Science.gov

Sample records for gold activated foils

  1. Monte Carlo simulation of the NaI(Tl) detector response to measure gold activated foils

    NASA Astrophysics Data System (ADS)

    Amgarou, K.; Domingo, C.; Bouassoule, T.; Fernández, F.

    2009-09-01

    This work deals with the implementation of a NaI(Tl) detector for the assessment of the specific saturation activities of pure gold foils after neutron irradiation. These gold foils can be placed in the centre of a set of polyethylene spheres with different diameters. This configuration, known as a passive Bonner sphere system, is suitable to measure neutron spectra normally extended over a wide energy range containing up to 11 decades (from thermal to a few MeV), at places where the neutron field is very intense, high frequency pulsed or where it is mixed with an important high-energy photon component. The MCNPX code was used to evaluate the NaI(Tl) responses to different incident photon energies in terms of pulse-height distributions. An experimental validation of the calculated NaI(Tl) responses, using certified standard sources at a given measurement arrangement, indicates that MCNPX is a valid tool for routine calibration and benchmarking studies of this detector. A good agreement is found between the measured pulse-height distributions of the certified standard sources and those obtained from MCNPX simulations. As a preliminary application, a bare disc Au foil was directly exposed to a Bremsstrahlung photon beam at the isocentre of an 18 MV medical LINAC, in order to test the suitability of this activation material to measure the photo-neutrons generated in such facility. Two differentiated main photo-peaks, arising from 196Au and 198Au predominant γ-ray emissions, were observed. The two isotopes are produced mainly by the photonuclear, 197Au(γ, n) 196Au, and radiative capture, 197Au( n, γ) 198Au, reactions of, respectively, high-energy photons and thermal neutrons on the gold foil. From the measured 198Au saturation activity, a rough estimation of (378 ± 68) × 10 4 cm -2 Gy -1 was derived for the thermal neutron flux within the LINAC treatment room. This value, although being very approximate, is comparable to those reported by other authors for similar

  2. Study of a gold-foil-based multisphere neutron spectrometer.

    PubMed

    Wang, Z; Hutchinson, J D; Hertel, N E; Burgett, E; Howell, R M

    2008-01-01

    Multisphere neutron spectrometers with active thermal neutron detectors cannot be used in high-intensity radiation fields due to pulse pile-up and dead-time effects. Thus, a multisphere spectrometer using a passive detection system, specifically gold foils, has been investigated in this work. The responses of a gold-foil-based Bonner sphere neutron spectrometer were studied for two different gold-foil holder designs; an aluminium-polyethylene holder and a polyethylene holder. The responses of the two designs were calculated for four incident neutron beam directions, namely, parallel, perpendicular and at +/-45 degrees relative to the flat surface of the foil. It was found that the use of polyethylene holder resulted in a more isotropic response to neutrons for the four incident directions considered. The computed responses were verified by measuring the neutron spectrum of a 252Cf source with known strength.

  3. Evidence of muonium formation using thin gold foils in vacuum

    NASA Technical Reports Server (NTRS)

    Barnett, B. A.; Chang, C. Y.; Steinberg, P.; Yodh, G. B.; Orr, H. D.; Carroll, J. B.; Eckhause, M.; Kane, J. R.; Spence, C. B.; Hsieh, C. S.

    1977-01-01

    The production of thermal muonium in a vacuum region has been investigated using an array of 200 thin (about 1000 A thick) gold foils exposed to a stopping positive-muon beam. By examining the observed time dependence of the positive-muon decay spectra in various transverse magnetic field, it is estimated that the lower limit of the probability of muonium formation by these gold foils placed in vacuum was 0.28 plus or minus 0.05.

  4. Characterization of Electrodeposited Technetium on Gold Foil

    SciTech Connect

    Mausolf, Edward; Poineau, Frederic; Hartmann, Thomas; Droessler, Janelle; Czerwinski, Ken

    2011-11-17

    The reduction and electrodeposition of TcO{sub 4}{sup -} on a smooth gold foil electrode with an exposed area of 0.25 cm{sup 2} was performed in 1 M H{sub 2}SO{sub 4} supporting electrolyte using bulk electrolysis with a constant current density of 1.0 A/cm{sup 2} at a potential of -2.0 V. Significant hydrogen evolution accompanied the formation of Tc deposits. Tc concentrations consisted of 0.01 M and 2 x 10{sup -3} M and were electrodeposited over various times. Deposited fractions of Tc were characterized by powder x-ray diffraction, x-ray absorption fine structure spectroscopy, and scanning electron microscopy with the capability to measure semiquantitative elemental compositions by energy-dispersive x-ray emission spectroscopy. Results indicate the presence of Tc metal on all samples as the primary electrodeposited constituent for all deposition times and Tc concentrations. Thin films of Tc have been observed followed by the formation of beads that are removable by scratching. After 2000, the quantity of Tc removed from solution and deposited was 0.64 mg Tc per cm{sup 2}. The solution, after electrodeposition, showed characteristic absorbances near 500 nm corresponding to hydrolyzed Tc(IV) produced during deposition of Tc metal. No detectable Tc(IV) was deposited to the cathode.

  5. Secret in the Margins: Rutherford's Gold Foil Experiment

    ERIC Educational Resources Information Center

    Aydin, Sevgi; Hanuscin, Deborah L.

    2011-01-01

    In this article, the authors describe a lesson that uses the 5E Learning Cycle to help students not only understand the atomic model but also how Ernest Rutherford helped develop it. The lesson uses Rutherford's gold foil experiment to focus on three aspects of the nature of science: the empirical nature of science, the tentativeness of scientific…

  6. Turning Plastic into Gold: An Analogy to Demonstrate The Rutherford Gold Foil Experiment

    ERIC Educational Resources Information Center

    Gregory, Robert B.

    2007-01-01

    The Rutherford-Geiger-Marsden gold foil experiment is demonstrated to give students a useful mental image of the concept or principle of chemistry. The experiment shows students that in a short time one unexpected result can change the way science looks at the world.

  7. Radioactivity analysis in niobium activation foils

    SciTech Connect

    Mueller, G.E.

    1995-06-01

    The motivation for this study was to measure and analyze the activity of six (6) niobium (Nb) foils (the x-rays from an internal transition in Nb-93m) and apply this information with previously obtained activation foil data. The niobium data was used to determine the epithermal to MeV range for the neutron spectrum and fluence. The foil activation data was re-evaluated in a spectrum analysis code (STAY`SL) to provide new estimates of the exposure at the Los Alamos Spallation Radiation Effect Facility (LASREF). The activity of the niobium foils was measured and analyzed at the University of Missouri-Columbia (UMC) under the direction of Professor William Miller. The spectrum analysis was performed at the University of Missouri-Rolla (UMR) by Professor Gary Mueller.

  8. Measurements of laser generated soft X-ray emission from irradiated gold foils

    NASA Astrophysics Data System (ADS)

    Davis, J. S.; Frank, Y.; Raicher, E.; Fraenkel, M.; Keiter, P. A.; Klein, S. R.; Drake, R. P.; Shvarts, D.

    2016-11-01

    Soft x-ray emission from laser irradiated gold foils was measured at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6 ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.

  9. Low-voltage bending actuators from carbide-derived carbon improved with gold foil

    NASA Astrophysics Data System (ADS)

    Torop, Janno; Sugino, Takushi; Asaka, Kinji; Jänes, Alar; Lust, Enn; Arulepp, Mati; Aabloo, Alvo

    2012-04-01

    We report carbide-derived carbon (CDC) based polymeric actuators for the low-voltage applications. The CDC-based actuators have been designed and fabricated in combination with gold foil. The gold-foil-modified actuators exhibited high frequency response and required remarkably low operating voltage (as low as +/-0.25 V). Hot-pressed additional gold layer (thickness 100 nm) ensures better conductivity of polymer supported CDC electrodes, while maintaining the elasticity of actuator. Energy consumption of gold-foil-modified (CDC/gold) actuators increased only at higher frequency values (f > 1 Hz), which is in good correlation with enhanced conductivity and improved charge delivery capabilities. Electrochemical measurements of both actuators performed at small operating frequency values (f < 0.01 Hz) confirmed that there was no difference in consumed charge between conventional CDC and CDC/gold actuators. Due to enhanced conductivity of CDC/gold actuators the accumulated charge increased at higher operating frequency values, while initiating larger dimensional changes. For that reason, the CDC/gold actuators exhibited same deflection rate at much lower potential applied. Electrochemical impedance measurements confirmed that relaxation time constant of gold-foil-modified actuator decreased more than one order of magnitude, thus allowing faster charge/discharge cycles. Gold-foil-modified actuators obtained the strain level of 2.2 % when rectangular voltage +/-2 V was applied with frequency 0.5 Hz. The compact design and similar working principle of multi-layered actuator also provides opportunity to use actuator concurrently as energy storage device. From practical standpoint, this device concept can be easily extended to actuator-capacitor hybrid designs for generation of energy efficient actuation.

  10. Observations of proton beam enhancement due to erbium hydride on gold foil targets

    SciTech Connect

    Offermann, D. T.; Van Woerkom, L. D.; Freeman, R. R.; Foord, M. E.; Hey, D.; Key, M. H.; Mackinnon, A. J.; MacPhee, A. G.; Patel, P. K.; Ping, Y.; Sanchez, J. J.; Shen, N.; Bartal, T.; Beg, F. N.; Espada, L.; Chen, C. D.

    2009-09-15

    Recent theoretical work suggests that the conversion efficiency from laser to protons in laser irradiated thin foil experiments increases if the atomic mass of nonhydrogen atoms on the foil rear surface increases. Experiments were performed at the Lawrence Livermore National Laboratory Jupiter Laser Facility to observe the effect of thin foils coated with erbium hydride on the conversion efficiency from laser to protons. Gold foils with and without the rear surface coated with ErH{sub 3} were irradiated using the ultrashort pulse, 40 TW Callisto laser. An argon-ion etching system was used to remove naturally occurring nanometer thick surface layer contaminants from the hydride. With the etcher, gold with ErH{sub 3} showed a 25% increase in the conversion efficiency to protons above 3.4 MeV relative to contaminants, where C{sup +4} and H{sup +} were the dominant ion species. No difference in the ion signal was observed without first cleaning the hydrides. Simulations using the hybrid PIC code, LSP, revealed that the increase due to erbium hydride versus contaminants is 37% for protons above 3 MeV.

  11. A comparison of flash electroretinograms recorded from Burian Allen, JET, C-glide, gold foil, DTL and skin electrodes.

    PubMed

    Esakowitz, L; Kriss, A; Shawkat, F

    1993-01-01

    Single flash scotopic and photopic electroretinograms (ERGs) were recorded from the same subjects using six types of corneal electrode, in order to assess their relative effectiveness. In addition, the ERG from a lower eyelid skin electrode was recorded to give an indication of the degree of attenuation to be expected from a skin electrode. On average, the scotopic ERG recorded from the Burian Allen electrode measured 471 microV (100%), and relative to this the b-waves recorded using other electrodes were as follows: JET (89%), C-glide (77%), gold foil (56%), DTL (46%) and skin (12%). Under photopic conditions the order was the same and the interelectrode proportions similar. The b-wave amplitude recorded using the Burian Allen electrode was 125 microV (100%), and with other electrodes was as follows: JET (93%), C-glide (78%), gold foil (60%), DTL (60%) and skin (14%).

  12. Pu-ZR Alloy high-temperature activation-measurement foil

    DOEpatents

    McCuaig, Franklin D.

    1977-08-02

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron flux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  13. Role of induced vortex interaction in a semi-active flapping foil based energy harvester

    NASA Astrophysics Data System (ADS)

    Wu, J.; Chen, Y. L.; Zhao, N.

    2015-09-01

    The role of induced vortex interaction in a semi-active flapping foil based energy harvester is numerically examined in this work. A NACA0015 airfoil, which acts as an energy harvester, is placed in a two-dimensional laminar flow. It performs an imposed pitching motion that subsequently leads to a plunging motion. Two auxiliary smaller foils, which rotate about their centers, are arranged above and below the flapping foil, respectively. As a consequence, the vortex interaction between the flapping foil and the rotating foil is induced. At a Reynolds number of 1100 and the position of the pitching axis at one-third chord, the effects of the distance between two auxiliary foils, the phase difference between the rotating motion and the pitching motion as well as the frequency of pitching motion on the power extraction performance are systematically investigated. It is found that compared to the single flapping foil, the efficiency improvement of overall power extraction for the flapping foil with two auxiliary foils can be achieved. Based on the numerical analysis, it is indicated that the enhanced power extraction, which is caused by the increased lift force, thanks to the induced vortex interaction, directly benefits the efficiency enhancement.

  14. Characterization of AN Actively Cooled Metal Foil Thermal Radiation Shield

    NASA Astrophysics Data System (ADS)

    Feller, J. R.; Kashani, A.; Helvensteijn, B. P. M.; Salerno, L. J.

    2010-04-01

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (˜20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  15. Classroom Foils

    ERIC Educational Resources Information Center

    Pafford, William N.

    1970-01-01

    Aluminum foil, because of its characteristics, can be used for many elementary science activities: demonstrating Archimedes Principle, how to reduce cohesion, reflection and mirror effect, fuse action, condensation, friction, and as containers and barriers. (BR)

  16. Hermes III endpoint energy calculation from photonuclear activation of 197Au and 58Ni foils

    SciTech Connect

    Parzyck, Christopher Thomas

    2014-09-01

    A new process has been developed to characterize the endpoint energy of HERMES III on a shot-to-shot basis using standard dosimetry tools from the Sandia Radiation Measurements Laboratory. Photonuclear activation readings from nickel and gold foils are used in conjunction with calcium fluoride thermoluminescent dosimeters to derive estimated electron endpoint energies for a series of HERMES shots. The results are reasonably consistent with the expected endpoint voltages on those shots.

  17. Active-matrix organic light-emitting diode displays on flexible metal foil substrates

    NASA Astrophysics Data System (ADS)

    Chuang, Ta-Ko

    This dissertation presents the research efforts that deal with the development of polysilicon thin film transistors (TFTs) on stainless-steel-foil substrates, the implementation of high-resolution flexible active-matrix backplanes, and the integration of the flexible polysilicon TFT backplanes with polymer light-emitting diodes. This research investigated the preparation of the steel foil substrates, the fabrication of flexible polysilicon TFT backplanes and polymer light emitting diodes (PLEDs), and the encapsulation of the flexible Active Matrix Polymer Light Emitting Diode displays. The first successful integration of polysilicon TFT backplane with PLEDs onto light-weight, robust, and flexible stainless-steel-foil substrates is presented. A top-emitting, monochrome active-matrix polymer light-emitting diode (AM-PLED) display, having the VGA (640x480) format and a 230 dpi resolution, is demonstrated for the first time on flexible stainless-steel-foil substrates. This work validates the compatibility of the polysilicon technology for high-resolution flexible AM-PLED displays. Furthermore, this work shows that a variety of other large-area microelectronics could also be implemented onto flexible metal foils, benefiting by the metal oil dimensional stability and ability to withstand high process temperature. In conclusion, the polysilicon TFT technology combining with metal-foil substrates opens up a new road for flexible displays as well as large-area flexible electronic applications.

  18. Validation of MCNP NPP Activation Simulations for Decommissioning Studies by Analysis of NPP Neutron Activation Foil Measurement Campaigns

    NASA Astrophysics Data System (ADS)

    Volmert, Ben; Pantelias, Manuel; Mutnuru, R. K.; Neukaeter, Erwin; Bitterli, Beat

    2016-02-01

    In this paper, an overview of the Swiss Nuclear Power Plant (NPP) activation methodology is presented and the work towards its validation by in-situ NPP foil irradiation campaigns is outlined. Nuclear Research and consultancy Group (NRG) in The Netherlands has been given the task of performing the corresponding neutron metrology. For this purpose, small Aluminium boxes containing a set of circular-shaped neutron activation foils have been prepared. After being irradiated for one complete reactor cycle, the sets have been successfully retrieved, followed by gamma-spectrometric measurements of the individual foils at NRG. Along with the individual activities of the foils, the reaction rates and thermal, intermediate and fast neutron fluence rates at the foil locations have been determined. These determinations include appropriate corrections for gamma self-absorption and neutron self-shielding as well as corresponding measurement uncertainties. The comparison of the NPP Monte Carlo calculations with the results of the foil measurements is done by using an individual generic MCNP model functioning as an interface and allowing the simulation of individual foil activation by predetermined neutron spectra. To summarize, the comparison between calculation and measurement serve as a sound validation of the Swiss NPP activation methodology by demonstrating a satisfying agreement between measurement and calculation. Finally, the validation offers a chance for further improvements of the existing NPP models by ensuing calibration and/or modelling optimizations for key components and structures.

  19. Neutron Unfolding Code System for Calculating Neutron Flux Spectra from Activation Data of Dosimeter Foils.

    1982-04-30

    Version 00 As a part of the measurement and analysis plan for the Dosimetry Experiment at the "JOYO" experimental fast reactor, neutron flux spectral analysis is performed using the NEUPAC (Neutron Unfolding Code Package) code system. NEUPAC calculates the neutron flux spectra and other integral quantities from the activation data of the dosimeter foils.

  20. Foil Artists

    ERIC Educational Resources Information Center

    Szekely, George

    2010-01-01

    Foil can be shaped into almost anything--it is the all-purpose material for children's art. Foil is a unique drawing surface. It reflects, distorts and plays with light and imagery as young artists draw over it. Foil permits quick impressions of a model or object to be sketched. Foil allows artists to track their drawing moves, seeing the action…

  1. Neutron Fluence Monitoring by Foil Activation at the NBSR

    SciTech Connect

    Richard M. Lindstrom

    2000-11-12

    In a reactor facility such as the National Institute of Standards and Technology Center for Neutron Research, it is occasionally necessary to measure the intensity and characteristics of neutron fields, inside and outside the reactor vessel. Design of thermal- and cold-neutron beam guides and filters, neutron activation analysis, and health physics calibrations are the most common needs. To meet these requirements, routine procedures have been developed for efficient and transparent measurements of slow neutrons.

  2. Neutron Flux Spectra Determination by Multiple Foil Activation - Iterative Method.

    1994-07-08

    Version 00 Neutron energy spectra are determined by an analysis of experimental activation detector data. As with the original CCC-112/SAND-II program, which was developed at Air Force Weapons Laboratory, this code system consists of four modules, CSTAPE, SLACTS, SLATPE, and SANDII. The first three modules pre-process the dosimetry cross sections and the trial function spectrum library. The last module, SANDII, actually performs the iterative spectrum characterization.

  3. Self-Shielding Correlation of Foil Activation Neutron Spectra Analysis by SAND-II.

    2008-11-21

    Version 00 SELFS-3 corrects for the influence of the self-shielding effect in neutron spectrum determinations by means of the multifoil activation method. It is used in combination with the SAND-II program for unfolding the responses of an irradiated set of activation detectors in 620 groups. The program SELFS can calculate a corrected 620 group cross section data set for specified reactions used in the SAND-II library, and for specified foil thicknesses. This procedure requires nomore » additional assumption on the shape of the neutron spectrum and on other experimental conditions, but only some foil characteristics (reaction type, material composition, foil thickness). Application of this procedure is possible when multigroup unfolding programs are used with suitably small energy intervals. This code system was developed in the 1970’s at Reactor Centrum Nederland, Petten, The Netherlands, and was contributed to RSICC through the NEA Data Bank. No changes were made to the package when it was released by RSICC in 2008. Modifications will be required to run SELFS-3 on current computer systems.« less

  4. SU-E-T-557: Measuring Neutron Activation of Cardiac Devices Irradiated During Proton Therapy Using Indium Foils

    SciTech Connect

    Avery, S; Christodouleas, J; Delaney, K; Diffenderfer, E; Brown, K

    2014-06-01

    Purpose: Measuring Neutron Activation of Cardiac devices Irradiated during Proton Therapy using Indium Foils Methods: The foils had dimensions of 25mm x 25mm x 1mm. After being activated, the foils were placed in a Canberra Industries well chamber utilizing a NaI(Tl) scintillation detector. The resulting gamma spectrum was acquired and analyzed using Genie 2000 spectroscopy software. One activation foil was placed over the upper, left chest of RANDO where a pacemaker would be. The rest of the foils were placed over the midline of the patient at different distances, providing a spatial distribution over the phantom. Using lasers and BBs to align the patient, 200 MU square fields were delivered to various treatment sites: the brain, the pancreas, and the prostate. Each field was shot at least a day apart, giving more than enough time for activity of the foil to decay (t1=2 = 54.12 min). Results: The net counts (minus background) of the three aforementioned peaks were used for our measurements. These counts were adjusted to account for detector efficiency, relative photon yields from decay, and the natural abundance of 115-In. The average neutron flux for the closed multi-leaf collimator irradiation was measured to be 1.62 x 106 - 0.18 x 106 cm2 s-1. An order of magnitude estimate of the flux for neutrons up to 1 keV from Diffenderfer et al. gives 3 x 106 cm2 s-1 which does agree on the order of magnitude. Conclusion: Lower energy neutrons have higher interaction cross-sections and are more likely to damage pacemakers. The thermal/slow neutron component may be enough to estimate the overall risk. The true test of the applicability of activation foils is whether or not measurements are capable of predicting cardiac device malfunction. For that, additional studies are needed to provide clinical evidence one way or the other.

  5. Measurement of neutron spectra in varied environments by the foil-activation method with arbitrary trials

    SciTech Connect

    Kelly, J.G.; Vehar, D.W.

    1987-12-01

    Neutron spectra have been measured by the foil-activation method in 13 different environments in and around the Sandia Pulsed Reactor, the White Sands Missile Range Fast Burst Reactor, and the Sandia Annular Core Research Reactor. The spectra were obtained by using the SANDII code in a manner that was not dependent on the initial trial. This altered technique is better suited for the determination of spectra in environments that are difficult to predict by calculation, and it tends to reveal features that may be biased out by the use of standard trial-dependent methods. For some of the configurations, studies have also been made of how well the solution is determined in each energy region. The experimental methods and the techniques used in the analyses are thoroughly explained. 34 refs., 51 figs., 40 tabs.

  6. Geant4 simulations on medical Linac operation at 18 MV: Experimental validation based on activation foils

    NASA Astrophysics Data System (ADS)

    Vagena, E.; Stoulos, S.; Manolopoulou, M.

    2016-03-01

    The operation of a medical linear accelerator was simulated using the Geant4 code regarding to study the characteristics of an 18 MeV photon beam. Simulations showed that (a) the photon spectrum at the isocenter is not influenced by changes of the primary electron beam's energy distribution and spatial spread (b) 98% of the photon energy fluence scored at the isocenter is primary photons that have only interacted with the target (c) the number of contaminant electrons is not negligible since it fluctuated around 5×10-5 per primary electron or 2.40×10-3 per photon at the isocenter (d) the number of neutrons that are created by (γ, n) reactions is 3.13×10-6 per primary electron or 1.50×10-3 per photon at the isocenter (e) a flattening filter free beam needs less primary electrons in order to deliver the same photon fluence at the isocenter than a normal flattening filter operation (f) there is no significant increase of the surface dose due to the contaminant electrons by removing the flattening filter (g) comparing the neutron fluences per incident electron for the flattened and unflattened beam, the neutron fluencies is 7% higher for the unflattened beams. To validate the simulations results, the total neutron and photon fluence at the isocenter field were measured using nickel, indium, and natural uranium activation foils. The percentage difference between simulations and measurements was 1.26% in case of uranium and 2.45% in case of the indium foil regarding photon fluencies while for neutrons the discrepancy is higher up to 8.0%. The photon and neutron fluencies of the simulated experiments fall within a range of ±1 and ±2 sigma error, respectively, compared to the ones obtained experimentally.

  7. Antibacterial activity of ordered gold nanorod arrays.

    PubMed

    Zhu, Yuejing; Ramasamy, Mohankandhasamy; Yi, Dong Kee

    2014-09-10

    Well-packed two- and three-dimensional (2D and 3D) gold nanorod (AuNR) arrays were fabricated using confined convective arraying techniques. The array density could be controlled by changing the concentration of the gold nanorods solution, the velocity of the moving substrate, and the environment air-temperature. The hydrophilic behavior of glass substrates before and after surface modification was studied through contact angle measurements. The affinity and alignment of the AuNR arrays with varying nanorod concentrations and the resulting different array densities were studied using field emission scanning electron microscopy (FE-SEM). Under stable laser intensity irradiation, the photothermal response of the prepared arrays was measured using a thermocouple and the results were analyzed quantitatively. Synthesized AuNR arrays were added to Escherichia coli (E. coli) suspensions and evaluated for photothermal bactericidal activity before and after laser irradiation. The results showed promising bactericidal effect. The severity of pathogen destruction was measured and quantified using fluorescence microscopy, bioatomic force microscopy (Bio-AFM) and flow cytometry techniques. These results indicated that the fabricated AuNR arrays at higher concentrations were highly capable of complete bacterial destruction by photothermal effect compared to the low concentration AuNR arrays. Subsequent laser irradiation of the AuNR arrays resulted in rapid photoheating with remarkable bactericidal activity, which could be used for water treatment to produce microbe-free water. PMID:25148531

  8. Antifungal activity of gold nanoparticles prepared by solvothermal method

    SciTech Connect

    Ahmad, Tokeer; Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna; Manzoor, Nikhat; Ahmad, Aijaz; Ahmed, Jahangeer; Al-Shihri, Ayed S.

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.

  9. Benchmark test of transport calculations of gold and nickel activation with implications for neutron kerma at Hiroshima.

    PubMed

    Hoshi, M; Hiraoka, M; Hayakawa, N; Sawada, S; Munaka, M; Kuramoto, A; Oka, T; Iwatani, K; Shizuma, K; Hasai, H

    1992-11-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a 252Cf fission neutron source to validate the use of the code for the energy spectrum analyses of Hiroshima atomic bomb neutrons. Nuclear data libraries used in the Monte Carlo neutron and photon transport code calculation were ENDF/B-III, ENDF/B-IV, LASL-SUB, and ENDL-73. The neutron moderators used were granite (the main component of which is SiO2, with a small fraction of hydrogen), Newlight [polyethylene with 3.7% boron (natural)], ammonium chloride (NH4Cl), and water (H2O). Each moderator was 65 cm thick. The neutron detectors were gold and nickel foils, which were used to detect thermal and epithermal neutrons (4.9 eV) and fast neutrons (> 0.5 MeV), respectively. Measured activity data from neutron-irradiated gold and nickel foils in these moderators decreased to about 1/1,000th or 1/10,000th, which correspond to about 1,500 m ground distance from the hypocenter in Hiroshima. For both gold and nickel detectors, the measured activities and the calculated values agreed within 10%. The slopes of the depth-yield relations in each moderator, except granite, were similar for neutrons detected by the gold and nickel foils. From the results of these studies, the Monte Carlo neutron and photon transport code was verified to be accurate enough for use with the elements hydrogen, carbon, nitrogen, oxygen, silicon, chlorine, and cadmium, and for the incident 252Cf fission spectrum neutrons. PMID:1399639

  10. Benchmark test of transport calculations of gold and nickel activation with implications for neutron kerma at Hiroshima.

    PubMed

    Hoshi, M; Hiraoka, M; Hayakawa, N; Sawada, S; Munaka, M; Kuramoto, A; Oka, T; Iwatani, K; Shizuma, K; Hasai, H

    1992-11-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a 252Cf fission neutron source to validate the use of the code for the energy spectrum analyses of Hiroshima atomic bomb neutrons. Nuclear data libraries used in the Monte Carlo neutron and photon transport code calculation were ENDF/B-III, ENDF/B-IV, LASL-SUB, and ENDL-73. The neutron moderators used were granite (the main component of which is SiO2, with a small fraction of hydrogen), Newlight [polyethylene with 3.7% boron (natural)], ammonium chloride (NH4Cl), and water (H2O). Each moderator was 65 cm thick. The neutron detectors were gold and nickel foils, which were used to detect thermal and epithermal neutrons (4.9 eV) and fast neutrons (> 0.5 MeV), respectively. Measured activity data from neutron-irradiated gold and nickel foils in these moderators decreased to about 1/1,000th or 1/10,000th, which correspond to about 1,500 m ground distance from the hypocenter in Hiroshima. For both gold and nickel detectors, the measured activities and the calculated values agreed within 10%. The slopes of the depth-yield relations in each moderator, except granite, were similar for neutrons detected by the gold and nickel foils. From the results of these studies, the Monte Carlo neutron and photon transport code was verified to be accurate enough for use with the elements hydrogen, carbon, nitrogen, oxygen, silicon, chlorine, and cadmium, and for the incident 252Cf fission spectrum neutrons.

  11. Self-shielding effects in neutron spectra measurements for neutron capture therapy by means of activation foils.

    PubMed

    Pytel, Krzysztof; Józefowicz, Krystyna; Pytel, Beatrycze; Koziel, Alina

    2004-01-01

    The design and optimisation of a neutron beam for neutron capture therapy (NCT) is accompanied by the neutron spectra measurements at the target position. The method of activation detectors was applied for the neutron spectra measurements. Epithermal neutron energy region imposes the resonance structure of activation cross sections resulting in strong self-shielding effects. The neutron self-shielding correction factor was calculated using a simple analytical model of a single absorption event. Such a procedure has been applied to individual cross sections from pointwise ENDF/B-VI library and new corrected activation cross sections were introduced to a spectra unfolding algorithm. The method has been verified experimentally both for isotropic and for parallel neutron beams. Two sets of diluted and non-diluted activation foils covered with cadmium were irradiated in the neutron field. The comparison of activation rates of diluted and non-diluted foils has demonstrated the correctness of the applied self-shielding model.

  12. 78 FR 28577 - Notification of Proposed Production Activity, LLFlex, LLC, Subzone 29J (Foil Backed Paperboard...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... (duty-free) for the foreign status input (converter foil, duty rate 5.8%). Customs duties also could..., U.S. Department of Commerce, 1401 Constitution Avenue NW., Washington, DC 20230-0002, and in...

  13. Design and use of a constant geometry system to measure activated indium foil in personnel security badges

    SciTech Connect

    Barclay, R.K.

    1984-06-01

    A device for measuring the exposure rate from neutron-activated indium foil, under constant geometry, has been designed, constructed, and tested. The device is intended for use with the Juno ionization chambers, although it adapts to Victoreen CDV-700 and Victoreen 193 G-M instruments. Juno dose-response data for low (53 rad) and high (226 rad) doses were compiled and modeled. This model was compared to that assumed from the indium foil dose-response model in current use; plots of fitted and assumed models are congruent. An analysis of data from both Juno and CDV-700 instruments indicates that the constant geometry device may be used effectively to monitor the decay of In-116m. Tolerance limits for the Juno dose-response curve increase with time after activation, which results in diminished precision of dose estimates made by indium foil measurement. From the data collected in these experiments, the system appears to be most useful if activation is measured within 250 min after exposure. 5 references, 7 figures, 1 table.

  14. Gold

    USGS Publications Warehouse

    Kirkemo, Harold; Newman, William L.; Ashley, Roger P.

    1998-01-01

    Through the ages, men and women have cherished gold, and many have had a compelling desire to amass great quantities of it -- so compelling a desire, in fact, that the frantic need to seek and hoard gold has been aptly named "gold fever." Gold was among the first metals to be mined because it commonly occurs in its native form -- that is, not combined with other elements -- because it is beautiful and imperishable, and because exquisite objects can be made from it.

  15. Predicting induced activity in the Havar foils of the (18)F production targets of a PET cyclotron and derived radiological risk.

    PubMed

    Martinez-Serrano, J Javier; Diez de Los Rios, Antonio

    2014-08-01

    The PET cyclotron at the Centre of Molecular Imaging of the Universidad de Malaga (CIMES) is a 16.5 MeV GE PETtrace cyclotron working at dual beam (40 μA beam). The cyclotron is dedicated mainly to F production. The F target has two thin circular foils composed of a metal alloy (Havar), that are highly activated by the proton beam and secondary neutrons. The main purpose of this study is to assess induced activity radiological risk derived from the Havar foils activation. Induced activity in Havar foils was estimated by two procedures. One consisted in estimating neutron and proton fluxes with MCNPX and using them as inputs in the activation code ACAB. Alternatively, given the regular periodicity of the irradiation cycles, an analytical expression was derived to estimate activity concentrations of activation products using production rates calculated with MCNPX. Large differences were found in the induced foil activities predicted by the two procedures. Therefore, an irradiated vacuum foil was measured with a Ge detector to analyze activity levels. Cobalt-58 (Co) and Co activities calculated with ACAB match well with measurements. Cobalt-60 (Co) activity estimated with the alternative method agrees acceptably with the measured activity, and Co activity is slightly overestimated. Cobalt-57 (Co) is the activation product of concern in the long term. The vacuum and window foils will be exempted in 3.3 y and 5.5 y, respectively, after replacement. Calculated effective dose with MCNPX and ICRP reference HML phantoms in the foils replacement operation is 0.34 mSv, and annual effective dose would be 2.1 mSv, which is below the annual limits.

  16. Gold-alkynyls in catalysis: alkyne activation, gold cumulenes and nuclearity.

    PubMed

    Halliday, Connor J V; Lynam, Jason M

    2016-08-01

    The use of cationic gold(i) species in the activation of substrates containing C[triple bond, length as m-dash]C bonds has become a valuable tool for synthetic chemists. Despite the seemingly simple label of 'alkyne activation', numerous patterns of reactivity and product structure are observed in systems employing related substrates and catalysts. The complications of mechanistic determination are compounded as the number of implicated gold(i) centres involved in catalysis increases and debate about the bonding in proposed intermediates clouds the number and importance of potential reaction pathways. This perspective aims to illustrate some of the principles underpinning gold-alkynyl interactions whilst highlighting some of the contentious areas in the field and offering some insight into other, often ignored, mechanistic possibilities based on recent findings. PMID:27415145

  17. Gold-alkynyls in catalysis: alkyne activation, gold cumulenes and nuclearity.

    PubMed

    Halliday, Connor J V; Lynam, Jason M

    2016-08-01

    The use of cationic gold(i) species in the activation of substrates containing C[triple bond, length as m-dash]C bonds has become a valuable tool for synthetic chemists. Despite the seemingly simple label of 'alkyne activation', numerous patterns of reactivity and product structure are observed in systems employing related substrates and catalysts. The complications of mechanistic determination are compounded as the number of implicated gold(i) centres involved in catalysis increases and debate about the bonding in proposed intermediates clouds the number and importance of potential reaction pathways. This perspective aims to illustrate some of the principles underpinning gold-alkynyl interactions whilst highlighting some of the contentious areas in the field and offering some insight into other, often ignored, mechanistic possibilities based on recent findings.

  18. Gold-catalyzed oxidative cycloadditions to activate a quinoline framework.

    PubMed

    Huple, Deepak B; Ghorpade, Satish; Liu, Rai-Shung

    2013-09-23

    Going for gold! Gold-catalyzed reactions of 3,5- and 3,6-dienynes with 8-alkylquinoline oxides results in an oxidative cycloaddition with high stereospecificity (see scheme; EWG = electron-withdrawing group); this process involves a catalytic activation of a quinoline framework. The reaction mechanism involves the intermediacy of α-carbonyl pyridinium ylides (I) in a concerted [3+2]-cycloaddition with a tethered alkene.

  19. Foil bearings

    NASA Astrophysics Data System (ADS)

    Elrod, David A.

    1993-11-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.

  20. Foil bearings

    NASA Technical Reports Server (NTRS)

    Elrod, David A.

    1993-01-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.

  1. Foil Electron Multiplier

    DOEpatents

    Funsten, Herbert O.; Baldonado, Juan R.; Dors, Eric E.; Harper, Ronnie W.; Skoug, Ruth M.

    2006-03-28

    An apparatus for electron multiplication by transmission that is designed with at least one foil having a front side for receiving incident particles and a back side for transmitting secondary electrons that are produced from the incident particles transiting through the foil. The foil thickness enables the incident particles to travel through the foil and continue on to an anode or to a next foil in series with the first foil. The foil, or foils, and anode are contained within a supporting structure that is attached within an evacuated enclosure. An electrical power supply is connected to the foil, or foils, and the anode to provide an electrical field gradient effective to accelerate negatively charged incident particles and the generated secondary electrons through the foil, or foils, to the anode for collection.

  2. Heat Transfer Measurements with Surface Mounted Foil-Sensors in an Active Mode: A Comprehensive Review and a New Design

    PubMed Central

    Mocikat, Horst; Herwig, Heinz

    2009-01-01

    A comprehensive review of film-sensors shows that they are primarily operated in a passive mode, i.e. without being actively heated to an extent, whereby they create a heat transfer situation on their own. Only when these sensors are used for wall shear stress measurements, the detection of laminar/turbulent transition, or the measurement of certain flow velocities, they are operated in an active mode, i.e. heated by an electrical current (after an appropriate calibration). In our study we demonstrate how these R(T)-based sensors (temperature dependence of the electrical resistance R) can also be applied in an active mode for heat transfer measurements. These measurements can be made on cold, unheated bodies, provided certain requirements with respect to the flow field are fulfilled. Our new sensors are laminated nickel- and polyimide-foils manufactured with a special technology, which is also described in detail. PMID:22574060

  3. Measurement of Activated Au foils by 2{pi}{beta}+2{pi}{beta}-{gamma} Coincidence Counting and EGS5 Monte Carlo Calculation

    SciTech Connect

    Sato, Yasushi; Harano, Hideki; Matsumoto, Tetsuro; Nishiyama, Jun; Moriyama, Kentaro; Unno, Yasuhiro; Yamada, Takahiro; Yunoki, Akira; Hino, Yoshio; Kudo, Katsuhisa

    2009-03-10

    Neutron activation analysis using Au foil is a common and important method for measurement of thermal neutron fluence. To determine the activity of Au foil experimentally, Kawada et al. proposed 2{pi}{beta}+2{pi}{beta}-{gamma} coincidence counting. This method is based on 4{pi}{beta}-{gamma} coincidence counting but a 4{pi}{beta} detector is divided into two 2{pi}{beta} detectors those are independently operated in the method. In this research the correction factors in 2{pi}{beta}+2{pi}{beta}-{gamma} coincidence counting were obtained by measurement and simulation. The activities obtained by these correction factors were in good agreement.

  4. Neutron intensity monitor with activation foil for p-Li neutron source for BNCT--Feasibility test of the concept.

    PubMed

    Murata, Isao; Otani, Yuki; Sato, Fuminobu

    2015-12-01

    Proton-lithium (p-Li) reaction is being examined worldwide as a candidate nuclear production reaction for accelerator based neutron source (ABNS) for BNCT. In this reaction, the emitted neutron energy is not so high, below 1 MeV, and especially in backward angles the energy is as low as about 100 keV. The intensity measurement was thus known to be difficult so far. In the present study, a simple method was investigated to monitor the absolute neutron intensity of the p-Li neutron source by employing the foil activation method based on isomer production reactions in order to cover around several hundreds keV. As a result of numerical examination, it was found that (107)Ag, (115)In and (189)Os would be feasible. Their features found out are summarized as follows: (107)Ag: The most convenient foil, since the half life is short. (115)In: The accuracy is the best at 0°, though it cannot be used for backward angles. And (189)Os: Suitable nuclide which can be used in backward angles, though the gamma-ray energy is a little too low. These would be used for p-Li source monitoring depending on measuring purposes in real BNCT scenes. PMID:26242557

  5. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    NASA Astrophysics Data System (ADS)

    Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-08-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  6. π Activation of Alkynes in Homogeneous and Heterogeneous Gold Catalysis.

    PubMed

    Bistoni, Giovanni; Belanzoni, Paola; Belpassi, Leonardo; Tarantelli, Francesco

    2016-07-14

    The activation of alkynes toward nucleophilic attack upon coordination to gold-based catalysts (neutral and positively charged gold clusters and gold complexes commonly used in homogeneous catalysis) is investigated to elucidate the role of the σ donation and π back-donation components of the Au-C bond (where we consider ethyne as prototype substrate). Charge displacement (CD) analysis is used to obtain a well-defined measure of σ donation and π back-donation and to find out how the corresponding charge flows affect the electron density at the electrophilic carbon undergoing the nucleophilic attack. This information is used to rationalize the activity of a series of catalysts in the nucleophilic attack step of a model hydroamination reaction. For the first time, the components of the Dewar-Chatt-Duncanson model, donation and back-donation, are put in quantitative correlation with the kinetic parameters of a chemical reaction.

  7. A method for measuring tissue-equivalent dose using a pin diode and activation foil in epithermal neutron beams with EN < 100 keV.

    PubMed

    Carolan, Martin G; Rosenfeld, Anatoly B

    2006-01-01

    Silicon (Si) pin diodes can be used for neutron dosimetry by observing the change in forward bias voltage caused by neutron induced displacement damage in the diode junction. Pin diode energy response depends on Si displacement damage KERMA (K(Si)). It is hypothesised that tissue-equivalent (TE) neutron dose could be expressed as a linear combination of K(Si) and foil activation terms. Monte Carlo simulations (MCNP) of parallel monoenergetic neutron beams incident on a cylindrical TE phantom were used to calculate TE dose, K(Si) and Au, Cu and Mn foil activations along the central axis of the phantom. For spectra with neutron energies <100 keV, it is possible to estimate the TE kerma based on silicon damage kerma and Cu or Mn foil measurements. More accurate estimates are possible for spectra where the maximum neutron energy does not exceed 30 keV. PMID:16644975

  8. Multiple strategies to activate gold nanoparticles as antibiotics.

    PubMed

    Zhao, Yuyun; Jiang, Xingyu

    2013-09-21

    Widespread antibiotic resistance calls for new strategies. Nanotechnology provides a chance to overcome antibiotic resistance by multiple antibiotic mechanisms. This paper reviews the progress in activating gold nanoparticles with nonantibiotic or antibiotic molecules to combat bacterial resistance, analyzes the gap between experimental achievements and real clinical application, and suggests some potential directions in developing antibacterial nanodrugs.

  9. Multiple strategies to activate gold nanoparticles as antibiotics

    NASA Astrophysics Data System (ADS)

    Zhao, Yuyun; Jiang, Xingyu

    2013-08-01

    Widespread antibiotic resistance calls for new strategies. Nanotechnology provides a chance to overcome antibiotic resistance by multiple antibiotic mechanisms. This paper reviews the progress in activating gold nanoparticles with nonantibiotic or antibiotic molecules to combat bacterial resistance, analyzes the gap between experimental achievements and real clinical application, and suggests some potential directions in developing antibacterial nanodrugs.

  10. Gold Sulfinyl Mesoionic Carbenes: Synthesis, Structure, and Catalytic Activity.

    PubMed

    Frutos, María; Avello, Marta G; Viso, Alma; Fernández de la Pradilla, Roberto; de la Torre, María C; Sierra, Miguel A; Gornitzka, Heinz; Hemmert, Catherine

    2016-08-01

    Gold mesoionic carbenes having a chiral sulfoxide group attached to the C4 position of the five membered ring have been prepared and tested as catalysts in the cycloisomerization of enynes. These new catalysts are very efficient, with the sulfoxide moiety playing a key role in their activity and the N1-substituent in control of the regioselectivity of these processes. PMID:27403763

  11. Gold Sulfinyl Mesoionic Carbenes: Synthesis, Structure, and Catalytic Activity.

    PubMed

    Frutos, María; Avello, Marta G; Viso, Alma; Fernández de la Pradilla, Roberto; de la Torre, María C; Sierra, Miguel A; Gornitzka, Heinz; Hemmert, Catherine

    2016-08-01

    Gold mesoionic carbenes having a chiral sulfoxide group attached to the C4 position of the five membered ring have been prepared and tested as catalysts in the cycloisomerization of enynes. These new catalysts are very efficient, with the sulfoxide moiety playing a key role in their activity and the N1-substituent in control of the regioselectivity of these processes.

  12. Gold enrichment in active geothermal systems by accumulating colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Hannington, Mark; Harðardóttir, Vigdis; Garbe-Schönberg, Dieter; Brown, Kevin L.

    2016-04-01

    The origins of high-grade hydrothermal ore deposits are debated, but active geothermal systems provide important clues to their formation. The highest concentrations of gold are found in geothermal systems with direct links to island arc magmatism. Yet, similar concentrations have also been found in the absence of any input from arc magmas, for example, in the Reykjanes geothermal field, Iceland. Here we analyse brine samples taken from deep wells at Reykjanes and find that gold concentrations in the reservoir zone have increased over the past seven years from an average of 3 ppb to 14 ppb. The metal concentrations greatly exceed the maximum solubility of gold in the reservoir under saturated conditions and are now nearly two orders of magnitude higher than in mid-ocean ridge black smoker fluids--the direct analogues of Reykjanes deep liquids. We suggest that ongoing extraction of brine, the resulting pressure drop, and increased boiling have caused gold to drop out of solution and become trapped in the reservoir as a colloidal suspension. This process may explain how the stock of metal in the reservoirs of fossil geothermal systems could have increased over time and thus become available for the formation of gold-rich ore deposits.

  13. Activated metallic gold as an agent for direct methoxycarbonylation.

    PubMed

    Xu, Bingjun; Madix, Robert J; Friend, Cynthia M

    2011-12-21

    We have discovered that metallic gold is a highly effective vehicle for the low-temperature vapor-phase carbonylation of methanol by insertion of CO into the O-H bond to form methoxycarbonyl. This reaction contrasts sharply to the carbonylation pathway well known for homogeneously catalyzed carbonylation reactions, such as the synthesis of acetic acid. The methoxycarbonyl intermediate can be further employed in a variety of methoxycarbonylation reactions, without the use or production of toxic chemicals. More generally we observe facile, selective methoxycarbonylation of alkyl and aryl alcohols and secondary amines on metallic gold well below room temperature. A specific example is the synthesis of dimethyl carbonate, which has extensive use in organic synthesis. This work establishes a unique framework for using oxygen-activated metallic gold as a catalyst for energy-efficient, environmentally benign production of key synthetic chemical agents. PMID:22035206

  14. Unique Gold Nanoparticle Aggregates as a Highly Active SERS Substrate

    SciTech Connect

    Schwartzberg, A M; Grant, C D; Wolcott, A; Talley, C E; Huser, T R; Bogomolni, R; Zhang, J Z

    2004-04-06

    A unique gold nanoparticle aggregate (GNA) system has been shown to be an excellent substrate for surface-enhanced Raman scattering (SERS) applications. Rhodamine 6G (R6G), a common molecule used for testing SERS activity on silver, but generally difficult to detect on gold substrates, has been found to readily bind to the GNA and exhibit strong SERS activity due to the unique surface chemistry afforded by sulfur species on the surface. This GNA system has yielded a large SERS enhancement of 10{sup 7}-10{sup 9} in bulk solution for R6G, on par with or greater than any previously reported gold SERS substrate. SERS activity has also been successfully demonstrated for several biological molecules including adenine, L-cysteine, L-lysine, and L-histidine for the first time on a gold SERS substrate, showing the potential of this GNA as a convenient and powerful SERS substrate for biomolecular detection. In addition, SERS spectrum of R6G on single aggregates has been measured. We have shown that the special surface properties of the GNA, in conjunction with strong near IR absorption, make it useful for SERS analysis of a wide variety of molecules.

  15. Foil changing apparatus

    DOEpatents

    Crist, Charles E.; Ives, Harry C.; Leifeste, Gordon T.; Miller, Robert B.

    1988-01-01

    A self-contained hermetically sealed foil changer for advancing a portion of foil web into a position normal to the path of a high energy particle beam. The path of the beam is defined generally by an aperture plate and cooperating axially movable barrel such that the barrel can be advanced toward the plate thereby positioning a portion of the foil across the beam path and sealing the foil between the barrel and the plate to form a membrane across said beam path. A spooling apparatus contained in the foil changer permits selectively advancing a fresh supply of foil across the beam path without breaking the foil changer seal.

  16. Silver and Gold Nanoparticles Alter Cathepsin Activity In vitro

    NASA Astrophysics Data System (ADS)

    Speshock, Janice L.; Braydich-Stolle, Laura K.; Szymanski, Eric R.; Hussain, Saber M.

    2011-12-01

    Nanomaterials are being incorporated into many biological applications for use as therapeutics, sensors, or labels. Silver nanomaterials are being utilized for biological implants and wound dressings as an antiviral material, whereas gold nanomaterials are being used as biological labels or sensors due to their surface properties and biocompatibility. Cytotoxicity data of these materials are becoming more prevalent; however, little research has been performed to understand how the introduction of these materials into cells affects cellular processes. Here, we demonstrate the impact that silver and gold nanoparticles have on cathepsin activity in vitro. Cathepsins are important cellular proteases that are imperative for proper immune system function. We have selected to examine gold and silver nanoparticles due to the increased use of these materials in biological applications. This manuscript depicts how both of these types of nanomaterials affect cathepsin activity, which could impact the host's immune system and its ability to respond to pathogens. Cathepsin B activity decreases in a dose-dependent manner with all nanoparticles tested. Alternatively, the impact of nanoparticles on cathepsin L activity depends greatly on the type and size of the material.

  17. Additional security features for optically variable foils

    NASA Astrophysics Data System (ADS)

    Marshall, Allan C.; Russo, Frank

    1998-04-01

    For thousands of years, man has exploited the attraction and radiance of pure gold to adorn articles of great significance. Today, designers decorate packaging with metallic gold foils to maintain the prestige of luxury items such as perfumes, chocolates, wine and whisky, and to add visible appeal and value to wide range of products. However, today's products do not call for the hand beaten gold leaf of the Ancient Egyptians, instead a rapid production technology exists which makes use of accurately coated thin polymer films and vacuum deposited metallic layers. Stamping Foils Technology is highly versatile since several different layers may be combined into one product, each providing a different function. Not only can a foil bring visual appeal to an article, it can provide physical and chemical resistance properties and also protect an article from human forms of interference, such as counterfeiting, copying or tampering. Stamping foils have proved to be a highly effective vehicle for applying optical devices to items requiring this type of protection. Credit cards, bank notes, personal identification documents and more recently high value packaged items such as software and perfumes are protected by optically variable devices applied using stamping foil technology.

  18. The syndrome of continuous muscle fibre activity following gold therapy.

    PubMed

    Grisold, W; Mamoli, B

    1984-01-01

    A 72-year-old man suffering from arthritis received a total dose of 500 mg sodium aurothiomalate during a period of 5 months. His clinical state then deteriorated and he had to be hospitalized. Upon admission he was bedridden, his level of consciousness was slightly impaired, he was confused and respiration was laboured. Continuous muscle activity was noted on all extremities and at first, erroneously, fasciculations were diagnosed. The EMG exhibited continuous muscle fibre activity consisting of duplets, triplets and multiplets. The discharges occurred in an irregular pattern; when various muscles were examined at the same time no synchronicity could be observed between muscle discharges. In the left m. deltoideus an increased percentage of polyphasic potentials was found, whereas mean duration of motor unit potentials was normal. Spontaneous activity remained unchanged during sleep and administration of intravenous diazepam or phenytoin. Blocking of ulnar nerve at either elbow or wrist level did not stop spontaneous activity in m. abductor digiti quinti. Ischaemia increased the amount of discharges after 7 min. Within 4 months after termination of gold therapy the patient's condition improved and he was discharged from hospital. Regular EMG follow-up after 8 months showed complete cessation of abnormal spontaneous activities. Nerve conduction velocities were normal except for markedly reduced compound action potential in peroneal nerves. Continuous muscle fibre activity as a side-effect of gold therapy is described. PMID:6440953

  19. A novel carbon coating technique for foil bolometers

    NASA Astrophysics Data System (ADS)

    Sheikh, U. A.; Duval, B. P.; Labit, B.; Nespoli, F.

    2016-11-01

    Naked foil bolometers can reflect a significant fraction of incident energy and therefore cannot be used for absolute measurements. This paper outlines a novel coating approach to address this problem by blackening the surface of gold foil bolometers using physical vapour deposition. An experimental bolometer was built containing four standard gold foil bolometers, of which two were coated with 100+ nm of carbon. All bolometers were collimated and observed the same relatively high temperature, ohmically heated plasma. Preliminary results showed 13%-15% more incident power was measured by the coated bolometers and this is expected to be much higher in future TCV detached divertor experiments.

  20. Measuring neutron yield and ρR anisotropies with activation foils at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bleuel, D. L.; Bernstein, L. A.; Bionta, R. M.; Cooper, G. W.; Drury, O. B.; Hagmann, C. A.; Knittel, K. M.; Leeper, R. J.; Ruiz, C. L.; Schneider, D. H. G.; Yeamans, C. B.

    2013-11-01

    Neutron yields at the National Ignition Facility (NIF) are measured with a suite of diagnostics, including activation of ˜20-200 g samples of materials undergoing a variety of energy-dependent neutron reactions. Indium samples were mounted on the end of a Diagnostic Instrument Manipulator (DIM), 25-50 cm from the implosion, to measure 2.45 MeV D-D fusion neutron yield. The 336.2 keV gamma rays from the 4.5 hour isomer of 115mIn produced by (n,n') reactions are counted in high-purity germanium detectors. For capsules producing D-T fusion reactions, zirconium and copper are activated via (n,2n) reactions at various locations around the target chamber and bay, measuring the 14 MeV neutron yield to accuracies on order of 7%. By mounting zirconium samples on ports at nine locations around the NIF chamber, anisotropies in the primary neutron emission due to fuel areal density asymmetries can be measured to a relative precision of 3%.

  1. Impact Ignition of Low Density Mechanically Activated and Multilayer Foil Ni/Al

    NASA Astrophysics Data System (ADS)

    Beason, Matthew; Mason, B.; Son, Steven; Groven, Lori

    2013-06-01

    Mechanical activation (MA) via milling of reactive materials provides a means of lowering the ignition threshold of shock initiated reactions. This treatment provides a finely mixed microstructure with wide variation in the resulting scales of the intraparticle microstructure that makes model validation difficult. In this work we consider nanofoils produced through vapor deposition with well defined periodicity and a similar degree of fine scale mixing. This allows experiments that may be easier to compare with computational models. To achieve this, both equimolar Ni/Al powder that has undergone MA using high energy ball milling and nanofoils milled into a powder using low energy ball milling were used. The Asay Shear impact experiment was conducted on both MA Ni/Al and Ni/Al nanofoil-based powders at low densities (<60%) to examine their impact response and reaction behavior. Scanning electron microscopy and energy-dispersive x-ray spectroscopy were used to verify the microstructure of the materials. The materials' mechanical properties were evaluated using nano-indentation. Onset temperatures were evaluated using differential thermal analysis/differential scanning calorimetry. Impact ignition thresholds, burning rates, temperature field, and ignition delays are reported. Funding from the Defense Threat Reduction Agency (DTRA) Grant Number HDTRA1-10-1-0119. Counter-WMD basic research program, Dr. Suhithi M. Peiris, program director is gratefully acknowledged.

  2. Lithium ion batteries made of electrodes with 99 wt% active materials and 1 wt% carbon nanotubes without binder or metal foils

    NASA Astrophysics Data System (ADS)

    Hasegawa, Kei; Noda, Suguru

    2016-07-01

    Herein, we propose lithium ion batteries (LIBs) without binder or metal foils, based on a three-dimensional carbon nanotube (CNT) current collector. Because metal foils occupy 20-30 wt% of conventional LIBs and the polymer binder has no electrical conductivity, replacing such non-capacitive materials is a valid approach for improving the energy and power density of LIBs. Adding only 1 wt% of few-wall CNTs to the active material enables flexible freestanding sheets to be fabricated by simple dispersion and filtration processes. Coin cell tests are conducted on full cells fabricated from a 99 wt% LiCoO2-1 wt% CNT cathode and 99 wt% graphite-1 wt% CNT anode. Discharge capacities of 353 and 306 mAh ggraphite-1 are obtained at charge-discharge rates of 37.2 and 372 mA ggraphite-1, respectively, with a capacity retention of 65% at the 500th cycle. The suitability of the 1 wt% CNT-based composite electrodes for practical scale devices is demonstrated with laminate cells containing 50 × 50 mm2 electrodes. Use of metal combs instead of metal foils enables charge-discharge operation of the laminate cell without considerable IR drop. Such electrodes will minimize the amount of metal and maximize the amount of active materials contained in LIBs.

  3. Gold nanoparticles-graphene hybrids as active catalysts for Suzuki reaction

    SciTech Connect

    Li, Yang; Fan, Xiaobin; Qi, Junjie; Ji, Junyi; Wang, Shulan; Zhang, Guoliang; Zhang, Fengbao

    2010-10-15

    Graphene was successfully modified with gold nanoparticles in a facile route by reducing chloroauric acid in the presence of sodium dodecyl sulfate, which is used as both a surfactant and reducing agent. The gold nanoparticles-graphene hybrids were characterized by high-resolution transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction and energy X-ray spectroscopy. We demonstrate for the first time that the gold nanoparticles-graphene hybrids can act as efficient catalysts for the Suzuki reaction in water under aerobic conditions. The catalytic activity of gold nanoparticles-graphene hybrids was influenced by the size of the gold nanoparticles.

  4. Flexible Flapping Foils

    NASA Astrophysics Data System (ADS)

    Marais, Catherine; Godoy-Diana, Ramiro; Wesfreid, José. Eduardo

    2010-11-01

    Hydrodynamic tunnel experiments with flexible flapping foils of 4:1 span-to-chord aspect ratio are used in the present work to study the effect of foil compliance in the dynamical features of a propulsive wake. The average thrust force produced by the foil is estimated from 2D PIV measurements and the regime transitions in the wake are characterized according to a flapping frequency-amplitude phase diagram as in Godoy-Diana et al. (Phys. Rev. E 77, 016308, 2008). We show that the thrust production regime occurs on a broader region of the parameter space for flexible foils, with propulsive forces up to 3 times greater than for the rigid case. We examine in detail the vortex generation at the trailing edge of the foils, and propose a mechanism to explain how foil deformation leads to an optimization of propulsion.

  5. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation

    NASA Astrophysics Data System (ADS)

    He, Qian; Freakley, Simon J.; Edwards, Jennifer K.; Carley, Albert F.; Borisevich, Albina Y.; Mineo, Yuki; Haruta, Masatake; Hutchings, Graham J.; Kiely, Christopher J.

    2016-09-01

    The identity of active species in supported gold catalysts for low temperature carbon monoxide oxidation remains an unsettled debate. With large amounts of experimental evidence supporting theories of either gold nanoparticles or sub-nm gold species being active, it was recently proposed that a size-dependent activity hierarchy should exist. Here we study the diverging catalytic behaviours after heat treatment of Au/FeOx materials prepared via co-precipitation and deposition precipitation methods. After ruling out any support effects, the gold particle size distributions in different catalysts are quantitatively studied using aberration corrected scanning transmission electron microscopy (STEM). A counting protocol is developed to reveal the true particle size distribution from HAADF-STEM images, which reliably includes all the gold species present. Correlation of the populations of the various gold species present with catalysis results demonstrate that a size-dependent activity hierarchy must exist in the Au/FeOx catalyst.

  6. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation

    PubMed Central

    He, Qian; Freakley, Simon J.; Edwards, Jennifer K.; Carley, Albert F.; Borisevich, Albina Y.; Mineo, Yuki; Haruta, Masatake; Hutchings, Graham J.; Kiely, Christopher J.

    2016-01-01

    The identity of active species in supported gold catalysts for low temperature carbon monoxide oxidation remains an unsettled debate. With large amounts of experimental evidence supporting theories of either gold nanoparticles or sub-nm gold species being active, it was recently proposed that a size-dependent activity hierarchy should exist. Here we study the diverging catalytic behaviours after heat treatment of Au/FeOx materials prepared via co-precipitation and deposition precipitation methods. After ruling out any support effects, the gold particle size distributions in different catalysts are quantitatively studied using aberration corrected scanning transmission electron microscopy (STEM). A counting protocol is developed to reveal the true particle size distribution from HAADF-STEM images, which reliably includes all the gold species present. Correlation of the populations of the various gold species present with catalysis results demonstrate that a size-dependent activity hierarchy must exist in the Au/FeOx catalyst. PMID:27671143

  7. Synthesis and antimicrobial activity of gold nanoparticle conjugates with cefotaxime

    NASA Astrophysics Data System (ADS)

    Titanova, Elena O.; Burygin, Gennady L.

    2016-04-01

    Gold nanoparticles (GNPs) have attracted significant interest as a novel platform for various applications to nanobiotechnology and biomedicine. The conjugates of GNPs with antibiotics and antibodies were also used for selective photothermal killing of protozoa and bacteria. Also the conjugates of some antibiotics with GNPs decreased the number of bacterial growing cells. In this work was made the procedure optimization for conjugation of cefotaxime (a third-generation cephalosporin antibiotic) with GNPs (15 nm) and we examined the antimicrobial properties of this conjugate to bacteria culture of E. coli K-12. Addition of cefotaxime solution to colloidal gold does not change their color and extinction spectrum. For physiologically active concentration of cefotaxime (3 μg/mL), it was shown that the optimum pH for the conjugation was more than 9.5. A partial aggregation of the GNPs in saline medium was observed at pH 6.5-7.5. The optimum concentration of K2CO3 for conjugation cefotaxime with GNPs-15 was 5 mM. The optimum concentration of cefotaxime was at 0.36 μg/mL. We found the inhibition of the growth of E. coli K12 upon application cefotaxime-GNP conjugates.

  8. ATP-enhanced peroxidase-like activity of gold nanoparticles.

    PubMed

    Shah, Juhi; Purohit, Rahul; Singh, Ragini; Karakoti, Ajay Singh; Singh, Sanjay

    2015-10-15

    Gold nanoparticles (AuNPs) are known to possess intrinsic biological peroxidase-like activity that has applications in development of numerous biosensors. The reactivity of the Au atoms at the surface of AuNPs is critical to the performance of such biosensors, yet little is known about the effect of biomolecules and ions on the peroxidase-like activity. In this work, the effect of ATP and other biologically relevant molecules and ions over peroxidase-like activity of AuNPs are described. Contrary to the expectation that nanoparticles exposed to biomolecules may lose the catalytic property, ATP and ADP addition enhanced the peroxidase-like activity of AuNPs. The catalytic activity was unaltered by the addition of free phosphate, sulphate and carbonate anions however, addition of ascorbic acid to the reaction mixture diminished the intrinsic peroxidase-like activity of AuNPs, even in the presence of ATP and ADP. In contrast to AuNPs, ATP did not synergize and improve the peroxidase activity of the natural peroxidase enzyme, horseradish peroxidase.

  9. Interfacial activity of polymer-coated gold nanoparticles.

    PubMed

    Borrell, Marcos; Leal, L Gary

    2007-12-01

    A systematic study of the interfacial activity of polymer-coated gold nanoparticles was performed with the use of a computer-controlled four-roll mill. The nanoparticle locality within the polymeric domains (bulk or interface) was controlled by means of a mixture of polymeric ligands grafted to the gold nanoparticle core. The bulk polymers were polybutadiene (PBd) and polydimethylsiloxane (PDMS). Monoterminated PDMS and PBd ligands were synthesized on the basis of the esterification of reactive groups (such as hydroxyl or amino groups) with lipoic acid anhydride. The formation of polymer-coated nanoparticles using these lipoic acid-functionalized polymers was confirmed via transmission electron microscopy (TEM), and their interfacial activity was manifested as a reduction of the interfacial tension and in the enhanced stability of thin films (as seen via the inhibition of coalescence). The nanoparticles showed an equal, if not superior, ability to reduce the interfacial tension when compared to previous studies on the effect of insoluble surfactants; however, these particles proved not to be as effective at inhibiting coalescence as their surfactant counterpart. We suggest that this effect may be caused by an increase in the attractive van der Waals forces created by the presence of metal-core nanoparticles. Experimental measurements using the four-roll mill allow us to explore the relationship between nanoparticle concentration at the interface and interfacial tension. In particular, we have found evidence that the interface concentration can be increased relative to the equilibrium value achieved by diffusion alone, and thus the interfacial tension can be systematically reduced if the interfacial area is increased temporarily via drop deformation or breakup followed by recoalescence. PMID:17973410

  10. Analysis of antifreeze protein activity using colorimetric gold nanosensors

    NASA Astrophysics Data System (ADS)

    Jing, Xu; Choi, Ho-seok; Park, Ji-In; Kim, Young-Pil

    2015-07-01

    High activity and long stability of antifreeze proteins (AFPs), also known as ice-binding proteins (IBPs), are necessary for exerting their physiological functions in biotechnology and cryomedicine. Here we report a simple analysis of antifreeze protein activity and stability based on self-assembly of gold nanoparticles (AuNPs) via freezing and thawing cycles. While the mercaptosuccinic acid-capped AuNP (MSA-AuNP) was easily self-assembled after a freezing/thawing cycle, due to the mechanical attack of ice crystal on the MSA-AuNP surface, the presence of AFP impeded the self-assembly of MSA-AuNP via the interaction of AFP with ice crystals via freezing and thawing cycles, which led to a strong color in the MSA-AuNP solution. As a result, the aggregation parameter (E520/E650) of MSA-AuNP showed the rapid detection of both activity and stability of AFPs. We suggest that our newly developed method is very suitable for measuring antifreeze activity and stability in a simple and rapid manner with reliable quantification.

  11. Charge separation promoted activation of molecular oxygen by neutral gold clusters.

    PubMed

    Woodham, Alex P; Meijer, Gerard; Fielicke, André

    2013-02-01

    Gold nanoparticles and sub-nanoparticles famously act as highly efficient and selective low-temperature oxidation catalysts with molecular oxygen, in stark contrast to the nobility of the bulk phase. The origins of this activity and the nature of the active species remain open questions. Gas-phase studies of isolated gold clusters hold promise for disentangling these problems. Here we address the interaction of neutral gold clusters (Au(n); 4 ≤ n ≤ 21) with molecular oxygen by probing the highly characteristic O-O vibrational stretch frequencies. This reveals that for selected cluster sizes the oxygen is highly activated with respect to the free moiety. Complementary quantum chemical calculations provide evidence for substantial electron transfer to the O(2) unit and concomitant rearrangement of the parent gold cluster structure upon binding and activation. This gives evidence for a model of the interaction between neutral gold clusters and molecular oxygen.

  12. Foil Face Seal Testing

    NASA Technical Reports Server (NTRS)

    Munson, John

    2009-01-01

    In the seal literature you can find many attempts by various researchers to adapt film riding seals to the gas turbine engine. None have been successful, potential distortion of the sealing faces is the primary reason. There is a film riding device that does accommodate distortion and is in service in aircraft applications, namely the foil bearing. More specifically a foil thrust bearing. These are not intended to be seals, and they do not accommodate large axial movement between shaft & static structure. By combining the 2 a unique type of face seal has been created. It functions like a normal face seal. The foil thrust bearing replaces the normal primary sealing surface. The compliance of the foil bearing allows the foils to track distortion of the mating seal ring. The foil seal has several perceived advantages over existing hydrodynamic designs, enumerated in the chart. Materials and design methodology needed for this application already exist. Also the load capacity requirements for the foil bearing are low since it only needs to support itself and overcome friction forces at the antirotation keys.

  13. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds.

    PubMed

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-04-22

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen.

  14. Active oil seep at Nevada gold mine holds intrigue for more exploration

    SciTech Connect

    Pinnell, M.L.; Blake, J.G. ); Hulen, J.B. )

    1991-07-15

    This paper reports on an active oil seep has been discovered in one of Nevada's famous Carlin-type low grade disseminated gold deposits. This unique seep, at the Yankee gold mine in White Pine County, may have important implications for both oil and gas and gold exploration in the Basin and Range province of the western U.S. The open pit Yankee mine, near the western margin of Long Valley, exploits one of numerous Carlin-type gold ore bodies in the alligator Ridge mining district; all are currently owned and operated by USMX Corp.

  15. Identification of active sites in gold-catalyzed hydrogenation of acrolein.

    PubMed

    Mohr, Christian; Hofmeister, Herbert; Radnik, Jörg; Claus, Peter

    2003-02-19

    The active sites of supported gold catalysts, favoring the adsorption of C=O groups of acrolein and subsequent reaction to allyl alcohol, have been identified as edges of gold nanoparticles. After our recent finding that this reaction preferentially occurs on single crystalline particles rather than multiply twinned ones, this paper reports on a new approach to distinguish different features of the gold particle morphology. Elucidation of the active site issue cannot be simply done by varying the size of gold particles, since the effects of faceting and multiply twinned particles may interfere. Therefore, modification of the gold particle surface by indium has been used to vary the active site characteristics of a suitable catalyst, and a selective decoration of gold particle faces has been observed, leaving edges free. This is in contradiction to theoretical predictions, suggesting a preferred occupation of the low-coordinated edges of the gold particles. On the bimetallic catalyst, the desired allyl alcohol is the main product (selectivity 63%; temperature 593 K, total pressure p(total) = 2 MPa). From the experimentally proven correlation between surface structure and catalytic behavior, the edges of single crystalline gold particles have been identified as active sites for the preferred C=O hydrogenation. PMID:12580618

  16. Sol immobilization technique: a delicate balance between activity, selectivity and stability for gold catalyst

    SciTech Connect

    Villa, Alberto; Wang, Di; Veith, Gabriel M; Prati, Laura

    2013-01-01

    Sol immobilization is a widely used method to prepare gold catalysts. The presence of the protective layer can have a significant influence on catalyst properties by mediating metal-support and reactantmetal interactions. This paper details the effect of a polyvinyl alcohol (PVA) protecting groups on the activity of a supported gold catalysts as well as its selectivity towards glycerol oxidation.

  17. Gold nanowire networks: synthesis, characterization, and catalytic activity.

    PubMed

    Chirea, Mariana; Freitas, Andreia; Vasile, Bogdan S; Ghitulica, Cristina; Pereira, Carlos M; Silva, Fernando

    2011-04-01

    Gold nanowire networks (AuNWNs) with average widths of 17.74 nm (AuNWN(1)) or 23.54 nm (AuNWN(2)) were synthesized by direct reduction of HAuCl(4) with sodium borohydride powder in deep eutectic solvents, such as ethaline or reline, at 40 °C. Their width and length were dependent on the type of solvent and the NaBH(4)/HAuCl(4) molar ratio (32 in ethaline and 5.2 in reline). High resolution transmission electron microscopy (HR-TEM) analysis of the gold nanowire networks showed clear lattice fringes of polycrystalline nanopowder of d = 2.36, 2.04, 1.44, and 1.23 Å corresponding to the (111), (200), (220), or (311) crystallographic planes of face centered cubic gold. The purified AuNWNs were used as catalysts for the chemical reduction of p-nitroaniline to diaminophenylene with sodium borohydride in aqueous solution. The reaction was monitored in real time by UV-vis spectroscopy. The results show that the reduction process is six times faster in the presence of gold nanowire networks stabilized by urea from the reline (AuNWN(2)) than in the presence of gold nanowire networks stabilized by ethylene glycol from ethaline (AuNWN(1)). This is due to a higher number of corners and edges on the gold nanowires synthesized in reline than on those synthesized in ethaline as proven by X-ray diffraction (XRD) patterns recorded for both types of gold nanowire networks. Nevertheless, both types of nanomaterials determined short times of reaction and high conversion of p-nitroaniline to diaminophenylene. These gold nanomaterials represent a new addition to a new generation of catalysts: gold based catalysts. PMID:21348463

  18. Synthesis and characterization of mixed monolayer protected gold nanorods and their Raman activities

    SciTech Connect

    Mlambo, Mbuso; Mdluli, Phumlani S.; Shumbula, Poslet; Mpelane, Siyasanga; Moloto, Nosipho; Skepu, Amanda; Tshikhudo, Robert

    2013-10-15

    Graphical abstract: Gold nanorods surface functionalization. - Highlights: • Mixed monolayer protected gold nanorods. • Surface enhanced Raman spectroscopy. • HS-(CH{sub 2}){sub 11}-NHCO-coumarin as a Raman active compound. - Abstract: The cetyltrimethylammonium bromide (CTAB) gold nanorods (AuNRs) were prepared by seed-mediated route followed by the addition of a Raman active compound (HS-(CH{sub 2}){sub 11}-NHCO-coumarin) on the gold nanorods surfaces. Different stoichiometric mixtures of HS-(CH{sub 2}){sub 11}-NHCO-coumarin and HS-PEG-(CH{sub 2}){sub 11}COOH were evaluated for their Raman activities. The lowest stoichiometric ratio HS-(CH{sub 2}){sub 11}-NHCO-coumarin adsorbed on gold nanorods surface was detected and enhanced by Raman spectroscopy. The produced mixed monolayer protected gold nanorods were characterized by UV-vis spectrometer for optical properties, transmission electron microscope (TEM) for structural properties (shape and aspect ratio) and their zeta potentials (charges) were obtained from ZetaSizer to determine the stability of the produced mixed monolayer protected gold nanorods. The Raman results showed a surface enhanced Raman scattering (SERS) enhancement at the lowest stoichiometric ratio of 1% HS-(CH{sub 2}){sub 11}-NHCO-coumarin compared to high ratio of 50% HS-(CH{sub 2}){sub 11}-NHCO-coumarin on the surface of gold nanorods.

  19. Synthesis and catalytic activity of the metastable phase of gold phosphide

    NASA Astrophysics Data System (ADS)

    Fernando, Deshani; Nigro, Toni A. E.; Dyer, I. D.; Alia, Shaun M.; Pivovar, Bryan S.; Vasquez, Yolanda

    2016-10-01

    Recently, transition metal phosphides have found new applications as catalysts for the hydrogen evolution reaction that has generated an impetus to synthesize these materials at the nanoscale. In this work, Au2P3 was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous. Gold nanorods were used as morphological templates with the aim of controlling the shape and size of the resulting gold phosphide particles. We demonstrate that the surface capping ligand of the gold nanoparticle precursors can influence the purity and extent to which the gold phosphide phase will form. Gold nanorods functionalized with 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanorods are used instead. The Au2P3 nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution reaction.

  20. Antitumor activity of galactoxyloglucan-gold nanoparticles against murine ascites and solid carcinoma.

    PubMed

    Joseph, Manu M; Aravind, S R; George, Suraj K; Pillai, K Raveendran; Mini, S; Sreelekha, T T

    2014-04-01

    Galactoxyloglucan polysaccharide (PST001), isolated from the seed kernels of Tamarindus indica (Ti), was used both as reducing and capping agent for the preparation of gold nanoparticles (PST-Gold) of 20 nm size. The present study evaluated the anticancer effects of the PST-Gold nanoparticles both in vitro and in vivo. The cytotoxicity was evaluated in the murine cancer cell lines, Dalton's lymphoma ascites (DLA) and Ehrlich's ascites carcinoma (EAC). Galactoxyloglucan-gold nanoparticles (PST-Gold) not only retained the anticancer effects of PST001, but also showed enhanced cytotoxicity via induction of apoptosis even at lower doses and lesser incubation times. In vivo antitumor activity was tested in DLA and EAC murine ascites and EAC solid-tumor syngeneic mouse models. PST-Gold nanoparticles reduced tumor burden and increased median survival and life span significantly in both tumor models compared to the controls. The PST-Gold nanoparticles were very effective as a chemopreventive agent, showing the best overall response when administered prior to tumor induction. In the case of solid tumors, intratumoral administration of the PST-Gold nanoparticles yielded significant results with regard to survival and increment in lifespan as compared to intraperitoneal mode of drug administration. Further studies in higher animal models and in patients at high-risk for recurrence are warranted to fully explore and develop the potential of PST-Gold nanoconjugates as a chemopreventive and therapeutic anti-cancer agent. PMID:24486833

  1. Synthesis, characterization, cytotoxic and antitubercular activities of new gold(I) and gold(III) complexes containing ligands derived from carbohydrates.

    PubMed

    Chaves, Joana Darc Souza; Damasceno, Jaqueline Lopes; Paula, Marcela Cristina Ferreira; de Oliveira, Pollyanna Francielli; Azevedo, Gustavo Chevitarese; Matos, Renato Camargo; Lourenço, Maria Cristina S; Tavares, Denise Crispim; Silva, Heveline; Fontes, Ana Paula Soares; de Almeida, Mauro Vieira

    2015-10-01

    Novel gold(I) and gold(III) complexes containing derivatives of D-galactose, D-ribose and D-glucono-1,5-lactone as ligands were synthesized and characterized by IR, (1)H, and (13)C NMR, high resolution mass spectra and cyclic voltammetry. The compounds were evaluated in vitro for their cytotoxicity against three types of tumor cells: cervical carcinoma (HeLa) breast adenocarcinoma (MCF-7) and glioblastoma (MO59J) and one non-tumor cell line: human lung fibroblasts (GM07492A). Their antitubercular activity was evaluated as well expressed as the minimum inhibitory concentration (MIC90) in μg/mL. In general, the gold(I) complexes were more active than gold(III) complexes, for example, the gold(I) complex (1) was about 8.8 times and 7.6 times more cytotoxic than gold(III) complex (8) in MO59J and MCF-7 cells, respectively. Ribose and alkyl phosphine derivative complexes were more active than galactose and aryl phosphine complexes. The presence of a thiazolidine ring did not improve the cytotoxicity. The study of the cytotoxic activity revealed effective antitumor activities for the gold(I) complexes, being more active than cisplatin in all the tested tumor cell lines. Gold(I) compounds (1), (2), (3), (4) and (6) exhibited relevant antitubercular activity even when compared with first line drugs such as rifampicin.

  2. SNS Injection Foil Experience

    SciTech Connect

    Cousineau, Sarah M; Galambos, John D; Kim, Sang-Ho; Ladd, Peter; Luck, Chris; Peters, Charles C; Polsky, Yarom; Shaw, Robert W; Macek, Robert James; Raparia, Deepak; Plum, Michael A

    2010-01-01

    The Spallation Neutron Source comprises a 1 GeV, 1.4 MW linear accelerator followed by an accumulator ring and a liquid mercury target. To manage the beam loss caused by the H0 excited states created during the H charge exchange injection into the accumulator ring, the stripper foil is located inside one of the chicane dipoles. This has some interesting consequences that were not fully appreciated until the beam power reached about 840 kW. One consequence was sudden failure of the stripper foil system due to convoy electrons stripped from the incoming H beam, which circled around to strike the foil bracket and cause bracket failure. Another consequence is that convoy electrons can reflect back up from the electron catcher and strike the foil and bracket. An additional contributor to foil system failure is vacuum breakdown due to the charge developed on the foil by secondary electron emission. In this paper we will detail these and other interesting failure mechanisms, and describe the improvements we have made to mitigate them.

  3. Advanced mercury removal from gold leachate solutions prior to gold and silver extraction: a field study from an active gold mine in Peru.

    PubMed

    Matlock, Matthew M; Howerton, Brock S; Van Aelstyn, Mike A; Nordstrom, Fredrik L; Atwood, David A

    2002-04-01

    Mercury contamination in the Gold-Cyanide Process (GCP) is a serious health and environmental problem. Following the heap leaching of gold and silver ores with NaCN solutions, portions of the mercury-cyano complexes often adhere to the activated carbon (AC) used to extract the gold. During the electrowinning and retorting steps, mercury can be (and often is) emitted to the air as a vapor. This poses a severe health hazard to plant workers and the local environment. Additional concerns relate to the safety of workers when handling the mercury-laden AC. Currently, mercury treatment from the heap leach solution is nonexistent. This is due to the fact that chelating ligands which can effectively work under the adverse pH conditions (as present in the heap leachate solutions) do not exist. In an effort to economically and effectively treat the leachate solution prior to passing over the AC, a dipotassium salt of 1,3-benzenediamidoethanethiol (BDET2-) has been developed to irreversibly bind and precipitate the mercury. The ligand has proven to be highly effective by selectively reducing mercury levels from average initial concentrations of 34.5 ppm (parts per million) to 0.014 ppm within 10 min and to 0.008 ppm within 15 min. X-ray powder diffraction (XRD), proton nuclear magnetic resonance (1H NMR), Raman, and infrared (IR) spectroscopy demonstrate the formation of a mercury-ligand compound, which remains insoluble over pH ranges of 0.0-14.0. Leachate samples from an active gold mine in Peru have been analyzed using cold vapor atomic fluorescence (CVAF) and inductively coupled plasma optical emission spectroscopy (ICP-OES) for metal concentrations before and after treatment with the BDET2- ligand. PMID:11999077

  4. Gold nanorod in reverse micelles: a fitting fusion to catapult lipase activity.

    PubMed

    Maiti, Subhabrata; Ghosh, Moumita; Das, Prasanta Kumar

    2011-09-21

    Lipase solubilized within gold nanorod doped CTAB reverse micelles exhibited remarkable improvement in its activity mainly due to the enhanced interfacial domain of newly developed self-assembled nanocomposites.

  5. Facile synthesis of dendritic gold nanostructures with hyperbranched architectures and their electrocatalytic activity toward ethanol oxidation.

    PubMed

    Huang, Jianshe; Han, Xinyi; Wang, Dawei; Liu, Dong; You, Tianyan

    2013-09-25

    Gold dendritic nanostructures with hyperbranched architectures were synthesized by the galvanic replacement reaction between nickel wire and HAuCl4 in aqueous solution. The study revealed that the morphology of the obtained nanostructures strongly depended on experimental parameters such as the HAuCl4 solution concentration, reaction temperature, and time, as well as stirring or not. According to the investigation of the growth process, it was proposed that gold nanoparticles with rough surfaces were first deposited on the nickel substrate and that subsequent growth preferentially occurred on the preformed gold nanoparticles, finally leading to the formation of hyperbranched gold dendrites via a self-organization process under nonequilibrium conditions. The electrochemical experiment results demonstrated that the as-obtained gold dendrites exhibited high catalytic activity toward ethanol electrooxidation in alkaline solution, indicating that this nanomaterial may be a potential catalyst for direct ethanol fuel cells.

  6. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    PubMed Central

    Wang, Yang-Gang; Mei, Donghai; Glezakou, Vassiliki-Alexandra; Li, Jun; Rousseau, Roger

    2015-01-01

    Catalysis by gold supported on reducible oxides has been extensively studied, yet issues such as the nature of the catalytic site and the role of the reducible support remain fiercely debated topics. Here we present ab initio molecular dynamics simulations of an unprecedented dynamic single-atom catalytic mechanism for the oxidation of carbon monoxide by ceria-supported gold clusters. The reported dynamic single-atom catalytic mechanism results from the ability of the gold cation to strongly couple with the redox properties of the ceria in a synergistic manner, thereby lowering the energy of redox reactions. The gold cation can break away from the gold nanoparticle to catalyse carbon monoxide oxidation, adjacent to the metal/oxide interface and subsequently reintegrate back into the nanoparticle after the reaction is completed. Our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in catalysis. PMID:25735407

  7. The pharmacological profile of auranofin, an orally active gold compound.

    PubMed

    Walz, D T; DiMartino, M J; Griswold, D E

    1983-01-01

    Auranofin (AF; ' Ridaura '), an oral chrysotherapeutic agent, parenteral gold sodium thiomalate (GST) and gold thioglucose (GTG) were evaluated in order to compare their preclinical profiles. AF was found to be more effective than GST and GTG in suppressing inflammation and stimulating cell-mediated immunity. In contrast to GST, AF inhibited cellular release of lysosomal enzymes, antibody-dependent cellular cytotoxicity, production of antibodies in adjuvant arthritic rats, and antibodies involved in cytotoxicity reactions. In pharmacokinetic studies, plasma gold in rats following AF administration, exhibited greater cell association than after GST administration. In conclusion, the pharmacological profile of AF is markedly different from those of GST and GTG and this suggests potential for improvements in chrysotherapy. PMID:6426049

  8. Role of nanostructured gold surfaces on monocyte activation and Staphylococcus epidermidis biofilm formation.

    PubMed

    Svensson, Sara; Forsberg, Magnus; Hulander, Mats; Vazirisani, Forugh; Palmquist, Anders; Lausmaa, Jukka; Thomsen, Peter; Trobos, Margarita

    2014-01-01

    The role of material surface properties in the direct interaction with bacteria and the indirect route via host defense cells is not fully understood. Recently, it was suggested that nanostructured implant surfaces possess antimicrobial properties. In the current study, the adhesion and biofilm formation of Staphylococcus epidermidis and human monocyte adhesion and activation were studied separately and in coculture in different in vitro models using smooth gold and well-defined nanostructured gold surfaces. Two polystyrene surfaces were used as controls in the monocyte experiments. Fluorescent viability staining demonstrated a reduction in the viability of S. epidermidis close to the nanostructured gold surface, whereas the smooth gold correlated with more live biofilm. The results were supported by scanning electron microscopy observations, showing higher biofilm tower formations and more mature biofilms on smooth gold compared with nanostructured gold. Unstimulated monocytes on the different substrates demonstrated low activation, reduced gene expression of pro- and anti-inflammatory cytokines, and low cytokine secretion. In contrast, stimulation with opsonized zymosan or opsonized live S. epidermidis for 1 hour significantly increased the production of reactive oxygen species, the gene expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and IL-10, as well as the secretion of TNF-α, demonstrating the ability of the cells to elicit a response and actively phagocytose prey. In addition, cells cultured on the smooth gold and the nanostructured gold displayed a different adhesion pattern and a more rapid oxidative burst than those cultured on polystyrene upon stimulation. We conclude that S. epidermidis decreased its viability initially when adhering to nanostructured surfaces compared with smooth gold surfaces, especially in the bacterial cell layers closest to the surface. In contrast, material surface properties neither strongly

  9. Different active biomolecules involved in biosynthesis of gold nanoparticles by three fungus species.

    PubMed

    Zhang, Xiaorong; He, Xiaoxiao; Wang, Kemin; Yang, Xiaohai

    2011-04-01

    In this paper, the intracellular gold nanoparticles were biosynthesized using three fungi including Aureobasidium pullulans (A. pullulans), Fusarium sp. and Fusarium oxysporum (F. oxysporum) after immersion the fungal cells in AuCl4- ions solution. UV-vis and FTIR spectrum, and biochemical compositions analysis of Au nano-fungal cells suggested that active biomolecules of reducing sugar of A. pullulans, and proteins in Fusarium sp. and F. oxysporum were tested positive of providing the function of the reduction of AuCI4- ions and the formation of the gold crystals. SDS-PAGE analysis of purified protein from gold nanoparticles synthesized by three fungi showed that three proteins with molecular weight (WM) about 100 kDa, 25 kDa and 19 kDa were in the gold nanoparticles by Fusarium sp. and two proteins with WM about 25 kDa and 19 kDa were in gold nanoparticles of F oxysporum. Further, three purified fungal proteins with WM about 100 kDa, 25 kDa and 19 kDa from gold nanoparticles by Fusarium sp. identified by LC-MS/MS, named plasma membrane ATPase, 3-glucan binding protein and glyceraldehyde-3-phosphate dehydrogenase, respectively. The Au nano-fungal cells ultrathin sections of Fusarium sp. and F. oxysporum showed that the gold nanoparticles mainly produced in intracellular vacuoles of fungal cells. The growth of gold nanoparticles in three fungal cells indicated the reducing sugar led to the gold nanoparticles in spherical morphology and proteins benefited to the gold aggregates.

  10. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds

    PubMed Central

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-01-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold–gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon–hydrogen bonds with molecular oxygen. PMID:25902034

  11. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation

    DOE PAGES

    He, Qian; Freakley, Simon J.; Edwards, Jennifer K.; Carley, Albert F.; Borisevich, Albina Y.; Mineo, Yuki; Haruta, Masatake; Hutchings, Graham J.; Kiely, Christopher J.

    2016-09-27

    The identity of active species in supported gold catalysts for low temperature carbon monoxide oxidation remains an unsettled debate. With large amounts of experimental evidence supporting theories of either gold nanoparticles or sub-nm gold species being active, it was recently proposed that a size-dependent activity hierarchy should exist. Here we study the diverging catalytic behaviors after heat treatment of Au/FeOx materials prepared via co-precipitation and deposition precipitation methods. After ruling out any support effects, the gold particle size distributions in different catalysts are quantitatively studied using aberration corrected scanning transmission electron microscopy (STEM). A counting protocol is developed to revealmore » the true particle size distribution from HAADF-STEM images, which reliably includes all the gold species present. As a result, correlation of the populations of the various gold species present with catalysis results demonstrate that a size-dependent activity hierarchy must exist in the Au/FeOx catalyst.« less

  12. Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold.

    PubMed

    Krajčí, Marian; Kameoka, Satoshi; Tsai, An-Pang

    2016-08-28

    We describe a new mechanism for creation of catalytically active sites in porous gold. Samples of porous gold prepared by de-alloying Al2Au exhibit a clear correlation between the catalytic reactivity towards CO oxidation and structural defects in the fcc lattice of Au. We have found that on the stepped {211} surfaces quite common twin boundary defects in the bulk structure of porous gold can form long close-packed rows of atoms with the coordination number CN = 6. DFT calculations confirm that on these low-coordinated Au sites dioxygen chemisorbs and CO oxidation can proceed via the Langmuir-Hinshelwood mechanism with the activation energy of 37 kJ/mol or via the CO-OO intermediate with the energy barrier of 19 kJ/mol. The existence of the twins in porous gold is stabilized by the surface energy.

  13. Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold

    NASA Astrophysics Data System (ADS)

    Krajčí, Marian; Kameoka, Satoshi; Tsai, An-Pang

    2016-08-01

    We describe a new mechanism for creation of catalytically active sites in porous gold. Samples of porous gold prepared by de-alloying Al2Au exhibit a clear correlation between the catalytic reactivity towards CO oxidation and structural defects in the fcc lattice of Au. We have found that on the stepped {211} surfaces quite common twin boundary defects in the bulk structure of porous gold can form long close-packed rows of atoms with the coordination number CN = 6. DFT calculations confirm that on these low-coordinated Au sites dioxygen chemisorbs and CO oxidation can proceed via the Langmuir-Hinshelwood mechanism with the activation energy of 37 kJ/mol or via the CO-OO intermediate with the energy barrier of 19 kJ/mol. The existence of the twins in porous gold is stabilized by the surface energy.

  14. Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold.

    PubMed

    Krajčí, Marian; Kameoka, Satoshi; Tsai, An-Pang

    2016-08-28

    We describe a new mechanism for creation of catalytically active sites in porous gold. Samples of porous gold prepared by de-alloying Al2Au exhibit a clear correlation between the catalytic reactivity towards CO oxidation and structural defects in the fcc lattice of Au. We have found that on the stepped {211} surfaces quite common twin boundary defects in the bulk structure of porous gold can form long close-packed rows of atoms with the coordination number CN = 6. DFT calculations confirm that on these low-coordinated Au sites dioxygen chemisorbs and CO oxidation can proceed via the Langmuir-Hinshelwood mechanism with the activation energy of 37 kJ/mol or via the CO-OO intermediate with the energy barrier of 19 kJ/mol. The existence of the twins in porous gold is stabilized by the surface energy. PMID:27586937

  15. Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications.

    PubMed

    Tao, Yu; Ju, Enguo; Ren, Jinsong; Qu, Xiaogang

    2015-02-11

    Bifunctionalized mesoporous silica-supported gold nanoparticles as oxidase and peroxidase mimics for antibacterial applications are demonstrated. For the first time, these mesoporous silica-supported gold nanoparticles are applied as oxidase and peroxidase mimics. Taking advantage of their prominent enzyme activities, the MSN-AuNPs show excellent antibacterial properties against both Gram-negative and Gram-positive bacteria. Furthermore, MSN-AuNPs also exhibit outstanding performance in biofilm elimination . PMID:25655182

  16. Immunomodulatory effects of therapeutic gold compounds. Gold sodium thiomalate inhibits the activity of T cell protein kinase C.

    PubMed Central

    Hashimoto, K; Whitehurst, C E; Matsubara, T; Hirohata, K; Lipsky, P E

    1992-01-01

    Previous studies have shown that the gold compounds, gold sodium thiomalate (GST) and auranofin (AUR), which are effective in the treatment of rheumatoid arthritis, inhibit functional activities of a variety of cells, but the biochemical basis of their effect is unknown. In the current studies, human T cell proliferation and interleukin 2 production by Jurkat cells were inhibited by GST or AUR at pharmacologically relevant concentrations. Because it has been documented that protein kinase C (PKC) is involved in T cell activation, the capacity of gold compounds to inhibit PKC partially purified from Jurkat cells was assayed in vitro. GST was found to inhibit PKC in a dose-dependent manner, but AUR caused no significant inhibition of PKC at pharmacologically relevant concentrations. The inhibitory effect of GST on PKC was abolished by 2-mercaptoethanol. To investigate the effect of GST on the regulation of PKC in vivo, the levels of PKC activity in Jurkat cells were examined. Cytosolic PKC activity decreased slowly in a concentration- and time-dependent manner as a result of incubation of Jurkat cells with GST. To ascertain whether GST inhibited PKC translocation and down-regulation, PKC activities associated with the membrane and cystosolic fractions were evaluated after phorbol myristate acetate (PMA) stimulation of GST incubated Jurkat cells. Translocation of PKC was markedly inhibited by pretreatment of Jurkat cells with GST for 3 d, but the capacity of PMA to down-regulate PKC activity in Jurkat cells was not altered by GST preincubation. The functional impact of GST-mediated downregulation of PKC in Jurkat cells was examined by analyzing PMA-stimulated phosphorylation of CD3. Although GST preincubated Jurkat cells exhibited an increased density of CD3, PMA-stimulated phosphorylation of the gamma chain of CD3 was markedly inhibited. Specificity for the inhibitory effect of GST on PKC was suggested by the finding that GST did not alter the mitogen

  17. Monolithic exploding foil initiator

    DOEpatents

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  18. Dendronized Anionic Gold Nanoparticles: Synthesis, Characterization, and Antiviral Activity.

    PubMed

    Peña-González, Cornelia E; García-Broncano, Pilar; Ottaviani, M Francesca; Cangiotti, Michela; Fattori, Alberto; Hierro-Oliva, Margarita; González-Martín, M Luisa; Pérez-Serrano, Jorge; Gómez, Rafael; Muñoz-Fernández, M Ángeles; Sánchez-Nieves, Javier; de la Mata, F Javier

    2016-02-24

    Anionic carbosilane dendrons decorated with sulfonate functions and one thiol moiety at the focal point have been used to synthesize water-soluble gold nanoparticles (AuNPs) through the direct reaction of dendrons, gold precursor, and reducing agent in water, and also through a place-exchange reaction. These nanoparticles have been characterized by NMR spectroscopy, TEM, thermogravimetric analysis, X-ray photoelectron spectroscopy (XPS), UV/Vis spectroscopy, elemental analysis, and zeta-potential measurements. The interacting ability of the anionic sulfonate functions was investigated by EPR spectroscopy with copper(II) as a probe. Different structures and conformations of the AuNPs modulate the availability of sulfonate and thiol groups for complexation by copper(II). Toxicity assays of AuNPs showed that those produced through direct reaction were less toxic than those obtained by ligand exchange. Inhibition of HIV-1 infection was higher in the case of dendronized AuNPs than in dendrons. PMID:26875938

  19. Dendronized Anionic Gold Nanoparticles: Synthesis, Characterization, and Antiviral Activity.

    PubMed

    Peña-González, Cornelia E; García-Broncano, Pilar; Ottaviani, M Francesca; Cangiotti, Michela; Fattori, Alberto; Hierro-Oliva, Margarita; González-Martín, M Luisa; Pérez-Serrano, Jorge; Gómez, Rafael; Muñoz-Fernández, M Ángeles; Sánchez-Nieves, Javier; de la Mata, F Javier

    2016-02-24

    Anionic carbosilane dendrons decorated with sulfonate functions and one thiol moiety at the focal point have been used to synthesize water-soluble gold nanoparticles (AuNPs) through the direct reaction of dendrons, gold precursor, and reducing agent in water, and also through a place-exchange reaction. These nanoparticles have been characterized by NMR spectroscopy, TEM, thermogravimetric analysis, X-ray photoelectron spectroscopy (XPS), UV/Vis spectroscopy, elemental analysis, and zeta-potential measurements. The interacting ability of the anionic sulfonate functions was investigated by EPR spectroscopy with copper(II) as a probe. Different structures and conformations of the AuNPs modulate the availability of sulfonate and thiol groups for complexation by copper(II). Toxicity assays of AuNPs showed that those produced through direct reaction were less toxic than those obtained by ligand exchange. Inhibition of HIV-1 infection was higher in the case of dendronized AuNPs than in dendrons.

  20. Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones - an agricultural waste.

    PubMed

    Soleimani, Mansooreh; Kaghazchi, Tahereh

    2008-09-01

    In this study, hard shell of apricot stones was selected from agricultural solid wastes to prepare effective and low cost adsorbent for the gold separation from gold-plating wastewater. Different adsorption parameters like adsorbent dose, particle size of activated carbon, pH and agitation speed of mixing on the gold adsorption were studied. The results showed that under the optimum operating conditions, more than 98% of gold was adsorbed onto activated carbon after only 3h. The equilibrium adsorption data were well described by the Freundlich and Langmuir isotherms. Isotherms have been used to obtain thermodynamic parameters. Gold desorption studies were performed with aqueous solution mixture of sodium hydroxide and organic solvents at ambient temperatures. Quantitative recovery of gold ions is possible by this method. As hard shell of apricot stones is a discarded as waste from agricultural and food industries, the prepared activated carbon is expected to be an economical product for gold ion recovery from wastewater. PMID:18178431

  1. Influence of support hydroxides on the catalytic activity of oxidized gold clusters

    SciTech Connect

    Veith, Gabriel M; Lupini, Andrew R; Pennycook, Stephen J; Dudney, Nancy J

    2010-01-01

    Gold oxide nanoparticles were prepared on the native surface and a hydroxylated surface of a non-porous TiO2 support (Degussa P25). Scanning transmission electron microscopy results show the formation of similarly sized clusters on both support materials (1.86 and 1.61 nm clusters on the native oxide and the hydroxylated oxide respectively). X-ray absorption near edge spectroscopy and X-ray photoelectron spectroscopy clearly indicate the formation of Au3+ rich oxide nanoparticles. Despite the similar cluster sizes and oxidation states the gold oxide clusters grown on the hydroxylated surface were at least 180 times more catalytically active for the oxidation of carbon monoxide then those grown on the native oxide surface. These hydroxides are conveniently introduced during the solution phase synthesis of gold catalysts and play a dominate, but previously unrecognized, role in the catalytic properties of both oxidized and metallic gold particles.

  2. Gold/Palladium Alloy for Carbon-Halogen Bond Activation: An Unprecedented Halide Dependence.

    PubMed

    Dhital, Raghu Nath; Bobuatong, Karan; Ehara, Masahiro; Sakurai, Hidehiro

    2015-12-01

    New catalytic activity of gold/palladium alloy nanoclusters (NCs) for carbon-halogen bond activation is demonstrated. In the case of an aryl chloride, the inclusion of gold in a bimetallic catalyst is indispensable to achieve the coupling reactions. Gold has the unique effect of stabilizing palladium, such that Pd(2+) leached from clusters by means of spillover of chloride during oxidative addition. The thus-formed spillover intermediate further reacts heterogeneously in both Ullmann and Suzuki-type coupling reactions through a new type of mechanism. In the case of an aryl bromide, Ullmann coupling occurs through the spillover of bromide, similar to that of aryl chloride. However, a significant fraction of palladium also leached, which diminished the Ullmann coupling activity of the aryl bromide and, as a result, the order of reactivity was ArCl>ArBr. With regard to the activation of the C-Br bond towards a Suzuki-type reaction, the inclusion of a higher gold content in gold/palladium clusters stabilized palladium to prevent the leaching of Pd(2+) from the clusters by means of spillover of bromide. The spillover intermediate reacts heterogeneously with PhB(OH)2, palladium-rich gold/palladium, or pure palladium clusters; the oxidative addition of ArBr favors the extraction of palladium from the clusters, yielding Pd(2+) intermediates. The extracted intermediates react homogenously (Pd(2+/)Pd(0) catalysis) with PhB(OH)2, which results in the higher selectivity of the cross-coupling product. An initial step to observe such unprecedented halide dependency, together with the dynamic behavior of palladium on the surface of gold is the oxidative addition of Ar-X. A detailed insight into the first oxidative addition process was also examined by quantum chemical calculations.

  3. Influence of particle size on the binding activity of proteins adsorbed onto gold nanoparticles.

    PubMed

    Kaur, Kanwarjeet; Forrest, James A

    2012-02-01

    We used optical extinction spectroscopy to study the structure of proteins adsorbed onto gold nanoparticles of sizes 5-60 nm and their resulting biological binding activity. For these studies, proteins differing in size and shape, with well-characterized and specific interactions-rabbit immunoglobulin G (IgG), goat anti-rabbit IgG (anti-IgG), Staphylococcal protein A, streptavidin, and biotin-were used as model systems. Protein interaction with gold nanoparticles was probed by optical extinction measurements of localized surface plasmon resonance (LSPR) of the gold nanoparticles. Binding of the ligands in solution to protein molecules already immobilized on the surface of gold causes a small but detectable shift in the LSPR peak of the gold nanoparticles. This shift can be used to probe the binding activity of the adsorbed protein. Within the context of Mie theory calculations, the thickness of the adsorbed protein layer as well as its apparent refractive index is shown to depend on the size of the gold nanoparticle. The results suggest that proteins can adopt different orientations that depend on the size of the gold nanospheres. These different orientations, in turn, can result in different levels of biological activity. For example, we find that IgG adsorbed on spheres with diameter ≥20 nm does not bind to protein A. This study illustrates the principle that the size of nanoparticles can strongly influence the binding activity of adsorbed proteins. In addition to the importance of this in cases of direct exposure of proteins to nanoparticles, the results have implications for proteins adsorbed to materials with nanometer scale surface roughness.

  4. Process for anodizing aluminum foil

    SciTech Connect

    Ball, J.A.; Scott, J.W.

    1984-11-06

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 80/sup 0/ C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V.

  5. Catechin-capped gold nanoparticles: green synthesis, characterization, and catalytic activity toward 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Choi, Yoonho; Choi, Myung-Jin; Cha, Song-Hyun; Kim, Yeong Shik; Cho, Seonho; Park, Youmie

    2014-03-01

    An eco-friendly approach is described for the green synthesis of gold nanoparticles using catechin as a reducing and capping agent. The reaction occurred at room temperature within 1 h without the use of any external energy and an excellent yield (99%) was obtained, as determined by inductively coupled plasma mass spectrometry. Various shapes of gold nanoparticles with an estimated diameter of 16.6 nm were green-synthesized. Notably, the capping of freshly synthesized gold nanoparticles by catechin was clearly visualized with the aid of microscopic techniques, including high-resolution transmission electron microscopy, atomic force microscopy, and field emission scanning electron microscopy. Strong peaks in the X-ray diffraction pattern of the as-prepared gold nanoparticles confirmed their crystalline nature. The catalytic activity of the as-prepared gold nanoparticles was observed in the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4. The results suggest that the newly prepared gold nanoparticles have potential uses in catalysis.

  6. A laser-induced repetitive fast neutron source applied for gold activation analysis

    SciTech Connect

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-15

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 Multiplication-Sign 10{sup 5} n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He{sup 4} nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T{sup 3}.

  7. Tuning the anticancer activity of a novel pro-apoptotic peptide using gold nanoparticle platforms

    PubMed Central

    Akrami, Mohammad; Balalaie, Saeed; Hosseinkhani, Saman; Alipour, Mohsen; Salehi, Fahimeh; Bahador, Abbas; Haririan, Ismaeil

    2016-01-01

    Pro-apoptotic peptides induce intrinsic apoptosis pathway in cancer cells. However, poor cellular penetration of the peptides is often associated with limited therapeutic efficacy. In this report, a series of peptide-gold nanoparticle platforms were developed to evaluate the anticancer activity of a novel alpha-lipoic acid-peptide conjugate, LA-WKRAKLAK, with respect to size and shape of nanoparticles. Gold nanoparticles (AuNPs) were found to enhance cell internalization as well as anticancer activity of the peptide conjugates. The smaller nanospheres showed a higher cytotoxicity, morphological change and cellular uptake compared to larger nanospheres and nanorods, whereas nanorods showed more hemolytic activity compared to nanospheres. The findings suggested that the anticancer and biological effects of the peptides induced by intrinsic apoptotic pathway were tuned by peptide-functionalized gold nanoparticles (P-AuNPs) as a function of their size and shape. PMID:27491007

  8. A laser-induced repetitive fast neutron source applied for gold activation analysis.

    PubMed

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-01

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 10(5) n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He(4) nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T(3). PMID:23277984

  9. Gold nanoparticles supported in zirconia-ceria mesoporous thin films: a highly active reusable heterogeneous nanocatalyst.

    PubMed

    Violi, Ianina L; Zelcer, Andrés; Bruno, Mariano M; Luca, Vittorio; Soler-Illia, Galo J A A

    2015-01-21

    Gold nanoparticles (NP) trapped in the mesopores of mixed zirconia-ceria thin films are prepared in a straightforward and reproducible way. The films exhibit enhanced stability and excellent catalytic activity in nitro-group reduction by borohydride and electrocatalytic activity in CO and ethanol oxidation and oxygen reduction.

  10. Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity.

    PubMed

    Pagno, Carlos H; Costa, Tania M H; de Menezes, Eliana W; Benvenutti, Edilson V; Hertz, Plinho F; Matte, Carla R; Tosati, Juliano V; Monteiro, Alcilene R; Rios, Alessandro O; Flôres, Simone H

    2015-04-15

    Active biofilms of quinoa (Chenopodium quinoa, W.) starch were prepared by incorporating gold nanoparticles stabilised by an ionic silsesquioxane that contains the 1,4-diazoniabicyclo[2.2.2]octane chloride group. The biofilms were characterised and their antimicrobial activity was evaluated against Escherichiacoli and Staphylococcusaureus. The presence of gold nanoparticles produces an improvement in the mechanical, optical and morphological properties, maintaining the thermal and barrier properties unchanged when compared to the standard biofilm. The active biofilms exhibited strong antibacterial activity against food-borne pathogens with inhibition percentages of 99% against E. coli and 98% against S. aureus. These quinoa starch biofilms containing gold nanoparticles are very promising to be used as active food packaging for the maintenance of food safety and extension of the shelf life of packaged foods.

  11. Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity.

    PubMed

    Pagno, Carlos H; Costa, Tania M H; de Menezes, Eliana W; Benvenutti, Edilson V; Hertz, Plinho F; Matte, Carla R; Tosati, Juliano V; Monteiro, Alcilene R; Rios, Alessandro O; Flôres, Simone H

    2015-04-15

    Active biofilms of quinoa (Chenopodium quinoa, W.) starch were prepared by incorporating gold nanoparticles stabilised by an ionic silsesquioxane that contains the 1,4-diazoniabicyclo[2.2.2]octane chloride group. The biofilms were characterised and their antimicrobial activity was evaluated against Escherichiacoli and Staphylococcusaureus. The presence of gold nanoparticles produces an improvement in the mechanical, optical and morphological properties, maintaining the thermal and barrier properties unchanged when compared to the standard biofilm. The active biofilms exhibited strong antibacterial activity against food-borne pathogens with inhibition percentages of 99% against E. coli and 98% against S. aureus. These quinoa starch biofilms containing gold nanoparticles are very promising to be used as active food packaging for the maintenance of food safety and extension of the shelf life of packaged foods. PMID:25466086

  12. Anticancer and Antibacterial Activity Studies of Gold(I)-Alkynyl Chromones.

    PubMed

    Hikisz, Paweł; Szczupak, Łukasz; Koceva-Chyła, Aneta; Gu Spiel, Adam; Oehninger, Luciano; Ott, Ingo; Therrien, Bruno; Solecka, Jolanta; Kowalski, Konrad

    2015-10-30

    Three gold(I) complexes of alkynyl chromones were synthesized and characterized. The single-crystal X-ray structure analysis of a dinuclear compound and of a flavone derivative exhibit a typical d10 gold(I)-alkynyl linear arrangement. All complexes were evaluated as anticancer and antibacterial agents against four human cancer cell lines and four pathogenic bacterial strains. All compounds show antiproliferative activity at lower micromolar range concentrations. Complex 4 showed a broad activity profile, being more active than the reference drug auranofin against HepG2, MCF-7 and CCRF-CEM cancer cells. The cellular uptake into MCF-7 cells of the investigated complexes was measured by atomic absorption spectroscopy (AAS). These measurements showed a positive correlation between an increased cellular gold content and the incubation time of the complexes. Unexpectedly an opposite effect was observed for the most active compound. Biological assays revealed various molecular mechanisms for these compounds, comprising: (i) thioredoxin reductase (TrxR) inhibition, (ii) caspases-9 and -3 activation; (iii) DNA damaging activity and (iv) cell cycle disturbance. The gold(I) complexes were also bactericidal against Gram-positive methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) bacterial strains, while showing no activity against the Gram-negative Escherichia coli bacterial strain.

  13. Foil fabrication for the ROMANO event. Revision 1

    SciTech Connect

    Romo, J.G. Jr.; Weed, J.W.; Griggs, G.E.; Brown, T.G.; Tassano, P.L.

    1984-06-13

    The Vacuum Processes Lab (VPL), of LLNL's M.E. Dept. - Material Fabrication Division (MFD), conducted various vacuum related support activities for the ROMANO nuclear physics experiment. This report focuses on the foil fabrication activities carried out between July and November 1983 for the ROMANO event. Other vacuum related activities for ROMANO, such as outgassing tests of materials, are covered in separate documentation. VPL was asked to provide 270 coated Parylene foils for the ROMANO event. However, due to the developmental nature of some of the procedures, approximately 400 coated foils were processed. In addition, VPL interacted with MFD's Plastics Shop to help supply Parylene substrates to other organizations (i.e., LBL and commercial vendors) which had also been asked to provide coated foils for ROMANO. The purposes of this report are (A) to document the processes developed and the techniques used to produce the foils, and (B) to suggest future directions. The report is divided into four sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, (3) calibration foil fabrication, and (4) foil and substrate inspections.

  14. Characterization and catalytic activity of gold nanoparticles synthesized using ayurvedic arishtams

    NASA Astrophysics Data System (ADS)

    Aswathy Aromal, S.; Dinesh Babu, K. V.; Philip, Daizy

    2012-10-01

    The development of new synthesis methods for monodispersed nanocrystals using cheap and nontoxic chemicals, environmentally benign solvents and renewable materials remains a challenge to the scientific community. The present work reports a new green method for the synthesis of gold nanoparticles. Four different ayurvedic arishtams are used for the reduction of Au3+ to Au nanoparticles. This method is simple, efficient, economic and nontoxic. Gold nanoparticles having different sizes in the range from 15 to 23 nm could be obtained. The nanoparticles have been characterized by UV-Visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. The high crystallinity of nanoparticles is evident from bright circular spots in the SAED pattern and peaks in the XRD pattern. The synthesized gold nanoparticles show good catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol by excess NaBH4. The synthesized nanoparticles are found to exhibit size dependent catalytic property, the smaller nanoparticles showing faster activity.

  15. Thermal Stability and Catalytic Activity of Gold Nanoparticles Supported on Silica

    SciTech Connect

    Veith, G.; Lupini, A; Rashkeev, S; Pennycook, S; Mullins, D; Schwartz, V; Bridges, C; Dudney, N

    2009-01-01

    2.5 nm gold nanoparticles were grown on a fumed silica support, using the physical vapor deposition technique of magnetron sputtering, that are thermally stable when annealed in an oxygen containing environment up to at least 500 C. Traditional Au/TiO{sub 2} catalysts rapidly sinter to form large 13.9 nm gold clusters under these annealing conditions. This surprising stability of Au/SiO{sub 2} is attributed to the absence of residual impurities (ensured by the halide-free production method) and a strong bond between gold and defects at the silica surface (about 3 eV per bond) estimated from density functional theory (DFT) calculations. The Au/SiO{sub 2} catalysts are less active for CO oxidation than the prototypical Au/TiO2 catalysts, however they can be regenerated far more easily, allowing the activity of a catalyst to be fully recovered after deactivation.

  16. Inhibition of Tumor Proteasome Activity by Gold Dithiocarbamato Complexes via both Redox-Dependent and –Independent Processes

    PubMed Central

    Milacic, Vesna; Ronconi, Luca; Fan, Yuhua; Bi, Caifeng; Fregona, Dolores; Dou, Q Ping

    2013-01-01

    We have previously reported on a gold(III) complex, namely [AuBr2(DMDT)] (N,N-dimethyldithiocarbamate) showing potent in vitro and in vivo growth inhibitory activities toward human cancer cells and identifying the cellular proteasome as one of the major targets. However, the importance of the oxidation state of the gold center and the involved mechanism of action has yet to be established. Here we show that both gold(III)- and gold(I)-dithiocarbamato species, namely [AuBr2(ESDT)] (AUL12) and [Au(ESDT)]2 (AUL15), could inhibit the chymotrypsin-like activity of purified 20S proteasome and 26S proteasome in human breast cancer MDA-MB-231 cells, resulting in accumulation of ubiquitinated proteins and proteasome target proteins, and induction of cell death, but at significantly different levels. Gold(I) and gold(III) compounds-mediated proteasome inhibition and cell death induction were completely reversed by the addition of a reducing agent, dithiothreitol or N-acetyl-l-cysteine, suggesting the involvement of redox processes. Furthermore, treatment of MDA-MB-231 cells with gold(III) compound (AUL12), but not the gold(I) analogue (AUL15), resulted in the production of significant level of reactive oxygen species. Our study provides strong evidence that the cellular proteasome is an imporant target of both gold(I) and gold(III) dithiocarbamates, but distinct cellular mechanisms of action are responsible for their different overall effect. PMID:19911377

  17. A new, simple and precise method for measuring cyclotron proton beam energies using the activity vs. depth profile of zinc-65 in a thick target of stacked copper foils.

    PubMed

    Asad, A H; Chan, S; Cryer, D; Burrage, J W; Siddiqui, S A; Price, R I

    2015-11-01

    The proton beam energy of an isochronous 18MeV cyclotron was determined using a novel version of the stacked copper-foils technique. This simple method used stacked foils of natural copper forming 'thick' targets to produce Zn radioisotopes by the well-documented (p,x) monitor-reactions. Primary beam energy was calculated using the (65)Zn activity vs. depth profile in the target, with the results obtained using (62)Zn and (63)Zn (as comparators) in close agreement. Results from separate measurements using foil thicknesses of 100, 75, 50 or 25µm to form the stacks also concurred closely. Energy was determined by iterative least-squares comparison of the normalized measured activity profile in a target-stack with the equivalent calculated normalized profile, using 'energy' as the regression variable. The technique exploits the uniqueness of the shape of the activity vs. depth profile of the monitor isotope in the target stack for a specified incident energy. The energy using (65)Zn activity profiles and 50-μm foils alone was 18.03±0.02 [SD] MeV (95%CI=17.98-18.08), and 18.06±0.12MeV (95%CI=18.02-18.10; NS) when combining results from all isotopes and foil thicknesses. When the beam energy was re-measured using (65)Zn and 50-μm foils only, following a major upgrade of the ion sources and nonmagnetic beam controls the results were 18.11±0.05MeV (95%CI=18.00-18.23; NS compared with 'before'). Since measurement of only one Zn monitor isotope is required to determine the normalized activity profile this indirect yet precise technique does not require a direct beam-current measurement or a gamma-spectroscopy efficiency calibrated with standard sources, though a characteristic photopeak must be identified. It has some advantages over published methods using the ratio of cross sections of monitor reactions, including the ability to determine energies across a broader range and without need for customized beam degraders. PMID:26226219

  18. Adsorption of gold cyanide complexes by activated carbon on non-coconut shell origin

    SciTech Connect

    Yalcin, M.; Arol, A.I.

    1995-12-31

    Coconut shells are the most widely used raw material for the production of activated carbon used in the gold production by cyanide leaching. There have been efforts to find alternatives to coconut shells. Shells and stones of certain fruits, have been tested. Although promising results to some extent were obtained, coconut shells remain the main source of activated carbon. Turkey has become a country of interest in terms of gold deposits of epithermal origin. Four deposits have already been discovered and, mining and milling operations are expected to start in the near future. Explorations are underway in many other areas of high expectations. Turkey is also rich in fruits which can be a valuable source of raw material for activated carbon production. In this study, hazelnut shells, peach and apricot stones, abundantly available locally, have been tested to determine whether they are suitable for the gold metallurgy. Parameters of carbonization and activation have been optimized. Gold loading capacity and adsorption kinetics have been studied.

  19. Synthesis of gold-cellobiose nanocomposites for colorimetric measurement of cellobiase activity.

    PubMed

    Lai, Cui; Zeng, Guang-Ming; Huang, Dan-Lian; Zhao, Mei-Hua; Wei, Zhen; Huang, Chao; Xu, Piao; Li, Ning-Jie; Zhang, Chen; Chen, Ming; Li, Xue; Lai, Mingyong; He, Yibin

    2014-11-11

    Gold-cellobiose nanocomposites (GCNCs) were synthesized by reducing gold salt with a polysaccharide, cellobiose. Here, cellobiose acted as a controller of nucleation or stabilizer in the formation of gold nanoparticles. The obtained GCNCs were characterized with UV-visible spectroscopy; Zetasizer and Fourier transform infrared (FT-IR) spectrophotometer. Moreover, 6-Mercapto-1-hexanol (MCH) was modified on GCNCs, and the MCH-GCNCs were used to determine the cellobiase activity in compost extracts based on the surface plasmon resonance (SPR) property of MCH-GCNCs. The degradation of cellobiose on MCH-GCNCs by cellobiase could induce the aggregation, and the SPR absorption wavelength of MCH-GCNCs correspondingly red shifted. Thus, the absorbance ratio of treated MCH-GCNCs (A650/A520) could be used to estimate the cellobiase activity, and the probe exhibited highly sensitive and selective detection of the cellobiase activity with a wide linear from 3.0 to 100.0U L(-1) within 20 min. Meanwhile, a good linear relationship with correlation coefficient of R2=0.9976 was obtained. This approach successfully showed the suitability of gold nanocomposites as a colorimetric sensor for the sensitive and specific enzyme activity detection.

  20. Synthesis of gold-cellobiose nanocomposites for colorimetric measurement of cellobiase activity

    NASA Astrophysics Data System (ADS)

    Lai, Cui; Zeng, Guang-Ming; Huang, Dan-Lian; Zhao, Mei-Hua; Wei, Zhen; Huang, Chao; Xu, Piao; Li, Ning-Jie; Zhang, Chen; Chen, Ming; Li, Xue; Lai, Mingyong; He, Yibin

    2014-11-01

    Gold-cellobiose nanocomposites (GCNCs) were synthesized by reducing gold salt with a polysaccharide, cellobiose. Here, cellobiose acted as a controller of nucleation or stabilizer in the formation of gold nanoparticles. The obtained GCNCs were characterized with UV-visible spectroscopy; Zetasizer and Fourier transform infrared (FT-IR) spectrophotometer. Moreover, 6-Mercapto-1-hexanol (MCH) was modified on GCNCs, and the MCH-GCNCs were used to determine the cellobiase activity in compost extracts based on the surface plasmon resonance (SPR) property of MCH-GCNCs. The degradation of cellobiose on MCH-GCNCs by cellobiase could induce the aggregation, and the SPR absorption wavelength of MCH-GCNCs correspondingly red shifted. Thus, the absorbance ratio of treated MCH-GCNCs (A650/A520) could be used to estimate the cellobiase activity, and the probe exhibited highly sensitive and selective detection of the cellobiase activity with a wide linear from 3.0 to 100.0 U L-1 within 20 min. Meanwhile, a good linear relationship with correlation coefficient of R2 = 0.9976 was obtained. This approach successfully showed the suitability of gold nanocomposites as a colorimetric sensor for the sensitive and specific enzyme activity detection.

  1. Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction.

    PubMed

    Wu, Shufen; Yan, Songjing; Qi, Wei; Huang, Renliang; Cui, Jing; Su, Rongxin; He, Zhimin

    2015-01-01

    We demonstrated a facile and environmental-friendly approach to form gold nanoparticles through the reduction of HAuCl4 by aspartame. The single-crystalline structure was illustrated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FTIR) results indicated that aspartame played a pivotal role in the reduction and stabilization of the gold crystals. The crystals were stabilized through the successive hydrogen-bonding network constructed between the water and aspartame molecules. Additionally, gold nanoparticles synthesized through aspartame were shown to have good catalytic activity for the reduction of p-nitrophenol to p-aminophenol in the presence of NaBH4. PMID:25991916

  2. Phoenix dactylifera L. leaf extract phytosynthesized gold nanoparticles; controlled synthesis and catalytic activity

    NASA Astrophysics Data System (ADS)

    Zayed, Mervat F.; Eisa, Wael H.

    2014-03-01

    A green synthesis route was reported to explore the reducing and capping potential of Phoenix dactylifera extract for the synthesis of gold nanoparticles. The processes of nucleation and growth of gold nanoparticles were followed by monitoring the absorption spectra during the reaction. The size and morphology of these nanoparticles was typically imaged using transmission electron microscopy (TEM). The particle size ranged between 32 and 45 nm and are spherical in shape. Fourier transform infrared (FTIR) analysis suggests that the synthesized gold nanoparticles might be stabilized through the interactions of hydroxyl and carbonyl groups in the carbohydrates, flavonoids, tannins and phenolic acids present in P. dactylifera. The as-synthesized Au colloids exhibited good catalytic activity for the degradation of 4-nitrophenol.

  3. Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction.

    PubMed

    Wu, Shufen; Yan, Songjing; Qi, Wei; Huang, Renliang; Cui, Jing; Su, Rongxin; He, Zhimin

    2015-01-01

    We demonstrated a facile and environmental-friendly approach to form gold nanoparticles through the reduction of HAuCl4 by aspartame. The single-crystalline structure was illustrated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FTIR) results indicated that aspartame played a pivotal role in the reduction and stabilization of the gold crystals. The crystals were stabilized through the successive hydrogen-bonding network constructed between the water and aspartame molecules. Additionally, gold nanoparticles synthesized through aspartame were shown to have good catalytic activity for the reduction of p-nitrophenol to p-aminophenol in the presence of NaBH4.

  4. Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Wu, Shufen; Yan, Songjing; Qi, Wei; Huang, Renliang; Cui, Jing; Su, Rongxin; He, Zhimin

    2015-05-01

    We demonstrated a facile and environmental-friendly approach to form gold nanoparticles through the reduction of HAuCl4 by aspartame. The single-crystalline structure was illustrated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FTIR) results indicated that aspartame played a pivotal role in the reduction and stabilization of the gold crystals. The crystals were stabilized through the successive hydrogen-bonding network constructed between the water and aspartame molecules. Additionally, gold nanoparticles synthesized through aspartame were shown to have good catalytic activity for the reduction of p-nitrophenol to p-aminophenol in the presence of NaBH4.

  5. Design, Fabrication and Performance of Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Radil, Kevin C.; Bruckner, Robert J.; Howard, S. Adam

    2007-01-01

    Foil gas bearings are self-acting hydrodynamic bearings made from sheet metal foils comprised of at least two layers. The innermost top foil layer traps a gas pressure film that supports a load while a layer or layers underneath provide an elastic foundation. Foil bearings are used in many lightly loaded, high-speed turbo-machines such as compressors used for aircraft pressurization, and small micro-turbines. Foil gas bearings provide a means to eliminate the oil system leading to reduced weight and enhanced temperature capability. The general lack of familiarity of the foil bearing design and manufacturing process has hindered their widespread dissemination. This paper reviews the publicly available literature to demonstrate the design, fabrication and performance testing of both first and second generation bump style foil bearings. It is anticipated that this paper may serve as an effective starting point for new development activities employing foil bearing technology.

  6. Single Molecule Characterization of UV-Activated Antibodies on Gold by Atomic Force Microscopy.

    PubMed

    Funari, R; Della Ventura, B; Altucci, C; Offenhäusser, A; Mayer, D; Velotta, R

    2016-08-16

    The interaction between proteins and solid surfaces can influence their conformation and therefore also their activity and affinity. These interactions are highly specific for the respective combination of proteins and solids. Consequently, it is desirable to investigate the conformation of proteins on technical surfaces, ideally at single molecule level, and to correlate the results with their activity. This is in particular true for biosensors where the conformation-dependent target affinity of an immobilized receptor determines the sensitivity of the sensor. Here, we investigate for the first time the immobilization and orientation of antibodies (Abs) photoactivated by a photonic immobilization technique (PIT), which has previously demonstrated to enhance binding capabilities of antibody receptors. The photoactivated immunoglobulins are immobilized on ultrasmooth template stripped gold films and investigated by atomic force microscopy (AFM) at the level of individual molecules. The observed protein orientations are compared with results of nonactivated antibodies adsorbed on similar gold films and mica reference samples. We find that the behavior of Abs is similar for mica and gold when the protein are not treated (physisorption), whereas smaller contact area and larger heights are measured when Abs are treated (PIT). This is explained by assuming that the activated antibodies tend to be more upright compared with nonirradiated ones, thereby providing a better exposure of the binding sites. This finding matches the observed enhancement of Abs binding efficiency when PIT is used to functionalize gold surface of QCM-based biosensors.

  7. Single Molecule Characterization of UV-Activated Antibodies on Gold by Atomic Force Microscopy.

    PubMed

    Funari, R; Della Ventura, B; Altucci, C; Offenhäusser, A; Mayer, D; Velotta, R

    2016-08-16

    The interaction between proteins and solid surfaces can influence their conformation and therefore also their activity and affinity. These interactions are highly specific for the respective combination of proteins and solids. Consequently, it is desirable to investigate the conformation of proteins on technical surfaces, ideally at single molecule level, and to correlate the results with their activity. This is in particular true for biosensors where the conformation-dependent target affinity of an immobilized receptor determines the sensitivity of the sensor. Here, we investigate for the first time the immobilization and orientation of antibodies (Abs) photoactivated by a photonic immobilization technique (PIT), which has previously demonstrated to enhance binding capabilities of antibody receptors. The photoactivated immunoglobulins are immobilized on ultrasmooth template stripped gold films and investigated by atomic force microscopy (AFM) at the level of individual molecules. The observed protein orientations are compared with results of nonactivated antibodies adsorbed on similar gold films and mica reference samples. We find that the behavior of Abs is similar for mica and gold when the protein are not treated (physisorption), whereas smaller contact area and larger heights are measured when Abs are treated (PIT). This is explained by assuming that the activated antibodies tend to be more upright compared with nonirradiated ones, thereby providing a better exposure of the binding sites. This finding matches the observed enhancement of Abs binding efficiency when PIT is used to functionalize gold surface of QCM-based biosensors. PMID:27444884

  8. Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles.

    PubMed

    Wang, Sheng; Chen, Wei; Liu, Ai-Lin; Hong, Lei; Deng, Hao-Hua; Lin, Xin-Hua

    2012-04-10

    The origin of the peroxidase-like activity of gold nanoparticles and the impact of surface modification are studied. Furthermore, some influencing factors, such as fabrication process, redox property of the modifier, and charge property of the substrate, are investigated. Compared to amino-modified or citrate-capped gold nanoparticles, unmodified gold nanoparticles show significantly higher catalytic activity toward peroxidase substrates, that is, the superficial gold atoms are a contributing factor to the observed peroxidase-like activity. The different catalytic activities of amino-modified and citrate-capped gold nanoparticles toward 3,3',5,5'-tetramethylbenzidine (TMB) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) show that the charge characteristics of the nanoparticles and the substrate also play an important role in the catalytic reactions. PMID:22383315

  9. Silver-free activation of ligated gold(I) chlorides: the use of [Me3NB12Cl11]- as a weakly coordinating anion in homogeneous gold catalysis.

    PubMed

    Wegener, Michael; Huber, Florian; Bolli, Christoph; Jenne, Carsten; Kirsch, Stefan F

    2015-01-12

    Phosphane and N-heterocyclic carbene ligated gold(I) chlorides can be effectively activated by Na[Me3NB12Cl11] (1) under silver-free conditions. This activation method with a weakly coordinating closo-dodecaborate anion was shown to be suitable for a large variety of reactions known to be catalyzed by homogeneous gold species, ranging from carbocyclizations to heterocyclizations. Additionally, the capability of 1 in a previously unknown conversion of 5-silyloxy-1,6-allenynes was demonstrated.

  10. Surface enhanced Raman scattering, antibacterial and antifungal active triangular gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Smitha, S. L.; Gopchandran, K. G.

    2013-02-01

    Shape controlled syntheses of gold nanoparticles have attracted a great deal of attention as their optical, electronic, magnetic and biological properties are strongly dependent on the size and shape of the particles. Here is a report on the surface enhanced Raman scattering (SERS) activity of Cinnamomum zeylanicum leaf broth reduced gold nanoparticles consisting of triangular and spherical like particles, using 2-aminothiophenol (2-ATP) and crystal violet (CV) as probe molecules. Nanoparticles prepared with a minimum leaf broth concentration, having a greater number of triangular like particles exhibit a SERS activity of the order of 107. The synthesized nanoparticles exhibit efficient antibacterial activity against the tested gram negative bacterium Escherichia coli and gram positive bacterium Staphylococcus aureus. Investigations on the antifungal activity of the synthesized nanoparticles against Aspergillus niger and Fusarium oxysporum positive is also discussed.

  11. Foil radiometer accessory improves measurements

    NASA Technical Reports Server (NTRS)

    Schumacher, P. E.

    1967-01-01

    The responsiveness of a foil radiometer is increased and its time constant is simultaneously decreased by isolating the foil in a controlled environment. Using an optical system, it is coupled to the media to be measured, and the resulting concentration of energy permits the thermocouple junction temperature to respond quickly.

  12. Rhenium-Foil Witness Cylinders

    NASA Technical Reports Server (NTRS)

    Knight, B. L.

    1992-01-01

    Cylindrical portion of wall of combustion chamber replaced with rhenium foil mounted on holder. Rhenium oxidizes without melting, indicating regions of excess oxidizer in combustion-chamber flow. Rhenium witness foils also useful in detecting excess oxygen and other oxidizers at temperatures between 2,000 and 3,600 degrees F in burner cores of advanced gas-turbine engines.

  13. Consequences of FOIL for Undergraduates

    ERIC Educational Resources Information Center

    Koban, Lori; Sisneros-Thiry, Simone

    2015-01-01

    FOIL is a well-known mnemonic that is used to find the product of two binomials. We conduct a large sample (n = 252) observational study of first-year college students and show that while the FOIL procedure leads to the accurate expansion of the product of two binomials for most students who apply it, only half of these students exhibit conceptual…

  14. Electrodeposition of gold nanoparticle arrays on ITO glass as electrode with high electrocatalytic activity

    SciTech Connect

    Zhang, Kui; Wei, Juan; Zhu, Houjuan; Ma, Fang; Wang, Suhua

    2013-03-15

    Highlights: ► Electrodeposition of gold nanoparticle arrays on ITO glass as catalytic-electrodes. ► The sizes and densities of the gold nanoparticles can be easily controlled. ► Such arrays on ITO glass shows high electrocatalytic activity and good stability. - Abstract: Herein, we reported a templateless, surfactantless, and simple electrochemical method to directly fabricate gold nanoparticle (AuNP) arrays on indium tin oxide (ITO) glass substrates as effective electrocatalytic electrodes. The as-prepared AuNP arrays have been characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), etc. AuNPs with small sizes (<20 nm) were uniformly deposited on the ITO glass under constant current densities, and particle densities can be adjusted by varying the applied charges. The resultant AuNP array electrode showed higher catalytic activity and good stability toward electro-oxidation of ascorbic acid compared with other electrodes, such as bare ITO electrode, bare glassy carbon electrode and bulk gold film electrode.

  15. Preparation of gold nanoparticles using Salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity.

    PubMed

    Ayaz Ahmed, Khan Behlol; Subramanian, Swetha; Sivasubramanian, Aravind; Veerappan, Ganapathy; Veerappan, Anbazhagan

    2014-09-15

    The current study deals with the synthesis of gold nanoparticles (AuNPs) using Salicornia brachiata (Sb) and evaluation of their antibacterial and catalytic activity. The SbAuNPs showed purple color with a characteristic surface plasmon resonance peak at 532 nm. Scanning electron microscopy and transmission electron microscopy revealed polydispersed AuNPs with the size range from 22 to 35 nm. Energy dispersive X-ray and thin layer X-ray diffraction analysis clearly shows that SbAuNPs was pure and crystalline in nature. As prepared gold nanoparticles was used as a catalyst for the sodium borohydride reduction of 4-nitro phenol to 4-amino phenol and methylene blue to leucomethylene blue. The green synthesized nanoparticles exhibited potent antibacterial activity against the pathogenic bacteria, as evidenced by their zone of inhibition. In addition, we showed that the SbAuNPs in combination with the regular antibiotic, ofloxacin, exhibit superior antibacterial activity than the individual.

  16. Preparation of gold nanoparticles using Salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ayaz Ahmed, Khan Behlol; Subramanian, Swetha; Sivasubramanian, Aravind; Veerappan, Ganapathy; Veerappan, Anbazhagan

    2014-09-01

    The current study deals with the synthesis of gold nanoparticles (AuNPs) using Salicornia brachiata (Sb) and evaluation of their antibacterial and catalytic activity. The SbAuNPs showed purple color with a characteristic surface plasmon resonance peak at 532 nm. Scanning electron microscopy and transmission electron microscopy revealed polydispersed AuNPs with the size range from 22 to 35 nm. Energy dispersive X-ray and thin layer X-ray diffraction analysis clearly shows that SbAuNPs was pure and crystalline in nature. As prepared gold nanoparticles was used as a catalyst for the sodium borohydride reduction of 4-nitro phenol to 4-amino phenol and methylene blue to leucomethylene blue. The green synthesized nanoparticles exhibited potent antibacterial activity against the pathogenic bacteria, as evidenced by their zone of inhibition. In addition, we showed that the SbAuNPs in combination with the regular antibiotic, ofloxacin, exhibit superior antibacterial activity than the individual.

  17. Study of the polarization mechanism of beam-foil interaction ions using the channeling effect*

    SciTech Connect

    TANG Jia-yong; GE Qi-yun; LU Fu-quan; SUN Chang-nian; WENG Tai-meng; YANG Jian-jun; YE hui; YANG Fu-jia

    1986-01-01

    In order to provide experimental evidence for the controversial polarization mechanism of the beam-foil ions, He/sup +/ ions with energy of 1 MeV have been used to pass through a single crystal gold foil along the <110> direction and random direction; the Stokes parameters of the HeII 4686 A 4f ..-->.. 3d transition have been accurately measured.

  18. "Naked" gold nanoparticles supported on HOPG: melanin functionalization and catalytic activity.

    PubMed

    González Orive, A; Grumelli, D; Vericat, C; Ramallo-López, J M; Giovanetti, L; Benitez, G; Azcárate, J C; Corthey, G; Fonticelli, M H; Requejo, F G; Hernández Creus, A; Salvarezza, R C

    2011-04-01

    Reductive electrodesorption has been used to produce "naked" gold nanoparticles (AuNPs) 3 nm in size on HOPG from different thiolate-capped AuNPs. The clean AuNPs transform the electrocatalytic inert HOPG into an active surface for hydrogen peroxide electroreduction, causing a lowering of the cathodic overpotential of 0.25 V with respect to the Au(111) surface. Compared to the plain gold substrates, the nanostructures promote only a slight increase in the hydrogen evolution reaction. In a second modification step a ∼1 nm thick melanin-iron coating is electrochemically formed around the AuNPs. This ultrathin melanin-iron coating largely improves the catalytic activity of the bare AuNPs for both hydrogen peroxide electroreduction and hydrogen evolution reaction. This strategy, which integrates electrochemistry and nanotechnology, can be applied to the preparation of efficient "naked" AuNPs and organic-iron capped AuNPs catalysts.

  19. Gold Incorporated Mesoporous Silica Thin Film Model Surface as a Robust SERS and Catalytically Active Substrate.

    PubMed

    Sunil Sekhar, Anandakumari Chandrasekharan; Vinod, Chathakudath Prabhakaran

    2016-01-01

    Ultra-small gold nanoparticles incorporated in mesoporous silica thin films with accessible pore channels perpendicular to the substrate are prepared by a modified sol-gel method. The simple and easy spin coating technique is applied here to make homogeneous thin films. The surface characterization using FESEM shows crack-free films with a perpendicular pore arrangement. The applicability of these thin films as catalysts as well as a robust SERS active substrate for model catalysis study is tested. Compared to bare silica film our gold incorporated silica, GSM-23F gave an enhancement factor of 10³ for RhB with a laser source 633 nm. The reduction reaction of p-nitrophenol with sodium borohydride from our thin films shows a decrease in peak intensity corresponding to -NO₂ group as time proceeds, confirming the catalytic activity. Such model surfaces can potentially bridge the material gap between a real catalytic system and surface science studies. PMID:27213321

  20. Consequences of FOIL for undergraduates

    NASA Astrophysics Data System (ADS)

    Koban, Lori; Sisneros-Thiry, Simone

    2015-02-01

    FOIL is a well-known mnemonic that is used to find the product of two binomials. We conduct a large sample (n = 252) observational study of first-year college students and show that while the FOIL procedure leads to the accurate expansion of the product of two binomials for most students who apply it, only half of these students exhibit conceptual understanding of the procedure. We generalize this FOIL dichotomy and show that the ability to transfer a mathematical property from one context to a less familiar context is related to both procedural success and attitude towards math.

  1. Highly active gold-based catalyst for the reaction of benzaldehyde with ethyl diazoacetate.

    PubMed

    Fructos, Manuel R; Díaz-Requejo, M Mar; Pérez, Pedro J

    2009-09-14

    The gold complex [IPrAu(NCMe)]BF(4) catalyzes the reaction of ethyl diazoacetate with benzaldehyde to give mixtures of ethyl 3-oxo-3-phenylpropanoate and ethyl 3-hydroxy-2-phenylacrylate in the first example of a group 11 metal-based catalyst for this transformation; the catalyst activity is improved by a factor of 2500 compared to those of previously reported iron-based catalysts.

  2. Gold nanorods-based FRET assay for ultrasensitive detection of DNA methylation and DNA methyltransferase activity.

    PubMed

    Wang, Gang Lin; Luo, Hong Qun; Li, Nian Bing

    2014-09-21

    A fluorescence method for the detection of DNA methylation and the assay of methyltransferase activity is proposed using gold nanorods as a fluorescence quencher on the basis of fluorescence resonance energy transfer. It is demonstrated that this method is capable of detecting methyltransferase with a detection limit of 0.25 U mL(-1), which might make this method a good candidate for monitoring DNA methylation in the future. PMID:25028809

  3. Activation of cell signaling via optical manipulation of gold-coated liposomes encapsulating signaling molecules

    NASA Astrophysics Data System (ADS)

    Orsinger, Gabriel V.; Leung, Sarah J.; Romanowski, Marek

    2013-02-01

    Many diseases involve changes in cell signaling cascades, as seen commonly in drug resistant cancers. To better understand these intricate signaling events in diseased cells and tissues, experimental methods of probing cellular communication at a single to multi-cell level are required. We recently introduced a general platform for activation of selected signaling pathways by optically controlled delivery and release of water soluble factors using gold-coated liposomes. In the example presented here, we encapsulated inositol trisphosphate (IP3), a ubiquitous intracellular secondary messenger involved in GPCR and Akt signaling cascades, within 100 nm gold-coated liposomes. The high polarizability of the liposome's unique gold pseudo-shell allows stable optical trapping for subcellular manipulation in the presence of cells. We take this optical manipulation further by optically injecting IP3-containing liposomes into the cytosol of a single cell to initiate localized cell signaling. Upon optical injection of liposomal IP3 into a single ovarian carcinoma cell, we observed localized activation as reported by changes in Indo-1 fluorescence intensity. With established gap junctions between the injected cell and neighboring cells, we monitored propagation of this signaling to and through nearby cells.

  4. Gold(I) thiolates containing amino acid moieties. Cytotoxicity and structure-activity relationship studies.

    PubMed

    Gutiérrez, Alejandro; Gracia-Fleta, Lucia; Marzo, Isabel; Cativiela, Carlos; Laguna, Antonio; Gimeno, M Concepción

    2014-12-01

    Several gold(I) complexes containing a thiolate ligand functionalised with several amino acid or peptide moieties of the type [Au(SPyCOR)(PPh2R')] (where R = OH, amino acid or dipeptide and R' = Ph or Py) were prepared. These thiolate gold complexes bearing biological molecules possess potential use as antitumor agents. Cytotoxicity assays in different tumour cell lines such as A549 (lung carcinoma), Jurkat (T-cell leukaemia) and MiaPaca2 (pancreatic carcinoma) revealed that the complexes exhibit good antiproliferative activity, with IC50 values in the low micromolar range. Several structural modifications such as in the type of phosphine, number of metal atoms and amino acid (type, stereochemistry and functionalisation) were carried out in order to establish the structure-activity relationship in this family of complexes, which has led to the design of new and more potent cytotoxic complexes. Observations of different cellular events after addition of the complexes indicated the possible mechanism of action or the biological targets of this type of new gold(I) drug.

  5. Hermetic diamond capsules for biomedical implants enabled by gold active braze alloys.

    PubMed

    Lichter, Samantha G; Escudié, Mathilde C; Stacey, Alastair D; Ganesan, Kumaravelu; Fox, Kate; Ahnood, Arman; Apollo, Nicholas V; Kua, Dunstan C; Lee, Aaron Z; McGowan, Ceara; Saunders, Alexia L; Burns, Owen; Nayagam, David A X; Williams, Richard A; Garrett, David J; Meffin, Hamish; Prawer, Steven

    2015-01-01

    As the field of biomedical implants matures the functionality of implants is rapidly increasing. In the field of neural prostheses this is particularly apparent as researchers strive to build devices that interact with highly complex neural systems such as vision, hearing, touch and movement. A retinal implant, for example, is a highly complex device and the surgery, training and rehabilitation requirements involved in deploying such devices are extensive. Ideally, such devices will be implanted only once and will continue to function effectively for the lifetime of the patient. The first and most pivotal factor that determines device longevity is the encapsulation that separates the sensitive electronics of the device from the biological environment. This paper describes the realisation of a free standing device encapsulation made from diamond, the most impervious, long lasting and biochemically inert material known. A process of laser micro-machining and brazing is described detailing the fabrication of hermetic electrical feedthroughs and laser weldable seams using a 96.4% gold active braze alloy, another material renowned for biochemical longevity. Accelerated ageing of the braze alloy, feedthroughs and hermetic capsules yielded no evidence of corrosion and no loss of hermeticity. Samples of the gold braze implanted for 15 weeks, in vivo, caused minimal histopathological reaction and results were comparable to those obtained from medical grade silicone controls. The work described represents a first account of a free standing, fully functional hermetic diamond encapsulation for biomedical implants, enabled by gold active alloy brazing and laser micro-machining.

  6. Characterization and catalytic activity of gold nanoparticles synthesized using ayurvedic arishtams.

    PubMed

    Aromal, S Aswathy; Babu, K V Dinesh; Philip, Daizy

    2012-10-01

    The development of new synthesis methods for monodispersed nanocrystals using cheap and nontoxic chemicals, environmentally benign solvents and renewable materials remains a challenge to the scientific community. The present work reports a new green method for the synthesis of gold nanoparticles. Four different ayurvedic arishtams are used for the reduction of Au(3+) to Au nanoparticles. This method is simple, efficient, economic and nontoxic. Gold nanoparticles having different sizes in the range from 15 to 23 nm could be obtained. The nanoparticles have been characterized by UV-Visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. The high crystallinity of nanoparticles is evident from bright circular spots in the SAED pattern and peaks in the XRD pattern. The synthesized gold nanoparticles show good catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol by excess NaBH(4). The synthesized nanoparticles are found to exhibit size dependent catalytic property, the smaller nanoparticles showing faster activity. PMID:22954810

  7. Hermetic diamond capsules for biomedical implants enabled by gold active braze alloys.

    PubMed

    Lichter, Samantha G; Escudié, Mathilde C; Stacey, Alastair D; Ganesan, Kumaravelu; Fox, Kate; Ahnood, Arman; Apollo, Nicholas V; Kua, Dunstan C; Lee, Aaron Z; McGowan, Ceara; Saunders, Alexia L; Burns, Owen; Nayagam, David A X; Williams, Richard A; Garrett, David J; Meffin, Hamish; Prawer, Steven

    2015-01-01

    As the field of biomedical implants matures the functionality of implants is rapidly increasing. In the field of neural prostheses this is particularly apparent as researchers strive to build devices that interact with highly complex neural systems such as vision, hearing, touch and movement. A retinal implant, for example, is a highly complex device and the surgery, training and rehabilitation requirements involved in deploying such devices are extensive. Ideally, such devices will be implanted only once and will continue to function effectively for the lifetime of the patient. The first and most pivotal factor that determines device longevity is the encapsulation that separates the sensitive electronics of the device from the biological environment. This paper describes the realisation of a free standing device encapsulation made from diamond, the most impervious, long lasting and biochemically inert material known. A process of laser micro-machining and brazing is described detailing the fabrication of hermetic electrical feedthroughs and laser weldable seams using a 96.4% gold active braze alloy, another material renowned for biochemical longevity. Accelerated ageing of the braze alloy, feedthroughs and hermetic capsules yielded no evidence of corrosion and no loss of hermeticity. Samples of the gold braze implanted for 15 weeks, in vivo, caused minimal histopathological reaction and results were comparable to those obtained from medical grade silicone controls. The work described represents a first account of a free standing, fully functional hermetic diamond encapsulation for biomedical implants, enabled by gold active alloy brazing and laser micro-machining. PMID:25890743

  8. Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp.

    PubMed

    Mishra, Aradhana; Kumari, Madhuree; Pandey, Shipra; Chaudhry, Vasvi; Gupta, K C; Nautiyal, C S

    2014-08-01

    The aim of this work was to synthesize gold nanoparticles by Trichoderma viride and Hypocrea lixii. The biosynthesis of the nanoparticles was very rapid and took 10 min at 30 °C when cell-free extract of the T. viride was used, which was similar by H. lixii but at 100 °C. Biomolecules present in cell free extracts of both fungi were capable to synthesize and stabilize the formed particles. Synthesis procedure was very quick and environment friendly which did not require subsequent processing. The biosynthesized nanoparticles served as an efficient biocatalyst which reduced 4-nitrophenol to 4-aminophenol in the presence of NaBH₄ and had antimicrobial activity against pathogenic bacteria. To the best of our knowledge, this is the first report of such rapid biosynthesis of gold nanoparticles within 10 min by Trichoderma having plant growth promoting and plant pathogen control abilities, which served both, as an efficient biocatalyst, and a potent antimicrobial agent.

  9. Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp.

    PubMed

    Mishra, Aradhana; Kumari, Madhuree; Pandey, Shipra; Chaudhry, Vasvi; Gupta, K C; Nautiyal, C S

    2014-08-01

    The aim of this work was to synthesize gold nanoparticles by Trichoderma viride and Hypocrea lixii. The biosynthesis of the nanoparticles was very rapid and took 10 min at 30 °C when cell-free extract of the T. viride was used, which was similar by H. lixii but at 100 °C. Biomolecules present in cell free extracts of both fungi were capable to synthesize and stabilize the formed particles. Synthesis procedure was very quick and environment friendly which did not require subsequent processing. The biosynthesized nanoparticles served as an efficient biocatalyst which reduced 4-nitrophenol to 4-aminophenol in the presence of NaBH₄ and had antimicrobial activity against pathogenic bacteria. To the best of our knowledge, this is the first report of such rapid biosynthesis of gold nanoparticles within 10 min by Trichoderma having plant growth promoting and plant pathogen control abilities, which served both, as an efficient biocatalyst, and a potent antimicrobial agent. PMID:24914997

  10. Coimmobilization of acetylcholinesterase and choline oxidase on gold nanoparticles: stoichiometry, activity, and reaction efficiency.

    PubMed

    Keighron, Jacqueline D; Åkesson, Sebastian; Cans, Ann-Sofie

    2014-09-30

    Hybrid structures constructed from biomolecules and nanomaterials have been used in catalysis and bioanalytical applications. In the design of many chemically selective biosensors, enzymes conjugated to nanoparticles or carbon nanotubes have been used in functionalization of the sensor surface for enhancement of the biosensor functionality and sensitivity. The conditions for the enzyme:nanomaterial conjugation should be optimized to retain maximal enzyme activity, and biosensor effectiveness. This is important as the tertiary structure of the enzyme is often altered when immobilized and can significantly alter the enzyme catalytic activity. Here we show that characterization of a two-enzyme:gold nanoparticle (AuNP) conjugate stoichiometry and activity can be used to gauge the effectiveness of acetylcholine detection by acetylcholine esterase (AChE) and choline oxidase (ChO). This was done by using an analytical approach to quantify the number of enzymes bound per AuNP and monitor the retained enzyme activity after the enzyme:AuNP synthesis. We found that the amount of immobilized enzymes differs from what would be expected from bulk solution chemistry. This analysis was further used to determine the optimal ratio of AChE:ChO added at synthesis to achieve optimum sequential enzyme activity for the enzyme:AuNP conjugates, and reaction efficiencies of greater than 70%. We here show that the knowledge of the conjugate stoichiometry and retained enzyme activity can lead to more efficient detection of acetylcholine by controlling the AChE:ChO ratio bound to the gold nanoparticle material. This approach of optimizing enzyme gold nanoparticle conjugates should be of great importance in the architecture of enzyme nanoparticle based biosensors to retain optimal sensor sensitivity.

  11. Improved composite targets for small scale {sup 64}Cu production comparing Au- and Pt-foils as {sup 64}Ni backing

    SciTech Connect

    Walther, M.; Preusche, S.; Fuechtner, F.; Pietzsch, H. J.; Steinbach, J.

    2012-12-19

    Advantages of a stacked assembly of target support components for {sup 64}Cu production via {sup 64}Ni(p,n){sup 64}Cu reaction were reported recently. The present work shows the applicability of these composite targets for beam currents up to 22 {mu}A. Gold and platinum foils were evaluated as {sup 64}Ni backing. The effective specific activity (ESA) and specific activity (SA) were determined by TETA titration at room temperature and at 80 Degree-Sign C and compared with additional copper quantification results via ICP-MS and stripping voltammetric trace analysis (VA).

  12. Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold-silver nanoparticles against pathogenic bacteria and their physiochemical characterizations.

    PubMed

    Ramasamy, Mohankandhasamy; Lee, Jin-Hyung; Lee, Jintae

    2016-09-01

    The objective of this study was to develop a bimetallic nanoparticle with enhanced antibacterial activity that would improve the therapeutic efficacy against bacterial biofilms. Bimetallic gold-silver nanoparticles were bacteriogenically synthesized using γ-proteobacterium, Shewanella oneidensis MR-1. The antibacterial activities of gold-silver nanoparticles were assessed on the planktonic and biofilm phases of individual and mixed multi-cultures of pathogenic Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive bacteria (Enterococcus faecalis and Staphylococcus aureus), respectively. The minimum inhibitory concentration of gold-silver nanoparticles was 30-50 µM than that of other nanoparticles (>100 µM) for the tested bacteria. Interestingly, gold-silver nanoparticles were more effective in inhibiting bacterial biofilm formation at 10 µM concentration. Both scanning and transmission electron microscopy results further accounted the impact of gold-silver nanoparticles on biocompatibility and bactericidal effect that the small size and bio-organic materials covering on gold-silver nanoparticles improves the internalization and thus caused bacterial inactivation. Thus, bacteriogenically synthesized gold-silver nanoparticles appear to be a promising nanoantibiotic for overcoming the bacterial resistance in the established bacterial biofilms. PMID:27117745

  13. Neutron spectral and angular distribution measurements for 113 and 256 MeV protons on range-thick Al and sup 238 U targets using the foil activation techniques

    SciTech Connect

    Greenwood, L.R.; Intasorn, A.

    1989-07-01

    Second neutron yields, energy spectra, and angular distributions have been measured at seven angles from 0 to 150{degree} for 113 and 256 MeV protons stopped in range-thick targets of aluminum and depleted uranium ({sup 238}U). Thin foil stacks of ten different materials were activated by secondary neutrons at distances of 20--30 cm from the targets. Following each irradiation, 30--40 different activation products were measured by gamma-ray spectroscopy. These activation rates were then used to adjust neutron energy spectra calculated by the HETC computer code. Activation cross sections were taken from ENDF/BV below 20 MeV, from literature values tested in Be(d,n) fields up to 50 MeV, and from proton spallation data and calculations from 50--250 MeV. Spectral adjustments were made with the STAY'SL computer code using a least-squares technique to minimize {chi}{sup 2} for a covariance matrix determined from uncertainties in the measured activities, cross sections, and calculated flux spectra. Neutron scattering effects were estimated from foil packets irradiated at different distances from the target. Proton effects were measured with (p,n) reactions. Systematic differences were found between the adjusted and calculated neutron spectra, namely, that HETC underpredicts the neutron flux at back angles by a factor of 2--3 and slightly overpredicts the flux at forward angles. 19 refs., 23 figs., 13 tabs.

  14. Critical evaluation of spiking of low-grade ore samples in activation analysis for gold and uranium.

    PubMed

    de Lange, P W; de Wet, W J; Venter, J H

    1968-12-01

    In applying non-destructive neutron-activation analysis for gold and uranium in spiked low-grade ore samples, the following extrapolated unspiked concentrations were measured: 0.27(8) +/- 0.01(5) ppm gold (chemical assay: 0.20(2) +/- 0.02(0) ppm gold); 25.1 +/- 1.1 ppm uranium (chemical assay value: 19.5 +/-2.0 ppm uranium). Different approaches to the fitting of results, and the influence of spiking non-uniformity, are discussed.

  15. In vitro and in vivo studies on laser-activated gold nanorods for applications in photothermal therapies

    NASA Astrophysics Data System (ADS)

    Pini, Roberto; Ratto, Fulvio; Matteini, Paolo; Centi, Sonia; Rossi, Francesca

    2010-04-01

    We review our experimental studies on near infrared laser-activated gold nanoparticles in the direct welding of connective tissues. In particular, we discuss the use of gold nanorods excited by diode laser radiation at 810 nm to mediate functional photothermal effects and weld eye's lens capsules and arteries. The preparation of biopolymeric matrices including gold nanorods is described as well, together with preliminary tests for their application in the closure of wounds in vessels and tendons. Finally we mention future perspectives on the use of these nanoparticles for applications in the therapy of cancer.

  16. Site-specific characterization of Castromil Brownfield area related to gold mining activities.

    PubMed

    Ferreira da Silva, Eduardo; Serrano Pinto, Luís; Patinha, Carla; Cardoso Fonseca, Edmundo

    2004-03-01

    Castromil is one of the gold mining areas in Portugal that has been abandoned since 1940. This area, which was first mined in Roman times, is located within a Hercynian granite body near the contact with Silurian metasediments. Gold is essentially disseminated along veins in the silicified granite, running NW-SE, related with a shear zone and frequently associated with sulphides (arsenopyrite and basically pyrite). In paragenetic terms, three stages of mineralization are considered: ferro-arseniferous (quartz + arsenopyrite I + pyrite I + pyrrhotite + bismuth), zinciferous (sphalerite + chalcopyrite), and remobilization (arsenopyrite II + galena + gold). Due to the lack of laws and environmental education, Castromil is today a gold mining heritage site where we can detect the consequences of an incautious exploration (tailings, wells and adits located in the old explored zone) and where a residential area is located. In order to characterize the actual state of the old mining area the trace metal contamination of soils and waters by mining activities was investigated. In the studied area 106 soil samples, 15 waters and 20 plants were sampled and analysed. The soil samples were analysed for 32 elements by ICP-AES. Waters were analysed by ionic chromatography and ICP-MS for major and trace elements. Plants were analysed for As, Fe and Pb by AAS. The results are discussed taking into account the risk-based standards for soils and groundwater's (target and intervention values) proposed by Swartjes (1999). The results show elevated concentration of As and Pb which were found in soils collected from agricultural areas. Foodstuff plants species collected in the Castromil agricultural area show high concentrations of As in the leaves (cabbage and lettuce) and in the tubers (potatoes). Groundwaters in the mining area contain high concentrations of As that exceeds the intervention values. The area must to be subject to a remediation process, considering the actual risks to

  17. Site-specific characterization of Castromil Brownfield area related to gold mining activities.

    PubMed

    Ferreira da Silva, Eduardo; Serrano Pinto, Luís; Patinha, Carla; Cardoso Fonseca, Edmundo

    2004-03-01

    Castromil is one of the gold mining areas in Portugal that has been abandoned since 1940. This area, which was first mined in Roman times, is located within a Hercynian granite body near the contact with Silurian metasediments. Gold is essentially disseminated along veins in the silicified granite, running NW-SE, related with a shear zone and frequently associated with sulphides (arsenopyrite and basically pyrite). In paragenetic terms, three stages of mineralization are considered: ferro-arseniferous (quartz + arsenopyrite I + pyrite I + pyrrhotite + bismuth), zinciferous (sphalerite + chalcopyrite), and remobilization (arsenopyrite II + galena + gold). Due to the lack of laws and environmental education, Castromil is today a gold mining heritage site where we can detect the consequences of an incautious exploration (tailings, wells and adits located in the old explored zone) and where a residential area is located. In order to characterize the actual state of the old mining area the trace metal contamination of soils and waters by mining activities was investigated. In the studied area 106 soil samples, 15 waters and 20 plants were sampled and analysed. The soil samples were analysed for 32 elements by ICP-AES. Waters were analysed by ionic chromatography and ICP-MS for major and trace elements. Plants were analysed for As, Fe and Pb by AAS. The results are discussed taking into account the risk-based standards for soils and groundwater's (target and intervention values) proposed by Swartjes (1999). The results show elevated concentration of As and Pb which were found in soils collected from agricultural areas. Foodstuff plants species collected in the Castromil agricultural area show high concentrations of As in the leaves (cabbage and lettuce) and in the tubers (potatoes). Groundwaters in the mining area contain high concentrations of As that exceeds the intervention values. The area must to be subject to a remediation process, considering the actual risks to

  18. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: structure-activity relationship

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Gu, Dong; Jin, Zhao; Du, Pei-Pei; Si, Rui; Tao, Jing; Xu, Wen-Qian; Huang, Yu-Ying; Senanayake, Sanjaya; Song, Qi-Sheng; Jia, Chun-Jiang; Schüth, Ferdi

    2015-03-01

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5-0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) showed high homogeneity in the supported Au nanoparticles. The ex situ and in situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reduction by hydrogen (H2-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.

  19. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    DOE PAGES

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; Jin, Zhao; Du, Pei -Pei; Si, Rui; Xu, Wen -Qian; Huang, Yu -Ying; Tao, Jing; Song, Qi -Sheng; et al

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reductionmore » by hydrogen (H₂-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.« less

  20. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    SciTech Connect

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; Jin, Zhao; Du, Pei -Pei; Si, Rui; Xu, Wen -Qian; Huang, Yu -Ying; Tao, Jing; Song, Qi -Sheng; Jia, Chun -Jia; Schueth, Ferdi

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reduction by hydrogen (H₂-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.

  1. Earthworm extracts utilized in the green synthesis of gold nanoparticles capable of reinforcing the anticoagulant activities of heparin

    PubMed Central

    2013-01-01

    Gold nanoparticles were obtained using a green synthesis approach with aqueous earthworm extracts without any additional reducing or capping agents. The gold nanoparticles were characterized using UV-visible spectrophotometry, high-resolution transmission electron microscopy, atomic force microscopy, field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and inductively coupled plasma mass spectrometry. The anticoagulant activity of the gold nanoparticles was assessed using the activated partial thromboplastin time and was mildly enhanced by combining the gold nanoparticles with heparin. In addition to the generation of spherical nanoparticles with an average diameter of 6.13 ± 2.13 nm, cubic and block-shaped nanoparticles with an average aspect ratio, defined as the length divided by width, of 1.47 were also observed. PMID:24369090

  2. Earthworm extracts utilized in the green synthesis of gold nanoparticles capable of reinforcing the anticoagulant activities of heparin

    NASA Astrophysics Data System (ADS)

    Kim, Hee Kyeong; Choi, Myung-Jin; Cha, Song-Hyun; Koo, Yean Kyoung; Jun, Sang Hui; Cho, Seonho; Park, Youmie

    2013-12-01

    Gold nanoparticles were obtained using a green synthesis approach with aqueous earthworm extracts without any additional reducing or capping agents. The gold nanoparticles were characterized using UV-visible spectrophotometry, high-resolution transmission electron microscopy, atomic force microscopy, field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and inductively coupled plasma mass spectrometry. The anticoagulant activity of the gold nanoparticles was assessed using the activated partial thromboplastin time and was mildly enhanced by combining the gold nanoparticles with heparin. In addition to the generation of spherical nanoparticles with an average diameter of 6.13 ± 2.13 nm, cubic and block-shaped nanoparticles with an average aspect ratio, defined as the length divided by width, of 1.47 were also observed.

  3. Method for fabricating uranium foils and uranium alloy foils

    DOEpatents

    Hofman, Gerard L.; Meyer, Mitchell K.; Knighton, Gaven C.; Clark, Curtis R.

    2006-09-05

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  4. Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration

    NASA Astrophysics Data System (ADS)

    Banerjee, Madhuchanda; Sharma, Shilpa; Chattopadhyay, Arun; Ghosh, Siddhartha Sankar

    2011-12-01

    Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was possibly due to the more active silver atoms in the shell surrounding gold core due to high surface free energy of the surface Ag atoms owing to shell thinness in the bimetallic NP structure.Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was

  5. Hydrodechlorination catalytic activity of gold nanoparticles supported on TiO 2 modified SBA-15 investigated by IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hannus, I.; Búza, M.; Beck, A.; Guczi, L.; Sáfrán, G.

    2009-04-01

    The hydrodechlorination catalytic activity of gold nanoparticles on SBA-15 silica modified by TiO 2 promoters has been investigated. Comparing the hydrodechlorination catalytic activity platinum nanoparticles supported on TiO 2 catalyst was used in the hydrodechlorination of CCl 4 as model compound. The IR spectroscopic experimental results showed that the gold nanoparticles have higher catalytic activity, than platinum ones. The two samples were tested also in CO oxidation, in which Au/TiO 2/SBA-15 possess also somewhat higher activity than Pt/TiO 2.

  6. X-ray fiducial foils

    SciTech Connect

    Alford, C.; Serduke, F.; Makowiecki, D.; Jankowski, A.; Wall, M.

    1991-03-13

    An x-ray spectrum from a laser fusion experiment was passed through an Al, Si, Y multilayer foil. The position of the absorption edges of the Al, Si, and Y was used to calibrate the x-ray energy spectrum recorded on photographic film. The foil consisted of 4000 {angstrom} of Al, 6000 {angstrom} of Si and 4000 {angstrom} of Y sputter deposited on a 1.5 {mu}m thick Mylar{reg sign} film. It was necessary to layer the structure in order to achieve the required mechanical strength and dimensional stability. The results include analysis of the x-ray energy spectrum and microstructural characterization of the foil using x-ray diffraction and transmission electron microscopy.

  7. Enhanced antioxidant activity of gold nanoparticle embedded 3,6-dihydroxyflavone: a combinational study

    NASA Astrophysics Data System (ADS)

    Medhe, Sharad; Bansal, Prachi; Srivastava, Man Mohan

    2012-12-01

    The antioxidative effect of selected dietary compounds (3,6-dihydroxyflavone, lutein and selenium methyl selenocysteine) was determined in single and combination using DPPH (2,2-diphenyl-l-picrylhydrazyl), OH (hydroxyl), H2O2 (hydrogen peroxide) and NO (nitric oxide) radical scavenging assays. Radical scavenging effect of the dietary phytochemicals individually are found to be in the order: ascorbic acid (standard) > lutein > 3,6-dihydroxyflavone > selenium methyl selenocysteine, at concentration 100 μg/ml, confirmed by all the four bioassays (p < 0.05). Among the various combinations studied, the triplet combination of 3,6-dihydroxyflavone, lutein and selenium methyl selenocysteine (1:1:1), exhibited enhancement in the target activity at same concentration level. Synthesized gold nanoparticle embedded 3,6-dihydroxyflavone further enhanced the target antioxidant activity. The combinational study including gold nanoparticle embedded 3,6-dihydroxyflavone with other native dietary nutrients showed remarkable increase in antioxidant activity at the same concentration level. The present in vitro study on combinational and nanotech enforcement of dietary phytochemicals shows the utility in the architecture of nanoparticle embedded phytoproducts having a wide range of applications in medical science.

  8. CO oxidation on nanoporous gold: A combined TPD and XPS study of active catalysts

    SciTech Connect

    Röhe, Sarah; Frank, Kristian; Schaefer, Andreas; Wittstock, Arne; Zielasek, Volkmar; Rosenauer, Andreas; Bäumer, Marcus

    2012-11-30

    Disks of nanoporous gold (np-Au), produced by leaching of silver from AgAu alloy and prepared as active catalysts for CO oxidation in a continuous-flow reactor, were investigated in detail by x-ray photoelectron spectroscopy and temperature-programmed desorption spectroscopy in ultra-high vacuum. Np-Au exhibits several oxygen species on and in the surface: Chemisorbed oxygen (Oact), probably generated at residual silver sites at the surface, is readily available after np-Au preparation and consumed by CO oxidation. It can be replenished on activated np-Au by exposure to O2. In addition, strongly bound oxygen, probably at subsurface sites, is present as a major species and not consumed by CO oxidation. Pronounced CO desorption at temperatures above 200 K observed after exposing np-Au to CO at 105 K indicates an additional, more stable type of CO binding sites on np-Au as compared to pure gold. Only CO at these binding sites is consumed by oxidation reaction with Oact. In conclusion, we propose that the presence of strongly bound subsurface oxygen stabilizes CO adsorption on np-Au, thereby being as crucial for the observed catalytic activity of np-Au as residual silver.

  9. Gold Nanoparticles Enhance the Anticancer Activity of Gallic Acid against Cholangiocarcinoma Cell Lines.

    PubMed

    Rattanata, Narintorn; Daduang, Sakda; Wongwattanakul, Molin; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lekphrom, Ratsami; Sandee, Alisa; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Daduang, Jureerut

    2015-01-01

    Gold nanoparticles (GNPs) were conjugated with gallic acid (GA) at various concentrations between 30 and 150 μM and characterized using transmission electron microscopy (TEM) and UV-Vis spectroscopy (UV-VIS). The anticancer activities of the gallic acid-stabilized gold nanoparticles against well-differentiated (M213) and moderately differentiated (M214) adenocarcinomas were then determined using a neutral red assay. The GA mechanism of action was evaluated using Fourier transform infrared (FTIR) microspectroscopy. Distinctive features of the FTIR spectra between the control and GA-treated cells were confirmed by principal component analysis (PCA). The surface plasmon resonance spectra of the GNPs had a maximum absorption at 520 nm, whereas GNPs-GA shifted the maximum absorption values. In an in vitro study, the complexed GNPs-GA had an increased ability to inhibit the proliferation of cancer cells that was statistically significant (P<0.0001) in both M213 and M214 cells compared to GA alone, indicating that the anticancer activity of GA can be improved by conjugation with GNPs. Moreover, PCA revealed that exposure of the tested cells to GA resulted in significant changes in their cell membrane lipids and fatty acids, which may enhance the efficacy of this anticancer activity regarding apoptosis pathways.

  10. Measurement of the radon diffusion through a nylon foil for different air humidities

    NASA Astrophysics Data System (ADS)

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    2015-08-01

    The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While the left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.

  11. Measurement of the radon diffusion through a nylon foil for different air humidities

    SciTech Connect

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    2015-08-17

    The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While the left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.

  12. Size Dependence of Atomically Precise Gold Nanoclusters in Chemoselective Hydrogenation and Active Site Structure

    SciTech Connect

    Li, Gao; Jiang, Deen; Kumar, Santosh; Chen, Yuxiang; Jin, Rongchao

    2014-01-01

    We here investigate the catalytic properties of water-soluble Aun(SG)m nanocluster catalysts (H-SG = glutathione) of different sizes, including Au15(SG)13, Au18(SG)14, Au25(SG)18, Au38(SG)24, and captopril-capped Au25(Capt)18 nanoclusters. These Aun(SR)m nanoclusters (-SR represents thiolate generally) are used as homogeneous catalysts (i.e., without supports) in the chemoselective hydrogenation of 4-nitrobenzaldehyde (4-NO2PhCHO) to 4-nitrobenzyl alcohol (4-NO2PhCH2OH) in water with H2 gas (20 bar) as the hydrogen source. These nanocluster catalysts, except Au18(SG)14, remain intact after the catalytic reaction, evidenced by UV-vis spectra which are characteristic of each sized nanoclusters and thus serve as spectroscopic fingerprints . We observe a drastic size-dependence and steric effect of protecting ligands on the gold nanocluster catalysts in the hydrogenation reaction. Density functional theory (DFT) modeling of the 4-nitrobenzaldehyde adsorption shows that both the CHO and NO2 groups are in close interact with the S-Au-S staples on the gold nanocluster surface; the adsorption of the 4-nitrobenzaldehyde molecule on the four different sized Aun(SR)m nanoclusters are moderately strong and similar in strength. The DFT results suggest that the catalytic activity of the Aun(SR)m nanoclusters is primarily determined by the surface area of the Au nanocluster, consistent with the observed trend of the conversion of 4-nitrobenzaldehyde versus the cluster size. Overall, this work offers the molecular insight into the hydrogenation of 4-nitrobenzaldehyde and the catalytically active site structure on gold nanocluster catalysts.

  13. Process for forming a nickel foil with controlled and predetermined permeability to hydrogen

    DOEpatents

    Engelhaupt, Darell E.

    1981-09-22

    The present invention provides a novel process for forming a nickel foil having a controlled and predetermined hydrogen permeability. This process includes the steps of passing a nickel plating bath through a suitable cation exchange resin to provide a purified nickel plating bath free of copper and gold cations, immersing a nickel anode and a suitable cathode in the purified nickel plating bath containing a selected concentration of an organic sulfonic acid such as a napthalene-trisulfonic acid, electrodepositing a nickel layer having the thickness of a foil onto the cathode, and separating the nickel layer from the cathode to provide a nickel foil. The anode is a readily-corrodible nickel anode. The present invention also provides a novel nickel foil having a greater hydrogen permeability than palladium at room temperature.

  14. Mercury pollution on district of Dimembe river system North Sulawesi, Indonesia, due to traditional gold mining activities

    NASA Astrophysics Data System (ADS)

    Ayhuan, D.; Atteng, O.; Dondokambey, A.; Randuk, M.

    2003-05-01

    Mercury contamination caused by the amalgamation of gold in small scale gold mining is a environmental problem. Small-scale gold mining (SSGM) is common in mineral endowed developing countries. It offers an important means of livehood and has served as a safety net in times of natural calamities or economic distress. In north Sulawesi Province alone, approximately 22,000 small-scale gold miners were active in 1998, and produced an estimated 10 tonnes of gold bullion. Activities of traditional / illegal gold mining (PETI) in Dimembe of district, which is located in Minahasa Regency, North Sulawesi Province. The major environmental concern associated with PETI in mercury pollution from processing of gold-bearing ore. In both the inorganic and organic forms, mercury is one of the most toxic substances to humans. One of the environmental pollution is water pollution on district of Dimembe river system that is probably caused by the use of mercury (Hg) in processing mine ore. This mercury is used in an iron rolling vessel, wllich is called tromol. Mercury concentration at employed in this operation reaches 1 kg out of 30 kg ore. Sampling stage was conducted at Warat river, downstream Taiawaan river, Merut river and Kadumut river on late April 2002 by BAPEDALDA team together with Health Laboratory staff. Material which were sampled was water. Sampling methods carried out were bottle sample immersed about 10 cm below the water surface. The analysis method used was mercury analyzer. The analysis result show that total concentration of mercury range from 1. 69 to 25. 54 ppb. This concentration is closed to Water Quality Standard IV Class that is 0.005 mg/L (Regulation Government No. 82/2001). The result of this research indicate that the district of Dimembe river system in the gold mining area have been contaminated by mercury.

  15. Anti-inflammatory active gold(I) complexes involving 6-substituted-purine derivatives.

    PubMed

    Trávníček, Zdeněk; Starha, Pavel; Vančo, Ján; Silha, Tomáš; Hošek, Jan; Suchý, Pavel; Pražanová, Gabriela

    2012-05-24

    The gold(I) complexes of the general formula [Au(L(n))(PPh(3))]·xH(2)O (1-8; n = 1-8 and x = 0-1.5), where L(n) stands for a deprotonated form of the benzyl-substituted derivatives of 6-benzylaminopurine, were prepared, thoroughly characterized (elemental analyses, FT-IR, Raman and multinuclear NMR spectroscopy, ESI+ mass spectrometry, conductivity, DFT calculations), and studied for their in vitro cytotoxicity and in vitro and in vivo anti-inflammatory effects on LPS-activated macrophages (derived from THP-1 cell line) and using the carrageenan-induced hind paw edema model on rats. The obtained results indicate that the representative complexes (1, 3, 6) exhibit a strong ability to reduce the production of pro-inflammatory cytokines TNF-α, IL-1β and HMGB1 without influence on the secretion of anti-inflammatory cytokine IL-1RA in the LPS-activated macrophages. The complexes also significantly influence the formation of edema, caused by the intraplantar application of polysaccharide λ-carrageenan to rats in vivo. All the tested complexes showed similar or better biological effects as compared with Auranofin, but contrary to Auranofin they were found to be less cytotoxic in vitro. The obtained results clearly indicate that the gold(I) complexes behave as very effective anti-inflammatory agents and could prove to be useful for the treatment of difficult to treat inflammatory diseases such as rheumatoid arthritis. PMID:22541000

  16. Protection of ornamental gold fish Carassius auratus against Aeromonas hydrophila by treating Ixora coccinea active principles.

    PubMed

    Anusha, Paulraj; Thangaviji, Vijayaragavan; Velmurugan, Subramanian; Michaelbabu, Mariavincent; Citarasu, Thavasimuthu

    2014-02-01

    Herbals such as Ixora coccinea, Daemia extensa and Tridax procumbens were selected to screen in vitro antibacterial and immunostimulant activity against the freshwater fish pathogen Aeromonas hydrophila using different organic polar and non-polar solvents. Initial screening results revealed that, ethyl acetate extracts and its purified fraction of I. coccinea was able to suppress the A. hydrophila strains at more than 15 mm of zone of inhibition and positive immunostimulant activity. The purified active fraction, which eluted from H40: EA60 mobile phase was structurally characterized by GC-MS analysis. Two compounds such as Diethyl Phthalate (1,2-Benzene dicarboxylic acid, monobutyl ester) and Dibutyl Phthalate were characterized using NIST database search. In order to study the in vivo immunostimulant influence of the compounds, the crude extracts (ICE) and purified fractions (ICF) were incorporated to the artificial diets at the concentration of 400 mg kg⁻¹ and fed to the ornamental gold fish Carassius auratus for 30 days. After termination of feeding experiment, they were challenged with highly virulent A. hydrophila AHV-1 which was isolated from infected gold fish and studied the survival, specific bacterial load reduction, serum biochemistry, haematology, immunology and histological parameters. The control diet fed fishes succumbed to death within five days at 100% mortality whereas ICE and ICF fed groups survived 60 and 80% respectively after 10 days. The diets also helped to decrease the Aeromonas load after challenge and significantly (P ≤ 0.01) improved the serum albumin, globulin and protein. The diets also helped to increase the RBC and haemoglobin level significantly (P ≤ 0.05) from the control group. Surprisingly the immunological parameters like phagocytic activity, serum bactericidal activity and lysozyme activity were significantly increased (P ≤ 0.001) in the experimental diets. Macrophages and erythrocytes were abundantly expressed in the

  17. Carbon foils for space plasma instrumentation

    NASA Astrophysics Data System (ADS)

    Allegrini, F.; Ebert, R. W.; Funsten, H. O.

    2016-05-01

    Carbon foils have been successfully used for several decades in space plasma instruments to detect ions and neutral atoms. These instruments take advantage of two properties of the particle-foil interaction: charge conversion of neutral atoms and/or secondary electron emission. This interaction also creates several adverse effects for the projectile exiting the foil, such as angular scattering and energy straggling, which usually act to reduce the sensitivity and overall performance of an instrument. The magnitude of these effects mainly varies with the incident angle, energy, and mass of the incoming projectile and the foil thickness. In this paper, we describe these effects and the properties of the interaction. We also summarize results from recent studies with graphene foils, which can be made thinner than carbon foils due to their superior strength. Graphene foils may soon replace carbon foils in space plasma instruments and open new opportunities for space research in the future.

  18. Metal Foil Sandwiched Multiple Radiography

    NASA Astrophysics Data System (ADS)

    Takenaka, E.; Hatori, M.

    1982-11-01

    A new method to obtain simultaneously two or three radiographs with a wide dynamic range was studied. This is to divide the transmitted X-ray energy spectra through a human body into lower and higher parts than K absorption edge by a metal foil (Pb, Ta, Gd) and give radiographs using two or three pairs of an one-side coated film and an intensifying screen. The backward film has the informations filtered by the metal foil. The forward film before the metal foil, if the film density is same, relatively contains the informations of lower parts of the transmitted X-ray spectra through a human body. Secondly, a metal foil can make shadows of thin parts and thick parts of a human body displace on high region of film, respectively and separatedly. These radiographs of thin parts were useful to be observed superposing two films with a wide dynamic range. As to thick parts it was useful to view two films hanging side by side. This technique was appreciated to be applied to the organs such as extremities, knee and elbow, head and neck, lung and etc.

  19. Foil Patches Seal Small Vacuum Leaks

    NASA Technical Reports Server (NTRS)

    Spiegel, Kirk W.; Reed, David W.

    1995-01-01

    Report discloses technique to patch holes in nickel-alloy rocket-engine nozzle parts prior to vacuum brazing. Technique involves lightly spot-welding nickel foil 0.002 in. thick over hole patched, then spot-welding corrosion-resistant steel foil of same thickness over nickel foil. Once patches subject to pressure and temperature of vacuum brazing, nickel foil diffuses to bond with nickel-alloy nozzle, making vacuum-tight seal.

  20. Pu-Zr alloy for high-temperature foil-type fuel

    DOEpatents

    McCuaig, Franklin D.

    1977-01-01

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron reflux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  1. Facile, substrate-scale growth of mono- and few-layer homogeneous MoS2 films on Mo foils with enhanced catalytic activity as counter electrodes in DSSCs

    NASA Astrophysics Data System (ADS)

    Antonelou, Aspasia; Syrrokostas, George; Sygellou, Lamprini; Leftheriotis, George; Dracopoulos, Vassileios; Yannopoulos, Spyros N.

    2016-01-01

    The growth of MoS2 films by sulfurization of Mo foils at atmospheric pressure is reported. The growth procedure provides, in a controlled way, mono- and few-layer thick MoS2 films with substrate-scale uniformity across square-centimeter area on commercial foils without any pre- or post-treatment. The prepared few-layer MoS2 films are investigated as counter electrodes for dye-sensitized solar cells (DSSCs) by assessing their ability to catalyse the reduction of I3- to I- in triiodide redox shuttles. The dependence of the MoS2 catalytic activity on the number of monolayers is explored down to the bilayer thickness, showing performance similar to that of, and stability against corrosion better than, Pt-based nanostructured film. The DSSC with the MoS2-Mo counter electrode yields a photovoltaic energy conversion efficiency of 8.4%, very close to that of the Pt-FTO-based DSSC, i.e. 8.7%. The current results disclose a facile, cost-effective and green method for the fabrication of mechanically robust and chemically stable, few-layer MoS2 on flexible Mo substrates and further demonstrate that efficient counter electrodes for DSSCs can be prepared at thicknesses down to the 1-2 nm scale.

  2. Preparation and characterization of nanosized gold catalysts supported on Co3O4 and their activities for CO oxidation.

    PubMed

    Kim, Ki-Joong; Song, Jae-Koon; Shin, Seong-Soo; Kang, Sang-Jun; Chung, Min-Chul; Jung, Sang-Chul; Jeong, Woon-Jo; Ahn, Ho-Geun

    2011-02-01

    Gold catalysts supported on Co3O4 were prepared by co-precipitation (CP), deposition-precipitation (DP), and impregnation (IMP) methods. The Au/Co3O4 catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and temperature programmed reduction (TPR) to understand the different activities for CO oxidation with different preparation methods. Gold particles below 5 nm supported on Co3O4 by DP method were found to be more exposed to the surface than those by CP and IMP methods, and this catalyst was highly active and stable in CO oxidation. Finally, catalytic activity of Au/Co3O4 catalyst for CO oxidation was strongly dependent on the gold particle size. PMID:21456247

  3. Performance of Simple Gas Foil Thrust Bearings in Air

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2012-01-01

    Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In

  4. Passive Thermal Management of Foil Bearings

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J. (Inventor)

    2015-01-01

    Systems and methods for passive thermal management of foil bearing systems are disclosed herein. The flow of the hydrodynamic film across the surface of bearing compliant foils may be disrupted to provide passive cooling and to improve the performance and reliability of the foil bearing system.

  5. Analgesic activity of gold preparations used in Ayurveda & Unani-Tibb.

    PubMed

    Bajaj, S; Vohora, S B

    1998-09-01

    Calcined gold preparations, Ayurvedic Swarna Bhasma (SB) and Unani Kushta Tila Kalan (KTK) were investigated for analgesic effects in rats and mice using four types of noxious stimuli. Auranofin (AN) used in modern medicine was also studied for comparisons. The test drugs SB and KTK (25-50 mg/kg, p.o.) and AN (2.5-5.0 mg/kg, p.o.) exhibited analgesic activity against chemical (acetic acid induced writhing), electrical (pododolorimeter), thermal (Eddy's hot plate and analgesiometer) and mechanical (tail clip) test. While the analgesic effects of SB and KTK could be partly blocked by pretreatment with naloxone (1-5 mg/kg, i.p.,--15 min), such antagonism was not discernible with AN at the doses used. Involvement of opioidergic mechanism is suggested for the observed analgesic activity.

  6. ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity

    SciTech Connect

    Biener, M M; Biener, J; Wichmann, A; Wittstock, A; Baumann, T F; Baeumer, M; Hamza, A V

    2011-03-24

    Nanoporous metals have many technologically promising applications but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only one-nm-thick oxide films can stabilize the nanoscale morphology of np-Au up to 1000 C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO{sub 2} ALD coatings. Our results open the door to high temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  7. Hydroxychloroquine-conjugated gold nanoparticles for improved siRNA activity.

    PubMed

    Perche, F; Yi, Y; Hespel, L; Mi, P; Dirisala, A; Cabral, H; Miyata, K; Kataoka, K

    2016-06-01

    Current technology of siRNA delivery relies on pharmaceutical dosage forms to route maximal doses of siRNA to the tumor. However, this rationale does not address intracellular bottlenecks governing silencing activity. Here, we tested the impact of hydroxychloroquine conjugation on the intracellular fate and silencing activity of siRNA conjugated PEGylated gold nanoparticles. Addition of hydroxychloroquine improved endosomal escape and increased siRNA guide strand distribution to the RNA induced silencing complex (RISC), both crucial obstacles to the potency of siRNA. This modification significantly improved gene downregulation in cellulo. Altogether, our data suggest the benefit of this modification for the design of improved siRNA delivery systems. PMID:26986857

  8. ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity.

    PubMed

    Biener, Monika M; Biener, Juergen; Wichmann, Andre; Wittstock, Arne; Baumann, Theodore F; Bäumer, Marcus; Hamza, Alex V

    2011-08-10

    Nanoporous metals have many technologically promising applications, but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only 1 nm thick oxide films can stabilize the nanoscale morphology of np-Au up to 1,000°C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO(2) ALD coatings. Our results open the door to high-temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  9. Direct electrochemical detection of kanamycin based on peroxidase-like activity of gold nanoparticles.

    PubMed

    Wang, Chunshuai; Liu, Chang; Luo, Jibao; Tian, Yaping; Zhou, Nandi

    2016-09-14

    An enzyme-free, ultrasensitive electrochemical detection of kanamycin residue was achieved based on mimetic peroxidase activity of gold nanoparticles (AuNPs) and target-induced replacement of the aptamer. AuNPs which were synthesized using tyrosine as a reducing and capping agent, exhibited mimetic peroxidase activity. In the presence of kanamycin-specific aptamer, however, the single-stranded DNA (ssDNA) adsorbed on the surface of AuNPs via the interaction between the bases of ssDNA and AuNPs, and therefore blocked the catalytic site of AuNPs, and inhibited their peroxidase activity. While in the presence of target kanamycin, it bound with the adsorbed aptamer on AuNPs with high affinity, exposed the surface of AuNPs and recovered the peroxidase activity. Then AuNPs catalyzed the reaction between H2O2 and reduced thionine to produce oxidized thionine. The latter exhibited a distinct reduction peak on gold electrode in differential pulse voltammetry (DPV), and could be utilized to quantify the concentration of kanamycin. Under the optimized conditions, the proposed electrochemical assay showed an extremely high sensitivity towards kanamycin, with a linear relationship between the peak current and the concentration of kanamycin in the range of 0.1-60 nM, and a detection limit of 0.06 nM. Moreover, the established approach was successfully applied in the detection of kanamycin in honey samples. Therefore, the proposed electrochemical assay has great potential in the fields of food quality control and environmental monitoring. PMID:27566341

  10. Synthesis of Water Dispersible and Catalytically Active Gold-Decorated Cobalt Ferrite Nanoparticles.

    PubMed

    Silvestri, Alessandro; Mondini, Sara; Marelli, Marcello; Pifferi, Valentina; Falciola, Luigi; Ponti, Alessandro; Ferretti, Anna Maria; Polito, Laura

    2016-07-19

    Hetero-nanoparticles represent an important family of composite nanomaterials that in the past years are attracting ever-growing interest. Here, we report a new strategy for the synthesis of water dispersible cobalt ferrite nanoparticles (CoxFe3-xO4 NPs) decorated with ultrasmall (2-3 nm) gold nanoparticles (Au NPs). The synthetic procedure is based on the use of 2,3-meso-dimercaptosuccinic acid (DMSA), which plays a double role. First, it transfers cobalt ferrite NPs from the organic phase to aqueous media. Second, the DMSA reductive power promotes the in situ nucleation of gold NPs in proximity of the magnetic NP surface. Following this procedure, we achieved a water dispersible nanosystem (CoxFe3-xO4-DMSA-Au NPs) which combines the cobalt ferrite magnetic properties with the catalytic features of ultrasmall Au NPs. We showed that CoxFe3-xO4-DMSA-Au NPs act as an efficient nanocatalyst to reduce 4-nitrophenol to 4-aminophenol and that they can be magnetically recovered and recycled. It is noteworthy that such nanosystem is more catalytically active than Au NPs with equal size. Finally, a complete structural and chemical characterization of the hetero-NPs is provided.

  11. Mycosynthesis of silver and gold nanoparticles: Optimization, characterization and antimicrobial activity against human pathogens.

    PubMed

    Balakumaran, M D; Ramachandran, R; Balashanmugam, P; Mukeshkumar, D J; Kalaichelvan, P T

    2016-01-01

    This study was aimed to isolate soil fungi from Kolli and Yercaud Hills, South India with the ultimate objective of producing antimicrobial nanoparticles. Among 65 fungi tested, the isolate, Bios PTK 6 extracellularly synthesized both silver and gold nanoparticles with good monodispersity. Under optimized reaction conditions, the strain Bios PTK 6 identified as Aspergillus terreus has produced extremely stable nanoparticles within 12h. These nanoparticles were characterized by UV-vis. spectrophotometer, HR-TEM, FTIR, XRD, EDX, SAED, ICP-AES and Zetasizer analyses. A. terreus synthesized 8-20 nm sized, spherical shaped silver nanoparticles whereas gold nanoparticles showed many interesting morphologies with a size of 10-50 nm. The presence and binding of proteins with nanoparticles was confirmed by FTIR study. Interestingly, the myco derived silver nanoparticles exhibited superior antimicrobial activity than the standard antibiotic, streptomycin except against Staphylococcus aureus and Bacillus subtilis. The leakage of intracellular components such as protein and nucleic acid demonstrated that silver nanoparticles damage the bacterial cells by formation of pores, which affects membrane permeability and finally leads to cell death. Further, presence of nanoparticles in the bacterial membrane and the breakage of cell wall were also observed using SEM. Thus, the obtained results clearly reveal that these antimicrobial nanoparticles could be explored as promising candidates for a variety of biomedical and pharmaceutical applications.

  12. The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells.

    PubMed

    Joshi, Prachi; Chakraborti, Soumyananda; Ramirez-Vick, Jaime E; Ansari, Z A; Shanker, Virendra; Chakrabarti, Pinak; Singh, Surinder P

    2012-06-15

    In the present study, 11-mercaptoundecanoic acid-modified gold nanoparticles (∼7 nm) were conjugated with chloroquine to explore their potential application in cancer therapeutics. The anticancer activity of chloroquine-gold nanoparticle conjugates (GNP-Chl) was demonstrated in MCF-7 breast cancer cells. The MCF-7 cells were treated with different concentrations of GNP-Chl conjugates, and the cell viability was assayed using trypan blue, resulting in an IC(50) value of 30 ± 5 μg/mL. Flow cytometry analysis revealed that the major pathway of cell death was necrosis, which was mediated by autophagy. The drug release kinetics of GNP-Chl conjugates revealed the release of chloroquine at an acidic pH, which was quantitatively estimated using optical absorbance spectroscopy. The nature of stimuli-responsive drug release and the inhibition of cancer cell growth by GNP-Chl conjugates could pave the way for the design of combinatorial therapeutic agents, particularly nanomedicine, for the treatment of cancer. PMID:22445746

  13. Mycosynthesis of silver and gold nanoparticles: Optimization, characterization and antimicrobial activity against human pathogens.

    PubMed

    Balakumaran, M D; Ramachandran, R; Balashanmugam, P; Mukeshkumar, D J; Kalaichelvan, P T

    2016-01-01

    This study was aimed to isolate soil fungi from Kolli and Yercaud Hills, South India with the ultimate objective of producing antimicrobial nanoparticles. Among 65 fungi tested, the isolate, Bios PTK 6 extracellularly synthesized both silver and gold nanoparticles with good monodispersity. Under optimized reaction conditions, the strain Bios PTK 6 identified as Aspergillus terreus has produced extremely stable nanoparticles within 12h. These nanoparticles were characterized by UV-vis. spectrophotometer, HR-TEM, FTIR, XRD, EDX, SAED, ICP-AES and Zetasizer analyses. A. terreus synthesized 8-20 nm sized, spherical shaped silver nanoparticles whereas gold nanoparticles showed many interesting morphologies with a size of 10-50 nm. The presence and binding of proteins with nanoparticles was confirmed by FTIR study. Interestingly, the myco derived silver nanoparticles exhibited superior antimicrobial activity than the standard antibiotic, streptomycin except against Staphylococcus aureus and Bacillus subtilis. The leakage of intracellular components such as protein and nucleic acid demonstrated that silver nanoparticles damage the bacterial cells by formation of pores, which affects membrane permeability and finally leads to cell death. Further, presence of nanoparticles in the bacterial membrane and the breakage of cell wall were also observed using SEM. Thus, the obtained results clearly reveal that these antimicrobial nanoparticles could be explored as promising candidates for a variety of biomedical and pharmaceutical applications. PMID:26686609

  14. Size-dependent electrocatalytic activity of gold nanoparticles on HOPG and highly boron-doped diamond surfaces.

    PubMed

    Brülle, Tine; Ju, Wenbo; Niedermayr, Philipp; Denisenko, Andrej; Paschos, Odysseas; Schneider, Oliver; Stimming, Ulrich

    2011-12-06

    Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG) and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density constant. The distribution of particle sizes was very narrow, with standard deviations of around 20% on HOPG and around 30% on diamond. The electrocatalytic activity towards hydrogen evolution and oxygen reduction of these carbon supported gold nanoparticles in dependence of the particle sizes was investigated using cyclic voltammetry. For oxygen reduction the current density normalized to the gold surface (specific current density) increased for decreasing particle size. In contrast, the specific current density of hydrogen evolution showed no dependence on particle size. For both reactions, no effect of the different carbon supports on electrocatalytic activity was observed.

  15. Generic phosphatase activity detection using zinc mediated aggregation modulation of polypeptide-modified gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Selegård, Robert; Enander, Karin; Aili, Daniel

    2014-11-01

    A challenge in the design of plasmonic nanoparticle-based colorimetric assays is that the change in colloidal stability, which generates the colorimetric response, is often directly linked to the biomolecular recognition event. New assay strategies are hence required for every type of substrate and enzyme of interest. Here, a generic strategy for monitoring of phosphatase activity is presented where substrate recognition is completely decoupled from the nanoparticle stability modulation mechanism, which enables detection of a wide range of enzymes using different natural substrates with a single simple detection scheme. Phosphatase activity generates inorganic phosphate that forms an insoluble complex with Zn2+. In a sample containing a preset concentration of Zn2+, phosphatase activity will markedly reduce the concentration of dissolved Zn2+ from the original value, which in turn affects the aggregation of gold nanoparticles functionalized with a designed Zn2+ responsive polypeptide. The change in nanoparticle stability thus provides a rapid and sensitive readout of the phosphatase activity. The assay is not limited to a particular enzyme or enzyme substrate, which is demonstrated using three completely different phosphatases and five different substrates, and thus constitutes a highly interesting system for drug screening and diagnostics.A challenge in the design of plasmonic nanoparticle-based colorimetric assays is that the change in colloidal stability, which generates the colorimetric response, is often directly linked to the biomolecular recognition event. New assay strategies are hence required for every type of substrate and enzyme of interest. Here, a generic strategy for monitoring of phosphatase activity is presented where substrate recognition is completely decoupled from the nanoparticle stability modulation mechanism, which enables detection of a wide range of enzymes using different natural substrates with a single simple detection scheme

  16. Synthesis of gold nanoparticles using renewable Punica granatum juice and study of its catalytic activity

    NASA Astrophysics Data System (ADS)

    Dash, Shib Shankar; Bag, Braja Gopal

    2014-01-01

    Punica granatum juice, a delicious multivitamin drink of great medicinal significance, is rich in different types of phytochemicals, such as terpenoids, alkaloids, sterols, polyphenols, sugars, fatty acids, aromatic compounds, amino acids, tocopherols, etc. We have demonstrated the use of the juice for the synthesis of gold nanoparticles (AuNPs) at room temperature under very mild conditions. The synthesis of the AuNPs was complete in few minutes and no extra stabilizing or capping agents were necessary. The size of the nanoparticles could be controlled by varying the concentration of the fruit extract. The AuNPs were characterized by surface plasmon resonance spectroscopy, high resolution transmission electron microscopy, fourier transform infrared spectroscopy and X-ray diffraction studies. Catalytic activity of the synthesized colloidal AuNPs has also been demonstrated.

  17. A label-free gold nanocluster fluorescent probe for protease activity monitoring.

    PubMed

    Zhang, Jiajing; Zhang, Zhen; Nie, Xin; Zhang, Zhen; Wu, Xiaochun; Chen, Chunying; Fang, Xiaohong

    2014-06-01

    Water soluble BSA-stabilized gold nanoclusters (Au NCs) were synthesized with a simple one-pot procedure. The as-prepared Au NCs were able to emit intensive red fluorescence under the excitation of ultraviolet light, and the fluorescence could be quenched by enzymatic hydrolysis. In this contribution, BSA-stabilized Au NCs as novel fluorescent probes were successfully utilized for the detection and real-time monitoring of proteolytic activity of trypsin and chymotrypsin. High performance liquid chromatography-inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy, and X-ray absorption fine structure were performed to investigate the quenching mechanism, and the results indicated that BSA scaffold degradation caused by enzymatic proteolysis led to the decrease in fluorescence intensity. Furthermore, this method would be potentially extended to the detection of other enzymes with Au NCs stabilized by different biomolecules.

  18. Communication: CO oxidation by silver and gold cluster cations: Identification of different active oxygen species

    SciTech Connect

    Popolan, Denisia M.; Bernhardt, Thorsten M.

    2011-03-07

    The oxidation of carbon monoxide with nitrous oxide on mass-selected Au{sub 3}{sup +} and Ag{sub 3}{sup +} clusters has been investigated under multicollision conditions in an octopole ion trap experiment. The comparative study reveals that for both gold and silver cations carbon dioxide is formed on the clusters. However, whereas in the case of Au{sub 3}{sup +} the cluster itself acts as reactive species that facilitates the formation of CO{sub 2} from N{sub 2}O and CO, for silver the oxidized clusters Ag{sub 3}O{sub x}{sup +} (n= 1-3) are identified as active in the CO oxidation reaction. Thus, in the case of the silver cluster cations N{sub 2}O is dissociated and one oxygen atom is suggested to directly react with CO, whereas a second kind of oxygen strongly bound to silver is acting as a substrate for the reaction.

  19. Activation cross sections of proton induced nuclear reactions on gold up to 65MeV.

    PubMed

    Ditrói, F; Tárkányi, F; Takács, S; Hermanne, A

    2016-07-01

    Activation cross sections of proton induced reactions on gold for production of (197m,197g,195m,195g, 193m,193g,192)Hg, (196m,196g(cum),195g(cum),194,191(cum))Au, (191(cum))Pt and (192)Ir were measured up to 65MeV proton energy, some of them for the first time. The new data are in acceptably good agreement with the recently published earlier experimental data in the overlapping energy region. The experimental data are compared with the predictions of the TALYS 1.6 (results in TENDL-2015 on-line library) and EMPIRE 3.2 code. PMID:27156194

  20. Goal-directed mechanisms that constrain retrieval predict subsequent memory for new "foil" information.

    PubMed

    Vogelsang, David A; Bonnici, Heidi M; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2016-08-01

    To remember a previous event, it is often helpful to use goal-directed control processes to constrain what comes to mind during retrieval. Behavioral studies have demonstrated that incidental learning of new "foil" words in a recognition test is superior if the participant is trying to remember studied items that were semantically encoded compared to items that were non-semantically encoded. Here, we applied subsequent memory analysis to fMRI data to understand the neural mechanisms underlying the "foil effect". Participants encoded information during deep semantic and shallow non-semantic tasks and were tested in a subsequent blocked memory task to examine how orienting retrieval towards different types of information influences the incidental encoding of new words presented as foils during the memory test phase. To assess memory for foils, participants performed a further surprise old/new recognition test involving foil words that were encountered during the previous memory test blocks as well as completely new words. Subsequent memory effects, distinguishing successful versus unsuccessful incidental encoding of foils, were observed in regions that included the left inferior frontal gyrus and posterior parietal cortex. The left inferior frontal gyrus exhibited disproportionately larger subsequent memory effects for semantic than non-semantic foils, and significant overlap in activity during semantic, but not non-semantic, initial encoding and foil encoding. The results suggest that orienting retrieval towards different types of foils involves re-implementing the neurocognitive processes that were involved during initial encoding.

  1. Goal-directed mechanisms that constrain retrieval predict subsequent memory for new "foil" information.

    PubMed

    Vogelsang, David A; Bonnici, Heidi M; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2016-08-01

    To remember a previous event, it is often helpful to use goal-directed control processes to constrain what comes to mind during retrieval. Behavioral studies have demonstrated that incidental learning of new "foil" words in a recognition test is superior if the participant is trying to remember studied items that were semantically encoded compared to items that were non-semantically encoded. Here, we applied subsequent memory analysis to fMRI data to understand the neural mechanisms underlying the "foil effect". Participants encoded information during deep semantic and shallow non-semantic tasks and were tested in a subsequent blocked memory task to examine how orienting retrieval towards different types of information influences the incidental encoding of new words presented as foils during the memory test phase. To assess memory for foils, participants performed a further surprise old/new recognition test involving foil words that were encountered during the previous memory test blocks as well as completely new words. Subsequent memory effects, distinguishing successful versus unsuccessful incidental encoding of foils, were observed in regions that included the left inferior frontal gyrus and posterior parietal cortex. The left inferior frontal gyrus exhibited disproportionately larger subsequent memory effects for semantic than non-semantic foils, and significant overlap in activity during semantic, but not non-semantic, initial encoding and foil encoding. The results suggest that orienting retrieval towards different types of foils involves re-implementing the neurocognitive processes that were involved during initial encoding. PMID:27431039

  2. Peroxidase-like activity of gold nanoparticles stabilized by hyperbranched polyglycidol derivatives over a wide pH range.

    PubMed

    Drozd, Marcin; Pietrzak, Mariusz; Parzuchowski, Paweł; Mazurkiewicz-Pawlicka, Marta; Malinowska, Elżbieta

    2015-12-11

    The aim of this work was to carry out comparative studies on the peroxidase-like activity of gold nanoparticles (AuNPs) stabilized with low molecular weight hyperbranched polyglycidol (HBPG-OH) and its derivative modified with maleic acid residues (HBPG-COOH). The influence of the stabilizer to gold precursor ratio on the size and morphology of nanoparticles obtained was checked, and prepared nanoparticles were characterized by means of transmission electron microscopy and UV-Vis spectroscopy. The results indicated the divergent effect of increasing the concentration of stabilizers (HBPG-OH or HBPG-COOH) on the size of the nanostructures obtained. The gold nanoparticles obtained were characterized as having intrinsic peroxidase-like activity and the mechanism of catalysis in acidic and alkaline mediums was consistent with the standard Michaelis-Menten kinetics, revealing a strong affinity of AuNPs with 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 3, 3', 5, 5'-tetramethylbenzidine (TMB), and significantly lower affinity towards phenol. By comparing the kinetic parameters, a negligible effect of polymeric ligand charge on activity against various types of substrates (anionic or cationic) was indicated. The superiority of steric stabilization via the application of tested low-weight hyperbranched polymers over typical stabilizers in preventing salt-induced aggregation and maintaining high catalytic activity in time was proved. The applied hyperbranched stabilizers provide a good tool for manufacturing gold-based nanozymes, which are highly stable and active over a wide pH range.

  3. Peroxidase-like activity of gold nanoparticles stabilized by hyperbranched polyglycidol derivatives over a wide pH range.

    PubMed

    Drozd, Marcin; Pietrzak, Mariusz; Parzuchowski, Paweł; Mazurkiewicz-Pawlicka, Marta; Malinowska, Elżbieta

    2015-12-11

    The aim of this work was to carry out comparative studies on the peroxidase-like activity of gold nanoparticles (AuNPs) stabilized with low molecular weight hyperbranched polyglycidol (HBPG-OH) and its derivative modified with maleic acid residues (HBPG-COOH). The influence of the stabilizer to gold precursor ratio on the size and morphology of nanoparticles obtained was checked, and prepared nanoparticles were characterized by means of transmission electron microscopy and UV-Vis spectroscopy. The results indicated the divergent effect of increasing the concentration of stabilizers (HBPG-OH or HBPG-COOH) on the size of the nanostructures obtained. The gold nanoparticles obtained were characterized as having intrinsic peroxidase-like activity and the mechanism of catalysis in acidic and alkaline mediums was consistent with the standard Michaelis-Menten kinetics, revealing a strong affinity of AuNPs with 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 3, 3', 5, 5'-tetramethylbenzidine (TMB), and significantly lower affinity towards phenol. By comparing the kinetic parameters, a negligible effect of polymeric ligand charge on activity against various types of substrates (anionic or cationic) was indicated. The superiority of steric stabilization via the application of tested low-weight hyperbranched polymers over typical stabilizers in preventing salt-induced aggregation and maintaining high catalytic activity in time was proved. The applied hyperbranched stabilizers provide a good tool for manufacturing gold-based nanozymes, which are highly stable and active over a wide pH range. PMID:26567596

  4. Enzyme-mimetic effects of gold@platinum nanorods on the antioxidant activity of ascorbic acid

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Ting; He, Weiwei; Wamer, Wayne G.; Hu, Xiaona; Wu, Xiaochun; Lo, Y. Martin; Yin, Jun-Jie

    2013-01-01

    Au@Pt nanorods were prepared by growing platinum nanodots on gold nanorods. Using electron spin resonance (ESR), we determined that the mechanisms for oxidation of ascorbic acid (AA) by Au@Pt nanorods and ascorbic acid oxidase (AAO) were kinetically similar and yielded similar products. In addition we observed that Au@Pt nanorods were stable with respect to temperature and pH. Using UV-VIS spectroscopy, the apparent kinetics of enzyme-mimetic activity of Au@Pt nanorods were studied and compared with the activity of AAO. With the help of ESR, we found that Au@Pt nanorods did not scavenge hydroxyl radicals but inhibited the antioxidant ability of AA for scavenging hydroxyl radicals produced by photoirradiating solutions containing titanium dioxide and zinc oxide. Moreover, the Au@Pt nanorods reduced the ability of AA to scavenge DPPH radicals and superoxide radicals. These results demonstrate that Au@Pt nanorods can reduce the antioxidant activity of AA. Therefore, it is necessary to consider the effects of using Pt nanoparticles together with other reducing agents or antioxidants such as AA due to the oxidase-like property of Au@Pt nanorods.Au@Pt nanorods were prepared by growing platinum nanodots on gold nanorods. Using electron spin resonance (ESR), we determined that the mechanisms for oxidation of ascorbic acid (AA) by Au@Pt nanorods and ascorbic acid oxidase (AAO) were kinetically similar and yielded similar products. In addition we observed that Au@Pt nanorods were stable with respect to temperature and pH. Using UV-VIS spectroscopy, the apparent kinetics of enzyme-mimetic activity of Au@Pt nanorods were studied and compared with the activity of AAO. With the help of ESR, we found that Au@Pt nanorods did not scavenge hydroxyl radicals but inhibited the antioxidant ability of AA for scavenging hydroxyl radicals produced by photoirradiating solutions containing titanium dioxide and zinc oxide. Moreover, the Au@Pt nanorods reduced the ability of AA to scavenge

  5. Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing.

    PubMed

    Weerathunge, Pabudi; Ramanathan, Rajesh; Shukla, Ravi; Sharma, Tarun Kumar; Bansal, Vipul

    2014-12-16

    This study addresses the need for rapid pesticide (acetamiprid) detection by reporting a new colorimetric biosensing assay. Our approach combines the inherent peroxidase-like nanozyme activity of gold nanoparticles (GNPs) with high affinity and specificity of an acetamiprid-specific S-18 aptamer to detect this neurotoxic pesticide in a highly rapid, specific, and sensitive manner. It is shown that the nanozyme activity of GNPs can be inhibited by its surface passivation with target-specific aptamer molecules. Similar to an enzymatic competitive inhibition process, in the presence of a cognate target, these aptamer molecules leave the GNP surface in a target concentration-dependent manner, reactivating GNP nanozyme activity. This reversible inhibition of the GNP nanozyme activity can either be directly visualized in the form of color change of the peroxidase reaction product or can be quantified using UV-visible absorbance spectroscopy. This approach allowed detection of 0.1 ppm acetamiprid within an assay time of 10 min. This reversible nanozyme activation/inhibition strategy may in principle be universally applicable for the detection of a range of environmental or biomedical molecules of interest. PMID:25340286

  6. Reversible Regulation of Catalytic Activity of Gold Nanoparticles with DNA Nanomachines.

    PubMed

    Zhou, Peipei; Jia, Sisi; Pan, Dun; Wang, Lihua; Gao, Jimin; Lu, Jianxin; Shi, Jiye; Tang, Zisheng; Liu, Huajie

    2015-09-23

    Reversible catalysis regulation has gained much attention and traditional strategies utilized reversible ligand coordination for switching catalyst's conformations. However, it remains challenging to regulate the catalytic activity of metal nanoparticle-based catalysts. Herein, we report a new DNA nanomachine-driven reversible nano-shield strategy for circumventing this problem. The basic idea is based on the fact that the conformational change of surface-attached DNA nanomachines will cause the variation of the exposed surface active area on metal nanoparticles. As a proof-of-concept study, we immobilized G-rich DNA strands on gold nanoparticles (AuNPs) which have glucose oxidase (GOx) like activity. Through the reversible conformational change of the G-rich DNA between a flexible single-stranded form and a compact G-quadruplex form, the catalytic activity of AuNPs has been regulated reversibly for several cycles. This strategy is reliable and robust, which demonstrated the possibility of reversibly adjusting catalytic activity with external surface coverage switching, rather than coordination interactions.

  7. Reversible Regulation of Catalytic Activity of Gold Nanoparticles with DNA Nanomachines

    PubMed Central

    Zhou, Peipei; Jia, Sisi; Pan, Dun; Wang, Lihua; Gao, Jimin; Lu, Jianxin; Shi, Jiye; Tang, Zisheng; Liu, Huajie

    2015-01-01

    Reversible catalysis regulation has gained much attention and traditional strategies utilized reversible ligand coordination for switching catalyst’s conformations. However, it remains challenging to regulate the catalytic activity of metal nanoparticle-based catalysts. Herein, we report a new DNA nanomachine-driven reversible nano-shield strategy for circumventing this problem. The basic idea is based on the fact that the conformational change of surface-attached DNA nanomachines will cause the variation of the exposed surface active area on metal nanoparticles. As a proof-of-concept study, we immobilized G-rich DNA strands on gold nanoparticles (AuNPs) which have glucose oxidase (GOx) like activity. Through the reversible conformational change of the G-rich DNA between a flexible single-stranded form and a compact G-quadruplex form, the catalytic activity of AuNPs has been regulated reversibly for several cycles. This strategy is reliable and robust, which demonstrated the possibility of reversibly adjusting catalytic activity with external surface coverage switching, rather than coordination interactions. PMID:26395968

  8. Bio-active nanoemulsions enriched with gold nanoparticle, marigold extracts and lipoic acid: In vitro investigations.

    PubMed

    Guler, Emine; Barlas, F Baris; Yavuz, Murat; Demir, Bilal; Gumus, Z Pinar; Baspinar, Yucel; Coskunol, Hakan; Timur, Suna

    2014-09-01

    A novel and efficient approach for the preparation of enriched herbal formulations was described and their potential applications including wound healing and antioxidant activity (cell based and cell free) were investigated via in vitro cell culture studies. Nigella sativa oil was enriched with Calendula officinalis extract and lipoic acid capped gold nanoparticles (AuNP-LA) using nanoemulsion systems. The combination of these bio-active compounds was used to design oil in water (O/W) and water in oil (W/O) emulsions. The resulted emulsions were characterized by particle size measurements. The phenolic content of each nanoemulsion was examined by using both colorimetric assay and chromatographic analyses. Two different methods containing cell free chemical assay (1-diphenyl-2-picrylhydrazyl method) and cell based antioxidant activity test were used to evaluate the antioxidant capacities. In order to investigate the bio-activities of the herbal formulations, in vitro cell culture experiments, including cytotoxicity, scratch assay, antioxidant activity and cell proliferation were carried out using Vero cell line as a model cell line. Furthermore, to monitor localization of the nanoemulsions after application of the cell culture, the cell images were monitored via fluorescence microscope after FITC labeling. All data confirmed that the enriched N. sativa formulations exhibited better antioxidant and wound healing activity than N. sativa emulsion without any enrichment. In conclusion, the incorporation of AuNP-LA and C. officinalis extract into the N. sativa emulsions significantly increased the bio-activities. The present work may support further studies about using the other bio-active agents for the enrichment of herbal preparations to strengthen their activities.

  9. Bio-active nanoemulsions enriched with gold nanoparticle, marigold extracts and lipoic acid: In vitro investigations.

    PubMed

    Guler, Emine; Barlas, F Baris; Yavuz, Murat; Demir, Bilal; Gumus, Z Pinar; Baspinar, Yucel; Coskunol, Hakan; Timur, Suna

    2014-09-01

    A novel and efficient approach for the preparation of enriched herbal formulations was described and their potential applications including wound healing and antioxidant activity (cell based and cell free) were investigated via in vitro cell culture studies. Nigella sativa oil was enriched with Calendula officinalis extract and lipoic acid capped gold nanoparticles (AuNP-LA) using nanoemulsion systems. The combination of these bio-active compounds was used to design oil in water (O/W) and water in oil (W/O) emulsions. The resulted emulsions were characterized by particle size measurements. The phenolic content of each nanoemulsion was examined by using both colorimetric assay and chromatographic analyses. Two different methods containing cell free chemical assay (1-diphenyl-2-picrylhydrazyl method) and cell based antioxidant activity test were used to evaluate the antioxidant capacities. In order to investigate the bio-activities of the herbal formulations, in vitro cell culture experiments, including cytotoxicity, scratch assay, antioxidant activity and cell proliferation were carried out using Vero cell line as a model cell line. Furthermore, to monitor localization of the nanoemulsions after application of the cell culture, the cell images were monitored via fluorescence microscope after FITC labeling. All data confirmed that the enriched N. sativa formulations exhibited better antioxidant and wound healing activity than N. sativa emulsion without any enrichment. In conclusion, the incorporation of AuNP-LA and C. officinalis extract into the N. sativa emulsions significantly increased the bio-activities. The present work may support further studies about using the other bio-active agents for the enrichment of herbal preparations to strengthen their activities. PMID:25009101

  10. Active accumulation of gold nanorods in tumor in response to near-infrared laser irradiation.

    PubMed

    Shiotani, Atsushi; Akiyama, Yasuyuki; Kawano, Takahito; Niidome, Yasuro; Mori, Takeshi; Katayama, Yoshiki; Niidome, Takuro

    2010-11-17

    Gold nanorods, rod-shaped gold nanoparticles, have strong absorbance in the near-infrared region, and the absorbed light energy can be converted to heat, the so-called photothermal effect. The gold nanorods were coated with thermoresponsive polymers, which have different phase transition temperatures that were controlled by adding comonomers, N,N-dimethylacrylamide (DMAA) or acrylamide (AAm) to N-isopropylacrylamide (NIPAM). The phase transition temperatures of poly(NIPAM-DMAA) and poly(NIPAM-AAm)-coated gold nanorods were 38 and 41 °C, respectively, while polyNIPAM-coated gold nanorods showed phase transition at 34 °C. Irradiation of the coated gold nanorods using the near-infrared laser induced a decrease in their sizes due to a phase transition of the polymer layers. Poly(NIPAM-AAm)-coated gold nanorods stably circulated in the blood flow without a phase transition after intravenous injection. Irradiation of near-infrared light at a tumor after the injection resulted in the gold specifically accumulating in the tumor. This novel accumulation technique which combines a thermoresponsive polymer and the photothermal effect of the gold nanorods should be a powerful tool for targeted delivery in response to light irradiation.

  11. ESSENTIAL ROLE OF SURFACE HYDROXYLS FOR THE STABILIZATION AND CATALYTIC ACTIVITY OF TiO2-SUPPORTED GOLD NANOPARTICLES

    SciTech Connect

    Veith, Gabriel M; Lupini, Andrew R; Dudney, Nancy J

    2009-01-01

    We report the investigation of titania supported gold catalysts prepared by magnetron sputtering. Catalysts grown on natural fumed titania were structurally unstable resulting in the rapid coarsening of 2.3 nm gold clusters into large ~20 nm gold clusters in a few days at room temperature under normal atmospheric conditions. However, treating the titania support powder to a mock-deposition-precipitation process, at pH 4 or pH 10, followed by the subsequent deposition of gold onto this treated powder produced a remarkable enhancement in gold particle stability and a 20-40 fold enhancement of catalytic activity respectively. This enhancement can not be attributed to the formation of oxygen vacancies on the TiO2 surface. Instead, it appears to be associated with the formation of strongly bound hydroxyl species on the TiO2 surface. The formation of surface hydroxyls during the deposition-precipitation method is coincidental and contributes significantly to the properties of Au/TiO2 catalysts.

  12. Role of pH in the formation of structurally stable and catalytically active supported gold catalysts

    SciTech Connect

    Veith, Gabriel M; Lupini, Andrew R; Dudney, Nancy J

    2009-01-01

    We report the investigation of titania (Degussa P25) supported gold catalysts prepared by magnetron sputtering. Catalysts grown on natural fumed titania were structurally unstable, resulting in the rapid coarsening of 2.4 nm gold clusters into large {approx}20 nm gold clusters in a few days at room temperature under normal atmospheric conditions. However, treating the titania support powder to a mock deposition-precipitation process, at pH 4, followed by the subsequent deposition of gold onto this treated powder produced a remarkable enhancement in gold particle stability and a 20-fold enhancement of catalytic activity. Furthermore, it was found that treating the titania under basic conditions (pH 10) resulted in a further enhancement of structural stability and a further doubling of the reaction rate to 0.28 mol of CO/mol of Au {center_dot} s. This enhancement cannot be attributed to removing surface Cl{sup -} species from the titania, the formation of oxygen vacancies on the TiO{sub 2} surface, or an electronic effect. Instead, it appears to be associated with the formation of strongly bound hydroxyl species on the TiO{sub 2} surface. The formation of surface hydroxyls during the deposition-precipitation method is coincidental and contributes significantly to the properties of Au/TiO{sub 2} catalysts.

  13. Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens

    PubMed Central

    Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut

    2016-01-01

    Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP–GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core–shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP–GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP–GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP–GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP–GA was significantly decreased (P<0.0001) compared to that of GA. Fourier transform infrared analysis revealed that AuNP–GA resulted in alterations of lipids, proteins, and nucleic acids at the bacterial cell membrane. Our findings show that AuNP–GA has potential for further application in biomedical sciences. PMID:27555764

  14. Size-Dependent Electrocatalytic Activity of Free Gold Nanoparticles for the Glucose Oxidation Reaction.

    PubMed

    Hebié, Seydou; Napporn, Teko W; Morais, Cláudia; Kokoh, K Boniface

    2016-05-18

    Understanding the fundamental relationship between the size and the structure of electrode materials is essential to design catalysts and enhance their activity. Therefore, spherical gold nanoparticles (GNSs) with a mean diameter from 4 to 15 nm were synthesized. UV/Vis spectroscopy, transmission electron microscopy, and under-potential deposition of lead (UPDPb ) were used to determine the morphology, size, and surface crystallographic structure of the GNSs. The UPDPb revealed that their crystallographic facets are affected by their size and the growth process. The catalytic properties of these GNSs toward glucose electrooxidation were studied by cyclic voltammetry, taking into account the scan rate and temperature effects. The results clearly show the size-dependent electrocatalytic activity for glucose oxidation reactions that are controlled by diffusion. Small GNSs with an average size of 4.2 nm exhibited high catalytic activity. This drastic increase in activity results from the high specific area and reactivity of the surface electrons induced by their small size. The reaction mechanism was investigated by in situ Fourier transform infrared reflectance spectroscopy. Gluconolactone and gluconate were identified as the intermediate and the final reaction product, respectively, of the glucose electrooxidation.

  15. Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens.

    PubMed

    Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut

    2016-01-01

    Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP-GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core-shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP-GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP-GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP-GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP-GA was significantly decreased (P<0.0001) compared to that of GA. Fourier transform infrared analysis revealed that AuNP-GA resulted in alterations of lipids, proteins, and nucleic acids at the bacterial cell membrane. Our findings show that AuNP-GA has potential for further application in biomedical sciences. PMID:27555764

  16. Enzymatic immuno-assembly of gold nanoparticles for visualized activity screening of histone-modifying enzymes.

    PubMed

    Zhen, Zhen; Tang, Li-Juan; Long, Haoxu; Jiang, Jian-Hui

    2012-04-17

    Activity screening of histone-modifying enzymes is of paramount importance for epigenetic research as well as clinical diagnostics and therapeutics. A novel biosensing strategy has been developed for sensitive and selective detection of histone-modifying enzymes as well as their inhibitors. This strategy relies on the antibody-mediated assembly of gold nanoparticles (AuNPs) decorated with substrate peptides that are subjected to enzymatic modifications by the histone-modifying enzymes. This design allows a visual and homogeneous assay of the enzyme activity using antibodies without any labels, which circumvents the requirements to prefunctionalize the antibody and affords improved assay simplicity and throughput. Additionally, the use of antibody-based recognition of modified peptides could offer improved specificity as compared with existing techniques based on the enzyme coupled assay. We have demonstrated this strategy using a histone methyltransferase acting on histone H3 (Lys 4) and a histone acetyltransferase acting on histone H3 (Lys 14). The results reveal that the absorption peak characteristic for AuNPs decreases dynamically with increasing activity of the enzymes with concomitant visualizable color attenuation, and subnanomolar detection limits are readily achieved for both enzymes. The developed strategy can thus offer a robust and convenient visualized platform for screening the enzyme activities and their inhibitors with high sensitivity and selectivity.

  17. Formation of gold decorated porphyrin nanoparticles and evaluation of their photothermal and photodynamic activity.

    PubMed

    Chen, Ruey-Juen; Chen, Po-Chung; Prasannan, Adhimoorthy; Vinayagam, Jayaraman; Huang, Chun-Chiang; Chou, Peng-Yi; Weng, Cheng-Chih; Tsai, Hsieh Chih; Lin, Shuian-Yin

    2016-06-01

    A core-shell gold (Au) nanoparticle with improved photosensitization have been successfully fabricated using Au nanoparticles and 5,10,15,20 tetrakis pentafluorophenyl)-21H,23H-porphine (PF6) dye, forming a dyad through molecular self-assembly. Au nanoparticles were decorated on the shell and PF6 was placed in the core of the nanoparticles. Highly stable Au nanoparticles were achieved using PF6 with poly(N-vinylcaprolactam-co-N-vinylimidazole)-g-poly(D,L-lactide) graft copolymer hybridization. This was compared with hybridization using cetyltrimethylammonium bromide and polyethylene glycol-b-poly(D,L-lactide) for shell formation with PF6-Au. The resulting PF6-poly(N-vinylcaprolactam-co-N-vinylimidazole)-g-poly(D,L-lactide)-Au core-shell nanoparticle were utilized for photothermal and photodynamic activities. The spectroscopic analysis and zeta potential values of micelles revealed the presence of a thin Au layer coated on the PF6 nanoparticle surface, which generally enhanced the thermal stability of the gold nanoparticles and the photothermal effect of the shell. The core-shell PF6-Au nanoparticles were avidly taken up by cells and demonstrated cellular phototoxicity upon irradiation with 300W halogen lamps. The structural arrangement of PF6 dyes in the core-shell particles assures the effectiveness of singlet oxygen production. The study verifies that PF6 particles when companied with Au nanoparticles as PF6-Au have possible combinational applications in photodynamic and photothermal therapies for cancer cells because of their high production of singlet oxygen and heat. PMID:27040265

  18. Comparative catalytic activity of PET track-etched membranes with embedded silver and gold nanotubes

    NASA Astrophysics Data System (ADS)

    Mashentseva, Anastassiya; Borgekov, Daryn; Kislitsin, Sergey; Zdorovets, Maxim; Migunova, Anastassiya

    2015-12-01

    Irradiated by heavy ions nanoporous polyethylene terephthalate track-etched membranes (PET TeMs) after +15Kr84 ions bombardment (1.75 MeV/nucl with the ion fluency of 1 × 109 cm-2) and sequential etching was applied in this research as a template for development of composites with catalytically enriched properties. A highly ordered silver and gold nanotubes arrays were embedded in 100 nm pores of PET TeMs via electroless deposition technique at 4 °C during 1 h. All "as-prepared" composites were examined for catalytic activity using reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride as a common reaction to test metallic nanostructures catalysts. The effect of temperature on the catalytic activity was investigated in range of 292-313 K and activation energy were calculated. Kapp of Ag/PET composites linearly increase with an increase of the temperature thus normal Arrhenius behavior have been seen and the activation energy was calculated to be 42.13 kJ/mol. Au/PET composites exhibit not only more powerful catalytic activity but also non-linear dependence of rate constant from temperature. Kapp increased with increasing temperature throughout the 292-308 K temperature range; the reaction had an activation energy 65.32 kJ/mol. In range 311-313 K rate constant dramatically decreased and the apparent activation energy at this temperature rang was -91.44 kJ/mol due some structural changes, i.e. agglomeration of Au nanoparticles on the surface of composite.

  19. A plasmonic nanosensor for lipase activity based on enzyme-controlled gold nanoparticles growth in situ

    NASA Astrophysics Data System (ADS)

    Tang, Yan; Zhang, Wei; Liu, Jia; Zhang, Lei; Huang, Wei; Huo, Fengwei; Tian, Danbi

    2015-03-01

    A plasmonic nanosensor for lipase activity was developed based on one-pot nanoparticle growth. Tween 80 was selected not only as the substrate for lipase recognition but also as the reducing and stabilizing agent for the sensor fabrication. The different molecular groups in Tween 80 could have different roles in the fabrication procedure; the H2O2 produced by the autoxidation of the ethylene oxide subunits in Tween 80 could reduce the AuCl4- ions to Au atoms, meanwhile, the lipase could hydrolyze its carboxyl ester bond, which could, in turn, control the rate of nucleation of the gold nanoparticles (AuNPs) and tailor the localized surface plasmon resonance (LSPR) of the AuNP transducers. The color changes, which depend on the absence or presence of the lipase, could be used to sense the lipase activity. A linear response ranging from 0.025 to 4 mg mL-1 and a detection limit of the lipase as low as 3.47 μg mL-1 were achieved. This strategy circumvents the problems encountered by general enzyme assays that require sophisticated instruments and complicated assembling steps. The methodology can benefit the assays of heterogeneous-catalyzed enzymes.A plasmonic nanosensor for lipase activity was developed based on one-pot nanoparticle growth. Tween 80 was selected not only as the substrate for lipase recognition but also as the reducing and stabilizing agent for the sensor fabrication. The different molecular groups in Tween 80 could have different roles in the fabrication procedure; the H2O2 produced by the autoxidation of the ethylene oxide subunits in Tween 80 could reduce the AuCl4- ions to Au atoms, meanwhile, the lipase could hydrolyze its carboxyl ester bond, which could, in turn, control the rate of nucleation of the gold nanoparticles (AuNPs) and tailor the localized surface plasmon resonance (LSPR) of the AuNP transducers. The color changes, which depend on the absence or presence of the lipase, could be used to sense the lipase activity. A linear response

  20. Ultraviolet light and laser irradiation enhances the antibacterial activity of glucosamine-functionalized gold nanoparticles

    PubMed Central

    Govindaraju, Saravanan; Ramasamy, Mohankandhasamy; Baskaran, Rengarajan; Ahn, Sang Jung; Yun, Kyusik

    2015-01-01

    Here we report a novel method for the synthesis of glucosamine-functionalized gold nanoparticles (GlcN-AuNPs) using biocompatible and biodegradable glucosamine for antibacterial activity. GlcN-AuNPs were prepared using different concentrations of glucosamine. The synthesized AuNPs were characterized for surface plasmon resonance, surface morphology, fluorescence spectroscopy, and antibacterial activity. The minimum inhibitory concentrations (MICs) of the AuNPs, GlcN-AuNPs, and GlcN-AuNPs when irradiated by ultraviolet light and laser were investigated and compared with the MIC of standard kanamycin using Escherichia coli by the microdilution method. Laser-irradiated GlcN-AuNPs exhibited significant bactericidal activity against E. coli. Flow cytometry and fluorescence microscopic analysis supported the cell death mechanism in the presence of GlcN-AuNP-treated bacteria. Further, morphological changes in E. coli after laser treatment were investigated using atomic force microscopy and transmission electron microscopy. The overall results of this study suggest that the prepared nanoparticles have potential as a potent antibacterial agent for the treatment of a wide range of disease-causing bacteria. PMID:26345521

  1. Ratiometric fluorescence detection of tyrosinase activity and dopamine using thiolate-protected gold nanoclusters.

    PubMed

    Teng, Ye; Jia, Xiaofang; Li, Jing; Wang, Erkang

    2015-01-01

    In this work, a sensitive and selective ratiometric fluorescence sensing platform was built for the detection of tyrosinase (TYR) activity and dopamine (DA) using glutathione (GSH) protected gold nanoclusters (Au NCs) as probes. Upon excitation at 350 nm, Au NCs displayed an intense red emission, which could be effectively quenched by quinones. TYR, a typical polyphenol oxidase, can catalyze the oxidization of DA to o-quinone and therefore quenched the fluorescence of Au NCs. Moreover, the reaction of TYR and DA gave rise to an emission band at 400 nm, which increased in a TYR/DA-concentration-dependent manner. The ratiometric signal variations were utilized for facile, sensitive, and selective detection of TYR activity and DA. A linear range was obtained from 0.006-3.6 unit mL(-1) of TYR activity, while the linear range for detection of DA was 1.0 nM to 1.0 mM. Additionally, it constructed a useful platform for TYR inhibitor screening in biomedical research. PMID:25846058

  2. Photocatalytic and antibacterial activities of gold and silver nanoparticles synthesized using biomass of Parkia roxburghii leaf.

    PubMed

    Paul, Bappi; Bhuyan, Bishal; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar

    2016-01-01

    The present study reports a green approach for synthesis of gold (Au) and silver (Ag) nanoparticles (NPs) using dried biomass of Parkia roxburghii leaf. The biomass of the leaf acts as both reductant as well as stabilizer. The as-synthesized nanoparticles were characterized by time-dependent UV-visible, Fourier transform infrared (FT-IR), powder X-ray diffraction (XRD), and transmission electron microscopy (TEM) analyses. The UV-visible spectra of synthesized Au and Ag NPs showed surface plasmon resonance (SPR) at 555 and 440 nm after 12h. Powder XRD studies revealed formation of face-centered cubic structure for both Au and Ag NPs with average crystallite size of 8.4 and 14.74 nm, respectively. The TEM image showed the Au NPs to be monodispersed, spherical in shape with sizes in the range of 5-25 nm. On the other hand, Ag NPs were polydispersed, quasi-spherical in shape with sizes in the range of 5-25 nm. Investigation of photocatalytic activities of Au and Ag NPs under solar light illumination reveals that both these particles have pronounced effect on degradation of dyes viz., methylene blue (MB) and rhodamine b (RhB). Antibacterial activity of the synthesized NPs was studied on Gram positive bacteria Staphylococcus aureus and Gram negative bacteria Escherichia coli. Both Au and Ag NPs showed slightly higher activity on S. aureus than on E. coli.

  3. Visual detection of melamine based on the peroxidase-like activity enhancement of bare gold nanoparticles.

    PubMed

    Ni, Pengjuan; Dai, Haichao; Wang, Yilin; Sun, Yujing; Shi, Yan; Hu, Jingting; Li, Zhuang

    2014-10-15

    In this study, a facile method to sensitively detect melamine and highly improve the peroxidase-like activity of bare gold nanoparticles (Au NPs) at the same time is proposed for the first time. It is interesting to find that the addition of melamine could improve the peroxidase-like activity of Au NPs. By coupling with 3,3',5,5'-tetramethlybenzidine (TMB)-H2O2 chormogenic reaction, a novel method for colorimetic detection of melamine is developed. The detection limit of this method is as low as 0.2 nM with the help of UV-vis spectroscopy and 0.5 µM by naked-eye observation, both which are far below the US food and Drug Administration estimated melamine safety limit of 20 µM. In addition, the present method is successfully applied for the detection of melamine in raw milk and milk powder. More importantly, the proposed method could also improve the peroxidase-like activity of Au NPs, which may not only provide a new approach to develop effective nanomaterials-based mimetic enzyme, but also irradiative to develop new applications for Au NPs in varieties of cost-effective and simple sensors in medicine, biotechnology and environmental chemistry.

  4. Active Gold-Ceria and Gold-Ceria/titania Catalysts for CO Oxidation. From Single-Crystal Model Catalysts to Powder Catalysts

    SciTech Connect

    Rodriguez, Jose A.; Si, Rui; Evans, Jaime; Xu, Wenqian; Hanson, Jonathan C.; Tao, Jing; Zhu, Yimei

    2014-07-23

    We studied CO oxidation on model and powder catalysts of Au-CeO2 and Au-CeOx/TiO2. Phenomena observed in Au-CeO2(1 1 1) and Au-CeO2/TiO2(1 1 0) provided useful concepts for designing and preparing highly active and stable Au-CeOx/TiO2 powder catalysts for CO oxidation. Small particles of Au dispersed on CeO2(1 1 1) displayed high catalytic activity, making Au-CeO2(1 1 1) a better CO oxidation catalyst than Au-TiO2(1 1 0) or Au-MgO(1 0 0). An excellent support for gold was found after depositing nanoparticles of ceria on TiO2(1 1 0). The CeOx nanoparticles act as nucleation centers for gold, improving dispersion of the supported metal and helping in the creation of reaction sites efficient for the adsorption of CO and the dissociation of the O2 molecule. High-surface area catalysts were prepared by depositing gold on ceria nanorods and CeOx/TiO2 powders. The samples were tested for the low-temperature (10–70 °C) oxygen-rich (1%CO/4%O2/He) CO oxidation reaction after pre-oxidation (20%O2/He, 300 °C) and pre-reduction (5%H2/He, 300 °C) treatments. Moreover, synchrotron-based operando X-ray diffraction (XRD) and X-ray absorption (XAS) spectroscopy were used to study the Au-CeO2 and Au-CeOx/TiO2 catalysts under reaction conditions. Our operando findings indicate that the most active phase of these catalysts for low-temperature CO oxidation consist of small particles of metallic Au dispersed on CeO2 or CeOx/TiO2.

  5. Actinide Foil Production for MPACT Research

    SciTech Connect

    Beller, Denis

    2012-10-30

    Sensitive fast-neutron detectors are required for use in lead slowing down spectrometry (LSDS), an active interrogation technique for used nuclear fuel assay for Materials Protection, Accounting, and Controls Technologies (MPACT). During the past several years UNLV sponsored a research project at RPI to investigate LSDS; began development of fission chamber detectors for use in LSDS experiments in collaboration with INL, LANL, and Oregon State U.; and participated in a LSDS experiment at LANL. In the LSDS technique, research has demonstrated that these fission chamber detectors must be sensitive to fission energy neutrons but insensitive to thermal-energy neutrons. Because most systems are highly sensitive to large thermal neutron populations due to the well-known large thermal cross section of 235U, even a miniscule amount of this isotope in a fission chamber will overwhelm the small population of higher-energy neutrons. Thus, fast-fission chamber detectors must be fabricated with highly depleted uranium (DU) or ultra-pure thorium (Th), which is about half as efficient as DU. Previous research conducted at RPI demonstrated that the required purity of DU for assay of used nuclear fuel using LSDS is less than 4 ppm 235U, material that until recently was not available in the U.S. In 2009 the PI purchased 3 grams of ultra-depleted uranium (uDU, 99.99998% 238U with just 0.2 ± 0.1 ppm 235U) from VNIIEF in Sarov, Russia. We received the material in the form of U3O8 powder in August of 2009, and verified its purity and depletion in a FY10 MPACT collaboration project. In addition, chemical processing for use in FC R&D was initiated, fission chamber detectors and a scanning alpha-particle spectrometer were developed, and foils were used in a preliminary LSDS experiment at a LANL/LANSCE in Sept. of 2010. The as-received U3O8 powder must be chemically processed to convert it to another chemical form while maintaining its purity, which then must be used to electro-deposit U

  6. Foil bearing research at Penn State

    NASA Astrophysics Data System (ADS)

    Carpino, Marc

    1993-11-01

    Foil journal bearings consist of a compliant metal shell or foil which supports a rigid journal by means of a fluid film. Foil bearings are considered to be a potential alternative to rolling element or traditional rigid surface bearings in cryogenic turbomachinery applications. The prediction of foil bearing performance requires the coupled solution of the foil deflection and the fluid flow in the bearing clearance between the rotor and the foil. The investigations being conducted in the Department of Mechanical Engineering at Penn State are focused in three areas: theoretical prediction of steady state bearing performance, modeling of the dynamic bearing characteristics to determine performance in rotor systems, and experimental verification of analysis codes. The current status and results from these efforts will be discussed.

  7. Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles

    PubMed Central

    Suresh Babu, K; Anandkumar, M; Tsai, TY; Kao, TH; Stephen Inbaraj, B; Chen, BH

    2014-01-01

    Background Cerium oxide nanoparticles (CeO2) have been shown to be a novel therapeutic in many biomedical applications. Gold (Au) nanoparticles have also attracted widespread interest due to their chemical stability and unique optical properties. Thus, decorating Au on CeO2 nanoparticles would have potential for exploitation in the biomedical field. Methods In the present work, CeO2 nanoparticles synthesized by a chemical combustion method were supported with 3.5% Au (Au/CeO2) by a deposition-precipitation method. The as-synthesized Au, CeO2, and Au/CeO2 nanoparticles were evaluated for antibacterial activity and cytotoxicity in RAW 264.7 normal cells and A549 lung cancer cells. Results The as-synthesized nanoparticles were characterized by X-ray diffraction, scanning and transmission electron microscopy, and ultraviolet-visible measurements. The X-ray diffraction study confirmed the formation of cubic fluorite-structured CeO2 nanoparticles with a size of 10 nm. All synthesized nanoparticles were nontoxic towards RAW 264.7 cells at doses of 0–1,000 μM except for Au at >100 μM. For A549 cancer cells, Au/CeO2 had the highest inhibitory effect, followed by both Au and CeO2 which showed a similar effect at 500 and 1,000 μM. Initial binding of nanoparticles occurred through localized positively charged sites in A549 cells as shown by a shift in zeta potential from positive to negative after 24 hours of incubation. A dose-dependent elevation in reactive oxygen species indicated that the pro-oxidant activity of the nanoparticles was responsible for their cytotoxicity towards A549 cells. In addition, cellular uptake seen on transmission electron microscopic images indicated predominant localization of nanoparticles in the cytoplasmic matrix and mitochondrial damage due to oxidative stress. With regard to antibacterial activity, both types of nanoparticles had the strongest inhibitory effect on Bacillus subtilis in monoculture systems, followed by Salmonella

  8. Wind turbine with adjustable air foils

    SciTech Connect

    Pryor, D.H.

    1983-05-17

    A wind turbine has axially aligned, spaced, rotatable support flanges with a plurality of vertically aligned air foils having opposed ends journaled thereto. The air foils are pivoted respective to the wind by a pitch flange mounted eccentrically respective to the support flanges. The pitch flange moves the air foils into an aligned relationship respective to the wind to optimize the energy derived from the blowing wind.

  9. Efficiency and lifetime of carbon foils

    SciTech Connect

    Chou, W.; Kostin, M.; Tang, Z.; /Fermilab

    2006-11-01

    Charge-exchange injection by means of carbon foils is a widely used method in accelerators. This paper discusses two critical issues concerning the use of carbon foils: efficiency and lifetime. An energy scaling of stripping efficiency was suggested and compared with measurements. Several factors that determine the foil lifetime--energy deposition, heating, stress and buckling--were studied by using the simulation codes MARS and ANSYS.

  10. The fluxional amine gold(III) complex as an excellent catalyst and precursor of biologically active acyclic carbenes.

    PubMed

    Montanel-Pérez, Sara; Herrera, Raquel P; Laguna, Antonio; Villacampa, M Dolores; Gimeno, M Concepción

    2015-05-21

    A new amine gold(III) complex [Au(C6F5)2(DPA)]ClO4 with the di-(2-picolyl)amine (DPA) ligand has been synthesised. In the solid state the complex has a chiral amine nitrogen because the ligand coordinates to the gold centre through one nitrogen atom from a pyridine and through the NH moiety, whereas in solution it shows a fluxional behaviour with a rapid exchange between the pyridine sites. This complex can be used as an excellent synton to prepare new gold(III) carbene complexes by the reaction with isocyanide CNR. The resulting gold(III) derivatives have unprecedented bidentate C^N acyclic carbene ligands. All the complexes have been spectroscopically and structurally characterized. Taking advantage of the fluxional behaviour of the amine complex, its catalytic properties have been tested in several reactions with the formation of C-C and C-N bonds. The complex showed excellent activity with total conversion, without the presence of a co-catalyst, and with a catalyst loading as low as 0.1%. These complexes also present biological properties, and cytotoxicity studies have been performed in vitro against three tumour human cell lines, Jurkat (T-cell leukaemia), MiaPaca2 (pancreatic carcinoma) and A549 (lung carcinoma). Some of them showed excellent cytotoxic activity compared with the reference cisplatin.

  11. Activation of Inflammasomes by Tumor Cell Death Mediated by Gold Nanoshells

    PubMed Central

    Nguyen, Hai T.; Tran, Kenny K.; Sun, Bingbing; Shen, Hong

    2011-01-01

    Gold nanoshell enabled photothermal therapy (NEPTT) utilizes the efficient thermal conversion of near infrared (NIR) light for the ablation of cancer cells. Cancer therapies that combine cell killing with the induction of a strong immune response against the dying tumor cells have been shown to increase therapeutic efficacy in the clearance and regression of cancers. In this study, we assessed the ability of dying cells generated by in vitro NEPTT to activate inflammasome complexes. We quantified levels of major danger-associated molecular patterns (DAMPs), including adenosine triphosphate (ATP), adenosine diphosphate (ADP), and uric acid, released from tumor cells treated by NEPTT. The amount of DAMPs released was dependent on the dose of nanoshells internalized by cells. However, under all the employed conditions, the levels of generated DAMPs were insufficient to activate inflammasome complexes and to induce the production of pro-inflammatory cytokines (i.e. IL-1β). The results from this study provide insights into the development of nanoplasmonics for combining both photothermal therapy and immunotherapy to eradicate cancers. PMID:22177288

  12. Colloidal Confinement of Polyphosphate on Gold Nanoparticles Robustly Activates the Contact Pathway of Blood Coagulation.

    PubMed

    Szymusiak, Magdalena; Donovan, Alexander J; Smith, Stephanie A; Ransom, Ross; Shen, Hao; Kalkowski, Joseph; Morrissey, James H; Liu, Ying

    2016-01-20

    Platelet-sized polyphosphate (polyP) was functionalized on the surface of gold nanoparticles (GNPs) via a facile conjugation scheme entailing EDAC (N-(3-(dimethylamino)propyl)-N'-ethylcarbodiimide hydrochloride)-catalyzed phosphoramidation of the terminal phosphate of polyP to cystamine. Subsequent reduction of the disulfide moiety allowed for anchoring to the colloidal surface. The ability of the synthesized polyP-GNPs to initiate the contact pathway of clotting in human pooled normal plasma (PNP) was then assayed by quantifying changes in viscous, mechanical, and optical properties upon coagulation. It is revealed that the polyP-GNPs are markedly superior contact activators compared to molecularly dissolved, platelet-sized polyP (of equivalent polymer chain length). Moreover, the particles' capacity to mobilize Factor XII (FXII) and its coactivating proteins appear to be identical to very-long-chain polyP typically found in bacteria. These data imply that nanolocalization of anionic procoagulants on colloidal surfaces, achieved through covalent anchoring, may yield a robust contact surface with the ability to sufficiently cluster active clotting factors together above their threshold concentrations to cease bleeding. The polyP-GNPs therefore serve as a promising foundation in the development of a nanoparticle hemostat to treat a range of hemorrhagic scenarios. PMID:26624923

  13. Neutron activation determination of iridium, gold, platinum, and silver in geologic samples

    USGS Publications Warehouse

    Millard, H.T.

    1987-01-01

    Low-level methods for the determination of iridium and other noble metals have become increasingly important in recent years due to interest in locating abundance anomalies associated with the Cretaceous and Tertiary (K-T) boundary. Typical iridium anomalies are in the range of 1 to 100 ??g/kg (ppb). Thus methods with detection limits near 0.1 ??g/kg should be adequate to detect K-T boundary anomalies. Radiochemical neutron activation analysis methods continue to be required although instrumental neutron activation analysis techniques employing elaborate gamma-counters are under development. In the procedure developed in this study samples irradiated in the epithermal neutron facility of the U. S. Geological Survey TRIGA Reactor (Denver, Colorado) are treated with a mini-fire assay technique. The iridium, gold, and silver are collected in a 1-gram metallic lead button. Primary contaminants at this stage are arsenic and antimony. These can be removed by heating the button with a mixture of sodium perioxide and sodium hydroxide. The resulting 0.2-gram lead bead is counted in a Compton suppression spectrometer. Carrier yields are determined by reirradiation of the lead beads. This procedure has been applied to the U.S.G.S. Standard Rock PCC-1 and samples from K-T boundary sites in the Western Interior of North America. ?? 1987 Akade??miai Kiado??.

  14. Exonuclease I manipulating primer-modified gold nanoparticles for colorimetric telomerase activity assay.

    PubMed

    Zhang, Lei; Zhang, Sijin; Pan, Wei; Liang, Qingcheng; Song, Xingyu

    2016-03-15

    Telomerase is a widely accepted cancer biomarker. The conventional method for telomerase activity assay, the telomeric repeat amplification protocol (TRAP), is time-consuming and susceptible to contaminants. Therefore, development of simple and sensitive strategies for telomerase detection is still a challenging subject. Here we develop a highly sensitive method for telomerase detection based on primer-modified gold nanoparticles (GNPs) manipulated by exonuclease I (Exo I). In the absence of telomerase, Exo I digests the substrate nucleic acid on the surface of GNPs, inducing the GNPs' aggregation. In the presence of telomerase, the telomerase elongation products which fold into G-quadruplex are resistant to the digestion of Exo I, and protect the GNPs from aggregation. By using this method, we can detect telomerase activity in 100 HL-60 cancer cells mL(-1) by naked eyes, and the detection limit is 29 HL-60 cells mL(-1). This method is very simple and reliable, without any separation and amplification procedure. We also demonstrate the feasibility of this protocol for screening of telomerase inhibitors as anticancer agents. This method is promising to be applied in early clinical diagnosis and drug discovery. PMID:26402592

  15. Peroxidase-like activity of apoferritin paired gold clusters for glucose detection.

    PubMed

    Jiang, Xin; Sun, Cuiji; Guo, Yi; Nie, Guangjun; Xu, Li

    2015-02-15

    The discovery and application of noble metal nanoclusters have received considerable attention. In this paper, we reported that apoferritin paired gold clusters (Au-Ft) could efficiently catalyze oxidation of 3.3',5.5'-tetramethylbenzidine (TMB) by H2O2 to produce a blue color reaction. Compared with natural enzyme, Au-Ft exhibited higher activity near acidic pH and could be used over a wide range of temperatures. Apoferritin nanocage enhanced the reaction activity of substrate TMB by H2O2. The reaction catalyzed by Au-Ft was found to follow a typical Michaelis-Menten kinetics. The kinetic parameters exhibited a lower K(m) value (0.097 mM) and a higher K(cat) value (5.8 × 10(4) s(-1)) for TMB than that of horse radish peroxidase (HRP). Base on these findings, Au-Ft, acting as a peroxidase mimetic, performed enzymatic spectrophotometric analysis of glucose. This system exhibited acceptable reproducibility and high selectivity in biosening, suggesting that it could have promising applications in the future. PMID:25218100

  16. Energy-efficient green catalysis: supported gold nanoparticle-catalyzed aminolysis of esters with inert tertiary amines by C-O and C-N bond activations.

    PubMed

    Bao, Yong-Sheng; Baiyin, Menghe; Agula, Bao; Jia, Meilin; Zhaorigetu, Bao

    2014-07-18

    Catalyzed by supported gold nanoparticles, an aminolysis reaction between various aryl esters and inert tertiary amines by C-O and C-N bond activations has been developed for the selective synthesis of tertiary amides. Comparison studies indicated that the gold nanoparticles could perform energy-efficient green catalysis at room temperature, whereas Pd(OAc)2 could not.

  17. Technical Development Path for Foil Gas Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2008-01-01

    Foil gas bearings are in widespread commercial use in air cycle machines, turbocompressors and microturbine generators and are emerging in more challenging applications such as turbochargers, auxiliary power units and propulsion gas turbines. Though not well known, foil bearing technology is well over fifty years old. Recent technological developments indicate that their full potential has yet to be realized. This paper investigates the key technological developments that have characterized foil bearing advances. It is expected that a better understanding of foil gas bearing development path will aid in future development and progress towards more advanced applications.

  18. Gold nanoparticle-based sensors activated by external radio frequency fields.

    PubMed

    Vedova, Paolo Della; Ilieva, Mirolyuba; Zhurbenko, Vitaliy; Mateiu, Ramona; Faralli, Adele; Dufva, Martin; Hansen, Ole

    2015-01-14

    A novel molecular beacon (a nanomachine) is constructed that can be actuated by a radio frequency (RF) field. The nanomachine consists of the following elements arranged in molecular beacon configuration: a gold nanoparticle that acts both as quencher for fluorescence and a localized heat source; one reporter fluorochrome, and; a piece of DNA as a hinge and recognition sequence. When the nanomachines are irradiated with a 3 GHz RF field the fluorescence signal increases due to melting of the stem of the molecular beacon. A control experiment, performed using molecular beacons synthesized by substituting the gold nanoparticle by an organic quencher, shows no increase in fluorescence signal when exposed to the RF field. It may therefore be concluded that the increased fluorescence for the gold nanoparticle-conjugated nanomachines is not due to bulk heating of the solution, but is caused by the presence of the gold nanoparticles and their interaction with the RF field; however, existing models for heating of gold nanoparticles in a RF field are unable to explain the experimental results. Due to the biocompatibility of the construct and RF treatment, the nanomachines may possibly be used inside living cells. In a separate experiment a substantial increase in the dielectric losses can be detected in a RF waveguide setup coupled to a microfluidic channel when gold nanoparticles are added to a low RF loss liquid. This work sheds some light on RF heating of gold nanoparticles, which is a subject of significant controversy in the literature.

  19. Calibration of a thin metal foil for infrared imaging video bolometer to estimate the spatial variation of thermal diffusivity using a photo-thermal technique

    SciTech Connect

    Pandya, Shwetang N. Sano, Ryuichi; Peterson, Byron J.; Mukai, Kiyofumi; Akiyama, Tsuyoshi; Watanabe, Takashi; Drapiko, Evgeny A.; Alekseyev, Andrey G.; Itomi, Muneji

    2014-05-15

    A thin metal foil is used as a broad band radiation absorber for the InfraRed imaging Video Bolometer (IRVB), which is a vital diagnostic for studying three-dimensional radiation structures from high temperature plasmas in the Large Helical Device. The two-dimensional (2D) heat diffusion equation of the foil needs to be solved numerically to estimate the radiation falling on the foil through a pinhole geometry. The thermal, physical, and optical properties of the metal foil are among the inputs to the code besides the spatiotemporal variation of temperature, for reliable estimation of the exhaust power from the plasma illuminating the foil. The foil being very thin and of considerable size, non-uniformities in these properties need to be determined by suitable calibration procedures. The graphite spray used for increasing the surface emissivity also contributes to a change in the thermal properties. This paper discusses the application of the thermographic technique for determining the spatial variation of the effective in-plane thermal diffusivity of the thin metal foil and graphite composite. The paper also discusses the advantages of this technique in the light of limitations and drawbacks presented by other calibration techniques being practiced currently. The technique is initially applied to a material of known thickness and thermal properties for validation and finally to thin foils of gold and platinum both with two different thicknesses. It is observed that the effect of the graphite layer on the estimation of the thermal diffusivity becomes more pronounced for thinner foils and the measured values are approximately 2.5–3 times lower than the literature values. It is also observed that the percentage reduction in thermal diffusivity due to the coating is lower for high thermal diffusivity materials such as gold. This fact may also explain, albeit partially, the higher sensitivity of the platinum foil as compared to gold.

  20. Calibration of a thin metal foil for infrared imaging video bolometer to estimate the spatial variation of thermal diffusivity using a photo-thermal technique

    NASA Astrophysics Data System (ADS)

    Pandya, Shwetang N.; Peterson, Byron J.; Sano, Ryuichi; Mukai, Kiyofumi; Drapiko, Evgeny A.; Alekseyev, Andrey G.; Akiyama, Tsuyoshi; Itomi, Muneji; Watanabe, Takashi

    2014-05-01

    A thin metal foil is used as a broad band radiation absorber for the InfraRed imaging Video Bolometer (IRVB), which is a vital diagnostic for studying three-dimensional radiation structures from high temperature plasmas in the Large Helical Device. The two-dimensional (2D) heat diffusion equation of the foil needs to be solved numerically to estimate the radiation falling on the foil through a pinhole geometry. The thermal, physical, and optical properties of the metal foil are among the inputs to the code besides the spatiotemporal variation of temperature, for reliable estimation of the exhaust power from the plasma illuminating the foil. The foil being very thin and of considerable size, non-uniformities in these properties need to be determined by suitable calibration procedures. The graphite spray used for increasing the surface emissivity also contributes to a change in the thermal properties. This paper discusses the application of the thermographic technique for determining the spatial variation of the effective in-plane thermal diffusivity of the thin metal foil and graphite composite. The paper also discusses the advantages of this technique in the light of limitations and drawbacks presented by other calibration techniques being practiced currently. The technique is initially applied to a material of known thickness and thermal properties for validation and finally to thin foils of gold and platinum both with two different thicknesses. It is observed that the effect of the graphite layer on the estimation of the thermal diffusivity becomes more pronounced for thinner foils and the measured values are approximately 2.5-3 times lower than the literature values. It is also observed that the percentage reduction in thermal diffusivity due to the coating is lower for high thermal diffusivity materials such as gold. This fact may also explain, albeit partially, the higher sensitivity of the platinum foil as compared to gold.

  1. Flower-shaped gold nanoparticles: synthesis, characterization and their application as SERS-active tags inside living cells

    NASA Astrophysics Data System (ADS)

    Boca, Sanda; Rugina, Dumitrita; Pintea, Adela; Barbu-Tudoran, Lucian; Astilean, Simion

    2011-02-01

    The detection of Raman signals inside living cells is a topic of great interest in the study of cell biology mechanisms and for diagnostic and therapeutic applications. This work presents the synthesis and characterization of flower-shaped gold nanoparticles and demonstrates their applicability as SERS-active tags for cellular spectral detection. The particles were synthesized by a facile, rapid new route that uses ascorbic acid as a reducing agent of gold salt. Two triarylmethane dyes which are widely used as biological stains, namely malachite green oxalate and basic fuchsin, were used as Raman-active molecules and the polymer mPEG-SH as capping material. The as-prepared SERS-active nanoparticles were tested on a human retinal pigment epithelial cell line and found to present a low level of cytotoxicity and high chemical stability together with SERS sensitivity down to picomolar particle concentrations.

  2. Chemistry of conjugation to gold nanoparticles affects G-protein activity differently

    PubMed Central

    2013-01-01

    Background Gold nanoparticles (AuNP) are extensively used as biophysical tools in the area of medicine and technology due to their distinct properties. However, vivid understanding of the consequences of biomolecule-nanomaterial interactions is still lacking. In this context, we explore the affect of conjugation of Gαi1 subunit (of heterotrimeric G-proteins) to AuNP and examine its consequences. We consider two bio-conjugation strategies covalent and non-covalent binding. Results Affinity of the AuNP to the Gαi1 is 7.58 × 10 12 M-1. AuNP conjugated Gαi1 exhibits altered kinetics of activation, non-covalent bio-conjugates displays retarded kinetics, up to 0.88 fold when GTPγS was used as ligand, of protein activation contrary to covalent conjugates which accelerates it to ~ 5 fold. Conjugation influence intrinsic Gαi1 GTPase function in conflicting modes. Non-covalent conjugation inhibits GTPase function (decrease in activity upto 0.8 fold) whilst covalent conjugation drastically accelerates it (12 fold increase in activity). Altered basal nucleotide uptake in both types of conjugates and GTPase function in non-covalent conjugate are almost comparable except for GTPase property of covalent conjugate. The effect is despite the fact that conjugation does not change global conformation of the protein. Conclusion These findings provide clear evidence that nanoparticles, in addition to ‘passive interaction’ with protein (biomolecule), can interact “actively” with biomolecule and modify its function. This concept should be considered while engineering nanoparticle based delivery systems in medicine. PMID:23510390

  3. The bright side of plasmonic gold nanoparticles; activation of Nrf2, the cellular protective pathway

    NASA Astrophysics Data System (ADS)

    Goldstein, Alona; Soroka, Yoram; Frušić-Zlotkin, Marina; Lewis, Aaron; Kohen, Ron

    2016-06-01

    Plasmonic gold nanoparticles (AuNPs) are widely investigated for cancer therapy, due to their ability to strongly absorb light and convert it to heat and thus selectively destroy tumor cells. In this study we shed light on a new aspect of AuNPs and their plasmonic excitation, wherein they can provide anti-oxidant and anti-inflammatory protection by stimulating the cellular protective Nrf2 pathway. Our study was carried out on cells of the immune system, macrophages, and on skin cells, keratinocytes. A different response to AuNPs was noted in the two types of cells, explained by their distinct uptake profiles. In keratinocytes, the exposure to AuNPs, even at low concentrations, was sufficient to activate the Nrf2 pathway, without any irradiation, due to the presence of free AuNPs inside the cytosol. In contrast, in macrophages, the plasmonic excitation of the AuNPs by a low, non-lethal irradiation dose was required for their release from the constraining vesicles. The mechanism by which AuNPs activate the Nrf2 pathway was studied. Direct and indirect activation were suggested, based on the inherent ability of the AuNPs to react with thiol groups and to generate reactive oxygen species, in particular, under plasmonic excitation. The ability of AuNPs to directly activate the Nrf2 pathway renders them good candidates for treatment of disorders in which the up-regulation of Nrf2 is beneficial, specifically for topical treatment of inflammatory skin diseases.

  4. Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions

    NASA Astrophysics Data System (ADS)

    Lien, Chia-Wen; Chen, Ying-Chieh; Chang, Huan-Tsung; Huang, Chih-Ching

    2013-08-01

    In this study we employed self-deposition and competitive or synergistic interactions between metal ions and gold nanoparticles (Au NPs) to develop OR, AND, INHIBIT, and XOR logic gates through regulation of the enzyme-like activity of Au NPs. In the presence of various metal ions (Ag+, Bi3+, Pb2+, Pt4+, and Hg2+), we found that Au NPs (13 nm) exhibited peroxidase-, oxidase-, or catalase-like activity. After Ag+, Bi3+, or Pb2+ ions had been deposited on the Au NPs, the particles displayed strong peroxidase-like activity; on the other hand, they exhibited strong oxidase- and catalase-like activities after reactions with Ag+/Hg2+ and Hg2+/Bi3+ ions, respectively. The catalytic activities of these Au NPs arose mainly from the various oxidation states of the surface metal atoms/ions. Taking advantage of this behavior, we constructed multiplex logic operations--OR, AND, INHIBIT, and XOR logic gates--through regulation of the enzyme-like activity after the introduction of metal ions into the Au NP solution. When we deposited Hg2+ and/or Bi3+ ions onto the Au NPs, the catalase-like activities of the Au NPs were strongly enhanced (>100-fold). Therefore, we could construct an OR logic gate by using Hg2+/Bi3+ as inputs and the catalase-like activity of the Au NPs as the output. Likewise, we constructed an AND logic gate by using Pt4+ and Hg2+ as inputs and the oxidase-like activity of the Au NPs as the output; the co-deposition of Pt and Hg atoms/ions on the Au NPs was responsible for this oxidase-like activity. Competition between Pb2+ and Hg2+ ions for the Au NPs allowed us to develop an INHIBIT logic gate--using Pb2+ and Hg2+ as inputs and the peroxidase-like activity of the Au NPs as the output. Finally, regulation of the peroxidase-like activity of the Au NPs through the two inputs Ag+ and Bi3+ enabled us to construct an XOR logic gate.In this study we employed self-deposition and competitive or synergistic interactions between metal ions and gold nanoparticles (Au NPs

  5. The Anomalous Currents In The Front Foils of the JET Lost Alpha Diagnostic KA-2

    SciTech Connect

    Cecil, F. E.; Kiptily, V.; Salmi, A.; Horton, A.; Fullard, K.; Murari, A.; Darrow, D.; Hill, K.

    2011-05-04

    We have examined the observed currents in the front foils of the JET Faraday cup lost alpha particle diagnostic KA-2. In particular, we have sought to understand the currents during Ohmic plasmas for which the ion flux at the detectors was initially assumed to be negligible. We have considered two sources of this current: plasma ions both deuterium and impurity in the vicinity of the detector including charge exchange neutrals and photoemission from scattered UV radiation. Based upon modeling and empirical observation, the latter source appears most likely and, moreover, seems to be applicable to the currents in the front foil during ELMy H-mode plasmas. A very thin gold or nickel foil attached to the present detector aperture is proposed as a solution to this problem, and realistic calculations of expected fluxes of lost energetic neutral beam ions during TF ripple experiments are presented as justification of this proposed solution.

  6. Operando atomic structure and active sites of TiO2(110)-supported gold nanoparticles during carbon monoxide oxidation.

    PubMed

    Saint-Lager, Marie-Claire; Laoufi, Issam; Bailly, Aude

    2013-01-01

    It is well known that gold nanoparticles supported on TiO2 act as a catalyst for CO oxidation, even below room temperature. Despite extensive studies, the origin of this catalytic activity remains under debate. Indeed, when the particle size decreases, many changes may occur; thus modifying the nanoparticles' electronic properties and consequently their catalytic performances. Thanks to a state-of-the-art home-developed setup, model catalysts can be prepared in ultra-high vacuum and their morphology then studied in operando conditions by Grazing Incidence Small Angle X-ray Scattering, as well as their atomic structure by Grazing Incidence X-ray Diffraction as a function of their catalytic activity. We previously reported on the existence of a catalytic activity maximum observed for three-dimensional gold nanoparticles with a diameter of 2-3 nm and a height of 6-7 atomic planes. In the present work we correlate this size dependence of the catalytic activity to the nanoparticles' atomic structure. We show that even when their size decreases below the optimum diameter, the gold nanoparticles keep the face-centered cubic structure characteristic of bulk gold. Nevertheless, for these smallest nanoparticles, the lattice parameter presents anisotropic strains with a larger contraction in the direction perpendicular to the surface. Moreover a careful analysis of the atomic-scale morphology around the catalytic activity maximum tends to evidence the role of sites with a specific geometry at the interface between the nanoparticles and the substrate. This argues for models where atoms at the interface periphery act as catalytically active sites for carbon monoxide oxidation.

  7. Mimusops elengi bark extract mediated green synthesis of gold nanoparticles and study of its catalytic activity

    NASA Astrophysics Data System (ADS)

    Majumdar, Rakhi; Bag, Braja Gopal; Ghosh, Pooja

    2016-04-01

    The bark extract of Mimusops elengi is rich in different types of plant secondary metabolites such as flavonoids, tannins, triterpenoids and saponins. The present study shows the usefulness of the bark extract of Mimusops elengi for the green synthesis of gold nanoparticles in water at room temperature under very mild conditions. The synthesis of the gold nanoparticles was complete within a few minutes without any extra stabilizing or capping agents and the polyphenols present in the bark extract acted as both reducing as well as stabilizing agents. The synthesized colloidal gold nanoparticles were characterized by HRTEM, surface plasmon resonance spectroscopy and X-ray diffraction studies. The synthesized gold nanoparticles have been used as an efficient catalyst for the reduction of 3-nitrophenol and 4-nitrophenol to their corresponding aminophenols in water at room temperature.

  8. Green synthesis of gold nanoparticles using a glucan of an edible mushroom and study of catalytic activity.

    PubMed

    Sen, Ipsita K; Maity, Kousik; Islam, Syed S

    2013-01-16

    Gold nanoparticles were synthesized by reducing chloroauric acid with a glucan, isolated from an edible mushroom Pleurotus florida, cultivar Assam Florida. Here, glucan acts as reducing as well as stabilizing agent. The synthesized gold nanoparticles were characterized by UV-visible spectroscopy, HR-TEM, XRD, SEM, and FT-IR analysis. The results indicated that the size distribution of gold nanoparticles (Au NPs) changed with the change in concentration of chloroauric acid (HAuCl(4)). The resulting Au NPs-glucan bioconjugates function as an efficient heterogeneous catalyst in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP), in the presence of sodium borohydride. The reduction of 4-nitrophenol with Au NPs-glucan bioconjugates followed pseudo-first-order kinetics. The effect of particle size and gold loading on reduction rate of 4-NP was studied with Au NPs-glucan bioconjugates prepared with different concentrations of HAuCl(4). The synthesis of catalytically active Au NPs using a pure mushroom polysaccharide of known structure is reported for the first time.

  9. Synthesis of silver and gold nanoparticles using cashew nut shell liquid and its antibacterial activity against fish pathogens.

    PubMed

    Velmurugan, Palanivel; Iydroose, Mahudunan; Lee, Sang-Myung; Cho, Min; Park, Jung-Hee; Balachandar, Vellingiri; Oh, Byung-Taek

    2014-06-01

    This study reveals a green process for the production of multi-morphological silver (Ag NPs) and gold (Au NPs) nanoparticles, synthesized using an agro-industrial residue cashew nut shell liquid. Aqueous solutions of Ag(+) ions for silver and chloroaurate ions for gold were treated with cashew nut shell extract for the formation of Ag and Au NPs. The nano metallic dispersions were characterized by measuring the surface plasmon absorbance at 440 and 546 nm for Ag and Au NPs. Transmission electron microscopy showed the formation of nanoparticles in the range of 5-20 nm for silver and gold with assorted morphologies such as round, triangular, spherical and irregular. Scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction analyses of the freeze-dried powder confirmed the formation of metallic Ag and Au NPs in crystalline form. Further analysis by Fourier transform infrared spectroscopy provided evidence for the presence of various biomolecules, which might be responsible for the reduction of silver and gold ions. The obtained Ag and Au NPs had significant antibacterial activity, minimum inhibitory concentration and minimum bactericidal concentration on bacteria associated with fish diseases. PMID:25320422

  10. Synthesis of silver and gold nanoparticles using cashew nut shell liquid and its antibacterial activity against fish pathogens.

    PubMed

    Velmurugan, Palanivel; Iydroose, Mahudunan; Lee, Sang-Myung; Cho, Min; Park, Jung-Hee; Balachandar, Vellingiri; Oh, Byung-Taek

    2014-06-01

    This study reveals a green process for the production of multi-morphological silver (Ag NPs) and gold (Au NPs) nanoparticles, synthesized using an agro-industrial residue cashew nut shell liquid. Aqueous solutions of Ag(+) ions for silver and chloroaurate ions for gold were treated with cashew nut shell extract for the formation of Ag and Au NPs. The nano metallic dispersions were characterized by measuring the surface plasmon absorbance at 440 and 546 nm for Ag and Au NPs. Transmission electron microscopy showed the formation of nanoparticles in the range of 5-20 nm for silver and gold with assorted morphologies such as round, triangular, spherical and irregular. Scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction analyses of the freeze-dried powder confirmed the formation of metallic Ag and Au NPs in crystalline form. Further analysis by Fourier transform infrared spectroscopy provided evidence for the presence of various biomolecules, which might be responsible for the reduction of silver and gold ions. The obtained Ag and Au NPs had significant antibacterial activity, minimum inhibitory concentration and minimum bactericidal concentration on bacteria associated with fish diseases.

  11. Flow injection catalase activity measurement based on gold nanoparticles/carbon nanotubes modified glassy carbon electrode.

    PubMed

    El Nashar, Rasha Mohamed

    2012-07-15

    Amperometric flow injection method of hydrogen peroxide analysis was developed based on catalase enzyme (CAT) immobilization on a glassy carbon electrode (GC) modified with electrochemically deposited gold nanoparticles on a multiwalled carbon nanotubes/chitosan film. The resulting biosensor was applied to detect hydrogen peroxide with a linear response range 1.0×10(-7)-2.5×10(-3)M with a correlation coefficient 0.998 and response time less than 10s. The optimum conditions of film deposition such as potential applied, deposition time and pH were tested and the flow injection conditions were optimized to be: flow rate of 3ml/min, sample volume 75μl and saline phosphate buffer of pH 6.89. Catalase enzyme activity was successfully determined in liver homogenate samples of rats, raised under controlled dietary plan, using a flow injection analysis system involving the developed biosensor simultaneously with spectrophotometric detection, which is the common method of enzymatic assay.

  12. Novel Synthesis of Kanamycin Conjugated Gold Nanoparticles with Potent Antibacterial Activity

    PubMed Central

    Payne, Jason N.; Waghwani, Hitesh K.; Connor, Michael G.; Hamilton, William; Tockstein, Sarah; Moolani, Harsh; Chavda, Fenil; Badwaik, Vivek; Lawrenz, Matthew B.; Dakshinamurthy, Rajalingam

    2016-01-01

    With a sharp increase in the cases of multi-drug resistant (MDR) bacteria all over the world, there is a huge demand to develop a new generation of antibiotic agents to fight them. As an alternative to the traditional drug discovery route, we have designed an effective antibacterial agent by modifying an existing commercial antibiotic, kanamycin, conjugated on the surface of gold nanoparticles (AuNPs). In this study, we report a single-step synthesis of kanamycin-capped AuNPs (Kan-AuNPs) utilizing the combined reducing and capping properties of kanamycin. While Kan-AuNPs have increased toxicity to a primate cell line (Vero 76), antibacterial assays showed dose-dependent broad spectrum activity of Kan-AuNPs against both Gram-positive and Gram-negative bacteria, including Kanamycin resistant bacteria. Further, a significant reduction in the minimum inhibitory concentration (MIC) of Kan-AuNPs was observed when compared to free kanamycin against all the bacterial strains tested. Mechanistic studies using transmission electron microscopy and fluorescence microscopy indicated that at least part of Kan-AuNPs increased efficacy may be through disrupting the bacterial envelope, resulting in the leakage of cytoplasmic content and the death of bacterial cells. Results of this study provide critical information about a novel method for the development of antibiotic capped AuNPs as potent next-generation antibacterial agents. PMID:27330535

  13. Gold-doped graphene: A highly stable and active electrocatalysts for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Stolbov, Sergey; Alcántara Ortigoza, Marisol

    2015-04-01

    In addressing the growing need of renewable and sustainable energy resources, hydrogen-fuel-cells stand as one of the most promising routes to transform the current energy paradigm into one that integrally fulfills environmental sustainability. Nevertheless, accomplishing this technology at a large scale demands to surpass the efficiency and enhance the cost-effectiveness of platinum-based cathodes, which catalyze the oxygen reduction reaction (ORR). In this work, our first-principles calculations show that Au atoms incorporated into graphene di-vacancies form a highly stable and cost-effective electrocatalyst that is, at the same time, as or more (dependently of the dopant concentration) active toward ORR than the best-known Pt-based electrocatalysts. We reveal that partial passivation of defected-graphene by gold atoms reduces the reactivity of C dangling bonds and increases that of Au, thus optimizing them for catalyzing the ORR and yielding a system of high thermodynamic and electrochemical stabilities. We also demonstrate that the linear relation among the binding energies of the reaction intermediates assumed in computational high-throughput material screening does not hold, at least for this non-purely transition-metal material. We expect Au-doped graphene to finally overcome the cathode-related challenge hindering the realization of hydrogen-fuel cells as the leading means of powering transportation and portable devices.

  14. Spectroscopic investigations, antimicrobial, and cytotoxic activity of green synthesized gold nanoparticles.

    PubMed

    Lokina, S; Suresh, R; Giribabu, K; Stephen, A; Lakshmi Sundaram, R; Narayanan, V

    2014-08-14

    The gold nanoparticles (AuNPs) were synthesized by using naturally available Punica Granatum fruit extract as reducing and stabilizing agent. The biosynthesized AuNPs was characterized by using UV-Vis, fluorescence, high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric (TGA) analysis. The surface plasmon resonance (SPR) band at 585nm confirmed the reduction of auric chloride to AuNPs. The crystalline nature of the biosynthesized AuNPs was confirmed from the HRTEM images, XRD and selected area electron diffraction (SAED) pattern. The HRTEM images showed the mixture of triangular and spherical-like AuNPs having size between 5 and 20nm. The weight loss of the AuNPs was measured by TGA as a function of temperature under a controlled atmosphere. The biomolecules are responsible for the reduction of AuCl4(-) ions and the formation of stable AuNPs which was confirmed by FTIR measurement. The synthesized AuNPs showed an excellent antibacterial activity against Candida albicans (ATCC 90028), Aspergillus flavus (ATCC 10124), Staphylococcus aureus (ATCC 25175), Salmonella typhi (ATCC 14028) and Vibrio cholerae (ATCC 14033). The minimum inhibitory concentration (MIC) of AuNPs was recorded against various microorganisms. Further, the synthesized AuNPs shows an excellent cytotoxic result against HeLa cancer cell lines at different concentrations. PMID:24755638

  15. Gold-doped graphene: A highly stable and active electrocatalysts for the oxygen reduction reaction

    SciTech Connect

    Stolbov, Sergey Alcántara Ortigoza, Marisol

    2015-04-21

    In addressing the growing need of renewable and sustainable energy resources, hydrogen-fuel-cells stand as one of the most promising routes to transform the current energy paradigm into one that integrally fulfills environmental sustainability. Nevertheless, accomplishing this technology at a large scale demands to surpass the efficiency and enhance the cost-effectiveness of platinum-based cathodes, which catalyze the oxygen reduction reaction (ORR). In this work, our first-principles calculations show that Au atoms incorporated into graphene di-vacancies form a highly stable and cost-effective electrocatalyst that is, at the same time, as or more (dependently of the dopant concentration) active toward ORR than the best-known Pt-based electrocatalysts. We reveal that partial passivation of defected-graphene by gold atoms reduces the reactivity of C dangling bonds and increases that of Au, thus optimizing them for catalyzing the ORR and yielding a system of high thermodynamic and electrochemical stabilities. We also demonstrate that the linear relation among the binding energies of the reaction intermediates assumed in computational high-throughput material screening does not hold, at least for this non-purely transition-metal material. We expect Au-doped graphene to finally overcome the cathode-related challenge hindering the realization of hydrogen-fuel cells as the leading means of powering transportation and portable devices.

  16. Flow injection catalase activity measurement based on gold nanoparticles/carbon nanotubes modified glassy carbon electrode.

    PubMed

    El Nashar, Rasha Mohamed

    2012-07-15

    Amperometric flow injection method of hydrogen peroxide analysis was developed based on catalase enzyme (CAT) immobilization on a glassy carbon electrode (GC) modified with electrochemically deposited gold nanoparticles on a multiwalled carbon nanotubes/chitosan film. The resulting biosensor was applied to detect hydrogen peroxide with a linear response range 1.0×10(-7)-2.5×10(-3)M with a correlation coefficient 0.998 and response time less than 10s. The optimum conditions of film deposition such as potential applied, deposition time and pH were tested and the flow injection conditions were optimized to be: flow rate of 3ml/min, sample volume 75μl and saline phosphate buffer of pH 6.89. Catalase enzyme activity was successfully determined in liver homogenate samples of rats, raised under controlled dietary plan, using a flow injection analysis system involving the developed biosensor simultaneously with spectrophotometric detection, which is the common method of enzymatic assay. PMID:22817944

  17. In vivo carotid artery closure by laser activation of hyaluronan-embedded gold nanorods

    NASA Astrophysics Data System (ADS)

    Matteini, Paolo; Ratto, Fulvio; Rossi, Francesca; Rossi, Giacomo; Esposito, Giuseppe; Puca, Alfredo; Albanese, Alessio; Maira, Giulio; Pini, Roberto

    2010-07-01

    We prove the first application of near-infrared-absorbing gold nanorods (GNRs) for in vivo laser closure of a rabbit carotid artery. GNRs are first functionalized with a biopolymeric shell and then embedded in hyaluronan, which gives a stabilized and handy laser-activable formulation. Four rabbits undergo closure of a 3-mm longitudinal incision performed on the carotid artery by means of a 810-nm diode laser in conjunction with the topical application of the GNRs composite. An effective surgery is obtained by using a 40-W/cm2 laser power density. The histological and electron microscopy evaluation after a 30-day follow-up demonstrates complete healing of the treated arteries with full re-endothelization at the site of GNRs application. The absence of microgranuloma formation and/or dystrophic calcification is evidence that no host reaction to nanoparticles interspersed through the vascular tissue occurred. The observation of a reshaping and associated blue shift of the NIR absorption band of GNRs after laser treatment supports the occurrence of a self-terminating process, and thus of additional safety of the minimally invasive laser procedure. This study underlines the feasibility of using GNRs for in vivo laser soldering applications, which represents a step forward toward the introduction of nanotechnology-based therapies in minimally invasive clinical practices.

  18. Effects of silver and gold catalytic activities on the structural and optical properties of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Lajvardi, M.; Eshghi, H.; Izadifard, M.; Ghazi, M. E.; Goodarzi, A.

    2016-01-01

    The metal-assisted chemical etching of silicon in an aqueous solution of hydrofluoric acid and hydrogen peroxide is established for the fabrication of large area, uniform silicon nanowire (SiNW) arrays. In this study, silver (Ag) and gold (Au) are considered as catalysts and the effect of different catalysts with various thicknesses on the structural and optical properties of the fabricated SiNWs is investigated. The morphology of deposited catalysts on the silicon wafer is characterized by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). It is shown that the morphology of the fabricated silicon nanostructures remarkably depends upon the catalyst layer thickness, and the catalyst etching time directly affects the structural and optical properties of the synthesized SiNWs. FESEM images show a linear increment of the nanowire length versus time, whereas the etching rate for the Au-etched SiNWs was lower than the Ag-etched ones. Strong light scattering in SiNWs caused the total reflection to decrease in the range of visible light, and this decrement was higher for the Ag-etched SiNW sample, with a longer length than the Au-etched one. A broadband visible photoluminescence (PL) with different peak positions is observed for the Au- and Ag-etched samples. The synthesized optically active SiNWs can be considered as a promising candidate for a new generation of nano-scale opto-electronic devices.

  19. Spectroscopic investigations, antimicrobial, and cytotoxic activity of green synthesized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Lokina, S.; Suresh, R.; Giribabu, K.; Stephen, A.; Lakshmi Sundaram, R.; Narayanan, V.

    2014-08-01

    The gold nanoparticles (AuNPs) were synthesized by using naturally available Punica Granatum fruit extract as reducing and stabilizing agent. The biosynthesized AuNPs was characterized by using UV-Vis, fluorescence, high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric (TGA) analysis. The surface plasmon resonance (SPR) band at 585 nm confirmed the reduction of auric chloride to AuNPs. The crystalline nature of the biosynthesized AuNPs was confirmed from the HRTEM images, XRD and selected area electron diffraction (SAED) pattern. The HRTEM images showed the mixture of triangular and spherical-like AuNPs having size between 5 and 20 nm. The weight loss of the AuNPs was measured by TGA as a function of temperature under a controlled atmosphere. The biomolecules are responsible for the reduction of AuCl4- ions and the formation of stable AuNPs which was confirmed by FTIR measurement. The synthesized AuNPs showed an excellent antibacterial activity against Candida albicans (ATCC 90028), Aspergillus flavus (ATCC 10124), Staphylococcus aureus (ATCC 25175), Salmonella typhi (ATCC 14028) and Vibrio cholerae (ATCC 14033). The minimum inhibitory concentration (MIC) of AuNPs was recorded against various microorganisms. Further, the synthesized AuNPs shows an excellent cytotoxic result against HeLa cancer cell lines at different concentrations.

  20. Mercury speciation and dispersion from an active gold mine at the West Wits area, South Africa.

    PubMed

    Lusilao-Makiese, J G; Tessier, E; Amouroux, D; Tutu, H; Chimuka, L; Weiersbye, I; Cukrowska, E M

    2016-01-01

    Total mercury (HgTOT), inorganic mercury (IHg), and methylmercury (MHg) were determined in dry season waters, sediments, and tailings from an active mine which has long history of gold exploitation. Although HgTOT in waters was generally low (0.03 to 19.60 ng L(-1)), the majority of the samples had proportions of MHg of at least 90 % of HgTOT which denotes a substantial methylation potential of the mine watersheds. Mercury was relatively high in tailing materials (up to 867 μg kg(-1)) and also in the mine sediments (up to 837 μg kg(-1)) especially in samples collected near tailing storage facilities and within a receiving water dam. Sediment profiles revealed mercury enrichment and enhanced methylation rate at deeper layers. The presence of IHg and decaying plants (organic matter) in the watersheds as well as the anoxic conditions of bulk sediments are believed to be some of the key factors favoring the mercury methylation at the site. PMID:26687090

  1. Mercury speciation and dispersion from an active gold mine at the West Wits area, South Africa.

    PubMed

    Lusilao-Makiese, J G; Tessier, E; Amouroux, D; Tutu, H; Chimuka, L; Weiersbye, I; Cukrowska, E M

    2016-01-01

    Total mercury (HgTOT), inorganic mercury (IHg), and methylmercury (MHg) were determined in dry season waters, sediments, and tailings from an active mine which has long history of gold exploitation. Although HgTOT in waters was generally low (0.03 to 19.60 ng L(-1)), the majority of the samples had proportions of MHg of at least 90 % of HgTOT which denotes a substantial methylation potential of the mine watersheds. Mercury was relatively high in tailing materials (up to 867 μg kg(-1)) and also in the mine sediments (up to 837 μg kg(-1)) especially in samples collected near tailing storage facilities and within a receiving water dam. Sediment profiles revealed mercury enrichment and enhanced methylation rate at deeper layers. The presence of IHg and decaying plants (organic matter) in the watersheds as well as the anoxic conditions of bulk sediments are believed to be some of the key factors favoring the mercury methylation at the site.

  2. Interplay between gold nanoparticle biosynthesis and metabolic activity of cyanobacterium Synechocystis sp. PCC 6803

    NASA Astrophysics Data System (ADS)

    Focsan, Monica; Ardelean, Ioan I.; Craciun, Constantin; Astilean, Simion

    2011-12-01

    Many microorganisms have long been known to be able to synthesize nanoparticles either in extracellular media or inside cells but the biochemical mechanisms involved in biomineralization are still poorly understood. In this paper we report the intracellular synthesis of gold nanoparticles (GNPs) by the cyanobacterium Synechocystis sp. PCC 6803 exposed to an aqueous solution of chloroauric acid. We assess the interplay between the biomineralization process and the metabolic activities (i.e. photosynthesis and respiration) of cyanobacteria cells by correlating the GNP synthesis yield with the amount of respiratory and photosynthetic oxygen exchange. The biogenic GNPs are compared in terms of their internalization and biological effects to GNPs synthesized by a standard citrate reduction procedure (cGNPs). The TEM analysis, in conjunction with spectroscopic measurements (i.e. surface plasmon resonance, fluorescence quenching and surface-enhanced Raman scattering, SERS), reveals the localization of biogenic GNPs at the level of intracytoplasmic membranes whereas the pre-formed cGNPs are located at the level of external cellular membrane. Our findings have implications for better understanding the process of biomineralization and assessing the potential risks associated with the accumulation of nanomaterials by various biological systems.

  3. Homogeneous versus supported ONN pincer-type gold and palladium complexes: catalytic activity.

    PubMed

    del Pozo, Carolina; Debono, Nathalie; Corma, Avelino; Iglesias, Marta; Sánchez, Félix

    2009-07-20

    The ONN-tridentate unsymmetrical pincer-type (S)-1-((6-(2-hydroxyphenyl)pyridin-2-yl)methyl)-N-methyl-N-(3-(triethoxysilyl)pro-pyl)pyrrolidine-2-carboxamide ligand has been synthesized by an easy method, in high purity and good yield. Its respective palladium(II) and gold(III) complexes have been prepared as air-stable solids. After deprotonation of the -OH group the coordination of the metal ion is completely stereospecific and gives rise to only one diastereoisomer. The complexes, immobilized onto ordered mesoporous silica (MCM-41), are shown to be very active catalysts in the hydrogenation of prochiral olefins (98% ee was achieved with the heterogenized chiral Au(MCM-41) complex), hydrosilylation, and Suzuki and Heck C-C coupling reactions, under mild conditions. The reactions were studied with the soluble catalysts as well as their heterogenized counterparts. The high accessibility introduced by the structure of the supports allows the preparation of highly efficient immobilized catalysts. The repeated use of the immobilized catalyst in four cycles demonstrates "homogeneous" catalysis with "heterogeneous" catalysts, thus reducing solvent waste and loss of precious metal and/or ligand. PMID:19492364

  4. Novel Gold Nanoparticles Reduced by Sargassum glaucescens: Preparation, Characterization and Anticancer Activity.

    PubMed

    Ajdari, Zahra; Rahman, Heshu; Shameli, Kamyar; Abdullah, Rasedee; Abd Ghani, Maaruf; Yeap, Swee; Abbasiliasi, Sahar; Ajdari, Daniel; Ariff, Arbakariya

    2016-01-01

    The current study investigated the anticancer properties of gold nanoparticles (SG-stabilized AuNPs) synthesized using water extracts of the brown seaweed Sargassum glaucescens (SG). SG-stabilized AuNPs were characterized by ultraviolet-visible spectroscopy, transmission and scanning electron microscopy, and energy dispersive X-ray fluorescence spectrometry. The SG-stabilized AuNPs were stable and small at 3.65 ± 1.69 nm in size. The in vitro anticancer effect of SG-stabilized AuNPs was determined on cervical (HeLa), liver (HepG2), breast (MDA-MB-231) and leukemia (CEM-ss) cell lines using fluorescence microscopy, flow cytometry, caspase activity determination, and MTT assays. After 72 h treatment, SG-stabilized AuNPs was shown to be significant (p < 0.05) cytotoxic to the cancer cells in a dose- and time-dependent manner. The IC50 values of SG-stabilized AuNPs on the HeLa, HepG2, CEM-ss, MDA-MB-231 cell lines were 4.75 ± 1.23, 7.14 ± 1.45, 10.32 ± 1.5, and 11.82 ± 0.9 μg/mL, respectively. On the other hand, SG-stabilized AuNPs showed no cytotoxic effect towards the normal human mammary epithelial cells (MCF-10A). SG-stabilized AuNPs significantly (p < 0.05) arrest HeLa cell cycle at G2/M phase and significantly (p < 0.05) activated caspases-3 and -9 activities. The anticancer effect of SG-stabilized AuNPs is via the intrinsic apoptotic pathway. The study showed that SG-stabilized AuNPs is a good candidate to be developed into a chemotherapeutic compound for the treatment of cancers especially cervical cancer. PMID:26938520

  5. Peroxidase-like activity of gold nanoparticles stabilized by hyperbranched polyglycidol derivatives over a wide pH range

    NASA Astrophysics Data System (ADS)

    Drozd, Marcin; Pietrzak, Mariusz; Parzuchowski, Paweł; Mazurkiewicz-Pawlicka, Marta; Malinowska, Elżbieta

    2015-12-01

    The aim of this work was to carry out comparative studies on the peroxidase-like activity of gold nanoparticles (AuNPs) stabilized with low molecular weight hyperbranched polyglycidol (HBPG-OH) and its derivative modified with maleic acid residues (HBPG-COOH). The influence of the stabilizer to gold precursor ratio on the size and morphology of nanoparticles obtained was checked, and prepared nanoparticles were characterized by means of transmission electron microscopy and UV-Vis spectroscopy. The results indicated the divergent effect of increasing the concentration of stabilizers (HBPG-OH or HBPG-COOH) on the size of the nanostructures obtained. The gold nanoparticles obtained were characterized as having intrinsic peroxidase-like activity and the mechanism of catalysis in acidic and alkaline mediums was consistent with the standard Michaelis-Menten kinetics, revealing a strong affinity of AuNPs with 2, 2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 3, 3‧, 5, 5‧-tetramethylbenzidine (TMB), and significantly lower affinity towards phenol. By comparing the kinetic parameters, a negligible effect of polymeric ligand charge on activity against various types of substrates (anionic or cationic) was indicated. The superiority of steric stabilization via the application of tested low-weight hyperbranched polymers over typical stabilizers in preventing salt-induced aggregation and maintaining high catalytic activity in time was proved. The applied hyperbranched stabilizers provide a good tool for manufacturing gold-based nanozymes, which are highly stable and active over a wide pH range.

  6. Cytocompatibility and antibacterial activity of titania nanotubes incorporated with gold nanoparticles.

    PubMed

    Yang, Tingting; Qian, Shi; Qiao, Yuqing; Liu, Xuanyong

    2016-09-01

    TiO2 nanotubes prepared by electrochemical anodization have received considerable attention in the biomedical field. In this work, different amounts of gold nanoparticles were immobilized onto TiO2 nanotubes using 3-aminopropyltrimethoxysilane as coupling agent. Field emission scanning electron microscopy and X-ray photoelectron spectroscopy were used to investigate the surface morphology and composition. Photoluminescence spectra and surface zeta potential were also measured. The obtained results indicate that the surface modified gold nanoparticles can significantly enhance the electron storage capability and reduce the surface zeta potential compared to pristine TiO2 nanotubes. Moreover, the surface modified gold nanoparticles can stimulate initial adhesion and spreading of rat bone mesenchymal stem cells as well as proliferation, while the osteogenous performance of TiO2 nanotubes will not be reduced. The gold-modified surface presents moderate antibacterial effect on both Staphylococcus aureus and Escherichia coli. It should be noted that the surface modified fewer gold nanoparticles has better antibacterial effect compared to the surface of substantial modification of gold nanoparticles. Our study illustrates a composite surface with favorable cytocompatibility and antibacterial effect and provides a promising candidate for orthopedic and dental implant.

  7. Cytocompatibility and antibacterial activity of titania nanotubes incorporated with gold nanoparticles.

    PubMed

    Yang, Tingting; Qian, Shi; Qiao, Yuqing; Liu, Xuanyong

    2016-09-01

    TiO2 nanotubes prepared by electrochemical anodization have received considerable attention in the biomedical field. In this work, different amounts of gold nanoparticles were immobilized onto TiO2 nanotubes using 3-aminopropyltrimethoxysilane as coupling agent. Field emission scanning electron microscopy and X-ray photoelectron spectroscopy were used to investigate the surface morphology and composition. Photoluminescence spectra and surface zeta potential were also measured. The obtained results indicate that the surface modified gold nanoparticles can significantly enhance the electron storage capability and reduce the surface zeta potential compared to pristine TiO2 nanotubes. Moreover, the surface modified gold nanoparticles can stimulate initial adhesion and spreading of rat bone mesenchymal stem cells as well as proliferation, while the osteogenous performance of TiO2 nanotubes will not be reduced. The gold-modified surface presents moderate antibacterial effect on both Staphylococcus aureus and Escherichia coli. It should be noted that the surface modified fewer gold nanoparticles has better antibacterial effect compared to the surface of substantial modification of gold nanoparticles. Our study illustrates a composite surface with favorable cytocompatibility and antibacterial effect and provides a promising candidate for orthopedic and dental implant. PMID:27285731

  8. Exploring geometric properties of gold nanoparticles using TEM images to explain their chaperone like activity for citrate synthase

    PubMed Central

    Kaushik, Vikas; Lahiri, Tapobrata; Singha, Shantiswaroop; Dasgupta, Anjan Kumar; Mishra, Hrishikesh; Kumar, Upendra; Kumar, Rajeev

    2011-01-01

    Study on geometric properties of nanoparticles and their relation with biomolecular activities, especially protein is quite a new field to explore. This work was carried out towards this direction where images of gold nanoparticles obtained from transmission electron microscopy were processed to extract their size and area profile at different experimental conditions including and excluding a protein, citrate synthase. Since the images were ill-posed, texture of a context-window for each pixel was used as input to a back-propagation network architecture to obtain decision on its membership as nanoparticle. The segmented images were further analysed by k-means clustering to derive geometric properties of individual nanoparticles even from their assembled form. The extracted geometric information was found to be crucial to give a model featuring porous cage like configuration of nanoparticle assembly using which the chaperone like activity of gold nanoparticles can be explained. PMID:22355230

  9. Chromic acid anodizing of aluminum foil

    NASA Technical Reports Server (NTRS)

    Dursch, H.

    1988-01-01

    The success of the Space Station graphite/epoxy truss structure depends on its ability to endure long-term exposure to the LEO environment, primarily the effects of atomic oxygen and the temperture cycling resulting from the 94 minute orbit. This report describes the development and evaluation of chromic acid anodized (CAA) aluminum foil as protective coatings for these composite tubes. Included are: development of solar absorptance and thermal emittance properties required of Al foil and development of CAA parameters to achieve these optical properties; developing techniques to CAA 25 ft lengths of Al foil; developing bonding processes for wrapping the Al foil to graphite/epoxy tubes; and atomic oxygen testing of the CAA Al foil. Two specifications were developed and are included in the report: Chromic Acid Anodizing of Aluminum Foil Process Specification and Bonding of Anodized Aluminum Foil to Graphite/Epoxy Tubes. Results show that CAA Al foil provides and excellent protective and thermal control coating for the Space Station truss structure.

  10. High levels of activity of bats at gold mining water bodies: implications for compliance with the International Cyanide Management Code.

    PubMed

    Griffiths, Stephen R; Donato, David B; Coulson, Graeme; Lumsden, Linda F

    2014-06-01

    Wildlife and livestock are known to visit and interact with tailings dam and other wastewater impoundments at gold mines. When cyanide concentrations within these water bodies exceed a critical toxicity threshold, significant cyanide-related mortality events can occur in wildlife. Highly mobile taxa such as birds are particularly susceptible to cyanide toxicosis. Nocturnally active bats have similar access to uncovered wastewater impoundments as birds; however, cyanide toxicosis risks to bats remain ambiguous. This study investigated activity of bats in the airspace above two water bodies at an Australian gold mine, to assess the extent to which bats use these water bodies and hence are at potential risk of exposure to cyanide. Bat activity was present on most nights sampled during the 16-month survey period, although it was highly variable across nights and months. Therefore, despite the artificial nature of wastewater impoundments at gold mines, these structures present attractive habitats to bats. As tailings slurry and supernatant pooling within the tailings dam were consistently well below the industry protective concentration limit of 50 mg/L weak acid dissociable (WAD) cyanide, wastewater solutions stored within the tailings dam posed a minimal risk of cyanide toxicosis for wildlife, including bats. This study showed that passively recorded bat echolocation call data provides evidence of the presence and relative activity of bats above water bodies at mine sites. Furthermore, echolocation buzz calls recorded in the airspace directly above water provide indirect evidence of foraging and/or drinking. Both echolocation monitoring and systematic sampling of cyanide concentration in open wastewater impoundments can be incorporated into a gold mine risk-assessment model in order to evaluate the risk of bat exposure to cyanide. In relation to risk minimisation management practices, the most effective mechanism for preventing cyanide toxicosis to wildlife

  11. High levels of activity of bats at gold mining water bodies: implications for compliance with the International Cyanide Management Code.

    PubMed

    Griffiths, Stephen R; Donato, David B; Coulson, Graeme; Lumsden, Linda F

    2014-06-01

    Wildlife and livestock are known to visit and interact with tailings dam and other wastewater impoundments at gold mines. When cyanide concentrations within these water bodies exceed a critical toxicity threshold, significant cyanide-related mortality events can occur in wildlife. Highly mobile taxa such as birds are particularly susceptible to cyanide toxicosis. Nocturnally active bats have similar access to uncovered wastewater impoundments as birds; however, cyanide toxicosis risks to bats remain ambiguous. This study investigated activity of bats in the airspace above two water bodies at an Australian gold mine, to assess the extent to which bats use these water bodies and hence are at potential risk of exposure to cyanide. Bat activity was present on most nights sampled during the 16-month survey period, although it was highly variable across nights and months. Therefore, despite the artificial nature of wastewater impoundments at gold mines, these structures present attractive habitats to bats. As tailings slurry and supernatant pooling within the tailings dam were consistently well below the industry protective concentration limit of 50 mg/L weak acid dissociable (WAD) cyanide, wastewater solutions stored within the tailings dam posed a minimal risk of cyanide toxicosis for wildlife, including bats. This study showed that passively recorded bat echolocation call data provides evidence of the presence and relative activity of bats above water bodies at mine sites. Furthermore, echolocation buzz calls recorded in the airspace directly above water provide indirect evidence of foraging and/or drinking. Both echolocation monitoring and systematic sampling of cyanide concentration in open wastewater impoundments can be incorporated into a gold mine risk-assessment model in order to evaluate the risk of bat exposure to cyanide. In relation to risk minimisation management practices, the most effective mechanism for preventing cyanide toxicosis to wildlife

  12. Heat transfer measurements in fully turbulent flows: basic investigations with an advanced thin foil triple sensor

    NASA Astrophysics Data System (ADS)

    Mocikat, H.; Herwig, H.

    2008-07-01

    In a former article in this journal a double layer hot film with two 10 μm nickel foils, separated by a 25 μm polyimide foil was introduced as a multi-purpose sensor. Each foil can be operated as a (calibrated) temperature sensor in its passive mode by imposing an electric current small enough to avoid heating by dissipation of electrical energy. Alternatively, however, each foil can also serve as a heater in an active mode with electric currents high enough to cause Joule heating. This double foil sensor can be used as a conventional heat flux sensor in its passive mode when mounted on an externally heated surface. In fully turbulent flows it alternatively can be operated in an active mode on a cold, i.e. not externally heated surface. Then, by heating the upper foil, a local heat transfer is initiated from which the local heat transfer coefficient h can be determined, once the lower foil is heated to the same temperature as the upper one, thus acting as a counter-heater. For further investigations with respect to the underlying sensor concept a triple sensor has been built which consists of three double layer film sensors very close to each other. Various aspects of heat transfer measurements in active modes can be addressed by this sensor.

  13. Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection.

    PubMed

    Ahmed, Syed Rahin; Kim, Jeonghyo; Suzuki, Tetsuro; Lee, Jaebeom; Park, Enoch Y

    2016-11-15

    Multifunctional nanohybrids have created new and valuable opportunities for a wide range of catalysis and biotechnology applications. Here, we present a relatively simple method for producing nanohybrids composed of gold nanoparticles (Au NPs) and carbon nanotubes (CNTs) that does not require an acidic pre-treatment of the CNTs. Transmission electron microscopy (TEM) images and ultraviolet-visible (UV-vis) spectra revealed that Au NPs bonded to the CNT surface. Surface-enhanced Raman scattering (SERS) revealed a stronger signal from Au-CNT nanohybrids than from pristine CNTs. The Au-CNT nanohybrids showed catalytic activity in the oxidation of 3, 3', 5, 5'-tetramethyl-benzidine (TMB) by H2O2 and developed a unique blue colour in aqueous solution. Because of the enhanced peroxidase-like activity of these Au-CNT nanohybrids, they were selected for use as part of a highly sensitive colorimetric test for influenza virus A (H3N2). In the presence of influenza A virus (H3N2) in the test system (specific antibody-conjugated Au CNT nanohybrids-TMB-H2O2), a deep blue colour developed, the optical density of which was dependent on the virus concentration (10-50,000 PFU/ml). The limit of detection of this proposed method was 3.4 PFU/ml, a limit 385 times lower than that of conventional ELISA (1312 PFU/ml). The sensitivity of this test was also 500 times greater than that of commercial immunochromatography kits. The nanohybrid preparation and colorimetric detection methods reported herein may be easily adapted to other nanohybrid structures with enzyme mimetic properties for broader applications in catalysis and nanobiotechnology. PMID:27209577

  14. Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection.

    PubMed

    Ahmed, Syed Rahin; Kim, Jeonghyo; Suzuki, Tetsuro; Lee, Jaebeom; Park, Enoch Y

    2016-11-15

    Multifunctional nanohybrids have created new and valuable opportunities for a wide range of catalysis and biotechnology applications. Here, we present a relatively simple method for producing nanohybrids composed of gold nanoparticles (Au NPs) and carbon nanotubes (CNTs) that does not require an acidic pre-treatment of the CNTs. Transmission electron microscopy (TEM) images and ultraviolet-visible (UV-vis) spectra revealed that Au NPs bonded to the CNT surface. Surface-enhanced Raman scattering (SERS) revealed a stronger signal from Au-CNT nanohybrids than from pristine CNTs. The Au-CNT nanohybrids showed catalytic activity in the oxidation of 3, 3', 5, 5'-tetramethyl-benzidine (TMB) by H2O2 and developed a unique blue colour in aqueous solution. Because of the enhanced peroxidase-like activity of these Au-CNT nanohybrids, they were selected for use as part of a highly sensitive colorimetric test for influenza virus A (H3N2). In the presence of influenza A virus (H3N2) in the test system (specific antibody-conjugated Au CNT nanohybrids-TMB-H2O2), a deep blue colour developed, the optical density of which was dependent on the virus concentration (10-50,000 PFU/ml). The limit of detection of this proposed method was 3.4 PFU/ml, a limit 385 times lower than that of conventional ELISA (1312 PFU/ml). The sensitivity of this test was also 500 times greater than that of commercial immunochromatography kits. The nanohybrid preparation and colorimetric detection methods reported herein may be easily adapted to other nanohybrid structures with enzyme mimetic properties for broader applications in catalysis and nanobiotechnology.

  15. A Preliminary Foil Gas Bearing Performance Map

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Radil, Kevin C.; Bruckner, Robert J.; Howard, S. Adam

    2006-01-01

    Recent breakthrough improvements in foil gas bearing load capacity, high temperature tribological coatings and computer based modeling have enabled the development of increasingly larger and more advanced Oil-Free Turbomachinery systems. Successful integration of foil gas bearings into turbomachinery requires a step wise approach that includes conceptual design and feasibility studies, bearing testing, and rotor testing prior to full scale system level demonstrations. Unfortunately, the current level of understanding of foil gas bearings and especially their tribological behavior is often insufficient to avoid developmental problems thereby hampering commercialization of new applications. In this paper, a new approach loosely based upon accepted hydrodynamic theory, is developed which results in a "Foil Gas Bearing Performance Map" to guide the integration process. This performance map, which resembles a Stribeck curve for bearing friction, is useful in describing bearing operating regimes, performance safety margins, the effects of load on performance and limiting factors for foil gas bearings.

  16. Exposure and toxic effects of elemental mercury in gold-mining activities in Ecuador.

    PubMed

    Harari, Raúl; Harari, Florencia; Gerhardsson, Lars; Lundh, Thomas; Skerfving, Staffan; Strömberg, Ulf; Broberg, Karin

    2012-08-13

    Traditional gold mining, using metallic mercury (Hg(0)) to form gold amalgam, followed by burning to remove the Hg(0), is widely used in South America, Africa and Asia. The gold is sold to merchants who burn it again to eliminate remaining Hg(0). In Ecuador, 200 gold miners, 37 gold merchants and 72 referents were studied. The median Hg concentrations in urine (U-Hg) were 3.3 (range 0.23-170), 37 (3.2-420), and 1.6 (0.2-13)μg/g creatinine, respectively, and in whole blood (B-Hg) were 5.2, 30, and 5.0 μg/L, respectively. Biomarker concentrations among merchants were statistically significantly higher than among miners and referents; also the miners differed from the referents. Burning of gold amalgam among miners was intermittent; U-Hg decreased in the burning-free period. In computerized neuromotor examinations, B-Hg and U-Hg concentrations were associated with increases in the centre frequency of the tremor, as well as in reaction time and postural stability.Retention of Hg (B-Hg), and the elimination rate (U-Hg) appears to be modified by polymorphism in a gene of an enzyme in the glutathione synthesis (GCLM), but there were no significant genetic modifications for the associations between exposure and neurotoxicity.Thus, the gold merchants have a much higher exposure and risk than the miners, in whom the exposure varies over time. The metabolism of Hg is modified by genetic traits. The present exposure to Hg had limited neurotoxic effects.

  17. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity

    NASA Astrophysics Data System (ADS)

    Aswathy Aromal, S.; Philip, Daizy

    2012-11-01

    The development of new synthesis methods for monodispersed nanocrystals using cheap and nontoxic chemicals, environmentally benign solvents and renewable materials remains a challenge to the scientific community. Most of the current methods involve known protocols which may be potentially harmful to either environment or human health. Recent research has been focused on green synthesis methods to produce new nanomaterials, ecofriendly and safer with sustainable commercial viability. The present work reports the green synthesis of gold nanoparticles using the aqueous extract of fenugreek (Trigonella foenum-graecum) as reducing and protecting agent. The pathway is based on the reduction of AuCl4- by the extract of fenugreek. This method is simple, efficient, economic and nontoxic. Gold nanoparticles having different sizes in the range from 15 to 25 nm could be obtained by controlling the synthesis parameters. The nanoparticles have been characterized by UV-Visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. The high crystallinity of nanoparticles is evident from clear lattice fringes in the HRTEM images, bright circular spots in the SAED pattern and peaks in the XRD pattern. FTIR spectrum indicates the presence of different functional groups present in the biomolecule capping the nanoparticles. The synthesized gold nanoparticles show good catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol by excess NaBH4. The catalytic activity is found to be size-dependent, the smaller nanoparticles showing faster activity.

  18. Predicted Foil Temperatures in the Brookhaven NSNS Accumulator Ring

    NASA Astrophysics Data System (ADS)

    Duke, J. P.

    1997-05-01

    An investigation has been carried out into the peak equilibrium stripping foil temperatures that could be expected in the 1 GeV NSNS Accumulator Ring proposed by Brookhaven National Laboratory. A Graphite foil is assumed. Computed foil temperature distributions on the foil's surface would be presented, as well as the predicted relationships between foil temperature and quantities such as the average number of recirculated proton hits, linac current, and foil mass per unit area used.

  19. Synthesis, structures and anti-malaria activity of some gold(I) phosphine complexes containing seleno- and thiosemicarbazonato ligands.

    PubMed

    Molter, Anja; Rust, Jörg; Lehmann, Christian W; Deepa, Ganesh; Chiba, Peter; Mohr, Fabian

    2011-10-14

    A series of both mono- and dinuclear gold(I) phosphine complexes containing monoanionic seleno- and thiosemicarbazones as ligands were prepared and fully characterized by spectroscopic methods and, in some cases, by single crystal X-ray diffraction. The in vitro anti-malaria activity of some of these compounds was investigated in chloroquine sensitive strains of Plasmodium falciparum. The IC(50) results show that the sulfur containing compounds exhibit activity similar to that of chloroquine, whilst the selenium derivatives display only moderate anti-malaria activity. PMID:21879088

  20. Synthesis, structures and anti-malaria activity of some gold(I) phosphine complexes containing seleno- and thiosemicarbazonato ligands.

    PubMed

    Molter, Anja; Rust, Jörg; Lehmann, Christian W; Deepa, Ganesh; Chiba, Peter; Mohr, Fabian

    2011-10-14

    A series of both mono- and dinuclear gold(I) phosphine complexes containing monoanionic seleno- and thiosemicarbazones as ligands were prepared and fully characterized by spectroscopic methods and, in some cases, by single crystal X-ray diffraction. The in vitro anti-malaria activity of some of these compounds was investigated in chloroquine sensitive strains of Plasmodium falciparum. The IC(50) results show that the sulfur containing compounds exhibit activity similar to that of chloroquine, whilst the selenium derivatives display only moderate anti-malaria activity.

  1. Deep-Subterranean Microbial Habitats in the Hishikari Epithermal Gold Mine: Active Thermophilic Microbial Communities and Endolithic Ancient Microbial Relicts.

    NASA Astrophysics Data System (ADS)

    Hirayama, H.; Takai, K.; Inagaki, F.; Horikoshi, K.

    2001-12-01

    Deep subterranean microbial community structures in an epithermal gold-silver deposit, Hishikari gold mine, southern part of Kyusyu Japan, were evaluated through the combined use of enrichment culture methods and culture-independent molecular surveys. The geologic setting of the Hishikari deposit is composed of three lithologies; basement oceanic sediments of the Cretaceous Shimanto Supergroup, Quaternary andesites, and auriferous quartz vein. We studied the drilled core rock of these, and the geothermal hot waters from the basement aquifers collected by means of the dewatering system located at the deepest level in the mining sites. Culture-independent molecular phylogenetic analyses of PCR-amplified ribosomal DNA (rDNA) recovered from drilled cores suggested that the deep-sea oceanic microbial communities were present as ancient indigenous relicts confined in the Shimanto basement. On the other hand, genetic signals of active thermophilic microbial communities, mainly consisting of thermophilic hydrogen-oxidizer within Aquificales, thermophilic methanotroph within g-Proteobacteria and yet-uncultivated bacterium OPB37 within b-Proteobacteria, were detected with these of oceanic relicts from the subterranean geothermal hot aquifers (temp. 70-100ºC). Successful cultivation and FISH analyses strongly supported that these thermophilic lithotrophic microorganisms could be exactly active and they grew using geochemically produced hydrogen and methane gasses as nutrients. Based on these results, the deep-subsurface biosphere occurring in the Hishikari epithermal gold mine was delineated as endolithic ancient microbial relicts and modern habitats raising active lithotrophic thermophiles associated with the geological and geochemical features of the epithermal gold deposit.

  2. Genesis of a Cerium Oxide-Supported Gold Catalyst for CO Oxidation: Transformation of Mononuclear Gold Complexes into Clusters as Characterized by X-Ray Absorption Spectroscopy

    SciTech Connect

    Aguilar-Guerrero, V.; Lobo-Lapidus, R; Gates, B

    2009-01-01

    CeO{sub 2}-supported mononuclear gold species synthesized from Au(CH{sub 3}){sub 2}(acac) catalyzed CO oxidation at 353 K, with a turnover frequency of 6.5 x 10{sup -3} molecules of CO (Au atom s){sup -1} at CO and O{sub 2} partial pressures of 1.0 and 0.5 kPa, respectively. As the catalyst functioned in a flow reactor, the activity increased markedly so that within about 10 h the conversion of CO had increased from about 1% to almost 100%. Activated catalyst samples were characterized by X-ray absorption spectroscopy and found to incorporate clusters of gold, which increased in size, undergoing reduction, with increasing time of operation. The X-ray absorption near-edge structure spectrum of the catalyst used for the longest period was indistinguishable from that characterizing gold foil. Extended X-ray absorption fine structure data characterizing the catalyst after the longest period of operation indicated the presence of clusters of approximately 30 Au atoms each, on average. The evidence that the catalytic activity increased as the clusters grew is contrasted with earlier reports pointing to increasing activity of supported gold clusters as they were made smallerin a cluster size range largely exceeding ours.

  3. Photothermally activated drug release from liposomes coupled to hollow gold nanoshells

    NASA Astrophysics Data System (ADS)

    Forbes, Natalie; Zasadzinski, Joseph A.

    2011-03-01

    Liposomes show great promise as intravenous drug delivery vehicles, but it is difficult to combine stability in the circulation, extended drug retention and rapid, targeted release at the site of interest. Accessorizing conventional and multicompartment liposomes with photo-activated hollow gold nanoshells (HGN) provides a convenient method to initiate drug release with spatial and temporal control. HGN efficiently absorb near infrared (NIR) light and rapidly convert the absorbed optical energy into heat. Femto- to nano-second NIR light pulses cause the HGNs to rapidly heat, creating large temperature gradients between the HGNs and surrounding fluid. The formation and collapse of unstable vapor bubbles transiently rupture liposome and other bilayer membranes to trigger contents release. Near-complete contents release occurs when the nanoshells are encapsulated within the liposome or tethered to the outer surface of the liposome, with no chemical damage to the contents. Release is achieved by focusing the laser beam at the target, eliminating the need for highly specific targeting ligands or antibodies. Although HGN heating can be intense, the overall energy input is small causing minimal heating of the surroundings. To ensure that drugs are retained within the liposomes until delivery in a physiological environment, we have made novel multicompartment carriers called vesosomes, which consist of an outer lipid bilayer shell that encloses and protects the drug-carrying liposomes. The second bilayer increases the serum half-life of ciprofloxacin from <10 minutes in liposomes to 6 hours in vesosomes and alters the release kinetics. The enhanced drug retention is due to the outer membrane preventing enzymes and proteins in the blood from breaking down the drug-carrying interior compartments.

  4. A Peptide-Coated Gold Nanocluster Exhibits Unique Behavior in Protein Activity Inhibition.

    PubMed

    An, Deyi; Su, Jiguo; Weber, Jeffrey K; Gao, Xueyun; Zhou, Ruhong; Li, Jingyuan

    2015-07-01

    Gold nanoclusters (AuNCs) can be primed for biomedical applications through functionalization with peptide coatings. Often anchored by thiol groups, such peptide coronae not only serve as passivators but can also endow AuNCs with additional bioactive properties. In this work, we use molecular dynamics simulations to study the structure of a tridecapeptide-coated Au25 cluster and its subsequent interactions with the enzyme thioredoxin reductase 1, TrxR1. We find that, in isolation, both the distribution and conformation of the coating peptides fluctuate considerably. When the coated AuNC is placed around TrxR1, however, the motion of the highly charged peptide coating (+5e/peptide) is quickly biased by electrostatic attraction to the protein; the asymmetric coating acts to guide the nanocluster's diffusion toward the enzyme's negatively charged active site. After the AuNC comes into contact with TrxR1, its peptide corona spreads over the protein surface to facilitate stable binding with protein. Though individual salt bridge interactions between the tridecapeptides and TrxR1 are transient in nature, the cooperative binding of the peptide-coated AuNC is very stable, overall. Interestingly, the biased corona peptide motion, the spreading and the cooperation between peptide extensions observed in AuNC binding are reminiscent of bacterial stimulus-driven approaching and adhesion mechanisms mediated by cilia. The prevailing AuNC binding mode we characterize also satisfies a notable hydrophobic interaction seen in the association of thioredoxin to TrxR1, providing a possible explanation for the AuNC binding specificity observed in experiments. Our simulations thus suggest this peptide-coated AuNC serves as an adept thioredoxin mimic that extends an array of auxiliary structural components capable of enhancing interactions with the target protein in question.

  5. Colorimetric detection of DNA by modulation of thrombin activity on gold nanoparticles.

    PubMed

    Jian, Jyun-Wei; Huang, Chih-Ching

    2011-02-18

    A colorimetric, non-cross-linking aggregation-based gold-nanoparticle (AuNP) probe has been developed for the detection of DNA and the analysis of single-nucleotide polymorphism (SNP). The probe acts by modulating the enzyme activity of thrombin relative to fibrinogen. A thrombin-binding aptamer with a 29-base-long oligonucleotide (TBA(29)) assembled on the nanoparticles (TBA(29)-AuNPs) through sandwich DNA hybridization was found to possess ultra-high anticoagulant potency. The enzyme inhibition of thrombin was determined by thrombin-induced aggregation of fibrinogen-functionalized 56 nm AuNPs (Fib-AuNPs). The potency of the inhibition of TBA(29)-AuNPs relative to thrombin--and thus the degree of aggregation of the Fib-AuNPs--is highly dependent on the concentration of perfectly matched DNA (DNA(pm)). Under optimal conditions [Tris-HCl (20 mM, pH 7.4), KCl (5 mM), MgCl(2) (1 mM), CaCl(2) (1 mM), NaCl (150 mM), thrombin (10 pM), and TBA(29)-AuNPs (20 pM)], the new TBA(29)-AuNP/Fib-AuNP probe shows linear sensitivity to DNA(pm) in the concentration range 20-500 pM with a correlation coefficient of 0.96. The limit of detection for DNA(pm) was experimentally determined to be 12 pM, based on a signal-to-noise ratio (S/N) of 3. The new probe was successfully applied to the analysis of an SNP that is responsible for sickle cell anemia. Relative to conventional molecular-beacon-based probes, the new probe offers the advantages of higher sensitivity and selectivity towards DNA and lower cost, showing its great potential for practical studies of SNPs.

  6. An aptamer based competition assay for protein detection using CNT activated gold-interdigitated capacitor arrays.

    PubMed

    Qureshi, Anjum; Roci, Irena; Gurbuz, Yasar; Niazi, Javed H

    2012-04-15

    An aptamer can specifically bind to its target molecule, or hybridize with its complementary strand. A target bound aptamer complex has difficulty to hybridize with its complementary strand. It is possible to determine the concentration of target based on affinity separation system for the protein detection. Here, we exploited this property using C-reactive protein (CRP) specific RNA aptamers as probes that were immobilized by physical adsorption on carbon nanotubes (CNTs) activated gold interdigitated electrodes of capacitors. The selective binding ability of RNA aptamer with its target molecule was determined by change in capacitance after allowing competitive binding with CRP and complementary RNA (cRNA) strands in pure form and co-mixtures (CRP:cRNA=0:1, 1:0, 1:1, 1:2 and 2:1). The sensor showed significant capacitance change with pure forms of CRP/cRNA while responses reduced considerably in presence of CRP:cRNA in co-mixtures (1:1 and 1:2) because of the binding competition. At a critical CRP:cRNA ratio of 2:1, the capacitance response was dramatically lost because of the dissociation of adsorbed aptamers from the sensor surface to bind when excess CRP. Binding assays showed that the immobilized aptamers had strong affinity for cRNA (K(d)=1.98 μM) and CRP molecules (K(d)=2.4 μM) in pure forms, but low affinity for CRP:cRNA ratio of 2:1 (K(d)=8.58 μM). The dynamic detection range for CRP was determined to be 1-8 μM (0.58-4.6 μg/capacitor). The approach described in this study is a sensitive label-free method to detect proteins based on affinity separation of target molecules that can potentially be used for probing molecular interactions.

  7. Colorimetric detection of sulfide based on target-induced shielding against the peroxidase-like activity of gold nanoparticles.

    PubMed

    Deng, Hao-Hua; Weng, Shao-Huang; Huang, Shuang-Lu; Zhang, Ling-Na; Liu, Ai-Lin; Lin, Xin-Hua; Chen, Wei

    2014-12-10

    Colorimetric recognition and sensing of sulfide with high sensitivity was proposed based on target-induced shielding against the peroxidase-like activity of bare gold nanoparticles. Significant features of the new assay system are its simplicity and cost-effectiveness. The recognition of sulfide by bare gold nanoparticles can be fulfilled in a few seconds and the assay can be accomplished in about 10 min. Furthermore, the new assay system does not require surface modification of GNPs to obtain the specificity for sulfide, and a salt-induced aggregation step is not needed. The detection limit of this method for sulfide was 80 nM. These features make this sensor a potentially powerful tool for the quantitative determination of sulfide in water samples. PMID:25441901

  8. Effects of multivalent histamine supported on gold nanoparticles: activation of histamine receptors by derivatized histamine at subnanomolar concentrations.

    PubMed

    Gasiorek, Friederike; Pouokam, Ervice; Diener, Martin; Schlecht, Sabine; Wickleder, Mathias S

    2015-10-21

    Colloidal gold nanoparticles with a functionalized ligand shell were synthesized and used as new histamine receptor agonists. Mercaptoundecanoic acid moieties were attached to the surface of the nanoparticles and derivatized with native histamine. The multivalent presentation of the immobilized ligands carried by the gold nanoparticles resulted in extremely low activation concentrations for histamine receptors on rat colonic epithelium. As a functional read-out system, chloride secretion resulting from stimulation of neuronal and epithelial histamine H1 and H2 receptors was measured in Ussing chamber experiments. These responses were strictly attributed to the histamine entities as histamine-free particles Au-MUDOLS or the monovalent ligand AcS-MUDA-HA proved to be ineffective. The vitality of the tissues used was not impaired by the nanoparticles.

  9. FULL SIZE U-10MO MONOLITHIC FUEL FOIL AND FUEL PLATE FABRICATION-TECHNOLOGY DEVELOPMENT

    SciTech Connect

    G. A. Moore; J-F Jue; B. H. Rabin; M. J. Nilles

    2010-03-01

    Full-size U10Mo foils are being developed for use in high density LEU monolithic fuel plates. The application of a zirconium barrier layer too the foil is applied using a hot co-rolling process. Aluminum clad fuel plates are fabricated using Hot Isostatic Pressing (HIP) or a Friction Bonding (FB) process. An overview is provided of ongoing technology development activities, including: the co-rolling process, foil shearing/slitting and polishing, cladding bonding processes, plate forming, plate-assembly swaging, and fuel plate characterization. Characterization techniques being employed include, Ultrasonic Testing (UT), radiography, and microscopy.

  10. Gaseous transport and deposition of gold in magmatic fluid: evidence from the active Kudryavy volcano, Kurile Islands

    NASA Astrophysics Data System (ADS)

    Yudovskaya, Marina A.; Distler, Vadim V.; Chaplygin, Ilya V.; Mokhov, Andrew V.; Trubkin, Nikolai V.; Gorbacheva, Sonya A.

    2006-03-01

    The distribution of gold in high-temperature fumarole gases of the Kudryavy volcano (Kurile Islands) was measured for gas, gas condensate, natural fumarolic sublimates, and precipitates in silica tubes from vents with outlet temperatures ranging from 380 to 870°C. Gold abundance in condensates ranges from 0.3 to 2.4 ppb, which is significantly lower than the abundances of transition metals. Gold contents in zoned precipitates from silica tubes increase gradually with a decrease in temperature to a maximum of 8 ppm in the oxychloride zone at a temperature of approximately 300°C. Total Au content in moderate-temperature sulfide and oxychloride zones is mainly a result of Au inclusions in the abundant Fe-Cu and Zn sulfide minerals as determined by instrumental neutron activation analysis. Most Au occurs as a Cu-Au-Ag triple alloy. Single grains of native gold and binary Au-Ag alloys were also identified among sublimates, but aggregates and crystals of Cu-Au-Ag alloy were found in all fumarolic fields, both in silica tube precipitates and in natural fumarolic crusts. Although the Au triple alloy is homogeneous on the scale of microns and has a composition close to (Cu,Ni,Zn)3(Au,Ag)2, transmission electron microscopy (TEM) shows that these alloy solid solutions consist of monocrystal domains of Au-Ag, Au-Cu, and possibly Cu2O. Gold occurs in oxide assemblages due to the decomposition of its halogenide complexes under high-temperature conditions (650-870°C). In lower temperature zones (<650°C), Au behavior is related to sulfur compounds whose evolution is strongly controlled by redox state. Other minerals that formed from gas transport and precipitation at Kudryavy volcano include garnet, aegirine, diopside, magnetite, anhydrite, molybdenite, multivalent molybdenum oxides (molybdite, tugarinovite, and ilsemannite), powellite, scheelite, wolframite, Na-K chlorides, pyrrhotite, wurtzite, greenockite, pyrite, galena, cubanite, rare native metals (including Fe, Cr, Mo

  11. Tilted foils polarization at REX-ISOLDE

    NASA Astrophysics Data System (ADS)

    Törnqvist, H.; Sotty, C.; Balabanski, D.; Dhal, A.; Georgiev, G.; Hass, M.; Heinz, A.; Hirayama, Y.; Imai, N.; Johansson, H.; Kowalska, M.; Kusoglu, A.; Nilsson, T.; Stuchbery, A.; Wenander, F.; Yordanov, D. T.

    2013-12-01

    The tilted-foils nuclear-spin polarization method has been evaluated using the REX-ISOLDE linear accelerator at the ISOLDE facility, CERN. A beam of 8Li delivered with an energy of 300 keV/u traversed through one Mylar foil to degrade the beam energy to 200 keV/u and consequently through 10 thin diamond-like carbon foils to polarize the nuclear spin. The attained nuclear spin polarization of 3.6±0.3% was measured with a β-NMR setup.

  12. Growth of fluorescence gold clusters using photo-chemically activated ligands

    NASA Astrophysics Data System (ADS)

    Mishra, Dinesh; Aldeek, Fadi; Michael, Serge; Palui, Goutam; Mattoussi, Hedi

    2016-03-01

    Ligands made of lipoic acid (LA) appended with a polyethylene glycol (PEG) chain have been used in the aqueous phase growth of luminescent gold clusters with distinct emission from yellow to near-IR, using two different routes. In the first route, the gold-ligand complex was chemically reduced using sodium borohydride in alkaline medium, which gave near- IR luminescent gold clusters with maximum emission around 745 nm. In the second method, LA-PEG ligand was photochemically modified to a mixture of thiols, oligomers and oxygenated species under UV-irradiation, which was then used as both reducing agent and stabilizing ligand. By adjusting the pH, temperature, and time of the reaction, we were able to obtain clusters with two distinct emission properties. Refluxing the gold-ligand complex in alkaline medium in the presence of excess ligand gave yellow emission within the first two hours and the emission shifted to red after overnight reaction. Mass spectrometry and chemical assay were used to understand the photo-chemical transformation of Lipoic Acid (LA). Mass spectroscopic studies showed the photo-irradiated product contains thiols, oligomers (dimers, trimers and tetramers) as well as oxygenated species. The amount of thiol formed under different conditions of irradiation was estimated using Ellman's assay.

  13. SERS-Active Gold Lace Nanoshells with Built-in Hotspots

    SciTech Connect

    Yang, Ming; Alvarez-Puebla, R.; Kim, Huyoung-Sug; Aldeanueva-Potel, Paula; Liz-Marzan, Luis M.; Kotov, Nicholas A.

    2010-08-25

    Development of multifunctional drug delivery vehicles with therapeutic and imaging capabilities as well as in situ methods of monitoring of intracellular processes will greatly benefit from a simple method of preparation of plasmonic Au structures with nanometer scale gaps between sharp metallic elements where the so-called SERS hot spots can be formed. Here the synthesis of gold lace capsules with average diameters ca. 100 nm made of a network of metallic branches 3-5 nm wide and separated by 1-3 nm gaps is reported. Biocompatible amphiphilic polyurethanes (PUs) were used as template for these particles. The unusual topology of the produced gold lace shells somewhat reminiscent of Fabergé eggs is likely to reflect the network of hydrophobic and hydrophilic domains of PU globules. The gold lace develops from initial open weblike structures by gradual enveloping the PU template. The diameter of gold lace shell is determined by the size of PUs in water and can be adjusted by the molecular mass of PUs. The close proximity between branches makes them excellent supports for surface-enhanced Raman spectroscopy (SERS), which was demonstrated using 1-naphthalenethiol upon excitation with photons with different wavelengths. The loading and releasing of pyrene as a model of hydrophobic drugs and the use of SERS to monitor it were demonstrated.

  14. Star-like gold nanoparticles as highly active substrate for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Morasso, Carlo; Mehn, Dora; Vanna, Renzo; Bedoni, Marzia; Pascual García, César; Prosperi, Davide; Gramatica, Furio

    2013-02-01

    Surface Enhanced Raman Spectroscopy (SERS) is a popular method in bio-analytical chemistry and a potentially powerful enabling technology for in vitro diagnostics. SERS combines the excellent chemical specificity of Raman spectroscopy with the good sensitivity provided by enhancement of the signal that is observed when a molecule is located on (or very close to) the surface of nanostructured metallic materials. Star-like gold nanoparticles (SGN) are a new class of multibranched nanoparticles that in the last few years have attracted the attention of SERS community for their plasmonic properties. In this work we present a new method to prepare star-like gold nanoparticles with a simple one step protocol at room temperature using hydroquinone as reducing agent. Besides we compare the enhancement of Raman signal of malachite green, a dye commonly employed as label in biological studies, by star-like gold nanoparticles having different size, directly in liquid. This study shows that SGN provide good enhancement of Raman signal and that the effect of their dimension is strongly dependent on the wavelength used. Moreover preliminary results suggest that SGN produced using this method are characterized by good physical-chemical properties and they can be functionalized using the standard thiol chemistry. Overall, these results suggest that star-like gold nanoparticles produced through this method could be used for the further development of highly specific and sensitive SERS-based bio-analytical tests.

  15. Amplified electrochemical detection of protein kinase activity based on gold nanoparticles/multi-walled carbon nanotubes nanohybrids.

    PubMed

    Liu, Jinquan; He, Xiaoxiao; Wang, Kemin; Wang, Yonghong; Yan, Genping; Mao, Yinfei

    2014-11-01

    A sensitive and simple electrochemical strategy has been developed for assay of protein kinase A (PKA) activity and inhibition using gold nanoparticles/multi-walled carbon nanotubes (AuNPs/MWNTs) nanohybrids. Key features of this assay included intrinsic peroxidase-like activity of positively-charged gold nanoparticles (+AuNPs) and signal transduction and amplification of multi-walled carbon nanotubes (MWNTs). In this assay, an N-terminally cysteine-containing peptide was self-assembled onto the gold electrode via Au-S bonding and used as substrate for PKA, and adenosine-5'-(γ-thio)-triphosphate was used as co-substrate. Upon thiophosphorylation in the presence of PKA, the AuNPs/MWNTs nanohybrids would be fixed onto the peptides via Au-S bond. The conjugated AuNPs/MWNTs nanohybrids could catalyze the 3, 3', 5, 5'-Tetramethylbenzidine (TMB) oxidation by H2O2 to form TMB oxidation product, which was reduced at the electrode surface to generate an electrochemical current. It was eT on state. The current signal intensity is proportional to the activity of PKA. Here, the presence of MWNTs not only increased the surface area for accumulation of +AuNPs but also could promote electron-transfer reaction. It was found that the electrochemical strategy can be employed to assay PKA activity with a low detection limit of 0.09 U/mL. The linear range of the assay for PKA enzymatic unit/ml was 0.1-1 U/mL. Furthermore, the interferences experiments of T4 polynucleotide kinase (T4 PNK) and Casein kinase II (CK2), and inhibition of PKA, have also been studied by using this strategy. The developed method would provide a diversified platform for kinase activity and inhibition monitoring.

  16. Evaluation of chemical constituents and free-radical scavenging activity of Swarnabhasma (gold ash), an ayurvedic drug.

    PubMed

    Mitra, A; Chakraborty, S; Auddy, B; Tripathi, P; Sen, S; Saha, A V; Mukherjee, B

    2002-05-01

    From ancient times, Swarnabhasma (gold ash) has been used in several clinical manifestations including loss of memory, defective eyesight, infertility, overall body weakness and incidence of early aging. Swarnabhasma has been used by Ayurvedic physicians to treat different diseases like bronchial asthma, rheumatoid arthritis, diabetes mellitus, nervous disorders, etc. In the present investigation, Swarnabhasma was prepared after proper purification and calcination as per Ayurvedic pharmacy which consisted of Realger (As(2)S(2)), Lead oxide (Pb(3)O(4)), Pure gold (Au) and Latex of Calotropis gigantea. Qualitative analyses indicated that Swarnabhasma contained not only gold but also several microelements (Fe, Al, Cu, Zn, Co, Mg, Ca, As, Pb, etc.). Infrared spectroscopy showed that the material was free from any organic compound. The metal content in the bhasma was determined by atomic absorption spectrometry. Acute oral administration of Swarnabhasma showed no mortality in mice (up to 1 ml /20 g b.w. of Swarnabhasma suspension containing 1mg of drug). Chronic administration of Swarnabhasma also showed no toxicity as judged by SGPT, SGOT, serum creatinine and serum urea level and histological studies. In an experimental animal model, chronic Swarnabhasma-treated animals showed significantly increased superoxide dismutase and catalase activity, two enzymes that reduce free radical concentrations in the body.

  17. Stray Electric Field Due to the Carbon Foil Resistance in Hydrogen Beam-Foil-Spectroscopy Measurements

    NASA Astrophysics Data System (ADS)

    Singer, W.; Dehaes, J. C.; Carmeliet, J.

    1980-01-01

    We have measured the linear polarization of the Hβ transition at 486.1 nm excited by passage of a 110 keV proton beam through perpendicular carbon foils. We have observed that the polarization depends upon the beam intensity and on the relative position of the foil and its holder. We have shown that these dependences are linked to the presence of a stray electric field at the immediate vicinity of the foil. The field is due to the potential distribution at the foil surface resulting from the electron radial flow in the high foil electric resistance (about 50 kΩ). It introduces a perturbation which in our case is more important than the temperature effect observed by Gay and Berry (Phys. Rev. A19, 952 (1979)). The field is proportional to the beam current density and is reduced for large foil and beam diameters.

  18. Enhanced Plasmonic Resonance Energy Transfer in Mesoporous Silica-Encased Gold Nanorod for Two-Photon-Activated Photodynamic Therapy

    PubMed Central

    Chen, Nai-Tzu; Tang, Kuo-Chun; Chung, Ming-Fang; Cheng, Shih-Hsun; Huang, Ching-Mao; Chu, Chia-Hui; Chou, Pi-Tai; Souris, Jeffrey S.; Chen, Chin-Tu; Mou, Chung-Yuan; Lo, Leu-Wei

    2014-01-01

    The unique optical properties of gold nanorods (GNRs) have recently drawn considerable interest from those working in in vivo biomolecular sensing and bioimaging. Especially appealing in these applications is the plasmon-enhanced photoluminescence of GNRs induced by two-photon excitation at infrared wavelengths, owing to the significant penetration depth of infrared light in tissue. Unfortunately, many studies have also shown that often the intensity of pulsed coherent irradiation of GNRs needed results in irreversible deformation of GNRs, greatly reducing their two-photon luminescence (TPL) emission intensity. In this work we report the design, synthesis, and evaluation of mesoporous silica-encased gold nanorods (MS-GNRs) that incorporate photosensitizers (PSs) for two-photon-activated photodynamic therapy (TPA-PDT). The PSs, doped into the nano-channels of the mesoporous silica shell, can be efficiently excited via intra-particle plasmonic resonance energy transfer from the encased two-photon excited gold nanorod and further generates cytotoxic singlet oxygen for cancer eradication. In addition, due to the mechanical support provided by encapsulating mesoporous silica matrix against thermal deformation, the two-photon luminescence stability of GNRs was significantly improved; after 100 seconds of 800 nm repetitive laser pulse with the 30 times higher than average power for imaging acquisition, MS-GNR luminescence intensity exhibited ~260% better resistance to deformation than that of the uncoated gold nanorods. These results strongly suggest that MS-GNRs with embedded PSs might provide a promising photodynamic therapy for the treatment of deeply situated cancers via plasmonic resonance energy transfer. PMID:24955141

  19. Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy.

    PubMed

    Chen, Nai-Tzu; Tang, Kuo-Chun; Chung, Ming-Fang; Cheng, Shih-Hsun; Huang, Ching-Mao; Chu, Chia-Hui; Chou, Pi-Tai; Souris, Jeffrey S; Chen, Chin-Tu; Mou, Chung-Yuan; Lo, Leu-Wei

    2014-01-01

    The unique optical properties of gold nanorods (GNRs) have recently drawn considerable interest from those working in in vivo biomolecular sensing and bioimaging. Especially appealing in these applications is the plasmon-enhanced photoluminescence of GNRs induced by two-photon excitation at infrared wavelengths, owing to the significant penetration depth of infrared light in tissue. Unfortunately, many studies have also shown that often the intensity of pulsed coherent irradiation of GNRs needed results in irreversible deformation of GNRs, greatly reducing their two-photon luminescence (TPL) emission intensity. In this work we report the design, synthesis, and evaluation of mesoporous silica-encased gold nanorods (MS-GNRs) that incorporate photosensitizers (PSs) for two-photon-activated photodynamic therapy (TPA-PDT). The PSs, doped into the nano-channels of the mesoporous silica shell, can be efficiently excited via intra-particle plasmonic resonance energy transfer from the encased two-photon excited gold nanorod and further generates cytotoxic singlet oxygen for cancer eradication. In addition, due to the mechanical support provided by encapsulating mesoporous silica matrix against thermal deformation, the two-photon luminescence stability of GNRs was significantly improved; after 100 seconds of 800 nm repetitive laser pulse with the 30 times higher than average power for imaging acquisition, MS-GNR luminescence intensity exhibited ~260% better resistance to deformation than that of the uncoated gold nanorods. These results strongly suggest that MS-GNRs with embedded PSs might provide a promising photodynamic therapy for the treatment of deeply situated cancers via plasmonic resonance energy transfer. PMID:24955141

  20. Plasmonic activation of gold nanorods for remote stimulation of calcium signaling and protein expression in HEK 293T cells.

    PubMed

    Sanchez-Rodriguez, Sandra P; Sauer, Jeremy P; Stanley, Sarah A; Qian, Xi; Gottesdiener, Andrew; Friedman, Jeffrey M; Dordick, Jonathan S

    2016-10-01

    Remote activation of specific cells of a heterogeneous population can provide a useful research tool for clinical and therapeutic applications. Here, we demonstrate that photostimulation of gold nanorods (AuNRs) using a tunable near-infrared (NIR) laser at specific longitudinal surface plasmon resonance wavelengths can induce the selective and temporal internalization of calcium in HEK 293T cells. Biotin-PEG-Au nanorods coated with streptavidin Alexa Fluor-633 and biotinylated anti-His antibodies were used to decorate cells genetically modified with His-tagged TRPV1 temperature-sensitive ion channel and AuNRs conjugated to biotinylated RGD peptide were used to decorate integrins in unmodified cells. Plasmonic activation can be stimulated at weak laser power (0.7-4.0 W/cm(2) ) without causing cell damage. Selective activation of TRPV1 channels could be controlled by laser power between 1.0 and 1.5 W/cm(2) . Integrin targeting robustly stimulated calcium signaling due to a dense cellular distribution of nanoparticles. Such an approach represents a functional tool for combinatorial activation of cell signaling in heterogeneous cell populations. Our results suggest that it is possible to induce cell activation via NIR-induced gold nanorod heating through the selective targeting of membrane proteins in unmodified cells to produce calcium signaling and downstream expression of specific genes with significant relevance for both in vitro and therapeutic applications. Biotechnol. Bioeng. 2016;113: 2228-2240. © 2016 Wiley Periodicals, Inc. PMID:27563853

  1. Plasmonic activation of gold nanorods for remote stimulation of calcium signaling and protein expression in HEK 293T cells.

    PubMed

    Sanchez-Rodriguez, Sandra P; Sauer, Jeremy P; Stanley, Sarah A; Qian, Xi; Gottesdiener, Andrew; Friedman, Jeffrey M; Dordick, Jonathan S

    2016-10-01

    Remote activation of specific cells of a heterogeneous population can provide a useful research tool for clinical and therapeutic applications. Here, we demonstrate that photostimulation of gold nanorods (AuNRs) using a tunable near-infrared (NIR) laser at specific longitudinal surface plasmon resonance wavelengths can induce the selective and temporal internalization of calcium in HEK 293T cells. Biotin-PEG-Au nanorods coated with streptavidin Alexa Fluor-633 and biotinylated anti-His antibodies were used to decorate cells genetically modified with His-tagged TRPV1 temperature-sensitive ion channel and AuNRs conjugated to biotinylated RGD peptide were used to decorate integrins in unmodified cells. Plasmonic activation can be stimulated at weak laser power (0.7-4.0 W/cm(2) ) without causing cell damage. Selective activation of TRPV1 channels could be controlled by laser power between 1.0 and 1.5 W/cm(2) . Integrin targeting robustly stimulated calcium signaling due to a dense cellular distribution of nanoparticles. Such an approach represents a functional tool for combinatorial activation of cell signaling in heterogeneous cell populations. Our results suggest that it is possible to induce cell activation via NIR-induced gold nanorod heating through the selective targeting of membrane proteins in unmodified cells to produce calcium signaling and downstream expression of specific genes with significant relevance for both in vitro and therapeutic applications. Biotechnol. Bioeng. 2016;113: 2228-2240. © 2016 Wiley Periodicals, Inc.

  2. Mechanical design and vibro-acoustic testing of ultrathin carbon foils for a spacecraft instrument

    SciTech Connect

    Bernardin, John D; Baca, Allen G

    2009-01-01

    IBEX-Hi is an electrostatic analyzer spacecraft instrument designed to measure the energy and flux distribution of energetic neutral atoms (ENAs) emanating from the interaction zone between the Earth's solar system and the Milky Way galaxy. A key element to this electro-optic instrument is an array of fourteen carbon foils that are used to ionize the ENAs. The foils are comprised of an ultrathin (50-100 {angstrom} thick) layer of carbon suspended across the surface of an electroformed Nickel wire screen, which in turn is held taught by a metal frame holder. The electro formed orthogonal screen has square wire elements, 12.7 {micro}m thick, with a pitch of 131.1 wires/cm. Each foil holder has an open aperture approximately 5 cm by 2.5 cm. Designing and implementing foil holders with such a large surface area has not been attempted for spaceflight in the past and has proven to be extremely challenging. The delicate carbon foils are subject to fatigue failure from the large acoustic and vibration loads that they will be exposed to during launch of the spacecraft. This paper describes the evolution of the foil holder design from previous space instrument applications to a flight-like IBEX-Hi prototype. Vibro-acoustic qualification tests of the IBEX-Hi prototype instrument and the resulting failure of several foils are summarized. This is followed by a discussion of iterative foil holder design modifications and laser vibrometer modal testing to support future fatigue failure analyses, along with additional acoustic testing of the IBEX-Hi prototype instrument. The results of these design and testing activities are merged and the resulting flight-like foil holder assembly is proposed.

  3. Investigation of Energy Harvesting Using Flapping Foils

    NASA Astrophysics Data System (ADS)

    Mivehchi, Amin; Persichetti, Amanda; Dunham, Brandon; Dahl, Jason M.

    2013-11-01

    When harvesting kinetic energy using a flapping foil, the separation of coherent structures in the wake is crucial for determining forces on the body. Applications for utilizing energy harvesting with a flapping foil include powering of local, low power equipment and recharging AUV batteries that use flapping foils for propulsion and maneuvering. In each of these cases, it is critical to accurately predict the physical behavior and location of vortices in relation to the motion of the body in order to maximize energy output. A two-dimensional open source boundary data immersion method (LilyPad) is used for simulating the flapping motion of a foil for energy harvesting in a current. Forced motion of the flapping body indicates theoretical efficiencies for energy harvesting near 43 percent under specific flapping conditions. A simple control scheme based on pressure sensing on the surface of the foil is developed to control pitch of the foil while energy harvesting occurs in the heave direction. The control scheme is tested through real time numerical simulation. Comparisons are made with physical laboratory experiments, demonstrating high efficiencies in energy harvesting.

  4. Utility of Ligand Effect in Homogenous Gold Catalysis: Enabling Regiodivergent π-Bond-Activated Cyclization.

    PubMed

    Ding, Dong; Mou, Tao; Feng, Minghao; Jiang, Xuefeng

    2016-04-27

    Comprehensive utilization of both electronic and steric properties of ligands in homogeneous gold catalysis is achieved in the regiodivergent intramolecular hydroarylation of alkynes. A flexible electron-deficient phosphite ligand, combined with the readily transformable directing group methoxyl amide, is attached to a cationic Au(I) center in three-coordinate mode, affording sterically hindered ortho-position cyclization. Meanwhile, para-position cyclization is exclusively achieved with the assistance of a rigid electron-abundant phosphine ligand-based Au(I) catalyst, in which ligands manifest the compensating effect for cyclization through steric hindrance and electronic properties. By combining gold with silver catalysts, tetrahydropyrroloquinolinones possessing a congested tricyclic structure are obtained via a proven Au/Ag relay catalytic process. PMID:27058740

  5. Reduction of Viologen Bisphosphonate Dihalide with Aluminum Foil

    NASA Astrophysics Data System (ADS)

    Abeta Iyere, Peter

    1996-05-01

    An elegant undergraduate experiment similar to the popular "Iodine Clock Reaction" employs the reduction of methyl viologen by hydroxide ion. A major problem with the hydroxide reduction demonstration is that the mechanism is complicated by the existence of competing reaction pathways. It has been suggested that layered metal viologen phosphonates could be used in the design and construction of molecular materials. The active unit in the reversible photocoloration of these layered materials is the viologen bisphosphonate dihalide (VPX). During our study of these phoshponate systems, we discovered the reduction of viologen bisphosphonate dihalide by aluminum foil, mossy zinc, or magnesium turnings in dilute aqueous hydrofluoric acid solution. When we demonstrated this phenomenon with aluminum foil and VPBr in the classroom, the response of our students was enthusiastic. This demonstration can be used as prelaboratory discussion for an undergraduate kinetic experiment based on the same phenomenon.

  6. Gas Foil Bearing Technology Advancements for Closed Brayton Cycle Turbines

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.

    2007-01-01

    Closed Brayton Cycle (CBC) turbine systems are under consideration for future space electric power generation. CBC turbines convert thermal energy from a nuclear reactor, or other heat source, to electrical power using a closed-loop cycle. The operating fluid in the closed-loop is commonly a high pressure inert gas mixture that cannot tolerate contamination. One source of potential contamination in a system such as this is the lubricant used in the turbomachine bearings. Gas Foil Bearings (GFB) represent a bearing technology that eliminates the possibility of contamination by using the working fluid as the lubricant. Thus, foil bearings are well suited to application in space power CBC turbine systems. NASA Glenn Research Center is actively researching GFB technology for use in these CBC power turbines. A power loss model has been developed, and the effects of a very high ambient pressure, start-up torque, and misalignment, have been observed and are reported here.

  7. Extension and gold mineralisation in the hanging walls of active convergent continental shear zones

    NASA Astrophysics Data System (ADS)

    Upton, Phaedra; Craw, Dave

    2014-07-01

    Orogenic gold-bearing quartz veins form in mountain belts adjacent to convergent tectonic boundaries. The vein systems, hosted in extensional structures within compressively deformed rocks, are a widespread feature of these orogens. In many cases the extensional structures that host gold-bearing veins have been superimposed on, and locally controlled by, compressional structures formed within the convergent orogen. Exploring these observations within the context of a three-dimensional mechanical model allows prediction of mechanisms and locations of extensional zones within convergent orogens. Our models explore the effect of convergence angle and mid-crustal strength on stress states and compare them to the Southern Alps and Taiwan. The dilatation zones coincide with the highest mountains, in the hanging walls of major plate boundary faults, and can extend as deep as the brittle-ductile transition. Extensional deformation is favoured in the topographic divide region of oblique orogens with mid-lower crustal rheology that promotes localisation rather than diffuse deformation. In the near surface, topography influences the stress state to a depth approximately equal to the topographic relief, bringing the rock closer to failure and rotating σ1 to near vertical. The distribution of gold-bearing extensional veins may indicate the general position of the topographic divide within exhumed ancient orogens.

  8. Gold nanoparticles supported on mesoporous silica: origin of high activity and role of Au NPs in selective oxidation of cyclohexane

    PubMed Central

    Wu, Pingping; Bai, Peng; Yan, Zifeng; Zhao, George X. S.

    2016-01-01

    Homogeneous immobilization of gold nanoparticles (Au NPs) on mesoporous silica has been achieved by using a one-pot synthesis method in the presence of organosilane mercapto-propyl-trimethoxysilane (MPTMS). The resultant Au NPs exhibited an excellent catalytic activity in the solvent-free selective oxidation of cyclohexane using molecular oxygen. By establishing the structure-performance relationship, the origin of the high activity of mesoporous supported Au catalyst was identified to be due to the presence of low-coordinated Au (0) sites with high dispersion. Au NPs were confirmed to play a critical role in the catalytic oxidation of cyclohexane by promoting the activation of O2 molecules and accelerating the formation of surface-active oxygen species. PMID:26729288

  9. Gold nanoparticles supported on mesoporous silica: origin of high activity and role of Au NPs in selective oxidation of cyclohexane

    NASA Astrophysics Data System (ADS)

    Wu, Pingping; Bai, Peng; Yan, Zifeng; Zhao, George X. S.

    2016-01-01

    Homogeneous immobilization of gold nanoparticles (Au NPs) on mesoporous silica has been achieved by using a one-pot synthesis method in the presence of organosilane mercapto-propyl-trimethoxysilane (MPTMS). The resultant Au NPs exhibited an excellent catalytic activity in the solvent-free selective oxidation of cyclohexane using molecular oxygen. By establishing the structure-performance relationship, the origin of the high activity of mesoporous supported Au catalyst was identified to be due to the presence of low-coordinated Au (0) sites with high dispersion. Au NPs were confirmed to play a critical role in the catalytic oxidation of cyclohexane by promoting the activation of O2 molecules and accelerating the formation of surface-active oxygen species.

  10. Synchronization and Phase Dynamics of Oscillating Foils

    NASA Astrophysics Data System (ADS)

    Finkel, Cyndee L.

    In this work, a two-dimensional model representing the vortices that animals produce, when they are ying/swimming, was constructed. A D{shaped cylinder and an oscillating airfoil were used to mimic these body{shed and wing{generated vortices, respectively. The parameters chosen are based on the Reynolds numbers similar to that which is observed in nature (˜10 4). In order to imitate the motion of ying/swimming, the entire system was suspended into a water channel from frictionless air{bearings. The position of the apparatus in the channel was regulated with a linear, closed loop PI controller. Thrust/drag forces were measured with strain gauges and particle image velocimetry (PIV) was used to examine the wake structure that develops. The Strouhal number of the oscillating airfoil was compared to the values observed in nature as the system transitions between the accelerated and steady states. The results suggest that self-regulation restricts the values of the Strouhal number to a certain range where no other external sensory input is necessary. As suggested by previous work, this self-regulation is a result of a limit cycle process that stems from nonlinear periodic oscillations. The limit cycles were used to examine the synchronous conditions due to the coupling of the foil and wake vortices. Noise is a factor that can mask details of the synchronization. In order to control its effect, we study the locking conditions using an analytic technique that only considers the phases. Our results show that the phase locking indices are dependent on the Strouhal value as it converges to a frequency locking ratio of ≃0:5. This indicates that synchronization occurs during cruising between the motion of the foil and the measured thrust/drag response of the uid forces. The results suggest that Strouhal number selection in steady forward natural swimming and ying is the result of a limit cycle process and not actively controlled by an organism. An implication of this is

  11. Characterization and in vitro studies on anticancer, antioxidant activity against colon cancer cell line of gold nanoparticles capped with Cassia tora SM leaf extract

    NASA Astrophysics Data System (ADS)

    Abel, Ezra Elumalai; John Poonga, Preetam Raj; Panicker, Shirly George

    2016-01-01

    This study was aimed to determine the effectiveness of synthesized gold nanoparticles of an ethnobotanically and medicinally important plant species Cassia tora against colon cancer cells and to find its antibacterial and antioxidant activities. In order to improve the bioavailability of C. tora, we synthesized gold nanoparticles through green synthesis, by simple mixing and stirring of C. tora leaf powder and tetrachloroauric acid (HAuCl4) solution which gave a dispersion of gold nanoparticles conjugate with C. tora secondary metabolites (SMs) with characteristic surface plasmon resonance. It was characterized by Fourier transform infrared spectroscopy, zeta sizer, zeta potential and transmission electron microscopy. Antibacterial activity was carried out for gold nanoparticles conjugated with C. tora SMs, using well-diffusion method. The MTT assay for cell viability and markers such as catalase, nitric oxide and lipid peroxidation was predictable to confirm the cytotoxicity and antioxidant properties. The treatment of gold nanoparticles conjugated with C. tora SMs on Col320 cells showed reduction in the cell viability through MTT assay, and it also significantly suppressed the release of H2O2, LPO and NO production in a dose-dependent manner. C. tora SMs conjugate gold nanoparticles showed enhanced bioavailability, antioxidant and anticancer effect against colon cancer cell line (Col320).

  12. 20th-Century Gold Rush.

    ERIC Educational Resources Information Center

    Wargo, Joseph G.

    1992-01-01

    Presents Nevada's gold rush activities spurred by technological advancements in search methods. Describes the events that led to the twentieth-century gold rush, the techniques for finding deposits and the geological formation process of disseminated gold deposits. Vignettes present the gold extraction process, cross-section, and profile of a…

  13. When gold is not noble: Nanoscale gold catalysts

    SciTech Connect

    Sanchez, A.; Abbet, S.; Heiz, U.; Schneider, W.D.; Haekkinen, H.; Barnett, R.N.; Landman, U.

    1999-12-02

    While inert as bulk material, nanoscale gold particles dispersed on oxide supports exhibit a remarkable catalytic activity. Temperature-programmed reaction studies of the catalyzed combustion of CO on size-selected small monodispersed Au{sub n} (n {le} 20) gold clusters supported on magnesia, and first-principle simulations, reveal the microscopic origins of the observed unusual catalytic activity, with Au{sub 8} found to be the smallest catalytically active size. Partial electron transfer from the surface to the gold cluster and oxygen-vacancy F-center defects are shown to play an essential role in the activation of nanosize gold clusters as catalysts for the combustion reaction.

  14. Low pressure CO₂ hydrogenation to methanol over gold nanoparticles activated on a CeOx/TiO₂ interface

    DOE PAGES

    Yang, Xiaofang; Boscoboinik, J. Anibal; Kattel, Shyam; Senanayake, Sanjaya D.; Nie, Xiaowa; Graciani, Jesus; Rodriguez, Jose A.; Liu, Ping; Stacchiola, Dario J.; Chen, Jingguang G.

    2015-07-28

    Capture and recycling of CO₂ into valuable chemicals such as alcohols could help mitigate its emissions into the atmosphere. Due to its inert nature, the activation of CO₂ is a critical step in improving the overall reaction kinetics during its chemical conversion. Although pure gold is an inert noble metal and cannot catalyze hydrogenation reactions, it can be activated when deposited as nanoparticles on the appropriate oxide support. In this combined experimental and theoretical study, it is shown that an electronic polarization at the metal–oxide interface of Au nanoparticles anchored and stabilized on a CeOx/TiO₂ substrate generates active centers formore » CO₂ adsorption and its low pressure hydrogenation, leading to a higher selectivity toward methanol. In conclusion, this study illustrates the importance of localized electronic properties and structure in catalysis for achieving higher alcohol selectivity from CO₂ hydrogenation.« less

  15. Thermodynamics of engineered gold binding peptides: establishing the structure-activity relationships.

    PubMed

    Seker, Urartu Ozgur Safak; Wilson, Brandon; Kulp, John L; Evans, John S; Tamerler, Candan; Sarikaya, Mehmet

    2014-07-14

    Adsorption behavior of a gold binding peptide was experimentally studied to achieve kinetics and thermodynamics parameters toward understanding of the binding of an engineered peptide onto a solid metal surface. The gold-binding peptide, GBP1, was originally selected using a cell surface display library and contains 14 amino acid residues. In this work, single- and three-repeats of GBP1 were used to assess the effects of two parameters: molecular architecture versus secondary structure on adsorption on to gold substrate. The adsorption measurements were carried out using surface plasmon resonance (SPR) spectroscopy at temperatures ranging from 10 to 55 °C. At all temperatures, two different regimes of peptide adsorption were observed, which, based on the model, correspond to two sets of thermodynamics values. The values of enthalpy, ΔH(ads), and entropy, ΔS(ads), in these two regimes were determined using the van't Hoff approach and Gibbs-Helmholtz relationship. In general, the values of enthalpy for both peptides are negative indicating GBP1 binding to gold is an exothermic phenomenon and that the binding of three repeat gold binding peptide (3l-GBP1) is almost 5 times tighter than that for the single repeat (l-GBP1). More intriguing result is that the entropy of adsorption for the 3l-GBP1 is negative (-43.4 ± 8.5 cal/(mol K)), while that for the l-GBP1 is positive (10.90 ± 1.3 cal/(mol K)). Among a number of factors that synergistically contribute to the decrease of entropy, long-range ordered self-assembly of the 3l-GBP1 on gold surface is the most effective, probably through both peptide-solid and peptide-peptide intermolecular interactions. Additional adsorption experiments were conducted in the presence of 2,2,2-trifluoroethanol (TFE) to determine how the conformational structures of the biomolecules responded to the environmental perturbation. We found that the peptides differ in their conformational responses to the change in solution conditions; while

  16. Thermodynamics of engineered gold binding peptides: establishing the structure-activity relationships.

    PubMed

    Seker, Urartu Ozgur Safak; Wilson, Brandon; Kulp, John L; Evans, John S; Tamerler, Candan; Sarikaya, Mehmet

    2014-07-14

    Adsorption behavior of a gold binding peptide was experimentally studied to achieve kinetics and thermodynamics parameters toward understanding of the binding of an engineered peptide onto a solid metal surface. The gold-binding peptide, GBP1, was originally selected using a cell surface display library and contains 14 amino acid residues. In this work, single- and three-repeats of GBP1 were used to assess the effects of two parameters: molecular architecture versus secondary structure on adsorption on to gold substrate. The adsorption measurements were carried out using surface plasmon resonance (SPR) spectroscopy at temperatures ranging from 10 to 55 °C. At all temperatures, two different regimes of peptide adsorption were observed, which, based on the model, correspond to two sets of thermodynamics values. The values of enthalpy, ΔH(ads), and entropy, ΔS(ads), in these two regimes were determined using the van't Hoff approach and Gibbs-Helmholtz relationship. In general, the values of enthalpy for both peptides are negative indicating GBP1 binding to gold is an exothermic phenomenon and that the binding of three repeat gold binding peptide (3l-GBP1) is almost 5 times tighter than that for the single repeat (l-GBP1). More intriguing result is that the entropy of adsorption for the 3l-GBP1 is negative (-43.4 ± 8.5 cal/(mol K)), while that for the l-GBP1 is positive (10.90 ± 1.3 cal/(mol K)). Among a number of factors that synergistically contribute to the decrease of entropy, long-range ordered self-assembly of the 3l-GBP1 on gold surface is the most effective, probably through both peptide-solid and peptide-peptide intermolecular interactions. Additional adsorption experiments were conducted in the presence of 2,2,2-trifluoroethanol (TFE) to determine how the conformational structures of the biomolecules responded to the environmental perturbation. We found that the peptides differ in their conformational responses to the change in solution conditions; while

  17. Interaction of gold nanoparticles with free radicals and their role in enhancing the scavenging activity of ascorbic acid.

    PubMed

    Razzaq, Humaira; Saira, Farhat; Yaqub, Azra; Qureshi, Rumana; Mumtaz, Misbah; Saleemi, Samia

    2016-08-01

    The present study investigates the interaction of citrate stabilized gold nanoparticles (12±1.5nm) (GNPs) with free radicals; 1,1-diphenyl-2-picrylhydrazyl (DPPH) stable and electrochemically generated superoxide, O2(-). Different experiments were designed to understand the interaction between GNPs and DPPH by employing cyclic voltammetry, UV-vis spectroscopy and computational chemistry using 6-311G basis set. The increase in heterogeneous rate constant, ksh, of DPPH upon addition of GNPs pointed towards possible complex formation, DPPH-GNPs which were further explained by a model assuming surface adsorption of DPPH on GNPs. Further, the model was validated by studying interaction of GNPs with a biologically important free radical, O2(-). Exciting result in terms of disappearance of anodic peak after GNPs addition confirmed that gold nanoparticles interacted with stable as well as unstable free radicals. Also, the stoichiometry of the most stable complex GNP-DPPH was determined from UV-vis spectroscopy by applying Job's method. The GNP-DPPH complex was found to be active with 46.0% reduction of the IC50 value of standard antioxidant, ascorbic acid (AA), indicating its role in enhancing antioxidant activity. Hence, this study presents a simple and potential approach to enhance the efficiency of natural antioxidants without modifying their structure, or involving the complex functionalization of GNPs with antioxidants.

  18. Cryostat with Foil and MLI

    SciTech Connect

    Hwang, Peter K.F.; Gung, Chen-yu

    2005-10-06

    Induction cores are used to accelerate heavy ion beam array, which are built around the outer diameter of the cryostat housing the superconducting quadruple array. Compact cryostat is highly desirable to reduce the cost of the induction cores. Recent experiences in fabrication of a cryostat for single beam transport revealed that it is possible to reduce the spacing in the cryostat vacuum jacket by using low-emissivity thermal insulation material instead of conventional MLI. However, it is labor-intensive to install the new type of insulation as compared with using MLI. It is promising to build a cost-effective compact cryostat for quadruple magnet array for heavy ion beam array transport by using low-emissivity material combined with conventional MLI as radiation insulation. A matrix of insulation designs and tests will be performed as the feasibility study and for the selection of the optimal thermal insulation as the Phase I work. The selected mixed insulation will be used to build prototype compact cryostats in the Phase II project, which are aiming for housing quadruple doublet array. In this STTR phase I study, a small cryostat has been designed and built to perform calorimetric characterization of the heat load in a liquid helium vessel insulated with a vacuum layer with a nominal clearance of 3.5 mm. The vacuum clearance resembled that used in the warm-bore beam tube region in a prototype cryostat previously built for the heavy ion beam transport experiment. The vacuum clearance was geometrically restricted with a heater shell with the temperature controlled at near 300 K. Various combinations of radiation and thermal shields were installed in the tight vacuum clearance for heat load measurements. The measured heat loads are reported and compared with previous test result using a compact vacuum layer. Further developments of the thermal insulations used in the present study are discussed. The compact cryostat with foil and MLI insulation may be used in the

  19. Automated searching of Stardust interstellar foils

    NASA Astrophysics Data System (ADS)

    Ogliore, Ryan C.; Floss, Christine; Stadermann, Frank J.; Kearsley, A. T.; Leitner, Jan; Stroud, Rhonda M.; Westphal, Andrew J.

    2012-04-01

    The Al foils lining the aerogel tiles of the Stardust interstellar tray represent approximately 13% of the total collecting area, about 15,300 mm2. Although the flux is poorly constrained, fewer than 100 impacts are expected in all the Al foils on the collector, and most of these are likely to be less than 1 μm in diameter. Secondary electron (SE) images of the foils at a resolution of approximately 50 nm per pixel are being collected during the Stardust Interstellar Preliminary Examination, resulting in more than two million images that will eventually need to be searched for impact craters. The unknown and complicated nature of 3-dimensional interstellar tracks in aerogel necessitated the use of a massively distributed human search to locate only a few interstellar tracks. The 2-dimensional nature of the SE images makes the problem of searching for craters tractable for algorithmic approaches. Using templates of craters from cometary impacts into Stardust foils, we present a computer algorithm for the identification of impact craters in the Stardust interstellar foils using normalized cross-correlation and template matching. We address the speed, sensitivity, and false-positive rate of the algorithm. The search algorithm can be adapted for use in other applications. The program is freely available for download at .

  20. Degrader foils for the CARIBU project

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Savard, Guy; Pardo, Richard C.; Baker, Samuel I.; Levand, Anthony F.; Zabransky, Bruce J.

    2011-11-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) project was conceived to provide neutron rich beams originating from the 3% fission decay branch of a 252Cf source to be accelerated by the Argonne Tandem Linear Accelerator System (ATLAS). This 1Ci 252Cf source will be housed in a movable shielded cask, from which it can be directly transferred into a large helium gas stopper cell. Within the gas stopper, the CARIBU 252Cf source is positioned behind an aluminum degrader foil where the radioactive recoils of interest lose most of their energy before being stopped in the helium gas. To stop recoils over the full fission mass range effectively, three degraders of increasing thickness are required, one to cover the light fission peak and two for the isotopes in the heavy fission peak. The geometry of the source within the gas cell would ideally require a hemispherically shaped degrader foil for uniform energy loss of the fission products. The fabrication of a thin foil of such a shape proved to be exceedingly difficult and, therefore, a compromise "top hat" arrangement was designed. In addition, the ultra-high vacuum (UHV) environment necessary for the gas cell to function properly prevented the use of any epoxy due to vacuum outgassing. Handling, assembling of the foils and mounting must be done under clean room conditions. Details of early attempts at producing these foils as well as handling and mounting will be discussed.

  1. A review of progress and challenges in flapping foil power generation

    NASA Astrophysics Data System (ADS)

    Young, John; Lai, Joseph C. S.; Platzer, Max F.

    2014-05-01

    Power may be extracted from a flowing fluid in a variety of ways. Turbines using one or more oscillating foils are under increasingly active investigation, as an alternative to rotary wind turbines and river, oceanic and tidal current water turbines, although industrial development is at a very nascent stage. Such flapping foil turbines promise some key potential advantages, including lower foil velocities (and hence lower noise and wildlife impact), and more effective small-scale and shallow water operation. The role of a number of parameters is investigated, including foil kinematics (modes, frequencies, amplitudes and time histories of motion), foil and system geometry (shape, configuration and structural flexibility), and flow physics effects (Reynolds number and turbulence, shear flows and ground effect). Details of the kinematics are shown to have the single largest influence on power output and efficiency (measured as the ratio of power output to that available and accessible in the fluid stream). The highest levels of power and efficiency are associated with very large foil pitch angles (upwards of 70°) and angles of attack (30-40°), such that the flow is massively separated for much of the flapping cycle, in contrast to rotary turbines which rely on attached flow over as much of the rotor disk as possible. This leads to leading edge vortices comparable in size to the foil chord, and the evolution and interaction of these vortices with the foil as it moves play a central role in determining performance. The other parameters also influence the vortex behaviour, but in general to a lesser degree. Numerous gaps in the research literature and outstanding issues are highlighted.

  2. Conceptual Design and Feasibility of Foil Bearings for Rotorcraft Engines: Hot Core Bearings

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2007-01-01

    Recent developments in gas foil bearing technology have led to numerous advanced high-speed rotating system concepts, many of which have become either commercial products or experimental test articles. Examples include oil-free microturbines, motors, generators and turbochargers. The driving forces for integrating gas foil bearings into these high-speed systems are the benefits promised by removing the oil lubrication system. Elimination of the oil system leads to reduced emissions, increased reliability, and decreased maintenance costs. Another benefit is reduced power plant weight. For rotorcraft applications, this would be a major advantage, as every pound removed from the propulsion system results in a payload benefit.. Implementing foil gas bearings throughout a rotorcraft gas turbine engine is an important long-term goal that requires overcoming numerous technological hurdles. Adequate thrust bearing load capacity and potentially large gearbox applied radial loads are among them. However, by replacing the turbine end, or hot section, rolling element bearing with a gas foil bearing many of the above benefits can be realized. To this end, engine manufacturers are beginning to explore the possibilities of hot section gas foil bearings in propulsion engines. This overview presents a logical follow-on activity by analyzing a conceptual rotorcraft engine to determine the feasibility of a foil bearing supported core. Using a combination of rotordynamic analyses and a load capacity model, it is shown to be reasonable to consider a gas foil bearing core section. In addition, system level foil bearing testing capabilities at NASA Glenn Research Center are presented along with analysis work being conducted under NRA Cooperative Agreements.

  3. Catalytic activity of gold supported on ZnO tetrapods for the preferential oxidation of carbon monoxide under hydrogen rich conditions.

    PubMed

    Castillejos, Eva; Bacsa, Revathi; Guerrero-Ruiz, Antonio; Rodríguez-Ramos, Inmaculada; Datas, Lucien; Serp, Philippe

    2011-03-01

    It is reported that 3 nm gold nanoparticles deposited on ZnO tetrapods show high activity for the selective oxidation of carbon monoxide in hydrogen rich streams; the catalytic activity of this system is at least twice as high as the values hither to observed on any conventional support for this reaction.

  4. Two High-Temperature Foil Journal Bearings

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2006-01-01

    An enlarged, high-temperature-compliant foil bearing has been built and tested to demonstrate the feasibility of such bearings for use in aircraft gas turbine engines. Foil bearings are attractive for use in some machines in which (1) speeds of rotation, temperatures, or both exceed maximum allowable values for rolling-element bearings; (2) conventional lubricants decompose at high operating temperatures; and/or (3) it is necessary or desirable not to rely on conventional lubrication systems. In a foil bearing, the lubricant is the working fluid (e.g., air or a mixture of combustion gases) in the space between the journal and the shaft in the machine in which the bearing is installed.

  5. Status of Genesis Mo-Pt Foils

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Allton, J. H.; Burnett, D. S.; Butterworth, A. L.; Caffee, M. W.; Clark, B.; Jurewicz, A. J. G.; Komura, K.; Westphal, A. J.; Welten, K. C.

    2005-01-01

    A total of 8,000 sq cm of Mo-coated Pt foils were exposed to solar wind for 884 days by the Genesis mission. Solar wind ions were captured in the surface of the Mo. Our objective is the measurement of long-lived radionuclides, such as Be-10, Al-26, Cl-36, and Mn-53, and short-lived radionuclides, such as Na-22 and Mn-54, in the captured sample of solar wind. The expected flux of these nuclides in the solar wind is 100 atom/sq cm yr or less. The hard landing of the SRC (Sample Return Capsule) at UTTR (Utah Test and Training Range) has resulted in contaminated and crumpled foils. Here we present a status report and revised plan for processing the foils.

  6. Interfacial Activity of Gold Nanoparticles Coated with a Polymeric Patchy Shell and the Role of Spreading Agents

    PubMed Central

    2016-01-01

    Gold patchy nanoparticles (PPs) were prepared under surfactant-free conditions by functionalization with a binary ligand mixture of polystyrene and poly(ethylene glycol) (PEG) as hydrophobic and hydrophilic ligands, respectively. The interfacial activity of PPs was compared to that of homogeneous hydrophilic nanoparticles (HPs), fully functionalized with PEG, by means of pendant drop tensiometry at water/air and water/decane interfaces. We compared interfacial activities in three different spreading agents: water, water/chloroform, and pure chloroform. We found that the interfacial activity of PPs was close to zero (∼2 mN/m) when the spreading agent was water and increased to ∼14 mN/m when the spreading agent was water/chloroform. When the nanoparticles were deposited with pure chloroform, the interfacial activity reached up to 60 mN/m by compression. In all cases, PPs exhibited higher interfacial activity than HPs, which were not interfacially active, regardless of the spreading agent. The interfacial activity at the water/decane interface was found to be significantly lower than that at the water/air interface because PPs aggregate in decane. Interfacial dilatational rheology showed that PPs form a stronger elastic shell at the pendant drop interface, compared to HPs. The significantly high interfacial activity obtained with PPs in this study highlights the importance of the polymeric patchy shell and the spreading agent.

  7. Interfacial Activity of Gold Nanoparticles Coated with a Polymeric Patchy Shell and the Role of Spreading Agents

    PubMed Central

    2016-01-01

    Gold patchy nanoparticles (PPs) were prepared under surfactant-free conditions by functionalization with a binary ligand mixture of polystyrene and poly(ethylene glycol) (PEG) as hydrophobic and hydrophilic ligands, respectively. The interfacial activity of PPs was compared to that of homogeneous hydrophilic nanoparticles (HPs), fully functionalized with PEG, by means of pendant drop tensiometry at water/air and water/decane interfaces. We compared interfacial activities in three different spreading agents: water, water/chloroform, and pure chloroform. We found that the interfacial activity of PPs was close to zero (∼2 mN/m) when the spreading agent was water and increased to ∼14 mN/m when the spreading agent was water/chloroform. When the nanoparticles were deposited with pure chloroform, the interfacial activity reached up to 60 mN/m by compression. In all cases, PPs exhibited higher interfacial activity than HPs, which were not interfacially active, regardless of the spreading agent. The interfacial activity at the water/decane interface was found to be significantly lower than that at the water/air interface because PPs aggregate in decane. Interfacial dilatational rheology showed that PPs form a stronger elastic shell at the pendant drop interface, compared to HPs. The significantly high interfacial activity obtained with PPs in this study highlights the importance of the polymeric patchy shell and the spreading agent. PMID:27656691

  8. DNA hybridization activity of single-stranded DNA-conjugated gold nanoparticles used as probes for DNA detection

    NASA Astrophysics Data System (ADS)

    Kira, Atsushi; Matsuo, Kosuke; Nakajima, Shin-ichiro

    2016-02-01

    Colloidal nanoparticles (NPs) have potential applications in bio-sensing technologies as labels or signal enhancers. In order to meet demands for a development of biomolecular assays by a quantitative understanding of single-molecule, it is necessary to regulate accuracy of the NPs probes modified with biomolecules to optimize the characteristics of NPs. However, to our knowledge, there is little information about the structural effect of conjugated biomolecules to the NPs. In this study, we investigated the contribution of a density of single-stranded DNA (ssDNA) conjugating gold NP to hybridization activity. Hybridization activity decreased in accordance with increases in the density of attached ssDNAs, likely due to electrostatic repulsion generated by negatively charged phosphate groups in the ssDNA backbone. These results highlight the importance of controlling the density of ssDNAs attached to the surface of NPs used as DNA detection probes.

  9. A study on the morphology and catalytic activity of gold nanoparticles by the kinetic Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    He, Xiang; Chen, Zhao-Xu

    2016-05-01

    We studied the thermal-stability of supported Au nanoparticles on the substrates of different binding strength to gold by Monte Carlo simulations. It has been revealed that the stable Au morphology is determined by the temperature and the binding strength. When heated on the strongly-binding substrates, the Au nanoparticles would wet the substrate completely and form monolayer. The stable Au layered structure of few layers can be formed by the incomplete wetting of clusters on the intermediate-binding substrates. The simulation results are in good agreement with pertinent experimental and theoretical results. Based on the simulation results and experimental observations, we find the strong linkage between the top edge sites and the activity TOF of low-temperature CO oxidation. We conclude that the top edges sites of Au layered structures are possible reactive sites. This study may provide new perspective for controlling morphology and understanding catalytic activity of supported metallic clusters.

  10. Gold(I)-triphenylphosphine complexes with hypoxanthine-derived ligands: in vitro evaluations of anticancer and anti-inflammatory activities.

    PubMed

    Křikavová, Radka; Hošek, Jan; Vančo, Ján; Hutyra, Jakub; Dvořák, Zdeněk; Trávníček, Zdeněk

    2014-01-01

    A series of gold(I) complexes involving triphenylphosphine (PPh3) and one N-donor ligand derived from deprotonated mono- or disubstituted hypoxanthine (HLn) of the general composition [Au(Ln)(PPh3)] (1-9) is reported. The complexes were thoroughly characterized, including multinuclear high resolution NMR spectroscopy as well as single crystal X-ray analysis (for complexes 1 and 3). The complexes were screened for their in vitro cytotoxicity against human cancer cell lines MCF7 (breast carcinoma), HOS (osteosarcoma) and THP-1 (monocytic leukaemia), which identified the complexes 4-6 as the most promising representatives, who antiproliferative activity was further tested against A549 (lung adenocarcinoma), G-361 (melanoma), HeLa (cervical cancer), A2780 (ovarian carcinoma), A2780R (ovarian carcinoma resistant to cisplatin), 22Rv1 (prostate cancer) cell lines. Complexes 4-6 showed a significantly higher in vitro anticancer effect against the employed cancer cells, except for G-361, as compared with the commercially used anticancer drug cisplatin, with IC50 ≈ 1-30 µM. Anti-inflammatory activity was evaluated in vitro by the assessment of the ability of the complexes to modulate secretion of the pro-inflammatory cytokines, i.e. tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), in the lipopolysaccharide-activated macrophage-like THP-1 cell model. The results of this study identified the complexes as auspicious anti-inflammatory agents with similar or better activity as compared with the clinically applied gold-based antiarthritic drug Auranofin. In an effort to explore the possible mechanisms responsible for the biological effect, the products of interactions of selected complexes with sulfur-containing biomolecules (L-cysteine and reduced glutathione) were studied by means of the mass-spectrometry study. PMID:25226034

  11. Gold(I)-Triphenylphosphine Complexes with Hypoxanthine-Derived Ligands: In Vitro Evaluations of Anticancer and Anti-Inflammatory Activities

    PubMed Central

    Křikavová, Radka; Hošek, Jan; Vančo, Ján; Hutyra, Jakub; Dvořák, Zdeněk; Trávníček, Zdeněk

    2014-01-01

    A series of gold(I) complexes involving triphenylphosphine (PPh3) and one N-donor ligand derived from deprotonated mono- or disubstituted hypoxanthine (HLn) of the general composition [Au(Ln)(PPh3)] (1–9) is reported. The complexes were thoroughly characterized, including multinuclear high resolution NMR spectroscopy as well as single crystal X-ray analysis (for complexes 1 and 3). The complexes were screened for their in vitro cytotoxicity against human cancer cell lines MCF7 (breast carcinoma), HOS (osteosarcoma) and THP-1 (monocytic leukaemia), which identified the complexes 4–6 as the most promising representatives, who antiproliferative activity was further tested against A549 (lung adenocarcinoma), G-361 (melanoma), HeLa (cervical cancer), A2780 (ovarian carcinoma), A2780R (ovarian carcinoma resistant to cisplatin), 22Rv1 (prostate cancer) cell lines. Complexes 4–6 showed a significantly higher in vitro anticancer effect against the employed cancer cells, except for G-361, as compared with the commercially used anticancer drug cisplatin, with IC50 ≈ 1–30 µM. Anti-inflammatory activity was evaluated in vitro by the assessment of the ability of the complexes to modulate secretion of the pro-inflammatory cytokines, i.e. tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), in the lipopolysaccharide-activated macrophage-like THP-1 cell model. The results of this study identified the complexes as auspicious anti-inflammatory agents with similar or better activity as compared with the clinically applied gold-based antiarthritic drug Auranofin. In an effort to explore the possible mechanisms responsible for the biological effect, the products of interactions of selected complexes with sulfur-containing biomolecules (L-cysteine and reduced glutathione) were studied by means of the mass-spectrometry study. PMID:25226034

  12. Optofluidic platform for real-time monitoring of live cell secretory activities using Fano resonance in gold nanoslits.

    PubMed

    Wu, Shu-Han; Lee, Kuang-Li; Chiou, Arthur; Cheng, Xuanhong; Wei, Pei-Kuen

    2013-10-25

    An optofluidic platform for real-time monitoring of live cell secretory activities is constructed via Fano resonance in a gold nanoslit array. Large-area and highly sensitive gold nanoslits with a period of 500 nm are fabricated on polycarbonate films using the thermal-annealed template-stripping method. The coupling between gap plasmon resonance in the slits and surface plasmon polariton Bloch waves forms a sharp Fano resonance with intensity sensitivity greater than 11 000% per refractive index unit. The nanoslit array is integrated with a cell-trapping microfluidic device to monitor dynamic secretion of matrix metalloproteinase 9 (MMP-9) from human acute monocytic leukemia cells in situ. Upon continuous lipopolysaccharide (LPS) stimulation, MMP-9 secretion is detected within 2 h due to ultrahigh surface sensitivity and close proximity of the sensor to the target cells. In addition to the advantage of detecting early cell responses, the sensor also allows interrogation of cell secretion dynamics. Furthermore, the average secretion per cell measured using our system well matches previous reports while it requires orders of magnitude less cells. The optofluidic platform may find applications in fundamental studies of cell functions and diagnostics based on secretion signals.

  13. Steel Foil Improves Performance Of Blasting Caps

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Perry, Ronnie; Schimmel, Morry L.

    1990-01-01

    Blasting caps, which commonly include deep-drawn aluminum cups, give significantly higher initiation performance by application of steel foils on output faces. Steel closures 0.005 in. (0.13 mm) thick more effective than aluminum. Caps with directly bonded steel foil produce fragment velocities of 9,300 ft/s (2.8 km/s) with large craters and unpredictable patterns to such degree that no attempts made to initiate explosions. Useful in military and aerospace applications and in specialized industries as mining and exploration for oil.

  14. Method of high-density foil fabrication

    DOEpatents

    Blue, Craig A.; Sikka, Vinod K.; Ohriner, Evan K.

    2003-12-16

    A method for preparing flat foils having a high density includes the steps of mixing a powdered material with a binder to form a green sheet. The green sheet is exposed to a high intensity radiative source adapted to emit radiation of wavelengths corresponding to an absorption spectrum of the powdered material. The surface of the green sheet is heated while a lower sub-surface temperature is maintained. An apparatus for preparing a foil from a green sheet using a radiation source is also disclosed.

  15. Gold-Catalyzed Synthesis of Heterocycles

    NASA Astrophysics Data System (ADS)

    Arcadi, Antonio

    2014-04-01

    The following sections are included: * Introduction * Synthesis of Heterocycles via Gold-Catalyzed Heteroatom Addition to Unsaturated C-C Bonds * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cyclization of Polyunsaturated Compounds * Synthesis of Heterocyclic Compounds via α-Oxo Gold Carbenoid * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cycloaddition Reactions * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Activation of Carbonyl Groups and Alcohols * Synthesis of Heterocyclic Compounds through Gold-Mediated C-H Bond Functionalization * Gold-Catalyzed Domino Cyclization/Oxidative Coupling Reactions * Conclusions * References

  16. Earth's continental crustal gold endowment

    NASA Astrophysics Data System (ADS)

    Frimmel, H. E.

    2008-03-01

    The analysis of the temporal distribution of gold deposits, combined with gold production data as well as reserve and resource estimates for different genetic types of gold deposit, revealed that the bulk of the gold known to be concentrated in ore bodies was added to the continental crust during a giant Mesoarchaean gold event at a time (3 Ga) when the mantle temperature reached a maximum and the dominant style of tectonic movement changed from vertical, plume-related to subhorizontal plate tectonic. A magmatic derivation of the first generation of crustal gold from a relatively hot mantle that was characterized by a high degree of partial melting is inferred from the gold chemistry, specifically high Os contents. While a large proportion of that gold is still present in only marginally modified palaeoplacer deposits of the Mesoarchaean Witwatersrand Basin in South Africa, accounting for about 40% of all known gold, the remainder has been recycled repeatedly on a lithospheric scale, predominantly by plate-tectonically induced magmatic and hydrothermal fluid circulation, to produce the current variety of gold deposit types. Post-Archaean juvenile gold addition to the continental crust has been limited, but a mantle contribution to some of the largest orogenic or intrusion-related gold deposits is indicated, notably for the Late Palaeozoic Tien Shan gold province. Magmatic fluids in active plate margins seem to be the most effective transport medium for gold mobilization, giving rise to a large proportion of volcanic-arc related gold deposits. Due to their generally shallow crustal level of formation, they have a low preservation potential. In contrast, those gold deposits that form at greater depth are more widespread also in older rocks. This explains the high proportion of orogenic (including intrusion-related) gold (32%) amongst all known gold deposits. The overall proportion of gold concentrated in known ore bodies is only 7 × 10- 7 of the estimated total

  17. Spallation Neutron Source SNS Diamond Stripper Foil Development

    SciTech Connect

    Shaw, Robert W; Plum, Michael A; Wilson, Leslie L; Feigerle, Charles S.; Borden, Michael J.; Irie, Y.; Sugai, I; Takagi, A

    2007-01-01

    Diamond stripping foils are under development for the SNS. Freestanding, flat 300 to 500 {micro}g/cm{sup 2} foils as large as 17 x 25 mm{sup 2} have been prepared. These nano-textured polycrystalline foils are grown by microwave plasma-assisted chemical vapor deposition in a corrugated format to maintain their flatness. They are mechanically supported on a single edge by a residual portion of their silicon growth substrate; fine foil supporting wires are not required for diamond foils. Six foils were mounted on the SNS foil changer in early 2006 and have performed well in commissioning experiments at reduced operating power. A diamond foil was used during a recent experiment where 15 {micro}C of protons, approximately 64% of the design value, were stored in the ring. A few diamond foils have been tested at LANSCE/PSR, where one foil was in service for a period of five months (820 C of integrated injected charge) before it was replaced. Diamond foils have also been tested in Japan at KEK (640 keV H{sup -}) where their lifetimes slightly surpassed those of evaporated carbon foils, but fell short of those for Sugai's new hybrid boron carbon (HBC) foils.

  18. Tight, Flat, Smooth, Ultrathin Metal Foils for Locating Synchrotron Beams

    NASA Astrophysics Data System (ADS)

    Jolivet, Connie S.; Stoner, John O.

    2007-01-01

    It is often desired to locate a synchrotron x-ray beam precisely in space with minimal disturbance of its spatial profile and spectral content. This can be done by passing the beam through an ultrathin, flat, smooth metal foil having well-defined composition, preferably a single chemical element such as chromium, titanium or aluminum. Localized fluorescence of the foil at characteristic x-ray lines where the x-ray beam passes through the foil serves to locate the beam in two dimensions. Use of two such foils along the beam direction locates the x-ray beam spatially and identifies precisely its direction. The accuracy of determining these parameters depends in part upon high uniformity in the thickness of the foil(s), good planarity, and smoothness of the foil(s). In practice, several manufacturing steps to produce a foil must be carried out with precision. The foil must be produced on a smooth removable substrate in such a way that its thickness (or areal density) is as uniform as possible. The foil must be fastened to a support ring that maintains the foil's surface quality, and it must be then stretched onto a frame that produces the desired mirror flatness. These steps are illustrated and some of the parameters specifying the quality of the resulting foils are identified.

  19. Actively targeted gold nanoparticles as novel radiosensitizer agents: an in vivo head and neck cancer model

    NASA Astrophysics Data System (ADS)

    Popovtzer, Aron; Mizrachi, Aviram; Motiei, Menachem; Bragilovski, Dimitri; Lubimov, Leon; Levi, Mattan; Hilly, Ohad; Ben-Aharon, Irit; Popovtzer, Rachela

    2016-01-01

    A major problem in the treatment of head and neck cancer today is the resistance of tumors to traditional radiation therapy, which results in 40% local failure, despite aggressive treatment. The main objective of this study was to develop a technique which will overcome tumor radioresistance by increasing the radiation absorbed in the tumor using cetuximab targeted gold nanoparticles (GNPs), in clinically relevant energies and radiation dosage. In addition, we have investigated the biological mechanisms underlying tumor shrinkage and the in vivo toxicity of GNP. The results showed that targeted GNP enhanced the radiation effect and had a significant impact on tumor growth (P < 0.001). The mechanism of radiation enhancement was found to be related to earlier and greater apoptosis (TUNEL assay), angiogenesis inhibition (by CD34 level) and diminished repair mechanism (PCNA staining). Additionally, GNPs have been proven to be safe as no evidence of toxicity has been observed.

  20. Foil Panel Mirrors for Nonimaging Applications

    NASA Technical Reports Server (NTRS)

    Kuyper, D. J.; Castillo, A. A.

    1984-01-01

    Large durable, lightweight mirrors made by bonding thick aluminum foil to honeycomb panels or other rigid, flat backings. Mirrors suitable for use as infrared shields, telescope doors, solar-furnance doors, advertising displays, or other reflectors that require low thermal emissivity and high specularity but do not require precise surface figure necessary for imaging.

  1. Thermal Sensitive Foils in Physics Experiments

    ERIC Educational Resources Information Center

    Bochnícek, Zdenek; Konecný, Pavel

    2014-01-01

    The paper describes a set of physics demonstration experiments where thermal sensitive foils are used for the detection of the two dimensional distribution of temperature. The method is used for the demonstration of thermal conductivity, temperature change in adiabatic processes, distribution of electromagnetic radiation in a microwave oven and…

  2. Hydrogen and Palladium Foil: Two Classroom Demonstrations

    ERIC Educational Resources Information Center

    Klotz, Elsbeth; Mattson, Bruce

    2009-01-01

    In these two classroom demonstrations, students observe the reaction between H[subscript 2] gas and Pd foil. In the first demonstration, hydrogen and palladium combine within one minute at 1 atm and room temperature to yield the non-stoichiometric, interstitial hydride with formula close to the maximum known value, PdH[subscript 0.7]. In the…

  3. 6Li foil thermal neutron detector

    SciTech Connect

    Ianakiev, Kiril D; Swinhoe, Martyn T; Favalli, Andrea; Chung, Kiwhan; Macarthur, Duncan W

    2010-01-01

    In this paper we report on the design of a multilayer thermal neutron detector based on {sup 6}Li reactive foil and thin film plastic scintillators. The {sup 6}Li foils have about twice the intrinsic efficiency of {sup 10}B films and about four times higher light output due to a unique combination of high energy of reaction particles, low self absorption, and low ionization density of tritons. The design configuration provides for double sided readout of the lithium foil resulting in a doubling of the efficiency relative to a classical reactive film detector and generating a pulse height distribution with a valley between neutron and gamma signals similar to {sup 3}He tubes. The tens of microns thickness of plastic scintillator limits the energy deposited by gamma rays, which provides the necessary neutron/gamma discrimination. We used MCNPX to model a multilayer Li foil detector design and compared it with the standard HLNCC-II (18 {sup 3}He tubes operated at 4 atm). The preliminary results of the {sup 6}Li configuration show higher efficiency and one third of the die-away time. These properties, combined with the very short dead time of the plastic scintillator, offer the potential of a very high performance detector.

  4. Indium Foil Serves As Thermally Conductive Gasket

    NASA Technical Reports Server (NTRS)

    Eastman, G. Yale; Dussinger, Peter M.

    1993-01-01

    Indium foil found useful as gasket to increase thermal conductance between bodies clamped together. Deforms to fill imperfections on mating surfaces. Used where maximum temperature in joint less than melting temperature of indium. Because of low melting temperature of indium, most useful in cryogenic applications.

  5. The Fluid Foil: The Seventh Simple Machine

    ERIC Educational Resources Information Center

    Mitts, Charles R.

    2012-01-01

    A simple machine does one of two things: create a mechanical advantage (lever) or change the direction of an applied force (pulley). Fluid foils are unique among simple machines because they not only change the direction of an applied force (wheel and axle); they convert fluid energy into mechanical energy (wind and Kaplan turbines) or vice versa,…

  6. Strong field electrodynamics of a thin foil

    SciTech Connect

    Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Bulanov, Stepan S.; Rykovanov, Sergey G.; Pegoraro, Francesco

    2013-12-15

    Exact solutions describing the nonlinear electrodynamics of a thin double layer foil are presented. These solutions correspond to a broad range of problems of interest for the interaction of high intensity laser pulses with overdense plasmas, such as frequency upshifting, high order harmonic generation, and high energy ion acceleration.

  7. Formation of gold nanostructures on copier paper surface for cost effective SERS active substrate - Effect of halide additives

    NASA Astrophysics Data System (ADS)

    Desmonda, Christa; Kar, Sudeshna; Tai, Yian

    2016-03-01

    In this study, we report the simple fabrication of an active substrate assisted by gold nanostructures (AuNS) for application in surface-enhanced Raman scattering (SERS) using copier paper, which is a biodegradable and cost-effective material. As cellulose is the main component of paper, it can behave as a reducing agent and as a capping molecule for the synthesis of AuNS on the paper substrate. AuNS can be directly generated on the surface of the copier paper by addition of halides. The AuNS thus synthesized were characterized by ultraviolet-visible spectroscopy, SEM, XRD, and XPS. In addition, the SERS effect of the AuNS-paper substrates synthesized by using various halides was investigated by using rhodamine 6G and melamine as probe molecules.

  8. Evaluation of lipid peroxidation activity at intravenous administration of gold nanorods in rats with simulated diabetes and transplanted liver cancer

    NASA Astrophysics Data System (ADS)

    Bucharskaya, Alla B.; Dikht, Natalia I.; Afanasyeva, Galina A.; Terentyuk, Georgy S.; Maslyakova, Galina N.; Zaraeva, Nadezhda V.; Khlebtsov, Nikolai G.; Khlebtsov, Boris N.

    2014-01-01

    In the experiment the white outbred rats with transplanted liver cancer (cholangiocarcinoma line PC-1) and simulated alloxan diabetes were treated by single intravenous injection of gold nanorods. State of lipid peroxidation was evaluated by the following parameters: the malondialdehyde, lipid hydroperoxide, the average weght molecules in the serum of animals by conventional spectrophotometric methods study using a spectrofluorometer RF-5301 PC (Shimadzu, Japan). In both experimental groups of animals the significant increasing of levels of lipid peroxidation products was noted compared with control group. After intravenous administration of nanoparticles in the group of animals with alloxan diabetes the activation of a free radical oxidation was not observed, in group with transplanted liver cancer the increasing of levels of lipid hydroperoxide, malondialdehyde was established.

  9. Transverse Emittance Reduction with Tapered Foil

    SciTech Connect

    Jiao, Yi; Chao, Alex; Cai, Yunhai; /SLAC

    2011-12-09

    The idea of reducing transverse emittance with tapered energy-loss foil is proposed by J.M. Peterson in 1980s and recently by B. Carlsten. In this paper, we present the physical model of tapered energy-loss foil and analyze the emittance reduction using the concept of eigen emittance. The study shows that, to reduce transverse emittance, one should collimate at least 4% of particles which has either much low energy or large transverse divergence. The multiple coulomb scattering is not trivial, leading to a limited emittance reduction ratio. Small transverse emittances are of essential importance for the accelerator facilities generating free electron lasers, especially in hard X-ray region. The idea of reducing transverse emittance with tapered energy-loss foil is recently proposed by B. Carlsten [1], and can be traced back to J.M. Peterson's work in 1980s [2]. Peterson illustrated that a transverse energy gradient can be produced with a tapered energy-loss foil which in turn leads to transverse emittance reduction, and also analyzed the emittance growth from the associated multiple coulomb scattering. However, what Peterson proposed was rather a conceptual than a practical design. In this paper, we build a more complete physical model of the tapered foil based on Ref. [2], including the analysis of the transverse emittance reduction using the concept of eigen emittance and confirming the results by various numerical simulations. The eigen emittance equals to the projected emittance when there is no cross correlation in beam's second order moments matrix [3]. To calculate the eigen emittances, it requires only to know the beam distribution at the foil exit. Thus, the analysis of emittance reduction and the optics design of the subsequent beam line section can be separated. In addition, we can combine the effects of multiple coulomb scattering and transverse energy gradient together in the beam matrix and analyze their net effect. We find that,when applied to an

  10. An advanced thin foil sensor concept for heat flux and heat transfer measurements in fully turbulent flows

    NASA Astrophysics Data System (ADS)

    Mocikat, H.; Herwig, H.

    2007-02-01

    A double layer hot film with two 10 μm nickel foils, separated by a 25 μm polyimide foil is used as a multi-purpose sensor. Each foil can be operated as a (calibrated) temperature sensor in its passive mode by imposing an electric current small enough to avoid heating by dissipation of electrical energy. Alternatively, however, each foil can also serve as a heater in an active mode with electric currents high enough to cause Joule heating. This double foil sensor can be used as a conventional heat flux sensor in its passive mode when mounted on an externally heated surface. Together with the wall and free stream temperature this measured heat flux will provide the local heat transfer coefficient h = dot{q}w/left(Tw - T_{infty}right). In fully turbulent flows it alternatively can be operated in an active mode on a cold, i.e. not externally heated surface. Then, by heating the upper foil, a local heat transfer is initiated from which the local heat transfer coefficient h can be determined, once the lower foil is heated to the same temperature as the upper one, thus acting as a counter-heater. The overall concept behind this mode of measurement is based on the local character of heat transfer in fully turbulent flows which turns out to be almost independent of the upstream thermal events.

  11. The “accumulation effect” of positrons in the stack of foils, detected by measurements of the positron implantation profile

    SciTech Connect

    Dryzek, Jerzy; Siemek, Krzysztof

    2013-12-14

    The profiles of positrons implanted from the radioactive source {sup 22}Na into a stack of foils and plates are the subject of our experimental and theoretical studies. The measurements were performed using the depth scanning of positron implantation profile method, and the theoretical calculations using the phenomenological multi-scattering model (MSM). Several stacks consisting of silver, gold and aluminum foils, and titanium and germanium plates were investigated. We notice that the MSM describes well the experimental profiles; however when the stack consisting of silver and gold foils, the backscattering and linear absorption coefficients differ significantly from those reported in the literature. We suggest the energy dependency of the backscattering coefficient for silver and gold. In the stacks which comprise titanium and germanium plates, there were observed the features, which indicate the presence of the “accumulation effect” in the experimental implantation profile. This effect was previously detected in implantation profiles in Monte Carlo simulations using the GEANT4 tool kit, and it consists in higher localization of positrons close the interface. We suppose that this effect can be essential for positron annihilation in any heterogeneous materials.

  12. Metallogeny of gold deposits

    SciTech Connect

    Hutchinson, R.W.

    1985-01-01

    The metallogeny of various gold deposits, particularly their broad temporal and spatial relations, and their relations to other metallic ores, is significant to genetic understanding and also useful in exploration. Archean gold deposits co-exist, both regionally and locally, with certain iron formations, massive base metal and nickel sulfide ores, but these occur generally in differing parts of the host stratigraphic sequences. Gold deposits in marine-eugeosynclinal environments are most important and numerous in Archean rocks. They become increasingly rare in successively younger strata where epithermal deposits in subaerial-continental rocks become important. The hydrothermal systems that formed both were apparently similar; one active in submarine tectonic settings, the other in sub-volcanic continental ones. Gold was apparently first introduced extensively into supracrustal rocks by sub-sea floor hydrothermal processes in Archean time, forming gold-enriched exhalites. These were reworked by metamorphic processes forming epithermal veins in many lode districts, and by sedimentary processes in the Witwatersrand. Epithermal gold deposits were generated where these older, auriferous basement source rocks were affected by younger, plutonic-volcanic-hydrothermal activity.

  13. Gold nanoparticles mediated coloring of fabrics and leather for antibacterial activity.

    PubMed

    Velmurugan, Palanivel; Shim, Jaehong; Bang, Keuk-Soo; Oh, Byung-Taek

    2016-07-01

    Metal gold nanoparticles (AuNPs) were synthesized in situ onto leather, silk and cotton fabrics by three different modules, including green, chemical, and a composite of green and chemical synthesis. Green synthesis was employed using Ginkgo biloba Linn leaf powder extract and HAuCl4 with the fabrics, and chemical synthesis was done with KBH4 and HAuCl4. For composite synthesis, G. biloba extract and KBH4 were used to color and embed AuNPs in the fabrics. The colored fabrics were tested for color coordination and fastness properties. To validate the green synthesis of AuNPs, various instrumental techniques were used including UV-Vis spectrophotometry, HR-TEM, FTIR, and XRD. The chemical and composite methods reduce Au(+) onto leather, silk and cotton fabrics upon heating, and alkaline conditions are required for bonding to fibers; these conditions are not used in the green synthesis protocol. FE-SEM image revealed the binding nature of the AuNPs to the fabrics. The AuNPs that were synthesized in situ on the fabrics were tested against a skin pathogen, Brevibacterium linens using LIVE/DEAD BacLight Bacterial Viability testing. This study represents an initial route for coloring and bio-functionalization of various fabrics with green technologies, and, accordingly, should open new avenues for innovation in the textile and garment sectors.

  14. Photocatalytic Activity and Fluorescence of Gold/Zinc Oxide Nanoparticles Formed by Dithiol Linking.

    PubMed

    Unlu, Ilyas; Soares, Jason W; Steeves, Diane M; Whitten, James E

    2015-08-11

    Monolayer-protected gold nanoparticles (AuNPs) with average diameters of 2-4 nm have been covalently attached to zinc oxide nanorods using dithiol ligands. Electron microscopy and Raman spectroscopy show that ozone treatment or annealing at 300 or 450 °C increases the average diameter of the AuNPs to 6, 8, and 14 (±1) nm, respectively, and decomposes the organic layers to various degrees. These treatments locate the AuNPs closer to the nanorods. Heating and subsequent ozone exposure changes the color of the as-prepared nanocomposite powder from blue to purple due to oxidation of the outer layer of the AuNPs, and heating to 300 °C changes it to pink due to oxygen desorption. ZnO nanorods have a bimodal photoluminescence spectrum that consists of an ultraviolet excitonic peak and a visible, surface defect-related peak. Ozone treatment and annealing of the nanocomposite decreases the intensities of both peaks due to quenching by the AuNPs, but the visible peak is affected less. The photocatalytic efficiency of the nanocomposites toward oxidative degradation of rhodamine B has been measured and follows the order 300 °C > 450 °C > ozone treated ≈ as-prepared ≈ bare ZnO. The greater efficiency of the annealed samples likely arises from decreased electron-hole pair recombination rates. PMID:26172335

  15. Evaluation of the antimicrobial activity and cytotoxicity of phytogenic gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Sreekanth, T. V. M.; Nagajyothi, P. C.; Supraja, N.; Prasad, T. N. V. K. V.

    2014-09-01

    Among the nanoscale materials, noble metal nanoparticles have been attracting the scientific community due to their unique properties and selectivity in biological applications. In the present investigation, gold nanoparticles (AuNPs) were synthesized using rhizome extract of Dioscorea batatas through a simple, clean, inexpensive and eco-friendly method. Treating 1 mM chloroauric acid (HAuCl4) with the rhizome extract at 50 °C resulted in the formation of AuNPs. The reduction of AuNPs was observed by the color change of the solution from colorless to dark red wine. The synthesized nanoparticles were characterized using the techniques UV-Vis spectrophotometers, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Green synthesized AuNPs were found to be toxic against gram-positive and gram-negative bacteria in liquid media. MTT (dimethyl thiazolyl diphenyl tetrazolium salt) assay showed 21.5 % cell inhibition in lower concentration (0.2 mM) and >50 % cell inhibition after 48 h exposure at higher concentrations (0.8-1 mM).

  16. Evaluation of the antimicrobial activity and cytotoxicity of phytogenic gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Sreekanth, T. V. M.; Nagajyothi, P. C.; Supraja, N.; Prasad, T. N. V. K. V.

    2015-06-01

    Among the nanoscale materials, noble metal nanoparticles have been attracting the scientific community due to their unique properties and selectivity in biological applications. In the present investigation, gold nanoparticles (AuNPs) were synthesized using rhizome extract of Dioscorea batatas through a simple, clean, inexpensive and eco-friendly method. Treating 1 mM chloroauric acid (HAuCl4) with the rhizome extract at 50 °C resulted in the formation of AuNPs. The reduction of AuNPs was observed by the color change of the solution from colorless to dark red wine. The synthesized nanoparticles were characterized using the techniques UV-Vis spectrophotometers, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Green synthesized AuNPs were found to be toxic against gram-positive and gram-negative bacteria in liquid media. MTT (dimethyl thiazolyl diphenyl tetrazolium salt) assay showed 21.5 % cell inhibition in lower concentration (0.2 mM) and >50 % cell inhibition after 48 h exposure at higher concentrations (0.8-1 mM).

  17. Gold nanoparticles mediated coloring of fabrics and leather for antibacterial activity.

    PubMed

    Velmurugan, Palanivel; Shim, Jaehong; Bang, Keuk-Soo; Oh, Byung-Taek

    2016-07-01

    Metal gold nanoparticles (AuNPs) were synthesized in situ onto leather, silk and cotton fabrics by three different modules, including green, chemical, and a composite of green and chemical synthesis. Green synthesis was employed using Ginkgo biloba Linn leaf powder extract and HAuCl4 with the fabrics, and chemical synthesis was done with KBH4 and HAuCl4. For composite synthesis, G. biloba extract and KBH4 were used to color and embed AuNPs in the fabrics. The colored fabrics were tested for color coordination and fastness properties. To validate the green synthesis of AuNPs, various instrumental techniques were used including UV-Vis spectrophotometry, HR-TEM, FTIR, and XRD. The chemical and composite methods reduce Au(+) onto leather, silk and cotton fabrics upon heating, and alkaline conditions are required for bonding to fibers; these conditions are not used in the green synthesis protocol. FE-SEM image revealed the binding nature of the AuNPs to the fabrics. The AuNPs that were synthesized in situ on the fabrics were tested against a skin pathogen, Brevibacterium linens using LIVE/DEAD BacLight Bacterial Viability testing. This study represents an initial route for coloring and bio-functionalization of various fabrics with green technologies, and, accordingly, should open new avenues for innovation in the textile and garment sectors. PMID:27104665

  18. Photocatalytic Activity and Fluorescence of Gold/Zinc Oxide Nanoparticles Formed by Dithiol Linking.

    PubMed

    Unlu, Ilyas; Soares, Jason W; Steeves, Diane M; Whitten, James E

    2015-08-11

    Monolayer-protected gold nanoparticles (AuNPs) with average diameters of 2-4 nm have been covalently attached to zinc oxide nanorods using dithiol ligands. Electron microscopy and Raman spectroscopy show that ozone treatment or annealing at 300 or 450 °C increases the average diameter of the AuNPs to 6, 8, and 14 (±1) nm, respectively, and decomposes the organic layers to various degrees. These treatments locate the AuNPs closer to the nanorods. Heating and subsequent ozone exposure changes the color of the as-prepared nanocomposite powder from blue to purple due to oxidation of the outer layer of the AuNPs, and heating to 300 °C changes it to pink due to oxygen desorption. ZnO nanorods have a bimodal photoluminescence spectrum that consists of an ultraviolet excitonic peak and a visible, surface defect-related peak. Ozone treatment and annealing of the nanocomposite decreases the intensities of both peaks due to quenching by the AuNPs, but the visible peak is affected less. The photocatalytic efficiency of the nanocomposites toward oxidative degradation of rhodamine B has been measured and follows the order 300 °C > 450 °C > ozone treated ≈ as-prepared ≈ bare ZnO. The greater efficiency of the annealed samples likely arises from decreased electron-hole pair recombination rates.

  19. Improving the activity and stability of actinidin by immobilization on gold nanorods.

    PubMed

    Homaei, Ahmad; Etemadipour, Rasoul

    2015-01-01

    Immobilization of actinidin was carried out by ionic exchange and hydrophobic interactions on gold nanorods synthesized via sequential seed-mediated growth method. The optimum temperature of actinidin increased from 40 to 60 °C and its optimum pH was shifted from 7 to 8.5 upon immobilization. The kinetic parameters, K(m) and k(cat), were found to be 12.5 μM and 29.2 s(-1) for free and 15.92 μM and 20.74 s(-1) for immobilized actinidin, respectively. Immobilization process caused significant enhancement of shelf-life stability and resistance against the inhibitory effects of various bivalent metal ions with respect to actinidin. Enzymes show higher functionality than the free form when incubated for long time (1h) at 80 °C and at extreme pH values (3 and 12). The reasons of this enhanced stability of immobilized actinidin are discussed. PMID:25450831

  20. Highly Active Gold(I)-Silver(I) Oxo Cluster Activating sp³ C-H Bonds of Methyl Ketones under Mild Conditions.

    PubMed

    Pei, Xiao-Li; Yang, Yang; Lei, Zhen; Chang, Shan-Shan; Guan, Zong-Jie; Wan, Xian-Kai; Wen, Ting-Bin; Wang, Quan-Ming

    2015-04-29

    The activation of C(sp(3))-H bonds is challenging, due to their high bond dissociation energy, low proton acidity, and highly nonpolar character. Herein we report a unique gold(I)-silver(I) oxo cluster protected by hemilabile phosphine ligands [OAu3Ag3(PPhpy2)3](BF4)4 (1), which can activate C(sp(3))-H bonds under mild conditions for a broad scope of methyl ketones (RCOCH3, R = methyl, phenyl, 2-methylphenyl, 2-aminophenyl, 2-hydroxylphenyl, 2-pyridyl, 2-thiazolyl, tert-butyl, ethyl, isopropyl). Activation happens via triple deprotonation of the methyl group, leading to formation of heterometallic Au(I)-Ag(I) clusters with formula RCOCAu4Ag4(PPhpy2)4(BF4)5 (PPhpy2 = bis(2-pyridyl)phenylphosphine). Cluster 1 can be generated in situ via the reaction of [OAu3Ag(PPhpy2)3](BF4)2 with 2 equiv of AgBF4. The oxo ion and the metal centers are found to be essential in the cleavage of sp(3) C-H bonds of methyl ketones. Interestingly, cluster 1 selectively activates the C-H bonds in -CH3 rather than the N-H bonds in -NH2 or the O-H bond in -OH which is traditionally thought to be more reactive than C-H bonds. Control experiments with butanone, 3-methylbutanone, and cyclopentanone as substrates show that the auration of the C-H bond of the terminal methyl group is preferred over secondary or tertiary sp(3) C-H bonds; in other words, the C-H bond activation is influenced by steric effect. This work highlights the powerful reactivity of metal clusters toward C-H activation and sheds new light on gold(I)-mediated catalysis.

  1. Single-step green synthesis and characterization of gold-conjugated polyphenol nanoparticles with antioxidant and biological activities

    PubMed Central

    Sanna, Vanna; Pala, Nicolino; Dessì, Giuseppina; Manconi, Paola; Mariani, Alberto; Dedola, Sonia; Rassu, Mauro; Crosio, Claudia; Iaccarino, Ciro; Sechi, Mario

    2014-01-01

    Background Gold nanoparticles (GNPs) are likely to provide an attractive platform for combining a variety of biophysicochemical properties into a unified nanodevice with great therapeutic potential. In this study we investigated the capabilities of three different natural polyphenols, epigallocatechin-3-gallate (EGCG), resveratrol (RSV), and fisetin (FS), to allow synergistic chemical reduction of gold salts to GNPs and stabilization in a single-step green process. Moreover, antioxidant properties of the nanosystems, as well as preliminary antiproliferative activity and apoptotic process investigation of model EGCG-GNPs on stable clones of neuroblastoma SH-SY5Y cells expressing CFP-DEVD-YFP reporter, were examined. Methods The GNPs were characterized by physicochemical techniques, polyphenol content, and in vitro stability. The antioxidant activity of the GNPs was also determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) cation (ABTS) radical-scavenging assays. Stable clones of neuronal SH-SY5Y-CFP-DEVD-YFP were generated and characterized, and cell viability after treatment with EGCG-GNPs was assessed after 72 hours through a 3(4,5-dimethylthiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. Activation of the apoptotic pathways was also investigated by Western blot analysis. Results With a diameter in the size range of 10–25 nm, the obtained nanoparticles (NPs) were found to contain 2.71%, 3.23%, and 5.47% of EGCG, RSV, and FS, respectively. Nanoprototypes exhibited remarkable in vitro stability in various media, suggesting that NP surface coating with phytochemicals prevents aggregation in different simulated physiological conditions. The scavenging activities for DPPH and ABTS were highly correlated with EGCG, RSV, and FS content. Moreover, high correlation coefficients between the ABTS and DPPH values were found for the prepared nanosystems. EGCG-GNPs induce a dose

  2. On the nonlinear steady-state response of rigid rotors supported by air foil bearings-Theory and experiments

    NASA Astrophysics Data System (ADS)

    Larsen, Jon S.; Santos, Ilmar F.

    2015-06-01

    The demand for oil-free turbo compressors is increasing. Current trends are divided between active magnetic bearings and air foil bearings (AFB), the latter being important due to mechanical simplicity. AFB supported rotors are sensitive to unbalance due to low damping and nonlinear characteristics, hence accurate prediction of their response is important. This paper gives theoretical and experimental contributions by implementing and validating a new method to simulate the nonlinear steady-state response of a rotor supported by three pads segmented AFBs. The fluid film pressures, foil deflections and rotor movements are simultaneously solved, considering foil stiffness and damping coefficients estimated using a structural model, previously described and validated against experiments.

  3. Synthesis and catalytic applications of 1,2,3-triazolylidene gold(i) complexes in silver-free oxazoline syntheses and C-H bond activation.

    PubMed

    Pretorius, René; Fructos, Manuel R; Müller-Bunz, Helge; Gossage, Robert A; Pérez, Pedro J; Albrecht, Martin

    2016-10-01

    A series of novel 1,2,3-triazolylidene gold(i) chloride complexes have been synthesised and fully characterised. Silver-free methodologies for chloride ion abstraction of these complexes were evaluated for their potential as Au-based catalyst precursors. Using simple potassium salts or MeOTf as chloride scavengers produced metal complexes that catalyse both the regioselective synthesis of oxazolines and the C-H activation of benzene or styrene for carbene transfer from ethyl diazoacetate. These results indicate that Ag-free activation of 1,2,3-triazolylidene gold(i) chloride complexes is feasible for the generation of catalytically active Au triazolylidene species. However, silver-mediated activation imparts substantially higher catalytic activity in oxazoline synthesis. PMID:27363515

  4. Optical and electrical performance of commercially manufactured large GEM foils

    NASA Astrophysics Data System (ADS)

    Posik, M.; Surrow, B.

    2015-12-01

    With interest in large area GEM foils increasing and CERN being the only main distributor, keeping up with the demand for GEM foils will be difficult. Thus the commercialization of GEMs is being established by Tech-Etch of Plymouth, MA, USA using single-mask techniques. We report here on the first of a two step quality verification of the commercially produced 10×10 cm2 and 40×40 cm2 GEM foils, which includes characterizing their electrical and geometrical properties. We have found that the Tech-Etch foils display excellent electrical properties, as well as uniform and consistent hole diameters comparable to established foils produced by CERN.

  5. The fate and toxicity of Raman-active silica-gold nanoparticles in mice.

    PubMed

    Thakor, Avnesh S; Luong, Richard; Paulmurugan, Ramasamy; Lin, Frank I; Kempen, Paul; Zavaleta, Cristina; Chu, Pauline; Massoud, Tarik F; Sinclair, Robert; Gambhir, Sanjiv S

    2011-04-20

    Raman spectroscopy is an optical imaging method that is based on the Raman effect, the inelastic scattering of a photon when energy is absorbed from light by a surface. Although Raman spectroscopy is widely used for chemical and molecular analysis, its clinical application has been hindered by the inherently weak nature of the Raman effect. Raman-silica-gold-nanoparticles (R-Si-Au-NPs) overcome this limitation by producing larger Raman signals through surface-enhanced Raman scattering. Because we are developing these particles for use as targeted molecular imaging agents, we examined the acute toxicity and biodistribution of core polyethylene glycol (PEG)-ylated R-Si-Au-NPs after different routes of administration in mice. After intravenous administration, PEG-R-Si-Au-NPs were removed from the circulation by macrophages in the liver and spleen (that is, the reticuloendothelial system). At 24 hours, PEG-R-Si-Au-NPs elicited a mild inflammatory response and an increase in oxidative stress in the liver, which subsided by 2 weeks after administration. No evidence of significant toxicity was observed by measuring clinical, histological, biochemical, or cardiovascular parameters for 2 weeks. Because we are designing targeted PEG-R-Si-Au-NPs (for example, PEG-R-Si-Au-NPs labeled with an affibody that binds specifically to the epidermal growth factor receptor) to detect colorectal cancer after administration into the bowel lumen, we tested the toxicity of the core nanoparticle after administration per rectum. We observed no significant bowel or systemic toxicity, and no PEG-R-Si-Au-NPs were detected systemically. Although additional studies are required to investigate the long-term effects of PEG-R-Si-Au-NPs and their toxicity when carrying the targeting moiety, the results presented here support the idea that PEG-R-Si-Au-NPs can be safely used in living subjects, especially when administered rectally.

  6. Gold, Silver and Carbon Nanoparticles Grafted on Activated Polymers for Biomedical Applications.

    PubMed

    Reznickova, A; Novotna, Z; Kvitek, O; Kolska, Z; Svorcik, V

    2015-12-01

    Organic polymers have been applied successfully in fields such as adhesion, biomaterials, protective coatings, friction and wear, composites, microelectronic devices, and thin-film technology. In general, special surface properties with regard to chemical composition, hydrophilicity, roughness, crystallinity, conductivity, lubricity, and cross-linking density are required for the success of these applications. Polymers very often do not possess the surface properties needed for these applications. For these reasons, surface modification techniques which can transform these inexpensive materials into highly valuable finished products have become an important part of the plastics industry. In case of biomedical polymers is plasma treatment used for enhancing cell adhesion, growth and proliferation and to make them suitable for implants and tissue engineering scaffolds. Nanoparticles fascinated scientists for over a century and are now heavily utilized in chemistry, biology, engineering, and medicine. Nowadays nanoparticles can be synthesized reproducibly, modified with seemingly limitless chemical functional groups, and, in certain cases, characterized with atomic-level precision. In recent years, focus has turned to therapeutic possibilities for such materials. Structures, which behave as drug carriers, antimicrobial agents, and photoresponsive therapeutics have been developed and studied in the context of cells and many debilitating diseases. These structures are not simply chosen as alternatives to molecule-based systems, but rather for their new physical and chemical properties, which confer substantive advantages in cellular and medical applications. In this review, we provide insights into immobilization, toxicity and biomedical applications of gold, silver and carbon nanoparticles and discuss their grafting to polymer substrates and the influence on cell-material interactions. The adhesion and the response of cells in contact with the surface play an important

  7. THE FATE AND TOXICITY OF RAMAN ACTIVE SILICA-GOLD NANOPARTICLES IN MICE

    PubMed Central

    THAKOR, AVNESH S; LUONG, RICHARD; PAULMURUGAN, RAMASAMY; LIN, FRANK I; KEMPEN, PAUL; ZAVALETA, CRISTINA; CHU, PAULINE; MASSOUD, TARIK F; SINCLAIR, ROBERT; GAMBHIR, SANJIV S

    2013-01-01

    Raman spectroscopy is an optical imaging modality which analyses the Raman effect in which energy is exchanged between light and matter. Although Raman spectroscopy has been widely used for chemical and molecular analysis, its use in clinical applications has been hindered by the inherently weak nature of the Raman effect. Raman-silica-gold-nanoparticles (R-Si-Au-NPs) overcome this limitation by producing high Raman signals via Surface Enhanced Raman Scattering. Targeted polyethylene glycol (PEG)-ylated R-Si-Au-NPs (e.g. PEG-R-Si-Au-NPs labeled with an affibody which binds specifically to the epidermal growth factor receptor) are currently being designed to detect colorectal cancer after administration into the bowel lumen. With this approach, PEG-R-Si-Au-NPs are not expected to enter the systemic circulation and would be removed from the body via defecation. We examined the acute toxicity and biodistribution of core PEG-R-Si-Au-NPs after different routes of administration in mice. After intravenous administration, PEG-R-Si-Au-NPs were removed from the circulation by marcophages in the liver and spleen (i.e. the reticuloendothelial system). At 24 hours, PEG-R-Si-Au-NPs elicited a mild inflammatory response and an increase in oxidative stress in the liver, which subsided by 2 weeks. No evidence of significant toxicity was observed by measuring clinical, histological, biochemical or cardiovascular parameters for 2 weeks. Notably, after administration per rectum, we observed no significant bowel or systemic toxicity and no PEG-R-Si-Au-NPs were detected systemically. Although additional studies are required to investigate the long-term effects of PEG-R-Si-Au-NPs, these initial results support the idea that they can be safely used in living subjects, especially when administered rectally. PMID:21508310

  8. Aspartame-stabilized gold-silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial activity, and long-term stability.

    PubMed

    Fasciani, Chiara; Silvero, M Jazmin; Anghel, Maria Alexandra; Argüello, Gerardo A; Becerra, Maria Cecilia; Scaiano, Juan C

    2014-12-17

    Gold-silver core-shell nanoparticles stabilized with a common sweetener, aspartame (AuNP@Ag@Asm), combine the antimicrobial properties of silver with the photoinduced plasmon-mediated photothermal effects of gold. The particles were tested with several bacterial strains, while biocompatibility was verified with human dermal fibroblasts. PMID:25487127

  9. Gold Rush. Fourth Grade Activity. Schools of California Online Resources for Education (SCORE): Connecting California's Classrooms to the World.

    ERIC Educational Resources Information Center

    Krupnick, Karen

    In 1875, a man fishing in the isolated Trout River of California discovered several large gold nuggets. This lesson plan asks fourth-grade students to develop a plan to avoid another 1849 gold rush. The plan is to design a new town while considering transportation, housing, food and goods for the miners, and the preservation of the area's…

  10. Aspartame-stabilized gold-silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial activity, and long-term stability.

    PubMed

    Fasciani, Chiara; Silvero, M Jazmin; Anghel, Maria Alexandra; Argüello, Gerardo A; Becerra, Maria Cecilia; Scaiano, Juan C

    2014-12-17

    Gold-silver core-shell nanoparticles stabilized with a common sweetener, aspartame (AuNP@Ag@Asm), combine the antimicrobial properties of silver with the photoinduced plasmon-mediated photothermal effects of gold. The particles were tested with several bacterial strains, while biocompatibility was verified with human dermal fibroblasts.

  11. Measuring total mercury due to small-scale gold mining activities to determine community vulnerability in Cihonje, Central Java, Indonesia.

    PubMed

    Sari, Mega M; Inoue, Takanobu; Matsumoto, Yoshitaka; Yokota, Kuriko

    2016-01-01

    This research is comparative study of gold mining and non-gold mining areas, using four community vulnerability indicators. Vulnerability indicators are exposure degree, contamination rate, chronic, and acute toxicity. Each indicator used different samples, such as wastewater from gold mining process, river water from Tajum river, human hair samples, and health questionnaire. This research used cold vapor atomic absorption spectrometry to determine total mercury concentration. The result showed that concentration of total mercury was 2,420 times than the maximum content of mercury permitted in wastewater based on the Indonesian regulation. Moreover, the mercury concentration in river water reached 685 ng/l, exceeding the quality threshold standards of the World Health Organization (WHO). The mercury concentration in hair samples obtained from the people living in the research location was considered to identify the health quality level of the people or as a chronic toxicity indicator. The highest mercury concentration--i.e. 17 ng/mg, was found in the gold mining respondents. Therefore, based on the total mercury concentration in the four indicators, the community in the gold mining area were more vulnerable to mercury than communities in non-gold mining areas. It was concluded that the community in gold mining area was more vulnerable to mercury contamination than the community in non-gold mining area. PMID:26819400

  12. Measuring total mercury due to small-scale gold mining activities to determine community vulnerability in Cihonje, Central Java, Indonesia.

    PubMed

    Sari, Mega M; Inoue, Takanobu; Matsumoto, Yoshitaka; Yokota, Kuriko

    2016-01-01

    This research is comparative study of gold mining and non-gold mining areas, using four community vulnerability indicators. Vulnerability indicators are exposure degree, contamination rate, chronic, and acute toxicity. Each indicator used different samples, such as wastewater from gold mining process, river water from Tajum river, human hair samples, and health questionnaire. This research used cold vapor atomic absorption spectrometry to determine total mercury concentration. The result showed that concentration of total mercury was 2,420 times than the maximum content of mercury permitted in wastewater based on the Indonesian regulation. Moreover, the mercury concentration in river water reached 685 ng/l, exceeding the quality threshold standards of the World Health Organization (WHO). The mercury concentration in hair samples obtained from the people living in the research location was considered to identify the health quality level of the people or as a chronic toxicity indicator. The highest mercury concentration--i.e. 17 ng/mg, was found in the gold mining respondents. Therefore, based on the total mercury concentration in the four indicators, the community in the gold mining area were more vulnerable to mercury than communities in non-gold mining areas. It was concluded that the community in gold mining area was more vulnerable to mercury contamination than the community in non-gold mining area.

  13. Eight Stars of Gold--The Story of Alaska's Flag. Primary Grade Activities.

    ERIC Educational Resources Information Center

    Alaska State Museum, Juneau.

    This activities booklet focuses on the story of Alaska's flag. The booklet is intended for teachers to use with primary-grade children. Each activity in the booklet contains background information, a summary and time estimate, Alaska state standards, a step-by-step technique for implementing the activity, assessment tips, materials and resource…

  14. Impact of GEM foil hole geometry on GEM detector gain

    NASA Astrophysics Data System (ADS)

    Karadzhinova, A.; Nolvi, A.; Veenhof, R.; Tuominen, E.; Hæggström, E.; Kassamakov, I.

    2015-12-01

    Detailed 3D imaging of Gas Electron Multiplier (GEM) foil hole geometry was realized. Scanning White Light Interferometry was used to examine six topological parameters of GEM foil holes from both sides of the foil. To study the effect of the hole geometry on detector gain, the ANSYS and Garfield ++ software were employed to simulate the GEM detector gain on the basis of SWLI data. In particular, the effective gain in a GEM foil with equally shaped holes was studied. The real GEM foil holes exhibited a 4% lower effective gain and 6% more electrons produced near the exit electrode of the GEM foil than the design anticipated. Our results indicate that the GEM foil hole geometry affects the gain performance of GEM detectors.

  15. Low energy ignition of HMX using a foil bridge

    SciTech Connect

    Ewick, D.W.

    1986-01-01

    The use of an etched foil bridge to initiate the deflagration of high-density HMX is described. Two foil bridges were evaluated, each having a cross-sectional area approximately equal to that of a 0.0034-in. diameter bridgewire. One foil was 0.11 in. wide and 0.0008 in. thick; the other was 0.022 in. wide and 0.0004 in. thick. The all-fire current for the 0.022-in. wide foil bridge was roughly 15% greater than that of the 0.011-in. wide foil, which in turn was approximately 7% greater than the round wire bridge. The no-fire current for the 0.022-in. wide foil bridge was roughly 26% greater than that of the 0.011-in. wide foil, which in turn was approximately 10% greater than the round wire bridge. 7 refs., 4 figs., 3 tabs.

  16. Composite metal foil and ceramic fabric materials

    DOEpatents

    Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.

    1992-03-24

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.

  17. Composite metal foil and ceramic fabric materials

    DOEpatents

    Webb, Brent J.; Antoniak, Zen I.; Prater, John T.; DeSteese, John G.

    1992-01-01

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

  18. FoilSim: Basic Aerodynamics Software Created

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth A.

    1999-01-01

    FoilSim is interactive software that simulates the airflow around various shapes of airfoils. The graphical user interface, which looks more like a video game than a learning tool, captures and holds the students interest. The software is a product of NASA Lewis Research Center s Learning Technologies Project, an educational outreach initiative within the High Performance Computing and Communications Program (HPCCP).This airfoil view panel is a simulated view of a wing being tested in a wind tunnel. As students create new wing shapes by moving slider controls that change parameters, the software calculates their lift. FoilSim also displays plots of pressure or airspeed above and below the airfoil surface.

  19. Gold nanoparticles induce transcriptional activity of NF-κB in a B-lymphocyte cell line

    NASA Astrophysics Data System (ADS)

    Sharma, Monita; Salisbury, Richard L.; Maurer, Elizabeth I.; Hussain, Saber M.; Sulentic, Courtney E. W.

    2013-04-01

    Gold nanoparticles (Au-NPs) have been designated as superior tools for biological applications owing to their characteristic surface plasmon absorption/scattering and amperometric (electron transfer) properties, in conjunction with low or no immediate toxicity towards biological systems. Many studies have shown the ease of designing application-based tools using Au-NPs but the interaction of this nanosized material with biomolecules in a physiological environment is an area requiring deeper investigation. Immune cells such as lymphocytes circulate through the blood and lymph and therefore are likely cellular components to come in contact with Au-NPs. The main aim of this study was to mechanistically determine the functional impact of Au-NPs on B-lymphocytes. Using a murine B-lymphocyte cell line (CH12.LX), treatment with citrate-stabilized 10 nm Au-NPs induced activation of an NF-κB-regulated luciferase reporter, which correlated with altered B lymphocyte function (i.e. increased antibody expression). TEM imaging demonstrated that Au-NPs can pass through the cellular membrane and therefore could interact with intracellular components of the NF-κB signaling pathway. Based on the inherent property of Au-NPs to bind to -thiol groups and the presence of cysteine residues on the NF-κB signal transduction proteins IκB kinases (IKK), proteins specifically bound to Au-NPs were extracted from CH12.LX cellular lysate exposed to 10 nm Au-NPs. Electrophoresis identified several bands, of which IKKα and IKKβ were immunoreactive. Further evaluation revealed activation of the canonical NF-κB signaling pathway as evidenced by IκBα phosphorylation at serine residues 32 and 36 followed by IκBα degradation and increased nuclear RelA. Additionally, expression of an IκBα super-repressor (resistant to proteasomal degradation) reversed Au-NP-induced NF-κB activation. Altered NF-κB signaling and cellular function in B-lymphocytes suggests a potential for off-target effects

  20. The extractive metallurgy of gold

    NASA Astrophysics Data System (ADS)

    Kongolo, K.; Mwema, M. D.

    1998-12-01

    Mössbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Mössbauer spectroscopy could be applied.

  1. Development of printed ITO coatings on PET and PEN foil for flexible organic photodiodes

    NASA Astrophysics Data System (ADS)

    Heusing, S.; Oliveira, P. W.; Kraker, E.; Haase, A.; Palfinger, C.; Veith, M.

    2008-04-01

    ITO (tin doped indium oxide) coatings with a sheet resistance of 2 to 3 kΩ(square) were produced by gravure printing process on PET and PEN foil. The printing paste consisted of ITO nanoparticles which were dispersed in a solvent by using a surfactant. The dispersion was mixed with a binder and a photo initiator before printing. The printed films were hardened under UV-irradiation at low temperatures (< 130°C). The sheet resistance could be decreased by heat treatment at 120°C under forming gas atmosphere (N II/H II) to 1.5 kΩ(square). The transmission of the ITO coated PET and PEN foils is more than 80 % in the visible range. The ITO films were directly used as the bottom electrode in an organic photodiode (OPD). The setup of the OPD originates from the well known Tang photodiode, consisting of a stacked layer of copper phthalocyanine (p-type material) and perylene tetracarboxylic bisbenzimidazole (n-type material). The photodiodes are characterised via current-voltage (I-V) characteristics. The performance of the photodiodes with printed ITO on plastic substrates could be improved by the deposition of a PEDOT/PSS layer (Baytron (R) P) on the ITO coated foils and was then comparable to the performance of photodiodes with semi-transparent gold as anode on PET substrates. These results demonstrate the suitability of the printed ITO layers as anode for organic photodiodes.

  2. Effects of nanoparticle size on antitumor activity of 10-hydroxycamptothecin-conjugated gold nanoparticles: in vitro and in vivo studies

    PubMed Central

    Bao, Hanmei; Zhang, Qing; Xu, Hui; Yan, Zhao

    2016-01-01

    Gold nanoparticles (AuNPs) have emerged as a promising anticancer drug delivery scaffold. However, some controversial points still require further investigation before clinical use. A complete understanding of how animal cells interact with drug-conjugated AuNPs of well-defined sizes remains poorly understood. In this study, we prepared a series of 10-hydroxycamptothecin (HCPT)-AuNP conjugates of different sizes and compared their cytotoxic effect in vitro and antitumor effect in vivo. Transmission electron micrographs showed that the NPs had a round, regular shape with a mean diameter of ~10, 25, and 50 nm. An in vitro drug release study showed that HCPT was continuously released for 120 hours. HCPT-AuNPs showed greater cytotoxic effects on the MDA-MB-231 cell line compared with an equal dose of free HCPT. Notably, HCPT-AuNPs of an average diameter of 50 nm (HCPT-AuNPs-50) had the greatest effect. Furthermore, administration of HCPT-AuNPs-50 showed the most tumor-suppressing activity against MDA-MB-231 tumor in mice among all treatment groups. The results indicate that AuNPs not only act as a carrier but also play an active role in mediating biological effects. This work gives important insights into the design of nanoscale delivery and therapeutic systems. PMID:27022260

  3. Comparison of Two Approaches for the Attachment of a Drug to Gold Nanoparticles and Their Anticancer Activities.

    PubMed

    Fu, Yingjie; Feng, Qishuai; Chen, Yifan; Shen, Yajing; Su, Qihang; Zhang, Yinglei; Zhou, Xiang; Cheng, Yu

    2016-09-01

    Drug attachment is important in drug delivery for cancer chemotherapy. The elucidation of the release mechanism and biological behavior of a drug is essential for the design of delivery systems. Here, we used a hydrazone bond or an amide bond to attach an anticancer drug, doxorubicin (Dox), to gold nanoparticles (GNPs) and compared the effects of the chemical bond on the anticancer activities of the resulting Dox-GNPs. The drug release efficiency, cytotoxicity, subcellular distribution, and cell apoptosis of hydrazone-linked HDox-GNPs and amide-linked SDox-GNPs were evaluated in several cancer cells. HDox-GNPs exhibited greater potency for drug delivery via triggered release comediated by acidic pH and glutathione (GSH) than SDox-GNPs triggered by GSH alone. Dox released from HDox-GNPs was released in lysosomes and exerted its drug activity by entering the nuclei. Dox from SDox-GNPs was mainly localized in lysosomes, significantly reducing its efficacy against cancer cells. In addition, in vivo studies in tumor-bearing mice demonstrated that HDox-GNPs and SDox-GNPs both accumulate in tumor tissue. However, only HDox-GNPs enhanced inhibition of subcutaneous tumor growth. This study demonstrates that HDox-GNPs display significant advantages in drug release and antitumor efficacy. PMID:27518201

  4. Activation of oxygen-mediating pathway using copper ions: fine-tuning of growth kinetics in gold nanorod overgrowth.

    PubMed

    Liu, Wenqi; Zhang, Hui; Wen, Tao; Yan, Jiao; Hou, Shuai; Shi, Xiaowei; Hu, Zhijian; Ji, Yinglu; Wu, Xiaochun

    2014-10-21

    Growth kinetics plays an important role in the shape control of nanocrystals (NCs). Herein, we presented a unique way to fine-tune the growth kinetics via oxidative etching activated by copper ions. For the overgrowth of gold nanorods (Au NRs), competitive adsorption of dissolved oxygen on rod surface was found to slow down the overgrowth rate. Copper ions were able to remove the adsorbed oxygen species from the Au surface via oxidative etching, thus exposing more reaction sites for Au deposition. In this way, copper ions facilitated the overgrowth process. Furthermore, Cu(2+) rather than Cu(+) acted as the catalyst for the oxidative etching. Comparative study with Ag(+) indicated that Cu(2+) cannot regulate NC shapes via an underpotential deposition mechanism. In contrast, Ag(+) led to the formation of Au tetrahexahedra (THH) and a slight decrease of the growth rate at similar growth conditions. Combining the distinct roles of the two ions enabled elongated THH to be produced. Copper ions activating the O2 pathway suggested that dissolved oxygen has a strong affinity for the Au surface. Moreover, the results of NC-sensitized singlet oxygen ((1)O2) indicated that the absorbed oxygen species on the surface of Au NCs bounded with low-index facets mainly existed in the form of molecular O2. PMID:25244407

  5. Sonofusion: Heat and ^4He Created by Cavitationally Induced Loading of Metal Foils

    NASA Astrophysics Data System (ADS)

    Stringham, Roger

    2003-03-01

    Helium four was produced in a vacuum tight system and measured by mass spectrometry with no measurable accompanying radiation. This fusion product from a piezo driven, acoustic reactor forces deuterons into a metallic foil. We believe the reaction is the result of the adiabatic collapse of transient bubbles in D_2O. The collapse process forms high-density plasma jets that are further z-pinched and then implanted into the foil lattices where the DD fusion takes place. With no evidence of long range radiation, the mc^2 energy was converted to heat. The reactor gases were analyzed at levels as high as 500 ppm of ^4He, which is 100 times that found in air. The SEM, Scanning Electron Microscope, photos of target foil surfaces show evidence of violent activity identified as ejecta sites varying in size from 100 to 10000 nm in diameter. The ^4He, radiation, excess heat, and SEM measurements support the DD fusion explanation.

  6. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential.

    PubMed

    Patra, Jayanta Kumar; Baek, Kwang-Hyun

    2015-01-01

    Biological synthesis of nanoparticles using nontoxic, eco-friendly approaches is gaining importance owing to their fascinating biocompatibility and environmentally benign nature. This study describes the green synthesis approach for synthesis of gold nanoparticles (ANPs) using aqueous extract of the rind of watermelon as a fruit waste and evaluate its biopotential in terms of proteasome inhibitory activity, antibacterial, and antioxidant potential. The synthesized ANPs were characterized using UV-vis spectroscopy, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The surface plasmon resonance spectra of ANPs were obtained at 560 nm. Scanning electron microscopy image revealed that particles had a spherical shape and have a size distribution of 20-140 nm, followed by the elemental analysis by energy-dispersive X-ray spectroscopy. X-ray diffraction analysis confirmed the crystallite nature of the ANPs and Fourier-transform infrared spectroscopy revealed the involvement of bioactive compounds from watermelon rind in the synthesis, capping, and stabilization of ANPs. ANPs exhibited potential antibacterial activity against five different foodborne pathogenic bacteria with diameter of inhibition zones ranged between 9.23 and 11.58 mm. They also displayed strong synergistic antibacterial activity together with kanamycin (11.93-21.08 mm inhibition zones) and rifampicin (10.32-24.84 mm inhibition zones). ANPs displayed strong antioxidant activity in terms of DPPH radical scavenging (24.69%), nitric oxide scavenging (25.62%), ABTS scavenging (29.42%), and reducing power. Significantly high proteasome inhibitory potential of the ANPs (28.16%) could be highly useful for cancer treatment and targeted cancer drug delivery. Overall, results highlight a potential low-cost green method of synthesizing ANPs from food waste materials. Significant biopotentials of synthesized ANPs could make it a potential

  7. Induction of Apoptosis by Green Synthesized Gold Nanoparticles Through Activation of Caspase-3 and 9 in Human Cervical Cancer Cells

    PubMed Central

    Baharara, Javad; Ramezani, Tayebe; Divsalar, Adeleh; Mousavi, Marzieh; Seyedarabi, Arefeh

    2016-01-01

    Background: Gold Nanoparticles (GNPs) are used in imaging and molecular diagnostic applications. As the development of a novel approach in the green synthesis of metal nanoparticles is of great importance and a necessity, a simple and safe method for the synthesis of GNPs using plant extracts of Zataria multiflora leaves was applied in this study and the results on GNPs’ anticancer activity against HeLa cells were reported. Methods: The GNPs were characterized by UV-visible spectroscopy, FTIR, TEM, DLS and Zeta-potential measurements. In addition, the cellular up-take of nanoparticles was investigated using Dark Field Microscopy (DFM). Induction of apoptosis by high dose of GNPs in HeLa cells was assessed by MTT assay, Acridin orange, DAPI staining, Annexin V/PI double-labeling flow cytometry and caspase activity assay. Results: UV-visible spectroscopy results showed a surface plasmon resonance band for GNPs at 530 nm. FTIR results demonstrated an interaction between plant extract and nanoparticles. TEM images revealed different shapes for GNPs and DLS results indicated that the GNPs range in size from 10 to 42 nm. The Zeta potential values of the synthesized GNPs were between 30 to 50 Mev, indicating the formation of stable particles. As evidenced by MTT assay, GNPs inhibit proliferation of HeLa cells in dose-dependent GNPs and cytotoxicity of GNPs in Bone Marrow Mesenchymal Stem Cell (BMSCs) was lower than cancerous cells. At nontoxic concentrations, the cellular up-take of the nanoparticles took place. Acridin orange and DAPI staining showed morphological changes in the cell’s nucleus due to apoptosis. Finally, caspase activity assay demonstrated HeLa cell’s apoptosis through caspase activation. Conclusion: The results showed that GNPs have the ability to induce apoptosis in HeLa cells. PMID:27141266

  8. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential.

    PubMed

    Patra, Jayanta Kumar; Baek, Kwang-Hyun

    2015-01-01

    Biological synthesis of nanoparticles using nontoxic, eco-friendly approaches is gaining importance owing to their fascinating biocompatibility and environmentally benign nature. This study describes the green synthesis approach for synthesis of gold nanoparticles (ANPs) using aqueous extract of the rind of watermelon as a fruit waste and evaluate its biopotential in terms of proteasome inhibitory activity, antibacterial, and antioxidant potential. The synthesized ANPs were characterized using UV-vis spectroscopy, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The surface plasmon resonance spectra of ANPs were obtained at 560 nm. Scanning electron microscopy image revealed that particles had a spherical shape and have a size distribution of 20-140 nm, followed by the elemental analysis by energy-dispersive X-ray spectroscopy. X-ray diffraction analysis confirmed the crystallite nature of the ANPs and Fourier-transform infrared spectroscopy revealed the involvement of bioactive compounds from watermelon rind in the synthesis, capping, and stabilization of ANPs. ANPs exhibited potential antibacterial activity against five different foodborne pathogenic bacteria with diameter of inhibition zones ranged between 9.23 and 11.58 mm. They also displayed strong synergistic antibacterial activity together with kanamycin (11.93-21.08 mm inhibition zones) and rifampicin (10.32-24.84 mm inhibition zones). ANPs displayed strong antioxidant activity in terms of DPPH radical scavenging (24.69%), nitric oxide scavenging (25.62%), ABTS scavenging (29.42%), and reducing power. Significantly high proteasome inhibitory potential of the ANPs (28.16%) could be highly useful for cancer treatment and targeted cancer drug delivery. Overall, results highlight a potential low-cost green method of synthesizing ANPs from food waste materials. Significant biopotentials of synthesized ANPs could make it a potential

  9. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential

    PubMed Central

    Patra, Jayanta Kumar; Baek, Kwang-Hyun

    2015-01-01

    Biological synthesis of nanoparticles using nontoxic, eco-friendly approaches is gaining importance owing to their fascinating biocompatibility and environmentally benign nature. This study describes the green synthesis approach for synthesis of gold nanoparticles (ANPs) using aqueous extract of the rind of watermelon as a fruit waste and evaluate its biopotential in terms of proteasome inhibitory activity, antibacterial, and antioxidant potential. The synthesized ANPs were characterized using UV–vis spectroscopy, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The surface plasmon resonance spectra of ANPs were obtained at 560 nm. Scanning electron microscopy image revealed that particles had a spherical shape and have a size distribution of 20–140 nm, followed by the elemental analysis by energy-dispersive X-ray spectroscopy. X-ray diffraction analysis confirmed the crystallite nature of the ANPs and Fourier-transform infrared spectroscopy revealed the involvement of bioactive compounds from watermelon rind in the synthesis, capping, and stabilization of ANPs. ANPs exhibited potential antibacterial activity against five different foodborne pathogenic bacteria with diameter of inhibition zones ranged between 9.23 and 11.58 mm. They also displayed strong synergistic antibacterial activity together with kanamycin (11.93–21.08 mm inhibition zones) and rifampicin (10.32–24.84 mm inhibition zones). ANPs displayed strong antioxidant activity in terms of DPPH radical scavenging (24.69%), nitric oxide scavenging (25.62%), ABTS scavenging (29.42%), and reducing power. Significantly high proteasome inhibitory potential of the ANPs (28.16%) could be highly useful for cancer treatment and targeted cancer drug delivery. Overall, results highlight a potential low-cost green method of synthesizing ANPs from food waste materials. Significant biopotentials of synthesized ANPs could make it a potential

  10. Carbon stripper foils used in the Los Alamos PSR

    SciTech Connect

    Borden, M.J.; Plum, M.A.; Sugai, I.

    1997-12-01

    Carbon stripper foils produced by the modified controlled ACDC arc discharge method (mCADAD) at the Institute for Nuclear Study have been tested and used for high current 800-MeV beam production in the Proton Storage Ring (PSR) since 1993. Two foils approximately 110 {mu}g/cm{sup 2} each are sandwiched together to produce an equivalent 220 {mu}g/cm{sup 2} foil. The foil sandwitch is supported by 4-5 {mu}m diameter carbon filters attached to an aluminum frame. These foils have survived as long as five months during PSR normal beam production of near 70 {mu}A average current on target. Typical life-times of other foils vary from seven to fourteen days with lower on-target average current. Beam loss data also indicate that these foils have slower shrinkage rates than standard foils. Equipment has been assembled and used to produce foils by the mCADAD method at Los Alamos. These foils will be tested during 1997 operation.

  11. Understanding interactions between manganese oxide and gold that lead to enhanced activity for electrocatalytic water oxidation.

    PubMed

    Gorlin, Yelena; Chung, Chia-Jung; Benck, Jesse D; Nordlund, Dennis; Seitz, Linsey; Weng, Tsu-Chien; Sokaras, Dimosthenis; Clemens, Bruce M; Jaramillo, Thomas F

    2014-04-01

    To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnO(x), a promising OER catalyst. We conclusively demonstrate that adding Au to MnO(x) significantly enhances OER activity relative to MnO(x) in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnO(x) catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnO(x) that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnO(x).

  12. Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation

    PubMed Central

    2015-01-01

    To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnOx, a promising OER catalyst. We conclusively demonstrate that adding Au to MnOx significantly enhances OER activity relative to MnOx in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnOx catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnOx that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnOx. PMID:24661269

  13. Acacia nilotica (Babool) leaf extract mediated size-controlled rapid synthesis of gold nanoparticles and study of its catalytic activity

    NASA Astrophysics Data System (ADS)

    Majumdar, Rakhi; Bag, Braja Gopal; Maity, Nabasmita

    2013-09-01

    The leaf extract of Acacia nilotica (Babool) is rich in different types of plant secondary metabolites such as flavanoids, tannins, triterpenoids, saponines, etc. We have demonstrated the use of the leaf extract for the synthesis of gold nanoparticles in water at room temperature under very mild conditions. The synthesis of the gold nanoparticles was complete in several minutes, and no extra stabilizing or capping agents were necessary. The size of the nanoparticles could be controlled by varying the concentration of the leaf extract. The gold nanoparticles were characterized by HRTEM, surface plasmon resonance spectroscopy, and X-ray diffraction studies. The synthesized gold nanoparticles have been used as an efficient catalyst for the reduction of 4-nitrophenol to 4-aminophenol in water at room temperature.

  14. Switchable fluorescence of gold nanoclusters for probing the activity of alkaline phosphatase and its application in immunoassay.

    PubMed

    Hu, Xue-Lian; Wu, Xiu-Ming; Fang, Xin; Li, Zai-Jun; Wang, Guang-Li

    2016-03-15

    In this work, a novel strategy for modulating the fluorescence of gold nanoclusters (Au NCs) is developed. The fluorescence of bovine serum albumin (BSA) protected Au NCs is firstly quenched by KMnO4 and then restored by ascorbic acid (AA) due to the deterioration/restoration of the surface structure. Based on which, a novel "switch-on" fluorescent assay for probing the activity of alkaline phosphatase (ALP) is developed with a detection limit as low as 0.002 U/L. In addition, this testing protocol is also expanded to the detection of the inhibitor of ALP and mouse IgG (as a model), the detection limits are 15 ng/mL for the inhibitor of 2,4-Dichlorophenoxyacetic acid (2,4-DA) and 1.5 pg/mL for mouse IgG. The present method paves a new way to develop convenient, sensitive, and selective metal NCs-based fluorescent "turn-on" probes with promising applications in versatile biosensing.

  15. Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology.

    PubMed

    Roosta, M; Ghaedi, M; Daneshfar, A; Sahraei, R; Asghari, A

    2014-01-01

    The present study was focused on the removal of methylene blue (MB) from aqueous solution by ultrasound-assisted adsorption onto the gold nanoparticles loaded on activated carbon (Au-NP-AC). This nanomaterial was characterized using different techniques such as SEM, XRD, and BET. The effects of variables such as pH, initial dye concentration, adsorbent dosage (g), temperature and sonication time (min) on MB removal were studied and using central composite design (CCD) and the optimum experimental conditions were found with desirability function (DF) combined response surface methodology (RSM). Fitting the experimental equilibrium data to various isotherm models such as Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show the suitability and applicability of the Langmuir model. Analysis of experimental adsorption data to various kinetic models such as pseudo-first and second order, Elovich and intraparticle diffusion models show the applicability of the second-order equation model. The small amount of proposed adsorbent (0.01 g) is applicable for successful removal of MB (RE>95%) in short time (1.6 min) with high adsorption capacity (104-185 mg g(-1)).

  16. The Effect of Journal Roughness and Foil Coatings on the Performance of Heavily Loaded Foil Air Bearings

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.; DellaCorte, Christopher

    2001-01-01

    Foil air bearing load capacity tests were conducted to investigate if a solid lubricant coating applied to the surface of the bearing's top foil can function as a break-in coating. Two foil coating materials, a conventional soft polymer film (polyimide) and a hard ceramic (alumina), were independently evaluated against as-ground and worn (run-in) journals coated with NASA PS304, a high-temperature solid lubricant composite coating. The foil coatings were evaluated at journal rotational speeds of 30,000 rpm and at 25 C. Tests were also performed on a foil bearing with a bare (uncoated) nickel-based superalloy top foil to establish a baseline for comparison. The test results indicate that the presence of a top foil solid lubricant coating is effective at increasing the load capacity performance of the foil bearing. Compared to the uncoated baseline, the addition of the soft polymer coating on the top foil increased the bearing load coefficient by 120% when operating against an as-ground journal surface and 85 percent against a run-in journal surface. The alumina coating increased the load coefficient by 40% against the as-ground journal but did not have any affect when the bearing was operated with the run-in journal. The results suggest that the addition of solid lubricant films provide added lubrication when the air film is marginal indicating that as the load capacity is approached foil air bearings transition from hydrodynamic to mixed and boundary lubrication.

  17. Microfabricated Segmented-Involute-Foil Regenerator for Stirling Engines

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey

    2010-01-01

    An involute-foil regenerator was designed, microfabricated, and tested in an oscillating-flow test rig. The concept consists of stacked involute-foil nickel disks (see figure) microfabricated via a lithographic process. Test results yielded a performance of about twice that of the 90-percent random-fiber currently used in small Stirling converters. The segmented nature of the involute- foil in both the axial and radial directions increases the strength of the structure relative to wrapped foils. In addition, relative to random-fiber regenerators, the involute-foil has a reduced pressure drop, and is expected to be less susceptible to the release of metal fragments into the working space, thus increasing reliability. The prototype nickel involute-foil regenerator was adequate for testing in an engine with a 650 C hot-end temperature. This is lower than that required by larger engines, and high-temperature alloys are not suited for the lithographic microfabrication approach.

  18. Method of forming a thin unbacked metal foil

    DOEpatents

    Duchane, David V.; Barthell, Barry L.

    1984-01-01

    In a method of forming a thin (<2 .mu.m) unbacked metal foil having a desired curviplanar shape, a soluble polymeric film, preferably comprising polyvinyl alcohol, is formed on a supporting structure having a shape that defines the desired shape of the foil product. A layer of metal foil is deposited onto one side of the soluble film, preferably by vacuum vapor deposition. The metallized film is then immersed in a suitable solvent to dissolve the film and thereby leave the metal foil as an unbacked metal foil element mounted on the supporting structure. Aluminum foils less than 0.2 .mu.m (2,000 .ANG.) thick and having an areal density of less than 54 .mu.g/cm.sup.2 have been obtained.

  19. Effects of Aluminum Foil Packaging on Elemental Analysis of Bone.

    PubMed

    Lewis, Lyniece; Christensen, Angi M

    2016-03-01

    Burned skeletal material is often very fragile and at high risk for fragmentation during packaging and transportation. One method that has been suggested to protect bones in these cases is to carefully wrap them in aluminum foil. Traces of aluminum, however, are known to transfer from foil packaging materials to food products. If such transfer occurs between aluminum foil and bones, it could interfere with subsequent chemical, elemental and isotopic analyses, which are becoming more common in forensic anthropological investigations. This study examined aluminum levels in bones prior to and following the use of aluminum foil packaging and storage for a 6-week period. Results indicate no significant change in the detected levels of aluminum (p > 0.05), even when packaged in compromised foil and exposed to elevated temperatures. Aluminum foil can therefore continue to be recommended as a packaging medium without affecting subsequent chemical examinations. PMID:27404616

  20. Effects of Aluminum Foil Packaging on Elemental Analysis of Bone.

    PubMed

    Lewis, Lyniece; Christensen, Angi M

    2016-03-01

    Burned skeletal material is often very fragile and at high risk for fragmentation during packaging and transportation. One method that has been suggested to protect bones in these cases is to carefully wrap them in aluminum foil. Traces of aluminum, however, are known to transfer from foil packaging materials to food products. If such transfer occurs between aluminum foil and bones, it could interfere with subsequent chemical, elemental and isotopic analyses, which are becoming more common in forensic anthropological investigations. This study examined aluminum levels in bones prior to and following the use of aluminum foil packaging and storage for a 6-week period. Results indicate no significant change in the detected levels of aluminum (p > 0.05), even when packaged in compromised foil and exposed to elevated temperatures. Aluminum foil can therefore continue to be recommended as a packaging medium without affecting subsequent chemical examinations.

  1. Gold nanoparticles-decorated single silver nanowire as an efficient SERS-active substrate

    NASA Astrophysics Data System (ADS)

    Tan, En-zhong

    2014-07-01

    A novel surface-enhanced Raman scattering (SERS)-active substrate based on Au nanoparticles (AuNPs)-coated silver nanowire (AgNW) is obtained by an effective and simple method. The results show that the hybrid structures prepared by this method are powerful SERS-active substrates for the detection of malachite green (MG) molecules with the limit of 1 nmol/L. The excellent enhancing ability mainly comes from two kinds of hot spots. One is from the gaps among the adjacent AuNPs, and the other is the presence of zone between AuNPs and AgNW. In particular, the AuNPs-coated AgNW can be viewed through the objective of the confocal Raman spectrometer due to the length of the AgNW reaches microns, which can improve the repeatability of detection. Moreover, it is of great significance in research of SERS mechanism and application.

  2. A multi-analytical approach to gold in Ancient Egypt: Studies on provenance and corrosion

    NASA Astrophysics Data System (ADS)

    Tissot, I.; Troalen, L. G.; Manso, M.; Ponting, M.; Radtke, M.; Reinholz, U.; Barreiros, M. A.; Shaw, I.; Carvalho, M. L.; Guerra, M. F.

    2015-06-01

    Recent results from a three-year multi-disciplinary project on Ancient Egyptian gold jewellery revealed that items of jewellery from the Middle Kingdom to the New Kingdom were manufactured using a variety of alluvial gold alloys. These alloys cover a wide range of colours and the majority contain Platinum Group Elements inclusions. However, in all the gold foils analysed, these inclusions were found to be absent. In this work a selection of gilded wood and leather items and gold foil fragments, all from the excavations by John Garstang at Abydos (primarily from Middle Kingdom graves), were examined using Scanning Electron Microscopy-Energy Disperse Spectroscopy (SEM-EDS), X-Ray Fluorescence (μXRF), Particle Induced X-Ray Emission (μPIXE) and Double Dispersive X-Ray Fluorescence (D2XRF). The work allowed us to characterise the composition of the base-alloys and also to reveal the presence of Pt at trace levels, confirming the use of alluvial gold deposits. Corrosion products were also investigated in the foils where surface tarnish was visually observed. Results showed that the differences in the colour of corrosion observed for the foils are related not only to the thickness of the corrosion layer but also to a multi-layer structure containing the various corrosion products.

  3. Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Tseng, Chao-Wei; Chang, Hsiang-Yu; Chang, Jia-Yaw; Huang, Chih-Ching

    2012-10-01

    In this study, bimetallic platinum/gold nanoparticles (Pt/Au NPs) were found to exhibit peroxidase-like activity, and the deposition of mercury was found to switch the enzymatic activity to a catalase-like activity. Based on this phenomenon, we developed a new method for detecting mercury ions through their deposition on bimetallic Pt/Au NPs to switch the catalytic activity of Pt/Au NPs. Pt/Au NPs could be easily prepared through reduction of Au3+ and Pt4+ by sodium citrate in a one-pot synthesis. The peroxidase catalytic activity of the Pt/Au NPs was controlled by varying the ratios of Pt to Au. The Pt0.1/Au NPs (prepared with a [Au3+]/[Pt4+] molar ratio of 9.0/1.0) showed excellent oxidation catalysis for H2O2-mediated oxidation of Amplex® Red (AR) to resorufin. The oxidized product of AR, resorufin, fluoresces more strongly (excitation/emission wavelength maxima ca. 570/585 nm) than AR alone. The peroxidase catalytic activity of Pt0.1/Au NPs was switched to catalase-like activity in the presence of mercury ions in a 5.0 mM tris(hydroxymethyl)aminomethane (Tris)-borate solution (pH 7.0) through the deposition of Hg on the particle surfaces owing to the strong Hg-Au metallic bond. The catalytic activity of Hg-Pt0.1/Au NPs is superior (by at least 5-fold) to that of natural catalase (from bovine liver). Under optimal solution conditions [5.0 mM Tris-borate (pH 7.0), H2O2 (50 mM), and AR (10 μM)] and in the presence of the masking agents polyacrylic acid and tellurium nanowires, the Pt0.1/Au NPs allowed the selective detection of inorganic mercury (Hg2+) and methylmercury ions (MeHg+) at concentrations as low as several nanomolar. This simple, fast, and cost-effective system enabled selective determination of the spiked concentrations of Hg2+ and MeHg+ in tap, pond, and stream waters.In this study, bimetallic platinum/gold nanoparticles (Pt/Au NPs) were found to exhibit peroxidase-like activity, and the deposition of mercury was found to switch the enzymatic

  4. Foil fabrication and barrier layer application for monolithic fuels

    SciTech Connect

    Moore, Glenn A. Clark, Curtis R.; Jue, J.-F.; Swank, W. David; Haggard, D.C.; Chapple, Michael D.; Burkes, Douglas E.

    2008-07-15

    This presentation provides details of recent UMo fuel developments efforts at the Idaho National Laboratory. Processing of monolithic fuel foil, the friction bonding process, and hot isostatic press (HIP) sample preparation will be presented. Details of the hot rolling, foil annealing, zirconium barrier-layer application to U10Mo fuel foils via the hot-rolling process and application of silicon rich aluminum interfacial-layers via a thermal spray process will be presented. (author)

  5. Gold Coating

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Epner Technology Inc. responded to a need from Goddard Space Flight Center for the ultimate in electroplated reflectivity needed for the Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA). Made of beryllium, the MOLA mirror was coated by Epner Technology Laser Gold process, specially improved for the project. Improved Laser Gold- coated reflectors have found use in an epitaxial reactor built for a large semiconductor manufacturer as well as the waveguide in Braun-Thermoscan tympanic thermometer and lasing cavities in various surgical instruments.

  6. Optical temperature sensing on flexible polymer foils

    NASA Astrophysics Data System (ADS)

    Sherman, Stanislav; Xiao, Yanfen; Hofmann, Meike; Schmidt, Thomas; Gleissner, Uwe; Zappe, Hans

    2016-04-01

    In contrast to established semiconductor waveguide-based or glass fiber-based integrated optical sensors, polymerbased optical systems offer tunable material properties, such as refractive index or viscosity, and thus provide additional degrees of freedom for sensor design and fabrication. Of particular interest in sensing applications are fully-integrated optical waveguide-based temperature sensors. These typically rely on Bragg gratings which induce a periodic refractive index variation in the waveguide so that a resonant wavelength of the structure is reflected.1,2 With broad-band excitation, a dip in the spectral output of the waveguide is thus generated at a precisely-defined wavelength. This resonant wavelength depends on the refractive index of the waveguide and the grating period, yet both of these quantities are temperature dependent by means of the thermo-optic effect (change in refractive index with temperature) and thermal expansion (change of the grating period with temperature). We show the design and fabrication of polymer waveguide-integrated temperature sensors based on Bragggratings, fabricated by replication technology on flexible PMMA foil substrates. The 175 μm thick foil serves as lower cladding for a polymeric waveguide fabricated from a custom-made UV-crosslinkable co-monomer composition. The fabrication of the grating structure includes a second replication step into a separate PMMA-foil. The dimensions of the Bragg-gratings are determined by simulations to set the bias point into the near infrared wavelength range, which allows Si-based detectors to be used. We present design considerations and performance data for the developed structures. The resulting sensor's signal is linear to temperature changes and shows a sensitivity of -306 nm/K, allowing high resolution temperature measurements.

  7. Cancer cell detection and therapeutics using peroxidase-active nanohybrid of gold nanoparticle-loaded mesoporous silica-coated graphene.

    PubMed

    Maji, Swarup Kumar; Mandal, Amal Kumar; Nguyen, Kim Truc; Borah, Parijat; Zhao, Yanli

    2015-05-13

    Development of efficient artificial enzymes is an emerging field in nanobiotechnology, since these artificial enzymes could overcome serious disadvantages of natural enzymes. In this work, a new nanostructured hybrid was developed as a mimetic enzyme for in vitro detection and therapeutic treatment of cancer cells. The hybrid (GSF@AuNPs) was prepared by the immobilization of gold nanoparticles (AuNPs) on mesoporous silica-coated nanosized reduced graphene oxide conjugated with folic acid, a cancer cell-targeting ligand. The GSF@AuNPs hybrid showed unprecedented peroxidase-like activity, monitored by catalytic oxidation of a typical peroxidase substrate, 3,3',5,5'-tetramethylbenzidine (TMB), in the presence of H2O2. On basis of this peroxidase activity, the hybrid was utilized as a selective, quantitative, and fast colorimetric detection probe for cancer cells. Finally, the hybrid as a mimetic enzyme was employed for H2O2- and ascorbic acid (AA)-mediated therapeutics of cancer cells. In vitro experiments using human cervical cancer cells (HeLa cells) exhibited the formation of reactive oxygen species (OH(•) radical) in the presence of peroxidase-mimic GSF@AuNPs with either exogenous H2O2 or endogenous H2O2 generated from AA, leading to an enhanced cytotoxicity to HeLa cells. In the case of normal cells (human embryonic kidney HEK 293 cells), the treatment with the hybrid and H2O2 or AA showed no obvious damage, proving selective killing effect of the hybrid to cancer cells.

  8. Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, Turbinaria conoides, and their antimicrofouling activity.

    PubMed

    Vijayan, Sri Ramkumar; Santhiyagu, Prakash; Singamuthu, Muthukkumarasamy; Kumari Ahila, Natarajan; Jayaraman, Ravindran; Ethiraj, Kannapiran

    2014-01-01

    Silver and gold nanoparticles were synthesized using an aqueous extract of the seaweed Turbinaria conoides and their antibiofilm activity against marine biofilm forming bacteria is reported here. The UV-Vis spectra showed the characteristics SPR absorption band for Ag NPs at 421 and for Au NPs at 538 nm. Further, the synthesized nanoparticles were characterized using FT-IR, XRD, FESEM, EDX, and HRTEM analysis. Spherical and triangular nanostructures of the Ag and Au nanoparticles were observed between the size ranges of 2-17 nm and 2-19 nm, respectively. The synthesized Ag NPs are efficient in controlling the bacterial biofilm formation; however, Au NPs did not show any remarkable antibiofilm activity. The maximum zone of inhibition was recorded against E. coli (17.6 ± 0.42 mm), followed by Salmonella sp., S. liquefaciens, and A. hydrophila. The macrotube dilution method inferred the MIC (20-40 µL mL(-1)) and MBC (40-60 µL mL(-1)) of Ag NPs. The CLSM images clearly showed the weak adherence and disintegrating biofilm formation of marine biofilm bacterial strains treated with Ag NPs. The Artemia cytotoxicity assay recorded the LC50 value of 88.914 ± 5.04 µL mL(-1). Thus the present study proved the efficiency of Ag NPs as a potent antimicrofouling agent and became the future perspective for the possible usage in the biofouling related issues in the aquaculture installations and other marine systems. PMID:24672397

  9. Using self-assembled aptamers and fibrinogen-conjugated gold nanoparticles to detect DNA based on controlled thrombin activity.

    PubMed

    Chen, Chuan-Kuo; Shiang, Yen-Chun; Huang, Chih-Ching; Chang, Huan-Tsung

    2011-04-15

    We have developed a colorimetric probe, based on the aggregation of gold nanoparticles (Au NPs), for the detection of DNA and for the analysis of single-nucleotide polymorphism (SNP); this probe functions through the modulation of the activity of thrombin (Thr) in the presence of bivalent thrombin-binding aptamers (TBAs). The bivalent TBAs were formed from TBA(27') (comprising a 27-base sequence providing TBA(27) functionality, a T(5) linker, and an 11-base sequence for hybridization) and TBA(15') (comprising a 15-base sequence providing TBA(15) functionality, a T(5) linker, and a 12-base sequence for hybridization) through their hybridization with perfectly matched DNA (DNA(pm)). The bivalent TBAs interacted specifically with thrombin, suppressing its activity toward fibrinogen-modified Au NPs (Fib-Au NPs). The potency of the inhibitory effect of TBA(15')-TBA(27')/DNA(pm) toward thrombin - and, thus, the degree of aggregation of the Fib-Au NPs - was highly dependent on the concentration of DNA(pm). Under the optimal conditions (50 pM thrombin, 2 nM TBA(15'), 2 nM TBA(27'), and 38 pM Fib-Au NPs), the linear relationship of the response of the probe toward DNA(pm) extended from 0.1 to 2 nM, with a correlation coefficient of 0.97. The limit of detection (LOD) for DNA(pm) was 20 pM, based on a signal-to-noise ratio of 3. We also applied a corresponding TBA(15″)-TBA(27″)/Thr/Fib-Au NP probe to the detection of the SNP of the Arg249Ser unit in the TP53 gene, with an LOD of 32 pM. Relative to conventional molecular beacon-based and crosslinking aggregation-based Au NP probes, our new approach offers higher sensitivity and higher selectivity toward DNA.

  10. Synthesis and Characterization of Silver and Gold Nanoparticles Using Aqueous Extract of Seaweed, Turbinaria conoides, and Their Antimicrofouling Activity

    PubMed Central

    Santhiyagu, Prakash; Singamuthu, Muthukkumarasamy; Kumari Ahila, Natarajan; Jayaraman, Ravindran

    2014-01-01

    Silver and gold nanoparticles were synthesized using an aqueous extract of the seaweed Turbinaria conoides and their antibiofilm activity against marine biofilm forming bacteria is reported here. The UV-Vis spectra showed the characteristics SPR absorption band for Ag NPs at 421 and for Au NPs at 538 nm. Further, the synthesized nanoparticles were characterized using FT-IR, XRD, FESEM, EDX, and HRTEM analysis. Spherical and triangular nanostructures of the Ag and Au nanoparticles were observed between the size ranges of 2–17 nm and 2–19 nm, respectively. The synthesized Ag NPs are efficient in controlling the bacterial biofilm formation; however, Au NPs did not show any remarkable antibiofilm activity. The maximum zone of inhibition was recorded against E. coli (17.6 ± 0.42 mm), followed by Salmonella sp., S. liquefaciens, and A. hydrophila. The macrotube dilution method inferred the MIC (20–40 µL mL−1) and MBC (40–60 µL mL−1) of Ag NPs. The CLSM images clearly showed the weak adherence and disintegrating biofilm formation of marine biofilm bacterial strains treated with Ag NPs. The Artemia cytotoxicity assay recorded the LC50 value of 88.914 ± 5.04 µL mL−1. Thus the present study proved the efficiency of Ag NPs as a potent antimicrofouling agent and became the future perspective for the possible usage in the biofouling related issues in the aquaculture installations and other marine systems. PMID:24672397

  11. SNS STRIPPER FOIL FAILURE MODES AND THEIR CURES

    SciTech Connect

    Galambos, John D; Luck, Chris; Plum, Michael A; Shaw, Robert W; Ladd, Peter; Raparia, Deepak; Macek, Robert James; Kim, Sang-Ho; Peters, Charles C; Polsky, Yarom

    2010-01-01

    The diamond stripper foils in use at the Spallation Neutron Source worked successfully with no failures until May 3, 2009, when we started experiencing a rash of foil system failures after increasing the beam power to ~840 kW. The main contributors to the failures are thought to be 1) convoy electrons, stripped from the incoming H beam, that strike the foil bracket and may also reflect back from the electron catcher, and 2) vacuum breakdown from the charge developed on the foil by secondary electron emission. In this paper we will detail these and other failure mechanisms, and describe the improvements we have made to mitigate them.

  12. Ti foil light in the ATA (Advanced Test Accelerator) beam

    SciTech Connect

    Slaughter, D.R.; Chong, Y.P.; Goosman, D.R.; Rule, D.W.; Fiorito, R.B.

    1987-09-01

    An experiment is in progress to characterize the visible light produced when a Ti foil is immersed in the ATA 2 kA, 43 MeV beam. Results obtained to date indicate that the optical condition of the foil surface is a critical determinant of these characteristics, with a very narrow angular distribution obtained when a highly polished and flat foil is used. These data are consistent with the present hypothesis that the light is produced by transition radiation. Incomplete experiments to determine the foil angle dependence of the detected light and its polarization are summarized and remaining experiments are described.

  13. Methods of making metallic glass foil laminate composites

    DOEpatents

    Vianco, Paul T.; Fisher, Robert W.; Hosking, Floyd M.; Zanner, Frank J.

    1996-01-01

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone.

  14. Methods of making metallic glass foil laminate composites

    DOEpatents

    Vianco, P.T.; Fisher, R.W.; Hosking, F.M.; Zanner, F.J.

    1996-08-20

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone. 6 figs.

  15. Characterization of U-Mo Foils for AFIP-7

    SciTech Connect

    Edwards, Danny J.; Ermi, Ruby M.; Schemer-Kohrn, Alan L.; Overman, Nicole R.; Henager, Charles H.; Burkes, Douglas; Senor, David J.

    2012-11-07

    Twelve AFIP in-process foil samples, fabricated by either Y-12 or LANL, were shipped from LANL to PNNL for potential characterization using optical and scanning electron microscopy techniques. Of these twelve, nine different conditions were examined to one degree or another using both techniques. For this report a complete description of the results are provided for one archive foil from each source of material, and one unirradiated piece of a foil of each source that was irradiated in the Advanced Test Reactor. Additional data from two other LANL conditions are summarized in very brief form in an appendix. The characterization revealed that all four characterized conditions contained a cold worked microstructure to different degrees. The Y-12 foils exhibited a higher degree of cold working compared to the LANL foils, as evidenced by the highly elongated and obscure U-Mo grain structure present in each foil. The longitudinal orientations for both of the Y-12 foils possesses a highly laminar appearance with such a distorted grain structure that it was very difficult to even offer a range of grain sizes. The U-Mo grain structure of the LANL foils, by comparison, consisted of a more easily discernible grain structure with a mix of equiaxed and elongated grains. Both materials have an inhomogenous grain structure in that all of the characterized foils possess abnormally coarse grains.

  16. Mounting stripper foils on forks for maximum lifetime

    NASA Astrophysics Data System (ADS)

    Jolivet, Connie S.; Stoner, John O.

    2008-06-01

    While research and development continue to produce forms of carbon for longer lasting stripper foils, relatively little attention has been paid to other factors that affect their survival in use. It becomes apparent that the form of carbon is only part of the issue. Specific mounting methods increase the lifetimes of carbon stripper foils. These methods are determined in part by the specific use and carbon type for a foil. With careful handling, appropriate adhesive, and slack mounting, premature breakage can be avoided. Foil lifetimes are then primarily affected by less easily controlled factors such as high-temperature expansion, shrinkage and evaporation.

  17. Apparatus and process for ultrasonic seam welding stainless steel foils

    DOEpatents

    Leigh, Richard W.

    1992-01-01

    An ultrasonic seam welding apparatus having a head which is rotated to form contact, preferably rolling contact, between a metallurgically inert coated surface of the head and an outside foil of a plurality of layered foils or work materials. The head is vibrated at an ultrasonic frequency, preferably along a longitudinal axis of the head. The head is constructed to transmit vibration through a contacting surface of the head into each of the layered foils. The contacting surface of the head is preferably coated with aluminum oxide to prevent the head from becoming welded to layered stainless steel foils.

  18. Colloidal gold nanorods: from reduction to growth

    NASA Astrophysics Data System (ADS)

    Park, Kyoungweon; El-Sayed, Mostafa; Srinivasarao, Mohan

    2005-03-01

    Formation of gold nanorods(NRs) in controlled reduction condition was investigated. Gold NRs were synthesized by seed mediated method where pre-made gold nanospheres were added to a growth solution containing surfactants, reducing agent and compound of gold ion and surfactant. Reduction mechanism was manipulated by changing catalytic activity of seed. Seed of different size and capping agent coverage led to different dispersity of NRs since seed plays a role as catalyst as well as nucleation site. The difference between the redox potentials of gold species and reducing agent(δE) was controlled by the strength of reducing agent and the stability of the gold compound. As δE leading to changing the morphology of resulting gold NRs. The surface of gold NRs with a series of aspect ratio was functionalized by thiolated beta cyclodextrin which binds preferentially to the end of NRs and promotes the orientation of rod-rod pair even without host-guest interaction.

  19. The synthesis of SERS-active gold nanoflower tags for in vivo applications.

    PubMed

    Xie, Jianping; Zhang, Qingbo; Lee, Jim Yang; Wang, Daniel I C

    2008-12-23

    This paper reports a simple, one-pot, template-free synthesis of flower-like Au nanoparticles (three-dimensional branched nanoparticles with more than 10 tips) with high yield and good size monodispersity at room temperature. The size of the Au nanoflowers could be tuned by controlling the composition of the starting reaction mixture. The key synthesis strategy was to use a common Good's buffer, HEPES, as a weak reducing and particle stabilizing agent to confine the growth of the Au nanocrystals in the special reaction region of limited ligand protection (LLP). Time-course measurements by UV-vis spectroscopy and TEM were used to follow the reaction progress and the evolution of the flower-like shape. The Au nanoflowers exhibited strong surface-enhanced effects which were utilized in the design of an efficient, stable, and nontoxic Raman-active tag for in vivo applications.

  20. Carbon supported trimetallic nickel-palladium-gold hollow nanoparticles with superior catalytic activity for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Shang, Changshuai; Hong, Wei; Wang, Jin; Wang, Erkang

    2015-07-01

    In this paper, Ni nanoparticles (NPs) are prepared in an aqueous solution by using sodium borohydride as reducing agent. With Ni NPs as the sacrificial template, hollow NiPdAu NPs are successfully prepared via partly galvanic displacement reaction between suitable metal precursors and Ni NPs. The as-synthesized hollow NiPdAu NPs can well dispersed on the carbon substrate. Transmission electron microscopy, X-ray diffraction and inductively coupled plasma mass spectrometry are taken to analyze the morphology, structure and composition of the as-synthesized catalysts. The prepared catalysts show superior catalytic activity and stability for methanol electrooxidation in alkaline media compared with commercial Pd/C and Pt/C. Catalysts prepared in this work show great potential to be anode catalysts in direct methanol fuel cells.

  1. Method of making porous conductive supports for electrodes. [by electroforming and stacking nickel foils

    NASA Technical Reports Server (NTRS)

    Schaer, G. R. (Inventor)

    1973-01-01

    Porous conductive supports for electrochemical cell electrodes are made by electroforming thin corrugated nickel foil, and by stacking pieces of the corrugated foil alternatively with pieces of thin flat nickel foil. Corrugations in successive corrugated pieces are oriented at different angles. Adjacent pieces of foil are bonded by heating in a hydrogen atmosphere and then cutting the stack in planes perpendicular to the foils.

  2. Gold Nanoantennas

    SciTech Connect

    2012-01-01

    An array of gold nanoantennas laced into an artificial membrane enhances the fluorescence intensity of three different molecules when they pass through plasmonic hot spots in the array. Watch for the blue, green and red flashes. The photobleaching at the end of each fluorescence event (white flashes) is indicative of single molecule observations.

  3. Gold liposomes

    SciTech Connect

    Hainfeld, J.F.

    1996-12-31

    Lipids are an important class of molecules, being found in membranes, HDL, LDL, and other natural structures, serving essential roles in structure and with varied functions such as compartmentalization and transport. Synthetic liposomes are also widely used as delivery and release vehicles for drugs, cosmetics, and other chemicals; soap is made from lipids. Lipids may form bilayer or multilammellar vesicles, micelles, sheets, tubes, and other structures. Lipid molecules may be linked to proteins, carbohydrates, or other moieties. EM study of this essential ingredient of life has lagged, due to lack of direct methods to visualize lipids without extensive alteration. OsO4 reacts with double bonds in membrane phospholipids, forming crossbridges. This has been the method of choice to both fix and stain membranes, thus far. An earlier work described the use of tungstate clusters (W{sub 11}) attached to lipid moieties to form lipid structures and lipid probes. With the development of gold clusters, it is now possible to covalently and specifically link a dense gold sphere to a lipid molecule; for example, reacting a mono-N-hydroxysuccinimide Nanogold cluster with the amino group on phosphatidyl ethanolaminine. Examples of a gold-fatty acid and a gold-phospholipid are shown.

  4. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    SciTech Connect

    Wang, Yanggang; Mei, Donghai; Glezakou, Vassiliki Alexandra; Li, Jun; Rousseau, Roger J.

    2015-03-04

    Ab initio Molecular Dynamics simulations and static Density Functional Theory calculations have been performed to investigate the reaction mechanism of CO oxidation on Au/CeO2 catalyst. It is found that under reaction condition CO adsorption significantly labializes the surface atoms of the Au cluster and leads to the formation of isolated Au+-CO species that resides on the support in the vicinity of the Au particle. In this context, we identified a dynamic single-atom catalytic mechanism at the interfacial area for CO oxidation on Au/CeO2 catalyst, which is a lower energy pathway than that of CO oxidation at the interface with the metal particle. This results from the ability of the single atom site to strongly couple with the redox properties of the support in a synergistic manner thereby lowering the barrier for redox reactions. We find that the single Au+ ion, which only exists under reaction conditions, breaks away from the Au cluster to catalyze CO oxidation and returns to the Au cluster after the catalytic cycle is completed. Generally, our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in a catalytic process.

  5. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    DOE PAGES

    Wang, Yanggang; Mei, Donghai; Glezakou, Vassiliki Alexandra; Li, Jun; Rousseau, Roger J.

    2015-03-04

    Ab initio Molecular Dynamics simulations and static Density Functional Theory calculations have been performed to investigate the reaction mechanism of CO oxidation on Au/CeO2 catalyst. It is found that under reaction condition CO adsorption significantly labializes the surface atoms of the Au cluster and leads to the formation of isolated Au+-CO species that resides on the support in the vicinity of the Au particle. In this context, we identified a dynamic single-atom catalytic mechanism at the interfacial area for CO oxidation on Au/CeO2 catalyst, which is a lower energy pathway than that of CO oxidation at the interface with themore » metal particle. This results from the ability of the single atom site to strongly couple with the redox properties of the support in a synergistic manner thereby lowering the barrier for redox reactions. We find that the single Au+ ion, which only exists under reaction conditions, breaks away from the Au cluster to catalyze CO oxidation and returns to the Au cluster after the catalytic cycle is completed. Generally, our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in a catalytic process.« less

  6. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy.

    PubMed

    Wustholz, Kristin L; Henry, Anne-Isabelle; McMahon, Jeffrey M; Freeman, R Griffith; Valley, Nicholas; Piotti, Marcelo E; Natan, Michael J; Schatz, George C; Van Duyne, Richard P

    2010-08-11

    Understanding the detailed relationship between nanoparticle structure and activity remains a significant challenge for the field of surface-enhanced Raman spectroscopy. To this end, the structural and optical properties of individual plasmonic nanoantennas comprised of Au nanoparticle assemblies that are coated with organic reporter molecules and encapsulated by a SiO(2) shell have been determined using correlated transmission electron microscopy (TEM), dark-field Rayleigh scattering microscopy, surface-enhanced Raman scattering (SERS) microscopy, and finite element method (FEM) calculations. The distribution of SERS enhancement factors (EFs) for a structurally and optically diverse set of nanoantennas is remarkably narrow. For a collection of 30 individual nanoantennas ranging from dimers to heptamers, the EFs vary by less than 2 orders of magnitude. Furthermore, the EFs for the hot-spot-containing nanoparticles are uncorrelated to aggregation state and localized surface plasmon resonance (LSPR) wavelength but are crucially dependent on the size of the interparticle gap. This study demonstrates that the creation of hot spots, where two particles are in subnanometer proximity or have coalesced to form crevices, is paramount to achieving maximum SERS enhancements.

  7. Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens.

    PubMed

    Russo, Christopher J; Passmore, Lori A

    2016-01-01

    Electron cryomicroscopy (cryo-EM) allows structure determination of a wide range of biological molecules and specimens. All-gold supports improve cryo-EM images by reducing radiation-induced motion and image blurring. Here we compare the mechanical and electrical properties of all-gold supports to amorphous carbon foils. Gold supports are more conductive, and have suspended foils that are not compressed by differential contraction when cooled to liquid nitrogen temperatures. These measurements show how the choice of support material and geometry can reduce specimen movement by more than an order of magnitude during low-dose imaging. We provide methods for fabrication of all-gold supports and preparation of vitrified specimens. We also analyse illumination geometry for optimal collection of high resolution, low-dose data. Together, the support structures and methods herein can improve the resolution and quality of images from any electron cryomicroscope.

  8. Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens

    PubMed Central

    Russo, Christopher J.; Passmore, Lori A.

    2016-01-01

    Electron cryomicroscopy (cryo-EM) allows structure determination of a wide range of biological molecules and specimens. All-gold supports improve cryo-EM images by reducing radiation-induced motion and image blurring. Here we compare the mechanical and electrical properties of all-gold supports to amorphous carbon foils. Gold supports are more conductive, and have suspended foils that are not compressed by differential contraction when cooled to liquid nitrogen temperatures. These measurements show how the choice of support material and geometry can reduce specimen movement by more than an order of magnitude during low-dose imaging. We provide methods for fabrication of all-gold supports and preparation of vitrified specimens. We also analyse illumination geometry for optimal collection of high resolution, low-dose data. Together, the support structures and methods herein can improve the resolution and quality of images from any electron cryomicroscope. PMID:26592474

  9. Gold nanoparticles induce heme oxygenase-1 expression through Nrf2 activation and Bach1 export in human vascular endothelial cells

    PubMed Central

    Lai, Tsung-Hsuan; Shieh, Jiunn-Min; Tsou, Chih-Jen; Wu, Wen-Bin

    2015-01-01

    It has been reported that increased levels and activity of the heme oxygenase-1 (HO-1) protein ameliorate tissue injuries. In the present study, we investigated the effects and mechanisms of action of gold nanoparticles (AuNPs) on HO-1 protein expression in human vascular endothelial cells (ECs). The AuNPs induced HO-1 protein and mRNA expression in a concentration- and time-dependent manner. The induction was reduced by the thiol-containing antioxidants, including N-acetylcysteine and glutathione, but not by the non-thiol-containing antioxidants and inhibitors that block the enzymes for intracellular reactive oxygen species generation. The AuNPs enhanced Nrf2 protein levels but did not affect Nrf2 mRNA expression. In response to the AuNP treatment, the cytosolic Nrf2 translocated to the nucleus, and, concomitantly, Bach1 exited the nucleus and its tyrosine phosphorylation increased. The chromatin immunoprecipitation assay revealed that the translocated Nrf2 bound to the antioxidant-response element located in the E2 enhancer region of the HO-1 gene promoter and acted as a transcription factor. Although N-acetylcysteine inhibited the AuNP-induced Nrf2 nuclear translocation, the AuNPs did not promote intracellular reactive oxygen species production or endoplasmic reticulum stress in the ECs. Knockdown of Nrf2 expression by RNA interference significantly inhibited AuNP-induced HO-1 expression at the protein and mRNA levels. In summary, AuNPs enhance the levels and nuclear translocation of the Nrf2 protein and Bach1 export/tyrosine phosphorylation, leading to Nrf2 binding to the HO-1 E2 enhancer promoter region to drive HO-1 expression in ECs. This study, together with our parallel findings, demonstrates that AuNPs can act as an HO-1 inducer, which may partially contribute to their anti-inflammatory bioactivity in human vascular ECs. PMID:26445536

  10. Templated Growth of Surface Enhanced Raman Scattering-Active Branched Gold Nanoparticles within Radial Mesoporous Silica Shells

    PubMed Central

    2015-01-01

    Noble metal nanoparticles are widely used as probes or substrates for surface enhanced Raman scattering (SERS), due to their characteristic plasmon resonances in the visible and near-IR spectral ranges. Aiming at obtaining a versatile system with high SERS performance, we developed the synthesis of quasi-monodisperse, nonaggregated gold nanoparticles protected by radial mesoporous silica shells. The radial mesoporous channels were used as templates for the growth of gold tips branching out from the cores, thereby improving the plasmonic performance of the particles while favoring the localization of analyte molecules at high electric field regions: close to the tips, inside the pores. The method, which additionally provides control over tip length, was successfully applied to gold nanoparticles with various shapes, leading to materials with highly efficient SERS performance. The obtained nanoparticles are stable in ethanol and water upon thermal consolidation and can be safely stored as a powder. PMID:26370658

  11. Templated Growth of Surface Enhanced Raman Scattering-Active Branched Gold Nanoparticles within Radial Mesoporous Silica Shells.

    PubMed

    Sanz-Ortiz, Marta N; Sentosun, Kadir; Bals, Sara; Liz-Marzán, Luis M

    2015-10-27

    Noble metal nanoparticles are widely used as probes or substrates for surface enhanced Raman scattering (SERS), due to their characteristic plasmon resonances in the visible and near-IR spectral ranges. Aiming at obtaining a versatile system with high SERS performance, we developed the synthesis of quasi-monodisperse, nonaggregated gold nanoparticles protected by radial mesoporous silica shells. The radial mesoporous channels were used as templates for the growth of gold tips branching out from the cores, thereby improving the plasmonic performance of the particles while favoring the localization of analyte molecules at high electric field regions: close to the tips, inside the pores. The method, which additionally provides control over tip length, was successfully applied to gold nanoparticles with various shapes, leading to materials with highly efficient SERS performance. The obtained nanoparticles are stable in ethanol and water upon thermal consolidation and can be safely stored as a powder. PMID:26370658

  12. Near monochromatic 20 Me V proton acceleration using fs laser irradiating Au foils in target normal sheath acceleration regime

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Cutroneo, M.; Ceccio, G.; Cannavò, A.; Batani, D.; Boutoux, G.; Jakubowska, K.; Ducret, J. E.

    2016-04-01

    A 200 mJ laser pulse energy, 39 fs-pulse duration, 10 μm focal spot, p-polarized radiation has been employed to irradiate thin Au foils to produce proton acceleration in the forward direction. Gold foils were employed to produce high density relativistic electrons emission in the forward direction to generate a high electric field driving the ion acceleration. Measurements were performed by changing the focal position in respect of the target surface. Proton acceleration was monitored using fast SiC detectors in time-of-flight configuration. A high proton energy, up to about 20 Me V, with a narrow energy distribution, was obtained in particular conditions depending on the laser parameters, the irradiation conditions, and a target optimization.

  13. Visualization of terahertz surface waves propagation on metal foils

    PubMed Central

    Wang, Xinke; Wang, Sen; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Yan, Haitao; Ye, Jiasheng; Zhang, Yan

    2016-01-01

    Exploitation of surface plasmonic devices (SPDs) in the terahertz (THz) band is always beneficial for broadening the application potential of THz technologies. To clarify features of SPDs, a practical characterization means is essential for accurately observing the complex field distribution of a THz surface wave (TSW). Here, a THz digital holographic imaging system is employed to coherently exhibit temporal variations and spectral properties of TSWs activated by a rectangular or semicircular slit structure on metal foils. Advantages of the imaging system are comprehensively elucidated, including the exclusive measurement of TSWs and fall-off of the time consumption. Numerical simulations of experimental procedures further verify the imaging measurement accuracy. It can be anticipated that this imaging system will provide a versatile tool for analyzing the performance and principle of SPDs. PMID:26729652

  14. Comparative study of proteasome inhibitory, synergistic antibacterial, synergistic anticandidal, and antioxidant activities of gold nanoparticles biosynthesized using fruit waste materials

    PubMed Central

    Patra, Jayanta Kumar; Baek, Kwang-Hyun

    2016-01-01

    The aim of this study was to compare the biological synthesis of gold nanoparticles (AuNPs) generated using the aqueous extracts of outer oriental melon peel (OMP) and peach. The synthesized OMP-AuNPs and peach extract (PE)-AuNPs were characterized by ultraviolet–visible spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis, X-ray powder diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The surface plasmon resonance spectra were obtained at 545 nm and 540 nm for OMP-AuNPs and PE-AuNPs, respectively. The estimated absolute crystallite size of the synthesized AuNPs was calculated to be 78.11 nm for OMP-AuNPs and 39.90 nm for PE-AuNPs based on the Scherer equation of the X-ray powder diffraction peaks. Fourier transform infrared spectroscopy results revealed the involvement of bioactive compounds present in OMP and peach extracts in the synthesis and stabilization of synthesized AuNPs. Both the OMP-AuNPs and PE-AuNPs showed a strong antibacterial synergistic activity when combined with kanamycin (9.38–20.45 mm inhibition zones) and rifampicin (9.52–25.23 mm inhibition zones), and they also exerted a strong synergistic anticandidal activity (10.09–15.47 mm inhibition zones) when combined with amphotericin B against five pathogenic Candida species. Both the OMP-AuNPs and PE-AuNPs exhibited a strong antioxidant potential in terms of 1,1-diphenyl-2-picrylhydraxyl radical scavenging, nitric oxide scavenging, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging, and a reducing power, along with a strong proteasome inhibitory potential that could be useful in cancer drug delivery and cancer treatments. The PE-AuNPs showed comparatively higher activity than OMP-AuNPs, which could be attributed to the presence of rich bioactive compounds in the PE that acted as reducing and capping agents in the synthesis of PE-AuNPs. Overall, the results of the current investigation

  15. Comparative study of proteasome inhibitory, synergistic antibacterial, synergistic anticandidal, and antioxidant activities of gold nanoparticles biosynthesized using fruit waste materials

    PubMed Central

    Patra, Jayanta Kumar; Baek, Kwang-Hyun

    2016-01-01

    The aim of this study was to compare the biological synthesis of gold nanoparticles (AuNPs) generated using the aqueous extracts of outer oriental melon peel (OMP) and peach. The synthesized OMP-AuNPs and peach extract (PE)-AuNPs were characterized by ultraviolet–visible spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis, X-ray powder diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The surface plasmon resonance spectra were obtained at 545 nm and 540 nm for OMP-AuNPs and PE-AuNPs, respectively. The estimated absolute crystallite size of the synthesized AuNPs was calculated to be 78.11 nm for OMP-AuNPs and 39.90 nm for PE-AuNPs based on the Scherer equation of the X-ray powder diffraction peaks. Fourier transform infrared spectroscopy results revealed the involvement of bioactive compounds present in OMP and peach extracts in the synthesis and stabilization of synthesized AuNPs. Both the OMP-AuNPs and PE-AuNPs showed a strong antibacterial synergistic activity when combined with kanamycin (9.38–20.45 mm inhibition zones) and rifampicin (9.52–25.23 mm inhibition zones), and they also exerted a strong synergistic anticandidal activity (10.09–15.47 mm inhibition zones) when combined with amphotericin B against five pathogenic Candida species. Both the OMP-AuNPs and PE-AuNPs exhibited a strong antioxidant potential in terms of 1,1-diphenyl-2-picrylhydraxyl radical scavenging, nitric oxide scavenging, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging, and a reducing power, along with a strong proteasome inhibitory potential that could be useful in cancer drug delivery and cancer treatments. The PE-AuNPs showed comparatively higher activity than OMP-AuNPs, which could be attributed to the presence of rich bioactive compounds in the PE that acted as reducing and capping agents in the synthesis of PE-AuNPs. Overall, the results of the current investigation

  16. Active-Transient Liquid Phase (A-TLP) Bonding of Pure Aluminum Matrix Composite Reinforced with Short Alumina Fiber Using Al-12Si- xTi Foils as Active Interlayer

    NASA Astrophysics Data System (ADS)

    Zhang, Guifeng; Su, Wei; Suzumura, Akio

    2016-06-01

    To optimize both the interlayer composition design route and pressure for joining aluminum matrix composite reinforced with short alumina fiber (as-cast 30 vol pct Al2O3sf/Al), traditional transient liquid phase (TLP) bonding using Al-12Si and Cu interlayer and active-TLP (A-TLP) bonding using an active Ti-containing interlayer (Al-12Si- xTi, x = 0.1, 0.5, and 1 wt pct) under the same condition [883 K (610 °C) × 30 minutes × 1 or 0.015 MPa in flowing argon] were compared in terms of interfacial wettability, bond seam microstructure, shear strength, and fracture path. It was found that not only the Ti content but also the pressure are critical factors affecting interfacial wettability and bond seam microstructure. The improvement in wettability by adding Ti as an active element were confirmed by reduction of expulsion of liquid interlayer, elimination of interfacial gap, higher shear strength and favorable fracture path (partially through bond seam and the composite). Because of the incubation period for wetting, reducing the pressure after melting of the interlayer could further increase joint shear strength by thickening the remaining bond seam of solid-solution matrix and decreasing fraction of the in situ newly formed Al-Si-Ti IMC phase (short bar shape) within the bond seam. The maximum shear strength of 88.6 MPa (99 pct of the as-cast composite) was obtained by adding trace Ti content (0.5 Ti wt pct) addition and using low pressure (0.015 MPa). The results showed that suitable combination of Ti content and pressure pattern is required for improving both wettability and bond seam microstructure.

  17. Insulating effectiveness of self-spacing dimpled foil

    NASA Technical Reports Server (NTRS)

    Bond, J. A.

    1972-01-01

    Experimental data are graphed for determining conductive heat losses of multilayer insulation as function of number of foil layers. Foil was 0.0051 cm thick Nb, 1% Zr refractory alloy, dimpled to 0.0254 cm with approximately 28 dimples/sq cm. Heat losses were determined at 0.1 microtorr between 700 and 1089 K.

  18. ORIC stripping foil positioner for tandem beam injection

    SciTech Connect

    Ludemann, C.A.; Lord, R.S.; Hudson, E.D.; Irwin, F.; Beckers, R.M.; Haynes, D.L.; Casstevens, B.J.; Mosko, S.W.

    1981-01-01

    The Oak Ridge Isochronous Cyclotron (ORIC) is used as an energy booster for heavy ions from a 25 MV tandem accelerator. This operation requires precise placement of a stripping foil in the cyclotron for capture of the injected ions into an acceleration orbit. The mechanical design and control of the foil positioning device are described.

  19. Dinuclear Gold(I) Pyrrolidinedithiocarbamato Complex: Cytotoxic and Antimigratory Activities on Cancer Cells and the Use of Metal-Organic Framework.

    PubMed

    Sun, Raymond Wai-Yin; Zhang, Ming; Li, Dan; Zhang, Zhi-Feng; Cai, Hong; Li, Mian; Xian, Yue-Jiao; Ng, Seik Weng; Wong, Alice Sze-Tsai

    2015-12-14

    A dinuclear gold(I) pyrrolidinedithiocarbamato complex (1) with a bidentate carbene ligand has been constructed and shows potent in vitro cytotoxic activities towards cisplatin-resistant ovarian cancer cells A2780cis. Its rigid scaffold enables a zinc(II)-based metal-organic framework (Zn-MOF) to be used as a carrier in facilitating the uptake and release of 1 in solutions. Instead of using a conventional dialysis approach for the drug-release testing, in this study, a set of transwell assay-based experiments have been designed and employed to examine the cytotoxic and antimigratory activities of 1@Zn-MOF towards A2780cis.

  20. Gas Foil Bearing Misalignment and Unbalance Effects

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2008-01-01

    The effects of misalignment and unbalance on gas foil bearings are presented. The future of U.S. space exploration includes plans to conduct science missions aboard space vehicles, return humans to the Moon, and place humans on Mars. All of these endeavors are of long duration, and require high amounts of electrical power for propulsion, life support, mission operations, etc. One potential source of electrical power of sufficient magnitude and duration is a nuclear-fission-based system. The system architecture would consist of a nuclear reactor heat source with the resulting thermal energy converted to electrical energy through a dynamic power conversion and heat rejection system. Various types of power conversion systems can be utilized, but the Closed Brayton Cycle (CBC) turboalternator is one of the leading candidates. In the CBC, an inert gas heated by the reactor drives a turboalternator, rejects excess heat to space through a heat exchanger, and returns to the reactor in a closed loop configuration. The use of the CBC for space power and propulsion is described in more detail in the literature (Mason, 2003). In the CBC system just described, the process fluid is a high pressure inert gas such as argon, krypton, or a helium-xenon mixture. Due to the closed loop nature of the system and the associated potential for damage to components in the system, contamination of the working fluid is intolerable. Since a potential source of contamination is the lubricant used in conventional turbomachinery bearings, Gas Foil Bearings (GFB) have high potential for the rotor support system. GFBs are compliant, hydrodynamic journal and thrust bearings that use a gas, such as the CBC working fluid, as their lubricant. Thus, GFBs eliminate the possibility of contamination due to lubricant leaks into the closed loop system. Gas foil bearings are currently used in many commercial applications, both terrestrial and aerospace. Aircraft Air Cycle Machines (ACMs) and ground

  1. Benchmark test of neutron transport calculations: indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing.

    PubMed

    Iwatani, K; Hoshi, M; Shizuma, K; Hiraoka, M; Hayakawa, N; Oka, T; Hasai, H

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated 252Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate 152Eu and 60Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated 252Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. PMID:8083048

  2. Benchmark test of neutron transport calculations: Indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing

    SciTech Connect

    Iwatani, Kazuo; Shizuma, Kiyoshi; Hasai, Hiromi; Hoshi, Masaharu; Hiraoka, Masayuki; Hayakawa, Norihiko; Oka, Takamitsu

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated {sup 252}Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate {sup 152}Eu and {sup 60}Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated {sup 252}Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. 18 refs., 10 figs., 4 tabs.

  3. Benchmark test of neutron transport calculations: indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing.

    PubMed

    Iwatani, K; Hoshi, M; Shizuma, K; Hiraoka, M; Hayakawa, N; Oka, T; Hasai, H

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated 252Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate 152Eu and 60Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated 252Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen.

  4. Tubular hydrogen permeable metal foil membrane and method of fabrication

    DOEpatents

    Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.

    2006-04-04

    A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.

  5. Qualification of diode foil materials for excimer lasers

    NASA Astrophysics Data System (ADS)

    Anderson, R. G.; Shurter, R. P.; Rose, E. A.

    The Aurora facility at Los Alamos National Laboratory uses KrF excimer lasers to produce 248 nm light for inertial confinement fusion applications. Diodes in each amplifier produce relativistic electron beams to pump a Kr-F-Ar gas mixture. A foil is necessary to separate the vacuum diode from the laser gas. High tensile strength, high electron transmission, low ultraviolet reflectivity, and chemical compatibility with fluorine have been identified as requisite foil properties. Several different materials were acquired and tested for use as diode foils. Transmission and fluorine compatibility tests were performed using the Electron Gun Test Facility (EGTF) at Los Alamos. Off-line tests of tensile strength and reflectivity were performed. Titanium foil, which is commonly used as a diode foil, was found to generate solid and gaseous fluoride compounds, some of which are highly reactive in contact with water vapor.

  6. Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags.

    PubMed

    Boca, Sanda C; Astilean, Simion

    2010-06-11

    We present an effective, low cost protocol to reduce the toxicity of gold nanorods induced by the presence of cetyltrimethylammonium bromide (CTAB) on their lateral surface as a result of the synthesis process. Here, we use thiolated methoxy-poly(ethylene) glycol (mPEG-SH) polymer to displace most of the CTAB bilayer cap from the particle surface. The detoxification process, chemical and structural stability of as-prepared mPEG-SH-conjugated gold nanorods were characterized using a number of techniques including localized surface plasmon resonance (LSPR), transmission electron microscopy (TEM) and surface-enhanced Raman spectroscopy (SERS). In view of future applications as near-infrared (NIR) nanoheaters in localized photothermal therapy of cancer, we investigated the thermal behaviour of mPEG-SH-conjugated gold nanorods above room temperature. We found a critical temperature at around 40 degrees C at which the adsorbed polymer layer is susceptible to undergo conformational changes. Additionally, we believe that such plasmonic nanoprobes could act as SERS-active carriers of Raman tags for application in cellular imaging. In this sense we successfully tested them as effective SERS substrates at 785 nm laser line with p-aminothiophenol (pATP) as a tag molecule.

  7. Foil Gas Thrust Bearings for High-Speed Turbomachinery

    NASA Technical Reports Server (NTRS)

    Edmonds, Brian; DellaCorte, Christopher; Dykas, Brian

    2010-01-01

    A methodology has been developed for the design and construction of simple foil thrust bearings intended for parametric performance testing and low marginal costs, supporting continued development of oil-free turbomachinery. A bearing backing plate is first machined and surface-ground to produce flat and parallel faces. Partial-arc slots needed to retain the foil components are then machined into the plate by wire electrical discharge machining. Slot thicknesses achievable by a single wire pass are appropriate to accommodate the practical range of foil thicknesses, leaving a small clearance in this hinged joint to permit limited motion. The backing plate is constructed from a nickel-based superalloy (Inconel 718) to allow heat treatment of the entire assembled bearing, as well as to permit hightemperature operation. However, other dimensionally stable materials, such as precipitation-hardened stainless steel, can also be used for this component depending on application. The top and bump foil blanks are cut from stacks of annealed Inconel X-750 foil by the same EDM process. The bump foil has several azimuthal slits separating it into five individual bump strips. This configuration allows for variable bump spacing, which helps to accommodate the effects of the varying surface velocity, thermal crowning, centrifugal dishing, and misalignment. Rectangular tabs on the foil blanks fit into the backing plate slots. For this application, a rather traditional set of conventionally machined dies is selected, and bump foil blanks are pressed into the dies for forming. This arrangement produces a set of bump foil dies for foil thrust bearings that provide for relatively inexpensive fabrication of various bump configurations, and employing methods and features from the public domain.

  8. Large-area beryllium metal foils

    NASA Astrophysics Data System (ADS)

    Stoner, J. O., Jr.

    1997-02-01

    To manufacture beryllium filters having diameters up to 82 mm and thicknesses in the range 0.1-1 μm, it was necessary to construct apparatus in which the metal could safely be evaporated, and then to find an acceptable substrate and evaporation procedure. The metal was evaporated resistively from a tantalum dimple boat mounted in a baffled enclosure that could be placed in a conventional vacuum bell jar, obviating the need for a dedicated complete vacuum system. Substrates were 102 mm × 127 mm × 0.05 mm cleaved mica sheets, coated with 0.1 μm of NaCl, then with approximately 50 μg/cm 2 of cellulose nitrate. These were mounted on poly(methyl methacrylate) sheets 3 mm thick that were in turn clamped to a massive aluminum block for thermal stability. Details of the processes for evaporation, float off, and mounting are given, and the resulting foils described.

  9. High strain rate metalworking with vaporizing foil actuator: Control of flyer velocity by varying input energy and foil thickness

    NASA Astrophysics Data System (ADS)

    Vivek, A.; Hansen, S. R.; Daehn, Glenn S.

    2014-07-01

    Electrically driven rapid vaporization of thin metallic foils can generate a high pressure which can be used to launch flyers at high velocities. Recently, vaporizing foil actuators have been applied toward a variety of impulse-based metal working operations. In order to exercise control over this useful tool, it is imperative that an understanding of the effect of characteristics of the foil actuator on its ability for mechanical impulse generation is developed. Here, foil actuators made out of 0.0508 mm, 0.0762 mm, and 0.127 mm thick AA1145 were used for launching AA2024-T3 sheets of thickness 0.508 mm toward a photonic Doppler velocimeter probe. Launch velocities ranging between 300 m/s and 1100 m/s were observed. In situ measurement of velocity, current, and voltage assisted in understanding the effect of burst current density and deposited electrical energy on average pressure and velocity with foil actuators of various thicknesses. For the pulse generator, geometry, and flyer used here, the 0.0762 mm thick foil was found to be optimal for launching flyers to high velocities over short distances. Experimenting with annealed foil actuators resulted in no change in the temporal evolution of flyer velocity as compared to foil actuators of full hard temper. A physics-based analytical model was developed and found to have reasonable agreement with experiment.

  10. High strain rate metalworking with vaporizing foil actuator: control of flyer velocity by varying input energy and foil thickness.

    PubMed

    Vivek, A; Hansen, S R; Daehn, Glenn S

    2014-07-01

    Electrically driven rapid vaporization of thin metallic foils can generate a high pressure which can be used to launch flyers at high velocities. Recently, vaporizing foil actuators have been applied toward a variety of impulse-based metal working operations. In order to exercise control over this useful tool, it is imperative that an understanding of the effect of characteristics of the foil actuator on its ability for mechanical impulse generation is developed. Here, foil actuators made out of 0.0508 mm, 0.0762 mm, and 0.127 mm thick AA1145 were used for launching AA2024-T3 sheets of thickness 0.508 mm toward a photonic Doppler velocimeter probe. Launch velocities ranging between 300 m/s and 1100 m/s were observed. In situ measurement of velocity, current, and voltage assisted in understanding the effect of burst current density and deposited electrical energy on average pressure and velocity with foil actuators of various thicknesses. For the pulse generator, geometry, and flyer used here, the 0.0762 mm thick foil was found to be optimal for launching flyers to high velocities over short distances. Experimenting with annealed foil actuators resulted in no change in the temporal evolution of flyer velocity as compared to foil actuators of full hard temper. A physics-based analytical model was developed and found to have reasonable agreement with experiment. PMID:25085167

  11. High strain rate metalworking with vaporizing foil actuator: Control of flyer velocity by varying input energy and foil thickness

    SciTech Connect

    Vivek, A. Hansen, S. R.; Daehn, Glenn S.

    2014-07-15

    Electrically driven rapid vaporization of thin metallic foils can generate a high pressure which can be used to launch flyers at high velocities. Recently, vaporizing foil actuators have been applied toward a variety of impulse-based metal working operations. In order to exercise control over this useful tool, it is imperative that an understanding of the effect of characteristics of the foil actuator on its ability for mechanical impulse generation is developed. Here, foil actuators made out of 0.0508 mm, 0.0762 mm, and 0.127 mm thick AA1145 were used for launching AA2024-T3 sheets of thickness 0.508 mm toward a photonic Doppler velocimeter probe. Launch velocities ranging between 300 m/s and 1100 m/s were observed. In situ measurement of velocity, current, and voltage assisted in understanding the effect of burst current density and deposited electrical energy on average pressure and velocity with foil actuators of various thicknesses. For the pulse generator, geometry, and flyer used here, the 0.0762 mm thick foil was found to be optimal for launching flyers to high velocities over short distances. Experimenting with annealed foil actuators resulted in no change in the temporal evolution of flyer velocity as compared to foil actuators of full hard temper. A physics-based analytical model was developed and found to have reasonable agreement with experiment.

  12. Is It Real Gold?

    ERIC Educational Resources Information Center

    Harris, Harold H.

    1999-01-01

    Features acid tests for determining whether jewelry is "real" gold or simply gold-plated. Describes the carat system of denoting gold content and explains how alloys are used to create various shades of gold jewelry. Addresses the question of whether gold jewelry can turn a wearer's skin green by considering various oxidation reactions. (WRM)

  13. One-step fabrication of hollow-channel gold nanoflowers with excellent catalytic performance and large single-particle SERS activity.

    PubMed

    Ye, Sunjie; Benz, Felix; Wheeler, May C; Oram, Joseph; Baumberg, Jeremy J; Cespedes, Oscar; Christenson, Hugo K; Coletta, Patricia Louise; Jeuken, Lars J C; Markham, Alexander F; Critchley, Kevin; Evans, Stephen D

    2016-08-11

    Hollow metallic nanostructures have shown potential in various applications including catalysis, drug delivery and phototherapy, owing to their large surface areas, reduced net density, and unique optical properties. In this study, novel hollow gold nanoflowers (HAuNFs) consisting of an open hollow channel in the center and multiple branches/tips on the outer surface are fabricated for the first time, via a facile one-step synthesis using an auto-degradable nanofiber as a bifunctional template. The one-dimensional (1D) nanofiber acts as both a threading template as well as a promoter of the anisotropic growth of the gold crystal, the combination of which leads to the formation of HAuNFs with a hollow channel and nanospikes. The synergy of favorable structural/surface features, including sharp edges, open cavity and high-index facets, provides our HAuNFs with excellent catalytic performance (activity and cycling stability) coupled with large single-particle SERS activity (including ∼30 times of activity in ethanol electro-oxidation and ∼40 times of single-particle SERS intensity, benchmarked against similar-sized solid gold nanospheres with smooth surfaces, as well as retaining 86.7% of the initial catalytic activity after 500 cycles in ethanol electro-oxidation). This innovative synthesis gives a nanostructure of the geometry distinct from the template and is extendable to fabricating other systems for example, hollow-channel silver nanoflowers (HAgNFs). It thus provides an insight into the design of hollow nanostructures via template methods, and offers a versatile synthetic strategy for diverse metal nanomaterials suited for a broad range of applications.

  14. One-step fabrication of hollow-channel gold nanoflowers with excellent catalytic performance and large single-particle SERS activity.

    PubMed

    Ye, Sunjie; Benz, Felix; Wheeler, May C; Oram, Joseph; Baumberg, Jeremy J; Cespedes, Oscar; Christenson, Hugo K; Coletta, Patricia Louise; Jeuken, Lars J C; Markham, Alexander F; Critchley, Kevin; Evans, Stephen D

    2016-08-11

    Hollow metallic nanostructures have shown potential in various applications including catalysis, drug delivery and phototherapy, owing to their large surface areas, reduced net density, and unique optical properties. In this study, novel hollow gold nanoflowers (HAuNFs) consisting of an open hollow channel in the center and multiple branches/tips on the outer surface are fabricated for the first time, via a facile one-step synthesis using an auto-degradable nanofiber as a bifunctional template. The one-dimensional (1D) nanofiber acts as both a threading template as well as a promoter of the anisotropic growth of the gold crystal, the combination of which leads to the formation of HAuNFs with a hollow channel and nanospikes. The synergy of favorable structural/surface features, including sharp edges, open cavity and high-index facets, provides our HAuNFs with excellent catalytic performance (activity and cycling stability) coupled with large single-particle SERS activity (including ∼30 times of activity in ethanol electro-oxidation and ∼40 times of single-particle SERS intensity, benchmarked against similar-sized solid gold nanospheres with smooth surfaces, as well as retaining 86.7% of the initial catalytic activity after 500 cycles in ethanol electro-oxidation). This innovative synthesis gives a nanostructure of the geometry distinct from the template and is extendable to fabricating other systems for example, hollow-channel silver nanoflowers (HAgNFs). It thus provides an insight into the design of hollow nanostructures via template methods, and offers a versatile synthetic strategy for diverse metal nanomaterials suited for a broad range of applications. PMID:27352044

  15. Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells.

    PubMed

    Rau, Lih-Rou; Huang, Wan-Yu; Liaw, Jiunn-Woei; Tsai, Shiao-Wen

    2016-01-01

    The specific properties of gold nanoparticles (AuNPs) make them a novel class of photothermal agents that can induce cancer cell damage and even death through the conversion of optical energy to thermal energy. Most relevant studies have focused on increasing the precision of cell targeting, improving the efficacy of energy transfer, and exploring additional functions. Nevertheless, most cells can uptake nanosized particles through nonspecific endocytosis; therefore, before hyperthermia via AuNPs can be applied for clinical use, it is important to understand the adverse optical-thermal effects of AuNPs on nontargeted cells. However, few studies have investigated the thermal effects induced by pulsed laser-activated AuNPs on nearby healthy cells due to nonspecific treatment. The aim of this study is to evaluate the photothermal effects induced by AuNPs plus a pulsed laser on MG63, an osteoblast-like cell line, specifically examining the effects on cell morphology, viability, death program, and differentiation. The cells were treated with media containing 50 nm AuNPs at a concentration of 5 ppm for 1 hour. Cultured cells were then exposed to irradiation at 60 mW/cm(2) and 80 mW/cm(2) by a Nd:YAG laser (532 nm wavelength). We observed that the cytoskeletons of MG63 cells treated with bare AuNPs followed by pulsed laser irradiation were damaged, and these cells had few bubbles on the cell membrane compared with those that were not treated (control) or were treated with AuNPs or the laser alone. There were no significant differences between the AuNPs plus laser treatment group and the other groups in terms of cell viability, death program analysis results, or alkaline phosphatase and calcium accumulation during culture for up to 21 days. However, the calcium deposit areas in the cells treated with AuNPs plus laser were larger than those in other groups during the early culture period. PMID:27555768

  16. Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells

    PubMed Central

    Rau, Lih-Rou; Huang, Wan-Yu; Liaw, Jiunn-Woei; Tsai, Shiao-Wen

    2016-01-01

    The specific properties of gold nanoparticles (AuNPs) make them a novel class of photothermal agents that can induce cancer cell damage and even death through the conversion of optical energy to thermal energy. Most relevant studies have focused on increasing the precision of cell targeting, improving the efficacy of energy transfer, and exploring additional functions. Nevertheless, most cells can uptake nanosized particles through nonspecific endocytosis; therefore, before hyperthermia via AuNPs can be applied for clinical use, it is important to understand the adverse optical–thermal effects of AuNPs on nontargeted cells. However, few studies have investigated the thermal effects induced by pulsed laser-activated AuNPs on nearby healthy cells due to nonspecific treatment. The aim of this study is to evaluate the photothermal effects induced by AuNPs plus a pulsed laser on MG63, an osteoblast-like cell line, specifically examining the effects on cell morphology, viability, death program, and differentiation. The cells were treated with media containing 50 nm AuNPs at a concentration of 5 ppm for 1 hour. Cultured cells were then exposed to irradiation at 60 mW/cm2 and 80 mW/cm2 by a Nd:YAG laser (532 nm wavelength). We observed that the cytoskeletons of MG63 cells treated with bare AuNPs followed by pulsed laser irradiation were damaged, and these cells had few bubbles on the cell membrane compared with those that were not treated (control) or were treated with AuNPs or the laser alone. There were no significant differences between the AuNPs plus laser treatment group and the other groups in terms of cell viability, death program analysis results, or alkaline phosphatase and calcium accumulation during culture for up to 21 days. However, the calcium deposit areas in the cells treated with AuNPs plus laser were larger than those in other groups during the early culture period. PMID:27555768

  17. Single-step co-deposition of nanostructured tungsten oxide supported gold nanoparticles using a gold-phosphine cluster complex as the gold precursor

    NASA Astrophysics Data System (ADS)

    Molkenova, Anara; Sarip, Rozie; Sathasivam, Sanjay; Umek, Polona; Vallejos, Stella; Blackman, Chris; Hogarth, Graeme; Sankar, Gopinathan

    2014-12-01

    The use of a molecular gold organometallic cluster in chemical vapour deposition is reported, and it is utilized, together with a tungsten oxide precursor, for the single-step co-deposition of (nanostructured) tungsten oxide supported gold nanoparticles (NPs). The deposited gold-NP and tungsten oxide supported gold-NP are highly active catalysts for benzyl alcohol oxidation; both show higher activity than SiO2 supported gold-NP synthesized via a solution-phase method, and tungsten oxide supported gold-NP show excellent selectivity for conversion to benzaldehyde.

  18. In vitro cytotoxic effects of gold nanoparticles coated with functional acyl homoserine lactone lactonase protein from Bacillus licheniformis and their antibiofilm activity against Proteus species.

    PubMed

    Vinoj, Gopalakrishnan; Pati, Rashmirekha; Sonawane, Avinash; Vaseeharan, Baskaralingam

    2015-02-01

    N-acylated homoserine lactonases are known to inhibit the signaling molecules of the biofilm-forming pathogens. In this study, gold nanoparticles were coated with N-acylated homoserine lactonase proteins (AiiA AuNPs) purified from Bacillus licheniformis. The AiiA AuNPs were characterized by UV-visible spectra, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The synthesized AiiA AuNPs were found to be spherical in shape and 10 to 30 nm in size. Treatment with AiiA protein-coated AuNPs showed maximum reduction in exopolysaccharide production, metabolic activities, and cell surface hydrophobicity and potent antibiofilm activity against multidrug-resistant Proteus species compared to treatment with AiiA protein alone. AiiA AuNPs exhibited potent antibiofilm activity at 2 to 8 μM concentrations without being harmful to the macrophages. We conclude that at a specific dose, AuNPs coated with AiiA can kill bacteria without harming the host cells, thus representing a potential template for the design of novel antibiofilm and antibacterial protein drugs to decrease bacterial colonization and to overcome the problem of drug resistance. In summary, our data suggest that the combined effect of the lactonase and the gold nanoparticles of the AiiA AuNPs has promising antibiofilm activity against biofilm-forming and multidrug-resistant Proteus species.

  19. Adaptive neuro-fuzzy inference system model for adsorption of 1,3,4-thiadiazole-2,5-dithiol onto gold nanoparticales-activated carbon

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Hosaininia, R.; Ghaedi, A. M.; Vafaei, A.; Taghizadeh, F.

    2014-10-01

    In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by ultrasound energy as a low cost routing protocol. Subsequently, this novel material characterization and identification followed by different techniques such as scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) analysis. Unique properties such as high BET surface area (>1229.55 m2/g) and low pore size (<22.46 Å) and average particle size lower than 48.8 Å in addition to high reactive atoms and the presence of various functional groups make it possible for efficient removal of 1,3,4-thiadiazole-2,5-dithiol (TDDT). Generally, the influence of variables, including the amount of adsorbent, initial pollutant concentration, contact time on pollutants removal percentage has great effect on the removal percentage that their influence was optimized. The optimum parameters for adsorption of 1,3,4-thiadiazole-2, 5-dithiol onto gold nanoparticales-activated carbon were 0.02 g adsorbent mass, 10 mg L-1 initial 1,3,4-thiadiazole-2,5-dithiol concentration, 30 min contact time and pH 7. The Adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models, have been applied for prediction of removal of 1,3,4-thiadiazole-2,5-dithiol using gold nanoparticales-activated carbon (Au-NP-AC) in a batch study. The input data are included adsorbent dosage (g), contact time (min) and pollutant concentration (mg/l). The coefficient of determination (R2) and mean squared error (MSE) for the training data set of optimal ANFIS model were achieved to be 0.9951 and 0.00017, respectively. These results show that ANFIS model is capable of predicting adsorption of 1,3,4-thiadiazole-2,5-dithiol using Au-NP-AC with high accuracy in an easy, rapid and cost effective way.

  20. Adaptive neuro-fuzzy inference system model for adsorption of 1,3,4-thiadiazole-2,5-dithiol onto gold nanoparticales-activated carbon.

    PubMed

    Ghaedi, M; Hosaininia, R; Ghaedi, A M; Vafaei, A; Taghizadeh, F

    2014-10-15

    In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by ultrasound energy as a low cost routing protocol. Subsequently, this novel material characterization and identification followed by different techniques such as scanning electron microscope(SEM), Brunauer-Emmett-Teller(BET) and transmission electron microscopy (TEM) analysis. Unique properties such as high BET surface area (>1229.55m(2)/g) and low pore size (<22.46Å) and average particle size lower than 48.8Å in addition to high reactive atoms and the presence of various functional groups make it possible for efficient removal of 1,3,4-thiadiazole-2,5-dithiol (TDDT). Generally, the influence of variables, including the amount of adsorbent, initial pollutant concentration, contact time on pollutants removal percentage has great effect on the removal percentage that their influence was optimized. The optimum parameters for adsorption of 1,3,4-thiadiazole-2, 5-dithiol onto gold nanoparticales-activated carbon were 0.02g adsorbent mass, 10mgL(-1) initial 1,3,4-thiadiazole-2,5-dithiol concentration, 30min contact time and pH 7. The Adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models, have been applied for prediction of removal of 1,3,4-thiadiazole-2,5-dithiol using gold nanoparticales-activated carbon (Au-NP-AC) in a batch study. The input data are included adsorbent dosage (g), contact time (min) and pollutant concentration (mg/l). The coefficient of determination (R(2)) and mean squared error (MSE) for the training data set of optimal ANFIS model were achieved to be 0.9951 and 0.00017, respectively. These results show that ANFIS model is capable of predicting adsorption of 1,3,4-thiadiazole-2,5-dithiol using Au-NP-AC with high accuracy in an easy, rapid and cost effective way. PMID:24858196

  1. A one-pot gold seed-assisted synthesis of gold/platinum wire nanoassemblies and their enhanced electrocatalytic activity for the oxidation of oxalic acid

    NASA Astrophysics Data System (ADS)

    Bai, Juan; Fang, Chun-Long; Liu, Zong-Huai; Chen, Yu

    2016-01-01

    Three-dimensional (3D) noble metal nanoassemblies composed of one-dimensional (1D) nanowires have been attracting much interest due to the unique physical and chemical properties of 1D nanowires as well as the particular interconnected open-pore structure of 3D nanoassemblies. In this work, well-defined Au/Pt wire nanoassemblies were synthesized by using a facile NaBH4 reduction method in the presence of a branched form of polyethyleneimine (PEI). A study of the growth mechanism indicated the morphology of the final product to be highly related to the molecular structure of the polymeric amine. Also, the preferred Pt-on-Pt deposition contributed to the formation of the 1D Pt nanowires. The Au/Pt wire nanoassemblies were functionalized with PEI at the same time that these nanoassemblies were synthesized due to the strong N-Pt bond. The chemically functionalized Au/Pt wire nanoassemblies exhibited better electrocatalytic activity for the electro-oxidation of oxalic acid than did commercial Pt black.Three-dimensional (3D) noble metal nanoassemblies composed of one-dimensional (1D) nanowires have been attracting much interest due to the unique physical and chemical properties of 1D nanowires as well as the particular interconnected open-pore structure of 3D nanoassemblies. In this work, well-defined Au/Pt wire nanoassemblies were synthesized by using a facile NaBH4 reduction method in the presence of a branched form of polyethyleneimine (PEI). A study of the growth mechanism indicated the morphology of the final product to be highly related to the molecular structure of the polymeric amine. Also, the preferred Pt-on-Pt deposition contributed to the formation of the 1D Pt nanowires. The Au/Pt wire nanoassemblies were functionalized with PEI at the same time that these nanoassemblies were synthesized due to the strong N-Pt bond. The chemically functionalized Au/Pt wire nanoassemblies exhibited better electrocatalytic activity for the electro-oxidation of oxalic acid than

  2. Numerical Investigation of Finite Aspect-Ratio Flapping Foils

    NASA Astrophysics Data System (ADS)

    Mittal, R.; Najjar, F.; Bozkurttas, M.

    2003-11-01

    Most wings and fins found in nature tend to be of low aspect-ratio. However, despite this preponderence of low aspect-ratio foils in nature, most experimental and numerical studies in this area of bio-hydrodynamics have focussed on examining infinite aspect-ratio flapping foils. Here we have used numerical simulations to investigate the flow associated with finite aspect-ratio foils. Particular focus of the study is on examining the effect of aspect-ratio on the thrust chracteristics and the wake topology of the foil. The simulations employ a newly developed Cartesian grid method which allows us to simulate flows with complex three-dimensional bodies on fixed Cartesian grids. The simulations indicate that the wake topology of these relatively low aspect-ratio foils is significantly different from that observed for infinite-aspect-ratio foils. The simulations also allow us to assess the advantage/disadvantage that the lower aspect ratio might confer on the performance of a flapping foil. Results from this study will be presented.

  3. Producing Foils From Direct Cast Titanium Alloy Strip

    NASA Technical Reports Server (NTRS)

    Stuart, T. A.; Gaspar, T. A.; Sukonnik, I. M.; Semiatan, S. L.; Batawi, E.; Peters, J. A.; Fraser, H. L.

    1996-01-01

    This research was undertaken to demonstrate the feasibility of producing high-quality, thin-gage, titanium foil from direct cast titanium strip. Melt Overflow Rapid Solidification Technology (MORST) was used to cast several different titanium alloys into 500 microns thick strip, 10 cm wide and up to 3 m long. The strip was then either ground, hot pack rolled or cold rolled, as appropriate, into foil. Gamma titanium aluminide (TiAl) was cast and ground to approximately 100 microns thick foil and alpha-2 titanium aluminide (Ti3AI) was cast and hot pack rolled to approximately 70 microns thick foil. CP Ti, Ti6Al2Sn4Zr2Mo, and Ti22AI23Nb (Orthorhombic), were successfully cast and cold-rolled into good quality foil (less than 125 microns thick). The foils were generally fully dense with smooth surfaces, had fine, uniform microstructures, and demonstrated mechanical properties equivalent to conventionally produced titanium. By eliminating many manufacturing steps, this technology has the potential to produce thin gage, titanium foil with good engineering properties at significantly reduced cost relative to conventional ingot metallurgy processing.

  4. Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Puleo, Bernadette J.

    2008-01-01

    An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.

  5. The stopping powers and energy straggling of heavy ions in polymer foils

    NASA Astrophysics Data System (ADS)

    Mikšová, R.; Macková, A.; Malinský, P.; Hnatowicz, V.; Slepička, P.

    2014-07-01

    The stopping power and energy straggling of 7Li, 12C and 16O ions in thin poly(etheretherketone) (PEEK), polyethylene terephthalate (PET) and polycarbonate (PC) foils were measured in the incident beam energy range of 9.4-11.8 MeV using an indirect transmission method. Ions scattered from a thin gold target at an angle of 150° were registered by a partially depleted PIPS detector, partly shielded with a polymer foil placed in front of the detector. Therefore, the signals from both direct and slowed down ions were visible in the same energy spectrum, which was evaluated by the ITAP code, developed at our laboratory. The ITAP code was employed to perform a Gaussian-fitting procedure to provide a complete analysis of each measured spectrum. The measured stopping powers were compared with the predictions obtained from the SRIM-2008 and MSTAR codes and with previous experimental data. The energy straggling data were compared with those calculated by using Bohr's, Lindhard-Scharff and Bethe-Livingston theories.

  6. Study on metal foil explosion using high current

    NASA Astrophysics Data System (ADS)

    Mihara, Takayuki; Matsuo, N.; Otsuka, M.; Itoh, S.

    2009-12-01

    In the high energy processing using explosive, there are variety of application examples which is explosion welding of differential metallic plate and powder compaction of diamond. However a rule legal to explosives is severe and needs many efforts for handling qualification acquisition, maintenance, and security. In this research, the metallic foil explosion using high current is paid my attention to the method to obtain linear or planate explosive initiation easily, and the main evaluation of metallic foil explosion was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated from the metallic foil explosion.

  7. Study on metal foil explosion using high current

    NASA Astrophysics Data System (ADS)

    Mihara, Takayuki; Matsuo, N.; Otsuka, M.; Itoh, S.

    2010-03-01

    In the high energy processing using explosive, there are variety of application examples which is explosion welding of differential metallic plate and powder compaction of diamond. However a rule legal to explosives is severe and needs many efforts for handling qualification acquisition, maintenance, and security. In this research, the metallic foil explosion using high current is paid my attention to the method to obtain linear or planate explosive initiation easily, and the main evaluation of metallic foil explosion was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated from the metallic foil explosion.

  8. Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils

    SciTech Connect

    Schulthess, Jason

    2014-09-01

    Tensile mechanical properties for uranium-10 wt.% molybdenum (U–10Mo) foils are required to support modeling and qualification of new monolithic fuel plate designs. It is expected that depleted uranium-10 wt% Mo (DU–10Mo) mechanical behavior is representative of the low enriched U–10Mo to be used in the actual fuel plates, therefore DU-10Mo was studied to simplify material processing, handling, and testing requirements. In this report, tensile testing of DU-10Mo fuel foils prepared using four different thermomechanical processing treatments were conducted to assess the impact of foil fabrication history on resultant tensile properties.

  9. Mechanical properties of micro- and nanocrystalline diamond foils

    PubMed Central

    Lodes, M. A.; Kachold, F. S.; Rosiwal, S. M.

    2015-01-01

    Diamond coating of suitable template materials and subsequent delamination allows for the manufacturing of free-standing diamond foil. The evolution of the microstructure can be influenced by secondary nucleation via control of process conditions in the hot-filament chemical vapour deposition process. Bending tests show extraordinarily high strength (more than 8 GPa), especially for diamond foils with nanocrystalline structure. A detailed fractographic analysis is conducted in order to correlate measured strength values with crack-initiating defects. The size of the failure causing flaw can vary from tens of micrometres to tens of nanometres, depending on the diamond foil microstructure as well as the loading conditions. PMID:25713455

  10. Functional multi-band THz meta-foils

    PubMed Central

    Wu, Jianfeng; Moser, Herbert O.; Xu, Su; Jian, Linke; Banas, Agnieszka; Banas, Krzysztof; Chen, Hongsheng; Bettiol, Andrew A.; Breese, Mark B. H.

    2013-01-01

    In this paper, we present the first experimental demonstration of double- and triple-band negative refraction index meta-foils in the terahertz (THz) region. Multi-band meta-foils constructed by multi-cell S-string resonators in a single structure exhibit simultaneously negative permittivity and negative permeability responses at multiple frequencies. The phenomena are confirmed by numerical simulations and Fourier transform infrared spectroscopy measurements. The flexible, freestanding multi-band meta-foils provide a promising candidate for the development of multi-frequency THz materials and devices. PMID:24346309

  11. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-26

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld. 5 figs.

  12. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, John C.; Benson, David K.; Tracy, C. Edwin

    1996-01-01

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.

  13. A novel bioelectrochemical interface based on in situ synthesis of gold nanostructures on electrode surfaces and surface activation by Meerwein's salt. A bioelectrochemical sensor for glucose determination.

    PubMed

    Nikolaev, Konstantin; Ermakov, Sergey; Ermolenko, Yuri; Averyaskina, Elena; Offenhäusser, Andreas; Mourzina, Yulia

    2015-10-01

    A novel effective bioelectrochemical sensor interface for enzyme biosensors is proposed. The method is based on in situ synthesis of gold nanostructures (5-15 nm) on the thin-film electrode surface using the oleylamine (OA) method, which provides a high-density, stable, electrode interface nanoarchitecture. New method to activate the surface of the OA-stabilized nanostructured electrochemical interface for further functionalization with biomolecules (glucose oxidase enzyme) using Meerwein's salt is proposed. Using this approach a new biosensor for glucose determination with improved analytical characteristics: wide working range of 0.06-18.5mM with a sensitivity of 22.6 ± 0.5 μAmM(-1)cm(-2), limit of detection 0.02 mM, high reproducibility, and long lifetime (60 d, 93%) was developed. The surface morphology of the electrodes was characterized by scanning electron microscopy (SEM). The electrochemical properties of the interface were studied by cyclic voltammetry and electrochemical impedance spectroscopy using a Fe(II/III) redox couple. The studies revealed an increase in the electroactive surface area and a decrease in the charge transfer resistance following surface activation with Meerwein's reagent. A remarkably enhanced stability and reproducibility of the sensor was achieved using in situ synthesis of gold nanostructures on the electrode surface, while surface activation with Meerwein's salt proved indispensable in achieving an efficient bioelectrochemical interface. PMID:25983284

  14. Application of Object Based Image Analysis (OBIA) in detecting and quantifying forest loss caused by artisanal gold mining activities in Upper Mazaruni River Basin, Guyana

    NASA Astrophysics Data System (ADS)

    Mengisteab, B. S.; Blesius, L.; Hennessy, L.

    2014-12-01

    Artisanal gold mining in Guyana is mostly done in forest covered areas, causing forest loss and land degradation. Data from the Guyana Geology and Mining commission show there has been an increase of 2074% between 1986 and 2009. Our analysis of Landsat data between 1986 and 2013 for a part of the Upper Mazaruni area shows an increase from 34.2 to 278.4 hectares, which amounts to more than 800%. While the frequent coverage of Landsat data is useful for multitemporal studies, the lower resolution may not be adequate for accurate detection of mining sites. Therefore, RapidEye imagery from 2011 at a resolution of 5m was used to detect gold mining activity and to compare the results with the Landsat study. Processing was conducted in eCognition, an object-based image analysis (OBIA) software. OBIA is an image processing technique that has proven to be advantageous over traditional pixel based image processing techniques, with the primary advantage being the ability of the approach in combining both the spatial and spectral information. The satellite image was subjected to segmentation at multiple scales and classified using fuzzy sets of membership functions. Classification explicitly incorporated the different scales in order to accommodate different sizes of real-world objects and spatial relationships were utilized to establish connections between related objects. For example the presence or absence of water in pits, or the existence of sediments in the river may serve as additional indicators of mining sites besides the spectral components. Preliminary results show that OBIA approach was able to successfully detect and quantify small scale mining activities in the basin, and that the Landsat data were giving an acceptable estimate of mining sites over time. Keywords:Object Based Image Analysis, Gold Mining, Remote Sensing, Guyana

  15. A strategy for fabricating nanoporous gold films through chemical dealloying of electrochemically deposited Au-Sn alloys

    NASA Astrophysics Data System (ADS)

    Xu, Yantong; Ke, Xi; Yu, Changchun; Liu, Shaofang; Zhao, Jie; Cui, Guofeng; Higgins, Drew; Chen, Zhongwei; Li, Qing; Wu, Gang

    2014-11-01

    We report a novel strategy for the fabrication of nanoporous gold (NPG) films. The fabrication process involves the electrodeposition of a gold-tin alloy, followed by subsequent chemical dealloying of tin. Scanning electron microscopy (SEM) images show a bicontinuous nanoporous structure formed on the substrates after chemical dealloying. Energy dispersive x-ray (EDX) analysis indicates that there are no impurities in the Au-Sn alloy film with an average composition of 58 at. % Au and 42 at. % Sn. After dealloying, only gold remains in the NPG film indicating the effectiveness of this technique. X-ray diffraction (XRD) results reveal that the as-prepared Au-Sn alloy film is composed of two phases (Au5Sn and AuSn), while the NPG film is composed of a single phase (Au). We demonstrate that this approach enables the fabrication of NPG films, either freestanding or supported on various conductive substrates such as copper foil, stainless steel sheet and nickel foam. The resulting NPG electrode exhibits enhanced electrocatalytic activity toward both H2O2 reduction and methanol oxidation compared to the polished Au disc electrode. Our strategy provides a general method to fabricate high quality NPG films on conductive substrates, which will broaden the application potential of NPG or NPG-based materials in various fields such as catalysis, optics and sensor technology.

  16. Physiological investigation of gold nanorods toward watermelon.

    PubMed

    Wan, Yujie; Li, Junli; Ren, Hongxuan; Huang, Jin; Yuan, Hong

    2014-08-01

    The objective of the present study was to evaluate the phytotoxicity and oxidant stress of the gold nanorods toward watermelon, and hence give a quantitative risk assessment of both seeds and plants phase. The seed germination, the activity of antioxidant enzymes, and the contents of soluble protein and malondialdehyde (MDA) have been measured while the plant roots were observed by transmission electron microscopy (TEM). It was found that the gold nanorods significantly promoted the root elongation. Furthermore, the results on the enzymes activities of plant indicated that oxidative stress happened in the plant treated with gold nanorods. However, the gold nanorods resulted in the phytotoxicity toward plant especially at high concentration. The TEM images of the plant roots with and without the treatment of gold nanorods showed the significant different size of starch granules. In conclusion, significant physiological changes of plant occurred after treatment with the gold nanorods. PMID:25936063

  17. A nanometric Rh overlayer on a metal foil surface as a highly efficient three-way catalyst.

    PubMed

    Misumi, Satoshi; Yoshida, Hiroshi; Hinokuma, Satoshi; Sato, Tetsuya; Machida, Masato

    2016-01-01

    Pulsed arc-plasma (AP) deposition of an Rh overlayer on an Fe-Cr-Al stainless steel foil produced a composite material that exhibited high activity for automotive three-way catalysis (TWC). The AP pulses deposited metallic Rh nanoparticles 1-3 nm in size, whose density on the surface increased with the number of pulses. This led to coalescence and grain growth on the foil surface and the eventual formation of a uniform two-dimensional Rh overlayer. Full coverage of the 51 μm-thick flat foil by a 3.2 nm-thick Rh overlayer was achieved after 1,000 pulses. A simulated TWC reaction using a miniature honeycomb fabricated using flat and corrugated foils with the Rh overlayers exhibited successful light-off at a practical gaseous hourly space velocity of 1.2 × 10(5) h(-1). The turnover frequency for the NO-CO reaction over the metallic honeycomb catalyst was ca. 80-fold greater than that achieved with a reference Rh/ZrO2-coated cordierite honeycomb prepared using a conventional wet impregnation and slurry coating procedure. Despite the nonporosity and low surface area of the foil-supported Rh overlayer compared with conventional powder catalysts (Rh/ZrO2), it is a promising alternative design for more efficient automotive catalysts that use less Rh loading. PMID:27388976

  18. A nanometric Rh overlayer on a metal foil surface as a highly efficient three-way catalyst

    PubMed Central

    Misumi, Satoshi; Yoshida, Hiroshi; Hinokuma, Satoshi; Sato, Tetsuya; Machida, Masato

    2016-01-01

    Pulsed arc-plasma (AP) deposition of an Rh overlayer on an Fe–Cr–Al stainless steel foil produced a composite material that exhibited high activity for automotive three-way catalysis (TWC). The AP pulses deposited metallic Rh nanoparticles 1–3 nm in size, whose density on the surface increased with the number of pulses. This led to coalescence and grain growth on the foil surface and the eventual formation of a uniform two-dimensional Rh overlayer. Full coverage of the 51 μm-thick flat foil by a 3.2 nm-thick Rh overlayer was achieved after 1,000 pulses. A simulated TWC reaction using a miniature honeycomb fabricated using flat and corrugated foils with the Rh overlayers exhibited successful light-off at a practical gaseous hourly space velocity of 1.2 × 105 h−1. The turnover frequency for the NO–CO reaction over the metallic honeycomb catalyst was ca. 80-fold greater than that achieved with a reference Rh/ZrO2-coated cordierite honeycomb prepared using a conventional wet impregnation and slurry coating procedure. Despite the nonporosity and low surface area of the foil-supported Rh overlayer compared with conventional powder catalysts (Rh/ZrO2), it is a promising alternative design for more efficient automotive catalysts that use less Rh loading. PMID:27388976

  19. A nanometric Rh overlayer on a metal foil surface as a highly efficient three-way catalyst

    NASA Astrophysics Data System (ADS)

    Misumi, Satoshi; Yoshida, Hiroshi; Hinokuma, Satoshi; Sato, Tetsuya; Machida, Masato

    2016-07-01

    Pulsed arc-plasma (AP) deposition of an Rh overlayer on an Fe–Cr–Al stainless steel foil produced a composite material that exhibited high activity for automotive three-way catalysis (TWC). The AP pulses deposited metallic Rh nanoparticles 1–3 nm in size, whose density on the surface increased with the number of pulses. This led to coalescence and grain growth on the foil surface and the eventual formation of a uniform two-dimensional Rh overlayer. Full coverage of the 51 μm-thick flat foil by a 3.2 nm-thick Rh overlayer was achieved after 1,000 pulses. A simulated TWC reaction using a miniature honeycomb fabricated using flat and corrugated foils with the Rh overlayers exhibited successful light-off at a practical gaseous hourly space velocity of 1.2 × 105 h‑1. The turnover frequency for the NO–CO reaction over the metallic honeycomb catalyst was ca. 80-fold greater than that achieved with a reference Rh/ZrO2-coated cordierite honeycomb prepared using a conventional wet impregnation and slurry coating procedure. Despite the nonporosity and low surface area of the foil-supported Rh overlayer compared with conventional powder catalysts (Rh/ZrO2), it is a promising alternative design for more efficient automotive catalysts that use less Rh loading.

  20. Low pressure CO₂ hydrogenation to methanol over gold nanoparticles activated on a CeOx/TiO₂ interface

    SciTech Connect

    Yang, Xiaofang; Boscoboinik, J. Anibal; Kattel, Shyam; Senanayake, Sanjaya D.; Nie, Xiaowa; Graciani, Jesus; Rodriguez, Jose A.; Liu, Ping; Stacchiola, Dario J.; Chen, Jingguang G.

    2015-07-28

    Capture and recycling of CO₂ into valuable chemicals such as alcohols could help mitigate its emissions into the atmosphere. Due to its inert nature, the activation of CO₂ is a critical step in improving the overall reaction kinetics during its chemical conversion. Although pure gold is an inert noble metal and cannot catalyze hydrogenation reactions, it can be activated when deposited as nanoparticles on the appropriate oxide support. In this combined experimental and theoretical study, it is shown that an electronic polarization at the metal–oxide interface of Au nanoparticles anchored and stabilized on a CeOx/TiO₂ substrate generates active centers for CO₂ adsorption and its low pressure hydrogenation, leading to a higher selectivity toward methanol. In conclusion, this study illustrates the importance of localized electronic properties and structure in catalysis for achieving higher alcohol selectivity from CO₂ hydrogenation.

  1. Indium foil with beryllia washer improves transistor heat dissipation

    NASA Technical Reports Server (NTRS)

    Hilliard, J.; John, J. E. A.

    1964-01-01

    Indium foil, used as an interface material in transistor mountings, greatly reduces the thermal resistance of beryllia washers. This method improves the heat dissipation of power transistors in a vacuum environment.

  2. Stratification in Al and Cu foils exploded in vacuum

    SciTech Connect

    Baksht, R. B.; Rousskikh, A. G.; Zhigalin, A. S.; Artyomov, A. P.; Oreshkin, V. I.

    2015-10-15

    An experiment with exploding foils was carried out at a current density of 0.7 × 10{sup 8} A/cm{sup 2} through the foil with a current density rise rate of about 10{sup 15} A/cm{sup 2} s. To record the strata arising during the foil explosions, a two-frame radiographic system was used that allowed tracing the dynamics of strata formation within one shot. The original striation wavelength was 20–26 μm. It was observed that as the energy deposition to a foil stopped, the striation wavelength increased at a rate of ∼(5–9) × 10{sup 3} cm/s. It is supposed that the most probable reason for the stratification is the thermal instability that develops due to an increase in the resistivity of the metal with temperature.

  3. Planar Foil MRT Instability Measurements Using a 1-MA LTD

    NASA Astrophysics Data System (ADS)

    Zier, J. C.; Chalenski, D. A.; Patel, S. G.; French, D. M.; Gilgenbach, R. M.; Gomez, M. R.; Lau, Y. Y.; Steiner, A. M.; Rittersdorf, I. M.; Weis, M. R.; Mazarakis, M. G.; Lopez, M. R.; Cuneo, M. E.

    2011-10-01

    Initial dynamic load experiments were performed on UM's 1-MA linear transformer driver (LTD) facility, MAIZE, to characterize magneto-Rayleigh-Taylor (MRT) instability growth and plasma dynamics on planar-foil plasmas. The loads utilized a double current return plate geometry with a 400 nm-thick Al foil positioned between the return plates. Magnetic pressure accelerated the foil plasma to drive MRT instability that was measured using shadowgraphy. Plasma dynamics were observed to be dominated by an initial expansion phase where both foil interfaces were found to be MRT unstable with 85-105 ns e-folding times. This research was supported by US DoE award number DE-SC0002590, US DoE through SNL award numbers 240985 and 768225 to UM, and from NSF award number PHY 0903340 to UM. JC Zier and SG Patel were supported by NPSC fellowships through SNL.

  4. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Tin-coated lead foil capsules for wine bottles... Substances Prohibited From Indirect Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on...

  5. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Tin-coated lead foil capsules for wine bottles... Substances Prohibited From Indirect Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on...

  6. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Tin-coated lead foil capsules for wine bottles... Substances Prohibited From Indirect Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on...

  7. Different-Sized Gold Nanoparticle Activator/Antigen Increases Dendritic Cells Accumulation in Liver-Draining Lymph Nodes and CD8+ T Cell Responses.

    PubMed

    Zhou, Qianqian; Zhang, Yulong; Du, Juan; Li, Yuan; Zhou, Yong; Fu, Qiuxia; Zhang, Jingang; Wang, Xiaohui; Zhan, Linsheng

    2016-02-23

    The lack of efficient antigen and activator delivery systems, as well as the restricted migration of dendritic cells (DCs) to secondary lymph organs, dramatically limits DC-based adoptive immunotherapy. We selected two spherical gold nanoparticle (AuNP)-based vehicles of optimal size for activator and antigen delivery. Their combination (termed the NanoAu-Cocktail) was associated with the dual targeting of CpG oligonucleotides (CpG-ODNs) and an OVA peptide (OVAp) to DC subcellular compartments, inducing enhanced antigen cross-presentation, upregulated expression of costimulatory molecules and elevated secretion of T helper1 cytokines. We demonstrated that the intravenously transfused NanoAu-Cocktail pulsed DCs showed dramatically improved in vivo homing ability to lymphoid tissues and were settled in T cell area. Especially, by tissue-distribution analysis, we found that more than 60% of lymphoid tissues-homing DCs accumulated in liver-draining lymph nodes (LLNs). The improved homing ability of NanoAu-Cocktail pulsed DCs was associated with the high expression of chemokine receptor 7 (CCR7) and rearrangement of the cytoskeletons. In addition, by antigen-specific tetramers detection, NanoAu-Cocktail pulsed DCs were proved able to elicit strong antigen-specific CD8+ T cell responses, which provided enhanced protection from viral invasions. This study highlights the importance of codelivering antigen/adjuvant using different sized gold nanoparticles to improve DC homing and therapy. PMID:26771692

  8. In Vitro Administration of Gold Nanoparticles Functionalized with MUC-1 Protein Fragment Generates Anticancer Vaccine Response via Macrophage Activation and Polarization Mechanism

    PubMed Central

    Mocan, Teodora; Matea, Cristian; Tabaran, Flaviu; Iancu, Cornel; Orasan, Remus; Mocan, Lucian

    2015-01-01

    Therapeutic cancer vaccines (or active immunotherapy) aim to guide the patient's personal immune system to eradicate cancer cells. An exciting approach to cancer vaccines has been offered by nanoscale drug delivery systems containing tumor associated antigens (TAAs). Their capacity to stimulate the immune system has been suggested during late years. However, the role of the macrophages as key-elements in antigen-presentation process following TAAs-containing nanosystems is not completely understood. We aimed to evaluate the effect of gold nanoparticles functionalized with mucin-1 peptide (MUC-1) on murine peritoneal macrophages. Gold nanoparticles, obtained using a modified Turkevich method, were functionalized with MUC-1 protein using Clealand's reagent. The obtained GNP-MUC-1 solution was used to treat at various concentrations monolayers of peritoneum-derived macrophages that were further analyzed using confocal and hyperspectral microscopy, ELISA assays and spectroscopic techniques. The GNP-MUC-1 nano-construct had proven to function as a powerful macrophage activator with consequent release of cytokines such as: TNF-ɑ, IL-6, IL-10 and IL-12 on peritoneal macrophages we have isolated from mice. Our results demonstrate optimization of antigen-presenting process and predominant M1 polarization following exposure GNP-MUC-1. To our best knowledge this is the first study to evaluate the anticancer effects of a newly designed nano-biocompound on the complex antigen- processing apparatus of peritoneal macrophages. PMID:26000051

  9. Hydrogeochemistry of arsenic pollution in watersheds influenced by gold mining activities in Paracatu (Minas Gerais State, Brazil).

    PubMed

    Bidone, Edison; Castilhos, Zuleica; Cesar, Ricardo; Santos, Maria Carla; Sierpe, Ricardo; Ferreira, Marcos

    2016-05-01

    The aim of this study is to evaluate total arsenic (As) concentrations in drinking water (main pathway of human exposure) and its hydrogeochemical controls in the "Morro do Ouro" gold mine region, which is the largest gold mine in Brazil, characterized by gold-arsenopyrite association. Arsenic concentration was generally below the detection limit (LOD < 0.5 μg L(-1)). Thus, water ingestion may not be a significant exposure pathway to local population. Low groundwater As concentrations (<1 μg L(-1)) are likely due to ore body structural setting, which plunges from 10° to >20°, being readily covered by thick phyllites that are poor in As some hundreds of meters away from the mine. Thirty-five percent of As levels in superficial waters (<0.5 to 40 μg L(-1)) were >10 μg L(-1), which is the maximum permissible value for human ingestion. The highest concentrations were found nearby mine facilities and old artisanal mining areas surrounding the mine, decreasing downstream. Undisturbed watersheds showed As concentrations close to LOD. Hydrogeochemical data stress the sorption (adsorption and co-precipitation) of As role, mainly by Fe oxyhydroxides, as a geochemical filter that retains As, attenuating its concentration in both superficial and groundwater. Such minerals are abundant in the region oxisols, sediments, and phyllites and may form stable mineral complexes with As under the pH (mostly neutral) and Eh (reduced environment) conditions found in the field. It has been demonstrated that As(III) (more toxic) and As(V) co-exist in the analyzed waters and that As(V) predominates in superficial water.

  10. Hydrogeochemistry of arsenic pollution in watersheds influenced by gold mining activities in Paracatu (Minas Gerais State, Brazil).

    PubMed

    Bidone, Edison; Castilhos, Zuleica; Cesar, Ricardo; Santos, Maria Carla; Sierpe, Ricardo; Ferreira, Marcos

    2016-05-01

    The aim of this study is to evaluate total arsenic (As) concentrations in drinking water (main pathway of human exposure) and its hydrogeochemical controls in the "Morro do Ouro" gold mine region, which is the largest gold mine in Brazil, characterized by gold-arsenopyrite association. Arsenic concentration was generally below the detection limit (LOD < 0.5 μg L(-1)). Thus, water ingestion may not be a significant exposure pathway to local population. Low groundwater As concentrations (<1 μg L(-1)) are likely due to ore body structural setting, which plunges from 10° to >20°, being readily covered by thick phyllites that are poor in As some hundreds of meters away from the mine. Thirty-five percent of As levels in superficial waters (<0.5 to 40 μg L(-1)) were >10 μg L(-1), which is the maximum permissible value for human ingestion. The highest concentrations were found nearby mine facilities and old artisanal mining areas surrounding the mine, decreasing downstream. Undisturbed watersheds showed As concentrations close to LOD. Hydrogeochemical data stress the sorption (adsorption and co-precipitation) of As role, mainly by Fe oxyhydroxides, as a geochemical filter that retains As, attenuating its concentration in both superficial and groundwater. Such minerals are abundant in the region oxisols, sediments, and phyllites and may form stable mineral complexes with As under the pH (mostly neutral) and Eh (reduced environment) conditions found in the field. It has been demonstrated that As(III) (more toxic) and As(V) co-exist in the analyzed waters and that As(V) predominates in superficial water. PMID:26797944

  11. Fluid-film foil bearings control engine heat

    NASA Astrophysics Data System (ADS)

    O'Connor, Leo

    1993-05-01

    The state-of-the-art of fluid-film foil bearings and their current and prospective applications are briefly reviewed. In particular, attention is given to the general design of fluid-film foil bearings, the materials used, and bearing performance. The applications discussed include launch vehicle turbopumps, turbines used to cool aircraft cabins, and turbocompressors and turboexpanders used in the processing of cryogenic fluids. Future applications may include turbochargers, textile spindles, cryocoolers, motor blowers, heat pumps, and solar chillers.

  12. Carbon-Fiber/Epoxy Tube Lined With Aluminum Foil

    NASA Technical Reports Server (NTRS)

    Gernet, Nelson J.; Kerr, Gregory K.

    1995-01-01

    Carbon-fiber/epoxy composite tube lined with welded aluminum foil useful as part of lightweight heat pipe in which working fluid ammonia. Aluminum liner provides impermeability for vacuum seal, to contain ammonia in heat pipe, and to prevent flow of noncondensable gases into heat pipe. Similar composite-material tubes lined with foils also incorporated into radiators, single- and two-phase thermal buses, tanks for storage of cryogenic materials, and other plumbing required to be lightweight.

  13. FeN foils by nitrogen ion-implantation

    SciTech Connect

    Jiang, Yanfeng; Wang, Jian-Ping; Al Mehedi, Md; Fu, Engang; Wang, Yongqiang

    2014-05-07

    Iron nitride samples in foil shape (free standing, 500 nm in thickness) were prepared by a nitrogen ion-implantation method. To facilitate phase transformation, the samples were bonded on the substrate followed by a post-annealing step. By using two different substrates, single crystal Si and GaAs, structural and magnetic properties of iron nitride foil samples prepared with different nitrogen ion fluences were characterized. α″-Fe{sub 16}N{sub 2} phase in iron nitride foil samples was obtained and confirmed by the proposed approach. A hard magnetic property with coercivity up to 780 Oe was achieved for the FeN foil samples bonded on Si substrate. The feasibility of using nitrogen ion implantation techniques to prepare FeN foil samples up to 500 nm thickness with a stable martensitic phase under high ion fluences has been demonstrated. A possible mechanism was proposed to explain this result. This proposed method could potentially be an alternative route to prepare rare-earth-free FeN bulk magnets by stacking and pressing multiple free-standing thick α″-Fe{sub 16}N{sub 2} foils together.

  14. Globally shed wakes for three distinct retracting foil geometries

    NASA Astrophysics Data System (ADS)

    Steele, Stephanie; Triantafyllou, Michael

    2015-11-01

    In quickly retracting foils at an angle of attack, the boundary layer vorticity along with the added mass energy is immediately and globally shed from the body into the surrounding fluid. The deposited vorticity quickly reforms into lasting vortex structures, which could be used for purposes such as manipulating or exploiting the produced flow structures by additional bodies in the fluid. The globally shed wake thus entrains the added mass energy provided by the initially moving body, reflected by the value of the circulation left in the wake. In studying experimentally as well as numerically this phenomenon, we find that the three different tested geometries leave behind distinct wakes. Retracting a square-ended foil is undesirable because the deposited wake is complicated by three-dimensional ring vorticity effects. Retracting a tapered, streamlined-tipped foil is also undesirable because the shape-changing aspect of the foil geometry actually induces energy recovery back to the retracting foil, leaving a less energetic globally shed wake. Finally, a retracting hollow foil geometry avoids both of these detrimental effects, leaving relatively simple, yet energetic, vortex structures in the wake.

  15. Electrospray ionization with aluminum foil: A versatile mass spectrometric technique.

    PubMed

    Hu, Bin; So, Pui-Kin; Yao, Zhong-Ping

    2014-03-19

    In this study, we developed a novel electrospray ionization (ESI) technique based on household aluminum foil (Al foil) and demonstated the desirable features and applications of this technique. Al foil can be readily cut and folded into desired configuration for effective ionization and for holding sample solution in bulk to allowing acquisition of durable ion signals. The present technique was demonstrated to be applicable in analysis of a wide variety of samples, ranging from pure chemical and biological compounds, e.g., organic compounds and proteins, to complex samples in liquid, semi-solid, and solid states, e.g., beverages, skincare cream, and herbal medicines. The inert, hydrophobic and impermeable surface of Al foil allows convenient and effective on-target extraction of solid samples and on-target sample clean-up, i.e., removal of salts and detergents from proteins and peptides, extending ESI device from usually only for sample loading and ionization to including sample processing. Moreover, Al foil is an excellent heat-conductor and highly heat-tolerant, permitting direct monitoring of thermal reactions, e.g., thermal denaturation of proteins. Overall, the present study showed that Al-foil ESI could be an economical and versatile method that allows a wide range of applications. PMID:24594810

  16. Induction Bonding of Prepreg Tape and Titanium Foil

    NASA Technical Reports Server (NTRS)

    Messier, Bernadette C.; Hinkley, Jeffrey A.; Johnston, Norman J.

    1998-01-01

    Hybrid structural laminates made of titanium foil and carbon fiber reinforced polymer composite offer a potential for improved performance in aircraft structural applications. To obtain information needed for the automated fabrication of hybrid laminates, a series of bench scale tests were conducted of the magnetic induction bonding of titanium foil and thermoplastic prepreg tape. Foil and prepreg specimens were placed in the gap of a toroid magnet mounted in a bench press. Several magnet power supplies were used to study power at levels from 0.5 to 1.75 kW and frequencies from 50 to 120 kHz. Sol-gel surface-treated titanium foil, 0.0125 cm thick, and PIXA/IM7 prepreg tape were used in several lay-up configurations. Data were obtained on wedge peel bond strength, heating rate, and temperature ramp over a range of magnet power levels and frequencies at different "power-on" times for several magnet gap dimensions. These data will be utilized in assessing the potential for automated processing. Peel strengths of foil-tape bonds depended on the maximum temperature reached during heating and on the applied pressure. Maximum peel strengths were achieved at 1.25kW and 8OkHz. Induction heating of the foil appears to be capable of good bonding up to 10 plies of tape. Heat transfer calculations indicate that a 20-40 C temperature difference exists across the tape thickness during heat-up.

  17. Protein-coated pH-responsive gold nanoparticles: Microwave-assisted synthesis and surface charge-dependent anticancer activity

    PubMed Central

    Joseph, Dickson; Tyagi, Nisha; Geckeler, Christian

    2014-01-01

    Summary The biocompatibility and ease of functionalization of gold nanoparticles underlie significant potential in biotechnology and biomedicine. Eight different proteins were examined in the preparation of gold nanoparticles (AuNPs) in aqueous medium under microwave irradiation. Six of the proteins resulted in the formation of AuNPs. The intrinsic pH of the proteins played an important role in AuNPs with strong surface plasmon bands. The hydrodynamic size of the nanoparticles was larger than the values observed by TEM and ImageJ. The formation of a protein layer on the AuNPs accounts for this difference. The AuNPs exhibited sensitivity towards varying pH conditions, which was confirmed by determining the difference in the isoelectric points studied by using pH-dependent zeta potential titration. Cytotoxicity studies revealed anticancerous effects of the AuNPs at a certain micromolar concentration by constraining the growth of cancer cells with different efficacies due to the use of different proteins as capping agents. The positively charged AuNPs are internalized by the cells to a greater level than the negatively charged AuNPs. These AuNPs synthesized with protein coating holds promise as anticancer agents and would help in providing a new paradigm in area of nanoparticles. PMID:25247128

  18. Protein-coated pH-responsive gold nanoparticles: Microwave-assisted synthesis and surface charge-dependent anticancer activity.

    PubMed

    Joseph, Dickson; Tyagi, Nisha; Geckeler, Christian; E Geckeler, Kurt

    2014-01-01

    The biocompatibility and ease of functionalization of gold nanoparticles underlie significant potential in biotechnology and biomedicine. Eight different proteins were examined in the preparation of gold nanoparticles (AuNPs) in aqueous medium under microwave irradiation. Six of the proteins resulted in the formation of AuNPs. The intrinsic pH of the proteins played an important role in AuNPs with strong surface plasmon bands. The hydrodynamic size of the nanoparticles was larger than the values observed by TEM and ImageJ. The formation of a protein layer on the AuNPs accounts for this difference. The AuNPs exhibited sensitivity towards varying pH conditions, which was confirmed by determining the difference in the isoelectric points studied by using pH-dependent zeta potential titration. Cytotoxicity studies revealed anticancerous effects of the AuNPs at a certain micromolar concentration by constraining the growth of cancer cells with different efficacies due to the use of different proteins as capping agents. The positively charged AuNPs are internalized by the cells to a greater level than the negatively charged AuNPs. These AuNPs synthesized with protein coating holds promise as anticancer agents and would help in providing a new paradigm in area of nanoparticles.

  19. Protein-coated pH-responsive gold nanoparticles: Microwave-assisted synthesis and surface charge-dependent anticancer activity.

    PubMed

    Joseph, Dickson; Tyagi, Nisha; Geckeler, Christian; E Geckeler, Kurt

    2014-01-01

    The biocompatibility and ease of functionalization of gold nanoparticles underlie significant potential in biotechnology and biomedicine. Eight different proteins were examined in the preparation of gold nanoparticles (AuNPs) in aqueous medium under microwave irradiation. Six of the proteins resulted in the formation of AuNPs. The intrinsic pH of the proteins played an important role in AuNPs with strong surface plasmon bands. The hydrodynamic size of the nanoparticles was larger than the values observed by TEM and ImageJ. The formation of a protein layer on the AuNPs accounts for this difference. The AuNPs exhibited sensitivity towards varying pH conditions, which was confirmed by determining the difference in the isoelectric points studied by using pH-dependent zeta potential titration. Cytotoxicity studies revealed anticancerous effects of the AuNPs at a certain micromolar concentration by constraining the growth of cancer cells with different efficacies due to the use of different proteins as capping agents. The positively charged AuNPs are internalized by the cells to a greater level than the negatively charged AuNPs. These AuNPs synthesized with protein coating holds promise as anticancer agents and would help in providing a new paradigm in area of nanoparticles. PMID:25247128

  20. CO extrusion in homogeneous gold catalysis: reactivity of gold acyl species generated through water addition to gold vinylidenes.

    PubMed

    Bucher, Janina; Stößer, Tim; Rudolph, Matthias; Rominger, Frank; Hashmi, A Stephen K

    2015-01-26

    Herein, we describe a new gold-catalyzed decarbonylative indene synthesis. Synergistic σ,π-activation of diyne substrates leads to gold vinylidene intermediates, which upon addition of water are transformed into gold acyl species, a type of organogold compound hitherto only scarcely reported. The latter are shown to undergo extrusion of CO, an elementary step completely unknown for homogeneous gold catalysis. By tuning the electronic and steric properties of the starting diyne systems, this new reactivity could be exploited for the synthesis of indene derivatives in high yields.