Science.gov

Sample records for gnrh pulse generator

  1. The hypothalamic GnRH pulse generator: multiple regulatory mechanisms.

    PubMed

    Krsmanovic, Lazar Z; Hu, Lian; Leung, Po-Ki; Feng, Hao; Catt, Kevin J

    2009-10-01

    Pulsatile secretion of gonadotropin-releasing hormone (GnRH) release is an intrinsic property of hypothalamic GnRH neurons. Pulse generation has been attributed to multiple specific mechanisms, including spontaneous electrical activity of GnRH neurons, calcium and cAMP signaling, a GnRH receptor autocrine regulatory component, a GnRH concentration-dependent switch in GnRH receptor (GnRH-R) coupling to specific G proteins, the expression of G protein-coupled receptors (GPCRs) and steroid receptors, and homologous and heterologous interactions between cell membrane receptors expressed in GnRH neurons. The coexistence of multiple regulatory mechanisms for pulsatile GnRH secretion provides a high degree of redundancy in maintaining this crucial component of the mammalian reproductive process. These studies provide insights into the basic cellular and molecular mechanisms involved in GnRH neuronal function.

  2. Foliation-Based Parameter Tuning in a Model of the GnRH Pulse and Surge Generator

    NASA Astrophysics Data System (ADS)

    Clement, Frederique; Vidal, Alexandre

    2009-01-01

    We investigate a model of the GnRH pulse and surge generator, with the definite aim of constraining the model GnRH output with respect to a physiologically relevant list of specifications. The alternating pulse and surge pattern of secretion results from the interaction between a GnRH secreting system and a regulating system exhibiting slow-fast dynamics. The mechanisms underlying the behavior of the model are reviewed from the study of the Boundary-Layer System according to the dissection method principle. Using singular perturbation theory, we describe the sequence of bifurcations undergone by the regulating (FitzHugh-Nagumo) system, encompassing the rarely investigated case of homoclinic connection. Based on pure dynamical considerations, we restrict the space of parameter search for the regulating system and describe a foliation of this restricted space, whose leaves define constant duration ratios between the surge and the pulsatility phase in the whole system. We propose an algorithm to fix the parameter values also to meet the other prescribed ratios dealing with amplitude and frequency features of the secretion signal. We finally apply these results to illustrate the dynamics of GnRH secretion in the ovine species and the rhesus monkey.

  3. Kisspeptin, Neurokinin B, and Dynorphin Act in the Arcuate Nucleus to Control Activity of the GnRH Pulse Generator in Ewes

    PubMed Central

    Hileman, Stanley M.; Nestor, Casey C; Porter, Katrina L.; Connors, John M.; Hardy, Steve L.; Millar, Robert P.; Cernea, Maria; Coolen, Lique M.; Lehman, Michael N.

    2013-01-01

    Recent work has led to the hypothesis that kisspeptin/neurokinin B/dynorphin (KNDy) neurons in the arcuate nucleus play a key role in GnRH pulse generation, with kisspeptin driving GnRH release and neurokinin B (NKB) and dynorphin acting as start and stop signals, respectively. In this study, we tested this hypothesis by determining the actions, if any, of four neurotransmitters found in KNDy neurons (kisspeptin, NKB, dynorphin, and glutamate) on episodic LH secretion using local administration of agonists and antagonists to receptors for these transmitters in ovariectomized ewes. We also obtained evidence that GnRH-containing afferents contact KNDy neurons, so we tested the role of two components of these afferents: GnRH and orphanin-FQ. Microimplants of a Kiss1r antagonist briefly inhibited LH pulses and microinjections of 2 nmol of this antagonist produced a modest transitory decrease in LH pulse frequency. An antagonist to the NKB receptor also decreased LH pulse frequency, whereas NKB and an antagonist to the receptor for dynorphin both increased pulse frequency. In contrast, antagonists to GnRH receptors, orphanin-FQ receptors, and the N-methyl-D-aspartate glutamate receptor had no effect on episodic LH secretion. We thus conclude that the KNDy neuropeptides act in the arcuate nucleus to control episodic GnRH secretion in the ewe, but afferent input from GnRH neurons to this area does not. These data support the proposed roles for NKB and dynorphin within the KNDy neural network and raise the possibility that kisspeptin contributes to the control of GnRH pulse frequency in addition to its established role as an output signal from KNDy neurons that drives GnRH pulses. PMID:23959940

  4. GnRH pulses--the regulators of human reproduction.

    PubMed Central

    Marshall, J. C.; Dalkin, A. C.; Haisenleder, D. J.; Griffin, M. L.; Kelch, R. P.

    1993-01-01

    The data reviewed in this chapter provide evidence that the pattern of GnRH secretion appears to be an important factor in regulating gonadotropin subunit gene expression, gonadotropin synthesis and hormone secretion. The data on gonadotropin synthesis were obtained in rodents and hence, must be interpreted with caution when applied to primates. Despite this reservation, the data suggest a similarity of regulatory mechanisms in mammalian species. The data also provide an explanation for the mechanisms whereby a single gonadotropin-releasing hormone can differentially regulate the three gonadotropin genes and allow differential hormone secretion. In overall agreement with this view, the observations during pubertal maturation reveal increasing GnRH pulsatile secretion during puberty with an evolution from predominant FSH to a predominant LH secretion by the gonadotropes. In males, the patterns of GnRH secretion appear to be fairly consistent throughout adult life, but in women cyclic changes occur which perhaps are important in maintaining cyclic ovulation. It is proposed that once pubertal maturation has been established, GnRH is secreted at a relatively fast frequency (one pulse per hour), and an essential feature of repeated ovulatory cycles is the slowing of this GnRH stimulus during the luteal phase: to allow subsequent preferential FSH release. This slowing of GnRH secretion appears to be effected by estradiol and progesterone acting to enhance hypothalamic opioid activity. Similar mechanisms involving increased opioid tone appear to be causally related to the reduced frequency and irregular GnRH stimulus seen in hypothalamic amenorrhea and hyperprolactinemia. In contrast, some forms of polycystic ovarian disease may reflect abnormalities of the estradiol-progesterone/opioid/GnRH neuron feedback mechanisms, with failure to establish slowing in the peripubertal anovulatory cycles. The resulting persistent GnRH stimulus increases LH with consequent effects of

  5. PULSE GENERATOR

    DOEpatents

    Roeschke, C.W.

    1957-09-24

    An improvement in pulse generators is described by which there are produced pulses of a duration from about 1 to 10 microseconds with a truly flat top and extremely rapid rise and fall. The pulses are produced by triggering from a separate input or by modifying the current to operate as a free-running pulse generator. In its broad aspect, the disclosed pulse generator comprises a first tube with an anode capacitor and grid circuit which controls the firing; a second tube series connected in the cathode circuit of the first tube such that discharge of the first tube places a voltage across it as the leading edge of the desired pulse; and an integrator circuit from the plate across the grid of the second tube to control the discharge time of the second tube, determining the pulse length.

  6. Changes in peripheral blood levels and pulse frequencies of GnRH in patients with hypopituitarism.

    PubMed

    Hayashi, M; Takanashi, N; Yaoi, Y

    1998-09-01

    Pituitary dysfunction occasionally results from brain tumors or the surgical resection of brain tumors. The authors examined two patients with hypogonadotropic secondary amenorrhea, who had undergone surgical removal of brain tumors. Changes in immunoreactive gonadotropin-releasing hormone (GnRH) secretion are of interest in patients with a gonadotropin and gonadal steroid deficit, because both steroid and pituitary feedback systems are altered by tumors or tumor resection. The authors thus measured GnRH, luteinizing hormone, and follicle-stimulating hormone levels every 15 minutes for 4 hours by radioimmunoassay and investigated qualitative and quantitative changes in the pulsatile patterns of these hormones in two hypogonadotropic hypogonadism patients. They also performed similar multiple measurements of GnRH in two normal cycle women in follicular phase and two postmenopausal women. The concentration of plasma GnRH in two hypopituitarism patients was compared with that in two normal cycle women and two postmenopausal women. The study showed that the peripheral blood level of GnRH was significantly lower in two hypopituitarism patients than in both normal cycle and postmenopausal women, and that the pulsatile frequency was not different among these three groups. These findings suggest that alteration of feedback systems results in a decrease in the blood level of GnRH, and that pulses of GnRH maintain normal fluctuation despite the alteration of the hormonal circumstances in two hypogonadotropic hypogonadism patients.

  7. Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH) neurons

    PubMed Central

    Cortés-Campos, Christian; Letelier, Joaquín; Ceriani, Ricardo; Whitlock, Kathleen E.

    2015-01-01

    ABSTRACT Gonadotropin-releasing hormone (GnRH) is a hypothalamic decapeptide essential for fertility in vertebrates. Human male patients lacking GnRH and treated with hormone therapy can remain fertile after cessation of treatment suggesting that new GnRH neurons can be generated during adult life. We used zebrafish to investigate the neurogenic potential of the adult hypothalamus. Previously we have characterized the development of GnRH cells in the zebrafish linking genetic pathways to the differentiation of neuromodulatory and endocrine GnRH cells in specific regions of the brain. Here, we developed a new method to obtain neural progenitors from the adult hypothalamus in vitro. Using this system, we show that neurospheres derived from the adult hypothalamus can be maintained in culture and subsequently differentiate glia and neurons. Importantly, the adult derived progenitors differentiate into neurons containing GnRH and the number of cells is increased through exposure to either testosterone or GnRH, hormones used in therapeutic treatment in humans. Finally, we show in vivo that a neurogenic niche in the hypothalamus contains GnRH positive neurons. Thus, we demonstrated for the first time that neurospheres can be derived from the hypothalamus of the adult zebrafish and that these neural progenitors are capable of producing GnRH containing neurons. PMID:26209533

  8. GnRH Pulse Frequency Control of Fshb Gene Expression Is Mediated via ERK1/2 Regulation of ICER.

    PubMed

    Thompson, Iain R; Ciccone, Nick A; Zhou, Qiongjie; Xu, Shuyun; Khogeer, Ahmad; Carroll, Rona S; Kaiser, Ursula B

    2016-03-01

    The pulsatile release of GnRH regulates the synthesis and secretion of pituitary FSH and LH. Two transcription factors, cAMP-response element-binding protein (CREB) and inducible cAMP early repressor (ICER), have been implicated in the regulation of rat Fshb gene expression. We previously showed that the protein kinase A pathway mediates GnRH-stimulated CREB activation. We hypothesized that CREB and ICER are activated by distinct signaling pathways in response to pulsatile GnRH to modulate Fshb gene expression, which is preferentially stimulated at low vs high pulse frequencies. In the LβT2 gonadotrope-derived cell line, GnRH stimulation increased ICER mRNA and protein. Blockade of ERK activation with mitogen-activated protein kinase kinase I/II (MEKI/II) inhibitors significantly attenuated GnRH induction of ICER mRNA and protein, whereas protein kinase C, calcium/calmodulin-dependent protein kinase II, and protein kinase A inhibitors had minimal effects. GnRH also stimulated ICER in primary mouse pituitary cultures, attenuated similarly by a MEKI/II inhibitor. In a perifusion paradigm, MEKI/II inhibition in LβT2 cells stimulated with pulsatile GnRH abrogated ICER induction at high GnRH pulse frequencies, with minimal effect at low frequencies. MEKI/II inhibition reduced GnRH stimulation of Fshb at high and low pulse frequencies, suggesting that the ERK pathway has additional effects on GnRH regulation of Fshb, beyond those mediated by ICER. Indeed, induction of the activating protein 1 proteins, cFos and cJun, positive modulators of Fshb transcription, by pulsatile GnRH was also abrogated by inhibition of the MEK/ERK signaling pathway. Collectively, these studies indicate that the signaling pathways mediating GnRH activation of CREB and ICER are distinct, contributing to the decoding of the pulsatile GnRH to regulate FSHβ expression.

  9. Real-Time GnRH Gene Transcription in GnRH Promoter-Driven Luciferase-Expressing Transgenic Mice: Effect of Kisspeptin.

    PubMed

    Choe, Han Kyoung; Chun, Sung Kook; Kim, Jeongah; Kim, Doyeon; Kim, Hee-Dae; Kim, Kyungjin

    2015-01-01

    Pulsatile secretion of hypothalamic gonadotropin-releasing hormone (GnRH) is indispensable for controlling proper pituitary gonadotrope functions; however, the mechanism underlying GnRH pulse generation remains largely unknown. It is important to understand the cellular oscillator in individual GnRH neurons and temporal synchronization among GnRH neurons. In this brief review, we summarize our recent findings on episodic GnRH gene transcription at the single GnRH neuron level and in synchronized multicellular burst in relation to the temporal pattern of GnRH secretion. We also detail the effects of kisspeptin on ultradian rhythmic GnRH gene transcription and secretion. We extend our discussion to the hierarchical interaction between circadian and ultradian rhythms. Taken together, the current review elucidates the genomic control of GnRH pulse generation in hypothalamic neurons.

  10. Calcium influx and DREAM protein are required for GnRH gene expression pulse activity.

    PubMed

    Leclerc, Gilles M; Boockfor, Fredric R

    2007-03-15

    Recent evidence using GT1-7 cells indicates that GnRH pulsatility depends on exocytotic-release and gene transcription events. To determine whether calcium or DREAM may play a role in linking these processes, we used an L-type Ca(2+)-blocker (nimodipine) and found that not only GnRH gene expression (GnRH-GE) pulse activity was abolished but also that binding of proteins to OCT1BS-a (essential site for GnRH-GE pulses) was reduced. We further found that only EF-hand forms of DREAM were expressed in GT1-7 and that DREAM was part of the complex binding to OCT1BS-a. Finally, microinjection of DREAM antibody into cells abolished GnRH-GE pulses demonstrating its importance in pulsatility. These results reveal that calcium and DREAM may bridge cytoplasmic and nuclear events enabling temporal coordination of intermittent activity. Expression of DREAM in various cell types coupled with the universal role of calcium raise the possibility that these factors may play similar role in other secretory cells.

  11. Resonant megavolt pulse generator

    SciTech Connect

    Zheltov, K.A.; Malygin, A.V.; Petrenko, A.N.; Shalimanov, V.F.

    1987-09-01

    A compact pulse generator with a capacitive load is described that employs resonant voltage multiplication at the load. A 60-pF capacitor is charged to 1.1 MV in a pulse with a rise time of 0.25 ..mu..sec. The dimensions of the resonant generator are considerably smaller than those of known Tesla-coil voltage sources (by a factor of approx. 30 in volume).

  12. ELECTRIC PULSE GENERATOR

    DOEpatents

    Buntenbach, R.W.

    1959-06-01

    S>An electro-optical apparatus is described which produces electric pulses in programmed sequences at times and durations controlled with great accuracy. An oscilloscope CRT is supplied with signals to produce a luminous spot moving in a circle. An opaque mask with slots of variable width transmits light from the spot to a photoelectric transducer. For shorter pulse decay times a CRT screen which emits UV can be used with a UVtransmitting filter and a UV- sensitive photoelectric cell. Pulses are varied by changing masks or by using masks with variable slots. This device may be used in multiple arrangements to produce other pulse aT rangements, or it can be used to trigger an electronic pulse generator. (T.R.H.)

  13. Long Pulse Homopolar Generator

    DTIC Science & Technology

    1988-08-01

    AD-A205 452 AFWAL-TR-88-2045 LONG PULSE HOMOPOLAR GENERATOR Edward A. Knoth David P. Bauer lAP Research, Inc. 2763 Culver Avenue Dayton OH 45429-3723...TASK WORK UNIT ELEMENT NO. NO. NO ACCESSION NO. 61101F ILIR P3 01 11. TITLE (include Security Classiflcation) Long Pulse Homopolar Generator 12. PERSONAL...FIELD GROUP SUB-GROUP C6 6; y .- o- , -, ’, - 20 07 homopolar , high current, high power, high speed, generator, 19. ABIT!CT (Contkwe on rer if =ray and

  14. High voltage pulse generator

    DOEpatents

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  15. PULSE SYNTHESIZING GENERATOR

    DOEpatents

    Kerns, Q.A.

    1963-08-01

    >An electronlc circuit for synthesizing electrical current pulses having very fast rise times includes several sinewave generators tuned to progressively higher harmonic frequencies with signal amplitudes and phases selectable according to the Fourier series of the waveform that is to be synthesized. Phase control is provided by periodically triggering the generators at precisely controlled times. The outputs of the generators are combined in a coaxial transmission line. Any frequency-dependent delays that occur in the transmission line can be readily compensated for so that the desired signal wave shape is obtained at the output of the line. (AEC)

  16. Short pulse neutron generator

    SciTech Connect

    Elizondo-Decanini, Juan M.

    2016-08-02

    Short pulse neutron generators are described herein. In a general embodiment, the short pulse neutron generator includes a Blumlein structure. The Blumlein structure includes a first conductive plate, a second conductive plate, a third conductive plate, at least one of an inductor or a resistor, a switch, and a dielectric material. The first conductive plate is positioned relative to the second conductive plate such that a gap separates these plates. A vacuum chamber is positioned in the gap, and an ion source is positioned to emit ions in the vacuum chamber. The third conductive plate is electrically grounded, and the switch is operable to electrically connect and disconnect the second conductive plate and the third conductive plate. The at least one of the resistor or the inductor is coupled to the first conductive plate and the second conductive plate.

  17. Pulsed Artificial Electrojet Generation

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.

    2008-12-01

    Traditional techniques for generating low frequency signals in the ULF/ELF range (.1-100 Hz) and rely on ground based Horizontal Electric Dipole (HED) antennas. It is, furthermore, well known that a Vertical Electric Dipole (VED) is by more than 50 dB more efficient than a HED with the same dipole current moment. However, the prohibitively long length of VED antennas in the ELF/ULF range coupled with voltage limitations due to corona discharge in the atmosphere make them totally impracticable. In this paper we discuss a novel concept, inspired by the physics of the equatorial electrojet, that allows for the conversion of a ground based HED to a VED in the E-region of the equatorial ionosphere with current moment comparable to the driving HED. The paper focuses in locations near the dip-equator, where the earth's magnetic is in predominantly in the horizontal direction. The horizontal electric field associated with a pulsed HED drives a large Hall current in the ionospheric E-region, resulting in a vertical current. It is shown that the pulsed vertical current in the altitude range 80-130 km, driven by a horizontal electric field of, approximately, .1 mV/m at 100 km altitude, is of the order of kA. This results in a pulsed VED larger than 106 A-m. Such a pulsed VED will drive ELF/ULF pulses with amplitude in excess of .1 nT at a lateral range larger than few hundred kilometers. This is by three orders of magnitude larger than the one expected by a HED with comparable current moment. The paper will conclude with the description of a sneak-through technique that allows for creating pulsed electric fields in the ionosphere much larger than expected from steady state oscillatory HED antennas.

  18. Pulsed Corona Discharge Generated By Marx Generator

    NASA Astrophysics Data System (ADS)

    Sretenovic, G. B.; Obradovic, B. M.; Kovacevic, V. V.; Kuraica, M. M.; Puric J.

    2010-07-01

    The pulsed plasma has a significant role in new environmental protection technologies. As a part of a pulsed corona system for pollution control applications, Marx type repetitive pulse generator was constructed and tested in arrangement with wire-plate corona reactor. We performed electrical measurements, and obtained voltage and current signals, and also power and energy delivered per pulse. Ozone formation by streamer plasma in air was chosen to monitor chemical activity of the pulsed corona discharge.

  19. GnRH pulse frequency differentially regulates steroidogenic factor 1 (SF1), dosage-sensitive sex reversal-AHC critical region on the X chromosome gene 1 (DAX1), and serum response factor (SRF): potential mechanism for GnRH pulse frequency regulation of LH beta transcription in the rat.

    PubMed

    Burger, Laura L; Haisenleder, Daniel J; Marshall, John C

    2011-06-01

    The issue of how rapid frequency GnRH pulses selectively stimulate LH transcription is not fully understood. The rat LHβ promoter contains two GnRH-responsive regions: the proximal region has binding elements for SF1, and the distal site contains a CArG box, which binds SRF. This study determined whether GnRH stimulates pituitary SF1, DAX1 (an endogenous SF1 inhibitor), and SRF transcription in vivo, and whether regulation is frequency dependent. Male rats were pulsed with 25 ng GnRH i.v. every 30 min or every 240 min for 1-24 h, and primary transcripts (PTs) and mRNAs were measured by real time PCR. Fast frequency GnRH pulses (every 30 min) increased SF1 PT (threefold) within 1 h, and then declined after 6 h. SF1 mRNA also increased within 1 h and remained elevated through 24 h. Fast frequency GnRH also stimulated a transient increase in DAX1 PT (twofold after 1 h) and mRNA (1.7-fold after 6 h), while SRF mRNA rose briefly at 1 h. Slow frequency pulses did not affect gene expression of SF1, DAX1, or SRF. These findings support a mechanistic link between SF1 in the frequency regulation of LHβ transcription by pulsatile GnRH.

  20. Evidence That Dopamine Acts via Kisspeptin to Hold GnRH Pulse Frequency in Check in Anestrous Ewes

    PubMed Central

    Maltby, Matthew J.; Millar, Robert P.; Hileman, Stanley M.; Nestor, Casey C; Whited, Brant; Tseng, Ashlie S.; Coolen, Lique M.; Lehman, Michael N.

    2012-01-01

    Recent work has implicated stimulatory kisspeptin neurons in the arcuate nucleus (ARC) as important for seasonal changes in reproductive function in sheep, but earlier studies support a role for inhibitory A15 dopaminergic (DA) neurons in the suppression of GnRH (and LH) pulse frequency in the nonbreeding (anestrous) season. Because A15 neurons project to the ARC, we performed three experiments to test the hypothesis that A15 neurons act via ARC kisspeptin neurons to inhibit LH in anestrus: 1) we used dual immunocytochemistry to determine whether these ARC neurons contain D2 dopamine receptor (D2-R), the receptor responsible for inhibition of LH in anestrus; 2) we tested the ability of local administration of sulpiride, a D2-R antagonist, into the ARC to increase LH secretion in anestrus; and 3) we determined whether an antagonist to the kisspeptin receptor could block the increase in LH secretion induced by sulpiride in anestrus. In experiment 1, 40% of this ARC neuronal subpopulation contained D2-R in breeding season ewes, but this increased to approximately 80% in anestrus. In experiment 2, local microinjection of the two highest doses (10 and 50 nmol) of sulpiride into the ARC significantly increased LH pulse frequency to levels 3 times that seen with vehicle injections. Finally, intracerebroventricular infusion of a kisspeptin receptor antagonist completely blocked the increase in LH pulse frequency induced by systemic administration of sulpiride to anestrous ewes. These results support the hypothesis that DA acts to inhibit GnRH (and LH) secretion in anestrus by suppressing the activity of ARC kisspeptin neurons. PMID:23038740

  1. The effects of chronic subcutaneous administration of an investigational kisspeptin analog, TAK-683, on gonadotropin-releasing hormone pulse generator activity in goats.

    PubMed

    Yamamura, Takashi; Wakabayashi, Yoshihiro; Sakamoto, Kohei; Matsui, Hisanori; Kusaka, Masami; Tanaka, Tomomi; Ohkura, Satoshi; Okamura, Hiroaki

    2014-01-01

    The continuous activation of the kisspeptin receptor by its agonists causes the abrogation of kisspeptin signaling, leading to decreased pulsatile luteinizing hormone (LH) secretion. Employing this phenomenon as a tool for probing kisspeptin action, this study aimed to clarify the role of kisspeptin in gonadotropin-releasing hormone (GnRH) pulse generation in goats. We examined the effects of chronic administration of TAK-683, an investigational kisspeptin analog, on LH secretion, GnRH immunostaining, pituitary responses to exogenous GnRH, and GnRH pulse generator activity, reflected by a characteristic increase in multiple-unit activity (MUA volley). An osmotic pump containing TAK-683 was subcutaneously implanted on day 0. TAK-683 treatment dose-dependently suppressed pulsatile LH secretion on day 1. Higher doses of chronic TAK-683 profoundly suppressed pulsatile LH secretion but had little effect on GnRH immunostaining patterns and pituitary responses to GnRH on day 5. In ovariectomized goats, MUA volleys occurred at approximately every 30 min on day -1. On day 5 of chronic TAK-683 administration, pulsatile LH secretion was markedly suppressed, whereas MUA volleys were similar to those observed on day -1. Male pheromones and senktide (neurokinin B receptor agonist) induced an MUA volley but had no effect on LH secretion during chronic TAK-683 administration. The results indicate that the chronic administration of a kisspeptin analog profoundly suppresses pulsatile LH secretion without affecting GnRH content, pituitary function or GnRH pulse generator activity, and they suggest an indispensable role for kisspeptin signaling in the cascade driving GnRH/LH pulses by the GnRH pulse generator.

  2. High current transistor pulse generator

    SciTech Connect

    Nesterov, V.; Cassel, R.

    1991-05-01

    A solid state pulse generator capable of delivering high current trapezoidally shaped pulses into an inductive load has been developed at SLAC. Energy stored in the capacitor bank of the pulse generator is switched to the load through a pair of Darlington transistors. A combination of diodes and Darlington transistors is used to obtain trapezoidal or triangular shaped current pulses into an inductive load and to recover the remaining energy in the same capacitor bank without reversing capacitor voltage. The transistors work in the switch mode, and the power losses are low. The rack mounted pulse generators presently used at SLAC contain a 660 microfarad storage capacitor bank and can deliver 400 amps at 800 volts into inductive loads up to 3 mH. The pulse generators are used in several different power systems, including pulse to pulse bipolar power supplies and in application with current pulses distributed into different inductive loads. The current amplitude and discharge time are controlled by the central computer system through a specially developed multichannel controller. Several years of operation with the pulse generators have proven their consistent performance and reliability. 8 figs.

  3. High current transistor pulse generator

    SciTech Connect

    Nesterov, V.; Cassel, R.

    1991-05-01

    A solid state pulse generator capable of delivering high current trapezoidally shaped pulses into an inductive load has been developed at SLAC. Energy stored in the capacitor bank of the pulse generator is switched to the load through a pair of Darlington transistors. A combination of diodes and Darlington transistors is used to obtain trapezoidal or triangular shaped current pulses into an inductive load and to recover the remaining energy in the same capacitor bank without reversing capacitor voltage. The transistors work in the switch mode, and the power losses are low. The rack mounted pulse generators presently used at SLAC contain a 660 microfarad storage capacitor bank and can deliver 400 amps at 800 volts into inductive loads up to 3 mH. The pulse generators are used in several different power systems, including pulse to pulse bipolar power supplies and in application with current pulses distributed into different inductive loads. The current amplitude and discharge time are controlled by the central computer system through a specially developed multichannel controller. Several years of operation with the pulse generators have proven their consistent performance and reliability. 8 figs.

  4. Ultra-short pulse generator

    DOEpatents

    McEwan, Thomas E.

    1993-01-01

    An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shockwave diode, which increases and sharpens the pulse even more.

  5. Ultra-short pulse generator

    DOEpatents

    McEwan, T.E.

    1993-12-28

    An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shock wave diode, which increases and sharpens the pulse even more. 5 figures.

  6. Coiled transmission line pulse generators

    DOEpatents

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  7. High Voltage Nanosecond Pulse Generator.

    DTIC Science & Technology

    1978-11-01

    trigger generator used to gate charging SCR1 and discharge SCR2. In order to pro- vide time for discharge SCR2 to recover after completion of the...discharge cycle, the trigger pulse to the gate of SCR1 was delayed approximately 20usec relative to the trigger pulse to the gate of SCR2. With a single

  8. Feedback actions of estradiol on GnRH secretion during the follicular phase of the estrous cycle.

    PubMed

    Karsch, F J; Evans, N P

    1996-01-01

    The pattern of GnRH secretion during the follicular phase of the estrous cycle of sheep is characterized by an initial marked change in episodic secretion (increased frequency and decreased amplitude) followed by a massive and sustained discharge-the preovulatory GnRH surge. Studies employing a physiological model for the follicular phase have revealed that estradiol has profound and complex feedback effects on GnRH release during the preovulatory period. These include both quantitative effects on pulses (stimulation of frequency, inhibition of amplitude) and qualitative effects (altering pulse shape, stimulating interpulse secretion), in addition to inducing a preovulatory GnRH surge. In stimulating the surge, estradiol causes a highly characteristic change in the minute-to-minute pattern of GnRH in hypophyseal portal blood. Initially, a strictly episodic pattern gives way to one in which GnRH is consistently elevated between pulses. Then, following enhancement of both pulsatile and interpulse components, GnRh becomes extremely high and variable for the majority of the surge. From this point, a regular and well organized pulse pattern is not apparent. The characteristic time course of GnRH at surge onset provides insight into possible mechanistic changes in the GnRH neurosecretory system. Such changes include quantitative and qualitative alterations in the pulse generating mechanism, recruitment of a surge specific population of GnRH neurones, morphologic alterations in GnRH neurones and neighboring cells, and changes in efficiency or route of delivery of GnRH from its site of release to the portal vasculature. These possibilities, while untested and speculative, provide a conceptual framework for future research.

  9. Male effect pheromone tickles the gonadotrophin-releasing hormone pulse generator.

    PubMed

    Okamura, H; Murata, K; Sakamoto, K; Wakabayashi, Y; Ohkura, S; Takeuchi, Y; Mori, Y

    2010-07-01

    In sheep and goats, the primer pheromone produced by the male induces out-of-seasonal ovulation in anoestrous females, the so-called 'male effect.' Because the initial endocrine event following reception of the pheromone is the stimulation of pulsatile luteinising hormone (LH) secretion, the central target of the pheromone is considered to be the putative gonadotrophin-releasing hormone (GnRH) pulse generator. Using electrophysiological techniques to record multiple-unit activity (MUA) in close proximity to kisspeptin neurones in the arcuate nucleus (ARC) of Shiba goats, we found that bursts (volleys) of MUA occur at regular intervals, and repetitive bursts are invariably associated with discrete pulses of LH, suggesting that the ARC kisspeptin neurones may be the intrinsic source of the GnRH pulse generator. A brief exposure of female goats to the pheromone immediately elicited an instantaneous rise in MUA, which is followed by an MUA volley and an accompanying LH pulse, indicating that the pheromone signal is transmitted to a subset of the ARC kisspeptin neurones to activate them. Because it has been suggested that the neurokinin B and dynorphin coexpressed in those neurones play critical roles in generating rhythmic bursts, they may be involved in the intracellular pheromone actions that are responsible for inducing the GnRH pulse.

  10. Physiology of the gonadotrophin-releasing hormone (GnRH) neurone: studies from embryonic GnRH neurones.

    PubMed

    Constantin, S

    2011-06-01

    Gonadotrophin-releasing hormone (GnRH)-secreting neurones are the final output of the central nervous system driving fertility in all mammals. Although it has been known for decades that the efficiency of communication between the hypothalamus and the pituitary depends on the pulsatile profile of GnRH secretion, how GnRH neuronal activity is patterned to generate pulses at the median eminence is unknown. To date, the scattered distribution of the GnRH cell bodies remains the main limitation to assessing the cellular events that could lead to pulsatile GnRH secretion. Taking advantage of the unique developmental feature of GnRH neurones, the nasal explant model allows primary GnRH neurones to be maintained within a micro-network where pulsatile secretion is preserved and where individual cellular activity can be monitored simultaneously across the cell population. This review summarises the data obtained from work using this in vitro model, and brings some insights into GnRH cellular physiology.

  11. Precision digital pulse phase generator

    DOEpatents

    McEwan, T.E.

    1996-10-08

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code. 2 figs.

  12. Precision digital pulse phase generator

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code.

  13. ION PULSE GENERATION

    DOEpatents

    King, R.F.; Moak, C.D.; Parker, V.E.

    1960-10-11

    A device for generating ions in an ion source, forming the ions into a stream, deflecting the stream rapidly away from and back to its normal path along the axis of a cylindrical housing, and continually focusing the stream by suitable means into a sharp, intermittent beam along the axis is described. The beam exists through an axial aperture into a lens which focuses it into an accelerator tube. The ions in each burst are there accelerated to very high energies and are directed against a target placed in the high-energy end of the tube. Radiations from the target can then be analyzed in the interval between incidence of the bursts of ions on the target.

  14. Solid state pulsed power generator

    DOEpatents

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  15. Modeling the Male Reproductive Endocrine Axis: Potential Role for a Delay Mechanism in the Inhibitory Action of Gonadal Steroids on GnRH Pulse Frequency.

    PubMed

    Ferasyi, Teuku R; Barrett, P Hugh R; Blache, Dominique; Martin, Graeme B

    2016-05-01

    We developed a compartmental model so we could test mechanistic concepts in the control of the male reproductive endocrine axis. Using SAAM II computer software and a bank of experimental data from male sheep, we began by modeling GnRH-LH feed-forward and LH-T feedback. A key assumption was that the primary control signal comes from a hypothetical neural network (the PULSAR) that emits a digital (pulsatile) signal of variable frequency that drives GnRH secretion in square wave-like pulses. This model produced endocrine profiles that matched experimental observations for the testis-intact animal and for changes in GnRH pulse frequency after castration and T replacement. In the second stage of the model development, we introduced a delay in the negative feedback caused by the aromatization of T to estradiol at the brain level, a concept supported by empirical observations. The simulations showed how changes in the process of aromatization could affect the response of the pulsatile signal to inhibition by steroid feedback. The sensitivity of the PULSAR to estradiol was a critical factor, but the most striking observation was the effect of time delays. With longer delays, there was a reduction in the rate of aromatization and therefore a decrease in local estradiol concentrations, and the outcome was multiple-pulse events in the secretion of GnRH/LH, reflecting experimental observations. In conclusion, our model successfully emulates the GnRH-LH-T-GnRH loop, accommodates a pivotal role for central aromatization in negative feedback, and suggests that time delays in negative feedback are an important aspect of the control of GnRH pulse frequency.

  16. Pulsed metallic-plasma generators.

    NASA Technical Reports Server (NTRS)

    Gilmour, A. S., Jr.; Lockwood, D. L.

    1972-01-01

    A pulsed metallic-plasma generator is described which utilizes a vacuum arc as the plasma source. The arc is initiated on the surface of a consumable cathode which can be any electrically conductive material. Ignition is accomplished by using a current pulse to vaporize a portion of a conductive film on the surface of an insulator separating the cathode from the ignition electrode. The film is regenerated during the ensuing arc. Over 100 million ignition cycles have been accomplished by using four 0.125-in. diameter zinc cathodes operating in parallel and high-density aluminum-oxide insulators. Among the applications being investigated for the generator are metal deposition, vacuum pumping, electric propulsion, and high-power dc arc interruption.

  17. Generation of pulsed ion beams by an inductive storage pulsed power generator

    NASA Astrophysics Data System (ADS)

    Katsuki, Sunao; Akiyama, Hidenori; Maeda, Sadao

    1990-10-01

    A pulsed power generator by an inductive energy storage system is extremely compact and light in comparison with a conventional pulsed power generator, which consists of a Marx bank and a water pulse forming line. A compact and light pulse power generator is applied to the generation of pulsed ion beams. A thin copper fuse is used an an opening switch, which is necessary in the inductive storage pulsed power generator. A magnetically insulated diode is used for the generation of ion beams. The pulsed ion beams are successfully generated by the inductive storage pulsed power generator for the first time.

  18. BLOCKING OSCILLATOR DOUBLE PULSE GENERATOR CIRCUIT

    DOEpatents

    Haase, J.A.

    1961-01-24

    A double-pulse generator, particuiarly a double-pulse generator comprising a blocking oscillator utilizing a feedback circuit to provide means for producing a second pulse within the recovery time of the blocking oscillator, is described. The invention utilized a passive network which permits adjustment of the spacing between the original pulses derived from the blocking oscillator and further utilizes the original pulses to trigger a circuit from which other pulses are initiated. These other pulses are delayed and then applied to the input of the blocking oscillator, with the result that the output from the oscillator circuit contains twice the number of pulses originally initiated by the blocking oscillator itself.

  19. High-Precision Pulse Generator

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor

    2011-01-01

    A document discusses a pulse generator with subnanosecond resolution implemented with a low-cost field-programmable gate array (FPGA) at low power levels. The method used exploits the fast carry chains of certain FPGAs. Prototypes have been built and tested in both Actel AX and Xilinx Virtex 4 technologies. In-flight calibration or control can be performed by using a similar and related technique as a time interval measurement circuit by measuring a period of the stable oscillator, as the delays through the fast carry chains will vary as a result of manufacturing variances as well as the result of environmental conditions (voltage, aging, temperature, and radiation).

  20. a Portable Pulsed Neutron Generator

    NASA Astrophysics Data System (ADS)

    Skoulakis, A.; Androulakis, G. C.; Clark, E. L.; Hassan, S. M.; Lee, P.; Chatzakis, J.; Bakarezos, M.; Dimitriou, V.; Petridis, C.; Papadogiannis, N. A.; Tatarakis, M.

    2014-02-01

    The design and construction of a pulsed plasma focus device to be used as a portable neutron source for material analysis such as explosive detection using gamma spectroscopy is presented. The device is capable of operating at a repetitive rate of a few Hz. When deuterium gas is used, up to 105 neutrons per shot are expected to be produced with a temporal pulse width of a few tens of nanoseconds. The pulsed operation of the device and its portable size are its main advantage in comparison with the existing continuous neutron sources. Parts of the device include the electrical charging unit, the capacitor bank, the spark switch (spark gap), the trigger unit and the vacuum-fuel chamber / anode-cathode. Numerical simulations are used for the simulation of the electrical characteristics of the device including the scaling of the capacitor bank energies with total current, the pinch current, and the scaling of neutron yields with energies and currents. The MCNPX code is used to simulate the moderation of the produced neutrons in a simplified geometry and subsequently, the interaction of thermal neutrons with a test target and the corresponding prompt γ-ray generation.

  1. Harmonic generation with a dual frequency pulse.

    PubMed

    Keravnou, Christina P; Averkiou, Michalakis A

    2014-05-01

    Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.

  2. Apparatus for generating nonlinear pulse patterns

    DOEpatents

    Nakamura, N.M.I.

    Apparatus for generating a plurality of nonlinear pulse patterns from a single linear pulse pattern. A first counter counts the pulses of the linear pulse pattern and a second counter counts the pulses of the nonlinear pulse pattern. A comparator compares the counts of both counters, and in response to an equal count, a gate is enabled to gate a pulse of the linear pattern as a pulse of the nonlinear pattern, the latter also resetting the first counter. Presettable dividers divide the pulses of each pattern before they are counted by the respective counters. Apparatus for generating a logarithmic pulse pattern from a linear pulse pattern to any log base is described. In one embodiment, a shift register is used in place of the second counter to be clocked by each pulse of the logarithmic pattern to generate the pattern. In another embodiment, a memory stores the logarithmic pattern and is addressed by the second counter which is clocked by the pulses of the logarithmic pulse pattern.

  3. Apparatus for generating nonlinear pulse patterns

    DOEpatents

    Nakamura, Michiyuki

    1981-01-01

    Apparatus for generating a plurality of nonlinear pulse patterns from a single linear pulse pattern. A first counter counts the pulses of the linear pulse pattern and a second counter counts the pulses of the nonlinear pulse pattern. A comparator compares the counts of both counters, and in response to an equal count, a gate is enabled to gate a pulse of the linear pattern as a pulse of the nonlinear pattern, the latter also resetting the first counter. Presettable dividers divide the pulses of each pattern before they are counted by the respective counters. Also, apparatus for generating a logarithmic pulse pattern from a linear pulse pattern to any log base. In one embodiment, a shift register is used in place of the second counter to be clocked by each pulse of the logarithmic pattern to generate the pattern. In another embodiment, a memory stores the logarithmic pattern and is addressed by the second counter which is clocked by the pulses of the logarithmic pulse pattern.

  4. High current high accuracy IGBT pulse generator

    SciTech Connect

    Nesterov, V.V.; Donaldson, A.R.

    1995-05-01

    A solid state pulse generator capable of delivering high current triangular or trapezoidal pulses into an inductive load has been developed at SLAC. Energy stored in a capacitor bank of the pulse generator is switched to the load through a pair of insulated gate bipolar transistors (IGBT). The circuit can then recover the remaining energy and transfer it back to the capacitor bank without reversing the capacitor voltage. A third IGBT device is employed to control the initial charge to the capacitor bank, a command charging technique, and to compensate for pulse to pulse power losses. The rack mounted pulse generator contains a 525 {mu}F capacitor bank. It can deliver 500 A at 900V into inductive loads up to 3 mH. The current amplitude and discharge time are controlled to 0.02% accuracy by a precision controller through the SLAC central computer system. This pulse generator drives a series pair of extraction dipoles.

  5. Terahertz pulse generation from noble gases

    SciTech Connect

    Chen Yunqing; Yamaguchi, Masashi; Wang Mingfeng; Zhang, X.-C.

    2007-12-17

    Terahertz pulse generation in the laser-induced plasma from a series of noble gases (He, Ne, Ar, Kr, and Xe) was systematically investigated. Femtosecond laser pulses consisting of both a fundamental and its second-harmonic frequency were used for the terahertz generation. Experimental results reveal that terahertz generation efficiency of these noble gases increases with decreasing ionization potential.

  6. High-Voltage Pulse Voltage Generator,

    DTIC Science & Technology

    1979-12-21

    the invention: I. I. Kalyatskiy, V. I. Kurets, and V. I. Safronov Well-known are pulse voltage generators which employ the Arkad’yev- Marx principle of...P2, and hereafter the device operates like an ordinary GIN [pulse volt- age generator] according to the Arkad’yev- Marx principle. The Object of the...Invention The high-voltage pulse voltage generator, assembled according to the Arkad’yev- Marx arrangement, each stage of which incorporates reactive

  7. Generating single attosecond pulses via spatial filtering

    NASA Astrophysics Data System (ADS)

    Gaarde, Mette B.; Schafer, Kenneth J.

    2006-11-01

    The first observation of isolated attosecond pulses by Hentschel [Nature414, 509 (2001)] resulted from an experiment that left the exact mechanism of their generation unresolved. A complete simulation of the experiment reveals the reason for its success: single pulses were efficiently isolated from two or more generated pulses by spatial filtering in the far field. Our explanation suggests a new, simple paradigm for the production of isolated attosecond bursts. We show that this method can be used, in conjunction with carrier-envelope phase stabilization, to select single attosecond pulses by use of 10fs driving pulses.

  8. Wakefield generation via two color laser pulses

    SciTech Connect

    Jha, Pallavi; Saroch, Akanksha; Kumar Verma, Nirmal

    2013-05-15

    The analytical study for the evolution of longitudinal as well as transverse electric wakefields, generated via passage of two color laser pulses through uniform plasma, has been presented in the mildly relativistic regime. The frequency difference between the two laser pulses is assumed to be equal to the plasma frequency, in the present analysis. The relative angle between the directions of polarization of the two laser pulses is varied and the wakefield amplitudes are compared. Further, the amplitude of the excited wakes by two color pulses are compared with those generated by a single laser pulse.

  9. High-speed pulse-shape generator, pulse multiplexer

    DOEpatents

    Burkhart, Scott C.

    2002-01-01

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  10. RANDOM PULSE GENERATOR PRODUCING FIDUCIAL MARKS

    DOEpatents

    Nielsen, W.F.

    1960-02-01

    The apparatus for automatically applying a fiducial marking, having a nonrepetitive pattern, to a plurality of simultaneously made records comprises, in series, a bypass filter, a trigger circuit, and a pulse generator, with printing means connected to and controlled by the pulse generator for simultaneously making the visible fiducial marks on a plurality of simultaneously produced records.

  11. High reliability low jitter pulse generator

    DOEpatents

    Savage, Mark E.; Stoltzfus, Brian S.

    2013-01-01

    A method and concomitant apparatus for generating pulses comprising providing a laser light source, disposing a voltage electrode between ground electrodes, generating laser sparks using the laser light source via laser spark gaps between the voltage electrode and the ground electrodes, and outputting pulses via one or more insulated ground connectors connected to the voltage electrode.

  12. A fast leading-edge pulse generator

    NASA Astrophysics Data System (ADS)

    Wang, R.

    1986-01-01

    The pulse generator consists of ECL semiconductor integrated circuits, high speed transistors and step restorer diodes, among others; its circuitry is simple. The leading edge of the output pulse is less than 100 ps, and the output impedance is 50 ohms. An ECL four-wire receiver connected as a closed loop circut is used in the oscillator section of the set. The pulse frequency varies as low as 10 Hz and as high as 100 MHz. The control of pulse with is based on the subtraction of two pulse widths. The output pulse width may be less than 10 ns and the maximum width may be as wide as an oscillator half cycle. The pulse amplitude is continuously adjustable from + or - 35 mV to + or - 5 V. The operating principle of the oscillator stage, a simplified logic diagram, waveforms at various points, a rectifier circuit in the first stage, positive pulse channel circuit, and an adjustable power source are shown.

  13. Ultrashort pulse generation in semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Auyeung, J.; Johnston, A. R.

    1981-01-01

    Techniques to generate picosecond optical pulses from semiconductor lasers are reviewed. Experimental methods and results of theoretical analysis of active modelocking are presented. It is shown that modelocking will achieve the shortest pulses; but the use of a cumbersome external cavity will probably limit its practical use. Short pulses produced by direct modulation such as gain switching are considerably broader than those obtained by passive modelocking. However, no external cavity is needed; and the simplicity of this method makes it important to be explored further. Recent experimental results are discussed where picosecond pulses from a buried heterostructure laser diode with ultrashort current pulses obtained from a comb generator are generated. Also, 28 ps pulses were obtained at 2.5 GHz repetition frequency, using the gain switching method. An analytical analysis based on the rate equations shows qualitative agreement with our experimental results.

  14. Digital gate pulse generator for cycloconverter control

    DOEpatents

    Klein, Frederick F.; Mutone, Gioacchino A.

    1989-01-01

    The present invention provides a digital gate pulse generator which controls the output of a cycloconverter used for electrical power conversion applications by determining the timing and delivery of the firing pulses to the switching devices in the cycloconverter. Previous gate pulse generators have been built with largely analog or discrete digital circuitry which require many precision components and periodic adjustment. The gate pulse generator of the present invention utilizes digital techniques and a predetermined series of values to develop the necessary timing signals for firing the switching device. Each timing signal is compared with a reference signal to determine the exact firing time. The present invention is significantly more compact than previous gate pulse generators, responds quickly to changes in the output demand and requires only one precision component and no adjustments.

  15. Generation of Single-Cycle Light Pulses

    SciTech Connect

    Stuart, B C; Jovanovic, I; Armstrong, J P; Pyke, B; Crane, J K; Shuttlesworth, R

    2004-02-13

    Most optical pulses, even at the 10-femtosecond timescale, consist of several oscillations of the electric field. By producing and amplifying an ultra-broadband continuum, single cycle (e 3 fs) or shorter optical pulses may be generated. This requires a very challenging pulse-compression with sub-femtosecond accuracy. Production of these single-cycle pulses will lead to new generations of experiments in the areas of coherent control of chemical excitations and reactions, 0.1-fs high-order harmonic (XUV) generation for probing of materials and fast processes, and selective 3-D micron-scale material removal and modification. We activated the first stage of a planned three-stage optical parametric amplifier (OPA) that would ultimately produce sub-3 fs pulses. Active control with a learning algorithm was implemented to optimize the continuum generated in an argon-filled capillary and to control and optimize the final compressed pulse temporal shape. A collaboration was initiated to coherently control the population of different states upon dissociation of Rb{sub 2}. Except for one final optic, a pulse compressor and diagnostics were constructed to produce and characterize pulses in the 5-fs range from the first OPA stage.

  16. Review of pulsed rf power generation

    SciTech Connect

    Lavine, T.L.

    1992-04-01

    I am going to talk about pulsed high-power rf generation for normal-conducting electron and positron linacs suitable for applications to high-energy physics in the Next Linear Collider, or NLC. The talk will cover some basic rf system design issues, klystrons and other microwave power sources, rf pulse-compression devices, and test facilities for system-integration studies.

  17. Generation of short and intense attosecond pulses

    NASA Astrophysics Data System (ADS)

    Khan, Sabih Ud Din

    Extremely broad bandwidth attosecond pulses (which can support 16as pulses) have been demonstrated in our lab based on spectral measurements, however, compensation of intrinsic chirp and their characterization has been a major bottleneck. In this work, we developed an attosecond streak camera using a multi-layer Mo/Si mirror (bandwidth can support ˜100as pulses) and position sensitive time-of-flight detector, and the shortest measured pulse was 107.5as using DOG, which is close to the mirror bandwidth. We also developed a PCGPA based FROG-CRAB algorithm to characterize such short pulses, however, it uses the central momentum approximation and cannot be used for ultra-broad bandwidth pulses. To facilitate the characterization of such pulses, we developed PROOF using Fourier filtering and an evolutionary algorithm. We have demonstrated the characterization of pulses with a bandwidth corresponding to ˜20as using synthetic data. We also for the first time demonstrated single attosecond pulses (SAP) generated using GDOG with a narrow gate width from a multi-cycle driving laser without CE-phase lock, which opens the possibility of scaling attosecond photon flux by extending the technique to peta-watt class lasers. Further, we generated intense attosecond pulse trains (APT) from laser ablated carbon plasmas and demonstrated ˜9.5 times more intense pulses as compared to those from argon gas and for the first time demonstrated a broad continuum from a carbon plasma using DOG. Additionally, we demonstrated ˜100 times enhancement in APT from gases by switching to 400 nm (blue) driving pulses instead of 800 nm (red) pulses. We measured the ellipticity dependence of high harmonics from blue pulses in argon, neon and helium, and developed a simple theoretical model to numerically calculate the ellipticity dependence with good agreement with experiments. Based on the ellipticity dependence, we proposed a new scheme of blue GDOG which we predict can be employed to extract

  18. Reliability assessment for pulse wave measurement using artificial pulse generator.

    PubMed

    Chang, Chi-Wei; Wang, Wei-Kung

    2015-04-01

    This study aimed to assess intrinsic reliabilities of devices for pulse wave measurement (PWM). An artificial pulse generator system was constructed to create a periodic pulse wave. The stability of the periodic output was tested by the DP103 pressure transducer. The pulse generator system was then used to evaluate the TD01C system. Test-re-test and inter-device reliability assessments were conducted on the TD01C system. First, 11 harmonic components of the pulse wave were calculated using Fourier series analysis. For each harmonic component, coefficient of variation (CV), intra-class correlation coefficient (ICC) and Bland-Altman plot were used to determine the degree of reliability of the TD01C system. In addition, device exclusion criteria were pre-specified to improve consistency of devices. The artificial pulse generator system was stable to evaluate intrinsic reliabilities of devices for PWM (ICCs > 0.95, p < 0.001). TD01C was reliable for repeated measurements (ICCs of test-re-test reliability > 0.95, p < 0.001; CVs all < 3%). Device exclusion criteria successfully excluded the device with defect; therefore, the criteria reduced inter-device CVs of harmonics and improved consistency of the selected devices for all harmonic components. This study confirmed the feasibility of intrinsic reliability assessment of devices for PWM using an artificial pulse generator system. Moreover, potential novel findings on the assessment combined with device exclusion criteria could be a useful method to select the measuring devices and to evaluate the qualities of them in PWM.

  19. Propagation effects on attosecond pulse generation

    NASA Astrophysics Data System (ADS)

    Lorin, E.; Chelkowski, S.; Bandrauk, A.

    2007-06-01

    This paper is devoted to the dynamics of attosecond pulses created during the high order harmonic generation process. In this goal we study Ti:sapphir laser pulses propagating in a H II + gas. The dynamics and propagation of the incident pulse is obtained by solving the macroscopic Maxwell equations. The molecular gas reaction on the electric field, the polarization, is derived from TDSE's following the model presented in [9], [10]. We are especially interested in this work, in the attosecond pulse dynamics and the intensity of the first harmonics dependently of the propagation length inside the gas, on the attosecond pulse generation and propagation and the energy of return graphs in function of the driver phase.

  20. Generation of Femtosecond Electron Pulses

    SciTech Connect

    Jinamoon, V.; Kusoljariyakul, K.; Rimjaem, S.; Saisut, J.; Thongbai, C.; Vilaithong, T.; Rhodes, M.W.; Wichaisirimongkol, P.; Chumphongphan, S.; Wiedemann, H.; /SLAC, SSRL

    2005-05-09

    At the Fast Neutron Research Facility (FNRF), Chiang Mai University (Thailand), the SURIYA project has been established aiming to produce femtosecond electron pulses utilizing a combination of an S-band thermionic rf gun and a magnetic bunch compressor ({alpha}-magnet). A specially designed rf-gun has been constructed to obtain optimum beam characteristics for the best bunch compression. Simulation results show that bunch lengths as short as about 50 fs rms can be expected at the experimental station. The electron bunch lengths will be determined using autocorrelation of coherent transition radiation (TR) through a Michelson interferometer. The paper discusses beam dynamics studies, design, fabrication and cold tests of the rf-gun as well as presents the project current status and forth-coming experiments.

  1. Generation of modulated microchip laser pulses

    NASA Astrophysics Data System (ADS)

    Almabouada, F.; Aiadi, K. E.; Louhibi, D.

    2015-01-01

    Modulated 532 nm laser pulses were generated by a Nd:YVO4 microchip laser and a KTP crystal end-pumped by a 808 nm laser diode. The interest in such works arise from the efficiency of this type of laser in several applications. To obtain the desired type of the modulated laser pulses, the electrical circuit of the laser diode was designed so as to enable varying their driving signal and current values. Different modulated signals were used, such as square wave, sine wave, and burst mode pulses. Varying the peak drive current, the duty cycle, and the number of pulses allowed us to adjust the laser energy. For the burst mode experiment, the pulse energy obtained was about 1.2 μJ.

  2. Generation and manipulation of attosecond light pulses

    NASA Astrophysics Data System (ADS)

    Gaarde, Mette

    2006-05-01

    Attosecond pulses of light can be generated in the extremely non-linear interactions between an ultrashort, intense laser pulse and a gas of atoms, via the process of high harmonic generation [1,2]. In one approach, a number of odd harmonics of rougly equal strength are combined to form a train of sub-femtosecond pulses. If the harmonics are locked in phase to each other, the train will consist of the emission of one attosecond pulse every half cycle of the driving laser field [1,3]. It is in general not trivial to ensure that the harmonics are phase-locked as they are generated with intrinsically different phases. These phases originate in the strong field dynamics of the light-matter interaction [4].We will discuss different ways of generating and manipulating attosecond pulses via high harmonic generation. We will show how the harmonics can be phase-locked and better synchronized so as to form optimal pulse trains [3]. We will also show that it is possible to generate trains of pulses separated by a full laser cycle, by combining the driving laser field with its second harmonic [5]. The strong field continuum dynamics driven by the two-color field is very different from that of the one-color field and varies strongly with the delay between the two laser fields [6]. (1) P. M. Paul et al, Science 292, 1689 (2001).(2) M. Hentschel et al, Nature 414, 509 (2001).(3) R. Lopez-Martens et al, PRL 94, 033001 (2005).(4) P. Antoine, A. L'Huillier, and M. Lewenstein, PRL 77, 1234 (1996).(5) J. Mauritsson et al, in preparation (2006).(6) M. B. Gaarde et al, in preparation (2006).

  3. Pulsed Energy Systems for Generating Plasmas

    NASA Technical Reports Server (NTRS)

    Rose, M. Franklin; Shotts, Z.

    2005-01-01

    This paper will describe the techniques needed to electrically generate highly ionized dense plasmas for a variety of applications. The components needed in pulsed circuits are described in terms of general performance parameters currently available from commercial vendors. Examples of pulsed systems using these components are described and technical data from laboratory experiments presented. Experimental data are given for point designs, capable of multi-megawatt power levels.

  4. Nanoplasmonic generation of ultrashort EUV pulses

    NASA Astrophysics Data System (ADS)

    Choi, Joonhee; Lee, Dong-Hyub; Han, Seunghwoi; Park, In-Yong; Kim, Seungchul; Kim, Seung-Woo

    2012-10-01

    Ultrashort extreme-ultraviolet (EUV) light pulses are an important tool for time-resolved pump-probe spectroscopy to investigate the ultrafast dynamics of electrons in atoms and molecules. Among several methods available to generate ultrashort EUV light pulses, the nonlinear frequency upconversion process of high-harmonic generation (HHG) draws attention as it is capable of producing coherent EUV pulses with precise control of burst timing with respect to the driving near-infrared (NIR) femtosecond laser. In this report, we present and discuss our recent experimental data obtained by the plasmon-driven HHG method that generate EUV radiation by means of plasmonic nano-focusing of NIR femtosecond pulses. For experiment, metallic waveguides having a tapered hole of funnel shape inside were fabricated by adopting the focused-ion-beam process on a micro-cantilever substrate. The plasmonic field formed within the funnelwaveguides being coupled with the incident femtosecond pulse permitted intensity enhancement by a factor of ~350, which creates a hot spot of sub-wavelength size with intensities strong enough for HHG. Experimental results showed that with injection of noble gases into the funnel-waveguides, EUV radiation is generated up to wavelengths of 32 nm and 29.6 nm from Ar and Ne gas atoms, respectively. Further, it was observed that lower-order EUV harmonics are cut off in the HHG spectra by the tiny exit aperture of the funnel-waveguide.

  5. Highly Efficient Vector-Inversion Pulse Generators

    NASA Technical Reports Server (NTRS)

    Rose, Franklin

    2004-01-01

    Improved transmission-line pulse generators of the vector-inversion type are being developed as lightweight sources of pulsed high voltage for diverse applications, including spacecraft thrusters, portable x-ray imaging systems, impulse radar systems, and corona-discharge systems for sterilizing gases. In this development, more than the customary attention is paid to principles of operation and details of construction so as to the maximize the efficiency of the pulse-generation process while minimizing the sizes of components. An important element of this approach is segmenting a pulse generator in such a manner that the electric field in each segment is always below the threshold for electrical breakdown. One design of particular interest, a complete description of which was not available at the time of writing this article, involves two parallel-plate transmission lines that are wound on a mandrel, share a common conductor, and are switched in such a manner that the pulse generator is divided into a "fast" and a "slow" section. A major innovation in this design is the addition of ferrite to the "slow" section to reduce the size of the mandrel needed for a given efficiency.

  6. Repetitively pulsed high power stacked Blumlein generators

    NASA Astrophysics Data System (ADS)

    Davanloo, F.; Borovina, D. L.; Collins, C. B.; Agee, F. J.; Kingsley, L. E.

    1995-05-01

    The stacked Blumlein pulse generators developed at the University of Texas at Dallas consist of several triaxial Blumleins stacked in series at one end. The lines are charged in parallel and synchronously commuted with a single switching element at the other end. In this way, relatively low charging voltages are multiplied to give the desired discharge voltage across an arbitrary load. Described here is the progress in development and characterization of these novel pulse-power generators capable of discharging at high repetition rates. The introduction of a tapered transmission line concept to the stacked Blumlein design provided fine tuning of output waveforms.

  7. 21 CFR 870.3610 - Implantable pacemaker pulse generator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implantable pacemaker pulse generator. 870.3610... pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has... implantable pacemaker pulse generator device that was in commercial distribution before May 28, 1976, or that...

  8. 21 CFR 870.3610 - Implantable pacemaker pulse generator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implantable pacemaker pulse generator. 870.3610... pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has... implantable pacemaker pulse generator device that was in commercial distribution before May 28, 1976, or that...

  9. Terahertz pulse generation from metal nanoparticle ink

    NASA Astrophysics Data System (ADS)

    Kato, Kosaku; Takano, Keisuke; Tadokoro, Yuzuru; Phan, Thanh Nhat Khoa; Nakajima, Makoto

    2016-11-01

    Terahertz pulse generation from metallic nanostructures irradiated by femtosecond laser pulses is of interest because the conversion efficiency from laser pulses to terahertz waves is increased by the local field enhancement resulting from the plasmon oscillation. In this talk we present our recent study on terahertz generation from metal nanoparticle ink. We baked a silver nanoparticle ink spin-coated onto a glass coverslip in various temperatures. On the surface of the baked ink, bumpy nanostructures are spontaneously formed, and the average size of bumps depends on the baking temperature. These structures are expected to lead to local field enhancement and then large nonlinear polarizations on the surface. The baked ink was irradiated by the output of regeneratively amplified Ti:sapphire femtosecond laser at an incidence angle of 45°. Waveforms of generated terahertz pulses are detected by electro-optical sampling. The generation efficiency was high when the average diameter of bumps was around 100 nm, which is realized when the ink is baked in 205 to 235°C in our setup. One of our next research targets is terahertz wave generation from micro-patterned metallic nanoparticle ink. It is an advantage of the metal nanoparticle ink that by using inkjet printers one can fabricate various patterns with micrometer scales, in which terahertz waves have a resonance. Combination of microstructures made by a printer and nanostructure spontaneously formed in the baking process will provide us terahertz emitters with unique frequency characteristics.

  10. Thyristor stack for pulsed inductive plasma generation

    SciTech Connect

    Teske, C.; Jacoby, J.; Schweizer, W.; Wiechula, J.

    2009-03-15

    A thyristor stack for pulsed inductive plasma generation has been developed and tested. The stack design includes a free wheeling diode assembly for current reversal. Triggering of the device is achieved by a high side biased, self supplied gate driver unit using gating energy derived from a local snubber network. The structure guarantees a hard firing gate pulse for the required high dI/dt application. A single fiber optic command is needed to achieve a simultaneous turn on of the thyristors. The stack assembly is used for switching a series resonant circuit with a ringing frequency of 30 kHz. In the prototype pulsed power system described here an inductive discharge has been generated with a pulse duration of 120 {mu}s and a pulse energy of 50 J. A maximum power transfer efficiency of 84% and a peak power of 480 kW inside the discharge were achieved. System tests were performed with a purely inductive load and an inductively generated plasma acting as a load through transformer action at a voltage level of 4.1 kV, a peak current of 5 kA, and a current switching rate of 1 kA/{mu}s.

  11. Thyristor stack for pulsed inductive plasma generation.

    PubMed

    Teske, C; Jacoby, J; Schweizer, W; Wiechula, J

    2009-03-01

    A thyristor stack for pulsed inductive plasma generation has been developed and tested. The stack design includes a free wheeling diode assembly for current reversal. Triggering of the device is achieved by a high side biased, self supplied gate driver unit using gating energy derived from a local snubber network. The structure guarantees a hard firing gate pulse for the required high dI/dt application. A single fiber optic command is needed to achieve a simultaneous turn on of the thyristors. The stack assembly is used for switching a series resonant circuit with a ringing frequency of 30 kHz. In the prototype pulsed power system described here an inductive discharge has been generated with a pulse duration of 120 micros and a pulse energy of 50 J. A maximum power transfer efficiency of 84% and a peak power of 480 kW inside the discharge were achieved. System tests were performed with a purely inductive load and an inductively generated plasma acting as a load through transformer action at a voltage level of 4.1 kV, a peak current of 5 kA, and a current switching rate of 1 kA/micros.

  12. Effects of intravenous administration of neurokinin receptor subtype-selective agonists on gonadotropin-releasing hormone pulse generator activity and luteinizing hormone secretion in goats

    PubMed Central

    YAMAMURA, Takashi; WAKABAYASHI, Yoshihiro; OHKURA, Satoshi; NAVARRO, Victor M.; OKAMURA, Hiroaki

    2014-01-01

    Recent evidence suggests that neurokinin B (NKB), a member of the neurokinin (tachykinin) peptide family, plays a pivotal role in gonadotropin-releasing hormone (GnRH) pulse generation. Three types of neurokinin receptors (NKRs), NK1R, NK2R and NK3R, are found in the brain. Although NKB preferentially binds to NK3R, other NKRs are possibly also involved in NKB action. The present study examined the effects of intravenous administration of the NKR subtype-selective agonists GR73632 (NK1R), GR64349 (NK2R), and senktide (NK3R) on GnRH pulse generator activity and luteinizing hormone (LH) secretion. Multiple-unit activity (MUA) was monitored in ovariectomized goats (n = 5) implanted with recording electrodes. Characteristic increases in MUA (MUA volleys) were considered GnRH pulse generator activity. Although three NKR agonists dose-dependently induced an MUA volley and an accompanying increase in LH secretion, the efficacy in inducing the volley markedly differed. As little as 10 nmol of senktide induced an MUA volley in all goats, whereas a dose of 1000 nmol was only effective for the NK1R and NK2R agonists in two and four goats, respectively. When the treatment failed to evoke an MUA volley, no apparent change was observed in the MUA or LH secretion. Similar effects of the NK2R and NK3R agonists were observed in the presence of estradiol. The results demonstrated that NK3R plays a predominant role in GnRH pulse generation and suggested that the contributions of NK1R and NK2R to this mechanism may be few, if any, in goats. PMID:25345909

  13. Pulse compression in plasma: Generation of femtosecond pulses without CPA

    SciTech Connect

    G. Shvets; N. J. Fisch; A. Pukhov; J. Meyer-ter-Vehn

    2000-07-20

    Laser pulses can be efficiently compressed to femtosecond duration when a smaller-frequency short pulse collides with high frequency long pulse in rare plasma, absorbing most of its energy. The mechanism of short pulse amplification is nonlinear superradiance.

  14. Prepubertal development of gonadotropin-releasing hormone (GnRH) neuron activity is altered by sex, age and prenatal androgen exposure.

    PubMed

    Dulka, Eden A; Moenter, Suzanne M

    2017-09-15

    Gonadotropin-releasing hormone (GnRH) neurons regulate reproduction though pulsatile hormone release. Disruption of GnRH release as measured via LH pulses occurs in polycystic ovary syndrome (PCOS), and in young hyperandrogenemic girls. In adult prenatally androgenized (PNA) mice, which exhibit many aspects of PCOS, increased LH is associated with increased GnRH neuron action potential firing. How GnRH neuron activity develops over the prepubertal period and whether or not this is altered by sex or prenatal androgen treatment are unknown. We hypothesized GnRH neurons are active before puberty, that this activity is sexually differentiated and altered by PNA. Dams were injected with DHT on d16-18 post copulation to generate PNA mice. Action potential firing of GFP-identified GnRH neurons in brain slices from 1, 2, 3, 4 week-old and adult mice was monitored. GnRH neurons were active at all ages tested. In control females, activity increased with age through 3wks, then decreased to adult levels. In contrast, activity did not change in PNA females, and was reduced at 3wks. Activity was higher in control females than males from 2-3wks. PNA did not affect GnRH neuron firing rate in males at any age. Short-term action potential patterns were also affected by age and PNA treatment. GnRH neurons are thus typically more active during the prepubertal period than adulthood, and PNA reduces prepubertal activity in females. Prepubertal activity may play a role in establishing sexually-differentiated neuronal networks upstream of GnRH neurons; androgen-induced changes during this time may contribute to the adult PNA, and possibly PCOS, phenotype. Copyright © 2017 Endocrine Society.

  15. 21 CFR 870.1750 - External programmable pacemaker pulse generator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false External programmable pacemaker pulse generator... External programmable pacemaker pulse generator. (a) Identification. An external programmable pacemaker pulse generators is a device that can be programmed to produce one or more pulses at preselected...

  16. 21 CFR 870.1750 - External programmable pacemaker pulse generator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false External programmable pacemaker pulse generator... External programmable pacemaker pulse generator. (a) Identification. An external programmable pacemaker pulse generators is a device that can be programmed to produce one or more pulses at preselected...

  17. 21 CFR 870.1750 - External programmable pacemaker pulse generator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false External programmable pacemaker pulse generator... External programmable pacemaker pulse generator. (a) Identification. An external programmable pacemaker pulse generators is a device that can be programmed to produce one or more pulses at preselected...

  18. 21 CFR 870.1750 - External programmable pacemaker pulse generator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External programmable pacemaker pulse generator... External programmable pacemaker pulse generator. (a) Identification. An external programmable pacemaker pulse generators is a device that can be programmed to produce one or more pulses at preselected...

  19. 21 CFR 870.1750 - External programmable pacemaker pulse generator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false External programmable pacemaker pulse generator... External programmable pacemaker pulse generator. (a) Identification. An external programmable pacemaker pulse generators is a device that can be programmed to produce one or more pulses at preselected...

  20. Pulse tube coolers for Meteosat third generation

    NASA Astrophysics Data System (ADS)

    Butterworth, James; Aigouy, Gérald; Chassaing, Clement; Debray, Benoît; Huguet, Alexandre

    2014-01-01

    Air Liquide's Large Pulse Tube Coolers (LPTC) will be used to cool the focal planes of the Infrared Sounder (IRS) and Flexible Combined Imager (FCI) instruments aboard the ESA/Eumetsat satellites Meteosat Third Generation (MTG). This cooler consists of an opposed piston linear compressor driving a pulse tube cold head and the associated drive electronics including temperature regulation and vibration cancellation algorithms. Preparations for flight qualification of the cooler are now underway. In this paper we present results of the optimization and qualification activities as well as an update on endurance testing.

  1. Pulse tube coolers for Meteosat third generation

    SciTech Connect

    Butterworth, James; Aigouy, Gérald; Chassaing, Clement; Debray, Benoît; Huguet, Alexandre

    2014-01-29

    Air Liquide's Large Pulse Tube Coolers (LPTC) will be used to cool the focal planes of the Infrared Sounder (IRS) and Flexible Combined Imager (FCI) instruments aboard the ESA/Eumetsat satellites Meteosat Third Generation (MTG). This cooler consists of an opposed piston linear compressor driving a pulse tube cold head and the associated drive electronics including temperature regulation and vibration cancellation algorithms. Preparations for flight qualification of the cooler are now underway. In this paper we present results of the optimization and qualification activities as well as an update on endurance testing.

  2. Optical frequency comb generation by pulsed pumping

    NASA Astrophysics Data System (ADS)

    Malinowski, Marcin; Rao, Ashutosh; Delfyett, Peter; Fathpour, Sasan

    2017-06-01

    A synchronously pumped Kerr cavity is proposed and studied for power-efficient frequency comb generation in optical microring resonators. The system is modeled using the Lugiato-Lefever equation. Analytical solutions are provided for an ideal case and extended by numerical methods to account for optical loss and higher orders of dispersion. It is shown that the average power requirement is reduced by the duty cycle of the pulse with respect to the conventional continuous-wave-pumped microrings, and it is significantly lower than the pulsed pumping of straight waveguides.

  3. Device for generation of pulsed corona discharge

    SciTech Connect

    Gutsol, Alexander F; Fridman, Alexander; Blank, Kenneth; Korobtsev, Sergey; Shiryaevsky, Valery; Medvedev, Dmitry

    2012-05-08

    The invention is a method and system for the generation of high voltage, pulsed, periodic corona discharges capable of being used in the presence of conductive liquid droplets. The method and system can be used, for example, in different devices for cleaning of gaseous or liquid media using pulsed corona discharge. Specially designed electrodes and an inductor increase the efficiency of the system, permit the plasma chemical oxidation of detrimental impurities, and increase the range of stable discharge operations in the presence of droplets of water or other conductive liquids in the discharge chamber.

  4. GnRH and GnRH receptors in the pathophysiology of the human female reproductive system.

    PubMed

    Maggi, Roberto; Cariboni, Anna Maria; Marelli, Marina Montagnani; Moretti, Roberta Manuela; Andrè, Valentina; Marzagalli, Monica; Limonta, Patrizia

    2016-04-01

    Human reproduction depends on an intact hypothalamic-pituitary-gonadal (HPG) axis. Hypothalamic gonadotrophin-releasing hormone (GnRH) has been recognized, since its identification in 1971, as the central regulator of the production and release of the pituitary gonadotrophins that, in turn, regulate the gonadal functions and the production of sex steroids. The characteristic peculiar development, distribution and episodic activity of GnRH-producing neurons have solicited an interdisciplinary interest on the etiopathogenesis of several reproductive diseases. The more recent identification of a GnRH/GnRH receptor (GnRHR) system in both the human endometrium and ovary has widened the spectrum of action of the peptide and of its analogues beyond its hypothalamic function. An analysis of research and review articles published in international journals until June 2015 has been carried out to comprehensively summarize both the well established and the most recent knowledge on the physiopathology of the GnRH system in the central and peripheral control of female reproductive functions and diseases. This review focuses on the role of GnRH neurons in the control of the reproductive axis. New knowledge is accumulating on the genetic programme that drives GnRH neuron development to ameliorate the diagnosis and treatment of GnRH deficiency and consequent delayed or absent puberty. Moreover, a better understanding of the mechanisms controlling the episodic release of GnRH during the onset of puberty and the ovulatory cycle has enabled the pharmacological use of GnRH itself or its synthetic analogues (agonists and antagonists) to either stimulate or to block the gonadotrophin secretion and modulate the functions of the reproductive axis in several reproductive diseases and in assisted reproduction technology. Several inputs from other neuronal populations, as well as metabolic, somatic and age-related signals, may greatly affect the functions of the GnRH pulse generator during

  5. 21 CFR 870.3610 - Implantable pacemaker pulse generator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implantable pacemaker pulse generator. 870.3610 Section 870.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has...

  6. 21 CFR 870.3600 - External pacemaker pulse generator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External pacemaker pulse generator. 870.3600 Section 870.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... pacemaker pulse generator. (a) Identification. An external pacemaker pulse generator is a device that has a...

  7. 21 CFR 870.3600 - External pacemaker pulse generator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false External pacemaker pulse generator. 870.3600 Section 870.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... pacemaker pulse generator. (a) Identification. An external pacemaker pulse generator is a device that has a...

  8. 21 CFR 870.3600 - External pacemaker pulse generator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false External pacemaker pulse generator. 870.3600 Section 870.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... pacemaker pulse generator. (a) Identification. An external pacemaker pulse generator is a device that has a...

  9. 21 CFR 870.3600 - External pacemaker pulse generator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false External pacemaker pulse generator. 870.3600 Section 870.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... pacemaker pulse generator. (a) Identification. An external pacemaker pulse generator is a device that has a...

  10. 21 CFR 870.3610 - Implantable pacemaker pulse generator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implantable pacemaker pulse generator. 870.3610 Section 870.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has...

  11. 21 CFR 870.3600 - External pacemaker pulse generator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false External pacemaker pulse generator. 870.3600 Section 870.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... pacemaker pulse generator. (a) Identification. An external pacemaker pulse generator is a device that has a...

  12. 21 CFR 870.3610 - Implantable pacemaker pulse generator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implantable pacemaker pulse generator. 870.3610 Section 870.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has...

  13. Pulse Compression Techniques for Laser Generated Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  14. High voltage pulse generator. [Patent application

    DOEpatents

    Fasching, G.E.

    1975-06-12

    An improved high-voltage pulse generator is described which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of the first rectifier connected between the first and second capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. The output voltage can be readily increased by adding additional charging networks. The circuit allows the peak level of the output to be easily varied over a wide range by using a variable autotransformer in the charging circuit.

  15. Experimental Testing of a Van De Graaff Generator as an Electromagnetic Pulse Generator

    DTIC Science & Technology

    2016-07-01

    EXPERIMENTAL TESTING OF A VAN DE GRAAFF GENERATOR AS AN ELECTROMAGNETIC PULSE GENERATOR THESIS...protection in the United States AFIT-ENP-MS-16-S-075 EXPERIMENTAL TESTING OF A VAN DE GRAAFF GENERATOR AS AN ELECTROMAGNETIC PULSE GENERATOR...RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENP-MS-16-S-075 EXPERIMENTAL TESTING OF A VAN DE GRAAFF GENERATOR AS AN ELECTROMAGNETIC PULSE GENERATOR

  16. Efficient High-Energy Pulse-Train Generation Using a 2 n-Pulse Michelson Interferometer.

    PubMed

    Siders, C W; Siders, J L; Taylor, A J; Park, S G; Weiner, A M

    1998-08-01

    We demonstrate a novel, Michelson-based, ultrafast multiplexer with a throughput approaching 100% for a polarization-multiplexed train and 50% for a linearly polarized train, which is compatible with a high-energy pulse train and shaped-pulse generation. The interpulse spacings in the resultant 2(n)-pulse train can be adjusted continuously from multinanoseconds through zero. Using this interferometer, we also demonstrate generation of a 16-pulse train of terahertz pulses.

  17. Photoacoustic generation by multiple picosecond pulse excitation.

    PubMed

    Liu, Tan; Wang, Jing; Petrov, Georgi I; Yakovlev, Vladislav V; Zhang, Hao F

    2010-04-01

    The purpose of this work is to demonstrate that higher amplitude of ultrashort laser induced photoacoustic signal can be achieved by multiple-pulse excitation when the temporal duration of the pulse train is less than the minimum of the medium's thermal relaxation time and stress relaxation time. Thus, improved signal-to-noise ratio can thus be attained through multiple-pulse excitation while minimizing the energy of each pulse. The authors used a Michelson interferometer together with a picoseconds laser system to introduce two 6 ps pulses separated by a controllable delay by introducing a path length difference between the two arms of the interferometer. The authors then employed a series of three interferometers to create a pulse train consisting of eight pulses. The average pulse energy was 11 nJ and the temporal span of the pulse train was less than 1 ns. The detected peak-to-peak amplitude of the multiple-pulse induced photoacoustic waves were linearly dependent on the number of pulses in the pulse train and such a linearity held for different optical absorption coefficients. The signal-to-noise ratio improved when the number of pulses increased. Moreover, nonlinear effects were not detected and no photoacoustic saturation effect was observed. The authors have shown that multiple-pulse excitation improves the signal-to-noise ratio through an accumulated energy deposition effect. This method is invaluable for photoacoustic measurements that require ultrashort laser pulses with minimized pulse energy to avoid laser damage.

  18. Double nanosecond pulses generation in ytterbium fiber laser

    SciTech Connect

    Veiko, V. P.; Samokhvalov, A. A. Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N.; Lednev, V. N.; Pershin, S. M.

    2016-06-15

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential “opening” radio pulses with a delay of 0.2–1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  19. Double nanosecond pulses generation in ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Veiko, V. P.; Lednev, V. N.; Pershin, S. M.; Samokhvalov, A. A.; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N.

    2016-06-01

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential "opening" radio pulses with a delay of 0.2-1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  20. Atrazine inhibits pulsatile gonadotropin-releasing hormone (GnRH) release without altering GnRH messenger RNA or protein levels in the female rat.

    PubMed

    Foradori, Chad D; Zimmerman, Arthur D; Hinds, Laura R; Zuloaga, Kristen L; Breckenridge, Charles B; Handa, Robert J

    2013-01-01

    Atrazine (ATR) is a commonly used pre-emergence/early postemergence herbicide. Previous work has shown that exposure to high doses of ATR in rats results in blunting of the hormone-induced luteinizing hormone (LH) surge and inhibition of pulsatile LH release without significantly reducing pituitary sensitivity to a gonadotropin-releasing hormone (GnRH) agonist. Accompanying the reduction in the LH surge was an attenuation of GnRH neuronal activation. These findings suggest that ATR exposure may be acting to inhibit GnRH release. In this study, we examined GnRH directly to determine the effect of high doses of ATR on GnRH pulsatile release, gene expression, and peptide levels in the female rat. Ovariectomized adult female Wistar rats were treated with ATR (200 mg/kg) or vehicle for 4 days via gavage. Following the final treatment, GnRH release was measured from ex vivo hypothalamic explants for 3 h. In another experiment, animals were administered either vehicle or ATR (50, 100, or 200 mg/kg) daily for 4 days. Following treatment, in situ hybridization was performed to examine total GnRH mRNA and the primary GnRH heterogeneous nuclear RNA transcript. Finally, GnRH immunoreactivity and total peptide levels were measured in hypothalamic tissue of treated animals. ATR treatment resulted in no changes to GnRH gene expression, peptide levels, or immunoreactivity but a reduction in GnRH pulse frequency and an increased pulse amplitude. These findings suggest that ATR acts to inhibit the secretory dynamics of GnRH pulses without interfering with GnRH mRNA and protein synthesis.

  1. Insulin Receptor Signaling in the GnRH Neuron Plays a Role in the Abnormal GnRH Pulsatility of Obese Female Mice

    PubMed Central

    DiVall, Sara A.; Herrera, Danny; Sklar, Bonnie; Wu, Sheng; Wondisford, Fredric; Radovick, Sally; Wolfe, Andrew

    2015-01-01

    Infertility associated with obesity is characterized by abnormal hormone release from reproductive tissues in the hypothalamus, pituitary, and ovary. These tissues maintain insulin sensitivity upon peripheral insulin resistance. Insulin receptor signaling may play a role in the dysregulation of gonadotropin-releasing hormone (GnRH) secretion in obesity, but the interdependence of hormone secretion in the reproductive axis and the multi-hormone and tissue dysfunction in obesity hinders investigations of putative contributing factors to the disrupted GnRH secretion. To determine the role of GnRH insulin receptor signaling in the dysregulation of GnRH secretion in obesity, we created murine models of diet-induced obesity (DIO) with and without intact insulin signaling in the GnRH neuron. Obese control female mice were infertile with higher luteinizing hormone levels and higher GnRH pulse amplitude and total pulsatile secretion compared to lean control mice. In contrast, DIO mice with a GnRH specific knockout of insulin receptor had improved fertility, luteinizing hormone levels approaching lean mice, and GnRH pulse amplitude and total secretion similar to lean mice. Pituitary responsiveness was similar between genotypes. These results suggest that in the obese state, insulin receptor signaling in GnRH neurons increases GnRH pulsatile secretion and consequent LH secretion, contributing to reproductive dysfunction. PMID:25780937

  2. Linear transformer driver for pulse generation

    SciTech Connect

    Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A

    2015-04-07

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.

  3. Dual amplitude pulse generator for radiation detectors

    DOEpatents

    Hoggan, Jerry M.; Kynaston, Ronnie L.; Johnson, Larry O.

    2001-01-01

    A pulsing circuit for producing an output signal having a high amplitude pulse and a low amplitude pulse may comprise a current source for providing a high current signal and a low current signal. A gate circuit connected to the current source includes a trigger signal input that is responsive to a first trigger signal and a second trigger signal. The first trigger signal causes the gate circuit to connect the high current signal to a pulse output terminal whereas the second trigger signal causes the gate circuit to connect the low current signal to the pulse output terminal.

  4. Vibrational sum frequency generation spectroscopy using inverted visible pulses.

    PubMed

    Weeraman, Champika; Mitchell, Steven A; Lausten, Rune; Johnston, Linda J; Stolow, Albert

    2010-05-24

    We present a broadband vibrational sum frequency generation (BB-VSFG) scheme using a novel ps visible pulse shape. We generate the fs IR pulse via standard procedures and simultaneously generate an 'inverted' time-asymmetric narrowband ps visible pulse via second harmonic generation in the pump depletion regime using a very long nonlinear crystal which has high group velocity mismatch (LiNbO3). The 'inverted' ps pulse shape minimally samples the instantaneous nonresonant response but maximally samples the resonant response, maintaining high spectral resolution. We experimentally demonstrate this scheme, presenting SFG spectra of canonical organic monolayer systems in the C-H stretch region (2800-3000 cm(-1)).

  5. Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A.

    2015-09-01

    The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.

  6. Generating Submillimeter-Wave Frequencies From Laser Pulses

    NASA Technical Reports Server (NTRS)

    Spencer, Michael G.; Maserjian, Joseph

    1994-01-01

    Semiconductor photoconductive switches generate electrical pulses containing submillimeter-wavelength carrier signals (frequency between 300 and 3,000 GHz) and harmonics thereof when illuminated with short-rise-time pulses from lasers. Device of this type used as local oscilator in heterodyne submillimeter-wave receiver. Electrical output of device coupled via transmission line, waveguide, or antenna to mixer circuitry of receiver. Phase delays between optically activated semiconductor switches determine output carrier frequencies. N electrical pulses generated by each laser pulse. Thus, fundamental output frequency is N times laser-pulse-repetition rate.

  7. Modeling of high power pulse generator based on the non-linear elements of pulsed facilities

    NASA Astrophysics Data System (ADS)

    Averyanov, G. P.; Dmitrieva, V. V.; Kobylyatskiy, A. V.

    2017-01-01

    The article considered the software implementation mathematical model of the voltage pulse generator with a hard switch. The interactive object-oriented software interface provides the choice of generator parameters and the type of its load, as well as pulses parameters analysis on the load at the generator switching.

  8. Continuum Generation of the Third-Harmonic Pulse Generated by an Intense Femtosecond IR Laser Pulse in Air

    DTIC Science & Technology

    2003-06-06

    c.m. bowden3 Continuum generation of the third-harmonic pulse generated by an intense femtosecond IR laser pulse in air 1 Time Domain Corporation...picosecond high-peak-power laser pulses are propagated in air. The supercontinuum generated during the filamentation process has been used for time ...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources

  9. MEDEA II two-pulse generator development

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Honig, J.; Theby, E. A.

    1990-06-01

    This article discusses improvements in the efficiency, output power, and operational flexibility of MEDEA II, a double-pulse electron beam accelerator at McDonnell Douglas Research Laboratories. A modified charging circuit, based on the triple-resonance pulse transformer concept, was implemented on both of MEDEA II's two stages. The output switches were modified to increase maximum output voltages, and a new, second output switch with asymmetric breakdown characteristics was developed. To avoid degradation of the second-pulse output waveform at the diode, a keep-alive circuit was installed. The effects of diode closure on double-pulse operation are also discussed.

  10. Generation of nanosecond neutron pulses in vacuum accelerating tubes

    NASA Astrophysics Data System (ADS)

    Didenko, A. N.; Shikanov, A. E.; Rashchikov, V. I.; Ryzhkov, V. I.; Shatokhin, V. L.

    2014-06-01

    The generation of neutron pulses with a duration of 1-100 ns using small vacuum accelerating tubes is considered. Two physical models of acceleration of short deuteron bunches in pulse neutron generators are described. The dependences of an instantaneous neutron flux in accelerating tubes on the parameters of pulse neutron generators are obtained using computer simulation. The results of experimental investigation of short-pulse neutron generators based on the accelerating tube with a vacuum-arc deuteron source, connected in the circuit with a discharge peaker, and an accelerating tube with a laser deuteron source, connected according to the Arkad'ev-Marx circuit, are given. In the experiments, the neutron yield per pulse reached 107 for a pulse duration of 10-100 ns. The resultant experimental data are in satisfactory agreement with the results of computer simulation.

  11. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Shalloo, R. J.; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S. M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150-170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  12. Operational Characteristics of an SCR-Based Pulse Generating Circuit

    DTIC Science & Technology

    2014-12-01

    of the SCR in such a. circuit was investigated and the values of load resistance and capacitance varied to ascertain their role on the pulse-generat...circuit was investigated and the values of load resistance and capacitance varied to ascertain their role on the pulse-generating capability of the...19 A. REVERSE CURRENT OBSERVATIONS DURING SWITCHING .......19 B. EFFECT OF CAPACITANCE ON PULSING

  13. Simple Arduino based pulse generator design for electroporation

    NASA Astrophysics Data System (ADS)

    Sulaeman, Muhammad Yangki; Widita, Rena

    2015-09-01

    This research will discuss the design of electroporation generator using Arduino as the pulse controller. The pulse parameters are the most important thing in electroporation method, therefore many researches aimed to produce generator to control its parameters easily. Arduino will be used as the microcontroller to create low amplitude signal trigger to get the high voltage pulse for electroporation. 124.4 VDC will be used and tested in cuvette contained NaCl solution with various concentration between 0% - 1%.

  14. Ultrashort-pulse laser generated nanoparticles of energetic materials

    SciTech Connect

    Welle, Eric J.; Tappan, Alexander S.; Palmer, Jeremy A.

    2010-08-03

    A process for generating nanoscale particles of energetic materials, such as explosive materials, using ultrashort-pulse laser irradiation. The use of ultrashort laser pulses in embodiments of this invention enables one to generate particles by laser ablation that retain the chemical identity of the starting material while avoiding ignition, deflagration, and detonation of the explosive material.

  15. Vibration generation in a pulse tube refrigerator

    NASA Astrophysics Data System (ADS)

    Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.

    2009-01-01

    The cold head of a pulse tube refrigerator does not contain moving parts, therefore, is traditionally thought of as producing low vibration and having extended lifespan. Thus, such cryogenic engines are especially attractive for use in vibration-sensitive instrumentation, such as scanning electron microscopes, superconductive quantum interference devices, etc. However, even relatively low-level vibration of a pulse tube, resulting from oscillation of a gas pressure, may be excessive for the above vibration-sensitive OEM instrumentation. By making use of the finite element analysis and the full-scale experimentation, the authors identify the sources of a pulse tube vibration.

  16. Synchronous pulse generation in a multicavity fiber laser system

    NASA Astrophysics Data System (ADS)

    Gómez-Pavón, L. C.; Martí-Panameño, E.; Gómez-de la Fuente, O.; Luis-Ramos, A.

    2006-09-01

    We report the experimental synchronous pulse generation in a multicavity fiber laser system with two Erbium-doped fiber laser cavities. We have demonstrated that through the evanescent fields interaction between one cavity with active modulation and other one in continuous wave it is possible to generate more intense pulses in both cavities. Moreover, the synchronous pulse generation between cavities is achieved with an appropriate selection of pump intensity, modulation frequency and coupling ratio. We found that the pulse intensity is 2.5 times greater and the pulse duration lowers than a single Erbium-doper fiber laser. Furthermore, by means of the synchronous diagram we determined the synchronization strength in temporal pulse emission between cavities.

  17. Development of Inductive Storage Pulsed Power Generators.

    DTIC Science & Technology

    1988-04-06

    in the capacitor bank is transferred to a vacuum storage inductor in 20 A. Wire fuses provide the first stage of pulse compression. Further pulse ...Introduction contained within a pressurized gas enclosure, a vacuum flashover closing switch that can be Inductive energy storage in combination command or self...contains the vacuum accomplished by a sequence of opening switches flashover switch (VFS), the vacuum opening svitcn electrically in parallel with each

  18. Enhancement of Neuromodulation with Novel Pulse Shapes Generated by Controllable Pulse Parameter Transcranial Magnetic Stimulation

    PubMed Central

    Goetz, Stefan M.; Luber, Bruce; Lisanby, Sarah H.; Murphy, David L. K.; Kozyrkov, I. Cassie; Grill, Warren M.; Peterchev, Angel V.

    2017-01-01

    Background Standard repetitive transcranial magnetic stimulation (rTMS) devices generate bidirectional biphasic sinusoidal pulses that are energy efficient, but may be less effective than monophasic pulses that induce a more unidirectional electric field. To enable pulse shape optimization, we developed a controllable pulse parameter TMS (cTMS) device. Objective We quantified changes in cortical excitability produced by conventional sinusoidal bidirectional pulses and by three rectangular-shaped cTMS pulses, one bidirectional and two unidirectional (in opposite directions), and compared their efficacy in modulating motor evoked potentials (MEPs) produced by stimulation of motor cortex. Methods Thirteen healthy subjects completed four sessions of 1 Hz rTMS of the left motor cortex. In each session, the rTMS electric field pulse had one of the four shapes. Excitability changes due to rTMS were measured by applying probe TMS pulses before and after rTMS, and comparing resultant MEP amplitudes. Separately, we measured the latency of the MEPs evoked by each of the four pulses. Results While the three cTMS pulses generated significant mean inhibitory effects in the subject group, the conventional biphasic cosine pulses did not. The strongest inhibition resulted from a rectangular unidirectional pulse with dominant induced current in the posterior–anterior direction. The MEP latency depended significantly on the pulse shape. Conclusions The pulse shape is an important factor in rTMS-induced neuromodulation. The standard cosine biphasic pulse showed the smallest effect on cortical excitability, while the greatest inhibition was observed for an asymmetric, unidirectional, rectangular pulse. Differences in MEP latency across the various rTMS pulse shapes suggest activation of distinct subsets of cortical microcircuitry. PMID:26460199

  19. Control System for the LLNL Kicker Pulse Generator

    SciTech Connect

    Watson, J A; Anaya, R M; Cook, E G; Lee, B S; Hawkins, S A

    2002-06-18

    A solid-state high voltage pulse generator with multi-pulse burst capability, very fast rise and fall times, pulse width agility, and amplitude modulation capability for use with high speed electron beam kickers has been designed and tested at LLNL. A control system calculates a desired waveform to be applied to the kicker based on measured electron beam displacement then adjusts the pulse generators to provide the desired waveform. This paper presents the design of the control system and measure performance data from operation on the ETA-11 accelerator at LLNL.

  20. Optical pulse generation system for the National Ignition Facility (NIF)

    SciTech Connect

    Penko, F; Braucht,; Browning, D; Crane, J K; Dane, B; Deadrick, F; Dreifuerst, G; Henesian, M; Jones, B A; Kot, L; Laumann, C; Martinez, M; Moran, B; Rothenberg, J E; Skulina, K; Wilcox, R B

    1998-06-18

    We describe the Optical Pulse Generation (OPG) system for the National Ignition Facility ( NIF ). The OPG system begins with the Master Oscillator Room ( MOR ) where the initial, seed pulse for the entire laser system is produced and properly formatted to enhance ignition in the target. The formatting consists of temporally shaping the pulse and adding additional bandwidth to increase the coupling of the laser generated x-rays to the high density target plasma. The pulse produced in the MOR fans out to 48 identical preamplifier modules where it is amplified by a factor of ten billion and spatially shaped for injection into the 192 main amplifier chai

  1. Deletion of Vax1 from Gonadotropin-Releasing Hormone (GnRH) Neurons Abolishes GnRH Expression and Leads to Hypogonadism and Infertility.

    PubMed

    Hoffmann, Hanne M; Trang, Crystal; Gong, Ping; Kimura, Ikuo; Pandolfi, Erica C; Mellon, Pamela L

    2016-03-23

    Hypothalamic gonadotropin-releasing hormone (GnRH) neurons are at the apex of the hypothalamic-pituitary-gonadal axis that regulates mammalian fertility. Herein we demonstrate a critical role for the homeodomain transcription factor ventral anterior homeobox 1 (VAX1) in GnRH neuron maturation and show that Vax1 deletion from GnRH neurons leads to complete infertility in males and females. Specifically, global Vax1 knock-out embryos had normal numbers of GnRH neurons at 13 d of gestation, but no GnRH staining was detected by embryonic day 17. To identify the role of VAX1 specifically in GnRH neuron development,Vax1(flox)mice were generated and lineage tracing performed in Vax1(flox/flox):GnRH(cre):RosaLacZ mice. This identified VAX1 as essential for maintaining expression of Gnrh1 The absence of GnRH staining in adult Vax1(flox/flox):GnRH(cre)mice led to delayed puberty, hypogonadism, and infertility. To address the mechanism by which VAX1 maintains Gnrh1 transcription, the capacity of VAX1 to regulate Gnrh1 transcription was evaluated in the GnRH cell lines GN11 and GT1-7. As determined by luciferase and electrophoretic mobility shift assays, we found VAX1 to be a direct activator of the GnRH promoter through binding to four ATTA sites in the GnRH enhancer (E1) and proximal promoter (P), and able to compete with the homeoprotein SIX6 for occupation of the identified ATTA sites in the GnRH promoter. We conclude that VAX1 is expressed in GnRH neurons where it is required for GnRH neuron expression of GnRH and maintenance of fertility in mice. Infertility classified as idiopathic hypogonadotropic hypogonadism (IHH) is characterized by delayed or absent sexual maturation and low sex steroid levels due to alterations in neuroendocrine control of the hypothalamic-pituitary-gonadal axis. The incidence of IHH is 1-10 cases per 100,000 births. Although extensive efforts have been invested in identifying genes giving rise to IHH, >50% of cases have unknown genetic origins

  2. Cavity Optical Pulse Extraction: ultra-short pulse generation as seeded Hawking radiation.

    PubMed

    Eilenberger, Falk; Kabakova, Irina V; de Sterke, C Martijn; Eggleton, Benjamin J; Pertsch, Thomas

    2013-01-01

    We show that light trapped in an optical cavity can be extracted from that cavity in an ultrashort burst by means of a trigger pulse. We find a simple analytic description of this process and show that while the extracted pulse inherits its pulse length from that of the trigger pulse, its wavelength can be completely different. Cavity Optical Pulse Extraction is thus well suited for the development of ultrashort laser sources in new wavelength ranges. We discuss similarities between this process and the generation of Hawking radiation at the optical analogue of an event horizon with extremely high Hawking temperature. Our analytic predictions are confirmed by thorough numerical simulations.

  3. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    SciTech Connect

    Ma, Guangjin; Dallari, William; Borot, Antonin; Tsakiris, George D.; Veisz, Laszlo; Krausz, Ferenc; Yu, Wei

    2015-03-15

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.

  4. New Insights into the Control of Pulsatile GnRH Release: The Role of Kiss1/Neurokinin B Neurons

    PubMed Central

    Navarro, Víctor M.

    2012-01-01

    Gonadotropin-releasing hormone (GnRH) is the ultimate output signal of an intricate network of neuroendocrine factors that, acting on the pituitary, trigger gonadotropin release. In turn, gonadotropins exert their trophic action on the gonads to stimulate the synthesis of sex steroids thus completing the gonadotropic axis through feedback regulatory mechanisms of GnRH release. These feedback loops are predominantly inhibitory in both sexes, leading to tonic pulsatile release of GnRH from puberty onward. However, in the female, rising levels of estradiol along the estrous cycle evoke an additional positive feedback that prompts a surge-like pattern of GnRH release prior to ovulation. Kisspeptins, secreted from hypothalamic Kiss1 neurons, are poised as major conduits to regulate this dual secretory pathway. Kiss1 neurons are diverse in origin, nature, and function, convening distinct neuronal populations in two main hypothalamic nuclei: the arcuate nucleus (ARC) and the anteroventral periventricular nucleus. Recent studies from our group and others point out Kiss1 neurons in the ARC as the plausible generator of GnRH pulses through a system of pulsatile kisspeptin release shaped by the coordinated action of neurokinin B (NKB) and dynorphin A (Dyn) that are co-expressed in Kiss1 neurons (so-called KNDy neurons). In this review, we aim to document the recent findings and working models directed toward the identification of the Kiss1-dependent mechanisms of GnRH release through a synoptic overview of the state-of-the-art in the field. PMID:22649420

  5. Optically generated terahertz pulses with strong quasistatic precursors

    NASA Astrophysics Data System (ADS)

    Bakunov, M. I.; Maslov, A. V.; Tsarev, M. V.

    2017-06-01

    We found theoretically that optical rectification of an ultrashort laser pulse in an electro-optic crystal can produce a terahertz pulse with a quasistatic electromagnetic precursor propagating ahead of the pulse. The strengths of the electric and magnetic fields in the precursor can be comparable to those in the main terahertz pulse. This effect occurs if the pump optical pulse is intense enough to produce two-photon or multiphoton ionization in the crystal. The precursor is generated by the current of the optically created carriers, which are accelerated by the electric field of the terahertz pulse. The optically generated strong quasistatic precursors can be used for particle acceleration, control of magnetic materials, and in streaking techniques.

  6. A Nanosecond Pulse Generator for Spark Chambers,

    DTIC Science & Technology

    1979-12-04

    nsec. The generator consists of an Arkad’yev- Marx generator (impulse voltage generator - GIN), a stor- age capacitor and discharge chamber (nanosecond...the generator is given in fig. 2. El. Fig. 1. Generator circuit diagram. 1 - NOM-10 transformer; 2 - filament transformer; 3 - Arkad’yev- Marx ...charge circuit abcd, the primary current will initially be given to the load by Cg, not by the surge capacitance of the Arkad’yev- Marx generator. The

  7. Design and Test of a Continuous Duty Pulsed AC Generator

    DTIC Science & Technology

    1991-06-01

    DESIGN AND TEST OF A CONTINUOUS DUTY PULSED AC GENERATOR* R. M. Calfo, D. J . Scott , and D. W. Scherbarth Westinghouse Electric Corporation...Proceedings of the 19th Power Modulator Symposium, June 26-28, 1990, San Diego, CA. Dennis J . Scott and Raymond M. Calfo, •Synchronous Machines for...Pulsed Power Applications,• Seventh IEEE Pulsed Power Conference, June 11-14, 1989, Monterey, CA. D. J . Scott , R. M. Calfo, H. R. Schwenk

  8. Multiwavelength ultrashort pulse generator using a diverging time-lens

    NASA Astrophysics Data System (ADS)

    Jiang, Xiangyu; Huo, Li; Wang, Dong; Chen, Xin; Lou, Caiyun

    2015-12-01

    A self-starting optoelectronic oscillator that employs a diverging time lens and a Mach-Zehnder modulator (MZM) in a fiber-extended cavity to generate a multiwavelength ultrashort pulse train is demonstrated. The switching window formed by the MZM is narrowed by the use of a diverging time lens, which is a phase modulator in our study. A wavelength assignment scheme is deployed to simultaneously suppress the pedestals of pulses on different wavelengths. A detailed analysis is given, and the results are presented by experiment. We have generated 25 GHz optical pulses simultaneously on four wavelengths as a proof-of-concept demonstration. The pulse width of the optical pulse, the phase noise, and the timing jitter performance of the generated microwave signal are experimentally measured.

  9. The effects of magnetic resonance imaging on implantable pulse generators.

    PubMed

    Holmes, D R; Hayes, D L; Gray, J E; Merideth, J

    1986-05-01

    The effects of magnetic resonance imaging were assessed on four dual chamber and two single chamber pulse generators. The tests were performed with a resistive, water-cooled magnet operating at 0.15 T. The 6.4-MHz radiofrequency (RF) field was operated at a maximum power of 1,000 watts with a period adjusted from 130 to 500 ms. Reed switch closure occurred in all six pulse generators tested when placed near the entrance of the magnetic resonance imaging scanner, and the generators reverted to asynchronous operation unless programmed to the "magnet off" mode. None of the pulse generators exhibited any alterations in programmed parameters or in the ability to be reprogrammed after RF pulsing. When the RF field was turned on, there was no change in the asynchronous paced cycle length in four pulse generators; however, during RF scanning there was rapid cardiac stimulation at the RF pulse period in one single chamber and one dual chamber pulse generator.

  10. Compact pulsed electron beam system for microwave generation

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Deb, P.; Shukla, R.; Banerjee, P.; Prabaharan, T.; Adhikary, B.; Verma, R.; Sharma, A.; Shyam, A.

    2012-11-01

    A compact 180 kV electron beam system is designed for high power microwave generation. The electron beam system is consists of a secondary energy storage device, which can deliver energy to the load at faster rate than usual primary energy storage system such as tesla transformers or marx generator. The short duration, high voltage pulse with fast rise time and good flattop is applied to vacuum diode for high power microwave generation. The compact electron beam system is made up of single turn primary tesla transformer which charges a helical pulse forming line and transfers its energy to vacuum diode through a high voltage pressurized spark gap switch. We have used helical pulse forming line which has higher inductance as compared to coaxial pulse forming line, which in turns increases, the pulse width and reduce the length of the pulse forming line. Water dielectric medium is used because of its high dielectric constant, high dielectric strength and efficient energy storage capability. The time dependent breakdown property and high relative permittivity of water makes it an ideal choice for this system. The high voltage flat-top pulse of 90 kV, 260 ns is measured across the matched load. In this article we have reported the design details, simulation and initial experimental results of 180 kV pulsed electron beam system for high power microwave generation.

  11. Nyquist pulse generator by techniques of frequency synthetization

    NASA Astrophysics Data System (ADS)

    Guo, Cheng; Yang, Tianxin; Lu, Zhaoyu; Ge, Chunfeng; Wang, Zhaoying

    2017-02-01

    Nyquist pulses, which are defined as responses of Nyquist filter, can be used in time-division multiplexing transmission which can simultaneously achieve ultrahigh data rate and spectral efficiency (SE). Generally, the methods for Nyquist pulse generation are based on optical Nyquist filters, nonlinear effects in fiber and phase-locked frequency comb. In this paper, we focus on the third method of phase-locked frequency comb. However, this method has a problem which the large duty cycle of generated Nyquist pulses limits their applications. To address this issue, we proposed a new setup in which one optical intensity modulator and an electrical arbitrary function generator (AFG) are employed. The various duty cycles of ideal Nyquist pulses are generated using one optical intensity modulator so that the phase-locking between the different RF signals is no need any more. And the ideal Nyquist pulses in microwave domain are generated successfully. The duty cycles ranging from 21% to 11% are obtained by programming the number of frequency comb lines in the RF signal which is generated by the AFG. The method has a potential to generate ideal Nyquist pulses in radio frequency domain if a high bandwidth AFG is used to replace the low bandwidth AFG used in this paper.

  12. Methods of Attosecond X-Ray Pulse Generation

    SciTech Connect

    Zholents, Alexander

    2005-05-08

    We review several proposals for generation of solitary attosecond pulses using two types of free electron lasers which are envisioned as future light sources for studies of ultra-fast dynamics using soft and hard x-rays.

  13. Plasma generated during underwater pulsed laser processing

    NASA Astrophysics Data System (ADS)

    Hoffman, Jacek; Chrzanowska, Justyna; Moscicki, Tomasz; Radziejewska, Joanna; Stobinski, Leszek; Szymanski, Zygmunt

    2017-09-01

    The plasma induced during underwater pulsed laser ablation of graphite is studied both experimentally and theoretically. The results of the experiment show that the maximum plasma temperature of 25000 K is reached 20 ns from the beginning of the laser pulse and decreases to 6500 K after 1000 ns. The observed OH absorption band shows that the plasma plume is surrounded by the thin layer of dissociated water vapour at a temperature around 5500 K. The hydrodynamic model applied shows similar maximum plasma temperature at delay times between 14 ns and 30 ns. The calculations show also that already at 14th ns, the plasma electron density reaches 0.97·1027 m-3, which is the critical density for 1064 nm radiation. At the same time the plasma pressure is 2 GPa, which is consisted with earlier measurements of the peak pressure exerted on a target in similar conditions.

  14. Pulse transmission receiver with higher-order time derivative pulse generator

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-08-12

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a front-end amplification/processing circuit; a synchronization circuit coupled to the front-end amplification/processing circuit; a clock coupled to the synchronization circuit; a trigger signal generator coupled to the clock; and at least one higher-order time derivative pulse generator coupled to the trigger signal generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  15. System for generating shaped optical pulses and measuring optical pulses using spectral beam deflection (SBD)

    DOEpatents

    Skupsky, S.; Kessler, T.J.; Letzring, S.A.

    1993-11-16

    A temporally shaped or modified optical output pulse is generated from a bandwidth-encoded optical input pulse in a system in which the input pulse is in the form of a beam which is spectrally spread into components contained within the bandwidth, followed by deflection of the spectrally spread beam (SBD) thereby spatially mapping the components in correspondence with the temporal input pulse profile in the focal plane of a lens, and by spatially selective attenuation of selected components in that focal plane. The shaped or modified optical output pulse is then reconstructed from the attenuated spectral components. The pulse-shaping system is particularly useful for generating optical pulses of selected temporal shape over a wide range of pulse duration, such pulses finding application in the fields of optical communication, optical recording and data storage, atomic and molecular spectroscopy and laser fusion. An optical streak camera is also provided which uses SBD to display the beam intensity in the focal plane as a function of time during the input pulse. 10 figures.

  16. System for generating shaped optical pulses and measuring optical pulses using spectral beam deflection (SBD)

    DOEpatents

    Skupsky, Stanley; Kessler, Terrance J.; Letzring, Samuel A.

    1993-01-01

    A temporally shaped or modified optical output pulse is generated from a bandwidth-encoded optical input pulse in a system in which the input pulse is in the form of a beam which is spectrally spread into components contained within the bandwidth, followed by deflection of the spectrally spread beam (SBD) thereby spatially mapping the components in correspondence with the temporal input pulse profile in the focal plane of a lens, and by spatially selective attenuation of selected components in that focal plane. The shaped or modified optical output pulse is then reconstructed from the attenuated spectral components. The pulse-shaping system is particularly useful for generating optical pulses of selected temporal shape over a wide range of pulse duration, such pulses finding application in the fields of optical communication, optical recording and data storage, atomic and molecular spectroscopy and laser fusion. An optical streak camera is also provided which uses SBD to display the beam intensity in the focal plane as a function of time during the input pulse.

  17. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network

    SciTech Connect

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-15

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  18. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network.

    PubMed

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-01

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  19. Recent progress in picosecond pulse generation from semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Auyeung, J. C.; Johnston, A. R.

    1982-01-01

    This paper reviews the recent progress in producing picosecond optical pulses from semiconductor laser diodes. The discussion concentrates on the mode-locking of a semiconductor laser diode in an external resonator. Transform-limited optical pulses ranging from several picoseconds to subpicosecond durations have been observed with active and passive mode-locking. Even though continuing research on the influence of impurities and defects on the mode-locking process is still needed, this technique has good promise for being utilized in fiber-optic communication systems. Alternative methods of direct electrical and optical excitation to produce ultrashort laser pulses are also described. They can generate pulses of similar widths to those obtained by mode-locking. The pulses generated will find applications in laser ranging and detector response measurement.

  20. Recent progress in picosecond pulse generation from semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Auyeung, J. C.; Johnston, A. R.

    1982-01-01

    This paper reviews the recent progress in producing picosecond optical pulses from semiconductor laser diodes. The discussion concentrates on the mode-locking of a semiconductor laser diode in an external resonator. Transform-limited optical pulses ranging from several picoseconds to subpicosecond durations have been observed with active and passive mode-locking. Even though continuing research on the influence of impurities and defects on the mode-locking process is still needed, this technique has good promise for being utilized in fiber-optic communication systems. Alternative methods of direct electrical and optical excitation to produce ultrashort laser pulses are also described. They can generate pulses of similar widths to those obtained by mode-locking. The pulses generated will find applications in laser ranging and detector response measurement.

  1. Characteristics of pulse width for an enhanced second harmonic generation

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Hyodo, Masaharu; Okada-Shudo, Yoshiko; Zhu, Yun; Wang, Xiaoyang; Zhu, Yong; Wang, Guiling; Chen, Chuangtian; Watanabe, Shuntaro; Watanabe, Masayoshi

    2017-03-01

    Temporal characteristics of a cavity enhancement second harmonic (SH) generation for picosecond laser pulse are investigated. We experimentally measured pulse width changes that were indued by group velocity mismatching (GVM), SH process, and enhancement cavity. It indicates that the generated pulse width is a combined effect of the GVM and SH process. Meanwhile, the effect of the enhancement cavity can be avoided by controlling its free spectrum range. A interferometric autocorrelator with a KBBF-PCD as nonlinear crystal is also composed and this extends the measurement light wavelength below 410 nm.

  2. Pulsed electron beam generator for application in materials science

    NASA Astrophysics Data System (ADS)

    Geerk, J.; Ratzel, F.

    1980-08-01

    A pulsed electron beam generator for the purpose of transient annealing was developed. The principle of operation of the generator is the production of an electron beam by means of a triggered vacuum discharge burning between metallic electrodes. The maximum energy of the electrons of a pulsed beam may be varied between 10 keV and 25 keV. The pulse length is about 300 nsec. The energy density at the sample location can be easily adjusted between 0.3 and 2.5 Joules/cm(2). The diameter of the electron beam is about 5 cm.

  3. Cochlear microphonics generated by microwave pulses.

    PubMed

    Chou, C; Galambos, R; Guy, A W; Lovely, R H

    1975-12-01

    Oscillations at 50 kHz have been recorded from the round window of guinea pigs during irradiation by 918-MHz pulsed microwaves. The oscillations promptly follow the stimulas, outlast it by about 200 musec and measure to 50 muV in amplitude. They precede the auditory nerve's response and disappear with death. They are interpreted to be a cochlear microphonic and hence to demonstrate that the microwave auditory effect, in the guinea pig at least, is accompanied by a mechanical disturbance of the hari cells of the cochlea.

  4. Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification.

    PubMed

    Wenger, Jérôme; Tualle-Brouri, Rosa; Grangier, Philippe

    2004-06-01

    A new scheme is described for the generation of pulsed squeezed light by use of femtosecond pulses that have been parametrically deamplified through a single pass in a thin (100-microm) potassium niobate crystal with a significant deamplification of approximately -3 dB. The quantum noise of each pulse is registered in the time domain by single-shot homodyne detection operated with femtosecond pulses; the best squeezed quadrature variance was 1.87 dB below the shot-noise level. Such a scheme provides a basic resource for time-resolved quantum communication protocols.

  5. Generation of strong pulsed magnetic fields using a compact, short pulse generator

    SciTech Connect

    Yanuka, D.; Efimov, S.; Nitishinskiy, M.; Rososhek, A.; Krasik, Ya. E.

    2016-04-14

    The generation of strong magnetic fields (∼50 T) using single- or multi-turn coils immersed in water was studied. A pulse generator with stored energy of ∼3.6 kJ, discharge current amplitude of ∼220 kA, and rise time of ∼1.5 μs was used in these experiments. Using the advantage of water that it has a large Verdet constant, the magnetic field was measured using the non-disturbing method of Faraday rotation of a polarized collimated laser beam. This approach does not require the use of magnetic probes, which are sensitive to electromagnetic noise and damaged in each shot. It also avoids the possible formation of plasma by either a flashover along the conductor or gas breakdown inside the coil caused by an induced electric field. In addition, it was shown that this approach can be used successfully to investigate the interesting phenomenon of magnetic field enhanced diffusion into a conductor.

  6. Generation of strong pulsed magnetic fields using a compact, short pulse generator

    NASA Astrophysics Data System (ADS)

    Yanuka, D.; Efimov, S.; Nitishinskiy, M.; Rososhek, A.; Krasik, Ya. E.

    2016-04-01

    The generation of strong magnetic fields (˜50 T) using single- or multi-turn coils immersed in water was studied. A pulse generator with stored energy of ˜3.6 kJ, discharge current amplitude of ˜220 kA, and rise time of ˜1.5 μs was used in these experiments. Using the advantage of water that it has a large Verdet constant, the magnetic field was measured using the non-disturbing method of Faraday rotation of a polarized collimated laser beam. This approach does not require the use of magnetic probes, which are sensitive to electromagnetic noise and damaged in each shot. It also avoids the possible formation of plasma by either a flashover along the conductor or gas breakdown inside the coil caused by an induced electric field. In addition, it was shown that this approach can be used successfully to investigate the interesting phenomenon of magnetic field enhanced diffusion into a conductor.

  7. Programmable Pulse Generator for Aditya Gas Puffing System

    NASA Astrophysics Data System (ADS)

    Patel, Narendra; Chavda, Chhaya; Bhatt, S. B.; Chattopadhyay, Prabal; Saxena, Y. C.

    2012-11-01

    In the Aditya Tokamak, one of primary requirement for plasma generation is to feed the required quantity of the fuel gas prior to plasma shot. Gas feed system mainly consists of piezoelectric gas leak valve and gas reservoir. The Hydrogen gas is prior to 300ms loop voltage for the duration of 4 msec to 7 msec. Gas is puffed during the shot for required plasma parameters and to increase plasma density using the same system. The valve is controlled by either continuous voltage or pulses of different width, amplitude and delay with respect to loop voltage. These voltage pulses are normally applied through standard pulse generator. The standard pulse generator is replaced by micro controller based in housed developed programmable pulse generator system consists of in built power supply, BNC input for external trigger, BNC output and serial interface. This programmable pulse generator is successfully tested and is in operation for gas puffing during ADITYA Tokamak experiments. The paper discusses the design and development aspect of the system.

  8. [Cell membrane electroporator with digital generation of random shaped pulses].

    PubMed

    Iakovenko, S A; Trubitsin, B V

    2003-01-01

    A Digital Poration System (DPS), a versatile device for electrotreatment of biological objects by electric field pulses; was designed, constructed, and implemented. A feature distinguishing DPS from the currently available electroporators based on capacitor discharge through the load is the use of a digital-to-analog converter card as a generator of pulses applied for electroporation of biological membranes, with further amplification of the pulse by both voltage and current. The shape of pulses, including bipolar pulses, is arbitrarily programmable in DPS unlike other electroporators providing exponentially decaying and square-wave pulses only. Thus, the application area of DPS is substantially extended. In DPS, many of the drawbacks inherent in capacitor electroporators are removed, including the need for an additional external pulse analyzer monitoring and logging the electroporation processes, the necessity to recharge the capacitor before any new pulse, a poor precision of setting and measuring the pulse parameters, the need for an additional generator of long-lasting low-voltage signals for electrophoresis of ions into the porated object, the need for additional AC generators for the alignment of cells before, after, and during electroporation, and the need for an additional microprocessor to control multi-pulse and/or repetitive protocols. DPS provides a slew rate of about 1 V/1 ns required for the electroporation of most mammalian somatic cells, with +/- 250 V output voltage and 500 Ohm load resistance. The application area of DPS is much wider than for the available porators. It includes electrochemotherapy, cell electrofusion, oocyte activation by mimicking calcium waves (the latter two are the crucial components of mammalian organism cloning technology), dielectrophoretic bunching and orientation ordering of cells, sorting of cells, and electrophoresis of charged species into the cells.

  9. Generation of frequency-chirped optical pulses with felix

    SciTech Connect

    Knippels, G.M.H.; Meer, A.F.G. van der; Mols, R.F.X.A.M.

    1995-12-31

    Frequency-chirped optical pulses have been produced in the picosecond regime by varying the energy of the electron beam on a microsecond time scale. These pulses were then compressed close to their bandwidth limit by an external pulse compressor. The amount of chirp can be controlled by varying the sweep rate on the electron beam energy and by cavity desynchronisation. To examine the generated chirp we used the following diagnostics: a pulse compressor, a crossed beam autocorrelator, a multichannel electron spectrometer and multichannel optical spectrometer. The compressor is build entirely using reflective optics to permit broad band operation. The autocorrelator is currently operating from 6 {mu}m to 30 {mu}m with one single crystal. It has been used to measure pulses as short as 500 fs. All diagnostics are evacuated to prevent pulse shape distortion or pulse lengthening caused by absorption in ambient water vapour. Pulse length measurements and optical spectra will be presented for different electron beam sweep rates, showing the presence of a frequency chirp. Results on the compression of the optical pulses to their bandwidth limit are given for different electron sweep rates. More experimental results showing the dependence of the amount of chirp on cavity desynchronisation will be presented.

  10. High Intensity, Pulsed, D-D Neutron Generator

    SciTech Connect

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, B. A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2009-03-10

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 10{sup 10} n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  11. High Intensity, Pulsed, D-D Neutron Generator

    SciTech Connect

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, Bernhard A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2008-08-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1E10 n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  12. High Intensity, Pulsed, D-D Neutron Generator

    NASA Astrophysics Data System (ADS)

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, B. A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2009-03-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1010 n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  13. Efficient Generation of Visible Femtosecond Pulses by Frequency Doubling

    NASA Astrophysics Data System (ADS)

    Wang, Guo (Gary) Yao

    In principle, second harmonic generation (SHG) can convert near-infrared femtosecond mode-locked pulses into visible and UV regions. However, the finite phase matching bandwidth makes it difficult to simultaneously phase match the entire pulse spectrum. Effects such as peak power saturation and pulse broadening arise as the length of a frequency-doubling crystal increases. To avoid these problems, very thin crystals have to be used, which results in low conversion efficiency unless the laser intensity is very high. Two new approaches based on quasi-phase match and traditional Cerenkov SHG are proposed in this thesis. In the former scheme, proper design provides the requisite delay of the fundamental pulses, resulting in simultaneous phase and group velocity matches. The latter scheme makes use of the auto-phase matching property of Cerenkov SHG to phase match the whole pulse spectrum. The stretched output pulses are compressed by a dispersion element, such as a prism or a grating. Pulse width preservation and high efficiency are thus expected from low pump power. Experiments to conform the latter proposal were conducted. Proton-exchanged MgO doped LiNbO_3 Cerenkov waveguides were used to double the frequency of a femtosecond Ti:sapphire laser. 25 mW blue harmonic pulses were generated from only 50 mW input. A diffraction grating compressed the stretched 2 psec pulses back to 300 fsec. The device is easy to make and to use. The concept presented can be extended to femtosecond pulses in any three-photon process in any waveguide material and any modelocked source.

  14. Generation of coherent terahertz pulses in ruby at room temperature

    SciTech Connect

    Kuznetsova, Elena; Rostovtsev, Yuri; Kalugin, Nikolai G.; Kolesov, Roman; Kocharovskaya, Olga; Scully, Marlan O.

    2006-08-15

    We have shown that a coherently driven solid state medium can potentially produce strong controllable short pulses of THz radiation. The high efficiency of the technique is based on excitation of maximal THz coherence by applying resonant optical pulses to the medium. The excited coherence in the medium is connected to macroscopic polarization coupled to THz radiation. We have performed detailed simulations by solving the coupled density matrix and Maxwell equations. By using a simple V-type energy scheme for ruby, we have demonstrated that the energy of generated THz pulses ranges from hundreds of pico-Joules to nano-Joules at room temperature and micro-Joules at liquid helium temperature, with pulse durations from picoseconds to tens of nanoseconds. We have also suggested a coherent ruby source that lases on two optical wavelengths and simultaneously generates THz radiation. We discussed also possibilities of extension of the technique to different solid-state materials.

  15. Further Methods for the Generation of Ultrashort Optical Pulses

    NASA Astrophysics Data System (ADS)

    Hirlimann, C.

    Up to the beginning of the sixties, the shortest measurable time duration was of the order of one nanosecond (10-9 s). Short pulses were produced through the generation of short electrical discharges. After the laser was invented in 1960, the situation quite rapidly changed. In 1965, the picosecond (10-12 s) regime was reached by placing a saturable absorber inside a laser cavity. Twenty years of continuous progress led to the production of light pulses of less than 10 femtoseconds. In the race towards ever shorter pulses, recent developments in the generation of tabletop X-ray lasers have opened the way to dynamical studies in the attosecond (10-18 s)regime [4.1-2]. In the meantime, progress was made on the tunability of the pulsed-laser sources. Today's tunability extends from the near ultraviolet to the near infrared [4.2-6].

  16. Generation of ultrashort electron bunches by colliding laser pulses.

    PubMed

    Schroeder, C B; Lee, P B; Wurtele, J S; Esarey, E; Leemans, W P

    1999-05-01

    A proposed laser-plasma-based relativistic electron source [E. Esarey et al., Phys. Rev. Lett. 79, 2682 (1997)] using laser-triggered injection of electrons is investigated. The source generates ultrashort electron bunches by dephasing and trapping background plasma electrons undergoing fluid oscillations in an excited plasma wake. The plasma electrons are dephased by colliding two counterpropagating laser pulses which generate a slow phase velocity beat wave. Laser pulse intensity thresholds for trapping and the optimal wake phase for injection are calculated. Numerical simulations of test particles, with prescribed plasma and laser fields, are used to verify analytic predictions and to study the longitudinal and transverse dynamics of the trapped plasma electrons. Simulations indicate that the colliding laser pulse injection scheme has the capability to produce relativistic femtosecond electron bunches with fractional energy spread of order a few percent and normalized transverse emittance less than 1 mm mrad using 1 TW injection laser pulses.

  17. Pulse generator with intermediate inductive storage as a lightning simulator.

    PubMed

    Kovalchuk, B M; Kharlov, A V; Zherlytsyn, A A; Kumpyak, E V; Tsoy, N V

    2016-06-01

    Compact transportable generators are required for simulating a lightning current pulse for electrical apparatus testing. A bi-exponential current pulse has to be formed by such a generator (with a current rise time of about two orders of magnitude faster than the damping time). The objective of this study was to develop and investigate a compact pulse generator with intermediate inductive storage and a fuse opening switch as a simulator of lightning discharge. A Marx generator (six stages) with a capacitance of 1 μF and an output voltage of 240 kV was employed as primary storage. In each of the stages, two IK-50/3 (50 kV, 3 μF) capacitors are connected in parallel. The generator inductance is 2 μH. A test bed for the investigations was assembled with this generator. The generator operates without SF6 and without oil in atmospheric air, which is very important in practice. Straight copper wires with adjustable lengths and diameters were used for the electro-explosive opening switch. Tests were made with active-inductive loads (up to 0.1 Ω and up to 6.3 μH). The current rise time is lower than 1200 ns, and the damping time can be varied from 35 to 125 μs, following the definition of standard lightning current pulse in the IEC standard. Moreover, 1D MHD calculations of the fuse explosion were carried out self-consistently with the electric circuit equations, in order to calculate more accurately the load pulse parameters. The calculations agree fairly well with the tests. On the basis of the obtained results, the design of a transportable generator was developed for a lightning simulator with current of 50 kA and a pulse shape corresponding to the IEEE standard.

  18. Pulse generator with intermediate inductive storage as a lightning simulator

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Zherlytsyn, A. A.; Kumpyak, E. V.; Tsoy, N. V.

    2016-06-01

    Compact transportable generators are required for simulating a lightning current pulse for electrical apparatus testing. A bi-exponential current pulse has to be formed by such a generator (with a current rise time of about two orders of magnitude faster than the damping time). The objective of this study was to develop and investigate a compact pulse generator with intermediate inductive storage and a fuse opening switch as a simulator of lightning discharge. A Marx generator (six stages) with a capacitance of 1 μF and an output voltage of 240 kV was employed as primary storage. In each of the stages, two IK-50/3 (50 kV, 3 μF) capacitors are connected in parallel. The generator inductance is 2 μH. A test bed for the investigations was assembled with this generator. The generator operates without SF6 and without oil in atmospheric air, which is very important in practice. Straight copper wires with adjustable lengths and diameters were used for the electro-explosive opening switch. Tests were made with active-inductive loads (up to 0.1 Ω and up to 6.3 μH). The current rise time is lower than 1200 ns, and the damping time can be varied from 35 to 125 μs, following the definition of standard lightning current pulse in the IEC standard. Moreover, 1D MHD calculations of the fuse explosion were carried out self-consistently with the electric circuit equations, in order to calculate more accurately the load pulse parameters. The calculations agree fairly well with the tests. On the basis of the obtained results, the design of a transportable generator was developed for a lightning simulator with current of 50 kA and a pulse shape corresponding to the IEEE standard.

  19. A compact bipolar pulse-forming network-Marx generator based on pulse transformers

    NASA Astrophysics Data System (ADS)

    Zhang, Huibo; Yang, Jianhua; Lin, Jiajin; Yang, Xiao

    2013-11-01

    A compact bipolar pulse-forming network (PFN)-Marx generator based on pulse transformers is presented in this paper. The high-voltage generator consisted of two sets of pulse transformers, 6 stages of PFNs with ceramic capacitors, a switch unit, and a matched load. The design is characterized by the bipolar pulse charging scheme and the compact structure of the PFN-Marx. The scheme of bipolar charging by pulse transformers increased the withstand voltage of the ceramic capacitors in the PFNs and decreased the number of the gas gap switches. The compact structure of the PFN-Marx was aimed at reducing the parasitic inductance in the generator. When the charging voltage on the PFNs was 35 kV, the matched resistive load of 48 Ω could deliver a high-voltage pulse with an amplitude of 100 kV. The full width at half maximum of the load pulse was 173 ns, and its rise time was less than 15 ns.

  20. A compact high-voltage pulse generator based on pulse transformer with closed magnetic core.

    PubMed

    Zhang, Yu; Liu, Jinliang; Cheng, Xinbing; Bai, Guoqiang; Zhang, Hongbo; Feng, Jiahuai; Liang, Bo

    2010-03-01

    A compact high-voltage nanosecond pulse generator, based on a pulse transformer with a closed magnetic core, is presented in this paper. The pulse generator consists of a miniaturized pulse transformer, a curled parallel strip pulse forming line (PFL), a spark gap, and a matched load. The innovative design is characterized by the compact structure of the transformer and the curled strip PFL. A new structure of transformer windings was designed to keep good insulation and decrease distributed capacitance between turns of windings. A three-copper-strip structure was adopted to avoid asymmetric coupling of the curled strip PFL. When the 31 microF primary capacitor is charged to 2 kV, the pulse transformer can charge the PFL to 165 kV, and the 3.5 ohm matched load can deliver a high-voltage pulse with a duration of 9 ns, amplitude of 84 kV, and rise time of 5.1 ns. When the load is changed to 50 ohms, the output peak voltage of the generator can be 165 kV, the full width at half maximum is 68 ns, and the rise time is 6.5 ns.

  1. High voltage ultrawide band pulse generator using Blumlein pulse forming line

    NASA Astrophysics Data System (ADS)

    Jin, Y. S.; Lim, S. W.; Cho, C. H.; Kim, J. S.; Kim, Y. B.; Lee, S. H.; Roh, Y.

    2012-04-01

    A high voltage ultrawide band pulse generation system has been developed to radiate intense and ultrawide band electric fields for the examination of effects of the electric fields on the operation of electronic devices. As major components of the system, a helical strip/wire type of air-cored pulse transformer and a triaxial type of Blumlein pulse forming line have been designed and fabricated to amplify and shape the output pulse, respectively. For the construction of a compact system, the pulse transformer and the Blumlein line are installed in a single cylindrical container. An ultrawide band TEM horn antenna has been fabricated to radiate the Blumlein output pulses to electronic devices. A number of experimental results demonstrate that the system is capable of providing an output pulse whose voltage is greater than 300 kV, pulse duration is ˜5 ns, and rise time is ˜500 ps with repetition rate of 10 Hz. The peak-to-peak value of electric field intensity of a radiated pulse is also measured to be approximately 42 kV/m at a distance of 10 m away from the antenna.

  2. High voltage ultrawide band pulse generator using Blumlein pulse forming line.

    PubMed

    Jin, Y S; Lim, S W; Cho, C H; Kim, J S; Kim, Y B; Lee, S H; Roh, Y

    2012-04-01

    A high voltage ultrawide band pulse generation system has been developed to radiate intense and ultrawide band electric fields for the examination of effects of the electric fields on the operation of electronic devices. As major components of the system, a helical strip∕wire type of air-cored pulse transformer and a triaxial type of Blumlein pulse forming line have been designed and fabricated to amplify and shape the output pulse, respectively. For the construction of a compact system, the pulse transformer and the Blumlein line are installed in a single cylindrical container. An ultrawide band TEM horn antenna has been fabricated to radiate the Blumlein output pulses to electronic devices. A number of experimental results demonstrate that the system is capable of providing an output pulse whose voltage is greater than 300 kV, pulse duration is ~5 ns, and rise time is ~500 ps with repetition rate of 10 Hz. The peak-to-peak value of electric field intensity of a radiated pulse is also measured to be approximately 42 kV/m at a distance of 10 m away from the antenna. © 2012 American Institute of Physics

  3. Synthesizing genetic sequential logic circuit with clock pulse generator.

    PubMed

    Chuang, Chia-Hua; Lin, Chun-Liang

    2014-05-28

    Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.

  4. Review of Inductive Pulsed Power Generators for Railguns

    NASA Astrophysics Data System (ADS)

    Liebfried, Oliver

    2017-07-01

    This literature review addresses inductive pulsed power generators and their major components. Different inductive storage designs like solenoids, toroids and force-balanced coils are briefly presented and their advantages and disadvantages are mentioned. Special emphasis is given to inductive circuit topologies which have been investigated in railgun research such as the XRAM, meat grinder or pulse transformer topologies. One section deals with opening switches as they are indispensable for inductive storages and another one deals briefly with SMES for pulsed power applications. In the end, the most relevant inductor systems which were realized in respect to railgun research are summarized in a table, together with its main characteristics.

  5. Dark pulse generation in fiber lasers incorporating carbon nanotubes.

    PubMed

    Liu, H H; Chow, K K

    2014-12-01

    We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state.

  6. Short pulse generation and high speed communication system

    NASA Astrophysics Data System (ADS)

    Fan, Honglei

    Ultrahigh-speed optical time-division-multiplexing (TDM) transmission technologies are essential to construct ultrahigh-speed all-optical networks needed in the multimedia era. In order to realize high-speed optical TDM systems, ultra-short pulses should be generated. In this dissertation, the gain switching and mode locking techniques have been analyzed and used to produce ultra- short pulses. Gain-switched pulses with a width of ~18ps have been obtained. The theoretical analysis on gain-switching phenomena has been carried out. A new approach for the simulation of the spectrum of a gain- switched laser has been developed. The principle of mode locking has been discussed. ~6.5ps, pulses have been obtained from a monolithic mode-locked distributed Bragg reflector (DBR) laser, which are the shortest pulses from the actively mode- locked DBR lasers as we know. ~1.1ps pulses have been achieved from a colliding-pulse mode-locked (CPM) laser. The operation principle of CPM lasers has been discussed. Pulse compression using dispersion-compensating fiber has been applied in order to get shorter pulses. The semiconductor optical amplifier (SOA) plays a very important role in TDM systems. The cross gain modulation (XGM) measurements on a 2-section SOA, using both cw and pulsed pump and probe beams, have been performed. A theoretical analysis has been carried out. Wavelength conversion and fiber transmission experiments have been achieved at different bit rates. The basic idea of TDM system has been discussed. Multiplexing has been achieved using fibers. Demulitplexing has been demonstrated using XGM in SOA, four-wave mixing (FWM) in SOA, and cascaded modulators. The operation principles have been discussed in detail. The FWM experiments between two optical pulses have been performed.

  7. Integrating solids and gases for attosecond pulse generation

    DOE PAGES

    Hammond, T. J.; Monchoce, Sylvain; Zhang, Chunmei; ...

    2017-08-21

    Here, control of the field of few-cycle optical pulses has had an enormous impact on attosecond science. Subcycle pulses open the potential for non-adiabatic phase matching while concentrating the electric field so it can be used most efficiently. However, subcycle field transients have been difficult to generate. We exploit the perturbative response of a sub-100 µm thick monocrystalline quartz plate irradiated by an intense few-cycle 1.8 µm pulse, which creates a phase-controlled supercontinuum spectrum. Within the quartz, the pulse becomes space–time coupled as it generates a parallel second harmonic. Vacuum propagation naturally leads to a subcycle electric-field transient whose envelopemore » is sculpted by the carrier envelope phase of the incident radiation. We show that a second medium (either gas or solid) can generate isolated attosecond pulses in the extreme ultraviolet region. With no optical elements between the components, the process is scalable to very high energy pulses and allows the use of diverse media.« less

  8. A Tesla-pulse forming line-plasma opening switch pulsed power generator

    NASA Astrophysics Data System (ADS)

    Novac, B. M.; Kumar, R.; Smith, I. R.

    2010-10-01

    A pulsed power generator based on a high-voltage Tesla transformer which charges a 3.85 Ω/55 ns water-filled pulse forming line to 300 kV has been developed at Loughborough University as a training tool for pulsed power students. The generator uses all forms of insulation specific to pulsed power technology, liquid (oil and water), gas (SF6), and magnetic insulation in vacuum, and a number of fast voltage and current sensors are implemented for diagnostic purposes. A miniature (centimeter-size) plasma opening switch has recently been coupled to the output of the pulse forming line, with the overall system comprising the first phase of a program aimed at the development of a novel repetitive, table-top generator capable of producing 15 GW pulses for high power microwave loads. Technical details of all the generator components and the main experimental results obtained during the program and demonstrations of their performance are presented in the paper, together with a description of the various diagnostic tools involved. In particular, it is shown that the miniature plasma opening switch is capable of reducing the rise time of the input current while significantly increasing the load power. Future plans are outlined in the conclusions.

  9. Digitally controlled twelve-pulse firing generator

    SciTech Connect

    Berde, D.; Ferrara, A.A.

    1981-01-01

    Control System Studies for the Tokamak Fusion Test Reactor (TFTR) indicate that accurate thyristor firing in the AC-to-DC conversion system is required in order to achieve good regulation of the various field currents. Rapid update and exact firing angle control are required to avoid instabilities, large eddy currents, or parasitic oscillations. The Prototype Firing Generator was designed to satisfy these requirements. To achieve the required /plus or minus/0.77/degree/firing accuracy, a three-phase-locked loop reference was designed; otherwise, the Firing Generator employs digital circuitry. The unit, housed in a standard CAMAC crate, operates under microcomputer control. Functions are performed under program control, which resides in nonvolatile read-only memory. Communication with CICADA control system is provided via an 11-bit parallel interface.

  10. Generation of attosecond pulse pair in polar media by chirped few-cycle pulses

    NASA Astrophysics Data System (ADS)

    Hu, Pidong; Niu, Yueping; Wang, Xiangxin; Gong, Shangqing; Liu, Chengpu

    2016-09-01

    The high-order harmonic generation in a polar medium driven by an initially chirped few-cycle laser pulse is investigated via numerically solving the nonlinear Bloch or Maxwell-Bloch equations based on whether propagation effects are taken into account or not. As a result of the reduction of quantum trajectories number due to the introduction of chirps, an attosecond pulse pair (APP) is generated instead of a general attosecond pulse train. Moreover, the time delay between the two attosecond pulses is tunable. When propagation effects take roles, the peak intensities of the APP can be enhanced at suitable propagation distances without observable duration broadening, and such an enhancement can be modulated by changing medium density.

  11. A repetitive long-pulse power generator based on pulse forming network and linear transformer driver.

    PubMed

    Li, Mingjia; Kang, Qiang; Tan, Jie; Zhang, Faqiang; Luo, Min; Xiang, Fei

    2016-06-01

    A compact module for long-pulse power generator, based on Blumlein pulse forming network (PFN), was designed. Two Blumlein PFNs with L-type configuration and 20 Ω characteristic impedance were connected symmetrically to the primary coil of the linear transformer driver (LTD) and driven by an identical high voltage spark switch to ensure two Blumlein PFNs synchronizing operation. The output pulse of the module connected with 10 Ω water load is about 135 kV in amplitude and 200 ns in duration with a rise time of ∼50 ns and a flat top of ∼100 ns. On this basis, a repetitive long-pulse power generator based on PFN-LTD has been developed, which was composed of four modules. The following technical parameters of the generator were achieved on planar diode: output voltage amplitude of ∼560 kV, output current amplitude of ∼10 kA at a repetition rate of 25 Hz. The generator operates stable and outputs more than 10(4) pulses. Meanwhile, the continuous operating time of the generator is up to 60 s.

  12. Note: Compact helical pulse forming line for the generation of longer duration rectangular pulse

    NASA Astrophysics Data System (ADS)

    Sharma, Surender Kumar; Deb, P.; Sharma, Archana; Shukla, R.; Prabaharan, T.; Adhikary, B.; Shyam, A.

    2012-06-01

    The helical pulsed forming line (PFL) can generate longer duration rectangular pulse in a smaller length. A compact PFL using helical water line is designed and experimentally investigated. The impedance of the helical PFL is 22 Ω. The compactness is achieved in terms of reduction in length of the PFL by a factor of 5.5 using helical water PFL as compared to coaxial water PFL of same length. The helical PFL was pulsed charged to 200 kV using a high voltage pulse transformer in 4.5 μs and discharged into the matched 22 Ω resistive load through a self-breakdown pressurized spark gap switch. The rectangular voltage pulse of 100 kV, 260 ns (FWHM) is measured across the load. The effect of reduction in water temperature on the pulse width is also studied experimentally. The increase in pulse width up to 7% more is observed by reducing the temperature of the deionized water to 5 °C. It will further reduce the length of the PFL and make the system small for compact pulsed power drivers.

  13. Note: compact helical pulse forming line for the generation of longer duration rectangular pulse.

    PubMed

    Sharma, Surender Kumar; Deb, P; Sharma, Archana; Shukla, R; Prabaharan, T; Adhikary, B; Shyam, A

    2012-06-01

    The helical pulsed forming line (PFL) can generate longer duration rectangular pulse in a smaller length. A compact PFL using helical water line is designed and experimentally investigated. The impedance of the helical PFL is 22 [ohm sign]. The compactness is achieved in terms of reduction in length of the PFL by a factor of 5.5 using helical water PFL as compared to coaxial water PFL of same length. The helical PFL was pulsed charged to 200 kV using a high voltage pulse transformer in 4.5 μs and discharged into the matched 22 Ω resistive load through a self-breakdown pressurized spark gap switch. The rectangular voltage pulse of 100 kV, 260 ns (FWHM) is measured across the load. The effect of reduction in water temperature on the pulse width is also studied experimentally. The increase in pulse width up to 7% more is observed by reducing the temperature of the deionized water to 5 °C. It will further reduce the length of the PFL and make the system small for compact pulsed power drivers.

  14. Effect of Pulse Width on Ozone Yield using Inductive Energy Storage System Pulsed Power Generator

    NASA Astrophysics Data System (ADS)

    Yagi, Ippei; Mukaigawa, Seiji; Takaki, Koichi; Fujiwara, Tamiya; Go, Tomio

    Nanosecond pulse voltages of several pulse widths were applied to a cylindrical plasma reactor for ozone synthesis with high energy yield. Nanoseconds pulse voltages were produced by inductive energy storage system pulsed power generators using semiconductor opening switch (SOS) diodes. First recovery diodes were used as SOS diodes in the inductive energy storage system to produce short-pulsed high voltage with high-repetition rate. The short pulse voltage of 9.5 ns width and 33 kV peak voltage was produced at charging voltage of 15 kV and was applied to a 1 mm diameter center wire electrode in the plasma reactor. The copper cylinder of 19 mm inner diameter was used as outer electrode and was connected to a ground. The ozone yield of 271 g/kWh was obtained using the 9.5 ns width pulse voltage at synthesized 412 ppm of ozone concentration. The yield 271 g/kWh was more than twice as much as the yield 114 g/kWh at 401 ppm using a 60 ns pulse voltage.

  15. Short pulse generation by laser slicing at NSLSII

    SciTech Connect

    Yu, L.; Blednykh, A.; Guo, W.; Krinsky, S.; Li, Y.; Shaftan, T.; Tchoubar, O.; Wang, G.; Willeke, F.; Yang, L.

    2011-03-28

    We discuss an upgrade R&D project for NSLSII to generate sub-pico-second short x-ray pulses using laser slicing. We discuss its basic parameters and present a specific example for a viable design and its performance. Since the installation of the laser slicing system into the storage ring will break the symmetry of the lattice, we demonstrate it is possible to recover the dynamical aperture to the original design goal of the ring. There is a rapid growth of ultrafast user community interested in science using sub-pico-second x-ray pulses. In BNL's Short Pulse Workshop, the discussion from users shows clearly the need for a sub-pico-second pulse source using laser slicing method. In the proposal submitted following this workshop, NSLS team proposed both hard x-ray and soft x-ray beamlines using laser slicing pulses. Hence there is clearly a need to consider the R&D efforts of laser slicing short pulse generation at NSLSII to meet these goals.

  16. New methods of generation of ultrashort laser pulses for ranging

    NASA Technical Reports Server (NTRS)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  17. Generation of 1.5 cycle 0.3 TW laser pulses using a hollow-fiber pulse compressor.

    PubMed

    Park, Juyun; Lee, Jae-Hwan; Nam, Chang Hee

    2009-08-01

    Pulse compression in a differentially pumped neon-filled hollow fiber was used to generate high-power few-cycle laser pulses. The pulse compression process was optimized by adjusting gas pressure and laser chirp to produce the shortest laser pulses. Precise dispersion control enabled the generation of laser pulses with duration of 3.7 fs and energy of 1.2 mJ. This corresponds to an output of 1.5 cycle, 0.3 TW pulses at a 1 kHz repetition rate using positively chirped 33 fs laser pulses.

  18. High-voltage pulsed generator for dynamic fragmentation of rocks.

    PubMed

    Kovalchuk, B M; Kharlov, A V; Vizir, V A; Kumpyak, V V; Zorin, V B; Kiselev, V N

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ∼50 ns, current amplitude of ∼6 kA with the 40 Ω active load, and ∼20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  19. GnRH Episodic Secretion Is Altered by Pharmacological Blockade of Gap Junctions: Possible Involvement of Glial Cells.

    PubMed

    Pinet-Charvet, Caroline; Geller, Sarah; Desroziers, Elodie; Ottogalli, Monique; Lomet, Didier; Georgelin, Christine; Tillet, Yves; Franceschini, Isabelle; Vaudin, Pascal; Duittoz, Anne

    2016-01-01

    Episodic release of GnRH is essential for reproductive function. In vitro studies have established that this episodic release is an endogenous property of GnRH neurons and that GnRH secretory pulses are associated with synchronization of GnRH neuron activity. The cellular mechanisms by which GnRH neurons synchronize remain largely unknown. There is no clear evidence of physical coupling of GnRH neurons through gap junctions to explain episodic synchronization. However, coupling of glial cells through gap junctions has been shown to regulate neuron activity in their microenvironment. The present study investigated whether glial cell communication through gap junctions plays a role in GnRH neuron activity and secretion in the mouse. Our findings show that Glial Fibrillary Acidic Protein-expressing glial cells located in the median eminence in close vicinity to GnRH fibers expressed Gja1 encoding connexin-43. To study the impact of glial-gap junction coupling on GnRH neuron activity, an in vitro model of primary cultures from mouse embryo nasal placodes was used. In this model, GnRH neurons possess a glial microenvironment and were able to release GnRH in an episodic manner. Our findings show that in vitro glial cells forming the microenvironment of GnRH neurons expressed connexin-43 and displayed functional gap junctions. Pharmacological blockade of the gap junctions with 50 μM 18-α-glycyrrhetinic acid decreased GnRH secretion by reducing pulse frequency and amplitude, suppressed neuronal synchronization and drastically reduced spontaneous electrical activity, all these effects were reversed upon 18-α-glycyrrhetinic acid washout.

  20. High-voltage pulsed generators for electro-discharge technologies

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Kumpyak, E. V.; Sinebrykhov, V. A.

    2013-09-01

    A high-voltage pulse technology is one of effective techniques for the disintegration and milling of rocks, separation of ores and synthesized materials, recycling of building and elastoplastic materials. We present here the design and test results of two portable HV pulsed generators, designed for materials fragmentation, though some other technological applications are possible as well. Generator #1 consists of low voltage block, high voltage transformer, high voltage capacitive storage block, two electrode gas switch, fragmentation chamber and control system block. Technical characteristics of the #1 generator: stored energy in HV capacitors can be varied from 50 to 1000 J, output voltage up to 300 kV, voltage rise time ~ 50 ns, typical operation regime 1000 pulses bursts with a repetitive rate up to 10 Hz. Generator #2 is made on an eight stages Marx scheme with two capacitors (100 kV-400 nF) per stage, connected in parallel. Two electrode spark gap switches, operated in atmospheric air, are used in the Marx generator. Parameters of the generator: stored energy in capacitors 2÷8 kJ, amplitude of the output voltage 200÷400 kV, voltage rise time on a load 50÷100 ns, repetitive rate up to 0.5 Hz. The fragmentation process can be controlled within a wide range of parameters for both generators.

  1. All-fiber ring Raman laser generating parabolic pulses

    SciTech Connect

    Kruglov, V. I.; Mechin, D.; Harvey, J. D.

    2010-02-15

    We present theoretical and numerical results for an all-fiber laser using self-similar parabolic pulses ('similaritons') designed to operate using self-similar propagation regimes. The similariton laser features a frequency filter and a Sagnac loop which operate together to generate an integrated all-fiber mode-locked laser. Numerical studies show that this laser generates parabolic pulses with linear chirp in good agreement with analytical predictions. The period for propagating similariton pulses in stable regimes can vary from one to two round trips for different laser parameters. Two-round-trip-period operation in the mode-locked laser appears at bifurcation points for certain cavity parameters. The stability of the similariton regimes has been confirmed by numerical simulations for large numbers of round trips.

  2. Software emulator of nuclear pulse generation with different pulse shapes and pile-up

    NASA Astrophysics Data System (ADS)

    Pechousek, Jiri; Konecny, Daniel; Novak, Petr; Kouril, Lukas; Kohout, Pavel; Celiktas, Cuneyt; Vujtek, Milan

    2016-08-01

    The optimal detection of output signals from nuclear counting devices represents one of the key physical factors that govern accuracy and experimental reproducibility. In this context, the fine calibration of the detector under diverse experimental scenarios, although time costly, is necessary. However this process can be rendered easier with the use of systems that work in lieu of emulators. In this report we describe an innovative programmable pulse generator device capable to emulate the scintillation detector signals, in a way to mimic the detector performances under a variety of experimental conditions. The emulator generates a defined number of pulses, with a given shape and amplitude in the form of a sampled detector signal. The emulator output is then used off-line by a spectrometric system in order to set up its optimal performance. Three types of pulse shapes are produced by our device, with the possibility to add noise and pulse pile-up effects into the signal. The efficiency of the pulse detection, pile-up rejection and/or correction, together with the dead-time of the system, are therein analyzed through the use of some specific algorithms for pulse processing, and the results obtained validate the beneficial use of emulators for the accurate calibration process of spectrometric systems.

  3. Design and fabrication of a 30 second pulsed plasma generator

    SciTech Connect

    Biagi, L.A.; Ehlers, K.W.; Lietzke, A.F.; Matuk, C.A.; Maruyama, Y.; Paterson, J.A.; Tanabe, J.T.

    1983-10-01

    The design and fabrication techniques for a large hybrid magnetic cusp plasma generator developed for 30 sec pulse length are described. Included are the magnetic cusp geometry features, water cooling characteristics, filament structures, and the high energy density actively cooled anode and electron dump employed.

  4. Electro-Optic Generation and Detection of Femtosecond Electromagnetic Pulses

    DTIC Science & Technology

    1991-11-20

    electromagnetic pulses from an electro - optic crystal following their generation by electro - optic Cherenkov radiation, and their subsequent propagation and detection...in free space; (4) The measurement of subpicosecond electrical response of a new organic electrooptic material (polymer); (5) The observation of terahertz transition radiation from the surfaces of electro - optic crystals.

  5. Looking into Generator Room, showing electromagnetic pulse (EMP) filter boxes ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking into Generator Room, showing electromagnetic pulse (EMP) filter boxes mounted above door - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Power Plant, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  6. Intense Pulsed Ion Beams: Their Generation and Applications.

    DTIC Science & Technology

    1980-10-03

    on the acceleration of ions within vacuum diode-like sources. The ions originate in a plasma which is produced on the surface of the ,inode and are... flashover discharges on the anode surfaces . Ions extracted from these plasmas are accelerated toward both the cathode and the virtual cathode. ThC ions... pulse generator. For most of these experiments , the ratio of the extracted proton current I to the total current I i.e., the proton generation effici,ncyp

  7. Computational Simulation of Explosively Generated Pulsed Power Devices

    DTIC Science & Technology

    2013-03-21

    associated ferroelec- tric ceramics. The complex nature of these mechanisms leads to having very little in the way of mathematical theory to physically...were studied in the 1960s in England, using capacitor banks and Marx generators (a specific design of capacitor bank) to charge transmission lines with...pulsed power, the area in which they suffer is in size. The systems of capacitor banks and Marx generators can range from the size of trucks to rooms

  8. High Pulsed Power, Self Excited Magnetohydrodynamic Power Generation Systems

    DTIC Science & Technology

    1985-12-27

    Degree of Ionization of Cesium on Performance 72 3.5.7. Effect of Channel Area Ratio on Performance 73 3.5.8. Comparison of Helium vs Argon Generator...EXPLOSIVE PULSED SYSTEM WEIGHTS,REF.2 32 TABLE 5: POWER DENSITY & ENTHALPY EXTRACTION OF CLOSED CYCLE GENERATORS 35 TABLE 6: ENTHALPY EXTRACTION VS PRESSURE...OF ALUMINUM PARTICLES 50 TABLE 11. ALUMINUM PARTICLE BURNING TIMES vs OPERATING CONDITIONS 52 TABLE 12. TOTAL COMBUSTION TIME OF Al. PARTICLES vs

  9. Enhanced Diffusion Weighting Generated by Selective Adiabatic Pulse Trains

    PubMed Central

    Sun, Ziqi; Bartha, Robert

    2007-01-01

    A theoretical description and experimental validation of the enhanced diffusion weighting generated by selective adiabatic full passage (AFP) pulse trains is provided. Six phantoms (Ph-1 to Ph-6) were studied on a 4T Varian/Siemens whole body MRI system. Phantoms consisted of 2.8 cm diameter plastic tubes containing a mixture of 10 μm ORGASOL polymer beads and 2 mM Gd-DTPA dissolved in 5% agar (Ph-1) or nickel(II) ammonium sulphate hexahydrate doped (56.3 mM – 0.8 mM) water solutions (Ph-2 to Ph-6). A customized localization by adiabatic selective refocusing (LASER) sequence containing slice selective AFP pulse trains and pulsed diffusion gradients applied in the phase encoding direction was used to measure 1H2O diffusion. The b-value associated with the LASER sequence was derived using the Bloch-Torrey equation. The apparent diffusion coefficients measured by LASER were comparable to those measured by a conventional pulsed gradient spin-echo (PGSE) sequence for all phantoms. Image signal intensity increased in Ph-1 and decreased in Ph-2 – Ph-6 as AFP pulse train length increased while maintaining a constant echo-time. These experimental results suggest that such AFP pulse trains can enhance contrast between regions containing microscopic magnetic susceptibility variations and homogeneous regions in which dynamic dephasing relaxation mechanisms are dominant. PMID:17600741

  10. Photoacoustic-pulse generation and propagation in a metal vapor.

    PubMed

    Tam, A C; Zapka, W; Chiang, K; Imaino, W

    1982-01-01

    Photoacoustic-pulse generation by breakdown is achieved in dense cesium metal vapors of vapor pressures ranging from 2 to 130 Torr by using a dye laser pulse of energy variable from 10(-6) to 10(-3) J, tuned to the Cs transition at 6010 A. The acoustic-pulse propagation is detected by the transient photorefractive deflection of a cw probe laser beam that is displaced from but parallel to the pulsed laser beam. The temperature-dependent velocity of infinitesimal ultrasonic waves in a corrosive metal vapor is measured for the first time. The supersonic propagation of finite amplitude acoustic pulses (blast waves) obtained with a higher pulse energy is also studied. Our data, with Mach numbers ranging from 2.1 down to below 1.01, agree surprisingly well with the prediction of Vlases and Jones for cylindrical blast waves. This provides a new experimental support for their theoretical trajectory formula for blast waves in the extremely weak amplitude limit.

  11. Autonomous Magnetoexplosive Generator of Megavolt, 100 NS Pulses

    NASA Astrophysics Data System (ADS)

    Gurin, V. Ye.; Kataev, V. N.; Korolev, P. V.; Kargin, V. I.; Makartsev, G. F.; Nudikov, V. N.; Pikar, A. S.; Popkov, N. F.; Saratov, A. F.

    2004-11-01

    Here we present the results of the work carried out at different stages aimed at the development of autonomous magnetocumulative generators having 100 ns megavolt pulses. This generator is meant to replace the PIRIT-01 stationary facility by a magnetocumulative energy source. Using a generator with permanent magnets as a source of initial energy and multiplying this energy by a cascade of magnetoexplosive generators allows 100 kJ of energy accumulation in a contour. The generator that has a permanent magnet does not need an additional energy source for its operation. It is convenient to operate and is always available for service. Shortening the MC generator current pulse up to 1 μs is implemented using a high-voltage explosive driven opening switch. In the first sharpening cascade, the voltage increases up to 500 kV. Further shortening of the current pulse duration up to 100 ns and the voltage rise up to 1 MV are performed using plasma opening switches according to the two-stage formation scheme. Such a scheme allows the decrease of electric field strength on the insulator surface and the use of magnetic insulation in the high-voltage section of the facility.

  12. Synthesizing genetic sequential logic circuit with clock pulse generator

    PubMed Central

    2014-01-01

    Background Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. Results This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. Conclusions A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal. PMID:24884665

  13. Differential Regulation of GnRH Secretion in the Preoptic Area (POA) and the Median Eminence (ME) in Male Mice

    PubMed Central

    Glanowska, Katarzyna M.

    2015-01-01

    GnRH release in the median eminence (ME) is the central output for control of reproduction. GnRH processes in the preoptic area (POA) also release GnRH. We examined region-specific regulation of GnRH secretion using fast-scan cyclic voltammetry to detect GnRH release in brain slices from adult male mice. Blocking endoplasmic reticulum calcium reuptake to elevate intracellular calcium evokes GnRH release in both the ME and POA. This release is action potential dependent in the ME but not the POA. Locally applied kisspeptin induced GnRH secretion in both the ME and POA. Local blockade of inositol triphospate-mediated calcium release inhibited kisspeptin-induced GnRH release in the ME, but broad blockade was required in the POA. In contrast, kisspeptin-evoked secretion in the POA was blocked by local gonadotropin-inhibitory hormone, but broad gonadotropin-inhibitory hormone application was required in the ME. Although action potentials are required for GnRH release induced by pharmacologically-increased intracellular calcium in the ME and kisspeptin-evoked release requires inositol triphosphate-mediated calcium release, blocking action potentials did not inhibit kisspeptin-induced GnRH release in the ME. Kisspeptin-induced GnRH release was suppressed after blocking both action potentials and plasma membrane Ca2+ channels. This suggests that kisspeptin action in the ME requires both increased intracellular calcium and influx from the outside of the cell but not action potentials. Local interactions among kisspeptin and GnRH processes in the ME could thus stimulate GnRH release without involving perisomatic regions of GnRH neurons. Coupling between action potential generation and hormone release in GnRH neurons is thus likely physiologically labile and may vary with region. PMID:25314270

  14. Generation of circularly polarized attosecond pulses by intense ultrashort laser pulses from extended asymmetric molecular ions

    SciTech Connect

    Yuan, Kai-Jun; Bandrauk, Andre D.

    2011-08-15

    We present a method for generation of single circularly polarized attosecond pulses in extended asymmetric HHe{sup 2+} molecular ions. By employing an intense ultrashort circularly polarized laser pulse with intensity 4.0x10{sup 14} W/cm{sup 2}, wavelength 400 nm, and duration 10 optical cycles, molecular high-order-harmonic generation (MHOHG) spectra with multiple plateaus exhibit characters of circular polarization. Using a classical laser-induced collision model, double collisions of continuum electrons first with neighboring ions and then second with parent ions are presented at a particular internuclear distance and confirmed from numerical solutions of a time-dependent Schroedinger equation. We analyze the MHOHG spectra with a Gabor time window and find that, due to the asymmetry of HHe{sup 2+}, a single collision trajectory of continuum electrons with ions can produce circularly polarized harmonics, leading to single circularly polarized attosecond pulses for specific internuclear distances.

  15. Nonthermal Biological Treatments Using Discharge Plasma Produced by Pulsed Power 2.Generation Technologies of High Repetition Rate Pulsed Power

    NASA Astrophysics Data System (ADS)

    Sakugawa, Takashi

    Recently, high repetition rate, long lifetime, and high reliability pulsed power generators have been developed using semiconductor switches. We have studied and developed an all solid-state pulsed power generator for industrial applications such as a high repetition rate pulsed gas laser and a pulsed ozonizer. Recently, semiconductor power device technology has improved the performance of fast high-power switching devices. However, the semiconductor switch is still not sufficient to drive the pulse laser and the pulse ozonizer directly. Therefore, the semiconductor switch can be used in practical application with the assistance of a magnetic switch and a gate driving technique. This all solid-state generator consists of a semiconductor switch and a magnetic switch. The progress of high repetition rate pulsed power generators is reviewed herein, with particular emphasis on pulse power conditioning by solid-state switching techniques.

  16. Beamlet pulse-generation and wavefront-control system

    SciTech Connect

    Van Wonterghem, B.M.; Salmon, J.T.; Wilcox, R.W.

    1996-06-01

    The Beamlet pulse-generation system (or {open_quotes}front end{close_quotes}) refers to the laser hardware that generates the spatially and temporally shaped pulse that is injected into the main laser cavity. All large ICF lasers have pulse-generation systems that typically consist of a narrow-band oscillator, elector-optic modulators for temporal and bandwidth shaping, and one or more preamplifiers. Temporal shaping is used to provide the desired laser output pulse shape and also to compensate for gain saturation effects in the large-aperture amplifiers. Bandwidth is applied to fulfill specific target irradiation requirements and to avoid stimulated Brillouin scattering (SBS) in large-aperture laser components. Usually the sharp edge of the beam`s spatial intensity profile is apodized before injection in the main amplifier beam line. This prevents large-amplitude ripples on the intensity profile. Here the authors briefly review the front-end design and discuss improvements to the oscillator and modulator systems. Their main focus, however, is to describe Beamlet`s novel beam-shaping and wavefront-control systems that have recently been fully activated and tested.

  17. Elimination of the chirp of narrowband terahertz pulses generated by chirped pulse beating using a tandem grating pair laser pulse stretcher.

    PubMed

    Yoshida, Tetsuya; Kamada, Shohei; Aoki, Takao

    2014-09-22

    We study the elimination of the chirp of narrowband terahertz pulses generated by chirped laser pulse beating using a laser pulse stretcher with two grating pairs that cancel out the third-order spectral phase. First, we show that positively chirped terahertz pulses can be generated using a pulse stretcher with a grating pair and internal lenses. We then combine this with a second grating pair, the spectral phase of which has the opposite sign to that of the first one. By varying the separation of the second grating pair, we experimentally verify that the chirp of the generated terahertz pulses can be eliminated.

  18. Picosecond pulse generated supercontinuum as a stable seed for OPCPA.

    PubMed

    Indra, Lukáš; Batysta, František; Hříbek, Petr; Novák, Jakub; Hubka, Zbyněk; Green, Jonathan T; Antipenkov, Roman; Boge, Robert; Naylon, Jack A; Bakule, Pavel; Rus, Bedřich

    2017-02-15

    We present a stable supercontinuum (SC) generated in a bulk YAG crystal, pumped by 3 ps chirped pulses at 1030 nm. The SC is generated in a loose focus geometry in a 13 cm long YAG crystal, allowing for stable and robust single-filament generation. The SC energy stability exceeds that of the pump laser by almost a factor of 3. Additionally, we show that the SC spectrum has long-term stability and that the SC is coherent and compressible by compressing the portions of SC spectra close to the corresponding Fourier limit. This makes the picosecond-pulse-driven SC a suitable stable seed for OPCPA amplifiers.

  19. Autonomous portable pulsed-periodical generator of high-power radiofrequency-pulses based on gas discharge with hollow cathode.

    PubMed

    Bulychev, Sergey V; Dubinov, Alexander E; L'vov, Igor L; Popolev, Vyacheslav L; Sadovoy, Sergey A; Sadchikov, Eugeny A; Selemir, Victor D; Valiulina, Valeria K; Vyalykh, Dmitry V; Zhdanov, Victor S

    2016-05-01

    Portable autonomous generator of high-power RF-pulses based on the gas discharge with hollow cathode has been designed, fabricated, and tested. Input and output characteristics are the following: discharge current amplitude is 800 A, duration of generated RF-pulses is 350 ns, carrier frequency is ∼90 MHz, power in RF-pulse is 0.5 MW, pulse repetition rate is 0.5 kHz, and device efficiency is ∼25%.

  20. A 70 kV solid-state high voltage pulse generator based on saturable pulse transformer.

    PubMed

    Fan, Xuliang; Liu, Jinliang

    2014-02-01

    High voltage pulse generators are widely applied in many fields. In recent years, solid-state and operating at repetitive mode are the most important developing trends of high voltage pulse generators. A solid-state high voltage pulse generator based on saturable pulse transformer is proposed in this paper. The proposed generator is consisted of three parts. They are charging system, triggering system, and the major loop. Saturable pulse transformer is the key component of the whole generator, which acts as a step-up transformer and main switch during working process of this generator. The circuit and working principles of the proposed pulse generator are introduced first in this paper, and the saturable pulse transformer used in this generator is introduced in detail. Circuit of the major loop is simulated to verify the design of the system. Demonstration experiments are carried out, and the results show that when the primary energy storage capacitor is charged to a high voltage, such as 2.5 kV, a voltage with amplitude of 86 kV can be achieved on the secondary winding. The magnetic core of saturable pulse transformer is saturated deeply and the saturable inductance of the secondary windings is very small. The switch function of the saturable pulse transformer can be realized ideally. Therefore, a 71 kV output voltage pulse is formed on the load. Moreover, the magnetic core of the saturable pulse transformer can be reset automatically.

  1. Intense ionospheric electric and magnetic field pulses generated by lightning

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Ding, J. G.; Holzworth, R. H.

    1990-01-01

    Electric and magnetic field measurements have been made in the ionosphere over an active thunderstorm and an optical detector onboard the same rocket yielded an excellent time base for the study of waves radiated into space from the discharge. In addition to detection of intense, but generally well understood whistler mode waves, very unusual electric and magnetic field pulses preceded the 1-10 kHz component of the radiated signal. These pulses lasted several ms and had a significant electric field component parallel to the magnetic field. No known propagating wave mode has this polarization nor a signal propagation velocity as high as those measured here. This study investigated and rejected an explanation based on an anomalous skin depth effect. Although only a hypothesis at this time, a more promising explanation involving the generation of the pulse via a nonlinear decay of whistler mode waves in the frequency range 10-80 kHz is being investigated.

  2. The VELOCE pulsed power generator for isentropic compression experiments

    SciTech Connect

    Ao, Tommy; Asay, James Russell; Chantrenne, Sophie J.; Hickman, Randall John; Willis, Michael David; Shay, Andrew W.; Grine-Jones, Suzi A.; Hall, Clint Allen; Baer, Melvin R.

    2007-12-01

    Veloce is a medium-voltage, high-current, compact pulsed power generator developed for isentropic and shock compression experiments. Because of its increased availability and ease of operation, Veloce is well suited for studying isentropic compression experiments (ICE) in much greater detail than previously allowed with larger pulsed power machines such as the Z accelerator. Since the compact pulsed power technology used for dynamic material experiments has not been previously used, it is necessary to examine several key issues to ensure that accurate results are obtained. In the present experiments, issues such as panel and sample preparation, uniformity of loading, and edge effects were extensively examined. In addition, magnetohydrodynamic (MHD) simulations using the ALEGRA code were performed to interpret the experimental results and to design improved sample/panel configurations. Examples of recent ICE studies on aluminum are presented.

  3. Femtosecond Pulse Generation in Solid-State Lasers.

    NASA Astrophysics Data System (ADS)

    Paye, Malini

    Femtosecond laser technology has seen rapid advances over the last five years due to the emergence of reliable, broad-band solid-state laser media in particular the Ti:sapphire gain medium. This thesis deals with various aspects of femtosecond pulse generation in solid-state lasers, with particular emphasis on the Ti:sapphire laser system. A novel passive modelocking technique called Microdot mirror modelocking was implemented. It is a passive, all -solid-state, intracavity modelocking mechanism based on self-focussing due to the Kerr nonlinearity. This technique was applied to the modelocking of a medium power, laser -pumped Ti:sapphire system, to produce 190fs pulses. It was also extended to a higher power, arc-lamp-pumped Nd:YLF laser system to produce 2.3 ps pulses. A numerical procedure for modeling the nonlinear behaviour of resonators was implemented. This iterative procedure solves for self-consistent nonlinear resonator modes using a description of self-focussing as a nonlinear scaling of the Gaussian beam q parameter. It was used to provide an exemplary, intuitive understanding of nonlinear effects in a simple resonator closely related to the high -repetition rate femtosecond source that was subsequently implemented. A novel, compact, femtosecond, Kerr Lens Modelocked laser geometry was designed and implemented. 111 fs pulses were produced from a Ti:sapphire oscillator at a repetition rate of 1 GHz and 54 fs pulses at a repetition rate of 385 MHz. To realize this source, a novel method for dispersion compensation was conceived, analyzed and implemented. Negative dispersion was shown to be achievable using resonator geometries that enforce the spatial separation of propagation axes corresponding to monochromatic Gaussian modes that compose the total broad-band beam in a femtosecond oscillator. This work serves to demonstrate the scalability of Kerr lens modelocking techniques to very high repetition rates. The compact, high-repetition rate source has

  4. Measuring multimegavolt pulsed voltages using Compton-generated electrons

    NASA Astrophysics Data System (ADS)

    Swanekamp, S. B.; Weber, B. V.; Pereira, N. R.; Hinshelwood, D. D.; Stephanakis, S. J.; Young, F. C.

    2004-01-01

    The "Compton-Hall" voltmeter is a radiation-based voltage diagnostic that has been developed to measure voltages on high-power (TW) pulsed generators. The instrument collimates photons generated from bremsstrahlung produced in the diode onto an aluminum target to generate Compton-generated electrons. Permanent magnets bend the Compton electron orbits that escape the target toward a silicon pin diode detector. A GaAs photoconductive detector (PCD) detects photons that pass through the Compton target. The diode voltage is determined from the ratio of the electron dose in the pin detector to the x-ray dose in the PCD. The Integrated Tiger Series of electron-photon transport codes is used to determine the relationship between the measured dose ratio and the diode voltage. Variations in the electron beam's angle of incidence on the bremsstrahlung target produce changes in the shape of the photon spectrum that lead to large variations in the voltage inferred from the voltmeter. The voltage uncertainty is minimized when the voltmeter is fielded at an angle of 45° with respect to the bremsstrahlung target. In this position, the photon spectra for different angles of incidence all converge onto a single spectrum reducing the uncertainty in the voltage to less than 10% for voltages below 4 MV. Higher and lower voltages than the range considered in this article can be measured by adjusting the strength of the applied magnetic field or the position of the electron detector relative to the Compton target. The instrument was fielded on the Gamble II pulsed-power generator configured with a plasma opening switch. Measurements produced a time-dependent voltage with a peak (3.7 MV) that agrees with nuclear activation measurements and a pulse shape that is consistent with the measured radiation pulse shape.

  5. GnRH antagonists: a new generation of long acting analogues incorporating p-ureido-phenylalanines at positions 5 and 6.

    PubMed

    Jiang, G; Stalewski, J; Galyean, R; Dykert, J; Schteingart, C; Broqua, P; Aebi, A; Aubert, M L; Semple, G; Robson, P; Akinsanya, K; Haigh, R; Riviere, P; Trojnar, J; Junien, J L; Rivier, J E

    2001-02-01

    A series of antagonists of gonadotropin-releasing hormone (GnRH) of the general formula Ac-D2Nal-D4Cpa-D3Pal-Ser-4Aph/4Amf(P)-D4Aph/D4Amf(Q)-Leu-ILys-Pro-DAla-NH2 was synthesized, characterized, and screened for duration of inhibition of luteinizing hormone release in a castrated male rat assay. Selected analogues were tested in a reporter gene assay (IC50 and pA2) and an in vitro histamine release assay. P and Q contain urea/carbamoyl functionalities designed to increase potential intra- and intermolecular hydrogen bonding opportunities for structural stabilization and peptide/receptor interactions, respectively. These substitutions resulted in analogues with increased hydrophilicity and a lesser propensity to form gels in aqueous solution than azaline B [Ac-D2Nal-D4Cpa-D3Pal-Ser-4Aph(Atz)-D4Aph(Atz)-Leu-ILys-Pro-DAla-NH2 with Atz = 3'-amino-1H-1',2',4'-triazol-5'-yl, 5], and in some cases they resulted in a significant increase in duration of action after subcutaneous (s.c.) administration. Ac-D2Nal-D4Cpa-D3Pal-Ser-4Aph(L-hydroorotyl)-D4Aph(carbamoyl)-Leu-ILys-Pro-DAla-NH2 (acetate salt is FE200486) (31) and eight other congeners (20, 35, 37, 39, 41, 45-47) were identified that exhibited significantly longer duration of action than acyline [Ac-D2Nal-D4Cpa-D3Pal-Ser-4Aph(Ac)-D4Aph(Ac)-Leu-ILys-Pro-DAla-NH2] (6) when administered subcutaneously in castrated male rats at a dose of 50 microg in 100 microL of phosphate buffer. No correlation was found between retention times on a C18 reverse phase column using a triethylammonium phosphate buffer at pH 7.0 (a measure of hydrophilicity) or affinity in an in vitro human GnRH report gene assay (pA2) and duration of action. FE200486 was selected for preclinical studies, and some of its properties were compared to those of other clinical candidates. In the intact rat, ganirelix, abarelix, azaline B, and FE200486 inhibited plasma testosterone for 1, 1, 14, and 57 days, respectively, at 2 mg/kg s.c. in 5% mannitol (injection

  6. Nanosecond pulsed laser generation of holographic structures on metals

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, Krystian L.; Ardron, Marcus; Weston, Nick J.; Hand, Duncan P.

    2016-03-01

    A laser-based process for the generation of phase holographic structures directly onto the surface of metals is presented. This process uses 35ns long laser pulses of wavelength 355nm to generate optically-smooth surface deformations on a metal. The laser-induced surface deformations (LISDs) are produced by either localized laser melting or the combination of melting and evaporation. The geometry (shape and dimension) of the LISDs depends on the laser processing parameters, in particular the pulse energy, as well as on the chemical composition of a metal. In this paper, we explain the mechanism of the LISDs formation on various metals, such as stainless steel, pure nickel and nickel-chromium Inconel® alloys. In addition, we provide information about the design and fabrication process of the phase holographic structures and demonstrate their use as robust markings for the identification and traceability of high value metal goods.

  7. Pulsed jet combustion generator for premixed charge engines

    DOEpatents

    Oppenheim, A. K.; Stewart, H. E.; Hom, K.

    1990-01-01

    A method and device for generating pulsed jets which will form plumes comprising eddie structures, which will entrain a fuel/air mixture from the head space of an internal combustion engine, and mixing this fuel/air mixture with a pre-ignited fuel/air mixture of the plumes thereby causing combustion of the reactants to occur within the interior of the eddie structures.

  8. Learning robust pulses for generating universal quantum gates

    PubMed Central

    Dong, Daoyi; Wu, Chengzhi; Chen, Chunlin; Qi, Bo; Petersen, Ian R.; Nori, Franco

    2016-01-01

    Constructing a set of universal quantum gates is a fundamental task for quantum computation. The existence of noises, disturbances and fluctuations is unavoidable during the process of implementing quantum gates for most practical quantum systems. This paper employs a sampling-based learning method to find robust control pulses for generating a set of universal quantum gates. Numerical results show that the learned robust control fields are insensitive to disturbances, uncertainties and fluctuations during the process of realizing universal quantum gates. PMID:27782219

  9. Simultaneous mid-infrared pulse generation and shaping in engineered quasi-phase-matched nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Nakamura, Ryosuke

    2017-01-01

    Numerical simulations demonstrate that mid-infrared pulses are arbitrarily shaped during the differential frequency mixing of two femtosecond near-infrared pulses propagating in an engineered quasi-periodic poled medium with optical nonlinearity and group velocity dispersion. Shaped pulses, including linearly chirped pulses and pulse trains, are generated with high conversion efficiencies.

  10. Single attosecond pulse generation in He{sup +} by controlling the instant ionization rate using attosecond pulse trains combined with an intense laser pulse

    SciTech Connect

    He Xinkui; Jia, T. Q.; Zhang, Jun; Suzuki, M.; Baba, M.; Kuroda, Hiroto; Ozaki, T.; Li Ruxin; Xu Zhizhan

    2007-08-15

    High-order harmonics and single attosecond pulse generation by using an infrared laser pulse combined with attosecond pulse trains (APT) interacting with He{sup +} have been investigated. We show that the ionization for different instant time intervals can be controlled by altering the time delay between the APT and the infrared pulse. Consequently, APT can be used as a tool to control the efficiency of high-order harmonics emitted at different times. By choosing appropriate APT and time delay, the driving pulse width for single attosecond pulse generation can be extended up to six optical cycles.

  11. A single-board preprocessor and pulse generator

    NASA Technical Reports Server (NTRS)

    Carter, D. A.; Ayers, A. E.; Schneider, R. P.

    1986-01-01

    The Aeronomy Lab. of NOAA has designed and built a single board, programmable radar controller for use with VHF ST (stratosphere troposphere) radars. The controller consists of a coherent integrator preprocessor and a radar pulse generator, both of which are described, as well as interfaces to an antenna beam switch and a receiver bandwidth switch. The controller occupies a single slot in a Data General Nova of Eclipse computer. The integrator and pulse generator take advantage of high density, dual port FIFO chips such as the 512 x 9 Mostek MK 4501. These FIFOs have separate input and output ports and independent read and write cycles with cycle times of less than 200 ns, making them very fast and easy to interface. A simple block diagram of the coherent integrator is shown. The integrator is designed to handle inputs from one receiver (2 channels) with 1 sec sample spacing. The pulse generator is based on controllers designed by R. F. Woodman for the Arecibo and SOUSY radars us a recirculating memory scheme.

  12. Black phosphorus saturable absorber for ultrashort pulse generation

    SciTech Connect

    Sotor, J. Sobon, G.; Abramski, K. M.; Macherzynski, W.; Paletko, P.

    2015-08-03

    Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation. The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics.

  13. Numerical simulation of compact intracloud discharge and generated electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2015-06-01

    Using the concept of the relativistic runaway electron avalanche, numerical simulation of compact intracloud discharge as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-UHF range was conducted. We evaluated the numbers of electrons initiating the avalanche, with which the calculated EMP characteristics are consistent with measured ones. The discharge capable of generating EMPs produces runaway electrons in numbers close to those in the source of terrestrial γ-flashes (TGF) registered in the nearest space, which may be an argument for a joint EMP and TGF source.

  14. Touch stimulated pulse generation in biomimetic single-layer graphene

    NASA Astrophysics Data System (ADS)

    Sul, Onejae; Chun, Hyunsuk; Choi, Eunseok; Choi, Jungbong; Cho, Kyeongwon; Jang, Dongpyo; Chun, Sungwoo; Park, Wanjun; Lee, Seung-Beck

    2016-02-01

    Detecting variation in contact pressure is a separate sensing mode in the human somatosensory system that differs from the detection of pressure magnitude. If pressure magnitude and variation sensing can be achieved simultaneously, an advanced biomimetic tactile system that better emulates human senses may be developed. We report on a novel single-layer graphene based artificial mechanoreceptor that generates a resistance pulse as the contact stimulus passes a specific threshold pressure, mimicking the generation of action potentials in a biological fast-adapting mechanoreceptor. The electric field from a flexible membrane gate electrode placed above a graphene channel raises the Fermi level from the valence band as pressure deflects the membrane. The threshold pressure is reached when the Fermi level crosses the Dirac point in the graphene energy band, which generates a sharp peak in the measured resistance. We found that by changing the gate potential it was possible to modulate the threshold pressure and using a series of graphene channels, a train of pulses were generated during a transient pressurizing stimulus demonstrating biomimetic behaviour.Detecting variation in contact pressure is a separate sensing mode in the human somatosensory system that differs from the detection of pressure magnitude. If pressure magnitude and variation sensing can be achieved simultaneously, an advanced biomimetic tactile system that better emulates human senses may be developed. We report on a novel single-layer graphene based artificial mechanoreceptor that generates a resistance pulse as the contact stimulus passes a specific threshold pressure, mimicking the generation of action potentials in a biological fast-adapting mechanoreceptor. The electric field from a flexible membrane gate electrode placed above a graphene channel raises the Fermi level from the valence band as pressure deflects the membrane. The threshold pressure is reached when the Fermi level crosses the Dirac

  15. Pulse width tunable subpicosecond pulse generation from an actively modelocked monolithic MQW laser/MQW electroabsorption modulator

    NASA Astrophysics Data System (ADS)

    Takada, A.; Sato, K.; Saruwatari, M.; Yamamoto, M.

    1994-05-01

    Actively modelocked pulses are generated from a 1.59 micron MQW laser integrated with an MQW electroabsorption modulator driven at the monolithic cavity frequency. The pulse width is controlled from 39 ps to 0.55 ps by changing the inverse bias voltage applied to the electroabsorption modulator and by linear pulse compression using a fiber.

  16. Optimization of Industrial Ozone Generation with Pulsed Power

    NASA Astrophysics Data System (ADS)

    Lopez, Jose; Guerrero, Daniel; Freilich, Alfred; Ramoino, Luca; Seton Hall University Team; Degremont Technologies-Ozonia Team

    2013-09-01

    Ozone (O3) is widely used for applications ranging from various industrial chemical synthesis processes to large-scale water treatment. The consequent surge in world-wide demand has brought about the requirement for ozone generation at the rate of several hundreds grams per kilowatt hour (g/kWh). For many years, ozone has been generated by means of dielectric barrier discharges (DBD), where a high-energy electric field between two electrodes separated by a dielectric and gap containing pure oxygen or air produce various microplasmas. The resultant microplasmas provide sufficient energy to dissociate the oxygen molecules while allowing the proper energetics channels for the formation of ozone. This presentation will review the current power schemes used for large-scale ozone generation and explore the use of high-voltage nanosecond pulses with reduced electric fields. The created microplasmas in a high reduced electric field are expected to be more efficient for ozone generation. This is confirmed with the current results of this work which observed that the efficiency of ozone generation increases by over eight time when the rise time and pulse duration are shortened. Department of Physics, South Orange, NJ, USA.

  17. A small population of hypothalamic neurons govern fertility: the critical role of VAX1 in GnRH neuron development and fertility maintenance.

    PubMed

    Hoffmann, Hanne M; Mellon, Pamela L

    2016-01-01

    Fertility depends on the correct maturation and function of approximately 800 gonadotropin-releasing hormone (GnRH) neurons in the brain. GnRH neurons are at the apex of the hypothalamic-pituitary-gonadal axis that regulates fertility. In adulthood, GnRH neurons are scattered throughout the anterior hypothalamic area and project to the median eminence, where GnRH is released into the portal vasculature to stimulate release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the pituitary. LH and FSH then regulate gonadal steroidogenesis and gametogenesis. Absence of GnRH neurons or inappropriate GnRH release leads to infertility. Despite the critical role of GnRH neurons in fertility, we still have a limited understanding of the genes responsible for proper GnRH neuron development and function in adulthood. GnRH neurons originate in the olfactory placode then migrate into the brain. Homeodomain transcription factors expressed within GnRH neurons or along their migratory path are candidate genes for inherited infertility. Using a combined in vitro and in vivo approach, we have identified Ventral Anterior Homeobox 1 (Vax1) as a novel homeodomain transcription factor responsible for GnRH neuron maturation and fertility. GnRH neuron counts in Vax1 knock-out embryos revealed Vax1 to be required for the presence of GnRH-expressing cells at embryonic day 17.5 (E17.5), but not at E13.5. To localize the effects of Vax1 on fertility, we generated Vax1(flox) mice and crossed them with Gnrh(cre) mice to specifically delete Vax1 within GnRH neurons. GnRH staining in Vax1(flox/flox):GnRH(cre) mice show a total absence of GnRH expression in the adult. We performed lineage tracing in Vax1(flox/flox):GnRH(cre):RosaLacZ mice which proved GnRH neurons to be alive, but incapable of expressing GnRH. The absence of GnRH leads to delayed puberty, hypogonadism and complete infertility in both sexes. Finally, using the immortalized model GnRH neuron cell lines, GN11 and

  18. Ultrashort pulse generation from vertical cavity surface emitting semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Jasim, Khalil E.

    This work presents the first demonstration of a passively modelocked extended vertical cavity surface emitting laser (VECSEL) diode. Three cavity configurations were used to sustain stable passive modelocking operation: the Z-shaped, V-shaped and linear cavities. A semiconductor saturable absorber mirror (SESAM) used to triggered passive modelocking of the VECSEL diode. The SESAM device was used as a nonlinear high reflector in the Z-shaped and V-shaped cavity configurations, while it served as an output coupler (SESAMOC) in the linear cavity after the substrate was being angle polished and antireflection coated to eliminate any etalon effects. Many examples of VECSEL diode passive modelocking results will be presented. The standard non-collinear second-harmonic autocorrelation technique has been used to measure the generated pulse width, which was as small as 23 psec. The VECSEL-SESAM configuration has generated stable pulse trains at repetition rates ranging from 1 GHz to approximately 6 GHz, depending on the resonator configuration. Modelocking operation was stable and robust as amplitude noise measurements revealed a noise level ˜0.8%. Moreover, harmonic passive modelocking operation has been observed for the first time during the investigation of modelocking dynamics and stability in the regime of strong self-feedback coupling >10%. A reverse biased p-i-n QW device has enabled the generation of a stable pulse train at 15 GHz with pulse duration close to 15 psec and amplitude noise level ˜0.3%. However, due to design limitations of both the active and passive VECSELs, driving the system to produce repetition rates close to 20 GHz resulted in pulse amplitude variation and an unavoidable DC background. These initial results suggest the possibility of design and fabrication of an integrated or monolithic structure, which may lead to operation of the device at repetition rates beyond 50 GHz with sub-ps pulse durations. Although our VECSEL diode emits 980 nm

  19. Intense neutron pulse generation in dense Z-pinch

    NASA Astrophysics Data System (ADS)

    Bystritskii, V. M.; Glusko, Yu. A.; Mesyats, G. A.; Ratakhin, N. A.

    1989-12-01

    The problem of intense neutron pulse generation with fast dense Z-pinches (ZP) is analyzed for a modified approach. The analysis pertains to the interaction of a High Power Deuterium Beam (HPDB) with hot (Te≂1 keV) deuterium target formed by a ZP. The considerable decrease of the Coulomb ion-electron scattering cross-sections gives a corresponding increase of the deuterium range and neutron yield in the hot target. The generation of HPDB and ZP formation takes place at the same terawatt accelerator, by using in series with the ZP a plasma opening switch (POS), which is at the same time the Ion Plasma Filled Diode (IPFD). During the front of the current pulse the stable z-pinch implosion heats the ZP up to the keV temperature range with several kJ of energy input. Near the end of the current front the energy flow is being switched to HPDB generation due to the opening of the POS. The HPDB is focused ballistically at the axis of the ZP and transported along it in the azimutal magnetic field, producing a neutron burst. The analysis of ZP formation and heating, HPDB generation, its transport and neutron production is given.

  20. SRS generation and amplification of femtosecond pulses in compressed gases

    NASA Astrophysics Data System (ADS)

    Bespalov, Victor G.; Efimov, Yuri N.; Staselko, Dmitry I.; Krylov, Vitaly N.; Ollikainen, Olavi; Wild, Urs P.; Rebane, Aleksander

    2000-02-01

    We present the review of femtosecond SRS generation and amplification in compressed gases. the aim of our work is to study SRS spectral and temporal structures in compressed gases with femtosecond light pulses and to optimize conditions of excitation in order to obtain pulses with the desired spectral, temporal, and energy properties. In what follows, we present the result of our studies of SRS amplification in compressed hydrogen pumped by femtosecond pluses of the second harmonic of radiation of a titanium- doped sapphire laser. Our aim was to estimate the feasibility of increasing efficiency of SRS conversion and the potentialities of using transient SRS for spectral-time selection and amplification of weak signals.

  1. Photoconductive switch enhancements for use in Blumlein pulse generators

    NASA Astrophysics Data System (ADS)

    Davanloo, F.; Park, H.; Collins, C. B.; Agee, F. J.

    1999-06-01

    Stacked Blumlein pulse generators developed at the University of Texas at Dallas have produced high-power waveforms with risetimes and repetition rates in the range of 0.2-50 ns and 1-300 Hz, respectively, using a conventional thyratron, spark gap or photoconductive switch. Adaptation of the design has enabled the stacked Blumleins to produce 80 MW, nanosecond pulses with risetimes better than 200 ps into nominally matched loads. The device has a compact line geometry and is commutated by a single GaAs photoconductive switch triggered by a low power laser diode array. Our current investigations involve the switch characteristics that affect the broadening of the current channels in the avalanche, pre-avalanche seedings, the switch lifetime and the durability. This report presents the progress toward improving the GaAs switch operation and lifetime in stacked Blumlein pulsers. Advanced switch treatments including diamond film overcoating are implemented and discussed.

  2. 77 FR 37573 - Effective Date of Requirement for Premarket Approval for an Implantable Pacemaker Pulse Generator

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... Approval for an Implantable Pacemaker Pulse Generator AGENCY: Food and Drug Administration, HHS. ACTION... protocol (PDP) for implantable pacemaker pulse generators. The Agency has summarized its findings regarding... PMA or notice of completion of a PDP for the implantable pacemaker pulse generator. In accordance with...

  3. 76 FR 44872 - Effective Date of Requirement for Premarket Approval for an Implantable Pacemaker Pulse Generator

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... Implantable Pacemaker Pulse Generator AGENCY: Food and Drug Administration, HHS. ACTION: Proposed rule... preamendments device implantable pacemaker pulse generator. The Agency is also summarizing its proposed findings...). IV. Device Subject to This Proposal--Implantable Pacemaker Pulse Generator (21 CFR 870.3610) A...

  4. Three-dimensional properties of GnRH neuroterminals in the median eminence of young and old rats1

    PubMed Central

    Yin, Weiling; Mendenhall, John M.; Monita, Monique; Gore, Andrea C.

    2010-01-01

    The decapeptide GnRH that regulates reproduction in all vertebrates is stored in, and secreted from, large dense-core secretory vesicles in nerve terminals in the median eminence. GnRH is released from these terminals with biological rhythms that are critical for the maintenance of normal reproduction. During reproductive aging in female rats, there is a loss of GnRH pulses and a diminution of the GnRH surge. However, information about the specific role of GnRH nerve terminals is lacking, particularly in the context of aging. We sought to gain novel ultrastructural information about GnRH neuroterminals by performing three-dimensional (3D) reconstructions of GnRH neuroterminals and their surrounding microenvironment in the median eminence of young (4-5 month) and old (22-24 month) ovariectomized Sprague-Dawley female rats. Median eminence tissues were freeze-plunge embedded, and serial ultrathin sections were collected on slot grids for immunogold labeling of GnRH immunoreactivity. Sequential images were used to create 3D models of GnRH terminals. These reconstructions provided novel perspectives into the morphological properties of GnRH terminals, and their neural and glial environment. We also noted that the cytoarchitectural features of the median eminence became disorganized with aging. Quantitative measures showed a significant decrease in the apposition between GnRH terminal membranes and glial cells. Our data suggest reproductive aging in rats is characterized by structural organizational changes to the GnRH terminal microenvironment in the median eminence. PMID:19757493

  5. Generation of sub-50 fs pulses from a high-power Yb-doped fiber amplifier.

    PubMed

    Deng, Yujun; Chien, Ching-Yuan; Fidric, Bernard G; Kafka, James D

    2009-11-15

    We demonstrate the generation of 48 fs pulses with 18 W average power and 226 nJ of pulse energy from a Yb-doped fiber amplifier. The system uses a simple stretcher-free single-stage amplifier configuration operating in the parabolic pulse regime. The gain fiber length and pump wavelength are chosen in order to reduce the gain per unit length and generate both shorter pulses and higher pulse energy.

  6. A small population of hypothalamic neurons govern fertility: the critical role of VAX1 in GnRH neuron development and fertility maintenance

    PubMed Central

    Hoffmann, Hanne M.; Mellon, Pamela L.

    2017-01-01

    Fertility depends on the correct maturation and function of approximately 800 gonadotropin-releasing hormone (GnRH) neurons in the brain. GnRH neurons are at the apex of the hypothalamic-pituitary-gonadal axis that regulates fertility. In adulthood, GnRH neurons are scattered throughout the anterior hypothalamic area and project to the median eminence, where GnRH is released into the portal vasculature to stimulate release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the pituitary. LH and FSH then regulate gonadal steroidogenesis and gametogenesis. Absence of GnRH neurons or inappropriate GnRH release leads to infertility. Despite the critical role of GnRH neurons in fertility, we still have a limited understanding of the genes responsible for proper GnRH neuron development and function in adulthood. GnRH neurons originate in the olfactory placode then migrate into the brain. Homeodomain transcription factors expressed within GnRH neurons or along their migratory path are candidate genes for inherited infertility. Using a combined in vitro and in vivo approach, we have identified Ventral Anterior Homeobox 1 (Vax1) as a novel homeodomain transcription factor responsible for GnRH neuron maturation and fertility. GnRH neuron counts in Vax1 knock-out embryos revealed Vax1 to be required for the presence of GnRH-expressing cells at embryonic day 17.5 (E17.5), but not at E13.5. To localize the effects of Vax1 on fertility, we generated Vax1flox mice and crossed them with Gnrhcre mice to specifically delete Vax1 within GnRH neurons. GnRH staining in Vax1flox/flox:GnRHcre mice show a total absence of GnRH expression in the adult. We performed lineage tracing in Vax1flox/flox:GnRHcre:RosaLacZ mice which proved GnRH neurons to be alive, but incapable of expressing GnRH. The absence of GnRH leads to delayed puberty, hypogonadism and complete infertility in both sexes. Finally, using the immortalized model GnRH neuron cell lines, GN11 and GT1-7, we

  7. Inframammary pulse generator placement for maximizing cosmetic effect.

    PubMed

    Belott, P H; Bucko, D

    1983-11-01

    Today with the expanding clinical role of cardiac pacing and more advanced methods of detecting pacing problems, more and more young patients are being identified as candidates for permanent pacing. Concern has been expressed by young female patients over the cosmetic effects of pacemaker surgery. Two young female patients were evaluated from a physiologic and cosmetic point of view. The electrodes were placed via the percutaneous approach. The pulse generator was treated as a breast implant using the usual recommended plastic surgeon's inframammary approach. In both cases, optimal cosmetic effect was achieved without any external evidence of the pacemaker system.

  8. Staged Inductive Pulse Generator with Capacitive Current Source.

    DTIC Science & Technology

    1986-10-24

    depends on the performance of the fuse opening switch and the vacuum flashover output switch. Sections III and IV briefly discuss the development of these...It was assumed that the vacuum flashover switch closed when 20 kV was across it, compared with the measured value of 25 kV. C. Late-Time Voltage ...up to 25 kV/cm when the voltage pulse generated by the second fuse is applied 1-2 us after the first fuse explodes. IV. VACUUM FLASHOVER SWITCH A

  9. Optimising the efficiency of pulsed diode pumped Yb:YAG laser amplifiers for ns pulse generation.

    PubMed

    Ertel, K; Banerjee, S; Mason, P D; Phillips, P J; Siebold, M; Hernandez-Gomez, C; Collier, J C

    2011-12-19

    We present a numerical model of a pulsed, diode-pumped Yb:YAG laser amplifier for the generation of high energy ns-pulses. This model is used to explore how optical-to-optical efficiency depends on factors such as pump duration, pump spectrum, pump intensity, doping concentration, and operating temperature. We put special emphasis on finding ways to achieve high efficiency within the practical limitations imposed by real-world laser systems, such as limited pump brightness and limited damage fluence. We show that a particularly advantageous way of improving efficiency within those constraints is operation at cryogenic temperature. Based on the numerical findings we present a concept for a scalable amplifier based on an end-pumped, cryogenic, gas-cooled multi-slab architecture.

  10. GnRH neuron firing and response to GABA in vitro depend on acute brain slice thickness and orientation.

    PubMed

    Constantin, Stephanie; Piet, Richard; Iremonger, Karl; Hwa Yeo, Shel; Clarkson, Jenny; Porteous, Robert; Herbison, Allan E

    2012-08-01

    The GnRH neurons exhibit long dendrites and project to the median eminence. The aim of the present study was to generate an acute brain slice preparation that enabled recordings to be undertaken from GnRH neurons maintaining the full extent of their dendrites or axons. A thick, horizontal brain slice was developed, in which it was possible to record from the horizontally oriented GnRH neurons located in the anterior hypothalamic area (AHA). In vivo studies showed that the majority of AHA GnRH neurons projected outside the blood-brain barrier and expressed c-Fos at the time of the GnRH surge. On-cell recordings compared AHA GnRH neurons in the horizontal slice (AHAh) with AHA and preoptic area (POA) GnRH neurons in coronal slices [POA coronal (POAc) and AHA coronal (AHAc), respectively]. AHAh GnRH neurons exhibited tighter burst firing compared with other slice orientations. Although α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) excited GnRH neurons in all preparations, γ-aminobutyric acid (GABA) was excitatory in AHAc and POAc but inhibitory in AHAh slices. GABA(A) receptor postsynaptic currents were the same in AHAh and AHAc slices. Intriguingly, direct activation of GABA(A) or GABA(B) receptors respectively stimulated and inhibited GnRH neurons regardless of slice orientation. Subsequent experiments indicated that net GABA effects were determined by differences in the ratio of GABA(A) and GABA(B) receptor-mediated effects in "long" and "short" dendrites of GnRH neurons in the different slice orientations. These studies document a new brain slice preparation for recording from GnRH neurons with their extensive dendrites/axons and highlight the importance of GnRH neuron orientation relative to the angle of brain slicing in studying these neurons in vitro.

  11. Hedgehog-PKA Signaling and gnrh3 Regulate the Development of Zebrafish gnrh3 Neurons

    PubMed Central

    Kuo, Ming-Wei; Lou, Show-Wan; Chung, Bon-chu

    2014-01-01

    GnRH neurons secrete GnRH that controls the development of the reproduction system. Despite many studies, the signals controlling the development of GnRH neurons from its progenitors have not been fully established. To understand the development of GnRH neurons, we examined the development of gnrh3-expressing cells using a transgenic zebrafish line that expresses green fluorescent protein (GFP) and LacZ driven by the gnrh3 promoter. GFP and LacZ expression recapitulated that of gnrh3 in the olfactory region, olfactory bulb and telencephalon. Depletion of gnrh3 by morpholinos led to a reduction of GFP- and gnrh3-expressing cells, while over-expression of gnrh3 mRNA increased the number of these cells. This result indicates a positive feed-forward regulation of gnrh3 cells by gnrh3. The gnrh3 cells were absent in embryos that lack Hedgehog signaling, but their numbers were increased in embryos overexpressing shhb. We manipulated the amounts of kinase that antagonizes the Hedgehog signaling pathway, protein kinase A (PKA), by treating embryos with PKA activator forskolin or by injecting mRNAs encoding its constitutively active catalytic subunit (PKA*) and dominant negative regulatory subunit (PKI) into zebrafish embryos. PKA* misexpression or forskolin treatment decreased GFP cell numbers, while PKI misexpression led to ectopic production of GFP cells. Our data indicate that the Hedgehog-PKA pathway participates in the development of gnrh3-expressing neurons during embryogenesis. PMID:24879419

  12. Multifunctional pulse generator for high-intensity focused ultrasound system

    NASA Astrophysics Data System (ADS)

    Tamano, Satoshi; Yoshizawa, Shin; Umemura, Shin-Ichiro

    2017-07-01

    High-intensity focused ultrasound (HIFU) can achieve high spatial resolution for the treatment of diseases. A major technical challenge in implementing a HIFU therapeutic system is to generate high-voltage high-current signals for effectively exciting a multichannel HIFU transducer at high efficiencies. In this paper, we present the development of a multifunctional multichannel generator/driver. The generator can produce a long burst as well as an extremely high-voltage short pulse of pseudosinusoidal waves (trigger HIFU) and second-harmonic superimposed waves for HIFU transmission. The transmission timing, waveform, and frequency can be controlled using a field-programmable gate array (FPGA) via a universal serial bus (USB) microcontroller. The hardware is implemented in a compact printed circuit board. The test results of trigger HIFU reveal that the power consumption and the temperature rise of metal-oxide semiconductor field-effect transistors were reduced by 19.9% and 38.2 °C, respectively, from the previous design. The highly flexible performance of the novel generator/driver is demonstrated in the generation of second-harmonic superimposed waves, which is useful for cavitation-enhanced HIFU treatment, although the previous design exhibited difficulty in generating it.

  13. Sub-15fs ultraviolet pulses generated by achromatic phase-matching sum-frequency mixing.

    PubMed

    Zhao, Baozhen; Jiang, Yongliang; Sueda, Keiich; Miyanaga, Noriaki; Kobayashi, Takayoshi

    2009-09-28

    A broadband ultraviolet pulse with a spectral width of 44 nm was generated by achromatic sum-frequency mixing of an 805-nm pulse and ultrabroadband visible pulse. Angular dispersion was introduced to achieve broadband phase matching by a prism pair. The UV pulse was compressed to 13.2 fs with another prism pair, with energy of 600 nJ.

  14. Experimental generation of broadband quadrature entanglement using laser pulses

    SciTech Connect

    Zhang, Yun; Furuta, Tatsuya; Okubo, Ryuhi; Takahashi, Kosuke; Hirano, Takuya

    2007-07-15

    We report on the generation of broadband pulsed quadrature entanglement by combining two squeezed vacua, which are generated from two degenerate optical parametric amplifiers (OPAs), on a beam splitter. With a single pass through OPA, in which a periodically poled lithium niobate waveguide is used as a nonlinear material, the noise reduction of 3.4{+-}0.2 dB below the shot noise limit is observed with a bandwidth of more than 200 MHz. The entanglement correlation or EPR correlation is confirmed with a sufficient criterion <{delta}{sup 2}(X{sub a}+X{sub b})>+<{delta}{sup 2}(Y{sub a}-Y{sub b})>=1.28<2.

  15. THz generation from optical rectification tilted-pulse-front pumping scheme with laser pulse focused to a line

    NASA Astrophysics Data System (ADS)

    Du, Hai-Wei; Hoshina, Hiromichi; Otani, Chiko

    2015-10-01

    In this study, we investigate THz pulses generated from optical rectification with tilted-pulse-front pumping scheme in which the laser beam is focused to a line in a stoichiometric lithium niobate (sLN) crystal. A cylindrical lens and a common lens are used to focus the pump laser beam to a line. The power law of THz pulse generation and the redshift induced from the sLN crystal are measured. The spectral shapes of the laser pulse are changed by inserting a filter into the pump laser beam, causing the THz radiation to change. The filter is a metal wire with 2 mm diameter. Experimental results show that this method can change the generated THz time waveforms but not their spectra. Such method offers a simple means to change and manipulate THz field generated from optical rectification with tiled-pulse-front pumping scheme.

  16. Pulse Generation in the Quorum Machinery of Pseudomonas aeruginosa.

    PubMed

    Alfiniyah, Cicik; Bees, Martin A; Wood, A Jamie

    2017-06-01

    Pseudomonas aeruginosa is a Gram-negative bacterium that is responsible for a wide range of infections in humans. Colonies employ quorum sensing (QS) to coordinate gene expression, including for virulence factors, swarming motility and complex social traits. The QS signalling system of P. aeruginosa is known to involve multiple control components, notably the las, rhl and pqs systems. In this paper, we examine the las system and, in particular, the repressive interaction of rsaL, an embedded small regulative protein, employing recent biochemical information to aid model construction. Using analytic methods, we show how this feature can give rise to excitable pulse generation in this subsystem with important downstream consequences for rhamnolipid production. We adopt a symmetric competitive inhibition to capture the binding in the lasI-rsaL intergenic region and show our results are not dependent on the exact choice of this functional form. Furthermore, we examine the coupling of lasR to the rhl system, the impact of the predicted capacity for pulse generation and the biophysical consequences of this behaviour. We hypothesize that the interaction between the las and rhl systems may provide a quorum memory to enable cells to trigger rhamnolipid production only when they are at the edge of an established aggregation.

  17. Monocycle and doublet pulses generation via photon echo in rare-earth-doped optical crystal

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Zhang, Shuanggen; Ma, Xiurong; Hu, Minglie; Wang, Qingyue

    2016-12-01

    All-optical pulse generation opens up a field for ultrawideband (UWB) applications. However, controllable pulse width and pulse type are still challenging. Here, we present a theoretical model and stimulated results of monocycle and doublet waveforms generation using programmable optical photon echo progress. We synthesized instantaneously monocycle and doublet waveforms by adjustment of pulse width, pulse amplitude, pulse position, and time interval of subpulses. We verified the possible application of the proposed method to design U.S. Federal Communications Commission-compliant UWB waveforms, and therefore, it may provide an avenue for waveform generation.

  18. Theoretical exploration of harmonic emission and attosecond pulse generation from H2+ in the presence of terahertz pulse

    NASA Astrophysics Data System (ADS)

    Liu, Hang; Feng, Liqiang

    2016-06-01

    Harmonic generation spectra from H2+ molecule ion driven by the chirped pulse combined with a terahertz (THz) pulse have been theoretically investigated by numerically solving the non-Born-Oppenheimer time-dependent Schrödinger equation (NBO-TDSE). The results show that with the introduction of the chirp, the harmonic cutoff is extended, resulting in a smooth supercontinuum. Further, when the initial vibrational state is prepared as v = 3, and by properly adding a THz controlling pulse, the harmonic yield is enhanced by almost six orders of magnitude compared with the single chirped pulse case. Quantum analyses are shown to explain the harmonic extension and enhancement. Furthermore, through the investigation of the isotopic effect, we find that more intense harmonics are generated in the lighter nucleus. Finally, by properly superposing the harmonics, a series of intense 35 as XUV pulses can be obtained, which are almost six orders of magnitude improvement in comparison with the single chirped pulse case.

  19. High reliability low jitter 80kV pulse generator

    NASA Astrophysics Data System (ADS)

    Savage, M. E.; Stoltzfus, B. S.

    2009-08-01

    Switching can be considered to be the essence of pulsed power. Time accurate switch/trigger systems with low inductance are useful in many applications. This article describes a unique switch geometry coupled with a low-inductance capacitive energy store. The system provides a fast-rising high voltage pulse into a low impedance load. It can be challenging to generate high voltage (more than 50 kilovolts) into impedances less than 10Ω, from a low voltage control signal with a fast rise time and high temporal accuracy. The required power amplification is large, and is usually accomplished with multiple stages. The multiple stages can adversely affect the temporal accuracy and the reliability of the system. In the present application, a highly reliable and low jitter trigger generator was required for the Z pulsed-power facility [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats,J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, and J. R. Woodworth, 2007 IEEE Pulsed Power Conference, Albuquerque, NM (IEEE, Piscataway, NJ, 2007), p. 979]. The large investment in each Z experiment demands low prefire probability and low jitter simultaneously. The system described here is based on a 100 kV DC-charged high-pressure spark gap, triggered with an ultraviolet laser. The system uses a single optical path for simultaneously triggering two parallel switches, allowing lower inductance and electrode erosion with a simple optical system. Performance of the system includes 6 ns output rise time into 5.6Ω, 550 ps one-sigma jitter measured from the 5 V trigger to the high voltage output, and misfire probability less than 10-4. The design of the system and some key measurements will be shown in the paper. We will discuss the design goals related to high reliability and low jitter. While reliability is

  20. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions

    SciTech Connect

    Thomas, Alexander Roy; Krushelnick, Karl

    2016-09-08

    We have studied ion motion effects in high harmonic generation, including shifts to the harmonics which result in degradation of the attosecond pulse train, and how to mitigate them. We have examined the scaling with intensity of harmonic emission. We have also switched the geometry of the interaction to measure, for the first time, harmonics from a normal incidence interaction. This was performed by using a special parabolic reflector with an on axis hole and is to allow measurements of the attosecond pulses using standard techniques. Here is a summary of the findings: First high harmonic generation in laser-solid interactions at 1021 Wcm-2, demonstration of harmonic focusing, study of ion motion effects in high harmonic generation in laser-solid interactions, and demonstration of harmonic amplification.

  1. The distribution of substance P and kisspeptin in the mediobasal hypothalamus of the male rhesus monkey and a comparison of intravenous administration of these peptides to release GnRH as reflected by LH secretion

    PubMed Central

    Kalil, Bruna; Ramaswamy, Suresh; Plant, Tony M.

    2016-01-01

    Substance P (SP) was recently reported to be expressed in human KNDy neurons and to enhance KNDy neuron excitability in the mouse hypothalamus. We therefore examined 1) interactions of SP and kisspeptin in the mediobasal hypothalamus of adult male rhesus monkeys using immunofluorescence, and 2) the ability of SP to induce LH release in GnRH primed, agonadal juvenile male monkeys. SP cell bodies were observed only occasionally in the arcuate nucleus (Arc), but more frequently dorsal to the Arc in the region of the pre-mammilary nucleus. Castration resulted in an increase in the number of SP cell bodies in the Arc but not in the other nuclei. SP fibers innervated the Arc where they were found in close apposition with kisspeptin perikarya in the periphery of this nucleus. Beaded SP axons projected to the median eminence where they terminated in the external layer and intermingled with beaded kisspeptin axons. Colocalization of the two peptides, however, was not observed. Although close apposition between SP fibers and kisspeptin neurons suggest a role for SP in modulating GnRH pulse generator activity, iv injections of SP failed to elicit release of GnRH (as reflected by LH) in the juvenile monkey. Although the finding of structural interactions between SP and kisspeptin neurons are consistent with the notion that this tachykinin may be involved in regulating pulsatile GnRH release, the apparent absence of expression of SP in KNDy neurons suggests that this peptide is unlikely to be a fundamental component of the primate GnRH pulse generator. PMID:26580201

  2. Triboelectric-generator-driven pulse electrodeposition for micropatterning.

    PubMed

    Zhu, Guang; Pan, Caofeng; Guo, Wenxi; Chen, Chih-Yen; Zhou, Yusheng; Yu, Ruomeng; Wang, Zhong Lin

    2012-09-12

    By converting ambient energy into electricity, energy harvesting is capable of at least offsetting, or even replacing, the reliance of small portable electronics on traditional power supplies, such as batteries. Here we demonstrate a novel and simple generator with extremely low cost for efficiently harvesting mechanical energy that is typically present in the form of vibrations and random displacements/deformation. Owing to the coupling of contact charging and electrostatic induction, electric generation was achieved with a cycled process of contact and separation between two polymer films. A detailed theory is developed for understanding the proposed mechanism. The instantaneous electric power density reached as high as 31.2 mW/cm(3) at a maximum open circuit voltage of 110 V. Furthermore, the generator was successfully used without electric storage as a direct power source for pulse electrodeposition (PED) of micro/nanocrystalline silver structure. The cathodic current efficiency reached up to 86.6%. Not only does this work present a new type of generator that is featured by simple fabrication, large electric output, excellent robustness, and extremely low cost, but also extends the application of energy-harvesting technology to the field of electrochemistry with further utilizations including, but not limited to, pollutant degradation, corrosion protection, and water splitting.

  3. Generation of pulsed discharge plasma in water with fine bubbles

    NASA Astrophysics Data System (ADS)

    Hayashi, Yui; Takada, Noriharu; Kanda, Hideki; Goto, Motonobu; Goto laboratory Team

    2015-09-01

    Recently, some researchers have proposed electric discharge methods with bubbles in water because the discharge plasma inside bubble was easy to be generated compared to that in water. Almost all of these methods introduced bubbles in the order of millimeter size from a nozzle placed in water. In these methods, bubbles rose one after another owing to high rising speed of millibubble, leading to inefficient gas consumption. We proposed fine bubbles introduction at the discharge area in water. A fine bubble is determined a bubble with less than 100 μm in a diameter. Fine bubbles exhibit extremely slow rising speed. Fine bubbles decrease in size during bubble rising and subsequently collapse in water with OH radical generation. Therefore, combining the discharge plasma with fine bubbles is expected to generate more active species with small amount of gas consumption. In this work, fine bubbles were introduced in water and pulsed discharge plasma was generated between two cylindrical electrodes which placed in water. We examined effects of fine bubbles on electric discharge in water when argon or oxygen gas was utilized as feed gas. Fine bubbles enhanced optical emission of hydrogen and oxygen atoms from H2O molecules, but that of feed gas was not observed. The formation mechanism of H2O2 by electric discharge was supposed to be different from that with no bubbling. Dissolved oxygen in water played a role in H2O2 formation by the discharge with fine bubbles.

  4. A Pulsed Injection Parahydrogen Generator and Techniques for Quantifying Enrichment

    PubMed Central

    Feng, Bibo; Coffey, Aaron M.; Colon, Raul D.; Chekmenev, Eduard Y.; Waddell, Kevin W.

    2012-01-01

    A device is presented for efficiently enriching parahydrogen by pulsed injection of ambient hydrogen gas. Hydrogen input to the generator is pulsed at high pressure to a catalyst chamber making thermal contact with the cold head of a closed cycle cryostat maintained between 15 and 20 K. The system enables fast production (0.9 standard liters per minute) and allows for a wide range of production targets. Production rates can be systematically adjusted by varying the actuation sequence of high-pressure solenoid valves, which are controlled via an open source microcontroller to sample all combinations between fast and thorough enrichment by varying duration of hydrogen contact in the catalyst chamber. The entire enrichment cycle from optimization to quantification and storage kinetics are also described. Conversion of the para spin-isomer to orthohydrogen in borosilicate tubes was measured at 8 minute intervals over a period of 64 hours with a 12 Tesla NMR spectrometer. These relaxation curves were then used to extract initial enrichment by exploiting the known equilibrium (relaxed) distribution of spin isomers with linear least squares fitting to a single exponential decay curve with an estimated error less than or equal to 1 %. This procedure is time-consuming, but requires only one sample pressurized to atmosphere. Given that tedious matching to external references are unnecessary with this procedure, we find it to be useful for periodic inspection of generator performance. The equipment and procedures offer a variation in generator design that eliminate the need to meter flow while enabling access to increased rates of production. These tools for enriching and quantifying parahydrogen have been in steady use for 3 years and should be helpful as a template or as reference material for building and operating a parahydrogen production facility. PMID:22188975

  5. Generation of unipolar optical pulses in a Raman-active medium

    NASA Astrophysics Data System (ADS)

    Arkhipov, R. M.; Arkhipov, M. V.; Belov, P. A.; Tolmachev, Yu A.; Babushkin, I.

    2016-04-01

    Response of a Raman-active media (RAM) to the excitation by a series of ultrashort (few-cycle) optical pulses propagating at a superluminal velocity is studied theoretically. It is shown that under certain conditions rectangular unipolar pulses (video-pulses) can be generated as the RAM response. The duration, shape and amplitude of these video-pulses can be widely tuned by modifying the pump pulse parameters.

  6. Computer controlled MHD power consolidation and pulse generation system

    SciTech Connect

    Johnson, R.; Marcotte, K.; Donnelly, M.

    1990-01-01

    The major goal of this research project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility has been established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a Faraday connected MHD generator which may be viewed as a multi-terminal dc source and is simulated for the purpose of this demonstration by a set of dc power supplies. This consolidation/inversion (CI), process will be referred to subsequently as Pulse Amplitude Synthesis and Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible phase II prototype system. This report period work summarizes the accomplishments and covers the high points of the two year project. 6 refs., 41 figs.

  7. A pulsed neutron generator for in vivo body composition studies

    NASA Astrophysics Data System (ADS)

    Weinlein, J. H.; O'Neal, M. L.; Bacon, F. M.

    1991-05-01

    A neutron generator system utilizing two Zetatron neutron tubes has been designed and delivered to the U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University for use in clinical measurements of body carbon by neutron inelastic scattering. Each neutron tube is capable of delivering 10 3-10 4 14-MeV neutrons in a 7-μs pulse at repetition rates of 4 or 8 kHz, and can be operated independently as well as in a master-slave mode. The neutron tubes are gas filled with a mixture of deuterium and tritium; the target of the tube is operated at - 30 to - 60 kV dc and the ion source is operated with a 2.5-kV, 7-μs pulse. The tube gas pressure is monitored and controlled by measuring the total current in the high voltage circuit and feeding it back to the gas-reservoir drive circuit. Neutrons were measured with a plastic scintillator and photomultiplier tube.

  8. Difference frequency generation of femtosecond mid infrared pulses employing intense Stokes pulses excitation in a photonic crystal fiber.

    PubMed

    Yao, Yuhong; Knox, Wayne H

    2012-11-05

    We demonstrate a novel method of generating milli-watt level mid-IR (MIR) pulses based on difference frequency mixing of the output from a 40 MHz Yb fiber Chirped Pulse Amplifier (CPA) and the intense Stokes pulses generated in a photonic crystal fiber (PCF) with two closely spaced zero dispersion wavelengths (ZDW). By taking advantage of the unique dispersion profile of the fiber, high power narrowband Stokes pulses are selectively generated in the normal dispersion region of the PCF with up to 1.45 nJ of pulse energy. Mixing with 12 nJ of pump pulses at 1035 nm in a type-II AgGaS(2) crystal yields MIR pulses around 5.5 µm wavelength with up to 3 mW of average power and 75 pJ of pulse energy. The reported method can be extended to generation of other MIR wavelengths by selecting PCFs with different second ZDWs or engineering the fiber dispersion profile via longitudinal tapering.

  9. GnRH Effects Outside the Hypothalamo-Pituitary-Reproductive Axis

    PubMed Central

    Skinner, Donal C.; Albertson, Asher J; Navratil, Amy; Smith, Arik; Mignot, Mallory; Talbott, Heather; Scanlan-Blake, Niamh

    2009-01-01

    GnRH is a hypothalamic decapeptide with an undisputed role as a primary regulator of gonadal function. It exerts this regulation by controlling the release of gonadotropins. However, it is becoming apparent that GnRH may have a variety of other vital roles in normal physiology. Reconsideration of the potential widespread action that this traditional reproductive hormone exerts may lead to the generation of novel therapies and provide insight into seemingly incongruent outcomes from current treatments using GnRH analogues to combat diseases such as prostate cancer. PMID:19187469

  10. Anapole nanolasers for mode-locking and ultrafast pulse generation

    PubMed Central

    Totero Gongora, Juan S.; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Fratalocchi, Andrea

    2017-01-01

    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry. PMID:28561017

  11. Neonatal testosterone suppresses a neuroendocrine pulse generator required for reproduction.

    PubMed

    Israel, Jean-Marc; Cabelguen, Jean-Marie; Le Masson, Gwendal; Oliet, Stéphane H; Ciofi, Philippe

    2014-01-01

    The pituitary gland releases hormones in a pulsatile fashion guaranteeing signalling efficiency. The determinants of pulsatility are poorly circumscribed. Here we show in magnocellular hypothalamo-neurohypophyseal oxytocin (OT) neurons that the bursting activity underlying the neurohormonal pulses necessary for parturition and the milk-ejection reflex is entirely driven by a female-specific central pattern generator (CPG). Surprisingly, this CPG is active in both male and female neonates, but is inactivated in males after the first week of life. CPG activity can be restored in males by orchidectomy or silenced in females by exogenous testosterone. This steroid effect is aromatase and caspase dependent, and is mediated via oestrogen receptor-α. This indicates the apoptosis of the CPG network during hypothalamic sexual differentiation, explaining why OT neurons do not burst in adult males. This supports the view that stereotypic neuroendocrine pulsatility is governed by CPGs, some of which are subjected to gender-specific perinatal programming.

  12. OFI argon excimer amplifier for intense subpicosecond VUV pulse generation

    NASA Astrophysics Data System (ADS)

    Kaku, M.; Kubodera, S.; Oda, K.; Katto, M.; Yokotani, A.; Miyanaga, N.; Mima, K.

    2008-10-01

    We have demonstrated an OFI Ar2* excimer VUV amplifier at 126 nm pumped by a high-intensity laser in the table top size. We observed the Ar2 * excimer emission centered at 126 nm with the spectral bandwidth of 10 nm (FWHM), which was produced in the OFI plasma. Significant amplification was observed inside the OFI Ar2 * excimer as a result of the optical feedback provided by a VUV reflector. The gain-length product of 5.6 was observed at the Ar pressure of 11 atm. The population inversion density on the order of 1017 cm-3 was evaluated inside the OFI plasma, which would be sufficient for the amplification of a subpicosecond VUV pulse at 126 nm produced by the harmonic generation.

  13. Neonatal testosterone suppresses a neuroendocrine pulse generator required for reproduction

    NASA Astrophysics Data System (ADS)

    Israel, Jean-Marc; Cabelguen, Jean-Marie; Le Masson, Gwendal; Oliet, Stéphane H.; Ciofi, Philippe

    2014-02-01

    The pituitary gland releases hormones in a pulsatile fashion guaranteeing signalling efficiency. The determinants of pulsatility are poorly circumscribed. Here we show in magnocellular hypothalamo-neurohypophyseal oxytocin (OT) neurons that the bursting activity underlying the neurohormonal pulses necessary for parturition and the milk-ejection reflex is entirely driven by a female-specific central pattern generator (CPG). Surprisingly, this CPG is active in both male and female neonates, but is inactivated in males after the first week of life. CPG activity can be restored in males by orchidectomy or silenced in females by exogenous testosterone. This steroid effect is aromatase and caspase dependent, and is mediated via oestrogen receptor-α. This indicates the apoptosis of the CPG network during hypothalamic sexual differentiation, explaining why OT neurons do not burst in adult males. This supports the view that stereotypic neuroendocrine pulsatility is governed by CPGs, some of which are subjected to gender-specific perinatal programming.

  14. Electromagnetic pulse generation within a petawatt laser target chamber

    SciTech Connect

    Mead, M.J.; Neely, D.; Gauoin, J.; Heathcote, R.; Patel, P.

    2004-10-01

    Recent work has been undertaken to characterize the electromagnatic pulse (EMP) generated by the high temperature high density plasma produced by a petawatt laser. This was to evaluate the susceptibility to malfunction and damage of equipment and diagnostics for the new Orion laser. EMP measurement were made using moebius loop antennas fitted inside the target chamber of the Vulcan petawatt laser at the Rutherford Appleton Laboratory. These show the EMP as a 63 MHz transient which decays from a peak magnetic field of around 4.3 A/m. A theoretical model presented assumes the EMP is produced by an impulse of 10{sup 12} electron emanating from the target, which charge the chamber wall causing it to ring at natural frequency. The theoretical model provides an estimate of the EMP measured in the Vulcan petawatt target chamber and will be used for the design of the Orion laser.

  15. Anapole nanolasers for mode-locking and ultrafast pulse generation

    NASA Astrophysics Data System (ADS)

    Totero Gongora, Juan S.; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Fratalocchi, Andrea

    2017-05-01

    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry.

  16. Analysis of radial and longitudinal force of plasma wakefield generated by a chirped pulse laser

    SciTech Connect

    Ghasemi, Leila; Afhami, Saeedeh; Eslami, Esmaeil

    2015-08-15

    In present paper, the chirp effect of an electromagnetic pulse via an analytical model of wakefield generation is studied. Different types of chirps are employed in this study. Our results show that by the use of nonlinear chirped pulse the longitudinal wakefield and focusing force is stronger than that of linear chirped pulse. It is indicated that quadratic nonlinear chirped pulses are globally much efficient than periodic nonlinear chirped pulses. Our calculations also predict that in nonlinear chirped pulse case, the overlap of focusing and accelerating regions is broader than that achieved in linear chirped pulse.

  17. Pulsed x-ray generator for commercial gas lasers

    NASA Astrophysics Data System (ADS)

    Bollanti, S.; Bonfigli, F.; Di Lazzaro, P.; Flora, F.; Giordano, G.; Letardi, T.; Murra, D.; Schina, G.; Zheng, C. E.

    2001-10-01

    We have designed and tested a 1-m-long x-ray diode based on innovative plasma cathodes, which exploit commercial spark plugs as electron emitters. Based on the results of a numerical study, we optimized both diode geometry (e.g., the angle between anode and cathode surfaces, the thickness of the Al window) and electrical circuitry (e.g., the capacitance in series to each spark plug, the peak voltage of the anode) of our x-ray generator. The overall result is a simple and efficient circuitry, giving a total diode current in excess of 2.1 kA with a breakdown voltage of 70 kV, which generates a 50 ns rise-time x-ray pulse with a spatially averaged dosage of up to 6×10-4 Gy when using a Pb-wrapped anode. The double-diode x-ray generator was operated for 1.5×106 shots at a repetition rate of up to 30 Hz, and the lifetime test was interrupted without any fault. During the lifetime test, it was not necessary to adjust any working parameter. At the end of the lifetime test, the x-ray emission uniformity was better than 80% along the longitudinal axis. This x-ray generator has a lifetime, reliability, and cost fitting the requirements of industrial users. Among the broad range of potential applications, this x-ray generator is particularly suitable to ionize discharge pumped gas lasers, like TEA CO2 and excimer lasers, including those operated by x-ray triggered discharges.

  18. A Novel Picosecond Pulse Generation Circuit Based on SRD and NLTL

    PubMed Central

    Zhou, Jianming; Lu, Qiuyuan; Liu, Fan; Li, Yinqiao

    2016-01-01

    Because of the importance of ultra-wideband (UWB) radar in various applications, short pulse generation in UWB systems has attracted a lot of attention in recent years. In order to shorten the pulse, nonlinear transmission line (NLTL) is imported, which expands the application of step recovery diode (SRD) for pulse generation. Detailed analysis and equations for this SRD and NLTL-based pulse generation are provided and verified by simulation and experimental results. Factors that could cause pulse waveform distortions are also analyzed. The generator circuit presented in this paper generates 130ps and 3.3V pulse, which can be used in UWB radar systems that require sub-nanosecond pulses. PMID:26919290

  19. A Novel Picosecond Pulse Generation Circuit Based on SRD and NLTL.

    PubMed

    Zhou, Jianming; Lu, Qiuyuan; Liu, Fan; Li, Yinqiao

    2016-01-01

    Because of the importance of ultra-wideband (UWB) radar in various applications, short pulse generation in UWB systems has attracted a lot of attention in recent years. In order to shorten the pulse, nonlinear transmission line (NLTL) is imported, which expands the application of step recovery diode (SRD) for pulse generation. Detailed analysis and equations for this SRD and NLTL-based pulse generation are provided and verified by simulation and experimental results. Factors that could cause pulse waveform distortions are also analyzed. The generator circuit presented in this paper generates 130ps and 3.3V pulse, which can be used in UWB radar systems that require sub-nanosecond pulses.

  20. Effects of GnRH antagonists vs agonists in domestic carnivores, a review.

    PubMed

    Gobello, C

    2012-12-01

    Gonadotrophin-releasing hormone (GnRH) stimulates the pituitary secretion of both luteinizing and follicle-stimulating hormones, and thus controls the hormonal and reproductive functions of the gonads. GnRH analogs, which include agonists and antagonists, have been produced by amino acid substitutions within the native GnRH molecule resulting in greater potency and a longer duration of effectiveness. While the initial antagonists produced significant side effects, more recent potent, long-acting, water-soluble, low histamine-release third-generation compounds such as cetrorelix, abarelix, azaline B and acyline have appeared. Differently to GnRH agonists, antagonists competitively block and inhibit GnRH-induced GnRH receptor gene expression leading to an immediate, dose-dependent, pituitary suppression without an initial stimulation of the gonadal axis. The aims of this review are to compare the effects of GnRH agonists vs antagonists and to describe the existing literature concerning new antagonists in domestic carnivores. In male dogs, a single subcutaneous dose of acyline safely and reversibly decreased serum gonadotrophins and testosterone concentrations for 9 days and prevented physiological response of gonadal the axis to agonistic challenge for 14 days. The same protocol reversibly impaired spermiogenesis, spermatocytogenesis and semen quality in both cats and dogs. In females, third-generation GnRH antagonists prevented ovulation and interrupted pregnancy in canids but not in felids. During anestrus, a single acyline injection exhibited limited prevention of the 'flare-up' effect in GnRH agonist-implanted bitches. Although GnRH antagonists appear to have a promising future in domestic carnivores reproduction, the information is still scarce and further work is needed before they can be widely recommended.

  1. Dynamic evolution of the GnRH receptor gene family in vertebrates.

    PubMed

    Williams, Barry L; Akazome, Yasuhisa; Oka, Yoshitaka; Eisthen, Heather L

    2014-10-25

    Elucidating the mechanisms underlying coevolution of ligands and receptors is an important challenge in molecular evolutionary biology. Peptide hormones and their receptors are excellent models for such efforts, given the relative ease of examining evolutionary changes in genes encoding for both molecules. Most vertebrates possess multiple genes for both the decapeptide gonadotropin releasing hormone (GnRH) and for the GnRH receptor. The evolutionary history of the receptor family, including ancestral copy number and timing of duplications and deletions, has been the subject of controversy. We report here for the first time sequences of three distinct GnRH receptor genes in salamanders (axolotls, Ambystoma mexicanum), which are orthologous to three GnRH receptors from ranid frogs. To understand the origin of these genes within the larger evolutionary context of the gene family, we performed phylogenetic analyses and probabilistic protein homology searches of GnRH receptor genes in vertebrates and their near relatives. Our analyses revealed four points that alter previous views about the evolution of the GnRH receptor gene family. First, the "mammalian" pituitary type GnRH receptor, which is the sole GnRH receptor in humans and previously presumed to be highly derived because it lacks the cytoplasmic C-terminal domain typical of most G-protein coupled receptors, is actually an ancient gene that originated in the common ancestor of jawed vertebrates (Gnathostomata). Second, unlike previous studies, we classify vertebrate GnRH receptors into five subfamilies. Third, the order of subfamily origins is the inverse of previous proposed models. Fourth, the number of GnRH receptor genes has been dynamic in vertebrates and their ancestors, with multiple duplications and losses. Our results provide a novel evolutionary framework for generating hypotheses concerning the functional importance of structural characteristics of vertebrate GnRH receptors. We show that five

  2. Quasi-phase-matched high-order harmonic generation using tunable pulse trains.

    PubMed

    O'Keeffe, Kevin; Lloyd, David T; Hooker, Simon M

    2014-04-07

    A simple technique for generating trains of ultrafast pulses is demonstrated in which the linear separation between pulses can be varied continuously over a wide range. These pulse trains are used to achieve tunable quasi-phase-matching of high harmonic generation over a range of harmonic orders up to the harmonic cut-off, resulting in enhancements of the harmonic intensity in excess of an order of magnitude. The peak enhancement of the harmonics is clearly shown to depend on the separation between pulses, as well as the number of pulses in the train, representing an easily tunable source of quasi-phase-matched high harmonic generation.

  3. Copper vapour laser with an efficient semiconductor pump generator having comparable pump pulse and output pulse durations

    SciTech Connect

    Yurkin, A A

    2016-03-31

    We report the results of experimental studies of a copper vapour laser with a semiconductor pump generator capable of forming virtually optimal pump pulses with a current rise steepness of about 40 A ns{sup -1} in a KULON LT-1.5CU active element. To maintain the operating temperature of the active element's channel, an additional heating pulsed oscillator is used. High efficiency of the pump generator is demonstrated. (lasers)

  4. New approach for the design of an optical square pulse generator.

    PubMed

    Ngo, Nam Quoc; Binh, Le Nguyen

    2007-06-10

    What is believed to be a new approach for the design and analysis of a reconfigurable optical square pulse generator using the concept of temporal optical integration and the digital signal processing method is presented. The reconfigurable square pulse generator is synthesized using compact active semiconductor-based waveguide technology, and it consists simply of the cascade of a tunable microring resonator (or a tunable all-pole filter) and a tunable asymmetrical Mach-Zehnder interferometer (or a tunable all-zero filter). The reconfigurable generator can convert an input picosecond pulse (i.e., soliton or Gaussian pulse) into an optical square pulse. The pulse width of the generated square pulse can be adjusted by controlling the time delay of a variable delay element in the tunable all-zero filter. The reconfigurable generator can convert an input picosecond pulse train into return-to-zero (RZ) and non-return-to-zero (NRZ) signals with square pulse shapes. The repetition rates of the generated RZ and NRZ signals can be varied by adjusting the bit period of the input picosecond pulse train, the input pulse width, and the time delay of the variable delay element. The effect of the deviation of the parameter values on the generator performance is also studied.

  5. THz generation via optical rectification with ultrashort laser pulse focused to a line

    NASA Astrophysics Data System (ADS)

    Stepanov, A. G.; Hebling, J.; Kuhl, J.

    2005-07-01

    We report on efficient THz pulse generation via optical rectification with femtosecond laser pulses focused to a line by a cylindrical lens. This configuration provides phase-matched conditions in the superluminal regime. 35 pJ THz pulses have been generated with this technique in a stoichiometric LiNbO3 crystal pumped by 2 μJ femtosecond laser pulses at room temperature. An unusual superquadratic rise of the THz pulse energy with the laser pulse energy has been observed at high laser energies. This extraordinary energy dependence of the THz generation efficiency is explained by self-focusing of the laser beam in the crystal. Z-scan measurements and comparison of the THz pulse spectra created with laser pulses having different energies confirm this interpretation.

  6. Noncollinear gating for high-flux isolated-attosecond-pulse generation

    NASA Astrophysics Data System (ADS)

    Zhong, Shiyang; He, Xinkui; Jiang, Yujiao; Teng, Hao; He, Peng; Liu, Yangyang; Zhao, Kun; Wei, Zhiyi

    2016-03-01

    We propose an approach for producing high-flux isolated-attosecond pulses (IAPs) based on noncollinear geometry of high-order harmonic generation (HHG). By combining a main driving pulse and an ultrashort gating pulse in the interaction medium to form a tilt wave front in a very narrow overlapping time region, the attosecond pulses generated in this region are spatially separated from the original beam in the far field. It gives a way of extracting IAPs as well as fully characterizing an attosecond-pulse train (APT). Since this approach set no restriction on the pulse duration of the main driving pulse, it is particularly suitable for high-flux IAP generation by a high-energy laser which usually has multicycle pulse duration.

  7. GENERATION OF SUBPICOSECOND X-RAY PULSES IN STORAGE RINGS

    SciTech Connect

    Zholents, Alexander A.

    2007-06-19

    Supicosecond x-ray pulses are routinely produced at ALS,BESSY and SLS with slicing technique and used in pump-probe experimentswith controlled delay between laser pump pulses and x-ray probe pulses.New development aiming for a production of a subpicosecond x-ray pulsesusing rf orbit deflection technique is under way at APS. Both techniqueswill be reviewed here.

  8. Generation of high-power nanosecond pulses from laser diode-pumped Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Chan, Kinpui

    1988-01-01

    Simulation results are used to compare the pulse energy levels and pulse energy widths that can be achieved with LD-pumped Nd:YAG lasers for both the pulse-transmission mode (PTM) and pulse-reflection mode (PRM) Q-switching methods for pulse energy levels up to hundreds of microjoules and pulse widths as short as 1 ns. It is shown that high-power pulses with pulse widths as short as 1 ns can be generated with PTM Q-switched in LD-pumped Nd:YAG lasers. With the PRM Q-switching method, pulse widths as short as 2 ns and pulse energy at the level of a few hundred microjoules can also be achieved but require pumping with 8-10-mJ AlGaAs laser diode arrays.

  9. Application of a single-board computer as a low-cost pulse generator

    NASA Astrophysics Data System (ADS)

    Fedrizzi, Marcus; Soria, Julio

    2015-09-01

    A BeagleBone Black (BBB) single-board open-source computer was implemented as a low-cost fully programmable pulse generator. The pulse generator makes use of the BBB Programmable Real-Time Unit (PRU) subsystem to achieve a deterministic temporal resolution of 5 ns, an RMS jitter of 290 ps and a timebase stability on the order of 10 ppm. A Python-based software framework has also been developed to simplify the usage of the pulse generator.

  10. High energy protons generation by two sequential laser pulses

    SciTech Connect

    Wang, Xiaofeng; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Xu, Jiancai; Yi, Longqing; Shi, Yin

    2015-04-15

    The sequential proton acceleration by two laser pulses of relativistic intensity is proposed to produce high energy protons. In the scheme, a relativistic super-Gaussian (SG) laser pulse followed by a Laguerre-Gaussian (LG) pulse irradiates dense plasma attached by underdense plasma. A proton beam is produced from the target and accelerated in the radiation pressure regime by the short SG pulse and then trapped and re-accelerated in a special bubble driven by the LG pulse in the underdense plasma. The advantages of radiation pressure acceleration and LG transverse structure are combined to achieve the effective trapping and acceleration of protons. In a two-dimensional particle-in-cell simulation, protons of 6.7 GeV are obtained from a 2 × 10{sup 22 }W/cm{sup 2} SG laser pulse and a LG pulse at a lower peak intensity.

  11. Picosecond optical pulse generation at gigahertz rates by direct modulation of a semiconductor laser

    NASA Technical Reports Server (NTRS)

    Auyeung, J.

    1981-01-01

    We report the generation of picosecond pulses by the direct modulation of a buried heterostructure GaAlAs diode laser. Pulse width of 28 ps is achieved at a repetition frequency of 2.5 GHz. Pulse width dependence on the experimental parameters is described.

  12. Sub-2 fs pulses generated by self-channeling in the deep ultraviolet.

    PubMed

    Bergé, L; Skupin, S

    2008-04-01

    The generation of sub-2 fs light pulses in the UV is numerically demonstrated, using frequency conversion in filamentation regime. Few-cycle pulses emitted at 266 nm keep their temporal shape over several tens of centimeters. Self-compression results from the interplay between Kerr self-focusing and a low-density plasma, which continuously defocuses the pulse over extended propagation ranges.

  13. Regulation of GnRH I receptor gene expression by the GnRH agonist triptorelin, estradiol, and progesterone in the gonadotroph-derived cell line alphaT3-1.

    PubMed

    Weiss, J M; Polack, S; Treeck, O; Diedrich, K; Ortmann, O

    2006-08-01

    The secretion of luteinizing hormone (LH) and the GnRH receptor (GnRH-R) concentration are modulated by ovarian steroids and GnRH. To elucidate whether this regulation is due to alterations at the transcriptional level, we examined the GnRH I-R mRNA expression in the gonadotroph-derived cell line alphaT3-1 treated with different estradiol and progesterone paradigms and the GnRH I agonist triptorelin. alphaT3-1 cells were treated with different steroid paradigms: 1 nM estradiol or 100 nM progesterone for 48 h alone or in combination. Cells were exposed to 10 nM or 100 pM triptorelin for 30 min, 3 h, 9 h, or, in pulsatile way, with a 5-min pulse per hour. The GnRH I-R mRNA was determined by Northern blot analysis. GnRH I-R mRNA from cells treated with continuous triptorelin decreased in a time- and concentration-dependent manner. Pulsatile triptorelin increased GnRH I-R gene expression. Progesterone alone further enhanced this effect, whereas estradiol and its combination with progesterone diminished it. Continuous combined treatment with estradiol and progesterone lead to a significant decrease of GnRH I-R mRNA by 30% and by 35% for estradiol alone. The addition of 10 nM triptorelin for 30 min or 3 h could not influence that steroid effect. In conclusion, estradiol and progesterone exclusively decreased GnRH I-R mRNA in alphaT3-1 cells no matter whether they are treated additionally with the GnRH I agonist triptorelin. The enhanced sensitivity of gonadotrophs and GnRH I-R upregulation by estradiol is not due to increased GnRH I gene expression because GnRH I-R mRNA is downregulated by estradiol and progesterone. Other pathways of the GnRH I-R signal transduction might be involved.

  14. Z a Fast Pulsed Power Generator for Ultra-High Magnetic Field Generation

    NASA Astrophysics Data System (ADS)

    Spielman, R. B.; Stygar, W. A.; Struve, K. W.; Asay, J. R.; Hall, C. A.; Bernard, M. A.; Bailey, J. E.; McDaniel, D. H.

    2004-11-01

    Advances in fast, pulsed-power technologies have resulted in the development of very high current drivers that have current rise times ~100 ns. The largest such pulsed power driver today is the new Z accelerator located at Sandia National Laboratories in Albuquerque, New Mexico. Z can deliver more than 20 MA with a time-to-peak of 105 ns to low inductance (~1 nH) loads. Such large drivers are capable of directly generating magnetic fields approaching 3 kT in small, 1 cm3 volumes. In addition to direct field generation, Z can be used to compress an applied, axial seed field with a plasma. Flux compression schemes are not new and are, in fact, the basis of all explosive flux-compression generators, but we propose the use of plasma armatures rather than solid, conducting armatures. We present experimental results from the Z accelerator in which magnetic fields of ~2 kT are generated and measured with several diagnostics. Issues such as energy loss in solid conductors and dynamic response of current-carrying conductors to very large magnetic fields are reviewed in context with Z experiments. We describe planned flux-compression experiments that are expected to create the highest-magnitude uniform-field volumes yet attained in the laboratory.

  15. Generation of tunable and broadband far-infrared laser pulses during two-color filamentation

    SciTech Connect

    Theberge, Francis; Chateauneuf, Marc; Roy, Gilles; Mathieu, Pierre; Dubois, Jacques

    2010-03-15

    Tunable far-infrared laser pulses were generated efficiently during two-color filamentation in air. Understanding the creation of few-cycle far-infrared laser pulses is important since it is at the frontier between two possible generation mechanisms. The first one is the four-wave mixing generation, associated to the generation of wavelengths from ultraviolet up to mid-infrared laser pulses. The second process is the formation of transient photocurrent, which was recently used to describe the generation of submillimetric (terahertz) waves. Comparison between experiments and simulations revealed that the four-wave mixing mechanism is dominant for the far-infrared generation during two-color filamentation.

  16. Injection-seeded tunable mid-infrared pulses generated by difference frequency mixing

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yuki; Hara, Hideaki; Masuda, Takahiko; Hiraki, Takahiro; Sasao, Noboru; Uetake, Satoshi

    2017-03-01

    We report on the generation of nanosecond mid-infrared pulses having frequency tunability, a narrow linewidth, and a high pulse energy. These pulses are obtained by frequency mixing between injection-seeded near-infrared pulses in potassium titanyl arsenate crystals. A continuous-wave external cavity laser diode or a Ti:sapphire ring laser is used as a tunable seeding source for the near-infrared pulses. The typical energy of the generated mid-infrared pulses is in the range of 0.4–1 mJ/pulse. The tuning wavelength ranges from 3142 to 4806 nm. A narrow linewidth of 1.4 GHz and good frequency reproducibility of the mid-infrared pulses are confirmed by observing a rovibrational absorption line of gaseous carbon monoxide at 4587 nm.

  17. Femtosecond pulses generated from a synchronously pumped chromium-doped forsterite laser

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, R. R.

    1993-01-01

    Kerr lens mode-locking (KLM) has become a standard method to produce femtosecond pulses from tunable solid state lasers. High power inside the laser resonator propagating through the laser-medium with nonlinear index of refraction, coupled with the stability conditions of the laser modes in the resonator, result in a passive amplitude modulation which explains the mechanism for pulse shortening. Recently, chromium doped forsterite was shown to exhibit similar pulse behavior. A successful attempt to generate femtosecond pulses from a synchronously pumped chromium-doped forsterite laser with intracavity dispersion compensation is reported. Stable, transform limited pulses with duration of 105 fs were routinely generated, tunable between 1240 to 1270 nm.

  18. Molluscan GnRH associated with reproduction.

    PubMed

    Osada, Makoto; Treen, Nicholas

    2013-01-15

    Gonadotropin-releasing hormone (GnRH) is a neuropeptide that has an essential role in the neural regulation of vertebrate reproduction. Over the past two decades there has been increasing evidence strongly indicating that members of the GnRH superfamily, which includes GnRH, adipokinetic hormone (AKH), corazonin (Crz) and adipokinetic hormone/corazonin-related peptides (ACP), are almost ubiquitous amongst bilateral animals. Moreover GnRH possibly has origins in even more ancient, non-bilateral ancestors. Current knowledge about molluscan GnRH has been accumulated regarding immunological identification, physiological function and sequence analysis. In the present review we summarized a current status of molluscan GnRH research and focus on its role in the reproduction of the molluscs. In cephalopods and gastropods the presence of a GnRH-like peptide was detected with heterologous antibodies and the identified GnRH was suggested to be involved with behavior and reproduction. Reproductive roles for GnRH have been confirmed in both bivalve and cephalopod molluscs. These findings will provide useful insights into the evolution of reproductive endocrinology. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Linear transformer driver for pulse generation with fifth harmonic

    DOEpatents

    Mazarakis, Michael G.; Kim, Alexander A.; Sinebryukhov, Vadim A.; Volkov, Sergey N.; Kondratiev, Sergey S.; Alexeenko, Vitaly M.; Bayol, Frederic; Demol, Gauthier; Stygar, William A.; Leckbee, Joshua; Oliver, Bryan V.; Kiefer, Mark L.

    2017-03-21

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first, second, and third power delivery module. The first power delivery module sends a first energy in the form of a first pulse to the load. The second power delivery module sends a second energy in the form of a second pulse to the load. The third power delivery module sends a third energy in the form of a third pulse to the load. The linear transformer driver is configured to form a flat-top pulse by the superposition of the first, second, and third pulses. The first, second, and third pulses have different frequencies.

  20. A Compact Pulsed Power Generator for Capillary Pinch Experiments

    NASA Astrophysics Data System (ADS)

    Shukla, R.; Pulsed Power Group

    2006-01-01

    A compact pulsed power system is designed for conducting capillary pinch experiments for production of coherent electromagnetic radiations. The reported Pulsed power system is made very compact as well as portable by using solid dielectric pulse forming line. The system consists of a tesla transformer, which is of helical secondary and cylindrical-sheet single-turn primary. Tesla charges a pulse forming line made of cascade of 50 ohm transition lines, which are of high wattage as well as high voltage ratings under pulsed operation. The net impedance of this cable cascade is such that it is matched for a designed load, which is designed to operate at 250kV for 100ns pulse duration.

  1. Modelling of noise-like pulses generated in fibre lasers

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey; Kobtsev, Sergey

    2016-03-01

    The present paper for the first time proposes and studies a relatively simple model of noise-like pulses that matches the experimental data well and suggests that there is a correlation between phases of adjacent spectral components of noiselike pulses. Comparison of a relatively basic model of `random' pulses with the results of noise-like pulse modelling in mode-locked fibre lasers based on coupled non-linear Schrödinger equations demonstrates that it adequately reproduces temporal and spectral properties of noise-like pulses as well as correlation between adjacent modes so that it's possible to use the proposed model for highly efficient simulations of promising applications of noise-like pulses, such as material processing, non-linear frequency conversion, microscopy, and others.

  2. Generation of skewed laser pulses for laser wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Toth, C.; Faure, J.; Geddes, C. G. R.; van Tilborg, J.; Leemans, W. P.

    2002-11-01

    The effect of asymmetric laser pulses on electron yield from a laser wakefield accelerator has been experimentally studied (W.P. Leemans et al., submitted to Phys. Rev. Lett.) using > 10^19 cm-3 plasmas and a 10 TW, > 45 fs, Ti:Al_2O3 laser. The non-Gaussian laser pulse shapes were controlled through non-linear chirp with a grating pair compressor. Pulses (76 fs FWHM) with a steep rise (positive skew) were found to significantly enhance the electron yield compared to pulses with a gentle rise (negative skew). These results demonstrate that laser wakefield accelerator can be optimized using skewed laser pulses. Controlling the skewness of laser pulses can be done by appropriate choice of the higher order spectral phase coefficients. Details on how this is done using non-linear chirp using grating compressor, as well as an acousto-optic system (DAZZLER) will be presented.

  3. Comparison of Single Event Transients Generated by Short Pulsed X-Rays, Lasers and Heavy Ions

    SciTech Connect

    Cardoza, David; LaLumondiere, Stephen D.; Tockstein, Michael A.; Brewe, Dale L.; Wells, Nathan P.; Koga, Rokutaro; Gaab, K. M.; Lotshaw, William T.; Moss, Steven C.

    2014-12-01

    We report an experimental study of the transients generated by pulsed x-rays, heavy ions, and different laser wavelengths in a Si p-i-n photodiode. We compare the charge collected by all of the excitation methods to determine the equivalent LET for pulsed x-rays relative to heavy ions. Our comparisons show that pulsed x-rays from synchrotron sources can generate a large range of equivalent LET and generate transients similar to those excited by laser pulses and heavy ion strikes. We also look at how the pulse width of the transients changes for the different excitation methods. We show that the charge collected with pulsed x-rays is greater than expected as the x-ray photon energy increases. Combined with their capability of focusing to small spot sizes and of penetrating metallization, pulsed x-rays are a promising new tool for high resolution screening of SEE susceptibility

  4. Generation of individually modulated femtosecond pulse string by multilayer volume holographic gratings.

    PubMed

    Yan, Xiaona; Gao, Lirun; Yang, Xihua; Dai, Ye; Chen, Yuanyuan; Ma, Guohong

    2014-10-20

    A scheme to generate individually modulated femtosecond pulse string by multilayer volume holographic grating (MVHG) is proposed. Based on Kogelnik's coupled-wave theory and matrix optics, temporal and spectral expressions of diffracted field are given when a femtosecond pulse is diffracted by a MVHG. It is shown that the number of diffracted sub-pulses in the pulse string equals to the number of grating layers of the MVHG, peak intensity and duration of each diffracted sub-pulse depend on thickness of the corresponding grating layer, whereas pulse interval between adjacent sub-pulses is related to thickness of the corresponding buffer layer. Thus by modulating parameters of the MVHG, individually modulated femtosecond pulse string can be acquired. Based on Bragg selectivity of the volume grating and phase shift provided by the buffer layers, we give an explanation on these phenomena. The result is useful to design MVHG-based devices employed in optical communications, pulse shaping and processing.

  5. Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides.

    PubMed

    Tan, Yang; Luan, Qingfang; Liu, Fengqin; Chen, Feng; Vázquez de Aldana, Javier Rodríguez

    2013-08-12

    This work reports on the Q-switched pulsed laser generation from double-cladding Nd:YAG ceramic waveguides. Double-cladding waveguides with different combination of diameters were inscribed into a sample of Nd:YAG ceramic. With an additional semiconductor saturable absorber, stable pulsed laser emission at the wavelength of 1064 nm was achieved with pulses of 21 ns temporal duration and ~14 μJ pulse energy at a repetition rate of 3.65 MHz.

  6. Kisspeptin Excitation of GnRH Neurons

    PubMed Central

    Rønnekleiv, Oline K.; Kelly, Martin J.

    2014-01-01

    Kisspeptin binding to its cognate G protein-coupled receptor (GPR54, aka Kiss1R) in gonadotropin-releasing hormone (GnRH) neurons stimulates peptide release and activation of the reproductive axis in mammals. Kisspeptin has pronounced pre- and postsynaptic effects, with the latter dominating the excitability of GnRH neurons. Presynaptically, kisspeptin increases the excitatory drive (both GABA-A and glutamate) to GnRH neurons and postsynaptically, kisspeptin inhibits an A-type and inwardly rectifying K + (Kir 6.2 and GIRK) currents and activates nonselective cation (TRPC) currents to cause long-lasting depolarization and increased action potential firing. The signaling cascades and the multiple intracellular targets of kisspeptin actions in native GnRH neurons are continuing to be elucidated. This review summarizes our current state of knowledge about kisspeptin signaling in GnRH neurons. PMID:23550004

  7. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers

    PubMed Central

    Yao, B. C.; Rao, Y. J.; Wang, Z. N.; Wu, Y.; Zhou, J. H.; Wu, H.; Fan, M. Q.; Cao, X. L.; Zhang, W. L.; Chen, Y. F.; Li, Y. R.; Churkin, D.; Turitsyn, S.; Wong, C. W.

    2015-01-01

    Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and wide-wavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses. PMID:26687730

  8. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    SciTech Connect

    Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Farkas, Gyozo; Fulop, Jozsef A.; Hebling, Janos; Tosa, Valer; Varju, Katalin

    2011-08-15

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  9. Possible role of PACAP and its PAC1 receptor in the differential regulation of pituitary LHbeta- and FSHbeta-subunit gene expression by pulsatile GnRH stimulation.

    PubMed

    Kanasaki, Haruhiko; Purwana, Indri N; Miyazaki, Kohji

    2013-02-01

    The pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), are mainly under the control of hypothalamic gonadotropin-releasing hormone (GnRH), which regulates male and female gonadal function. GnRH is released in a pulsatile manner from the hypothalamus, and the frequency of GnRH pulses determines the dominance of output of LH and FSH from pituitary gonadotrophs. That is, more rapid pulses of GnRH preferentially increase synthesis and secretion of LH, whereas FSH is preferentially stimulated by slower GnRH pulses. The detailed mechanisms underlying this phenomenon remain unknown. Pituitary adenylate cyclase-activating polypeptide (PACAP) was originally identified as a hypothalamic activator of cAMP production in pituitary cells. PACAP is produced within the pituitary gonadotroph as well as in the central nervous system. PACAP stimulates gonadotropin alpha-, LHbeta-, and FSHbeta-subunits as well as receptors for GnRH in the pituitary gonadotropin-secreting cells. In addition, its own receptor, PACAP type I receptor (PAC1R), is also regulated by PACAP in gonadotrophs. GnRH stimulates expression of PACAP as well as PAC1R, and lower frequencies of GnRH pulses preferentially increase PACAP and PAC1R expression in gonadotrophs. Increasing concentrations of PACAP further increase the levels of gonadotropin subunit and that increasing amounts of PAC1R in gonadotrophs potentiates the effects of PACAP or GnRH on gonadotropin subunit expression. In addition, we have observed that GnRH-increased FSHbeta-subunit expression was prevented in the presence of PAC1R antagonist. These observations suggest the involvement of locally produced PACAP and its PAC1R in the differential regulation of specific gonadotropin subunit expression by pulsatile GnRH stimulation. Here, we review the possible involvement of PACAP and its PAC1R in gonadotropin control on the basis of our observations with gonadotroph cell lines.

  10. Tunable narrowband THz pulse generation in scalable large area photoconductive antennas.

    PubMed

    Krause, Johannes; Wagner, Martin; Winnerl, Stephan; Helm, Manfred; Stehr, Dominik

    2011-09-26

    The generation and characterization of narrowband THz pulses by means of chirped pulse difference frequency generation in Auston-switch type photoconductive antennas is reported. Using optical pulses with energies in the range from 1 nJ to 1 µJ, we generate THz pulses with up to 50 pJ in energy and electric field strengths on the order of 1 kV/cm. Two emitter concepts are investigated and circumvention of the fast saturation for small area excitation by scaling of the THz emitter is demonstrated.

  11. Ultrawideband monocycle pulse generation based on polarization modulator and low speed electrical NRZ signal

    NASA Astrophysics Data System (ADS)

    Sun, Guodan; Zhang, Qiufang; Wang, Quan

    2015-07-01

    A novel ultrawideband (UWB) monocycle pulse generation system by modulating a polarization modulator (PolM) with a low speed electrical nonreturn-to-zero (NRZ) signal is proposed, which significantly reduce the bandwidth requirement of the driving signal. At each bit transition of the input NRZ signal, two polarity-reversed Gaussian pulses are generated. By properly setting the delay between these two Gaussian pulses, an optical UWB monocycle pulse can be generated. Biphase modulation (BPM) can be realized by electrically switching the polarization direction at the output of PolM, if an electrically tunable arbitrary wave plate (AWP) is employed.

  12. A compact repetitive high-voltage nanosecond pulse generator for the application of gas discharge.

    PubMed

    Pang, Lei; Zhang, Qiaogen; Ren, Baozhong; He, Kun

    2011-04-01

    Uniform and stable discharge plasma requires very short duration pulses with fast rise times. A repetitive high-voltage nanosecond pulse generator for the application of gas discharge is presented in this paper. It is constructed with all solid-state components. Two-stage magnetic compression is used to generate a short duration pulse. Unlike in some reported studies, common commercial fast recovery diodes instead of a semiconductor opening switch (SOS) are used in our experiment that plays the role of SOS. The SOS-like effects of four different kinds of diodes are studied experimentally to optimize the output performance. It is found that the output pulse voltage is higher with a shorter reverse recovery time, and the rise time of pulse becomes faster when the falling time of reverse recovery current is shorter. The SOS-like effect of the diodes can be adjusted by changing the external circuit parameters. Through optimization the pulse generator can provide a pulsed voltage of 40 kV with a 40 ns duration, 10 ns rise time, and pulse repetition frequency of up to 5 kHz. Diffuse plasma can be formed in air at standard atmospheric pressure using the developed pulse generator. With a light weight and small packaging the pulse generator is suitable for gas discharge application. © 2011 American Institute of Physics

  13. Fuel Injection Strategy for a Next Generation Pulse Detonation Engine

    DTIC Science & Technology

    2006-06-01

    APPENDIX B. MATLAB SIGNAL PROCESSING CODE .............................................49 viii APPENDIX C. INDIVIDUAL INJECTOR PULSE CHARACTERISTICS...Cylinder 48 THIS PAGE INTENTIONALLY LEFT BLANK 49 APPENDIX B. MATLAB SIGNAL PROCESSING CODE The...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) The Pulse Detonation Engine offers the Department of Defense a new low cost, light weight, and efficient

  14. Miniaturized X-ray Generation by Pyroelectric Effect using Short Pulse Laser

    DTIC Science & Technology

    2011-11-30

    1 Report of AOARD Program CONTRACT NO: FA23861014160 Miniaturized X-ray Generation by Pyroelectric Effect using Short Pulse Laser...induced currents by short- pulse high-power laser irradiation II-1: Experiments and results II-2: Theoretical calculations ~Analysis of currents...effect using short pulse laser aiming at miniaturized X-ray generator 5a. CONTRACT NUMBER FA23861014160 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  15. Generation of broadband mid-infrared pulses from an optical parametric amplifier.

    PubMed

    Brida, D; Manzoni, C; Cirmi, G; Marangoni, M; De Silvestri, S; Cerullo, G

    2007-11-12

    We report on the direct generation of broadband mid-IR pulses from an optical parametric amplifier. Several crystals with extended IR transparency, when pumped at 800 nm, display a broad phase-matching bandwidth around 1 mum, allowing for the generation of idler pulses spanning the 3-5 mum wavelength range. Using LiIO(3), we produce 2muJ pulses tunable in the 3-4 mum range with bandwidth supporting 30-fs transform-limited duration.

  16. Generation and structure of extremely large clusters in pulsed jets

    SciTech Connect

    Rupp, Daniela Adolph, Marcus; Flückiger, Leonie; Müller, Jan Philippe; Müller, Maria; Sauppe, Mario; Wolter, David; Möller, Thomas; Gorkhover, Tais; Schorb, Sebastian; Treusch, Rolf; Bostedt, Christoph

    2014-07-28

    Extremely large xenon clusters with sizes exceeding the predictions of the Hagena scaling law by several orders of magnitude are shown to be produced in pulsed gas jets. The cluster sizes are determined using single-shot single-particle imaging experiments with short-wavelength light pulses from the free-electron laser in Hamburg (FLASH). Scanning the time delay between the pulsed cluster source and the intense femtosecond x-ray pulses first shows a main plateau with size distributions in line with the scaling laws, which is followed by an after-pulse of giant clusters. For the extremely large clusters with radii of several hundred nanometers the x-ray scattering patterns indicate a grainy substructure of the particles, suggesting that they grow by cluster coagulation.

  17. Green and ultraviolet pulse generation with a compact, fiber laser, chirped-pulse amplification system for aerosol fluorescence measurements.

    PubMed

    Lou, Janet W; Currie, Marc; Sivaprakasam, Vasanthi; Eversole, Jay D

    2010-10-01

    We use a compact chirped-pulse amplified system to harmonically generate ultrashort pulses for aerosol fluorescence measurements. The seed laser is a compact, all-normal dispersion, mode-locked Yb-doped fiber laser with a 1050 nm center wavelength operating at 41 MHz. Average powers of more than 1.2 W at 525 nm and 350 mW at 262 nm are generated with <500 fs pulse durations. The pulses are time-stretched with high-dispersion fiber, amplified by a high-power, large-mode-area fiber amplifier, and recompressed using a chirped volume holographic Bragg grating. The resulting high-peak-power pulses allow for highly efficient harmonic generation. We also demonstrate for the first time to our knowledge, the use of a mode-locked ultraviolet source to excite individual biological particles and other calibration particles in an inlet air flow as they pass through an optical chamber. The repetition rate is ideal for biofluorescence measurements as it allows faster sampling rates as well as the higher peak powers as compared to previously demonstrated Q-switched systems while maintaining a pulse period that is longer than the typical fluorescence lifetimes. Thus, the fluorescence excitation can be considered to be quasicontinuous and requires no external synchronization and triggering.

  18. Intra-pulse Raman frequency shift versus conventional Stokes generation of diode laser pulses in optical fibers.

    PubMed

    Kuzin, Evgeny; Mendoza-Vazquez, Sergio; Gutierrez-Gutierrez, Jaime; Ibarra-Escamilla, Baldemar; Haus, Joseph; Rojas-Laguna, Roberto

    2005-05-02

    We report experimental observations of stimulated Raman scattering in a standard fiber using a directly modulated DFB semiconductor laser amplified by two erbium-doped fibers. The laser pulse width was variably controlled on a nanosecond-scale; the laser emission was separated into two distinct regimes: an initial transient peak regime, followed by a quasi steady-state plateau regime. The transient leading part of the pump pulse containing fast amplitude modulation generated a broadband Raman-induced spectral shift through the modulation instability and subsequent intra-pulse Raman frequency shift. The plateau regime amplified the conventional Stokes shifted emission expected from the peaks of the gain distribution. The output signal spectrum at the end of a 9.13 km length of fiber for the transient part extends from 1550 nm to 1700 nm for a pump pulse peak power of 65 W. We found that the Raman-induced spectral shift is measurable about 8 W for every fiber length examined, 0.6 km, 4.46 km, and 9.13 km. All spectral components of the broadband scattering appear to be generated in the initial kilometer of the fiber span. The Stokes shifted light generation threshold was higher than the threshold for the intra-pulse Raman-induced broadened spectra. This fact enables the nonlinear spectral filtering of pulses from directly modulated semiconductor lasers.

  19. Intra-pulse Raman frequency shift versus conventional Stokes generation of diode laser pulses in optical fibers

    NASA Astrophysics Data System (ADS)

    Kuzin, Evgeny A.; Mendoza-Vazquez, Sergio; Gutierrez-Gutierrez, Jaime; Ibarra-Escamilla, Baldemar; Haus, Joseph W.; Rojas-Laguna, Roberto

    2005-05-01

    We report experimental observations of stimulated Raman scattering in a standard fiber using a directly modulated DFB semiconductor laser amplified by two erbium-doped fibers. The laser pulse width was variably controlled on a nanosecond-scale; the laser emission was separated into two distinct regimes: an initial transient peak regime, followed by a quasi steady-state plateau regime. The transient leading part of the pump pulse containing fast amplitude modulation generated a broadband Raman-induced spectral shift through the modulation instability and subsequent intra-pulse Raman frequency shift. The plateau regime amplified the conventional Stokes shifted emission expected from the peaks of the gain distribution. The output signal spectrum at the end of a 9.13 km length of fiber for the transient part extends from 1550 nm to 1700 nm for a pump pulse peak power of 65 W. We found that the Raman-induced spectral shift is measurable about 8 W for every fiber length examined, 0.6 km, 4.46 km, and 9.13 km. All spectral components of the broadband scattering appear to be generated in the initial kilometer of the fiber span. The Stokes shifted light generation threshold was higher than the threshold for the intra-pulse Raman-induced broadened spectra. This fact enables the nonlinear spectral filtering of pulses from directly modulated semiconductor lasers.

  20. Green and ultraviolet pulse generation with a compact, fiber laser, chirped-pulse amplification system for aerosol fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Lou, Janet W.; Currie, Marc; Sivaprakasam, Vasanthi; Eversole, Jay D.

    2010-10-01

    We use a compact chirped-pulse amplified system to harmonically generate ultrashort pulses for aerosol fluorescence measurements. The seed laser is a compact, all-normal dispersion, mode-locked Yb-doped fiber laser with a 1050 nm center wavelength operating at 41 MHz. Average powers of more than 1.2 W at 525 nm and 350 mW at 262 nm are generated with <500 fs pulse durations. The pulses are time-stretched with high-dispersion fiber, amplified by a high-power, large-mode-area fiber amplifier, and recompressed using a chirped volume holographic Bragg grating. The resulting high-peak-power pulses allow for highly efficient harmonic generation. We also demonstrate for the first time to our knowledge, the use of a mode-locked ultraviolet source to excite individual biological particles and other calibration particles in an inlet air flow as they pass through an optical chamber. The repetition rate is ideal for biofluorescence measurements as it allows faster sampling rates as well as the higher peak powers as compared to previously demonstrated Q-switched systems while maintaining a pulse period that is longer than the typical fluorescence lifetimes. Thus, the fluorescence excitation can be considered to be quasicontinuous and requires no external synchronization and triggering.

  1. Generation of high-energy self-phase-stabilized pulses by difference-frequency generation followed by optical parametric amplification.

    PubMed

    Manzoni, C; Vozzi, C; Benedetti, E; Sansone, G; Stagira, S; Svelto, O; De Silvestri, S; Nisoli, M; Cerullo, G

    2006-04-01

    We produce ultrabroadband self-phase-stabilized near-IR pulses by a novel approach where a seed pulse, obtained by difference-frequency generation of a hollow-fiber broadened supercontinuum, is amplified by a two-stage optical parametric amplifier. Energies up to 20 microJ with a pulse spectrum extending from 1.2 to 1.6 microm are demonstrated, and a route for substantial energy scaling is indicated.

  2. Embryo implantation and GnRH antagonists: embryo implantation: the Rubicon for GnRH antagonists.

    PubMed

    Hernandez, E R

    2000-06-01

    When gonadotrophin-releasing hormone (GnRH) was discovered, the agonist and antagonist of GnRH were developed to control the release of FSH and LH by the gonadotrophs. More than 10 years of research were needed to develop a GnRH antagonist free of histamine release. Recent studies have shown that these GnRH antagonists are effective in preventing a rise in LH during ovarian stimulation in IVF. However, a decrease in ongoing pregnancies seems to suggest that implantation rates per transferred embryo are reduced in GnRH antagonist-stimulated cycles. In my opinion, these data highlight an area less well known to clinicians: the role of the GnRH antagonist at the cellular level in extrapituitary tissues. There are sufficient data in the literature suggesting that GnRH antagonist is an inhibitor of the cell cycle by decreasing the synthesis of growth factors. Given that, for folliculogenesis, blastomere formation and endometrium development, mitosis is everything; the interaction between the GnRH antagonist and the GnRH receptor (present in all these cells and tissues) may compromise the mitotic programme of these cells. This is the Rubicon for the GnRH antagonist: to demonstrate irrevocably that, at the minimal doses necessary to suppress LH release, it does not affect processes such as implantation, embryo development and folliculogenesis.

  3. A Pulse-Type Hardware CPG Model for Generation and Transition of Quadruped Locomotion Pattern

    NASA Astrophysics Data System (ADS)

    Hata, Keiko; Sekine, Yoshifumi; Nakabora, Yoshifumi; Saeki, Katsutoshi

    The purpose of our research is to clarify information processing functions of living organisms by neural networks using pulse-type hardware neuron models and applying pulse-type hardware neural networks to engineered models. It is known that locomotion such as walking by a living organism is generated and transited by CPG (Central Pattern Generator) in the central nervous system. We investigate a pulse-type hardware CPG model using coupled oscillator composed of pulse-type hardware neuron models. A CPG model is need to generate and control quadruped locomotion. In this paper, we describe generation and transition of oscillation patterns, corresponding to quadruped locomotion patterns. As a result, it is shown that generation and transition of oscillation patterns are possible by giving external inputs of one pulse to the CPG model.

  4. Note: Tesla based pulse generator for electrical breakdown study of liquid dielectrics

    NASA Astrophysics Data System (ADS)

    Veda Prakash, G.; Kumar, R.; Patel, J.; Saurabh, K.; Shyam, A.

    2013-12-01

    In the process of studying charge holding capability and delay time for breakdown in liquids under nanosecond (ns) time scales, a Tesla based pulse generator has been developed. Pulse generator is a combination of Tesla transformer, pulse forming line, a fast closing switch, and test chamber. Use of Tesla transformer over conventional Marx generators makes the pulse generator very compact, cost effective, and requires less maintenance. The system has been designed and developed to deliver maximum output voltage of 300 kV and rise time of the order of tens of nanoseconds. The paper deals with the system design parameters, breakdown test procedure, and various experimental results. To validate the pulse generator performance, experimental results have been compared with PSPICE simulation software and are in good agreement with simulation results.

  5. Giant elves: Lightning-generated electromagnetic pulses in giant planets.

    NASA Astrophysics Data System (ADS)

    Luque Estepa, Alejandro; Dubrovin, Daria; José Gordillo-Vázquez, Francisco; Ebert, Ute; Parra-Rojas, Francisco Carlos; Yair, Yoav; Price, Colin

    2015-04-01

    We currently have direct optical observations of atmospheric electricity in the two giant gaseous planets of our Solar System [1-5] as well as radio signatures that are possibly generated by lightning from the two icy planets Uranus and Neptune [6,7]. On Earth, the electrical activity of the troposphere is associated with secondary electrical phenomena called Transient Luminous Events (TLEs) that occur in the mesosphere and lower ionosphere. This led some researchers to ask if similar processes may also exist in other planets, focusing first on the quasi-static coupling mechanism [8], which on Earth is responsible for halos and sprites and then including also the induction field, which is negligible in our planet but dominant in Saturn [9]. However, one can show that, according to the best available estimation for lightning parameters, in giant planets such as Saturn and Jupiter the effect of the electromagnetic pulse (EMP) dominates the effect that a lightning discharge has on the lower ionosphere above it. Using a Finite-Differences, Time-Domain (FDTD) solver for the EMP we found [10] that electrically active storms may create a localized but long-lasting layer of enhanced ionization of up to 103 cm-3 free electrons below the ionosphere, thus extending the ionosphere downward. We also estimate that the electromagnetic pulse transports 107 J to 1010 J toward the ionosphere. There emissions of light of up to 108 J would create a transient luminous event analogous to a terrestrial elve. Although these emissions are about 10 times fainter than the emissions coming from the lightning itself, it may be possible to target them for detection by filtering the appropiate wavelengths. [1] Cook, A. F., II, T. C. Duxbury, and G. E. Hunt (1979), First results on Jovian lightning, Nature, 280, 794, doi:10.1038/280794a0. [2] Little, B., C. D. Anger, A. P. Ingersoll, A. R. Vasavada, D. A. Senske, H. H. Breneman, W. J. Borucki, and The Galileo SSI Team (1999), Galileo images of

  6. Generation of Isolated Attosecond Pulses with 20 to 28 Femtosecond Lasers

    SciTech Connect

    Feng Ximao; Gilbertson, Steve; Mashiko, Hiroki; Wang He; Khan, Sabih D.; Chini, Michael; Wu Yi; Zhao Kun; Chang Zenghu

    2009-10-30

    Isolated attosecond pulses are powerful tools for exploring electron dynamics in matter. So far, such extreme ultraviolet pulses have only been generated using high power, few-cycle lasers, which are very difficult to construct and operate. We propose and demonstrate a technique called generalized double optical gating for generating isolated attosecond pulses with 20 fs lasers from a hollow-core fiber and 28 fs lasers directly from an amplifier. These pulses, generated from argon gas, are measured to be 260 and 148 as by reconstructing the streaked photoelectron spectrograms. This scheme, with a relaxed requirement on laser pulse duration, makes attophysics more accessible to many laboratories that are capable of producing such multicycle laser pulses.

  7. Generating Coherent Phonons and Spin Excitations with Ultrafast Light Pulses

    NASA Astrophysics Data System (ADS)

    Merlin, Roberto

    2006-03-01

    Recent work on the generation of coherent low-lying excitations by ultrafast laser pulses will be reviewed, emphasizing the microscopic mechanisms of light-matter interaction. The topics covered include long-lived phonons in ZnO [C. Aku-Leh, J. Zhao, R. Merlin, J. Men'endez and M. Cardona, Phys. Rev.B 71, 205211 (2005)], squeezed magnons [J. Zhao, A. V. Bragas, D. J. Lockwood and R. Merlin, Phys. Rev. Lett. 93, 107203 (2004)], spin- and charge-density fluctuations [J. M. Bao et al., Phys. Rev. Lett. 92, 236601 (2004)] and cyclotron resonance [J. K. Wahlstrand, D. M. Wang, P. Jacobs, J. M. Bao, R. Merlin, K. W. West and L. N. Pfeiffer, AIP Conference Proceedings 772 (2005), p. 1313] in GaAs quantum wells. In addition, unpublished results on surface -avoiding phonons in GaAs-AlAs superlattices [M. Trigo et al., unpublished] and magnons in ferromagnetic Ga1-xMnxAs [D. M. Wang et al., unpublished] will be discussed. It will also be shown that frequencies can be measured using pump-probe techniques with a precision comparable to that of Brillouin scattering. It is now widely accepted that stimulated Raman scattering (SRS) is (often but not always) the mechanism responsible for the coherent coupling. Results will be presented showing that SRS is described by two separate tensors, one of which accounts for the excitation-induced modulation of the susceptibility, and the other one for the dependence of the amplitude of the oscillation on the light intensity [T. E. Stevens, J. Kuhl and R. Merlin, Phys. Rev. B 65, 144304 (2002)]. These tensors have the same real component, associated with impulsive coherent generation, but different imaginary parts. If the imaginary term dominates, that is, for strongly absorbing substances, the mechanism for two-band processes becomes displacive in nature, as in the DECP (displacive excitation of coherent phonons) model. It will be argued that DECP is not a separate mechanism, but a particular case of SRS. In the final part of the talk, an

  8. Generating few-cycle pulses for nanoscale photoemission easily with an erbium-doped fiber laser.

    PubMed

    Thomas, Sebastian; Holzwarth, Ronald; Hommelhoff, Peter

    2012-06-18

    We demonstrate a simple setup capable of generating four-cycle pulses at a center wavelength of 1700 nm for nanoscale photoemission. Pulses from an amplified erbium-doped fiber laser are spectrally broadened by propagation through a highly non-linear fiber. Subsequently, we exploit dispersion in two different types of glass to compress the pulses. The pulse length is estimated by measuring an interferometric autocorrelation trace and comparing it to a numerical simulation. We demonstrate highly non-linear photoemission of electrons from a nanometric tungsten tip in a hitherto unexplored pulse parameter range.

  9. Generation of energetic, picosecond seed pulses for CO2 laser using Raman shifter

    NASA Astrophysics Data System (ADS)

    Welch, Eric; Tochitsky, Sergei; Joshi, Chan

    2017-03-01

    We present a new concept for generating 3 ps seed pulses for a high-power CO2 laser amplifier that are multiple orders more energetic than seed pulses generated by slicing from a nanosecond CO2 laser pulse. We propose to send a 1 µm picosecond laser through a C6D6 Raman shifter and mix both the pump and shifted components in a DFG crystal to produce pulses at 10.6 µm. Preliminary results of a proof-of-principle experiment are presented.

  10. Research and development of RHIC injection kicker upgrade with nano second FID pulse generator

    SciTech Connect

    Zhang W.; Sandberg, J.; Hahn, H.; Fischer, W.; Liaw, C.J.; Pai, C.; Tuozzolo, J.

    2012-05-20

    Our recent effort to test a 50 kV, 1 kA, 50 ns pulse width, 10 ns pulse rise time FID pulse generator with a 250 ft transmission cable, resistive load, and existing RHIC injection kicker magnet has produced unparalleled results. This is the very first attempt to drive a high strength fast kicker magnet with a nano second high pulsed power (50 MVA) generator for large accelerator and colliders. The technology is impressive. We report here the result and future plan of RHIC Injection kicker upgrade.

  11. The pacemaker-twiddler's syndrome: another disadvantage of abdominal implantation of pulse generators.

    PubMed

    Guharay, B N; Ghose, J C; Majumdar, H; Basu, A K

    1977-09-01

    Breakage of a pacer lead due to the pacemaker-twiddler's syndrome (PTS) occurred in 4 of 62 survivors following epicardial-intramural pacer lead implantation with the pulse generator placed in each case in a subcostal left upper quadrant subcutaneous pocket. The abdominal pulse generator pocket appears to invite spontaneously occurring PTS, more so in a pregnant woman. The important predisposing factor to the development of PTS is an excessively spacious pulse generator pocket containing a pool of fluid. Addition of a few simple modifications to the technique of cardiac pacing would prevent the complication; these include implantation of the pulse generator in a plane deeper to the pectoral muscles, suspending the pulse generator from the clavicle and application of vacuum-suction drainage to the generator pocket in the initial phase of wound healing. In the presence of an optimally fitting pulse generator pocket, PTS should be rare with subclavicular subpectoral pulse generator implantation without active patient participation. The syndrome may not be as rare a cause of pacer lead malfunction as may appear from the relative paucity of reports in the literature.

  12. Enhanced multi-colour gating for the generation of high-power isolated attosecond pulses.

    PubMed

    Haessler, S; Balčiūnas, T; Fan, G; Chipperfield, L E; Baltuška, A

    2015-05-22

    Isolated attosecond pulses (IAP) generated by high-order harmonic generation are valuable tools that enable dynamics to be studied on the attosecond time scale. The applicability of these IAP would be widened drastically by increasing their energy. Here we analyze the potential of using multi-colour driving pulses for temporally gating the attosecond pulse generation process. We devise how this approach can enable the generation of IAP with the available high-energy kHz-repetition-rate Ytterbium-based laser amplifiers (delivering 180-fs, 1030-nm pulses). We show theoretically that this requires a three-colour field composed of the fundamental and its second harmonic as well as a lower-frequency auxiliary component. We present pulse characterization measurements of such auxiliary pulses generated directly by white-light seeded OPA with the required significantly shorter pulse duration than that of the fundamental. This, combined with our recent experimental results on three-colour waveform synthesis, proves that the theoretically considered multi-colour drivers for IAP generation can be realized with existing high-power laser technology. The high-energy driver pulses, combined with the strongly enhanced single-atom-level conversion efficiency we observe in our calculations, thus make multi-colour drivers prime candidates for the development of unprecedented high-energy IAP sources in the near future.

  13. Enhanced multi-colour gating for the generation of high-power isolated attosecond pulses

    PubMed Central

    Haessler, S.; Balčiūnas, T.; Fan, G.; Chipperfield, L. E.; Baltuška, A.

    2015-01-01

    Isolated attosecond pulses (IAP) generated by high-order harmonic generation are valuable tools that enable dynamics to be studied on the attosecond time scale. The applicability of these IAP would be widened drastically by increasing their energy. Here we analyze the potential of using multi-colour driving pulses for temporally gating the attosecond pulse generation process. We devise how this approach can enable the generation of IAP with the available high-energy kHz-repetition-rate Ytterbium-based laser amplifiers (delivering 180-fs, 1030-nm pulses). We show theoretically that this requires a three-colour field composed of the fundamental and its second harmonic as well as a lower-frequency auxiliary component. We present pulse characterization measurements of such auxiliary pulses generated directly by white-light seeded OPA with the required significantly shorter pulse duration than that of the fundamental. This, combined with our recent experimental results on three-colour waveform synthesis, proves that the theoretically considered multi-colour drivers for IAP generation can be realized with existing high-power laser technology. The high-energy driver pulses, combined with the strongly enhanced single-atom-level conversion efficiency we observe in our calculations, thus make multi-colour drivers prime candidates for the development of unprecedented high-energy IAP sources in the near future. PMID:25997917

  14. High-pressure dielectric barrier discharge Xenon lamps generating short pulses of high-peak-power VUV radiation (172nm) with high pulse-to-pulse reproducibility.

    NASA Astrophysics Data System (ADS)

    Carman, Robert; Ward, Barry; Mildren, Richard; Kane, Deborah

    2003-10-01

    Dielectric barrier discharges (DBDs) are used to efficiently generate radiation in the ultraviolet and vacuum-ultraviolet spectral regions (88nm-350nm) by forming rare-gas and rare-gas halide excimers in a transient plasma. Usually, DBD lamps generate the light output quasi-continuously or in bursts with a high degree of stochastic or random variability in the instantaneous UV/VUV intensity. However, regular pulses of high-peak-power UV/VUV, with high pulse-to-pulse reproducibility, are of interest for applications in biology, surface treatment and cleaning, and time-resolved fluorescence spectroscopy. Such pulses can be generated from spatially homogeneous plasmas in a Xe DBD when the discharge is driven by uni-polar voltage pulses of short duration ( 100ns)^1. In the present study, we will report Xe DBD lamp performance and VUV output pulse characteristics for gas pressures up to 2.5bar and excitation conditions tailored for high-peak-power output. The experimental results will be compared to theoretical results from a detailed 1-D computer model of the spatio-temporal evolution of the plasma kinetics and Xe species population densities. ^1R.P.Mildren and R.J.Carman, J.Phys.D, 34, L1-L6, (2001)

  15. Mathematical modeling of perifusion cell culture experiments on GnRH signaling.

    PubMed

    Temamogullari, N Ezgi; Nijhout, H Frederik; C Reed, Michael

    2016-06-01

    The effects of pulsatile GnRH stimulation on anterior pituitary cells are studied using perifusion cell cultures, where constantly moving culture medium over the immobilized cells allows intermittent GnRH delivery. The LH content of the outgoing medium serves as a readout of the GnRH signaling pathway activation in the cells. The challenge lies in relating the LH content of the medium leaving the chamber to the cellular processes producing LH secretion. To investigate this relation we developed and analyzed a mathematical model consisting of coupled partial differential equations describing LH secretion in a perifusion cell culture. We match the mathematical model to three different data sets and give cellular mechanisms that explain the data. Our model illustrates the importance of the negative feedback in the signaling pathway and receptor desensitization. We demonstrate that different LH outcomes in oxytocin and GnRH stimulations might originate from different receptor dynamics and concentration. We analyze the model to understand the influence of parameters, like the velocity of the medium flow or the fraction collection time, on the LH outcomes. We show that slow velocities lead to high LH outcomes. Also, we show that fraction collection times, which do not divide the GnRH pulse period evenly, lead to irregularities in the data. We examine the influence of the rate of binding and dissociation of GnRH on the GnRH movement down the chamber. Our model serves as an important tool that can help in the design of perifusion experiments and the interpretation of results. Published by Elsevier Inc.

  16. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    PubMed

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  17. Diversified pulse generation from frequency shifted feedback Tm-doped fibre lasers

    PubMed Central

    Chen, He; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing

    2016-01-01

    Pulsed fibre lasers operating in the eye-safe 2 μm spectral region have numerous potential applications in areas such as remote sensing, medicine, mid-infrared frequency conversion, and free-space communication. Here, for the first time, we demonstrate versatile 2 μm ps-ns pulses generation from Tm-based fibre lasers based on frequency shifted feedback and provide a comprehensive report of their special behaviors. The lasers are featured with elegant construction and the unparalleled capacity of generating versatile pulses. The self-starting mode-locking is initiated by an intra-cavity acousto-optical frequency shifter. Diversified mode-locked pulse dynamics were observed by altering the pump power, intra-cavity polarization state and cavity structure, including as short as 8 ps single pulse sequence, pulse bundle state and up to 12 nJ, 3 ns nanosecond rectangular pulse. A reflective nonlinear optical loop mirror was introduced to successfully shorten the pulses from 24 ps to 8 ps. Beside the mode-locking operation, flexible Q-switching and Q-switched mode-locking operation can also be readily achieved in the same cavity. Up to 78 μJ high energy nanosecond pulse can be generated in this regime. Several intriguing pulse dynamics are characterized and discussed. PMID:27193213

  18. Diversified pulse generation from frequency shifted feedback Tm-doped fibre lasers

    NASA Astrophysics Data System (ADS)

    Chen, He; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing

    2016-05-01

    Pulsed fibre lasers operating in the eye-safe 2 μm spectral region have numerous potential applications in areas such as remote sensing, medicine, mid-infrared frequency conversion, and free-space communication. Here, for the first time, we demonstrate versatile 2 μm ps-ns pulses generation from Tm-based fibre lasers based on frequency shifted feedback and provide a comprehensive report of their special behaviors. The lasers are featured with elegant construction and the unparalleled capacity of generating versatile pulses. The self-starting mode-locking is initiated by an intra-cavity acousto-optical frequency shifter. Diversified mode-locked pulse dynamics were observed by altering the pump power, intra-cavity polarization state and cavity structure, including as short as 8 ps single pulse sequence, pulse bundle state and up to 12 nJ, 3 ns nanosecond rectangular pulse. A reflective nonlinear optical loop mirror was introduced to successfully shorten the pulses from 24 ps to 8 ps. Beside the mode-locking operation, flexible Q-switching and Q-switched mode-locking operation can also be readily achieved in the same cavity. Up to 78 μJ high energy nanosecond pulse can be generated in this regime. Several intriguing pulse dynamics are characterized and discussed.

  19. A Novel Approach to Photonic Generation and Modulation of Ultra-Wideband Pulses

    NASA Astrophysics Data System (ADS)

    Xiang, Peng; Guo, Hao; Chen, Dalei; Zhu, Huatao

    2016-01-01

    A novel approach to photonic generation of ultra-wideband (UWB) signals is proposed in this paper. The proposed signal generator is capable of generating UWB doublet pulses with flexible reconfigurability, and many different pulse modulation formats, including the commonly used pulse-position modulation (PPM) and bi-phase modulation (BPM) can be realized. Moreover, the photonic UWB pulse generator is capable of generating UWB signals with a tunable spectral notch-band, which is desirable to realize the interference avoidance between UWB and other narrow band systems, such as Wi-Fi. A mathematical model describing the proposed system is developed and the generation of UWB signals with different modulation formats is demonstrated via computer simulations.

  20. Tunable high-harmonic generation by chromatic focusing of few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Holgado, W.; Hernández-García, C.; Alonso, B.; Miranda, M.; Silva, F.; Varela, O.; Hernández-Toro, J.; Plaja, L.; Crespo, H.; Sola, I. J.

    2017-06-01

    In this work we study the impact of chromatic focusing of few-cycle laser pulses on high-order-harmonic generation (HHG) through analysis of the emitted extreme ultraviolet (XUV) radiation. Chromatic focusing is usually avoided in the few-cycle regime, as the pulse spatiotemporal structure may be highly distorted by the spatiotemporal aberrations. Here, however, we demonstrate it as an additional control parameter to modify the generated XUV radiation. We present experiments where few-cycle pulses are focused by a singlet lens in a Kr gas jet. The chromatic distribution of focal lengths allows us to tune HHG spectra by changing the relative singlet-target distance. Interestingly, we also show that the degree of chromatic aberration needed for this control does not degrade substantially the harmonic conversion efficiency, still allowing for the generation of supercontinua with the chirped-pulse scheme, demonstrated previously for achromatic focusing. We back up our experiments with theoretical simulations reproducing the experimental HHG results depending on diverse parameters (input pulse spectral phase, pulse duration, and focus position) and proving that, under the considered parameters, the attosecond pulse train remains very similar to the achromatic case, even showing cases of isolated attosecond pulse generation for near-single-cycle driving pulses.

  1. Generation of an isolated sub-40-as pulse using two-color laser pulses: Combined chirp effects

    SciTech Connect

    Feng, Liqiang; Chu, Tianshu

    2011-11-15

    In this paper, we theoretically discuss the combined chirp effects on the isolated attosecond generation when a model Ar is exposed to an intense 5-fs, 800-nm fundamental chirped pulse combined with a weak 10-fs, 1200-nm controlling chirped pulse. It shows that for the case of the chirp parameters {beta}{sub 1} = 6.1 (corresponding to the 800-nm field) and {beta}{sub 2} = 4.0 (corresponding to the 1200-nm field), both the harmonic cutoff energy and the supercontinuum can be remarkably extended resulting in a 663-eV bandwidth. Moreover, due to the introduction of the chirps, the short quantum path is selected to contribute to the harmonic spectrum. Finally, by superposing a properly selected harmonic spectrum in the supercontinuum region, an isolated pulse as short as 31 as (5 as) is generated without (with) phase compensation.

  2. A Novel Animal Model to Study Hot Flashes: No Effect of GnRH

    PubMed Central

    Albertson, Asher J.; Skinner, Donal C.

    2009-01-01

    Menopausal hot flushes compromise the quality of life for the majority of women. The physiological mechanisms underlying hot flushes remain poorly understood and the absence of an animal model to investigate hot flushes hinders investigations in this field. We have developed the sheep as a model to study peripheral skin temperature changes. Subjecting sheep to fever-inducing treatments with lipopolysaccharide, a significant (P<0.01) change in ear skin temperature was observed. As a strong correlation between luteinizing hormone pulses and hot flushes has previously been reported, we then determined whether intravenous gonadotropin-releasing hormone (GnRH), at doses sufficient to elevate CSF GnRH concentrations, could modulate ear skin temperature. No effect was observed, suggesting that GnRH per se dose not play a role in the etiology of hot flashes. PMID:19512948

  3. Optimal control of attosecond pulse synthesis from high-order harmonic generation

    SciTech Connect

    Ben Haj Yedder, A.; Le Bris, C.; Atabek, O.; Chelkowski, S.; Bandrauk, A. D.

    2004-04-01

    Numerical solutions of the time-dependent Schroedinger equation for a three-dimensional H atom and an efficient genetic algorithm are used to optimize short intense excitation laser pulses in order to generate high-order harmonics from which we synthesize single attosecond pulses. It is shown that chirping of excitation pulses at intensities {approx}10{sup 14} W/cm{sup 2} and duration of up to {approx}16 fs can lead to synthesis of single attosecond pulses. The optimal excitation pulses and the phases of the generated harmonics are compared with the nonoptimized ones, showing thus the usefulness of genetic algorithm schemes in the search of optimal conditions for synthesizing single attosecond pulses.

  4. The design of nanosecond high-voltage ultra wide band bipolar pulse generator

    NASA Astrophysics Data System (ADS)

    Shi, Jincheng; Liu, Baiyu; Gou, Yongsheng

    2015-10-01

    The design of nanosecond high-voltage ultra wide band bipolar pulse generator is shown in this paper. By analyzing the principle of the avalanche diode and doing the research of the related circuit acting on the pulse, this generator can generate a nanosecond high-voltage ultra wide band bipolar pulse, which its peak-to-peak voltage is about 400V and the pulse time width is 2ns. The experimental results showed a good agreement with the simulation results. A negative unipolar high-voltage pulse, having a fast falling-edge and a slowly exponential rising-edge, was firstly generated by the MARX circuit consist of the avalanche diodes. Then the use of the high speed avalanche diode could generate a negative unipolar high-voltage narrow Gaussian pulse, having a fast falling-edge and a fast rising-edge. In an attempt to cancel the reflection of the pulse made by the impedance mismatch, the circuit introduced the capacitor(C) and inductor(L) by calculating. Eventually a nanosecond high-voltage ultra wide band bipolar pulse could be got after going through the differentiator consist of introducing the right resistance, capacitance and inductance by calculation and experiment, and a filter with 2GHz bandwidth makes the bipolar smooth and perfect.

  5. High-charge energetic ions generated by intersecting laser pulses

    SciTech Connect

    Yang, L.; Deng, Z. G.; Yu, M. Y.; Wang, X. G.

    2016-08-15

    Ion acceleration from the interaction of two intersecting intense laser pulses with an overdense plasma is investigated using a three-dimensional particle-in-cell simulation. It is found that, comparing with the single-pulse case, the charge of the resulting energetic ion bunch can be increased by more than an order of magnitude without much loss of quality. Dependence of the ion charge on the interaction parameters, including separation distance and incidence angles of the lasers, is considered. It is shown that the charge of the accelerated ion bunch can be optimized by controlling the degree of laser overlapping. The improved performance can be attributed to the enhanced laser intensity as well as stochastic heating of the accelerated electrons. Since at present the intensity of readily available lasers is limited, the two pulse scheme should be useful for realizing higher laser intensity in order to achieve higher-energy target normal sheath acceleration ions.

  6. Isolated short attosecond pulse generation in an orthogonally polarized multicycle chirped laser field

    SciTech Connect

    Xu Junjie

    2011-03-15

    We theoretically demonstrate the generation of a high-order harmonic and isolated attosecond pulse in an orthogonally polarized laser field, which is synthesized by an 800-nm chirped laser pulse and an 800-nm chirp-free laser pulse. Owing to the instantaneous frequency increasingly reducing close to the center of the driving pulse, the extreme ultraviolet supercontinuum for the chirped synthesized field is even broader than that for an orthogonal chirp-free two-color laser field. It is found that the broadband supercontinuum spectrum can be achieved for the driving pulse with ten and above optical cycles. After phase compensation an isolated attosecond pulse with a duration of {approx}16 as is produced. Furthermore, the optimization of the chirping rate parameters is investigated to achieve cutoff extension and an isolated short attosecond pulse.

  7. Generation of a train of ultrashort pulses from a compact birefringent crystal array

    NASA Astrophysics Data System (ADS)

    Dromey, B.; Zepf, M.; Landreman, M.; O'Keeffe, K.; Robinson, T.; Hooker, S. M.

    2007-08-01

    A linear array of n calcite crystals is shown to allow the generation of a high contrast (>10:1) train of 2n high energy (>100 μJ) pulses from a single ultrafast laser pulse. Advantage is taken of the pulse-splitting properties of a single birefringent crystal, where an incident laser pulse can be split into two pulses with orthogonal polarizations and equal intensity, separated temporally in proportion to the thickness of the crystal traversed and the difference in refractive indices of the two optic axes. In the work presented here an array of seven calcite crystals of sequentially doubled thickness is used to produce a train of 128 pulses, each of femtosecond duration. Readily versatile properties such as the number of pulses in the train and variable mark-space ratio are realized from such a setup.

  8. Generation of an incident focused light pulse in FDTD.

    PubMed

    Capoğlu, Ilker R; Taflove, Allen; Backman, Vadim

    2008-11-10

    A straightforward procedure is described for accurately creating an incident focused light pulse in the 3-D finite-difference time-domain (FDTD) electromagnetic simulation of the image space of an aplanatic converging lens. In this procedure, the focused light pulse is approximated by a finite sum of plane waves, and each plane wave is introduced into the FDTD simulation grid using the total-field/scattered-field (TF/SF) approach. The accuracy of our results is demonstrated by comparison with exact theoretical formulas.

  9. Solid-state pulse modulator using Marx generator for a medical linac electron-gun

    NASA Astrophysics Data System (ADS)

    Lim, Heuijin; Hyeok Jeong, Dong; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae

    2016-04-01

    A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun.

  10. Note: Autonomous pulsed power generator based on transverse shock wave depolarization of ferroelectric ceramics.

    PubMed

    Shkuratov, Sergey I; Baird, Jason; Talantsev, Evgueni F

    2010-12-01

    Autonomous pulsed generators utilizing transverse shock wave depolarization (shock front propagates across the polarization vector P(0)) of Pb(Zr(0.52)Ti(0.48))O(3) poled piezoelectric ceramics were designed, constructed, and experimentally tested. It was demonstrated that generators having total volume of 50 cm(3) were capable of producing the output voltage pulses with amplitude up to 43 kV with pulse duration 4 μs. A comparison of high-voltage operation of transverse and longitudinal shock wave ferroelectric generators is given.

  11. A piezoelectric pulse generator for low frequency non-harmonic vibration

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Yeatman, Eric M.

    2013-12-01

    This paper reports a new piezoelectric prototype for pulse generation by energy harvesting from low frequency non-harmonic vibration. The pulse generator presented here consists of two parts: the electromechanical part and the load circuit. A metal rolling rod is used as the proof mass, moving along the substrate to achieve both actuating of the piezoelectric cantilever by magnetic coupling and self-synchronous switching of the circuit. By using this new approach, the energy from the piezoelectric transduction mechanism is regulated simultaneously when it is extracted. This allows a series of tuneable pulses to be generated, which can be applied to self-powered RF wireless sensor network (WSN) nodes.

  12. Generation of flat-top picosecond pulses by means of a two-stage birefringent filter

    NASA Astrophysics Data System (ADS)

    Will, Ingo

    2008-09-01

    We describe the type of pulse shaper for production of flat-top pulses that is used at the Photo Injector Test Facility (PITZ) at DESY. This shaper consists of a two-stage birefringent filter. Using a simple model, this pulse shaper can be regarded as a system that splits the Gaussian input pulse into four mutually delayed replicas and stacks them in a phase-coherent way. Although a variety of different pulse shapes can be generated by this method, the system is particularly suited for the generation of flat-top output pulses with duration between 10 and 100 ps. When operating in combination with an actively modelocked Nd:YLF oscillator, it can shape picosecond pulses arranged in long trains, as required for photocathode lasers for the TESLA-type linear accelerators. Using trains of equally shaped picosecond pulses has an additional benefit: It permits measuring the shape of these pulses by cross-correlation in real-time using a so-called optical sampling system. Such a system is employed as a measurement tool for appropriate alignment of the individual components of the pulse shaper.

  13. Optical pulse generation using fiber lasers and integrated optics

    SciTech Connect

    Wilcox, R.B.; Browning, D.F.; Burkhart, S.C.; VanWonterghem, B.W.

    1995-03-27

    We have demonstrated an optical pulse forming system using fiber and integrated optics, and have designed a multiple-output system for a proposed fusion laser facility. Our approach is an advancement over previous designs for fusion lasers, and an unusual application of fiber lasers and integrated optics.

  14. Methods and devices for generation of broadband pulsed radiation

    DOEpatents

    Borguet, Eric; Isaienko, Oleksandr

    2013-05-14

    Methods and apparatus for non-collinear optical parametric ampliffication (NOPA) are provided. Broadband phase matching is achieved with a non-collinear geometry and a divergent signal seed to provide bandwidth gain. A chirp may be introduced into the pump pulse such that the white light seed is amplified in a broad spectral region.

  15. Isolated Attosecond Pulse Generation without the Need to Stabilize the Carrier-Envelope Phase of Driving Lasers

    SciTech Connect

    Gilbertson, Steve; Khan, Sabih D.; Wu Yi; Chini, Michael; Chang Zenghu

    2010-08-27

    Single isolated attosecond pulses can be extracted from a pulse train with an ultrafast gate in the generation target. By setting the gate width sufficiently narrow with the generalized double optical gating, we demonstrate that single isolated attosecond pulses can be generated with any arbitrary carrier-envelope phase value of the driving laser. The carrier-envelope phase only affects the photon flux, not the pulse duration or contrast. Our results show that isolated attosecond pulses can be generated using carrier-envelope phase unstabilized 23 fs pulses directly from chirped pulse amplifiers.

  16. Generation of an ultra-short electrical pulse with width shorter than the excitation laser

    PubMed Central

    Shi, Wei; Wang, Shaoqiang; Ma, Cheng; Xu, Ming

    2016-01-01

    We demonstrate experimentally a rare phenomenon that the width of an electrical response is shorter than that of the excitation laser. In this work, generation of an ultrashort electrical pulse is by a semi-insulating GaAs photoconductive semiconductor switch (PCSS) and the generated electrical pulse width is shorter than that of the excitation laser from diode laser. When the pulse width and energy of the excitation laser are fixed at 25.7 ns and 1.6 μJ respectively, the width of the generated electrical pulse width by 3-mm-gap GaAs PCSS at the bias voltage of 9 kV is only 7.3 ns. The model of photon-activated charge domain (PACD) is used to explain the peculiar phenomenon in our experiment. The ultrashort electrical pulse width is mainly relevant to the time interval of PACD from occurrence to disappearance in the mode. The shorter the time interval is, the narrower the electrical pulse width will become. In more general terms, our result suggests that in nonlinear regime a response signal can have a much short width than the excitation pulses. The result clearly indicates that generating ultrashort electrical pulses can be achieved without the need of ultrashort lasers. PMID:27273512

  17. Pulse power generated electric fields as a means to control zebra mussels

    SciTech Connect

    Smythe, A.G.; Lange, C.L.; Doyle, J.F.

    1995-06-01

    In 1994, a study was conducted to determine if pulsed electric fields could reduce zebra mussel settlement rates. The study was a continuation of a study that began in 1991. Several types of fields were generated over the four-year study. The 1994 study concluded that fast rise DC, pulse power signals could stun post-veligers and significantly reduce settlement.

  18. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    SciTech Connect

    Zhang, Shukui

    2013-06-18

    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  19. Generation of terahertz radiation by focusing femtosecond bichromatic laser pulses in a gas or plasma

    SciTech Connect

    Chizhov, P A; Volkov, Roman V; Bukin, V V; Ushakov, A A; Garnov, Sergei V; Savel'ev-Trofimov, Andrei B

    2013-04-30

    The generation of terahertz radiation by focusing two-frequency femtosecond laser pulses is studied. Focusing is carried out both in an undisturbed gas and in a pre-formed plasma. The energy of the terahertz radiation pulses is shown to reduce significantly in the case of focusing in a plasma. (extreme light fields and their applications)

  20. Microwave-assisted arbitrary optical-pulse generation in a thermal vapor

    NASA Astrophysics Data System (ADS)

    Rajitha K., V.; Dey, Tarak N.

    2016-11-01

    The propagation of a weak optical field through an atomic system in closed Λ configuration is investigated in which the hyperfine levels are coupled by a microwave pulse. Under the three-photon resonance condition, it is observed that a new pulse of the shape of a microwave field is generated at the probe transition while the input probe is absorbed. The generated probe pulse follows the temporal position of the microwave pulse and maintains shape through the propagation. A simple propagation equation for the probe field in the Fourier domain has been employed to study this effect. This shape preservation of the probe pulse is due to the ground state coherence of the hyperfine transitions induced by the weaker intensity of the microwave field. The generation of an arbitrary shaped probe pulse is also possible at comparable strength of control and microwave fields. The intensity and detuning of the microwave field can play an important role to control probe pulse properties such as gain, broadening, and preservation of shape. The mechanism of efficient generation and manipulation of an optical pulse may have important applications in information science and optical communications.

  1. Supercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses.

    PubMed

    Lin, Shih-Shian; Hwang, Sheng-Kwang; Liu, Jia-Ming

    2014-02-24

    Supercontinuum generation in a highly nonlinear fiber pumped by noise-like pulses from an erbium-doped fiber ring laser is investigated. To generate ultrabroad spectra, a fiber amplifier is used to boost the power launched into the highly nonlinear fiber. After amplification, not only the average power of the noise-like pulses is enhanced but the spectrum of the pulses is also broadened due to nonlinear effects in the fiber amplifier. This leads to a reduction of the peak duration in their autocorrelation trace, suggesting a similar extent of pulse compression; by contrast, the pedestal duration increases only slightly, suggesting that the noise-like characteristic is maintained. By controlling the pump power of the fiber amplifier, the compression ratio of the noise-like pulse duration can be adjusted. Due to the pulse compression, supercontinuum generation with a broader spectrum is therefore feasible at a given average power level of the noise-like pulses launched into the highly nonlinear fiber. As a result, supercontinuum generation with an optical spectrum spanning from 1208 to 2111 nm is achieved using a 1-m nonlinear fiber pumped by amplified noise-like pulses of 15.5 MHz repetition rate at an average power of 202 mW.

  2. CONTROLLING THE CHARACTERISTICS OF LASER LIGHT: Possibility of generating femtosecond laser pulses by a deflection method

    NASA Astrophysics Data System (ADS)

    Isaakyan, A. R.; Kolchin, K. V.; Makshantsev, B. I.

    1993-05-01

    The transmission of a laser beam through a multiple-prism traveling-wave deflector is examined theoretically. Femtosecond laser pulses can be generated through the use of such a deflector. Possibilities for using a deflector to measure the shape of pulses with a femtosecond time resolution are discussed.

  3. Removal of NOx from diesel generator exhaust by pulsed electron beams

    SciTech Connect

    Penetrante, B. M., LLNL

    1997-07-03

    The objective of this paper is to determine the effects of electron beam pulse parameters on the utilization of the reactive free radicals for removal of NO{sub x} from diesel generator exhaust. A dose per pulse less than 1 kGy has been determined to be optimum for effective radical utilization. During each post-pulse period, the radicals are utilized in the removal of NO{sub x} in a timescale of around 100 microseconds; thus, with pulse frequencies of around 10 kHz or less, the radical concentrations remain sufficiently low to prevent any significant competition between radical-pollutant and radical-radical reactions. It is shown that a pulsed electron beam reactor, operating with a dose per pulse of less than 1 kGy/pulse and pulse repetition rate of less than 10 kHz, will have the same plasma chemistry efficiency (parts per million of removed NO{sub x} per kGy of electron beam dose) as an electron beam reactor operating with a low dose rate of 50 kGy/s in continuous mode. Ozone accumulation is a limiting factor under high pulse frequency conditions. The total dose requirement determines the optimum combination of dose per pulse and pulse frequency for both radical utilization and prevention of ozone buildup.

  4. Lack of functional GABA(B) receptors alters GnRH physiology and sexual dimorphic expression of GnRH and GAD-67 in the brain.

    PubMed

    Catalano, Paolo N; Di Giorgio, Noelia; Bonaventura, María M; Bettler, Bernhard; Libertun, Carlos; Lux-Lantos, Victoria A

    2010-03-01

    GABA, the main inhibitory neurotransmitter, acts through GABA(A/C) and GABA(B) receptors (GABA(B)Rs); it is critical for gonadotropin regulation. We studied whether the lack of functional GABA(B)Rs in GABA(B1) knockout (GABA(B1)KO) mice affected the gonadotropin axis physiology. Adult male and female GABA(B1)KO and wild-type (WT) mice were killed to collect blood and tissue samples. Gonadotropin-releasing hormone (GnRH) content in whole hypothalami (HT), olfactory bulbs (OB), and frontoparietal cortexes (CT) were determined (RIA). GnRH expression by quantitative real-time PCR (qRT-PCR) was evaluated in preoptic area-anterior hypothalamus (POA-AH), medial basal-posterior hypothalamus (MBH-PH), OB, and CT. Pulsatile GnRH secretion from hypothalamic explants was measured by RIA. GABA, glutamate, and taurine contents in HT and CT were determined by HPLC. Glutamic acid decarboxylase-67 (GAD-67) mRNA was measured by qRT-PCR in POA-AH, MBH-PH, and CT. Gonadotropin content, serum levels, and secretion from adenohypophyseal cell cultures (ACC) were measured by RIA. GnRH mRNA expression was increased in POA-AH of WT males compared with females; this pattern of expression was inversed in GABA(B1)KO mice. MBH-PH, OB, and CT did not follow this pattern. In GABA(B1)KO females, GnRH pulse frequency was increased and GABA and glutamate contents were augmented. POA-AH GAD-67 mRNA showed the same expression pattern as GnRH mRNA in this area. Gonadotropin pituitary contents and serum levels showed no differences between genotypes. Increased basal LH secretion and decreased GnRH-stimulated gonadotropin response were observed in GABA(B1)KO female ACCs. These results support the hypothesis that the absence of functional GABA(B)Rs alters GnRH physiology and critically affects sexual dimorphic expression of GnRH and GAD-67 in POA-AH.

  5. Peculiarities of Efficient Plasma Generation in Air and Water by Short Duration Laser Pulses

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Floyd, Bertram M.

    2017-01-01

    We have conducted experiments to demonstrate an efficient generation of plasma discharges by focused nanosecond pulsed laser beams in air and provided recommendations on the design of optical systems to implement such plasma generation. We have also demonstrated generation of the secondary plasma discharge using the unused energy from the primary one. Focused nanosecond pulsed laser beams have also been utilized to generate plasma in water where we observed self-focusing and filamentation. Furthermore, we applied the laser generated plasma to the decomposition of methylene blue dye diluted in water.

  6. Optical arbitrary waveform generator applicable to pulse generation and chromatic dispersion compensation of a remote UWB over fiber system.

    PubMed

    Zhou, Xin; Zheng, Xiaoping; Wen, He; Zhang, Hanyi; Zhou, Bingkun

    2011-12-12

    Optical arbitrary waveform generator (OAWG), which can generate pre-distorted ultra-wideband (UWB) pulses to tolerate the chromatic dispersion (CD) of the fiber without any other CD compensation solutions, provides a good solution for the UWB over fiber system. In our paper, we experimentally demonstrate a new OAWG scheme based on multiple incoherent continuous wave lights by double side band with suppressed carrier (DSB-SC) modulation. UWB Gaussian monocycle and doublet pulses are generated and the chromatic dispersion of 20-km, 50-km and 100-km single-mode fiber (SMF) are compensated by the OAWG system without any other CD compensation solutions. © 2011 Optical Society of America

  7. Enhancing High-Order Harmonic Generation in Light Molecules by Using Chirped Pulses

    NASA Astrophysics Data System (ADS)

    Lara-Astiaso, M.; Silva, R. E. F.; Gubaydullin, A.; Rivière, P.; Meier, C.; Martín, F.

    2016-08-01

    One of the current challenges in high-harmonic generation is to extend the harmonic cutoff to increasingly high energies while maintaining or even increasing the efficiency of the high-harmonic emission. Here we show that the combined effect of down-chirped pulses and nuclear dynamics in light molecules allows one to achieve this goal, provided that long enough IR pulses are used to allow the nuclei to move well outside the Franck-Condon region. We also show that, by varying the duration of the chirped pulse or by performing isotopic substitution while keeping the pulse duration constant, one can control the extension of the harmonic plateau.

  8. Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors.

    PubMed

    Romeira, Bruno; Javaloyes, Julien; Ironside, Charles N; Figueiredo, José M L; Balle, Salvador; Piro, Oreste

    2013-09-09

    We demonstrate, experimentally and theoretically, excitable nanosecond optical pulses in optoelectronic integrated circuits operating at telecommunication wavelengths (1550 nm) comprising a nanoscale double barrier quantum well resonant tunneling diode (RTD) photo-detector driving a laser diode (LD). When perturbed either electrically or optically by an input signal above a certain threshold, the optoelectronic circuit generates short electrical and optical excitable pulses mimicking the spiking behavior of biological neurons. Interestingly, the asymmetric nonlinear characteristic of the RTD-LD allows for two different regimes where one obtain either single pulses or a burst of multiple pulses. The high-speed excitable response capabilities are promising for neurally inspired information applications in photonics.

  9. Sub-50-fs pulse generation from thulium-doped ZBLAN fiber laser oscillator.

    PubMed

    Nomura, Yutaka; Fuji, Takao

    2014-05-19

    An ultrafast, passively mode-locked fiber laser oscillator has been realized using thulium-doped ZBLAN fibers. Very low dispersion of ZBLAN glass fibers enabled generation of pulses with broad spectra extending from 1730 nm to 2050 nm. Pulses are obtained with the average power of 13 mW at the repetition rate of 67.5 MHz when the pump power is 140 mW. The output pulses are compressed with a pair of SF10 prisms and their durations are measured with SHG FROG, from which we obtained the pulse duration as short as 45 fs.

  10. Pulse-shape control of two-color interference in high-order-harmonic generation

    NASA Astrophysics Data System (ADS)

    Hamilton, K. R.; van der Hart, H. W.; Brown, A. C.

    2017-01-01

    We report on calculations of harmonic generation by neon in a mixed (800-nm + time-delayed 400-nm) laser pulse scheme. In contrast with previous studies we employ a short (few-cycle) 400-nm pulse, finding that this affords control of the interference between electron trajectories contributing to the cutoff harmonics. The inclusion of the 400-nm pulse enhances the yield and cutoff energy, both of which exhibit a strong dependence on the time delay between the two pulses. Using a combination of time-dependent R -matrix theory and a classical trajectory model, we assess the mechanisms leading to these effects.

  11. Short X-ray pulses from third-generation light sources.

    PubMed

    Stepanov, A G; Hauri, C P

    2016-01-01

    High-brightness X-ray radiation produced by third-generation synchrotron light sources (TGLS) has been used for numerous time-resolved investigations in many different scientific fields. The typical time duration of X-ray pulses delivered by these large-scale machines is about 50-100 ps. A growing number of time-resolved studies would benefit from X-ray pulses with two or three orders of magnitude shorter duration. Here, techniques explored in the past for shorter X-ray pulse emission at TGLS are reviewed and the perspective towards the realisation of picosecond and sub-picosecond X-ray pulses are discussed.

  12. Transform-limited pulses generated by an actively Q-switched distributed fiber laser.

    PubMed

    Cuadrado-Laborde, C; Pérez-Millán, P; Andrés, M V; Díez, A; Cruz, J L; Barmenkov, Yu O

    2008-11-15

    A single-mode, transform-limited, actively Q-switched distributed-feedback fiber laser is presented, based on a new in-line acoustic pulse generator. Our technique permits a continuous adjustment of the repetition rate that modulates the Q factor of the cavity. Optical pulses of 800 mW peak power, 32 ns temporal width, and up to 20 kHz repetition rates were obtained. The measured linewidth demonstrates that these pulses are transform limited: 6 MHz for a train of pulses of 10 kHz repetition rate, 80 ns temporal width, and 60 mW peak power. Efficient excitation of spontaneous Brillouin scattering is demonstrated.

  13. Generation in electric-discharge XeCl lasers of a high energy long pulses

    NASA Astrophysics Data System (ADS)

    Konovalov, Ivan; Losev, Valery F.; Panchenko, Yury N.

    2004-06-01

    Experimental results of long-pulse generation in X-ray preionized XeCl lasers with a 9 x 7 cm2 and 5.4 x 3 cm2 apertures are described. Lasers operate at Ne-Xe-HCl mixture with pressure up to 4 atm. Paper-oil pulse forming lines and rail-gap switch for discharge pump was used. An 2 - 10 J output with optical pulse duration of 250 - 300 ns (FWHM) have been extracted. Problems and peculiarities of long laser pulse formation are discussed.

  14. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    SciTech Connect

    Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C.; Sola, I.; Sheng, Y.

    2015-06-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system.

  15. Intense Isolated Ultrashort Attosecond Pulse Generation in a Multi-Cycle Three-Colour Laser Field

    NASA Astrophysics Data System (ADS)

    Zhang, Gang-Tai

    2014-12-01

    An efficient method for generating an intense isolated ultrashort attosecond pulse is presented theoretically. By adding a 267 nm controlling pulse to a multi-cycle two-colour field, not only the spectral cutoff and the yields of the harmonic spectrum are evidently enhanced, but also the selection of the single quantum path is realised. Then a high-efficiency supercontinuum with a 504 eV bandwidth and smooth structure is obtained, which enables the production of an intense isolated 30 as pulse. In addition, the influences of the laser parameters on the supercontinuum and isolated attosecond pulse are investigated.

  16. Ultrashort hard x-ray pulses generated by 90 degrees Thomson scattering

    SciTech Connect

    Chin, A.H.; Schoenlein, R.W.; Glover, T.E.

    1997-04-01

    Ultrashort x-ray pulses permit observation of fast structural dynamics in a variety of condensed matter systems. The authors have generated 300 femtosecond, 30 keV x-ray pulses by 90 degrees Thomson scattering between femtosecond laser pulses and relativistic electrons. The x-ray and laser pulses are synchronized on a femtosecond time scale, an important prerequisite for ultrafast pump-probe spectroscopy. Analysis of the x-ray beam properties also allows for electron bunch characterization on a femtosecond time scale.

  17. Visible-pulse generation in gain crystal of near-infrared femtosecond optical parametric oscillator.

    PubMed

    Jeong, Tae-Young; Kim, Seung-Hyun; Kim, Geon-Hee; Yee, Ki-Ju

    2015-10-05

    An optical parametric oscillator (OPO) based on magnesium-oxide-doped periodically poled lithium niobate (MgO:PPLN) is demonstrated to deliver visible femtosecond pulses, which were created through the intra-cavity nonlinear interactions within the PPLN itself. The signal from the OPO produces femtosecond pulses in the near-infrared region tunable from 1050 to 1600 nm. Visible femtosecond pulses in the range of 522-800 nm and those of 455-540 nm, respectively, were generated via second-harmonic generation (SHG) of signal photons and through sum-frequency generation (SFG) of pump and signal photons. Maximum output efficiencies of 9.2% at 614 nm and 8.0% at 522 nm for the SHG and SFG are attained, respectively, where the efficient visible pulse generation relies on the quasi-phase matching with the aid of the higher-order grating momentum.

  18. Experimental investigation of pulse generation with one-pump fiber optical parametric amplification.

    PubMed

    Vedadi, Armand A; Shoaie, Mohammad Amin; Brès, Camille-Sophie

    2012-11-19

    In a recent study, the theory of pulse generation with fiber optical parametric amplification using sinusoidal (clock) intensity modulated pump was revisited. This work showed that the pulses generated through such parametric interaction exhibit a shape which depends on the signal detuning with respect to the pump position (i.e. linear phase mismatch). A near Gaussian shape can only be achieved over a small region of the gain spectrum, close to the maximum gain location. Towards the extremities of the gain spectrum, the generated pulses take a near Sinc shape which can have many potential applications such as for all-optical Nyquist limited transmitters and/or receivers. In this paper we experimentally verify the theory at repetition rates up to 40 GHz. We also discuss the impact of noise, pump saturation and walk-off on the generated pulses.

  19. Intense terahertz-pulse generation by four-wave mixing process in induced gas plasma

    NASA Astrophysics Data System (ADS)

    Wicharn, S.; Buranasiri, P.

    2015-08-01

    In this article, we have numerically investigated an intense terahertz (THz) pulses generation in gaseous plasma based on the third-order nonlinear effect, four-wave mixing rectification (FWMR). We have proposed that the fundamental fields and second-harmonic field of ultra-short pulse lasers are combined and focused into a very small gas chamber to induce a gaseous plasma, which intense THz pulse is produced. To understand the THz generation process, the first-order multiple-scale perturbation method (MSPM) has been utilized to derive a set of nonlinear coupled-mode equations for interacting fields such as two fundamental fields, a second-harmonic field, and a THz field. Then, we have simulate the intense THz-pulse generation by using split step-beam propagation method (SS-BPM) and calculated output THz intensities. Finally, the output THz intensities generated from induced air, nitrogen, and argon plasma have been compared.

  20. Two-color field for the generation of an isolated attosecond pulse in water-window region.

    PubMed

    Chen, Wenxiang; Chen, Guanglong; Kim, Dong Eon

    2011-10-10

    For the investigation of various ultrafast electron dynamics, an isolated attosecond pulse in a broad spectral range is necessary. The generation of isolated attosecond pulses demands the manipulation of the electric field of a laser. We propose a two-color field scheme for generating an isolated attosecond pulse in the water-window region. Two-color fields are generated by mixing two equally-strong pulsed color fields. The investigation shows that an isolated attosecond pulse with a photon energy of near 500 eV and a pulse duration of 125 - 188 attoseconds can be generated using 10 - 15 fs FWHM laser fields.

  1. Compact biomedical pulsed signal generator for bone tissue stimulation

    DOEpatents

    Kronberg, J.W.

    1993-06-08

    An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.

  2. Compact biomedical pulsed signal generator for bone tissue stimulation

    SciTech Connect

    Kronberg, James W.

    1993-01-01

    An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.

  3. Projectile-power-compressed magnetic-field pulse generator

    SciTech Connect

    Barlett, R.H.; Takemori, H.T.; Chase, J.B.

    1983-03-17

    Design considerations and experimental results are presented of a compressed magnetic field pulsed energy source. A 100-mm-diameter, gun-fired projectile of approx. 2MJ kinetic energy was the input energy source. An initial magnetic field was trapped and compressed by the projectile. With a shorted load, a magajoule in a nanohenry was the design goal, i.e., 50 percent energy transformation from kinetic to magnetic. Five percent conversion was the highest recorded before gauge failure.

  4. The generation of warm dense matter samples using pulsed-power generators

    NASA Astrophysics Data System (ADS)

    Gourdain, P. A.; Seyler, C. E.; Knapp, P. F.

    2016-10-01

    Warm dense matter (WDM) bridges the gap between plasma and condensed matter, with densities similar to that of a solid, but temperature on the order of 1 eV. WDM is key to understanding the formation of gaseous giants, Mega-Earths, planetary collisions and inertial fusion implosions. Yet, the quantum properties of WDM and how they are expressed at the macroscopic level are mostly unknown. This paper uses 3-dimensional numerical simulations to show that cm-scale WDM samples can be generated by pulsed-power machines using a fast plasma closing switch, which virtually eliminates the mixing of WDM with other states of matter, allowing the measurement of its physical properties using line average diagnostics. A pre-ionized gas puff is imploded onto a central metal rod. Initially, most of the discharge current flows inside the gas shell. When the shell reaches the rod the full current switches to the rod in less than 10 ns. The subsequent compression produces WDM. We will discuss how an existing platform to generate cm-scale WDM at 20MA on the Z-machine at Sandia National Laboratories. This research is sponsored by DOE.

  5. Generation of Ultra-high Intensity Laser Pulses

    SciTech Connect

    N.J. Fisch; V.M. Malkin

    2003-06-10

    Mainly due to the method of chirped pulse amplification, laser intensities have grown remarkably during recent years. However, the attaining of very much higher powers is limited by the material properties of gratings. These limitations might be overcome through the use of plasma, which is an ideal medium for processing very high power and very high total energy. A plasma can be irradiated by a long pump laser pulse, carrying significant energy, which is then quickly depleted in the plasma by a short counterpropagating pulse. This counterpropagating wave effect has already been employed in Raman amplifiers using gases or plasmas at low laser power. Of particular interest here are the new effects which enter in high power regimes. These new effects can be employed so that one high-energy optical system can be used like a flashlamp in what amounts to pumping the plasma, and a second low-power optical system can be used to extract quickly the energy from the plasma and focus it precisely. The combined system can be very compact. Thus, focused intensities more than 10{sup 25} W/cm{sup 2} can be contemplated using existing optical elements. These intensities are several orders of magnitude higher than what is currently available through chirped pump amplifiers.

  6. Generation of 30 microJ single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification.

    PubMed

    Stepanov, Andrei G; Bonacina, Luigi; Chekalin, Sergei V; Wolf, Jean-Pierre

    2008-11-01

    We report the generation of 30 microJ single-cycle terahertz pulses at 100 Hz repetition rate by phase-matched optical rectification in lithium niobate using 28 mJ femtosecond laser pulses. The phase-matching condition is achieved by tilting the laser pulse intensity front. Temporal, spectral, and propagation properties of the generated terahertz pulses are presented. In addition, we discuss possibilities for further increasing the energy of single-cycle terahertz pulses obtained by optical rectification.

  7. Pulse-periodic generation of supershort avalanche electron beams and X-ray emission

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Burachenko, A. G.; Erofeev, M. V.; Tarasenko, V. F.

    2014-05-01

    Pulse-periodic generation of supershort avalanche electron beams (SAEBs) and X-ray emission in nitrogen, as well as the transition from a single-pulse mode to a pulse-periodic mode with a high repetition frequency, was studied experimentally. It is shown that, in the pulse-periodic mode, the full width at halfmaximum of the SAEB is larger and the decrease rate of the gap voltage is lower than those in the single-pulse mode. It is found that, when the front duration of the voltage pulse at a nitrogen pressure of 90 Torr decreases from 2.5 to 0.3 ns, the X-ray exposure dose in the pulse-periodic mode increases by more than one order of magnitude and the number of SAEB electrons also increases. It is shown that, in the pulse-periodic mode of a diffuse discharge, gas heating in the discharge gap results in a severalfold increase in the SAEB amplitude (the number of electrons in the beam). At a generator voltage of 25 kV, nitrogen pressure of 90 Torr, and pulse repetition frequency of 3.5 kHz, a runaway electron beam was detected behind the anode foil.

  8. Generation of Quality Pulses for Control of Qubit/Quantum Memory Spin States: Experimental and Simulation

    DTIC Science & Technology

    2016-09-01

    TECHNICAL REPORT 3046 September 2016 GENERATION OF QUALITY PULSES FOR CONTROL OF QUBIT/QUANTUM MEMORY SPIN STATES: EXPERIMENTAL AND SIMULATION...frequencies. The shape of the Gaussian is generally distorted using these amplifiers ............... 9 14. Measurements taken in the frequency...power, and duration to control the spin. An I/Q mixer is used to generate these microwave and RF pulses with enough efficiency to appropriately

  9. Measurement and Generation of Ultra-High Power Fiber Laser Pulses by Coherent Combination

    DTIC Science & Technology

    2010-06-01

    through a Michelson interferometer and generated a double pulse as shown in Figure 10. Figure 10. Experimental setup for testing and calibrating...Measuring the Free Spectral Range of the VIPA etalons Using the spectral fringes generated by the Michelson interferometer , we can quantify the spectral...Testing the FROG To test the FROG, we again used use the double pulse from a Michelson interferometer , which yields a FROG trace unlikely to occur by

  10. Generation of parallel transmission sub-pulses of spatial distribution based on polarizing splitting prism

    NASA Astrophysics Data System (ADS)

    Yang, Haifeng; Yang, Xiaoping; Sun, Xuna; Liu, Jun; Yang, Yong

    2016-09-01

    Parallel processing is the forefront of femtosecond laser micro-nano processing. The key to parallel processing is obtaining multichannel parallel femtosecond laser beams. A method of spatial parallel pulse splitting based on birefringence properties of polarizing splitting prism is proposed for obtaining multichannel parallel ultra-short pulse trains. The generated sub-pulses have the characteristics of equal energy and high similarity. More than that, the compact structure of the polarizing splitting prism makes it easier to be implemented. The accurate relationship between the space interval of pulse sequences and the structural angle, dimension and the distance between the two prisms is mathematically derived. The realizable array form of sub-pulse sequences is theoretically analyzed. The feasibility of the proposed method of femtosecond laser parallel processing is analyzed by software simulation and numerical calculation. The results will provide a new research direction for application of ultrashort pulse in parallel processing.

  11. A low-cost programmable pulse generator for physiology and behavior

    PubMed Central

    Sanders, Joshua I.; Kepecs, Adam

    2014-01-01

    Precisely timed experimental manipulations of the brain and its sensory environment are often employed to reveal principles of brain function. While complex and reliable pulse trains for temporal stimulus control can be generated with commercial instruments, contemporary options remain expensive and proprietary. We have developed Pulse Pal, an open source device that allows users to create and trigger software-defined trains of voltage pulses with high temporal precision. Here we describe Pulse Pal’s circuitry and firmware, and characterize its precision and reliability. In addition, we supply online documentation with instructions for assembling, testing and installing Pulse Pal. While the device can be operated as a stand-alone instrument, we also provide application programming interfaces in several programming languages. As an inexpensive, flexible and open solution for temporal control, we anticipate that Pulse Pal will be used to address a wide range of instrumentation timing challenges in neuroscience research. PMID:25566051

  12. Compact pulse generators with soft ferromagnetic cores driven by gunpowder and explosive.

    PubMed

    Ben, Chi; He, Yong; Pan, Xuchao; Chen, Hong; He, Yuan

    2015-12-01

    Compact pulse generators which utilized soft ferromagnets as an initial energy carrier inside multi-turn coil and hard ferromagnets to provide the initial magnetic field outside the coil have been studied. Two methods of reducing the magnetic flux in the generators have been studied: (1) by igniting gunpowder to launch the core out of the generator, and (2) by detonating explosives that demagnetize the core. Several types of compact generators were explored to verify the feasibility. The generators with an 80-turn coil that utilize gunpowder were capable of producing pulses with amplitude 78.6 V and the full width at half maximum was 0.41 ms. The generators with a 37-turn coil that utilize explosive were capable of producing pulses with amplitude 1.41 kV and the full width at half maximum was 11.68 μs. These two methods were both successful, but produce voltage waveforms with significantly different characteristics.

  13. Understanding of self-terminating pulse generation using silicon controlled rectifier and RC load

    SciTech Connect

    Chang, Chris Karunasiri, Gamani; Alves, Fabio

    2016-01-15

    Recently a silicon controlled rectifier (SCR)-based circuit that generates self-terminating voltage pulses was employed for the detection of light and ionizing radiation in pulse mode. The circuit consisted of a SCR connected in series with a RC load and DC bias. In this paper, we report the investigation of the physics underlying the pulsing mechanism of the SCR-based. It was found that during the switching of SCR, the voltage across the capacitor increased beyond that of the DC bias, thus generating a reverse current in the circuit, which helped to turn the SCR off. The pulsing was found to be sustainable only for a specific range of RC values depending on the SCR’s intrinsic turn-on/off times. The findings of this work will help to design optimum SCR based circuits for pulse mode detection of light and ionizing radiation without external amplification circuitry.

  14. Effect of nonlinear chirped Gaussian laser pulse on plasma wake field generation

    SciTech Connect

    Afhami, Saeedeh; Eslami, Esmaeil

    2014-08-15

    An ultrashort laser pulse propagating in plasma can excite a nonlinear plasma wake field which can accelerate charged particles up to GeV energies within a compact space compared to the conventional accelerator devices. In this paper, the effect of different kinds of nonlinear chirped Gaussian laser pulse on wake field generation is investigated. The numerical analysis of our results depicts that the excitation of plasma wave with large and highly amplitude can be accomplished by nonlinear chirped pulses. The maximum amplitude of excited wake in nonlinear chirped pulse is approximately three times more than that of linear chirped pulse. In order to achieve high wake field generation, chirp parameters and functions should be set to optimal values.

  15. Short x-ray pulse generation using deflecting cavities at the Advanced Photon Source.

    SciTech Connect

    Sajaev, V.; Borland, M.; Chae, Y.-C.; Decker, G.; Dejus, R.; Emery, L.; Harkay, K.; Nassiri, A.; Shastri, S.; Waldschmidt, G.; Yang, B.; Anfinrud, P.; Dolgashev, V.; NIH; SLAC

    2007-11-11

    Storage-ring-based third-generation light sources can provide intense radiation pulses with durations as short as 100 ps. However, there is growing interest within the synchrotron radiation user community in performing experiments with much shorter X-ray pulses. Zholents et al. [Nucl. Instr. and Meth. A 425 (1999) 385] recently proposed using RF orbit deflection to generate sub-ps X-ray pulses. In this scheme, two deflecting cavities are used to deliver a longitudinally dependent vertical kick to the beam. An optical slit can then be used to slice out a short part of the radiation pulse. Implementation of this scheme is planned for one APS beamline in the near future. In this paper, we summarize our feasibility study of this method and the expected X-ray beam parameters. We find that a pulse length of less than two picoseconds can be achieved.

  16. A 7 T Pulsed Magnetic Field Generator for Magnetized Laser Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Hu, Guangyue; Liang, Yihan; Song, Falun; Yuan, Peng; Wang, Yulin; Zhao, Bin; Zheng, Jian

    2015-02-01

    A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (~230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field.

  17. Short X-ray pulse generation using deflecting cavities at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Sajaev, V.; Borland, M.; Chae, Y.-C.; Decker, G.; Dejus, R.; Emery, L.; Harkay, K.; Nassiri, A.; Shastri, S.; Waldschmidt, G.; Yang, B.; Anfinrud, P.; Dolgashev, V.

    2007-11-01

    Storage-ring-based third-generation light sources can provide intense radiation pulses with durations as short as 100 ps. However, there is growing interest within the synchrotron radiation user community in performing experiments with much shorter X-ray pulses. Zholents et al. [Nucl. Instr. and Meth. A 425 (1999) 385] recently proposed using RF orbit deflection to generate sub-ps X-ray pulses. In this scheme, two deflecting cavities are used to deliver a longitudinally dependent vertical kick to the beam. An optical slit can then be used to slice out a short part of the radiation pulse. Implementation of this scheme is planned for one APS beamline in the near future. In this paper, we summarize our feasibility study of this method and the expected X-ray beam parameters. We find that a pulse length of less than two picoseconds can be achieved.

  18. Improvement of deoxidization efficiency of nitric monoxide by shortening pulse width of semiconductor opening switch pulse power generator

    NASA Astrophysics Data System (ADS)

    Kakuta, Takatoshi; Yagi, Ippei; Takaki, Koichi

    2015-01-01

    The deoxidization efficiency of nitric monoxide (NO) was improved by shortening the pulse width of the voltage applied to a corona reactor. The deoxidization efficiency of NO was evaluated as the NO removal efficiency in nitrogen (N2) gas containing 200 ppm NO. The corona reactor had a coaxial geometry and consisted of center high-voltage wire and outer grounded cylinder electrodes. A nanosecond high-voltage pulse was generated using an inductive energy storage pulse power circuit with a semiconductor opening switch and was applied to the center wire electrode in the corona reactor. Fast recovery diodes were utilized as a semiconductor opening switch. The pulse width of the applied voltage was reduced from 21 to 14 ns with the arrester connected in parallel to the reactor. The energy efficiency for NO removal was improved from 8.2 to 35.7 g kW-1 h-1 with the arrester connected. The pulse width was also reduced to 8 ns by optimizing the circuit parameters. It was confirmed from observation with an intensified charge-coupled device (ICCD) camera that the streamer corona discharge transited to a glowlike discharge after the streamer propagated from the center wire electrode to the outer cylinder electrode. The duration of the glowlike phase was reduced with the arrester connected. The energy consumed in the glowlike phase was also reduced from 15.7 to 4.6 mJ with the arrester connected.

  19. Analysis of the stability of an active mode-locking pulsed laser for ultra-short pulses generation

    NASA Astrophysics Data System (ADS)

    Bracamontes Rodríguez, Y. E.; Beltrán Pérez, G.; Kuzin, Eugin; Castillo Mixcóatl, J.; Muñoz Aguirre, S.

    2013-11-01

    Pulsed lasers have become very important owing to the great amount of applications, from communications to diverse medicine areas. Many works have reported the development of these kinds of sources which uses quite complex cavity configurations and that present instabilities in the output signal. In this work the analysis of a pulsed laser that uses a ring cavity with a length of 16.5 m is presented. A phase modulator (LiNbO3) controlled by an RF generator operated at a frequency of 12.5108 MHz was used to perform the mode lock. The modulator input has a birrefringent fiber then the light polarization affects the mode lock. Therefore it was necessary to perform an analysis and characterization in the input and output signals of the modulator in order to obtain more stable output pulses without requiring a continuous adjustment. The laser implemented with 2 modes of operation, active mode-lock and passive mode-lock. The obtained pulses whit temporal width of 7 ns FWHM for the frequency fundamental 12.5108 MHz and 781 -261-120-116 ps for the harmonic 5-10-16-20 .The results for the passive mode-lock the obtained pulses whit temporal width 2 ps and average power 200 W.

  20. 50 mm Diameter digital DC/pulse neutron generator for subcritical reactor test

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhang, Zhong-Shuai; Chi, Qian; Liu, Lin-Mao

    2012-11-01

    A 50 mm diameter digital DC/pulse neutron generator was developed with 25 mm ceramic drive-in target neutron tube. It was applied in the subcritical reactor test of China Institute of Atomic Energy (CIAE). The generator can produce neutron in three modes: DC, pulse and multiple pulse. The maximum neutron yield of the generator is 1 × 108 n/s, while the maximum pulse frequency is 10 kHz, and the minimum pulse width is 10 μs. As a remote controlled generator, it is small in volume, easy to be connected and controlled. The tested results indicate that penning ion source has the feature of delay time in glow discharge, and it is easier for glow discharge to happen when switching the DC voltage of penning ion source into pulse. According to these two characteristics, the generator has been modified. This improved generator can be used in many other areas including Prompt Gamma Neutron Activation Analysis (PGNAA), neutron testing and experiment.

  1. Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses.

    PubMed

    Jukna, Vytautas; Jarnac, Amélie; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien

    2016-06-01

    Acoustic signals generated by filamentation of ultrashort terawatt laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum.

  2. Simulation study of wakefield generation by two color laser pulses propagating in homogeneous plasma

    SciTech Connect

    Kumar Mishra, Rohit; Saroch, Akanksha; Jha, Pallavi

    2013-09-15

    This paper deals with a two-dimensional simulation of electric wakefields generated by two color laser pulses propagating in homogeneous plasma, using VORPAL simulation code. The laser pulses are assumed to have a frequency difference equal to the plasma frequency. Simulation studies are performed for two similarly as well as oppositely polarized laser pulses and the respective amplitudes of the generated longitudinal wakefields for the two cases are compared. Enhancement of wake amplitude for the latter case is reported. This simulation study validates the analytical results presented by Jha et al.[Phys. Plasmas 20, 053102 (2013)].

  3. Generation of Low-Frequency Electromagnetic Waves by Spectrally Broad Intense Laser Pulses in a Plasma

    NASA Astrophysics Data System (ADS)

    Tsintsadze, L. N.; Tajima, T.; Nishikawa, K.; Koga, J. K.; Nakagawa, K.; Kishimoto, Y.

    A new mechanism for the emission of low-frequency electromagnetic (EM) waves, including the generation of a quasistatic magnetic field, by a relativistically intense laser pulse with a wide spectrum is presented. The emission is due to modulational and filamentational instabilities of the photon gas in a plasma. The generation of the magnetic field is associated with a significant change in the laser pulse shape during the propagation. This process is identified in our 2D particle-in-cell (PIC) simulations with a high intensity (1019pulse.

  4. Generation of high intensity rf pulses in the ionosphere by means of in situ compression

    SciTech Connect

    Cowley, S.C.; Perkins, F.W.; Valeo, E.J.

    1993-04-01

    We demonstrate, using a simple model, that high intensity pulses can be generated from a frequency-chirped modifier of much lower intensity by making use of the dispersive properties of the ionosphere. We show that a frequency-chirped pulse can be constructed so that its various components overtake each other at a prescribed height, resulting in large (up to one hundred times) transient intensity enhancements as compared to those achievable from a steady modifier operating at the same power. We examine briefly one possible application: the enhancement of plasma wave amplitudes which occurs as a result of the interaction of such a compressed pulse with pre-generated turbulence.

  5. Circularly polarized carrier-envelope-phase stable attosecond pulse generation based on coherent undulator radiation.

    PubMed

    Tóth, Gy; Tibai, Z; Nagy-Csiha, Zs; Márton, Zs; Almási, G; Hebling, J

    2015-09-15

    In this Letter, we present a new method for generation of circularly polarized attosecond pulses. According to our calculations, shape-controlled, carrier-envelope-phase stable pulses of several hundred nanojoule energy could be produced by exploitation of the coherent undulator radiation of an electron bunch. Our calculations are based on an existing particle accelerator system (FLASH II in DESY, Germany). We investigated the energy dependence of the attosecond pulses on the energy of electrons and the parameters of the radiator undulator, which generate the electromagnetic radiation.

  6. Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses.

    PubMed

    Yoshida, Akira; Schmidt, Andreas; Petrov, Valentin; Fiebig, Christian; Erbert, Götz; Liu, Junhai; Zhang, Huaijin; Wang, Jiyang; Griebner, Uwe

    2011-11-15

    Direct sub-50-fs pulse generation is demonstrated with a mode-locked Yb:YCa4O(BO3)3 laser. With external compression, pulses as short as 35 fs are generated at 1055 nm. The oscillator operating at a repetition rate of 95 MHz is pumped by a two-section distributed Bragg reflector tapered diode laser and mode locked by a semiconductor saturable absorber mirror. The onset of self-Raman-conversion for pulse spectral bandwidths exceeding 40 nm (FWHM) is observed.

  7. Laser pulse shaping for generating uniform three-dimensional ellipsoidal electron beams.

    SciTech Connect

    Li, Y.; Chmnerisov, S.; Lewellen, J. W.

    2009-02-01

    A scheme of generating a uniform ellipsoidal laser pulse for high-brightness photoinjectors is discussed. The scheme is based on the chromatic aberration of a dispersive lens. Fourier optics simulation reveals the interplay of group velocity delay and dispersion in the scheme, as well as diffractions. Particle tracking simulation shows that the beam generated by such a laser pulse approaches the performance of that by an ideal ellipsoidal laser pulse and represents a significant improvement from the traditionally proposed cylindrical beam geometry. The scheme is tested in an 800-nm, optical proof-of-principle experiment at lower peak power with excellent agreement between the measurement and simulation.

  8. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    PubMed

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  9. Efficient second harmonic generation of picosecond laser pulses.

    NASA Technical Reports Server (NTRS)

    Rabson, T. A.; Ruiz, H. J.; Shah, P. L.; Tittel, F. K.

    1972-01-01

    Efficient conversion to the second harmonic (SH) using KD2PO4 and CsH2AsO4 crystals inside a folded cavity of a high-power-dye mode-locked neodymium-glass laser is reported. For the first time, frequency-doubled picosecond light pulses have been obtained in CsH2AsO4 with peak powers of the order of 1 GW/sq cm at 0.531 micron for an effective pump power density of 4 GW/sq cm.

  10. Pulse Capacitors for Next Generation Linear Colliders. Final Report

    SciTech Connect

    Hooker, M.W.

    2000-03-03

    During this Phase I SBIR research program, Nanomaterials Research Corporation (NRC) successfully demonstrated high-voltage multilayer capacitors produced from sub-100 nm ceramic powders. The devices produced by NRC exhibited properties that make them particularly useful for pulse power applications. These properties include (1) high capacitance (2) low loss (3) high breakdown voltage (4) high insulation resistance and (5) rapid discharge characteristics. Furthermore, the properties of the nanostructured capacitors were consistently found to exceed those of components that represent the state of the art within the industry. Encouraged by these results, NRC is planning to submit a Phase II proposal with the objective of securing seed capital to continue this development effort.

  11. Spatial characterization of electric potentials generated by pulsed microelectrode arrays.

    PubMed

    Kandagor, V; Cela, C J; Sanders, C A; Greenbaum, E; Lazzi, G; Humayun, M S; Zhou, D M; Castro, R; Gaikwad, S; Little, J

    2010-01-01

    This presentation is a report on the in situ characterization of stimulating microelectrodes in the context of multielectrode retinal prosthetic implants. The experimental system approximately replicates the geometric and electrical parameters of Second Sight Medical Products' Argus II Retinal Implant. Topographic maps of electric potentials have been prepared for a 60 electrode structure in which selected electrodes were stimulated with biphasic repetitively pulsed charge densities at 100 microC·cm(-2). Surface contour maps were prepared using a 10 microm diameter recording electrode.

  12. Third harmonic generation with ultra-high intensity laser pulses

    SciTech Connect

    Rax, J.M.; Fisch, N.J.

    1992-04-01

    When an intense, plane-polarized, laser pulse interacts with a plasma, the relativistic nonlinearities induce a third harmonic polarization. A phase-locked growth of a third harmonic wave can take place, but the differences between the nonlinear dispersion of the pump and driven waves leads to a rapid unlocking, resulting in a saturation. What becomes third harmonic amplitude oscillations are identified here, and the nonlinear phase velocity and the renormalized electron mass due to plasmon screening are calculated. A simple phase-matching scheme, based on a resonant density modulation, is then proposed and analyzed.

  13. Third harmonic generation with ultra-high intensity laser pulses

    SciTech Connect

    Rax, J.M.; Fisch, N.J.

    1992-04-01

    When an intense, plane-polarized, laser pulse interacts with a plasma, the relativistic nonlinearities induce a third harmonic polarization. A phase-locked growth of a third harmonic wave can take place, but the differences between the nonlinear dispersion of the pump and driven waves leads to a rapid unlocking, resulting in a saturation. What becomes third harmonic amplitude oscillations are identified here, and the nonlinear phase velocity and the renormalized electron mass due to plasmon screening are calculated. A simple phase-matching scheme, based on a resonant density modulation, is then proposed and analyzed.

  14. Method and means for generating a synchronizing pulse from a repetitive wave of varying frequency

    DOEpatents

    DeVolpi, Alexander; Pecina, Ronald J.; Travis, Dale J.

    1976-01-01

    An event that occurs repetitively at continuously changing frequencies can be used to generate a triggering pulse which is used to synchronize or control. The triggering pulse is generated at a predetermined percentage of the period of the repetitive waveform without regard to frequency. Counts are accumulated in two counters, the first counting during the "on" fraction of the period, and the second counting during the "off" fraction. The counts accumulated during each cycle are compared. On equality the trigger pulse is generated. Count input rates to each counter are determined by the ratio of the on-off fractions of the event waveform and the desired phase relationship. This invention is of particular utility in providing a trigger or synchronizing pulse during the open period of the shutter of a high-speed framing camera during its acceleration as well as its period of substantially constant speed.

  15. A Novel Low-Ringing Monocycle Picosecond Pulse Generator Based on Step Recovery Diode

    PubMed Central

    Zhou, Jianming; Yang, Xiao; Lu, Qiuyuan; Liu, Fan

    2015-01-01

    This paper presents a high-performance low-ringing ultra-wideband monocycle picosecond pulse generator, formed using a step recovery diode (SRD), simulated in ADS software and generated through experimentation. The pulse generator comprises three parts, a step recovery diode, a field-effect transistor and a Schottky diode, used to eliminate the positive and negative ringing of pulse. Simulated results validate the design. Measured results indicate an output waveform of 1.88 peak-to-peak amplitude and 307ps pulse duration with a minimal ringing of -22.5 dB, providing good symmetry and low level of ringing. A high degree of coordination between the simulated and measured results is achieved. PMID:26308450

  16. Note: Complementary metal-oxide-semiconductor high voltage pulse generation circuits

    NASA Astrophysics Data System (ADS)

    Sun, Jiwei; Wang, Pingshan

    2013-10-01

    We present two types of on-chip pulse generation circuits. The first is based on CMOS pulse-forming-lines (PFLs). It includes a four-stage charge pump, a four-stacked-MOSFET switch and a 5 mm long PFL. The circuit is implemented in a 0.13 μm CMOS process. Pulses of ˜1.8 V amplitude with ˜135 ps duration on a 50 Ω load are obtained. The obtained voltage is higher than 1.6 V, the rated operating voltage of the process. The second is a high-voltage Marx generator which also uses stacked MOSFETs as high voltage switches. The output voltage is 11.68 V, which is higher than the highest breakdown voltage (˜10 V) of the CMOS process. These results significantly extend high-voltage pulse generation capabilities of CMOS technologies.

  17. A Novel Low-Ringing Monocycle Picosecond Pulse Generator Based on Step Recovery Diode.

    PubMed

    Zhou, Jianming; Yang, Xiao; Lu, Qiuyuan; Liu, Fan

    2015-01-01

    This paper presents a high-performance low-ringing ultra-wideband monocycle picosecond pulse generator, formed using a step recovery diode (SRD), simulated in ADS software and generated through experimentation. The pulse generator comprises three parts, a step recovery diode, a field-effect transistor and a Schottky diode, used to eliminate the positive and negative ringing of pulse. Simulated results validate the design. Measured results indicate an output waveform of 1.88 peak-to-peak amplitude and 307ps pulse duration with a minimal ringing of -22.5 dB, providing good symmetry and low level of ringing. A high degree of coordination between the simulated and measured results is achieved.

  18. Flat-top temporal and spatial profiles femtosecond pulse beam generated by phase only modulating

    NASA Astrophysics Data System (ADS)

    Nie, Yong-ming; Liu, Jun-hui; Huang, Pu-hua; Tang, Ji-zhen; Yang, Xuehua; Ma, Hao-tong; Li, Xiu-jian

    2013-09-01

    The method for generating temporal flat-top waveform and spatial flat-top profile femtosecond pulse beam by phase and polarization controlling is proposed and demonstrated. Based on direct wave front phase modulating, flat-top spatial intensity distribution can be obtained. Combining a folded 4f zero-dispersion system with a polarization controlling setup, the temporal flat-top waveform is generated. Experimental results indicate that for the input both temporal and spatial Gaussian pulse beam with 363 fs temporal width and 1.5 mm beam waist, the temporal width of the output shaped pulse beam is 1.2 ps and 1.9mm beam waist, and the rms variation is about 9.2%, which prove that the temporal flat-top and spatial flat-top femtosecond pulse beam can be generated effectively.

  19. Note: Complementary metal-oxide-semiconductor high voltage pulse generation circuits.

    PubMed

    Sun, Jiwei; Wang, Pingshan

    2013-10-01

    We present two types of on-chip pulse generation circuits. The first is based on CMOS pulse-forming-lines (PFLs). It includes a four-stage charge pump, a four-stacked-MOSFET switch and a 5 mm long PFL. The circuit is implemented in a 0.13 μm CMOS process. Pulses of ~1.8 V amplitude with ~135 ps duration on a 50 Ω load are obtained. The obtained voltage is higher than 1.6 V, the rated operating voltage of the process. The second is a high-voltage Marx generator which also uses stacked MOSFETs as high voltage switches. The output voltage is 11.68 V, which is higher than the highest breakdown voltage (~10 V) of the CMOS process. These results significantly extend high-voltage pulse generation capabilities of CMOS technologies.

  20. High-speed, high-voltage pulse generation using avalanche transistor.

    PubMed

    Yong-Sheng, Gou; Bai-Yu, Liu; Yong-Lin, Bai; Jun-Jun, Qin; Xiao-Hong, Bai; Bo, Wang; Bing-Li, Zhu; Chuan-Dong, Sun

    2016-05-01

    In this work, the conduction mechanism of avalanche transistors was demonstrated and the operation condition for generating high-speed pulse using avalanche transistors was illustrated. Based on the above analysis, a high-speed and high-voltage pulse (HHP) generating circuit using avalanche transistors was designed, and its working principle and process were studied. To improve the speed of the output pulse, an approach of reducing the rise time of the leading edge is proposed. Methods for selecting avalanche transistor and reducing the parasitic inductance and capacitance of printed circuit board (PCB) were demonstrated. With these instructions, a PCB with a tapered transmission line was carefully designed and manufactured. Output pulse with amplitude of 2 kV and rise time of about 200 ps was realized with this PCB mounted with avalanche transistors FMMT417, indicating the effectiveness of the HHP generating circuit design.

  1. Nine-channel mid-power bipolar pulse generator based on a field programmable gate array

    SciTech Connect

    Haylock, Ben Lenzini, Francesco; Kasture, Sachin; Fisher, Paul; Lobino, Mirko; Streed, Erik W.

    2016-05-15

    Many channel arbitrary pulse sequence generation is required for the electro-optic reconfiguration of optical waveguide networks in Lithium Niobate. Here we describe a scalable solution to the requirement for mid-power bipolar parallel outputs, based on pulse patterns generated by an externally clocked field programmable gate array. Positive and negative pulses can be generated at repetition rates up to 80 MHz with pulse width adjustable in increments of 1.6 ns across nine independent outputs. Each channel can provide 1.5 W of RF power and can be synchronised with the operation of other components in an optical network such as light sources and detectors through an external clock with adjustable delay.

  2. High-speed, high-voltage pulse generation using avalanche transistor

    NASA Astrophysics Data System (ADS)

    Yong-sheng, Gou; Bai-yu, Liu; Yong-lin, Bai; Jun-jun, Qin; Xiao-hong, Bai; Bo, Wang; Bing-li, Zhu; Chuan-dong, Sun

    2016-05-01

    In this work, the conduction mechanism of avalanche transistors was demonstrated and the operation condition for generating high-speed pulse using avalanche transistors was illustrated. Based on the above analysis, a high-speed and high-voltage pulse (HHP) generating circuit using avalanche transistors was designed, and its working principle and process were studied. To improve the speed of the output pulse, an approach of reducing the rise time of the leading edge is proposed. Methods for selecting avalanche transistor and reducing the parasitic inductance and capacitance of printed circuit board (PCB) were demonstrated. With these instructions, a PCB with a tapered transmission line was carefully designed and manufactured. Output pulse with amplitude of 2 kV and rise time of about 200 ps was realized with this PCB mounted with avalanche transistors FMMT417, indicating the effectiveness of the HHP generating circuit design.

  3. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves.

    PubMed

    Kress, Markus; Löffler, Torsten; Eden, Susanne; Thomson, Mark; Roskos, Hartmut G

    2004-05-15

    Intense radiation in the terahertz (THz) frequency range can be generated by focusing of an ultrashort laser pulse composed of both a fundamental wave and its second-harmonic field into air, as reported previously by Cook et al. [Opt. Lett. 25, 1210 (2000)]. We identify a threshold for THz generation that proves that generation of a plasma is required and that the nonlinearity of air is insufficient to explain our measurements. An additional THz field component generated in the type I beta-barium borate crystal used for second-harmonic generation has to be considered if one is to avoid misinterpretation of this kind of experiment. We conclude with a comparison that shows that the plasma emitter is competitive with other state-of-the-art THz emitters.

  4. Adjustable, High Voltage Pulse Generator with Isolated Output for Plasma Processing

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Miller, Kenneth E.; Prager, James; Slobodov, Ilia

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. has developed a high voltage pulse generator with isolated output for etch, sputtering, and ion implantation applications within the materials science and semiconductor processing communities. The output parameters are independently user adjustable: output voltage (0 - 2.5 kV), pulse repetition frequency (0 - 100 kHz), and duty cycle (0 - 100%). The pulser can drive loads down to 200 Ω. Higher voltage pulsers have also been tested. The isolated output allows the pulse generator to be connected to loads that need to be biased. These pulser generators take advantage modern silicon carbide (SiC) MOSFETs. These new solid-state switches decrease the switching and conduction losses while allowing for higher switching frequency capabilities. This pulse generator has applications for RF plasma heating; inductive and arc plasma sources; magnetron driving; and generation of arbitrary pulses at high voltage, high current, and high pulse repetition frequency. This work was supported in part by a DOE SBIR.

  5. Power electron beam front shortening for intense microwave pulse generation

    SciTech Connect

    Galstjan, E.A.; Kazanskiy, L.N.

    1995-11-01

    The starting point for this investigation is a succession that it is possible to get a clearly defined shock electromagnetic wave in a quite short modified magnetically insulated transmission line (MITL). The line modification resides in an inner coaxial dielectric insert. One may consider the insert as a distributed matched spark-gap. The parameters of the high voltage pulse supplying at the line input are as follows: 1.5 MV, 20--30 kA, 90 ns, front duration -- 30 ns. A current pulse with a front duration less than 1 ns has been observed at the line output. The output current has ranged up to about 10--12 kA. Efficiency of the sharp front formation grows owing to its dependence on the speed of the flashover front propagation. So, an estimation of this dependence is a step of great importance in solution of the problem. The flashover front speed has been estimated on physical grounds which can be derived from experimental data for the early phase of dielectric surface flashover in vacuum.

  6. Experimental and Theoretical Investigation of Directional Wideband Electromagnetic Pulse Photoemission Generator

    NASA Astrophysics Data System (ADS)

    Petrov, P. V.; Afonin, V. I.; Zamuraev, D. O.; Zavolokov, E. V.; Kupyrin, N. V.; Lazarev, Yu. N.; Romanov, Yu. O.; Syrtsova, Yu. G.; Sorokin, I. A.; Tischenko, A. S.; Brukhnevich, G. I.; Voronkova, N. P.; Pekarskaya, L. Z.; Belolipetskiy, V. S.

    The effect of electromagnetic wave generation by the electric current pulse propagating at the superluminal velocity along a conducting surface might be promising to create a high-power wideband microwave generator. The system comprising a plane vacuum photodiode with a transparent anode and using laser radiation to initialize electron emission is a variant to realize this scheme of electromagnetic pulse generation. This chapter presents results of experimental researches in characteristics of such radiating element with the cesium-antimonide cathode of Ø50 mm. The performed researches have shown that the generated wideband pulse (f_0 ≈ 3.3 {{GHz}},Δ f/f_0 ˜ 1) propagates in the direction corresponding to specular reflection of the incident laser radiation. Under the voltage of about 50 kV the electric field strength of 44 kV/m at the distance of 1.3 m has been recorded that corresponds to the generator power ˜10 MW.

  7. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers.

    PubMed

    Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A; Becker, Andreas; Murnane, Margaret M; Kapteyn, Henry C; Popmintchev, Tenio

    2014-06-10

    High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10(-18) s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum.

  8. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers

    PubMed Central

    Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A.; Becker, Andreas; Murnane, Margaret M.; Kapteyn, Henry C.; Popmintchev, Tenio

    2014-01-01

    High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10−18 s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum. PMID:24850866

  9. Nanosecond pulsed electric field generators for the study of subcellular effects.

    PubMed

    Kolb, Juergen F; Kono, Susumu; Schoenbach, Karl H

    2006-04-01

    Modeling and experimental studies have shown that pulsed electric fields of nanosecond duration and megavolt per meter amplitude affect subcellular structures but do not lead to the formation of large pores in the outer membrane. This "intracellular electromanipulation" requires the use of pulse generators which provide extremely high power but low energy pulses. In this study, we describe the concept of the required pulsed power sources, their design, operation, and the necessary diagnostics. Two types of pulse generators based on the Blumlein line principle have been developed and are described here. One system is designed to treat a large number of cells in cuvettes holding volumes from 0.1 to 0.8 ml. Pulses of up to 40 kV amplitude, with a duration of 10 ns and a rise time close to 1 ns can be applied to the cuvette. For an electrode gap of 1 mm this voltage corresponds to an average electric field of 40 MV/m. The second system allows for real time observation of individual cells under a microscope. It generates pulses of 10-300 ns duration with a rise time of 3.5 ns and voltage amplitudes up to 1 kV. Connected to a microreactor with an electrode gap of 100 microm, electric fields up to 10 MV/m are applied.

  10. All-solid-state repetitive semiconductor opening switch-based short pulse generator.

    PubMed

    Ding, Zhenjie; Hao, Qingsong; Hu, Long; Su, Jiancang; Liu, Guozhi

    2009-09-01

    The operating characteristics of a semiconductor opening switch (SOS) are determined by its pumping circuit parameters. SOS is still able to cut off the current when pumping current duration falls to the order of tens of nanoseconds and a short pulse forms simultaneously in the output load. An all-solid-state repetitive SOS-based short pulse generator (SPG100) with a three-level magnetic pulse compression unit was successfully constructed. The generator adopts magnetic pulse compression unit with metallic glass and ferrite cores, which compresses a 600 V, 10 mus primary pulse into short pulse with forward pumping current of 825 A, 60 ns and reverse pumping current of 1.3 kA, 30 ns. The current is sent to SOS in which the reverse pumping current is interrupted. The generator is capable of providing a pulse with the voltage of 120 kV and duration of 5-6 ns while output load being 125 Omega. The highest repetition rate is up to 1 kHz.

  11. LH response to GnRH blood test

    MedlinePlus

    Luteinizing hormone response to gonadotropin-releasing hormone ... GnRH is a hormone made by the hypothalamus gland. LH is made by the pituitary gland. GnRH causes (stimulates) the pituitary gland to ...

  12. Pulsed thermal neutron source at the fast neutron generator.

    PubMed

    Tracz, Grzegorz; Drozdowicz, Krzysztof; Gabańska, Barbara; Krynicka, Ewa

    2009-06-01

    A small pulsed thermal neutron source has been designed based on results of the MCNP simulations of the thermalization of 14 MeV neutrons in a cluster-moderator which consists of small moderating cells decoupled by an absorber. Optimum dimensions of the single cell and of the whole cluster have been selected, considering the thermal neutron intensity and the short decay time of the thermal neutron flux. The source has been built and the test experiments have been performed. To ensure the response is not due to the choice of target for the experiments, calculations have been done to demonstrate the response is valid regardless of the thermalization properties of the target.

  13. Ultrafast pulse generation with black phosphorus solution saturable absorber

    NASA Astrophysics Data System (ADS)

    Li, Lu; Wang, Yonggang; Wang, Xi

    2017-08-01

    The study presents the mode-locked Er-doped fiber (EDF) laser with a black phosphorus (BP) solution saturable absorber (SSA). The saturable absorber (SA) is fabricated based on a D-shaped fiber (DF) embedded in BP nanosheets N-Methylpyrrolidone solution. Such a BP solution method has the virtues of good antioxidant capacity, high heat dissipation and high damage threshold. This kind of SA shows a modulation depth of 7.75% and a nonsaturable loss of 10%. By employing the EDF-BP SSA, a repetition rate of 15.2 MHz mode-locked fiber laser is achieved. The pulse duration is 580 fs and the signal-to-noise ratio is 65 dB. The results indicate that the DF-BP solution can work as a potential SA for ultrafast nonlinear optics.

  14. High power repetitive Blumlein pulse generators to drive lasers

    NASA Astrophysics Data System (ADS)

    Bhawalkar, J. D.; Davanloo, F.; Collins, C. B.; Agee, F. J.; Kingsley, L.

    The stacked Blumlein pulse power sources developed at the University of Texas at Dallas consist of several triaxial Blumleins stacked in series at one end. The lines are charged in parallel and synchronously commuted with a single thyratron at the other end. In this way, relatively low charging voltages are multiplied to give the desired discharge voltage across an arbitrary load without the need for complex Marx bank circuitry. In this report, we review the characteristics of this novel pulser. Performances with different line configurations and extended Blumlein lengths are given. With only slight modifications, the pulsers described with different line configurations and extended Blumlein lengths are given. With only slight modifications, the pulsers described here can be used to produce intense transverse discharges across a wide range of loads including lasers.

  15. Mechanisms That Generate Resource Pulses in a Fluctuating Wetland.

    PubMed

    Botson, Bryan A; Gawlik, Dale E; Trexler, Joel C

    2016-01-01

    Animals living in patchy environments may depend on resource pulses to meet the high energetic demands of breeding. We developed two primary a priori hypotheses to examine relationships between three categories of wading bird prey biomass and covariates hypothesized to affect the concentration of aquatic fauna, a pulsed resource for breeding wading bird populations during the dry season. The fish concentration hypothesis proposed that local-scale processes concentrate wet-season fish biomass into patches in the dry season, whereas the fish production hypothesis states that the amount of dry-season fish biomass reflects fish biomass production during the preceding wet season. We sampled prey in drying pools at 405 sites throughout the Florida Everglades between December and May from 2006-2010 to test these hypotheses. The models that explained variation in dry-season fish biomass included water-level recession rate, wet-season biomass, microtopography, submerged vegetation, and the interaction between wet-season biomass and recession rate. Crayfish (Procambarus spp.) biomass was positively associated with wet-season crayfish biomass, moderate water depth, dense submerged aquatic vegetation, thin flocculent layer and a short interval of time since the last dry-down. Grass shrimp (Palaemonetes paludosus) biomass increased with increasing rates of water level recession, supporting our impression that shrimp, like fish, form seasonal concentrations. Strong support for wet-season fish and crayfish biomass in the top models confirmed the importance of wet-season standing stock to concentrations of fish and crayfish the following dry season. Additionally, the importance of recession rate and microtopography showed that local scale abiotic factors transformed fish production into the high quality foraging patches on which apex predators depended.

  16. Mechanisms That Generate Resource Pulses in a Fluctuating Wetland

    PubMed Central

    Botson, Bryan A.; Gawlik, Dale E.; Trexler, Joel C.

    2016-01-01

    Animals living in patchy environments may depend on resource pulses to meet the high energetic demands of breeding. We developed two primary a priori hypotheses to examine relationships between three categories of wading bird prey biomass and covariates hypothesized to affect the concentration of aquatic fauna, a pulsed resource for breeding wading bird populations during the dry season. The fish concentration hypothesis proposed that local-scale processes concentrate wet-season fish biomass into patches in the dry season, whereas the fish production hypothesis states that the amount of dry-season fish biomass reflects fish biomass production during the preceding wet season. We sampled prey in drying pools at 405 sites throughout the Florida Everglades between December and May from 2006–2010 to test these hypotheses. The models that explained variation in dry-season fish biomass included water-level recession rate, wet-season biomass, microtopography, submerged vegetation, and the interaction between wet-season biomass and recession rate. Crayfish (Procambarus spp.) biomass was positively associated with wet-season crayfish biomass, moderate water depth, dense submerged aquatic vegetation, thin flocculent layer and a short interval of time since the last dry-down. Grass shrimp (Palaemonetes paludosus) biomass increased with increasing rates of water level recession, supporting our impression that shrimp, like fish, form seasonal concentrations. Strong support for wet-season fish and crayfish biomass in the top models confirmed the importance of wet-season standing stock to concentrations of fish and crayfish the following dry season. Additionally, the importance of recession rate and microtopography showed that local scale abiotic factors transformed fish production into the high quality foraging patches on which apex predators depended. PMID:27448023

  17. Generation of Streamer Discharge Plasma in Water by All Solid-State Pulsed Power

    NASA Astrophysics Data System (ADS)

    Sakugawa, Takashi; Yamaguchi, Takahiro; Yamamoto, Kunihiro; Choi, Jaegu; Kiyan, Tsuyoshi; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori

    Pulsed power has been used to produce non-thermal plasmas in gases that generate a high electric field at the tip of streamer discharges, where high energy electrons, free radicals, and ozone are produced. Recently, all solid-state pulsed power generators, which are operated with high repetition rate, long lifetime and high reliability, have been developed for industrial applications, such as high repetition rate pulsed gas lasers, high energy density plasma (EUV sources) and water discharges. We have studied and developed repetitive all solid-state pulsed power system for discharge in water. The developed system consists of a photo-voltaic generator, a Pb battery, an inverter, a controller, a command charger, a high-speed thyristor, a magnetic pulse compression circuit and a pulse transformer, and has mobility. This system can generate an output peak voltage of over 100 kV with voltage rise time of 200 ns. In this work, large volume streamer like discharges in water were produced by the developed system and this discharge plasma used to treat algae (Microcystis) with point-to-plane simple electrodes.

  18. Evaluating the generation efficiency of hydrogen peroxide in water by pulsed discharge over water surface and underwater bubbling pulsed discharge

    NASA Astrophysics Data System (ADS)

    Shang, Kefeng; Li, Jie; Wang, Xiaojing; Yao, Dan; Lu, Na; Jiang, Nan; Wu, Yan

    2016-01-01

    Pulsed electric discharge over water surface/in water has been used to generate reactive species for decomposing the organic compounds in water, and hydrogen peroxide (H2O2) is one of the strong reactive species which can be decomposed into another stronger oxidative species, hydroxyl radical. The production efficacy of H2O2 by a gas phase pulsed discharge over water surface and an underwater bubbling pulsed discharge was evaluated through diagnosis of H2O2 by a chemical probe method. The experimental results show that the yield and the production rate of H2O2 increased with the input energy regardless of the electric discharge patterns, and the underwater bubbling pulsed discharge was more advantageous for H2O2 production considering both the yield and the production rate of H2O2. Results also indicate that the electric discharge patterns also influenced the water solution properties including the conductivity, the pH value and the water temperature.

  19. Clinical use of new-generation pulse oximeters in the neonatal intensive care unit.

    PubMed

    Workie, Fegegta A; Rais-Bahrami, K; Short, Billie L

    2005-10-01

    Continuous monitoring by pulse oximetry is a common practice for preterm and critically ill newborns. A new generation of motion-tolerant pulse oximeters have been designed for improved clinical performance with a substantial reduction in alarm frequency. However, little is known about the differences among these new-generation pulse oximeters in the neonatal intensive care unit (NICU). The purpose of this study is to assess the clinical performance of two new-generation pulse oximeters in the NICU. Two new-generation pulse oximeters were used simultaneously to monitor 36 patients in the NICU. The two devices studied were the Philips FAST and the Masimo SET. Patients were randomly assigned for their digit selection and data were collected only when waveforms were of good quality and/or the pulse oximeter's pulse rate (PR) correlated with the electrocardiogram heart rate (HR). The data for oxygen saturation measurements, number of true and false alarms, and number of dropouts as well as the duration of dropouts for each pulse oximeter were recorded by the primary investigator at 5-minute intervals for a period of 2 hours on each patient. Dropouts are instances when the pulse oximeter alarm sounds due to its inability to identify the arterial pulse and provide an oxygen saturation reading. The mean gestational age for the study group was 32 weeks (rang, 24 to 42 weeks). Repeated-measures analysis of variance indicated no difference between the two devices across all time measurements (p=0.357). In addition, paired t-tests for true alarms and false alarms were not significant, with p-values of 0.151 and 0.869, respectively. There was a difference in the number of data dropouts (p<0.001): the Philips device had a nearly six-fold increase in the number of dropouts (Philips 247 versus Masimo 38). The duration of dropouts was also significant; the Philips device had three times longer duration of dropouts. Physiologic monitoring in the critical care setting requires

  20. Magnetic-field generation by pulsed irradiation of aluminium in air

    SciTech Connect

    Chumakov, A N; Chekan, P V

    2015-03-31

    Magnetic-field generation arising under irradiation of an aluminium barrier in the air by a series of laser pulses is studied experimentally. It is found that the magnetic field increases nonlinearly from 10{sup -5} to 10{sup -3} T with increasing laser power density from 10{sup 7} to 10{sup 9} W cm{sup -2}, the degree of nonlinearity being different for single nanosecond pulses, for a series of such pulses with a repetition rate of 100 – 150 μs and for a combination of a millisecond laser pulse and a series of nanosecond laser pulses. The dependences of the magnetic-field induction on the power density of laser radiation in the above-mentioned regimes are established. (interaction of laser radiation with matter)

  1. Multi-delay, phase coherent pulse pair generation for precision Ramsey-frequency comb spectroscopy.

    PubMed

    Morgenweg, J; Eikema, K S E

    2013-03-11

    We demonstrate the generation of phase-stable mJ-pulse pairs at programmable inter-pulse delays up to hundreds of nanoseconds. A detailed investigation of potential sources for phase shifts during the parametric amplification of the selected pulses from a Ti:Sapphire frequency comb is presented, both numerically and experimentally. It is shown that within the statistical error of the phase measurement of 10 mrad, there is no dependence of the differential phase shift over the investigated inter-pulse delay range of more than 300 ns. In combination with nonlinear upconversion of the amplified pulses, the presented system will potentially enable short wavelength (<100 nm), multi-transition Ramsey-frequency comb spectroscopy at the kHz-level.

  2. Second-harmonic generation of femtosecond high-intensity Ti:sapphire laser pulses

    NASA Astrophysics Data System (ADS)

    Mori, Kurumi; Tamaki, Yusuke; Obara, Minoru; Midorikawa, Katsumi

    1998-03-01

    The second-harmonic generation (SHG) of ultrashort Ti:sapphire laser pulses in potassium dihydrogen phosphate crystal in type-I phase-matching geometry has been investigated theoretically, including the effects of cubic nonlinearity. It is found that the phase mismatch due to the broad bandwidth associated with the short pulse width limits the maximum conversion efficiency to less than 60%, and the temporal shape of the converted pulse has an intensity modulation at an incident intensity of 100 GW/cm2 for a 100 fs pulse. In order to increase the energy conversion efficiency and improve the temporal pulse shape, a new SHG geometry using two antiparallel tilted crystals is discussed.

  3. A Study on the Conditions for Generation of Monopole Ultrasonic Pulse by Piezoelectric Polymer Film Transducers

    NASA Astrophysics Data System (ADS)

    Monma, Hiroyuki; Yoshida, Yasuo; Imano, Kazuhiko; Inoue, Hiroshi; Murata, Kenji

    2000-05-01

    Short monopole ultrasonic pulses can be radiated from piezoelectric polymer film transducers driven by a step-function voltage with a fast rising time and low output impedance. In this study, we investigated the conditions for transmitting a monopole ultrasonic pulse by simulation and experiment. We clarify that the length of the pulse width is limited by transmission time (Th) in the direction of the thickness of the film transducer. By the simulations and experiments with the received pulse by changing the acoustic impedance of the backing material, it was also found that the backing material should be matched when the rising time of the driving step-function voltage is shorter than Th. It is also shown that the source impedance of the driving circuit is an important factor in generating short ultrasonic pulses.

  4. Generation of Non-Uniform Pulses by an Eight Microstructured Optical Fiber Laser

    NASA Astrophysics Data System (ADS)

    Ennejah, Tarek; Bahloul, Faouzi; Attia, Rabah

    2011-06-01

    Mode locking mechanisms in fiber laser have been an active and rich research field in optical communication. In this paper we study the behaviour of an 8FL (eight fiber laser) totally made out of MOF (Microstructured Optical Fiber). We demonstrate that even output from a fiber laser is not necessarily uniform. Due to its ring cavity and NALM (Non linear Amplifying Loop Mirror) transmission properties, the laser generates randomly different non-uniform output pulses. It follows three states of operation: single, bound and multiple pulses were observed. We report the formation of bound pulses where side peaks are higher than the central one. We report also the formation of bound and multiple pulses which damage their bindings and alter their pulses width and separations.

  5. On-Chip Picosecond Pulse Detection and Generation Using Graphene Photoconductive Switches

    PubMed Central

    2015-01-01

    We report on the use of graphene for room temperature on-chip detection and generation of pulsed terahertz (THz) frequency radiation, exploiting the fast carrier dynamics of light-generated hot carriers, and compare our results with conventional low-temperature-grown gallium arsenide (LT-GaAs) photoconductive (PC) switches. Coupling of picosecond-duration pulses from a biased graphene PC switch into Goubau line waveguides is also demonstrated. A Drude transport model based on the transient photoconductance of graphene is used to describe the mechanism for both detection and generation of THz radiation. PMID:25710079

  6. Study of high-power pulsed RF generators based on a hollow-cathode discharge

    SciTech Connect

    Bulychev, S. V.; Vyalykh, D. V.; Dubinov, A. E.; Zhdanov, V. S.; Kornilova, I. Yu.; L'vov, I. L.; Saikov, S. K.; Sadovoy, S. A.; Selemir, V. D.

    2009-11-15

    Results are presented from studies of physical principles underlying operation of high-power pulsed RF generators based on a hollow-cathode discharge (HCD). Various types of instabilities that may occur in an HCD and lead to 100% RF modulation of the electrode voltage in the megahertz frequency range are discussed. The design, electric characteristics, and operating modes of HCD-based RF generators are described. Results of experiments aimed at increasing the power and duration of RF pulses are presented. It is demonstrated that such devices are capable of generating 10- to 220-MHz pulses with a power of up to 8 MW, duration of up to 10 {mu}s, and repetition rate of 1 kHz. The discharge chambers of such generators are very simple in design, they have very high stability, and their efficiency reaches 35%.

  7. Analysis of Stress Waves Generated in Water Using Ultrashort Laser Pulses

    SciTech Connect

    Kim, B.M.; Feit, M.D.; Rubenchik, A.M.; Komashko, A.M.; Reidt, S.; Eichler, J.; Da Silva, L.B.

    2000-04-25

    A Mach-Zehnder interferometer was used for analysis of pressure waves generated by ultrashort laser pulse ablation of water. It was found that the shock wave generated by plasma formation rapidly decays to an acoustic wave. Both experimental and theoretical studies demonstrated that the energy transfer to the mechanical shock was less than 1%.

  8. A Pulse Generator Based on an Arduino Platform for Ultrasonic Applications

    NASA Astrophysics Data System (ADS)

    Acevedo, Pedro; Vázquez, Mónica; Durán, Joel; Petrearce, Rodolfo

    The objective of this work is to use the Arduino platform as an ultrasonic pulse generator to excite PVDF ultrasonic arrays in transmission. An experimental setup was implemented using a through-transmission configuration to evaluate the performance of the generator.

  9. High-voltage pulse generator developed for wide-gap spark chambers

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Walschon, E. G.

    1968-01-01

    Low-inductance, high-capacitance Marx pulse generator provides for minimization of internal inductance and suppression of external electromagnetic radiation. The spark gaps of the generator are enclosed in a pressurized nitrogen atmosphere which allows the charging voltage to be varied by changing the nitrogen pressure.

  10. Next-generation pulse oximetry. Focusing on Masimo's signal extraction technology.

    PubMed

    2000-10-01

    Pulse oximeters are used to determine trends in patients' blood oxygen saturation and to warn of dangerous saturation levels. But conventional pulse oximetry has some inherent limitations. For example, it has difficulty monitoring patients who are moving or who have poor perfusion; it is also subject to interference from certain visible and infrared light sources. Over the past several years, a number of companies have developed advanced signal-processing techniques that allow pulse oximeters to overcome many of these limitations. We refer to such new technologies as next-generation pulse oximetry. In this Evaluation, we focus on the first next-generation technology to have reached the market: Masimo Corporation's Signal Extraction Technology (SET). We designed our study of Masimo SET to address the main question that needs to be asked of any next-generation technology: How well does it compare to conventional pulse oximetry? Specifically, how well does it perform when a patient is moving or being moved, when a patient is poorly perfused, or when certain types of light strike the sensor while it is attached to or detached from the patient? We also examined one type of sensor used with this product, comparing it to conventional tape-on sensors for comfort and durability. Several other next-generation pulse-oximeter products have become available since we began this study. We are currently evaluating these products and will publish our findings in the near future. A list of the products, including a brief description of each, is included in this article. Pulse oximeters are used to determine trends in patients' blood oxygen saturation and to warn against dangerous saturation levels. These monitors are often vital in helping to ensure patient safety, especially for critically ill patients, pediatric patients, and neonates. But conventional pulse oximetry has some inherent limitations--most significantly, it has difficulty monitoring patients who are moving or who have

  11. A study of high repetition rate pulse generation and all-optical add/drop multiplexing

    NASA Astrophysics Data System (ADS)

    Chen, Hongmin

    Ultra high-speed optical time-division-multiplexed (OTDM) transmission technologies are essential for the construction of ultra high-speed all-optical networks needed in the information era. In this Ph. D thesis dissertation, essential mechanisms associated with ultra high speed OTDM transmission systems, such as, high speed ultra short pulse generation, all optical demultiplexing and all optical add/drop multiplexing, have been studied. Both experimental demonstrations and numerical simulations have been performed. In order to realize high-speed optical TDM systems, high repetition rate, ultra short pulses are needed. A rational harmonic mode-locked ring fiber laser has been used to produce ultrashort pulses, the pulse jitter will be eliminated using a Phase-Locked-Loop (PLL), and the self-pulsation has been suppressed using a semiconductor optical amplifier (SOA). Sub pico-second pulses are very important for all optical sampling in the ultrahigh-speed OTDM transmission system. In this thesis, a two stage compression scheme utilizing the nonlinearity and dispersion of the optical fibers has been constructed and used to compress the gain switched DFB laser pulses. Also a nonlinear optical loop mirror has been constructed to suppress the wings associated with nonlinear compression. Pedestal free, transform-limited pulses with pulse widths in range of 0.2 to 0.4 ps have been generated. LiNbO3 modulators play a very important role in fiber optical communication systems. In this thesis, LiNbO3 modulators have been used to perform high repetition rate pulse generation, all optical demultiplexing and all optical add/drop for the TDM transmission system.

  12. Generation of pulsed and continuous-wave squeezed light with 87Rb vapor.

    PubMed

    Agha, Imad H; Messin, Gaétan; Grangier, Philippe

    2010-03-01

    We present experimental studies on the generation of pulsed and continuous-wave squeezed vacuum via nonlinear rotation of the polarization ellipse in a (87)Rb vapor. Squeezing is observed for a wide range of input powers and pump detunings on the D1 line, while only excess noise is present on the D2 line. The maximum continuous-wave squeezing observed is -1.4 +/- 0.1 dB (-2.0 dB corrected for losses). We measure -1.1 dB squeezing at the resonance frequency of the (85)Rb F = 3 --> F' transition, which may allow the storage of squeezed light generated by (87)Rb in a (85)Rb quantum memory. Using a pulsed pump, pulsed squeezed light with -1 dB of squeezing for 200 ns pulse widths is observed at 1 MHz repetition rate.

  13. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    PubMed

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  14. High harmonic generation in underdense plasmas by intense laser pulses with orbital angular momentum

    SciTech Connect

    Mendonça, J. T.; Vieira, J.

    2015-12-15

    We study high harmonic generation produced by twisted laser pulses, with orbital angular momentum in the relativistic regime, for pulse propagation in underdense plasma. We consider fast time scale processes associated with an ultra-short pulse, where the ion motion can be neglected. We use both analytical models and numerical simulations using a relativistic particle-in-cell code. The present description is valid for relativistic laser intensities, when the normalized field amplitude is much larger than one, a ≫ 1. We also discuss two distinct processes associated with linear and circular polarization. Using both analytical solutions and particle-in-cell simulations, we are able to show that, for laser pulses in a well defined Laguerre-Gauss mode, angular momentum conservation is observed during the process of harmonic generation. Intensity modulation of the harmonic spectrum is also verified, as imposed by the nonlinear time-scale for energy transfer between different harmonics.

  15. Generation of high-order harmonics with ultra-short pulses from filamentation.

    PubMed

    Steingrube, Daniel S; Schulz, Emilia; Binhammer, Thomas; Vockerodt, Tobias; Morgner, Uwe; Kovacev, Milutin

    2009-08-31

    7-fs-pulses with 0.3 mJ are obtained after filamentation in argon and compression by double-chirped-mirrors. These pulses are used to generate high-order harmonics in a semi-infinite gas cell in different noble gases. Spectral broadening of high-order harmonics in xenon and argon is observed. In neon, an extended continuous cut-off region down to 10 nm (124 eV) is observed which is to the best of our knowledge the highest cut-off energy obtained by filamented pulses. Our result suggests the feasibility of single attosecond-pulse-generation at both high photon flux and high cut-off energy.

  16. 1 μJ, sub-300 fs pulse generation from a compact thulium-doped chirped pulse amplifier seeded by Raman shifted erbium-doped fiber laser.

    PubMed

    Tan, Fangzhou; Shi, Hongxing; Sun, Ruoyu; Wang, Peng; Wang, Pu

    2016-10-03

    We present a compact thulium-doped chirped pulse amplifier producing 241 fs pulses with 1 μJ energy. The system is seeded with the Raman shifted soliton generated by the combination of an erbium-doped femtosecond laser and a nonlinear fiber. The Tm-doped large mode area fiber yields output power of 71 W, corresponding to pulse energy of 2.04 μJ, with a slope efficiency of 52.2%. The amplified pulses have been compressed to a duration time of 241 fs, using a folded Treacy grating setup. The pulse energy is measured to be 1.02 μJ, corresponding to a peak power of ~3 MW. To the best of our knowledge, this is the highest average power and pulse energy generated from an all-fiber, Raman shifted soliton seeded thulium-doped chirped pulse amplifier system.

  17. Electromagnetic pulses generated by meteoroid impacts on spacecraft

    NASA Astrophysics Data System (ADS)

    Close, S.; Colestock, P.; Cox, L.; Kelley, M.; Lee, N.

    2010-12-01

    Meteoroid impacts on spacecraft are known to cause mechanical damage, but their electrical effect on spacecraft systems are not well characterized. Several reported spacecraft anomalies are suggestive of an electrical failure associated with meteoroid impact. We present a theory to explain plasma production and subsequent electric fields occurring when a meteoroid strikes a spacecraft, ionizing itself and part of the spacecraft. This plasma, with a charge separation commensurate with different specie mobilities, can produce a strong electromagnetic pulse (EMP) at broad frequency spectra, potentially causing catastrophic damage if the impact is relatively near an area with low shielding or an open umbilical. Anomalies such as gyrostability loss can be caused by an EMP without any detectable momentum transfer due to small (<1 μg) particle mass. Subsequent plasma oscillations can also emit significant power and may be responsible for many reported satellite anomalies. The presented theory discusses both a dust-free plasma expansion with coherent electron oscillation and a dusty plasma expansion with macroscopic charge separation.

  18. The design and construction of a pulsed beam generation system based on high intensity cyclotron

    NASA Astrophysics Data System (ADS)

    An, ShiZhong; Yin, ZhiGuo; Li, PengZhan; Song, GuoFang; Wu, LongCheng; Guan, FengPing; Xie, HuaiDong; Jia, XianLu; Lu, YinLong; Zhang, TianJue

    2011-12-01

    In order to perform the studies on a pulsed beam generation system based on a high intensity cyclotron, a test beam line with a pulsed beam generation for a 10 MeV compact cyclotron (CYCIAE-10) has been designed and constructed at China Institute of Atomic Energy (CIAE). A 70 MHz continuous H-beam can be pulsed to the pulse length of less than 10 ns with a repetition rate of 4.4 MHz. The sine waveform with a frequency of 2.2 MHz is adopted for the chopper and a mesh structure with single drift and dual gaps is used for the 70 MHz buncher. A helical resonator is designed and constructed based on simulations and experiments on the RF matching for the chopper. A helical inductance loop that is exceptionally large of its kind and equipped with water cooling for the resonator has been successfully wound and a 500 W solid RF amplifier has been manufactured. A special measuring device has been designed, which can be used to measure both the DC beam and the pulsed beam. The required pulsed beam was obtained after pulsed beam tuning.

  19. Mechanisms for Generation of Near-Fault Ground Motion Pulses for Dip-Slip Faulting

    NASA Astrophysics Data System (ADS)

    Poiata, Natalia; Miyake, Hiroe; Koketsu, Kazuki

    2017-04-01

    We analyzed the seismological aspects of the near-fault ground motion pulses and studied the main characteristics of the rupture configuration that contribute to the pulse generation for dip-slip faulting events by performing forward simulations in broadband and low-frequency ranges for different rupture scenarios of the 2009 L'Aquila, Italy (M w 6.3) earthquake. The rupture scenarios were based on the broadband source model determined by Poiata et al. (Geophys J Int 191:224-242, 2012). Our analyses demonstrated that ground motion pulses affect spectral characteristics of the observed ground motions at longer periods, generating significantly larger seismic demands on the structures than ordinary records. The results of the rupture scenario simulations revealed the rupture directivity effect, the radial rupture propagation toward the site, and the focusing effect as the main mechanisms of the near-fault ground motion pulse generation. The predominance of one of these mechanisms depends on the location of the site relative to the causative fault plane. The analysis also provides the main candidate mechanisms for the worst-case rupture scenarios of pulse generation for the city of L'Aquila and, more generally, the hanging-wall sites located above the area of large slip (strong motion generation area).

  20. A Tesla-type repetitive nanosecond pulse generator for solid dielectric breakdown research.

    PubMed

    Zhao, Liang; Pan, Ya Feng; Su, Jian Cang; Zhang, Xi Bo; Wang, Li Min; Fang, Jin Peng; Sun, Xu; Lui, Rui

    2013-10-01

    A Tesla-type repetitive nanosecond pulse generator including a pair of electrode and a matched absorption resistor is established for the application of solid dielectric breakdown research. As major components, a built-in Tesla transformer and a gas-gap switch are designed to boost and shape the output pulse, respectively; the electrode is to form the anticipated electric field; the resistor is parallel to the electrode to absorb the reflected energy from the test sample. The parameters of the generator are a pulse width of 10 ns, a rise and fall time of 3 ns, and a maximum amplitude of 300 kV. By modifying the primary circuit of the Tesla transformer, the generator can produce both positive and negative pulses at a repetition rate of 1-50 Hz. In addition, a real-time measurement and control system is established based on the solid dielectric breakdown requirements for this generator. With this system, experiments on test samples made of common insulation materials in pulsed power systems are conducted. The preliminary experimental results show that the constructed generator is capable to research the solid dielectric breakdown phenomenon on a nanosecond time scale.

  1. Development of a compact generator for gigawatt, nanosecond high-voltage pulses

    SciTech Connect

    Zhou, Lin Jiang, Zhanxing; Liang, Chuan; Li, Mingjia; Wang, Wenchuan; Li, Zhenghong

    2016-03-15

    A compact generator producing 2.2-ns 1.5 GW high-voltage pulses was developed. The generator employed a 27.6 Ω, 0.9 ns pulse-forming-line (PFL), which was charged by an iron core transformer with a turn ratio of 2:33.5 and a coefficient of 0.94. A 1.2 μF, 20 kV capacitor and a hydrogen thyratron were used in the primary circuit. When the thyratron closed at 14.5 kV, 3.4% of the energy stored in the capacitor was delivered to the PFL in 850 ns, producing a peak voltage of up to ∼500 kV. In addition, the principle of triple resonance transformation was employed by adding a 50 pF tuning capacitor and a 1.15 mH inductor between the transformer and the PFL, which led to a significant reduction of the duration and peak value of the transformer voltage without reducing that in the PFL. Meanwhile, an adjustable self-break oil switch was applied. By using transmission lines with impedance overmatched to that of the PFL, the generator delivered a 512 kV pulse across an electron beam diode, generating radiation with a dose of 20 mR/pulse at 20 cm ahead of the diode. The generator provides an excellent ultra-short radiation pulse source for the studies on radiation physics.

  2. Development of a compact generator for gigawatt, nanosecond high-voltage pulses.

    PubMed

    Zhou, Lin; Jiang, Zhanxing; Liang, Chuan; Li, Mingjia; Wang, Wenchuan; Li, Zhenghong

    2016-03-01

    A compact generator producing 2.2-ns 1.5 GW high-voltage pulses was developed. The generator employed a 27.6 Ω, 0.9 ns pulse-forming-line (PFL), which was charged by an iron core transformer with a turn ratio of 2:33.5 and a coefficient of 0.94. A 1.2 μF, 20 kV capacitor and a hydrogen thyratron were used in the primary circuit. When the thyratron closed at 14.5 kV, 3.4% of the energy stored in the capacitor was delivered to the PFL in 850 ns, producing a peak voltage of up to ∼500 kV. In addition, the principle of triple resonance transformation was employed by adding a 50 pF tuning capacitor and a 1.15 mH inductor between the transformer and the PFL, which led to a significant reduction of the duration and peak value of the transformer voltage without reducing that in the PFL. Meanwhile, an adjustable self-break oil switch was applied. By using transmission lines with impedance overmatched to that of the PFL, the generator delivered a 512 kV pulse across an electron beam diode, generating radiation with a dose of 20 mR/pulse at 20 cm ahead of the diode. The generator provides an excellent ultra-short radiation pulse source for the studies on radiation physics.

  3. Development of a compact generator for gigawatt, nanosecond high-voltage pulses

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Jiang, Zhanxing; Liang, Chuan; Li, Mingjia; Wang, Wenchuan; Li, Zhenghong

    2016-03-01

    A compact generator producing 2.2-ns 1.5 GW high-voltage pulses was developed. The generator employed a 27.6 Ω, 0.9 ns pulse-forming-line (PFL), which was charged by an iron core transformer with a turn ratio of 2:33.5 and a coefficient of 0.94. A 1.2 μF, 20 kV capacitor and a hydrogen thyratron were used in the primary circuit. When the thyratron closed at 14.5 kV, 3.4% of the energy stored in the capacitor was delivered to the PFL in 850 ns, producing a peak voltage of up to ˜500 kV. In addition, the principle of triple resonance transformation was employed by adding a 50 pF tuning capacitor and a 1.15 mH inductor between the transformer and the PFL, which led to a significant reduction of the duration and peak value of the transformer voltage without reducing that in the PFL. Meanwhile, an adjustable self-break oil switch was applied. By using transmission lines with impedance overmatched to that of the PFL, the generator delivered a 512 kV pulse across an electron beam diode, generating radiation with a dose of 20 mR/pulse at 20 cm ahead of the diode. The generator provides an excellent ultra-short radiation pulse source for the studies on radiation physics.

  4. X rays generated in the interaction of subpicosecond laser pulses with solid targets

    SciTech Connect

    Kyrala, G.A.; Wahlin, E.K.; Fulton, R.D.; Schappert, G.T.; Jones, L.A.; Taylor, A.J.; Casperson, D.E.; Cobble, J.A.

    1991-01-01

    We are investigating the generation of short pulse short wavelength x-rays for pumping inner-shell x-ray lasers by photo-ionization. In contrast with previous proposals, we are looking at the use of a single line as an efficient means of pumping these lasers. As a first step we are optimizing the flashlamp x-ray conversion efficiency and characterizing the x-ray pulse length. 18 refs., 5 figs., 2 tabs.

  5. Generation of picosecond laser pulses at 1030 nm with gigahertz range continuously tunable repetition rate.

    PubMed

    Aubourg, Adrien; Lhermite, Jérôme; Hocquet, Steve; Cormier, Eric; Santarelli, Giorgio

    2015-12-01

    We report on a watt range laser system generating picosecond pulses using electro-optical modulation of a 1030 nm single frequency low noise laser diode. Its repetition rate is continuously tunable between 11 and 18 GHz. Over this range, output spectra and pulse characteristics are measured and compared with a numerical simulation. Finally, amplitude and residual phase noise measurements of the source are also presented.

  6. Characteristics of an actuator-driven pulsed water jet generator to dissecting soft tissue.

    PubMed

    Seto, Takeshi; Yamamoto, Hiroaki; Takayama, Kazuyoshi; Nakagawa, Atsuhiro; Tominaga, Teiji

    2011-05-01

    This paper reports characteristics of an actuator-driven pulsed water jet generator applied, in particular, to dissect soft tissues. Results of experiments, by making use of high speed recording of optical visualization and varying nozzle diameter, actuator time interval, and their effects on dissection performance are presented. Jet penetration characteristics are compared with continuous water jet and hence potential assessment of pulsed water jets to clinical applications is performed.

  7. Combined Flux Compression and Plasma Opening Switch on the Saturn Pulsed Power Generator

    SciTech Connect

    Felber, Franklin S.; Waisman, Eduardo M.; Mazarakis, Michael G.

    2010-05-07

    A wire-array flux-compression cartridge installed on Sandia's Saturn pulsed power generator doubled the current into a 3-nH load to 6 MA and halved its rise time to 100 ns. The current into the load, however, was unexpectedly delayed by almost 1 {mu}s. Estimates of a plasma flow switch acting as a long-conduction-time opening switch are consistent with key features of the power compression. The results suggest that microsecond-conduction-time plasma flow switches can be combined with flux compression both to amplify currents and to sharpen pulse rise times in pulsed power drivers.

  8. Combined flux compression and plasma opening switch on the Saturn pulsed power generator.

    PubMed

    Felber, Franklin S; Waisman, Eduardo M; Mazarakis, Michael G

    2010-05-07

    A wire-array flux-compression cartridge installed on Sandia's Saturn pulsed power generator doubled the current into a 3-nH load to 6 MA and halved its rise time to 100 ns. The current into the load, however, was unexpectedly delayed by almost 1 micros. Estimates of a plasma flow switch acting as a long-conduction-time opening switch are consistent with key features of the power compression. The results suggest that microsecond-conduction-time plasma flow switches can be combined with flux compression both to amplify currents and to sharpen pulse rise times in pulsed power drivers.

  9. Performance study of a soft X-ray harmonic generation FEL seededwith an EUV laser pulse

    SciTech Connect

    Gullans, M.; Wurtele, J.S.; Penn, G.; Zholents, A.A.

    2007-02-01

    The performance of a free electron laser (FEL) using alow-power extreme ultraviolet (EUV) pulse as an input seed isinvestigated. The parameters are appropriate for 30 nm seeds producedfrom high-power Ti:Sa pulses using high harmonic generation schemes. Itis found that, for reasonable beam parameters, robust FEL performance canbe obtained. Both time-independent and time-dependent simulations areperformed for varying system parameters using the GENESIS simulationcode. A comparison is made with a two-stage harmonic FEL that is seededby a high-power Ti:Sa pulse.

  10. Elongation of plasma channel generated by temporally shaped femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Chen, Anmin; Li, Suyu; Qi, Hongxia; Jiang, Yuanfei; Hu, Zhan; Huang, Xuri; Jin, Mingxing

    2017-01-01

    Temporally shaped femtosecond laser pulse is used to generate the air plasma channel. The length of plasma channel is optimized by a genetic algorithm. Compared with the transform-limited pulse, the temporally shaped femtosecond laser produced by the spatial light modulator with the genetic algorithm can lead to a significant increase in length and brightness of plasma channel in atmosphere. In particular, the length of the plasma channel produced by the optimized shaped pulse can be extended by 50%. This method can be especially advantageous in the context of femtosecond laser-induced plasma channel.

  11. Beyond the single-atom response in isolated attosecond-pulse generation

    SciTech Connect

    Altucci, Carlo; Velotta, Raffaele; Tosa, Valer

    2007-06-15

    It is demonstrated that three-dimensional propagation effects essentially influence attosecond-pulse generation by few-cycle, carrier-envelope-phase stabilized laser pulses used in a polarization-gating configuration. The rapidly changing polarization status gives rise to electron trajectories even longer than those observed with linearly polarized light, but the off-axis contributions and the propagation effects can efficiently act as a filter to produce a single attosecond pulse. It is also found that the attosecond beams can have a significant spatial divergence.

  12. Transcriptome analysis of endometrial tissues following GnRH agonist treatment in a mouse adenomyosis model

    PubMed Central

    Guo, Song; Lu, Xiaowei; Gu, Ruihuan; Zhang, Di; Sun, Yijuan; Feng, Yun

    2017-01-01

    Purpose Adenomyosis is a common, benign gynecological condition of the female reproductive tract characterized by heavy menstrual bleeding and dysmenorrhea. Gonadotropin-releasing hormone (GnRH) agonists are one of the medications used in adenomyosis treatment; however, their underlying mechanisms are poorly understood. Moreover, it is difficult to obtain endometrial samples from women undergoing such treatment. To overcome this, we generated an adenomyosis mouse model, which we treated with an GnRH agonist to determine its effect on pregnancy outcomes. We also analyzed endometrial gene expression following GnRH agonist treatment to determine the mechanisms that may affect pregnancy outcome in individuals with adenomyosis. Methods Neonatal female mice were divided into a control group, an untreated adenomyosis group, and an adenomyosis group treated with a GnRH agonist (n=6 each). The pregnancy outcome was observed and compared among the groups. Then, three randomly chosen transcriptomes from endometrial tissues from day 4 of pregnancy were analyzed between the adenomyosis group and the GnRH agonist treatment group by RNA sequencing and quantitative reverse transcription polymerase chain reaction (PCR). Results The litter size was significantly smaller in the adenomyosis group than in the control group (7±0.28 vs 11±0.26; P<0.05). However, the average live litter size was increased (10±0.28 vs 7±0.28; P<0.05) after GnRH agonist treatment. Three hundred and fifty-nine genes were differentially expressed in the GnRH agonist-treated group compared with the untreated group (218 were downregulated and 141 were upregulated). Differentially expressed genes were related to diverse biological processes, including estrogen metabolism, cell cycle, and metabolite biosynthesis. Conclusion GnRH agonist treatment appears to improve the pregnancy outcome of adenomyosis in a mouse model. Besides pituitary down-regulation, other possible mechanisms such as the regulation of cell

  13. Microjoule sub-10 fs VUV pulse generation by MW pump pulses using highly efficient chirped four-wave mixing in hollow-core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Im, Song-Jin

    2015-03-01

    We theoretically study chirped four-wave mixing for VUV pulse generation in hollow-core photonic crystal fibers. We predict the generation of sub-10 fs VUV pulses with energy of up to hundreds of µJ by broad-band chirped idler pulses at 830 nm and MW pump pulses with narrow-band at 277 nm. The MW pump could be desirable to reduce the complexity of the laser system or use a high repetition rate laser system. The energy conversion efficiency from pump pulse to VUV pulse reaches to 30% . This generation can be realized in a kagome-lattice hollow-core PCF filled with noble gas of high pressure with core diameter less than 40 µm, which would enable technically simple or highly efficient coupling to the fundamental mode of the fiber.

  14. High-Power Tunable Laser Pulse Driven Terahertz Generation in Corrugated Plasma Waveguides

    NASA Astrophysics Data System (ADS)

    Miao, Chenlong; Palastro, John; Antonsen, Thomas

    2016-10-01

    Excitation of terahertz radiation by the interaction of an ultra-short laser pulse and the fields of a miniature, corrugated plasma waveguide is considered. Plasma structures of this type have been realized experimentally and they can support electromagnetic (EM) channel modes with properties that allow for radiation generation. In particular, the mode have subluminal field components, thus allowing phase matching between the generated THz modes and the ponderomotive potential of the laser pulse. Theoretical analysis and full format PIC simulations are conducted. We find THz generated by this slow wave phase matching mechanism is characterized by lateral emission and a coherent, narrow band, tunable spectrum with relatively high power and conversion efficiency. We investigated two different types of channels, and a range of realistic laser pulses and plasma profile parameters are considered with the goal of increasing the conversion of optical energy to THz radiation. We find high laser intensities strongly modify the THz spectrum by exciting higher order channel modes. Enhancement of a specific channel mode can be realized by using an optimum pulse duration and plasma density. As an example, a fixed drive pulse (0.55 J) with spot size of 15 µm and pulse duration of 15 fs excites 37.8 mJ of THz radiation in a 1.5 cm corrugated plasma waveguide with on axis average density of 1.4×1018cm-3, conversion efficiency exceeding 8% is achieved.

  15. All-optical UWB doublet pulses generation by using a delay interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Xu, En-Ming

    2013-06-01

    We demonstrated a simple scheme to generate ultra wideband (UWB) doublet pulses by inputting a dark return-to-zero (RZ) signal into a fiber delay interferometer (FDI). An 0.625-Gbit/s dark-RZ pulse train where the pulse width is 120 ps was inputted into a FDI where the free spectral range (FSR) is 0.16 nm (˜20 GHz, according time delay is ˜50 ps) and the extinction ratio (ER) is 9 dB, and the phase difference of the two fiber arms was changed and controlled by adjusting the operation temperature of the FDI, by do so, UWB doublet pulses were directly generated at an output port of the FDI. The system parameter effects on the output UWB pulses were discussed. Moreover, we also numerically demonstrated that the UWB quadruplet pulses can be generated in the same set by optimizing system parameters. This scheme has some distinct advantages including easy integration, convenient tuning, good stability, and so on. Presented method also accords with the general features in future applied UWB-Over-Fiber communication system, such as, single optical source input, simple configuration and passive device.

  16. Multi-rate soliton pulse train generator based on novel fiber optic components

    NASA Astrophysics Data System (ADS)

    Sova, Raymond Michael

    As data rates for communication, signal processing, and optical sensing systems increase beyond 50 Gb/sec, ultra-fast optical pulse train generators will play a key role in their development. In this research, an all-fiber optical soliton pulse train generator is developed that operates at discrete rates from 50 to 400 Gb/sec with stable subpicosecond pulses. It is based on the following three novel fiber optic components: (1) all-fiber birefringence filter, (2) dual-wavelength fiber ring laser and (3) fiber-based soliton pulse train generation and compression stage. A multi-segment birefringence comb filter is developed to provide discrete tuning of the free spectral range from 0.8 to 3.2 nm and continuous tuning of the absolute position of the transmission peaks over the entire free spectral range. Two, three and four segment filters are constructed and implemented in Lyot and Lyot-Sagnac filter configurations to demonstrate the tuning properties and provide compound filters for use in the dual-wavelength fiber ring laser. Theoretical transmission functions are derived for two-segment filters. The experimental results are in excellent agreement with theoretical models based on the Jones matrix technique. The dual-wavelength laser consists of a PM amplifier, the tunable birefringence filter and a high-Q filter based on saturable absorber properties of un-pumped Erbium-doped fiber. Tunable compound birefringence filters are designed to operate the dual-wavelength laser over the entire erbium amplifier gain region (1530 to 1565 nm) with discrete tuning of the channel separation from 0.8 to 3.2 nm. Stable tunable dual-wavelength single-longitudinal mode operation is demonstrated and initial laser properties such as dual-relaxation oscillations, laser linewidth, polarization, and multi-wavelength stability are characterized. Induced modulation instability in optical fiber is used to generate pulse trains from the fiber ring laser output signal. Through modeling, the

  17. Late Extrusion of an Implantable Pulse Generator of a Spinal Cord Stimulator.

    PubMed

    Rabi, Joseph; Anitescu, Magdalena

    2016-05-01

    The objective of this manuscript was to report a case of a patient with extruded pulse generator 3 years after implantation of a spinal cord stimulator system.With the increasing incidence of chronic pain, spinal cord stimulation (SCS) is becoming more commonly utilized by pain physicians. SCS is a generally safe intervention with minimal adverse effects; however, there are risks of complications which practitioners should be aware of prior to and after placement of the SCS. We present a case of a patient with a late complication of extrusion of an implantable pulse generator (IPG) of a SCS that was promptly identified and successfully removed without any complications. A 60-year-old male truck driver with history of failed back syndrome and diabetes underwent a SCS system implanted with excellent relief of his pain. The SCS was implanted with 2 leads with the IPG being sutured 3 cm in depth in the superior gluteal region. Three years after the implantation, he developed pain over the site of the generator and presented to our clinic with extrusion of the non-rechargeable pulse generator from his gluteal region.The pulse generator was successfully removed with the battery not being infected. This late complication may have been related to his ongoing profession of daily driving with pressure necrosis from prolonged sitting and constant vibration during long rides associated. Structural size and design of the pulse generator may have had an important contribution as well. To our knowledge this complication has not been reported in the literature.Physicians that place or manage patients with SCSs should be aware of this rare complication and maintain vigilance even after remote implantation of the SCS systems. Spinal cord stimulator, complication, extrusion, implantable pulse generator, neuromodulation, failed back syndrome, battery complication.

  18. A Search for Meteoroid Lunar Impact Generated Electromagnetic Pulses

    NASA Astrophysics Data System (ADS)

    Kesaraju, Saiveena; Mathews, John D.; Vierinen, Juha; Perillat, Phil; Meisel, David D.

    2016-11-01

    Lunar white light flashes associated with meteoroid impacts are now regularly observed using modest optical instrumentation. In this paper, we hypothesize that the developing, optically-dense hot ejecta cloud associated with these hypervelocity impacts also produce an associated complex plasma component that rapidly evolves resulting in a highly-transient electro magnetic pulse (EMP) in the VHF/UHF spectral region. Discovery of the characteristics and event frequency of impact EMPs would prove interesting to meteoroid flux and complex plasma physics studies especially if EMPs from the same event are detected from at least two locations on the Earth with relative delays appropriate to the propagation paths. We describe a prototype observational search, conducted in May 2014, for meteoroid lunar-impact EMPs that was conducted using simultaneous, overlapping-band, UHF radio observations at the Arecibo (AO; Puerto Rico) and Haystack (HO, Massachusetts, USA) Observatories. Monostatic/bistatic lunar radar imaging observations were also performed with HO transmitting and HO/AO receiving to confirm tracking, the net delay, and the pointing/timing ephemeris at both observatories. Signal analysis was performed using time-frequency signal processing techniques. Although, we did not conclusively identify EMP returns, this search detected possible EMPs and we have confirmed the search paradigm and established the sensitivity of the AO-HO system in detecting the hypothesized events. We have also characterized the difficult radio-frequency interference environment surrounding these UHF observations. We discuss the wide range of terrestrial-origin, Moon-bounce signals that were observed which additionally validate the observational technique. Further observations are contemplated.

  19. Attosecond pulses generated by the lighthouse effect in Ar gas

    NASA Astrophysics Data System (ADS)

    Tosa, Valer; Lee, Ji Su; Kim, Hyung Taek; Nam, Chang Hee

    2015-05-01

    We numerically investigate harmonic generation in Ar gas under high ionization conditions and demonstrate that a lighthouse effect is present. We examine the structure of the driving field during propagation in temporal, spectral, and spatial domains, and conclude that the complete depletion of neutral Ar on axis gives rise to additional wavelets at off-axis regions. We show that these wavelets propagate with increasing divergence as the radial distances from the axis increase, generating the rotation of the wave front, thus fulfilling a necessary condition for the lighthouse effect. We obtain attosecond bursts of light emitted with different divergences in successive optical half-cycles so that in the far field these bursts arrive at different distances from the beam axis.

  20. Generation of tunable narrowband laser pulses in the ultraviolet with a pulsed dye amplifier seeded by a near-infrared diode laser

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolong; Kobayashi, Tohru; Matsuo, Yukari; Nakajima, Takashi

    We demonstrate the generation of narrowband laser pulses in the ultraviolet (UV) region with a continuous tunability over 10 GHz. To realize such pulses we construct a four-pass pulsed dye amplifier with an external cavity diode laser (ECDL) at the near-infrared (NIR) region as a seed laser, and do the frequency doubling. The achieved pulse energy is about 10 μJ at 369.4 nm with a 230±20 MHz bandwidth and 3.3±0.2 ns pulse duration.

  1. Design of wireless triggering pulse generation for x-ray medical system

    NASA Astrophysics Data System (ADS)

    Ko, Dae-Sik; Lee, Jae-Cheol

    2007-12-01

    Digital x-ray imaging system is composed of an x-ray generator and a digital image acquisition system. In this paper, we designed a wireless trigger pulse generation circuit, detection trigger board, to capture the image accurately by established the synchronization between x-ray generator and digital image acquisition system and we analyzed its performance and compared to conventional method. There are two pulses generated by this study, the ACQ_START pulse, which indicates the detection of x-ray radiation from x-ray generator, and the ACQ_END pulse, which indicates the x-ray disappearance from x-ray generator. These trigger the image acquisition system of digital x-ray imaging system, to start the image capturing or to stop. Geiger tube were used to detect x-ray radiation from the air. Image acquisition is activated only this time between ACQ_START and ACQ_END signal. By detecting the x-ray radiation signal from the air and generate the trigger pulses, we can get more accurate timing for capturing the x-ray image. Also, owing to omitting the installation wire between x-ray generator and digital image acquisition system, Installation will be very easy. In addition to that, any type of x-ray generator can be installed without incompatibility. With this experiment, we tried to capture images of the resolution chart to compare the experimental result. We got 3.5 line pair / mm resolution at 20 mAs of x-ray level with resolution chart. This is same or better image comparing to conventional way.

  2. Apparatus and method for recharging a string a avalanche transistors within a pulse generator

    DOEpatents

    Fulkerson, E. Stephen

    2000-01-01

    An apparatus and method for recharging a string of avalanche transistors within a pulse generator is disclosed. A plurality of amplification stages are connected in series. Each stage includes an avalanche transistor and a capacitor. A trigger signal, causes the apparatus to generate a very high voltage pulse of a very brief duration which discharges the capacitors. Charge resistors inject current into the string of avalanche transistors at various points, recharging the capacitors. The method of the present invention includes the steps of supplying current to charge resistors from a power supply; using the charge resistors to charge capacitors connected to a set of serially connected avalanche transistors; triggering the avalanche transistors; generating a high-voltage pulse from the charge stored in the capacitors; and recharging the capacitors through the charge resistors.

  3. Enhanced third harmonic generation in air by two-colour ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Nath, Arpita; Dharmadhikari, J. A.; Mathur, D.; Dharmadhikari, A. K.

    2016-09-01

    We report on third harmonic generation in air in a non-filamentation regime using tightly focused, ultrashort laser pulses (1-2 µm wavelength). Enhancement in the third harmonic efficiency is observed from co-propagating laser pulses of two different wavelengths which emanate from the same source—an optical parametric amplifier—and are spatially and temporally overlapped. The third harmonic efficiency for signal wavelength (1.35 µm) is measured to be 4 × 10-3 %; in the presence of idler wavelength (2.09 µm), the corresponding value becomes 1.6 × 10-2 %—a fourfold enhancement in efficiency. The pulse duration of the generated third harmonic is measured to be 37 fs. We examine the possible role of plasma to account for the observed enhancement in third harmonic generation.

  4. High-speed dental radiography achieved with a kilohertz-range pulsed x-ray generator

    SciTech Connect

    Takabe, Akihito; Yamamoto, Mariko; Sakamaki, Kimio

    1995-12-31

    The development of a high-intensity kilohertz-range pulsed x-ray generator and its application to dental radiography are described. The pulsed x-ray generator consisted of the following major components: a constant high-voltage power supply, a high-voltage main condenser, a hot-cathode triode, a DC power supply for the filament (hot cathode), and a grid controller. The main condenser of 0.5 {micro}F-100 kV in the pulser was charged from 50 to 70 kV by the power supply, and the electric charges in the condenser were discharged to the triode by the grid controller. To be exact, the tube voltage decreased during the discharging for generating pulsed x-rays, yet the maximum value was equivalent to the initial charging voltage of the main condenser. The maximum values of the tube current and the repetition rate were about 0.5 A and 30 kHz, respectively. The pulse width of the x-rays ranged from approximately 20 to 400 {micro}s, and the x-ray intensity with a charging voltage of 70 kV and a total resistance of 5.1 M{Omega} was about 0.83 {micro}C/kg at 1.0 m per pulse. Using this generator, high-speed dental radiography, e.g., delayed radiography and multiple-shot radiography, was performed.

  5. A distributed parameter model of transmission line transformer for high voltage nanosecond pulse generation

    NASA Astrophysics Data System (ADS)

    Li, Jiangtao; Zhao, Zheng; Li, Longjie; He, Jiaxin; Li, Chenjie; Wang, Yifeng; Su, Can

    2017-09-01

    A transmission line transformer has potential advantages for nanosecond pulse generation including excellent frequency response and no leakage inductance. The wave propagation process in a secondary mode line is indispensable due to an obvious inside transient electromagnetic transition in this scenario. The equivalent model of the transmission line transformer is crucial for predicting the output waveform and evaluating the effects of magnetic cores on output performance. However, traditional lumped parameter models are not sufficient for nanosecond pulse generation due to the natural neglect of wave propagations in secondary mode lines based on a lumped parameter assumption. In this paper, a distributed parameter model of transmission line transformer was established to investigate wave propagation in the secondary mode line and its influential factors through theoretical analysis and experimental verification. The wave propagation discontinuity in the secondary mode line induced by magnetic cores is emphasized. Characteristics of the magnetic core under a nanosecond pulse were obtained by experiments. Distribution and formation of the secondary mode current were determined for revealing essential wave propagation processes in secondary mode lines. The output waveform and efficiency were found to be affected dramatically by wave propagation discontinuity in secondary mode lines induced by magnetic cores. The proposed distributed parameter model was proved more suitable for nanosecond pulse generation in aspects of secondary mode current, output efficiency, and output waveform. In depth, comprehension of underlying mechanisms and a broader view of the working principle of the transmission line transformer for nanosecond pulse generation can be obtained through this research.

  6. An all-solid-state microsecond-range quasi-square pulse generator based on fractional-turn ratio saturable pulse transformer and anti-resonance network

    NASA Astrophysics Data System (ADS)

    Chen, Rong; Yang, Jianhua; Cheng, Xinbing; Pan, Zilong

    2017-03-01

    High voltage pulse generators are widely applied in a number of fields. Defense and industrial applications stimulated intense interests in the area of pulsed power technology towards the system with high power, high repetition rate, solid state characteristics, and compact structure. An all-solid-state microsecond-range quasi-square pulse generator based on a fractional-turn ratio saturable pulse transformer and anti-resonance network is proposed in this paper. This generator consists of a charging system, a step-up system, and a modulating system. In this generator, the fractional-turn ratio saturable pulse transformer is the key component since it acts as a step-up transformer and a main switch during the working process. Demonstrative experiments show that if the primary storage capacitors are charged to 400 V, a quasi-square pulse with amplitude of about 29 kV can be achieved on a 3500 Ω resistive load, as well as the pulse duration (full width at half maximum) of about 1.3 μs. Preliminary repetition rate experiments are also carried out, which indicate that this pulse generator could work stably with the repetition rates of 30 Hz and 50 Hz. It can be concluded that this kind of all-solid-state microsecond-range quasi-square pulse generator can not only lower both the operating voltage of the primary windings and the saturable inductance of the secondary windings, thus ideally realizing the magnetic switch function of the fractional-turn ratio saturable pulse transformer, but also achieve a quasi-square pulse with high quality and fixed flat top after the modulation of a two-section anti-resonance network. This generator can be applied in areas of large power microwave sources, sterilization, disinfection, and wastewater treatment.

  7. An all-solid-state microsecond-range quasi-square pulse generator based on fractional-turn ratio saturable pulse transformer and anti-resonance network.

    PubMed

    Chen, Rong; Yang, Jianhua; Cheng, Xinbing; Pan, Zilong

    2017-03-01

    High voltage pulse generators are widely applied in a number of fields. Defense and industrial applications stimulated intense interests in the area of pulsed power technology towards the system with high power, high repetition rate, solid state characteristics, and compact structure. An all-solid-state microsecond-range quasi-square pulse generator based on a fractional-turn ratio saturable pulse transformer and anti-resonance network is proposed in this paper. This generator consists of a charging system, a step-up system, and a modulating system. In this generator, the fractional-turn ratio saturable pulse transformer is the key component since it acts as a step-up transformer and a main switch during the working process. Demonstrative experiments show that if the primary storage capacitors are charged to 400 V, a quasi-square pulse with amplitude of about 29 kV can be achieved on a 3500 Ω resistive load, as well as the pulse duration (full width at half maximum) of about 1.3 μs. Preliminary repetition rate experiments are also carried out, which indicate that this pulse generator could work stably with the repetition rates of 30 Hz and 50 Hz. It can be concluded that this kind of all-solid-state microsecond-range quasi-square pulse generator can not only lower both the operating voltage of the primary windings and the saturable inductance of the secondary windings, thus ideally realizing the magnetic switch function of the fractional-turn ratio saturable pulse transformer, but also achieve a quasi-square pulse with high quality and fixed flat top after the modulation of a two-section anti-resonance network. This generator can be applied in areas of large power microwave sources, sterilization, disinfection, and wastewater treatment.

  8. Computer Controlled MHD Power Consolidation and Pulse Generation System

    DTIC Science & Technology

    1990-08-01

    applying the PASC technology to the diagonal generator connection. 3.2.1 Modeling the PASC Process Using EMTP 15 3.2.2 Discussion of Results 15...Controller 32 3.5.8 The Digital Controller 33 3.5.9 The Continuous Fourier Transform 34 3.5.10 Hardware Interface With The Existing System 35 3.5.11...Basic Assumptions Used In The Power-to weight 42 Ratio Calculation 3.6.2 Design of the PASC Transformer 43 3.6.3 Final Design Transformer Loss

  9. Tunable mid-infrared (6.3-12 μm)optical vortex pulse generation.

    PubMed

    Furuki, Kenji; Horikawa, Michael-Tomoki; Ogawa, Azusa; Miyamoto, Katsuhiko; Omatsu, Takashige

    2014-10-20

    We demonstrated widely tunable mid-infrared (6.3-12 μm) optical vortex pulse generation from a ZGP difference frequency generator pumped by a 2 μm optical vortex laser with a cascaded KTP geometry. The mid-infrared vortex output carried the same topological charge as that of the 1 μm pump output without any destruction. A pulse energy of >135 μJ was obtained in the wavelength region of 6.3-7.0 μm.

  10. Explosive Device for Generation of Pulsed Fluxes of Soft X-Ray Radiation

    NASA Astrophysics Data System (ADS)

    Selemir, V. D.; Demidov, V. A.; Ivanovsky, A. V.; Yermolovich, V. F.; Kornilov, V. G.; Chelpanov, V. I.; Kazakov, S. A.; Vlasov, Y. V.; Orlov, A. P.

    2004-11-01

    The concept and realization of the explosive electrophysical device EMIR to generate soft x-ray radiation pulses are described. EMIR is based on the development of VNIIEF technologies in high-power flux compression generators, and on transforming systems based on lines with distributed parameters and current opening switches. Vacuum lines with magnetic insulation or water coaxial lines are considered for transmission of the energy pulses to the load. Transformation of magnetic energy to kinetic energy, thermalization and soft x-ray radiation are performed in a z-pinch with a double liner system.

  11. Dynamic high pressure generation through plasma implosion driven by an intense laser pulse

    NASA Astrophysics Data System (ADS)

    Li, M.; Wang, J. X.; Yuan, T.; Xu, Y. X.; Zhu, W. J.

    2017-03-01

    When an intense laser pulse is loaded upon solids, very high impact pressure can be generated on the surface. In this letter, we simulate this process through one-dimensional particle-in-cell simulation and find that the pressure as high as 0.13 TPa can be generated after the laser pulse with intensity 1015 W/cm2 and 5 picosecond duration is injected upon a nanometer solid-density plasma. The peak pressure is shown to be resulted from an energetic high-density plasma bunch, produced through plasma implosion under extremely high light pressure.

  12. Double-pulse induced harmonic generation in laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Ganeev, Rashid A.; Suzuki, Masayuki; Yoneya, Shin; Kuroda, Hiroto

    2015-12-01

    We report the studies of the metals, non-metals, powders, and nanoparticles as the targets for laser ablation induced high-order harmonic generation of ultrashort pulses using the double-pulse technique. The proposed technique demonstrates the attractiveness as the method for the studies of the high-order nonlinear optical properties of various materials. The comparative analysis of the harmonic generation using different targets showed that the species allowing easier ablation (powders, nanoparticles) produce stronger harmonic yield in the extreme ultraviolet range.

  13. High-power pulse repetitive HF(DF) laser with a solid-state pump generator

    SciTech Connect

    Velikanov, S D; Domazhirov, A P; Zaretskiy, N A; Kromin, A A; Sivachev, A A; Kharitonov, S V; Tsykin, V S; Shchurov, V V; Yutkin, I M; Kazantsev, S Yu; Kononov, I G; Podlesnykh, S V; Firsov, K N

    2015-11-30

    Operation of a repetitively pulsed electric-discharge HF(DF) laser with an all-solid-state pump generator based on FID switches is demonstrated. The energy stored in the pump generator capacitors was 880 J at an open-circuit voltage of 240 kV and a discharge pulse repetition rate of 25 Hz. The specific energy extractions were 3.8 and 3.4 J L{sup -1} for the HF and DF lasers, respectively. The possibilities of improving the output laser characteristics are discussed. (lasers)

  14. Short optical pulse generated by integrated MQW DBR laser/EA-modulator

    NASA Astrophysics Data System (ADS)

    Chen, Young-Kai; Tanbun-Ek, Tawee; Logan, Ralph A.; Tate, A. R.; Sergent, A. M.; Wecht, K. W.; Sciortino, Paul F., Jr.; Raybon, Gregory; Froberg, Nan M.; Johnson, Anthony M.

    1994-05-01

    We report on the generation of short optical pulses by utilizing the non-linear absorption characteristics of a multiple quantum well (MQW) electro-absorption modulator, which is monolithically integrated with a MQW wavelength-tunable distributed Bragg reflector (DBR) laser on a single chip. Optical pulses as short as 39 ps and 15 ps have been generated at a repetition rate of 3 GHz and 10 GHz, respectively, with a broad tuning range of 5.4 nm near 1554 nm lasing wavelength.

  15. Low-jitter high-power thyristor array pulse driver and generator

    DOEpatents

    Hanks, Roy L.

    2002-01-01

    A method and apparatus for generating low-jitter, high-voltage and high-current pulses for driving low impedance loads such as detonator fuses uses a MOSFET driver which, when triggered, discharges a high-voltage pre-charged capacitor into the primary of a toroidal current-multiplying transformer with multiple isolated secondary windings. The secondary outputs are suitable for driving an array of thyristors that discharge a precharged high-voltage capacitor and thus generating the required high-voltage and high-current pulse.

  16. Terahertz generation in GaN diodes operating in pulsed regime limited by self-heating

    NASA Astrophysics Data System (ADS)

    Barry, E. A.; Sokolov, V. N.; Kim, K. W.; Trew, R. J.

    2009-06-01

    The conditions for pulsed regime operation of terahertz power generation in vertical nanoscale GaN-based diodes are investigated via self-consistent simulation of the high-field electron transport in the active channel and thermal transport in the entire device structure. The combined electrothermal model allows for a detailed analysis of the dynamical local distributions of the electric field, drift-velocity, and lattice temperature. We show that stable generation is achievable with a self-heating limited output power of 2.25 W at an operation frequency of 0.71 THz for a pulse width of 3 ns with a few tens of nanosecond duty cycle.

  17. Ultrashort superradiant pulse generation from a GaN/InGaN heterostructure.

    PubMed

    Olle, V F; Vasil'ev, P P; Wonfor, A; Penty, R V; White, I H

    2012-03-26

    Dicke superradiance from a two-section violet GaN/InGaN semiconductor laser diode is demonstrated for the first time. In the superradiance regime, optical pulses with peak powers in excess of 2.8 W and durations as short as 1.4 ps are generated at repetition rates of up to 10 MHz at the emission wavelength of 408 nm. The properties of superradiant pulse generation from these GaN/InGaN laser diodes are very similar to those reported for infrared AlGaAs/GaAs laser diodes.

  18. Development of a linear piston-type pulse power electric generator for powering electric guns

    NASA Astrophysics Data System (ADS)

    Summerfield, Martin

    1993-01-01

    The development of a linear piston-type electric pulse-power generator capable of powering electric guns and EM (rail and coil) guns and ET guns, presently under development, is discussed. The pulse-power generator consists of a cylindrical armature pushed by gases from the combustion of fuel or propellant through an externally produced magnetic field. An arrangement of electrodes and connecting straps serves to extract current from the moving armature and to send it to an external load (the electric gun).

  19. Self-mode-locked chromium-doped forsterite laser generates 50-fs pulses

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, R. R.

    1993-01-01

    Stable transform-limited (delta nu-delta tau = 0.32) femtosecond pulses with a FWHM of 50 fs were generated from a self-mode-locked chromium-doped forsterite laser. The forsterite laser was synchronously pumped by a CW mode-locked Nd:YAG (82 MHz) laser that generated picosecond pulses (200-300 ps) and provided the starting mechanism for self-mode-locked operation. Maximum output power was 45 mW for 3.9 W of absorbed pumped power with the use of an output coupler with 1 percent transmission. The self-mode-locked forsterite laser was tuned from 1240 to 1270 nm.

  20. High frequency optical pulse generation by frequency doubling using polarization rotation

    NASA Astrophysics Data System (ADS)

    Liu, Yang

    2016-05-01

    In this work, we propose and experimentally characterize a stable 40 GHz optical pulse generation by frequency doubling using polarization rotation in a phase modulator (PM). Only half the electrical driving frequency is required (i.e. 20 GHz); hence the deployment cost can be reduced. Besides, precise control of the bias of the PM is not required. The generated optical pulses have a high center-mode-suppression-ratio (CMSR) of  >  28 dB. The single sideband (SSB) noise spectrum is also measured, and the time-domain waveforms under different CMSRs are also analyzed and discussed.

  1. Self-mode-locked chromium-doped forsterite laser generates 50-fs pulses

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, R. R.

    1993-01-01

    Stable transform-limited (delta nu-delta tau = 0.32) femtosecond pulses with a FWHM of 50 fs were generated from a self-mode-locked chromium-doped forsterite laser. The forsterite laser was synchronously pumped by a CW mode-locked Nd:YAG (82 MHz) laser that generated picosecond pulses (200-300 ps) and provided the starting mechanism for self-mode-locked operation. Maximum output power was 45 mW for 3.9 W of absorbed pumped power with the use of an output coupler with 1 percent transmission. The self-mode-locked forsterite laser was tuned from 1240 to 1270 nm.

  2. Cell perforation mediated by plasmonic bubbles generated by a single near infrared femtosecond laser pulse.

    PubMed

    Boutopoulos, Christos; Bergeron, Eric; Meunier, Michel

    2016-01-01

    We report on transient membrane perforation of living cancer cells using plasmonic gold nanoparticles (AuNPs) enhanced single near infrared (NIR) femtosecond (fs) laser pulse. Under optimized laser energy fluence, single pulse treatment (τ = 45 fs, λ = 800 nm) resulted in 77% cell perforation efficiency and 90% cell viability. Using dark field and ultrafast imaging, we demonstrated that the generation of submicron bubbles around the AuNPs is the necessary condition for the cell membrane perforation. AuNP clustering increased drastically the bubble generation efficiency, thus enabling an effective laser treatment using low energy dose in the NIR optical therapeutical window.

  3. Laser Pulse Duration Is Critical For the Generation of Plasmonic Nanobubbles

    PubMed Central

    2015-01-01

    Plasmonic nanobubbles (PNBs) are transient vapor nanobubbles generated in liquid around laser-overheated plasmonic nanoparticles. Unlike plasmonic nanoparticles, PNBs’ properties are still largely unknown due to their highly nonstationary nature. Here we show the influence of the duration of the optical excitation on the energy efficacy and threshold of PNB generation. The combination of picosecond pulsed excitation with the nanoparticle clustering provides the highest energy efficacy and the lowest threshold fluence, around 5 mJ cm–2, of PNB generation. In contrast, long excitation pulses reduce the energy efficacy of PNB generation by several orders of magnitude. Ultimately, the continuous excitation has the minimal energy efficacy, nine orders of magnitude lower than that for the picosecond excitation. Thus, the duration of the optical excitation of plasmonic nanoparticles can have a stronger effect on the PNB generation than the excitation wavelength, nanoparticle size, shape, or other “stationary” properties of plasmonic nanoparticles. PMID:24916057

  4. Simulation studies of vapor bubble generation by short-pulse lasers

    SciTech Connect

    Amendt, P.; London, R.A.; Strauss, M.

    1997-10-26

    Formation of vapor bubbles is characteristic of many applications of short-pulse lasers in medicine. An understanding of the dynamics of vapor bubble generation is useful for developing and optimizing laser-based medical therapies. To this end, experiments in vapor bubble generation with laser light deposited in an aqueous dye solution near a fiber-optic tip have been performed. Numerical hydrodynamic simulations have been developed to understand and extrapolate results from these experiments. Comparison of two-dimensional simulations with the experiment shows excellent agreement in tracking the bubble evolution. Another regime of vapor bubble generation is short-pulse laser interactions with melanosomes. Strong shock generation and vapor bubble generation are common physical features of this interaction. A novel effect of discrete absorption by melanin granules within a melanosome is studied as a possible role in previously reported high Mach number shocks.

  5. Simulation studies of vapor bubble generation by short-pulse lasers

    NASA Astrophysics Data System (ADS)

    Amendt, Peter A.; London, Richard A.; Strauss, Moshe; Glinsky, Michael E.; Maitland, Duncan J.; Celliers, Peter M.; Visuri, Steven R.; Bailey, David S.; Young, David A.; Ho, Darwin; Lin, Charles P.; Kelly, Michael W.

    1998-01-01

    Formation of vapor bubbles is characteristic of many applications of short-pulse lasers in medicine. An understanding of the dynamics of vapor bubble generation is useful for developing and optimizing laser-based medical therapies. To this end, experiments in vapor bubble generation with laser light deposited in an aqueous dye solution near a fiber-optic tip have been performed. Numerical hydrodynamic simulations have been developed to understand and extrapolate results from these experiments. Comparison of two-dimensional simulations with the experiment shows excellent agreement in tracking the bubble evolution. Another regime of vapor bubble generation is short-pulse laser interactions with melanosomes. Strong shock generation and vapor bubble generation are common physical features of this interaction. A novel effect of discrete absorption by melanin granules within a melanosome is studied as a possible role in previously reported high Mach number shocks [Lin and Kelly, SPIE 2391, 294 (1995)].

  6. Experimental investigations of argon spark gap recovery times by developing a high voltage double pulse generator.

    PubMed

    Reddy, C S; Patel, A S; Naresh, P; Sharma, Archana; Mittal, K C

    2014-06-01

    The voltage recovery in a spark gap for repetitive switching has been a long research interest. A two-pulse technique is used to determine the voltage recovery times of gas spark gap switch with argon gas. First pulse is applied to the spark gap to over-volt the gap and initiate the breakdown and second pulse is used to determine the recovery voltage of the gap. A pulse transformer based double pulse generator capable of generating 40 kV peak pulses with rise time of 300 ns and 1.5 μs FWHM and with a delay of 10 μs-1 s was developed. A matrix transformer topology is used to get fast rise times by reducing L(l)C(d) product in the circuit. Recovery Experiments have been conducted for 2 mm, 3 mm, and 4 mm gap length with 0-2 bars pressure for argon gas. Electrodes of a sparkgap chamber are of rogowsky profile type, made up of stainless steel material, and thickness of 15 mm are used in the recovery study. The variation in the distance and pressure effects the recovery rate of the spark gap. An intermediate plateu is observed in the spark gap recovery curves. Recovery time decreases with increase in pressure and shorter gaps in length are recovering faster than longer gaps.

  7. Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides

    NASA Astrophysics Data System (ADS)

    Navarro-Cía, Miguel; Wu, Jiang; Liu, Huiyun; Mitrofanov, Oleg

    2016-12-01

    Coaxial waveguides exhibit no dispersion and therefore can serve as an ideal channel for transmission of broadband THz pulses. Implementation of THz coaxial waveguide systems however requires THz beams with radially-polarized distribution. We demonstrate the launching of THz pulses into coaxial waveguides using the effect of THz pulse generation at semiconductor surfaces. We find that the radial transient photo-currents produced upon optical excitation of the surface at normal incidence radiate a THz pulse with the field distribution matching the mode of the coaxial waveguide. In this simple scheme, the optical excitation beam diameter controls the spatial profile of the generated radially-polarized THz pulse and allows us to achieve efficient coupling into the TEM waveguide mode in a hollow coaxial THz waveguide. The TEM quasi-single mode THz waveguide excitation and non-dispersive propagation of a short THz pulse is verified experimentally by time-resolved near-field mapping of the THz field at the waveguide output.

  8. Ultrasound generation through a fiber optic delivery system using pulsed laser energy

    SciTech Connect

    Carlson, N.M.; Johnson, J.A.

    1990-01-01

    Short duration laser pulses can generate high frequency, broadband ultrasound in a material without contacting the surface. For these noncontacting techniques to be useful on the shop floor, in remote applications, and in harsh environments, a dependable delivery system must be developed. Fiber optic techniques have been used to deliver either moderate laser energy for a large number of pulses or a large laser energy for a few pulses for the purpose of generating acoustic waves. However, transmitting high energy pulses continuously through a fiber is required for practical sensing systems. Fiber optics systems are currently used for a long duration pulses (of the order of milliseconds) in laser welding applications; e.g. a welding systems developed for manufacture of headlamps uses a fiber optic delivery system. The key to the success of this welding systems is the coupling technique used to deliver laser power to the fiber. Because the pulse duration is on the order of several milliseconds, the power density in the fiber is several orders of magnitude below the power densities required for ultrasonic applications. 17 refs., 2 figs.

  9. Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging.

    PubMed

    Gao, Fei; Feng, Xiaohua; Zhang, Ruochong; Liu, Siyu; Ding, Ran; Kishor, Rahul; Zheng, Yuanjin

    2017-04-04

    Photoacoustic sensing and imaging techniques have been studied widely to explore optical absorption contrast based on nanosecond laser illumination. In this paper, we report a long laser pulse induced dual photoacoustic (LDPA) nonlinear effect, which originates from unsatisfied stress and thermal confinements. Being different from conventional short laser pulse illumination, the proposed method utilizes a long square-profile laser pulse to induce dual photoacoustic signals. Without satisfying the stress confinement, the dual photoacoustic signals are generated following the positive and negative edges of the long laser pulse. More interestingly, the first expansion-induced photoacoustic signal exhibits positive waveform due to the initial sharp rising of temperature. On the contrary, the second contraction-induced photoacoustic signal exhibits exactly negative waveform due to the falling of temperature, as well as pulse-width-dependent signal amplitude. An analytical model is derived to describe the generation of the dual photoacoustic pulses, incorporating Gruneisen saturation and thermal diffusion effect, which is experimentally proved. Lastly, an alternate of LDPA technique using quasi-CW laser excitation is also introduced and demonstrated for both super-contrast in vitro and in vivo imaging. Compared with existing nonlinear PA techniques, the proposed LDPA nonlinear effect could enable a much broader range of potential applications.

  10. Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses.

    PubMed

    Shim, Sang-Hee; Strasfeld, David B; Zanni, Martin T

    2006-12-25

    A germanium acousto-optic modulator was recently reported (Shim et al., Optics Letters, 31, 838, 2006) that is capable of generating phase and amplitude shaped femtosecond pulses directly in the mid-infrared. In this paper, the design, implementation and performance of this novel mid-IR shaper is described in detail as is the sub-50 fs optical parametric amplifier that provides large bandwidth for generation of complex pulse shapes. These details include the acoustic power and wavelength dependence of the deflection efficiency, the phase stability of the shaper, the synchronization of electronics, and a study on how the mid-IR bandwidth of the optical parametric amplifier depends on its optical configuration. With these details quantified, the accuracy of the device is tested by creating a series of shaped pulses that are characterized by cross-correlation with well-known mid-IR reference pulses and by simulations. Test waveforms include optimally compressed, phase-chirped and amplitude-modulated mid-IR pulses. The shaped pulses are of sufficient quality that they will enable new experiments in 2D IR spectroscopy and in the coherent control of vibrations in ground electronic states.

  11. INITIAL EVALUATION OF A PULSED WHITE SPECTRUM NEUTRON GENERATOR FOR EXPLOSIVE DETECTION

    SciTech Connect

    King, Michael J.; Miller, Gill T.; Reijonen, Jani; Ji, Qing; Andresen, Nord; Gicquel,, Frederic; Kavlas, Taneli; Leung, Ka-Ngo; Kwan, Joe

    2008-06-02

    Successful explosive material detection in luggage and similar sized containers is acritical issue in securing the safety of all airline passengers. Tensor Technology Inc. has recently developed a methodology that will detect explosive compounds with pulsed fast neutron transmission spectroscopy. In this scheme, tritium beams will be used to generate neutrons with a broad energy spectrum as governed by the T(t,2n)4He fission reaction that produces 0-9 MeV neutrons. Lawrence Berkeley National Laboratory (LBNL), in collaboration with Tensor Technology Inc., has designedand fabricated a pulsed white-spectrum neutron source for this application. The specifications of the neutron source are demanding and stringent due to the requirements of high yield and fast pulsing neutron emission, and sealed tube, tritium operation. In a unique co-axial geometry, the ion source uses ten parallel rf induction antennas to externally couple power into a toroidal discharge chamber. There are 20 ion beam extraction slits and 3 concentric electrode rings to shape and accelerate the ion beam into a titanium cone target. Fast neutron pulses are created by using a set ofparallel-plate deflectors switching between +-1500 volts and deflecting the ion beams across a narrow slit. The generator is expected to achieve 5 ns neutron pulses at tritium ion beam energies between 80 - 120 kV. First experiments demonstrated ion source operation and successful beam pulsing.

  12. Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides.

    PubMed

    Navarro-Cía, Miguel; Wu, Jiang; Liu, Huiyun; Mitrofanov, Oleg

    2016-12-12

    Coaxial waveguides exhibit no dispersion and therefore can serve as an ideal channel for transmission of broadband THz pulses. Implementation of THz coaxial waveguide systems however requires THz beams with radially-polarized distribution. We demonstrate the launching of THz pulses into coaxial waveguides using the effect of THz pulse generation at semiconductor surfaces. We find that the radial transient photo-currents produced upon optical excitation of the surface at normal incidence radiate a THz pulse with the field distribution matching the mode of the coaxial waveguide. In this simple scheme, the optical excitation beam diameter controls the spatial profile of the generated radially-polarized THz pulse and allows us to achieve efficient coupling into the TEM waveguide mode in a hollow coaxial THz waveguide. The TEM quasi-single mode THz waveguide excitation and non-dispersive propagation of a short THz pulse is verified experimentally by time-resolved near-field mapping of the THz field at the waveguide output.

  13. Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides

    PubMed Central

    Navarro-Cía, Miguel; Wu, Jiang; Liu, Huiyun; Mitrofanov, Oleg

    2016-01-01

    Coaxial waveguides exhibit no dispersion and therefore can serve as an ideal channel for transmission of broadband THz pulses. Implementation of THz coaxial waveguide systems however requires THz beams with radially-polarized distribution. We demonstrate the launching of THz pulses into coaxial waveguides using the effect of THz pulse generation at semiconductor surfaces. We find that the radial transient photo-currents produced upon optical excitation of the surface at normal incidence radiate a THz pulse with the field distribution matching the mode of the coaxial waveguide. In this simple scheme, the optical excitation beam diameter controls the spatial profile of the generated radially-polarized THz pulse and allows us to achieve efficient coupling into the TEM waveguide mode in a hollow coaxial THz waveguide. The TEM quasi-single mode THz waveguide excitation and non-dispersive propagation of a short THz pulse is verified experimentally by time-resolved near-field mapping of the THz field at the waveguide output. PMID:27941845

  14. Neurokinin B Causes Acute GnRH Secretion and Repression of GnRH Transcription in GT1–7 GnRH Neurons

    PubMed Central

    Glidewell-Kenney, Christine A.; Shao, Paul P.; Iyer, Anita K.; Grove, Anna M. H.; Meadows, Jason D.

    2013-01-01

    Genetic studies in human patients with idiopathic hypogonadotropic hypogonadism (IHH) identified mutations in the genes that encode neurokinin B (NKB) and the neurokinin 3 receptor (NK3R). However, determining the mechanism whereby NKB regulates gonadotropin secretion has been difficult because of conflicting results from in vivo studies investigating the luteinizing hormone (LH) response to senktide, a NK3R agonist. NK3R is expressed in a subset of GnRH neurons and in kisspeptin neurons that are known to regulate GnRH secretion. Thus, one potential source of inconsistency is that NKB could produce opposing direct and indirect effects on GnRH secretion. Here, we employ the GT1-7 cell model to elucidate the direct effects of NKB on GnRH neuron function. We find that GT1-7 cells express NK3R and respond to acute senktide treatment with c-Fos induction and increased GnRH secretion. In contrast, long-term senktide treatment decreased GnRH secretion. Next, we focus on the examination of the mechanism underlying the long-term decrease in secretion and determine that senktide treatment represses transcription of GnRH. We further show that this repression of GnRH transcription may involve enhanced c-Fos protein binding at novel activator protein-1 (AP-1) half-sites identified in enhancer 1 and the promoter, as well as chromatin remodeling at the promoter of the GnRH gene. These data indicate that NKB could directly regulate secretion from NK3R-expressing GnRH neurons. Furthermore, whether the response is inhibitory or stimulatory toward GnRH secretion could depend on the history or length of exposure to NKB because of a repressive effect on GnRH transcription. PMID:23393128

  15. High harmonic generation with intense infrared few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Legare, Francois

    2013-05-01

    Further shortening of attosecond pulse duration via high harmonic generation (HHG) can be achieved utilizing few-cycle pulses at wavelengths longer than 800 nm, because the HHG cut-off shifts towards higher photon energies proportional to the square of the laser wavelength. The IR spectral range at 1800 nm is accessed by choosing the narrow band Idler of a white light seeded optical parametric amplifier which enables passive carrier envelope phase (CEP) stabilization. Pulse compression is achieved via the combined action of nonlinear propagation in a hollow-core fiber (HCF) followed by subsequent linear propagation through fused silica (FS) in the anomalous dispersion regime, enabling sub-millijoule sub-two-cycle pulses. HHG spectra from Xenon and cyclohexadiene isomers will be presented demonstrating the benefit of using those ultrashort IR pulses for HHG spectroscopy. To amplify those pulses in the millijoule range, we introduce the concept of Fourier-plane Optical Parametric Amplification (FOPA). The key idea for amplification of octave-spanning spectra without loss of spectral width is to amplify the broad spectrum ``slice by slice.'' Opposed to traditional schemes where amplification takes place in time domain, we propose to amplify different spectral parts independently of each other in the spectral domain. The spectral dispersion is carried out according to a 4-f setup which performs an optical Fourier transformation of time domain input pulses into the spectral domain and vice versa. After amplification which takes place in the Fourier plane, the pulses are transformed back into the time domain. As a first demonstration, the FOPA was used to amplify 0.1 mJ sub-two-cycle pulses to 1.4 mJ denoting 14 fold amplification. Driving the process of HHG from Neon and Helium with those pulses have enabled to generate soft X-ray spectra extending beyond the Oxygen K-edge (~540 eV) denoting a first step towards the generation of isolated attosecond pulses in the water

  16. An all solid-state high-voltage ns trigger generator based on magnetic pulse compression and transmission line transformer.

    PubMed

    Lin, Jiajin; Yang, Jianhua; Zhang, Jiande; Chen, Xinbing

    2013-09-01

    Innovative design of an all solid-state high-voltage ns trigger generator, based on magnetic pulse compression and transmission line transformer, is presented. The repetitive trigger pulse generator was developed to trigger a 700 kV trigatron, which has been used to pulse a repetitive intense electron beam accelerator with Tesla transformer charged double pulse forming lines (PFLs). Experimental results show that the trigger pulse generator could produce 180 kV 65 ns duration pulses with a rise time of 20 ns. The repetitive trigger pulses have nice uniform in the voltage waveform. The control time jitter is less then 3 ns. Owing to its good stability and low time jitter, the high-voltage trigger generator is an excellent candidate to trigger the repetitive accelerator.

  17. Positron generation via two sequent laser pulses irradiating a solid aluminum target

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Xun; Gan, Long-Fei; Ma, Yan-Yun; Zhao, Jun; Yang, Xiao-Hu; Yu, Tong-Pu; Zhuo, Hong-Bin; Shao, Fu-Qiu

    2017-08-01

    A scheme of two sequent laser pulses irradiating a thin solid aluminum target to generate electron-positron pairs via the multi-photon Breit-Wheeler (BW) process is proposed, in order to ease the usual requirement of the laser intensity. 2D and 3D particle-in-cell simulations show that the peak intensity of the laser pulses used in our scheme is only half of that in the case of one laser pulse with a peak intensity of 2 × 1023 W/cm2, but the positron yield is one order higher than that of the latter, which is around 3.7894 × 107 and has a maximal density of 3.134 × 1022 cm-3 when the time interval between the two pulses is set to Δt ≈ 2T0. Therefore, our scheme provides a helpful suggestion for the observation of the BW process in laboratories.

  18. Pulsed D-D Neutron Generator Measurements of HEU Oxide Fuel Pins

    SciTech Connect

    McConchie, Seth; Hausladen, Paul; Mihalczo, John; Blackburn, Brandon; Chichester, David

    2009-03-10

    Pulsed neutron interrogation measurements have been performed on highly enriched uranium (HEU) oxide fuel pins and depleted uranium (DU) metal using a D-D neutron generator (2x10{sup 6} neutrons-s{sup -1}) and moderated {sup 3}He tubes at the Idaho National Laboratory Power Burst Facility. These measurements demonstrate the ability to distinguish HEU from DU by coincidence counting using a pulsed source. The amount of HEU measured was 8 kg in a sealed 55-gallon drum compared to 31 kg of DU. Neutron events were counted during and after the pulse with the Nuclear Materials Identification System (NMIS) and used to calculate the neutron coincidence time distributions. Passive measurements were also performed for comparison with the pulsed measurements. This paper presents the neutron coincidence time distribution and Feynman variance results from the measurements.

  19. Parametric investigation of the dirt spike generation in a pulsed metal vapor laser discharge

    SciTech Connect

    Lin, C.E.; Yang, C.Y.; Wang, T.C.; Huang, C.L.

    1989-06-15

    The generation of dirt spikes in the discharge of a clean pulsed metal vapor laser is measured under various operating conditions, such as a change in pulse repetition rates, laser tube temperatures, buffer gas pressures, and charging voltages. It is shown that the dirt spikes will increase in magnitude for such conditions that the pulse repetition rate decreases, the laser tube temperature decreases, and the buffer gas pressure increases. The ratio of the dirt spike to the charging voltage will also increase as the charging voltage decreases. All experimental results are well explained by theoretical analyses. These results lead to a number of useful suggestions for the operation of a pulsed metal vapor laser.

  20. Complicated high-order harmonic generation due to the falling edge of a trapezoidal laser pulse

    NASA Astrophysics Data System (ADS)

    Ahmadi, H.; Vafaee, M.; Maghari, A.

    2016-02-01

    High-order harmonic generation (HHG) is investigated for {{{H}}}2+ and its isotopologues under seven and ten-cycle trapezoidal laser pulses at an 800 nm wavelength and I = 4 × 1014 W cm-2 intensity. We numerically solved the full-dimensional electronic time-dependent Schrödinger equation (TDSE) with and without the Born-Oppenheimer approximation (BO). We show that contribution to the HHG spectrum from the trailing edge of a trapezoidal laser pulse can result in a redshift and complexity in the total HHG spectrum. This effect can be removed by considering different laser pulse durations and nuclear motion that is not possible for sin2 and Gaussian laser pulses. We have resolved the contributions to the redshift and other patterns in the HHG spectra into the different electronic and vibrational channels and the interference thereof.