Science.gov

Sample records for goddard tech transfer

  1. Earth alert: a NASA Goddard tech transfer success story

    NASA Astrophysics Data System (ADS)

    McGraw, Thomas F.

    1994-10-01

    The historically high toll in human lives lost to natural disasters such as hurricanes, tornadoes, floods, and other progressive events signals the need for some type of personal warning that alerts people to the need to evacuate or otherwise protect themselves in the face of an advancing threat. Traditional warning services, which rely on broadcasts by the mass media in the metropolitan areas of the United States, achieve measurable success in disseminating warnings. However, warnings to isolated populations that exist in the U.S. and elsewhere in the world may be poor to effectively nonexistent, especially in the many archipelagoes. Earth Alert, a joint project of NASA Goddard Space Flight Center and Scientific and Commercial Systems Corporation, is targeted at development of a simple, low-cost means for providing timely warning to otherwise isolated populations. The project uses appropriate relay capabilities of U.S. satellites already in orbit, and thus avoids the high-cost development and launch of dedicated resources.

  2. Technology transfer within the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.

    1992-01-01

    Viewgraphs on technology transfer within the NASA Goddard Space Flight Center presented to Civil Space Technology Development workshop on technology transfer and effectiveness are provided. Topics covered include: obstacles to technology transfer; technology transfer improvement program at GSFC: communication between technology developers and users; and user feedback to technologists.

  3. Tech transfer outreach

    SciTech Connect

    Liebetrau, S.

    1992-01-01

    This document provides an informal summary of the conference workshop sessions. Tech Transfer Outreach '' was originally designed as an opportunity for national laboratory communications and technology transfer staff to become better acquainted and to discuss matters of mutual interest. When DOE field office personnel asked if they could attend, and then when one of our keynote speakers became a participant in the discussions, the actual event grew in importance. The conference participants--the laboratories and DOE representatives from across the nation--worked to brainstorm ideas. Their objective: identify ways to cooperate for effective (and cost-effective) technology transfer outreach. Thus, this proceedings is truly a product of ten national laboratories and DOE, working together. It candidly presents the discussion of issues and the ideas generated by each working group. The issues and recommendations are a consensus of their views.

  4. Performance tuning Weather Research and Forecasting (WRF) Goddard longwave radiative transfer scheme on Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2015-10-01

    Next-generation mesoscale numerical weather prediction system, the Weather Research and Forecasting (WRF) model, is a designed for dual use for forecasting and research. WRF offers multiple physics options that can be combined in any way. One of the physics options is radiance computation. The major source for energy for the earth's climate is solar radiation. Thus, it is imperative to accurately model horizontal and vertical distribution of the heating. Goddard solar radiative transfer model includes the absorption duo to water vapor,ozone, ozygen, carbon dioxide, clouds and aerosols. The model computes the interactions among the absorption and scattering by clouds, aerosols, molecules and surface. Finally, fluxes are integrated over the entire longwave spectrum.In this paper, we present our results of optimizing the Goddard longwave radiative transfer scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The optimizations improved the performance of the original Goddard longwave radiative transfer scheme on Xeon Phi 7120P by a factor of 2.2x. Furthermore, the same optimizations improved the performance of the Goddard longwave radiative transfer scheme on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 2.1x compared to the original Goddard longwave radiative transfer scheme code.

  5. Scalability Analysis and Use of Compression at the Goddard DAAC and End-to-End MODIS Transfers

    NASA Technical Reports Server (NTRS)

    Menasce, Daniel A.

    1998-01-01

    The goal of this task is to analyze the performance of single and multiple FTP transfer between SCF's and the Goddard DAAC. We developed an analytic model to compute the performance of FTP sessions as a function of various key parameters, implemented the model as a program called FTP Analyzer, and carried out validations with real data obtained by running single and multiple FTP transfer between GSFC and the Miami SCF. The input parameters to the model include the mix to FTP sessions (scenario), and for each FTP session, the file size. The network parameters include the round trip time, packet loss rate, the limiting bandwidth of the network connecting the SCF to a DAAC, TCP's basic timeout, TCP's Maximum Segment Size, and TCP's Maximum Receiver's Window Size. The modeling approach used consisted of modeling TCP's overall throughput, computing TCP's delay per FTP transfer, and then solving a queuing network model that includes the FTP clients and servers.

  6. Time transfer between the Goddard Optical Research Facility and the U.S. Naval Observatory using 100 picosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Alley, C. O.; Rayner, J. D.; Steggerda, C. A.; Mullendore, J. V.; Small, L.; Wagner, S.

    1983-01-01

    A horizontal two-way time comparison link in air between the University of Maryland laser ranging and time transfer equipment at the Goddard Optical Research Facility (GORF) 1.2 m telescope and the Time Services Division of the U.S. Naval Observatory (USNO) was established. Flat mirrors of 25 cm and 30 cm diameter respectively were placed on top of the Washington Cathedral and on a water tower at the Beltsville Agricultural Research Center. Two optical corner reflectors at the USNO reflect the laser pulses back to the GORF. Light pulses of 100 ps duration and an energy of several hundred microjoules are sent at the rate of 10 pulses per second. The detection at the USNO is by means of an RCA C30902E avalanche photodiode and the timing is accomplished by an HP 5370A computing counter and an HP 1000 computer with respect to a 10 pps pulse train from the Master Clock.

  7. KSC Tech Transfer News, Volume 5, No. 2

    NASA Technical Reports Server (NTRS)

    Nichols, James D.

    2013-01-01

    Kennedy Tech Transfer News is the semiannual magazine of the Innovative Partnerships Program Office at NASA Kennedy Space Center in Cape Canaveral, Florida. This magazine seeks to inform and educate cMI servant and Contractor personnel at Kennedy about actively participating in achieving NASA's technology transfer goals

  8. KSC Tech Transfer News, Volume 3, No. 1

    NASA Technical Reports Server (NTRS)

    Dunn, Carol (Editor)

    2010-01-01

    Kennedy Tech Transfer News is the semiannual magazine of the Innovative Partnerships Program at NASA's Kennedy Space Center in Cape Canaveral, Florida. This magazine seeks to inform and educate civil servant and contractor personnel at Kennedy about actively participating in achieving NASA's technology transfer and partnership goals. The contents include: 1) About IPP; 2) NTR corner; 3) Innovator Insights; 4) Licensing Success; 5) Partnership Success; 6) SBIR/STTR Success; 7) Events; 8) Trands in Innovation; 9) Q&A: Data Rights; and 10) Awards.

  9. NREL Quickens its Tech Transfer Efforts

    SciTech Connect

    Lammers, H.

    2012-02-01

    Innovations and 'aha' movements in renewable energy and energy efficiency, while exciting in the lab, only truly live up to their promise once they find a place in homes or business. Late last year President Obama issued a directive to all federal agencies to increase their efforts to transfer technologies to the private sector in order to achieve greater societal and economic impacts of federal research investments. The president's call to action includes efforts to establish technology transfer goals and to measure progress, to engage in efforts to increase the speed of technology transfer and to enhance local and regional innovation partnerships. But, even before the White House began its initiative to restructure the commercialization process, the National Renewable Energy Laboratory had a major effort underway designed to increase the speed and impact of technology transfer activities and had already made sure its innovations had a streamlined path to the private sector. For the last three years, NREL has been actively setting commercialization goals and tracking progress against those goals. For example, NREL sought to triple the number of innovations over a five-year period that began in 2009. Through best practices associated with inventor engagement, education and collaboration, NREL quadrupled the number of innovations in just three years. Similar progress has been made in patenting, licensing transactions, income generation and rewards to inventors. 'NREL is known nationally for our cutting-edge research and companies know to call us when they are ready to collaborate,' William Farris, vice president for commercialization and technology transfer, said. 'Once a team is ready to dive in, they don't want be mired in paperwork. We've worked to make our process for licensing NREL technology faster; it now takes less than 60 days for us to come to an agreement and start work with a company interested in our research.' While NREL maintains a robust patent

  10. Tech transfer outreach. An informal proceedings of the first technology transfer/communications conference

    SciTech Connect

    Liebetrau, S.

    1992-10-01

    This document provides an informal summary of the conference workshop sessions. ``Tech Transfer Outreach!`` was originally designed as an opportunity for national laboratory communications and technology transfer staff to become better acquainted and to discuss matters of mutual interest. When DOE field office personnel asked if they could attend, and then when one of our keynote speakers became a participant in the discussions, the actual event grew in importance. The conference participants--the laboratories and DOE representatives from across the nation--worked to brainstorm ideas. Their objective: identify ways to cooperate for effective (and cost-effective) technology transfer outreach. Thus, this proceedings is truly a product of ten national laboratories and DOE, working together. It candidly presents the discussion of issues and the ideas generated by each working group. The issues and recommendations are a consensus of their views.

  11. Indiana Regional Transfer Study: The Student Experience of Transfer Pathways between Ivy Tech Community College and Indiana University

    ERIC Educational Resources Information Center

    Kadlec, Alison; Gupta, Jyoti

    2014-01-01

    This report details findings from focus groups with college students across Indiana. All of these students were planning to transfer or had transferred from the state community college system, Ivy Tech, to a school in the Indiana University system. We wanted to find out what these students had to say about their experiences preparing for and…

  12. Tech Transfer Magazine - KSC News Volume I, Number 2, Fall/Winter 2008

    NASA Technical Reports Server (NTRS)

    Dunn, Carol (Editor)

    2008-01-01

    Kennedy Tech Transfer News is the semiannual magazine of the Innovative Partnerships Program Office at NASA Kennedy Space Center in Cape Canaveral, Florida. This magazine seeks to inform and educate cMI servant and Contractor personnel at Kennedy about actively participating in achieving NASA's technology transfer goals:

  13. Goddard Welcomes SISTER

    NASA Video Gallery

    The Goddard Space Flight Center in Greenbelt, Md., hosted a weeklong summer institute, SISTER, for the purpose of increasing the awareness of and providing opportunities for middle school girls to ...

  14. Dr. Goddard Transports Rocket

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Dr. Robert H. Goddard tows his rocket to the launching tower behind a Model A Ford truck, 15 miles northwest of Roswell, New Mexico. 1930- 1932. Dr. Goddard has been recognized as the 'Father of American Rocketry' and as one of three pioneers in the theoretical exploration of space. Robert Hutchings Goddard was born in Worcester, Massachusetts, on October 15, 1882. He was a theoretical scientist as well as a practical engineer. His dream was the conquest of the upper atmosphere and ultimately space through the use of rocket propulsion. Dr. Goddard, who died in 1945, was probably as responsible for the dawning of the Space Age as the Wright Brothers were for the begining of the Air Age. Yet his work attracted little serious attention during his lifetime. When the United States began to prepare for the conquest of space in the 1950's, American rocket scientists began to recognize the debt owed to the New England professor. They discovered that it was virtually impossible to construct a rocket or launch a satellite without acknowledging the work of Dr. Goddard. This great legacy was covered by more than 200 patents, many of which were issued after his death.

  15. Goddard Summer Interns: Danielle Wood

    NASA Video Gallery

    Profile of Goddard intern Danielle Wood. Danielle is interning at Goddard in the Innovative Partnerships Program and at NASA Headquarters in the Office of the Chief Technologist in the summer of 20...

  16. Goddard Ground System Environment

    NASA Technical Reports Server (NTRS)

    Liu, Ben

    2009-01-01

    This slide presentation reviews the Goddard Mission Services Evolution Center's work in providing the Ground System Infrastructure to allow for standard interfaces, and allow for a mix of heritage and new components. This software has been used by NASA and other Government users. Telemetry and command services are also provided as are mission planning and scheduling systems. Other areas that the presentation covers are work on trending systems, and data management system.

  17. Goddard Robotic Telescope

    NASA Astrophysics Data System (ADS)

    Sakamoto, Takanori; Donato, Davide; Gehrels, Neil; Okajima, Takashi; Ukwatta, Tilan N.

    2009-05-01

    We are constructing the 14'' fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up the Swift/Fermi Gamma-Ray Bursts (GRBs) and 2) to perform the coordinated optical observations of the Fermi/Large Area Telescope (LAT) Active Galactic Nuclei (AGN). Our telescope system consists of the 14'' Celestron Optical Telescope Assembly (OTA), the Astro-Physics 1200GTO mount, the Apogee U47 CCD camera, the JMI's electronic focuser, and the Finger Lake Instrumentation's color filter wheel with U, B, V, R and I filters. With the focal reducer, 20'×20' field of view has been achieved. The observatory dome is the Astro Haven's 7 ft clam-shell dome. We started the scientific observations on mid-November 2008. While not observing our primary targets (GRBs and AGNs), we are planning to open our telescope time to the public for having a wider use of our telescope in both a different research field and an educational purpose.

  18. Goddard Robotic Telescope

    SciTech Connect

    Sakamoto, Takanori; Donato, Davide; Gehrels, Neil; Okajima, Takashi; Ukwatta, Tilan N.

    2009-05-25

    We are constructing the 14'' fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up the Swift/Fermi Gamma-Ray Bursts (GRBs) and 2) to perform the coordinated optical observations of the Fermi/Large Area Telescope (LAT) Active Galactic Nuclei (AGN). Our telescope system consists of the 14'' Celestron Optical Telescope Assembly (OTA), the Astro-Physics 1200GTO mount, the Apogee U47 CCD camera, the JMI's electronic focuser, and the Finger Lake Instrumentation's color filter wheel with U, B, V, R and I filters. With the focal reducer, 20'x20' field of view has been achieved. The observatory dome is the Astro Haven's 7 ft clam-shell dome. We started the scientific observations on mid-November 2008. While not observing our primary targets (GRBs and AGNs), we are planning to open our telescope time to the public for having a wider use of our telescope in both a different research field and an educational purpose.

  19. Goddard Visiting Scientist Program

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Under this Indefinite Delivery Indefinite Quantity (IDIQ) contract, USRA was expected to provide short term (from I day up to I year) personnel as required to provide a Visiting Scientists Program to support the Earth Sciences Directorate (Code 900) at the Goddard Space Flight Center. The Contractor was to have a pool, or have access to a pool, of scientific talent, both domestic and international, at all levels (graduate student to senior scientist), that would support the technical requirements of the following laboratories and divisions within Code 900: 1) Global Change Data Center (902); 2) Laboratory for Atmospheres (Code 910); 3) Laboratory for Terrestrial Physics (Code 920); 4) Space Data and Computing Division (Code 930); 5) Laboratory for Hydrospheric Processes (Code 970). The research activities described below for each organization within Code 900 were intended to comprise the general scope of effort covered under the Visiting Scientist Program.

  20. KSC Tech Transfer News, Volume 5, No. 1

    NASA Technical Reports Server (NTRS)

    Buckingham, Bruce (Editor)

    2012-01-01

    In October 2011, the White House released a presidential memorandum titled "Accelerating Technology Transfer and Commercialization of Federal Research in Support of High-Growth Businesses." It emphasized the importance of technology transfer as a driver of successful innovation to fuel economic growth, create jobs, and make U.S. industries more competitive in a global market. In response to this memorandum, NASA developed a 5-year plan for accelerating its own technology transfer activities. This plan outlines key objectives for enhancing NASA's ability to increase the rate, volume, and quality of technology transfers to industry, academia, and other Government agencies. By doing so, we are increasing the economic impact and public benefit of Federal technology investments. In addition, NASA established technology transfer as a key element of one of its Agency High Priority Performance Goals: "Enable bold new missions and make new technologies available to Government agencies and U.S. industry."What does this mean to you? In the broadest sense, NASA defines technology transfer as the utilization of NASA's technological assets- technologies, innovations, unique facilities and equipment, and technical expertise- by public and private sectors to benefit the Nation. So, if your job involves developing new technologies, writing new software, creating innovative ways to do business, performing research, or developing new technical capabilities, you could be contributing to Kennedy Space Center's (KSC) technology transfer activities by creating the technological assets that may one day be used by external partners. Furthermore, anytime you provide technical expertise to external partners, you're participating in technology transfer. The single most important step you can take to support the technology transfer process is to report new technologies and innovations ro the Technology Transfer Office. This is the critical first step in fueling the technology transfer pipeline

  1. Tech Transfer Office discusses the finer points of tire recycling

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's Technology Transfer Office at Stennis worked with a tire recycling company in St. Francisville, La., to help the company make better use of the cryogenics, or supercold fluids, in its recycling process. The process separates the rubber from the steel belts and other particles. The rubber is broken down into a material called crumb. Other parts of the tire particle removed is called fluff.

  2. Astronaut Steve Swanson Visits Goddard

    NASA Video Gallery

    On Tuesday, 3 March 2015, a special guest visited NASA Goddard Space Flight Center during his time back on Earth. Steven Swanson, NASA astronaut, intrigued the audience by highlighting his adventur...

  3. Goddard Summer Interns: Alejandro Arambula

    NASA Video Gallery

    Alejandro Arambula is an aerospace engineering student at M.I.T. and a 2011 summer intern in Goddard's Propulsion Lab. This summer he is working with his mentor Khary Parker in building a test asse...

  4. Goddard Virtual Tour: Part 1

    NASA Video Gallery

    Goddard Chief Scientist Jim Garvin takes us on a tour of the life of a spacecraft, from the idea to the collection of data in orbit. Each segment looks at a different phase of the spacecraft and it...

  5. Explore at NASA Goddard Promo

    NASA Video Gallery

    NASA's Goddard Space Flight Center in Greenbelt, Md., will again open its gates to welcome the regional community for a day of fun-filled activities, hands-on demonstrations, entertainment, and foo...

  6. Robotic technology evolution and transfer

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.

    1992-01-01

    A report concerning technology transfer in the area of robotics is presented in vugraph form. The following topics are discussed: definition of technology innovation and tech-transfer; concepts relevant for understanding tech-transfer; models advanced to portray tech-transfer process; factors identified as promoting tech-transfer; factors identified as impeding tech-transfer; what important roles do individuals fulfill in tech-transfer; federal infrastructure for promoting tech-transfer; federal infrastructure for promoting tech-transfer; robotic technology evolution; robotic technology transferred; and recommendations for successful robotics tech-transfer.

  7. Marshall Team Recreates Goddard Rocket

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In honor of the Centernial of Flight celebration and commissioned by the American Institute of Aeronautics and Astronautics (AIAA), a team of engineers from Marshall Space Flight Center (MSFC) built a replica of the first liquid-fueled rocket. The original rocket, designed and built by rocket engineering pioneer Robert H. Goddard in 1926, opened the door to modern rocketry. Goddard's rocket reached an altitude of 41 feet while its flight lasted only 2.5 seconds. The Marshall design team's plan was to stay as close as possible to an authentic reconstruction of Goddard's rocket. The same propellants were used - liquid oxygen and gasoline - as available during Goddard's initial testing and firing. The team also tried to construct the replica using the original materials and design to the greatest extent possible. By purposely using less advanced techniques and materials than many that are available today, the team encountered numerous technical challenges in testing the functional hardware. There were no original blueprints or drawings, only photographs and notes. However, this faithful adherence to historical accuracy has also allowed the team to experience many of the same challenges Goddard faced 77 years ago, and more fully appreciate the genius of this extraordinary man. The replica will undergo ground tests at MSFC this summer.

  8. Weapons to widgets: Organic systems and public policy for tech transfer

    NASA Technical Reports Server (NTRS)

    Cargo, Russell A.

    1994-01-01

    Large cuts in defense spending cause serious repercussions throughout the American economy. One means to counter the negative effects of defense reductions is to redirect federal dollars to temporarily prop up defense industries and, over the longer-term, stimulate growth of new nondefense industries. The creation of non-defense products and industries by channeling ideas from public laboratories into the private sector manufacturing facilities, known as technology transfer, is being undertaken in a massive program that has high visibility, large amounts of money, and broad federal agency involvement. How effectively federal money can be directed toward stimulating the creation of non-defense products will define the strength of the economy, (i.e., tax base, employment level, trade balance, capital investments, etc.), over the next decade. Key functions of the tech transfer process are technology and market assessment, capital formation, manufacturing feasibility, sales and distribution, and business organization creation. Those, however, are not functions typically associated with the federal government. Is the government prepared to provide leadership in those areas? This paper suggests organic systems theory as a means to structure the public sector's actions to provide leadership in functional areas normally outside their scope of expertise. By applying new ideas in organization theory, can we design government action to efficiently and effectively transfer technologies?

  9. Frosch Awarded Goddard Memorial Trophy

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Former President Jimmy Carter presents the National Space Club's Goddard Memorial Trophy to NASA Administrator Dr. Robert A. Frosch on behalf of the team that planned and executed the Voyager mission to Jupiter and beyond. The trophy is America's most prestigious space award, presented annually to an individual or group for outstanding acheivement in space, contributing to U.S. leadership in astronautics. From left to right: John Lent, Martin Marietta Company President Jimmy Carter NASA Administrator Robert A. Frosch

  10. The Goddard optical communications program

    NASA Astrophysics Data System (ADS)

    Seery, B. D.

    1990-07-01

    The main areas of research being conducted at NASA Goddard Space Flight Center are reviewed. Research on transmitter source technology is addressed, emphasizing the development of AlGaAs semiconductor laser diodes. Research on receiver technology is examined, and progress being made in the development of the Pointing, Acquisition, and Tracking System (PATS) is reviewed. Plans for an in-space technology demonstration are briefly discussed.

  11. Dr. Robert H. Goddard and His Rocket

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Goddard rocket with four rocket motors. This rocket attained an altitude of 200 feet in a flight, November 1936, at Roswell, New Mexico. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology

  12. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Figueroa, Ricardo

    2013-01-01

    This report summarizes the technical parameters and the technical staff of the VLBI system at the fundamental station GGAO. It also gives an overview about the VLBI activities during the report year. The Goddard Geophysical and Astronomical Observatory (GGAO) consists of a 5-meter radio telescope for VLBI, a new 12-meter radio telescope for VLBI2010 development, a 1-meter reference antenna for microwave holography development, an SLR site that includes MOBLAS-7, the NGSLR development system, and a 48" telescope for developmental two-color Satellite Laser Ranging, a GPS timing and development lab, a DORIS system, meteorological sensors, and a hydrogen maser. In addition, we are a fiducial IGS site with several IGS/IGSX receivers. GGAO is located on the east coast of the United States in Maryland. It is approximately 15 miles NNE of Washington, D.C. in Greenbelt, Maryland.

  13. Goddard Earth Sciences and Technology Center (GEST)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This document summarizes the activities of the Goddard Earth Sciences and Technology Center (GEST), a consortium of scientists and engineers led by the University of Maryland, Baltimore County (UMBC), during the contract reporting period. Topics covered include: new programs, eligibility and selection criteria, Goddard Coastal Research Graduate Fellowship Program and staffing changes.

  14. Dr. Robert H. Goddard and His Rockets

    NASA Technical Reports Server (NTRS)

    1926-01-01

    Dr. Robert H. Goddard and liquid oxygen-gasoline rocket in the frame from which it was fired on March 16, 1926, at Auburn, Mass. It flew for only 2.5 seconds, climbed 41 feet, and landed 184 feet away in a cabbage patch. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets, which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology

  15. Indiana School for the Blind Visits Goddard

    NASA Video Gallery

    This video shows highlights of the Indiana School for the Blind and Visually Impaired, and the Indian Creek Public High School visit to NASA's Goddard Space Flight Center in June 2011. Both blind a...

  16. Technology Transfer Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Since its inception, Goddard has pursued a commitment to technology transfer and commercialization. For every space technology developed, Goddard strives to identify secondary applications. Goddard then provides the technologies, as well as NASA expertise and facilities, to U.S. companies, universities, and government agencies. These efforts are based in Goddard's Technology Commercialization Office. This report presents new technologies, commercialization success stories, and other Technology Commercialization Office activities in 1999.

  17. Marshall Team Fires Recreated Goddard Rocket

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In honor of the Centernial of Flight Celebration and commissioned by the American Institute of Aeronautics and Astronautics (AIAA), a team of engineers from Marshall Space Flight Center (MSFC) built a replica of the first liquid-fueled rocket. The original rocket, designed and built by rocket engineering pioneer Robert H. Goddard in 1926, opened the door to modern rocketry. Goddard's rocket reached an altitude of 41 feet while its flight lasted only 2.5 seconds. The Marshall design team's plan was to stay as close as possible to an authentic reconstruction of Goddard's rocket. The same propellants were used - liquid oxygen and gasoline - as available during Goddard's initial testing and firing. The team also tried to construct the replica using the original materials and design to the greatest extent possible. By purposely using less advanced techniques and materials than many that are available today, the team encountered numerous technical challenges in testing the functional hardware. There were no original blueprints or drawings, only photographs and notes. However, this faithful adherence to historical accuracy has allowed the team to experience many of the same challenges Goddard faced 77 years ago, and more fully appreciate the genius of this extraordinary man. In this photo, the replica is shown firing in the A-frame launch stand in near-flight configuration at MSFC's Test Area 116 during the American Institute of Aeronautics and Astronautics 39th Joint Propulsion Conference on July 23, 2003.

  18. The Power Transistor: A Module on Heat Transfer. Tech Physics Series.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Cambridge, MA.

    This module is intended to provide an understanding of the principles related to heat transfer. The objectives are designed to enable the learner to select and install a device for measuring the temperature of a power transistor, determine power ratings, measure the transient response for a power level and its final equilibrium temperature. Other…

  19. Remembering Robert Goddard's vision 100 years later

    NASA Astrophysics Data System (ADS)

    Stern, David P.

    “Life, liberty, and the pursuit of happiness” —such are the goals of most of us.Yet a few always exist who feel called by a higher purpose. Society often owes them a great deal.Robert Hutchins Goddard, whose work made spaceflight possible, found his vision 100 years ago this October as a youth of 17. His family was staying on the farm of a relative, when he was asked to trim the branches of a cherry tree behind the barn.

  20. Research and Technology, 1987, Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Guerny, Gene (Editor); Moe, Karen (Editor); Paddack, Steven (Editor); Soffen, Gerald (Editor); Sullivan, Walter (Editor); Ballard, Jan (Editor)

    1987-01-01

    Research at Goddard Space Flight Center during 1987 is summarized. Topics addressed include space and earth sciences, technology, flight projects and mission definition studies, and institutional technology.

  1. Robert H. Goddard and His Liquid-Gasoline Rocket

    NASA Technical Reports Server (NTRS)

    1926-01-01

    Dr. Goddard's 1926 rocket configuration. Dr. Goddard's liquid oxygen-gasoline rocket was fired on March 16, 1926, at Auburn, Massachusetts. It flew for only 2.5 seconds, climbed 41 feet, and landed 184 feet away in a cabbage patch. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets, which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology

  2. Science at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2012-01-01

    The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.

  3. NASA/Goddard Thermal Technology Overview 2014

    NASA Technical Reports Server (NTRS)

    Butler, Daniel; Swanson, Theodore D.

    2014-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the Technology Development Program at NASA. While funding for basic technology development is still scarce, significant efforts are being made in direct support of flight programs. New technology development continues to be driven by the needs of future missions, and applications of these technologies to current Goddard programs will be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program, the Small Business Innovative Research (SBIR) program, and the NASA Engineering and Safety Center (NESC), are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, development of high electrical conductivity coatings, and various other research activities. New Technology program underway at NASA, although funding is limited center dot NASA/GSFC's primary mission of science satellite development is healthy and vibrant, although new missions are scarce - now have people on overhead working new missions and proposals center dot Future mission applications promise to be thermally challenging center dot Direct technology funding is still very restricted - Projects are the best source for direct application of technology - SBIR thermal subtopic resurrected in FY 14 - Limited Technology development underway via IRAD, NESC, other sources - Administrator pushing to revive technology and educational programs at NASA

  4. Strategic directions and mechanisms in technology transfer

    NASA Technical Reports Server (NTRS)

    Mackin, Robert

    1992-01-01

    An outline summarizing the Working Panel discussion related to strategic directions for technology transfer is presented. Specific topics addressed include measuring success, management of technology, innovation and experimentation in the tech transfer process, integration of tech transfer into R&D planning, institutionalization of tech transfer, and policy/legislative resources.

  5. The 1993 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Hostetter, Carl F. (Editor)

    1993-01-01

    This publication comprises the papers presented at the 1993 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, MD on May 10-13, 1993. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  6. Studying Precipitation Processes in WRF with Goddard Bulk Microphysics in Comparison with Other Microphysical Schemes

    NASA Technical Reports Server (NTRS)

    Tao, W.K.; Shi, J.J.; Braun, S.; Simpson, J.; Chen, S.S.; Lang, S.; Hong, S.Y.; Thompson, G.; Peters-Lidard, C.

    2009-01-01

    A Goddard bulk microphysical parameterization is implemented into the Weather Research and Forecasting (WRF) model. This bulk microphysical scheme has three different options, 2ICE (cloud ice & snow), 3ICE-graupel (cloud ice, snow & graupel) and 3ICE-hail (cloud ice, snow & hail). High-resolution model simulations are conducted to examine the impact of microphysical schemes on different weather events: a midlatitude linear convective system and an Atlantic hurricane. The results suggest that microphysics has a major impact on the organization and precipitation processes associated with a summer midlatitude convective line system. The Goddard 3ICE scheme with the cloud ice-snow-hail configuration agreed better with observations ill of rainfall intensity and having a narrow convective line than did simulations with the cloud ice-snow-graupel and cloud ice-snow (i.e., 2ICE) configurations. This is because the Goddard 3ICE-hail configuration has denser precipitating ice particles (hail) with very fast fall speeds (over 10 m/s) For an Atlantic hurricane case, the Goddard microphysical scheme (with 3ICE-hail, 3ICE-graupel and 2ICE configurations) had no significant impact on the track forecast but did affect the intensity slightly. The Goddard scheme is also compared with WRF's three other 3ICE bulk microphysical schemes: WSM6, Purdue-Lin and Thompson. For the summer midlatitude convective line system, all of the schemes resulted in simulated precipitation events that were elongated in southwest-northeast direction in qualitative agreement with the observed feature. However, the Goddard 3ICE-hail and Thompson schemes were closest to the observed rainfall intensities although the Goddard scheme simulated more heavy rainfall (over 48 mm/h). For the Atlantic hurricane case, none of the schemes had a significant impact on the track forecast; however, the simulated intensity using the Purdue-Lin scheme was much stronger than the other schemes. The vertical distributions of

  7. GLOW: The Goddard Lidar Observatory for Winds

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huailin; Li, Steven X.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    GLOW (Goddard Lidar Observatory for Winds) is a mobile Doppler lidar system which uses direct detection Doppler lidar techniques to measure wind profiles from the surface into the lower stratosphere. The system is contained in a modified van to allow deployment in field operations. The lidar system uses a Nd:YAG laser transmitter to measure winds using either aerosol backscatter at 1064 nm or molecular backscatter at 355 nm. The receiver telescope is a 45 cm Dall-Kirkham which is fiber coupled to separate Doppler receivers, one optimized for the aerosol backscatter wind measurement and another optimized for the molecular backscatter wind measurement. The receivers are implementations of the 'double edge' technique and use high spectral resolution Fabry-Perot etalons to measure the Doppler shift. A 45 cm aperture azimuth-over-elevation scanner is mounted on the roof of the van to allow full sky access and a variety of scanning options. GLOW is intended to be used as a deployable field system for studying atmospheric dynamics and transport and can also serve as a testbed to evaluate candidate technologies developed for use in future spaceborne systems. In addition, it can be used for calibration/validation activities following launch of spaceborne wind lidar systems. A description of the mobile system is presented along with the examples of lidar wind profiles obtained with the system.

  8. GLOW- The Goddard Lidar Observatory for Winds

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huailin; Li, Steven X.

    2000-01-01

    GLOW (Goddard Lidar Observatory for Winds) is a mobile Doppler lidar system which uses direct detection Doppler lidar techniques to measure wind profiles from the surface into the lower stratosphere. The system is contained in a modified van to allow deployment in field operations. The lidar system uses a Nd:YAG laser transmitter to measure winds using either aerosol backscatter at 1064 nm or molecular backscatter at 355 nm. The receiver telescope is a 45 cm Dall-Kirkham which is fiber coupled to separate Doppler receivers, one optimized for the aerosol backscatter wind measurement and another optimized for the molecular backscatter wind measurement. The receivers are implementations of the 'double edge' technique and use high spectral resolution Fabry-Perot etalons to measure the Doppler shift. A 45 cm aperture azimuth-over-elevation scanner is mounted on the roof of the van to allow full sky access and a variety of scanning options. GLOW is intended to be used as a deployable field system for studying atmospheric dynamics and transport and can also serve as a testbed to evaluate candidate technologies developed for use in future spaceborne systems. In addition, it can be used for calibration/validation activities following launch of spaceborne wind lidar systems. A description of the mobile system is presented along with the examples of lidar wind profiles obtained with the system.

  9. Goddard's Astrophysics Science Division Annual Report 2013

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)

    2014-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  10. Goddard's Astrophysics Science Division Annual Report 2011

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Reddy, Francis; Tyler, Pat

    2012-01-01

    The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.

  11. Hubble 25th Anniversary: NASA Social at Goddard

    NASA Video Gallery

    NASA's Hubble Space Telescope celebrated its 25th anniversary on April 24, 2015. To mark the occasion, NASA's Goddard Space Flight Center in Greenbelt, Maryland -- home of Hubble operations -- host...

  12. ISS Update: NBL Orion Flight Lead Tim Goddard

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean talks with Tim Goddard, Neutral Buoyancy Laboratory (NBL) Orion Flight Lead, about how the NBL is used to train rescue and recovery personnel for future Orio...

  13. The Goddard Space Flight Center preferred parts list, revision A

    NASA Technical Reports Server (NTRS)

    Tyson, N. E. (Editor)

    1982-01-01

    A listing is presented of preferred electronic parts, part upgrading procedures, part derating guidelines, and part screening procedures to be used in the selection, procurement, and application of parts for Goddard Space Flight Center space systems and ground support equipment.

  14. Status of NASA Goddard Space Flight Center's Participation in SNAP

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard

    2007-01-01

    Dr. Rauscher will present programatic status and high-level/summary information on the technical status of NASA Goddard Space Flight Center's participation in the SuperNova Acceleration Probe (SNAP). Goddard's participation falls into four areas, and status in each of these will be covered. These areas are as follows: (I) focal plane array and packaging, (2) Teledyne HAWAII-4RG sensor chip assembly, (3) communications studies, and (4) integration and test studies.

  15. Goddard's Astrophysics Science Divsion Annual Report 2014

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2015-01-01

    The Astrophysics Science Division (ASD, Code 660) is one of the world's largest and most diverse astronomical organizations. Space flight missions are conceived, built and launched to observe the entire range of the electromagnetic spectrum, from gamma rays to centimeter waves. In addition, experiments are flown to gather data on high-energy cosmic rays, and plans are being made to detect gravitational radiation from space-borne missions. To enable these missions, we have vigorous programs of instrument and detector development. Division scientists also carry out preparatory theoretical work and subsequent data analysis and modeling. In addition to space flight missions, we have a vibrant suborbital program with numerous sounding rocket and balloon payloads in development or operation. The ASD is organized into five labs: the Astroparticle Physics Lab, the X-ray Astrophysics Lab, the Gravitational Astrophysics Lab, the Observational Cosmology Lab, and the Exoplanets and Stellar Astrophysics Lab. The High Energy Astrophysics Science Archive Research Center (HEASARC) is an Office at the Division level. Approximately 400 scientists and engineers work in ASD. Of these, 80 are civil servant scientists, while the rest are resident university-based scientists, contractors, postdoctoral fellows, graduate students, and administrative staff. We currently operate the Swift Explorer mission and the Fermi Gamma-ray Space Telescope. In addition, we provide data archiving and operational support for the XMM mission (jointly with ESA) and the Suzaku mission (with JAXA). We are also a partner with Caltech on the NuSTAR mission. The Hubble Space Telescope Project is headquartered at Goddard, and ASD provides Project Scientists to oversee operations at the Space Telescope Science Institute. Projects in development include the Neutron Interior Composition Explorer (NICER) mission, an X-ray timing experiment for the International Space Station; the Transiting Exoplanet Sky Survey (TESS

  16. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2010-01-01

    A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. In this talk, I will present: (1) A brief review on GCE model and its applications on the impact of the aerosol on deep precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications). We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems. In addition, high - resolution (spatial. 2km, and temporal, I minute) visualization showing the model results will be presented.

  17. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2010-01-01

    A multi-scale modeling system with unified physics has been developed at NASA Goddard Space Flight Center (GSFC). The system consists of an MMF, the coupled NASA Goddard finite-volume GCM (fvGCM) and Goddard Cumulus Ensemble model (GCE, a CRM); the state-of-the-art Weather Research and Forecasting model (WRF) and the stand alone GCE. These models can share the same microphysical schemes, radiation (including explicitly calculated cloud optical properties), and surface models that have been developed, improved and tested for different environments. In this talk, I will present: (1) A brief review on GCE model and its applications on the impact of the aerosol on deep precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications). We are also performing the inline tracer calculation to comprehend the ph ysical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems.

  18. [Activities of Goddard Earth Sciences and Technology Center, Maryland University

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Goddard Space Flight Center (GSFC) is recognized as a world leader in the application of remote sensing and modeling aimed at improving knowledge of the Earth system. The Goddard Earth Sciences Directorate plays a central role in NASA's Earth Observing System and the U.S. Global Change Research Program. Goddard Earth Sciences and Technology (GEST) is organized as a cooperative agreement with the GSFC to promote excellence in the Earth sciences, and is a consortium of universities and corporations (University of Maryland Baltimore County, Howard University, Hampton University, Caelum Research Corporation and Northrop Grumman Corporation). The aim of this new program is to attract and introduce promising students in their first or second year of graduate studies to Oceanography and Earth system science career options through hands-on instrumentation research experiences on coastal processes at NASA's Wallops Flight Facility on the Eastern Shore of Virginia.

  19. The 1988 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Rash, James (Editor); Hughes, Peter (Editor)

    1988-01-01

    This publication comprises the papers presented at the 1988 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in these proceedings fall into the following areas: mission operations support, planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; modeling and simulation; and development tools/methodologies.

  20. The Goddard Earth Sciences and Technology Center (GEST Center)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The following is a technical report of the progress made under Cooperative Agreement NCC5494, the Goddard Earth Sciences and Technology Center (GEST). The period covered by this report is October 1, 2001 through December 31, 2001. GEST is a consortium of scientists and engineers, led by the University of Maryland, Baltimore County (UMBC), to conduct scientific research in Earth and information sciences and related technologies in collaboration with the NASA Goddard Space Flight Center (GSFC). GEST was established through a cooperative agreement signed May 11, 2000, following a competitive procurement process initiated by GSFC.

  1. New, Improved Goddard Bulk-Microphysical Schemes for Studying Precipitation Processes in WRF

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    An improved bulk microphysical parameterization is implemented into the Weather Research and Forecasting ()VRF) model. This bulk microphysical scheme has three different options, 2ICE (cloud ice & snow), 3ICE-graupel (cloud ice, snow & graupel) and 3ICE-hail (cloud ice, snow & hail). High-resolution model simulations are conducted to examine the impact of microphysical schemes on two different weather events (a midlatitude linear convective system and an Atlantic hurricane). The results suggest that microphysics has a major impact on the organization and precipitation processes associated with a summer midlatitude convective line system. The Goddard 3ICE scheme with a cloud ice-snow-hail configuration agreed better with observations in terms of rainfall intensity and a narrow convective line than did simulations with a cloud ice-snow-graupel or cloud ice-snow (i.e., 2ICE) configuration. This is because the 3ICE-hail scheme includes dense ice precipitating (hail) particle with very fast fall speed (over 10 in For an Atlantic hurricane case, the Goddard microphysical schemes had no significant impact on the track forecast but did affect the intensity slightly. The improved Goddard schemes are also compared with WRF's three other 3ICE bulk microphysical schemes: WSM6, Purdue-Lin and Thompson. For the summer midlatitude convective line system, all of the schemes resulted in simulated precipitation events that were elongated in the southwest-northeast direction in qualitative agreement with the observed feature. However, the Goddard 3ICE scheme with the hail option and the Thompson scheme agree better with observations in terms of rainfall intensity, expect that the Goddard scheme simulated more heavy rainfall (over 48 mm/h). For the Atlantic hurricane case, none of the schemes had a significant impact on the track forecast; however, the simulated intensity using the Purdue-Lin scheme was much stronger than the other schemes. The vertical distributions of model

  2. Research and Technology Report. Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1996-01-01

    This issue of Goddard Space Flight Center's annual report highlights the importance of mission operations and data systems covering mission planning and operations; TDRSS, positioning systems, and orbit determination; ground system and networks, hardware and software; data processing and analysis; and World Wide Web use. The report also includes flight projects, space sciences, Earth system science, and engineering and materials.

  3. Geographic information systems at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Goldberg, M.

    1982-01-01

    The basic functions of a Geographic Information System (GIS) and the different ways that a GIS may be implemented are described. It surveys that GIS software packages that are currently in operation at the Goddard Space Flight Center and discusses the types of applications for which they are best suited. Future plans for in-house GIS research and development are outlined.

  4. Carrier account utilization at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Mathis, W. E.; Langmead, J. T.

    1972-01-01

    The system in use at Goddard Space Flight Center for the utilization of the Common Use Service Carrier Account and the R&D Inventory Carrier Account technique for budgeting, accounting, financial control, and management reporting, both for the individual functional area and on a Center-wide basis, is documented.

  5. The 1994 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Hostetter, Carl F. (Editor)

    1994-01-01

    This publication comprises the papers presented at the 1994 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/GSFC, Greenbelt, Maryland, on 10-12 May 1994. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  6. Implementation of hydrologic models at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Major watershed simulation models were implemented on the computer system at NASA Goddard Space Flight Center, and their operation was verified. Historical and physiographic data were acquired for two Maryland river basins (Monocasy River above Jug Bridge and Patuxent River near Laurel, Maryland) and the models were calibrated to simulate them. GSFC personnel were instructed in model operation after the models were implemented.

  7. NASA Goddard Space Flight Center Supply Chain Management Program

    NASA Technical Reports Server (NTRS)

    Kelly, Michael P.

    2011-01-01

    This slide presentation reviews the working of the Supplier Assessment Program at NASA Goddard Space Flight Center. The program supports many GSFC projects to ensure suppliers are aware of and are following the contractual requirements, to provide an independent assessment of the suppliers' processes, and provide suppliers' safety and mission assurance organizations information to make the changes within their organization.

  8. Performance of the Goddard multiscale modeling framework with Goddard ice microphysical schemes

    NASA Astrophysics Data System (ADS)

    Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Matsui, Toshihisa; Li, J.-L. F.; Mohr, Karen I.; Skofronick-Jackson, Gail M.; Peters-Lidard, Christa D.

    2016-03-01

    The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has become a new approach for climate modeling. The embedded CRMs make it possible to apply CRM-based cloud microphysics directly within a GCM. However, most such schemes have never been tested in a global environment for long-term climate simulation. The benefits of using an MMF to evaluate rigorously and improve microphysics schemes are here demonstrated. Four one-moment microphysical schemes are implemented into the Goddard MMF and their results validated against three CloudSat/CALIPSO cloud ice products and other satellite data. The new four-class (cloud ice, snow, graupel, and frozen drops/hail) ice scheme produces a better overall spatial distribution of cloud ice amount, total cloud fractions, net radiation, and total cloud radiative forcing than earlier three-class ice schemes, with biases within the observational uncertainties. Sensitivity experiments are conducted to examine the impact of recently upgraded microphysical processes on global hydrometeor distributions. Five processes dominate the global distributions of cloud ice and snow amount in long-term simulations: (1) allowing for ice supersaturation in the saturation adjustment, (2) three additional correction terms in the depositional growth of cloud ice to snow, (3) accounting for cloud ice fall speeds, (4) limiting cloud ice particle size, and (5) new size-mapping schemes for snow and graupel. Despite the cloud microphysics improvements, systematic errors associated with subgrid processes, cyclic lateral boundaries in the embedded CRMs, and momentum transport remain and will require future improvement.

  9. Performance of the Goddard Multiscale Modeling Framework with Goddard Ice Microphysical Schemes

    NASA Astrophysics Data System (ADS)

    Chern, J. D.; Tao, W. K.; Lang, S. E.; Matsui, T.; Li, J. L. F.; Mohr, K. I.

    2015-12-01

    The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has become a new approach for climate modeling. The embedded CRMs make it possible to apply CRM-based cloud microphysics directly within a GCM. However, most such schemes have never been tested in a global environment for long-term climate simulation. The benefits of using an MMF to evaluate rigorously and improve microphysics schemes are here demonstrated. Four one-moment microphysical schemes are implemented into the Goddard MMF and their results validated against three CloudSat/CALIPSO cloud ice products, CloudSat/CALIPSO cloud fractions, and other satellite data. The new four-class (cloud ice, snow, graupel, and frozen drops/hail) ice scheme produces a better overall spatial distribution of cloud ice amount and total cloud radiative forcing than earlier three-class ice schemes, with biases within the observational uncertainties. Sensitivity experiments are conducted to examine the impact of recently upgraded microphysical processes on global hydrometeor distributions. Five processes dominate the global distributions of cloud ice and snow amount in long-term simulations: (1) allowing for ice supersaturation in the saturation adjustment, (2) three additional correction terms in the depositional growth of cloud ice to snow, (3) accounting for cloud ice fall speeds, (4) limiting cloud ice particle size, and (5) new size-mapping schemes for snow/graupel as functions of temperature and mixing ratio. Despite the cloud microphysics improvements, systematic errors associated with sub-grid processes and cyclic lateral boundaries in the embedded CRMs remain and will require future improvement.

  10. Performance of the Goddard Multiscale Modeling Framework with Goddard Ice Microphysical Schemes

    NASA Technical Reports Server (NTRS)

    Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Matsui, Toshihisa; Li, J.-L.; Mohr, Karen I.; Skofronick-Jackson, Gail M.; Peters-Lidard, Christa D.

    2016-01-01

    The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has become a new approach for climate modeling. The embedded CRMs make it possible to apply CRM-based cloud microphysics directly within a GCM. However, most such schemes have never been tested in a global environment for long-term climate simulation. The benefits of using an MMF to evaluate rigorously and improve microphysics schemes are here demonstrated. Four one-moment microphysical schemes are implemented into the Goddard MMF and their results validated against three CloudSat/CALIPSO cloud ice products and other satellite data. The new four-class (cloud ice, snow, graupel, and frozen drops/hail) ice scheme produces a better overall spatial distribution of cloud ice amount, total cloud fractions, net radiation, and total cloud radiative forcing than earlier three-class ice schemes, with biases within the observational uncertainties. Sensitivity experiments are conducted to examine the impact of recently upgraded microphysical processes on global hydrometeor distributions. Five processes dominate the global distributions of cloud ice and snow amount in long-term simulations: (1) allowing for ice supersaturation in the saturation adjustment, (2) three additional correction terms in the depositional growth of cloud ice to snow, (3) accounting for cloud ice fall speeds, (4) limiting cloud ice particle size, and (5) new size-mapping schemes for snow and graupel. Despite the cloud microphysics improvements, systematic errors associated with subgrid processes, cyclic lateral boundaries in the embedded CRMs, and momentum transport remain and will require future improvement.

  11. NASA tech brief evaluations

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1994-01-01

    A major step in transferring technology is to disseminate information about new developments to the appropriate sector(s). A useful vehicle for transferring technology from the government sector to industry has been demonstrated with the use of periodical and journal announcements to highlight technological achievements which may meet the needs of industries other than the one who developed the innovation. To meet this end, NASA has very successfully pursued the goal of identifying technical innovations through the national circulation publication; NASA Tech Briefs. At one time the Technology Utilization Offices of the various centers coordinated the selection of appropriate technologies through a common channel. In recent years, each NASA field center has undertaken the task of evaluating submittals for Tech Brief publication independently of the others. The University of Alabama in Huntsville was selected to assist MSFC in evaluating technology developed under the various programs managed by the NASA center for publication in the NASA Tech Briefs journal. The primary motivation for the NASA Tech Briefs publication is to bring to the attention of industry the various NASA technologies which, in general, have been developed for a specific aerospace requirement, but has application in other areas. Since there are a number of applications outside of NASA that can benefit from innovative concepts developed within the MSPC programs, the ability to transfer technology to other sectors is very high. In most cases, the innovator(s) are not always knowledgeable about other industries which might potentially benefit from their innovation. The evaluation process can therefore contribute to the list of potential users through a knowledgeable evaluator.

  12. Research and technology, 1990: Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Goddard celebrates 1990 as a banner year in space based astronomy. From above the Earth's obscuring atmosphere, four major orbiting observatories examined the heavens at wavelengths that spanned the electromagnetic spectrum. In the infrared and microwave, the Cosmic Background Explorer (COBE), measured the spectrum and angular distribution of the cosmic background radiation to extraordinary precision. In the optical and UV, the Hubble Space Telescope has returned spectacular high resolution images and spectra of a wealth of astronomical objects. The Goddard High Resolution Spectrograph has resolved dozens of UV spectral lines which are as yet unidentified because they have never before been seen in any astronomical spectrum. In x rays, the Roentgen Satellite has begun returning equally spectacular images of high energy objects within our own and other galaxies.

  13. Aerospace Battery Activities at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.

    2006-01-01

    Goddard Space Flight Center has "pioneered" rechargeable secondary battery design, test, infusion and in-orbit battery management among NASA installations. Nickel cadmium batteries of various designs and sizes have been infused for LEO, GEO and Libration Point spacecraft. Nickel-Hydrogen batteries have currently been baselined for the majority of our missions. Li-Ion batteries from ABSL, JSB, SaFT and Lithion have been designed and tested for aerospace application.

  14. The 1990 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1990-01-01

    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.

  15. Reliability Practice at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Pruessner, Paula S.; Li, Ming

    2008-01-01

    This paper describes in brief the Reliability and Maintainability (R&M) Programs performed directly by the reliability branch at Goddard Space Flight Center (GSFC). The mission assurance requirements flow down is explained. GSFC practices for PRA, reliability prediction/fault tree analysis/reliability block diagram, FMEA, part stress and derating analysis, worst case analysis, trend analysis, limit life items are presented. Lessons learned are summarized and recommendations on improvement are identified.

  16. The Goddard High Resolution Spectrograph: Instrument, goals, and science results

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Heap, S. R.; Beaver, E. A.; Boggess, A.; Carpenter, K. G.; Ebbets, D. C.; Hutchings, J. B.; Jura, M.; Leckrone, D. S.; Linsky, J. L.

    1994-01-01

    The Goddard High Resolution Spectrograph (GHRS), currently in Earth orbit on the Hubble Space Telescope (HST), operates in the wavelength range 1150-3200 A with spectral resolutions (lambda/delta lambda) of approximately 2 x 10(exp 3), 2 x 10(exp 4), and 1 x 10(exp 3). The instrument and its development from inception, its current status, the approach to operations, representative results in the major areas of the scientific goals, and prospects for the future are described.

  17. The 1977 Goddard Space Flight Center Battery Workshop

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The papers presented were derived from transcripts taken at the Tenth Annual Battery Workshop held at the Goddard Space Flight Center, November 15-17, 1977. The Workshop was attended by manufacturers, users, and government representatives interested in the latest results of testing, analysis, and development of the sealed nickel cadmium cell system. The purpose of the Workshop was to share flight and test experience, stimulate discussion on problem areas, and to review the latest technology improvements.

  18. RFI Risk Reduction Activities Using New Goddard Digital Radiometry Capabilities

    NASA Technical Reports Server (NTRS)

    Bradley, Damon; Kim, Ed; Young, Peter; Miles, Lynn; Wong, Mark; Morris, Joel

    2012-01-01

    The Goddard Radio-Frequency Explorer (GREX) is the latest fast-sampling radiometer digital back-end processor that will be used for radiometry and radio-frequency interference (RFI) surveying at Goddard Space Flight Center. The system is compact and deployable, with a mass of about 40 kilograms. It is intended to be flown on aircraft. GREX is compatible with almost any aircraft, including P-3, twin otter, C-23, C-130, G3, and G5 types. At a minimum, the system can function as a clone of the Soil Moisture Active Passive (SMAP) ground-based development unit [1], or can be a completely independent system that is interfaced to any radiometer, provided that frequency shifting to GREX's intermediate frequency is performed prior to sampling. If the radiometer RF is less than 200MHz, then the band can be sampled and acquired directly by the system. A key feature of GREX is its ability to simultaneously sample two polarization channels simultaneously at up to 400MSPS, 14-bit resolution each. The sampled signals can be recorded continuously to a 23 TB solid-state RAID storage array. Data captures can be analyzed offline using the supercomputing facilities at Goddard Space Flight Center. In addition, various Field Programmable Gate Array (FPGA) - amenable radiometer signal processing and RFI detection algorithms can be implemented directly on the GREX system because it includes a high-capacity Xilinx Virtex-5 FPGA prototyping system that is user customizable.

  19. Tech House

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The members of the Swain family- Dr. Charles "Bill" Swain, wife Elaine, daughter Carol, 17, son "Chuck", 12, and dog Susie have an interesting assignment. They are active participants in an important NASA research program involving the application of space-age technology to home construction. b' Transplanted Floridians, the Swains now reside in NASA's Tech House, loatedat Langley Research Center, Hampton, Virginia. Their job is to use and help evaluate the variety of advanced technology systems in Tech House. A contemporary three-bedroom home, Tech House incorporates NASA technology, the latest commercial building techniques and other innovations, all designed to reduce energy and water consumption and to provide new levels of comfort, convenience, security and fire safety. Tech House equipment performed well in initial tests, but a house is not a home until it has people. That's where the Swains come in. NASA wants to see how the various systems work under actual living conditions, to confirm the effectiveness of the innovations or to determine necessary modifications for improvement. The Swains are occupying the house for a year, during which NASA engineers are computer monitoring the equipment and assembling a record of day-to-day performance. . Tech House is a laboratory rather than a mass production prototype, but its many benefits may influence home design and construction. In a period of sharply rising utility costs, widespread adoption of Tech House features could provide large-scale savings to homeowners and potentially enormous national benefit in resources conservation. Most innovations are aerospace spinoffs: Some of the equipment is now commercially available; other systems are expected to be in production within a few years. Around 1980, a Tech House-type of home could be built for $45-50,000 (1 976 dollars). It is estimated that the homeowner would save well over $20,000 (again 1976 dollars) in utility costs over the average mortgage span of 20 years.

  20. Tech Prep: Pathways to Success? The Performance of Tech Prep and Non-Tech Prep Students at a Midwestern Community College.

    ERIC Educational Resources Information Center

    Krile, Donna J.; Parmer, Penelope

    This study looks at all students who participated in a Tech Prep program at Sinclair Community College, Ohio, and who first enrolled in the program between fall 1997 and spring 2001. The comparison group consisted of all non-Tech Prep students who started at Sinclair between fall 1997 and fall 2000, and who had not transferred credits from any…

  1. The Scientific Visualization Studio at the NASA/Goddard Space Flight Center

    NASA Astrophysics Data System (ADS)

    White, R. A.; Strong, J. E.; Pape, D. E.; Mitchell, H. G.; McConnell, A.; Cavallo, J. M.; Twiddy, R. L.; Rais, H.

    1993-05-01

    The Scientific Visualization Studio is a part of the Scientific Applications and Visualization Branch of the Space Data and Computing Division at the NASA/Goddard Space Flight Center. It is tasked to provide advanced data visualization support to users of the NASA Center for the Computational Sciences and other NASA funded scientific researchers in both the space and Earth Sciences. Such support includes providing both software and expertise in visualizing large, complex, multidimensional data sets, and in creating videos, films, and other forms of hardcopy of the results. Hardware and software tools include a Cray Y/MP, a Convex C3240, a MasPar MP-1, a family of SGI workstations, video disks and recorders in all the international standards, color printers, photographic and movie transfer tools, and IDL, AVS, and FAST. We demonstrate these capabilities, as applied to various Earth and space science data sets, through a variety of annotated images and a video.

  2. Regional-Scale Modeling at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Adler, R.; Baker, D.; Braun, S.; Chou, M.-D.; Jasinski, M. F.; Jia, Y.; Kakar, R.; Karyampudi, M.; Lang, S.

    2003-01-01

    Over the past decade, the Goddard Mesoscale Modeling and Dynamics Group has used a popular regional scale model, MM5, to study precipitation processes. Our group is making contributions to the MM5 by incorporating the following physical and numerical packages: improved Goddard cloud processes, a land processes model (Parameterization for Land-Atmosphere-Cloud Exchange - PLACE), efficient but sophisticated radiative processes, conservation of hydrometeor mass (water budget), four-dimensional data assimilation for rainfall, and better computational methods for trace gas transport. At NASA Goddard, the MM5 has been used to study: (1) the impact of initial conditions, assimilation of satellite-derived rainfall, and cumulus parameterizations on rapidly intensifying oceanic cyclones, hurricanes and typhoons, (2) the dynamic and thermodynamic processes associated with the development of narrow cold frontal rainbands, (3) regional climate and water cycles, (4) the impact of vertical transport by clouds and lightning on trace gas distributiodproduction associated with South and North American mesoscale convective systems, (5) the development of a westerly wind burst (WWB) that occurred during the TOGA COARE and the diurnal variation of precipitation in the tropics, (6) a Florida sea breeze convective event and a Mid-US flood event using a sophisticated land surface model, (7) the influence of soil heterogeneity on land surface energy balance in the southwest GCIP region, (8) explicit simulations (with 1.33 to 4 km horizontal resolution) of hurricanes Bob (1991) and Bonnie (1998), (9) a heavy precipitation event over Taiwan, and (10) to make real time forecasts for a major NASA field program. In this paper, the modifications and simulated cases will be described and discussed.

  3. Transferring Technology to Industry

    NASA Technical Reports Server (NTRS)

    Wolfenbarger, J. Ken

    2006-01-01

    This slide presentation reviews the technology transfer processes in which JPL has been involved to assist in transferring the technology derived from aerospace research and development to industry. California Institute of Technology (CalTech), the organization that runs JPL, is the leading institute in patents for all U.S. universities. There are several mechanisms that are available to JPL to inform industry of these technological advances: (1) a dedicated organization at JPL, National Space Technology Applications (NSTA), (2) Tech Brief Magazine, (3) Spinoff magazine, and (4) JPL publications. There have also been many start-up organizations and businesses from CalTech.

  4. R and T report: Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald A. (Editor)

    1993-01-01

    The 1993 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) flight projects; (2) space sciences including cosmology, high energy, stars and galaxies, and the solar system; (3) earth sciences including process modeling, hydrology/cryology, atmospheres, biosphere, and solid earth; (4) networks, planning, and information systems including support for mission operations, data distribution, advanced software and systems engineering, and planning/scheduling; and (5) engineering and materials including spacecraft systems, material and testing, optics and photonics and robotics.

  5. The Goddard program of gamma-ray transient astronomy

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Teegarden, B. J.

    1981-01-01

    The Goddard program of gamma-ray burst studies is briefly reviewed. The past results, present status and future expectations are outlined regarding our endeavors using experiments on balloons. IMP-6 and IMP-7, OGO-3, ISEE-1 and ISEE-3, Helios-2, Solar Maximum Mission, the Einstein Observatory, Solar Polar and the Gamma Ray Observatory, and with the interplanetary gamma-ray burst networks, to which some of these spacecraft sensors contribute. Additional emphasis is given to the recent discovery of a new type of gamma-ray transient, detected on 5 March, 1979.

  6. The 1987 Goddard Space Flight Center Battery Workshop

    NASA Technical Reports Server (NTRS)

    Morrow, George (Editor); Yi, Thomas Y. (Editor)

    1993-01-01

    This document contains the proceedings of the 20th annual Battery Workshop held at Goddard Space Flight Center, Greenbelt, Maryland on November 4-5, 1987. The workshop attendees included manufacturers, users, and government representatives interested in the latest developments in battery technology as they relate to high reliability operations and aerospace use. The subjects covered included lithium cell technology and safety improvements, nickel-cadmium electrode technology along with associated modifications, flight experience and life testing of nickel-cadmium cells, and nickel-hydrogen applications and technology.

  7. Robert Goddard Young, DC, ND: Searching for a better way

    PubMed Central

    Brown, Douglas M.

    2009-01-01

    This biographical study tracks the life of Robert Goddard Young; a member of the Canadian Memorial Chiropractic College’s (CMCC) Class of 1950. The paper begins with an overview of Robert Young’s origins, his childhood and early training, moves to his tour of duty in World War II, followed by his education at CMCC, before converging on the core of this matter; Robert Young’s professional career, which spanned over half a century. Now in his twilight years, the paper ends with a discussion on the substance of Dr. Young’s largely-forgotten contributions. PMID:19714235

  8. The 1988 Goddard Space Flight Center Battery Workshop

    NASA Technical Reports Server (NTRS)

    Yi, Thomas Y. (Editor)

    1993-01-01

    This document contains the proceedings of the 21st annual Battery Workshop held at Goddard Space Flight Center, Greenbelt, Maryland on November 1-3, 1988. The Workshop attendees included manufacturers, users, and government representatives interested in the latest developments in battery technology as they relate to high reliability operations and aerospace use. The subjects covered included battery testing methodologies and criteria, life testing of nickel-cadmium cells, testing and operation of nickel-hydrogen batteries in low earth orbit, and nickel-hydrogen technology issues and concerns.

  9. Ground System Harmonization Efforts at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Smith, Dan

    2011-01-01

    This slide presentation reviews the efforts made at Goddard Space Flight Center in harmonizing the ground systems to assist in collaboration in space ventures. The key elements of this effort are: (1) Moving to a Common Framework (2) Use of Consultative Committee for Space Data Systems (CCSDS) Standards (3) Collaboration Across NASA Centers (4) Collaboration Across Industry and other Space Organizations. These efforts are working to bring into harmony the GSFC systems with CCSDS standards to allow for common software, use of Commercial Off the Shelf Software and low risk development and operations and also to work toward harmonization with other NASA centers

  10. The 1991 research and technology report, Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald (Editor); Ottenstein, Howard (Editor); Montgomery, Harry (Editor); Truszkowski, Walter (Editor); Frost, Kenneth (Editor); Sullivan, Walter (Editor); Boyle, Charles (Editor)

    1991-01-01

    The 1991 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) earth sciences including upper atmosphere, lower atmosphere, oceans, hydrology, and global studies; (2) space sciences including solar studies, planetary studies, Astro-1, gamma ray investigations, and astrophysics; (3) flight projects; (4) engineering including robotics, mechanical engineering, electronics, imaging and optics, thermal and cryogenic studies, and balloons; and (5) ground systems, networks, and communications including data and networks, TDRSS, mission planning and scheduling, and software development and test.

  11. Precision orbit determination at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Putney, B.; Kolenkiewicz, R.; Smith, D.; Dunn, P.; Torrence, M. H.

    1990-01-01

    This paper describes the GEODYN computer program developed by the Geodynamics Branch at the NASA Goddard Space Flight Center and outlines the procedure for accurate satellite orbit and tracking-data analyses. The capabilities of the program allow the development of gravity fields as large as 90 by 90, and a complete modeling of tidal parameters. It is also feasible to numerically integrate a continuous orbit of a satellite such as Lageos for up to 12 years. The evolution of the orbit can be studied, and, by comparison with locally determined orbits, force model improvements can be made. The GEODYN flow diagrams are presented.

  12. Goddard Conference on Mass Storage Systems and Technologies, Volume 1

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor)

    1993-01-01

    Copies of nearly all of the technical papers and viewgraphs presented at the Goddard Conference on Mass Storage Systems and Technologies held in Sep. 1992 are included. The conference served as an informational exchange forum for topics primarily relating to the ingestion and management of massive amounts of data and the attendant problems (data ingestion rates now approach the order of terabytes per day). Discussion topics include the IEEE Mass Storage System Reference Model, data archiving standards, high-performance storage devices, magnetic and magneto-optic storage systems, magnetic and optical recording technologies, high-performance helical scan recording systems, and low end helical scan tape drives. Additional topics addressed the evolution of the identifiable unit for processing purposes as data ingestion rates increase dramatically, and the present state of the art in mass storage technology.

  13. Observing system simulation experiments at NASA. Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Atlas, R.; Kalnay, E.; Baker, W. E.; Susskind, J.; Reuter, D.; Halem, M.

    1985-01-01

    A series of realistic simulation studies is being conducted as a cooperative effort between the European Centre for Medium Range Weather Forecasts (ECMWF), the National Meteorological Center (NMC), and the Goddard Laboratory for Atmospheres (GLA), to provide a quantitative assessment of the potential impact of future observing systems on large scale numerical weather prediction. A special objective is to avoid the unrealistic character of earlier simulation studies. Following a brief review of previous simulation studies and real data impact tests, the methodology for the current simulation system will be described. Results from an assessment of the realism of the simulation system and of the potential impact of advanced observing systems on numerical weather prediction and preliminary results utilizing this system will be presented at the conference.

  14. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report include the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  15. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report contain supporting documentation, including the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  16. Fourth NASA Goddard Conference on Mass Storage Systems and Technologies

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    1994-01-01

    This report contains copies of all those technical papers received in time for publication just prior to the Fourth Goddard Conference on Mass Storage and Technologies, held March 28-30, 1995, at the University of Maryland, University College Conference Center, in College Park, Maryland. This series of conferences continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include new storage technology, stability of recorded media, performance studies, storage system solutions, the National Information infrastructure (Infobahn), the future for storage technology, and lessons learned from various projects. There also will be an update on the IEEE Mass Storage System Reference Model Version 5, on which the final vote was taken in July 1994.

  17. CCSDS telemetry systems experience at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Carper, Richard D.; Stallings, William H., III

    1990-01-01

    NASA Goddard Space Flight Center (GSFC) designs, builds, manages, and operates science and applications spacecraft in near-earth orbit, and provides data capture, data processing, and flight control services for these spacecraft. In addition, GSFC has the responsibility of providing space-ground and ground-ground communications for near-earth orbiting spacecraft, including those of the manned spaceflight programs. The goal of reducing both the developmental and operating costs of the end-to-end information system has led the GSFC to support and participate in the standardization activities of the Consultative Committee for Space Data Systems (CCSDS), including those for packet telemetry. The environment in which such systems function is described, and the GSFC experience with CCSDS packet telemetry in the context of the Gamma-Ray Observatory project is discussed.

  18. CCSDS telemetry systems experience at the Goddard Space Flight Center

    NASA Astrophysics Data System (ADS)

    Carper, Richard D.; Stallings, William H., III

    1990-09-01

    NASA Goddard Space Flight Center (GSFC) designs, builds, manages, and operates science and applications spacecraft in near-earth orbit, and provides data capture, data processing, and flight control services for these spacecraft. In addition, GSFC has the responsibility of providing space-ground and ground-ground communications for near-earth orbiting spacecraft, including those of the manned spaceflight programs. The goal of reducing both the developmental and operating costs of the end-to-end information system has led the GSFC to support and participate in the standardization activities of the Consultative Committee for Space Data Systems (CCSDS), including those for packet telemetry. The environment in which such systems function is described, and the GSFC experience with CCSDS packet telemetry in the context of the Gamma-Ray Observatory project is discussed.

  19. An evaluation of the Goddard Space Flight Center Library

    NASA Technical Reports Server (NTRS)

    Herner, S.; Lancaster, F. W.; Wright, N.; Ockerman, L.; Shearer, B.; Greenspan, S.; Mccartney, J.; Vellucci, M.

    1979-01-01

    The character and degree of coincidence between the current and future missions, programs, and projects of the Goddard Space Flight Center and the current and future collection, services, and facilities of its library were determined from structured interviews and discussions with various classes of facility personnel. In addition to the tabulation and interpretation of the data from the structured interview survey, five types of statistical analyses were performed to corroborate (or contradict) the survey results and to produce useful information not readily attainable through survey material. Conclusions reached regarding compatability between needs and holdings, services and buildings, library hours of operation, methods of early detection and anticipation of changing holdings requirements, and the impact of near future programs are presented along with a list of statistics needing collection, organization, and interpretation on a continuing or longitudinal basis.

  20. Did the Germans learn from Goddard? An examination of whether the rocketry of R.H. Goddard influenced German Pre-World-War II missile development

    NASA Astrophysics Data System (ADS)

    Winter, Frank H.

    2016-10-01

    Ever since a few months before the death of American rocket pioneer Dr. Robert H. Goddard, on 10 August 1945, it has been widely claimed he was the true source of the development of the infamous V-2 rocket of World War II - the world's first large-scale liquid-propellant rocket. It is thus alleged the German developers of the V-2 had "stolen" ideas from Goddard to create the V-2 that was also the forerunner of the world's first space launch vehicles. The question of the validity of this claim thus becomes far more significant than first appears and is the subject of this article. But we must first briefly examine other popular conceptions, or rather, misconceptions, about Goddard in our own Space Age. This helps establish a "bigger picture" that identifies some of the problems in overall misinterpretations of Goddard that also applies to his supposed role in the development of the V-2.1

  1. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.; Kumar, S.; Lapenta, W.; Li, X.; Matsui, T.; Rienecker, M.; Shen, B.W.; Shi, J.J.; Simpson, J.; Zeng, X.

    2008-01-01

    Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite

  2. Field Experiment Data Support at the Goddard DAAC

    NASA Astrophysics Data System (ADS)

    Hrubiak, P. L.; Yang, R.; Ahmad, S.; Chiu, L.; Teng, W.; Liu, Z.; Serafino, G.; Rui, H.; Bonk, J.; Pollack, N.

    2001-12-01

    Historically, field experiment data support at the data center level has been sketchy, but in the last decade, because of rapid growth of electronic capabilities throughout the science community, the data center has become the resolution of choice to the problems of campaign data distribution and archival. Even so, field campaign data, being inherently non-uniform, require significant adaptation on the part of the archive. The participant complement for a campaign ranges widely-from one to three dozen investigators. Each has his/her own instrument, organizational affiliation, and funding. Many are academics with class schedules to consider, an office staff composed of graduate students and a correspondingly high turnover rate. Some are operating with very limited resources and lack the programming staff to tailor their data to archive specifications. Data delivery schedules, formatting and documentation are all driven by these factors. Planning for data volume also requires flexibility. Campaign data acquisition is sensitive to weather and a variety of logistical problems. Planning for campaign data volume is therefore a matter of determining thresholds. Since most campaign data sets tend to be small by data center standards, distribution is mainly from anonymous ftp sites front-ended by web sites. The Goddard DAAC opened its campaign archive in 1994 with data from the TRMM oriented TOGA-COARE campaign of 1992-93, and has most recently archived the TRMM global validation campaigns, designed to evaluate the physical assumptions made by TRMM rainfall algorithms, initialize and validate the cloud resolving models, test latent heating retrievals from TRMM measurements, and evaluate methods to estimate rainfall and latent heating from ground based radars. Launched by the TRMM Office in 1998, the TRMM campaigns were designed as a group so that specific measurements could be compared between experiments in order to gain insight into the regional dependence of any findings

  3. AIRS Data Support at NASA Goddard Earth Science DISC DAAC

    NASA Astrophysics Data System (ADS)

    Cho, S.; Qin, J.; Sharma, A.

    2002-05-01

    The Atmospheric Infrared Sounder (AIRS) is selected by NASA to fly on the second Earth Observing System (EOS) polar orbiting platform, EOS Aqua, which is launched in April 2002. AIRS, together with Advanced Microwave Sounding Unit (AMSU) and Humidity Sounder for Brazil (HSB), is designed to meet the requirements of the NASA Earth Science Enterprise climate research program and the NOAA operational weather forecasting The data products from the AIRS/AMSU/HSB will be archived and distributed at the Goddard Distributed Active Archive Center (GDAAC) located in the NASA Goddard Earth Sciences Data and Information Services Center (GES DAAC) in later 2002. This new dataset consists of radiances, geo-locations and atmospheric products, such as, temperature, humidity, cloud and ozone, providing measurements for temperature at an accuracy of 1 o C in layers 1 km thick and humidity with an accuracy of 20 % in layers 2 km thick in the troposphere. The data will be freely available via WWW interfaces, or an FTP containing subsetted and reformatted data products. The GES DISC DAAC Search and Order allows users to search for data by following particular paths down the hierarchy. This simple point-and- click navigational web interface shows temporal and spatial coverage, item size, description and browse images for AIRS data and one can customize search using spatial,temporal, attribute and parameter search. The EOS Data Gateway (EDG) is another user interface for searching and ordering the AIRS data together with other data products obtained from EOS instruments. The Atmospheric Dynamics Data Support Team (ADDST) at the GES DISC/DAAC will provide various services to assist users in understanding, accessing, and using AIRS data product. The ADDST has been developing tools to read, visualize and analyze the AIRS data, channel/parameter subsetting of AIRS HDF-EOS data products and supplying documentation and readme et al. Other services provided by the ADDST will contain assistance

  4. Goddard problem in presence of a dynamic pressure limit

    NASA Technical Reports Server (NTRS)

    Seywald, Hans; Cliff, Eugene M.

    1993-01-01

    The Goddard problem is that of maximizing the final altitude for a vertically ascending, rocket-powered vehicle under the influence of an inverse square gravitational field and atmospheric drag. The present paper deals with the effects of two additional constraints, namely, a dynamic pressure limit and specified final time. Nine different switching structures involving zero-thrust arcs, full-thrust arcs, singular-thrust arcs, and state-constrained arcs are obtained when the value of the dynamic pressure limit is varied between zero and infinity and the final time is specified between the minimum possible time within which all of the fuel can be burned and the natural final time that emerges for the problem with final time unspecified. For all points in the aforementioned domain of dynamic pressure limit and prescribed final time, the associated optimal switching structure is clearly identified. Finally, a simple intuitive feedback law is presented for the free time problem. For all values of prescribed dynamic pressure limit, this strategy yields a loss in final altitude of less than 3 percent with respect to the associated optimal solution.

  5. Goddard Space Flight Center's Structural Dynamics Data Acquisition System

    NASA Technical Reports Server (NTRS)

    McLeod, Christopher

    2004-01-01

    Turnkey Commercial Off The Shelf (COTS) data acquisition systems typically perform well and meet most of the objectives of the manufacturer. The problem is that they seldom meet most of the objectives of the end user. The analysis software, if any, is unlikely to be tailored to the end users specific application; and there is seldom the chance of incorporating preferred algorithms to solve unique problems. Purchasing a customized system allows the end user to get a system tailored to the actual application, but the cost can be prohibitive. Once the system has been accepted, future changes come with a cost and response time that's often not workable. When it came time to replace the primary digital data acquisition system used in the Goddard Space Flight Center's Structural Dynamics Test Section, the decision was made to use a combination of COTS hardware and in-house developed software. The COTS hardware used is the DataMAX II Instrumentation Recorder built by R.C. Electronics Inc. and a desktop Pentium 4 computer system. The in-house software was developed using MATLAB from The MathWorks. This paper will describe the design and development of the new data acquisition and analysis system.

  6. Goddard Space Flight Center's Structural Dynamics Data Acquisition System

    NASA Technical Reports Server (NTRS)

    McLeod, Christopher

    2004-01-01

    Turnkey Commercial Off The Shelf (COTS) data acquisition systems typically perform well and meet most of the objectives of the manufacturer. The problem is that they seldom meet most of the objectives of the end user. The analysis software, if any, is unlikely to be tailored to the end users specific application; and there is seldom the chance of incorporating preferred algorithms to solve unique problems. Purchasing a customized system allows the end user to get a system tailored to the actual application, but the cost can be prohibitive. Once the system has been accepted, future changes come with a cost and response time that's often not workable. When it came time to replace the primary digital data acquisition system used in the Goddard Space Flight Center's Structural Dynamics Test Section, the decision was made to use a combination of COTS hardware and in-house developed software. The COTS hardware used is the DataMAX II Instrumentation Recorder built by R.C. Electronics Inc. and a desktop Pentium 4 computer system. The in-house software was developed using MATLAF3 from The Mathworks. This paper will describe the design and development of the new data acquisition and analysis system.

  7. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalksy, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote earth field sensing magnetometer and servo control building; and a remote power control and instrumentation building. The inner coils are 42-foot in diameter and a 10-foot by 10-foot opening through the outer coils accommodates spacecraft access to the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  8. Prototype software reuse environment at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt

    1989-01-01

    The Goddard Space Flight Center (GSFC) work is organized into four phases and includes participation by a contractor, CTA, Inc. The first phase was an automation study, which began with a comprehensive survey of software development automation technologies. Eight technical areas were analyzed for goals, current capabilities, and obstacles. The study documented current software development practice in GSFC Mission Operations and Data Systems Directorate, and presented short- and long-term recommendations that included focus on reuse and object-oriented development. The second phase, which has been completed, developed a prototype reuse environment with tools supporting object-oriented requirements analysis and design. This phase addressed the operational concept of software reuse, i.e., it attempted to understand how software can be reused. This environment has two semantic networks: object and keywords, and includes automated search, interactive browsing and a graphical display of database contents. Phase 3 was a domain analysis of Payload Operations Control Center (POCC) software. The goal in this phase was to create an initial repository of reusable components and techniques. Seven existing Operations Control Centers at GSFC were studied, but the domain analysis proved to be very slow. A lesson learned from this was that senior people who understand the environment and the functionality of the area are needed to perform successful domain analyses.

  9. Goddard High Resolution Spectrograph SV/GTO Project

    NASA Technical Reports Server (NTRS)

    Ebbets, Dennis

    1999-01-01

    Contract number NAS5-30433, known at Ball Aerospace as the GHRS SV/GTO project, supported our participation in the post-launch activities of the Goddard High Resolution Spectrograph aboard the Hubble Space Telescope. The period of performance was December 1988 through December 1998. The contract supported the involvement of Dr Dennis Ebbets in the work of the GHRS Investigation Definition Team, and several of the Ball people in the documentation and publication of results. Three main categories of tasks were covered by this contract; in-orbit calibration of the GHRS, guaranteed time observations, and education and public outreach. The nature and accomplishments of these tasks are described in the report. This summary makes many references to publications in the scientific and technical literature. Appendix A is extracted from a complete bibliography, and lists those papers that are directly related to work performed under this GHRS contract. The tasks related to the in-orbit calibration of the GHRS were by far the largest responsibility during the first six years of the project. During this period Dr. Ebbets was responsible for the definition of calibration requirements, design of experiments, preparation of observing proposals, tracking their implementation and execution, and coordinating the analysis and publication of the results. Prior to the launch of HST in 1990 the observing proposals were developed in cooperation with the scientists on the GHRS DDT, engineers at Ball Aerospace, the operations staff at the STScI, and project coordinators at GSFC.

  10. Orbital Anomalies in Goddard Spacecraft for Calendar Year 1994

    NASA Technical Reports Server (NTRS)

    Thomas, Walter B.

    1996-01-01

    This report summarizes and updates the annual on-orbit performance between January I and December 31, 1994, for spacecraft built by or managed by the Goddard Space Flight Center (GSFC). During 1994, GSFC had 27 active orbiting satellites and I Shuttle-launched and retrieved 'free flyer.' There were 310 reported anomalies among 21 satellites and one GSFC instrument (TOMS). GOES-8 accounted for 66 anomalies, and SAMPES reported 155 'anomalies'. Of the 155 anomalies reported for all but SAMPEX, only 4 affected the spacecraft missions 'substantially' or greater, that is, presented a loss of more than 33% of the total missions. The most frequent subsystem anomalies were Instrument/Payload(44), Timing Command and Control(40), and Attitude Control Systems(33). Of the non-SAMPEX anomalies, 29% had no effect on the missions and 28% caused subsystem or instrument degradation and, for another 28%, no anomaly effect on the mission could be determined. Fifty-three percent of non-SAMPEX anomalies could not be classified according to 'type'; the other most common types were 'systemic'(35), 'random'(19), and 'normal or expected operation'(15). Forty percent of the anomalies were not classified according to failure category; the remaining most frequent occurrences were 'design problems'(50) and 'other known problems'(35).

  11. Improved Goddard Microphysics for simulating Typhoon Morakot 2009

    NASA Astrophysics Data System (ADS)

    Tao, W.; Shi, J. J.; Lin, P.

    2010-12-01

    Typhoon Morakot struck Taiwan on the night of Friday August 7th, 2009 as a category 2 storm with sustained winds of 85 knots (92 mph). Although the center made landfall in Hualien county along the central east coast of Taiwan and passed over the central northern part of the island, it was southern Taiwan that received the worst effects of the storm where locally as much as 2200 mm (2.2 m) of rain were reported, resulting in the worst flooding there in 50 years. The result of the enormous amount of rain has been massive flooding and devastating mudslides. More than 600 people are confirmed dead. In this paper, we will present the results from high-resolution (2-km) WRF with improved Goddard microphysics for this typhoon case. The results showed that the improved microphysical scheme captured both in terms of maximum rainfall area and intensity. The model results also showed that the heavy amounts of rain over the southern portion of the island is due to persistent southwesterly flow associated with Morakot and it's circulation was able to draw up copious amounts of moisture from the South China Sea into southern Taiwan where it was able to interact with the steep topography. In addition, tracer and trajectory calculations (high resolution visualization) will be conducted to identify the origins of air parcels coming in and getting out eye/eye wall and spiral bands.

  12. Tech Prep Newsletter, 1994.

    ERIC Educational Resources Information Center

    Everett, Jim, Ed.

    1994-01-01

    This document consists of the 36 issues of a newsletter issued during 1994. Each issue is devoted to a specific topic pertinent to Tech Prep. Tech Prep is a federally funded effort, including mathematics, sciences, and language arts, that aims to prepare students for a lifetime of learning and career advancement. The Northwest Tech Prep Consortium…

  13. Tech Prep Bridge Programs.

    ERIC Educational Resources Information Center

    Gohdes, William

    1995-01-01

    Although tech prep is still in its infancy in Georgia, increasing numbers of students are entering technical institutes after having completed the secondary-level component of tech prep programs. Georgia's technical institutes must begin the process of developing bridge programs to help adult students with no tech prep experience develop academic…

  14. Robust, Radiation Tolerant Command and Data Handling and Power System Electronics from NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nguyen, Hanson C.; Fraction, James; Ortiz-Acosta, Melyane; Dakermanji, George; Kercheval, Bradford P.; Hernandez-Pellerano, Amri; Kim, David S.; Jung, David S.; Meyer, Steven E.; Mallik, Udayan; Rush, Kurt D.; Farid, Faramarz; Olsen, James C.; Sparacino, Pietro A.

    2016-01-01

    The Goddard Modular Smallsat Architecture (GMSA) is developed at NASA Goddard Space Flight Center (GSFC) to address future reliability along with minimizing cost and schedule challenges for NASA Cubesat and Smallsat missions.

  15. Project Synopsis for High School/High Tech

    NASA Technical Reports Server (NTRS)

    1997-01-01

    To help increase the diversity of workers at NASA centers it is necessary to provide students with disabilities the opportunities to explore careers in high technology. HIGH SCHOOL/HIGH TECH, an enrichment program, pioneered at Goddard Space Flight Center, successfully introduces students with disabilities to high tech careers. This community-based partnership serves as a model for three additional NASA sites-Ames Research Center, Johnson Space Flight Center, and Lewis Research Center. For a three year period beginning August 15, 1995, provide financial and technical support to a local agency in each NASA center area which serves persons with disabilities to enable a High School/High Tech program to develop and stand alone. Each project will develop a basis of cooperation with Ames, Johnson, and Lewis as well as a variety of community groups including the public schools, high tech employers, post-secondary education and training programs, rehabilitation agencies, and community economic development organizations. Throughout the startup period and thereafter, local youths with disabilities will have early exposure to professions in mathematics, science, and technology-related fields. This exposure will be multifaceted to insure adequate opportunity for realistic career exploration so these youths have an opportunity to test their interests and abilities. The exposure will be presented in the most supportive environment that is feasible.

  16. Regional climate change predictions from the Goddard Institute for Space Studies high resolution GCM

    NASA Technical Reports Server (NTRS)

    Crane, Robert G.; Hewitson, Bruce

    1990-01-01

    Model simulations of global climate change are seen as an essential component of any program aimed at understanding human impact on the global environment. A major weakness of current general circulation models (GCMs), however, is their inability to predict reliably the regional consequences of a global scale change, and it is these regional scale predictions that are necessary for studies of human/environmental response. This research is directed toward the development of a methodology for the validation of the synoptic scale climatology of GCMs. This is developed with regard to the Goddard Institute for Space Studies (GISS) GCM Model 2, with the specific objective of using the synoptic circulation form a doubles CO2 simulation to estimate regional climate change over North America, south of Hudson Bay. This progress report is specifically concerned with validating the synoptic climatology of the GISS GCM, and developing the transfer function to derive grid-point temperatures from the synoptic circulation. Principal Components Analysis is used to characterize the primary modes of the spatial and temporal variability in the observed and simulated climate, and the model validation is based on correlations between component loadings, and power spectral analysis of the component scores. The results show that the high resolution GISS model does an excellent job of simulating the synoptic circulation over the U.S., and that grid-point temperatures can be predicted with reasonable accuracy from the circulation patterns.

  17. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalksy, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground-testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  18. The Goddard High Resolution Spectrograph Scientific Support Contract

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In 1988, Computer Sciences Corporation (CSC) was selected as the Goddard High Resolution Spectrograph (GHRS) Scientific Support Contractor (SSC). This was to have been a few months before the launch of NASA's first Great Observatory, the Hubble Space Telescope (HST). As one of five scientific instruments on HST, the GHRS was designed to obtain spectra in the 1050-3300 A ultraviolet wavelength region with a resolving power, lambda/Delta(lambda) , of up to 100,000 and relative photometric accuracy to 1%. It was built by Ball AeroSpace Systems Group under the guidance of the GHRS Investigation Definition Team (IDT), comprised of 16 scientists from the US and Canada. After launch, the IDT was to perform the initial instrument calibration and execute a broad scientific program during a five-year Guaranteed Time Observation (GTO) period. After a year's delay, the launch of HST occurred in April 1990, and CSC participated in the in-orbit calibration and first four years of GTO observations with the IDT. The HST primary mirror suffered from spherical aberration, which reduced the spatial and spectral resolution of Large Science Aperture (LSA) observations and decreased the throughput of the Small Science Aperture (SSA) by a factor of two. Periodic problems with the Side 1 carrousel electronics and anomalies with the low-voltage power supply finally resulted in a suspension of the use of Side 1 less than two years after launch. At the outset, the GHRS SSC task involved work in four areas: 1) to manage and operate the GHRS Data Analysis Facility (DAF); 2) to support the second Servicing Mission Observatory Verification (SMOV) program, as well as perform system engineering analysis of the GHRS as nesessary; 3) to assist the GHRS IDT with their scientific research programs, particularly the GSFC members of the team, and 4) to provide administrative and logistic support for GHRS public information and educational activities.

  19. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalosky, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  20. Ocean Data from MODIS at the NASA Goddard DAAC

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory G.; Wharton, Stephen (Technical Monitor)

    2000-01-01

    Terra satellite carrying the Moderate Resolution Imaging Spectroradiometer (MODIS) was successfully launched on December 18, 1999. Some of the 36 different wavelengths that MODIS samples have never before been measured from space. New ocean data products, which have not been derived on a global scale before, are made available for research to the scientific community. For example, MODIS uses a new split window in the four-micron region for the better measurement of Sea Surface Temperature (SST), and provides the unprecedented ability (683 nm band) to measure chlorophyll fluorescence. At full ocean production, more than a thousand different ocean products in three major categories (ocean color, sea surface temperature, and ocean primary production) are archived at the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC) at the rate of approx. 230GB/day. The challenge is to distribute such large volumes of data to the ocean community. It is achieved through a combination of public and restricted EOS Data Gateways, the GES DAAC Search and Order WWW interface, and an FTP site that contains samples of MODIS data. A new Search and Order WWW interface at http://acdisx.gsfc.nasa.gov/data/ developed at the GES DAAC is based on a hierarchical organization of data, will always return non-zero results. It has a very convenient geographical representation of five-minute data granule coverage for each day MODIS Data Support Team (MDST) continues the tradition of quality support at the GES DAAC for the ocean color data from the Coastal Zone Color Scanner (CZCS) and the Sea Viewing Wide Field-of-View Sensor (SeaWiFS) by providing expert assistance to users in accessing data products, information on visualization tools, documentation for data products and formats (Hierarchical Data Format-Earth Observing System (HDF-EOS)), information on the scientific content of products and metadata. Visit the MDST website at http://daac.gsfc.nasa.gov/CAMPAIGN DOCS/MODIS/index.html

  1. Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Starr, David (Technical Monitor)

    2002-01-01

    One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (size about 2-200 km). The CRMs also allow explicit interaction between out-going longwave (cooling) and in-coming solar (heating) radiation with clouds. Observations can provide the initial conditions and validation for CRM results. The Goddard Cumulus Ensemble (GCE) Model, a CRM, has been developed and improved at NASA/Goddard Space Flight Center over the past two decades. The GCE model has been used to understand the following: 1) water and energy cycles and their roles in the tropical climate system; 2) the vertical redistribution of ozone and trace constituents by individual clouds and well organized convective systems over various spatial scales; 3) the relationship between the vertical distribution of latent heating (phase change of water) and the large-scale (pre-storm) environment; 4) the validity of assumptions used in the representation of cloud processes in climate and global circulation models; and 5) the representation of cloud microphysical processes and their interaction with radiative forcing over tropical and midlatitude regions. Four-dimensional cloud and latent heating fields simulated from the GCE model have been provided to the TRMM Science Data and Information System (TSDIS) to develop and improve algorithms for retrieving rainfall and latent heating rates for TRMM and the NASA Earth Observing System (EOS). More than 90 referred papers using the GCE model have been published in the last two decades. Also, more than 10 national and international universities are currently using the GCE model for research and teaching. In this talk, five specific major GCE improvements: (1

  2. The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    NASA Technical Reports Server (NTRS)

    Hostetter, Carl F. (Editor)

    1995-01-01

    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  3. Payload test philosophy. [implications of STS development at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Arman, A.

    1979-01-01

    The implications of STS development for payload testing at the Goddard Space Flight Center are reviewed. The biggest impact of STS may be that instead of testing the entire payload, most of the testing may have to be limited to the subsystem or subassembly level. Particular consideration is given to the Goddard protoflight concept in which the test is geared to the design qualification levels, the test durations being those that are expected during the actual launch sequence.

  4. New data and capabilities in the NASA Goddard Giovanni system

    NASA Astrophysics Data System (ADS)

    Rui, H.; Farley, J.; Leptoukh, G.; Berrick, S. W.

    2007-12-01

    Giovanni, the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure, is the underlying infrastructure for a growing family of Web interfaces that allows users to analyze gridded and swath data interactively online without having to download any data. Giovanni is a simple but powerful tool for researchers to explore and analyze data without having to deal with original data format, volume, and complexity. Since 2002, Giovanni has served many users worldwide with TRMM and MODIS data visualization and analysis. With increasing size and complexity of Earth and Space Science data holdings and growing demands for better, faster, and less costly tools for data exploration, visualization and analysis, Giovanni has been extended to serve CALIPSO, CloudSat, SeaWiFS, TOMS, AIRS, OMI, MLS-Aura, HIRDLS, and HALOE data to the Atmospheric Composition, Aerosol, Air Quality, and other research communities. To further improve Giovanni extendibility, accessibility, and performance, Giovanni version 3 (G3) has been developed and is currently in operation at the Goddard Earth Sciences Data and Information Services Center (GES DISC). In addition to the existing Giovanni instances, several new G3 instances have been released, including (1) A-Train Data Depot that is capable to allow access to, visualize, analyze and correlate distributed atmospheric measurements from A-Train instruments; (2) NEESPI, a multi-sensor multi-disciplinary instance dedicated to the studies of the environment of the Northern Eurasia; (3) Data Fusion, a prototype Giovanni instance that demonstrates the G3 capability for fusing Earth Science data from multiple sensors. Giovanni capabilities have also been extended to include direct access via WMS protocol, and to provide output in various popular formats, like KML for Google Earth. With much progress in data visualization, data analysis, and easy-to-use toolkits, G3 has simplified and strengthened its capabilities of providing closer links between

  5. Understanding transferable supply chain lessons and practices to a "high-tech" industry using guidelines from a primary sector industry: a case study in the food industry supply chain.

    PubMed

    Coronado Mondragon, Adrian E; Coronado Mondragon, Christian E; Coronado, Etienne S

    2015-01-01

    Flexibility and innovation at creating shapes, adapting processes, and modifying materials characterize composites materials, a "high-tech" industry. However, the absence of standard manufacturing processes and the selection of materials with defined properties hinder the configuration of the composites materials supply chain. An interesting alternative for a "high-tech" industry such as composite materials would be to review supply chain lessons and practices in "low-tech" industries such as food. The main motivation of this study is to identify lessons and practices that comprise innovations in the supply chain of a firm in a perceived "low-tech" industry that can be used to provide guidelines in the design of the supply chain of a "high-tech" industry, in this case composite materials. This work uses the case study/site visit with analogy methodology to collect data from a Spanish leading producer of fresh fruit juice which is sold in major European markets and makes use of a cold chain. The study highlights supply base management and visibility/traceability as two elements of the supply chain in a "low-tech" industry that can provide guidelines that can be used in the configuration of the supply chain of the composite materials industry.

  6. Understanding transferable supply chain lessons and practices to a "high-tech" industry using guidelines from a primary sector industry: a case study in the food industry supply chain.

    PubMed

    Coronado Mondragon, Adrian E; Coronado Mondragon, Christian E; Coronado, Etienne S

    2015-01-01

    Flexibility and innovation at creating shapes, adapting processes, and modifying materials characterize composites materials, a "high-tech" industry. However, the absence of standard manufacturing processes and the selection of materials with defined properties hinder the configuration of the composites materials supply chain. An interesting alternative for a "high-tech" industry such as composite materials would be to review supply chain lessons and practices in "low-tech" industries such as food. The main motivation of this study is to identify lessons and practices that comprise innovations in the supply chain of a firm in a perceived "low-tech" industry that can be used to provide guidelines in the design of the supply chain of a "high-tech" industry, in this case composite materials. This work uses the case study/site visit with analogy methodology to collect data from a Spanish leading producer of fresh fruit juice which is sold in major European markets and makes use of a cold chain. The study highlights supply base management and visibility/traceability as two elements of the supply chain in a "low-tech" industry that can provide guidelines that can be used in the configuration of the supply chain of the composite materials industry. PMID:25821848

  7. Assessing Tech Prep Implementation.

    ERIC Educational Resources Information Center

    Custer, Rodney L.; And Others

    1997-01-01

    Responses from 35 of 52 state tech prep coordinators indicated that 77% had evaluation plans; 68.6% had mechanisms for identifying tech prep students. Most frequent evaluation components were articulation, staff development, curriculum, and marketing. Most used evaluation criteria were job placement, postsecondary enrollment, graduation rate, and…

  8. Counting Tech Prep Students.

    ERIC Educational Resources Information Center

    Barnett, Elizabeth

    2002-01-01

    Discusses the problems surrounding the counting of tech prep students. Suggests that one problem is the lack of a single definition for the term "tech prep." Suggests that if it is to be evaluated as a program, it needs more resources. (JOW)

  9. Adult Tech Prep.

    ERIC Educational Resources Information Center

    Schaad, Donna

    For over 2 years, Blak Hawk College (Illinois) has provided high school equivalency (GED) candidates and recipients, older returning students, and underprepared high school graduates with a Tech Prep curriculum to give them the skills to make the transition from adult basic education to college or work. The Adult Tech Prep (ATP) core curriculum…

  10. Transcript of proceedings: National Aeronautics and Space Administration, Goddard Space Flight Center, 1972 GSFC Battery Workshop, first day

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The proceedings of the 1972 NASA/Goddard Battery Workshop are reported. Topics discussed include: separators, materials and processing, test and storage experience, and improved energy density systems.

  11. Glenn Goddard TDRSS Waveform 1.1.3 On-Orbit Performance Report

    NASA Technical Reports Server (NTRS)

    Chelmins, David T.

    2014-01-01

    The objective of the Space Communications and Navigation (SCaN) Testbed is to study the development, testing, and operation of software defined radios (SDRs) and their associated appliations in the operational space environment to reduce cost and risk for future space missions. This report covers the results of on-orbit performance testing completed using the Glenn Goddard Tracking and Data Relay Satellite System (TDRSS) waveform version 1.1.3 in the ground and space environments. The Glenn Goddard TDRSS (GGT) waveform, operating on the SCaN Testbed Jet Propulsion Laboratory (JPL) SDR, is capable of a variety of data rates and frequencies, operating using Binary Phase Shift Keying (BPSK).

  12. Recent progress in the NASA-Goddard Space Flight Center atomic hydrogen standards program

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S.

    1981-01-01

    At NASA Goddard Space Flight Center and through associated contractors, a broad spectrum of work is being carried out to develop improved hydrogen maser frequency standards for field use, improved experimental hydrogen maser frequency standards, and improved frequency and time distribution and measurement systems for hydrogen maser use. Recent progress in the following areas is reported: results on the Nr masers built by the Applied Physics Laboratory of Johns Hopkins University, the development of a low cost hydrogen maser at Goddard Space Flight Center, and work on a low noise phase comparison system and digitally phase locked crystal oscillator called the distribution and measurement system.

  13. A study of the longevity and operational reliability of Goddard Spacecraft, 1960-1980

    NASA Technical Reports Server (NTRS)

    Shockey, E. F.

    1981-01-01

    Compiled data regarding the design lives and lifetimes actually achieved by 104 orbiting satellites launched by the Goddard Spaceflight Center between the years 1960 and 1980 is analyzed. Historical trends over the entire 21 year period are reviewed, and the more recent data is subjected to an examination of several key parameters. An empirical reliability function is derived, and compared with various mathematical models. Data from related studies is also discussed. The results provide insight into the reliability history of Goddard spacecraft an guidance for estimating the reliability of future programs.

  14. 1988 Goddard Conference on Space Applications of Artificial Intelligence, Greenbelt, MD, May 24, 1988, Proceedings

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1988-01-01

    This publication comprises the papers presented at the 1988 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in these proceedings fall into the following areas: mission operations support, planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; modeling and simulation; and development tools methodologies.

  15. Rocket pioneer Robert Goddard: A micro-biography (pt 3/3)

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Archive footage of Robert Goddard, rocket pioneer of the 1920's and '30's. Ahead of his time, and the first to use liquid propellant. From the 'Moonwalk Series: Episode 1 - 'The Day Before''. A four part documentary series made in the 1970's about the Apollo 11 mission.

  16. Rocket pioneer Robert Goddard: A micro-biography (pt 1/3)

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Archive footage of Robert Goddard, rocket pioneer of the 1920's and '30's. Ahead of his time, and the first to use liquid propellant. From the 'Moonwalk Series: Episode 1 - 'The Day Before''. A four part documentary series made in the 1970's about the Apollo 11 mission.

  17. Rocket pioneer Robert Goddard: A micro-biography (pt 2/3)

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Archive footage of Robert Goddard, rocket pioneer of the 1920's and '30's. Ahead of his time, and the first to use liquid propellant. From the 'Moonwalk Series: Episode 1 - 'The Day Before''. A four part documentary series made in the 1970's about the Apollo 11 mission.

  18. The NASA Library and Researchers at Goddard: A Visitor's Perspective

    ERIC Educational Resources Information Center

    Powell, Jill H.

    2014-01-01

    Jill Powell, engineering librarian from Cornell University, visited the library at NASA Goddard in Greenbelt, Maryland in July 2013, interviewing library staff and selected NASA scientists. She studied the library's digital projects, publications, services, and operations. She also interviewed several NASA scientists on information-seeking…

  19. Report on the flight data of the Goddard, University of Maryland Proton Helium Spectrometer

    NASA Technical Reports Server (NTRS)

    Goodman, J. A.; Yodh, G. B.; Ellsworth, R. W.; Streitmatter, R. E.; Balasubrahmanyan, U. K.; Ormes, J. F.; Vishwanath, P. R.

    1982-01-01

    The Goddard, University of Maryland Proton Helium Spectrometer (GUMPHS) was flown on June 13, 1979 from Palestine, Texas. The flight lasted 90 minutes and reached an altitude of 58,000 feet. The exposure, while short, was sufficient to test the capabilities of the instrument up to energies of the order of 7 TeV.

  20. Guidance, Navigation and Control Innovations at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ericsson, Aprille Joy

    2002-01-01

    A viewgraph presentation on guidance navigation and control innovations at the NASA Goddard Space Flight Center is presented. The topics include: 1) NASA's vision; 2) NASA's Mission; 3) Earth Science Enterprise (ESE); 4) Guidance, Navigation and Control Division (GN&C); 5) Landsat-7 Earth Observer-1 Co-observing Program; and 6) NASA ESE Vision.

  1. Guidance, Navigation and Control Innovations at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ericsson, Aprille Joy; Bauer, Frank (Technical Monitor)

    2002-01-01

    This presentation discusses NASA's role in sponsoring on-going research projects involving innovations in spacecraft guidance, navigation and control systems. Topics covered include: partnerships, ESE Spaceborne Missions, spacecraft systems supported and designed by NASA Goddard Flight Center, NASA's changing mission, Large Aperture Sensing Spectrum, Distributed Spacecraft Systems, Landsat-7/ Earth Observer-1 Co-observing Program, and Laser Interferometer Space Antenna program.

  2. The time-of-flight system on the Goddard medium energy gamma-ray telescope

    NASA Technical Reports Server (NTRS)

    Ross, R. W.; Chesney, J. R.

    1979-01-01

    A scintillation counter time of flight system, incorporated into the Goddard 50 cm by 50 cm spark chamber gamma ray telescope is described. The system, which utilizes constant fractions timing and particle position compensation and digitizes up to 10 ns time differences to six bit accuracy in less than 500 ns is analyzed. The performance of this system during balloon flight is discussed.

  3. Evaluating Goddard Multi-Scale Modeling Framework at Different fv-GCM Grid Spacing

    NASA Astrophysics Data System (ADS)

    Chern, J.; Matsui, T.; Shen, B.; Tao, W.

    2009-12-01

    The Goddard Multi-scale Modeling Framework (MMF) is based on the coupling of the two-dimensional Goddard Cumulus Ensemble (GCE) model and the finite-volume GCM (fv-GCM). Thus MMF enables explicit resolution of stochastic moist convection process by embedded GCE simulations, unlike traditional GCMs that rely on convection parameterization. At each fv-GCM column, the fv-GCM provides mean atmospheric conditions and large-scale temperature and moisture advection to drive the 2D GCE models, which feedback the tendencies of thermodynamic parameter and cloud statistics to the fv-GCM. Earlier investigations show that the Goddard MMF simulates better cloudiness (high and low), single ITCZ and a more realistic diurnal variation of rainfall than traditional GCMs. Another advantages of using the Goddard MMF is that the resolution of GCE-simulated clouds is compatible to satellite observations, while traditional GCM requires disaggregation of grid-volume feature to compare with high-resolution satellite observations. Thus, satellite instrumental simulator can be directly applied to translate MMF simulations into the satellite instrumental signals in straightforward way. In this year, we examine the sensitivity of the Goddard MMF simulation at different fv-GCM grid spacing, and evaluated performances against the TRMM satellite. Previously, fv-GCM was run at 2x2.5 degree horizontal lat-lon grid spacing, and we are currently running fv-GCM at 1x1.25 degree. We examine the performance of the Goddard MMF at different fv-GCM grid spacing with respect to rainfall frequency, rain structure, and microphysics using multi-sensor radiance-based evaluation method, known as the TRMM Triple-Sensor Three-step Evaluation Framework (T3EF). T3EF utilizes multi-sensor satellite simulators, Goddard Satellite Data Simulation Unit, and novel statistics of multi-sensor radiance and backscattering signals observed from the TRMM satellite. Specifically, T3EF compares GCE and satellite observations in

  4. LUVOIR Tech Notes

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Shaklan, Stuart; Roberge, Aki; Rioux, Norman; Feinberg, Lee; Werner, Michael; Rauscher, Bernard; Mandell, Avi; France, Kevin; Schiminovich, David

    2016-01-01

    We present nine "tech notes" prepared by the Large UV/Optical/Infrared (LUVOIR) Science and Technology Definition Team (STDT), Study Office, and Technology Working Group. These tech notes are intended to highlight technical challenges that represent boundaries in the trade space for developing the LUVOIR architecture that may impact the science objectives being developed by the STDT. These tech notes are intended to be high-level discussions of the technical challenges and will serve as starting points for more in-depth analysis as the LUVOIR study progresses.

  5. Goddard High-Resolution Spectrograph Observations of Procyon and HR1099

    NASA Technical Reports Server (NTRS)

    Wood, Brian E.; Harper, Graham M.; Linsky, Jeffrey L.; Dempsey, Robert C.

    1996-01-01

    Goddard High Resolution Spectrograph (GHRS) observations have revealed the presence of broad wings in the transition-region lines of AU Mic and Capella. It has been proposed that these wings are signatures of microflares in the transition regions of these stars and that the solar analog for this phenomenon might be the 'transition region explosive events' discussed by Dere, Bartoe, & Brueckner. We have analyzed GHRS observations of Procyon (F5 IV-V) and HR 1099 (K1 IV + G5 IV) to search for broad wings in the UV emission lines of these stars. We find that the transition-region lines of HR 1099, which are emitted almost entirely by the K1 star, do indeed have broad wings that are even more prominent than those of AU Mic and Capella. This is consistent with the association of the broad wings with microflaring since HR 1099 is a very active binary system. In contrast, the transition-region lines of Procyon, a relatively inactive star, do not show evidence for broad wings, with the possible exception of N v lambda1239. However, Procyon's lines do appear to have excess emission in their blue wings. Linsky et al. found no evidence for broad wings in Capella's chromospheric lines, but we find that the Mg II resonance lines of HR 1099 do have broad wings. The striking resemblance between HR 1099's Mg II and C iv lines suggests that the Mg II line profiles may be regulated by turbulent processes similar to those that control the transition-region line profiles. If this is the case, microflaring may be occurring in the K1 star's chromosphere as well as in its transition region. However, radiative transfer calculations suggest that the broad wings of the Mg II lines can also result from normal chromospheric opacity effects rather than pure turbulence. The prominence of broad wings in the transition region and perhaps even chromospheric lines of active stars suggests that microflaring is very prevalent in the outer atmospheres of active stars.

  6. Design Tech High School: d.tech

    ERIC Educational Resources Information Center

    EDUCAUSE, 2015

    2015-01-01

    A Bay Area charter high school, d.tech develops "innovation-ready" students by combining content knowledge with the design thinking process while fostering a sense of autonomy and purpose. The academic model is grounded in self-paced learning through a flex schedule, high standards, and design thinking through a four-year design…

  7. NASA Tech House

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The NASA Technology Utilization House, called Tech House, was designed and constructed at NASA's Langley Research Center in Hampton, Virginia, to demonstrate new technology that is available or will be available in the next several years and how the application of aerospace technology could help advance the homebuilding industry. Solar energy use, energy and water conservation, safety, security, and cost were major considerations in adapting the aerospace technology to the construction of Tech House.

  8. Illinois Tech Prep Planning Strategies.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Dept. of Vocational and Technical Education.

    This tech prep planning handbook is based on the research conducted at the Office of Community College Research and Leadership, University of Illinois at Urbana-Champaign. The study involved information gathering procedures at each of the 17 tech prep pilot sites about their planning activities. Seven sections are included: (1) tech prep in…

  9. Gravity model and structural implications of the Goddard Pendant, Sierra Nevada, California.

    USGS Publications Warehouse

    du Bray, E.A.; Oliver, H.W.

    1981-01-01

    A subsurface model for the Goddard pendant is constructed from a residual gravity high of about 7mGal over the pendant. The model, which is the simplest and most geologically reasonable possibility, shows a metamorphic block that tapers with depth and extends about 3.5km below the surface. The structures in the Goddard pendant are similar in style and orientation to those in other Sierra Nevada pendants, indicating that the country rock was neither deformed nor rotated during pluton emplacement. Consequently, emplacement must have been a passive rather than a forceful process. The pendant itself represents a piece of country rock trapped between plutons which are dome shaped in cross section. -Authors

  10. Goddard's New Approach to Information Technology: The Information Systems Center an Overview

    NASA Technical Reports Server (NTRS)

    Kea, Howard E.

    1994-01-01

    The Information Center (ISC) at Goddard was created as part of the Goddard reorganization and was located within the Applied Engineering and Technology (AET) Directorate. The creation of ISC was to: (1) focus expertise and leadership in information system development; (2) Promote organizational collaboration, partnerships, and resource sharing; (3) Stimulate design/development of seamless end-to-end flight and ground systems; (4) Enable flexibility to effectively support many simultaneous projects by improved access to critical mass of discipline expertise; (5) Enhance career growth and opportunities including multi-disciplinary opportunities; and (6) to improve communications among information system professionals. This paper presents a general overview of the Information Systems Center as well as the role of the Software Engineering Laboratory within the center.

  11. Stray Light Suppression in the Goddard IRAM 2-Millimeter Observer (GISMO)

    NASA Technical Reports Server (NTRS)

    Sharp, E. H.; Benford, D. J.; Fixsen, D. J.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.

    2012-01-01

    The Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) is an 8xl6 Transition Edge Sensor (TES) array of bolometers built as a pathfinder for TES detector development efforts at NASA Goddard Space Flight Center. GISMO has been used annually at the Institut de Radioastronomie Millimetrique (IRAM) 30 meter telescope since 2007 under engineering time and was opened in the spring of 2012 to the general astronomical community. The spring deployment provided an opportunity to modify elements of the room temperature optics before moving the instrument to its new permanent position in the telescope receiver cabin. This allowed for the possibility to extend the cryostat, introduce improved cold baffling and thus further optimize the stray light performance for final astronomical use of the instrument, which has been completed and validated. We will demonstrate and discuss several of the methods used to quantify and limit the influence of stray light in the GISMO camera.

  12. Thermal Technology Development Activities at the Goddard Space Flight Center - 2001

    NASA Technical Reports Server (NTRS)

    Butler, Dan

    2002-01-01

    This presentation provides an overview of thermal technology development activities carried out at NASA's Goddard Space Flight Center during 2001. Specific topics covered include: two-phase systems (heat pipes, capillary pumped loops, vapor compression systems and phase change materials), variable emittance systems, advanced coatings, high conductivity materials and electrohydrodynamic (EHD) thermal coatings. The application of these activities to specific space missions is also discussed.

  13. Evolution of the Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.; Heller, Stuart

    2003-01-01

    The Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center develops systems engineers from existing discipline engineers. The program has evolved significantly since the report to INCOSE in 2003. This paper describes the SEED Program as it is now, outlines the changes over the last year, discusses current status and results, and shows the value of human systems and leadership skills for practicing systems engineers.

  14. Down and up with PERT at Goddard. [computer graphics applications for Program Evaluation and Review Technique

    NASA Technical Reports Server (NTRS)

    Zerega, J. E.

    1976-01-01

    During the 1960s NASA Goddard Space Flight Center (GSFC) used the Program Evaluation and Review Technique (PERT) as its principal schedule planning and control tool in flight projects. After a temporary replacement of PERT by other techniques, PERT has been reinstituted on all but one of GSFC's flight projects. PERT has been combined with a computer graphics program which makes it possible to produce PERT drawings in only a few hours' time.

  15. Space applications of artificial intelligence; 1990 Goddard Conference, Greenbelt, MD, May 1, 2, 1990, Selected Papers

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1990-01-01

    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.

  16. A visiting scientist program in atmospheric sciences for the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Davis, M. H.

    1989-01-01

    A visiting scientist program was conducted in the atmospheric sciences and related areas at the Goddard Laboratory for Atmospheres. Research was performed in mathematical analysis as applied to computer modeling of the atmospheres; development of atmospheric modeling programs; analysis of remotely sensed atmospheric, surface, and oceanic data and its incorporation into atmospheric models; development of advanced remote sensing instrumentation; and related research areas. The specific research efforts are detailed by tasks.

  17. Si:Bi array detectors and astronomical applications of the Goddard 10 micron camera

    NASA Technical Reports Server (NTRS)

    Lamb, Gerald; Gezari, Daniel; Shu, Peter; Tresch-Fienberg, Richard; Fazio, Giovanni; Hoffmann, William

    1983-01-01

    An improved 4 to 18 micron array camera system was developed at NASA Goddard SFC for astronomical photometry, using an Aerojet Electro Systems Corp. 16 x 16 Si:Bi accumulation mode charge injection device (AMCID) which could be suitable for eventual low-background spaceflight applications. An astronomical observing program using this device was carried out as a collaboration between NASA Goddard (Infrared and Radio Astronomy Branch and Micro Electronics Branch), the Harvard/Smithsonian Center for Astrophysics, and Steward Observatory of the University of Arizona. In 1983 the camera system was revised, and a new Aeroject Si:Bi array with 16 x 16 active pixels was obtained from NASA/Ames Research Center as part of a new scientific collaboration between the Ames and Goddard infrared array research groups. The 16 x 16 device had sufficiently good sensitivity, uniformity and noise characteristics to be used for successful observations at the Mt. Lemmon 60 and 61 inch telescopes in May 1983. Complete laboratory characterization of the 16 x 16 array was carried out in summer of 1983. Initial results indicate that this detector has sensitivity and noise characteristics comparable to other devices from the same generation of Aerojet arrays.

  18. Dreams, Hopes, Realities: NASA's Goddard Space Flight Center, the First Forty Years

    NASA Technical Reports Server (NTRS)

    Wallace, Lane E.

    1999-01-01

    Throughout history, the great achievements of civilizations and cultures have been recorded in lists of dates and events. But to look only at the machinery, discoveries, or milestones is to miss the value of these achievements. Each goal achieved or discovery or made represents a supreme effort on the part of individual people who came and worked together for a purpose greater than themselves. Driven by an innate curiosity of the spirit, we have built civilizations and discovered new worlds, always reaching out beyond what we knew or thought was possible. These efforts may have used ships or machinery, but the achievement was that of the humans who made those machines possible- remarkable people willing to endure discomfort, frustration, fatigue, and the risk of failure in the hope of finding out something new. This is the case with the history of the Goddard Space Flight Center. This publication traces the legacy of successes, risks, disappointments and internationally recognized triumphs of the Center's first 40 years. It is a story of technological achievement and scientific discovery; of reaching back to the dawn of time and opening up a new set of eyes on our own planet Earth. In the end, it is not a story about machinery or discoveries, but a story about ourselves. If we were able to step off our planet, and if we continue to discover new mysteries and better technology, it is because the people who work at Goddard always had a passion for exploration and the dedication to make it happen. The text that follows is a testimony to the challenges people at the Goddard Space Flight Center have faced and overcome over almost half a century. Today, we stand on the threshold of a new and equally challenging era. It will once again test our ingenuity, skills, and flexibility as we find new ways of working with our colleagues in industry, government, and academia. Doing more with less is every bit as ambitious as designing the first science instrument to study the

  19. G-LiHT: Goddard's LiDAR, Hyperspectral and Thermal Airborne Imager

    NASA Technical Reports Server (NTRS)

    Cook, Bruce; Corp, Lawrence; Nelson, Ross; Morton, Douglas; Ranson, Kenneth J.; Masek, Jeffrey; Middleton, Elizabeth

    2012-01-01

    Scientists at NASA's Goddard Space Flight Center have developed an ultra-portable, low-cost, multi-sensor remote sensing system for studying the form and function of terrestrial ecosystems. G-LiHT integrates two LIDARs, a 905 nanometer single beam profiler and 1550 nm scanner, with a narrowband (1.5 nanometers) VNIR imaging spectrometer and a broadband (8-14 micrometers) thermal imager. The small footprint (approximately 12 centimeters) LIDAR data and approximately 1 meter ground resolution imagery are advantageous for high resolution applications such as the delineation of canopy crowns, characterization of canopy gaps, and the identification of sparse, low-stature vegetation, which is difficult to detect from space-based instruments and large-footprint LiDAR. The hyperspectral and thermal imagery can be used to characterize species composition, variations in biophysical variables (e.g., photosynthetic pigments), surface temperature, and responses to environmental stressors (e.g., heat, moisture loss). Additionally, the combination of LIDAR optical, and thermal data from G-LiHT is being used to assess forest health by sensing differences in foliage density, photosynthetic pigments, and transpiration. Low operating costs (approximately $1 ha) have allowed us to evaluate seasonal differences in LiDAR, passive optical and thermal data, which provides insight into year-round observations from space. Canopy characteristics and tree allometry (e.g., crown height:width, canopy:ground reflectance) derived from G-LiHT data are being used to generate realistic scenes for radiative transfer models, which in turn are being used to improve instrument design and ensure continuity between LiDAR instruments. G-LiHT has been installed and tested in aircraft with fuselage viewports and in a custom wing-mounted pod that allows G-LiHT to be flown on any Cessna 206, a common aircraft in use throughout the world. G-LiHT is currently being used for forest biomass and growth estimation

  20. Tech Transfer Webinar: Energy Absorbing Materials

    SciTech Connect

    Duoss, Eric

    2014-06-17

    A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  1. University tech transfer perspective on software licensing

    NASA Astrophysics Data System (ADS)

    Dorsey, Laura

    2015-01-01

    Software is released every day from universities around the world. The way it's shared can support and accelerate a lab's research goals - or have unintended effects. This talk will help you gain insight into issues that arise when university employees want to release software.

  2. Tech Transfer Webinar: Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2016-07-12

    A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  3. Program for transfer research and impact studies

    NASA Technical Reports Server (NTRS)

    Kottenstette, J. P.; Rusnak, J. J.; Staskin, E. R.

    1972-01-01

    The progress made in achieving TRIS research objectives during the first six months of 1972 is reviewed. The Tech Brief-Technical Support Package Program and technology transfer profiles are presented along with summaries of technology transfer in nondestructive testing, and visual display systems.

  4. Earth Science Microwave Remote Sensing at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center (GSFC) was established as NASA's first space flight center in 1959. Its 12,000 personnel are active in the Earth and space sciences, astronomy, space physics, tracking and communications. GSFC's mission is to expand our knowledge of the Earth and its environment, the solar system, and the universe through observations from space. The main Goddard campus is located in Greenbelt, Maryland, USA, just north of Washington, D.C. The Wallops Flight Facility (operational since 1945), located on the Atlantic coast of Virginia was consolidated with the Goddard Space Flight Center in 1982. Wallops is now NASA's principal facility for management and implementation of suborbital research programs, and supports a wide variety of airborne science missions as well. As the lead Center for NASA's Earth Science Enterprise (ESE)--a long-term, coordinated research effort to study the Earth as a global environmental system--GSFC scientists and engineers are involved in a wide range of Earth Science remote sensing activities. Their activities range from basic geoscience research to the development of instruments and technology for space missions, as well as the associated Calibration/Validation (Cal/Val) work. The shear breadth of work in these areas precludes an exhaustive description here. Rather, this article presents selected brief overviews of microwave-related Earth Science applications and the ground-based, airborne, and space instruments that are in service, under development, or otherwise significantly involving GSFC. Likewise, contributing authors are acknowledged for each section, but the results and projects they describe represent the cumulative efforts of many persons at GSFC as well as at collaborating institutions. For further information, readers are encouraged to consult the listed websites and references.

  5. Storage Information Management System (SIMS) Spaceflight Hardware Warehousing at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kubicko, Richard M.; Bingham, Lindy

    1995-01-01

    Goddard Space Flight Center (GSFC) on site and leased warehouses contain thousands of items of ground support equipment (GSE) and flight hardware including spacecraft, scaffolding, computer racks, stands, holding fixtures, test equipment, spares, etc. The control of these warehouses, and the management, accountability, and control of the items within them, is accomplished by the Logistics Management Division. To facilitate this management and tracking effort, the Logistics and Transportation Management Branch, is developing a system to provide warehouse personnel, property owners, and managers with storage and inventory information. This paper will describe that PC-based system and address how it will improve GSFC warehouse and storage management.

  6. Goddard Atmospheric Composition Data Center: Aura Data and Services in One Place

    NASA Technical Reports Server (NTRS)

    Leptoukh, G.; Kempler, S.; Gerasimov, I.; Ahmad, S.; Johnson, J.

    2005-01-01

    The Goddard Atmospheric Composition Data and Information Services Center (AC-DISC) is a portal to the Atmospheric Composition specific, user driven, multi-sensor, on-line, easy access archive and distribution system employing data analysis and visualization, data mining, and other user requested techniques for the better science data usage. It provides convenient access to Atmospheric Composition data and information from various remote-sensing missions, from TOMS, UARS, MODIS, and AIRS, to the most recent data from Aura OMI, MLS, HIRDLS (once these datasets are released to the public), as well as Atmospheric Composition datasets residing at other remote archive site.

  7. Goddard Space Flight Center: 1994 Maryland/GSFC Earth and Environmental Science Teacher Ambassador Program

    NASA Technical Reports Server (NTRS)

    Latham, James

    1995-01-01

    The Maryland/Goddard Space Flight Center (GSFC) Earth and Environmental Science Teacher Ambassador Program was designed to enhance classroom instruction in the Earth and environmental science programs in the secondary schools of the state of Maryland. In October 1992, more than 100 school system administrators from the 24 local Maryland school systems, the Maryland State Department of Education, and the University of Maryland met with NASA GSFC scientists and education officers to propose a cooperative state-wide secondary school science teaching enhancement initiative.

  8. Implementation of NASA Materials and Processes Requirements at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.

    2009-01-01

    This slide presentation reviews the history and current practices of the Materials Engineering Branch (MEB) at the Goddard Space Flight Center. Included in the presentation is a review of the general Materials and Processes (M&P) requirements in the NASA-STD-6016. The work that the Materials Engineering Branch does to support GSFC Projects is also reviewed. The Materials Engineering Branch capabilities are listed, the expertise that is available to GSFC projects is also listed. Included in the backup slides are forms that the MEB uses to identify the materials in the spacecraft under development.

  9. Nalco Fuel Tech

    SciTech Connect

    Michalak, S.

    1995-12-31

    The Nalco Fuel Tech with its seat at Naperville (near Chicago), Illinois, is an engineering company working in the field of technology and equipment for environmental protection. A major portion of NALCO products constitute chemical materials and additives used in environmental protection technologies (waste-water treatment plants, water treatment, fuel modifiers, etc.). Basing in part on the experience, laboratories and RD potential of the mother company, the Nalco Fuel Tech Company developed and implemented in the power industry a series of technologies aimed at the reduction of environment-polluting products of fuel combustion. The engineering solution of Nalco Fuel Tech belong to a new generation of environmental protection techniques developed in the USA. They consist in actions focused on the sources of pollutants, i.e., in upgrading the combustion chambers of power engineering plants, e.g., boilers or communal and/or industrial waste combustion units. The Nalco Fuel Tech development and research group cooperates with leading US investigation and research institutes.

  10. Ten Top Tech Trends

    ERIC Educational Resources Information Center

    McLester, Susan

    2008-01-01

    In this article, the author discusses the major technical issues, products, and practices of the day. The top ten tech trends are listed and discussed. These include: (1) data mining; (2) cyberbullying; (3) 21st century skills; (4) digital content; (5) learning at leisure; (6) personal responders; (7) mobile tools; (8) bandwidth; (9) open-source…

  11. Tech Gets Physical

    ERIC Educational Resources Information Center

    Ravage, Barbara

    2011-01-01

    As colleges push for increased efficiencies, facilities departments nationwide are turning more and more to high-tech approaches. Nowhere has this trend been more visible than in the realm of energy consumption, where managers hope to extract significant cost savings. Technology is helping facilities managers achieve significant efficiencies,…

  12. Preliminary assessment of energy conservation opportunities at the NASA Goddard Space Flight Center, Greenbelt, Maryland

    SciTech Connect

    Hoffman, L.; Parker, G.B.

    1993-07-01

    The National Aeronautics and Space Administration is encouraging energy efficiency in its buildings and facilities as part of an overall strategy to meet the requirements of the Executive Order on Energy Efficiency and the Comprehensive Energy Policy Act of 1992. NASA requested technical assistance from the Pacific Northwest Laboratory to conduct a site visit, examine selected buildings and facilities, and suggest appropriate and economically acceptable energy efficiency measures and future actions at NASA`s Goddard Space Flight Center. PNL was also tasked to investigate the current and future demand-side management (DSM) programs offered by the servicing electric utility that would be applicable for the site. The information for this assessment was collected during site visits to the Goddard Space Flight Center during September and October 1992. The assessment addresses energy supply and cost, estimated energy distribution and use, and cost-effective options to reduce energy consumption at the center. Applicable utility DSM programs are also identified. A recommended strategy is identified to undertake a more comprehensive long-term energy reduction program at the site. A model approach is also given for the site to develop a partnership with the serving electric utility to implement a ``custom`` site-wide DSM program incorporating the several incentives offered by the utility to governmental agencies.

  13. The Impact of British Airways Wind Observations on the Goddard Earth Observing System Analyses and Forecasts

    NASA Technical Reports Server (NTRS)

    Rukhovets, Leonid; Sienkiewicz, M.; Tenenbaum, J.; Kondratyeva, Y.; Owens, T.; Oztunali, M.; Atlas, Robert (Technical Monitor)

    2001-01-01

    British Airways flight data recorders can provide valuable meteorological information, but they are not available in real-time on the Global Telecommunication System. Information from the flight recorders was used in the Global Aircraft Data Set (GADS) experiment as independent observations to estimate errors in wind analyses produced by major operational centers. The GADS impact on the Goddard Earth Observing System Data Assimilation System (GEOS DAS) analyses was investigated using GEOS-1 DAS version. Recently, a new Data Assimilation System (fvDAS) has been developed at the Data Assimilation Office, NASA Goddard. Using fvDAS , the, GADS impact on analyses and forecasts was investigated. It was shown the GADS data intensify wind speed analyses of jet streams for some cases. Five-day forecast anomaly correlations and root mean squares were calculated for 300, 500 hPa and SLP for six different areas: Northern and Southern Hemispheres, North America, Europe, Asia, USA These scores were obtained as averages over 21 forecasts from January 1998. Comparisons with scores for control experiments without GADS showed a positive impact of the GADS data on forecasts beyond 2-3 days for all levels at the most areas.

  14. Goddard Robotic Telescope - Optical Follow-up of GRBs and Coordinated Observations of AGNs

    NASA Technical Reports Server (NTRS)

    Sakamoto, T.; Wallace, C. A.; Donato, D.; Gehrels, N.; Okajima, T.; Ukwatta, T. N.

    2010-01-01

    Since it is not possible to predict when a Gamma-Ray Burst (GRB) will occur or when Active Galactic Nucleus (AGN) flaring activity starts, follow-up/monitoring ground telescopes must be located as uniformly as possible all over the world in order to collect data simultaneously with Fermi and Swift detections. However, there is a distinct gap in follow-up coverage of telescopes in the eastern U.S. region based on the operations of Swift. Motivated by this fact, we have constructed a 14" fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up Swift/Fermi GRBs and 2) to perform the coordinated optical observations of Fermi Large Area Telescope (LAT) AGN. Our telescope system consists of off-the-shelf hardware. With the focal reducer, we are able to match the field of view of Swift narrow instruments (20' x 20'). We started scientific observations in mid-November 2008 and GRT has been fully remotely operated since August 2009. The 3(sigma) upper limit in a 30-second exposure in the R filter is approx.15.4 mag; however, we can reach to approx.18 mag in a 600-second exposures. Due to the weather condition at the telescope site. our observing efficiency is 30-40%, on average.

  15. Tech Prep Ohio Progress Report.

    ERIC Educational Resources Information Center

    Ohio Board of Regents, Columbus.

    Tech prep programs integrate academic, occupational, and employability during the last 2 years of high school and the first 2 years of college, combining the best of college-prep academics with the best of vocational and technical education. The Ohio Tech Prep program, jointly administered by the Ohio Board of Regents and the Ohio Department of…

  16. Supporting Research at NASA's Goddard Space Flight Center Through Focused Education and Outreach Programs

    NASA Astrophysics Data System (ADS)

    Ireton, F.; Closs, J.

    2003-12-01

    NASA research scientists work closely with Science Systems and Applications, Inc. (SSAI) personnel at Goddard Space Flight Center (GSFC) on a large variety of education and public outreach (E/PO) initiatives. This work includes assistance in conceptualizing E/PO plans, then carrying through in the development of materials, publication, cataloging, warehousing, and product distribution. For instance, outreach efforts on the Terra, Aqua, and Aura-still in development-EOS missions, as well as planetary and visualization programs, have been coordinated by SSAI employees. E/PO support includes convening and taking part in sessions at professional meetings and workshops. Also included is the coordination of exhibits at professional meetings such as the AGU, AAAS, AMS and educational meetings such as the National Science Teachers Association. Other E/PO efforts include the development and staffing of booths; arranges for booth space and furnishings; shipping of exhibition materials and products; assembling, stocking, and disassembling of booths. E/PO personnel work with organizations external to NASA such as the Smithsonian museum, Library of Congress, U.S. Geological Survey, and associations or societies such as the AGU, American Chemical Society, and National Science Teachers Association to develop products and programs that enhance NASA mission E/PO efforts or to provide NASA information for use in their programs. At GSFC, E/PO personnel coordinate the efforts of the education and public outreach sub-committees in support of the Space and Earth Sciences Data Analysis (SESDA) contract within the GSFC Earth Sciences Directorate. The committee acts as a forum for improving communication and coordination among related Earth science education projects, and strives to unify the representation of these programs among the science and education communities. To facilitate these goals a Goddard Earth Sciences Directorate Education and Outreach Portal has been developed to provide

  17. NASA Tech Briefs, February 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Tech Briefs are short announcements of innovations originating from research and development activities of the National Aeronautics and Space Administration. They emphasize information considered likely to be transferable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. Topics covered include: Measuring Low Concentrations of Liquid Water in Soil; The Mars Science Laboratory Touchdown Test Facility; Non-Contact Measurement of Density and Thickness Variation in Dielectric Materials; Compact Microwave Fourier Spectrum Analyzer; InP Heterojunction Bipolar Transistor Amplifiers to 255 GHz; Combinatorial Generation of Test Suites; In-Phase Power-Combined Frequency Tripler at 300 GHz; Electronic System for Preventing Airport Runway Incursions; Smaller but Fully Functional Backshell for Cable Connector; Glove-Box or Desktop Virtual-Reality System; Composite Layer Manufacturing with Fewer Interruptions; Improved Photoresist Coating for Making CNT Field Emitters; A Simplified Diagnostic Method for Elastomer Bond Durability; Complex Multifunctional Polymer/Carbon-Nanotube Composites; Very High Output Thermoelectric Devices Based on ITO Nanocomposites; Reducing Unsteady Loads on a Piggyback Miniature Submarine; Ultrasonic/Sonic Anchor; Grooved Fuel Rings for Nuclear Thermal Rocket Engines; Pulsed Operation of an Ion Accelerator; Autonomous Instrument Placement for Mars Exploration Rovers; Mission and Assets Database; TCP/IP Interface for the Satellite Orbit Analysis Program (SOAP); Trajectory Calculator for Finite-Radius Cutter on a Lathe; Integrated System Health Management Development Toolkit.

  18. The Integrated Mission Design Center (IMDC) at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Karpati, Gabriel; Martin, John; Steiner, Mark; Reinhardt, K.

    2002-01-01

    NASA Goddard has used its Integrated Mission Design Center (IMDC) to perform more than 150 mission concept studies. The IMDC performs rapid development of high-level, end-to-end mission concepts, typically in just 4 days. The approach to the studies varies, depending on whether the proposed mission is near-future using existing technology, mid-future using new technology being actively developed, or far-future using technology which may not yet be clearly defined. The emphasis and level of detail developed during any particular study depends on which timeframe (near-, mid-, or far-future) is involved and the specific needs of the study client. The most effective mission studies are those where mission capabilities required and emerging technology developments can synergistically work together; thus both enhancing mission capabilities and providing impetus for ongoing technology development.

  19. Large-Scale Hollow Retroreflectors for Lunar Laser Ranging at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Preston, Alix

    2012-01-01

    Laser ranging to the retroreflector arrays placed on the lunar surface by the Apollo astronauts and the Soviet Luna missions have dramatically increased our understanding of gravitational physics along with Earth and Moon geophysics, geodesy, and dynamics. Although the precision of the range measurements has historically been limited by the ground station capabilities, advances in the APOLLO instrument at the Apache Point facility in New Mexico is beginning to be limited by errors associated with the lunar arrays. We report here on efforts at Goddard Space Flight Center to develop the next generation of lunar retroreflectors. We will describe a new facility that is being used to design, assemble, and test large-scale hollow retroreflectors. We will also describe results from investigations into various bonding techniques used to assemble the open comer cubes and mirror coatings that have dust mitigation properties.

  20. Hollow Retroreflectors for Lunar Laser Ranging at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Preston, Alix M.; Merkowitz, Stephen M.

    2012-01-01

    Laser ranging to the retroreflector arrays placed on the lunar surface by the Apollo astronauts and the Soviet Luna missions have dramatically increased our understanding of gravitational physics along with Earth and Moon geophysics, geodesy, and dynamics. Although the precision of the range measurements has historically been limited by the ground station capabilities, advances in the APOLLO instrument at the Apache Point facility in New Mexico is beginning to be limited by errors associated with the lunar arrays. At Goddard Space Flight Center, we have developed a facility where we can design, build, and test next-generation hollow retroreflectors for Lunar Laser Ranging. Here we will describe this facility as well as report on the bonding techniques used to assemble the retroreflectors. Results from investigations into different high reflectivity mirror coatings, as well as dust mitigation coatings will also be presented.

  1. First results from the Goddard High-Resolution Spectrograph - The chromosphere of Alpha Tauri

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Robinson, Richard D.; Wahlgren, Glenn M.; Ake, Thomas B.; Ebbets, Dennis C.

    1991-01-01

    The K5 III star Alpha Tau was observed with the Goddard High Resolution Spectrograph on November 27, 1990 as part of the Science Assessment Program for the HST. The spectra show intersystem and permitted chromospheric emission lines of semiforbidden C II and Si II, Fe II, Fe I, Ni II, and Co II. Resolved profiles of the semiforbidden C II lines indicate a complex chromospheric turbulent velocity distribution with mean value of roughly 24 km/s, while their observed wavelengths indicate a 4 km/s downflow of the semiforbidden C II plasma. Twenty-five new emission lines have been found in the 2320-2370 A region, 17 of which have been identified with the aid of Skylab data obtained above the solar limb, including four lines from Co II (UV 8) and an Fe I (UV 12) line.

  2. The Third NASA Goddard Conference on Mass Storage Systems and Technologies

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    1993-01-01

    This report contains copies of nearly all of the technical papers and viewgraphs presented at the Goddard Conference on Mass Storage Systems and Technologies held in October 1993. The conference served as an informational exchange forum for topics primarily relating to the ingestion and management of massive amounts of data and the attendant problems involved. Discussion topics include the necessary use of computers in the solution of today's infinitely complex problems, the need for greatly increased storage densities in both optical and magnetic recording media, currently popular storage media and magnetic media storage risk factors, data archiving standards including a talk on the current status of the IEEE Storage Systems Reference Model (RM). Additional topics addressed System performance, data storage system concepts, communications technologies, data distribution systems, data compression, and error detection and correction.

  3. Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model

    NASA Technical Reports Server (NTRS)

    Hansen, J.; Fung, I.; Lacis, A.; Rind, D.; Lebedeff, S.; Ruedy, R.; Russell, G.

    1988-01-01

    The global climate effects of time-dependent atmospheric trace gas and aerosol variations are simulated by NASA-Goddard's three-dimensional climate model II, which possesses 8 x 10-deg horizontal resolution, for the cases of a 100-year control run and three different atmospheric composition scenarios in which trace gas growth is respectively a continuation of current exponential trends, a reduced linear growth, and a rapid curtailment of emissions due to which net climate forcing no longer increases after the year 2000. The experiments begin in 1958, run to the present, and encompass measured or estimated changes in CO2, CH4, N2O, chlorofluorocarbons, and stratospheric aerosols. It is shown that the greenhouse warming effect may be clearly identifiable in the 1990s.

  4. Version 2 Goddard Satellite-Based Surface Turbulent Fluxes (GSSTF2)

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Nelkin, Eric; Ardizzone, Joe; Atlas, Robert M.; Shie, Chung-Lin; Starr, David O'C. (Technical Monitor)

    2002-01-01

    Information on the turbulent fluxes of momentum, moisture, and heat at the air-sea interface is essential in improving model simulations of climate variations and in climate studies. We have derived a 13.5-year (July 1987-December 2000) dataset of daily surface turbulent fluxes over global oceans from the Special Sensor Mcrowave/Imager (SSM/I) radiance measurements. This dataset, version 2 Goddard Satellite-based Surface Turbulent Fluxes (GSSTF2), has a spatial resolution of 1 degree x 1 degree latitude-longitude and a temporal resolution of 1 day. Turbulent fluxes are derived from the SSM/I surface winds and surface air humidity, as well as the 2-m air and sea surface temperatures (SST) of the NCEP/NCAR reanalysis, using a bulk aerodynamic algorithm based on the surface layer similarity theory.

  5. Upgrades to Electronic Speckle Interferometer (ESPI) Operation and Data Analysis at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Connelly, Joseph; Blake, Peter; Jones, Joycelyn

    2008-01-01

    The authors report operational upgrades and streamlined data analysis of a commissioned electronic speckle interferometer (ESPI) in a permanent in-house facility at NASA's Goddard Space Flight Center. Our ESPI was commercially purchased for use by the James Webb Space Telescope (JWST) development team. We have quantified and reduced systematic error sources, improved the software operability with a user-friendly graphic interface, developed an instrument simulator, streamlined data analysis for long-duration testing, and implemented a turn-key approach to speckle interferometry. We also summarize results from a test of the JWST support structure (previously published), and present new results from several pieces of test hardware at various environmental conditions.

  6. NASA/Goddard Space Flight Center's testbed for CCSDS compatible systems

    NASA Technical Reports Server (NTRS)

    Carper, Richard D.

    1993-01-01

    A testbed for flight and ground systems compatible with the Consultative Committee for Space Data Systems (CCSDS) Recommendations has been developed at NASA's Goddard Space Flight Center. The subsystems of an end-to-end CCSDS based data system are being developed. All return link CCSDS telemetry services (except Internet) and both versions of the CCSDS frame formats are being implemented. In key areas of uncertainty, multiple design approaches are being performed. In addition, key flight-qualifiable hardware components, such as Reed-Solomon encoders, are being developed to complement the testbed element development. The testbed and its capabilities are described. The method of dissemination of the testbed results are given, as are plans to make the testbed capabilities available to outside users. Plans for the development of standardized conformance and compatibility tests are provided.

  7. Documentation and Validation of the Goddard Earth Observing System (GEOS) Data Assimilation System, Version 4

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); daSilva, Arlindo; Dee, Dick; Bloom, Stephen; Bosilovich, Michael; Pawson, Steven; Schubert, Siegfried; Wu, Man-Li; Sienkiewicz, Meta; Stajner, Ivanka

    2005-01-01

    This document describes the structure and validation of a frozen version of the Goddard Earth Observing System Data Assimilation System (GEOS DAS): GEOS-4.0.3. Significant features of GEOS-4 include: version 3 of the Community Climate Model (CCM3) with the addition of a finite volume dynamical core; version two of the Community Land Model (CLM2); the Physical-space Statistical Analysis System (PSAS); and an interactive retrieval system (iRET) for assimilating TOVS radiance data. Upon completion of the GEOS-4 validation in December 2003, GEOS-4 became operational on 15 January 2004. Products from GEOS-4 have been used in supporting field campaigns and for reprocessing several years of data for CERES.

  8. Large-Scale Hollow Retroreflectors for Lunar Laser Ranging at Goddard Space Flight Center

    NASA Astrophysics Data System (ADS)

    Preston, Alix M.

    2012-05-01

    Laser ranging to the retroreflector arrays placed on the lunar surface by the Apollo astronauts and the Soviet Luna missions have dramatically increased our understanding of gravitational physics along with Earth and Moon geophysics, geodesy, and dynamics. Although the precision of the range measurements has historically been limited by the ground station capabilities, advances in the APOLLO instrument at the Apache Point facility in New Mexico is beginning to be limited by errors associated with the lunar arrays. We report here on efforts at Goddard Space Flight Center to develop the next generation of lunar retroreflectors. We will describe a new facility that is being used to design, assemble, and test large-scale hollow retroreflectors. We will also describe results from investigations into various bonding techniques used to assemble the open corner cubes and mirror coatings that have dust mitigation properties.

  9. Astronomical applications of the new Goddard Si:Bi 16 x 16 array camera system

    NASA Technical Reports Server (NTRS)

    Lamb, G.; Gezari, D.; Shu, P.; Tresch-Fienberg, R.; Fazio, G.; Hoffmann, W.; Mccreight, C.

    1984-01-01

    An improved 4-18 micron array camera system has been developed at NASA Goddard Space Flight Center for astronomical protometry, using 16 x 16 Si:Bi (bismuth dope silicon) accumulation mode charge injection device (AMCID) with 256 active pixels. An astronomical observing program using this device has been carried out. The 16 x 16 device had sufficiently good sensitivity, uniformity and noise characteristics to be used for successful observations at the Steward Observatory Mt. Lemmon 60 and 61-inch telescopes in May 1983, and at the NASA Infrared Telescope Facility (IRTF) at Mauna Kea in August 1983. Initial results indicate that this detector has sensitivity and noise characteristics comparable to other devices from the same generation of Aerojet arrays.

  10. Photonic Component Qualification and Implementation Activities at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard F.; LaRocca, Frank V.; MacMurphy, Shawn L.; Matuszeski, Adam J.; Zellar, Ronald S.; Friedberg, Patricia R.; Malenab, Mary C.

    2006-01-01

    The photonics group in Code 562 at NASA Goddard Space Flight Center supports a variety of space flight programs at NASA including the: International Space Station (ISS), Shuttle Return to Flight Mission, Lunar Reconnaissance Orbiter (LRO), Express Logistics Carrier, and the NASA Electronic Parts and Packaging Program (NEPP). Through research, development, and testing of the photonic systems to support these missions much information has been gathered on practical implementations for space environments. Presented here are the highlights and lessons learned as a result of striving to satisfy the project requirements for high performance and reliable commercial optical fiber components for space flight systems. The approach of how to qualify optical fiber components for harsh environmental conditions, the physics of failure and development lessons learned will be discussed.

  11. From Bonaventure to Goddard: How I Got to NASA and What I Am Doing There

    NASA Technical Reports Server (NTRS)

    Miller, Kevin H.

    2014-01-01

    The presentation, accompanied by slides when appropriate, will describe how a young physics major travelled from the classrooms of Saint Bonaventure, to the graduate research laboratories of the University of Florida in Gainesville, and finally to the government laboratories of NASA at the Goddard Space Flight Center just north of Washington, D.C. The main portion of the presentation concerns NASA missions of interest to the general public and supported in part by research work he does. Such, for example, is the current flagship mission of NASA, the James Webb Space Telescope that is destined to replace very soon the Hubble Space Telescope. In addition to these NASA telescope missions, a mission to an asteroid, coined the OSIRIS REX program, is in process and will be described.

  12. The 2003 Goddard Rocket Replica Project: A Reconstruction of the World's First Functional Liquid Rocket System

    NASA Technical Reports Server (NTRS)

    Farr, R. A.; Elam, S. K.; Hicks, G. D.; Sanders, T. M.; London, J. R.; Mayne, A. W.; Christensen, D. L.

    2003-01-01

    As a part of NASA s 2003 Centennial of Flight celebration, engineers and technicians at Marshall Space Flight Center (MSFC), Huntsville, Alabama, in cooperation with the Alabama-Mississippi AIAA Section, have reconstructed historically accurate, functional replicas of Dr. Robert H. Goddard s 1926 first liquid- fuel rocket. The purposes of this project were to clearly understand, recreate, and document the mechanisms and workings of the 1926 rocket for exhibit and educational use, creating a vital resource for researchers studying the evolution of liquid rocketry for years to come. The MSFC team s reverse engineering activity has created detailed engineering-quality drawings and specifications describing the original rocket and how it was built, tested, and operated. Static hot-fire tests, as well as flight demonstrations, have further defined and quantified the actual performance and engineering actual performance and engineering challenges of this major segment in early aerospace history.

  13. Fifth NASA Goddard Conference on Mass Storage Systems and Technologies.. Volume 1

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    1996-01-01

    This document contains copies of those technical papers received in time for publication prior to the Fifth Goddard Conference on Mass Storage Systems and Technologies. As one of an ongoing series, this conference continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include storage architecture, database management, data distribution, file system performance and modeling, and optical recording technology. There will also be a paper on Application Programming Interfaces (API) for a Physical Volume Repository (PVR) defined in Version 5 of the Institute of Electrical and Electronics Engineers (IEEE) Reference Model (RM). In addition, there are papers on specific archives and storage products.

  14. ECMWF MACC-II evaluation of performances with MPLNET Lidar network at NASA Goddard Flight Center

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Welton, Ellsworth J.; Benedetti, Angela; Lewis, Jasper

    2016-04-01

    Aerosol vertical distribution is a critical parameter for most of the common aerosol forecast models. In this study are evaluated the performances of the MACC-II ECMWF aerosol model in forecasting aerosol extinction profiles and planetary boundary layer height versus the new V3 measured MPLNET Lidar extinction retrievals taken as reference at continuous operational site Goddard Space Flight Center, MD, USA. The model is evaluated at different assimilation stages: no assimilation, MODIS Aerosol Optical Depth (AOD) assimilation and MODIS AOD plus lidar CALIPSO assimilation. The sensitivity study of the model is also investigated respect to the assimilation process..Assessing the model performances it is the first step for future near-real time lidar data assimilation into MACC-II aerosol model forecast.

  15. Upgrade of the Goddard Space Flight Center's Mass Properties Measuring Facility

    NASA Technical Reports Server (NTRS)

    Ross, Brian P.; McLeod, Christopher

    2004-01-01

    Goddard Space Flight Center has a Mass Properties Measuring Facility (MPMF), which is used to measure weight, center of gravity, moment of inertia, and product of inertia of satellites and space flight hardware. The system was originally purchased more than 30 years ago. While the MPMF was still in good mechanical condition, the measurement and control subsystem had begun to experience more frequent component failures. Many of the outdated, discrete components in the system are no longer available for replacement. A decision was made to upgrade the measurement and control subsystem of the MPMF to improve its reliability and reduce the chance of component failures leading to extended facility outages. This paper will describe details of the upgraded subsystems and summarize the new performance capabilities of the system.

  16. The 1994 research and technology report at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald (Editor); Halem, Milton (Editor); Green, James (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Boyle, Charles (Editor); Truszlowski, Walter (Editor); Sullivan, Walter (Editor); Ottenstein, Howard (Editor)

    1994-01-01

    The breadth of subject material in this 1994 edition of the Research and Technology Report illustrates the broad scope of activities at the Goddard Space Flight Center. The numerous entries dealing with data processing and visualization show the strong emphasis on data and its interpretation. Reports are presented in the following sections: data processing and visualization; space sciences - high energy astronomy, solar system, and new techniques; earth system science - atmospheres, oceans and ice, solid earth, and soils and vegetation; networks, planning, and information systems - mission scheduling and operations, spacecraft operation and status, software engineering, and infrastructure support; engineering and materials - spacecraft subsystems, launch vehicles, thermal control, new mechanisms, and testing and evaluation; and flight projects.

  17. Fifth NASA Goddard Conference on Mass Storage Systems and Technologies. Volume 2

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    1996-01-01

    This document contains copies of those technical papers received in time for publication prior to the Fifth Goddard Conference on Mass Storage Systems and Technologies held September 17 - 19, 1996, at the University of Maryland, University Conference Center in College Park, Maryland. As one of an ongoing series, this conference continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include storage architecture, database management, data distribution, file system performance and modeling, and optical recording technology. There will also be a paper on Application Programming Interfaces (API) for a Physical Volume Repository (PVR) defined in Version 5 of the Institute of Electrical and Electronics Engineers (IEEE) Reference Model (RM). In addition, there are papers on specific archives and storage products.

  18. Failure rate analysis of Goddard Space Flight Center spacecraft performance during orbital life

    NASA Technical Reports Server (NTRS)

    Norris, H. P.; Timmins, A. R.

    1976-01-01

    Space life performance data on 57 Goddard Space Flight Center spacecraft are analyzed from the standpoint of determining an appropriate reliability model and the associated reliability parameters. Data from published NASA reports, which cover the space performance of GSFC spacecraft launched in the 1960-1970 decade, form the basis of the analyses. The results of the analyses show that the time distribution of 449 malfunctions, of which 248 were classified as failures (not necessarily catastrophic), follow a reliability growth pattern that can be described with either the Duane model or a Weibull distribution. The advantages of both mathematical models are used in order to: identify space failure rates, observe chronological trends, and compare failure rates with those experienced during the prelaunch environmental tests of the flight model spacecraft.

  19. Using microsoft excel applications in the graduate intern program at Goddard Space Flight Center. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Antoine, Lisa

    1992-01-01

    An outline of the Project Operations Branch at Goddard Space Flight Center is presented that describes the management of the division and each subgroup's responsibility. The paper further describes the development of software tools for the Macintosh personal computer, and their impending implementation. A detailed step by step procedure is given for using these software tools.

  20. Goddard DEVELOP Students: Using NASA Remote Sensing Technology to Study the Chesapeake Bay Watershed

    NASA Technical Reports Server (NTRS)

    Moore, Rachel

    2011-01-01

    The DEVELOP National Program is an Earth Science research internship, operating under NASA s Applied Sciences Program. Each spring, summer, and fall, DEVELOP interns form teams to investigate Earth Science related issues. Since the Fall of 2003, Goddard Space Flight Center (GSFC) has been home to one of 10 national DEVELOP teams. In past terms, students completed a variety of projects related to the Applied Sciences Applications of National Priority, such as Public Health, Natural Disasters, Water Resources, and Ecological Forecasting. These projects have focused on areas all over the world, including the United States, Africa, and Asia. Recently, Goddard DEVELOP students have turned their attention to a local environment, the Chesapeake Bay Watershed. The Chesapeake Bay Watershed is a complex and diverse ecosystem, spanning approximately 64,000 square miles. The watershed encompasses parts of six states: Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia, as well as the District of Columbia. The Bay itself is the biggest estuary in the United States, with over 100,000 tributaries feeding into it. The ratio of fresh water to salt water varies throughout the Bay, allowing for a variety of habitats. The Bay s wetlands, marshes, forests, reefs, and rivers support more than 3,600 plant and animal species, including birds, mammals, reptiles, amphibians, fish, and crabs. The Bay is also commercially significant. It is ranked third in the nation in fishery catch, and supplies approximately 500 million pounds of seafood annually. In addition to its abundant flora and fauna, the Chesapeake Bay watershed is home to approximately 16.6 million people, who live and work throughout the watershed, and who use its diverse resources for recreational purposes. Over the past several decades, the population throughout the watershed has increased rapidly, resulting in land use changes, and ultimately decreasing the health of the Chesapeake Bay Watershed. Over the

  1. Effects of Cloud on Goddard Lidar Observatory for Wind (GLOW) Performance and Analysis of Associated Errors

    NASA Astrophysics Data System (ADS)

    Bacha, Tulu

    The Goddard Lidar Observatory for Wind (GLOW), a mobile direct detection Doppler LIDAR based on molecular backscattering for measurement of wind in the troposphere and lower stratosphere region of atmosphere is operated and its errors characterized. It was operated at Howard University Beltsville Center for Climate Observation System (BCCOS) side by side with other operating instruments: the NASA/Langely Research Center Validation Lidar (VALIDAR), Leosphere WLS70, and other standard wind sensing instruments. The performance of Goddard Lidar Observatory for Wind (GLOW) is presented for various optical thicknesses of cloud conditions. It was also compared to VALIDAR under various conditions. These conditions include clear and cloudy sky regions. The performance degradation due to the presence of cirrus clouds is quantified by comparing the wind speed error to cloud thickness. The cloud thickness is quantified in terms of aerosol backscatter ratio (ASR) and cloud optical depth (COD). ASR and COD are determined from Howard University Raman Lidar (HURL) operating at the same station as GLOW. The wind speed error of GLOW was correlated with COD and aerosol backscatter ratio (ASR) which are determined from HURL data. The correlation related in a weak linear relationship. Finally, the wind speed measurements of GLOW were corrected using the quantitative relation from the correlation relations. Using ASR reduced the GLOW wind error from 19% to 8% in a thin cirrus cloud and from 58% to 28% in a relatively thick cloud. After correcting for cloud induced error, the remaining error is due to shot noise and atmospheric variability. Shot-noise error is the statistical random error of backscattered photons detected by photon multiplier tube (PMT) can only be minimized by averaging large number of data recorded. The atmospheric backscatter measured by GLOW along its line-of-sight direction is also used to analyze error due to atmospheric variability within the volume of measurement

  2. The Goddard Cumulus Ensemble Model (GCE): Improvements and Applications for Studying Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, Stephen E.; Zeng, Xiping; Li, Xiaowen; Matsui, Toshi; Mohr, Karen; Posselt, Derek; Chern, Jiundar; Peters-Lidard, Christa; Norris, Peter M.; Kang, In-Sik; Choi, Ildae; Hou, Arthur; Lau, K.-M.; Yang, Young-Min

    2014-01-01

    Convection is the primary transport process in the Earth's atmosphere. About two-thirds of the Earth's rainfall and severe floods derive from convection. In addition, two-thirds of the global rain falls in the tropics, while the associated latent heat release accounts for three-fourths of the total heat energy for the Earth's atmosphere. Cloud-resolving models (CRMs) have been used to improve our understanding of cloud and precipitation processes and phenomena from micro-scale to cloud-scale and mesoscale as well as their interactions with radiation and surface processes. CRMs use sophisticated and realistic representations of cloud microphysical processes and can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems. CRMs also allow for explicit interaction between clouds, outgoing longwave (cooling) and incoming solar (heating) radiation, and ocean and land surface processes. Observations are required to initialize CRMs and to validate their results. The Goddard Cumulus Ensemble model (GCE) has been developed and improved at NASA/Goddard Space Flight Center over the past three decades. It is amulti-dimensional non-hydrostatic CRM that can simulate clouds and cloud systems in different environments. Early improvements and testing were presented in Tao and Simpson (1993) and Tao et al. (2003a). A review on the application of the GCE to the understanding of precipitation processes can be found in Simpson and Tao (1993) and Tao (2003). In this paper, recent model improvements (microphysics, radiation and land surface processes) are described along with their impact and performance on cloud and precipitation events in different geographic locations via comparisons with observations. In addition, recent advanced applications of the GCE are presented that include understanding the physical processes responsible for diurnal variation, examining the impact of aerosols (cloud condensation nuclei or CCN and ice nuclei or IN) on

  3. Tech Prep and Educational Reform. Reprint Series.

    ERIC Educational Resources Information Center

    Hoerner, James L.

    1991-01-01

    Tech prep is a new initiative that shows great promise for educational reform. However, "tech prep" is not the new name for vocational education. Tech prep is a new program of articulated education involving 2 years of high school and 2 years of postsecondary preparation that includes a common core of mathematics, science, communications, and…

  4. Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Simpson, J.; Baker, D.; Braun, S.; Chou, M.-D.; Ferrier, B.; Johnson, D.; Khain, A.; Lang, S.; Lynn, B.

    2001-01-01

    The response of cloud systems to their environment is an important link in a chain of processes responsible for monsoons, frontal depression, El Nino Southern Oscillation (ENSO) episodes and other climate variations (e.g., 30-60 day intra-seasonal oscillations). Numerical models of cloud properties provide essential insights into the interactions of clouds with each other, with their surroundings, and with land and ocean surfaces. Significant advances are currently being made in the modeling of rainfall and rain-related cloud processes, ranging in scales from the very small up to the simulation of an extensive population of raining cumulus clouds in a tropical- or midlatitude-storm environment. The Goddard Cumulus Ensemble (GCE) model is a multi-dimensional nonhydrostatic dynamic/microphysical cloud resolving model. It has been used to simulate many different mesoscale convective systems that occurred in various geographic locations. In this paper, recent GCE model improvements (microphysics, radiation and surface processes) will be described as well as their impact on the development of precipitation events from various geographic locations. The performance of these new physical processes will be examined by comparing the model results with observations. In addition, the explicit interactive processes between cloud, radiation and surface processes will be discussed.

  5. TRMM Data from the Goddard Earth Sciences (GES) DISC DAAC: Tropical Rainfall Measuring Mission (TRMM)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Tropical rainfall affects the lives and economies of a majority of the Earth's population. Tropical rain systems, such as hurricanes, typhoons, and monsoons, are crucial to sustaining the livelihoods of those living in the tropics. Excess rainfall can cause floods and great property and crop damage, whereas too little rainfall can cause drought and crop failure. The latent heat release during the process of precipitation is a major source of energy that drives the atmospheric circulation. This latent heat can intensify weather systems, affecting weather thousands of kilometers away, thus making tropical rainfall an important indicator of atmospheric circulation and short-term climate change. The Tropical Rainfall Measuring Mission (TRMM), jointly sponsored by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of Japan, provides visible, infrared, and microwave observations of tropical and subtropical rain systems. The satellite observations are complemented by ground radar and rain gauge measurements to validate satellite rain estimation techniques. Goddard Space Flight Center's involvement includes the observatory, four instruments, integration and testing of the observatory, data processing and distribution, and satellite operations. TRMM has a design lifetime of three years. It is currently in its fifth year of operation. Data generated from TRMM and archived at the GES DAAC are useful not only for hydrologists, atmospheric scientists, and climatologists, but also for the health community studying infectious diseases, the ocean research community, and the agricultural community.

  6. An improved gravity model for Mars: Goddard Mars Model-1 (GMM-1)

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Lerch, F. J.; Nerem, R. S.; Zuber, M. T.; Patel, G. B.; Fricke, S. K.; Lemoine, F. G.

    1993-01-01

    Doppler tracking data of three orbiting spacecraft have been reanalyzed to develop a new gravitational field model for the planet Mars, GMM-1 (Goddard Mars Model-1). This model employs nearly all available data, consisting of approximately 1100 days of S-bank tracking data collected by NASA's Deep Space Network from the Mariner 9, and Viking 1 and Viking 2 spacecraft, in seven different orbits, between 1971 and 1979. GMM-1 is complete to spherical harmonic degree and order 50, which corresponds to a half-wavelength spatial resolution of 200-300 km where the data permit. GMM-1 represents satellite orbits with considerably better accuracy than previous Mars gravity models and shows greater resolution of identifiable geological structures. The notable improvement in GMM-1 over previous models is a consequence of several factors: improved computational capabilities, the use of optimum weighting and least-squares collocation solution techniques which stabilized the behavior of the solution at high degree and order, and the use of longer satellite arcs than employed in previous solutions that were made possible by improved force and measurement models. The inclusion of X-band tracking data from the 379-km altitude, near-polar orbiting Mars Observer spacecraft should provide a significant improvement over GMM-1, particularly at high latitudes where current data poorly resolves the gravitational signature of the planet.

  7. In-flight performance of the Goddard High Resolution Spectrograph of the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Troeltzsch, J.; Ebbets, D.; Garner, H.; Tuffli, A.; Breyer, R.; Kinsey, J.; Peck, C.; Lindler, D.; Feggans, J.

    1991-09-01

    The Goddard High Resolution Spectrograph (GHRS) has completed Orbital Verification and is well into the Science Verification phase of its mission. The instrument performance has been flawless, and many significant early science observations have been completed. The GHRS digicon detectors are well calibrated including the determination of operating parameters, detector geometry, and noise sensitivity. Tests using calibration lamps and standard UV stars have confirmed the instrument sensitivity and spectral resolving powers of Lambda/Delta-Lambda = 2000, 20,000, and 90,000. The sensitivity has not changed since the 1984 baseline ground based calibration. The GHRS flight software has been thoroughly tested, and is controlling all instrument observing as expected. Basic target acquisition testing and GHRS alignment calibrations have been successfully completed, and targets are routinely being located within 2-3 arcsecs of the initial pointing. Observations have been successfully performed using both the 2.0 x 2.0 arcsec aperture, and the smaller 0.25 x 0.25 arcsec aperture. The extended point spread function caused by the spherical aberration of the HST primary mirror has been well measured, and observing methods to deal with it have been developed. The aberrated image allows approximately 70 percent of the total energy into the large science aperture, and 15 percent of the total energy into the smaller aperture. Numerous science assessment observations of interesting astronomical targets have been completed, and indicate the extreme usefulness of the GHRS to the scientific community.

  8. Hubble Space Telescope: Goddard high resolution spectrograph instrument handbook. Version 2.1

    NASA Technical Reports Server (NTRS)

    Duncan, Douglas K.; Ebbets, Dennis

    1990-01-01

    The Goddard High Resolution Spectrograph (GHRS) is an ultraviolet spectrometer which has been designed to exploit the imaging and pointing capabilities of the Hubble Space Telescope. It will obtain observations of astronomical sources with greater spectral, spatial and temporal resolution than has been possible with previous space-based instruments. Data from the GHRS will be applicable to many types of scientific investigations, including studies of the interstellar medium, stellar winds, chromospheres and coronae, the byproducts and endproducts of stellar evolution, planetary atmospheres, comets, and many kinds of extragalactic sources. This handbook is intended to introduce the GHRS to potential users. The main purpose is to provide enough information to explore the feasibility of possible research projects and to plan, propose and execute a set of observations. An overview of the instrument performance, which should allow one to evaluate the suitability of the GHRS to specific projects, and a somewhat more detailed description of the GHRS hardware are given. How observing programs will be carried out, the various operating modes of the instrument, and the specific information about the performance of the instrument needed to plan an observation are discussed.

  9. KDD Services at the Goddard Earth Sciences Distributed Active Archive Center

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Mack, Robert; Wharton, Stephen W. (Technical Monitor)

    2000-01-01

    NASA's Goddard Earth Sciences Distributed Active Archive Center (GES DAAC) processes, stores and distributes earth science data from a variety of remote sensing satellites. End users of the data range from instrument scientists to global change and climate researchers to federal agencies and foreign governments. Many of these users apply data mining techniques to large volumes of data (up to 1 TB) received from the GES DAAC. However, rapid advances in processing power are enabling increases in data processing that are outpacing tape drive performance and network capacity. As a result, the proportion of data that can be distributed to users continues to decrease. As mitigation, we are migrating more data mining and mining preparation activities into the data center in order to reduce the data volume that needs to be distributed and to offer the users a more useful and manageable product. This migration of activities faces a number of technical and human-factor challenges. As data reduction and mining algorithms are normally quite specific to the user's research needs, the user's algorithm must be integrated virtually unchanged into the archive environment. Also, the archive itself is busy with everyday data archive and distribution activities and cannot be dedicated to, or even impacted by, the mining activities. Therefore, we schedule KDD 'campaigns' (similar to reprocessing campaigns), during which we schedule a wholesale retrieval of specific data products, offering users the opportunity to extract information from the data being retrieved during the campaign.

  10. Climate forcings in Goddard Institute for Space Studies SI2000 simulations

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Sato, M.; Nazarenko, L.; Ruedy, R.; Lacis, A.; Koch, D.; Tegen, I.; Hall, T.; Shindell, D.; Santer, B.; Stone, P.; Novakov, T.; Thomason, L.; Wang, R.; Wang, Y.; Jacob, D.; Hollandsworth, S.; Bishop, L.; Logan, J.; Thompson, A.; Stolarski, R.; Lean, J.; Willson, R.; Levitus, S.; Antonov, J.; Rayner, N.; Parker, D.; Christy, J.

    2002-09-01

    We define the radiative forcings used in climate simulations with the SI2000 version of the Goddard Institute for Space Studies (GISS) global climate model. These include temporal variations of well-mixed greenhouse gases, stratospheric aerosols, solar irradiance, ozone, stratospheric water vapor, and tropospheric aerosols. Our illustrations focus on the period 1951-2050, but we make the full data sets available for those forcings for which we have earlier data. We illustrate the global response to these forcings for the SI2000 model with specified sea surface temperature and with a simple Q-flux ocean, thus helping to characterize the efficacy of each forcing. The model yields good agreement with observed global temperature change and heat storage in the ocean. This agreement does not yield an improved assessment of climate sensitivity or a confirmation of the net climate forcing because of possible compensations with opposite changes of these quantities. Nevertheless, the results imply that observed global temperature change during the past 50 years is primarily a response to radiative forcings. It is also inferred that the planet is now out of radiation balance by 0.5 to 1 W/m2 and that additional global warming of about 0.5°C is already ``in the pipeline.''

  11. The City University of New York and NASA Goddard Space Fight Center Heliophysics Education Consortium

    NASA Astrophysics Data System (ADS)

    Johnson, L. P.; Marchese, P.; Ng, C.; Austin, S. A.; Frost, J.; Cheung, T. K.; Tremberger, G.; Robbins, I.; Paglione, T.; Damas, C.; Steiner, J. C.; Rudolph, E.

    2010-12-01

    The City University of New York and NASA Goddard Space Fight Center Heliophysics Education Consortium provides undergraduate student research, curriculum enhancement and academic program development, and professional development for faculty in order to support two of NASA’s Heliophysics Science objectives: a) understand the physical processes of the space environment from the Sun to Earth; and b) understand how human society, technological systems and the habitability of Earth are affected by solar variability. Research projects include Electron Density: Interaction between the Solar Wind and the Earth’s Ionosphere/Magnetosphere, Microsatellite-based Monitoring of Ion Density in the Ionosphere, D-Layer Ionosphere & EM pulses from Sun, Solar Weather and Tropical Cyclone Activity, Ratio Plot Analysis of Jupiter’s Stratosphere and Building of VLF Antenna Systems and Monitoring Solar Activity using the Stanford University Solar Weather monitor known as “Super-SID”. Faculty development began with a workshop at the Space Weather Action Center (SWAC) at GSFC. The project is supported by NASA award NNX10AE72G.

  12. The volcanic signal in Goddard Institute for Space Studies three-dimensional model simulations

    SciTech Connect

    Robock, A.; Liu, Y. )

    1994-01-01

    Transient calculations of the Goddard Institute for Space Studies general circulation model for the climatic signal of volcanic eruptions are analyzed. By compositing the output for two different volcanoes for scenario A and five different volcanos for scenario B, the natural variability is suppressed and the volcanic signals are extracted. Significant global means surface air temperature cooling and precipitation reduction are found for several years following the eruptions, with larger changes in the Northern Hemisphere (NH) than in the Southern Hemisphere. The global-average temperature response lasts for more than four years, but the precipitation response disappears after three years. The largest cooling in the model occurs in the NH summer of the year after spring eruptions. Significant zonal-average temperature reductions begin in the tropics immediately after the eruptions and extend to 45[degrees]S-45[degrees]N in the year after the eruptions. In the second year, cooling is still seen from 30[degrees]S to 30[degrees]N. Because of the low variability in this model as compared to the real world, these signals may appear more significant here than they would be attempting to isolate them using real data. The results suggest that volcanoes can enhance the drought in the Sahel. No evidence was found that stratospheric aerosols from the low-latitude volcanic eruptions can trigger ENSO events in this model.

  13. A Linearized Prognostic Cloud Scheme in NASAs Goddard Earth Observing System Data Assimilation Tools

    NASA Technical Reports Server (NTRS)

    Holdaway, Daniel; Errico, Ronald M.; Gelaro, Ronald; Kim, Jong G.; Mahajan, Rahul

    2015-01-01

    A linearized prognostic cloud scheme has been developed to accompany the linearized convection scheme recently implemented in NASA's Goddard Earth Observing System data assimilation tools. The linearization, developed from the nonlinear cloud scheme, treats cloud variables prognostically so they are subject to linearized advection, diffusion, generation, and evaporation. Four linearized cloud variables are modeled, the ice and water phases of clouds generated by large-scale condensation and, separately, by detraining convection. For each species the scheme models their sources, sublimation, evaporation, and autoconversion. Large-scale, anvil and convective species of precipitation are modeled and evaporated. The cloud scheme exhibits linearity and realistic perturbation growth, except around the generation of clouds through large-scale condensation. Discontinuities and steep gradients are widely used here and severe problems occur in the calculation of cloud fraction. For data assimilation applications this poor behavior is controlled by replacing this part of the scheme with a perturbation model. For observation impacts, where efficiency is less of a concern, a filtering is developed that examines the Jacobian. The replacement scheme is only invoked if Jacobian elements or eigenvalues violate a series of tuned constants. The linearized prognostic cloud scheme is tested by comparing the linear and nonlinear perturbation trajectories for 6-, 12-, and 24-h forecast times. The tangent linear model performs well and perturbations of clouds are well captured for the lead times of interest.

  14. ASTEC and MODEL: Controls software development at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Downing, John P.; Bauer, Frank H.; Surber, Jeffrey L.

    1993-01-01

    The ASTEC (Analysis and Simulation Tools for Engineering Controls) software is under development at the Goddard Space Flight Center (GSFC). The design goal is to provide a wide selection of controls analysis tools at the personal computer level, as well as the capability to upload compute-intensive jobs to a mainframe or supercomputer. In the last three years the ASTEC (Analysis and Simulation Tools for Engineering Controls) software has been under development. ASTEC is meant to be an integrated collection of controls analysis tools for use at the desktop level. MODEL (Multi-Optimal Differential Equation Language) is a translator that converts programs written in the MODEL language to FORTRAN. An upgraded version of the MODEL program will be merged into ASTEC. MODEL has not been modified since 1981 and has not kept with changes in computers or user interface techniques. This paper describes the changes made to MODEL in order to make it useful in the 90's and how it relates to ASTEC.

  15. Graphics Processing Unit (GPU) Acceleration of the Goddard Earth Observing System Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Putnam, Williama

    2011-01-01

    The Goddard Earth Observing System 5 (GEOS-5) is the atmospheric model used by the Global Modeling and Assimilation Office (GMAO) for a variety of applications, from long-term climate prediction at relatively coarse resolution, to data assimilation and numerical weather prediction, to very high-resolution cloud-resolving simulations. GEOS-5 is being ported to a graphics processing unit (GPU) cluster at the NASA Center for Climate Simulation (NCCS). By utilizing GPU co-processor technology, we expect to increase the throughput of GEOS-5 by at least an order of magnitude, and accelerate the process of scientific exploration across all scales of global modeling, including: The large-scale, high-end application of non-hydrostatic, global, cloud-resolving modeling at 10- to I-kilometer (km) global resolutions Intermediate-resolution seasonal climate and weather prediction at 50- to 25-km on small clusters of GPUs Long-range, coarse-resolution climate modeling, enabled on a small box of GPUs for the individual researcher After being ported to the GPU cluster, the primary physics components and the dynamical core of GEOS-5 have demonstrated a potential speedup of 15-40 times over conventional processor cores. Performance improvements of this magnitude reduce the required scalability of 1-km, global, cloud-resolving models from an unfathomable 6 million cores to an attainable 200,000 GPU-enabled cores.

  16. Global climate changes at forecast by Goddard Institute for Space studies three-dimensional model

    SciTech Connect

    Hansen, J.; Fung, I.; Lacis, A.; Rind, D.; Lebedeff, S.; Ruedy, R.; Russell, G.; Stone, P.

    1988-08-20

    We use a three-dimensional climate model, the Goddard Institute for Space Studies (GISS) model II with 8/sup 0/ by 10/sup 0/ horizontal resolution, to simulate the global climate effects of time-dependent variations at atmospheric trace gases and aerosols. Horizontal heat transport by the ocean is fixed at values estimated for today's climate, and the uptake of heat perturbations by the ocean beneath the mixed layer is approximated as vertical diffusion. We make a 100-year control run and perform experiments for three scenarios of atmospheric composition. These experiments begin in 1958 and include measured or estimated changes in atmospheric CO/sub 2/, CH/sub 4/, N/sub 2/O, chlorofluorocarbons (CFCs) and stratospheric aerosols for the period from 1958 to the present. Scenario A assumes continued exponential trace gas growth, scenario B assumes a reduced linear growth of trace gases, and scenario C assumes a rapid curtailment of trace gas emissions such that the net climate forcing ceases to increase after the year 2000.

  17. Station report on the Goddard Space Flight Center (GSFC) 1.2 meter telescope facility

    NASA Technical Reports Server (NTRS)

    Mcgarry, Jan F.; Zagwodzki, Thomas W.; Abbott, Arnold; Degnan, John J.; Cheek, Jack W.; Chabot, Richard S.; Grolemund, David A.; Fitzgerald, Jim D.

    1993-01-01

    The 1.2 meter telescope system was built for the Goddard Space Flight Center (GSFC) in 1973-74 by the Kollmorgen Corporation as a highly accurate tracking telescope. The telescope is an azimuth-elevation mounted six mirror Coude system. The facility has been used for a wide range of experimentation including helioseismology, two color refractometry, lunar laser ranging, satellite laser ranging, visual tracking of rocket launches, and most recently satellite and aircraft streak camera work. The telescope is a multi-user facility housed in a two story dome with the telescope located on the second floor above the experimenter's area. Up to six experiments can be accommodated at a given time, with actual use of the telescope being determined by the location of the final Coude mirror. The telescope facility is currently one of the primary test sites for the Crustal Dynamics Network's new UNIX based telescope controller software, and is also the site of the joint Crustal Dynamics Project / Photonics Branch two color research into atmospheric refraction.

  18. NASA Tech Briefs, January 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Tech Briefs are short announcements of innovations originating from research and development activities of the National Aeronautics and Space Administration. They emphasize information considered likely to be transferable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. Topics covered include: The Radio Frequency Health Node Wireless Sensor System; Effects of Temperature on Polymer/Carbon Chemical Sensors; Small CO2 Sensors Operate at Lower Temperature; Tele-Supervised Adaptive Ocean Sensor Fleet; Synthesis of Submillimeter Radiation for Spectroscopy; 100-GHz Phase Switch/Mixer Containing a Slot-Line Transition; Generating Ka-Band Signals Using an X-Band Vector Modulator; SiC Optically Modulated Field-Effect Transistor; Submillimeter-Wave Amplifier Module with Integrated Waveguide Transitions; Metrology System for a Large, Somewhat Flexible Telescope; Economical Implementation of a Filter Engine in an FPGA; Improved Joining of Metal Components to Composite Structures; Machined Titanium Heat-Pipe Wick Structure; Gadolinia-Doped Ceria Cathodes for Electrolysis of CO2; Utilizing Ocean Thermal Energy in a Submarine Robot; Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators; Alternative OTEC Scheme for a Submarine Robot; Sensitive, Rapid Detection of Bacterial Spores; Adenosine Monophosphate-Based Detection of Bacterial Spores; Silicon Microleaks for Inlets of Mass Spectrometers; CGH Figure Testing of Aspherical Mirrors in Cold Vacuums; Series-Coupled Pairs of Silica Microresonators; Precise Stabilization of the Optical Frequency of WGMRs; Formation Flying of Components of a Large Space Telescope; Laser Metrology Heterodyne Phase-Locked Loop; Spatial Modulation Improves Performance in CTIS; High-Performance Algorithm for Solving the Diagnosis Problem; Truncation Depth Rule-of-Thumb for Convolutional Codes; Efficient Method for Optimizing Placement of Sensors.

  19. The NASA-Goddard Multi-Scale Modeling Framework - Land Information System: Global Land/atmosphere Interaction with Resolved Convection

    NASA Technical Reports Server (NTRS)

    Mohr, Karen Irene; Tao, Wei-Kuo; Chern, Jiun-Dar; Kumar, Sujay V.; Peters-Lidard, Christa D.

    2013-01-01

    The present generation of general circulation models (GCM) use parameterized cumulus schemes and run at hydrostatic grid resolutions. To improve the representation of cloud-scale moist processes and landeatmosphere interactions, a global, Multi-scale Modeling Framework (MMF) coupled to the Land Information System (LIS) has been developed at NASA-Goddard Space Flight Center. The MMFeLIS has three components, a finite-volume (fv) GCM (Goddard Earth Observing System Ver. 4, GEOS-4), a 2D cloud-resolving model (Goddard Cumulus Ensemble, GCE), and the LIS, representing the large-scale atmospheric circulation, cloud processes, and land surface processes, respectively. The non-hydrostatic GCE model replaces the single-column cumulus parameterization of fvGCM. The model grid is composed of an array of fvGCM gridcells each with a series of embedded GCE models. A horizontal coupling strategy, GCE4fvGCM4Coupler4LIS, offered significant computational efficiency, with the scalability and I/O capabilities of LIS permitting landeatmosphere interactions at cloud-scale. Global simulations of 2007e2008 and comparisons to observations and reanalysis products were conducted. Using two different versions of the same land surface model but the same initial conditions, divergence in regional, synoptic-scale surface pressure patterns emerged within two weeks. The sensitivity of largescale circulations to land surface model physics revealed significant functional value to using a scalable, multi-model land surface modeling system in global weather and climate prediction.

  20. Architecture and evolution of Goddard Space Flight Center Distributed Active Archive Center

    NASA Technical Reports Server (NTRS)

    Bedet, Jean-Jacques; Bodden, Lee; Rosen, Wayne; Sherman, Mark; Pease, Phil

    1994-01-01

    The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been developed to enhance Earth Science research by improved access to remote sensor earth science data. Building and operating an archive, even one of a moderate size (a few Terabytes), is a challenging task. One of the critical components of this system is Unitree, the Hierarchical File Storage Management System. Unitree, selected two years ago as the best available solution, requires constant system administrative support. It is not always suitable as an archive and distribution data center, and has moderate performance. The Data Archive and Distribution System (DADS) software developed to monitor, manage, and automate the ingestion, archive, and distribution functions turned out to be more challenging than anticipated. Having the software and tools is not sufficient to succeed. Human interaction within the system must be fully understood to improve efficiency to improve efficiency and ensure that the right tools are developed. One of the lessons learned is that the operability, reliability, and performance aspects should be thoroughly addressed in the initial design. However, the GSFC DAAC has demonstrated that it is capable of distributing over 40 GB per day. A backup system to archive a second copy of all data ingested is under development. This backup system will be used not only for disaster recovery but will also replace the main archive when it is unavailable during maintenance or hardware replacement. The GSFC DAAC has put a strong emphasis on quality at all level of its organization. A Quality team has also been formed to identify quality issues and to propose improvements. The DAAC has conducted numerous tests to benchmark the performance of the system. These tests proved to be extremely useful in identifying bottlenecks and deficiencies in operational procedures.

  1. Refurbishment and Automation of the Thermal/Vacuum Facilities at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Donohue, John T.; Johnson, Chris; Ogden, Rick; Sushon, Janet

    1998-01-01

    The thermal/vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the 11 facilities, currently 10 of the systems are scheduled for refurbishment and/or replacement as part of a 5-year implementation. Expected return on investment includes the reduction in test schedules, improvements in the safety of facility operations, reduction in the complexity of a test and the reduction in personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering and for the automation of thermal/vacuum facilities and thermal/vacuum tests. Automation of the thermal/vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs) and the use of Supervisory Control and Data Acquisition (SCADA) systems. These components allow the computer control and automation of mechanical components such as valves and pumps. In some cases, the chamber and chamber shroud require complete replacement while others require only mechanical component retrofit or replacement. The project of refurbishment and automation began in 1996 and has resulted in the computer control of one Facility (Facility #225) and the integration of electronically controlled devices and PLCs within several other facilities. Facility 225 has been successfully controlled by PLC and SCADA for over one year. Insignificant anomalies have occurred and were resolved with minimal impact to testing and operations. The amount of work remaining to be performed will occur over the next four to five years. Fiscal year 1998 includes the complete refurbishment of one facility, computer control of the thermal systems in two facilities, implementation of SCADA and PLC systems to support multiple facilities and the implementation of a Database server to allow efficient test management and data analysis.

  2. Aura Atmospheric Data Products and Their Availability from NASA Goddard Earth Sciences DAAC

    NASA Technical Reports Server (NTRS)

    Ahmad, S.; Johnson, J.; Gopalan, A.; Smith, P.; Leptoukh, G.; Kempler, S.

    2004-01-01

    NASA's EOS-Aura spacecraft was launched successfully on July 15, 2004. The four instruments onboard the spacecraft are the Microwave Limb Sounder (MLS), the Ozone Monitoring Instrument (OMI), the Tropospheric Emission Spectrometer (TES), and the High Resolution Dynamics Limb Sounder (HBDLS). The Aura instruments are designed to gather earth sciences measurements across the ultraviolet, visible, infra-red, thermal and microwave regions of the electromagnetic spectrum. Aura will provide over 70 distinct standard atmospheric data products for use in ozone layer and surface UV-B monitoring, air quality forecast, and atmospheric chemistry and climate change studies (http://eosaura.gsfc.nasa.gov/). These products include earth-atmosphere radiances and solar spectral irradiances; total column, tropospheric, and profiles of ozone and other trace gases, surface W-B flux; clouds and aerosol characteristics; and temperature, geopotential height, and water vapor profiles. The MLS, OMI, and HIRDLS data products will be archived at the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC), while data from TES will be archived at NASA Langley Research Center DAAC. Some of the standard products which have gone through quick preliminary checks are already archived at the GES DAAC (http://daac.nsfc.nasa.gov/) and are available to the Aura science team and data validation team members for data validation; and to the application and visualization software developers, for testing their application modules. Once data are corrected for obvious calibration problems and partially validated using in-situ observations, they would be made available to the broader user community. This presentation will provide details of the whole suite of Aura atmospheric data products, and the time line of the availability of the rest of the preliminary products and of the partially validated provisional products. Software and took available for data access, visualization, and data

  3. Inclusion of Linearized Moist Physics in Nasa's Goddard Earth Observing System Data Assimilation Tools

    NASA Technical Reports Server (NTRS)

    Holdaway, Daniel; Errico, Ronald; Gelaro, Ronaldo; Kim, Jong G.

    2013-01-01

    Inclusion of moist physics in the linearized version of a weather forecast model is beneficial in terms of variational data assimilation. Further, it improves the capability of important tools, such as adjoint-based observation impacts and sensitivity studies. A linearized version of the relaxed Arakawa-Schubert (RAS) convection scheme has been developed and tested in NASA's Goddard Earth Observing System data assimilation tools. A previous study of the RAS scheme showed it to exhibit reasonable linearity and stability. This motivates the development of a linearization of a near-exact version of the RAS scheme. Linearized large-scale condensation is included through simple conversion of supersaturation into precipitation. The linearization of moist physics is validated against the full nonlinear model for 6- and 24-h intervals, relevant to variational data assimilation and observation impacts, respectively. For a small number of profiles, sudden large growth in the perturbation trajectory is encountered. Efficient filtering of these profiles is achieved by diagnosis of steep gradients in a reduced version of the operator of the tangent linear model. With filtering turned on, the inclusion of linearized moist physics increases the correlation between the nonlinear perturbation trajectory and the linear approximation of the perturbation trajectory. A month-long observation impact experiment is performed and the effect of including moist physics on the impacts is discussed. Impacts from moist-sensitive instruments and channels are increased. The effect of including moist physics is examined for adjoint sensitivity studies. A case study examining an intensifying Northern Hemisphere Atlantic storm is presented. The results show a significant sensitivity with respect to moisture.

  4. Simple Mapping Tools from the Goddard DAAC Earth Sciences MODIS Data Support

    NASA Astrophysics Data System (ADS)

    Savtchenko, A. K.

    2001-05-01

    In this poster we present two IDL-based tools designed to map MODIS swath data. While many MODIS data users will rely on gridded global products, there still exist a considerable interest in the high resolution swath data that eventually can be mapped. The application of the mapped data may be sought in variety of regional studies, ranging from environmental resource management, to operational tracking of forest fires or iceberg formation. At Level 1 and 2, MODIS swath data is georeferenced, i.e. data fields have corresponding geolocation (latitude, longitude) fields. However, mapping the data can be a substantial challenge for users who are more interested in the final mapped physical parameter, rather than in the raw data. Our experience with users shows that many would prefer to have simple mapping tools that don't require complicated installations, compilations and libraries and large manuals to read, that are platform independent, and can yield fast and reliable results without taking up all of the computer resources. MODIS Data Support Team at NASA Goddard DAAC distributes two very simple IDL-based mapping tools that attempt to meet those criteria: GEOVIEW and SIMAP. The latter is intended to run from a command line and thus can be included in shell or perl scripts if needed, while the former spawns a simple interactive session. They are both available with documentation for free download from http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/MODIS/software.html. SIMAP allows for stitching of multiple granules in one map. It takes all needed information (including channel/parameter/regional subsetting) from a batch file. Thus, lengthy jobs producing arbitrary amounts of image and binary files of maps are easy to perform. Examples output from the tools are also presented. These are mapped images of various MODIS swath data produced on requests from different science groups. In the light of the same examples, discussed are problems that users may encounter when mapping

  5. Distant origins of Arctic black carbon: A Goddard Institute for Space Studies ModelE experiment

    NASA Astrophysics Data System (ADS)

    Koch, Dorothy; Hansen, James

    2005-02-01

    Black carbon (BC) particles, derived from incomplete combustion of fossil fuels and biomass, may have a severe impact on the sensitive Arctic climate, possibly altering the temperature profile, cloud temperature and amount, the seasonal cycle, and the tropopause level and accelerating polar ice melting. We use the Goddard Institute for Space Studies general circulation model to investigate the origins of Arctic BC by isolating various source regions and types. The model suggests that the predominant sources of Arctic soot today are from south Asia (industrial and biofuel emissions) and from biomass burning. These are the primary global sources of BC (approximately 20% and 55%, respectively, of the global emissions), and BC aerosols in these regions are readily lofted to high altitudes where they may be transported poleward. According to the model the Arctic BC optical thickness is mostly from south Asia (30%) and from biomass (28%) (with slightly more than half of biomass coming from north of 40°N); North America, Russia, and Europe each contribute 10-15%. Russia, Europe, and south Asia each contribute about 20-25% of BC to the low-altitude springtime "Arctic haze." In the Arctic upper troposphere/lower stratosphere during the springtime, south Asia (30-50%) and low-latitude biomass (20-30%) are dominant, with a significant aircraft contribution (10-20%). Industrial S emissions are estimated to be weighted relatively more toward Russia and less toward south Asia (compared with BC). As a result, Russia contributes the most to Arctic sulfate optical thickness (24%); however, the south Asian contribution is also substantial (17%). Uncertainties derive from source estimates, model vertical mixing, and aerosol removal processes. Nevertheless, our results suggest that distant sources contribute more to Arctic pollution than is generally assumed.

  6. Highlights of Nanosatellite Development Program at NASA-Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rhee, Michael S.; Zakrzwski, Chuck M.; Thomas, Mike A.; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    Currently the GN&C's Propulsion Branch of the NASA's Goddard Space Flight Center (GSFC) is conducting a broad technology development program for propulsion devices that are ideally suited for nanosatellite missions. The goal of our program is to develop nanosatellite propulsion systems that can be flight qualified in a few years and flown in support of nanosatellite missions. The miniature cold gas thruster technology, the first product from the GSFC's propulsion component technology development program, will be flown on the upcoming ST-5 mission in 2003. The ST-5 mission is designed to validate various nanosatellite technologies in all major subsystem areas. It is a precursor mission to more ambitious nanosatellite missions such as the Magnetospheric Constellation mission. By teaming with the industry and government partners, the GSFC propulsion component technology development program is aimed at pursuing a multitude of nanosatellite propulsion options simultaneously, ranging from miniaturized thrusters based on traditional chemical engines to MEMS based thruster systems. After a conceptual study phase to determine the feasibility and the applicability to nanosatellite missions, flight like prototypes of selected technology are fabricated for testing. The development program will further narrow down the effort to those technologies that are considered "mission-enabling" for future nanosatellite missions. These technologies will be flight qualified to be flown on upcoming nanosatellite missions. This paper will report on the status of our development program and provide details on the following technologies: Low power miniature cold gas thruster Nanosatellite solid rocket motor. Solid propellant gas generator system for cold gas thruster. Low temperature hydrazine blends for miniature hydrazine thruster. MEMS mono propellant thruster using hydrogen peroxide.

  7. Web Services Implementations at Land Process and Goddard Earth Sciences Distributed Active Archive Centers

    NASA Astrophysics Data System (ADS)

    Cole, M.; Bambacus, M.; Lynnes, C.; Sauer, B.; Falke, S.; Yang, W.

    2007-12-01

    NASA's vast array of scientific data within its Distributed Active Archive Centers (DAACs) is especially valuable to both traditional research scientists as well as the emerging market of Earth Science Information Partners. For example, the air quality science and management communities are increasingly using satellite derived observations in their analyses and decision making. The Air Quality Cluster in the Federation of Earth Science Information Partners (ESIP) uses web infrastructures of interoperability, or Service Oriented Architecture (SOA), to extend data exploration, use, and analysis and provides a user environment for DAAC products. In an effort to continually offer these NASA data to the broadest research community audience, and reusing emerging technologies, both NASA's Goddard Earth Science (GES) and Land Process (LP) DAACs have engaged in a web services pilot project. Through these projects both GES and LP have exposed data through the Open Geospatial Consortiums (OGC) Web Services standards. Reusing several different existing applications and implementation techniques, GES and LP successfully exposed a variety data, through distributed systems to be ingested into multiple end-user systems. The results of this project will enable researchers world wide to access some of NASA's GES & LP DAAC data through OGC protocols. This functionality encourages inter-disciplinary research while increasing data use through advanced technologies. This paper will concentrate on the implementation and use of OGC Web Services, specifically Web Map and Web Coverage Services (WMS, WCS) at GES and LP DAACs, and the value of these services within scientific applications, including integration with the DataFed air quality web infrastructure and in the development of data analysis web applications.

  8. Value-added Data Services at the Goddard Earth Sciences Data and Information Services Center

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory G.; Alcott, Gary T.; Kempler, Steven J.; Lynnes, Christopher S.; Vollmer, Bruce E.

    2004-01-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in addition to serving the Earth Science community as one of the major Distributed Active Archives Centers (DAACs), provides much more than just data. Among the value-added services available to general users are subsetting data spatially and/or by parameter, online analysis (to avoid downloading unnecessarily all the data), and assistance in obtaining data from other centers. Services available to data producers and high-volume users include consulting on building new products with standard formats and metadata and construction of data management systems. A particularly useful service is data processing at the DISC (i.e., close to the input data) with the users algorithm. This can take a number of different forms: as a configuration-managed algorithm within the main processing stream; as a stand-alone program next to the on-line data storage; as build-it-yourself code within the Near-Archive Data Mining (NADM) system; or as an on-the-fly analysis with simple algorithms embedded into the web-based tools. Partnerships between the GES DISC and scientists, both producers and users, allow the scientists to concentrate on science, while the GES DISC handles the data management, e.g., formats, integration, and data processing. The existing data management infrastructure at the GES DISC supports a wide spectrum of options: from simple data support to sophisticated on-line analysis tools, producing economies of scale and rapid time-to-deploy. At the same time, such partnerships allow the GES DISC to serve the user community more efficiently and to better prioritize on-line holdings. Several examples of successful partnerships are described in the presentation.

  9. NASA Goddards LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager

    NASA Technical Reports Server (NTRS)

    Cook, Bruce D.; Corp, Lawrence A.; Nelson, Ross F.; Middleton, Elizabeth M.; Morton, Douglas C.; McCorkel, Joel T.; Masek, Jeffrey G.; Ranson, Kenneth J.; Ly, Vuong; Montesano, Paul M.

    2013-01-01

    The combination of LiDAR and optical remotely sensed data provides unique information about ecosystem structure and function. Here, we describe the development, validation and application of a new airborne system that integrates commercial off the shelf LiDAR hyperspectral and thermal components in a compact, lightweight and portable system. Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager is a unique system that permits simultaneous measurements of vegetation structure, foliar spectra and surface temperatures at very high spatial resolution (approximately 1 m) on a wide range of airborne platforms. The complementary nature of LiDAR, optical and thermal data provide an analytical framework for the development of new algorithms to map plant species composition, plant functional types, biodiversity, biomass and carbon stocks, and plant growth. In addition, G-LiHT data enhance our ability to validate data from existing satellite missions and support NASA Earth Science research. G-LiHT's data processing and distribution system is designed to give scientists open access to both low- and high-level data products (http://gliht.gsfc.nasa.gov), which will stimulate the community development of synergistic data fusion algorithms. G-LiHT has been used to collect more than 6,500 km2 of data for NASA-sponsored studies across a broad range of ecoregions in the USA and Mexico. In this paper, we document G-LiHT design considerations, physical specifications, instrument performance and calibration and acquisition parameters. In addition, we describe the data processing system and higher-level data products that are freely distributed under NASA's Data and Information policy.

  10. The Goddard Snow Radiance Assimilation Project: An Integrated Snow Radiance and Snow Physics Modeling Framework for Snow/cold Land Surface Modeling

    NASA Technical Reports Server (NTRS)

    Kim, E.; Tedesco, M.; Reichle, R.; Choudhury, B.; Peters-Lidard C.; Foster, J.; Hall, D.; Riggs, G.

    2006-01-01

    Microwave-based retrievals of snow parameters from satellite observations have a long heritage and have so far been generated primarily by regression-based empirical "inversion" methods based on snapshots in time. Direct assimilation of microwave radiance into physical land surface models can be used to avoid errors associated with such retrieval/inversion methods, instead utilizing more straightforward forward models and temporal information. This approach has been used for years for atmospheric parameters by the operational weather forecasting community with great success. Recent developments in forward radiative transfer modeling, physical land surface modeling, and land data assimilation are converging to allow the assembly of an integrated framework for snow/cold lands modeling and radiance assimilation. The objective of the Goddard snow radiance assimilation project is to develop such a framework and explore its capabilities. The key elements of this framework include: a forward radiative transfer model (FRTM) for snow, a snowpack physical model, a land surface water/energy cycle model, and a data assimilation scheme. In fact, multiple models are available for each element enabling optimization to match the needs of a particular study. Together these form a modular and flexible framework for self-consistent, physically-based remote sensing and water/energy cycle studies. In this paper we will describe the elements and the integration plan. All modules will operate within the framework of the Land Information System (LIS), a land surface modeling framework with data assimilation capabilities running on a parallel-node computing cluster. Capabilities for assimilation of snow retrieval products are already under development for LIS. We will describe plans to add radiance-based assimilation capabilities. Plans for validation activities using field measurements will also be discussed.

  11. Lidar Technology at the Goddard Laser and Electro-Optics Branch

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    The Laser and Electro-Optics Branch at Goddard Space flight Center was established about three years ago to provide a focused center of engineering support and technology development in these disciplines with an emphasis on spaced based instruments for Earth and Space Science. The Branch has approximately 15 engineers and technicians with backgrounds in physics, optics, and electrical engineering. Members of the Branch are currently supporting a number of space based lidar efforts as well as several technology efforts aimed at enabling future missions. The largest effort within the Branch is support of the Ice, Cloud, and land Elevation Satellite (ICESAT) carrying the Geoscience Laser Altimeter System (GLAS) instrument. The ICESAT/GLAS primary science objectives are: 1) To determine the mass balance of the polar ice sheets and their contributions to global sea level change; and 2) To obtain essential data for prediction of future changes in ice volume and sea-level. The secondary science objectives are: 1) To measure cloud heights and the vertical structure of clouds and aerosols in the atmosphere; 2) To map the topography of land surfaces; and 3) To measure roughness, reflectivity, vegetation heights, snow-cover, and sea-ice surface characteristics. Our efforts have concentrated on the GLAS receiver component development, the Laser Reference Sensor for the Stellar Reference System, the GLAS fiber optics subsystems, and the prelaunch calibration facilities. We will report on our efforts in the development of the space qualified interference filter [Allan], etalon filter, photon counting detectors, etalor/laser tracking system, and instrument fiber optics, as well as specification and selection of the star tracker and development of the calibration test bed. We are also engaged in development work on lidar sounders for chemical species. We are developing new lidar technology to enable a new class of miniature lidar instruments that are compatible with small

  12. High End Computer Network Testbedding at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gary, James Patrick

    1998-01-01

    The Earth & Space Data Computing (ESDC) Division, at the Goddard Space Flight Center, is involved in development and demonstrating various high end computer networking capabilities. The ESDC has several high end super computers. These are used to run: (1) computer simulation of the climate systems; (2) to support the Earth and Space Sciences (ESS) project; (3) to support the Grand Challenge (GC) Science, which is aimed at understanding the turbulent convection and dynamos in stars. GC research occurs in many sites throughout the country, and this research is enabled by, in part, the multiple high performance network interconnections. The application drivers for High End Computer Networking use distributed supercomputing to support virtual reality applications, such as TerraVision, (i.e., three dimensional browser of remotely accessed data), and Cave Automatic Virtual Environments (CAVE). Workstations can access and display data from multiple CAVE's with video servers, which allows for group/project collaborations using a combination of video, data, voice and shared white boarding. The ESDC is also developing and demonstrating the high degree of interoperability between satellite and terrestrial-based networks. To this end, the ESDC is conducting research and evaluations of new computer networking protocols and related technologies which improve the interoperability of satellite and terrestrial networks. The ESDC is also involved in the Security Proof of Concept Keystone (SPOCK) program sponsored by National Security Agency (NSA). The SPOCK activity provides a forum for government users and security technology providers to share information on security requirements, emerging technologies and new product developments. Also, the ESDC is involved in the Trans-Pacific Digital Library Experiment, which aims to demonstrate and evaluate the use of high performance satellite communications and advanced data communications protocols to enable interactive digital library data

  13. Development of Secondary Archive System at Goddard Space Flight Center Version 0 Distributed Active Archive Center

    NASA Technical Reports Server (NTRS)

    Sherman, Mark; Kodis, John; Bedet, Jean-Jacques; Wacker, Chris; Woytek, Joanne; Lynnes, Chris

    1996-01-01

    The Goddard Space Flight Center (GSFC) version 0 Distributed Active Archive Center (DAAC) has been developed to support existing and pre Earth Observing System (EOS) Earth science datasets, facilitate the scientific research, and test EOS data and information system (EOSDIS) concepts. To ensure that no data is ever lost, each product received at GSFC DAAC is archived on two different media, VHS and digital linear tape (DLT). The first copy is made on VHS tape and is under the control of UniTree. The second and third copies are made to DLT and VHS media under a custom built software package named 'Archer'. While Archer provides only a subset of the functions available with commercial software like UniTree, it supports migration between near-line and off-line media and offers much greater performance and flexibility to satisfy the specific needs of a data center. Archer is specifically designed to maximize total system throughput, rather than focusing on the turn-around time for individual files. The commercial off the shelf software (COTS) hierarchical storage management (HSM) products evaluated were mainly concerned with transparent, interactive, file access to the end-user, rather than a batch-orientated, optimizable (based on known data file characteristics) data archive and retrieval system. This is critical to the distribution requirements of the GSFC DAAC where orders for 5000 or more files at a time are received. Archer has the ability to queue many thousands of file requests and to sort these requests into internal processing schedules that optimize overall throughput. Specifically, mount and dismount, tape load and unload cycles, and tape motion are minimized. This feature did not seem to be available in many COTS pacages. Archer also uses a generic tar tape format that allows tapes to be read by many different systems rather than the proprietary format found in most COTS packages. This paper discusses some of the specific requirements at GSFC DAAC, the

  14. High Tech, Low Tech and Education. Sociology of the School.

    ERIC Educational Resources Information Center

    Watkins, Peter

    Designed to provide a link between academic thought and research and the practice of teaching, this monograph explores the appropriate educational response to technological change. The central argument of this study is that future job opportunities will lie essentially with low tech jobs, i.e., traditional, basic, industrial jobs, rather than the…

  15. Considering High-Tech Exhibits?

    ERIC Educational Resources Information Center

    Routman, Emily

    1994-01-01

    Discusses a variety of high-tech exhibit media used in The Living World, an educational facility operated by The Saint Louis Zoo. Considers the strengths and weaknesses of holograms, video, animatronics, video-equipped microscopes, and computer interactives. Computer interactives are treated with special attention. (LZ)

  16. Ending the Tech Refresh Nightmare

    ERIC Educational Resources Information Center

    Demski, Jennifer

    2010-01-01

    As higher education budgets tighten in the ongoing recession, colleges and universities have found themselves questioning, lengthening, and even eliminating tech refresh cycles. Yet how deep an institution cuts into its refresh program can compromise its ability to provide an up-to-date and competitive computing environment for students and a…

  17. High-Tech Security Help.

    ERIC Educational Resources Information Center

    Flanigan, Robin L.

    2000-01-01

    Advocates embrace high-tech security measures as necessary to avoid Columbine-style massacres. Critics contend that school systems can go overboard, making students feel less safe and too closely scrutinized. Current electronic, biometric, and computer-mapping devices and school applications are discussed. Vendors are listed. (MLH)

  18. High Tech Educators Network Evaluation.

    ERIC Educational Resources Information Center

    O'Shea, Dan

    A process evaluation was conducted to assess the High Tech Educators Network's (HTEN's) activities. Four basic components to the evaluation approach were documentation review, program logic model, written survey, and participant interviews. The model mapped the basic goals and objectives, assumptions, activities, outcome expectations, and…

  19. Horticulture. Tech Prep Competency Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Wooster. Agricultural Technical Inst.

    This tech prep competency profile (TCP), which was developed by a consortium of Ohio educators and business/industry representatives, lists the competencies that have been identified as necessary for employment in the following occupations: nursery technician; golf course superintendent; landscape designer/manager; lawn care specialist; tree care…

  20. Tech Prep Consortia in Texas.

    ERIC Educational Resources Information Center

    Opp, Ronald D.

    The Tech Prep (TP) program is designed to provide a seamless transition for students between the high school, community college, and four-year college levels so that students can make an easier transition from school to work. In Texas, TP has developed differently from the programs of other states. Texas policy makers created a tri-agency…

  1. CO2 Data Distribution and Support from the Goddard Earth Science Data and Information Services Center (GES-DISC)

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas; Savtchenko, Andrey; Vollmer, Bruce; Albayrak, Arif; Theobald, Mike; Esfandiari, Ed; Wei, Jennifer

    2015-01-01

    This talk will describe the support and distribution of CO2 data products from OCO-2, AIRS, and ACOS, that are archived and distributed from the Goddard Earth Sciences Data and Information Services Center. We will provide a brief summary of the current online archive and distribution metrics for the OCO-2 Level 1 products and plans for the Level 2 products. We will also describe collaborative data sets and services (e.g., matchups with other sensors) and solicit feedback for potential future services.

  2. COMSAT's destructive physical analysis of aerospace nickel-cadmium cells for NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Robbins, Kathleen M. B.; Rao, Gopalakrishna M.; Yi, Thomas Y.

    1993-01-01

    Over the past 5 years, COMSAT has performed numerous destructive physical analyses (DPA's) on NASA-Goddard-supplied nickel-cadmium (Ni/Cd) cells. The samples included activated but uncycled cells, wet stored cells, cycled cells, and anomalous cells. The DPA's provided visual, morphological, and chemical analyses of the cell components. The DPA data for the analyzed cells are presented. For the cells investigated, the leading cause of poor performance, as determined by DPA, has been poor negative electrode utilization, which resulted in negative-electrode-limiting operation.

  3. Graphics Processing Units (GPU) and the Goddard Earth Observing System atmospheric model (GEOS-5): Implementation and Potential Applications

    NASA Technical Reports Server (NTRS)

    Putnam, William M.

    2011-01-01

    Earth system models like the Goddard Earth Observing System model (GEOS-5) have been pushing the limits of large clusters of multi-core microprocessors, producing breath-taking fidelity in resolving cloud systems at a global scale. GPU computing presents an opportunity for improving the efficiency of these leading edge models. A GPU implementation of GEOS-5 will facilitate the use of cloud-system resolving resolutions in data assimilation and weather prediction, at resolutions near 3.5 km, improving our ability to extract detailed information from high-resolution satellite observations and ultimately produce better weather and climate predictions

  4. Technical Challenges and Opportunities of Centralizing Space Science Mission Operations (SSMO) at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ido, Haisam; Burns, Rich

    2015-01-01

    The NASA Goddard Space Science Mission Operations project (SSMO) is performing a technical cost-benefit analysis for centralizing and consolidating operations of a diverse set of missions into a unified and integrated technical infrastructure. The presentation will focus on the notion of normalizing spacecraft operations processes, workflows, and tools. It will also show the processes of creating a standardized open architecture, creating common security models and implementations, interfaces, services, automations, notifications, alerts, logging, publish, subscribe and middleware capabilities. The presentation will also discuss how to leverage traditional capabilities, along with virtualization, cloud computing services, control groups and containers, and possibly Big Data concepts.

  5. Development of an expert system prototype for determining software functional requirements for command management activities at NASA Goddard

    NASA Technical Reports Server (NTRS)

    Liebowitz, J.

    1985-01-01

    The development of an expert system prototype for determining software functional requirements for NASA Goddard's Command Management System (CMS) is described. The role of the CMS is to transform general requests into specific spacecraft commands with command execution conditions. The CMS is part of the NASA Data System which entails the downlink of science and engineering data from NASA near-earth satellites to the user, and the uplink of command and control data to the spacecraft. Subjects covered include: the problem environment of determining CMS software functional requirements; the expert system approach for handling CMS requirements development; validation and evaluation procedures for the expert system.

  6. Postseismic Deformation after the 1964 Great Alaskan Earthquake: Collaborative Research with Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Freymueller, Jeffrey T.

    1999-01-01

    The purpose of this project was to carry out GPS observations on the Kenai Peninsula, southern Alaska, in order to study the postseismic and contemporary deformation following the 1964 Alaska earthquake. All of the research supported in this grant was carried out in collaboration with Dr. Steven Cohen of Goddard Space Flight Center. The research funding from this grant primarily supported GPS fieldwork, along with the acquisition of computer equipment to allow analysis and modeling of the GPS data. A minor amount of salary support was provided by the PI, but the great majority of the salary support was provided by the Geophysical Institute. After the expiration of this grant, additional funding was obtained from the National Science Foundation to continue the work. This grant supported GPS field campaigns in August 1995, June 1996, May-June and September 1997, and May-June 1998. We initially began the work by surveying leveling benchmarks on the Kenai peninsula that had been surveyed after the 1964 earthquake. Changes in height from the 1964 leveling data to the 1995+ GPS data, corrected for the geoid-ellipsoid separation, give the total elevation change since the earthquake. Beginning in 1995, we also identified or established sites that were suitable for long-term surveying using GPS. In the subsequent annual GPS campaigns, we made regular measurements at these GPS marks, and steadily enhanced our set of points for which cumulative postseismic uplift data were available. From 4 years of Global Positioning System (GPS) measurements, we find significant spatial variations in present-day deformation between the eastern and western Kenai peninsula, Alaska. Sites in the eastern Kenai peninsula and Prince William Sound move to the NNW relative to North America, in the direction of Pacific-North America relative plate motion. Velocities decrease in magnitude from nearly the full plate rate in southern Prince William Sound to about 30 mm/yr at Seward and to about 5 mm

  7. The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors.

    NASA Astrophysics Data System (ADS)

    Kummerow, Christian; Hong, Y.; Olson, W. S.; Yang, S.; Adler, R. F.; McCollum, J.; Ferraro, R.; Petty, G.; Shin, D.-B.; Wilheit, T. T.

    2001-11-01

    This paper describes the latest improvements applied to the Goddard profiling algorithm (GPROF), particularly as they apply to the Tropical Rainfall Measuring Mission (TRMM). Most of these improvements, however, are conceptual in nature and apply equally to other passive microwave sensors. The improvements were motivated by a notable overestimation of precipitation in the intertropical convergence zone. This problem was traced back to the algorithm's poor separation between convective and stratiform precipitation coupled with a poor separation between stratiform and transition regions in the a priori cloud model database. In addition to now using an improved convective-stratiform classification scheme, the new algorithm also makes use of emission and scattering indices instead of individual brightness temperatures. Brightness temperature indices have the advantage of being monotonic functions of rainfall. This, in turn, has allowed the algorithm to better define the uncertainties needed by the scheme's Bayesian inversion approach. Last, the algorithm over land has been modified primarily to better account for ambiguous classification where the scattering signature of precipitation could be confused with surface signals. All these changes have been implemented for both the TRMM Microwave Imager (TMI) and the Special Sensor Microwave Imager (SSM/I). Results from both sensors are very similar at the storm scale and for global averages. Surface rainfall products from the algorithm's operational version have been compared with conventional rainfall data over both land and oceans. Over oceans, GPROF results compare well with atoll gauge data. GPROF is biased negatively by 9% with a correlation of 0.86 for monthly 2.5° averages over the atolls. If only grid boxes with two or more atolls are used, the correlation increases to 0.91 but GPROF becomes positively biased by 6%. Comparisons with TRMM ground validation products from Kwajalein reveal that GPROF is negatively

  8. Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Fung, I.; Lacis, A.; Rind, D.; Lebedeff, S.; Ruedy, R.; Russell, G.; Stone, P.

    1988-08-01

    We use a three-dimensional climate model, the Goddard Institute for Space Studies (GISS) model II with 8° by 10° horizontal resolution, to simulate the global climate effects of time-dependent variations of atmospheric trace gases and aerosols. Horizontal heat transport by the ocean is fixed at values estimated for today's climate, and the uptake of heat perturbations by the ocean beneath the mixed layer is approximated as vertical diffusion. We make a 100-year control run and perform experiments for three scenarios of atmospheric composition. These experiments begin in 1958 and include measured or estimated changes in atmospheric CO2, CH4, N2O, chlorofluorocarbons (CFCs) and stratospheric aerosols for the period from 1958 to the present. Scenario A assumes continued exponential trace gas growth, scenario B assumes a reduced linear growth of trace gases, and scenario C assumes a rapid curtailment of trace gas emissions such that the net climate forcing ceases to increase after the year 2000. Principal results from the experiments are as follows: (1) Global warming to the level attained at the peak of the current interglacial and the previous interglacial occurs in all three scenarios; however, there are dramatic differences in the levels of future warming, depending on trace gas growth. (2) The greenhouse warming should be clearly identifiable in the 1990s; the global warming within the next several years is predicted to reach and maintain a level at least three standard deviations above the climatology of the 1950s. (3) Regions where an unambiguous warming appears earliest are low-latitude oceans, China and interior areas in Asia, and ocean areas near Antarctica and the north pole; aspects of the spatial and temporal distribution of predicted warming are clearly model-dependent, implying the possibility of model discrimination by the 1990s and thus improved predictions, if appropriate observations are acquired. (4) The temperature changes are sufficiently large

  9. New data and capabilities in the NASA Goddard Hurricane Data Portal

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Leptoukh, G.; Ostrenga, D.; Savtchenko, C.; Kempler, S.

    2007-12-01

    This presentation describes new additions to the NASA Goddard Hurricane Data Portal, a dedicated web portal (URL: http://disc.sci.gsfc.nasa.gov/hurricane/) has been designed for viewing and studying Atlantic hurricanes by utilizing various measurements by NASA remote-sensing instruments. The portal consists of the following main components: · Current conditions (in pre-selected regions and updated 3-hourly or daily): the latest maps, animation and profiles from NASA satellites. At present, images or plots created using data from TRMM, AIRS, MODIS, MLS and CloudSat are available. Later, data from OMI and other instruments will be added. A new feature will be added to allow users to easily download/subset data associated with these images. · Current and past hurricane archive: maps, animation and profiles of past hurricanes were created using data from TRMM, AIRS, MODIS, MLS and CloudSat, allowing users to explore past hurricanes and download/subset data if necessary. A new feature has just been released to allow searching past hurricanes. Also users can view imagery via Google Earth. · Science focus: examples/stories describing data usage in hurricane monitoring and research. · Tools: descriptions and links of a number of in-house developed tools for hurricane exploration and event- based data ordering. For example, the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni, URL: http://giovanni.gsfc.nasa.gov), a series of online visualization and analysis systems, allows users to access data ranging from near-real-time to historical archives and generate customized analysis maps, plots and data on the fly over the Internet. A hurricane instance of Giovanni is under development. However, a prototype that allows investigating Quikscat ocean surface wind, TRMM precipitation and TRMM microwave sea surface temperature is available now (URL: http://disc.gsfc.nasa.gov/hurricane/trmm_quikscat_analysis.shtml). Mirador (URL: http://g0dup05u

  10. Advances in Land Data Assimilation at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf

    2009-01-01

    Research in land surface data assimilation has grown rapidly over the last decade. In this presentation we provide a brief overview of key research contributions by the NASA Goddard Space Flight Center (GSFC). The GSFC contributions to land assimilation primarily include the continued development and application of the Land Information System (US) and the ensemble Kalman filter (EnKF). In particular, we have developed a method to generate perturbation fields that are correlated in space, time, and across variables and that permit the flexible modeling of errors in land surface models and observations, along with an adaptive filtering approach that estimates observation and model error input parameters. A percentile-based scaling method that addresses soil moisture biases in model and observational estimates opened the path to the successful application of land data assimilation to satellite retrievals of surface soil moisture. Assimilation of AMSR-E surface soil moisture retrievals into the NASA Catchment model provided superior surface and root zone assimilation products (when validated against in situ measurements and compared to the model estimates or satellite observations alone). The multi-model capabilities of US were used to investigate the role of subsurface physics in the assimilation of surface soil moisture observations. Results indicate that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Building on this experience, GSFC leads the development of the Level 4 Surface and Root-Zone Soil Moisture (L4_SM) product for the planned NASA Soil-Moisture-Active-Passive (SMAP) mission. A key milestone was the design and execution of an Observing System Simulation Experiment that quantified the contribution of soil moisture retrievals to land data assimilation products as a function of retrieval and land model skill and yielded an estimate of the error budget for the

  11. AIRS Science Data Services at NASA Goddard Earth Sciences Data and Info Services

    NASA Astrophysics Data System (ADS)

    Li, J.; Theobald, M.; Vollmer, B.; Hua, X.; Won, Y.

    2007-12-01

    The Atmospheric Infrared Sounder (AIRS) is a very high spectral resolution passive infrared sounder with more than 2000 well-calibrated spectral channels measuring in the range of 3.74 - 15.4 micron. The AIRS instrument was successfully launched aboard the NASA Aqua spacecraft in May, 2002 and has been providing global coverage ever since. The infrared radiance data product is stable to 10 mK/year and accurate to better than 250 mK. The AIRS product is the most accurate and stable set of hyperspectral infrared radiance spectra measurements made in space to date, and its meets the criteria identified by the National Research Council for climate data records. In addition, working in tandem with an Advanced Microwave Sounding Unit (AMSU-A) instrument, AIRS provides a three-dimensional view of the geophysical properties of the Earth's atmosphere. The geophysical products provide daily global temperature profiles at an accuracy of 1 K per 1 km thick layer in the troposphere and moisture profiles at an accuracy of 20% per 2 km thick layer in the lower troposphere (20% - 60% in the upper troposphere). AIRS standard swath and grid data products are available from the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). The latest version of AIRS products (Version 5) has many improvements over previous versions including better temperature and water vapor profiles, enhanced Level 2 temperature data products over land and polar regions, first-time retrievals of carbon monoxide and methane, improvements to ozone retrievals, warning 'flags' to identify concentrations of sulfur dioxide and dust and overall improvements error and quality flag parameterization. In addition to the AIRS standard products, the swath-based AIRS products are also produced in near real time (NRT) at the GES DISC facility using the same core science algorithms as in the regular science data production but using predicted ephemeris in place of definitive ephemeris data

  12. Regional climate change predictions from the Goddard Institute for Space Studies high resolution GCM

    NASA Technical Reports Server (NTRS)

    Crane, Robert G.; Hewitson, B. C.

    1991-01-01

    A new diagnostic tool is developed for examining relationships between the synoptic scale circulation and regional temperature distributions in GCMs. The 4 x 5 deg GISS GCM is shown to produce accurate simulations of the variance in the synoptic scale sea level pressure distribution over the U.S. An analysis of the observational data set from the National Meteorological Center (NMC) also shows a strong relationship between the synoptic circulation and grid point temperatures. This relationship is demonstrated by deriving transfer functions between a time-series of circulation parameters and temperatures at individual grid points. The circulation parameters are derived using rotated principal components analysis, and the temperature transfer functions are based on multivariate polynomial regression models. The application of these transfer functions to the GCM circulation indicates that there is considerable spatial bias present in the GCM temperature distributions. The transfer functions are also used to indicate the possible changes in U.S. regional temperatures that could result from differences in synoptic scale circulation between a 1XCO2 and a 2xCO2 climate, using a doubled CO2 version of the same GISS GCM.

  13. Cross Support Transfer Service (CSTS) Framework Library

    NASA Technical Reports Server (NTRS)

    Ray, Timothy

    2014-01-01

    Within the Consultative Committee for Space Data Systems (CCSDS), there is an effort to standardize data transfer between ground stations and control centers. CCSDS plans to publish a collection of transfer services that will each address the transfer of a particular type of data (e.g., tracking data). These services will be called Cross Support Transfer Services (CSTSs). All of these services will make use of a common foundation that is called the CSTS Framework. This library implements the User side of the CSTS Framework. "User side" means that the library performs the role that is typically expected of the control center. This library was developed in support of the Goddard Data Standards program. This technology could be applicable for control centers, and possibly for use in control center simulators needed to test ground station capabilities. The main advantages of this implementation are its flexibility and simplicity. It provides the framework capabilities, while allowing the library user to provide a wrapper that adapts the library to any particular environment. The main purpose of this implementation was to support the inter-operability testing required by CCSDS. In addition, it is likely that the implementation will be useful within the Goddard mission community (for use in control centers).

  14. GRT: Goddard Robotic Telescope, Optical Follow-up of the GRBs and Optical Coordinated Observation of the AGNs

    NASA Astrophysics Data System (ADS)

    Okajima, Takashi; Sakamoto, T.; Donato, D.; Gehrels, N.; Ukwatta, T.; Urata, Y.

    2008-03-01

    We are constructing the 14" fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope is 1) to follow-up the Swift/GLAST GRBs and 2) to perform the coordinated optical observations of the GLAST AGNs. Our telescope system consists of the 14" Celestron OTA, the Astro-Physics 1200GTO mount, the Apogee U47 CCD camera, the JIM's electronic focuser, and the Finger Lake Instrumentation's color filter wheel with U, B, V, R, and I filters. With the focal reducer, 18' x 18' field of view has been achieved. The observatory dome is the Astro Haven's 7ft clam-shell dome. We will start the scientific observations on April 2008. While not observing our primary targets (GRBs and AGNs), we are planning to open our telescope time to the public for having a wider use of our telescope in both a different research field and an educational purpose.

  15. Performance of Versions 1,2 and 3 of the Goddard Earth Observing System (GEOS) Chemistry-Climate Model (CCM)

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Stolarski, Richard S.; Nielsen, J. Eric; Duncan, Bryan N.

    2008-01-01

    Version 1 of the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM) was used in the first CCMVa1 model evaluation and forms the basis for several studies of links between ozone and the circulation. That version of the CCM was based on the GEOS-4 GCM. Versions 2 and 3 of the GEOS CCM are based on the GEOS-5 GCM, which retains the "Lin-Rood" dynamical core but has a totally different set of physical parameterizatiOns to GEOS-4. In Version 2 of the GEOS CCM the Goddard stratospheric chemistry module is retained. Difference between Versions 1 and 2 thus reflect the physics changes of the underlying GCMs. Several comparisons between these two models are made, several of which reveal improvements in Version 2 (including a more realistic representation of the interannual variability of the Antarctic vortex). In Version 3 of the GEOS CCM, the stratospheric chemistry mechanism is replaced by the "GMI COMBO" code that includes tropospheric chemistry and different computational approaches. An advantage of this model version. is the reduction of high ozone biases that prevail at low chlorine loadings in Versions 1 and 2. This poster will compare and contrast various aspects of the three model versions that are relevant for understanding interactions between ozone and climate.

  16. Health Technologies State Tech Prep Competency Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This "tech prep" state competency profile contains all the competencies required and recommended for entry-level employees in occupations in the health technologies cluster. Introductory materials include the following: descriptions of the different types of competencies (essential ones that must be included in all new tech prep programs and…

  17. Tech Camp Unleashes Creativity and Collaboration

    ERIC Educational Resources Information Center

    Bardin, Joe

    2008-01-01

    Each August, teachers from around the state gather for the Arizona K-12 Center's Tech Camp, a week-long immersion in technology for the classroom. The Arizona K-12 Center's mission is to improve teaching and learning in Arizona's schools through high-quality professional development and teacher leadership. The formula Tech Camp follows is a simple…

  18. Tech Prep: A Planning and Resource Guide.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This guide was developed to help administrators, teachers, students, parents, and the business community understand and implement tech prep programs in South Carolina. (Tech prep is a major restructuring strategy designed to meet the needs of students who want to function effectively in a technological workplace and to ensure that students are…

  19. Promoting Tech Schools within Your Community

    ERIC Educational Resources Information Center

    Nikirk, Martin

    2010-01-01

    This article describes a number of promotional events and practices that the author's school engages in. The author hopes that his school's experiences will serve as an inspiration and useful model for other "Tech Directions" readers. There are many methods for successfully promoting one's tech program. Two key strategies are: (1) Connect in…

  20. How Colleges Get More Bang (or Less) from Technology Transfer.

    ERIC Educational Resources Information Center

    Blumenstyk, Goldie

    2002-01-01

    Uses the University of Michigan and three other colleges (University of Maryland--Baltimore County, Brigham Young University, and Washington University) to illustrate the varied approaches to capitalizing financially on campus research by deciding what constitutes success. Includes a "tech-transfer scorecard" listing the highest-ranking…

  1. Semantic Web Data Discovery of Earth Science Data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Hegde, Mahabaleshwara; Strub, Richard F.; Lynnes, Christopher S.; Fang, Hongliang; Teng, William

    2008-01-01

    Mirador is a web interface for searching Earth Science data archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador provides keyword-based search and guided navigation for providing efficient search and access to Earth Science data. Mirador employs the power of Google's universal search technology for fast metadata keyword searches, augmented by additional capabilities such as event searches (e.g., hurricanes), searches based on location gazetteer, and data services like format converters and data sub-setters. The objective of guided data navigation is to present users with multiple guided navigation in Mirador is an ontology based on the Global Change Master directory (GCMD) Directory Interchange Format (DIF). Current implementation includes the project ontology covering various instruments and model data. Additional capabilities in the pipeline include Earth Science parameter and applications ontologies.

  2. Using graphics and expert system technologies to support satellite monitoring at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Shirah, Gregory W.; Luczak, Edward C.

    1994-01-01

    At NASA's Goddard Space Flight Center, fault-isolation expert systems have been developed to support data monitoring and fault detection tasks in satellite control centers. Based on the lessons learned during these efforts in expert system automation, a new domain-specific expert system development tool named the Generic Spacecraft Analysts Assistant (GenSAA), was developed to facilitate the rapid development and reuse of real-time expert systems to serve as fault-isolation assistants for spacecraft analysts. This paper describes GenSAA's capabilities and how it is supporting monitoring functions of current and future NASA missions for a variety of satellite monitoring applications ranging from subsystem health and safety to spacecraft attitude. Finally, this paper addresses efforts to generalize GenSAA's data interface for more widespread usage throughout the space and commercial industry.

  3. Development of an expert system prototype for determining software functional requirements for command management activities at NASA Goddard

    NASA Technical Reports Server (NTRS)

    Liebowitz, J.

    1986-01-01

    The development of an expert system prototype for software functional requirement determination for NASA Goddard's Command Management System, as part of its process of transforming general requests into specific near-earth satellite commands, is described. The present knowledge base was formulated through interactions with domain experts, and was then linked to the existing Knowledge Engineering Systems (KES) expert system application generator. Steps in the knowledge-base development include problem-oriented attribute hierarchy development, knowledge management approach determination, and knowledge base encoding. The KES Parser and Inspector, in addition to backcasting and analogical mapping, were used to validate the expert system-derived requirements for one of the major functions of a spacecraft, the solar Maximum Mission. Knowledge refinement, evaluation, and implementation procedures of the expert system were then accomplished.

  4. A Unique Outside Neutron and Gamma Ray Instrumentation Development Test Facility at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    An outside neutron and gamma ray instrumentation test facility has been constructed at NASA's Goddard Space Flight Center (GSFC) to evaluate conceptual designs of gamma ray and neutron systems that we intend to propose for future planetary lander and rover missions. We will describe this test facility and its current capabilities for operation of planetary in situ instrumentation, utilizing a l4 MeV pulsed neutron generator as the gamma ray excitation source with gamma ray and neutron detectors, in an open field with the ability to remotely monitor and operate experiments from a safe distance at an on-site building. The advantage of a permanent test facility with the ability to operate a neutron generator outside and the flexibility to modify testing configurations is essential for efficient testing of this type of technology. Until now, there have been no outdoor test facilities for realistically testing neutron and gamma ray instruments planned for solar system exploration

  5. Narrow-band Imagery with the Goddard Fabry-Perot: Probing the Epoch of Active Accretion for PMS Stars

    NASA Technical Reports Server (NTRS)

    Woodgate, Bruce E.; Grady, C.; Endres, M.; Williger, G.

    2006-01-01

    The STIS coronagraphic imaging sample of I'MS stars was surveyed with the Goddard Fabry-Perot (GFP) interferometer to determine what fraction of the stars drive jets, whether there is any difference in behavior for a group of intermediate-mass stars as compared with T Tauri stars, and to search for evolutionary effects. Compared to broad band imaging, the FGP achieves an emission-line nebulosity-to-star contrast gain of between 500 and 3000. To date, we have detected jets associated with classical T Tauri stars spanning a factor of 280 in mass accretion rate in approximately 50% of the STIS coronagraphic imaging sample. We also detected jets or Herbig-HARO knots associated with 5 Herbig Ae stars, all younger than 8 Myr, for a detection fraction which is smaller than the T Tauri survey.

  6. Assessing the Impact of Pre-gpm Microwave Precipitation Observations in the Goddard WRF Ensemble Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Chambon, Philippe; Zhang, Sara Q.; Hou, Arthur Y.; Zupanski, Milija; Cheung, Samson

    2013-01-01

    The forthcoming Global Precipitation Measurement (GPM) Mission will provide next generation precipitation observations from a constellation of satellites. Since precipitation by nature has large variability and low predictability at cloud-resolving scales, the impact of precipitation data on the skills of mesoscale numerical weather prediction (NWP) is largely affected by the characterization of background and observation errors and the representation of nonlinear cloud/precipitation physics in an NWP data assimilation system. We present a data impact study on the assimilation of precipitation-affected microwave (MW) radiances from a pre-GPM satellite constellation using the Goddard WRF Ensemble Data Assimilation System (Goddard WRF-EDAS). A series of assimilation experiments are carried out in a Weather Research Forecast (WRF) model domain of 9 km resolution in western Europe. Sensitivities to observation error specifications, background error covariance estimated from ensemble forecasts with different ensemble sizes, and MW channel selections are examined through single-observation assimilation experiments. An empirical bias correction for precipitation-affected MW radiances is developed based on the statistics of radiance innovations in rainy areas. The data impact is assessed by full data assimilation cycling experiments for a storm event that occurred in France in September 2010. Results show that the assimilation of MW precipitation observations from a satellite constellation mimicking GPM has a positive impact on the accumulated rain forecasts verified with surface radar rain estimates. The case-study on a convective storm also reveals that the accuracy of ensemble-based background error covariance is limited by sampling errors and model errors such as precipitation displacement and unresolved convective scale instability.

  7. Magnetic Test Performance Capabilities at the Goddard Space Flight Center as Applied to the Global Geospace Science Initiative

    NASA Technical Reports Server (NTRS)

    Mitchell, Darryl R.

    1997-01-01

    Goddard Space Flight Center's (GSFC) Spacecraft Magnetic Test Facility (SMTF) is a historic test facility that has set the standard for all subsequent magnetic test facilities. The SMTF was constructed in the early 1960's for the purpose of simulating geomagnetic and interplanetary magnetic fields. Additionally, the facility provides the capability for measuring spacecraft generated magnetic fields as well as calibrating magnetic attitude control systems and science magnetometers. The SMTF was designed for large, spacecraft level tests and is currently the second largest spherical coil system in the world. The SMTF is a three-axis Braunbek system composed of four coils on each of three orthogonal axes. The largest coils are 12.7 meters (41.6 feet) in diameter. The three-axis Braunbek configuration provides a highly uniform cancellation of the geomagnetic field over the central 1.8 meter (6 foot) diameter primary test volume. Cancellation of the local geomagnetic field is to within +/-0.2 nanotesla with a uniformity of up to 0.001% within the 1.8 meter (6 foot) diameter primary test volume. Artificial magnetic field vectors from 0-60,000 nanotesla can be generated along any axis with a 0.1 nanotesla resolution. Oscillating or rotating field vectors can also be produced about any axis with a frequency of up to 100 radians/second. Since becoming fully operational in July of 1967, the SMTF has been the site of numerous spacecraft magnetics tests. Spacecraft tested at the SMTF include: the Solar Maximum Mission (SMM), Magsat, LANDSAT-D, the Fast Aurora] Snapshot (FAST) Explorer and the Sub-millimeter-Wave-Astronomy Satellite (SWAS) among others. This paper describes the methodology and sequencing used for the Global Geospace Science (GGS) initiative magnetic testing program in the Goddard Space Flight Center's SMTF. The GGS initiative provides an exemplary model of a strict and comprehensive magnetic control program.

  8. Technology transfer from NASA to targeted industries, volume 1

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This report summarizes the University of Alabama in Huntsville (UAH) technology transfer to three target industries with focus on the apparel manufacturing industry in Alabama. Also included in this report are an analysis of the 1992 problem statements submitted by Alabama firms, the results of the survey of 1987-88 NASA Tech Brief requests, the results of the followup to Alabama submitted problem statements, and the development of the model describing the MSFC technology transfer process.

  9. Performance of Goddard Earth Observing System GCM Column Radiation Models under Heterogeneous Cloud Conditions

    NASA Technical Reports Server (NTRS)

    Oreopoulos, L.; Chou, M.-D.; Khairoutdinov, M.; Barker, H. W.; Cahalan, R. F.

    2003-01-01

    We test the performance of the shortwave (SW) and longwave (LW) Column Radiation Models (CORAMs) of Chou and collaborators with heterogeneous cloud fields from a global single-day dataset produced by NCAR's Community Atmospheric Model with a 2-D CRM installed in each gridbox. The original SW version of the CORAM performs quite well compared to reference Independent Column Approximation (ICA) calculations for boundary fluxes, largely due to the success of a combined overlap and cloud scaling parameterization scheme. The absolute magnitude of errors relative to ICA are even smaller for the LW CORAM which applies similar overlap. The vertical distribution of heating and cooling within the atmosphere is also simulated quite well with daily-averaged zonal errors always below 0.3 K/d for SW heating rates and 0.6 K/d for LW cooling rates. The SW CORAM's performance improves by introducing a scheme that accounts for cloud inhomogeneity. These results suggest that previous studies demonstrating the inaccuracy of plane-parallel models may have unfairly focused on worst scenario cases, and that current radiative transfer algorithms of General Circulation Models (GCMs) may be more capable than previously thought in estimating realistic spatial and temporal averages of radiative fluxes, as long as they are provided with correct mean cloud profiles. However, even if the errors of the particular CORAMs are small, they seem to be systematic, and the impact of the biases can be fully assessed only with GCM climate simulations.

  10. Technical report series on global modeling and data assimilation. Volume 4: Documentation of the Goddard Earth Observing System (GEOS) data assimilation system, version 1

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); Pfaendtner, James; Bloom, Stephen; Lamich, David; Seablom, Michael; Sienkiewicz, Meta; Stobie, James; Dasilva, Arlindo

    1995-01-01

    This report describes the analysis component of the Goddard Earth Observing System, Data Assimilation System, Version 1 (GEOS-1 DAS). The general features of the data assimilation system are outlined, followed by a thorough description of the statistical interpolation algorithm, including specification of error covariances and quality control of observations. We conclude with a discussion of the current status of development of the GEOS data assimilation system. The main components of GEOS-1 DAS are an atmospheric general circulation model and an Optimal Interpolation algorithm. The system is cycled using the Incremental Analysis Update (IAU) technique in which analysis increments are introduced as time independent forcing terms in a forecast model integration. The system is capable of producing dynamically balanced states without the explicit use of initialization, as well as a time-continuous representation of non- observables such as precipitation and radiational fluxes. This version of the data assimilation system was used in the five-year reanalysis project completed in April 1994 by Goddard's Data Assimilation Office (DAO) Data from this reanalysis are available from the Goddard Distributed Active Center (DAAC), which is part of NASA's Earth Observing System Data and Information System (EOSDIS). For information on how to obtain these data sets, contact the Goddard DAAC at (301) 286-3209, EMAIL daac@gsfc.nasa.gov.

  11. Performance of Goddard earth observing system GCM column radiation models under heterogeneous cloud conditions

    NASA Astrophysics Data System (ADS)

    Oreopoulos, L.; Chou, M.-D.; Khairoutdinov, M.; Barker, H. W.; Cahalan, R. F.

    2004-11-01

    We test the performance of the shortwave (SW) and longwave (LW) Column Radiation Models (CORAMs) of Chou and collaborators with heterogeneous cloud fields from a single-day global dataset produced by NCAR's Community Atmospheric Model (CAM) with a 2-D Cloud Resolving Model (CRM) installed in each column. The original SW version of the CORAM performs quite well compared to reference Independent Column Approximation (ICA) calculations for boundary fluxes (global error ˜4 W m -2 for reflected flux), largely due to the success of a combined overlap and cloud scaling parameterization scheme. The absolute magnitude of errors relative to ICA are even smaller (global error ˜2 W m -2 for outgoing flux) for the LW CORAM which applies similar overlap. The vertical distribution of heating and cooling within the atmosphere is also simulated quite well with daily averaged zonal errors always less than 0.3 K/day for SW and 0.6 K/day for LW heating (cooling) rates. The SW CORAM's performance improves by introducing a scheme that accounts for cloud inhomogeneity based on the Gamma Weighted Two Stream Approximation (GWTSA). These results suggest that previous studies demonstrating the inaccuracy of plane-parallel models may have unfairly focused on worst case scenarios, and that current radiative transfer algorithms in General Circulation Models (GCMs) may be more capable than previously thought in estimating realistic spatial and temporal averages of radiative fluxes, as long as they are provided with correct mean cloud profiles. However, even if the errors of our particular CORAMs are small, they seem to be systematic, and their impact can be fully assessed only with GCM climate simulations.

  12. NASA Tech Briefs, September 1998. Volume 22, No. 9

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Topics include: special coverage on data acquisition, also, electronic components and circuits, electronic systems, software, materials, mechanics, machinery/automation, physical sciences, information sciences, This issue contains a special sections of Electronics Tech Briefs and Motion Control Tech Briefs.

  13. NASA Tech Briefs, April 1999. Volume 23, No. 4

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Topics include: special coverage sections on automotive technology, and CAM and sections on electronic components and systems, software, materials, machinery/automation, physical sciences, and a special section of Electronic Tech Briefs and Motion Control Tech Briefs.

  14. NASA Tech Briefs, February 2002. Volume 26, No. 2

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Topics include:a technology focus on computers, electronic components and systems, software, materials, mechanics,physical sciences machinery, manufacturing/fabrication, mathematics, book and reports, motion control tech briefs and a special section on Photonics Tech Briefs.

  15. NASA Tech Briefs, October 2001. Volume 25, No. 10

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Topics include: special coverage section on composites and plastics, electronic components and systems, software, mechanics, physical sciences, information sciences, book and reports, and a special sections of Photonics Tech Briefs and Motion Control Tech Briefs.

  16. NASA Tech Briefs, December 2000. Volume 24, No. 12

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics include: special coverage sections on Imaging/Video/Display Technology, and sections on electronic components and systems, test and measurement, software, information sciences, and special sections of Electronics Tech Briefs and Motion Control Tech Briefs.

  17. Tech Prep: Winning Ideas, Challenging Practices.

    ERIC Educational Resources Information Center

    Bragg, Debra D.

    2000-01-01

    Discusses a national study that compared tech prep with career and technical education. Looks at promising practices including formal articulation, career pathways, work-based learning, professional evaluation, curriculum integration, and evaluation. (JOW)

  18. Making the Case for Tech Prep.

    ERIC Educational Resources Information Center

    Reese, Susan

    2003-01-01

    Suggests that the most important result of the establishment of tech prep consortia is the increase in articulation agreements between secondary and postsecondary institutions. Discusses the success of programs on Ohio and Texas. (Author/JOW)

  19. Ready Tech: An Industry/Education Partnership.

    ERIC Educational Resources Information Center

    Miller, Andrea J.

    1988-01-01

    In association with Waukesha County Technical College (WCTC), Wisconsin Bell developed a specialized program called "Ready Tech" in which qualified Bell employees can earn WCTC's electronics technology associate degree. (JOW)

  20. EcoCAR Challenge Profile: Virginia Tech

    SciTech Connect

    Gantt, Lynn

    2011-01-01

    Since childhood, Lynn Gantt has had a deep seeded passion for cars and the mechanics that drive them. The Virginia native spent his weekends rebuilding antique tractors with his dad to race at tractor pulls across the state, and now the Virginia Tech graduate student is the proud team co-leader of Virginia Tech's EcoCAR Challenge team -- the winners of the three-year long competition, as announced last night at an awards ceremony in Washington, D.C..

  1. Cumulative Index to NASA Tech Briefs

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. This Index to NASA Tech Briefs lists the technological innovations derived from the U.S. space program and published during the period January through December 1968. A new five year cycle of cumulative indexes begins with this index. The main section is arranged in six categories: Electrical (Electronic); Physical Sciences (Energy Sources); Materials (Chemistry); Life Sciences; Mechanical; and Computer Programs.

  2. EcoCAR Challenge Profile: Virginia Tech

    ScienceCinema

    Gantt, Lynn

    2016-07-12

    Since childhood, Lynn Gantt has had a deep seeded passion for cars and the mechanics that drive them. The Virginia native spent his weekends rebuilding antique tractors with his dad to race at tractor pulls across the state, and now the Virginia Tech graduate student is the proud team co-leader of Virginia Tech's EcoCAR Challenge team -- the winners of the three-year long competition, as announced last night at an awards ceremony in Washington, D.C..

  3. LanzaTech- Capturing Carbon. Fueling Growth.

    ScienceCinema

    NONE

    2016-07-12

    LanzaTech will design a gas fermentation system that will significantly improve the rate at which methane gas is delivered to a biocatalyst. Current gas fermentation processes are not cost effective compared to other gas-to-liquid technologies because they are too slow for large-scale production. If successful, LanzaTech's system will process large amounts of methane at a high rate, reducing the energy inputs and costs associated with methane conversion.

  4. LanzaTech- Capturing Carbon. Fueling Growth.

    SciTech Connect

    2014-03-07

    LanzaTech will design a gas fermentation system that will significantly improve the rate at which methane gas is delivered to a biocatalyst. Current gas fermentation processes are not cost effective compared to other gas-to-liquid technologies because they are too slow for large-scale production. If successful, LanzaTech's system will process large amounts of methane at a high rate, reducing the energy inputs and costs associated with methane conversion.

  5. Project Georgia High School/High Tech

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Georgia High School/High Tech has been developing a suggested curriculum for use in its programs. The purpose of this instructional material is to provide a basic curriculum format for teachers of High School/High Tech students. The curriculum is designed to implement QCC classroom instruction that encourages career development in technological fields through post-secondary education, paid summer internships, and exposure to experiences in high technology.

  6. Tech-Prep Competency Profiles within the Engineering Technologies Cluster.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 12 competency profiles for tech prep courses within the engineering technologies cluster. The document consists of the following sections: (1) systemic curriculum reform philosophy--Ohio's vision of tech prep and its six critical components; (2) an explanation of the process of developing the tech prep competencies; (3) a…

  7. Planning a Tech Prep Program in Hospitality. Final Report.

    ERIC Educational Resources Information Center

    Chicago City Colleges, IL. Chicago City-Wide Coll.

    A project conducted to establish tech prep articulation training agreements between City Colleges of Chicago and several public secondary schools is described in this report. Project activities were as follows: (1) developed a handbook to define the tech prep experience and guide committee members on how tech prep can be a valuable asset to…

  8. A Delphi Study of Research Priorities in Tech Prep.

    ERIC Educational Resources Information Center

    Farmer, Edgar I.

    1998-01-01

    A Delphi panel of 37 tech-prep subject matter experts identified a national research agenda for tech prep. Highest priorities were as follows: institutionalization of tech prep into the higher education system, instruction based on cognitive science research, and nontraditional teaching methods. (SK)

  9. The Effect of Tech Prep on Students' Speed toward Graduation

    ERIC Educational Resources Information Center

    Sweat, Jewell; Fenster, Mark

    2006-01-01

    The purpose of this study was to determine if a tech prep program of study better prepared a student for success in Georgia's technical colleges. In this study, three hypotheses, which included high-school preparation, academic performance, and faster graduation of tech prep and non-tech prep students, were analyzed. Therefore, the main focus of…

  10. 76 FR 68243 - Youth Leadership Program: TechGirls

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... Leadership Program: TechGirls Overview Information Bureau of Educational and Cultural Affairs (ECA) Request for Grant Proposals: Youth Leadership Program: TechGirls. Announcement Type: New Cooperative Agreement... Youth Leadership Program ``TechGirls.'' Public and private non-profit organizations meeting...

  11. Cumulative index to NASA Tech Briefs, 1970-1975. [bibliographies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Tech briefs of technology derived from the research and development activities of the National Aeronautics and Space Administration are presented. Abstracts and indexes of subject, personal author, originating center, and tech brief number for the 1970-1975 tech briefs are presented.

  12. Tech Prep Decision Making: Evaluation and Improvement Strategies.

    ERIC Educational Resources Information Center

    Ruhland, Sheila K.

    The evaluation process provides valuable information so that practitioners may share and benchmark their efforts to improve and enhance the quality of the educational reform initiative called tech prep. Evaluation should be part of every phase of a tech prep initiative, from needs assessment to completion. A tech prep program is typically at one…

  13. The Texas Tech Prep Consortia: Strategies for Advancing Academic and Technical Education.

    ERIC Educational Resources Information Center

    Hensley, Oliver D., Ed.; And Others

    This book contains 30 chapters on the tech prep initiative in Texas: "The Identity of Tech Prep in Texas" (Tunstall); "A Snap-Shot of the Impact of the Tech Prep Initiative in the Governor's 24 Planning Regions" (Brown); "The Tech Prep Consortium Directors: The Architects for the Future of Texas" (Hensley et al.); "Tech Prep: Jewel in the Crown"…

  14. KSC Tech Transfer News, Volume 4, No. 2

    NASA Technical Reports Server (NTRS)

    Dunn, Carol (Editor)

    2011-01-01

    There is a strong focus on technology in our human exploration strategy and a focus on a wide range of technology readiness levels (TRLs) across all NASA missions - from low-TRL development of innovative technological concepts that help reposition NASA on the cutting edge, to infusion of technology to solve critical mission needs. Throughout the TRL spectrum, there is a major emphasis on partnerships with academia, industry, and other Government agencies and among NASA Centers. This edition features are: (1) Aluminum Foam Heat Exchanger for Cold Helium Production, (2) Launching a Small Business with NASA Shuttle Software, (4) Aviation Technologies and the Personal Cabin Pressurization Monitor, (5) Granular Mechanics and Regolith Laboratory, (6) The Leahy-Smith America Invents Act

  15. KSC Tech Transfer News, Volume 2, No. 2

    NASA Technical Reports Server (NTRS)

    Makufka, David (Editor); Dunn, Carol (Editor)

    2009-01-01

    This issue contains articles about: (1) the Innovative Partnerships Program (IPP) and the manager of the program, Alexis Hongamen, (2) New Technology Report (NTR) on a Monte Carlo Simulation to Estimate the Likelihood of Direct Lightning Strikes, (3) Kennedy Space Center's Applied Physics Lab, (4) a virtual ruler that is used for many applications, (5) a portable device that finds low-level leaks, (6) a sun-shield, that supports in-space cryogenic propellant storage, (7) lunar dust modeling software, (8) space based monitoring of radiation damage to DNA, (9) the use of light-emitting diode (LED) arrays vegetable production system, (10) Dust Tolerant Intelligent Electrical Connection Systems, (11) Ice Detection Camera System Upgrade, (12) Repair Techniques for Composite Structures, (13) Cryogenic Orbital Testbed, and (14) copyright protection.

  16. NASA's Impact in Florida: A Tech Transfer Perspective

    NASA Technical Reports Server (NTRS)

    Dunn, Carol

    2009-01-01

    The Innovative Partnerships Program (IPP) Office at NASA's Kennedy Space Center is dedicated to forming partnerships that can positively contribute to -- and benefit from -- NASA's research and development (R&D) and technology innovations. This document discusses the IPP-driven impacts of NASA in Florida.

  17. A Tiny Country's Big Success with Tech Transfer

    ERIC Educational Resources Information Center

    Kalman, Matthew

    2008-01-01

    This article reports that despite the doubts about education financing, Israel's innovative companies spun off by universities show no signs of slowing down, as new drugs and other discoveries have produced huge incomes. Thirty years ago, two researchers at Hebrew University set about to make a better tomato. One that was firmer, stayed fresher…

  18. DIE Deflection Modeling: Empirical Validation and Tech Transfer

    SciTech Connect

    R. Allen Miller

    2003-05-28

    This report summarizes computer modeling work that was designed to help understand how the die casting die and machine contribute to parting plane separation during operation. Techniques developed in earlier research (8) were applied to complete a large computational experiment that systematically explored the relationship between the stiffness of the machine platens and key dimensional and structural variables (platen area covered, die thickness, platen thickness, thickness of insert and the location of the die with respect to the platen) describing the die/machine system. The results consistently show that there are many significant interactions among the variables and it is the interactions, more than the individual variables themselves, which determine the performance of the machine/die system. That said, the results consistently show that it is the stiffness of the machine platens that has the largest single impact on die separation.

  19. The Goddard Cumulus Ensemble Model: Model Description and Its Application for Studying the TOGA COARE and GATE Convective Systems

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The Goddard Cumulus Ensemble (GCE) model was utilized in two and three dimensions in order to examine the behavior and response of simulated deep tropical cloud systems occurred in west Pacific warm pool region and Atlantic ocean. The periods chosen for simulation were convectively active period over the TOGA-COARE IFA (19-27 December 1992) and GATE (September 1 to 7, 1974). The TOGA COARE IFA period was also in the framework of the GEWEX Cloud System Study (GCSS) WG4 case 2. We will examine the differences between the microphysics (warm rain and ice processes, evaporation/sublimation and condensation/deposition), Q1 (Temperature) and Q2 (Water vapor) budgets between these two convective events occurred in different large-scale environments. The contribution of stratiform precipitation and its relationship to the vertical shear of the large-scale horizontal wind will also be examined. The results from GCSS model intercomparsion will be presented. The new improvements (i.e., microphysics, cloud radiation interaction, surface processes and numerical advection scheme) of the GCE model as well as their sensitivity to the model results will be discussed.

  20. Atomic Physics with the Goddard High Resolution Spectrograph on the Hubble Space Telescope. III; Oscillator Strengths for Neutral Carbon

    NASA Technical Reports Server (NTRS)

    Zsargo, J.; Federman, S. R.; Cardelli, Jason A.

    1997-01-01

    High quality spectra of interstellar absorption from C I toward beta(sup 1) S(sub co), rho O(sub ph) A, and chi O(sub ph) were obtained with the Goddard High Resolution Spectrograph on HST. Many weak lines were detected within the observed wavelength intervals: 1150-1200 A for beta(sup 1) S(sub co) and 1250-1290 A for rho O(sub ph) A and chi O(sub ph). Curve-of-growth analyses were performed in order to extract accurate column densities and Doppler parameters from lines with precise laboratory-based f-values. These column densities and b-values were used to obtain a self-consistent set of f-values for all the observed C I lines. A particularly important constraint was the need to reproduce data for more than one line of sight. For about 50% of the lines, the derived f-values differ appreciably from the values quoted by Morton.

  1. Goddard High Resolution Spectrograph Observations of Variability in the RS Canum Venaticorum System V711 Tauri (HR 1099)

    NASA Technical Reports Server (NTRS)

    Dempsey, Robert C.; Neff, James E.; Thorpe, Marjorie J.; Linsky, Jeffrey L.; Brown, Alexander; Cutispoto, Giuseppe; Rodono, Marcello

    1996-01-01

    Goddard High Resolution Spectrograph (GHRS) observations of the RS CVn-type binary V711 Tau (Kl IV+G5 IV) were obtained at several phases over two consecutive stellar orbital cycles in order to study ultraviolet emission-line profile and flux variability. Spectra cover the Mg II h and k lines, C IV doublet, and Si IV region, as well as the density-sensitive lines of C III] (1909 A) and Si III] (1892 A). IUE spectra, Extreme Ultra Violet (EUV) data, and Ultraviolet, Blue, Visual (UBV) photometry were obtained contemporaneously with the GHRS data. Variable extended wings were detected in the Mg II lines. We discuss the Mg II line profile variability using various Gaussian emission profile models. No rotational modulation of the line profiles was observed, but there were several large flares. These flares produced enhanced emission in the extended line wings, radial velocity shifts, and asymmetries in some line profiles. Nearly continuous flaring for more than 24 hr, as indicated in the IUE data, represents the most energetic and long-lived chromospheric and transition region flare ever observed with a total energy much greater than 5 x 10(exp 35) ergs. The C III] to Si III] line ratio is used to estimate the plasma density during the flares.

  2. Lessons learned in the transition to ADA from FORTRAN at NASA/Goddard. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Brophy, Carolyn Elizabeth

    1989-01-01

    A case study was done at Goddard Space Flight Center, in which two dynamics satellite simulators are developed from the same requirements, one in Ada and the other in FORTRAN. The purpose of the research was to find out how well the prescriptive Ada development model worked to develop the Ada simulator. The FORTRAN simulator development, as well as past FORTRAN developments, provided a baseline for comparison. Since this was the first simulator developed here, the prescriptive Ada development model had many similarities to the usual FORTRAN development model. However, it was modified to include longer design and shorter testing phases, which is generally expected with Ada development. One surprising result was that the percentage of time the Ada project spent in the various development activities was very similar to the percentage of time spent in these activities when doing a FORTRAN project. Another surprising finding was the difficulty the Ada team had with unit testing as well as with integration. In retrospect it is realized that adding additional steps to the design phase, such as an abstract data type analysis, and certain guidelines to the implementation phase, such as to use primarily library units and nest sparingly, would have made development much easier.

  3. Tenth Goddard Conference on Mass Storage Systems and Technologies in Cooperation with the Nineteenth IEEE Symposium on Mass Storage Systems

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    2002-01-01

    This document contains copies of those technical papers received in time for publication prior to the Tenth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Nineteenth IEEE Symposium on Mass Storage Systems at the University of Maryland University College Inn and Conference Center April 15-18, 2002. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the ingest, storage, and management of large volumes of data. The Conference encourages all interested organizations to discuss long-term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long-term retention of data, and data distribution. This year's discussion topics include architecture, future of current technology, storage networking with emphasis on IP storage, performance, standards, site reports, and vendor solutions. Tutorials will be available on perpendicular magnetic recording, object based storage, storage virtualization and IP storage.

  4. Eighth Goddard Conference on Mass Storage Systems and Technologies in Cooperation with the Seventeenth IEEE Symposium on Mass Storage Systems

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    2000-01-01

    This document contains copies of those technical papers received in time for publication prior to the Eighth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Seventeenth IEEE Symposium on Mass Storage Systems at the University of Maryland University College Inn and Conference Center March 27-30, 2000. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the management of large volumes of data. The Conference encourages all interested organizations to discuss long term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long term retention of data, and data distribution. This year's discussion topics include architecture, future of current technology, new technology with a special emphasis on holographic storage, performance, standards, site reports, vendor solutions. Tutorials will be available on stability of optical media, disk subsystem performance evaluation, I/O and storage tuning, functionality and performance evaluation of file systems for storage area networks.

  5. The Joint NASA/Goddard-University of Maryland Research Program in Charged Particle and High Energy Photon Detector Technology

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.

    1990-01-01

    The Univ. of Maryland portion investigated the following areas. The Space Physics Group performed studies of data from the AMPTE/CCE spacecraft CHEM experiment and found that the ratio of solar wind to photospheric abundances decreased rather smoothly with the first ionization potential (FIP) of the ion with the low FIP ion being about a factor of two overabundant. Carbon and hydrogen fit this trend particularly well. Several occurrences were analyzed of field aligned beams observed when CCE was upstream of the Earth's bow shock. Also using CHEM data, ring current intensity and composition changes during the main and recovery phases of the great geomagnetic storm that occurred in February 1986 was examined in detail. Still using CHEM data, ring current characteristics were examined in a survey of 20 magnetic storms ranging in size from -50 nT to -312 nT. A study was done of energetic ion anisotropy characteristics in the Earth's magnetosheath region using data from the UMD/MPE experiment on ISEE-1. The properties were analyzed of approx. 30 to 130 keV/e protons and alpha particles upstream of six quasi-parallel interplanetary shocks that passed by the ISEE-3 spacecraft during 1978 to 1979. Work from NASA-Goddard include studies from the High Energy Cosmic Ray Group, Low Energy Cosmic Ray Group, Low Energy Gamma Ray Group, High Energy Astrophysics Theory Group, and the X ray Astronomy Group.

  6. Circulation and rainfall climatology of a 10-year (1979 - 1988) integration with the Goddard Laboratory for atmospheres general circulation model

    NASA Technical Reports Server (NTRS)

    Kim, J.-H.; Sud, Y. C.

    1993-01-01

    A 10-year (1979-1988) integration of Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) under Atmospheric Model Intercomparison Project (AMIP) is analyzed and compared with observation. The first momentum fields of circulation variables and also hydrological variables including precipitation, evaporation, and soil moisture are presented. Our goals are (1) to produce a benchmark documentation of the GLA GCM for future model improvements; (2) to examine systematic errors between the simulated and the observed circulation, precipitation, and hydrologic cycle; (3) to examine the interannual variability of the simulated atmosphere and compare it with observation; and (4) to examine the ability of the model to capture the major climate anomalies in response to events such as El Nino and La Nina. The 10-year mean seasonal and annual simulated circulation is quite reasonable compared to the analyzed circulation, except the polar regions and area of high orography. Precipitation over tropics are quite well simulated, and the signal of El Nino/La Nina episodes can be easily identified. The time series of evaporation and soil moisture in the 12 biomes of the biosphere also show reasonable patterns compared to the estimated evaporation and soil moisture.

  7. Creating a Place in History [and] Tech Prep for Business and Marketing Technology.

    ERIC Educational Resources Information Center

    Decker, Anita K.; Butler, Tommie L.

    1993-01-01

    "Creating a Place in History" (Decker) discusses the evolution of tech prep and the challenges it offers to secondary and postsecondary schools. "Tech Prep for Business and Marketing Technology" (Butler) describes tech prep in Arkansas. (JOW)

  8. 78 FR 14359 - Verizon Business Networks Services, Inc., Specialist-Tech Customer Service, Philadelphia, PA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... Employment and Training Administration Verizon Business Networks Services, Inc., Specialist-Tech Customer Service, Philadelphia, PA; Verizon Business Networks Services, Inc., Specialist-Tech Customer Service...-Tech Customer Service, Philadelphia, Pennsylvania and Verizon Business Networks Services,...

  9. Commercial introduction of the Advanced NOxTECH system

    SciTech Connect

    Sudduth, B.C.

    1997-12-31

    NOxTECH is BACT for diesel electric generators. Emissions of NO{sub x} are reduced 95% or more with substantial concurrent reductions in CO, particulates, and ROG`s. No engine modifications or other exhaust aftertreatments can remove all criteria pollutants as effectively as NOxTECH. The NOxTECH system reliably maintains NH{sub 3} slip below 2 ppm. Unlike other emissions controls, NOxTECH does not generate hazardous by-products. The Advanced NOxTECH system reduces the size, weight, and cost for BACT emissions reductions. Based on the operation of a 150 kW prototype, NOxTECH, Inc. is quoting commercial units for diesel electric generators. Advanced NOxTECH equipment costs about half as much as SCR systems, and NO{sub x} reduction can exceed 95% with guarantees for emissions compliance.

  10. The Management of Chronic Disease: a Study of Employee Morbidity and Mortality at the NASA, Goddard Space Flight Center, 1966 - 1971

    NASA Technical Reports Server (NTRS)

    Villafana, C.; Mockbee, J.

    1971-01-01

    Several approaches to studying chronic disease patterns in the employee population at Goddard Space Flight Center from 1966 to 1970 are presented. Attempts were made to summarize preliminary data for 1971 and relate this data to specific programs and events which may have had some causative influence. Investigative data for the study cover records of periodic and return to work examinations, injury and illness visit reports, mortality data, and health trends with and without external influences.

  11. High-Resolution NU-WRF Simulations of a Deep Convective-Precipitation System During MC3E. Part 1; Comparisons Between Goddard Microphysics Schemes and Observations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Wu, Di; Lang, Stephen; Chern, Jiundar; Peters-Lidard, Christa; Fridlind, Ann; Matsui, Toshihisa

    2015-01-01

    The Goddard microphysics scheme was recently improved by adding a 4th ice class (frozen dropshail). This new 4ICE scheme was implemented and tested in the Goddard Cumulus Ensemble model (GCE) for an intense continental squall line and a moderate,less-organized continental case. Simulated peak radar reflectivity profiles were improved both in intensity and shape for both cases as were the overall reflectivity probability distributions versus observations. In this study, the new Goddard 4ICE scheme is implemented into the regional-scale NASA Unified - Weather Research and Forecasting model (NU-WRF) and tested on an intense mesoscale convective system that occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). The NU42WRF simulated radar reflectivities, rainfall intensities, and vertical and horizontal structure using the new 4ICE scheme agree as well as or significantly better with observations than when using previous versions of the Goddard 3ICE (graupel or hail) schemes. In the 4ICE scheme, the bin microphysics-based rain evaporation correction produces more erect convective cores, while modification of the unrealistic collection of ice by dry hail produces narrow and intense cores, allowing more slow-falling snow to be transported rearward. Together with a revised snow size mapping, the 4ICE scheme produces a more horizontally stratified trailing stratiform region with a broad, more coherent light rain area. In addition, the NU-WRF 4ICE simulated radar reflectivity distributions are consistent with and generally superior to those using the GCE due to the less restrictive open lateral boundaries

  12. High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations

    NASA Astrophysics Data System (ADS)

    Tao, Wei-Kuo; Wu, Di; Lang, Stephen; Chern, Jiun-Dar; Peters-Lidard, Christa; Fridlind, Ann; Matsui, Toshihisa

    2016-02-01

    The Goddard microphysics was recently improved by adding a fourth ice class (frozen drops/hail). This new 4ICE scheme was developed and tested in the Goddard Cumulus Ensemble (GCE) model for an intense continental squall line and a moderate, less organized continental case. Simulated peak radar reflectivity profiles were improved in intensity and shape for both cases, as were the overall reflectivity probability distributions versus observations. In this study, the new Goddard 4ICE scheme is implemented into the regional-scale NASA Unified-Weather Research and Forecasting (NU-WRF) model, modified and evaluated for the same intense squall line, which occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E). NU-WRF simulated radar reflectivities, total rainfall, propagation, and convective system structures using the 4ICE scheme modified herein agree as well as or significantly better with observations than the original 4ICE and two previous 3ICE (graupel or hail) versions of the Goddard microphysics. With the modified 4ICE, the bin microphysics-based rain evaporation correction improves propagation and in conjunction with eliminating the unrealistic dry collection of ice/snow by hail can replicate the erect, narrow, and intense convective cores. Revisions to the ice supersaturation, ice number concentration formula, and snow size mapping, including a new snow breakup effect, allow the modified 4ICE to produce a stronger, better organized system, more snow, and mimic the strong aggregation signature in the radar distributions. NU-WRF original 4ICE simulated radar reflectivity distributions are consistent with and generally superior to those using the GCE due to the less restrictive domain and lateral boundaries.

  13. Technical report series on global modeling and data assimilation. Volume 1: Documentation of the Goddard Earth Observing System (GEOS) General Circulation Model, version 1

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); Takacs, Lawrence L.; Molod, Andrea; Wang, Tina

    1994-01-01

    This technical report documents Version 1 of the Goddard Earth Observing System (GEOS) General Circulation Model (GCM). The GEOS-1 GCM is being used by NASA's Data Assimilation Office (DAO) to produce multiyear data sets for climate research. This report provides a documentation of the model components used in the GEOS-1 GCM, a complete description of model diagnostics available, and a User's Guide to facilitate GEOS-1 GCM experiments.

  14. The influence of the tropics upon the prediction of the Southern Hemisphere circulation within the GLAS GCM. [Goddard Laboratory for Atmospheric Sciences General Circulation Model

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Paegle, J.

    1983-01-01

    An examination is undertaken of the sensitivity of short term Southern Hemisphere circulation prediction to tropical wind data and tropical latent heat release. The data assimilation experiments employ the Goddard Laboratory for Atmospheric Sciences' fourth-order general circulation model. Two of the experiments are identical, but for the fact that one uses tropical wind data while the other does not. A third experiment contains the identical initial conditions of forecasts with tropical winds, while suppressing tropical latent heat release.

  15. Georgia Tech sonic boom simulator

    NASA Technical Reports Server (NTRS)

    Ahuja, Krish K.

    1992-01-01

    To examine the building and human response to sonic boom in the range 3 Hz to 30 Hz, Georgia Institute of Technology is building a special acoustic driver system to simulate sonic boom. To support the NASA LaRC program on building and human response, this simulator's capability has been extended to an upper frequency of 4 KHz. A residential test house was made available by Georgia Tech for these tests. At the time of preparation of this document, most of the acoustic drivers and the associated electronics have been built and assembled. The system has, however, not been fully tested. The following pages provide an overview of the progress to date. The acoustic driver systems, and the principle of their operation together with the test house are described. Future plans are also summarized.

  16. Ocean Color Data at the Goddard Earth Sciences (GES) DAAC: CZCS, SeaWiFS, OCTS, MODIS-Terra, MODIS-Aqua

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Goddard Earth Sciences Distributed Active Archive Center (DAAC) is the designated archive for all of the ocean color data produced by NASA satellite missions. The DAAC is a long-term, high volume, secure repository for many different kinds of environmental data. With respect to ocean color, the Goddard DAAC holds all the data obtained during the eight-year mission of the Coastal Zone Color Scanner (CZCS). The DAAC is currently receiving data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and the MODIS-Terra instrument. The DAAC recently received reformatted data from the Ocean Color and Temperature Scanner (OCTS) and will also archive MODIS-Aqua Ocean products. In addition to its archive and distribution services, the Goddard DAAC strives to improve data access, ease-of-use, and data applicability for a broad spectrum of customers. The DAAC's data support teams practice dual roles, both insuring the integrity of the DAAC data archive and serving the user community with answers to user inquiries, online and print documentation, and customized data services.

  17. Data products of NASA Goddard's LiDAR, hyperspectral, and thermal airborne imager (G-LiHT)

    NASA Astrophysics Data System (ADS)

    Corp, Lawrence A.; Cook, Bruce D.; McCorkel, Joel; Middleton, Elizabeth M.

    2015-06-01

    Scientists in the Biospheric Sciences Laboratory at NASA's Goddard Space Flight Center have undertaken a unique instrument fusion effort for an airborne package that integrates commercial off the shelf LiDAR, Hyperspectral, and Thermal components. G-LiHT is a compact, lightweight and portable system that can be used on a wide range of airborne platforms to support a number of NASA Earth Science research projects and space-based missions. G-LiHT permits simultaneous and complementary measurements of surface reflectance, vegetation structure, and temperature, which provide an analytical framework for the development of new algorithms for mapping plant species composition, plant functional types, biodiversity, biomass, carbon stocks, and plant growth. G-LiHT and its supporting database are designed to give scientists open access to the data that are needed to understand the relationship between ecosystem form and function and to stimulate the advancement of synergistic algorithms. This system will enhance our ability to design new missions and produce data products related to biodiversity and climate change. G-LiHT has been operational since 2011 and has been used to collect data for a number of NASA and USFS sponsored studies, including NASA's Carbon Monitoring System (CMS) and the American ICESat/GLAS Assessment of Carbon (AMIGA-Carb). These acquisitions target a broad diversity of forest communities and ecoregions across the United States and Mexico. Here, we will discuss the components of G-LiHT, their calibration and performance characteristics, operational implementation, and data processing workflows. We will also provide examples of higher level data products that are currently available.

  18. The Impact of Assimilating Precipitation-affected Radiance on Cloud and Precipitation in Goddard WRF-EDAS Analyses

    NASA Technical Reports Server (NTRS)

    Lin, Xin; Zhang, Sara Q.; Zupanski, M.; Hou, Arthur Y.; Zhang, J.

    2015-01-01

    High-frequency TMI and AMSR-E radiances, which are sensitive to precipitation over land, are assimilated into the Goddard Weather Research and Forecasting Model- Ensemble Data Assimilation System (WRF-EDAS) for a few heavy rain events over the continental US. Independent observations from surface rainfall, satellite IR brightness temperatures, as well as ground-radar reflectivity profiles are used to evaluate the impact of assimilating rain-sensitive radiances on cloud and precipitation within WRF-EDAS. The evaluations go beyond comparisons of forecast skills and domain-mean statistics, and focus on studying the cloud and precipitation features in the jointed rainradiance and rain-cloud space, with particular attentions on vertical distributions of height-dependent cloud types and collective effect of cloud hydrometers. Such a methodology is very helpful to understand limitations and sources of errors in rainaffected radiance assimilations. It is found that the assimilation of rain-sensitive radiances can reduce the mismatch between model analyses and observations by reasonably enhancing/reducing convective intensity over areas where the observation indicates precipitation, and suppressing convection over areas where the model forecast indicates rain but the observation does not. It is also noted that instead of generating sufficient low-level warmrain clouds as in observations, the model analysis tends to produce many spurious upperlevel clouds containing small amount of ice water content. This discrepancy is associated with insufficient information in ice-water-sensitive radiances to address the vertical distribution of clouds with small amount of ice water content. Such a problem will likely be mitigated when multi-channel multi-frequency radiances/reflectivity are assimilated over land along with sufficiently accurate surface emissivity information to better constrain the vertical distribution of cloud hydrometers.

  19. Earth Science Data Archive and Access at the NASA/Goddard Space Flight Center Distributed Active Archive Center (DAAC)

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory

    1999-01-01

    The Goddard Distributed Active Archive Center (DAAC), as an integral part of the Earth Observing System Data and Information System (EOSDIS), is the official source of data for several important earth remote sensing missions. These include the Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) launched in August 1997, the Tropical Rainfall Measuring Mission (TRMM) launched in November 1997, and the Moderate Resolution Imaging Spectroradiometer (MODIS) scheduled for launch in mid 1999 as part of the EOS AM-1 instrumentation package. The data generated from these missions supports a host of users in the hydrological, land biosphere and oceanographic research and applications communities. The volume and nature of the data present unique challenges to an Earth science data archive and distribution system such as the DAAC. The DAAC system receives, archives and distributes a large number of standard data products on a daily basis, including data files that have been reprocessed with updated calibration data or improved analytical algorithms. A World Wide Web interface is provided allowing interactive data selection and automatic data subscriptions as distribution options. The DAAC also creates customized and value-added data products, which allow additional user flexibility and reduced data volume. Another significant part of our overall mission is to provide ancillary data support services and archive support for worldwide field campaigns designed to validate the results from the various satellite-derived measurements. In addition to direct data services, accompanying documentation, WWW links to related resources, support for EOSDIS data formats, and informed response to inquiries are routinely provided to users. The current GDAAC WWW search and order system is being restructured to provide users with a simplified, hierarchical access to data. Data Browsers have been developed for several data sets to aid users in ordering data. These Browsers allow users to specify

  20. Constraint based scheduling for the Goddard Space Flight Center distributed Active Archive Center's data archive and distribution system

    NASA Technical Reports Server (NTRS)

    Short, Nick, Jr.; Bedet, Jean-Jacques; Bodden, Lee; Boddy, Mark; White, Jim; Beane, John

    1994-01-01

    The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been operational since October 1, 1993. Its mission is to support the Earth Observing System (EOS) by providing rapid access to EOS data and analysis products, and to test Earth Observing System Data and Information System (EOSDIS) design concepts. One of the challenges is to ensure quick and easy retrieval of any data archived within the DAAC's Data Archive and Distributed System (DADS). Over the 15-year life of EOS project, an estimated several Petabytes (10(exp 15)) of data will be permanently stored. Accessing that amount of information is a formidable task that will require innovative approaches. As a precursor of the full EOS system, the GSFC DAAC with a few Terabits of storage, has implemented a prototype of a constraint-based task and resource scheduler to improve the performance of the DADS. This Honeywell Task and Resource Scheduler (HTRS), developed by Honeywell Technology Center in cooperation the Information Science and Technology Branch/935, the Code X Operations Technology Program, and the GSFC DAAC, makes better use of limited resources, prevents backlog of data, provides information about resources bottlenecks and performance characteristics. The prototype which is developed concurrently with the GSFC Version 0 (V0) DADS, models DADS activities such as ingestion and distribution with priority, precedence, resource requirements (disk and network bandwidth) and temporal constraints. HTRS supports schedule updates, insertions, and retrieval of task information via an Application Program Interface (API). The prototype has demonstrated with a few examples, the substantial advantages of using HTRS over scheduling algorithms such as a First In First Out (FIFO) queue. The kernel scheduling engine for HTRS, called Kronos, has been successfully applied to several other domains such as space shuttle mission scheduling, demand flow manufacturing, and avionics communications

  1. Development of a Quasi-monoenergetic 6 MeV Gamma Facility at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nowicki, Suzanne F.; Hunter, Stanley D.; Parsons, Ann M.

    2012-01-01

    The 6 MeV Gamma Facility has been developed at NASA Goddard Space Flight Center (GSFC) to allow in-house characterization and testing of a wide range of gamma-ray instruments such as pixelated CdZnTe detectors for planetary science and Compton and pair-production imaging telescopes for astrophysics. The 6 MeV Gamma Facility utilizes a circulating flow of water irradiated by 14 MeV neutrons to produce gamma rays via neutron capture on oxygen (O-16(n,p)N-16 yields O-16* yields O-16 + gamma). The facility provides a low cost, in-house source of 2.742, 6.129 and 7.117 MeV gamma rays, near the lower energy range of most accelerators and well above the 2.614 MeV line from the Th-228 decay chain, the highest energy gamma ray available from a natural radionuclide. The 7.13 s half-life of the N-16 decay allows the water to be irradiated on one side of a large granite block and pumped to the opposite side to decay. Separating the irradiation and decay regions allows for shielding material, the granite block, to be placed between them, thus reducing the low-energy gamma-ray continuum. Comparison between high purity germanium (HPGe) spectra from the facility and a manufactured source, Pu-238/C-13, shows that the low-energy continuum from the facility is reduced by a factor approx. 30 and the gamma-ray rate is approx.100 times higher at 6.129 MeV.

  2. Project Georgia High School/High Tech

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The High School/High Tech initiative of the President's Committee on Employment of Disabilities, Georgia's application of the collaborative "Georgia Model" and NASA's commitment of funding have shown that opportunities for High School/High Tech students are unlimited. In Georgia, the partnership approach to meeting the needs of this program has opened doors previously closed. As the program grows and develops, reflecting the needs of our students and the marketplace, more opportunities will be available. Our collaboratives are there to provide these opportunities and meet the challenge of matching our students with appropriate education and career goals. Summing up the activities and outcomes of Project Georgia High School/High Tech is not difficult. Significant outcomes have already occurred in the Savannah area as a result of NASA's grant. The support of NASA has enabled Georgia Committee to "grow" High School/High Tech throughout the region-and, by example, the state. The success of the Columbus pilot project has fostered the proliferation of projects, resulting in more than 30 Georgia High School High Tech programs-with eight in the Savannah area.

  3. Interface control document between the NASA Goddard Space Flight Center (GSFC) and Department of Interior EROS Data Center (EDC) for LANDSAT-D. Thematic mapper high resolution 241 mm film

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The 241 mm photographic product produced by the Goddard Space Flight Center Data Management System for LANDSAT-D is described. Film type and format, image dimensions, frame ID, gray scale, resolution patterns, registration marks, etc. are addressed.

  4. Texas Schools, Inc.: A Case Study of the Transfer of Technology at a Pilot Bilingual Program.

    ERIC Educational Resources Information Center

    Pearson, Vangie L.

    Texas Schools, Inc. (TSI) developed a pilot program in bilingual education for Mexican-American vocational workers in the Department of Diesel Mechanics at Texas Tech University. This study assesses the transfer of technology in that environment using quantitative and qualitative measures. TSI, a technical and vocational school in Lubbock, Texas,…

  5. Dual Space Technology Transfer

    NASA Astrophysics Data System (ADS)

    Kowbel, W.; Loutfy, R.

    2009-03-01

    Over the past fifteen years, MER has had several NASA SBIR Phase II programs in the area of space technology, based upon carbon-carbon (C-C) composites. In addition, in November 2004, leading edges supplied by MER provided the enabling technology to reach a Mach 10 record for an air breathing engine on the X-43 A flight. The MER business model constitutes a spin-off of technologies initially by incubating in house, and ultimately creating spin-off stand alone companies. FMC was formed to provide for technology transfer in the area of fabrication of C-C composites. FMC has acquired ISO 9000 and AS9100 quality certifications. FMC is fabricating under AS9100 certification, flight parts for several flight programs. In addition, FMC is expanding the application of carbon-carbon composites to several critical military programs. In addition to space technology transfer to critical military programs, FMC is becoming the world leader in the commercial area of low-cost C-C composites for furnace fixtures. Market penetrations have been accomplished in North America, Europe and Asia. Low-cost, quick turn-around and excellent quality of FMC products paves the way to greatly increased sales. In addition, FMC is actively pursuing a joint venture with a new partner, near closure, to become the leading supplier of high temperature carbon based composites. In addition, several other spin-off companies such as TMC, FiC, Li-Tech and NMIC were formed by MER with a plethora of potential space applications.

  6. TRANSFER STUDY.

    ERIC Educational Resources Information Center

    GREIVE, DONALD E.

    THIS 1967 STUDY AT LORAIN COUNTY COMMUNITY COLLEGE (LCCC) WAS UNDERTAKEN TO DISCOVER (1) THE PERCENTAGE OF CREDIT HOURS IN A UNIVERSITY PARALLEL PROGRAM ACCEPTED BY TRANSFER INSTITUTIONS, (2) THE STUDENT'S GPA BEFORE AND AFTER TRANSFER, AND (3) HOW MANY COLLEGES ACCEPTED LCCC'S TRANSFERS. INSTITUTIONS TO WHICH LCCC STUDENTS HAD HAD THEIR…

  7. NASA Tech Briefs, March 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics covered include: 1) Advanced Signal Conditioners for Data-Acquisition Systems; 2) Downlink Data Multiplexer; 3) Viewing ISS Data in Real Time via the Internet; 4) Autonomous Environment-Monitoring Networks; 5) Readout of DSN Monitor Data; 6) Parallel-Processing Equalizers for Multi-Gbps Communications; 7) AIN-Based Packaging for SiC High-Temperature Electronics; 8) Software for Optimizing Quality Assurance of Other Software; 9) The TechSat 21 Autonomous Sciencecraft Experiment; 10) Software for Analyzing Laminar-to-Turbulent Flow Transitions; 11) Elastomer Filled With Single-Wall Carbon Nanotubes; 12) Modifying Ship Air-Wake Vortices for Aircraft Operations; 13) Strain-Gauge Measurement of Weight of Fluid in a Tank; 14) Advanced Docking System With Magnetic Initial Capture; 15) Blade-Pitch Control for Quieting Tilt-Rotor Aircraft; 16) Solar Array Panels With Dust-Removal Capability; 17) Aligning Arrays of Lenses and Single-Mode Optical Fibers; 18) Automatic Control of Arc Process for Making Carbon Nanotubes; 19) Curved-Focal-Plane Arrays Using Deformed-Membrane Photodetectors; 20) Role of Meteorology in Flights of a Solar-Powered Airplane; 21) Model of Mixing Layer With Multicomponent Evaporating Drops; 22) Solution-Assisted Optical Contacting; 23) Improved Discrete Approximation of Laplacian of Gaussian; 24) Utilizing Expert Knowledge in Estimating Future STS Costs; 25) Study of Rapid-Regression Liquefying Hybrid Rocket Fuels; and 26) More About the Phase-Synchronized Enhancement Method.

  8. Technology transfer

    NASA Technical Reports Server (NTRS)

    Handley, Thomas

    1992-01-01

    The requirements for a successful technology transfer program and what such a program would look like are discussed. In particular, the issues associated with technology transfer in general, and within the Jet Propulsion Laboratory (JPL) environment specifically are addressed. The section on background sets the stage, identifies the barriers to successful technology transfer, and suggests actions to address the barriers either generally or specifically. The section on technology transfer presents a process with its supporting management plan that is required to ensure a smooth transfer process. Viewgraphs are also included.

  9. The Massachusetts TECH PREP WEST Model.

    ERIC Educational Resources Information Center

    1995

    The Tech Prep West Project, established in 1991, brought together three Massachusetts community colleges, seven secondary vocational schools, and one comprehensive high school to develop an alternative college preparation pathway for students, leading from the junior year of high school to an associate degree and employment in a specific career…

  10. Building Career Tech Programs into Career Academies

    ERIC Educational Resources Information Center

    Delano, Rick; Mittelsteadt, Sandy

    2005-01-01

    In Manatee County, Florida, not only did they build career tech programs into career academies, but they also developed an evaluation process to ensure these career academies were credible. A District Academic team created the "Documentation of Academy Assessment Criteria" with 12 core components and a rubric that helps evaluators determine the…

  11. TECH-NJ, 2000-2002.

    ERIC Educational Resources Information Center

    Dell, Amy G., Ed.

    2002-01-01

    These three issues of "TECH-NJ" from 2000 to 2002 focus on technology and children with disabilities in New Jersey. The issues address how technology can support language development and people with learning disabilities, and technology tools that support reading. Featured articles include: (1) "Adaptive Technology Center for New Jersey Colleges…

  12. The Road to Lasting Tech Leadership

    ERIC Educational Resources Information Center

    Luthra, Shabbi; Fochtman, Paul

    2011-01-01

    As with many schools, tech integration at the American School of Bombay (ASB) was varied and scattered. ASB had enthusiastic teachers who used technology in class, but they were the exception. As a result, just a small percentage of students experienced new ways of learning. The authors wanted to turn the occasional use of technology into a…

  13. School Violence Case Study at Virginia Tech

    ERIC Educational Resources Information Center

    Lyttle, LeighAnne

    2012-01-01

    On April 16, 2007, Seung Hui Cho, a livid and mentally ill student, shot to death 32 students and faculty of Virginia Tech, wounded many more people, and then killed himself. This incident has impacted college and university campuses nationwide in efforts to seek mentally disturbed students and help them, to have effective emergency teams, as well…

  14. 5 Smart Investments for Your Tech Dollars

    ERIC Educational Resources Information Center

    Demski, Jennifer

    2010-01-01

    A downturn in the economic climate and an upturn in the technological climate might be higher education IT's "perfect storm." The confluence of budget cuts with the increased reliance on technology in almost all disciplines and administrative areas has put enormous pressure on campus IT leaders to pinpoint and fund tech services that achieve…

  15. Red Flags in High-Tech

    ERIC Educational Resources Information Center

    Flynn, Patricia M.

    2007-01-01

    The United States has long been a world leader in education, innovation, high-tech employment, and research and development (R&D). Its future status, however, is not secure. This is the conclusion of more than two dozen reports in recent years from a variety of groups of business leaders, educators and government officials. In this article, the…

  16. Electronics Technology. Tech Prep Competency Profile.

    ERIC Educational Resources Information Center

    Lakeland Tech Prep Consortium, Kirtland, OH.

    This tech prep competency profile covers the occupation of electronics technician. Section 1 provides the occupation definition. Section 2 lists development committee members. Section 3 provides the leveling codes--abbreviations for grade level, (by the end of grade 12, by the end of associate degree), academic codes (communications, math, or…

  17. Colorado Agriculture Education Tech Prep Curriculum Guide.

    ERIC Educational Resources Information Center

    2002

    This guide is intended to provide local agricultural education tech prep programs throughout Colorado with a framework for updating their own curriculum and developing articulation with postsecondary institutions. First, a primer to standards-based education explains the role of the following items in standards-based education in agriculture: (1)…

  18. Model Tech Prep Demonstration Project. Final Report.

    ERIC Educational Resources Information Center

    Southern Maryland Educational Consortium, La Plata.

    The Southern Maryland Educational Consortium's Tech Prep Model Demonstration project is described in this final report. The consortium members are Calvert, Charles, and St. Mary's county school districts and Charles County Community College in southern Maryland. The project is based on a 4 + 2 model in which ninth-grade students develop career…

  19. Planning and Designing Today's Career Tech Facility

    ERIC Educational Resources Information Center

    Seaman, James

    2010-01-01

    During the past 20 years, career and technical education (CTE) has gone through significant changes. CTE has evolved in response to the changes technology has had on the job market. Preparing students for high-tech, high-skill job opportunities is the new focus. The facilities that house these programs, however, have not kept pace with these…

  20. The Virginia Tech Library System (VTLS).

    ERIC Educational Resources Information Center

    McGrath, Deborah Hall; Lee, Carl R.

    1989-01-01

    Discusses topics relating to the Virginia Tech Library System: the company (VTLS, Inc.); the software; data structure; cataloging, status, and authority control; circulation; serials control and acquisitions; the online catalog; management reporting; networking; and the operating environment. Sidebars discuss the Vanilla Network; LINNEA--a network…

  1. Virginia Tech: The Challenge of Assuring Safety

    ERIC Educational Resources Information Center

    Rikleen, Lauren Stiller

    2007-01-01

    The recent events at Virginia Tech reinforce the idea that nothing is more fundamental for college leaders to address than campus security and safety. After the tears, the makeshift memorials, and the intensely painful series of funerals, higher education must come to grips with the fact that it has just had its own September 11. Assessing and…

  2. Is Education Facing a "Tech Bubble"?

    ERIC Educational Resources Information Center

    Davis, Michelle R.

    2013-01-01

    Educational technology companies and entrepreneurs may face the risk of a "tech bubble," similar to the massive boom-and-bust that rocked the technology market in the late 1990s, according to market analysts and a recently released paper. A relatively new focus on K-12 educational technology as an investment vehicle, a surge of investors looking…

  3. Development of High-Tech Skills.

    ERIC Educational Resources Information Center

    Theuerkauf, Walter E.

    High tech systems not only generate new structures in the production process, but also involve profound changes in job organization, which in turn imply that job qualifications must be modified. In view of the changes within engineering systems and the relevant technologies, it seems expedient to choose a curricular approach based on the concepts…

  4. Top 13 Tech Resources for 2013

    ERIC Educational Resources Information Center

    Gonzales, Lisa; Vodicka, Devin

    2013-01-01

    If one asks educators about online resources that make their lives easier or make a difference with instruction, they will likely all respond passionately with some site, tool or app and a story about how it works. This year, the authors set out to include 13 tech resources they find valuable in their work or in work with others. They feel these…

  5. Virginia Tech State Task Force Reports Summary

    ERIC Educational Resources Information Center

    McBride, James T.

    2010-01-01

    An analysis of eleven state task force reports prompted by the tragic nature of the Virginia Tech shooting in 2007 revealed that all shared a primary theme: no "single best way" to protect American college and university campuses yet exists. These documents, individually and collectively, make it clear that contemporary complex learning…

  6. Low Tech Solutions: A Place To Begin.

    ERIC Educational Resources Information Center

    Ensign, Arselia S., Ed.

    1992-01-01

    This guide presents low tech solutions that have worked for some people with disabilities or their parents. Twenty-one ideas are offered to give children with physical disabilities more opportunities for play and art. Examples include recycling stuffed animals into puppets, punching a hole in top of playing cards to accommodate a mouth stick, and…

  7. Tech Prep Model for Marketing Education.

    ERIC Educational Resources Information Center

    Ruhland, Sheila K.; King, Binky M.

    A project was conducted to develop two tech prep models for marketing education (ME) in Missouri to provide a sequence of courses for skill-enhanced and time-shortened programs. First, labor market trends, employment growth projections, and business and industry labor needs in Missouri were researched and analyzed. The analysis results were used…

  8. LASER Tech Briefs, February 1995. Volume 3, No. 1

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Topics included in this issue of LASER Tech Briefs are: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Mechanics, Fabrication, and Mathematics and Information Sciences, and

  9. Atomic Physics with the Goddard High-Resolution Spectrograph on the Hubble Space Telescope. No. 1; Oscillator Strengths for Neutral Sulfur

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Cardelli, Jason A.

    1995-01-01

    Interstellar spectra toward zeta Oph acquired with the Goddard High-Resolution Spectrograph were used to obtain oscillator strengths for approximately two dozen S I lines. This analysis was possible because precisely determined experimental oscillator strengths are available for several multiplets, including one with a weak interstellar line. The self-consistent set of oscillator strengths then was obtained from a curve of growth based on line strengths spanning a range of a factor of 100. The derived f-values for a number of multiplets differ from values quoted by Morton (1991) but are generally consistent with the suite of available experimental and theoretical results.

  10. A procedure for accurate calibration of the orientation of the three sensors in a vector magnetometer. [at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.

    1977-01-01

    Procedures are described for the calibration of a vector magnetometer of high absolute accuracy. It is assumed that the calibration will be performed in the magnetic test facility of Goddard Space Flight Center (GSFC). The first main section of the report describes the test equipment and facility calibrations required. The second presents procedures for calibrating individual sensors. The third discusses the calibration of the sensor assembly. In a final section recommendations are made to GSFC for modification of the test facility required to carry out the calibration procedures.

  11. Tech-Prep in New York State: Profiles of Four Diverse Programs.

    ERIC Educational Resources Information Center

    Frenkel, Michael W.; Brodsky, Stanley M.

    These case studies highlight the diversity of four tech programs that responded with a unique set of organizational policies and procedures to a unique set of challenges. The case study on City Tech Tech-Prep Consortium in Brooklyn focuses on three strategies: transition to City Tech program, postsecondary component, and program evaluation. The…

  12. Remodelling technology transfer

    NASA Astrophysics Data System (ADS)

    Dumont, Emmanuel L. P.

    2015-02-01

    Should inventors control the fate of their own inventions? In the US, most universities think not. But, as Emmanuel Dumont explains, the Jacobs Technion-Cornell Institute at Cornell Tech in New York City bets otherwise.

  13. The GOddard SnoW Impurity Module (GOSWIM) for the NASA GEOS-5 Earth System Model: Preliminary Comparisons with Observations in Sapporo, Japan

    NASA Technical Reports Server (NTRS)

    Yasunari, Teppei J.; Lau, K.-M.; Mahanama, Sarith P. P.; Colarco, Peter R.; daSilva, Arlindo M.; Aoki, Teruo; Aoki, Kazuma; Murao, Naoto; Yamagata, Sadamu; Kodama, Yuji

    2014-01-01

    The snow darkening module evaluating dust, black carbon, and organic carbon depositions on mass and albedo has been developed for the NASA Goddard Earth Observing System, Version 5 (GEOS-5) Earth System Model, as the GOddard SnoW Impurity Module (GOSWIM). GOSWIM consists of the snow albedo scheme from a previous study (Yasunari et al. 2011) with updates and a newly developed mass concentration scheme, using aerosol depositions from the chemical transport model (GOCART) in GEOS-5. Compared to observations at Sapporo, the numerical experiments, forced by observation-based meteorology and aerosol depositions from GOES-5, better simulated the seasonal migration of snow depth, albedos, and impurities of dust, BC, and OC in the snow surface. However, the magnitude of the impurities is underestimated, compared to the sporadic snow impurity measurements. Increasing the deposition rates of dust and BC could explain the differences on the snow darkening effect between observation and simulation. Ignoring BC deposition can possibly lead to an extension of snow cover duration in Sapporo for four days. Comparing the off-line GOSWIM and the GEOS-5 global simulations, we found that determining better local precipitation and deposition rates of the aerosols are key factors in generating better GOSWIM snow darkening simulation in NASA GEOS-5.

  14. Engaging students in STEM outside the classroom walls: preliminary evaluation of two informal science education programs at NASA Goddard Space Flight Center

    NASA Astrophysics Data System (ADS)

    Robbins, G.; Delaney, M. P.; Conaty, C.

    2011-12-01

    "School is not where most Americans learn most of their science" (Falk, Dierking). With a recent focus on summer learning and the understanding that much of the achievement gap may be directly related to "unequal access to summer learning opportunities" (Russo), educators are targeting after-school and summer times to fill the gap. For those students who "don't get it" during the day, a longer school day may not be the solution. More of the same is not always better. Different, on the other hand, may well be the key to improved learning. The nature of this investigation was to identify those informal science education programs at NASA Goddard Space Flight Center that instilled STEM inspiration and engagement in participants. During 2011, NASA Goddard Space Flight Center hosted two such programs: an open house event for the general public and a museum educators' workshop. The open house drew approximately 15,000 people and the workshop supported 30 participants from museums across the United States. Each was a very unique experience. Formative evaluation of these programs was implemented and preliminary results indicated high level of engagement, desire for follow-on learning, and interest in additional hands-on, internship or partnership opportunities. These results confirmed the design of the museum workshop and lead to the development of a new student summer experience and educator professional development, planned for 2012.

  15. Virginia Tech Weighs Hundreds of Recommendations and Acts on Some

    ERIC Educational Resources Information Center

    Fischer, Karin

    2008-01-01

    Three reports on last April's shootings left Virginia Tech under a mountain of recommendations--roughly 400 in all. So far the university has dealt with some of the most significant ones. Virginia Tech established an emergency-notification system, created a team to assess at-risk students and employees, and hired additional police officers and…

  16. Virginia Tech Was Slow to Respond to Gunman, Panel Finds

    ERIC Educational Resources Information Center

    Fischer, Karin; Wilson, Robin

    2007-01-01

    This article reports on the findings of the state panel on the Virginia Tech massacre. A state panel that investigated last spring's massacre at Virginia Tech has issued a harshly worded report that says the university erred in the way it handled a mentally disabled student who became a killer and in how it dealt with the immediate aftermath of…

  17. Tech Prep Intergenerational Curriculum Development Project. Final Report.

    ERIC Educational Resources Information Center

    Texas Tech Univ., Lubbock.

    A project was conducted at Texas Tech University to develop a competency-based curriculum to support statewide implementation of tech prep intergenerational programs (careers in providing services to well elderly persons and to children). Project activities included the following: (1) revision and expansion of the Intergenerational Target…

  18. Tech Prep in Illinois: Postsecondary Perspectives on Development and Implementation.

    ERIC Educational Resources Information Center

    Roegge, Chris A.; Brown, Dan

    1992-01-01

    A concept mapping process conducted with Illinois tech prep practitioners generated cluster themes in four areas: goals, process, clientele, and partnerships/teamwork. The most important clusters of statements included outcomes, business-industry linkages, and articulation. The resulting concept framework will facilitate tech prep program planning…

  19. NASA Tech Briefs, November 1998. Volume 22, No. 11

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Topics include: special coverage sections on test and measurement and sections on electronic components and circuits, electronic systems, software, materials, mechanics, machinery/automation, physical sciences, information sciences, book and reports, and special sections of Electronics Tech Briefs amd Rapid Product Development Tech Briefs.

  20. NASA Tech Briefs, May 1999. Volume 23, No. 5

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Topics include: special coverage sections on sensors and composites and plastics, and sections on electronic components and systems, software, materials, mechanics, machinery and automation, bio-medical, physical sciences, book and reports, and a special section of Photonics Tech Briefs and Rapid Product Development Tech Briefs.

  1. NASA Tech Briefs, October 2000. Volume 24, No. 10

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics include: special coverage sections on CAD, CAE, and PDM, and, Composites and Plastics, and sections on electronic components and systems, software, test and measurement, mechanics, manufacturing/fabrication, physical sciences, information sciences, book and reports, and special sections of Electronics Tech Briefs and Motion Control Tech Briefs

  2. Planning for Tech Prep: A Guidebook for School Leaders.

    ERIC Educational Resources Information Center

    Fagan, Carol; Lumley, Dan

    This manual was written to help educators with little or no experience to create a tech prep program. The guide presents a step-by-step process for planning, development, and implementation of the program. The manual contains 10 chapters organized in 4 sections. The two chapters of the first section introduce tech prep, provide a rationale for…

  3. NASA Tech Briefs, October 1999. Volume 23, No. 10

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Topics include: special coverage section on data acquisition and sensors and sections on electronic components and systems, software, materials, mechanics, machinery/automation, manufacturing/fabrication, bio-medical, physical sciences, information sciences, book and reports, and special section of Electronics Tech Briefs and Motion Control Tech briefs

  4. NASA Tech Briefs, December 1998. Volume 22, No. 12

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Topics include: special coverage section on design and analysis software, and sections on electronic components and circuits, electronic systems, software, materials, mechanics, machinery/automation, manufacturing/fabrication, physical sciences, and special sections of Photonics Tech Briefs, Motion Control Tech briefs and a Hot Technology File 1999 Resource Guide.

  5. Mississippi Tech-Prep Coordinators: Identifying Challenges of the Job

    ERIC Educational Resources Information Center

    McDavid, Jean Alice; Boggs, Brad D.; Stumpf, Dan

    2005-01-01

    Mississippi tech-prep coordinators were surveyed to determine their perceptions of the difficulty of their various job responsibilities as identified in the Mississippi Tech Prep Handbook Pilot Site Implementation Guide 1993-94 (1993). It was hypothesized that their perceptions would be influenced by the number of sites served by individual…

  6. Secondary Business Educators' Perceptions of Tech Prep Programs.

    ERIC Educational Resources Information Center

    Alexander, Melody W.; Davis, Rodney R.; Underwood, Robert A.; Arp, Larry

    2000-01-01

    A study identified the perceptions of high school business educators (n=260) in relation to tech prep program and articulation issues. Although tech prep was considered academically challenging, achievement improvements have not been documented; opportunities for team teaching have not increased; and business support has not been well developed.…

  7. A Survey of Perceptions of the Virginia Tech Tragedy

    ERIC Educational Resources Information Center

    Fallahi, Carolyn R.; Austad, Carol Shaw; Fallon, Marianne; Leishman, Lisa

    2009-01-01

    The recent shootings at the Virginia Polytechnic Institute (Virginia Tech) shocked the nation and brought violence on college campuses to the forefront of the nation's attention. We surveyed college students and faculty/staff three weeks after the incident about their perceptions of the Virginia Tech shooting, subsequent media exposure, and school…

  8. Virginia Tech Researchers Study Effects of Shootings on Their Campus

    ERIC Educational Resources Information Center

    Gravois, John

    2008-01-01

    This article reports how researchers at Virginia Tech, working in a variety of disciplines, are studying the long-term effects of the campus killings 10 months ago. After the killings, administrators at Virginia Tech realized that their normal institutional-review process for research proposals was not sufficient to deal with the likely onslaught…

  9. AVA Guide to Federal Funding for Tech Prep.

    ERIC Educational Resources Information Center

    Brustein, Michael

    This handbook outlines the options and requirements for federal support for tech prep in the Perkins law. It explains what educators must do and not do to assure compliance with all the law's mandates and to avoid audit exceptions. The guide also covers new tech prep provisions that were included in the Higher Education Act of 1992. Discussed in…

  10. Minimizing Security Vulnerabilities in High-Tech Classrooms

    ERIC Educational Resources Information Center

    Ozkan, Betul C.; Gunay, Vedat

    2004-01-01

    Emerging technologies are quickly becoming part of daily learning and teaching endeavors in academia. Due to the access to certain high-tech tools educators must learn how to integrate these tools in educational settings. However, many also encounter problems and weaknesses in the same high-tech environment that uses and delivers information…

  11. Developing a Technology Resource Center: The OSU Tech Experience.

    ERIC Educational Resources Information Center

    Hensley, S. Michael

    In order to help meet the economic development needs of the state, Oklahoma State University Technical Branch at Okmulgee (OSU Tech) has developed two initiatives. First, OSU Tech has focussed student training on degree programs in advancing technologies, such as avionics, electronics, and robotics. Second, the college has developed a Technology…

  12. Technology's Covert Socialization of Children: High-Tech Toys.

    ERIC Educational Resources Information Center

    Kritt, David W.

    2001-01-01

    Child's play may be at risk in today's technologically-oriented society. The limited interactive capacities of high-tech toys constrain the possibilities for cognitive development, interpersonal learning, and the quality of relationships that can be formed. Current high-tech toys change the nature of play, so that the object, rather than the…

  13. NASA Tech Briefs, June 1998. Volume 22, No. 6

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Topics include: special coverage on computer hardware and peripherals, electronic components and circuits, electronic systems, software, materials, mechanics, machinery/automation, manufacturing, physical sciences, information sciences, book and reports, and a special section of Photonics Tech Briefs. and a second special section of Motion Control Tech Briefs

  14. The Debreather and NuTech: A Reply to Kleespies

    ERIC Educational Resources Information Center

    Ogden, Russel D.

    2010-01-01

    This article responds to Phillip Kleespies's (2010/this issue) commentary on NuTech fieldworkers and their use of the debreather. Non-medical assistance with suicide raises legitimate concerns about accountability, public safety, and care for those who are suffering. Given that suicide is not a crime, an outcome of the NuTech movement may be that…

  15. TechEdSat Nano-Satellite Series Fact Sheet

    NASA Technical Reports Server (NTRS)

    Murbach, Marcus; Martinez, Andres; Guarneros Luna, Ali

    2014-01-01

    TechEdSat-3p is the second generation in the TechEdSat-X series. The TechEdSat Series uses the CubeSat standards established by the California Polytechnic State University Cal Poly), San Luis Obispo. With typical blocks being constructed from 1-unit (1U 10x10x10 cm) increments, the TechEdSat-3p has a 3U volume with a 30 cm length. The project uniquely pairs advanced university students with NASA researchers in a rapid design-to-flight experience lasting 1-2 semesters.The TechEdSat Nano-Satellite Series provides a rapid platform for testing technologies for future NASA Earth and planetary missions, as well as providing students with an early exposure to flight hardware development and management.

  16. Airport Noise Tech Challenge Overview

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2011-01-01

    The Supersonics Project, operating under NASA Aeronautics Mission Directorate#s Fundamental Aero Program, has been organized around the Technical Challenges that have historically precluded commercial supersonic flight. One of these Challenges is making aircraft that are capable of such high aerodynamic performance quiet enough around airports that they will not be objectionable. It is recognized that a successful civilian supersonic aircraft will be a system where many new technologies will come together, and for this to happen not only will new low noise propulsion concepts be required, but new engineering tools that predict the noise of the aircraft as these technologies are combined and compromised with the rest of the aircraft design. These are the two main objectives of the Airport Noise Tech Challenge. " ! As a Project in the Fundamental Aero Program, we work at a relatively low level of technology readiness. However, we have high level milestones which force us to integrate our efforts to impact systems-level activities. To keep the low-level work tied to delivering engineering tools and low-noise concepts, we have structured our milestones around development of the concepts and organized our activities around developing and applying our engineering tools to these concepts. The final deliverables in these milestones are noise prediction modules validated against the best embodiment of each concept. These will then be used in cross-disciplinary exercises to demonstrate the viability of aircraft designs to meet all the Technical Challenges. Some of the concepts being developed are shown: Fan Flow Diverters, Multi-jet Shielding, High-Aspect Ratio Embedded Nozzles, Plasma Actuated Instability Manipulation, Highly Variable Cycle Mixer- Ejectors, and Inverted Velocity Profiles. These concepts are being developed for reduced jet noise along with the design tools which describe how they perform when used in various aircraft configurations. Several key upcoming

  17. ''Heat Transfer at the Mold-Metal Interface in Permanent Mold Casting of Aluminum Alloys'' Final Project Report

    SciTech Connect

    Professor R. D. Pehlke, Principal Investigator, Dr. John M. Cookson, Dr. Shouwei Hao, Dr. Prasad Krishna, Kevin T. Bilkey

    2001-12-14

    This project on heat transfer coefficients in metal permanent mold casting has been conducted in three areas. They are the theoretical study at the University of Michigan, the experimental investigation of squeeze casting at CMI-Tech Center (Now Hayes-Lemmerz Technical Center) and the experimental investigation of low pressure permanent mold casting at Amcast Automotive.

  18. Tech Prep Degree: Preparing Tomorrow's Workforce. Design, Development and Implementation of a TECH PREP Core Program. Final Report.

    ERIC Educational Resources Information Center

    Quad-City/Tri-County Vocational Regions, East Moline, IL.

    A four-stage project was undertaken to develop an exemplary tech prep core program to serve students in the Quad-City/Tri-County Vo Tech Regions school districts and Black Hawk Community College (BHCC) in Illinois. A core group planning committee consisting of education and business/industry representatives used the DACUM (Developing a Curriculum)…

  19. Tech trends number 4, March 1991

    SciTech Connect

    Not Available

    1991-03-01

    To meet the challenge of cleanup of Superfund sites at federal facilities, the U.S. Army Toxic and Hazardous Materials Agency is devising innovative ways to treat wastes on site. In this issue of Tech Trends, Cpt. Craig Myler tells about an innovative Low Temperature Thermal Stripping process to treat soil contaminated with cleaning solvents and fuels. The process expends less energy and is lower in cost than incineration.

  20. "Transfer Shock" or "Transfer Ecstasy?"

    ERIC Educational Resources Information Center

    Nickens, John M.

    The alleged characteristic drop in grade point average (GPA) of transfer students and the subsequent rise in GPA was investigated in this study. No statistically significant difference was found in first term junior year GPA between junior college transfers and native Florida State University students after the variance accounted for by the…

  1. Supersonics Project - Airport Noise Tech Challenge

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2010-01-01

    The Airport Noise Tech Challenge research effort under the Supersonics Project is reviewed. While the goal of "Improved supersonic jet noise models validated on innovative nozzle concepts" remains the same, the success of the research effort has caused the thrust of the research to be modified going forward in time. The main activities from FY06-10 focused on development and validation of jet noise prediction codes. This required innovative diagnostic techniques to be developed and deployed, extensive jet noise and flow databases to be created, and computational tools to be developed and validated. Furthermore, in FY09-10 systems studies commissioned by the Supersonics Project showed that viable supersonic aircraft were within reach using variable cycle engine architectures if exhaust nozzle technology could provide 3-5dB of suppression. The Project then began to focus on integrating the technologies being developed in its Tech Challenge areas to bring about successful system designs. Consequently, the Airport Noise Tech Challenge area has shifted efforts from developing jet noise prediction codes to using them to develop low-noise nozzle concepts for integration into supersonic aircraft. The new plan of research is briefly presented by technology and timelines.

  2. TurboTech Technical Evaluation Automated System

    NASA Technical Reports Server (NTRS)

    Tiffany, Dorothy J.

    2009-01-01

    TurboTech software is a Web-based process that simplifies and semiautomates technical evaluation of NASA proposals for Contracting Officer's Technical Representatives (COTRs). At the time of this reporting, there have been no set standards or systems for training new COTRs in technical evaluations. This new process provides boilerplate text in response to interview style questions. This text is collected into a Microsoft Word document that can then be further edited to conform to specific cases. By providing technical language and a structured format, TurboTech allows the COTRs to concentrate more on the actual evaluation, and less on deciding what language would be most appropriate. Since the actual word choice is one of the more time-consuming parts of a COTRs job, this process should allow for an increase in quantity of proposals evaluated. TurboTech is applicable to composing technical evaluations of contractor proposals, task and delivery orders, change order modifications, requests for proposals, new work modifications, task assignments, as well as any changes to existing contracts.

  3. The 8.3 and 12.4 micron imaging of the Galactic Center source complex with the Goddard infrared array camera

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Tresch-Fienberg, R.; Fazio, G. G.; Hoffmann, W. F.; Gatley, I.; Lamb, G.; Shu, P.; Mccreight, C. R.

    1985-01-01

    A 30 x 30 arcsec field at the Galactic Center (1.5 x 1.5 parsec) was mapped at 8.3 microns and 12.41 microns with high spatial resolution and accurate relative astrometry, using the 16 x 16 Si:Bi accumulation mode charge injection device Goddard infrared array camera. The design and performance of the array camera detector electronics system and image data processing techniques are discussed. Color temperature and dust opacity distributions derived from the spatially accurate images indicate that the compact infrared sources and the large scale ridge structure are bounded by warmer, more diffuse material. None of the objects appear to be heated appreciably by internal luminosity sources. These results are consistent with the model proposing that the complex is heated externally by a strong luminosity source at the Galactic Center, which dominates the energetics of the inner few parsecs of the galaxy.

  4. Sixth Goddard Conference on Mass Storage Systems and Technologies Held in Cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)

    1998-01-01

    This document contains copies of those technical papers received in time for publication prior to the Sixth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems at the University of Maryland-University College Inn and Conference Center March 23-26, 1998. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the management of large volumes of data. The Conference encourages all interested organizations to discuss long term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long term retention of data, and data distribution. This year's discussion topics include architecture, tape optimization, new technology, performance, standards, site reports, vendor solutions. Tutorials will be available on shared file systems, file system backups, data mining, and the dynamics of obsolescence.

  5. The Representation of Tropical Cyclones Within the Global William Putman Non-Hydrostatic Goddard Earth Observing System Model (GEOS-5) at Cloud-Permitting Resolutions

    NASA Technical Reports Server (NTRS)

    Putman, William M.

    2010-01-01

    The Goddard Earth Observing System Model (GEOS-S), an earth system model developed in the NASA Global Modeling and Assimilation Office (GMAO), has integrated the non-hydrostatic finite-volume dynamical core on the cubed-sphere grid. The extension to a non-hydrostatic dynamical framework and the quasi-uniform cubed-sphere geometry permits the efficient exploration of global weather and climate modeling at cloud permitting resolutions of 10- to 4-km on today's high performance computing platforms. We have explored a series of incremental increases in global resolution with GEOS-S from irs standard 72-level 27-km resolution (approx.5.5 million cells covering the globe from the surface to 0.1 hPa) down to 3.5-km (approx. 3.6 billion cells).

  6. The Development of a Virtual Company to Support the Reengineering of the NASA/Goddard Hubble Space Telescope Control Center System

    NASA Technical Reports Server (NTRS)

    Lehtonen, Ken

    1999-01-01

    This is a report to the Third Annual International Virtual Company Conference, on The Development of a Virtual Company to Support the Reengineering of the NASA/Goddard Hubble Space Telescope (HST) Control Center System. It begins with a HST Science "Commercial": Brief Tour of Our Universe showing various pictures taken from the Hubble Space Telescope. The presentation then reviews the project background and goals. Evolution of the Control Center System ("CCS Inc.") is then reviewed. Topics of Interest to "virtual companies" are reviewed: (1) "How To Choose A Team" (2) "Organizational Model" (3) "The Human Component" (4) "'Virtual Trust' Among Teaming Companies" (5) "Unique Challenges to Working Horizontally" (6) "The Cultural Impact" (7) "Lessons Learned".

  7. The Generalized Support Software (GSS) Domain Engineering Process: An Object-Oriented Implementation and Reuse Success at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Condon, Steven; Hendrick, Robert; Stark, Michael E.; Steger, Warren

    1997-01-01

    The Flight Dynamics Division (FDD) of NASA's Goddard Space Flight Center (GSFC) recently embarked on a far-reaching revision of its process for developing and maintaining satellite support software. The new process relies on an object-oriented software development method supported by a domain specific library of generalized components. This Generalized Support Software (GSS) Domain Engineering Process is currently in use at the NASA GSFC Software Engineering Laboratory (SEL). The key facets of the GSS process are (1) an architecture for rapid deployment of FDD applications, (2) a reuse asset library for FDD classes, and (3) a paradigm shift from developing software to configuring software for mission support. This paper describes the GSS architecture and process, results of fielding the first applications, lessons learned, and future directions

  8. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Ostrenga, D.; Vollmer, B.; Kempler, S.; Deshong, B.; Greene, M.

    2015-01-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is also home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 17 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available: -Level-1 GPM Microwave Imager (GMI) and partner radiometer products, DPR products -Level-2 Goddard Profiling Algorithm (GPROF) GMI and partner products, DPR products -Level-3 daily and monthly products, DPR products -Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data version control and provenance; documentation; science support for proper data usage, FAQ, help desk; monitoring services (e.g. Current Conditions) for applications. The United User Interface (UUI) is the next step in the evolution of the GES DISC web site. It attempts to provide seamless access to data, information and services through a single interface without sending the user to different applications or URLs (e.g., search, access

  9. Actions Needed to Ensure Scientific and Technical Information is Adequately Reviewed at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This audit was initiated in response to a hotline complaint regarding the review, approval, and release of scientific and technical information (STI) at Johnson Space Center. The complainant alleged that Johnson personnel conducting export control reviews of STI were not fully qualified to conduct those reviews and that the reviews often did not occur until after the STI had been publicly released. NASA guidance requires that STI, defined as the results of basic and applied scientific, technical, and related engineering research and development, undergo certain reviews prior to being released outside of NASA or to audiences that include foreign nationals. The process includes technical, national security, export control, copyright, and trade secret (e.g., proprietary data) reviews. The review process was designed to preclude the inappropriate dissemination of sensitive information while ensuring that NASA complies with a requirement of the National Aeronautics and Space Act of 1958 (the Space Act)1 to provide for the widest practicable and appropriate dissemination of information resulting from NASA research activities. We focused our audit on evaluating the STI review process: specifically, determining whether the roles and responsibilities for the review, approval, and release of STI were adequately defined and documented in NASA and Center-level guidance and whether that guidance was effectively implemented at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center. Johnson was included in the review because it was the source of the initial complaint, and Goddard, Langley, and Marshall were included because those Centers consistently produce significant amounts of STI.

  10. Engaging learners outside the classroom walls: Preliminary evaluation of three informal STEM education programs at NASA Goddard Space Flight Center, Greenbelt, MD USA 20771

    NASA Astrophysics Data System (ADS)

    Robbins, G.; Delaney, M.; Conaty, C.; Gabrys, R.

    2012-04-01

    Tomorrow's classroom may not be a classroom. In fact, it may not be a room at all. With a recent focus on summer learning and the understanding that much of the achievement gap may be directly related to "unequal access to summer learning opportunities" (National Summer Learning Association, 2011 & Russo, 2011), educators are targeting after-school and summer-times to fill the gap. For those students who "don't get it" during the day, a longer school day may not be the solution. More of the same is not always better. Different, on the other hand, may well be the key to improved learning and may drive the model of education in the future. The nature of this investigation was to identify those informal education programs at NASA Goddard Space Flight Center (Greenbelt, Maryland USA) that instilled inspiration and engagement in participants. During 2011, NASA Goddard Space Flight Center hosted two such programs and supported a third: an open house event for the general public, a museum educators' workshop, and NASA's BEST Students (NBS) educator professional development at the Los Angeles, California Unified School District (LAUSD) "Beyond the Bell" after-school program. Each was a unique experience. The open house drew approximately 15,000 with over 4,000 taking part in structured informal educational programs, the workshop supported 30 informal educators from museums across the United States, and NBS hosted 33 after-school coach-educators from LAUSD. Formative evaluation of these programs was carried out and preliminary results indicate high levels of engagement, desire for follow-on learning, and interest in additional hands-on and partnership opportunities. Each event enjoyed positive reviews and each served to further deploy high-quality NASA STEM content to learners. This work was first presented at the American Geophysical Union 2011 Fall Meeting in San Francisco, California. Since then, additional museum educators' workshop data has been collected and NBS has

  11. Comparison of TOPEX/Poseidon orbit determination solutions obtained by the Goddard Space Flight Center Flight Dynamics Division and Precision Orbit Determination Teams

    NASA Technical Reports Server (NTRS)

    Doll, C.; Mistretta, G.; Hart, R.; Oza, D.; Cox, C.; Nemesure, M.; Bolvin, D.; Samii, Mina V.

    1993-01-01

    Orbit determination results are obtained by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) using the Goddard Trajectory Determination System (GTDS) and a real-time extended Kalman filter estimation system to process Tracking Data and Relay Satellite (TDRS) System (TDRSS) measurements in support of the Ocean Topography Experiment (TOPEX)/Poseidon spacecraft navigation and health and safety operations. GTDS is the operational orbit determination system used by the FDD, and the extended Kalman fliter was implemented in an analysis prototype system, the Real-Time Orbit Determination System/Enhanced (RTOD/E). The Precision Orbit Determination (POD) team within the GSFC Space Geodesy Branch generates an independent set of high-accuracy trajectories to support the TOPEX/Poseidon scientific data. These latter solutions use the Geodynamics (GEODYN) orbit determination system with laser ranging tracking data. The TOPEX/Poseidon trajectories were estimated for the October 22 - November 1, 1992, timeframe, for which the latest preliminary POD results were available. Independent assessments were made of the consistencies of solutions produced by the batch and sequential methods. The batch cases were assessed using overlap comparisons, while the sequential cases were assessed with covariances and the first measurement residuals. The batch least-squares and forward-filtered RTOD/E orbit solutions were compared with the definitive POD orbit solutions. The solution differences were generally less than 10 meters (m) for the batch least squares and less than 18 m for the sequential estimation solutions. The differences among the POD, GTDS, and RTOD/E solutions can be traced to differences in modeling and tracking data types, which are being analyzed in detail.

  12. The Tech Prep Handbook: Essential Documents To Promte Effective Tech Prep Policies and Practices.

    ERIC Educational Resources Information Center

    Hensley, Oliver D., Ed.; And Others

    Developed during a project to document and analyze the tech prep initiative in Texas, this handbook contains exemplary documents associated with the model programs in the state. This second edition of the handbook organizes documents in sections (sections A, C, D, and G) that correspond to the major impact sectors identified during the research…

  13. A Virginia Tech MFT Ethics Class Reflects on the Shootings at Virginia Tech

    ERIC Educational Resources Information Center

    Piercy, Fred; Banker, Jamie; Traylor, Ryan; Krug, Sarah; Castanos, Carolina; Cole, Elise; Ciafardini, Anthony J.; Jordal, Christian; Rodgers, Brandon; Stewart, Shelley; Goodwin, Annabelle

    2008-01-01

    The authors of this article include the professor and most of the students in a doctoral course on marriage and family therapy ethical and professional issues that met the semester that a disturbed student shot and killed 32 Virginia Tech students and faculty before killing himself. In this article, we reflect through short essays on issues…

  14. Tech Prep Degree: Preparing Tomorrow's Workforce. Design, Development and Implementation of a TECH PREP Core Program.

    ERIC Educational Resources Information Center

    Quad-City/Tri-County Vocational Regions, East Moline, IL.

    The focus of tech prep at Quad-City/Tri-County Vocational Regions/Black Hawk College was on providing all students with skills for higher education as well as job opportunities. To accomplish this, a comprehensive model applicable to all program areas was implemented to provide sequenced, vocationally and academically integrated, and complementary…

  15. NASA Tech Briefs, April 1995. Volume 19, No. 4

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This issue of the NASA Tech Briefs has a special focus section on video and imaging, a feature on the NASA invention of the year, and a resource report on the Dryden Flight Research Center. The issue also contains articles on electronic components and circuits, electronic systems, physical sciences, materials, computer programs, mechanics, machinery, manufacturing/fabrication, mathematics and information sciences and life sciences. In addition to the standard articles in the NASA Tech brief, this contains a supplement entitled "Laser Tech Briefs" which features an article on the National Ignition Facility, and other articles on the use of Lasers.

  16. Technology Transfer

    NASA Technical Reports Server (NTRS)

    Smith, Nanette R.

    1995-01-01

    The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can

  17. NASA Tech Briefs, November 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Topics covered include: Laser System for Precise, Unambiguous Range Measurements; Flexible Cryogenic Temperature and Liquid-Level Probes; Precision Cryogenic Dilatometer; Stroboscopic Interferometer for Measuring Mirror Vibrations; Some Improvements in H-PDLCs; Multiple-Bit Differential Detection of OQPSK; Absolute Position Encoders With Vertical Image Binning; Flexible, Carbon-Based Ohmic Contacts for Organic Transistors; GaAs QWIP Array Containing More Than a Million Pixels; AutoChem; Virtual Machine Language; Two-Dimensional Ffowcs Williams/Hawkings Equation Solver; Full Multigrid Flow Solver; Doclet To Synthesize UML; Computing Thermal Effects of Cavitation in Cryogenic Liquids; GUI for Computational Simulation of a Propellant Mixer; Control Program for an Optical-Calibration Robot; SQL-RAMS; Distributing Data from Desktop to Hand-Held Computers; Best-Fit Conic Approximation of Spacecraft Trajectory; Improved Charge-Transfer Fluorescent Dyes; Stability-Augmentation Devices for Miniature Aircraft; Tool Measures Depths of Defects on a Case Tang Joint; Two Heat-Transfer Improvements for Gas Liquefiers; Controlling Force and Depth in Friction Stir Welding; Spill-Resistant Alkali-Metal-Vapor Dispenser; A Methodology for Quantifying Certain Design Requirements During the Design Phase; Measuring Two Key Parameters of H3 Color Centers in Diamond; Improved Compression of Wavelet-Transformed Images; NASA Interactive Forms Type Interface - NIFTI; Predicting Numbers of Problems in Development of Software; Hot-Electron Photon Counters for Detecting Terahertz Photons; Magnetic Variations Associated With Solar Flares; and Artificial Intelligence for Controlling Robotic Aircraft.

  18. The Lunar IceCube Mission Design: Construction of Feasible Transfer Trajectories with a Constrained Departure

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Bosanac, Natasha; Cox, Andrew; Howell, Kathleen C.

    2016-01-01

    Lunar IceCube, a 6U CubeSat, will prospect for water and other volatiles from a low-periapsis, highly inclined elliptical lunar orbit. Injected from Exploration Mission-1, a lunar gravity assisted multi-body transfer trajectory will capture into a lunar science orbit. The constrained departure asymptote and value of trans-lunar energy limit transfer trajectory types that re-encounter the Moon with the necessary energy and flight duration. Purdue University and Goddard Space Flight Center's Adaptive Trajectory Design tool and dynamical system research is applied to uncover cislunar spatial regions permitting viable transfer arcs. Numerically integrated transfer designs applying low-thrust and a design framework are described.

  19. [Technology Transfer.

    ERIC Educational Resources Information Center

    Latker, Norman J.

    Some authorities on technolgoy transfer feel that industry is not fully capitalizing on the inventive output of universities and nonprofit organizations. From the point of view of the government, the stakes are high. The magnitude of federal support of research and development in these organizations demands evidence of useful results if it is to…

  20. High Energy Physics Research at Louisiana Tech

    SciTech Connect

    Sawyer, Lee; Greenwood, Zeno; Wobisch, Marcus

    2013-06-28

    The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the DØ experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

  1. NASA Tech Briefs, January 1999. Volume 23, Mp/ 1

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Topics include: special coverage sections on sensors and data acquisition and sections on electronic components and circuits, electronic software, materials, mechanics, bio-medical physical sciences, book and reports, and a special section of Photonics Tech Briefs.

  2. NASA Tech Briefs, April 1998. Volume 22, No. 4

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Topics include: special coverage on video and imaging, electronic components and circuits, electronic systems, physical sciences, materials, computer software, mechanics, machinery/automation, and a special section of Photonics Tech Briefs.

  3. NASA Tech Briefs, July 2002. Volume 26, No. 7

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Topics include: a technology focus sensors, software, electronic components and systems, materials, mechanics, machinery/automation, manufacturing, bio-medical, physical sciences, information sciences, book and reports, and a special section of Photonics Tech Briefs.

  4. NASA Tech Briefs, June 2002. Volume 26, No. 6

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Topics include: a technology focus on data acquisition, electronic components and systems, software, materials, mechanics, machinery/automation, physical sciences, book and reports, motion control, and a special section of Photonics Tech Briefs.

  5. NASA Tech Briefs, August 2001. Volume 25, No. 8

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Topics include: special coverage section on computers and peripherals, and sections on electronic components systems, software, materials, mechanics, manufacturing/fabrication, physical sciences, book and reports, and a special section of Motion Control Tech Briefs.

  6. NASA Tech Briefs, May 2002. Volume 26, No. 5

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Topics include: a technology focus on engineering materials, electronic components and circuits, software, mechanics, machinery/automation, manufacturing, physical sciences, information sciences, book and reports, and a special section of Photonics Tech Briefs.

  7. NASA Tech Briefs, September 2001. Volume 25, No. 9

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Topics include: special coverage section on sensors, and sections on electronic components systems, software, materials, machinery/automation, manufacturing/fabrication, bio-medical, book and reports, and a special section of Photonics Tech Briefs.

  8. NASA Tech Briefs, May 1998. Volume 22, No. 5

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Topics include: special coverage on advanced composites, plastics and metals, electronic components and circuits, electronic systems, physical sciences, computer software, mechanics, machinery/automation, manufacturing/fabrication book and reports, and a special section of Electronics Tech Briefs.

  9. NASA Tech Briefs, June 1995. Volume 19, No. 6

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Topics include: communications technology, electronic components and circuits, electronic systems, physical sciences, materials, computer programs, mechanics, machinery, manufacturing/fabrication, mathematics and information sciences, life sciences, books and reports, a special section of laser Tech Briefs.

  10. NASA Tech Briefs, July 1995. Volume 19, No. 7

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Topics include: mechanical components, electronic components and circuits, electronic systems, physical sciences, materials, computer programs, mechanics, machinery, manufacturing/fabrication, mathematics and information sciences, book and reports, and a special section of Federal laboratory computing Tech Briefs.

  11. NASA Tech Briefs, August 1998. Volume 22, No. 8

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Topics include: special coverage of medical design, electronic components and circuits, electronic systems, software, materials, mechanics, machinery/automation, physical sciences, and a special section of Photonics Tech Briefs.

  12. NASA Tech Briefs, November 2002. Volume 26, No. 11

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Topics include: a technology focus on engineering materials, electronic components and systems, software, mechanics, machinery/automation, manufacturing, bio-medical, physical sciences, information sciences book and reports, and a special section of Photonics Tech Briefs.

  13. NASA Tech Briefs, August 2002. Volume 26, No. 8

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Topics include: a technology focus on computers, electronic components and systems, software, materials, mechanics, machinery/automation, manufacturing, physical sciences, information sciences, book and reports, and Motion control Tech Briefs.

  14. Tech-Prep Competency Profiles within the Health Technologies Cluster.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains competency profiles for Ohio tech prep courses in the following 12 health technologies occupations: radiographer, respiratory care therapist, occupational therapy assistant, physical therapist assistant, registered nurse (associate degree), pharmacy technologist, medical laboratory technician, histotechnologist, emergency…

  15. NASA Tech Briefs, September 2002. Volume 26, No. 9

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Topics include: a technology focus on data acquisition, electronic components and systems, software, materials, mechanics, machinery/automation, bio-medical, physical sciences, book and reports, and a special section of Photonics Tech Briefs.

  16. LASER Tech Briefs, Fall 1994. Volume 2, No. 4

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Topics in this issue of LASER Tech briefs include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences

  17. NASA Tech Briefs, October 2002. Volume 26, No. 10

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Topics include: a technology focus on sensors, electronic components and systems, software, materials, materials, mechanics, manufacturing, physical sciences, information sciences, book and reports, motion control and a special section of Photonics Tech Briefs.

  18. NASA Tech Briefs, March 2002. Volume 26, No. 3

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Topics include: a special section on data acquisition, software, electronic components and systems, materials, computer programs, mechanics, machinery/automation, manufacturing, biomedical, physical sciences, book and reports, and a special section of Photonics Tech Briefs.

  19. NASA Tech Briefs, November 2001. Volume 25, No. 11

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Topics include: special coverage section on data acquisition, and sections on electronic components and systems, software, materials, machinery/automation, physical sciences, book and reports, and a special section of Photonics Tech Briefs.

  20. LASER Tech Briefs, September 1993. Volume 1, No. 1

    NASA Technical Reports Server (NTRS)

    Schnirring, Bill (Editor)

    1993-01-01

    This edition of LASER Tech briefs contains a feature on photonics. The other topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, Life Sciences and books and reports.

  1. NASA Tech Briefs, September 1995. Volume 19, No. 9

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A special focus for this issue is Sensors. Topics covered include : Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; and Mathematics and Information Sciences. A section of Laser Tech Briefs is included.

  2. NASA Tech Briefs, July 2001. Volume 25, No. 7

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Topics include: special coverage sections on Data Acquisition, and sections on electronic components and systems, software, mechanics, machinery/automation, biomedical and a special section of Photonics Tech Briefs.

  3. NASA Tech Briefs Index 1978. Volume 3, Nos. 1-4

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Tech Briefs are short announcements of new technology derived from the research and development activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This Index to NASA Tech Briefs contains abstracts and four indexes -- subject, personal author, originating Center, and Tech Brief number -- for 1978 Tech Briefs.

  4. NASA Tech Briefs Index 1980. Volume 5, Nos. 1-4

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Tech Briefs are short announcements of new technology derived from the research and development activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This Index to NASA Tech Briefs contains abstracts and four indexes -- subject,. personal author, originating Center, and Tech Brief number -- for 1980 Tech Briefs.

  5. NASA Tech Briefs Index 1979. Volume 4, Nos. 1-4

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Tech Briefs are short announcements of new technology derived from the research and development activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This Index to NASA Tech Briefs contains abstracts and four indexes -- subject, personal author, originating Center, and Tech Brief number -- for 1979 Tech Briefs.

  6. Cumulative Index to NASA Tech Briefs 1963-1969

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Tech Briefs are short announcements of new technology derived from the research and development activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This Cumulative index to NASA Tech Briefs lists those published from 1963 through 1969. The main listing is divided into six categokies: Electrical (Electronic), Physical Sciences (Energy Sources), Materials (Chemistry), Life Sciences, Mechanical, and Computer Programs.

  7. Allina Health System's approach to high tech and high touch.

    PubMed

    Tam, T A

    1997-01-01

    All health care providers, regardless of their integration status, must meet customer expectations to maintain market share and viability. The balance between high tech and high touch customer interactions is not a fad or trend. For integrated health systems with the full continuum of medical care, additional challenges are presented by the organization's competing health care delivery and financing components. Allina Health System describes its integrated health system approach to satisfying customer high tech and high touch needs.

  8. Technology transfer at NASA - A librarian's view

    NASA Technical Reports Server (NTRS)

    Buchan, Ronald L.

    1991-01-01

    The NASA programs, publications, and services promoting the transfer and utilization of aerospace technology developed by and for NASA are briefly surveyed. Topics addressed include the corporate sources of NASA technical information and its interest for corporate users of information services; the IAA and STAR abstract journals; NASA/RECON, NTIS, and the AIAA Aerospace Database; the RECON Space Commercialization file; the Computer Software Management and Information Center file; company information in the RECON database; and services to small businesses. Also discussed are the NASA publications Tech Briefs and Spinoff, the Industrial Applications Centers, NASA continuing bibliographies on management and patent abstracts (indexed using the NASA Thesaurus), the Index to NASA News Releases and Speeches, and the Aerospace Research Information Network (ARIN).

  9. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W.; Kempler, S.

    2014-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following:Level-1 GPM Microwave Imager (GMI) and partner radiometer productsLevel-2 Goddard Profiling Algorithm (GPROF) GMI and partner productsLevel-3 daily and monthly productsIntegrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time

  10. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, D.; Vollmer, B.; Deshong, B.; Greene, M.; Teng, W.; Kempler, S. J.

    2015-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: 1. Level-1 GPM Microwave Imager (GMI) and partner radiometer products. 2. Goddard Profiling Algorithm (GPROF) GMI and partner products. 3. Integrated Multi-satellitE Retrievals for GPM (IMERG) products. (early, late, and final)A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data

  11. A 7-km Non-Hydrostatic Global Mesoscale Simulation with the Goddard Earth Observing System Model (GEOS-5) for Observing System Simulation Experiments

    NASA Astrophysics Data System (ADS)

    Putman, W.; Suarez, M.; Gelaro, R.; daSilva, A.; Molod, A.; Ott, L. E.; Darmenov, A.

    2014-12-01

    The Global Modeling and Assimilation Office at NASA Goddard Space Flight Center has used the Goddard Earth Observing System model (GEOS-5) to produce a 2-year non-hydrostatic global mesoscale simulation for the period of June 2005-2007. This 7-km GEOS-5 Nature Run (7km-G5NR) product will provide synthetic observations for observing system simulation experiments (OSSE)s at NASA and NOAA through the Joint Center for Satellite Data Assimilation and the NASA Center for Climate Simulation. While GEOS-5 is regularly applied in seasonal-to-decadal climate simulations, and medium range weather prediction and data assimilation, GEOS-5 is also readily adaptable for application as a global mesoscale model in pursuit of global cloud resolving applications. Recent computing advances have permitted experimentation with global atmospheric models at these scales, although production applications like the 7km-G5NR have remained limited. By incorporating a non-hydrostatic finite-volume dynamical core with scale aware physics parameterizations, the 7km-G5NR produces organized convective systems and robust weather systems ideal for producing observations for existing and new remote sensing instruments. In addition to standard meteorological parameters, the 7km-G5NR includes 15 aerosol tracers (including dust, seasalt, sulfate, black and organic carbon), O3, CO and CO2. The 7km-G5NR is driven by prescribed sea-surface temperatures and sea-ice, daily volcanic and biomass burning emissions, as well as high-resolution inventories of anthropogenic sources. We will discuss the technical challenges of producing the 7km-G5NR including the nearly 5 petabytes of full resolution output at 30-minute intervals as required by the OSSE developers, and modifications to the standard GEOS-5 physics to permit convective organization at the 'grey-zone' resolution of 7km. Highlights of the 7km-G5NR validation will focus on the representation of clouds and organized convection including tropical cyclones

  12. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    NASA Astrophysics Data System (ADS)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W. L.; Kempler, S. J.

    2014-12-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http://pmm.nasa.gov/GPM). The GPM mission consists of an international network of satellites in which a GPM "Core Observatory" satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: Level-1 GPM Microwave Imager (GMI) and partner radiometer products Goddard Profiling Algorithm (GPROF) GMI and partner products Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding

  13. Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Proceedings of the workshop are presented. The mission of the conference was to transfer advanced technologies developed by the Federal government, its contractors, and other high-tech organizations to U.S. industries for their use in developing new or improved products and processes. Volume two presents papers on the following topics: materials science, robotics, test and measurement, advanced manufacturing, artificial intelligence, biotechnology, electronics, and software engineering.

  14. A Comparison of Selected Outcomes of Secondary Tech Prep Participants and Non-Participants in Texas.

    ERIC Educational Resources Information Center

    Brown, Carrie H.

    2000-01-01

    A 5-year study of 10th-12th graders in Texas compared participants in tech prep, non-tech prep career-technical education participants, and general education students. Tech prep students had higher attendance and lower dropout rates, slightly higher graduation rates, and increasing completion of college prep. Similar results for ethnic, at-risk,…

  15. Selected Outcomes Related to Tech Prep Implementation by Illinois Consortia, 2001-2005

    ERIC Educational Resources Information Center

    Bragg, Debra D.; Kirby, Catherine; Zhu, Rongchun

    2006-01-01

    This report is the summary of key aspects of Tech Prep in Illinois over the five year period of 2001-2005 during which all Tech Prep consortia provided annual data based on federal legislative requirements and state-determined essential elements of successful programs. These annual Tech Prep reports enable local educators to monitor student…

  16. Marketing Tech Prep. Even the Best Concepts Don't Always Sell Themselves.

    ERIC Educational Resources Information Center

    Williamson, Patty

    1994-01-01

    An excerpt from the book "Tech Prep Marketing Guide" delves into the myriad reasons for aggressively promoting tech prep to parents, employers, students, counselors, and other educators. It includes a discussion of the marketing plan and the benefits of tech prep. (JOW)

  17. Georgia tech catalog of gravitational waveforms

    NASA Astrophysics Data System (ADS)

    Jani, Karan; Healy, James; Clark, James A.; London, Lionel; Laguna, Pablo; Shoemaker, Deirdre

    2016-10-01

    This paper introduces a catalog of gravitational waveforms from the bank of simulations by the numerical relativity effort at Georgia Tech. Currently, the catalog consists of 452 distinct waveforms from more than 600 binary black hole simulations: 128 of the waveforms are from binaries with black hole spins aligned with the orbital angular momentum, and 324 are from precessing binary black hole systems. The waveforms from binaries with non-spinning black holes have mass-ratios q = m 1/m 2 ≤ 15, and those with precessing, spinning black holes have q ≤ 8. The waveforms expand a moderate number of orbits in the late inspiral, the burst during coalescence, and the ring-down of the final black hole. Examples of waveforms in the catalog matched against the widely used approximate models are presented. In addition, predictions of the mass and spin of the final black hole by phenomenological fits are tested against the results from the simulation bank. The role of the catalog in interpreting the GW150914 event and future massive binary black-hole search in LIGO is discussed. The Georgia Tech catalog is publicly available at einstein.gatech.edu/catalog.

  18. NASA Tech Briefs, May 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics include: Embedded Heaters for Joining or Separating Plastic Parts; Curing Composite Materials Using Lower-Energy Electron Beams; Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites; Fibrous-Ceramic/Aerogel Composite Insulating Tiles; Urethane/Silicone Adhesives for Bonding Flexing Metal Parts; Scalable Architecture for Multihop Wireless ad Hoc Networks; Improved Thermoplastic/Iron-Particle Transformer Cores; Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration Dual-Frequency Airborne Scanning Rain Radar Antenna System Eight-Channel Continuous Timer Reduction of Phase Ambiguity in an Offset-QPSK Receiver Ambient-Light-Canceling Camera Using Subtraction of Frames Lightweight, Flexible, Thin, Integrated Solar-Power Packs Windows(Registered Trademark)-Based Software Models Cyclic Oxidation Behavior Software for Analyzing Sequences of Flow-Related Images Improved Ball-and-Socket Docking Mechanism Two-Stage Solenoid Ordered Nanostructures Made Using Chaperonin Polypeptides Low-Temperature Plasma Functionalization of Carbon Nanotubes Improved Cryostat for Cooling a Wide Panel Current Pulses Momentarily Enhance Thermoelectric Cooling Hand-Held Color Meters Based on Interference Filters Calculating Mass Diffusion in High-Pressure Binary Fluids Fresnel Lenses for Wide-Aperture Optical Receivers Increasing Accuracy in Computed Inviscid Boundary Conditions Higher-Order Finite Elements for Computing Thermal Radiation Radar for Monitoring Hurricanes from Geostationary Orbit Time-Transfer System for Two Orbiting Spacecraft

  19. NASA Tech Briefs, April 2010

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Topics covered include: Active and Passive Hybrid Sensor; Quick-Response Thermal Actuator for Use as a Heat Switch; System for Hydrogen Sensing; Method for Detecting Perlite Compaction in Large Cryogenic Tanks; Using Thin-Film Thermometers as Heaters in Thermal Control Applications; Directional Spherical Cherenkov Detector; AlGaN Ultraviolet Detectors for Dual-Band UV Detection; K-Band Traveling-Wave Tube Amplifier; Simplified Load-Following Control for a Fuel Cell System; Modified Phase-meter for a Heterodyne Laser Interferometer; Loosely Coupled GPS-Aided Inertial Navigation System for Range Safety; Sideband-Separating, Millimeter-Wave Heterodyne Receiver; Coaxial Propellant Injectors With Faceplate Annulus Control; Adaptable Diffraction Gratings With Wavefront Transformation; Optimizing a Laser Process for Making Carbon Nanotubes; Thermogravimetric Analysis of Single-Wall Carbon Nanotubes; Robotic Arm Comprising Two Bending Segments; Magnetostrictive Brake; Low-Friction, Low-Profile, High-Moment Two-Axis Joint; Foil Gas Thrust Bearings for High-Speed Turbomachinery; Miniature Multi-Axis Mechanism for Hand Controllers; Digitally Enhanced Heterodyne Interferometry; Focusing Light Beams To Improve Atomic-Vapor Optical Buffers; Landmark Detection in Orbital Images Using Salience Histograms; Efficient Bit-to-Symbol Likelihood Mappings; Capacity Maximizing Constellations; Natural-Language Parser for PBEM; Policy Process Editor for P(sup 3)BM Software; A Quality System Database; Trajectory Optimization: OTIS 4; and Computer Software Configuration Item-Specific Flight Software Image Transfer Script Generator.

  20. NASA Tech Briefs, December 2006

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topic include: Inferring Gear Damage from Oil-Debris and Vibration Data; Forecasting of Storm-Surge Floods Using ADCIRC and Optimized DEMs; User Interactive Software for Analysis of Human Physiological Data; Representation of Serendipitous Scientific Data; Automatic Locking of Laser Frequency to an Absorption Peak; Self-Passivating Lithium/Solid Electrolyte/Iodine Cells; Four-Quadrant Analog Multipliers Using G4-FETs; Noise Source for Calibrating a Microwave Polarimeter; Hybrid Deployable Foam Antennas and Reflectors; Coating MCPs with AlN and GaN; Domed, 40-cm-Diameter Ion Optics for an Ion Thruster; Gesture-Controlled Interfaces for Self-Service Machines; Dynamically Alterable Arrays of Polymorphic Data Types; Identifying Trends in Deep Space Network Monitor Data; Predicting Lifetime of a Thermomechanically Loaded Component; Partial Automation of Requirements Tracing; Automated Synthesis of Architecture of Avionic Systems; SSRL Emergency Response Shore Tool; Wholly Aromatic Ether-Imides as n-Type Semiconductors; Carbon-Nanotube-Carpet Heat-Transfer Pads; Pulse-Flow Microencapsulation System; Automated Low-Gravitation Facility Would Make Optical Fibers; Alignment Cube with One Diffractive Face; Graphite Composite Booms with Integral Hinges; Tool for Sampling Permafrost on a Remote Planet; and Special Semaphore Scheme for UHF Spacecraft Communications.

  1. NASA Tech Briefs, January 2014

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Topics include: Multi-Source Autonomous Response for Targeting and Monitoring of Volcanic Activity; Software Suite to Support In-Flight Characterization of Remote Sensing Systems; Visual Image Sensor Organ Replacement; Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna; Centering a DDR Strobe in the Middle of a Data Packet; Using a Commercial Ethernet PHY Device in a Radiation Environment; Submerged AUV Charging Station; Habitat Demonstration Unit (HDU) Vertical Cylinder Habitat; Origami-Inspired Folding of Thick, Rigid Panels; A Novel Protocol for Decoating and Permeabilizing Bacterial Spores for Epifluorescent Microscopy; Method and Apparatus for Automated Isolation of Nucleic Acids from Small Cell Samples; Enabling Microliquid Chromatography by Microbead Packing of Microchannels; On-Command Force and Torque Impeding Devices (OC-FTID) Using ERF; Deployable Fresnel Rings; Transition-Edge Hot-Electron Microbolometers for Millimeter and Submillimeter Astrophysics; Spacecraft Trajectory Analysis and Mission Planning Simulation (STAMPS) Software; Cross Support Transfer Service (CSTS) Framework Library; Arbitrary Shape Deformation in CFD Design; Range Safety Flight Elevation Limit Calculation Software; Frequency-Modulated, Continuous-Wave Laser Ranging Using Photon-Counting Detectors; Calculation of Operations Efficiency Factors for Mars Surface Missions; GPU Lossless Hyperspectral Data Compression System; Robust, Optimal Subsonic Airfoil Shapes; Protograph-Based Raptor-Like Codes; Fuzzy Neuron: Method and Hardware Realization; Kalman Filter Input Processor for Boresight Calibration; Organizing Compression of Hyperspectral Imagery to Allow Efficient Parallel Decompression; and Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption.

  2. NASA Tech Briefs, September 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Topics include: Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask; Three-Dimensional Venturi Sensor for Measuring Extreme Winds; Swarms of Micron-Sized Sensors; Monitoring Volcanoes by Use of Air-Dropped Sensor Packages; Capacitive Sensors for Measuring Masses of Cryogenic Fluids; UHF Microstrip Antenna Array for Synthetic- Aperture Radar; Multimode Broad-Band Patch Antennas; 164-GHz MMIC HEMT Frequency Doubler; GPS Position and Heading Circuitry for Ships; Software for Managing Parametric Studies; Software Aids Visualization of Computed Unsteady Flow; Software for Testing Electroactive Structural Components; Advanced Software for Analysis of High-Speed Rolling-Element Bearings; Web Program for Development of GUIs for Cluster Computers; XML-Based Generator of C++ Code for Integration With GUIs; Oxide Protective Coats for Ir/Re Rocket Combustion Chambers; Simplified Waterproofing of Aerogels; Improved Thermal-Insulation Systems for Low Temperatures; Device for Automated Cutting and Transfer of Plant Shoots; Extension of Liouville Formalism to Postinstability Dynamics; Advances in Thrust-Based Emergency Control of an Airplane; Ultrasonic/Sonic Mechanisms for Drilling and Coring; Exercise Device Would Exert Selectable Constant Resistance; Improved Apparatus for Measuring Distance Between Axles; Six Classes of Diffraction-Based Optoelectronic Instruments; Modernizing Fortran 77 Legacy Codes; Active State Model for Autonomous Systems; Shields for Enhanced Protection Against High-Speed Debris; Scaling of Two-Phase Flows to Partial-Earth Gravity; Neutral-Axis Springs for Thin-Wall Integral Boom Hinges.

  3. NASA Tech Briefs, January 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics covered include: Multisensor Instrument for Real-Time Biological Monitoring; Sensor for Monitoring Nanodevice-Fabrication Plasmas; Backed Bending Actuator; Compact Optoelectronic Compass; Micro Sun Sensor for Spacecraft; Passive IFF: Autonomous Nonintrusive Rapid Identification of Friendly Assets; Finned-Ladder Slow-Wave Circuit for a TWT; Directional Radio-Frequency Identification Tag Reader; Integrated Solar-Energy-Harvesting and -Storage Device; Event-Driven Random-Access-Windowing CCD Imaging System; Stroboscope Controller for Imaging Helicopter Rotors; Software for Checking State-charts; Program Predicts Broadband Noise from a Turbofan Engine; Protocol for a Delay-Tolerant Data-Communication Network; Software Implements a Space-Mission File-Transfer Protocol; Making Carbon-Nanotube Arrays Using Block Copolymers: Part 2; Modular Rake of Pitot Probes; Preloading To Accelerate Slow-Crack-Growth Testing; Miniature Blimps for Surveillance and Collection of Samples; Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle; Fabricating Blazed Diffraction Gratings by X-Ray Lithography; Freeze-Tolerant Condensers; The StarLight Space Interferometer; Champagne Heat Pump; Controllable Sonar Lenses and Prisms Based on ERFs; Measuring Gravitation Using Polarization Spectroscopy; Serial-Turbo-Trellis-Coded Modulation with Rate-1 Inner Code; Enhanced Software for Scheduling Space-Shuttle Processing; Bayesian-Augmented Identification of Stars in a Narrow View; Spacecraft Orbits for Earth/Mars-Lander Radio Relay; and Self-Inflatable/Self-Rigidizable Reflectarray Antenna.

  4. Long-Term Changes in Stratospheric Age Spectra in the 21st Century in the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM)

    NASA Technical Reports Server (NTRS)

    Li, Feng; Waugh, Darryn W.; Douglass, Anne R.; Newman, Paul A.; Strahan, Susan E.; Ma, Jun; Nielsen, J. Eric; Liang, Qing

    2012-01-01

    In this study we investigate the long-term variations in the stratospheric age spectra using simulations of the 21st century with the Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM). Our purposes are to characterize the long-term changes in the age spectra and identify processes that cause the decrease of the mean age in a warming climate. Changes in the age spectra in the 21st century simulations are characterized by decreases in the modal age, the mean age, the spectral width, and the tail decay timescale. Our analyses show that the decrease in the mean age is caused by two processes: the acceleration of the residual circulation that increases the young air masses in the stratosphere, and the weakening of the recirculation that leads to the decrease of tail of the age spectra and the decrease of the old air masses. The weakening of the stratospheric recirculation is also strongly correlated with the increase of the residual circulation. One important result of this study is that the decrease of the tail of the age spectra makes an important contribution to the decrease of the main age. Long-term changes in the stratospheric isentropic mixing are investigated. Mixing increases in the subtropical lower stratosphere, but its impact on the age spectra is outweighed by the increase of the residual circulation. The impacts of the long-term changes in the age spectra on long-lived chemical traces are also investigated. 37 2

  5. Goddard high-resolution spectrograph observations of the local interstellar medium and the deuterium/hydrogen ratio along the line of sight toward Capella

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Brown, Alexander; Gayley, Ken; Diplas, Athanassios; Savage, Blair D.; Ayres, Thomas R.; Landsman, Wayne; Shore, Steven N.; Heap, Sara R.

    1993-01-01

    HST Goddard High-Resolution Spectrograph observations of the 1216, 2600, and 2800 A spectral regions are analyzed for the spectroscopic binary system Capella, obtained at orbital phase 0.26 with 3.27-3.57 km/s resolution and high SNR. The column densities of H I, D I, Mg II, and Fe II for the local interstellar medium along this 12.5 pc line of sight, together with estimates of the temperature and turbulent velocity are inferred. It is inferred that the atomic deuterium/hydrogen ratio by number is 1.65(+0.07, -0.18) x 10 exp -5 for this line of sight. Galactic evolution calculations indicate that the primordial D/H ratio probably lies in the range of (1.5-3) x (D/H)LISM. If H0 = 80 km/s Mpc, as recent evidence suggests, then the baryonic density in units of the Einstein-de Sitter closure density is 0.023-0.031. Thus the universe is argued to expand forever, unless nonbaryonic matter greatly exceeds the amount of baryonic matter.

  6. New observations with the HST Goddard High Resolution Spectrograph of the low-redshift Lyman-Alpha clouds in the 3C 273 line of sight

    NASA Technical Reports Server (NTRS)

    Weymann, Ray; Rauch, Michael; Williams, Robert; Morris, Simon; Heap, Sally

    1995-01-01

    We presenty spectra of 3C 273 between 1216 and 1250 A obtained in the (pre-COSTAR (Corrective Optics Space Telescope Axial Replacement instrument)) configuration of the Goddard High Resolution Spectrograph (GHRS) taken with the G160M grating with a resolution approximately = 20 km/s. The two strong Ly alpha lines at velocities of approximately 1000 and approximately 1600 km/s are well fitted with Voigt profiles and yield column densities, Doppler parameters and redshifts of log N(H I)=14.19 +/- 0.04 V(sub Dop)=40.7 +/- 3.0 km/s, V = 1012.4 +/- 2.0 km/s, and log N(H I)=14.22 +/- 0.07, V(sub Dop)=34.2 +/- 3.3 km/s and V = 1582.0 +/- 2.0 km/s, respectively. Motivated by the initial announcement by Williams and Schommer of detectable H alpha emission associated with the approximately 1600 km/s cloud, we discuss the difficulty of finding models which can account for emission of that magnitude given the observed neutral hydrogen column density, though a recent reobservation by these authors has shown the initial detection to be spurious. The C/H abundance ratio is probably less than about one-fourth of the solar abundance in these clouds, although this result is very uncertain and model dependent.

  7. First results from the Goddard High-Resolution Spectrograph - Element abundances as a function of velocity in the neutral gas toward Xi Persei

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Cardelli, Jason A.; Bruhweiler, Frederick C.; Smith, Andrew M.; Ebbets, Dennis C.

    1991-01-01

    Observations of ultraviolet interstellar absorption lines toward Xi Persei obtained with the echelle mode of the Goddard High-Resolution Spectrograph (GHRS) aboard the HST at a resolution of 3.5 km/s are presented. The data for O I, C II, Mg II, S II, Fe II, Si II, Mn II, and Zn II are converted into representations of apparent column density per unit velocity, Na(v), over the velocity range from -30 to +40 km/s. The profiles for ions that are the dominant state of ionization in neutral clouds permit a study of the variation of element abundance with velocity caused by changes in the gas phase depletion in the different absorbing regions situated toward Xi Per. In the denser portions of the diffuse clouds, heavy element depletions are very large. However, in absorbing components near -5 and +25 km/s, the depletions are less severe, with a nearly solar gas phase abundance ratio being found for the gas in the +25 km/s component. The measurements confirm that the GHRS is well suited for diagnostic spectroscopy of interstellar gas.

  8. An expert system prototype for aiding in the development of software functional requirements for NASA Goddard's command management system: A case study and lessons learned

    NASA Technical Reports Server (NTRS)

    Liebowitz, Jay

    1986-01-01

    At NASA Goddard, the role of the command management system (CMS) is to transform general requests for spacecraft opeerations into detailed operational plans to be uplinked to the spacecraft. The CMS is part of the NASA Data System which entails the downlink of science and engineering data from NASA near-earth satellites to the user, and the uplink of command and control data to the spacecraft. Presently, it takes one to three years, with meetings once or twice a week, to determine functional requirements for CMS software design. As an alternative approach to the present technique of developing CMS software functional requirements, an expert system prototype was developed to aid in this function. Specifically, the knowledge base was formulated through interactions with domain experts, and was then linked to an existing expert system application generator called 'Knowledge Engineering System (Version 1.3).' Knowledge base development focused on four major steps: (1) develop the problem-oriented attribute hierachy; (2) determine the knowledge management approach; (3) encode the knowledge base; and (4) validate, test, certify, and evaluate the knowledge base and the expert system prototype as a whole. Backcasting was accomplished for validating and testing the expert system prototype. Knowledge refinement, evaluation, and implementation procedures of the expert system prototype were then transacted.

  9. Representations of the Stratospheric Polar Vortices in Versions 1 and 2 of the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM)

    NASA Technical Reports Server (NTRS)

    Pawson, S.; Stolarski, R.S.; Nielsen, J.E.; Perlwitz, J.; Oman, L.; Waugh, D.

    2009-01-01

    This study will document the behavior of the polar vortices in two versions of the GEOS CCM. Both versions of the model include the same stratospheric chemistry, They differ in the underlying circulation model. Version 1 of the GEOS CCM is based on the Goddard Earth Observing System, Version 4, general circulation model which includes the finite-volume (Lin-Rood) dynamical core and physical parameterizations from Community Climate Model, Version 3. GEOS CCM Version 2 is based on the GEOS-5 GCM that includes a different tropospheric physics package. Baseline simulations of both models, performed at two-degree spatial resolution, show some improvements in Version 2, but also some degradation, In the Antarctic, both models show an over-persistent stratospheric polar vortex with late breakdown, but the year-to-year variations that are overestimated in Version I are more realistic in Version 2. The implications of this for the interactions with tropospheric climate, the Southern Annular Mode, will be discussed. In the Arctic both model versions show a dominant dynamically forced variabi;ity, but Version 2 has a persistent warm bias in the low stratosphere and there are seasonal differences in the simulations. These differences will be quantified in terms of climate change and ozone loss. Impacts of model resolution, using simulations at one-degree and half-degree, and changes in physical parameterizations (especially the gravity wave drag) will be discussed.

  10. Application of Digital Object Identifiers to data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Ostrenga, D.; Johnson, J. E.; Savtchenko, A. K.; Shen, S.; Teng, W. L.; Wei, J. C.

    2013-12-01

    Digital Object Identifiers (DOIs) are applied to selected data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). The DOI system provides an Internet resolution service for unique and persistent identifiers of digital objects. Products assigned DOIs include data from the NASA MEaSUREs Program, the Earth Observing System (EOS) Aqua Atmospheric Infrared Sounder (AIRS) and EOS Aura High Resolution Dynamics Limb Sounder (HIRDLS). DOIs are acquired and registered through EZID, California Digital Library and DataCite. GES DISC hosts a data set landing page associated with each DOI containing information on and access to the data including a recommended data citation when using the product in research or applications. This work includes participation with the earth science community (e.g., Earth Science Information Partners (ESIP) Federation) and the NASA Earth Science Data and Information System (ESDIS) Project to identify, establish and implement best practices for assigning DOIs and managing supporting information, including metadata, for earth science data sets. Future work includes (1) coordination with NASA mission Science Teams and other data providers on the assignment of DOIs for other GES DISC data holdings, particularly for future missions such as Orbiting Carbon Observatory -2 and -3 (OCO-2, OCO-3) and projects (MEaSUREs 2012), (2) construction of landing pages that are both human and machine readable, and (3) pursuing the linking of data and publications with tools such as the Thomson Reuters Data Citation Index.

  11. Influence of Dust and Black Carbon on the Snow Albedo in the NASA Goddard Earth Observing System Version 5 Land Surface Model

    NASA Technical Reports Server (NTRS)

    Yasunari, Teppei J.; Koster, Randal D.; Lau, K. M.; Aoki, Teruo; Sud, Yogesh C.; Yamazaki, Takeshi; Motoyoshi, Hiroki; Kodama, Yuji

    2011-01-01

    Present-day land surface models rarely account for the influence of both black carbon and dust in the snow on the snow albedo. Snow impurities increase the absorption of incoming shortwave radiation (particularly in the visible bands), whereby they have major consequences for the evolution of snowmelt and life cycles of snowpack. A new parameterization of these snow impurities was included in the catchment-based land surface model used in the National Aeronautics and Space Administration Goddard Earth Observing System version 5. Validation tests against in situ observed data were performed for the winter of 2003.2004 in Sapporo, Japan, for both the new snow albedo parameterization (which explicitly accounts for snow impurities) and the preexisting baseline albedo parameterization (which does not). Validation tests reveal that daily variations of snow depth and snow surface albedo are more realistically simulated with the new parameterization. Reasonable perturbations in the assigned snow impurity concentrations, as inferred from the observational data, produce significant changes in snowpack depth and radiative flux interactions. These findings illustrate the importance of parameterizing the influence of snow impurities on the snow surface albedo for proper simulation of the life cycle of snow cover.

  12. NASA Tech Briefs, September 2011

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Topics covered include: Fused Reality for Enhanced Flight Test Capabilities; Thermography to Inspect Insulation of Large Cryogenic Tanks; Crush Test Abuse Stand; Test Generator for MATLAB Simulations; Dynamic Monitoring of Cleanroom Fallout Using an Air Particle Counter; Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency; Positively Verifying Mating of Previously Unverifiable Flight Connectors; Radiation-Tolerant Intelligent Memory Stack - RTIMS; Ultra-Low-Dropout Linear Regulator; Excitation of a Parallel Plate Waveguide by an Array of Rectangular Waveguides; FPGA for Power Control of MSL Avionics; UAVSAR Active Electronically Scanned Array; Lockout/Tagout (LOTO) Simulator; Silicon Carbide Mounts for Fabry-Perot Interferometers; Measuring the In-Process Figure, Final Prescription, and System Alignment of Large; Optics and Segmented Mirrors Using Lidar Metrology; Fiber-Reinforced Reactive Nano-Epoxy Composites; Polymerization Initiated at the Sidewalls of Carbon Nanotubes; Metal-Matrix/Hollow-Ceramic-Sphere Composites; Piezoelectrically Enhanced Photocathodes; Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution; Improved Mo-Re VPS Alloys for High-Temperature Uses; Data Service Provider Cost Estimation Tool; Hybrid Power Management-Based Vehicle Architecture; Force Limit System; Levitated Duct Fan (LDF) Aircraft Auxiliary Generator; Compact, Two-Sided Structural Cold Plate Configuration; AN Fitting Reconditioning Tool; Active Response Gravity Offload System; Method and Apparatus for Forming Nanodroplets; Rapid Detection of the Varicella Zoster Virus in Saliva; Improved Devices for Collecting Sweat for Chemical Analysis; Phase-Controlled Magnetic Mirror for Wavefront Correction; and Frame-Transfer Gating Raman Spectroscopy for Time-Resolved Multiscalar Combustion Diagnostics.

  13. NASA Tech Briefs, March 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Topics covered include: Improved Instrument for Detecting Water and Ice in Soil; Real-Time Detection of Dust Devils from Pressure Readings; Determining Surface Roughness in Urban Areas Using Lidar Data; DSN Data Visualization Suite; Hamming and Accumulator Codes Concatenated with MPSK or QAM; Wide-Angle-Scanning Reflectarray Antennas Actuated by MEMS; Biasable Subharmonic Membrane Mixer for 520 to 600 GHz; Hardware Implementation of Serially Concatenated PPM Decoder; Symbolic Processing Combined with Model-Based Reasoning; Presentation Extensions of the SOAP; Spreadsheets for Analyzing and Optimizing Space Missions; Processing Ocean Images to Detect Large Drift Nets; Alternative Packaging for Back-Illuminated Imagers; Diamond Machining of an Off-Axis Biconic Aspherical Mirror; Laser Ablation Increases PEM/Catalyst Interfacial Area; Damage Detection and Self-Repair in Inflatable/Deployable Structures; Polyimide/Glass Composite High-Temperature Insulation; Nanocomposite Strain Gauges Having Small TCRs; Quick-Connect Windowed Non-Stick Penetrator Tips for Rapid Sampling; Modeling Unsteady Cavitation and Dynamic Loads in Turbopumps; Continuous-Flow System Produces Medical-Grade Water; Discrimination of Spore-Forming Bacilli Using spoIVA; nBn Infrared Detector Containing Graded Absorption Layer; Atomic References for Measuring Small Accelerations; Ultra-Broad-Band Optical Parametric Amplifier or Oscillator; Particle-Image Velocimeter Having Large Depth of Field; Enhancing SERS by Means of Supramolecular Charge Transfer; Improving 3D Wavelet-Based Compression of Hyperspectral Images; Improved Signal Chains for Readout of CMOS Imagers; SOI CMOS Imager with Suppression of Cross-Talk; Error-Rate Bounds for Coded PPM on a Poisson Channel; Biomorphic Multi-Agent Architecture for Persistent Computing; and Using Covariance Analysis to Assess Pointing Performance.

  14. NASA Tech Briefs, January 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Topics covered include: Optoelectronic Tool Adds Scale Marks to Photographic Images; Compact Interconnection Networks Based on Quantum Dots; Laterally Coupled Quantum-Dot Distributed-Feedback Lasers; Bit-Serial Adder Based on Quantum Dots; Stabilized Fiber-Optic Distribution of Reference Frequency; Delay/Doppler-Mapping GPS-Reflection Remote-Sensing System; Ladar System Identifies Obstacles Partly Hidden by Grass; Survivable Failure Data Recorders for Spacecraft; Fiber-Optic Ammonia Sensors; Silicon Membrane Mirrors with Electrostatic Shape Actuators; Nanoscale Hot-Wire Probes for Boundary-Layer Flows; Theodolite with CCD Camera for Safe Measurement of Laser-Beam Pointing; Efficient Coupling of Lasers to Telescopes with Obscuration; Aligning Three Off-Axis Mirrors with Help of a DOE; Calibrating Laser Gas Measurements by Use of Natural CO2; Laser Ranging Simulation Program; Micro-Ball-Lens Optical Switch Driven by SMA Actuator; Evaluation of Charge Storage and Decay in Spacecraft Insulators; Alkaline Capacitors Based on Nitride Nanoparticles; Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells; Software for a GPS-Reflection Remote-Sensing System; Software for Building Models of 3D Objects via the Internet; "Virtual Cockpit Window" for a Windowless Aerospacecraft; CLARAty Functional-Layer Software; Java Library for Input and Output of Image Data and Metadata; Software for Estimating Costs of Testing Rocket Engines; Energy-Absorbing, Lightweight Wheels; Viscoelastic Vibration Dampers for Turbomachine Blades; Soft Landing of Spacecraft on Energy-Absorbing Self-Deployable Cushions; Pneumatically Actuated Miniature Peristaltic Vacuum Pumps; Miniature Gas-Turbine Power Generator; Pressure-Sensor Assembly Technique; Wafer-Level Membrane-Transfer Process for Fabricating MEMS; A Reactive-Ion Etch for Patterning Piezoelectric Thin Film; Wavelet-Based Real-Time Diagnosis of Complex Systems; Quantum Search in Hilbert Space; Analytic Method for Computing Instrument

  15. NASA Tech Briefs, November 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics include: Multifunction Imaging and Spectroscopic Instrument; Position-Finding Instrument Built Around a Magnetometer; Improved Measurement of Dispersion in an Optical Fiber; Probe for Sampling of Interstitial Fluid From Bone; Neuropsychological Testing of Astronauts; Method of Calibration for a Large Cathetometer System; Four-Channel PC/104 MIL-STD-1553 Circuit Board; Improved Method of Locating Defects in Wiring Insulation; Strobe Traffic Lights Warn of Approaching Emergency Vehicles; Improved Timing Scheme for Spaceborne Precipitation Radar; Concept for Multiple-Access Free-Space Laser Communications; Variable Shadow Screens for Imaging Optical Devices; Verifying Diagnostic Software; Initial Processing of Infrared Spectral Data; Activity-Centric Approach to Distributed Programming; Controlling Distributed Planning; New Material for Surface-Enhanced Raman Spectroscopy; Treated Carbon Nanofibers for Storing Energy in Aqueous KOH; Advanced Infant Car Seat Would Increase Highway Safety; Development of Biomorphic Flyers; Second-Generation Six-Limbed Experimental Robot; Miniature Linear Actuator for Small Spacecraft; Process for Making Single-Domain Magnetite Crystals; A New Process for Fabricating Random Silicon Nanotips; Resin-Transfer-Molding of a Tool Face; Improved Phase-Mask Fabrication of Fiber Bragg Gratings; Tool for Insertion of a Fiber-Optic Terminus in a Connector; Nanofluidic Size-Exclusion Chromatograph; Lightweight, Low-CTE Tubes Made From Biaxially Oriented LCPs; Using Redundancy To Reduce Errors in Magnetometer Readings; Compact Instrument for Measuring Profile of a Light Beam; Multilayer Dielectric Transmissive Optical Phase Modulator; Second-Generation Multi-Angle Imaging Spectroradiometer; Real-Time Adaptive Color Segmentation by Neural Networks; Research and Development in Optical Communications; Tests of Multibeam Scintillation Mitigation on Laser Uplinks; and Spaceborne Infrared Atmospheric Sounder.

  16. NASA Tech Briefs, September 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Topivs include: Diamond-Coated Carbon Nanotubes for Efficient Field Emission; Improved Anode Coatings for Direct Methanol Fuel Cells; Advanced Ablative Insulators and Methods of Making Them; PETIs as High-Temperature Resin-Transfer-Molding Materials; Stable Polyimides for Terrestrial and Space Uses; Low-Density, Aerogel-Filled Thermal-Insulation Tiles; High-Performance Polymers Having Low Melt Viscosities; Nonflammable, Hydrophobic Aerogel Composites for Insulation; Front-Side Microstrip Line Feeding a Raised Antenna Patch; Medium-Frequency Pseudonoise Georadar; Facilitating Navigation Through Large Archives; Program for Weibull Analysis of Fatigue Data; Comprehensive Micromechanics-Analysis Code - Version 4.0; Component-Based Visualization System; Software for Engineering Simulations of a Spacecraft; LabVIEW Interface for PCI-SpaceWire Interface Card; Path Following with Slip Compensation for a Mars Rover; International Space Station Electric Power System Performance Code-SPACE; Software for Automation of Real-Time Agents, Version 2; Software for Optimizing Plans Involving Interdependent Goals; Computing Gravitational Fields of Finite-Sized Bodies; Custom Sky-Image Mosaics from NASA's Information Power Grid; ANTLR Tree Grammar Generator and Extensions; Generic Kalman Filter Software; Alignment Stage for a Cryogenic Dilatometer; Rugged Iris Mechanism; Treatments To Produce Stabilized Aluminum Mirrors for Cryogenic Uses; Making AlNx Tunnel Barriers Using a Low-Energy Nitrogen-Ion Beam; Making Wide-IF SIS Mixers with Suspended Metal-Beam Leads; Sol-Gel Glass Holographic Light-Shaping Diffusers; Automated Counting of Particles To Quantify Cleanliness; Phase Correction for GPS Antenna with Nonunique Phase Center; Compact Infrasonic Windscreen; Broadband External-Cavity Diode Laser; High-Efficiency Solar Cells Using Photonic-Bandgap Materials; Generating Solid Models from Topographical Data; Computationally Lightweight Air-Traffic-Control Simulation; Spool Valve for

  17. NASA Tech Briefs, April 2012

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Topics include: Computational Ghost Imaging for Remote Sensing; Digital Architecture for a Trace Gas Sensor Platform; Dispersed Fringe Sensing Analysis - DFSA; Indium Tin Oxide Resistor-Based Nitric Oxide Microsensors; Gas Composition Sensing Using Carbon Nanotube Arrays; Sensor for Boundary Shear Stress in Fluid Flow; Model-Based Method for Sensor Validation; Qualification of Engineering Camera for Long-Duration Deep Space Missions; Remotely Powered Reconfigurable Receiver for Extreme Environment Sensing Platforms; Bump Bonding Using Metal-Coated Carbon Nanotubes; In Situ Mosaic Brightness Correction; Simplex GPS and InSAR Inversion Software; Virtual Machine Language 2.1; Multi-Scale Three-Dimensional Variational Data Assimilation System for Coastal Ocean Prediction; Pandora Operation and Analysis Software; Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane; Processing of Nanosensors Using a Sacrificial Template Approach; High-Temperature Shape Memory Polymers; Modular Flooring System; Non-Toxic, Low-Freezing, Drop-In Replacement Heat Transfer Fluids; Materials That Enhance Efficiency and Radiation Resistance of Solar Cells; Low-Cost, Rugged High-Vacuum System; Static Gas-Charging Plug; Floating Oil-Spill Containment Device; Stemless Ball Valve; Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs; Oxygen-Methane Thruster; Lunar Navigation Determination System - LaNDS; Launch Method for Kites in Low-Wind or No-Wind Conditions; Supercritical CO2 Cleaning System for Planetary Protection and Contamination Control Applications; Design and Performance of a Wideband Radio Telescope; Finite Element Models for Electron Beam Freeform Fabrication Process Autonomous Information Unit for Fine-Grain Data Access Control and Information Protection in a Net-Centric System; Vehicle Detection for RCTA/ANS (Autonomous Navigation System); Image Mapping and Visual Attention on the Sensory Ego-Sphere; HyDE Framework for

  18. NASA Tech Briefs, October 2007

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Topics covered include; Wirelessly Interrogated Position or Displacement Sensors; Ka-Band Radar Terminal Descent Sensor; Metal/Metal Oxide Differential Electrode pH Sensors; Improved Sensing Coils for SQUIDs; Inductive Linear-Position Sensor/Limit-Sensor Units; Hilbert-Curve Fractal Antenna With Radiation- Pattern Diversity; Single-Camera Panoramic-Imaging Systems; Interface Electronic Circuitry for an Electronic Tongue; Inexpensive Clock for Displaying Planetary or Sidereal Time; Efficient Switching Arrangement for (N + 1)/N Redundancy; Lightweight Reflectarray Antenna for 7.115 and 32 GHz; Opto-Electronic Oscillator Using Suppressed Phase Modulation; Alternative Controller for a Fiber-Optic Switch; Strong, Lightweight, Porous Materials; Nanowicks; Lightweight Thermal Protection System for Atmospheric Entry; Rapid and Quiet Drill; Hydrogen Peroxide Concentrator; MMIC Amplifiers for 90 to 130 GHz; Robot Would Climb Steep Terrain; Measuring Dynamic Transfer Functions of Cavitating Pumps; Advanced Resistive Exercise Device; Rapid Engineering of Three-Dimensional, Multicellular Tissues With Polymeric Scaffolds; Resonant Tunneling Spin Pump; Enhancing Spin Filters by Use of Bulk Inversion Asymmetry; Optical Magnetometer Incorporating Photonic Crystals; WGM-Resonator/Tapered-Waveguide White-Light Sensor Optics; Raman-Suppressing Coupling for Optical Parametric Oscillator; CO2-Reduction Primary Cell for Use on Venus; Cold Atom Source Containing Multiple Magneto- Optical Traps; POD Model Reconstruction for Gray-Box Fault Detection; System for Estimating Horizontal Velocity During Descent; Software Framework for Peer Data-Management Services; Autogen Version 2.0; Tracking-Data-Conversion Tool; NASA Enterprise Visual Analysis; Advanced Reference Counting Pointers for Better Performance; C Namelist Facility; and Efficient Mosaicking of Spitzer Space Telescope Images.

  19. NASA Tech Briefs, Februrary 2013

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Topics covered include: Measurements of Ultra-Stable Oscillator (USO) Allan Deviations in Space; Gaseous Nitrogen Orifice Mass Flow Calculator; Validation of Proposed Metrics for Two-Body Abrasion Scratch Test Analysis Standards; Rover Low Gain Antenna Qualification for Deep Space Thermal Environments; Automated, Ultra-Sterile Solid Sample Handling and Analysis on a Chip; Measuring and Estimating Normalized Contrast in Infrared Flash Thermography; Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source; High-Reliability Waveguide Vacuum/Pressure Window; Methods of Fabricating Scintillators With Radioisotopes for Beta Battery Applications; Magnetic Shield for Adiabatic Demagnetization Refrigerators (ADR); CMOS-Compatible SOI MESFETS for Radiation-Hardened DC-to-DC Converters; Silicon Heat Pipe Array; Adaptive Phase Delay Generator; High-Temperature, Lightweight, Self-Healing Ceramic Composites for Aircraft Engine Applications; Treatment to Control Adhesion of Silicone-Based Elastomers; High-Temperature Adhesives for Thermally Stable Aero-Assist Technologies; Rockballer Sample Acquisition Tool; Rock Gripper for Sampling, Mobility, Anchoring, and Manipulation; Advanced Magnetic Materials Methods and Numerical Models for Fluidization in Microgravity and Hypogravity; Data Transfer for Multiple Sensor Networks Over a Broad Temperature Range; Using Combustion Synthesis to Reinforce Berms and Other Regolith Structures; Visible-Infrared Hyperspectral Image Projector; Three-Axis Attitude Estimation With a High-Bandwidth Angular Rate Sensor Change_Detection.m; AGATE: Adversarial Game Analysis for Tactical Evaluation; Ionospheric Simulation System for Satellite Observations and Global Assimilative; Modeling Experiments (ISOGAME); An Extensible, User- Modifiable Framework for Planning Activities; Mission Operations Center (MOC) - Precipitation Processing System (PPS) Interface Software System (MPISS); Automated 3D Damaged Cavity Model Builder for Lower

  20. NASA Tech Briefs, June 2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Topics covered include: Charge-Control Unit for Testing Lithium-Ion Cells; Measuring Positions of Objects Using Two or More Cameras; Lidar System for Airborne Measurement of Clouds and Aerosols; Radiation-Insensitive Inverse Majority Gates; Reduced-Order Kalman Filtering for Processing Relative Measurements; Spaceborne Processor Array; Instrumentation System Diagnoses a Thermocouple; Chromatic Modulator for a High-Resolution CCD or APS; Commercial Product Activation Using RFID; Cup Cylindrical Waveguide Antenna; Aerobraking Maneuver (ABM) Report Generator; ABM Drag_Pass Report Generator; Transformation of OODT CAS to Perform Larger Tasks; Visualization Component of Vehicle Health Decision Support System; Mars Reconnaissance Orbiter Uplink Analysis Tool; Problem Reporting System; G-Guidance Interface Design for Small Body Mission Simulation; DSN Scheduling Engine; Replacement Sequence of Events Generator; Force-Control Algorithm for Surface Sampling; Tool for Merging Proposals Into DSN Schedules; Micromachined Slits for Imaging Spectrometers; Fabricating Nanodots Using Lift-Off of a Nanopore Template; Making Complex Electrically Conductive Patterns on Cloth; Special Polymer/Carbon Composite Films for Detecting SO2; Nickel-Based Superalloy Resists Embrittlement by Hydrogen; Chemical Passivation of Li+-Conducting Solid Electrolytes; Organic/Inorganic Polymeric Composites for Heat-Transfer Reduction; Composite Cathodes for Dual-Rate Li-Ion Batteries; Improved Descent-Rate Limiting Mechanism; Alignment-Insensitive Lower-Cost Telescope Architecture; Micro-Resistojet for Small Satellites; Using Piezoelectric Devices to Transmit Power through Walls; Miniature Latching Valve; Apparatus for Sampling Surface Contamination; Novel Species of Non-Spore-Forming Bacteria; Chamber for Aerosol Deposition of Bioparticles; Hyperspectral Sun Photometer for Atmospheric Characterization and Vicarious Calibrations; Dynamic Stability and Gravitational Balancing of Multiple Extended Bodies

  1. NASA Tech Briefs, May 2010

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Topics covered include: Instrument for Analysis of Greenland's Glacier Mills Cryogenic Moisture Apparatus; A Transportable Gravity Gradiometer Based on Atom Interferometry; Three Methods of Detection of Hydrazines; Crossed, Small-Deflection Energy Analyzer for Wind/Temperature Spectrometer; Wavefront Correction for Large, Flexible Antenna Reflector; Novel Micro Strip-to-Waveguide Feed Employing a Double-Y Junction; Thin-Film Ferro Electric-Coupled Microstripline Phase Shifters With Reduced Device Hysteresis; Two-Stage, 90-GHz, Low-Noise Amplifier; A 311-GHz Fundamental Oscillator Using InP HBT Technology; FPGA Coprocessor Design for an Onboard Multi-Angle Spectro-Polarimetric Imager; Serrating Nozzle Surfaces for Complete Transfer of Droplets; Turbomolecular Pumps for Holding Gases in Open Containers; Triaxial Swirl Injector Element for Liquid-Fueled Engines; Integrated Budget Office Toolbox; PLOT3D Export Tool for Tecplot; Math Description Engine Software Development Kit; Astronaut Office Scheduling System Software; ISS Solar Array Management; Probabilistic Structural Analysis Program; SPOT Program; Integrated Hybrid System Architecture for Risk Analysis; System for Packaging Planetary Samples for Return to Earth; Offset Compound Gear Drive; Low-Dead-Volume Inlet for Vacuum Chamber; Simple Check Valves for Microfluidic Devices; A Capillary-Based Static Phase Separator for Highly Variable Wetting Conditions; Gimballing Spacecraft Thruster; Finned Carbon-Carbon Heat Pipe with Potassium Working Fluid; Lightweight Heat Pipes Made from Magnesium; Ceramic Rail-Race Ball Bearings; Improved OTEC System for a Submarine Robot; Reflector Surface Error Compensation in Dual-Reflector Antennas; Enriched Storable Oxidizers for Rocket Engines; Planar Submillimeter-Wave Mixer Technology with Integrated Antenna; Widely Tunable Mode-Hop-Free External-Cavity Quantum Cascade Laser; Non-Geiger-Mode Single-Photon Avalanche Detector with Low Excess Noise; Using Whispering

  2. NASA Tech Briefs, September 2007

    NASA Technical Reports Server (NTRS)

    2007-01-01

    and KML Web Server; Modeling of Radiative Transfer in Protostellar Disks; Composite Pulse Tube; Photometric Calibration of Consumer Video Cameras; Criterion for Identifying Vortices in High- Pressure Flows; Amplified Thermionic Cooling Using Arrays of Nanowires; Delamination-Indicating Thermal Barrier Coatings; Preventing Raman Lasing in High-Q WGM Resonators; Procedures for Tuning a Multiresonator Photonic Filter; Robust Mapping of Incoherent Fiber-Optic Bundles; Extended-Range Ultrarefractive 1D Photonic Crystal Prisms; Rapid Analysis of Mass Distribution of Radiation Shielding; Modeling Magnetic Properties in EZTB; Deep Space Network Antenna Logic Controller; Modeling Carbon and Hydrocarbon Molecular Structures in EZTB; BigView Image Viewing on Tiled Displays; and Imaging Sensor Flight and Test Equipment Software.

  3. NASA Tech Briefs, September 2006

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Algorithms for Planning Robot Paths; Compressible Flow Toolbox; Rapid Aeroelastic Analysis of Blade Flutter in Turbomachines; General Flow-Solver Code for Turbomachinery Applications; Code for Multiblock CFD and Heat-Transfer Computations; Rotating-Pump Design Code; Covering a Crucible with Metal Containing Channels; Repairing Fractured Bones by Use of Bioabsorbable Composites; Kalman Filter for Calibrating a Telescope Focal Plane; Electronic Absolute Cartesian Autocollimator; Fiber-Optic Gratings for Lidar Measurements of Water Vapor; Simulating Responses of Gravitational-Wave Instrumentation; SOFTC: A Software Correlator for VLBI; Progress in Computational Simulation of Earthquakes; Database of Properties of Meteors; Computing Spacecraft Solar-Cell Damage by Charged Particles; Thermal Model of a Current-Carrying Wire in a Vacuum; Program for Analyzing Flows in a Complex Network; Program Predicts Performance of Optical Parametric Oscillators; Processing TES Level-1B Data; Automated Camera Calibration; Tracking the Martian CO2 Polar Ice Caps in Infrared Images; Processing TES Level-2 Data; SmaggIce Version 1.8; Solving the Swath Segment Selection Problem; The Spatial Standard Observer; Less-Complex Method of Classifying MPSK; Improvement in Recursive Hierarchical Segmentation of Data; Using Heaps in Recursive Hierarchical Segmentation of Data; Tool for Statistical Analysis and Display of Landing Sites; Automated Assignment of Proposals to Reviewers; Array-Pattern-Match Compiler for Opportunistic Data Analysis; Pre-Processor for Compression of Multispectral Image Data; Compressing Image Data While Limiting the Effects of Data Losses; Flight Operations Analysis Tool; Improvement in Visual Target Tracking for a Mobile Robot; Software for Simulating Air Traffic; Automated Vectorization of Decision-Based Algorithms; Grayscale Optical Correlator Workbench; "One-Stop Shopping" for Ocean Remote-Sensing and Model Data; State Analysis Database Tool; Generating CAHV and CAHVOmages with

  4. Multi-Sensor Distributive On-Line Processing, Visualization, and Analysis Infrastructure for an Agricultural Information System at the NASA Goddard Earth Sciences DAAC

    NASA Technical Reports Server (NTRS)

    Teng, William; Berrick, Steve; Leptuokh, Gregory; Liu, Zhong; Rui, Hualan; Pham, Long; Shen, Suhung; Zhu, Tong

    2004-01-01

    The Goddard Space Flight Center Earth Sciences Data and Information Services Center (GES DISC) Distributed Active Center (DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM On-line Visualization and Analysis System precipitation and other satellite data products and services. AIS outputs will be ,integrated into existing operational decision support system for global crop monitoring, such as that of the U.N. World Food Program. The ability to use the raw data stored in the GES DAAC archives is highly dependent on having a detailed understanding of the data's internal structure and physical implementation. To gain this understanding is a time-consuming process and not a productive investment of the user's time. This is an especially difficult challenge when users need to deal with multi-sensor data that usually are of different structures and resolutions. The AIS has taken a major step towards meeting this challenge by incorporating an underlying infrastructure, called the GES-DISC Interactive Online Visualization and Analysis Infrastructure or "Giovanni," that integrates various components to support web interfaces that ,allow users to perform interactive analysis on-line without downloading any data. Several instances of the Giovanni-based interface have been or are being created to serve users of TRMM precipitation, MODIS aerosol, and SeaWiFS ocean color data, as well as agricultural applications users. Giovanni-based interfaces are simple to use but powerful. The user selects geophysical ,parameters, area of interest, and time period; and the system generates an output ,on screen in a matter of seconds.

  5. Land Boundary Conditions for the Goddard Earth Observing System Model Version 5 (GEOS-5) Climate Modeling System: Recent Updates and Data File Descriptions

    NASA Technical Reports Server (NTRS)

    Mahanama, Sarith P.; Koster, Randal D.; Walker, Gregory K.; Takacs, Lawrence L.; Reichle, Rolf H.; De Lannoy, Gabrielle; Liu, Qing; Zhao, Bin; Suarez, Max J.

    2015-01-01

    The Earths land surface boundary conditions in the Goddard Earth Observing System version 5 (GEOS-5) modeling system were updated using recent high spatial and temporal resolution global data products. The updates include: (i) construction of a global 10-arcsec land-ocean lakes-ice mask; (ii) incorporation of a 10-arcsec Globcover 2009 land cover dataset; (iii) implementation of Level 12 Pfafstetter hydrologic catchments; (iv) use of hybridized SRTM global topography data; (v) construction of the HWSDv1.21-STATSGO2 merged global 30 arc second soil mineral and carbon data in conjunction with a highly-refined soil classification system; (vi) production of diffuse visible and near-infrared 8-day MODIS albedo climatologies at 30-arcsec from the period 2001-2011; and (vii) production of the GEOLAND2 and MODIS merged 8-day LAI climatology at 30-arcsec for GEOS-5. The global data sets were preprocessed and used to construct global raster data files for the software (mkCatchParam) that computes parameters on catchment-tiles for various atmospheric grids. The updates also include a few bug fixes in mkCatchParam, as well as changes (improvements in algorithms, etc.) to mkCatchParam that allow it to produce tile-space parameters efficiently for high resolution AGCM grids. The update process also includes the construction of data files describing the vegetation type fractions, soil background albedo, nitrogen deposition and mean annual 2m air temperature to be used with the future Catchment CN model and the global stream channel network to be used with the future global runoff routing model. This report provides detailed descriptions of the data production process and data file format of each updated data set.

  6. Lidar measurements of the column CO2 mixing ratio made by NASA Goddard's CO2 Sounder during the NASA ASCENDS 2014 Airborne campaign.

    NASA Astrophysics Data System (ADS)

    Ramanathan, A. K.; Mao, J.; Abshire, J. B.; Kawa, S. R.

    2015-12-01

    Remote sensing measurements of CO2 from space can help improve our understanding of the carbon cycle and help constrain the global carbon budget. However, such measurements need to be sufficiently accurate to detect small (1 ppm) changes in the CO2 mixing ratio (XCO2) against a large background (~ 400 ppm). Satellite measurements of XCO2 using passive spectrometers, such as those from the Japanese GOSAT (Greenhouse gas Observing Satellite) and the NASA OCO-2 (Orbiting Carbon Observatory-2) are limited to daytime sunlit portions of the Earth and are susceptible to biases from clouds and aerosols. For this reason, NASA commissioned the formulation study of ASCENDS a space-based lidar mission. NASA Goddard Space Flight Center's CO2 Sounder lidar is one candidate approach for the ASCENDS mission. The NASA GSFC CO2 Sounder measures the CO2 mixing ratio using a pulsed multi-wavelength integrated path differential absorption (IPDA) approach. The CO2 Sounder has flown in the 2011, 2013 and 2014 ASCENDS airborne campaigns over the continental US, and has produced measurements in close agreement with in situ measurements of the CO2 column. In 2014, the CO2 Sounder upgraded its laser with a precision step-locked diode laser source to improve the lidar wavelength position accuracy. It also improved its optical receiver with a low-noise, high efficiency, HgCdTe avalanche photo diode detector. The combination of these two technologies enabled lidar XCO2 measurements with unprecedented accuracy. In this presentation, we show analysis from the ASCENDS 2014 field campaign, exploring: (1) Horizontal XCO2 gradients measured by the lidar, (2) Comparisons of lidar XCO2 measurements against the Parameterized Chemistry Transport Model (PCTM), and (3) Lidar column water vapor measurements using a HDO absorption line that occurs next to the CO2 absorption line. This can reduce the uncertainty in the dry air column used in XCO2 retrievals.

  7. Hubble space telescope Goddard High-Resolution Spectrograph observation of U Geminorum during quiescence: Evidence for a slowly rotating white dwarf

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.; Long, Knox S.; Szkody, Paula; Huang, Min

    1994-01-01

    We have obtained a pair of consecutive far-ultraviolet Goddard High-Resolution Spectrograph (GHRS) exposures of the Si IV region of the dwarf nova U Geminorum in early quiescence, 8 days after its return to optical quiescence when the underlying white dwarf dominates the ultraviolet light of the system. Our GHRS observation revealed a fully resolved line profile for the resonance doublet of Si IV. If it is associated with the white dwarf photosphere, then our best synthetic fits are consistent with T (sub eff) = 35,000 K-38,000 K, log g = 8, a rotational velocity of 50 to 100 km per sec, with a modestly enhanced silicon abundance (1.3-2.3 times solar) and our results suggest that at least in U Gem and perhaps in other similar dwarf novae, the missing boundary layer cannot be explained by rapid rotation of the white dwarf. However, the gamma-velocity of the system remains uncertain. If the gamma-velocity is 43 km per sec (Friend et al. 1990), then a gravitational redshift of approximately 50-60 km per sec is implied for the white dwarf. If the gamma-velocity is 84 km per sec (Wade 1981), then a gravitational redshift of only 10-30 km per sec is indicated, which may imply that either the white dwarf has a low (0.5-0.6 of Solar Mass) mass or an extended atmosphere (corona) due to the outburst heating 8 days earlier. The implications of our line-fitting results for the structure and temperature of boundary layers in cataclysmic variables are discussed.

  8. Chemistry-Climate Interactions in the Goddard Institute for Space Studies General Circulation Model. 2; New Insights into Modeling the Pre-Industrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Grenfell, J. Lee; Shindell, D. T.; Koch, D.; Rind, D.; Hansen, James E. (Technical Monitor)

    2002-01-01

    We investigate the chemical (hydroxyl and ozone) and dynamical response to changing from present day to pre-industrial conditions in the Goddard Institute for Space Studies General Circulation Model (GISS GMC). We identify three main improvements not included by many other works. Firstly, our model includes interactive cloud calculations. Secondly we reduce sulfate aerosol which impacts NOx partitioning hence Ox distributions. Thirdly we reduce sea surface temperatures and increase ocean ice coverage which impact water vapor and ground albedo respectively. Changing the ocean data (hence water vapor and ozone) produces a potentially important feedback between the Hadley circulation and convective cloud cover. Our present day run (run 1, control run) global mean OH value was 9.8 x 10(exp 5) molecules/cc. For our best estimate of pre-industrial conditions run (run 2) which featured modified chemical emissions, sulfate aerosol and sea surface temperatures/ocean ice, this value changed to 10.2 x 10(exp 5) molecules/cc. Reducing only the chemical emissions to pre-industrial levels in run 1 (run 3) resulted in this value increasing to 10.6 x 10(exp 5) molecules/cc. Reducing the sulfate in run 3 to pre-industrial levels (run 4) resulted in a small increase in global mean OH (10.7 x 10(exp 5) molecules/cc). Changing the ocean data in run 4 to pre-industrial levels (run 5) led to a reduction in this value to 10.3 x 10(exp 5) molecules/cc. Mean tropospheric ozone burdens were 262, 181, 180, 180, and 182 Tg for runs 1-5 respectively.

  9. NASA Northeast Regional Technology Transfer Center

    NASA Technical Reports Server (NTRS)

    Dunn, James P.

    2001-01-01

    This report is a summary of the primary activities and metrics for the NASA Northeast Regional Technology Transfer Center, operated by the Center for Technology Commercialization, Inc. (CTC). This report covers the contract period January 1, 2000 - March 31, 2001. This report includes a summary of the overall CTC Metrics, a summary of the Major Outreach Events, an overview of the NASA Business Outreach Program, a summary of the Activities and Results of the Technology into the Zone program, and a Summary of the Major Activities and Initiatives performed by CTC in supporting this contract. Between January 1, 2000 and March 31, 2001, CTC has facilitated 10 license agreements, established 35 partnerships, provided assistance 517 times to companies, and performed 593 outreach activities including participation in 57 outreach events. CTC also assisted Goddard in executing a successful 'Technology into the Zone' program.' CTC is pleased to have performed this contract, and looks forward to continue providing their specialized services in support of the new 5 year RTTC Contract for the Northeast region.

  10. Goddard Summer Interns: Andy Ryan

    NASA Video Gallery

    Andy Ryan is an intern staff assistant with the Lunar and Planetary Science Academy. This summer the LPSA traveled to the Channeled Scablands of eastern Washington to study and map the geology of t...

  11. Technology Transfer

    NASA Technical Reports Server (NTRS)

    Bullock, Kimberly R.

    1995-01-01

    The development and application of new technologies in the United States has always been important to the economic well being of the country. The National Aeronautics and Space Administration (NASA) has been an important source of these new technologies for almost four decades. Recently, increasing global competition has emphasized the importance of fully utilizing federally funded technologies. Today NASA must meet its mission goals while at the same time, conduct research and development that contributes to securing US economic growth. NASA technologies must be quickly and effectively transferred into commercial products. In order to accomplish this task, NASA has formulated a new way of doing business with the private sector. Emphasis is placed on forming mutually beneficial partnerships between NASA and US industry. New standards have been set in response to the process that increase effectiveness, efficiency, and timely customer response. This summer I have identified potential markets for two NASA inventions: including the Radially Focused Eddy Current Sensor for Characterization of Flaws in Metallic Tubing and the Radiographic Moire. I have also worked to establish a cooperative program with TAG, private industry, and a university known as the TAG/Industry/Academia Program.

  12. A numerical study of vorticity-enhanced heat transfer

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Alben, Silas

    2012-11-01

    The Glezer lab at Georgia Tech has found that vorticity produced by vibrated reeds can improve heat transfer in electronic hardware. Vortices enhance forced convection by boundary layer separation and thermal mixing in the bulk flow. In this work, we simulate the heat transfer process in a 3-dimensional plate-fin heat sink. We propose a simplified model by considering flow and temperature in a 2-D channel, and extend the model to the third dimension using a 1-D heat fin model. We simulate periodically steady-state solutions. We determine how the global Nusselt number is increased, depending on the vortices' strengths and spacings, in the parameter space of Reynolds and Peclet numbers. We find a surprising spatial oscillation of the local Nusselt number due to the vortices. Support from NSF-DMS grant 1022619 is acknowledged.

  13. High-tech, high-touch recruitment: an oxymoron?

    PubMed

    Hart, Karen A

    2008-01-01

    A combination of factors has diluted the recruitment experience and created a confluence of elements similar to a perfect storm. Recruitment has morphed from a high-touch experience to a high-tech process. Though we can't go back to those halcyon pre-Internet days, we do need to find a better approach than our current technology-based, fragmented recruitment process. The ideal recruitment scenario would be a marriage of high tech and high touch. We must drive the technology, not let the technology dictate our process.

  14. The CalTech Years of Rudolf Mössbauer

    NASA Astrophysics Data System (ADS)

    Cohen, Richard L.

    In the summer of 1959, I was starting my third year as a graduate student in Physics at CalTech. I had passed all my course work and the qualifying oral exam, and was ready to begin my thesis research. I joined the group of Jesse DuMond and Felix Boehm, called Physics 34, which dealt mainly with X-rays, spectroscopy, and radioactive decay. The CalTech group that used a Van de Graaf generator as the main research tool was separate, and had a much higher profile.

  15. Investigation of Electron Transfer-Based Photonic and Electro-Optic Materials and Devices

    SciTech Connect

    Bromenshenk, Jerry J; Abbott, Edwin H; Dickensheets, David; Donovan, Richard P; Hobbs, J D; Spangler, Lee; McGuirl, Michele A; Spangler, Charles; Rebane, Aleksander; Rosenburg, Edward; Schmidt, V H; Singel, David J

    2008-03-28

    Montana's state program began its sixth year in 2006. The project's research cluster focused on physical, chemical, and biological materials that exhibit unique electron-transfer properties. Our investigators have filed several patents and have also have established five spin-off businesses (3 MSU, 2 UM) and a research center (MT Tech). In addition, this project involved faculty and students at three campuses (MSU, UM, MT Tech) and has a number of under-represented students, including 10 women and 5 Native Americans. In 2006, there was an added emphasis on exporting seminars and speakers via the Internet from UM to Chief Dull Knife Community College, as well as work with the MT Department of Commerce to better educate our faculty regarding establishing small businesses, licensing and patent issues, and SBIR program opportunities.

  16. Technology transfer in the national laboratories

    SciTech Connect

    Yonas, G.

    1991-08-01

    The title of this paper might unfairly provoke readers if it conjures up visions of vast stores of high-tech gadgets in several hundred technology warehouses'' (also known as federal laboratories) around the country, open for browsing by those in search of a bargain. That vision, unfortunately, is a mirage. The term technology transfer'' is not really as accurate as is the term technology team-work,'' a process of sharing ideas and knowledge rather than widgets. In addition, instead of discussing the efforts of more than 700 federal labs in the US, I mean to address only those nine government-owned, contractor-operated multiprogram labs run by the Department of Energy. Nevertheless, the topic of technology team-work opportunities with DOE multiprogram national lab is of significance to those concerned with increasing economic competitiveness and finding technological solutions to a host of national problems. A significant fraction of US R D capabilities rests in the nine DOE multiprogram national laboratories -- and these labs have only just begun to join the other federal laboratories in these efforts due to the passage and recent implementation of the National Competitiveness Technology Transfer Act of 1989.

  17. Development of Two-Moment Cloud Microphysics for Liquid and Ice Within the NASA Goddard Earth Observing System Model (GEOS-5)

    NASA Technical Reports Server (NTRS)

    Barahona, Donifan; Molod, Andrea M.; Bacmeister, Julio; Nenes, Athanasios; Gettelman, Andrew; Morrison, Hugh; Phillips, Vaughan,; Eichmann, Andrew F.

    2013-01-01

    This work presents the development of a two-moment cloud microphysics scheme within the version 5 of the NASA Goddard Earth Observing System (GEOS-5). The scheme includes the implementation of a comprehensive stratiform microphysics module, a new cloud coverage scheme that allows ice supersaturation and a new microphysics module embedded within the moist convection parameterization of GEOS-5. Comprehensive physically-based descriptions of ice nucleation, including homogeneous and heterogeneous freezing, and liquid droplet activation are implemented to describe the formation of cloud particles in stratiform clouds and convective cumulus. The effect of preexisting ice crystals on the formation of cirrus clouds is also accounted for. A new parameterization of the subgrid scale vertical velocity distribution accounting for turbulence and gravity wave motion is developed. The implementation of the new microphysics significantly improves the representation of liquid water and ice in GEOS-5. Evaluation of the model shows agreement of the simulated droplet and ice crystal effective and volumetric radius with satellite retrievals and in situ observations. The simulated global distribution of supersaturation is also in agreement with observations. It was found that when using the new microphysics the fraction of condensate that remains as liquid follows a sigmoidal increase with temperature which differs from the linear increase assumed in most models and is in better agreement with available observations. The performance of the new microphysics in reproducing the observed total cloud fraction, longwave and shortwave cloud forcing, and total precipitation is similar to the operational version of GEOS-5 and in agreement with satellite retrievals. However the new microphysics tends to underestimate the coverage of persistent low level stratocumulus. Sensitivity studies showed that the simulated cloud properties are robust to moderate variation in cloud microphysical parameters

  18. Trends in Technology Transfer.

    ERIC Educational Resources Information Center

    Starnick, Jurgen

    1988-01-01

    Various forms of technology transfer in Europe and North America are discussed including research contracts, cooperative research centers, and personnel transfer. Examples of approaches to technology transfer are given and the establishment of personnel transfer is discussed. Preconditions for successful technology transfer in the future are…

  19. Teaching for Transfer.

    ERIC Educational Resources Information Center

    Drake, Ruth

    This paper describes the transfer of skills and knowledge from the classroom to outside the classroom. The action research focused on transfer, how to facilitate transfer, and why to concentrate on transfer, and it included a definition for the different levels and rates of transfer. Seventh and eighth grade students were not using existing…

  20. Technology transfer within NASA

    NASA Technical Reports Server (NTRS)

    St.cyr, William

    1992-01-01

    Viewgraphs on technology transfer within NASA are provided. Assessment of technology transfer process, technology being transfered, issues and barriers, and observations and suggestions are addressed. Topics covered include: technology transfer within an organization (and across organization lines/codes) and space science/instrument technology and the role of universities in the technology development/transfer process.

  1. New Mexico Tech Satellite Design and Progress

    NASA Astrophysics Data System (ADS)

    Landavazo, M.; Cooper, B.; Jorgensen, A. M.; Bernson, C.; Chesebrough, S.; Dang, C.; Guillette, D.; Hall, T.; Huynh, A.; Jackson, R.; Klepper, J.; MacGillivray, J.; Park, D.; Ravindran, V.; Stanton, W.; Yelton, C.; Zagrai, A. N.

    2012-12-01

    New Mexico Tech Satellite (NMTSat) is a low-budget, 3U CubeSat for correlating state-of-health information from the spacecraft with space weather in low Earth orbit (LEO). NMTSat is funded by the NASA/EPSCoR program and is built almost entirely by NMT students at the New Mexico Institute of Mining and Technology. The scientific payload of NMTSat will consist of five instruments built in-house including: a magnetometer, a Langmuir plasma probe, a dosimeter, a state-of-the-art structural health monitor and an electrical health monitor. NMTSat utilizes passive attitude control by means of a magnet and hysteresis rods and carries out attitude determination from a combination of solar panel current and magnetometer readings. NMTSat will also be built around the Space Plug-and-Play Avionics I2C interface (SPA-1) to the greatest extent practical. In this presentation we will give an overview of the NMTSat design and design-tradeoffs and provide a status report on the work of completing NMTSat.

  2. The transfer of disruptive technologies: Lessions learned from Sandia National Laboratories

    SciTech Connect

    MCBRAYER,JOHN D.

    2000-04-19

    Sandia National Laboratories has learned through their process of technology transfer that not all high tech transfers are alike. They are not alike by the nature of the customers involved, the process of becoming involved with these customers and finally and most importantly the very nature of the technology itself. Here they focus on technology transfer in the microsystems arena and specifically the sacrificial surface version of microsystems. They have learned and helped others learn that many MEMS applications are best realized through the use of surface micromachining (SMM). This is because SMM builds on the substantial integrated circuit industry. In this paper they review Sandia's process for transferring a disruptive MEMS technology in numerous cases.

  3. Computer-Integrated Manufacturing Technology. Tech Prep Competency Profile.

    ERIC Educational Resources Information Center

    Lakeland Tech Prep Consortium, Kirtland, OH.

    This tech prep competency profile for computer-integrated manufacturing technology begins with definitions for four occupations: manufacturing technician, quality technician, mechanical engineering technician, and computer-assisted design/drafting (CADD) technician. A chart lists competencies by unit and indicates whether entire or partial unit is…

  4. Report on Virginia Tech Shootings Urges Clarification of Privacy Laws

    ERIC Educational Resources Information Center

    Fischer, Karin

    2007-01-01

    Educators, mental-health officials, and law-enforcement officers often do not share information about troubled students because they are confused by what they can disclose under complex and overlapping privacy laws, according to a report on the Virginia Tech shootings. Attorney General Alberto R. Gonzales and two other Bush cabinet secretaries…

  5. FETC, TCEA Commemorate 25 Years of Serving Ed Tech Industry

    ERIC Educational Resources Information Center

    T.H.E. Journal, 2005

    2005-01-01

    There's only one way to prepare for all of the exciting things that the ed tech market has in store for 2005-- by attending a conference. That's why T.H.E. Journal hopes readers will join them at this year's FETC (Booth 1505) and TCEA (Booth 1934) conferences to help celebrate their 25th anniversaries. Overviews are provided for both conferences…

  6. Curriculum Designs for Tech Prep Clusters. PACE '94.

    ERIC Educational Resources Information Center

    Schoon, Kenneth J., Ed.; Wiles, Clyde A., Ed.

    This booklet contains descriptions of various Tech Prep programs developed by PACE (Promoting Academic Excellence In Mathematics, Science & Technology for Workers of the 21st Century). Each entry includes general program descriptions, curriculum outlines, and course descriptions. The clusters and their specialty areas described in the booklet are:…

  7. NASA Tech Briefs, March 1998. Volume 22, No. 3

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Topics include: special coverage of computer aided design and engineering, electronic components and circuits, electronic systems, physical sciences, materials, computer software, special coverage on mechanical technology, machinery/automation, manufacturing/fabrication, mathematics and information sciences, book and reports, and a special section of Electronics Tech Briefs. Profiles of the exhibitors at the National Design Engineering show are also included in this issue.

  8. NASA Tech Briefs, October 1995. Volume 19, No. 10

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A special focus in this issue is Data acquisition and analysis. Topics covered include : Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; and Mathematics and Information Sciences. Also included in this issue are Laser Tech Briefs and Industry Focus: Motion Control/ Positioning Equipment

  9. CareerTech VISION 2012--Transforming CTE Together

    ERIC Educational Resources Information Center

    Bray, Janet B.

    2012-01-01

    As the leader in career and technical education (CTE), the Association for Career and Technical Education (ACTE) understands the ongoing challenges faced by the CTE community. That is why ACTE has created CareerTech VISION 2012, a bold and visionary event that addresses the evolving needs of the global society and meets all individual and…

  10. Engineering in the Classroom: A Low-Tech, Local Approach

    ERIC Educational Resources Information Center

    Knight, Meredith; Huttlinger, Claire; Carlson, Bree; Cunningham, Christine

    2006-01-01

    When one mentions the word engineering, most people think immediately of high-tech items such as computers, or large-scale projects such as bridges, buildings, and roads. While these products represent the products of engineering, there are clear challenges to having students work directly on any of these projects in the context of a science…

  11. Tragedy at Virginia Tech: Trauma and Its Aftermath

    ERIC Educational Resources Information Center

    Flynn, Christopher; Heitzmann, Dennis

    2008-01-01

    While college campuses are relatively safe environments, the promise of safety and security on campus was shattered by a single gunman on April 16, 2007. Seung-Hui Cho, a senior at Virginia Tech, shot 49 students and faculty, killing 32, before killing himself. The authors are psychologists and directors of university counseling centers; they…

  12. NASA Tech Briefs, March 1999. Volume 23, No. 3

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Topics include: special coverage sections on CAD/CAE/PDM, industrial controls and sections on electronic components systems, materials, software, mechanics, machinery/automation, manufacturing/fabrication, physical sciences, book and reports, and a special section of Photonics Tech Briefs and a seconds special section of Rapid Product Development.

  13. LifeTech Institute: Leading Change through Transitional Centers

    ERIC Educational Resources Information Center

    Johnson, John A.

    2009-01-01

    Through partnerships with four other state agencies, the LifeTech Institute was designed to provide life skills and technical workforce skills to male parolees. The purpose was to alleviate prison overcrowding, reduce recidivism rates, and prepare a trained workforce to supplement the demanding workforce needs of the state's construction industry.…

  14. NASA Tech Briefs, December 1995. Volume 19, No. 12

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Topics include: a special focus section on Bio/Medical technology, electronic components and circuits, electronic systems, physical sciences, materials, computer programs, mechanics, machinery, manufacturing/fabrication, mathematics and information sciences, book and reports, and a special section on Laser Tech Briefs.

  15. TechXcite: Discover Engineering--A New STEM Curriculum

    ERIC Educational Resources Information Center

    Sallee, Jeff; Schmitt-McQuitty, Lynn; Swint, Sherry; Meek, Amanda; Ybarra, Gary; Dalton, Rodger

    2015-01-01

    TechXcite is an engineering-focused, discovery-based after-school science, technology, engineering, and math (STEM) program. The free curriculum is downloadable from http://techxcite.pratt.duke.edu/ and is comprised of eight Modules, each with four to five 45-minute activities that exercise the science and math learned in school by using…

  16. Asia's New High-Tech Competitors: An SRS Special Report.

    ERIC Educational Resources Information Center

    Rausch, Lawrence M.

    This report profiles nine economies linked by Asian identity, yet marked by great economic and technological disparity, in order to project which economies will be full-fledged participants and competitors in tomorrow's high-tech product markets. Based on the various indicators of technological activity and competitiveness presented in this…

  17. Computer-Integrated Manufacturing Technology. Tech Prep Competency Profile.

    ERIC Educational Resources Information Center

    Lakeland Tech Prep Consortium, Kirtland, OH.

    This tech prep competency profile covers these occupations: manufacturing technician, computer-assisted design and drafting (CADD) technician, quality technician, and mechanical technician. Section 1 provides occupation definitions. Section 2 lists development committee members. Section 3 provides the leveling codes---abbreviations for grade level…

  18. High Touch in a High-Tech World

    ERIC Educational Resources Information Center

    Gibson, Cindy L.

    2009-01-01

    In a world of high tech and low touch, it is easy for public relations programs to stray from tried-and-true interpersonal strategies long associated with solid communication planning. New technologies allow communications professionals to quickly send e-mails and telephone calls to selected groups. Social media sites provide users immediate…

  19. Health Science Careers: Tech Prep Consortium for New Jersey.

    ERIC Educational Resources Information Center

    Maillet, Julie O'Sullivan; D'Anna, Suzanne

    2001-01-01

    A high school health sciences program consists of an interdisciplinary core curriculum, clinical job shadowing, and potential to earn college credit. Interactive television and CD-ROMs enhance teaching. A consortium of high schools offers the tech prep program in collaboration with the University of Medicine and Dentistry of New Jersey. (SK)

  20. Tech Prep Persistence in Comprehensive High Schools: An Exploratory Study

    ERIC Educational Resources Information Center

    Miller, Donna M.; Gray, Kenneth

    2002-01-01

    Tech Prep is a high school program of study. The student outcome objective is to prepare students to make the transition from high school to postsecondary pre-baccalaureate technical education, complete the postsecondary program without the need to take remedial academic courses, and then transition to commensurate employment. While the concept is…