which were verified at the Receiver-Transmitter-Processor (RTP) hardware bench with Orlando microburst data to produce desired advanced warning hazard factor detection, included some preliminary loads with automatic (sliding window average hazard factor) detection and annunciation recording. The current (14-APR-92) configured software is free from false and/or nuisance alerts (CAUTIONS, WARNINGS, etc.) for all take-off and landing approaches, under 2500 ft. altitude to weight-on-wheels, into all encountered airports, including Newark (NJ), LAX, Denver, Houston, Cleveland, etc. Using the Orlando data collected on hazardous microbursts, Westinghouse has developed a lookdown pulse Doppler

  15. Primary propulsion of electrothermal, ion and chemical systems for space-based radar orbit transfer

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Staiger, P. J.

    1985-01-01

    An orbit transfer mission concept has been studied for a Space-Based Radar (SBR) where 40 kW required for radar operation is assumed available for orbit transfer propulsion. Arcjet, pulsed electrothermal (PET), ion, and storable chemical systems are considered for the primary propulsion. Transferring two SBR per shuttle flight to 1112 km/60 deg using electrical propulsion systems offers an increased payload at the expense of increased trip time, up to 2000 kg each, which may be critical for survivability. Trade offs between payload mass, transfer time, launch site, inclination, and height of parking orbits are presented.

  16. Primary propulsion of electrothermal, ion, and chemical systems for space-based radar orbit transfer

    NASA Technical Reports Server (NTRS)

    Wang, S.-Y.; Staiger, P. J.

    1985-01-01

    An orbit transfer mission concept has been studied for a Space-Based Radar (SBR) where 40 kW required for radar operation is assumed available for orbit transfer propulsion. Arcjet, pulsed electrothermal (PET), ion, and storable chemical systems are considered for the primary propulsion. Transferring two SBR per shuttle flight to 1112 km/60 deg using eiectrical propulsion systems offers an increased payload at the expense of increased trip time, up to 2000 kg each, which may be critical for survivability. Trade offs between payload mass, transfer time, launch site, inclination, and height of parking orbits are presented.

  17. SAR (Synthetic Aperture Radar). Earth observing system. Volume 2F: Instrument panel report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The scientific and engineering requirements for the Earth Observing System (EOS) imaging radar are provided. The radar is based on Shuttle Imaging Radar-C (SIR-C), and would include three frequencies: 1.25 GHz, 5.3 GHz, and 9.6 GHz; selectable polarizations for both transmit and receive channels; and selectable incidence angles from 15 to 55 deg. There would be three main viewing modes: a local high-resolution mode with typically 25 m resolution and 50 km swath width; a regional mapping mode with 100 m resolution and up to 200 km swath width; and a global mapping mode with typically 500 m resolution and up to 700 km swath width. The last mode allows global coverage in three days. The EOS SAR will be the first orbital imaging radar to provide multifrequency, multipolarization, multiple incidence angle observations of the entire Earth. Combined with Canadian and Japanese satellites, continuous radar observation capability will be possible. Major applications in the areas of glaciology, hydrology, vegetation science, oceanography, geology, and data and information systems are described.

  18. Digital Array Radar for Ballistic Missile Defense and Counter-Stealth Systems Analysis and Parameter Tradeoff Study

    DTIC Science & Technology

    2006-09-14

    29 Figure 12. Coupling Coefficient vs. Separation of Antenna Elements .............................31 Figure 13...Systems Evaluation Facility SLBM Submarine Launched Ballistic Missile SM -3 Standard Missile - 3 S/N Signal to Noise Ratio SNR Signal to Noise Ratio...incorporated into a ship-wide digital phased array radar.3 An OA radar is an integrated, ship-wide, digital, phased-array radar, in which antenna elements

  19. Systeme complet d'interferometrie radar: Etude de cas

    NASA Astrophysics Data System (ADS)

    Vincent, Frederic

    2002-09-01

    La recherche realisee a porte sur la mise au point de plusieurs ameliorations dans la chaine de traitement interferometrique necessaire pour pouvoir appliquer l'interferometrie radar (InROS) a des problemes d'interets majeurs au Quebec. Ainsi, la mesure de la deformation du sol et la creation de modeles numeriques d'altitude (MNA) par InROS en zone de coherences variables ont ete explorees au cours de cette recherche. Les faibles taux de deformation et les petites dimensions spatiales des zones affectees, les rapides variations des conditions climatiques et la presence de vegetation dense sont les principaux facteurs responsables de l'echec de l'InROS pour la mesure des deformations de glissements de terrain au Quebec. L'InROS s'est par contre averee etre un outil puissant pour le suivi des mouvements de glace sur les cours d'eau nordiques pour la securite des populations riveraines et pour la navigation fluviale. Une methode de fusion de MNA InROS de differentes configurations de prises de vue d'images en fonction des caracteristiques locales de pente et de coherence a ete developpee afin d'ameliorer la qualite des MNA InROS en zone de fortes variations de coherence. Finalement, une methode de correction des effets atmospheriques qui affectent les interferogrammes, basee sur l'acquisition simultanee de donnees GPS et de donnees radar, a aussi ete developpee au cours de cette recherche.

  20. Network connectivity paradigm for the large data produced by weather radar systems

    NASA Astrophysics Data System (ADS)

    Guenzi, Diego; Bechini, Renzo; Boraso, Rodolfo; Cremonini, Roberto; Fratianni, Simona

    2014-05-01

    The traffic over Internet is constantly increasing; this is due in particular to social networks activities but also to the enormous exchange of data caused especially by the so-called "Internet of Things". With this term we refer to every device that has the capability of exchanging information with other devices on the web. In geoscience (and, in particular, in meteorology and climatology) there is a constantly increasing number of sensors that are used to obtain data from different sources (like weather radars, digital rain gauges, etc.). This information-gathering activity, frequently, must be followed by a complex data analysis phase, especially when we have large data sets that can be very difficult to analyze (very long historical series of large data sets, for example), like the so called big data. These activities are particularly intensive in resource consumption and they lead to new computational models (like cloud computing) and new methods for storing data (like object store, linked open data, NOSQL or NewSQL). The weather radar systems can be seen as one of the sensors mentioned above: it transmit a large amount of raw data over the network (up to 40 megabytes every five minutes), with 24h/24h continuity and in any weather condition. Weather radar are often located in peaks and in wild areas where connectivity is poor. For this reason radar measurements are sometimes processed partially on site and reduced in size to adapt them to the limited bandwidth currently available by data transmission systems. With the aim to preserve the maximum flow of information, an innovative network connectivity paradigm for the large data produced by weather radar system is here presented. The study is focused on the Monte Settepani operational weather radar system, located over a wild peak summit in north-western Italy.

  1. Assessment of human respiration patterns via noncontact sensing using Doppler multi-radar system.

    PubMed

    Gu, Changzhan; Li, Changzhi

    2015-03-16

    Human respiratory patterns at chest and abdomen are associated with both physical and emotional states. Accurate measurement of the respiratory patterns provides an approach to assess and analyze the physical and emotional states of the subject persons. Not many research efforts have been made to wirelessly assess different respiration patterns, largely due to the inaccuracy of the conventional continuous-wave radar sensor to track the original signal pattern of slow respiratory movements. This paper presents the accurate assessment of different respiratory patterns based on noncontact Doppler radar sensing. This paper evaluates the feasibility of accurately monitoring different human respiration patterns via noncontact radar sensing. A 2.4 GHz DC coupled multi-radar system was used for accurate measurement of the complete respiration patterns without any signal distortion. Experiments were carried out in the lab environment to measure the different respiration patterns when the subject person performed natural breathing, chest breathing and diaphragmatic breathing. The experimental results showed that accurate assessment of different respiration patterns is feasible using the proposed noncontact radar sensing technique.

  2. Considerations for a Radar System to Detect an Ocean Underneath the Icy Shell of Europa

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Gogineni, Prasad; Green, James; Cooper, John; Fung, Shing; Taylor, William; Benson, Robert; Reinisch, Bodo; Song, Paul

    2004-01-01

    The detection of an ocean underneath Europa is one of the primary objectives of the Jupiter Icy Moons Orbiter (JIMO) mission. An orbiting surface penetrating radar has the potential of providing that measurement thus yielding information regarding the possibility of life support on Europa. Radars in the MHz range have successfully monitored the kilometer-deep ice shelves of Greenland and Antarctica, including the detection of Lake Vostok (and others) below an ice sheet thickness of about 4 km. The performance of a radar system orbiting Europa will be subject to several potential complications and unknowns. Besides ionospheric dispersion and the actual depth of the ocean, which is estimated between 2 and 30 km, major unknowns affecting radar performance are the temperature profile, the amount of salt and other impurities within the ice crust as well as the surface roughness. These impurities can in part be produced at the highly irradiated surface by magnetospheric interactions and transported downward into the ice crust by geologic processes. The ionospheric interference must also be modeled from effects of these interactions on production of the thin neutral atmosphere and subsequent ionization of the neutrals. We investigated these uncertainties through radar simulations using different surface and ice characteristics over a frequency range from 10 to 50 MHz. The talk will present results from these simulations discussing potential limitations.

  3. Assessment of Human Respiration Patterns via Noncontact Sensing Using Doppler Multi-Radar System

    PubMed Central

    Gu, Changzhan; Li, Changzhi

    2015-01-01

    Human respiratory patterns at chest and abdomen are associated with both physical and emotional states. Accurate measurement of the respiratory patterns provides an approach to assess and analyze the physical and emotional states of the subject persons. Not many research efforts have been made to wirelessly assess different respiration patterns, largely due to the inaccuracy of the conventional continuous-wave radar sensor to track the original signal pattern of slow respiratory movements. This paper presents the accurate assessment of different respiratory patterns based on noncontact Doppler radar sensing. This paper evaluates the feasibility of accurately monitoring different human respiration patterns via noncontact radar sensing. A 2.4 GHz DC coupled multi-radar system was used for accurate measurement of the complete respiration patterns without any signal distortion. Experiments were carried out in the lab environment to measure the different respiration patterns when the subject person performed natural breathing, chest breathing and diaphragmatic breathing. The experimental results showed that accurate assessment of different respiration patterns is feasible using the proposed noncontact radar sensing technique. PMID:25785310

  4. GEOS-2 C-band system project. C-band radars and their use on the GEOS-2 project

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The material presented covers the general topic of C-band radars and their use throughout the GEOS-2 C-band Radar System Project and has direct application to the general problem of gathering accurate radar tracking data. The material is hardware oriented and all analyses and evaluations described pertain to the gathering of accurate data rather than to the application of the gathered data. The radar oriented investigations formed a basic and necessary part of the overall C-band experiment. The successful completion of these efforts led to the definition of how the radars were to be operated and calibrated. These hardware decisions directly affected the quality of the radar data and therefore played a large part in the successful application of these data to geodetic research.

  5. Measurement data preprocessing in a radar-based system for monitoring of human movements

    NASA Astrophysics Data System (ADS)

    Morawski, Roman Z.; Miȩkina, Andrzej; Bajurko, Paweł R.

    2015-02-01

    The importance of research on new technologies that could be employed in care services for elderly people is highlighted. The need to examine the applicability of various sensor systems for non-invasive monitoring of the movements and vital bodily functions, such as heart beat or breathing rhythm, of elderly persons in their home environment is justified. An extensive overview of the literature concerning existing monitoring techniques is provided. A technological potential behind radar sensors is indicated. A new class of algorithms for preprocessing of measurement data from impulse radar sensors, when applied for elderly people monitoring, is proposed. Preliminary results of numerical experiments performed on those algorithms are demonstrated.

  6. New experiments to validate the radiation pattern of the Middle Atmosphere Alomar Radar System (MAARSY)

    NASA Astrophysics Data System (ADS)

    Renkwitz, T.; Stober, G.; Latteck, R.; Singer, W.; Rapp, M.

    2013-07-01

    The Middle Atmosphere Alomar Radar System (MAARSY) is a monostatic radar with an active phased array antenna designed for studies of phenomena in the mesosphere and lower thermosphere. Its design in particular the flexible beam forming and steering capability makes it to a powerful instrument to perform observations with high angular and temporal resolution. The knowledge of the actual radiation pattern is crucial to configure and analyze experiments carried out with the radar. The simulated radiation pattern is evaluated by the observation of cosmic radio emissions which are compared to a Global Sky temperature Maps model consisting of the most recent, thorough and accurate radio astronomy surveys. Additionally to these passive receive-only experiments active two-way experiments are presented, which corroborate the findings of the passive experiments.

  7. Feature discrimination and detection probability in synthetic aperture radar imaging system

    NASA Technical Reports Server (NTRS)

    Lipes, R. G.; Butman, S. A.

    1977-01-01

    Images obtained using synthetic aperture radar (SAR) systems can only represent the intensities of resolution cells in the scene of interest probabilistically since radar receiver noise and Rayleigh scattering of the transmitted radiation are always present. Consequently, when features to be identified differ only by their contribution to the mean power of the radar return, discrimination can be treated by detection theory. In this paper, we develop a 'sufficient statistic' for discriminating between competing features and compare it with some suboptimal methods frequently used. Discrimination is measured by probability of detection error and depends on number of samples or 'looks', signal-to-noise ratio (SNR), and ratio of mean power returns from the competing features. Our results show discrimination and image quality rapidly saturate with SNR (very small improvement for SNR not less than 10 dB) but continue to improve with increasing number of looks.

  8. Global search and rescue - A new concept. [orbital digital radar system with passive reflectors

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1976-01-01

    A new terrestrial search and rescue concept is defined embodying the use of simple passive radiofreqeuncy reflectors in conjunction with a low earth-orbiting, all-weather, synthetic aperture radar to detect, identify, and position locate earth-bound users in distress. Users include ships, aircraft, small boats, explorers, hikers, etc. Airborne radar tests were conducted to evaluate the basic concept. Both X-band and L-band, dual polarization radars were operated simultaneously. Simple, relatively small, corner-reflector targets were successfully imaged and digital data processing approaches were investigated. Study of the basic concept and evaluation of results obtained from aircraft flight tests indicate an all-weather, day or night, global search and rescue system is feasible.

  9. FPGA based hardware optimized implementation of signal processing system for LFM pulsed radar

    NASA Astrophysics Data System (ADS)

    Azim, Noor ul; Jun, Wang

    2016-11-01

    Signal processing is one of the main parts of any radar system. Different signal processing algorithms are used to extract information about different parameters like range, speed, direction etc, of a target in the field of radar communication. This paper presents LFM (Linear Frequency Modulation) pulsed radar signal processing algorithms which are used to improve target detection, range resolution and to estimate the speed of a target. Firstly, these algorithms are simulated in MATLAB to verify the concept and theory. After the conceptual verification in MATLAB, the simulation is converted into implementation on hardware using Xilinx FPGA. Chosen FPGA is Xilinx Virtex-6 (XC6LVX75T). For hardware implementation pipeline optimization is adopted and also other factors are considered for resources optimization in the process of implementation. Focusing algorithms in this work for improving target detection, range resolution and speed estimation are hardware optimized fast convolution processing based pulse compression and pulse Doppler processing.

  10. Space-based radar array system simulation and validation

    NASA Astrophysics Data System (ADS)

    Schuman, H. K.; Pflug, D. R.; Thompson, L. D.

    1981-08-01

    The present status of the space-based radar phased array lens simulator is discussed. Huge arrays of thin wire radiating elements on either side of a ground screen are modeled by the simulator. Also modeled are amplitude and phase adjust modules connecting radiating elements between arrays, feedline to radiator mismatch, and lens warping. A successive approximation method is employed. The first approximation is based on a plane wave expansion (infinite array) moment method especially suited to large array analysis. the first approximation results then facilitate higher approximation computations that account for effects of nonuniform periodicities (lens edge, lens section interfaces, failed modules, etc.). The programming to date is discussed via flow diagrams. An improved theory is presented in a consolidated development. The use of the simulator is illustrated by computing active impedances and radiating element current distributions for infinite planar arrays of straight and 'swept back' dipoles (arms inclined with respect to the array plane) with feedline scattering taken into account.

  11. Forth system for coherent-scatter radar data acquisition and processing

    NASA Technical Reports Server (NTRS)

    Rennier, A. D.; Bowhill, S. A.

    1985-01-01

    A real time collection system was developed for the Urbana coherent scatter radar system. The new system, designed for use with a microcomputer, has several advantages over the old system implemented with a minicomputer. The software used to collect the data is described as well as the processing software used to analyze the data. In addition a magnetic tape format for coherent scatter data exchange is given.

  12. Horizontally resolved structures of polar mesospheric echoes obtained with the Middle Atmosphere Alomar Radar System

    NASA Astrophysics Data System (ADS)

    Latteck, Ralph; Zecha, Marius; Rapp, Markus; Stober, Gunter; Singer, Werner

    2012-07-01

    Polar Mesosphere Summer Echoes have been observed in Andenes/Norway (69°N, 16°E) for more than 18 years using the Alomar SOUSY and the ALWIN VHF radars. In 2011 the Leibniz-Institute of Atmospheric Physics in Kühlungsborn completed the installation of the Middle Atmosphere Alomar Radar System ({MAARSY}). The new radar is designed for atmospheric studies from the troposphere up to the lower thermosphere, especially for the investigation of horizontal structures of polar mesospheric echoes. The system is composed of an active phased antenna consisting of 433 array elements and an identical number of transceiver modules individually controllable in frequency, phase, and output power on a pulse-to-pulse basis. This arrangement allows very high flexibility of beam forming and beam steering with a symmetric 3.6° small radar beam and arbitrary beam pointing directions down to 30° off-zenith. The monitoring of polar mesosphere echoes using a vertical pointed radar beam has been continued already during the construction period of MAARSY in order to complete the long term data base available for Andenes. Additionally first multi-beam scanning experiments using up to 97 beams quasi-simultaneously in the mesosphere have been carried out during several campaigns starting in summer 2010. Sophisticated wind analysis methods such as an extended velocity azimuth display have been applied to retrieve additional parameters from the wind field, e.g. horizontal divergence, vertical velocity, stretching and shearing deformation. The results provide a first insight into the strong horizontal variability of scattering structures occurring in the polar mesosphere over Andenes during summer and winter time. The implementation of interferometric radar imaging methods offers further improvement of the horizontal and the vertical resolution.

  13. Real-Data Tests of a Single-Doppler Radar Assimilation System

    DTIC Science & Technology

    1994-06-30

    data. In this report we describe tests of our prototype system with real data. We briefly review the assimilation procedure in Section 2, but for a more...temperature retrieval step is skipped in the assimilation procedure . Radar data used for the assimilation consisted of full PPI scans at elevation angles 0.3

  14. Flexible end-to-end system design for synthetic aperture radar applications

    NASA Astrophysics Data System (ADS)

    Zaugg, Evan C.; Edwards, Matthew C.; Bradley, Joshua P.

    2012-06-01

    This paper presents ARTEMIS, Inc.'s approach to development of end-to-end synthetic aperture radar systems for multiple applications and platforms. The flexible design of the radar and the image processing tools facilitates their inclusion in a variety of application-specific end-to-end systems. Any given application comes with certain requirements that must be met in order to achieve success. A concept of operation is defined which states how the technology is used to meet the requirements of the application. This drives the design decisions. Key to adapting our system to multiple applications is the flexible SlimSAR radar system, which is programmable on-the-fly to meet the imaging requirements of a wide range of altitudes, swath-widths, and platform velocities. The processing software can be used for real-time imagery production or post-flight processing. The ground station is adaptable, and the radar controls can be run by an operator on the ground, on-board the aircraft, or even automated as part of the aircraft autopilot controls. System integration takes the whole operation into account, seeking to flawlessly work with data links and on-board data storage, aircraft and payload control systems, mission planning, and image processing and exploitation. Examples of applications are presented including using a small unmanned aircraft at low altitude with a line of sight data link, a long-endurance UAV maritime surveillance mission with on-board processing, and a manned ground moving target indicator application with the radar using multiple receive channels.

  15. The proposed flatland radar

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Gage, K. S.; Vanzandt, T. E.; Nastrom, G. D.

    1986-01-01

    A flexible very high frequency (VHF) stratosphere-troposphere (ST) radar configured for meteorological research is to be constructed near Urbana, Illinois. Measurement of small vertical velocities associated with synoptic-scale meteorology can be performed. A large Doppler microwave radar (CHILL) is located a few km from the site of the proposed ST radar. Since the microwave radar can measure the location and velocity of hydrometeors and the VHF ST radar can measure clear (or cloudy) air velocities, simultaneous observations by these two radars of stratiform or convective weather systems would provide valuable meteorological information.

  16. State transition storyboards: A tool for designing the Goldstone solar system radar data acquisition system user interface software

    NASA Technical Reports Server (NTRS)

    Howard, S. D.

    1987-01-01

    Effective user interface design in software systems is a complex task that takes place without adequate modeling tools. By combining state transition diagrams and the storyboard technique of filmmakers, State Transition Storyboards were developed to provide a detailed modeling technique for the Goldstone Solar System Radar Data Acquisition System human-machine interface. Illustrations are included with a description of the modeling technique.

  17. Data Acquisition System for Multi-Frequency Radar Flight Operations Preparation

    NASA Technical Reports Server (NTRS)

    Leachman, Jonathan

    2010-01-01

    A three-channel data acquisition system was developed for the NASA Multi-Frequency Radar (MFR) system. The system is based on a commercial-off-the-shelf (COTS) industrial PC (personal computer) and two dual-channel 14-bit digital receiver cards. The decimated complex envelope representations of the three radar signals are passed to the host PC via the PCI bus, and then processed in parallel by multiple cores of the PC CPU (central processing unit). The innovation is this parallelization of the radar data processing using multiple cores of a standard COTS multi-core CPU. The data processing portion of the data acquisition software was built using autonomous program modules or threads, which can run simultaneously on different cores. A master program module calculates the optimal number of processing threads, launches them, and continually supplies each with data. The benefit of this new parallel software architecture is that COTS PCs can be used to implement increasingly complex processing algorithms on an increasing number of radar range gates and data rates. As new PCs become available with higher numbers of CPU cores, the software will automatically utilize the additional computational capacity.

  18. Interferometric synthetic aperture radar and the Data Collection System Digital Terrain Elevation Demonstration

    NASA Astrophysics Data System (ADS)

    Heidelbach, Robert; Bolus, R.; Chadwick, J.

    1994-08-01

    Digital Terrain Elevations (DTE) that can be rapidly generated, and that have better fidelity and accuracy than Digital Terrain Elevation Data (DTED) Levels 1 or 2, would be extremely beneficial to Department of Defense (DOD) military operations, civil works programs, and various commercial applications. As a result, the Advanced Research Projects Agency (ARPA), along with the U.S. Army Topographic Engineering Center (TEC), are developing an Interferometric Synthetic Aperture Radar (IFSAR) elevation mapping capability. This system, the Interferometric Synthetic Aperture Radar for Digital Radar Elevations (IFSARE), is capable of collecting and providing data in all weather (reasonable), in day or night scenarios, and where obscurants are present. The IFSARE, which is currently undergoing Integration and Test, will allow for rapid on-line automatic processing of the collected digital radar data into DTE and high quality imagery. The prime contractor is the Environmental Research Institute of Michigan (ERIM). This paper addresses the proof of concept for civil works applications by analyzing a data set taken by the Wright Labs/ERIM Data Collection System (DCS). The objective was to demonstrate the capability of an IFSAR system to provide high fidelity, fine resolution DTE that can be employed in hydraulic models of the Mississippi River watershed. The demonstration was sponsored by ARPA and TEC.

  19. Shuttle orbiter KU-band radar/communications system design evaluation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An expanded introduction is presented which addresses the in-depth nature of the tasks and indicates continuity of the reported effort and results with previous work and related contracts, and the two major modes of operation which exist in the Ku-band system, namely, the radar mode and the communication mode, are described. The Ku-band radar system is designed to search for a target in a designated or undesignated mode, then track the detected target, which might be cooperative (active) or passive, providing accurate, estimates of the target range, range rate, angle and angle rate to enable the orbiter to rendezvous with this target. The radar mode is described along with a summary of its predicted performance. The principal sub-unit that implements the radar function is the electronics assembly 2(EA-2). The relationship of EA-2 to the remainder of the Ku-band system is shown. A block diagram of EA-2 is presented including the main command and status signals between EA-2 and the other Ku-band units.

  20. Decision making for urban drainage systems under uncertainty caused by weather radar rainfall measurement

    NASA Astrophysics Data System (ADS)

    Dai, Qiang; Zhuo, Lu; Han, Dawei

    2015-04-01

    With the rapidly growth of urbanization and population, the decision making for managing urban flood risk has been a significant issue for most large cities in China. A high-quality measurement of rainfall at small temporal but large spatial scales is of great importance to urban flood risk management. Weather radar rainfall, with its advantage of short-term predictability and high spatial and temporal resolutions, has been widely applied in the urban drainage system modeling. It is recognized that weather radar is subjected to many uncertainties and many studies have been carried out to quantify these uncertainties in order to improve the quality of the rainfall and the corresponding outlet flow. However, considering the final action in urban flood risk management is the decision making such as flood warning and whether to build or how to operate a hydraulics structure, some uncertainties of weather radar may have little or significant influence to the final results. For this reason, in this study, we aim to investigate which characteristics of the radar rainfall are the significant ones for decision making in urban flood risk management. A radar probabilistic quantitative rainfall estimated scheme is integrated with an urban flood model (Storm Water Management Model, SWMM) to make a decision on whether to warn or not according to the decision criterions. A number of scenarios with different storm types, synoptic regime and spatial and temporal correlation are designed to analyze the relationship between these affected factors and the final decision. Based on this, parameterized radar probabilistic rainfall estimation model is established which reflects the most important elements in the decision making for urban flood risk management.

  1. Radar Observations of Convective Systems from a High-Altitude Aircraft

    NASA Technical Reports Server (NTRS)

    Heymsfield, G.; Geerts, B.; Tian, L.

    1999-01-01

    Reflectivity data collected by the precipitation radar on board the tropical Rainfall Measuring Mission (TRMM) satellite, orbiting at 350 km altitude, are compared to reflectivity data collected nearly simultaneously by a doppler radar aboard the NASA ER-2 flying at 19-20 km altitude, i.e. above even the deepest convection. The TRMM precipitation radar is a scanning device with a ground swath width of 215 km, and has a resolution of about a4.4 km in the horizontal and 250 m in the vertical (125 m in the core swath 48 km wide). The TRMM radar has a wavelength of 217 cm (13.8 GHz) and the Nadir mirror echo below the surface is used to correct reflectivity for loss by attenuation. The ER-2 Doppler radar (EDOP) has two antennas, one pointing to the nadir, 34 degrees forward. The forward pointing beam receives both the normal and the cross-polarized echos, so the linear polarization ratio field can be monitored. EDOP has a wavelength of 3.12 cm (9.6 GHz), a vertical resolution of 37.5 m and a horizontal along-track resolution of about 100 m. The 2-D along track airflow field can be synthesized from the radial velocities of both beams, if a reflectivity-based hydrometer fall speed relation can be assumed. It is primarily the superb vertical resolution that distinguishes EDOP from other ground-based or airborne radars. Two experiments were conducted during 1998 into validate TRMM reflectivity data over convection and convectively-generated stratiform precipitation regions. The Teflun-A (TEXAS-Florida Underflight) experiment, was conducted in April and May and focused on mesoscale convective systems mainly in southeast Texas. TEFLUN-B was conducted in August-September in central Florida, in coordination with CAMEX-3 (Convection and Moisture Experiment). The latter was focused on hurricanes, especially during landfall, whereas TEFLUN-B concentrated on central; Florida convection, which is largely driven and organized by surface heating and ensuing sea breeze circulations

  2. The 94 GHz Cloud Radar System on a NASA ER-2 Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Heymsfield, Gerald M.; Racette, Paul E.; Tian, Lin; Zenker, Ed

    2003-01-01

    The 94-GHz (W-band) Cloud Radar System (CRS) has been developed and flown on a NASA ER-2 high-altitude (20 km) aircraft. The CRS is a fully coherent, polarimeteric Doppler radar that is capable of detecting clouds and precipitation from the surface up to the aircraft altitude in the lower stratosphere. The radar is especially well suited for cirrus cloud studies because of its high sensitivity and fine spatial resolution. This paper describes the CRS motivation, instrument design, specifications, calibration, and preliminary data &om NASA s Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) field campaign. The unique combination of CRS with other sensors on the ER-2 provides an unprecedented opportunity to study cloud radiative effects on the global energy budget. CRS observations are being used to improve our knowledge of atmospheric scattering and attenuation characteristics at 94 GHz, and to provide datasets for algorithm implementation and validation for the upcoming NASA CloudSat mission that will use a 94-GHz spaceborne cloud radar to provide the first direct global survey of the vertical structure of cloud systems.

  3. Design and deployment of a stationary ice-penetrating radar system

    NASA Astrophysics Data System (ADS)

    Flowers, G. E.; Mingo, L.; Saint-Jacques, D.

    2015-12-01

    Ice-penetrating radar (IPR) is a popular tool in glaciology, used most commonly for mapping ice depth. Dielectric contrasts between englacial materials, including ice, water, and impurities, allow the detection of internal stratigraphy and some characterization of englacial properties. Here we describe the design and the 2014-2015 deployments of an autonomous stationary ice-penetrating radar system that was tested on a large outlet glacier of the Icefield Ranges of southwest Yukon, Canada. The radar system was deployed within a kilometer of an ice-marginal lake that is dammed by the Kaskawulsh Glacier and drains annually in a subglacial jökulhlaup. It was programmed to perform a series of soundings every few hours and was left unattended over the course of 6 weeks in 2014 and 7 weeks in 2015, while the lake level was monitored with a pressure transducer and time-lapse imagery. The 2014 dataset is characterized by a marked decrease in englacial reflector strength and coherence during the drainage of the ice-dammed lake. We interpret these data as a significant change in englacial saturation associated with the flood. The 2015 dataset post-dates the flood and provides an opportunity to examine more subtle changes in englacial and subglacial properties. Radar mapping in the vicinity of the deployment locations provides context for the time-dependent measurements, also showing significant differences before and after lake drainage.

  4. MMW radar enhanced vision systems: the Helicopter Autonomous Landing System (HALS) and Radar-Enhanced Vision System (REVS) are rotary and fixed wing enhanced flight vision systems that enable safe flight operations in degraded visual environments

    NASA Astrophysics Data System (ADS)

    Cross, Jack; Schneider, John; Cariani, Pete

    2013-05-01

    Sierra Nevada Corporation (SNC) has developed rotary and fixed wing millimeter wave radar enhanced vision systems. The Helicopter Autonomous Landing System (HALS) is a rotary-wing enhanced vision system that enables multi-ship landing, takeoff, and enroute flight in Degraded Visual Environments (DVE). HALS has been successfully flight tested in a variety of scenarios, from brown-out DVE landings, to enroute flight over mountainous terrain, to wire/cable detection during low-level flight. The Radar Enhanced Vision Systems (REVS) is a fixed-wing Enhanced Flight Vision System (EFVS) undergoing prototype development testing. Both systems are based on a fast-scanning, threedimensional 94 GHz radar that produces real-time terrain and obstacle imagery. The radar imagery is fused with synthetic imagery of the surrounding terrain to form a long-range, wide field-of-view display. A symbology overlay is added to provide aircraft state information and, for HALS, approach and landing command guidance cuing. The combination of see-through imagery and symbology provides the key information a pilot needs to perform safe flight operations in DVE conditions. This paper discusses the HALS and REVS systems and technology, presents imagery, and summarizes the recent flight test results.

  5. The Impact of a Traffic Alert and Collision Avoidance System on the Air Traffic Control Radar Beacon System and Mode S System in the Los Angeles Basin.

    DTIC Science & Technology

    1985-05-01

    FAAIPM-84130 The Impact of a Traffic Alert and Program Engineering Collision Avoidance System on the and Maintenance Service Air Traffic Control Radar...ON4 THE AIR TRAFFIC CONTROL RADAR BEACON SYSTEM 6.~ eforming organization Cede AND THE MODE :3 SYSTEM IN THE LOS ANGELES BASIN P032 7 A~,re~lIS...performed to predict the impact of the Traffic Alert and Collision Avoidance System (TCAS) on the performance of selected air traffic control and surveil

  6. Radar remote sensing in biology

    USGS Publications Warehouse

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  7. CAMUS: an infrared, visible, and millimeter-wave radar integration system

    NASA Astrophysics Data System (ADS)

    de Villers, Yves M.; Simard, Jean-Robert

    1998-10-01

    The Defense Research Establishment, Valcartier has an ongoing project on a multi-sensors system, called CAMUS (Common Aperture MUlti-Sensors). The main objective of this project is to demonstrate the concept of fusing three sensors on a single chassis. The project covers the development of the sensors' head and the processing sub-systems required for fusing the acquired data and information. The three sensors identified for this project are: a visible camera, a 3 - 5 micrometer infrared camera and a 94 GHz millimeter-wave radar. This paper describes the approach used to combine the three sensors along with the various processing schemes to merge the visible and infrared images with the radar information. The CAMUS system will present all the information gathered by the three sensors on a single display to the operator. The main application of this project is to demonstrate an advanced sight for a direct fire control system.

  8. Evaluation of a radar-based proximity warning system for off-highway dump trucks.

    PubMed

    Ruff, Todd

    2006-01-01

    A radar-based proximity warning system was evaluated by researchers at the Spokane Research Laboratory of the National Institute for Occupational Safety and Health to determine if the system would be effective in detecting objects in the blind spots of an off-highway dump truck. An average of five fatalities occur each year in surface mines as a result of an equipment operator not being aware of a smaller vehicle, person or change in terrain near the equipment. Sensor technology that can detect such obstacles and that also is designed for surface mining applications is rare. Researchers worked closely with the radar system manufacturer to test and modify the system on large, off-highway dump trucks at a surface mine over a period of 2 years. The final system was thoroughly evaluated by recording video images from a camera on the rear of the truck and by recording all alarms from the rear-mounted radar. Data show that the system reliably detected small vehicles, berms, people and other equipment. However, alarms from objects that posed no immediate danger were common, supporting the assertion that sensor-based systems for proximity warning should be used in combination with other devices, such as cameras, that would allow the operator to check the source of any alarm.

  9. Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-438 Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1) As of FY 2017...Officer PM - Program Manager POE - Program Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP... Selective Availability Anti-spoofing Module SIMCERT - Simulator Certification SOC - Space Operations Center SORTS - Status of Resources and Training System

  10. HgCdTe photomixers for CO2 laser radar systems

    NASA Technical Reports Server (NTRS)

    Bratt, Peter R.

    1992-01-01

    The Santa Barbara Research Center has developed a variety of high speed HgCdTe photodetectors for use in CO2 laser radar systems. These detectors have outstanding performance and can be made available in production quantities. Many of them have been employed in a variety of systems applications over the past ten years. In this paper, we briefly describe the detector technology, summarize the state-of-the-art, and indicate some practical applications.

  11. Parallel processing in a host plus multiple array processor system for radar

    NASA Technical Reports Server (NTRS)

    Barkan, B. Z.

    1983-01-01

    Host plus multiple array processor architecture is demonstrated to yield a modular, fast, and cost-effective system for radar processing. Software methodology for programming such a system is developed. Parallel processing with pipelined data flow among the host, array processors, and discs is implemented. Theoretical analysis of performance is made and experimentally verified. The broad class of problems to which the architecture and methodology can be applied is indicated.

  12. A Proposal for a Computer Network for the Indonesian Air Force’s Remote Site Radar System

    DTIC Science & Technology

    1989-03-01

    systems) can be used to help with the design of the new radar communication system. We can learn from past experience and avoid previous mistakes. 10 1...Ranai (RNI), Balikpapan ( BPP ) and Madiun (MDN). In this radar system, the SOC is the central site. The distance between each site radar pair can be seen...Island. The RNI site is on Natuna Island at a town named Ranai. The final site, BPP is on Borneo at the town of Balikpapan (See Figure 1). 17 ~o 0 0 10 0

  13. Radar systems for a polar mission, volume 3, appendices A-D, S, T

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    Success is reported in the radar monitoring of such features of sea ice as concentration, floe size, leads and other water openings, drift, topographic features such as pressure ridges and hummocks, fractures, and a qualitative indication of age and thickness. Scatterometer measurements made north of Alaska show a good correlation with a scattering coefficient with apparent thickness as deduced from ice type analysis of stereo aerial photography. Indications are that frequencies from 9 GHz upward seem to be better for sea ice radar purposes than the information gathered at 0.4 GHz by a scatterometer. Some information indicates that 1 GHz is useful, but not as useful as higher frequencies. Either form of like-polarization can be used and it appears that cross-polarization may be more useful for thickness measurement. Resolution requirements have not been fully established, but most of the systems in use have had poorer resolution than 20 meters. The radar return from sea ice is found to be much different than that from lake ice. Methods to decrease side lobe levels of the Fresnel zone-plate processor and to decrease the memory requirements of a synthetic radar processor are discussed.

  14. Progress report on the NASA/JPL airborne synthetic aperture radar system

    NASA Technical Reports Server (NTRS)

    Lou, Y.; Imel, D.; Chu, A.; Miller, T.; Moller, D.; Skotnicki, W.

    2001-01-01

    AIRSAR has served as a test-bed for both imaging radar techniques and radar technologies for over a decade. In fact, the polarimetric, cross-track interferometric, and along-track introferometric radar techniques were all developed using AIRSAR.

  15. MICROPROCESSOR-BASED DATA-ACQUISITION SYSTEM FOR A BOREHOLE RADAR.

    USGS Publications Warehouse

    Bradley, Jerry A.; Wright, David L.

    1987-01-01

    An efficient microprocessor-based system is described that permits real-time acquisition, stacking, and digital recording of data generated by a borehole radar system. Although the system digitizes, stacks, and records independently of a computer, it is interfaced to a desktop computer for program control over system parameters such as sampling interval, number of samples, number of times the data are stacked prior to recording on nine-track tape, and for graphics display of the digitized data. The data can be transferred to the desktop computer during recording, or it can be played back from a tape at a latter time. Using the desktop computer, the operator observes results while recording data and generates hard-copy graphics in the field. Thus, the radar operator can immediately evaluate the quality of data being obtained, modify system parameters, study the radar logs before leaving the field, and rerun borehole logs if necessary. The system has proven to be reliable in the field and has increased productivity both in the field and in the laboratory.

  16. GEOS-2 C-band radar system project. Spectral analysis as related to C-band radar data analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Work performed on spectral analysis of data from the C-band radars tracking GEOS-2 and on the development of a data compaction method for the GEOS-2 C-band radar data is described. The purposes of the spectral analysis study were to determine the optimum data recording and sampling rates for C-band radar data and to determine the optimum method of filtering and smoothing the data. The optimum data recording and sampling rate is defined as the rate which includes an optimum compromise between serial correlation and the effects of frequency folding. The goal in development of a data compaction method was to reduce to a minimum the amount of data stored, while maintaining all of the statistical information content of the non-compacted data. A digital computer program for computing estimates of the power spectral density function of sampled data was used to perform the spectral analysis study.

  17. Clutter suppression interferometry system design and processing

    NASA Astrophysics Data System (ADS)

    Knight, Chad; Deming, Ross; Gunther, Jake

    2015-05-01

    Clutter suppression interferometry (CSI) has received extensive attention due to its multi-modal capability to detect slow-moving targets, and concurrently form high-resolution synthetic aperture radar (SAR) images from the same data. The ability to continuously augment SAR images with geo-located ground moving target indicators (GMTI) provides valuable real-time situational awareness that is important for many applications. CSI can be accomplished with minimal hardware and processing resources. This makes CSI a natural candidate for applications where size, weight and power (SWaP) are constrained, such as unmanned aerial vehicles (UAVs) and small satellites. This paper will discuss the theory for optimal CSI system configuration focusing on sparse time-varying transmit and receive array manifold due to SWaP considerations. The underlying signal model will be presented and discussed as well as the potential benefits that a sparse time-varying transmit receive manifold provides. The high-level processing objectives will be detailed and examined on simulated data. Then actual SAR data collected with the Space Dynamic Laboratory (SDL) FlexSAR radar system will be analyzed. The simulated data contrasted with actual SAR data helps illustrate the challenges and limitations found in practice vs. theory. A new novel approach incorporating sparse signal processing is discussed that has the potential to reduce false- alarm rates and improve detections.

  18. Surface roughness measuring system. [synthetic aperture radar measurements of ocean wave height and terrain peaks

    NASA Technical Reports Server (NTRS)

    Jain, A. (Inventor)

    1978-01-01

    Significant height information of ocean waves, or peaks of rough terrain is obtained by compressing the radar signal over different widths of the available chirp or Doppler bandwidths, and cross-correlating one of these images with each of the others. Upon plotting a fixed (e.g., zero) component of the cross-correlation values as the spacing is increased over some empirically determined range, the system is calibrated. To measure height with the system, a spacing value is selected and a cross-correlation value is determined between two intensity images at a selected frequency spacing. The measured height is the slope of the cross-correlation value used. Both electronic and optical radar signal data compressors and cross-correlations are disclosed for implementation of the system.

  19. Noise analysis for near field 3-D FM-CW radar imaging systems

    SciTech Connect

    Sheen, David M.

    2015-06-19

    Near field radar imaging systems are used for several applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit the performance in several ways including reduction in system sensitivity and reduction of image dynamic range. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  20. A portable W-band radar system for enhancement of infrared vision in fire fighting operations

    NASA Astrophysics Data System (ADS)

    Klenner, Mathias; Zech, Christian; Hülsmann, Axel; Kühn, Jutta; Schlechtweg, Michael; Hahmann, Konstantin; Kleiner, Bernhard; Ulrich, Michael; Ambacher, Oliver

    2016-10-01

    In this paper, we present a millimeter wave radar system which will enhance the performance of infrared cameras used for fire-fighting applications. The radar module is compact and lightweight such that the system can be combined with inertial sensors and integrated in a hand-held infrared camera. This allows for precise distance measurements in harsh environmental conditions, such as tunnel or industrial fires, where optical sensors are unreliable or fail. We discuss the design of the RF front-end, the antenna and a quasi-optical lens for beam shaping as well as signal processing and demonstrate the performance of the system by in situ measurements in a smoke filled environment.

  1. Phase modulating the Urbana radar

    NASA Technical Reports Server (NTRS)

    Herrington, L. J., Jr.; Bowhill, S. A.

    1983-01-01

    The design and operation of a switched phase modulation system for the Urbana Radar System are discussed. The system is implemented and demonstrated using a simple procedure. The radar system and circuits are described and analyzed.

  2. Verification measurements of the Karoo Array timing system: a laser radar based time transfer system

    NASA Astrophysics Data System (ADS)

    Siebrits, R.; Bauermeister, E.; Gamatham, R.; Adams, G.; Malan, J. A.; Burger, J. P.; Kapp, F.; Gibbon, T.; Kriel, H.; Abbott, T.

    2016-02-01

    An optical fiber based laser radar time transfer system has been developed for the 64-dish MeerKAT radiointerferometer telescope project to provide accurate atomic time to the receivers of the telescope system. This time transfer system is called the Karoo Array Timing System (KATS). Calibration of the time transfer system is essential to ensure that time is accurately transferred to the digitisers that form part of the receivers. Frequency domain reflectometry via vector network analysers is also used to verify measurements taken using time interval counters. This paper details the progress that is made in the verification measurements of the system in order to ensure that time, accurate to within a few nanoseconds of the Universal Coordinated Time (UTC, is available at the point where radio signals from astronomical sources are received. This capability enables world class transient and timing studies with a compact radio interferometer, which has inherent advantages over large single dish radio-telescopes, in observing the transient sky.

  3. Embedded DSP-based telehealth radar system for remote in-door fall detection.

    PubMed

    Garripoli, Carmine; Mercuri, Marco; Karsmakers, Peter; Jack Soh, Ping; Crupi, Giovanni; Vandenbosch, Guy A E; Pace, Calogero; Leroux, Paul; Schreurs, Dominique

    2015-01-01

    Telehealth systems and applications are extensively investigated nowadays to enhance the quality-of-care and, in particular, to detect emergency situations and to monitor the well-being of elderly people, allowing them to stay at home independently as long as possible. In this paper, an embedded telehealth system for continuous, automatic, and remote monitoring of real-time fall emergencies is presented and discussed. The system, consisting of a radar sensor and base station, represents a cost-effective and efficient healthcare solution. The implementation of the fall detection data processing technique, based on the least-square support vector machines, through a digital signal processor and the management of the communication between radar sensor and base station are detailed. Experimental tests, for a total of 65 mimicked fall incidents, recorded with 16 human subjects (14 men and two women) that have been monitored for 320 min, have been used to validate the proposed system under real circumstances. The subjects' weight is between 55 and 90 kg with heights between 1.65 and 1.82 m, while their age is between 25 and 39 years. The experimental results have shown a sensitivity to detect the fall events in real time of 100% without reporting false positives. The tests have been performed in an area where the radar's operation was not limited by practical situations, namely, signal power, coverage of the antennas, and presence of obstacles between the subject and the antennas.

  4. Subsurface Feature Mapping of Mars using a High Resolution Ground Penetrating Radar System

    NASA Astrophysics Data System (ADS)

    Wu, T. S.; Persaud, D. M.; Preudhomme, M. A.; Jurg, M.; Smith, M. K.; Buckley, H.; Tarnas, J.; Chalumeau, C.; Lombard-Poirot, N.; Mann, B.

    2015-12-01

    As the closest Earth-like, potentially life-sustaining planet in the solar system, Mars' future of human exploration is more a question of timing than possibility. The Martian surface remains hostile, but its subsurface geology holds promise for present or ancient astrobiology and future habitation, specifically lava tube (pyroduct) systems, whose presence has been confirmed by HiRISE imagery.The location and characterization of these systems could provide a basis for understanding the evolution of the red planet and long-term shelters for future manned missions on Mars. To detect and analyze the subsurface geology of terrestrial bodies from orbit, a novel compact (smallsat-scale) and cost-effective approach called the High-resolution Orbiter for Mapping gEology by Radar (HOMER) has been proposed. Adapting interferometry techniques with synthetic aperture radar (SAR) to a ground penetrating radar system, a small satellite constellation is able to achieve a theoretical resolution of 50m from low-Mars orbit (LMO). Alongside this initial prototype design of HOMER, proposed data processing methodology and software and a Mars mission design are presented. This project was developed as part of the 2015 NASA Ames Academy for Space Exploration.

  5. A W-Band MMIC Radar System for Remote Detection of Vital Signs

    NASA Astrophysics Data System (ADS)

    Diebold, Sebastian; Ayhan, Serdal; Scherr, Steffen; Massler, Hermann; Tessmann, Axel; Leuther, Arnulf; Ambacher, Oliver; Zwick, Thomas; Kallfass, Ingmar

    2012-12-01

    In medical and personal health systems for vital sign monitoring, contact-free remote detection is favourable compared to wired solutions. For example, they help to avoid severe pain, which is involved when a patient with burned skin has to be examined. Continuous wave (CW) radar systems have proven to be good candidates for this purpose. In this paper a monolithic millimetre-wave integrated circuit (MMIC) based CW radar system operating in the W-band (75-110 GHz) at 96 GHz is presented. The MMIC components are custom-built and make use of 100 nm metamorphic high electron mobility transistors (mHEMTs). The radar system is employing a frequency multiplier-by-twelve MMIC and a receiver MMIC both packaged in split-block modules. They allow for the determination of respiration and heartbeat frequency of a human target sitting in 1 m distance. The analysis of the measured data is carried out in time and frequency domain and each approach is shown to have its advantages and drawbacks.

  6. Real-time FPGA-based radar imaging for smart mobility systems

    NASA Astrophysics Data System (ADS)

    Saponara, Sergio; Neri, Bruno

    2016-04-01

    The paper presents an X-band FMCW (Frequency Modulated Continuous Wave) Radar Imaging system, called X-FRI, for surveillance in smart mobility applications. X-FRI allows for detecting the presence of targets (e.g. obstacles in a railway crossing or urban road crossing, or ships in a small harbor), as well as their speed and their position. With respect to alternative solutions based on LIDAR or camera systems, X-FRI operates in real-time also in bad lighting and weather conditions, night and day. The radio-frequency transceiver is realized through COTS (Commercial Off The Shelf) components on a single-board. An FPGA-based baseband platform allows for real-time Radar image processing.

  7. Precision SAW filters for a large phased-array radar system

    NASA Astrophysics Data System (ADS)

    Haydl, W. H.; Sander, W.; Wirth, W.-D.

    1981-05-01

    The electronically steerable radar (ELRA) at the Forschungsinstitut fuer Funk und Mathematik is an experimental S-band phased-array radar system consisting of separate transmitting and receiving arrays employing several coherent and incoherent signal-processing and data-handling techniques, incorporating multiple beam and multifunction operation for target search and tracking, adaptive interference suppression, and target resolution. This paper deals with the development and application of two types of SAW filters for the IF amplifier channel of the receiving array. Compared to conventional filters with lumped elements, these filters have some important merits. By making use of a special tuning technique, the center frequencies of all filters were adjusted, resulting in an rms deviation of less than 1 kHz. One type of the SAW filters represents an almost ideal approach of realizing a matched filter for rectangular shaped pulses. The conformity of the frequency responses of several hundred filters improved the noise suppression capability of the system.

  8. Improving Ground Penetrating Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, & Visualization

    SciTech Connect

    Wright, David L.

    2004-12-01

    Improving Ground Penetrating Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, and Visualization Methods with Applications to Site Characterization EMSP Project 86992 Progress Report as of 9/2004.

  9. Final Environmental Statement. Continental United States Over-the- Horizon Backscatter Radar System

    DTIC Science & Technology

    1975-01-01

    prototype and operational radar systems. a. Radiated Radio Frequency Energy. The transmitter site is the only source of radiated radio frequency (RF...in terms of critical habitat of wildlife and possible presence of rare and endangered species. 10. Sites must be evaluated from both the negative ...conditions, and using primates, mealworms , mice and pigs, no organic damage has been recorded other than minor body heating due to energy absorption

  10. Effects of an Irregular Ionosphere on L-Band Radar System

    DTIC Science & Technology

    1975-07-25

    on rmvmtmo midm it nmcomimry m*d tddntlly by block numbmr) Irregularity reflection Radar range errors Ray tracing Travelling ionospheric...System and a high flying target introduced by a travelling ionospheric disturbance (TID) is calcu- lated. Using an ambient Chapman electron density...frequency, the variable component of group delay due to these irregularities is dependent on the direction of TID travel relative to the propagation

  11. Coherent HF Radar System for the Study of Natural and Heater Induced Ionospheric Irregularities

    DTIC Science & Technology

    1993-06-01

    Services HF Active Auroral Research Program ( HAARP ) in Alaska. The DPS characterizes the bulk parameters of the ionosphere including changes of the...electron density, plasma structure and the plasma convection. In the absence of the HAARP facility at the present time, the high latitude ionosphere at...AD-A273 804 COHERENT HF RADAR SYSTEM FOR THE STUDY OF NATURAL AND HEATER INDUCED IONOSPHERIC IRREGULARITIES Bodo W. Reinisch James L. Scali D. Mark

  12. The EDOP radar system on the high-altitude NASA ER-2 aircraft

    USGS Publications Warehouse

    Heymsfield, G.M.; Bidwell, S.W.; Caylor, I.J.; Ameen, S.; Nicholson, S.; Boncyk, W.; Miller, L.; Vandemark, D.; Racette, P.E.; Dod, L.R.

    1996-01-01

    The NASA ER-2 high-altitude (20 km) aircraft that emulates a satellite view of precipitation systems carries a variety of passive and active (lidar) remote sensing instruments. A new Doppler weather radar system at X band (9.6 GHz) called the ER-2 Doppler radar (EDOP) has been developed and flown on the ER-2 aircraft. EDOP is a fully coherent Doppler weather radar with fixed nadir and forward pointing (33?? off nadir) beams that map out Doppler winds and reflectivities in the vertical plane along the aircraft motion vector. Doppler winds from the two beams can be used to derive vertical and along-track air motions. In addition, the forward beam provides linear depolarization measurements that are useful in discriminating microphysical characteristics of the precipitation. This paper deals with a general description of the EDOP instrument including the measurement concept, the system configuration and hardware, and recently obtained data examples from the instrument. The combined remote sensing package on the ER-2, along with EDOP, provides a unique platform for simulating spaceborne remote sensing of precipitation.

  13. Mapping of a major paleodrainage system in eastern Libya using orbital imaging radar: The Kufrah River

    NASA Astrophysics Data System (ADS)

    Paillou, Philippe; Schuster, Mathieu; Tooth, Stephen; Farr, Tom; Rosenqvist, Ake; Lopez, Sylvia; Malezieux, Jean-Marie

    2009-01-01

    Over the last few decades, remote sensing has revealed buried river channels in a number of regions worldwide, in many cases providing evidence of dramatic paleoenvironmental changes over Cenozoic time scales. Using orbital radar satellite imagery, we mapped a major paleodrainage system in eastern Libya, that could have linked the Kufrah Basin to the Mediterranean coast through the Sirt Basin, possibly as far back as the middle Miocene. Synthetic Aperture Radar images from the PALSAR sensor clearly reveal a 900 km-long river system, which starts with three main tributaries (north-eastern Tibesti, northern Uweinat and western Gilf Kebir/Abu Ras) that connect in the Kufrah oasis region. The river system then flows north through the Jebel Dalmah, and forms a large alluvial fan in the Sarir Dalmah. The sand dunes of the Calanscio Sand Sea prevent deep orbital radar penetration and preclude detailed reconstruction of any possible connection to the Mediterranean Sea, but a 300 km-long link to the Gulf of Sirt through the Wadi Sahabi paleochannel is likely. If this connection is confirmed, and its Miocene antiquity is established, then the Kufrah River, comparable in length to the Egyptian Nile, will have important implications for the understanding of the past environments and climates of northern Africa from the middle Miocene to the Holocene.

  14. Optical techniques for signal distribution and control in advanced radar and communication systems

    NASA Astrophysics Data System (ADS)

    Forrest, J. R.

    1985-03-01

    It is concluded that optical techniques offer some advantages for signal distribution and control in advanced radar and communication systems. They are clearly ideal for transporting microwave signals over considerable distances, as in remote positioning of radar receivers, provided high dynamic range is not required and an enclosed transmission path is essential. They are an elegant means of distributing low level r.f. or i.f. signals around an active phased array where these signals are of relatively constant amplitude (as in mixer local oscillator applications). However, there is currently a rather restrictive limit on the size of distribution network possible. Optical techniques are obviously suitable for distributing digital control signals to phased array modules and confer considerable immunity to interference. They are less suitable for high dynamic range signals, such as the received radar returns, either at r.f. or when downcovered to i.f. Future developments in coherent optics or in fast optical A/D technology could, however, influence this conclusion. Currently, the optimum applications for optical techniques appear to be i.f. beamformers for multibeam communication satellite systems and in calibration/monitoring systems for phased arrays.

  15. A study of an orbital radar mapping mission to Venus. Volume 2: Configuration comparisons and systems evaluation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Configuration comparisons and systems evaluation for the orbital radar mapping mission of the planet Venus are discussed. Designs are recommended which best satisfy the science objectives of the Venus radar mapping concept. Attention is given to the interaction and integration of those specific mission-systems recommendations with one another, and the final proposed designs are presented. The feasibility, cost, and scheduling of these configurations are evaluated against assumptions of reasonable state-of-the-art growth and space funding expectations.

  16. A digital signal processing system for coherent laser radar

    NASA Technical Reports Server (NTRS)

    Hampton, Diana M.; Jones, William D.; Rothermel, Jeffry

    1991-01-01

    A data processing system for use with continuous-wave lidar is described in terms of its configuration and performance during the second survey mission of NASA'a Global Backscatter Experiment. The system is designed to estimate a complete lidar spectrum in real time, record the data from two lidars, and monitor variables related to the lidar operating environment. The PC-based system includes a transient capture board, a digital-signal processing (DSP) board, and a low-speed data-acquisition board. Both unprocessed and processed lidar spectrum data are monitored in real time, and the results are compared to those of a previous non-DSP-based system. Because the DSP-based system is digital it is slower than the surface-acoustic-wave signal processor and collects 2500 spectra/s. However, the DSP-based system provides complete data sets at two wavelengths from the continuous-wave lidars.

  17. Data reduction programs for a laser radar system

    NASA Technical Reports Server (NTRS)

    Badavi, F. F.; Copeland, G. E.

    1984-01-01

    The listing and description of software routines which were used to analyze the analog data obtained from LIDAR - system are given. All routines are written in FORTRAN - IV on a HP - 1000/F minicomputer which serves as the heart of the data acquisition system for the LIDAR program. This particular system has 128 kilobytes of highspeed memory and is equipped with a Vector Instruction Set (VIS) firmware package, which is used in all the routines, to handle quick execution of different long loops. The system handles floating point arithmetic in hardware in order to enhance the speed of execution. This computer is a 2177 C/F series version of HP - 1000 RTE-IVB data acquisition computer system which is designed for real time data capture/analysis and disk/tape mass storage environment.

  18. Multiple solutions to dense systems in radar scattering using a preconditioned block GMRES solver

    SciTech Connect

    Boyse, W.E.

    1996-12-31

    Multiple right-hand sides occur in radar scattering calculations in the computation of the simulated radar return from a body at a large number of angles. Each desired angle requires a right-hand side vector to be computed and the solution generated. These right-hand sides are naturally smooth functions of the angle parameters and this property is utilized in a novel way to compute solutions an order of magnitude faster than LINPACK The modeling technique addressed is the Method of Moments (MOM), i.e. a boundary element method for time harmonic Maxwell`s equations. Discretization by this method produces general complex dense systems of rank 100`s to 100,000`s. The usual way to produce the required multiple solutions is via LU factorization and solution routines such as found in LINPACK. Our method uses the block GMRES iterative method to directly iterate a subset of the desired solutions to convergence.

  19. An X-band radar system for bathymetry and wave field analysis in a harbour area.

    PubMed

    Ludeno, Giovanni; Reale, Ferdinando; Dentale, Fabio; Carratelli, Eugenio Pugliese; Natale, Antonio; Soldovieri, Francesco; Serafino, Francesco

    2015-01-14

    Marine X-band radar based systems are well tested to provide information about sea state and bathymetry. It is also well known that complex geometries and non-uniform bathymetries provide a much bigger challenge than offshore scenarios. In order to tackle this issue a retrieval method is proposed, based on spatial partitioning of the data and the application of the Normalized Scalar Product (NSP), which is an innovative procedure for the joint estimation of bathymetry and surface currents. The strategy is then applied to radar data acquired around a harbour entrance, and results show that the reconstructed bathymetry compares well with ground truth data obtained by an echo-sounder campaign, thus proving the reliability of the whole procedure. The spectrum thus retrieved is then analysed to show the evidence of reflected waves from the harbour jetties, as confirmed by chain of hydrodynamic models of the sea wave field. The possibility of using a land based radar to reveal sea wave reflection is entirely new and may open up new operational applications of the system.

  20. An X-Band Radar System for Bathymetry and Wave Field Analysis in a Harbour Area

    PubMed Central

    Ludeno, Giovanni; Reale, Ferdinando; Dentale, Fabio; Carratelli, Eugenio Pugliese; Natale, Antonio; Soldovieri, Francesco; Serafino, Francesco

    2015-01-01

    Marine X-band radar based systems are well tested to provide information about sea state and bathymetry. It is also well known that complex geometries and non-uniform bathymetries provide a much bigger challenge than offshore scenarios. In order to tackle this issue a retrieval method is proposed, based on spatial partitioning of the data and the application of the Normalized Scalar Product (NSP), which is an innovative procedure for the joint estimation of bathymetry and surface currents. The strategy is then applied to radar data acquired around a harbour entrance, and results show that the reconstructed bathymetry compares well with ground truth data obtained by an echo-sounder campaign, thus proving the reliability of the whole procedure. The spectrum thus retrieved is then analysed to show the evidence of reflected waves from the harbour jetties, as confirmed by chain of hydrodynamic models of the sea wave field. The possibility of using a land based radar to reveal sea wave reflection is entirely new and may open up new operational applications of the system. PMID:25594601

  1. Along-track interferometry for simultaneous SAR and GMTI: application to Gotcha challenge data

    NASA Astrophysics Data System (ADS)

    Deming, Ross W.

    2011-06-01

    This paper describes several alternative techniques for detecting and localizing slowly-moving targets in cultural clutter using synthetic aperture radar (SAR) data. Here, single-pass data is jointly processed from two or more receive channels which are spatially offset in the along-track direction. We concentrate on two clutter cancelation methods known as the displaced phase center antenna (DPCA) technique and along-track SAR interferometry (AT-InSAR). Unlike the commonly-used space-time adaptive processing (STAP) techniques, both DPCA and AT-InSAR tend to perform well in the presence of non-homogeneous urban or mountainous clutter. We show, mathematically, the striking similarities between DPCA and AT-InSAR. Furthermore, we demonstrate using experimental SAR data that these two techniques yield complementary information, which can be combined into a "hybrid" technique that incorporates the advantages of each for significantly better performance. Results are generated using the Gotcha challenge data, acquired using a three-channel X-band spotlight SAR system.

  2. Microphysical processes observed by X band polarimetric radars during the evolution of storm systems

    NASA Astrophysics Data System (ADS)

    Xie, Xinxin; Evaristo, Raquel; Troemel, Silke; Simmer, Clemens

    2014-05-01

    Polarimetric radars are now widely used for characterizing storm systems since they offer significant information for the improvement for atmospheric models and numerical weather prediction. Their observations allow a detailed insight into macro- and micro-physical processes during the spatial and temporal evolution of storm systems. In the frame of the initiative for High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2), which focuses on improving the accuracy of climate models in relation to cloud and precipitation processes, the HD(CP)2 Observational Prototype Experiment (HOPE) was designed to provide a critical model evaluation at scales covered by Large Eddy Simulation (LES) models, which in turn will be used to better understand sub-grid variability and microphysical properties and processes parameterized by larger scale models. Three X-band polarimetric radars deployed in Bonn (BoXPol) and in the vicinity of Juelich (JuXPol and KiXPol), Germany, were operated together with other instruments during the HOPE campaign, in order to obtain a holistic view of precipitation systems covering both macro- and microscopic processes. Given the variability of polarimetric moments observed by polarimetric radars, the corresponding microphysical processes occurring during the development of storm cells thus can be inferred accordingly. This study focuses on the microscopic processes of storm systems which were observed by RHI (range-height indicator) scans of the three X band radars. The two frequently observed microphysical processes during the HOPE campaign, coalescence and differential sedimentation, will be shown, and the evolution of droplet size distributions (DSDs) will be also analyzed. The associated DSDs which are retrieved using radar measured polarimetric moments are further verified by the polarimetric forward operator where the assumptions of non-spherical hydrometeors have been embedded. The results indicate that the estimated

  3. First Measurements of Polar Mesospheric Summer Echoes by a Tri-static Radar System

    NASA Astrophysics Data System (ADS)

    La Hoz, C.

    2015-12-01

    Polar Mesospheric Summer Echoes (PMSE) have been observed for the first time by a tri-static radar system comprising the EISCAT VHF (224 MHz, 0.67 m Bragg wavelength) active radar in Tromso (Norway) and passive receiving stations in Kiruna, (Sweden) and Sodankyla (Finland). The antennas at the receiving stations, originally part of the EISCAT tri-static UHF radar system at 930 MHz, have been refitted with new feeder systems at the VHF frequency of the transmitter in Tromso. The refitted radar system opens new opportunities to study PMSE for its own sake and as a tracer of the dynamics of the polar mesosphere, a region that is difficult to investigate by other means. The measurements show that very frequently both remote receiving antennas detect coherent signals that are much greater than the regular incoherent scattering due to thermal electrons and coinciding in time and space with PMSE measured by the transmitter station in Tromso. This represents further evidence that PMSE is not aspect sensitive, as was already indicated by a less sensitive radar system in a bi-static configuration, and implying that the underlying atmospheric turbulence, at least at sub-meter scales, is isotropic in agreement with Kolmogorov's hypothesis. Measurements also show that the vertical rate of fall of persistent features of PMSE is the same as the vertical line of sight velocity inferred from the doppler shift of the PMSE signals. This equivalence forms the basis for using PMSE as a tracer of the dynamics of the background mesosphere. Thus, it is possible to measure the 3-dimensional velocity field in the PMSE layer over the intersection volume of the three antennas. Since the signals have large signal-to-noise ratios (up to 30 dB), the inferred velocities have high accuracies and good time resolutions. This affords the possibility to make estimates of momentum flux in the mesosphere deposited by overturning gravity waves. Gravity wave momentum flux is believed to be the engine of a

  4. Retrievals of Ice Cloud Microphysical Properties of Deep Convective Systems using Radar Measurements

    NASA Astrophysics Data System (ADS)

    Tian, J.; Dong, X.; Xi, B.; Wang, J.; Homeyer, C. R.

    2015-12-01

    This study presents innovative algorithms for retrieving ice cloud microphysical properties of Deep Convective Systems (DCSs) using Next-Generation Radar (NEXRAD) reflectivity and newly derived empirical relationships from aircraft in situ measurements in Wang et al. (2015) during the Midlatitude Continental Convective Clouds Experiment (MC3E). With composite gridded NEXRAD radar reflectivity, four-dimensional (space-time) ice cloud microphysical properties of DCSs are retrieved, which is not possible from either in situ sampling at a single altitude or from vertical pointing radar measurements. For this study, aircraft in situ measurements provide the best-estimated ice cloud microphysical properties for validating the radar retrievals. Two statistical comparisons between retrieved and aircraft in situ measured ice microphysical properties are conducted from six selected cases during MC3E. For the temporal-averaged method, the averaged ice water content (IWC) and median mass diameter (Dm) from aircraft in situ measurements are 0.50 g m-3 and 1.51 mm, while the retrievals from radar reflectivity have negative biases of 0.12 g m-3 (24%) and 0.02 mm (1.3%) with correlations of 0.71 and 0.48, respectively. For the spatial-averaged method, the IWC retrievals are closer to the aircraft results (0.51 vs. 0.47 g m-3) with a positive bias of 8.5%, whereas the Dm retrievals are larger than the aircraft results (1.65 mm vs. 1.51 mm) with a positive bias of 9.3%. The retrieved IWCs decrease from ~0.6 g m-3 at 5 km to ~0.15 g m-3 at 13 km, and Dm values decrease from ~2 mm to ~0.7 mm at the same levels. In general, the aircraft in situ measured IWC and Dm values at each level are within one standard derivation of retrieved properties. Good agreements between microphysical properties measured from aircraft and retrieved from radar reflectivity measurements indicate the reasonable accuracy of our retrievals.

  5. Scanning Laser Radar Development for Solar System Exploration Applications

    NASA Technical Reports Server (NTRS)

    Tratt, D.; Menzies, R.; Bartman, R.; Hemmati, H.

    2000-01-01

    The Jet Propulsion Laboratory (JPL) has recently established an accelerated development initiative to enable high-resolution active optical ranging and terrain mapping capabilities for a series of upcoming Solar System exploration missions.

  6. Adaptive and Cognitive Ground and Wall Penetrating Radar System

    DTIC Science & Technology

    2015-04-24

    Algorithms Database of Conditions Objects and Environments under Test 8 This is a table top system and does not require any special...based on a static predetermined map. 3. Evaluate various machine learning algorithms for suitability in dynamically adjusting the map. Practical...Karageorgis M, Riga JM (2008) “Sensor Systems and Methods using Entangled Quantum Particles” US Patent 7,767,976 Aslam F. (2007) “Imaging with 1 GHz

  7. Shuttle orbiter Ku-band radar/communications system design evaluation

    NASA Technical Reports Server (NTRS)

    Dodds, J.; Holmes, J.; Huth, G. K.; Iwasaki, R.; Maronde, R.; Polydoros, A.; Weber, C.; Broad, P.

    1980-01-01

    Tasks performed in an examination and critique of a Ku-band radar communications system for the shuttle orbiter are reported. Topics cover: (1) Ku-band high gain antenna/widebeam horn design evaluation; (2) evaluation of the Ku-band SPA and EA-1 LRU software; (3) system test evaluation; (4) critical design review and development test evaluation; (5) Ku-band bent pipe channel performance evaluation; (6) Ku-band LRU interchangeability analysis; and (7) deliverable test equipment evaluation. Where discrepancies were found, modifications and improvements to the Ku-band system and the associated test procedures are suggested.

  8. Coherent uplink arraying techniques for next generation space communications and planetary radar systems

    NASA Astrophysics Data System (ADS)

    Geldzahler, B. J.

    2011-06-01

    For several years, NASA has been pursuing demonstrations and development of coherent uplink arraying techniques for the next generation space communications and planetary radar systems. In addition radio science experiments would benefit with a 1000 times increase in signal to noise over current systems. I shall describe the three methods of uplink arraying NASA has pursued, all successful, and share the vision for going forward from laboratory demonstrations to the proposed implementation and deployment of a dedicated multi-purpose facility to infuse an amalgam of these methods into a system that enhances NASA's missions.

  9. Shuttle orbiter Ku-band radar/communications system design evaluation. Deliverable test equipment evaluation

    NASA Technical Reports Server (NTRS)

    Maronde, R. G.

    1980-01-01

    The Ku-band test equipment, known as the Deliverable System Test equipment (DSTE), is reviewed and evaluated. The DSTE is semiautomated and computer programs were generated for 14 communication mode tests and 17 radar mode tests. The 31 test modules provide a good cross section of tests with which to exercise the Ku-band system; however, it is very limited when being used to verify Ku-band system performance. More detailed test descriptions are needed, and a major area of concern is the DSTE sell-off procedure which is inadequate.

  10. Shuttle orbiter Ku-band radar/communications system design evaluation. Deliverable test equipment evaluation

    NASA Astrophysics Data System (ADS)

    Maronde, R. G.

    1980-07-01

    The Ku-band test equipment, known as the Deliverable System Test equipment (DSTE), is reviewed and evaluated. The DSTE is semiautomated and computer programs were generated for 14 communication mode tests and 17 radar mode tests. The 31 test modules provide a good cross section of tests with which to exercise the Ku-band system; however, it is very limited when being used to verify Ku-band system performance. More detailed test descriptions are needed, and a major area of concern is the DSTE sell-off procedure which is inadequate.

  11. An intercomparison of meteor radar measurements using two different processing systems

    NASA Astrophysics Data System (ADS)

    Lau, E.; Iimura, H.; Palo, S.; Avery, S.; Avery, J.; Kang, C.; Makarov, N.

    A new meteor radar system was installed at the Amundsen-Scott station South Pole in 2001 to further the understanding of the dynamics of the Antarctic region This radar system operates at a frequency of 46 3MHz and transmits a 36us Gaussian pulse every 305 ms The antenna array consists of 4 yagis pointed along the 0 90 180 and 270 degree meridians and 5 dipoles arranged in a cross configuration and operating as an interferometer to provide position measurements for the detected radio meteors The 4 yagi antennas are time division multiplexed and used for both transmitting and receiving while the 5 dipole antennas are only used for reception All of the dipoles and the output from the yagi antenna switch are connected to a 6 channel receiver The current arrangement of data acquisition systems at the South Pole allows the collection of meteors in a configuration similar to the previous meteor radar system that operated at the South Pole in the mid-1990s and also using an interferometer to accurately determine the meteor positions in the sky which enables the determination of the vertical structure of the observed waves This has been accomplished through the use of multiple data acquisition and post-processing systems These systems COBRA and MEDAC were developed independently With two separate data acquisition systems operating in parallel we have the ability to directly compare the results and understand the inherent variability in the derived scientific results based on different system architectures and processing assumptions Results will

  12. Radar-based Flood Warning System for Houston, Texas and Its Performance Evaluation

    NASA Astrophysics Data System (ADS)

    Fang, N.; Bedient, P.

    2009-12-01

    Houston has a long history of flooding problems as a serious nature. For instance, Houstonians suffered from severe flood inundation during Tropical Storm Allison in 2001 and Hurricane Ike in 2008. Radar-based flood warning systems as non-structural tools to provide accurate and timely warnings to the public and private entities are greatly needed for urban areas prone to flash floods. Fortunately, the advent of GIS, radar-based rainfall estimation using NEXRAD, and real-time delivery systems on the internet have allowed flood alert systems to provide important advanced warning of impending flood conditions. Thus, emergency personnel can take proper steps to mitigate against catastrophic losses. The Rice and Texas Medical Center (TMC) Flood Alert System (FAS2) has been delivering warning information with 2 to 3 hours of lead time to facility personnel in a readily understood format for more than 40 events since 1997. The system performed well during these major rainfall events with R square value of 93%. The current system has been improved by incorporating a new hydraulic prediction tool - FloodPlain Map Library (FPML). The FPML module aims to provide visualized information such as floodplain maps and water surface elevations instead of just showing hydrographs in real time based on NEXRAD radar rainfall data. During Hurricane Ike (September, 2008), FAS2 successfully provided precise and timely flood warning information to TMC with the peak flow difference of 3.6% and the volume difference of 5.6%; timing was excellent for this double-peaked event. With the funding from the Texas Department of Transportation, a similar flood warning system has been developed at a critical transportation pass along Highway 288 in Houston, Texas. In order to enable emergency personnel to begin flood preparation with as much lead time as possible, FAS2 is being used as a prototype to develop warning system for other flood-prone areas such as City of Sugar Land.

  13. Assimilation of radar precipitation in the DMI-HIRLAM now-casting system - methodology and preliminary results

    NASA Astrophysics Data System (ADS)

    Korsholm, Ulrik; Petersen, Claus

    2013-04-01

    Recent episodes of heavy rain and subsequent flooding in Denmark with large economical consequences have implied increased focus on very short range high quality forecasts of precipitation. The Danish Meteorological Institute (DMI) have therefore developed a now-casting system based on a dense network of surface observations combined with radar and satellite products available every 10 and 15 minutes. The rapid update cycles are initialized from a new three dimensional variational (3dvar) analysis every hour to employ the latest observations and forecasts extends 12 hours with output every 10 minutes to enable comparison with radar and satellite input. Model precipitation fields are nudged towards radar reflectivity derived precipitation by performing a dynamical adjustment of the wind field, temperature and humidity. The talk focuses on the basic methodology of including radar precipitation in the system and shows preliminary results. An accompanying poster displays more results.

  14. System concept and analysis of an Artificial Ionospheric Mirror (AIM) radar. Rept. for 31 Aug 89-31 Aug 90

    SciTech Connect

    Short, R.; Stewart, C.; Wallace, T.; Lallement, P.; Koert, P.

    1990-08-31

    Recognition of performance limitations associated with traditional skywave over-the-horizon (OTH) high frequency (HF) radars has led a number of investigators to propose the creation of an Artificial Ionospheric Mirror (AIM) in the upper atmosphere, in order to reflect ground-based radar signals for OTH surveillance. The AIM is produced by beaming sufficient electromagnetic power to the lower ionosphere (around 70 km) to enhance the in situ ionization level to 10 to the 7th power - 10 to the 8th power electrons/cu cm, thereby providing an ionized layer capable of reflecting radar frequencies of 30 - 90 MHz. This paper presents a baseline AIM system concept and an associated performance evaluation, based upon the relevant ionization and propagation physics and in the context of air surveillance for the cruise missile threat. Results of the subject study indicate that a system using this concept would both complement and enhance the performance of the existing skywave OTH radars.

  15. Advanced system model for 1574-nm imaging, scannerless, eye-safe laser radar

    NASA Astrophysics Data System (ADS)

    Schael, Ulrich; Rothe, Hendrik

    2002-10-01

    Laser radar based on gated viewing uses narrow laser pulses to illuminate a whole scene for direct (incoherent) detection. Due to the time of flight principle and a very fast shutter with precisely controlled delay time, only light reflected in the range R (range slice ΔR) is detected by a camera. Scattered light which reaches the shutter outside a given exposure time (gate) is suppressed. Hence, it is possible to "look" along the optical axis through changing atmospheric transmissions (rain, haze, fog, snow). For each laser pulse, the grey value image ES(x,y) of the camera is captured by a framegrabber for subsequent evaluation. Image sequences from these laser radar systems are ideally suited to recognize objects, because of the automatic contrast generation of the technology. Difficult object recognition problems, detection, target tracking, or obstacle avoidance at bad weather conditions are favorite applications. In this paper we discuss improvements in the system modelling and simulation of our laser radar system. Formerly the system performance was calculated for the whole system using the signal-to-noise ratio (SNR), leading to a general estimation of the maximum range of target detection. Changing to a pixel oriented approach, we are now able to study the system response for targets with arbitrary two and even three dimensional form. We take into account different kinds of target reflectivity and the Gaussian nature of the illuminating laser spot. Hence it is possible to simulate gray value images (range slices) and calculate range images. This will lead to a modulation transfer function for the system in future. Finally, the theoretical considerations are compared with experimental results from indoor measurements.

  16. Reconstruction of the sea surface elevation from the analysis of the data collected by a wave radar system

    NASA Astrophysics Data System (ADS)

    Ludeno, Giovanni; Soldovieri, Francesco; Serafino, Francesco; Lugni, Claudio; Fucile, Fabio; Bulian, Gabriele

    2016-04-01

    X-band radar system is able to provide information about direction and intensity of the sea surface currents and dominant waves in a range of few kilometers from the observation point (up to 3 nautical miles). This capability, together with their flexibility and low cost, makes these devices useful tools for the sea monitoring either coastal or off-shore area. The data collected from wave radar system can be analyzed by using the inversion strategy presented in [1,2] to obtain the estimation of the following sea parameters: peak wave direction; peak period; peak wavelength; significant wave height; sea surface current and bathymetry. The estimation of the significant wave height represents a limitation of the wave radar system because of the radar backscatter is not directly related to the sea surface elevation. In fact, in the last period, substantial research has been carried out to estimate significant wave height from radar images either with or without calibration using in-situ measurements. In this work, we will present two alternative approaches for the reconstruction of the sea surface elevation from wave radar images. In particular, the first approach is based on the basis of an approximated version of the modulation transfer function (MTF) tuned from a series of numerical simulation, following the line of[3]. The second approach is based on the inversion of radar images using a direct regularised least square technique. Assuming a linearised model for the tilt modulation, the sea elevation has been reconstructed as a least square fitting of the radar imaging data[4]. References [1]F. Serafino, C. Lugni, and F. Soldovieri, "A novel strategy for the surface current determination from marine X-band radar data," IEEE Geosci.Remote Sens. Lett., vol. 7, no. 2, pp. 231-235, Apr. 2010. [2]Ludeno, G., Brandini, C., Lugni, C., Arturi, D., Natale, A., Soldovieri, F., Serafino, F. (2014). Remocean System for the Detection of the Reflected Waves from the Costa

  17. A bat inspired technique for clutter reduction in radar sounder systems

    NASA Astrophysics Data System (ADS)

    Carrer, L.; Bruzzone, L.

    2016-10-01

    Radar Sounders are valuable instruments for subsurface investigation. They are widely employed for the study of planetary bodies around the solar system. Due to their wide antenna beam pattern, off-nadir surface reflections (i.e. clutter) of the transmitted signal can compete with echoes coming from the subsurface thus masking them. Different strategies have been adopted for clutter mitigation. However, none of them proved to be the final solution for this specific problem. Bats are very well known for their ability in discriminating between a prey and unwanted clutter (e.g. foliage) by effectively employing their sonar. According to recent studies, big brown bats can discriminate clutter by transmitting two different carrier frequencies. Most interestingly, there are many striking analogies between the characteristics of the bat sonar and the one of a radar sounder. Among the most important ones, they share the same nadir acquisition geometry and transmitted signal type (i.e. linear frequency modulation). In this paper, we explore the feasibility of exploiting frequency diversity for the purpose of clutter discrimination in radar sounding by mimicking unique bats signal processing strategies. Accordingly, we propose a frequency diversity clutter reduction method based on specific mathematical conditions that, if verified, allow the disambiguation between the clutter and the subsurface signal to be performed. These analytic conditions depend on factors such as difference in central carrier frequencies, surface roughness and subsurface material properties. The method performance has been evaluated by different simulations of meaningful acquisition scenarios which confirm its clutter reduction effectiveness.

  18. A millimetre-wave MIMO radar system for threat detection in urban environments

    NASA Astrophysics Data System (ADS)

    Kirschner, A. J.; Guetlein, J.; Bertl, S.; Detlefsen, J.

    2012-10-01

    The European Defence Agency (EDA) engages countermeasures against Improvised Explosive Devices (IEDs) by funding several scientific programs on threat awareness, countermeasures IEDs or land-mine detection, in which this work is only one of numerous projects. The program, denoted as Surveillance in an urban environment using mobile sensors (SUM), covers the idea of equipping one or more vehicles of a patrol or a convoy with a set of sensors exploiting different physical principles in order to gain detailed insights of the road situation ahead. In order to give an added value to a conventional visual camera system, measurement data from an infra-red (IR) camera, a radiometer and a millimetre-wave radar are fused with data from an optical image and are displayed on a human-machine-interface (HMI) which shall assist the vehicle's co-driver to identify suspect objects or persons on or next to the road without forcing the vehicle to stop its cruise. This paper shall especially cover the role of the millimetre-wave radar sensor and its different operational modes. Measurement results are discussed. It is possible to alter the antenna mechanically which gives two choices for a field of view and angular resolution trade-off. Furthermore a synthetic aperture radar mode is possible and has been tested successfully. MIMO radar principles like orthogonal signal design were exploited tofrom a virtual array by 4 transmitters and 4 receivers. In joint evaluation, it was possible to detect e.g. grenade shells under cardboard boxes or covered metal barrels which were invisible for optical or infra-red detection.

  19. Terminal Radar Approach Control: Measures of Voice Communications System Performance

    DTIC Science & Technology

    2005-10-01

    communication. — Marshall McLuhan Canadian communications and media theorist and Quentin Fiore The Medium Is the Massage, Random House (967...communicaTions sysTem performance Societies have always been shaped more by the nature of the media by which men communicate than by the content of the...and repetitive nature of ATC communications and its constrained phraseology, controllers and pilots have the ability to understand distorted, and

  20. Radar system components to detect small and fast objects

    NASA Astrophysics Data System (ADS)

    Hülsmann, Axel; Zech, Christian; Klenner, Mathias; Tessmann, Axel; Leuther, Arnulf; Lopez-Diaz, Daniel; Schlechtweg, Michael; Ambacher, Oliver

    2015-05-01

    Small and fast objects, for example bullets of caliber 5 to 10 mm, fired from guns like AK-47, can cause serious problems to aircrafts in asymmetric warfare. Especially slow and big aircrafts, like heavy transport helicopters are an easy mark of small caliber hand fire weapons. These aircrafts produce so much noise, that the crew is not able to recognize an attack unless serious problems occur and important systems of the aircraft fail. This is just one of many scenarios, where the detection of fast and small objects is desirable. Another scenario is the collision of space debris particles with satellites.

  1. Phase correction system for automatic focusing of synthetic aperture radar

    DOEpatents

    Eichel, Paul H.; Ghiglia, Dennis C.; Jakowatz, Jr., Charles V.

    1990-01-01

    A phase gradient autofocus system for use in synthetic aperture imaging accurately compensates for arbitrary phase errors in each imaged frame by locating highlighted areas and determining the phase disturbance or image spread associated with each of these highlight areas. An estimate of the image spread for each highlighted area in a line in the case of one dimensional processing or in a sector, in the case of two-dimensional processing, is determined. The phase error is determined using phase gradient processing. The phase error is then removed from the uncorrected image and the process is iteratively performed to substantially eliminate phase errors which can degrade the image.

  2. Evaluating a Radar-Based, Non Contact Streamflow Measurement System in the San Joaquin River at Vernalis, California

    USGS Publications Warehouse

    Cheng, Ralph T.; Gartner, Jeffrey W.; Mason, Jr., Robert R.; Costa, John E.; Plant, William J.; Spicer, Kurt R.; Haeni, F. Peter; Melcher, Nick B.; Keller, William C.; Hayes, Ken

    2004-01-01

    Accurate measurement of flow in the San Joaquin River at Vernalis, California, is vital to a wide range of Federal and State agencies, environmental interests, and water contractors. The U.S. Geological Survey uses a conventional stage-discharge rating technique to determine flows at Vernalis. Since the flood of January 1997, the channel has scoured and filled as much as 20 feet in some sections near the measurement site resulting in an unstable stage-discharge rating. In response to recent advances in measurement techniques and the need for more accurate measurement methods, the Geological Survey has undertaken a technology demonstration project to develop and deploy a radar-based streamflow measuring system on the bank of the San Joaquin River at Vernalis, California. The proposed flow-measurement system consists of a ground-penetrating radar system for mapping channel geometries, a microwave radar system for measuring surface velocities, and other necessary infrastructure. Cross-section information derived from ground penetrating radar provided depths similar to those measured by other instruments during the study. Likewise, surface-velocity patterns and magnitudes measured by the pulsed Doppler radar system are consistent with near surface current measurements derived from acoustic velocity instruments. Since the ratio of surface velocity to mean velocity falls to within a small range of theoretical value, using surface velocity as an index velocity to compute river discharge is feasable. Ultimately, the non-contact radar system may be used to make continuous, near-real-time flow measurements during high and medium flows. This report documents the data collected between April 14, 2002 and May 17, 2002 for the purposes of testing this radar based system. Further analyses of the data collected during this field effort will lead to further development and improvement of the system.

  3. In-Service Evaluation of the Turbulence Auto-PIREP System and Enhanced Turbulence Radar Technologies

    NASA Technical Reports Server (NTRS)

    Prince, Jason B.; Buck, Bill K.; Robinson, Paul A.; Ryan, Tim

    2007-01-01

    From August 2003 to December 2006, In-Service Evaluations (ISE) of the Turbulence Auto-PIREP System (TAPS) and Enhanced Turbulence (E-Turb) Radar, technologies developed in NASA's Turbulence Prediction and Warning System (TPAWS) element of its Aviation Safety and Security Program (AvSSP), were conducted. NASA and AeroTech Research established an industry team comprising AeroTech, Delta Air Lines, Rockwell Collins, and ARINC to conduct the ISEs. The technologies were installed on Delta aircraft and their effectiveness was evaluated in day-to-day operations. This report documents the establishment and conduct of the ISEs and presents results and feedback from various users.

  4. Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere.

    PubMed

    Cai, Yangjian; Korotkova, Olga; Eyyuboğlu, Halil T; Baykal, Yahya

    2008-09-29

    Propagation of stochastic electromagnetic beams through paraxial ABCD optical systems operating through turbulent atmosphere is investigated with the help of the ABCD matrices and the generalized Huygens-Fresnel integral. In particular, the analytic formula is derived for the cross-spectral density matrix of an electromagnetic Gaussian Schell-model (EGSM) beam. We applied our analysis for the ABCD system with a single lens located on the propagation path, representing, in a particular case, the unfolded double-pass propagation scenario of active laser radar. Through a number of numerical examples we investigated the effect of local turbulence strength and lens' parameters on spectral, coherence and polarization properties of the EGSM beam.

  5. OWL: an eyesafe 1.5-μm laser radar system for military applications

    NASA Astrophysics Data System (ADS)

    Eibert, Max; Scherbarth, Stefan

    1998-10-01

    The paper reports on current advances in the development of the Dornier Obstacle Warning System (OWS) for helicopters, with particular emphasis on the Obstacle Warning Ladar (OWL). Here both segments, development and application of the 1.5 micrometer imaging laser radar (LADAR) will be represented. It will be shown how advances in the eyesafe LADAR technology resulted in Obstacle Warning Ladar optimized for wire detection leading to a system family platform covering the range from the commercial needs up to the military requirements.

  6. Digital Beamforming and Pulse Compression in an Adaptive Array Radar System

    DTIC Science & Technology

    1991-02-25

    DC 20S03 1. AGENCY USE ONLY (Leave blank) I2. REPORT DATE I .REPORT TYPE AND DATES COVERED 1 1991 February 25 4. TITLE AND SUBTITLE 5 . FUNDING...down to a 5 M~z sample rate. The digitized signals are transmitted over a 160 bit wide data bus to a high speed bulk memory system. The Microram 3000N...magtape, displayed, or processed. TOD CLOCK PAS MEMORY RADAR INTERFACE UNIT t/D 1/0, L to NAV1 (ATION SYSTEM CONV FAST MEMORY NOVA WLM~l REO/WRITE IEEE

  7. The NASA Dual-Frequency Dual-Polarized Doppler Radar (D3R) System For GPM Ground Validation

    NASA Astrophysics Data System (ADS)

    Chandrasekar, V.; Schwaller, Mathew; Vega, Manuel; Carswell, James; Vijay Mishra, Kumar; Nguyen, Cuong; Meneghini, Robert; Peterson, Walt

    2010-05-01

    Following on the successful introduction of single-frequency (Ku-Band) weather radar onboard the Tropical Rain Measuring Mission (TRMM) satellite in 1997, the Global Precipitation Measurement (GPM) mission attempts to advance further the goal of making global scale precipitation observations by deploying the next generation of satellite-borne weather radars. The GPM satellite will carry a Ka-Ku band Dual-frequency Precipitation Radar (DPR) that can make measurements of parameters directly related to the microphysics of precipitation (such as raindrop size distribution). The Dual-Frequency Dual-Polarized Doppler Radar (D3R) is a ground validation radar, as a part of the GPM Ground Validation (GV) program, to enable both physical validation support in terms of understanding the microphysical description of the observations as well as algorithm retrieval implications. This paper provides a scientific and technical overview of the D3R system as well as major challenges. The preferred frequency bands of operation for precipitation surveillance in ground radar systems have been nearly non-attenuating frequencies (such as S-, C-band) or short-range measurements of attenuating frequencies (as in X band). However, it is not practical to use traditional ground radar frequencies for precipitation observations in space-borne radars. The GPM mission has embarked on a dual-frequency approach at Ku- and Ka-band for characterizing precipitation. Moving to higher frequencies to observe precipitation though has its own challenges namely, attenuation due to precipitation and reduced Doppler velocity Nyquist limits. Ground radar measurements enjoy the advantage of coincident microphysical observations available to interpret radar signatures but they are currently unavailable at Ku- and Ka-band. An important broader science goal of the NASA D3R is to enhance the database of dual-frequency radar observations on the ground, in conjunction with existing observations, in order to provide a

  8. Predictability of heavy sub-hourly precipitation amounts for a weather radar based nowcasting system

    NASA Astrophysics Data System (ADS)

    Bech, Joan; Berenguer, Marc

    2015-04-01

    Heavy precipitation events and subsequent flash floods are one of the most dramatic hazards in many regions such as the Mediterranean basin as recently stressed in the HyMeX (HYdrological cycle in the Mediterranean EXperiment) international programme. The focus of this study is to assess the quality of very short range (below 3 hour lead times) precipitation forecasts based on weather radar nowcasting system. Specific nowcasting amounts of 10 and 30 minutes generated with a nowcasting technique (Berenguer et al 2005, 2011) are compared against raingauge observations and also weather radar precipitation estimates observed over Catalonia (NE Spain) using data from the Meteorological Service of Catalonia and the Water Catalan Agency. Results allow to discuss the feasibility of issuing warnings for different precipitation amounts and lead times for a number of case studies, including very intense convective events with 30minute precipitation amounts exceeding 40 mm (Bech et al 2005, 2011). As indicated by a number of verification scores single based radar precipitation nowcasts decrease their skill quickly with increasing lead times and rainfall thresholds. This work has been done in the framework of the Hymex research programme and has been partly funded by the ProFEWS project (CGL2010-15892). References Bech J, N Pineda, T Rigo, M Aran, J Amaro, M Gayà, J Arús, J Montanyà, O van der Velde, 2011: A Mediterranean nocturnal heavy rainfall and tornadic event. Part I: Overview, damage survey and radar analysis. Atmospheric Research 100:621-637 http://dx.doi.org/10.1016/j.atmosres.2010.12.024 Bech J, R Pascual, T Rigo, N Pineda, JM López, J Arús, and M Gayà, 2007: An observational study of the 7 September 2005 Barcelona tornado outbreak. Natural Hazards and Earth System Science 7:129-139 http://dx.doi.org/10.5194/nhess-7-129-2007 Berenguer M, C Corral, R Sa0nchez-Diezma, D Sempere-Torres, 2005: Hydrological validation of a radar based nowcasting technique. Journal of

  9. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    NASA Technical Reports Server (NTRS)

    Kelly, Kenneth C.; Huang, John

    1999-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L-Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  10. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    NASA Technical Reports Server (NTRS)

    Kelly, Kenneth C.; Huang, John

    2000-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  11. Determining the optimal parameters in a distant radar NDE technique for debonding detection of GFRP-concrete systems

    NASA Astrophysics Data System (ADS)

    Yu, Tzu-Yang

    2009-03-01

    In the distant detection of debonding in glass fiber reinforced polymer (GFRP)-retrofitted concrete systems using radar NDE techniques, revealing the presence of debonding in reconstructed images is essential to the success of the techniques. An optimization scheme based on mathematical morphology is proposed for determining the optimal measurement and processing parameters in a distant radar NDE technique for debonding detection. Inverse synthetic aperture radar (ISAR) and backprojection algorithms are applied in the technique. Measurement (incident frequency and angle) and processing (frequency bandwidth and angular range) parameters are defined in this work. Performance of the optimization scheme is validated by laboratory ISAR measurements on GFRP-retrofitted concrete cylinders using radar signals in 8-18 GHz. From the results it is shown that better detection can be achieved by optimized measurements and processing.

  12. A variety of radars designed to explore the hidden structures and properties of the Solar System's planets and bodies

    NASA Astrophysics Data System (ADS)

    Ciarletti, Valérie

    2016-11-01

    Since the very first observations of the Moon from the Earth with radar in 1946, radars are more and more frequently selected to be part of the payload of exploration missions in the Solar System. They are, in fact, able to collect information on the surface structure of bodies or planets hidden by opaque atmospheres, to probe the planet subsurface or even to reveal the internal structure of a small body comet nucleus. A brief review of radars designed for the Solar System planets and bodies' exploration is presented in the paper. This review does not aim at being exhaustive but will focus on the major results obtained. The variety of radars that have been or are currently designed in terms of frequency or operational modes will be highlighted. xml:lang="fr" Une revue non exhaustive des radars scientifiques développés pour l'exploration des planètes et autres corps du système solaire est présentée dans cet article. Quelques résultats majeurs sont présentés. L'accent est mis sur la variété des radars qui ont été et sont actuellement conçus en terme de fréquence ou de mode opératoire en fonction des contraintes de la mission et des objectifs visés.

  13. Ground-based radar reflectivity mosaic of mei-yu precipitation systems over the Yangtze River-Huaihe River basins

    NASA Astrophysics Data System (ADS)

    Luo, Yali; Qian, Weimiao; Gong, Yu; Wang, Hongyan; Zhang, Da-Lin

    2016-11-01

    The 3D radar reflectivity produced by a mosaic software system, with measurements from 29 operational weather radars in the Yangtze River-Huaihe River Basins (YRHRB) during the mei-yu season of 2007, is compared to coincident TRMM PR observations in order to evaluate the value of the ground-based radar reflectivity mosaic in characterizing the 3D structures of mei-yu precipitation. Results show reasonable agreement in the composite radar reflectivity between the two datasets, with a correlation coefficient of 0.8 and a mean bias of -1 dB. The radar mosaic data at constant altitudes are reasonably consistent with the TRMM PR observations in the height range of 2-5 km, revealing essentially the same spatial distribution of radar echo and nearly identical histograms of reflectivity. However, at altitudes above 5 km, the mosaic data overestimate reflectivity and have slower decreasing rates with height compared to the TRMM PR observations. The areas of convective and stratiform precipitation, based on the mosaic reflectivity distribution at 3-km altitude, are highly correlated with the corresponding regions in the TRMM products, with correlation coefficients of 0.92 and 0.97 and mean relative differences of -7.9% and -2.5%, respectively. Finally, the usefulness of the mosaic reflectivity at 3-km altitude at 6-min intervals is illustrated using a mesoscale convective system that occurred over the YRHRB.

  14. Through-the-wall localization of a moving target by two independent ultra wideband (UWB) radar systems.

    PubMed

    Kocur, Dušan; Svecová, Mária; Rovňáková, Jana

    2013-09-09

    In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered.

  15. Radar Sounder

    DTIC Science & Technology

    1988-09-01

    over the shorter time period (resulting in a multilook SAR ) with the result that spatial resolution, the usual r~ason for using SAR techniques, degrades...Field - - - ALT 21. Sea Surface Topography - - - SAR , ALT 22. Ocean Waves (sea, swell, surf) V. Good Some V. Good SAR , ALT * with additional lower freq...OLS - Operational Line-scan System radiometer (4-6 GHz?) ALT - Altimeter •* good at low microwave SAR - Synthetic Aperture frequencies Radar + over

  16. Radar-based alert system to operate a sewerage network: relevance and operational effectiveness after several years of use.

    PubMed

    Faure, D; Payrastre, O; Auchet, P

    2005-01-01

    Since January 2000, the sewerage network of a very urbanised catchment area in the Greater Nancy Urban Community has been operated according to the alarms generated in real time by a storm alert system using weather radar data. This alert system is based on an automatic identification of intense rain cells in the radar images. This paper presents the characteristics of this alert system and synthesises the main results of two complementary studies realised in 2002 in order to estimate the relevance and the operational effectiveness of the alert system. The first study consisted in an off-line analysis of almost 50,000 intense rain cells detected in four years of historical radar data. The second study was an analysis of the experience feedback after two years of operational use of this alert system. The results of these studies are discussed in function of the initial operational objectives.

  17. The MU radar with active phased array system. I - Antenna and power amplifiers. II - In-house equipment

    NASA Astrophysics Data System (ADS)

    Fukao, S.; Sato, T.; Tsuda, T.; Kato, S.; Wakasugi, K.

    1985-12-01

    The MU (middle and upper atmosphere) radar of Japan, a 46.5 MHz pulse-modulated monostatic Doppler radar with an active phased array system, is described. The system's nominal beam width is 3.6 deg, and the peak radiation power is 1 MW with maximum average power of 50 kW. The system is composed of 475 crossed three-subelement Yagi antennas and an equivalent number of solid state power amplifiers. Each Yagi antenna is driven by a transmitter-receiver module with peak output power of 2.4 kW. This configuration enables very fast and almost continuous beam steering that has not been realized by other mesosphere-stratosphere-troposphere radars. The system's antenna and power amplifiers are described, as is the in-house equipment related to transmission reception, on-line data processing, and system control.

  18. Digital Terrestrial Video Broadcast Interference Suppression in Forward-Looking Ground Penetrating Radar Systems

    NASA Astrophysics Data System (ADS)

    Rial, F. I.; Mendez-Rial, Roi; Lawadka, Lukasz; Gonzalez-Huici, Maria A.

    2014-11-01

    In this paper we show how radio frequency interference (RFI) generated by digital video broadcasting terrestrial and digital audio broadcasting transmitters can be an important noise source for forward-looking ground penetrating radar (FLGPR) systems. Even in remote locations the average interference power sometimes exceeds ultra-wideband signals by many dB, becoming the limiting factor in the system sensitivity. The overall problem of RFI and its impact in GPR systems is briefly described and several signal processing approaches to removal of RFI are discussed. These include spectral estimation and coherent subtraction algorithms and various filter approaches which have been developed and applied by the research community in similar contexts. We evaluate the performance of these methods by simulating two different scenarios submitted to real RFI acquired with a FLGPR system developed at the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR), (GER). The effectiveness of these algorithms in removing RFI is presented using some performance indices after suppression.

  19. Aeronomy report no. 74: The Urbana meteor-radar system; design, development, and first observations

    NASA Technical Reports Server (NTRS)

    Hess, G. C.; Geller, M. A.

    1976-01-01

    The design, development, and first observations of a high power meteor-radar system located near Urbana, Illinois are described. The roughly five-fold increase in usable echo rate compared to other facilities, along with automated digital data processing and interferometry measurement of echo arrival angles, permits unsurpassed observations of tidal structure and shorter period waves. Such observations are discussed. The technique of using echo decay rates to infer density and scale height and the method of inferring wind shear from radial acceleration are examined. An original experiment to test a theory of the Delta-region winter anomaly is presented.

  20. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    PubMed

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-03-19

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  1. The problem of regime summaries of the data from radar observations. [for cloud system identification

    NASA Technical Reports Server (NTRS)

    Divinskaya, B. S.; Salman, Y. M.

    1975-01-01

    Peculiarities of the radar information about clouds are examined in comparison with visual data. An objective radar classification is presented and the relation of it to the meteorological classification is shown. The advisability of storage and summarization of the primary radar data for regime purposes is substantiated.

  2. The Design Implementation of an Operational, Computer Based Weather Radar System,

    DTIC Science & Technology

    1979-01-01

    process digitised radar data from a narrow beam, fully steerable radar aerial. The data is collected at several low elevation angles. The radar...display is a Mullard 6OSR needle matrix impact mechanism which uses non-sensitised paper of a standard width (58 mm). The printer control circuitry has been

  3. TRMM radar

    NASA Technical Reports Server (NTRS)

    Okamoto, Kenichi

    1993-01-01

    The results of a conceptual design study and the performance of key components of the Bread Board Model (BBM) of the Tropical Rainfall Measuring Mission (TRMM) radar are presented. The radar, which operates at 13.8 GHz and is designed to meet TRMM mission objectives, has a minimum measurable rain rate of 0.5 mm/h with a range resolution of 250 m, a horizontal resolution of about 4 km, and a swath width of 220 km. A 128-element active phased array system is adopted to achieve contiguous scanning within the swath. The basic characteristics of BBM were confirmed by experiments. The development of EM started with the cooperation of NASDA and CRL.

  4. HERMES: a high-speed radar imaging system for inspection of bridge decks

    SciTech Connect

    Azevedo, S.G.

    1996-10-26

    Corrosion of rebar in concrete bridges causes subsurface cracks and is a major cause of structural degradation that necessitates repair or replacement. Early detection of corrosion effects can limit the location and extent of necessary repairs, while providing long-term information about the infrastructure status. Most current detection methods, however, are destructive of the road surface and require closing or restricting traffic while the tests are performed. A ground-penetrating radar imaging system has been designed and developed that will perform the nondestructive evaluation of road-bed cracking at traffic speeds; i.e., without the need to restrict traffic flow. The first-generation system (called the HERMES bridge inspector), consists of an offset-linear array of 64 impulse radar transceivers and associated electronics housed in a trailer. Computers in the trailer and in the towing vehicle control the data acquisition, processing, and display. Cross-road resolution is three centimeters at up to 30 cm in depth, while down-road resolution depends on speed; 3 cm below 20 mph up to 8 cm at 50 mph. A two-meter- wide path is inspected on each pass over the roadway. This paper, describes the design of this system, shows preliminary results, and lays out its deployment schedule.

  5. Feasibility Study and Design of a Wearable System-on-a-Chip Pulse Radar for Contactless Cardiopulmonary Monitoring

    PubMed Central

    Zito, Domenico; Pepe, Domenico; Neri, Bruno; Zito, Fabio; De Rossi, Danilo; Lanatà, Antonio

    2008-01-01

    A new system-on-a-chip radar sensor for next-generation wearable wireless interface applied to the human health care and safeguard is presented. The system overview is provided and the feasibility study of the radar sensor is presented. In detail, the overall system consists of a radar sensor for detecting the heart and breath rates and a low-power IEEE 802.15.4 ZigBee radio interface, which provides a wireless data link with remote data acquisition and control units. In particular, the pulse radar exploits 3.1–10.6 GHz ultra-wideband signals which allow a significant reduction of the transceiver complexity and then of its power consumption. The operating principle of the radar for the cardiopulmonary monitoring is highlighted and the results of the system analysis are reported. Moreover, the results obtained from the building-blocks design, the channel measurement, and the ultra-wideband antenna realization are reported. PMID:18389068

  6. The application of digital signal processing techniques to a teleoperator radar system

    NASA Technical Reports Server (NTRS)

    Pujol, A.

    1982-01-01

    A digital signal processing system was studied for the determination of the spectral frequency distribution of echo signals from a teleoperator radar system. The system consisted of a sample and hold circuit, an analog to digital converter, a digital filter, and a Fast Fourier Transform. The system is interfaced to a 16 bit microprocessor. The microprocessor is programmed to control the complete digital signal processing. The digital filtering and Fast Fourier Transform functions are implemented by a S2815 digital filter/utility peripheral chip and a S2814A Fast Fourier Transform chip. The S2815 initially simulates a low-pass Butterworth filter with later expansion to complete filter circuit (bandpass and highpass) synthesizing.

  7. Environmental objections to the PAVE PAWS radar system: a scientific review.

    PubMed

    Adair, Robert K

    2003-01-01

    As part of our continental defense system, the United States Air Force has operated a radar system, known generally by the label PAVE PAWS, off of Cape Cod, MA since 1978. Some populated areas in the vicinity of the system are subject to a low level of background radiofrequency radiation from the system, and local citizens' groups have expressed concern that this radiofrequency radiation may affect their health. These concerns have been fueled by presentations and letters by Dr. R. A. Albanese, an applied mathematician at the Air Force Research Laboratory, who has proposed standards by which that PAVE PAWS radiofrequency radiation which is incident on populations should be judged. I discuss those standards that are sufficiently well defined to be subject to analysis and show that they are not based on sound quantitative reasoning.

  8. Trilateration-based localization algorithm for ADS-B radar systems

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Shih

    Rapidly increasing growth and demand in various unmanned aerial vehicles (UAV) have pushed governmental regulation development and numerous technology research advances toward integrating unmanned and manned aircraft into the same civil airspace. Safety of other airspace users is the primary concern; thus, with the introduction of UAV into the National Airspace System (NAS), a key issue to overcome is the risk of a collision with manned aircraft. The challenge of UAV integration is global. As automatic dependent surveillance-broadcast (ADS-B) system has gained wide acceptance, additional exploitations of the radioed satellite-based information are topics of current interest. One such opportunity includes the augmentation of the communication ADS-B signal with a random bi-phase modulation for concurrent use as a radar signal for detecting other aircraft in the vicinity. This dissertation provides detailed discussion about the ADS-B radar system, as well as the formulation and analysis of a suitable non-cooperative multi-target tracking method for the ADS-B radar system using radar ranging techniques and particle filter algorithms. In order to deal with specific challenges faced by the ADS-B radar system, several estimation algorithms are studied. Trilateration-based localization algorithms are proposed due to their easy implementation and their ability to work with coherent signal sources. The centroid of three most closely spaced intersections of constant-range loci is conventionally used as trilateration estimate without rigorous justification. In this dissertation, we address the quality of trilateration intersections through range scaling factors. A number of well-known triangle centers, including centroid, incenter, Lemoine point (LP), and Fermat point (FP), are discussed in detail. To the author's best knowledge, LP was never associated with trilateration techniques. According our study, LP is proposed as the best trilateration estimator thanks to the

  9. On the combined use of radar systems for multi-scale imaging of transport infrastructures

    NASA Astrophysics Data System (ADS)

    Catapano, I.; Bavusi, M.; Loperte, A.; Crocco, L.; Soldovieri, F.

    2012-04-01

    Ground Penetrating Radar (GPR) systems are worth to be considered as in situ non invasive diagnostic tools capable of assessing stability and integrity of transport infrastructures. As a matter of fact, by exploiting the interactions among probing electromagnetic waves and hidden objects, they provide images of the inner status of the spatial region under test from which infer risk factors, such as deformations and oxidization of the reinforcement bars as well as water infiltrations, crack and air gaps. With respect to the assessment of concrete infrastructures integrity, the reconstruction capabilities of GPR systems have been widely investigated [1,2]. However, the demand for diagnostic tools capable of providing detailed and real time information motivates the design and the performance evaluation of novel technologies and data processing methodologies aimed not only to effectively detect hidden anomalies but also to estimate their geometrical features. In this framework, this communication aims at investigating the advantages offered by the joint use of two GPR systems both of them equipped with a specific tomographic imaging approach. The first considered system is a time domain GPR equipped with a 1.5GHz shielded antenna, which is suitable for quick and good resolution surveys of the shallower layers of the structure. As second system, the holographic radar Rascan-4/4000 [3,4] is taken into account, due to its capability of providing holograms of hidden targets from the amplitude of the interference signal arising between the backscattered field and a reference signal. The imaging capabilities of both the GPR tools are enhanced by means of model based data processing approaches, which afford the imaging as a linear inverse scattering problem. Mathematical details on the inversion strategies will be provided at the conference. The combined use of the above GPR systems allows to perform multi-resolution surveys of the region under test, whose aim is, first of

  10. Radar systems for the water resources mission. Volume 4: Appendices E-I

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    The use of a scanning antenna beam for a synthetic aperture system was examined. When the resolution required was modest, the radar did not use all the time the beam was passing a given point on the ground to build a synthetic aperture, so time was available to scan the beam to other positions and build several images at different ranges. The scanning synthetic-aperture radar (SCANSAR) could achieve swathwidths of well over 100 km with modest antenna size. Design considerations for a SCANSAR for hydrologic parameter observation are presented. Because of the high sensitivity to soil moisture at angles of incidence near vertical, a 7 to 22 deg swath was considered for that application. For snow and ice monitoring, a 22 to 37 deg scan was used. Frequencies from X-band to L-band were used in the design studies, but the proposed system operated in C-band at 4.75 GHz. It achieved an azimuth resolution of about 50 meters at all angles, with a range resolution varying from 150 meters at 7 deg to 31 meters at 37 deg. The antenna required an aperture of 3 x 4.16 meters, and the average transmitter power was under 2 watts.

  11. Analysis of Surface and Radar Rainfall Observations during Two Tropical Systems in South Louisiana

    NASA Astrophysics Data System (ADS)

    Habib, E.; Tokay, A.; Meselhe, E.; Malakpet, C.

    2006-05-01

    This study presents comparative analyses on rainfall observations made during two tropical systems that affected south Louisiana: tropical storm Matthew in October 2004, and Hurricane Rita in September 2005. Storm Matthew formed from a tropical wave in the southwestern Gulf of Mexico on October 6th and made landfall on south Louisiana on October 10th causing as much as 10 inches of rain. Hurricane Rita developed on September 18th from a tropical depression and tracked westward into the Gulf of Mexico to reach category 5-strength on September 21st. Rita made landfall at the Texas/Louisiana border on 24th causing as much as 8-9 inches of rain. The current study focuses on analysis of rainfall observations during these two storms using a combination of surface-based and weather radar measurements. The results are based on analyses of small-scale variability of rainfall collected using a dense network of rain gauges in south Louisiana which includes a total of 13 dual rain gauge sites. In addition, an impact-type disdrometer is used to examine the raindrop size spectra characteristics during the two storms. The study will also compare data from the Lake Charles WSR-88D Level II volume scan reflectivity observations to gauge and disdrometer estimates. Implications for the ability of the WSR-88D radar to accurately measure rainfall during these two tropical systems will be investigated and discussed.

  12. Two-dimensional imaging via a narrowband MIMO radar system with two perpendicular linear arrays.

    PubMed

    Wang, Dang-wei; Ma, Xiao-yan; Su, Yi

    2010-05-01

    This paper presents a system model and method for the 2-D imaging application via a narrowband multiple-input multiple-output (MIMO) radar system with two perpendicular linear arrays. Furthermore, the imaging formulation for our method is developed through a Fourier integral processing, and the parameters of antenna array including the cross-range resolution, required size, and sampling interval are also examined. Different from the spatial sequential procedure sampling the scattered echoes during multiple snapshot illuminations in inverse synthetic aperture radar (ISAR) imaging, the proposed method utilizes a spatial parallel procedure to sample the scattered echoes during a single snapshot illumination. Consequently, the complex motion compensation in ISAR imaging can be avoided. Moreover, in our array configuration, multiple narrowband spectrum-shared waveforms coded with orthogonal polyphase sequences are employed. The mainlobes of the compressed echoes from the different filter band could be located in the same range bin, and thus, the range alignment in classical ISAR imaging is not necessary. Numerical simulations based on synthetic data are provided for testing our proposed method.

  13. Shuttle synthetic aperture radar implementation study, volume 1. [flight instrument and ground data processor system for collecting raw imaged radar data

    NASA Technical Reports Server (NTRS)

    Mehlis, J. G.

    1976-01-01

    Results of an implementation study for a synthetic aperture radar for the space shuttle orbiter are described. The overall effort was directed toward the determination of the feasibility and usefulness of a multifrequency, multipolarization imaging radar for the shuttle orbiter. The radar is intended for earth resource monitoring as well as oceanographic and marine studies.

  14. EVALUATION OF RADAR SET AN/TPQ-8 AS A JAMMER OF GROUND-BASED RADAR. EW SYSTEMS TEST USAEPG-3, PHASE II, EQUIPMENT TEST AND EVALUATION

    DTIC Science & Technology

    The results are presented of a series of tests conducted to evaluate the effectiveness of the AN/TPQ-8 as a jammer of ground-based radars and to...determine under what conditions the AN/TPQ-8 could introduce interference into target radars and the effects on friendly radar. These tests were conducted

  15. A System Concept for the Advanced Post-TRMM Rainfall Profiling Radars

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Smith, Eric A.

    1998-01-01

    Atmospheric latent heating field is fundamental to all modes of atmospheric circulation and upper mixed layer circulations of the ocean. The key to understanding the atmospheric heating process is understanding how and where precipitation occurs. The principal atmospheric processes which link precipitation to atmospheric circulation include: (1) convective mass fluxes in the form of updrafts and downdrafts; (2) microphysical. nucleation and growth of hydrometeors; and (3) latent heating through dynamical controls on the gravitation-driven vertical mass flux of precipitation. It is well-known that surface and near-surface rainfall are two of the key forcing functions on a number of geophysical parameters at the surface-air interface. Over ocean, rainfall variation contributes to the redistribution of water salinity, sea surface temperature, fresh water supply, and marine biology and eco-system. Over land, rainfall plays a significant role in rainforest ecology and chemistry, land hydrology and surface runoff. Precipitation has also been closely linked to a number of atmospheric anomalies and natural hazards that occur at various time scales, including hurricanes, cyclones, tropical depressions, flash floods, droughts, and most noticeable of all, the El Ninos. From this point of view, the significance of global atmospheric precipitation has gone far beyond the science arena - it has a far-reaching impact on human's socio-economic well-being and sustenance. These and many other science applications require the knowledge of, in a global basis, the vertical rain structures, including vertical motion, rain intensity, differentiation of the precipitating hydrometeors' phase state, and the classification of mesoscale physical structure of the rain systems. The only direct means to obtain such information is the use of a spaceborne profiling radar. It is important to mention that the Tropical Rainfall Measuring Mission (TRMM) have made a great stride forward towards this

  16. Millimeter Wave Cloud Radar (MMCR) Handbook

    SciTech Connect

    KB Widener; K Johnson

    2005-01-30

    The millimeter cloud radar (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar will also report radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.

  17. Intelligent radar data processing

    NASA Astrophysics Data System (ADS)

    Holzbaur, Ulrich D.

    The application of artificial intelligence principles to the processing of radar signals is considered theoretically. The main capabilities required are learning and adaptation in a changing environment, processing and modeling information (especially dynamics and uncertainty), and decision-making based on all available information (taking its reliability into account). For the application to combat-aircraft radar systems, the tasks include the combination of data from different types of sensors, reacting to electronic counter-countermeasures, evaluation of how much data should be acquired (energy and radiation management), control of the radar, tracking, and identification. Also discussed are related uses such as monitoring the avionics systems, supporting pilot decisions with respect to the radar system, and general applications in radar-system R&D.

  18. Distributed micro-radar system for detection and tracking of low-profile, low-altitude targets

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo

    2016-05-01

    Proposed airborne surveillance radar system can detect, locate, track, and classify low-profile, low-altitude targets: from traditional fixed and rotary wing aircraft to non-traditional targets like unmanned aircraft systems (drones) and even small projectiles. Distributed micro-radar system is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. To extend high frequency limit and provide high sensitivity over the broadband of frequencies, multiple angularly spaced directional antennas are coupled with front end circuits and separately connected to a direction finder processor by a digital interface. Integration of antennas with front end circuits allows to exclude waveguide lines which limits system bandwidth and creates frequency dependent phase errors. Digitizing of received signals proximate to antennas allows loose distribution of antennas and dramatically decrease phase errors connected with waveguides. Accuracy of direction finding in proposed micro-radar in this case will be determined by time accuracy of digital processor and sampling frequency. Multi-band, multi-functional antennas can be distributed around the perimeter of a Unmanned Aircraft System (UAS) and connected to the processor by digital interface or can be distributed between swarm/formation of mini/micro UAS and connected wirelessly. Expendable micro-radars can be distributed by perimeter of defense object and create multi-static radar network. Low-profile, lowaltitude, high speed targets, like small projectiles, create a Doppler shift in a narrow frequency band. This signal can be effectively filtrated and detected with high probability. Proposed micro-radar can work in passive, monostatic or bistatic regime.

  19. On the range resolution of point targets with FMCW radar systems

    NASA Astrophysics Data System (ADS)

    Hammel, Reinhard

    1989-08-01

    The range information with Frequency Modulated Continuous Wave (FMCW) radar systems is discrete within multiples of the modulation frequency. There is a correspondance between the spectral lines and discrete distance values. Even though the classical spectral theory defines the resolution to be 1.2 it is shown that with a FMCW-radar a resolution of only 2.1 is attainable because of harmonic interferences. The prerequisite of the equipment in order to achieve this resolution is a limitation of the relative fluctuation of the slope of the transmitting frequency variation. Without any control circuit for the transmitting frequency slope, this condition can be satisfied with a programmable wave-form device if a dynamic correction of the transmitting frequency slope was determined before. It is shown that by a variation of the modulation frequency and the modulation-bandwidth simultaneously, the envelope of the pseudo-Doppler spectrum can be sampled at much more discrete, but not any longer equidistant points, resulting in an improved resolution of 1.5.

  20. High-level multifunction radar simulation for studying the performance of multisensor data fusion systems

    NASA Astrophysics Data System (ADS)

    Huizing, Albert G.; Bosse, Eloi

    1998-07-01

    This paper presents the basic requirements for a simulation of the main capabilities of a shipborne MultiFunction Radar (MFR) that can be used in conjunction with other sensor simulations in scenarios for studying Multi Sensor Data Fusion (MSDF) systems. This simulation is being used to support an ongoing joint effort (Canada - The Netherlands) in the development of MSDF testbeds. This joint effort is referred as Joint-FACET (Fusion Algorithms & Concepts Exploration Testbed), a highly modular and flexible series of applications that is capable of processing both real and synthetic input data. The question raised here is how realistic should the sensor simulations be to trust the MSDF performance assessment? A partial answer to this question is that at least, the dominant perturbing effects on sensor detection (true or false) are sufficiently represented. Following this philosophy, the MFR model, presented here, takes into account sensor's design parameters and external environmental effects such as clutter, propagation and jamming. Previous radar simulations capture most of these dominant effects. In this paper the emphasis is on an MFR scheduler which is the key element that needs to be added to the previous simulations to represent the MFR capability to search and track a large number of targets and at the same time support a large number of (semi-active) surface-to-air missiles (SAM) for the engagement of multiple hostile targets.

  1. Design and experimental validation of a robust CFAR distributed multifrequency radar data fusion system

    NASA Astrophysics Data System (ADS)

    Thomopoulos, Stelios C.; Okello, Nickens N.

    1995-07-01

    A robust constant false alarm rate (CFAR) distributed detection system that operates in heavy clutter with unknown distribution is presented. The system is designed to provide CFARness under clutter power fluctuations and robustness under unknown clutter and noise distributions. The system is also designed to operate successfully under unbalanced power distributions among sensors, and exhibits fault-tolerance in the presence of sensor power fluctuations. The test statistic at each sensor is a robust (in terms of signal-to-noise ratio distribution across sensors) CFAR t-statistic. In addition to the primary binary decisions, confidence levels are generated with each decision and used in the fusion logic to robustify the fusion performance and eliminate weaknesses of the Boolean fusion logic. The test statistic and the fusion logic are analyzed theoretically for Weibull and lognormal clutter. The theoretical performance is compared against Monte-Carlo simulations that verify that the system exhibits the desired characteristics of CFARness, robustness, insensitivity to power fluctuations, and fault- tolerance. The system is tested with experimental target-in-clear and target-in-clutter data. The experimental performance agrees with the theoretically predicted behavior when the target is visible by all three radars. When the target is not visible in two out of the three radars, due to a possible undetected misalignment, the fusion performance is compromised. Robustification of the fusion performance against unpredictable and undetectable degradation of data quality in the majority of the sensors is then achieved using geometric filtering. Geometrical filtering is accomplished by using the Hough transform and additional information in the fusion design about the shape of the target trajectory(ies).

  2. Characterization of Adolescent Prescription Drug Abuse and Misuse Using the Researched Abuse Diversion and Addiction-Related Surveillance (RADARS[R]) System

    ERIC Educational Resources Information Center

    Zosel, Amy; Bartelson, Becki Bucher; Bailey, Elise; Lowenstein, Steven; Dart, Rick

    2013-01-01

    Objective: To describe the characteristics and health effects of adolescent (age 13-19 years) prescription drug abuse and misuse using the Researched Abuse Diversion and Addiction-Related Surveillance (RADARS[R])) System. Method: Secondary analysis of data collected from RADARS System participating poison centers was performed. Data for all…

  3. Design considerations for high-power VHF radar transceivers: The Poker Flat MST radar phase control system

    NASA Technical Reports Server (NTRS)

    Ecklund, W. L.; Johnson, P. E.

    1983-01-01

    Sixty-four separate 50-kW peak-power transmitters are distributed throughout the 200 x 200 meter Poker Flat MST radar antenna array. The relative phase of each transmitter is automatically controlled by a 64-channel unit located in the main building at the edge of the antenna. The phase control unit is described. In operation the RF pulse from a transmitter coupler is power divided and compared with the phase reference in a mixer. The mixer output is low-pass filtered and sampled near the center of the resulting video pulse by an amplifying sample-and-hold integrated circuit. Phase control is effected by maintaining the mixer output pulse near zero volts by amplifying the sample-and-hold output which then drives the voltage-controlled phase shifter in the direction to null the mixer output. The voltage-controlled shifter achieves over 360 deg phase shift in the range from 0.7 to 24 volts. When the voltage into the shifter tracks to either voltage limit the wrap-around control resets the voltage so that the shifter is always operating within its control range.

  4. The NASA Dual-Frequency Dual-Polarized Doppler Radar (D3R) System for Gpm Ground Validation

    NASA Astrophysics Data System (ADS)

    Chandra, C. V.; Schwaller, M.; Vega, M.; Misra, K. V.; Carswell, J.; Nguyen, C.; Petersen, W. A.

    2010-12-01

    The successful introduction of single-frequency (Ku-Band: 13.8 GHz) weather radar onboard the Tropical Rain Measuring Mission (TRMM) satellite in 1997 facilitated improved understanding of the spatial distribution, variability, intensity of rainfall and its role in climate. However, the mission’s inherent limitations of spatiotemporal coverage and limited sensitivity to frozen precipitation hindered knowledge of the role of precipitation in climate and hydrological cycles. The Global Precipitation Measurement (GPM) mission will attempt to advance further the goal of making global scale precipitation observations by deploying the next generation of satellite-borne weather radars. The GPM satellite will carry a Ka-Ku band Dual-frequency Precipitation Radar (DPR) that can make measurements of parameters directly related to the microphysics of precipitation (such as raindrop size distribution). While the Ku-band radar is an updated version of the TRMM precipitation radar, the Ka-band radar would provide higher sensitivity which can prove useful in the measurement of snow and light rain. The Dual-Frequency Dual-Polarized Doppler Radar (D3R) is a ground validation radar, proposed as a part of the GPM Ground Validation (GV) program, to enable both physical validation support in terms of understanding the microphysical description of the observations as well as algorithm retrieval implications. This paper provides a scientific and technical overview of the D3R system as well as major challenges. Following the success of TRMM, the GPM mission has embarked on a dual-frequency approach at Ku- and Ka-band for characterizing precipitation. While extensive ground radar observations of precipitation are available at S- and C- band, such measurements do not exist at Ku- and Ka-band. Ground radar measurements enjoy the advantage of coincident microphysical observations available to interpret radar signatures. Another major advantage of the ground radar observations is the ability

  5. The PROUST radar

    NASA Technical Reports Server (NTRS)

    Bertin, F.; Glass, M.; Ney, R.; Petitdidier, M.

    1986-01-01

    The Stratosphere-Troposphere (ST) radar called PROUST works at 935 MHz using the same klystron and antenna as the coherent-scatter radar. The use of this equipment for ST work has required some important modifications of the transmitting system and the development of receiving, data processing and acquisition (1984,1985) equipment. The modifications are discussed.

  6. Study of the ballistocardiogram signal in life detection system based on radar.

    PubMed

    Guohua, Lu; Jianqi, Wang; Yu, Yue; Xijing, Jing

    2007-01-01

    In this article, our study of non-contact method via radar for monitoring the heart and respiratory rates of human subject is reported. The system is constructed which synchronously detects the electrocardiogram signals by the electrocardiograph and the ballistocardiogram signals by the non-contact life parameter detecting technology. Also, the detected signals are analyzed respectively in the time and frequency domain. The results show that the cycle of the ballistocardiogram is obvious in time domain and that the rhythm of the two kinds of signals keeps consistent. And their characteristic points in frequency domain are also the same. The clinical medicine usefulness of ballistocardiogram detected by the non-contact technology is approved and the credible evidence for the succeeding signal analysis and the clinical application is provided. Furthermore, the characters of the heartbeat signal detected by our system and the reasons for that are also discussed in detail in our paper.

  7. Non-invasive respiration rate estimation using ultra-wideband distributed cognitive radar system.

    PubMed

    Chen, Yifan; Gunawan, Erry; Low, Kay Soon; Kim, Yongmin; Soh, Cheong Boon; Leyman, A Rahim; Thi, Lin Lin

    2006-01-01

    It has been shown that remote monitoring of pulmonary activity can be achieved using ultra-wideband (UWB) systems, which shows promise in home healthcare, rescue, and security applications. In this paper, a geometry-based statistical channel model is developed for simulating the reception of UWB signals in the indoor propagation environment. This model enables replication of time-varying multipath profiles due to the displacement of a human chest. Subsequently, a UWB distributed cognitive radar system (UWB-DCRS) is developed for the robust detection of chest cavity motion and the accurate estimation of respiration rate. The analytical framework can serve as a basis in the planning and evaluation of future measurement programs.

  8. Road safety alerting system with radar and GPS cooperation in a VANET environment

    NASA Astrophysics Data System (ADS)

    Santamaria, Amilcare Francesco; Sottile, Cesare; De Rango, Floriano; Voznak, Miroslav

    2014-05-01

    New applications in wireless environments are increasing and keeping even more interests from the developer companies and researchers. In particular, in these last few years the government and institutional organization for road safety spent a lot of resources and money to promote Vehicular Ad-Hoc Network (VANET) technology, also car manufactures are giving a lot of contributions on this field as well. In our paper, we propose an innovative system to increase road safety, matching the requests of the market allowing a cooperation between on-board devices. The vehicles are equipped with On Board Unit (OBU) and On Board Radar Unit (OBRU), which can spread alerting messages around the network regarding warning and dangerous situations exploiting IEEE802.llp standard. Vehicles move along roads observing the environment, traffic and road conditions, and vehicles parameters as well. These information can be elaborated and shared between neighbors, Road Side Unit (RSU)s and, of course, with Internet, allowing inter-system communications exploiting an Road Traffic Manager (RTM). Radar systems task it the detection of the environment in order to increase the knowledge of current conditions of the roads, for example it is important to identify obstacles, road accidents, dangerous situations and so on. Once detected exploiting onboard devices, such as Global Position System (GPS) receiver it is possible to know the exact location of the caught event and after a data elaboration the information is spread along the network. Once the drivers are advised, they can make some precautionary actions such as reduction of traveling speed or modification of current road path. In this work the routing algorithms, which have the main goal to rapidly disseminate information, are also been investigated.

  9. SEASAT Synthetic Aperture Radar Data

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.

    1981-01-01

    The potential of radar imagery from space altitudes is discussed and the advantages of radar over passive sensor systems are outlined. Specific reference is made to the SEASAT synthetic aperture radar. Possible applications include oil spill monitoring, snow and ice reconnaissance, mineral exploration, and monitoring phenomena in the urban environment.

  10. Modeling the Response of a Monopulse Radar to Impulsive Jamming Signals Using the Block Oriented System Simulator (BOSS)

    DTIC Science & Technology

    1989-09-01

    Imbalance 3-22 ETEST > >> TABULAR PLOT SYSTE VI ITERATION AG $ I Baseline OBASELINE > Calibration > _ SSEM Constant Figure 3.13. AGC-Type System Model for...is needed so that the monopulse oullill is dependent upon the angle of the target. not on the target’s r; age or radar cr(,> - section [11:153]. The...RCVR DETECTO Figure 2.6. Block Diagram of Monopulse Processor using AGC [11:1731 are two common types of AG (’ discussed in radar literature

  11. Development of radar-based system for monitoring of frail home-dwelling persons: A healthcare perspective

    NASA Astrophysics Data System (ADS)

    Sudmann, Tobba T.; Børsheim, Ingebjørg T.; Øvsthus, Knut; Ciamulski, Tomasz; Miękina, Andrzej; Wagner, Jakub; Mazurek, Paweł; Jacobsen, Frode F.

    2016-11-01

    This interdisciplinary project aims to develop and assess the functional potential of radar technology in the care services. The project mainly has an exploratory character where the technological and functional potential of impulse-radar sensor are tested out in monitoring of elderly and disabled people living in their own home. Designing a non-invasive system for monitoring of movements of frail persons living at home is the main goal, with the intent of assessing health and functional status through monitoring of activities of daily life (ADL) and detecting potentially dangerous situations, not the least related to a long lie following falls.

  12. Selected algorithms for measurement data processing in impulse-radar-based system for monitoring of human movements

    NASA Astrophysics Data System (ADS)

    Miękina, Andrzej; Wagner, Jakub; Mazurek, Paweł; Morawski, Roman Z.

    2016-11-01

    The importance of research on new technologies that could be employed in care services for elderly and disabled persons is highlighted. Advantages of impulse-radar sensors, when applied for non-intrusive monitoring of such persons in their home environment, are indicated. Selected algorithms for the measurement data preprocessing - viz. the algorithms for clutter suppression and echo parameter estimation, as well as for estimation of the twodimensional position of a monitored person - are proposed. The capability of an impulse-radar- based system to provide some application-specific parameters, viz. the parameters characterising the patient's health condition, is also demonstrated.

  13. Wave parameters comparisons between High Frequency (HF) radar system and an in situ buoy: a case study

    NASA Astrophysics Data System (ADS)

    Fernandes, Maria; Alonso-Martirena, Andrés; Agostinho, Pedro; Sanchez, Jorge; Ferrer, Macu; Fernandes, Carlos

    2015-04-01

    The coastal zone is an important area for the development of maritime countries, either in terms of recreation, energy exploitation, weather forecasting or national security. Field measurements are in the basis of understanding how coastal and oceanic processes occur. Most processes occur over long timescales and over large spatial ranges, like the variation of mean sea level. These processes also involve a variety of factors such as waves, winds, tides, storm surges, currents, etc., that cause huge interference on such phenomena. Measurement of waves have been carried out using different techniques. The instruments used to measure wave parameters can be very different, i.e. buoys, ship base equipment like sonar and satellites. Each equipment has its own advantage and disadvantage depending on the study subject. The purpose of this study is to evaluate the behaviour of a different technology available and presently adopted in wave measurement. In the past few years the measurement of waves using High Frequency (HF) Radars has had several developments. Such a method is already established as a powerful tool for measuring the pattern of surface current, but its use in wave measurements, especially in the dual arrangement is recent. Measurement of the backscatter of HF radar wave provides the raw dataset which is analyzed to give directional data of surface elevation at each range cell. Buoys and radars have advantages, disadvantages and its accuracy is discussed in this presentation. A major advantage with HF radar systems is that they are unaffected by weather, clouds or changing ocean conditions. The HF radar system is a very useful tool for the measurement of waves over a wide area with real-time observation, but it still lacks a method to check its accuracy. The primary goal of this study was to show how the HF radar system responds to high energetic variations when compared to wave buoy data. The bulk wave parameters used (significant wave height, period and

  14. Volumetric analysis of a New England barrier system using ground-penetrating-radar and coring techniques

    USGS Publications Warehouse

    Van Heteren, S.; FitzGerald, D.M.; Barber, D.C.; Kelley, J.T.; Belknap, D.F.

    1996-01-01

    Ground-penetrating-radar (GPR) profiles calibrated with core data allow accurate assessments of coastal barrier volumes. We applied this procedure successfully to the barrier system along Saco Bay, Maine (USA), as part of a sediment-budget study that focused on present-day sand volumes in various coastal, shoreface, and inner-shelf lith-osomes, and on sand fluxes that have affected the volume or distribution of sand in these sediment bodies through time. On GPR profiles, the components of the barrier lithosome are readily differentiated from other facies, except where the radar signal is attenuated by brackish or salty groundwater. Significant differences between dielectric properties of the barrier lithosome and other units commonly result in strong boundary reflectors. The mostly sandy barrier sediments allow deep penetration of GPR waves, in contrast to finer-grained strata and till-covered bedrock. Within the Saco Bay barrier system, 22 ??3 x 106 m3 of sediment are unevenly distributed. Two-thirds of the total barrier volume is contained within the northern and southern ends of the study area, in the Pine Point spit and the Ferry Beach/Goosefare complex, respectively. The central area around Old Orchard Beach is locally covered by only a thin veneer of barrier sand, averaging <3 m, that unconformably overlies shallow pre-Holocene facies. The prominence of barrier-spit facies and the distribution pattern of back-barrier sediments indicate that a high degree of segmentation, governed by antecedent topography, has affected the development of the Saco Bay barrier system. The present-day configuration of the barrier and back-barrier region along Saco Bay, however, conceals much of its early compartmentalized character.

  15. Micropower impulse radar imaging

    SciTech Connect

    Hall, M.S.

    1995-11-01

    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  16. Advantages to Geoscience and Disaster Response from QuakeSim Implementation of Interferometric Radar Maps in a GIS Database System

    NASA Astrophysics Data System (ADS)

    Parker, Jay; Donnellan, Andrea; Glasscoe, Margaret; Fox, Geoffrey; Wang, Jun; Pierce, Marlon; Ma, Yu

    2015-08-01

    High-resolution maps of earth surface deformation are available in public archives for scientific interpretation, but are primarily available as bulky downloads on the internet. The NASA uninhabited aerial vehicle synthetic aperture radar (UAVSAR) archive of airborne radar interferograms delivers very high resolution images (approximately seven meter pixels) making remote handling of the files that much more pressing. Data exploration requiring data selection and exploratory analysis has been tedious. QuakeSim has implemented an archive of UAVSAR data in a web service and browser system based on GeoServer (http://geoserver.org). This supports a variety of services that supply consistent maps, raster image data and geographic information systems (GIS) objects including standard earthquake faults. Browsing the database is supported by initially displaying GIS-referenced thumbnail images of the radar displacement maps. Access is also provided to image metadata and links for full file downloads. One of the most widely used features is the QuakeSim line-of-sight profile tool, which calculates the radar-observed displacement (from an unwrapped interferogram product) along a line specified through a web browser. Displacement values along a profile are updated to a plot on the screen as the user interactively redefines the endpoints of the line and the sampling density. The profile and also a plot of the ground height are available as CSV (text) files for further examination, without any need to download the full radar file. Additional tools allow the user to select a polygon overlapping the radar displacement image, specify a downsampling rate and extract a modest sized grid of observations for display or for inversion, for example, the QuakeSim simplex inversion tool which estimates a consistent fault geometry and slip model.

  17. Temporal and structural evolution of a tropical monsoon cloud system: A case study using X-band radar observations

    NASA Astrophysics Data System (ADS)

    Kumar Das, Subrata; Deshpande, Sachin M.; Shankar Das, Siddarth; Konwar, Mahen; Chakravarty, Kaustav; Kalapureddy, Madhu Chandra Reddy

    2015-10-01

    A mobile X-band (~9.535 GHz) dual-polarization Doppler weather radar system was operated at a tropical site Pune (18.5386°N, 73.8089°E, 582 m AMSL) by the Indian Institute of Tropical Meteorology, Pune, India for observing monsoon clouds. The measurement site was on the leeward (eastern) side of the Western Ghats (WG). This study focuses on the horizontal and vertical structure of monsoon precipitating clouds and its temporal evolution as observed by the X-band radar on August 27, 2011. The radar reflectivity factor (Z, dBZ) is used as a proxy for measure of intensity of cloud system. Result shows that the radar reflectivity has a strong temporal variation in the vertical, with a local peak occurring in the afternoon hours. Relatively shallow structure during the late night and early morning hours is noticed. The observed cloud tops were reached up to 8 km heights with reflectivity maxima of about 35 dBZ at ∼5 km. The spatial and vertical evolution of radar reflectivity is consistent with the large-scale monsoon circulation. The variations in the outgoing longwave radiation (OLR) from the Kalpana-1 satellite and vertical velocity and cloud-mixing ratio from the Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis data are also analyzed. As direct observations of clouds using radars are sparse over the Indian region, the results presented here would be useful to understand the processes related to cloud and precipitation formation in the tropical environment.

  18. Radar principles

    NASA Technical Reports Server (NTRS)

    Sato, Toru

    1989-01-01

    Discussed here is a kind of radar called atmospheric radar, which has as its target clear air echoes from the earth's atmosphere produced by fluctuations of the atmospheric index of refraction. Topics reviewed include the vertical structure of the atmosphere, the radio refractive index and its fluctuations, the radar equation (a relation between transmitted and received power), radar equations for distributed targets and spectral echoes, near field correction, pulsed waveforms, the Doppler principle, and velocity field measurements.

  19. 14 CFR Appendix G to Part 121 - Doppler Radar and Inertial Navigation System (INS): Request for Evaluation; Equipment and...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Doppler Radar and Inertial Navigation... Accuracy and Reliability; Evaluation Program G Appendix G to Part 121 Aeronautics and Space FEDERAL... of experience with the system showing to the satisfaction of the Administrator a history of...

  20. 14 CFR Appendix G to Part 121 - Doppler Radar and Inertial Navigation System (INS): Request for Evaluation; Equipment and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Doppler Radar and Inertial Navigation... Accuracy and Reliability; Evaluation Program G Appendix G to Part 121 Aeronautics and Space FEDERAL... of experience with the system showing to the satisfaction of the Administrator a history of...

  1. 14 CFR Appendix G to Part 121 - Doppler Radar and Inertial Navigation System (INS): Request for Evaluation; Equipment and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Doppler Radar and Inertial Navigation... Accuracy and Reliability; Evaluation Program G Appendix G to Part 121 Aeronautics and Space FEDERAL... of experience with the system showing to the satisfaction of the Administrator a history of...

  2. 14 CFR Appendix G to Part 121 - Doppler Radar and Inertial Navigation System (INS): Request for Evaluation; Equipment and...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Doppler Radar and Inertial Navigation... Accuracy and Reliability; Evaluation Program G Appendix G to Part 121 Aeronautics and Space FEDERAL... of experience with the system showing to the satisfaction of the Administrator a history of...

  3. 14 CFR Appendix G to Part 121 - Doppler Radar and Inertial Navigation System (INS): Request for Evaluation; Equipment and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Doppler Radar and Inertial Navigation... Accuracy and Reliability; Evaluation Program G Appendix G to Part 121 Aeronautics and Space FEDERAL... of experience with the system showing to the satisfaction of the Administrator a history of...

  4. A Study of the Use of Meteorological Satellite, Weather Radar, and Integrated Graphics Products in the Flight Service Station System.

    DTIC Science & Technology

    1980-04-01

    watershed hydrological estimates, tops maps, and a vertically integrated liquid water content (VIL) map. System movement vectors are computed, and a flash ... flood monitor is maintained. The maps produced are not exact images of the picture seen on the radar CRT, but rather are processed data presented on

  5. Observation of thunderstorms by multilevel electric field measurement system and radar

    NASA Astrophysics Data System (ADS)

    Soula, S.; Sauvageot, H.; Saissac, M. P.; Chauzy, S.

    1995-03-01

    During the summer of 1992, an experiment was conducted in southwestern France, close to the Pyrenees, at the Centre de Recherches Atmospheriques (CRA) in order to study the evolution of the electric field measured at several levels below thunderclouds. We used a field mill flush to the ground and four field sensors, suspended from an insulated cable and distributed between 0 and 48 m. These altitude sensors separately measure the ambient electric field and the field created by the sensor itself. The Rabelais millimetric radar provides reflectivities and Doppler velocities of cloud and rain systems. Meteorological data like wind velocity, humidity, temperature, and rainfall rate are recorded at the site. Two storm intervals are studied, one on July 30 and one on August 6. Both examples give an idea on how the electric field signature during the development or advection of a convective cloud can be different at the ground and at altitudes of a few tens of meters.

  6. Ground penetrating detection using miniaturized radar system based on solid state microwave sensor.

    PubMed

    Yao, B M; Fu, L; Chen, X S; Lu, W; Guo, H; Gui, Y S; Hu, C-M

    2013-12-01

    We propose a solid-state-sensor-based miniaturized microwave radar technique, which allows a rapid microwave phase detection for continuous wave operation using a lock-in amplifier rather than using expensive and complicated instruments such as vector network analyzers. To demonstrate the capability of this sensor-based imaging technique, the miniaturized system has been used to detect embedded targets in sand by measuring the reflection for broadband microwaves. Using the reconstruction algorithm, the imaging of the embedded target with a diameter less than 5 cm buried in the sands with a depth of 5 cm or greater is clearly detected. Therefore, the sensor-based approach emerges as an innovative and cost-effective way for ground penetrating detection.

  7. Microwave effects on the central nervous system--a study of radar mechanics

    SciTech Connect

    Nilsson, R.; Hamnerius, Y.; Mild, K.H.; Hansson, H.A.; Hjelmqvist, E.; Olanders, S.; Persson, L.I.

    1989-05-01

    Seventeen radar mechanics and engineers and 12 unexposed referents were examined, using extensive neurological, psychometric and neuropsychiatric techniques to determine whether there were any indications of central nervous system effects of microwave exposure. Pathological neurological findings were not more common in the exposed group than among the referents. In addition, the psychometric tests and the psychiatric rating scales did not reveal any statistically significant adverse effects of microwave exposure. The frequency of the occurrence of an increased protein band with an isoelectric point of 4.5 in the cerebrospinal fluid was higher among the men exposed to microwaves than among the referents. The nature and clinical significance of this or these proteins are still unclear. The time derivative of the magnetic flux density close to some of the transmitter units was surprisingly high (up to 350 T s-1).

  8. A new approach to importance sampling for the simulation of false alarms. [in radar systems

    NASA Technical Reports Server (NTRS)

    Lu, D.; Yao, K.

    1987-01-01

    In this paper a modified importance sampling technique for improving the convergence of Importance Sampling is given. By using this approach to estimate low false alarm rates in radar simulations, the number of Monte Carlo runs can be reduced significantly. For one-dimensional exponential, Weibull, and Rayleigh distributions, a uniformly minimum variance unbiased estimator is obtained. For Gaussian distribution the estimator in this approach is uniformly better than that of previously known Importance Sampling approach. For a cell averaging system, by combining this technique and group sampling, the reduction of Monte Carlo runs for a reference cell of 20 and false alarm rate of lE-6 is on the order of 170 as compared to the previously known Importance Sampling approach.

  9. Performance metric development for a group state estimator in airborne UHF GMTI applications

    NASA Astrophysics Data System (ADS)

    Elwell, Ryan A.

    2013-05-01

    This paper describes the development and implementation of evaluation metrics for group state estimator (GSE, i.e. group tracking) algorithms. Key differences between group tracker metrics and individual tracker metrics are the method used for track-to-truth association and the characterization of group raid size. Another significant contribution of this work is the incorporation of measured radar performance in assessing tracker performance. The result of this work is a set of measures of performance derived from canonical individual target tracker metrics, extended to characterize the additional information provided by a group tracker. The paper discusses additional considerations in group tracker evaluation, including the definition of a group and group-to-group confusion. Metrics are computed on real field data to provide examples of real-world analysis, demonstrating an approach which provides characterization of group tracker performance, independent of the sensor's performance.

  10. Spaceborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  11. Radar, Insect Population Ecology, and Pest Management

    NASA Technical Reports Server (NTRS)

    Vaughn, C. R. (Editor); Wolf, W. (Editor); Klassen, W. (Editor)

    1979-01-01

    Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives.

  12. High Power mm-Wave Transmitter System for Radar or Telecommunications

    NASA Technical Reports Server (NTRS)

    Stride, S. L.; McMaster, R. L.; Pogorzelski, R. J.

    2003-01-01

    Future NASA deep space missions able to provide tens of kilo-watts of spacecraft DC power, make it feasible to employ high power RF telecommunications systems. Traditional flight systems (e.g., Cassini), constrained by limited DC power, used a single high-gain 4m Cassegrain reflector fed by a single lower power (20W) transmitter. Increased available DC power means that high power (1000 W) transmitters can be used. Rather than continue building traditional single-transmitter systems it now becomes feasible to engineer and build multi-element active arrays that can illuminate a dish. Illuminating a 2m dish with a spherical wavefront from an offset 1kW active array can provide sufficient ERP (Effective Radiated Power) when compared to a larger Cassegrain dish. Such a system has the advantage of lower mass, lower volume, improved reliability, less stringent pointing requirements, lower cost and risk. We propose to design and build a prototype Ka-band transmit antenna with an active sub-array using 125W TWTAs. The system could be applied to a telecommunications downlink or radar transmitter used for missions such as JIMO.

  13. MIMO Radar System for Respiratory Monitoring Using Tx and Rx Modulation with M-Sequence Codes

    NASA Astrophysics Data System (ADS)

    Miwa, Takashi; Ogiwara, Shun; Yamakoshi, Yoshiki

    The importance of respiratory monitoring systems during sleep have increased due to early diagnosis of sleep apnea syndrome (SAS) in the home. This paper presents a simple respiratory monitoring system suitable for home use having 3D ranging of targets. The range resolution and azimuth resolution are obtained by a stepped frequency transmitting signal and MIMO arrays with preferred pair M-sequence codes doubly modulating in transmission and reception, respectively. Due to the use of these codes, Gold sequence codes corresponding to all the antenna combinations are equivalently modulated in receiver. The signal to interchannel interference ratio of the reconstructed image is evaluated by numerical simulations. The results of experiments on a developed prototype 3D-MIMO radar system show that this system can extract only the motion of respiration of a human subject 2m apart from a metallic rotatable reflector. Moreover, it is found that this system can successfully measure the respiration information of sleeping human subjects for 96.6 percent of the whole measurement time except for instances of large posture change.

  14. Radar applications overview

    NASA Astrophysics Data System (ADS)

    Greenspan, Marshall

    1996-06-01

    During the fifty years since its initial development as a means of providing early warning of airborne attacks against allied countries during World War II, radar systems have developed to the point of being highly mobile and versatile systems capable of supporting a wide variety of remote sensing applications. Instead of being tied to stationary land-based sites, radar systems have found their way into highly mobile land vehicles as well as into aircraft, missiles, and ships of all sizes. Of all these applications, however, the most exciting revolution has occurred in the airborne platform arena where advanced technology radars can be found in all shapes and sizes...ranging from the large AWACS and Joint STARS long range surveillance and targeting systems to small millimeter wave multi-spectral sensors on smart weapons that can detect and identify their targets through the use of highly sophisticated digital signal processing hardware and software. This paper presents an overview of these radar applications with the emphasis on modern airborne sensors that span the RF spectrum. It will identify and describe the factors that influence the parameters of low frequency and ultra wide band radars designed to penetrate ground and dense foliage environments and locate within them buried mines, enemy armor, and other concealed or camouflaged weapons of war. It will similarly examine the factors that lead to the development of airborne radar systems that support long range extended endurance airborne surveillance platforms designed to detect and precision-located both small high speed airborne threats as well as highly mobile time critical moving and stationary surface vehicles. The mission needs and associated radar design impacts will be contrasted with those of radar systems designed for high maneuverability rapid acquisition tactical strike warfare platforms, and shorter range cued air-to-surface weapons with integral smart radar sensors.

  15. The Utility and Validity of Kinematic GPS Positioning for the Geosar Airborne Terrain Mapping Radar System

    NASA Technical Reports Server (NTRS)

    Freedman, Adam; Hensley, Scott; Chapin, Elaine; Kroger, Peter; Hussain, Mushtaq; Allred, Bruce

    1999-01-01

    GeoSAR is an airborne, interferometric Synthetic Aperture Radar (IFSAR) system for terrain mapping, currently under development by a consortium including NASA's Jet Propulsion Laboratory (JPL), Calgis, Inc., a California mapping sciences company, and the California Department of Conservation (CaIDOC), with funding provided by the U.S. Army Corps of Engineers Topographic Engineering Center (TEC) and the U.S. Defense Advanced Research Projects Agency (DARPA). IFSAR data processing requires high-accuracy platform position and attitude knowledge. On 9 GeoSAR, these are provided by one or two Honeywell Embedded GPS Inertial Navigation Units (EGI) and an Ashtech Z12 GPS receiver. The EGIs provide real-time high-accuracy attitude and moderate-accuracy position data, while the Ashtech data, post-processed differentially with data from a nearby ground station using Ashtech PNAV software, provide high-accuracy differential GPS positions. These data are optimally combined using a Kalman filter within the GeoSAR motion measurement software, and the resultant position and orientation information are used to process the dual frequency (X-band and P-band) radar data to generate high-accuracy, high -resolution terrain imagery and digital elevation models (DEMs). GeoSAR requirements specify sub-meter level planimetric and vertical accuracies for the resultant DEMS. To achieve this, platform positioning errors well below one meter are needed. The goal of GeoSAR is to obtain 25 cm or better 3-D positions from the GPS systems on board the aircraft. By imaging a set of known point target corner-cube reflectors, the GeoSAR system can be calibrated. This calibration process yields the true position of the aircraft with an uncertainty of 20- 50 cm. This process thus allows an independent assessment of the accuracy of our GPS-based positioning systems. We will present an overview of the GeoSAR motion measurement system, focusing on the use of GPS and the blending of position data from the

  16. The KUT meteor radar: An educational low cost meteor observation system by radio forward scattering

    NASA Astrophysics Data System (ADS)

    Madkour, W.; Yamamoto, M.

    2016-01-01

    The Kochi University of Technology (KUT) meteor radar is an educational low cost observation system built at Kochi, Japan by successive graduate students since 2004. The system takes advantage of the continuous VHF- band beacon signal emitted from Fukui National College of Technology (FNCT) for scientific usage all over Japan by receiving the forward scattered signals. The system uses the classical forward scattering setup similar to the setup described by the international meteor organization (IMO), gradually developed from the most basic single antenna setup to the multi-site meteor path determination setup. The primary objective is to automate the observation of the meteor parameters continuously to provide amounts of data sufficient for statistical analysis. The developed software system automates the observation of the astronomical meteor parameters such as meteor direction, velocity and trajectory. Also, automated counting of meteor echoes and their durations are used to observe mesospheric ozone concentration by analyzing the duration distribution of different meteor showers. The meteor parameters observed and the methodology used for each are briefly summarized.

  17. Equatorial MU Radar project

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Hashiguchi, H.; Tsuda, Toshitaka; Yamamoto, Masayuki

    Research Institute for Sustainable Humanosphere, Kyoto University (RISH) has been studying the atmosphere by using radars. The first big facility was the MU (Middle and Upper atmosphere) radar installed in Shiga, Japan in 1984. This is one of the most powerful and multi-functional radar, and is successful of revealing importance of atmospheric waves for the dynamical vertical coupling processes. The next big radar was the Equatorial Atmosphere Radar (EAR) installed at Kototabang, West Sumatra, Indonesia in 2001. The EAR was operated under close collaboration with LAPAN (Indonesia National Institute for Aeronautics and Space), and conducted the long-term continuous observations of the equatorial atmosphere/ionosphere for more than 10 years. The MU radar and the EAR are both utilized for inter-university and international collaborative research program for long time. National Institute for Polar Research (NIPR) joined EISCAT Scientific Association together with Nagoya University, and developed the PANSY radar at Syowa base in Antarctica as a joint project with University of Tokyo. These are the efforts of radar study of the atmosphere/ionosphere in the polar region. Now we can find that Japan holds a global network of big atmospheric/ionospheric radars. The EAR has the limitation of lower sensitivity compared with the other big radars shown above. RISH now proposes a plan of Equatorial MU Radar (EMU) that is to establish the MU-radar class radar next to the EAR. The EMU will have an active phased array antenna with the 163m diameter and 1055 cross-element Yagis. Total output power of the EMU will be more than 500kW. The EMU can detect turbulent echoes from the mesosphere (60-80km). In the ionosphere incoherent-scatter observations of plasma density, drift, and temperature would be possible. Multi-channel receivers will realize radar-imaging observations. The EMU is one of the key facilities in the project "Study of coupling processes in the solar-terrestrial system

  18. Evaluating and managing Cold War era historic properties : the cultural significance of U.S. Air Force defensive radar systems.

    SciTech Connect

    Whorton, M.

    1999-01-20

    Aircraft and later missile radar early warning stations played an important role in the Cold War. They are associated with important technological, social, political, and military themes of the Cold War and are worthy of preservation. The scope and scale of these systems make physical preservation impractical, but the U.S. Air Force program of historical evaluation and documentation of these systems will provide valuable information to future generations studying this historic period.

  19. Development of a noncontact and long-term respiration monitoring system using microwave radar for hibernating black bear.

    PubMed

    Suzuki, Satoshi; Matsui, Takemi; Kawahara, Hiroshi; Gotoh, Shinji

    2009-05-01

    The aim of this study is to develop a prototype system for noncontact, noninvasive and unconstrained vital sign monitoring using microwave radar and to use the system to measure the respiratory rate of a Japanese black bear (Ursus thibetanus japonicus) during hibernation for ensuring the bear's safety. Ueno Zoological Gardens in Tokyo planned to help the Japanese black bear (female, approximately 2 years of age) going into hibernation. The prototype system has a microwave Doppler radar antenna (10-GHz frequency, approximately 7 mW output power) for measuring motion of the body surface caused by respiratory activity without making contact with the body. Monitoring using this system was conducted from December 2006 to April 2007. As a result, from December 18, 2006, to March 17, 2007, similar behaviors reported by earlier studies were observed, such as sleeping with curled up posture and not eating, urinating or defecating. During this hibernation period and also around the time of hibernation, the prototype system continuously measured cyclic oscillations. The presence of cyclic vibrations at 8-sec intervals (about 7 bpm) was confirmed by the system before she entered hibernation on December 3, 2006. The respiratory rate gradually decreased, and during the hibernation period the respiratory rate was extremely low at approximately 2 bpm with almost no change. The results show that motion on the body surface caused by respiratory activity can be measured without touching the animal's body. Thus, the microwave radar employed here can be utilized as an aid in observing vital signs of animals.

  20. Radar frequency radiation

    NASA Astrophysics Data System (ADS)

    Malowicki, E.

    1981-11-01

    A method is presented for the determination of radar frequency radiation power densities that the PAVE PAWS radar system could produce in its air and ground environment. The effort was prompted by the concern of the people in the vicinity of OTIS AFB MA and BEALE AFB CA about the possible radar frequency radiation hazard of the PAVE PAWS radar. The method is based on the following main assumptions that: (a) the total field can be computed as the vector summation of the individual fields due to each antenna element; (b) the individual field can be calculated using distances for which the field point is in the far field of the antenna element. An RFR computer program was coded for the RADC HE 6180 digital computer and exercised to calculate the radiation levels in the air and ground space for the present baseline and the possible Six DB and 10 DB growth systems of the PAVE PAWS radar system at OTIS AFB MA. The average radiation levels due to the surveillance fence were computed for three regions: in the air space in front of the radar, at the radar hazard fence at OTIS AFB MA and at representative ground points in the OTIS AFB vicinity. It was concluded that the radar frequency radiation of PAVE PAWS does not present a hazard to personnel provided there is no entry to the air hazard zone or to the area within the hazard fence. The method developed offers a cost effective way to determine radiation levels from a phased array radar especially in the near field and transition regions.

  1. Evolving subglacial water systems in East Antarctica from airborne radar sounding

    NASA Astrophysics Data System (ADS)

    Carter, Sasha Peter

    The cold, lightless, and high pressure aquatic environment at the base of the East Antarctic Ice Sheet is of interest to a wide range of disciplines. Stable subglacial lakes and their connecting channels remain perennially liquid three kilometers below some of the coldest places on Earth. The presence of subglacial water impacts flow of the overlying ice and provides clues to the geologic properties of the bedrock below, and may harbor unique life forms which have evolved out of contact with the atmosphere for millions of years. Periodic release of water from this system may impact ocean circulation at the margins of the ice sheet. This research uses airborne radar sounding, with its unique ability to infer properties within and at the base of the ice sheet over large spatial scales, to locate and characterize this unique environment. Subglacial lakes, the primary storage mechanism for subglacial water, have been located and classified into four categories on the basis of the radar reflection properties from the sub-ice interface: Definite lakes are brighter than their surroundings by at least two decibels (relatively bright), and are both consistently reflective (specular) and have a reflection coefficient greater than -10 decibels (absolutely bright). Dim lakes are relatively bright and specular but not absolutely bright, possibly indicating non-steady dynamics in the overlying ice. Fuzzy lakes are both relatively and absolutely bright, but not specular, and may indicate saturated sediments or high frequency spatially heterogeneous distributions of sediment and liquid water (i.e. a braided steam). Indistinct lakes are absolutely bright and specular but no brighter than their surroundings. Lakes themselves and the different classes of lakes are not arranged randomly throughout Antarctica but are clustered around ice divides, ice stream onsets and prominent bedrock troughs, with each cluster demonstrating a different characteristic lake classification distribution

  2. Cross-term free based bistatic radar system using sparse least squares

    NASA Astrophysics Data System (ADS)

    Sevimli, R. Akin; Cetin, A. Enis

    2015-05-01

    Passive Bistatic Radar (PBR) systems use illuminators of opportunity, such as FM, TV, and DAB broadcasts. The most common illuminator of opportunity used in PBR systems is the FM radio stations. Single FM channel based PBR systems do not have high range resolution and may turn out to be noisy. In order to enhance the range resolution of the PBR systems algorithms using several FM channels at the same time are proposed. In standard methods, consecutive FM channels are translated to baseband as is and fed to the matched filter to compute the range-Doppler map. Multichannel FM based PBR systems have better range resolution than single channel systems. However superious sidelobe peaks occur as a side effect. In this article, we linearly predict the surveillance signal using the modulated and delayed reference signal components. We vary the modulation frequency and the delay to cover the entire range-Doppler plane. Whenever there is a target at a specific range value and Doppler value the prediction error is minimized. The cost function of the linear prediction equation has three components. The first term is the real-part of the ordinary least squares term, the second-term is the imaginary part of the least squares and the third component is the l2-norm of the prediction coefficients. Separate minimization of real and imaginary parts reduces the side lobes and decrease the noise level of the range-Doppler map. The third term enforces the sparse solution on the least squares problem. We experimentally observed that this approach is better than both the standard least squares and other sparse least squares approaches in terms of side lobes. Extensive simulation examples will be presented in the final form of the paper.

  3. Partially Adaptive Phased Array Fed Cylindrical Reflector Technique for High Performance Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Hussein, Z.; Hilland, J.

    2001-01-01

    Spaceborne microwave radar instruments demand a high-performance antenna with a large aperature to address key science themes such as climate variations and predictions and global water and energy cycles.

  4. 78 FR 19063 - Airworthiness Approval for Aircraft Forward-Looking Windshear and Turbulence Radar Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ..., Airborne Weather Radar Equipment. The objective is to leverage the installation specific guidance from the... previously addressed as additional functionality added to TSO-C63c, Airborne Weather and Ground...

  5. Development of a Climatology of Vertically Complete Wind Profiles from Doppler Radar Wind Profiler Systems

    NASA Technical Reports Server (NTRS)

    Barbre, Robert, Jr.

    2015-01-01

    Assessment of space vehicle loads and trajectories during design requires a large sample of wind profiles at the altitudes where winds affect the vehicle. Traditionally, this altitude region extends from near 8-14 km to address maximum dynamic pressure upon ascent into space, but some applications require knowledge of measured wind profiles at lower altitudes. Such applications include crew capsule pad abort and plume damage analyses. Two Doppler Radar Wind Profiler (DRWP) systems exist at the United States Air Force (USAF) Eastern Range and at the National Aeronautics and Space Administration's Kennedy Space Center. The 50-MHz DRWP provides wind profiles every 3-5 minutes from roughly 2.5-18.5 km, and five 915-MHz DRWPs provide wind profiles every 15 minutes from approximately 0.2-3.0 km. Archived wind profiles from all systems underwent rigorous quality control (QC) processes, and concurrent measurements from the QC'ed 50- and 915-MHz DRWP archives were spliced into individual profiles that extend from about 0.2-18.5 km. The archive contains combined profiles from April 2000 to December 2009, and thousands of profiles during each month are available for use by the launch vehicle community. This paper presents the details of the QC and splice methodology, as well as some attributes of the archive.

  6. In-bore chronograph--a laser radar for interior ballistics measurements, part 1: system design

    NASA Astrophysics Data System (ADS)

    Lawson, Greg; Fowler, Stuart R.; Halsey, Howard W.; Whittle, Kerry B.; Kamerman, Gary W.

    1993-10-01

    An internal research and development program at Teledyne Brown Engineering has produced a laser radar device to measure velocities of projectiles as they travel through the barrel of a gun. The technique measures velocities directly via the Doppler shift imposed on a retro- reflected laser beam. The device, called the In-Bore Chronograph (IBC), is believed to be the first coherent laser radar to be offered commercially. The IBC measures in-bore velocities from 5 to 2500 m/sec.

  7. Environmental Impact Analysis Process. Final Environmental Impact Statement. Proposed Alaskan Radar System Over-the-Horizon Backscatter Radar Program

    DTIC Science & Technology

    1987-01-30

    Nick Anderson out in District 18, North Pole area. Sorry I wasn’t able to get more information in the local media about the Backscatter system. I was...speak. Just for my planning purposes. One, two, three, alright, thank you. Sir? Mr. Anderson: Nick Anderson again out at District 18. From the...Transportation Anchorage, AK 99503 Safety Office 701 C Street Nick Lincoln Anchorage, AK 99501 Copper Center Village Council P.O. Box 154 G. R. Moberg

  8. The Requirements Process for the Army Multi-Mission Radar and the Marine Corps Multi-Role Radar System

    DTIC Science & Technology

    2006-12-14

    battery mission identify and track enemy rockets, artillery, and mortars for unit use in determining firing positions 2 and impact areas. The...Control System, including: air strikes, guided missiles and rockets, artillery and mortars , mines, chemical and biological weapons, electronic...strikes, guided missiles and rockets, and artillery and mortars . The G/ATOR program, with MRRS, will assist in countering and eliminating the threat from

  9. Radar cross-sectional study using noise radar

    NASA Astrophysics Data System (ADS)

    Freundorfer, A. P.; Siddiqui, J. Y.; Antar, Y. M. M.

    2015-05-01

    A noise radar system is proposed with capabilities to measure and acquire the radar cross-section (RCS) of targets. The proposed system can cover a noise bandwidth of near DC to 50 GHz. The noise radar RCS measurements were conducted for selective targets like spheres and carpenter squares with and without dielectric bodies for a noise band of 400MHz-5000MHz. The bandwidth of operation was limited by the multiplier and the antennae used.

  10. A Tower-based Prototype VHF/UHF Radar for Subsurface Sensing: System Description and Data Inversion Results

    NASA Technical Reports Server (NTRS)

    Moghaddam, Mahta; Pierce, Leland; Tabatabaeenejad, Alireza; Rodriguez, Ernesto

    2005-01-01

    Knowledge of subsurface characteristics such as permittivity variations and layering structure could provide a breakthrough in many terrestrial and planetary science disciplines. For Earth science, knowledge of subsurface and subcanopy soil moisture layers can enable the estimation of vertical flow in the soil column linking surface hydrologic processes with that in the subsurface. For planetary science, determining the existence of subsurface water and ice is regarded as one of the most critical information needs for the study of the origins of the solar system. The subsurface in general can be described as several near-parallel layers with rough interfaces. Each homogenous rough layer can be defined by its average thickness, permittivity, and rms interface roughness assuming a known surface spectral distribution. As the number and depth of layers increase, the number of measurements needed to invert for the layer unknowns also increases, and deeper penetration capability would be required. To nondestructively calculate the characteristics of the rough layers, a multifrequency polarimetric radar backscattering approach can be used. One such system is that we have developed for data prototyping of the Microwave Observatory of Subcanopy and Subsurface (MOSS) mission concept. A tower-mounted radar makes backscattering measurements at VHF, UHF, and L-band frequencies. The radar is a pulsed CW system, which uses the same wideband antenna to transmit and receive the signals at all three frequencies. To focus the beam at various incidence angles within the beamwidth of the antenna, the tower is moved vertically and measurements made at each position. The signals are coherently summed to achieve focusing and image formation in the subsurface. This requires an estimate of wave velocity profiles. To solve the inverse scattering problem for subsurface velocity profile simultaneously with radar focusing, we use an iterative technique based on a forward numerical solution of

  11. Radar cross-section measurements and simulation of a tethered satellite. The small expendable deployer system end-mass payload

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.; Fralick, Dion T.; Vedeler, Erik

    1995-01-01

    The first Small Expendable Deployer System (SEDS-1), a tethered satellite system, was developed by NASA and launched March 29, 1993 as a secondary payload on a United State Air Force (USAF) Delta-2 launch vehicle. The SEDS-1 successfully deployed an instrumented end-mass payload (EMP) on a 20-km nonconducting tether from the second stage of the Delta 2. This paper describes the effort of NASA Langley Research Center's Antenna and Microwave Research Branch to provide assistance to the SEDS Investigators Working Group (IWG) in determining EMP dynamics by analyzing the mission radar skin track data. The radar cross section measurements taken and simulations done for this study are described and comparisons of the measured data with the simulated data for the EMP at 6 GHz are presented.

  12. Radar cross-section measurements and simulation of a tethered satellite. The small expendable deployer system end-mass payload

    NASA Astrophysics Data System (ADS)

    Cravey, Robin L.; Fralick, Dion T.; Vedeler, Erik

    1995-02-01

    The first Small Expendable Deployer System (SEDS-1), a tethered satellite system, was developed by NASA and launched March 29, 1993 as a secondary payload on a United State Air Force (USAF) Delta-2 launch vehicle. The SEDS-1 successfully deployed an instrumented end-mass payload (EMP) on a 20-km nonconducting tether from the second stage of the Delta 2. This paper describes the effort of NASA Langley Research Center's Antenna and Microwave Research Branch to provide assistance to the SEDS Investigators Working Group (IWG) in determining EMP dynamics by analyzing the mission radar skin track data. The radar cross section measurements taken and simulations done for this study are described and comparisons of the measured data with the simulated data for the EMP at 6 GHz are presented.

  13. Technology: Photonics illuminates the future of radar

    NASA Astrophysics Data System (ADS)

    McKinney, Jason D.

    2014-03-01

    The first implementation of a fully photonics-based coherent radar system shows how photonic methods for radio-frequency signal generation and measurement may facilitate the development of software-defined radar systems. See Letter p.341

  14. Error Ellipsoid Analysis for the Diameter Measurement of Cylindroid Components Using a Laser Radar Measurement System

    PubMed Central

    Du, Zhengchun; Wu, Zhaoyong; Yang, Jianguo

    2016-01-01

    The use of three-dimensional (3D) data in the industrial measurement field is becoming increasingly popular because of the rapid development of laser scanning techniques based on the time-of-flight principle. However, the accuracy and uncertainty of these types of measurement methods are seldom investigated. In this study, a mathematical uncertainty evaluation model for the diameter measurement of standard cylindroid components has been proposed and applied to a 3D laser radar measurement system (LRMS). First, a single-point error ellipsoid analysis for the LRMS was established. An error ellipsoid model and algorithm for diameter measurement of cylindroid components was then proposed based on the single-point error ellipsoid. Finally, four experiments were conducted using the LRMS to measure the diameter of a standard cylinder in the laboratory. The experimental results of the uncertainty evaluation consistently matched well with the predictions. The proposed uncertainty evaluation model for cylindrical diameters can provide a reliable method for actual measurements and support further accuracy improvement of the LRMS. PMID:27213385

  15. Error Ellipsoid Analysis for the Diameter Measurement of Cylindroid Components Using a Laser Radar Measurement System.

    PubMed

    Du, Zhengchun; Wu, Zhaoyong; Yang, Jianguo

    2016-05-19

    The use of three-dimensional (3D) data in the industrial measurement field is becoming increasingly popular because of the rapid development of laser scanning techniques based on the time-of-flight principle. However, the accuracy and uncertainty of these types of measurement methods are seldom investigated. In this study, a mathematical uncertainty evaluation model for the diameter measurement of standard cylindroid components has been proposed and applied to a 3D laser radar measurement system (LRMS). First, a single-point error ellipsoid analysis for the LRMS was established. An error ellipsoid model and algorithm for diameter measurement of cylindroid components was then proposed based on the single-point error ellipsoid. Finally, four experiments were conducted using the LRMS to measure the diameter of a standard cylinder in the laboratory. The experimental results of the uncertainty evaluation consistently matched well with the predictions. The proposed uncertainty evaluation model for cylindrical diameters can provide a reliable method for actual measurements and support further accuracy improvement of the LRMS.

  16. Transmitter and receiver antenna gain analysis for laser radar and communication systems

    NASA Technical Reports Server (NTRS)

    Klein, B. J.; Degnan, J. J.

    1973-01-01

    A comprehensive and fairly self-contained study of centrally obscured optical transmitting and receiving antennas is presented and is intended for use by the laser radar and communication systems designer. The material is presented in a format which allows the rapid and accurate evaluation of antenna gain. The Fresnel approximation to scalar wave theory is reviewed and the antenna analysis proceeds in terms of the power gain. Conventional range equations may then be used to calculate the power budget. The transmitter calculations, resulting in near and far field antenna gain patterns, assumes the antenna is illuminated by a laser operating in the fundamental cavity mode. A simple equation is derived for matching the incident source distribution to a general antenna configuration for maximum on-axis gain. An interpretation of the resultant gain curves allows a number of auxiliary design curves to be drawn which display the losses in antenna gain due to pointing errors and the cone angle of the outgoing beam as a function of antenna size and central obscuration. The use of telescope defocusing as an approach to spreading the beam for target acquisition is compared to some alternate methods.

  17. Simulated Radar Characteristics of LBA Convective Systems: Easterly and Westerly Regimes

    NASA Technical Reports Server (NTRS)

    Lang, Stephen E.; Tao, Wei-Kuo; Simpson, Joanne

    2003-01-01

    The 3D Goddard Cumulus Ensemble (GCE) model was used to simulate convection that occurred during the TRMM LBA field experiment in Brazil. Convection in this region can be categorized into two different regimes. Low-level easterly flow results in moderate to high CAPE and a drier environment. Convection is more intense like that seen over continents. Low-level westerly flow results in low CAPE and a moist environment. Convection is weaker and more widespread characteristic of oceanic or monsoon-like systems. The GCE model has been used to study both regimes n order to provide cloud datasets that are representative of both environments in support of TRMM rainfall and heating algorithm development. Two different cases are analyzed: Jan 26, 1999, an eastely regime case, and Feb 23, 1999, a westerly regime case. The Jan 26 case is an organized squall line, while the Feb 23 case is less organized with only transient lines. Radar signatures, including CFADs, from the two simulated cases are compared to each other and with observations. The microphysical processes simulated in the model are also compared between the two cases.

  18. Non-contact screening system with two microwave radars in the diagnosis of sleep apnea-hypopnea syndrome.

    PubMed

    Kagawa, Masayuki; Ueki, Katsuhiko; Kurita, Akira; Tojima, Hirokazu; Matsui, Takemi

    2013-01-01

    There are two key problems in applying Doppler radar to a diagnosis system for sleep apnea-hypopnea syndrome. The first is noise associated with body movement and the second is the body position in bed and the change of the sleeping posture. We propose a new automatic gain control and a real-time radar-output channel selection method which is based on a spectrum shape analysis. There are three types of sleep apnea: central sleep apnea, obstructive sleep apnea and mixed sleep apnea. In this paper we paid attention to the obstructive sleep apnea and attempted to detect the disorder of corrugated shape compared with usual breathing or the paradoxical movement of the reversed phase with chest and abdominal radar signals. A prototype of the system was set up at a sleep disorder center in a hospital and field tests were carried out with eight subjects. Despite the subjects engaging in frequent body movements while sleeping, the system was quite effective in the diagnosis of sleep apnea-hypopnea syndrome (r=0.98).

  19. Simulated KWAJEX Convective Systems Using a 2D and 3D Cloud Resolving Model and Their Comparisons with Radar Observations

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Simpson, Joanne

    2003-01-01

    The 1999 Kwajalein Atoll field experiment (KWAJEX), one of several major TRMM (Tropical Rainfall Measuring Mission) field experiments, has successfully obtained a wealth of information and observation data on tropical convective systems over the western Central Pacific region. In this paper, clouds and convective systems that developed during three active periods (Aug 7-12, Aug 17-21, and Aug 29-Sep 13) around Kwajalein Atoll site are simulated using both 2D and 3D Goddard Cumulus Ensemble (GCE) models. Based on numerical results, the clouds and cloud systems are generally unorganized and short lived. These features are validated by radar observations that support the model results. Both the 2D and 3D simulated rainfall amounts and their stratiform contribution as well as the heat, water vapor, and moist static energy budgets are examined for the three convective episodes. Rainfall amounts are quantitatively similar between the two simulations, but the stratiform contribution is considerably larger in the 2D simulation. Regardless of dimension, fo all three cases, the large-scale forcing and net condensation are the two major physical processes that account for the evolution of the budgets with surface latent heat flux and net radiation solar and long-wave radiation)being secondary processes. Quantitative budget differences between 2D and 3D as well as between various episodes will be detailed.Morover, simulated radar signatures and Q1/Q2 fields from the three simulations are compared to each other and with radar and sounding observations.

  20. Validation of a microwave radar system for the monitoring of locomotor activity in mice

    PubMed Central

    Pasquali, Vittorio; Scannapieco, Eugenio; Renzi, Paolo

    2006-01-01

    Background The general or spontaneous motor activity of animals is a useful parameter in chronobiology. Modified motion detectors can be used to monitor locomotor activity rhythms. We modified a commercial microwave-based detection device and validated the device by recording circadian and ultradian rhythms. Methods Movements were detected by microwave radar based on the Doppler effect. The equipment was designed to detect and record simultaneously 12 animals in separate cages. Radars were positioned at the bottom of aluminium bulkheads. Animal cages were positioned above the bulkheads. The radars were connected to a computer through a digital I/O board. Results The apparatus was evaluated by several tests. The first test showed the ability of the apparatus to detect the exact frequency of the standard moving object. The second test demonstrated the stability over time of the sensitivity of the radars. The third was performed by simultaneous observations of video-recording of a mouse and radar signals. We found that the radars are particularly sensitive to activities that involve a displacement of the whole body, as compared to movement of only a part of the body. In the fourth test, we recorded the locomotor activity of Balb/c mice. The results were in agreement with published studies. Conclusion Radar detectors can provide automatic monitoring of an animal's locomotor activity in its home cage without perturbing the pattern of its normal behaviour or initiating the spurt of exploration occasioned by transfer to a novel environment. Recording inside breeding cages enables long-term studies with uninterrupted monitoring. The use of electromagnetic waves allows contactless detection and freedom from interference of external stimuli. PMID:16674816

  1. Characterization of Mesoscale Convective Systems by Means of Composite Radar Reflectivity Data

    NASA Technical Reports Server (NTRS)

    Geerts, Bart

    1998-01-01

    A mesoscale convective system (MCS) is broadly defined as a cloud and precipitation system of mesoscale dimensions (often too large for most aircraft to circumnavigate) with deep-convective activity concentrated in at least part of the MCS, or present during part of its evolution. A large areal fraction of MCSs is stratiform in nature, yet estimates from MCSs over the Great Plains, the Southeast, and tropical waters indicate that at least half of the precipitation is of convective origin. The presence of localized convection is important, because within convective towers cloud particles and hydrometeors are carried upward towards the cloud top. Ice crystals then move over more stratiform regions, either laterally, or through in situ settling over decaying and spreading convection. These ice crystals then grow to precipitation-size particles in mid- to upper tropospheric mesoscale updrafts. The convective portion of a MCS is often a more or less continuous line of thunderstorms, and may be either short-lived or long-lived. Geerts (1997) presents a preliminary climatology of MCSs in the southeastern USA, using just one year of composite digital radar reflectivity data. In this study MCSs are identified and characterized by means of visual inspection of animated images. A total of 398 MCSs were identified. In the warm season MCSs were found to be about twice as frequent as in the cold season. The average lifetime and maximum length of MCSs are 9 hours, and 350 km, respectively, but some MCSs are much larger and more persistent. In the summer months small and short-lived MCSs are relatively more common, whereas in winter larger and longer-lived systems occur more frequently. MCSs occur more commonly in the afternoon, in phase with thunderstorm activity, but the amplitude of the diurnal cycle is small compared to that of observed thunderstorms. It is estimated that in the Southeast more than half of all precipitation and severe weather results from MCSs.

  2. The NASA radar entomology program at Wallops Flight Center

    NASA Technical Reports Server (NTRS)

    Vaughn, C. R.

    1979-01-01

    NASA contribution to radar entomology is presented. Wallops Flight Center is described in terms of its radar systems. Radar tracking of birds and insects was recorded from helicopters for airspeed and vertical speed.

  3. Use of the X-Band Radar to Support the Detection of In-Flight Icing Hazards by the NASA Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Serke, David J.; Politovich, Marcia K.; Reehorst, Andrew L.; Gaydos, Andrew

    2009-01-01

    The Alliance Icing Research Study-II (AIRS-II) field program was conducted near Montreal, Canada during the winter of 2003. The NASA Icing Remote Detection System (NIRSS) was deployed to detect in-flight icing hazards and consisted of a vertically pointing multichannel radiometer, a ceilometer and an x-band cloud radar. The radiometer was used to derive atmospheric temperature soundings and integrated liquid water, while the ceilometer and radar were used only to define cloud boundaries. The purpose of this study is to show that the radar reflectivity profiles from AIRS-II case studies could be used to provide a qualitative icing hazard.

  4. A prototype of radar-drone system for measuring the surface flow velocity at river sites and discharge estimation

    NASA Astrophysics Data System (ADS)

    Moramarco, Tommaso; Alimenti, Federico; Zucco, Graziano; Barbetta, Silvia; Tarpanelli, Angelica; Brocca, Luca; Mezzanotte, Paolo; Rosselli, Luca; Orecchini, Giulia; Virili, Marco; Valigi, Paolo; Ciarfuglia, Thomas; Pagnottelli, Stefano

    2015-04-01

    , altimeter, camera) and artificial intelligence. Finally it has more than 0.3 kg payload that can be used for further instruments. With respect to the conventional approach, that uses radar sensors on fixed locations, the system prototype composed of drone and Doppler radar is more flexible and would allow carrying out velocity measurements obtaining the whole transverse surface velocity profile during high flow and for inaccessible river sites as well. This information represents the boundary condition of the entropy model (Moramarco et al. 2004) able to turn the surface velocity in discharge, known the geometry of the river site. Nowadays the prototype is being implemented and the Doppler radar sensor is tested in a static way, i.e. the flow velocity accuracy is determined in real-case situations by comparing the sensor output with that of conventional instruments. The first flying test is planned shortly in some river sites of Tiber River in central Italy and based on the surface velocity survey the capability of the radar-drone prototype will be tested and the benefit in discharge assessment by using the entropy model will be verified. Alimenti, F., Placentino, F., Battistini, A., Tasselli, G., Bernardini, W., Mezzanotte, P., Rascio, D., Palazzari, V., Leone, S., Scarponi, A., Porzi, N., Comez, M. and Roselli, L. (2007). "A Low-Cost 24GHz Doppler Radar Sensor for Traffic Monitoring Implemented in Standard Discrete-Component Technology". Proceedings of the 2007 European Radar Conference (EuRAD 2007), pp. 162-165, Munich, Germany, 10-12 October 2007 Chiu, C. L. (1987). "Entropy and probability concepts in hydraulics". J. Hydr. Engrg., ASCE, 113(5), 583-600. Moramarco, T., Saltalippi, C., Singh, V.P.(2004). "Estimation of mean velocity in natural channels based on Chiu's velocity distribution equation", Journal of Hydrologic Engineering, 9 (1), pp. 42-50

  5. Multispectral imaging radar

    NASA Technical Reports Server (NTRS)

    Porcello, L. J.; Rendleman, R. A.

    1972-01-01

    A side-looking radar, installed in a C-46 aircraft, was modified to provide it with an initial multispectral imaging capability. The radar is capable of radiating at either of two wavelengths, these being approximately 3 cm and 30 cm, with either horizontal or vertical polarization on each wavelength. Both the horizontally- and vertically-polarized components of the reflected signal can be observed for each wavelength/polarization transmitter configuration. At present, two-wavelength observation of a terrain region can be accomplished within the same day, but not with truly simultaneous observation on both wavelengths. A multiplex circuit to permit this simultaneous observation has been designed. A brief description of the modified radar system and its operating parameters is presented. Emphasis is then placed on initial flight test data and preliminary interpretation. Some considerations pertinent to the calibration of such radars are presented in passing.

  6. Case study of Mesoscale Convective Systems over Hungary on 29 June 2006 with satellite, radar and lightning data

    NASA Astrophysics Data System (ADS)

    Putsay, Mária; Szenyán, Ildikó; Simon, André

    On 29 June 2006 two Mesoscale Convective Systems (MCS) crossed Hungary causing severe weather, heavy precipitation, hail and strong wind. The first MCS transformed to a Mesoscale Convective Vortex (MCV) in its dissipating phase. The case was analyzed using different remote sensing devices: satellites, radars and a lightning detection system. Visible images from the METEOSAT-8 satellite were used to discriminate thin and thick parts of the anvil and to identify the overshooting tops. Structures like cold rings and cold-U/V shapes detected from infrared imagery indicate possible penetration of the storm top into the tropopause or lower stratosphere. The near and medium infrared solar channels (and some thermal IR channel differences) provide information on cloud top microphysics. The spatial distribution of the cloud top ice crystal size was investigated with the use of the so called "convective storms" composite imagery obtained from brightness temperature and reflectivity differences of water vapor, infrared and short-wave channels. The MODIS band 1 (0.645 µm) image of the TERRA satellite shows gravity wave generation at the top of the thunderstorm cloud, which could be connected to the strength and pulsations of the updraft. Satellite images were overlaid with radar reflectivities, which are characterized by an asymmetric bow echo. It is concluded that composites of satellite, radar and lightning data help to assess relative locations of main up- and downdrafts and important features of the severe storm.

  7. Development of a passive VHF radar system using software-defined radio for equatorial plasma instability studies

    NASA Astrophysics Data System (ADS)

    Tuysuz, B.; Urbina, J.; Lind, F. D.

    2013-07-01

    In this paper, a bistatic passive radar receiver system named "Coherent-scatter Atmospheric Passive Radar Imager (CAPRI)" is described. It is primarily designed to study the dynamics of the upper atmosphere by utilizing "transmitters of opportunity" as the RF target illuminators. CAPRI is constructed using the open source software-defined radio toolkit, GNU Radio, to meet the signal processing requirements in combination with the open source hardware, Universal Software Radio Peripheral 2, for data acquisition. The resultant system is highly flexible, and we present the details of the design as well as a performance analysis. CAPRI will be deployed in Peru, near the magnetic equator, for long-term operations in the area. FM stations near Lima, Peru, will be utilized with the targets of interest being the equatorial electrojet and the spread F. The results will then be compared to the Jicamarca Unattended Long-term investigations of the Ionosphere and Atmosphere (JULIA) radar data, and CAPRI will be used to improve the simultaneous time and spatial coverage in the region in a more cost-effective manner.

  8. 51. View of upper radar scanner switch in radar scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View of upper radar scanner switch in radar scanner building 105 from upper catwalk level showing emanating waveguides from upper switch (upper one-fourth of photograph) and emanating waveguides from lower radar scanner switch in vertical runs. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  9. Reconfigurable L-Band Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  10. Global mapping strategies for a synthetic aperture radar system in orbit about Venus

    NASA Technical Reports Server (NTRS)

    Kerridge, S. J.

    1980-01-01

    An analysis of the global mapping of Venus using a synthetic aperture radar (SAR) is presented. The geometry of the side-looking radar, the narrow swath width, and the slow rotation of Venus combine to constrain the methods required to produce such a map within the primary mapping mission of 121.5 days. Parametric studies indicate that multiple strategies can satisfy the requirements of the mission with reasonable assumptions for the total recording capacity, the downlink data rate, and the operating time of the SAR on each revolution.

  11. Compact programmable ground-penetrating radar system for roadway and bridge deck characterization

    NASA Astrophysics Data System (ADS)

    Busuioc, Dan; Xia, Tian; Venkatachalam, Anbu; Huston, Dryver; Birken, Ralf; Wang, Ming

    2011-04-01

    A compact, high-performance, programmable Ground Penetrating Radar (GPR) system is described based on an impulse generator transmitter, a full waveform sampling single shot receiver, and high directivity antennas. The digital programmable pulse generator is developed for the transmitter circuit and both the pulse width and pulse shape are tunable to adjust for different modes of operation. It utilizes a step-recovery diode (SRD) and short-circuited microstrip lines to produce sub-nanosecond wide ultra-wideband (UWB) pulses. Sharp step signals are generated by periodic clock signals that are connected to the SRD's input node. Up to four variable width pulses (0.8, 1.0, 1.5, and 2.1 ns) are generated through a number of PIN switches controlling the selection of different microstrip lengths. A schottky diode is used as a rectifier at the output of the SRD in order to pass only the positive part of the Gaussian pulses while another group of short-circuit microstrips are used to generate amplitude-reversed Gaussian pulses. The addition of the two pulses results in a Gaussian monocycle pulse which is more energy efficient for emission. The pulse generator is connected to a number of UWB antennas. Primarily, a UWB Vivaldi antenna (500 MHz to 5 GHz) is used, but a number of other high-performance GPR-oriented antennas are investigated as well. All have linear phase characteristic, constant phase center, constant polarization and flat gain. A number of methods including resistive loading are used to decrease any resonances due to the antenna structure and unwanted reflections from the ground. The antennas exhibit good gain characteristics in the design bandwidth.

  12. Mapping sea ice using reflected GNSS signals in a bistatic radar system

    NASA Astrophysics Data System (ADS)

    Chew, Clara; Zuffada, Cinzia; Shah, Rashmi; Mannucci, Anthony

    2016-04-01

    Global Navigation Satellite System (GNSS) signals can be used as a kind of bistatic radar, with receivers opportunistically recording ground-reflected signals transmitted by the GNSS satellites themselves. This technique, GNSS-Reflectometry (GNSS-R), has primarily been explored using receivers flown on aircraft or balloons, or in modeling studies. Last year's launch of the TechDemoSat-1 (TDS-1) satellite represents an enormous opportunity to investigate the potential of using spaceborne GNSS receivers to sense changes in the land and ocean surface. Here, we examine the ability of reflected GNSS signals to estimate sea ice extent and sea ice age, as well as comment on the possibility of using GNSS-R to detect leads and polynyas within the ice. In particular, we quantify how the peak power of Delay Doppler Maps (DDMs) generated within the GNSS receiver responds as the satellite flies over the Polar Regions. To compute the effective peak power of each DDM, we first normalize the peak power of the DDM by the noise floor. We also correct for antenna gain, range, and incidence angle. Once these corrections are made, the effective peak power across DDMs may be used as a proxy for changes in surface permittivity and surface roughness. We compare our calculations of reflected power to existing sea ice remote sensing products such as data from the SSMI/S as well as Landsat imagery. Our analysis shows that GNSS reflections are extremely sensitive to the sea ice edge, with increases in reflected power of more than 10 dB relative to reflected power over the open ocean. As the sea ice ages, it thickens and roughens, and reflected power decreases, though it does not decrease below the power over the open ocean. Given the observed sensitivity of GNSS reflections to small features over land and the sensitivity to the sea ice edge, we hypothesize that reflection data could help map the temporal evolution of leads and polynyas.

  13. Radar analysis of the life cycle of Mesoscale Convective Systems during the 10 June 2000 event

    NASA Astrophysics Data System (ADS)

    Rigo, T.; Llasat, M. C.

    2005-12-01

    The 10 June 2000 event was the largest flash flood event that occurred in the Northeast of Spain in the late 20th century, both as regards its meteorological features and its considerable social impact. This paper focuses on analysis of the structures that produced the heavy rainfalls, especially from the point of view of meteorological radar. Due to the fact that this case is a good example of a Mediterranean flash flood event, a final objective of this paper is to undertake a description of the evolution of the rainfall structure that would be sufficiently clear to be understood at an interdisciplinary forum. Then, it could be useful not only to improve conceptual meteorological models, but also for application in downscaling models. The main precipitation structure was a Mesoscale Convective System (MCS) that crossed the region and that developed as a consequence of the merging of two previous squall lines. The paper analyses the main meteorological features that led to the development and triggering of the heavy rainfalls, with special emphasis on the features of this MCS, its life cycle and its dynamic features. To this end, 2-D and 3-D algorithms were applied to the imagery recorded over the complete life cycle of the structures, which lasted approximately 18 h. Mesoscale and synoptic information were also considered. Results show that it was an NS-MCS, quasi-stationary during its stage of maturity as a consequence of the formation of a convective train, the different displacement directions of the 2-D structures and the 3-D structures, including the propagation of new cells, and the slow movement of the convergence line associated with the Mediterranean mesoscale low.

  14. Radar network communication through sensing of frequency hopping

    DOEpatents

    Dowla, Farid; Nekoogar, Faranak

    2013-05-28

    In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.

  15. Removing interfering clutter associated with radar pulses that an airborne radar receives from a radar transponder

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2008-12-02

    Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.

  16. 46 CFR 184.404 - Radars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD... MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 184.404 Radars. (a) A vessel must be fitted with a Federal Communications Commission (FCC) type accepted general marine radar system for surface...

  17. 46 CFR 184.404 - Radars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD... MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 184.404 Radars. (a) A vessel must be fitted with a Federal Communications Commission (FCC) type accepted general marine radar system for surface...

  18. 46 CFR 184.404 - Radars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD... MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 184.404 Radars. (a) A vessel must be fitted with a Federal Communications Commission (FCC) type accepted general marine radar system for surface...

  19. 46 CFR 184.404 - Radars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD... MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 184.404 Radars. (a) A vessel must be fitted with a Federal Communications Commission (FCC) type accepted general marine radar system for surface...

  20. Research relative to weather radar measurement techniques

    NASA Technical Reports Server (NTRS)

    Smith, Paul L.

    1992-01-01

    This grant provides for some investigations related to weather radar measurement techniques applicable to meteorological radar systems in Thailand. Quality data are needed from those systems to support TRMM and other scientific investigations. Activities carried out during a trip to the radar facilities at Phuket are described.

  1. 46 CFR 184.404 - Radars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD... MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 184.404 Radars. (a) A vessel must be fitted with a Federal Communications Commission (FCC) type accepted general marine radar system for surface...

  2. 77 FR 48097 - Operation of Radar Systems in the 76-77 GHz Band

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... general public. 3. The 76-77 GHz band, which is allocated to the Radio Astronomy service (RAS) and the... interference to RAS operations. Because the radio astronomy observatories typically have control over access to... jointly by representatives from the radio astronomy community and several vehicular radar...

  3. Coherent IR radar technology

    NASA Astrophysics Data System (ADS)

    Gschwendtner, A. B.; Harney, R. C.; Hull, R. J.

    Recent progress in the development of coherent IR radar equipment is reviewed, focusing on the Firepond laser radar installation and the more compact systems derived for it. The design and capabilities of Firepond as a long-range satellite-tracking device are outlined. The technological improvements necessary to make laser radar mobile are discussed: a lightweight, stable 5-10-W transmitter laser for both CW and pulsed operation, a 12-element HgCdTe detector array, an eccentric-pupil Ritchey-Chretien telescope, and a combination of near-field phase modification and anamorphic expansion to produce a fan beam of relatively uniform intensity. Sample images obtained with a prototype system are shown, and the applicability of the mobile system to range-resolved coherent DIAL measurement is found to be similar to that of a baseline DIAL system.

  4. Investigation of laser radar systems based on mid-infrared semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Rybaltowski, Adam

    This dissertation deals with the possibility of utilizing mid-infrared semiconductor lasers in systems of optical remote sensing with range resolution, called laser radar or lidar. The main subject investigated in this dissertation is two-fold: firstly, an analysis of the signal-to-noise ratio (SNR) and related maximum sensing range calculations in this type of lidar based on available system components, and---secondly---improvements in the Random-Modulation Continuous-Wave (RM-CW) lidar technique to better utilize available mid-infrared semiconductor lasers. As far as the SNR analysis is concerned, an appropriate framework has been constructed to analyze post-demodulation noise in mid-infrared direct-detection RM-CW lidar. It is based on a generalization of the Wiener-Khintchine theorem; noise is assumed to be additive, stationary, and have an arbitrary power spectrum. This is in contrast to the SNR analysis in the literature on this subject, which is inadequate for mid-infrared RM-CW lidar as it only considers Poissonian fluctuations of the number of detected photons. In addition to regular SNR analysis, the framework derived in this dissertation allows treatment of singularities such as demodulation with an unbalanced sequence in 1/f noise. To calculate maximum lidar sensing range, the following detection limits have been considered: signal shot noise, background blackbody radiation shot noise based on the Background-Limited Photodetection (BLIP) detectivity limit, and minimum-size detector noise given by diffraction-limited focusing. The latter is found to be of greatest practical interest. Furthermore, a lidar figure of merit has been introduced, and all quantities related to lidar performance and its detection limits have been presented graphically. Since pseudo-random sequences discussed in the literature have been found highly non-optimal for most applications of RM-CW lidar, a framework for the construction of new pseudo-random sequences of desired

  5. An MSK Waveform for Radar Applications

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Srinivasan, Meera

    2009-01-01

    We introduce a minimum shift keying (MSK) waveform developed for use in radar applications. This waveform is characterized in terms of its spectrum, autocorrelation, and ambiguity function, and is compared with the conventionally used bi-phase coded (BPC) radar signal. It is shown that the MSK waveform has several advantages when compared with the BPC waveform, and is a better candidate for deep-space radar imaging systems such as NASA's Goldstone Solar System Radar.

  6. Thermal Distortion Measurements of a Dual Gridded Antenna Reflector with Laser Radar System Integrated to a Thermal Vacuum Test Facility

    NASA Astrophysics Data System (ADS)

    Hein, Peter Jens; Doring, Daniel; Ihle, Alexander; Reichmann, Olaf; Maeyaert, Michiel

    2014-06-01

    A dual gridded reflector for Ku-Band applications (KuDGR) with two actually gridded shells made of single and individually shaped CFRP-rods (single carbon fibre reinforced plastic) has been developed by HPS. Due to the fact that these shells are made of CFRP-rods conventional methods for coordinate and thermal-distortion (TD) measuring could not be used. Therefore, the Laser Radar system (LR) was identified as best suitable measurement method for this application.The LR was chosen during the KaDGR study performed by HPS due to its capability to measure points contactless without targets and with high precision and a great number of measurement points in a short time. Furthermore, due to the gridded structure measurement systems using interferometric patterns (ESPI, Shearography) or structured light projection could not be applied.The performance of the Laser Radar system was tested during preliminary measurements on the KuDGR bread- board model. For the first environmental tests on the engineering model, the test methods at IABG were specifically adapted and qualified in order to verify that the Laser Radar system can handle the constrains set by a thermal-vacuum (TV) test facility. During the verification test run the objectives were to verify the compatibility of the LR with the positioning with respect to the chamber, the visibility, the test facilities viewport and setup inside the chamber as well as the achievable measurement accuracy. The general compatibility could be shown and optimisations regarding test setup and better accuracy were identified. Since the active surfaces of the reflector contains a multitude of single rods all with different shapes and lengths the vibration influences of the individual facility systems onto the reflector were investigated.The LR system is widely used in industrial applications but references regarding measuring thermo-elastic distortions in a TV test facility using this method are still rare. IABG has developed and

  7. Assimilating surface observations in a four-dimensional variational Doppler radar data assimilation system to improve the analysis and forecast of a squall line case

    NASA Astrophysics Data System (ADS)

    Chen, Xingchao; Zhao, Kun; Sun, Juanzhen; Zhou, Bowen; Lee, Wen-Chau

    2016-10-01

    This paper examines how assimilating surface observations can improve the analysis and forecast ability of a fourdimensional Variational Doppler Radar Analysis System (VDRAS). Observed surface temperature and winds are assimilated together with radar radial velocity and reflectivity into a convection-permitting model using the VDRAS four-dimensional variational (4DVAR) data assimilation system. A squall-line case observed during a field campaign is selected to investigate the performance of the technique. A single observation experiment shows that assimilating surface observations can influence the analyzed fields in both the horizontal and vertical directions. The surface-based cold pool, divergence and gust front of the squall line are all strengthened through the assimilation of the single surface observation. Three experiments—assimilating radar data only, assimilating radar data with surface data blended in a mesoscale background, and assimilating both radar and surface observations with a 4DVAR cost function—are conducted to examine the impact of the surface data assimilation. Independent surface and wind profiler observations are used for verification. The result shows that the analysis and forecast are improved when surface observations are assimilated in addition to radar observations. It is also shown that the additional surface data can help improve the analysis and forecast at low levels. Surface and low-level features of the squall line—including the surface warm inflow, cold pool, gust front, and low-level wind—are much closer to the observations after assimilating the surface data in VDRAS.

  8. Development of a GPS-aided motion measurement, pointing, and stabilization system for a Synthetic Aperture Radar. [Global Positioning System (GPS)

    SciTech Connect

    Fellerhoff, J.R.; Kohler, S.M.

    1991-01-01

    An advanced Synthetic Aperture Radar Motion Compensation System has been developed by Sandia National Laboratories (SNL). The system includes a miniaturized high accuracy ring laser gyro inertial measurement unit, a three axis gimbal pointing and stabilization assembly, a differential Global Positioning System (GPS) navigation aiding system, and a pilot guidance system. The system provides several improvements over previous SNL motion compensation systems and is capable of antenna stabilization to less than 0.01 degrees RMS and absolute position measurement to less than 5.0 meters RMS. These accuracies have been demonstrated in recent flight testing aboard a DHC-6-300 Twin Otter'' aircraft.

  9. Performance and dependability of RapidIO-based systems for real-time space applications

    NASA Astrophysics Data System (ADS)

    Bueno, David R.

    Emerging space applications such as Space-Based Radar (SBR) require networks with higher throughput and lower latency than the bus-based interconnects traditionally used in spacecraft payload processing systems. The RapidIO embedded systems interconnect is one network that seeks to help meet the needs of future embedded applications by offering a switched topology with low latency and throughputs in the multi-gigabits per second range. In this research, we use modeling and simulation to study the tradeoffs associated with employing RapidIO in real-time embedded space systems with high processing and network demands. The first phase of this research presents a network-centric study on the use of RapidIO for SBR Ground Moving Target Indicator (GMTI) and Synthetic Aperture Radar (SAR) applications. These results provide insight into the optimal partitioning of the SBR algorithms for the RapidIO network, as well as a sensitivity analysis of the algorithms to various network parameters such as clock rate and flow-control type. In the second phase of this work, we propose several novel fault-tolerant architectures for RapidIO-based space systems and quantitatively evaluate these architectures through a unique combination of analytical metrics and simulation studies. The results from this phase show several promising architectures in terms of achieving a balance between performance, fault-tolerance, size, power, and cost. In the third and final phase of this research, we extend the previous two phases into a set of detailed case studies with an expanded model set that is augmented with actual RapidIO testbed hardware results. These case studies lead to key insight into interactions and architectural tradeoffs between RapidIO, reconfigurable processing elements, and a shared local memory interface in a realistic embedded architecture.

  10. Experimental evidence of signal-optical noise interferencelike effect in underwater amplitude-modulated laser optical radar systems.

    PubMed

    Bartolini, L; De Dominicis, L; Ferri de Collibus, M; Fornetti, G; Francucci, M; Guarneri, M; Nuvoli, M; Paglia, E; Ricci, R

    2008-11-15

    We report experimental evidence that in an amplitude-modulated laser optical radar system for underwater 3D imaging the observed contrast oscillations as a function of the modulation frequency originate from an interference-like effect between target signal VT and water backscattered radiation VW. The demonstration relies on the ability to perform a direct measurement of VW in a 25 m long test tank. The proposed data processing method enables one to remove the contribution of water backscattering from the detected signal and drastically reduce signal fluctuations due to the medium. Experiments also confirm the possibility to improve the signal to optical noise ratio and contrast by increasing the modulation frequency.

  11. Late Tertiary and Quaternary river systems of the eastern Sahara as mapped on shuttle radar and LANDSAT images

    NASA Technical Reports Server (NTRS)

    Mccauley, J. F.; Breed, C. S.; Schaber, G. G.

    1985-01-01

    SIR-A pictures of the Eastern Sahara show segments of what are interpreted as relics of once major Tertiary and Quaternary stream valleys. These previously unmapped features have a dark to very dark radar response and are generally concealed below a thin cover of flat to slightly undulating deposits, mostly of eolian origin. In most of the 150 pits and trenches we have studied to date, unconsolidated surface deposits range from a few centimeters to about a meter thick. The SIR-A system was able to "see through" this loose, dry material, to a depth of about a meter or two.

  12. A highly capable arbitrary waveform generator for next generation radar systems

    NASA Technical Reports Server (NTRS)

    Chuang, Ernie; Hensley, Scott; Wheeler, Kevin

    2006-01-01

    We are developing an Arbitrary Waveform Generator (AWG) to provide enhanced capability for radar applications. The current design will accommodate two waveform generators on a single unit for dual frequency operation. The basic architecture of this unit employs a Field Programmable Gate Array (FPGA) and a high speed and high precision Digital to Analog Converter (DAC) for direct digital synthesis. This AWG will be capable of up to 450 MHz bandwidth with ability for frequency notching. Phase fidelity of less than 1.2(sup o) deviation RMS is also achievable. This AWG operates with lower power consumption as compared with other waveform generators, which is advantageous for future spaceborne applications. This will enable radars to return higher precision data, to be reduced in complexity, and to operate in any band without interfering with dedicated bandwidths.

  13. Detection of 3D tree root systems using high resolution ground penetration radar

    NASA Astrophysics Data System (ADS)

    Altdorff, D.; Honds, M.; Botschek, J.; Van Der Kruk, J.

    2014-12-01

    Knowledge of root systems and its distribution are important for biomass estimation as well as for the prevention of subsurface distribution network damages. Ground penetration radar (GPR) is a promising technique that enables a non-invasive imaging of tree roots. Due to the polarisation-dependent reflection coefficients and complicated three-dimensional root structure, accurate measurements with perpendicularly polarized antennas are needed. In this study, we show GPR data from two planes and one chestnut at two locations with different soil conditions. Perpendicular 10 x 10 cm grid measurements were made with a shielded 250 MHz antenna in combination with a high precision self-tracking laser theodolite that provides geo-referenced traces with a spatial resolution of ~ 2 cm. After selecting potential root hyperbolas within the perpendicular GPR profiles, the corresponding three-dimensional coordinates were extracted and visualized in planar view to reveal any linear structure that indicates a possible tree root. The coordinates of the selected linear structures were projected back to the surface by means of the laser-theodolite to indicate the locations for groundtruthing. Additionally, we interpolated the measured data into a 3D cube where time slices confirmed the locations of linear reflection events. We validated the indicated predictions by excavation of the soil with a suction dredge. Subsequent georeferencing of the true root distribution and comparison with the selected linear events showed that the approach was able to identify the precise position of roots with a diameter between 3 and 10 cm and a depth of up to 70 cm. However, not all linear events were roots; also mouse channels were found in these depths, since they also generate GPR hyperbolas aligned in linear structures. Roots at a second location at depths of 1 to 1.20 m did not generate identifiable hyperboles, which was probably due to an increased electrical conductivity below 86 cm depth. The

  14. Spaceborne laser radar.

    NASA Technical Reports Server (NTRS)

    Flom, T.

    1972-01-01

    Development of laser systems to acquire and track targets in applications such as the rendezvous and docking of two spacecraft. A scan technique is described whereby a narrow laser beam is simultaneously scanned with an equally narrow receiver field-of-view without the aid of mechanical gimbals. Equations are developed in order to examine the maximum acquisition and tracking rates, and the maximum target range for a scanning laser radar system. A recently built prototype of a small, lightweight, low-power-consuming scanning laser radar is described.

  15. Short vertical-wavelength inertia-gravity waves generated by a jet-front system at Arctic latitudes - VHF radar, radiosondes and numerical modelling

    NASA Astrophysics Data System (ADS)

    Réchou, A.; Kirkwood, S.; Arnault, J.; Dalin, P.

    2014-07-01

    Inertia-gravity waves with very short vertical wavelength (λz≤1000 m) are a very common feature of the lowermost stratosphere as observed by the 52 MHz radar ESRAD (Esrange MST radar) in northern Scandinavia (67.88° N, 21.10° E). The waves are seen most clearly in radar-derived profiles of buoyancy frequency (N). Here, we present a case study of typical waves from 21 February to 22 February 2007. Good agreement between N2 derived from radiosondes and by radar shows the validity of the radar determination of N2. Large-amplitude wave signatures in N2 are clearly observed by the radar and the radiosondes in the lowermost stratosphere, from 9 km to 14-16 km height. Vertical profiles of horizontal wind components and potential temperature from the radiosondes show the same waves. Mesoscale simulations with the Weather Research and Forecasting (WRF) model are carried out to complement the analysis of the waves. Good agreement between the radar and radiosonde measurements and the model (except for the wave amplitude) shows that the model gives realistic results and that the waves are closely associated to the upper-level front in an upper-troposphere jet-front system. Hodographs of the wind fluctuations from the radiosondes and model data show that the waves propagate upward in the lower stratosphere confirming that the origin of the waves is in the troposphere. The observations and modelling all indicate vertical wavelengths of 700 ± 200 m. The radiosonde hodograms indicate horizontal wavelengths between 40 and 110 km and intrinsic periods between 6 and 9 h. The wave amplitudes indicated by the model are however an order of magnitude less than in the observations. Finally, we show that the profiles of N2 measured by the radar can be used to estimate wave amplitudes, horizontal wavelengths, intrinsic periods and momentum fluxes which are consistent with the estimates from the radiosondes.

  16. Observation of three-dimensional structures of quasi-periodic echoes associated with mid-latitude sporadic-E layers by MU radar ultra-multi-channel system

    NASA Astrophysics Data System (ADS)

    Saito, S.; Yamamoto, M.; Hashiguchi, H.; Maegawa, A.

    2006-07-01

    Quasi-periodic (QP) backscatter observed by VHF radars associated with the mid-latitude Sporadic-E (Es) layers is characterized by distinct striations on range-time-intensity (RTI) plots. Two competing models claim to explain the structure of unstable regions that scatter the radar waves: horizontally drifting patches at an almost constant altitude and unstable regions elongated in altitude along the geomagnetic field line. We have conducted interferometric imaging observations of QP radar echoes to investigate spatial structures of QP echoes, precisely. Kyoto University's newly developed ultra-multi-channel receiving system of middle and upper atmosphere (MU) radar was used. We used 19 independent channels for the radar imaging, and determined the three-dimensional structure and the motion of the QP echoes. During the observation from 30 May to 02 June 2005, well-defined QP echoes were observed on the nights of 31 May, 01 June, and 02 June 2005. Some of QP echoes were found at altitudes higher than 120 km and appeared to descend in altitude as they approached the radar. This result suggests that backscatter regions are developed along the geomagnetic field line from Es layer altitudes to as high as 130 km and that the fluctuations in plasma density and electric field observed by Pfaff et al. (2005) using in-situ measurements form a part of QP echoes.

  17. Design and Implementation of an Active Calibration System for Weather Radars

    DTIC Science & Technology

    2008-09-01

    Chassis( FPGAs ) and the LabVIEW FPGA module for programming commands that can be auto-compiled into VHDL for the CompactRIO Chassis( FPGAs ). 129 APPENDIX... sources , gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden...unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Weather radars permit meteorological quantities such as rainfall rate and wind

  18. Analysis of the Exposure Levels and Potential Biologic Effects of the PAVE PAWS Radar System.

    DTIC Science & Technology

    1979-01-01

    purported effects of microwave exposure, cataract induction is the only irreversible alteration repgted to have occurred in humans as a result of accidental ...Czerski12 ) described the cases of two long-term radar technicians wh2 were accidentally exposed to microwave power densities of 30-70 mW/cmZ. These power...of the children had never revealed a harmful effect. OTHER EFFECTS There is no evidence of significant microwave-induced immunologic, cerebrovascular

  19. Dynamic experiment design regularization approach to adaptive imaging with array radar/SAR sensor systems.

    PubMed

    Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart

    2011-01-01

    We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the "model-free" variational analysis (VA)-based image enhancement approach and the "model-based" descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations.

  20. System and method for measuring ocean surface currents at locations remote from land masses using synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E. (Inventor)

    1991-01-01

    A system for measuring ocean surface currents from an airborne platform is disclosed. A radar system having two spaced antennas wherein one antenna is driven and return signals from the ocean surface are detected by both antennas is employed to get raw ocean current data which are saved for later processing. There are a pair of global positioning system (GPS) systems including a first antenna carried by the platform at a first location and a second antenna carried by the platform at a second location displaced from the first antenna for determining the position of the antennas from signals from orbiting GPS navigational satellites. Data are also saved for later processing. The saved data are subsequently processed by a ground-based computer system to determine the position, orientation, and velocity of the platform as well as to derive measurements of currents on the ocean surface.

  1. A short-term predictive system for surface currents from a rapidly deployed coastal HF radar network

    NASA Astrophysics Data System (ADS)

    Barrick, Donald; Fernandez, Vicente; Ferrer, Maria I.; Whelan, Chad; Breivik, Øyvind

    2012-05-01

    In order to address the need for surface trajectory forecasts following deployment of coastal HF radar systems during emergency-response situations (e.g., search and rescue, oil spill), a short-term predictive system (STPS) based on only a few hours data background is presented. First, open-modal analysis (OMA) coefficients are fitted to 1-D surface currents from all available radar stations at each time interval. OMA has the effect of applying a spatial low-pass filter to the data, fills gaps, and can extend coverage to areas where radial vectors are available from a single radar only. Then, a set of temporal modes is fitted to the time series of OMA coefficients, typically over a short 12-h trailing period. These modes include tidal and inertial harmonics, as well as constant and linear trends. This temporal model is the STPS basis for producing up to a 12-h current vector forecast from which a trajectory forecast can be derived. We show results of this method applied to data gathered during the September 2010 rapid-response demonstration in northern Norway. Forecasted coefficients, currents, and trajectories are compared with the same measured quantities, and statistics of skill are assessed employing 16 24-h data sets. Forecasted and measured kinetic variances of the OMA coefficients typically agreed to within 10-15%. In one case where errors were larger, strong wind changes are suspected and examined as the cause. Sudden wind variability is not included properly within the STPS attack we presently employ and will be a subject for future improvement.

  2. Millimeter wave radar system on a rotating platform for combined search and track functionality with SAR imaging

    NASA Astrophysics Data System (ADS)

    Aulenbacher, Uwe; Rech, Klaus; Sedlmeier, Johannes; Pratisto, Hans; Wellig, Peter

    2014-10-01

    Ground based millimeter wave radar sensors offer the potential for a weather-independent automatic ground surveillance at day and night, e.g. for camp protection applications. The basic principle and the experimental verification of a radar system concept is described, which by means of an extreme off-axis positioning of the antenna(s) combines azimuthal mechanical beam steering with the formation of a circular-arc shaped synthetic aperture (SA). In automatic ground surveillance the function of search and detection of moving ground targets is performed by means of the conventional mechanical scan mode. The rotated antenna structure designed as a small array with two or more RX antenna elements with simultaneous receiver chains allows to instantaneous track multiple moving targets (monopulse principle). The simultaneously operated SAR mode yields areal images of the distribution of stationary scatterers. For ground surveillance application this SAR mode is best suited for identifying possible threats by means of change detection. The feasibility of this concept was tested by means of an experimental radar system comprising of a 94 GHz (W band) FM-CW module with 1 GHz bandwidth and two RX antennas with parallel receiver channels, placed off-axis at a rotating platform. SAR mode and search/track mode were tested during an outdoor measurement campaign. The scenery of two persons walking along a road and partially through forest served as test for the capability to track multiple moving targets. For SAR mode verification an image of the area composed of roads, grassland, woodland and several man-made objects was reconstructed from the measured data.

  3. 46 CFR 130.310 - Radar.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Radar. 130.310 Section 130.310 Shipping COAST GUARD... EQUIPMENT AND SYSTEMS Navigational Equipment § 130.310 Radar. Each vessel of 100 or more gross tons must be fitted with a general marine radar in the pilothouse....

  4. 46 CFR 167.40-40 - Radar.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for...

  5. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  6. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  7. 46 CFR 130.310 - Radar.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Radar. 130.310 Section 130.310 Shipping COAST GUARD... EQUIPMENT AND SYSTEMS Navigational Equipment § 130.310 Radar. Each vessel of 100 or more gross tons must be fitted with a general marine radar in the pilothouse....

  8. 46 CFR 167.40-40 - Radar.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for...

  9. 46 CFR 167.40-40 - Radar.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for...

  10. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  11. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  12. 46 CFR 130.310 - Radar.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Radar. 130.310 Section 130.310 Shipping COAST GUARD... EQUIPMENT AND SYSTEMS Navigational Equipment § 130.310 Radar. Each vessel of 100 or more gross tons must be fitted with a general marine radar in the pilothouse....

  13. 46 CFR 130.310 - Radar.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Radar. 130.310 Section 130.310 Shipping COAST GUARD... EQUIPMENT AND SYSTEMS Navigational Equipment § 130.310 Radar. Each vessel of 100 or more gross tons must be fitted with a general marine radar in the pilothouse....

  14. 46 CFR 167.40-40 - Radar.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for...

  15. 46 CFR 167.40-40 - Radar.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for...

  16. 46 CFR 130.310 - Radar.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Radar. 130.310 Section 130.310 Shipping COAST GUARD... EQUIPMENT AND SYSTEMS Navigational Equipment § 130.310 Radar. Each vessel of 100 or more gross tons must be fitted with a general marine radar in the pilothouse....

  17. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  18. The DEFENSE (debris Flows triggEred by storms - nowcasting system): An early warning system for torrential processes by radar storm tracking using a Geographic Information System (GIS)

    NASA Astrophysics Data System (ADS)

    Tiranti, Davide; Cremonini, Roberto; Marco, Federica; Gaeta, Armando Riccardo; Barbero, Secondo

    2014-09-01

    Debris flows, responsible for economic losses and occasionally casualties in the alpine region, are mainly triggered by heavy rains characterized by hourly peaks of varying intensity, depending on the features of the basin under consideration. By integrating a recent classification of alpine basins with the radar storm tracking method, an innovative early warning system called DEFENSE (DEbris Flows triggEred by storms - Nowcasting SystEm) was developed using a Geographical Information System (GIS). Alpine catchments were classified into three main classes based on the weathering capacity of the bedrock into clay or clay-like minerals, the amount of which, in unconsolidated material, directly influences the debris flow rheology, and thus the sedimentary processes, the alluvial fan architecture, as well as the triggering frequency and seasonal occurrence probability of debris flows. Storms were identified and tracked by processing weather radar observations; subsequently, rainfall intensities and storm severity were estimated over each classified basin. Due to rainfall threshold values determined for each basin class, based on statistical analysis of historical records, an automatic corresponding warning could be issued to municipalities.

  19. FMCW Radar Jamming Techniques and Analysis

    DTIC Science & Technology

    2013-09-01

    discussed. 14. SUBJECT TERMS FMCW Radar , LPI , Jamming, Electronic Warfare 15. NUMBER OF PAGES 103 16. PRICE CODE 17. SECURITY CLASSIFICATION...Among the many variations of LPI radar systems, Frequency-Modulated Continuous Wave ( FMCW ) radar has not only the ability to avoid detection, but... LPI radars and possible electronic protection (EP) mechanisms that may be implemented in the FMCW emitter. The research questions can be summarized

  20. The gust-front detection and wind-shift algorithms for the Terminal Doppler Weather Radar system

    NASA Technical Reports Server (NTRS)

    Hermes, Laurie G.; Witt, Arthur; Smith, Steven D.; Klingle-Wilson, Diana; Morris, Dale; Stumpf, Gregory J.; Eilts, Michael D.

    1993-01-01

    The Federal Aviation Administration's (FAA) Terminal Doppler Weather Radar (TDWR) system was primarily designed to address the operational needs of pilots in the avoidance of low-altitude wind shears upon takeoff and landing at airports. One of the primary methods of wind-shear detection for the TDWR system is the gust-front detection algorithm. The algorithm is designed to detect gust fronts that produce a wind-shear hazard and/or sustained wind shifts. It serves the hazard warning function by providing an estimate of the wind-speed gain for aircraft penetrating the gust front. The gust-front detection and wind-shift algorithms together serve a planning function by providing forecasted gust-front locations and estimates of the horizontal wind vector behind the front, respectively. This information is used by air traffic managers to determine arrival and departure runway configurations and aircraft movements to minimize the impact of wind shifts on airport capacity. This paper describes the gust-front detection and wind-shift algorithms to be fielded in the initial TDWR systems. Results of a quantitative performance evaluation using Doppler radar data collected during TDWR operational demonstrations at the Denver, Kansas City, and Orlando airports are presented. The algorithms were found to be operationally useful by the FAA airport controllers and supervisors.

  1. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California

    USGS Publications Warehouse

    Galloway, D.L.; Hudnut, K.W.; Ingebritsen, S.E.; Phillips, S.P.; Peltzer, G.; Rogez, F.; Rosen, P.A.

    1998-01-01

    Interferometric synthetic aperture radar (InSAR) has great potential to detect and quantify land subsidence caused by aquifer system compaction. InSAR maps with high spatial detail and resolution of range displacement (??10 mm in change of land surface elevation) were developed for a groundwater basin (~103 km2) in Antelope Valley, California, using radar data collected from the ERS-1 satellite. These data allow comprehensive comparison between recent (1993-1995) subsidence patterns and those detected historically (1926-1992) by more traditional methods. The changed subsidence patterns are generally compatible with recent shifts in land and water use. The InSAR-detected patterns are generally consistent with predictions based on a coupled model of groundwater flow and aquifer system compaction. The minor inconsistencies may reflect our imperfect knowledge of the distribution and properties of compressible sediments. When used in conjunction with coincident measurements of groundwater levels and other geologic information, InSAR data may be useful for constraining parameter estimates in simulations of aquifer system compaction.

  2. Extended target recognition in cognitive radar networks.

    PubMed

    Wei, Yimin; Meng, Huadong; Liu, Yimin; Wang, Xiqin

    2010-01-01

    We address the problem of adaptive waveform design for extended target recognition in cognitive radar networks. A closed-loop active target recognition radar system is extended to the case of a centralized cognitive radar network, in which a generalized likelihood ratio (GLR) based sequential hypothesis testing (SHT) framework is employed. Using Doppler velocities measured by multiple radars, the target aspect angle for each radar is calculated. The joint probability of each target hypothesis is then updated using observations from different radar line of sights (LOS). Based on these probabilities, a minimum correlation algorithm is proposed to adaptively design the transmit waveform for each radar in an amplitude fluctuation situation. Simulation results demonstrate performance improvements due to the cognitive radar network and adaptive waveform design. Our minimum correlation algorithm outperforms the eigen-waveform solution and other non-cognitive waveform design approaches.

  3. German Radar Observation Shuttle Experiment (ROSE)

    NASA Technical Reports Server (NTRS)

    Sleber, A. J.; Hartl, P.; Haydn, R.; Hildebrandt, G.; Konecny, G.; Muehlfeld, R.

    1984-01-01

    The success of radar sensors in several different application areas of interest depends on the knowledge of the backscatter of radar waves from the targets of interest, the variance of these interaction mechanisms with respect to changing measurement parameters, and the determination of the influence of he measuring systems on the results. The incidence-angle dependency of the radar cross section of different natural targets is derived. Problems involved by the combination of data gained with different sensors, e.g., MSS-, TM-, SPOTand SAR-images are analyzed. Radar cross-section values gained with ground-based radar spectrometers and spaceborne radar imaging, and non-imaging scatterometers and spaceborne radar images from the same areal target are correlated. The penetration of L-band radar waves into vegetated and nonvegetated surfaces is analyzed.

  4. The Weather Radar Toolkit, National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center's support of interoperability and the Global Earth Observation System of Systems (GEOSS)

    NASA Astrophysics Data System (ADS)

    Ansari, S.; Del Greco, S.

    2006-12-01

    In February 2005, 61 countries around the World agreed on a 10 year plan to work towards building open systems for sharing geospatial data and services across different platforms worldwide. This system is known as the Global Earth Observation System of Systems (GEOSS). The objective of GEOSS focuses on easy access to environmental data and interoperability across different systems allowing participating countries to measure the "pulse" of the planet in an effort to advance society. In support of GEOSS goals, NOAA's National Climatic Data Center (NCDC) has developed radar visualization and data exporter tools in an open systems environment. The NCDC Weather Radar Toolkit (WRT) loads Weather Surveillance Radar 1988 Doppler (WSR-88D) volume scan (S-band) data, known as Level-II, and derived products, known as Level-III, into an Open Geospatial Consortium (OGC) compliant environment. The application is written entirely in Java and will run on any Java- supported platform including Windows, Macintosh and Linux/Unix. The application is launched via Java Web Start and runs on the client machine while accessing these data locally or remotely from the NCDC archive, NOAA FTP server or any URL or THREDDS Data Server. The WRT allows the data to be manipulated to create custom mosaics, composites and precipitation estimates. The WRT Viewer provides tools for custom data overlays, Web Map Service backgrounds, animations and basic filtering. The export of images and movies is provided in multiple formats. The WRT Data Exporter allows for data export in both vector polygon (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, NetCDF, GrADS) formats. By decoding the various Radar formats into the NetCDF Common Data Model, the exported NetCDF data becomes interoperable with existing software packages including THREDDS Data Server and the Integrated Data Viewer (IDV). The NCDC recently partnered with NOAA's National Severe Storms Lab (NSSL) to decode Sigmet C-band Doppler

  5. Radar Imaging of Mercury

    NASA Astrophysics Data System (ADS)

    Harmon, John K.

    2007-10-01

    Earth-based radar has been one of the few, and one of the most important, sources of new information about Mercury during the three decades since the Mariner 10 encounters. The emphasis during the past 15 years has been on full-disk, dual-polarization imaging of the planet, an effort that has been facilitated by the development of novel radar techniques and by improvements in radar systems. Probably the most important result of the imaging work has been the discovery and mapping of radar-bright features at the poles. The radar scattering properties of these features, and their confinement to permanently shaded crater floors, is consistent with volume backscatter from a low-loss volatile such as clean water ice. Questions remain, however, regarding the source and long-term stability of the putative ice, which underscores the need for independent confirmation by other observational methods. Radar images of the non-polar regions have also revealed a plethora of bright features, most of which are associated with fresh craters and their ejecta. Several very large impact features, with rays and other bright ejecta spreading over distances of 1,000 km or more, have been traced to source craters with diameters of 80-125 km. Among these large rayed features are some whose relative faintness suggests that they are being observed in an intermediate stage of degradation. Less extended ray/ejecta features have been found for some of the freshest medium-size craters such as Kuiper and Degas. Much more common are smaller (<40 km diameter) fresh craters showing bright rim-rings but little or no ray structure. These smaller radar-bright craters are particularly common over the H-7 quadrangle. Diffuse areas of enhanced depolarized brightness have been found in the smooth plains, including the circum-Caloris planitiae and Tolstoj Basin. This is an interesting finding, as it is the reverse of the albedo contrast seen between the radar-dark maria and the radar-bright cratered highlands

  6. Radar Imaging of Mercury

    NASA Astrophysics Data System (ADS)

    Harmon, John K.

    Earth-based radar has been one of the few, and one of the most important, sources of new information about Mercury during the three decades since the Mariner 10 encounters. The emphasis during the past 15 years has been on full-disk, dual-polarization imaging of the planet, an effort that has been facilitated by the development of novel radar techniques and by improvements in radar systems. Probably the most important result of the imaging work has been the discovery and mapping of radar-bright features at the poles. The radar scattering properties of these features, and their confinement to permanently shaded crater floors, is consistent with volume backscatter from a low-loss volatile such as clean water ice. Questions remain, however, regarding the source and long-term stability of the putative ice, which underscores the need for independent confirmation by other observational methods. Radar images of the non-polar regions have also revealed a plethora of bright features, most of which are associated with fresh craters and their ejecta. Several very large impact features, with rays and other bright ejecta spreading over distances of 1,000 km or more, have been traced to source craters with diameters of 80-125 km. Among these large rayed features are some whose relative faintness suggests that they are being observed in an intermediate stage of degradation. Less extended ray/ejecta features have been found for some of the freshest medium-size craters such as Kuiper and Degas. Much more common are smaller (<40 km diameter) fresh craters showing bright rim-rings but little or no ray structure. These smaller radar-bright craters are particularly common over the H-7 quadrangle. Diffuse areas of enhanced depolarized brightness have been found in the smooth plains, including the circum-Caloris planitiae and Tolstoj Basin. This is an interesting finding, as it is the reverse of the albedo contrast seen between the radar-dark maria and the radar-bright cratered highlands

  7. Real time control of a combined sewer system using radar-measured precipitation--results of the pilot study.

    PubMed

    Petruck, A; Holtmeier, E; Redder, A; Teichgräber, B

    2003-01-01

    Emschergenossenschaft and Lippeverband have developed a method to use radar-measured precipitation as an input for a real-time control of a combined sewer system containing several overflow structures. Two real-time control strategies have been developed and tested, one is solely volume-based, the other is volume and pollution-based. The system has been implemented in a pilot study in Gelsenkirchen, Germany. During the project the system was optimised and is now in constant operation. It was found, that the volume of combined sewage overflow could be reduced by 5 per cent per year. This was also found in simulations carried out in similar catchment areas. Most of the potential of improvement can already be achieved by local pollution-based control strategies.

  8. Study on an onboard data storage system for frequency-modulated continuous-wave synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Tian, Haishan; Chang, Wenge; Li, Xiangyang; Gu, Chengfei; Liu, Zhaohe

    2016-07-01

    The airborne frequency-modulated continuous-wave synthetic aperture radar presents an enormous technical challenge on the design of data storage system due to its characteristics of high-data rate, small size, light weight, and low-power consumption. There are two main problems for the high-speed storage under the miniature requirement. One is the unpredictable response time of the flash translation layer in the CompactFlash card. The other is the relatively long response time of the file system. This paper designs a data storage system in a real-time signal processor. Two techniques called configurable buffer structure and FPFQA (FAT pre- and FDT quasiallocation) are presented to overcome these two problems. The evaluated performance indicates that the size, power consumption, and weight meet the miniature requirement, while the function of the high-speed data storage with approximately 121 MB/s storage speed and real-time file management are realized.

  9. Clutter Cancellation Techniques for Use in a Space-Based Radar System.

    DTIC Science & Technology

    1983-12-01

    by S.S. Haykin, Pennsylvannia: Dowden, Hutchinson & Ross , Inc., 318-328 (1976). ,,15 ~152 S .a o S .. o ° • . . . . . . . , . 52. Schleder, D.C...Hutchinson & Ross Inc., 378-382 (1975). 62. Stutt, C.A., and Spafford, L.J., "A ’Best’ Mismatched Filter Response for Discrimination," in Detection and...Estimation Application to Radars, Ed. by S.S. Haykn, Pennsylvannia: Dowden, Hutchinson & Ross , Inc., 310-317 (1976). 63. Tomlinson, P.C. A Model for

  10. A Coupled Model System for Southeast Florida: Wave Model Validation Using Radar and In Situ Observations

    DTIC Science & Technology

    2012-02-24

    Atmospheric Sciences (RSMAS). These instruments were positioned outside of Biscayne Bay , Miami and recorded waves and currents at 5 point locations...2009): waveheights from several radars: North Carolina (SHOWEX, DUCK94) and Chesapeake Bay (COPE3) • Shay et al. (2007): WERA surface currents; west...42.84’N, 80°9.06’W ) on Key Biscayne and North Key Largo Hammocks Biological Preserve ( NKL 25°14.46’N, 80°18.48’W ) are separated by a distance of

  11. Steps Toward Real-Time Atmospheric Phase Fluctuation Correction for a High Resolution Radar System

    NASA Astrophysics Data System (ADS)

    Denn, Grant R.; Geldzahler, Barry; Birr, Rick; Brown, Robert; Hoblitzell, Richard; Grant, Kevin; Miller, Michael; Woods, Gary; Archuleta, Arby; Ciminera, Michael; Cornish, Timothy; davarian, faramaz; kocz, jonathan; lee, dennis; Morabito, David Dominic; Soriano, Melissa; Tsao, Philip; Vilnrotter, Victor; Jakeman-Flores, Hali; Ott, melanie; Thomes, W. Joe; Soloff, Jason; NASA Kennedy Space Center, Jet Propulsion Laboratory, NASA Goddard Space Flight Center, NASA Johnson Space Flight Center, Metropolitan State University of Denver

    2016-01-01

    NASA is pursuing a demonstration of coherent uplink arraying at 7.145-7.190 GHz (X-band) and 30-31 GHz (Ka-band) using three 12m diameter COTS antennas separated by 60m at the Kennedy Space Center in Florida, with the goal of a high-power, high-resolution radar array that employs real-time correction for tropospheric phase fluctuation. The major uses for this array will be (a) observations of Near Earth Objects, (b) detection and tracking of orbital debris, (c) high power emergency uplink capability for spacecraft, and (d) radio science experiments.

  12. Synthetic Aperture Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  13. Frequency Diverse Array Radar

    DTIC Science & Technology

    2010-09-01

    the methods for electronic scanning of antenna systems. Techniques that have been studied in this connection include frequency variation, phase shift...an array antenna instantaneously into a desired direction where no mechanical mechanism is involved in the scanning process. Electronic scanning... methods including phase scanning, time delay scanning, and frequency scanning have been used in various radar applications; however new and cheaper

  14. Paleodrainages of the Eastern Sahara - The radar rivers revisited (SIR-A/B implications for a mid-tertiary Trans-African drainage system)

    NASA Technical Reports Server (NTRS)

    Mccauley, J. F.; Breed, C. S.; Schaber, G. G.; Mchugh, W. P.; Haynes, C. C.

    1986-01-01

    The images obtained by the Shuttle Imaging Radar (SIR)-A and -B systems over the southwestern Egypt and northwestern Sudan were coregistered with the Landsat images and the existing maps to aid in extrapolations of the buried paleodrainages ('radar rivers'), first discovered by SIR-A. Field observations explain the radar responses of three types of radar rivers, RR-1 (broad, aggraded valleys filled with alluvium), RR-2 (braided channels inset in the RR-1 valleys), and RR-3 (narrow, long, bedrock-incised channels). A generalized model of the radar rivers, based on field studies and regional geologic relations, shows inferred changes in river regimen since the large valleys were established during the later Paleogene-early Neogene. It is suggested that a former Trans-African master stream system may have flowed from headwaters in the Red Sea Hills southwestward across North Africa, discharging into the Atlantic at the Paleo-Niger delta, prior to the Neogene domal uplifts and building of volcanic edifices across the paths of these ancient watercourses.

  15. Planetary radar

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.

    1980-01-01

    The radar astronomy activities supported by the Deep Space Network during June, July, and August 1980 are reported. The planetary bodies observed were Venus, Mercury, and the asteroid Toro. Data were obtained at both S and X band, and the observations were considered successful.

  16. A radar image time series

    NASA Technical Reports Server (NTRS)

    Leberl, F.; Fuchs, H.; Ford, J. P.

    1981-01-01

    A set of ten side-looking radar images of a mining area in Arizona that were aquired over a period of 14 yr are studied to demonstrate the photogrammetric differential-rectification technique applied to radar images and to examine changes that occurred in the area over time. Five of the images are rectified by using ground control points and a digital height model taken from a map. Residual coordinate errors in ground control are reduced from several hundred meters in all cases to + or - 19 to 70 m. The contents of the radar images are compared with a Landsat image and with aerial photographs. Effects of radar system parameters on radar images are briefly reviewed.

  17. Radar SLAM using visual features

    NASA Astrophysics Data System (ADS)

    Callmer, Jonas; Törnqvist, David; Gustafsson, Fredrik; Svensson, Henrik; Carlbom, Pelle

    2011-12-01

    A vessel navigating in a critical environment such as an archipelago requires very accurate movement estimates. Intentional or unintentional jamming makes GPS unreliable as the only source of information and an additional independent supporting navigation system should be used. In this paper, we suggest estimating the vessel movements using a sequence of radar images from the preexisting body-fixed radar. Island landmarks in the radar scans are tracked between multiple scans using visual features. This provides information not only about the position of the vessel but also of its course and velocity. We present here a navigation framework that requires no additional hardware than the already existing naval radar sensor. Experiments show that visual radar features can be used to accurately estimate the vessel trajectory over an extensive data set.

  18. 46 CFR 28.400 - Radar and depth sounding devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Radar and depth sounding devices. 28.400 Section 28.400... Operate With More Than 16 Individuals on Board § 28.400 Radar and depth sounding devices. (a) Each vessel must be fitted with a general marine radar system for surface navigation with a radar screen mounted...

  19. 46 CFR 28.400 - Radar and depth sounding devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Radar and depth sounding devices. 28.400 Section 28.400... Operate With More Than 16 Individuals on Board § 28.400 Radar and depth sounding devices. (a) Each vessel must be fitted with a general marine radar system for surface navigation with a radar screen mounted...

  20. 46 CFR 28.400 - Radar and depth sounding devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Radar and depth sounding devices. 28.400 Section 28.400... Operate With More Than 16 Individuals on Board § 28.400 Radar and depth sounding devices. (a) Each vessel must be fitted with a general marine radar system for surface navigation with a radar screen mounted...

  1. 46 CFR 28.400 - Radar and depth sounding devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Radar and depth sounding devices. 28.400 Section 28.400... Operate With More Than 16 Individuals on Board § 28.400 Radar and depth sounding devices. (a) Each vessel must be fitted with a general marine radar system for surface navigation with a radar screen mounted...

  2. 46 CFR 28.400 - Radar and depth sounding devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Radar and depth sounding devices. 28.400 Section 28.400... Operate With More Than 16 Individuals on Board § 28.400 Radar and depth sounding devices. (a) Each vessel must be fitted with a general marine radar system for surface navigation with a radar screen mounted...

  3. Short vertical-wavelength inertia-gravity waves generated by a jet-front system at Arctic latitudes — VHF radar, radiosondes and numerical modelling

    NASA Astrophysics Data System (ADS)

    Réchou, A.; Kirkwood, S.; Arnault, J.; Dalin, P.

    2013-12-01

    Inertia-gravity waves with very short vertical wavelength (λz < 1000 m) are a very common feature of the lowermost stratosphere as observed by the 52 MHz radar ESRAD in northern Scandinavia (67.88° N, 21.10° E). The waves are seen most clearly in radar-derived profiles of buoyancy frequency (N). Here, we present a case study of typical waves from the 21 February to the 22 February 2007. Very good agreement between N2 derived from radiosondes and by radar shows the validity of the radar determination of N2. Large-amplitude wave signatures in N2 are clearly observed by the radar and the radiosondes in the lowermost stratosphere, from 9 km to 14-16 km height. Vertical profiles of horizontal wind components and potential temperature from the radiosondes show the same waves. Mesoscale simulations with the Weather Research and Forecasting (WRF) model are carried out to complement the analysis of the waves. Good agreement between the radar and radiosonde measurements and the model (except for the wave amplitude) shows that the model gives realistic results and that the waves are closely associated to the upper-level front in an upper-troposphere jet-front system. Hodographs of the wind fluctuations from the radiosondes, show that the waves propagate upward in the lower stratosphere confirming that the origin of the waves is in the troposphere. The observations and modelling all indicate vertical wavelengths of 700 + 200 m. The model and the radiosonde hodograms indicate horizontal wavelengths between 37 and 100 km and intrinsic periods between 6 and 9 h. The wave amplitudes indicated by the model are however, an order of magnitude less than in the observations. We show finally that the profiles of N2 measured by the radar can be used to estimate wave amplitudes, horizontal wavelengths, intrinsic periods and momentum fluxes which are consistent with the estimates from the radiosondes.

  4. Dual super-systolic core for real-time reconstructive algorithms of high-resolution radar/SAR imaging systems.

    PubMed

    Atoche, Alejandro Castillo; Castillo, Javier Vázquez

    2012-01-01

    A high-speed dual super-systolic core for reconstructive signal processing (SP) operations consists of a double parallel systolic array (SA) machine in which each processing element of the array is also conceptualized as another SA in a bit-level fashion. In this study, we addressed the design of a high-speed dual super-systolic array (SSA) core for the enhancement/reconstruction of remote sensing (RS) imaging of radar/synthetic aperture radar (SAR) sensor systems. The selected reconstructive SP algorithms are efficiently transformed in their parallel representation and then, they are mapped into an efficient high performance embedded computing (HPEC) architecture in reconfigurable Xilinx field programmable gate array (FPGA) platforms. As an implementation test case, the proposed approach was aggregated in a HW/SW co-design scheme in order to solve the nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) from a remotely sensed scene. We show how such dual SSA core, drastically reduces the computational load of complex RS regularization techniques achieving the required real-time operational mode.

  5. Shuttle orbiter Ku-band radar/communications system design evaluation: High gain antenna/widebeam horn

    NASA Technical Reports Server (NTRS)

    Iwasaki, R.; Dodds, J. G.; Broad, P.

    1979-01-01

    The physical characteristics of the high gain antenna reflector and feed elements are described. Deficiencies in the sum feed are discussed, and lack of atmospheric venting is posed as a potential problem area. The measured RF performance of the high gain antenna is examined and the high sidelobe levels measured are related to the physical characteristics of the antenna. An examination of the attributes of the feed which might be influenced by temperature extremes shows that the antenna should be insensitive to temperature variations. Because the feed support bipod structure is considered a significant contributor to the high sidelobe levels measured in the azimuth plane, pod relocation, material changes, and shaping are suggested as improvements. Alternate feed designs are presented to further improve system performance. The widebeam horn and potential temperature effects due to the polarizer are discussed as well as in the effects of linear polarization on TDRS acquisition, and the effects of circular polarization on radar sidelobe avoidance. The radar detection probability is analyzed as a function of scan overlap and target range.

  6. Contaminants in a soil-plant-lemming food chain system at a military radar site in the Canadian Arctic

    SciTech Connect

    Dushenko, W.T.; Bright, D.A.; Grundy, S.L.; Reimer, K.J.

    1995-12-31

    Environmental assessment and impact studies have been conducted at Distant Early Warning (DEW) Line and other radar sites across the Canadian Arctic and Labrador, as well as Arctic background locations since 1989. Some of the major contaminants found in soils and plants in the vicinity of the stations include PCBs and inorganic elements such as lead, copper and zinc. The impact of these contaminants at higher levels of the food chain were examined using a soil-plant-lemming system in a sewage outfall (containing high soil concentrations of contaminants) and background areas at a radar site located at Cambridge Bay, NWT. Concentrations of PCBs in tissue samples from the sewage outfall were all significantly larger than background values with averages, in some cases, differing by an order of magnitude or more. Although the average PCB concentration declines from soils (average 1,600 ppb) to plants (average 9.3 ppb) in the outfall, plant-herbivore food chain biomagnification is indicated by a 6.5 fold increase in PCB concentration between whole lemming tissues (average 61 ppb) and plants. Levels in liver tissue were double this value (123 ppb) being comparable to values reported for predators of this species. The implications of these levels are discussed in terms of ecosystem toxicity using congener specific analysis.

  7. Dual Super-Systolic Core for Real-Time Reconstructive Algorithms of High-Resolution Radar/SAR Imaging Systems

    PubMed Central

    Atoche, Alejandro Castillo; Castillo, Javier Vázquez

    2012-01-01

    A high-speed dual super-systolic core for reconstructive signal processing (SP) operations consists of a double parallel systolic array (SA) machine in which each processing element of the array is also conceptualized as another SA in a bit-level fashion. In this study, we addressed the design of a high-speed dual super-systolic array (SSA) core for the enhancement/reconstruction of remote sensing (RS) imaging of radar/synthetic aperture radar (SAR) sensor systems. The selected reconstructive SP algorithms are efficiently transformed in their parallel representation and then, they are mapped into an efficient high performance embedded computing (HPEC) architecture in reconfigurable Xilinx field programmable gate array (FPGA) platforms. As an implementation test case, the proposed approach was aggregated in a HW/SW co-design scheme in order to solve the nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) from a remotely sensed scene. We show how such dual SSA core, drastically reduces the computational load of complex RS regularization techniques achieving the required real-time operational mode. PMID:22736964

  8. Using X-band Weather Radar Measurements to Monitor the Integrity of Digital Elevation Models for Synthetic Vision Systems

    NASA Technical Reports Server (NTRS)

    Young, Steve; UijtdeHaag, Maarten; Sayre, Jonathon

    2003-01-01

    Synthetic Vision Systems (SVS) provide pilots with displays of stored geo-spatial data representing terrain, obstacles, and cultural features. As comprehensive validation is impractical, these databases typically have no quantifiable level of integrity. Further, updates to the databases may not be provided as changes occur. These issues limit the certification level and constrain the operational context of SVS for civil aviation. Previous work demonstrated the feasibility of using a realtime monitor to bound the integrity of Digital Elevation Models (DEMs) by using radar altimeter measurements during flight. This paper describes an extension of this concept to include X-band Weather Radar (WxR) measurements. This enables the monitor to detect additional classes of DEM errors and to reduce the exposure time associated with integrity threats. Feature extraction techniques are used along with a statistical assessment of similarity measures between the sensed and stored features that are detected. Recent flight-testing in the area around the Juneau, Alaska Airport (JNU) has resulted in a comprehensive set of sensor data that is being used to assess the feasibility of the proposed monitor technology. Initial results of this assessment are presented.

  9. A Cloud and Precipitation Radar System Concept for the ACE Mission

    NASA Technical Reports Server (NTRS)

    Durden, S. L.; Tanelli, S.; Epp, L.; Jamnejad, V.; Perez, R.; Prata, A.; Samoska, L.; Long, E; Fang, H.; Esteban-Fernandez, D.; Lee, C.

    2011-01-01

    One of the instruments recommended for deployment on the Aerosol/Cloud/Ecosystems (ACE) mission is a new advanced cloud profiling radar. In this paper, we describe such a radar design, called ACERAD, which has 35- and 94-GHz channels, each having Doppler and dual-polarization capabilities. ACERAD will scan at Ka-band and will be nadir-looking at W-band. To get a swath of 25-30 km, considered the minimum useful for Ka-band, ACERAD needs to scan at least 2 degrees off nadir; this is at least 20 beamwidths, which is quite large for a typical parabolic reflector. This problem is being solved with a Dragonian design; a scaled prototype of the antenna is being fabricated and will be tested on an antenna range. ACERAD also uses a quasi-optical transmission line at W-band to connect the transmitter to the antenna and antenna to the receiver. A design for this has been completed and is being laboratory tested. This paper describes the current ACERAD design and status.

  10. Automatic system for radar echoes filtering based on textural features and artificial intelligence

    NASA Astrophysics Data System (ADS)

    Hedir, Mehdia; Haddad, Boualem

    2016-11-01

    Among the very popular Artificial Intelligence (AI) techniques, Artificial Neural Network (ANN) and Support Vector Machine (SVM) have been retained to process Ground Echoes (GE) on meteorological radar images taken from Setif (Algeria) and Bordeaux (France) with different climates and topologies. To achieve this task, AI techniques were associated with textural approaches. We used Gray Level Co-occurrence Matrix (GLCM) and Completed Local Binary Pattern (CLBP); both methods were largely used in image analysis. The obtained results show the efficiency of texture to preserve precipitations forecast on both sites with the accuracy of 98% on Bordeaux and 95% on Setif despite the AI technique used. 98% of GE are suppressed with SVM, this rate is outperforming ANN skills. CLBP approach associated to SVM eliminates 98% of GE and preserves precipitations forecast on Bordeaux site better than on Setif's, while it exhibits lower accuracy with ANN. SVM classifier is well adapted to the proposed application since the average filtering rate is 95-98% with texture and 92-93% with CLBP. These approaches allow removing Anomalous Propagations (APs) too with a better accuracy of 97.15% with texture and SVM. In fact, textural features associated to AI techniques are an efficient tool for incoherent radars to surpass spurious echoes.

  11. Automotive Radar and Lidar Systems for Next Generation Driver Assistance Functions

    NASA Astrophysics Data System (ADS)

    Rasshofer, R. H.; Gresser, K.

    2005-05-01

    Automotive radar and lidar sensors represent key components for next generation driver assistance functions (Jones, 2001). Today, their use is limited to comfort applications in premium segment vehicles although an evolution process towards more safety-oriented functions is taking place. Radar sensors available on the market today suffer from low angular resolution and poor target detection in medium ranges (30 to 60m) over azimuth angles larger than ±30°. In contrast, Lidar sensors show large sensitivity towards environmental influences (e.g. snow, fog, dirt). Both sensor technologies today have a rather high cost level, forbidding their wide-spread usage on mass markets. A common approach to overcome individual sensor drawbacks is the employment of data fusion techniques (Bar-Shalom, 2001). Raw data fusion requires a common, standardized data interface to easily integrate a variety of asynchronous sensor data into a fusion network. Moreover, next generation sensors should be able to dynamically adopt to new situations and should have the ability to work in cooperative sensor environments. As vehicular function development today is being shifted more and more towards virtual prototyping, mathematical sensor models should be available. These models should take into account the sensor's functional principle as well as all typical measurement errors generated by the sensor.

  12. Simultaneous observations of structure function parameter of refractive index using a high-resolution radar and the DataHawk small airborne measurement system

    NASA Astrophysics Data System (ADS)

    Scipión, Danny E.; Lawrence, Dale A.; Milla, Marco A.; Woodman, Ronald F.; Lume, Diego A.; Balsley, Ben B.

    2016-09-01

    The SOUSY (SOUnding SYstem) radar was relocated to the Jicamarca Radio Observatory (JRO) near Lima, Peru, in 2000, where the radar controller and acquisition system were upgraded with state-of-the-art parts to take full advantage of its potential for high-resolution atmospheric sounding. Due to its broad bandwidth (4 MHz), it is able to characterize clear-air backscattering with high range resolution (37.5 m). A campaign conducted at JRO in July 2014 aimed to characterize the lower troposphere with a high temporal resolution (8.1 Hz) using the DataHawk (DH) small unmanned aircraft system, which provides in situ atmospheric measurements at scales as small as 1 m in the lower troposphere and can be GPS-guided to obtain measurements within the beam of the radar. This was a unique opportunity to make coincident observations by both systems and to directly compare their in situ and remotely sensed parameters. Because SOUSY only points vertically, it is only possible to retrieve vertical radar profiles caused by changes in the refractive index within the resolution volume. Turbulent variations due to scattering are described by the structure function parameter of refractive index Cn2. Profiles of Cn2 from the DH are obtained by combining pressure, temperature, and relative humidity measurements along the helical trajectory and integrated at the same scale as the radar range resolution. Excellent agreement is observed between the Cn2 estimates obtained from the DH and SOUSY in the overlapping measurement regime from 1200 m up to 4200 m above sea level, and this correspondence provides the first accurate calibration of the SOUSY radar for measuring Cn2.

  13. Passive bistatic radar analysis

    NASA Astrophysics Data System (ADS)

    O'Hagan, Daniel W.; Kuschel, H.; Schiller, Joachim

    2009-06-01

    Passive Bistatic Radar (PBR) research is at its zenith with several notable PBR systems currently operational, or available for deployment. Such PBRs include the Manastash Ridge Radar (MRR) developed for and by academia; Silent Sentry developed as a commercial concern by Lockheed Martin; and Homeland Alerter (HA100) also a commercial system developed by Thales. However at present, despite the existence of numerous PBR prototypes, take up of commercial passive radar technology remains slow. This is due in part to technology immaturity, in part to politics, and particularly due to the fact that monostatic radars perform so well. If PBRs are to enjoy longevity as a viable technology then it is imperative that they address certain niche application areas, with the aforementioned MRR being one prime example of this. The focus of this paper will be an analysis of a PBR system that utilised FM radio signals of opportunity to detect aircraft targets with an RCS generally not lower than 20 m2. The paper will demonstrate the theoretical detection coverage of an FM based PBR operating in a severe interference environment.

  14. Imaging observations of nighttime mid-latitude F-region field-aligned irregularities by an MU radar ultra-multi-channel system

    NASA Astrophysics Data System (ADS)

    Saito, S.; Yamamoto, M.; Hashiguchi, H.

    2008-08-01

    Mid-latitude F-region field-aligned irregularities (FAIs) were studied by using the middle-and-upper atmosphere (MU) radar ultra-multi-channel system with the radar imaging technique. On 12 June 2006, F-region FAI echoes with a period of about one hour were observed intermittently. These echoes were found to be embedded in medium-scale traveling ionospheric disturbances (MSTIDs) observed as variations of total electron content (TEC). The echoes drifting away from (toward) the radar were observed in the depletion (enhancement) phase of the MSTID. The Doppler velocity of the echoes is consistent with the range rates in the the range-time-intensity (RTI) maps. Fine scale structures with a spatial scale of 10 km or less were found by the radar imaging analysis. Those structures with positive Doppler velocities (moving away from the radar) appeared to drift north- (up-) westward, and those with negative Doppler velocities south- (down-) eastward approximately along the wavefronts of the MSTID. FAIs with positive Doppler velocities filling TEC depletion regions were observed.

  15. Research relative to weather radar measurement techniques

    NASA Technical Reports Server (NTRS)

    Smith, Paul L.

    1992-01-01

    Research relative to weather radar measurement techniques, which involves some investigations related to measurement techniques applicable to meteorological radar systems in Thailand, is reported. A major part of the activity was devoted to instruction and discussion with Thai radar engineers, technicians, and meteorologists concerning the basic principles of radar meteorology and applications to specific problems, including measurement of rainfall and detection of wind shear/microburst hazards. Weather radar calibration techniques were also considered during this project. Most of the activity took place during two visits to Thailand, in December 1990 and February 1992.

  16. Mars Radar Opens a Planet's Third Dimension

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Radar sounder instruments orbiting Mars have looked beneath the Martian surface and opened up the third dimension for planetary exploration. The technique's success is prompting scientists to think of all the other places in the Solar System where they would like to use radar sounders.

    The first radar sounder at Mars was the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the European Space Agency's Mars Express Orbiter. It has been joined by the complementary Shallow Subsurface Radar (SHARAD), operating at a different wavelength aboard NASA's Mars Reconnaissance Orbiter. The data in this animation are from SHARAD.

  17. Synthetic aperture radar capabilities in development

    SciTech Connect

    Miller, M.

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  18. L-band radar scattering from grass

    NASA Technical Reports Server (NTRS)

    Chauhan, N.; O'Neill, P.; Le Vine, D.; Lang, R.; Khadr, N.

    1992-01-01

    A radar system based on a network analyzer has been developed to study the backscatter from vegetation. The radar is operated at L-band. Radar measurements of a grass field were made in 1991. The radar returns from the grass were measured at three incidence angles. Ground truth and canopy parameters such as blade and stem dimensions, moisture content of the grass and the soil, and blade and stem density, were measured. These parameters are used in a distorted Born approximation model to compute the backscatter coefficients from the grass layer. The model results are compared with the radar data.

  19. NASA Radar Images Asteroid Toutatis

    NASA Video Gallery

    This 64-frame movie of asteroid Toutatis was generated from data by Goldstone's Solar System Radar on Dec. 12 and 13, 2012. In the movie clips, the rotation of the asteroid appears faster than it o...

  20. Electromagnetic approaches to wall characterization, wall mitigation, and antenna design for through-the-wall radar systems

    NASA Astrophysics Data System (ADS)

    Thajudeen, Christopher

    Through-the-wall imaging (TWI) is a topic of current interest due to its wide range of public safety, law enforcement, and defense applications. Among the various available technologies such as, acoustic, thermal, and optical imaging, which can be employed to sense and image targets of interest, electromagnetic (EM) imaging, in the microwave frequency bands, is the most widely utilized technology and has been at the forefront of research in recent years. The primary objectives for any Through-the-Wall Radar Imaging (TWRI) system are to obtain a layout of the building and/or inner rooms, detect if there are targets of interest including humans or weapons, determine if there are countermeasures being employed to further obscure the contents of a building or room of interest, and finally to classify the detected targets. Unlike conventional radar scenarios, the presence of walls, made of common construction materials such as brick, drywall, plywood, cinder block, and solid concrete, adversely affects the ability of any conventional imaging technique to properly image targets enclosed within building structures as the propagation through the wall can induce shadowing effects on targets of interest which may result in image degradation, errors in target localization, and even complete target masking. For many applications of TWR systems, the wall ringing signals are strong enough to mask the returns from targets not located a sufficient distance behind the wall, beyond the distance of the wall ringing, and thus without proper wall mitigation, target detection becomes extremely difficult. The results presented in this thesis focus on the development of wall parameter estimation, and intra-wall and wall-type characterization techniques for use in both the time and frequency domains as well as analysis of these techniques under various real world scenarios such as reduced system bandwidth scenarios, various wall backing scenarios, the case of inhomogeneous walls, presence