Protein targets for anticancer gold compounds: mechanistic inferences.
Gabbiani, Chiara; Messori, Luigi
2011-12-01
Gold compounds form an interesting class of antiproliferative agents of potential pharmacological use in cancer treatment. Indeed, a number of gold compounds, either gold(III) or gold(I), were recently described and characterised that manifested remarkable cytotoxic properties in vitro against cultured cancer cells; for some of them encouraging in vivo results were also reported toward a few relevant animal models of cancer. The molecular mechanisms through which gold compounds exert their biological effects are still largely unknown and the subject of intense investigations. Recent studies point out that the modes of action of cytotoxic gold compounds are essentially DNA-independent and cisplatin-unrelated, relying -most likely- on gold interactions with a variety of protein targets. Notably, a few cellular proteins playing relevant functional roles were proposed to represent effective targets for cytotoxic gold compounds but these hypotheses need adequate validation. The state of the art of this research area and the perspectives for future studies are herein critically analysed and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, M.K.; Minta, J.O.
1985-08-01
The authors have examined the effects of anti-inflammatory and anti-rheumatic drugs on membrane-bound and purified Na /K -ATPase activity in vitro. Only the gold-containing compounds (gold sodium thiomalate and auranofin) were found to inhibit the enzyme activity in a dose-dependent manner. Sodium thiomalate and triethylphosphine, the ligand compounds for gold sodium thiomalate and auranofin, respectively, had no effect on ATPase activity. The antagonistic properties was abolished by preincubation of the gold compounds with dithiothreitol. Lineweaver-Burke analysis of the inhibitions of purified ATPase by the gold compounds was found to follow uncompetitive kinetics. Inhibition of ATPase by gold may cause disruptionmore » of transmembrane cation transport and thus result in impairment of several metabolic processes and cellular functions.« less
Liu, Pei; Sun, Jiangtao
2017-07-07
A stereoselective, gold-catalyzed, cross-coupling reaction of enynones with diazo compounds has been developed, affording 2-alkenylfurans in moderate to good yields with excellent E-stereoselectivity. Upon using diazo compounds as nucleophiles to trap the in situ formed gold furyl carbene, this protocol provides a novel path toward the formation of unsymmetrical tetrasubstituted alkenes.
Pratesi, Alessandro; Gabbiani, Chiara; Michelucci, Elena; Ginanneschi, Mauro; Papini, Anna Maria; Rubbiani, Riccardo; Ott, Ingo; Messori, Luigi
2014-07-01
Gold-based drugs typically behave as strong inhibitors of the enzyme thioredoxin reductase (hTrxR), possibly as the consequence of direct Gold(I) coordination to its active site selenocysteine. To gain a deeper insight into the molecular basis of enzyme inhibition and prove gold-selenocysteine coordination, the reactions of three parent Gold(I) NHC compounds with the synthetic C-terminal dodecapeptide of hTrxR containing Selenocysteine at position 498, were investigated by electrospray ionization mass spectrometry (ESI-MS). Formation of 1:1 Gold-peptide adducts, though in highly different amounts, was demonstrated in all cases. In these adducts the same [Au-NHC](+) moiety is always associated to the intact peptide. Afterward, tandem MS experiments, conducted on a specific Gold-peptide complex, pointed out that Gold is coordinated to the selenolate group. The relatively large strength of the Gold-selenolate coordinative bond well accounts for potent enzyme inhibition typically afforded by these Gold(I) compounds. In a selected case, the time course of enzyme inhibition was explored. Interestingly, enzyme inhibition turned out to show up very quickly and reached its maximum just few minutes after mixing. Overall, the present results offer some clear insight into the process of thioredoxin reductase inhibition by Gold-based compounds. Copyright © 2014 Elsevier Inc. All rights reserved.
Gold(III) complexes in medicinal chemistry.
Maia, Pedro Ivo da Silva; Deflon, Victor M; Abram, Ulrich
2014-09-01
A number of gold(III) compounds has been designed with the objective of overcoming the disadvantages associated with the platinum-based drugs for cancer treatment. Compounds of a remarkable structural manifold show significant antiproliferative effects in vitro against a number of cancer cells, including cisplatin resistant ones. The target of most of them is, unlike that of cisplatin, not the DNA. Although the mechanisms of action displayed by the gold compounds in biological media are still under investigation, many studies show evidence that the cellular targets are mitochondria-based. Recent advances in gold(III) medicinal chemistry also recommend such compounds for other pharmacological applications such as the treatment of viral or parasitic diseases. The radioactive isotopes (198)Au and (199)Au present potential in radiotherapy.
Rodríguez-Fanjul, Vanessa; López-Torres, Elena; Mendiola, M Antonia; Pizarro, Ana María
2018-03-25
Gold(III) compounds have received increasing attention in cancer research. Three gold complexes of general formula [Au III L]Cl, where L is benzil bis(thiosemicarbazonate), compound 1, benzil bis(4-methyl-3-thiosemicarbazonate), compound 2, or benzil bis(4-cyclohexyl-3-thiosemicarbazonate), compound 3, have been synthesized and fully characterized, including the X-ray crystal structure of compound 3, confirming square-planar geometry around the gold(III) centre. Compound 1 showed moderate cytotoxicity and accumulation in MCF7 breast cancer cells but did not inhibit thioredoxin reductase (TrxR) activity and did not induce reactive oxygen species (ROS) production. Compound 2, the least cytotoxic, was found to be capable of modestly inhibiting TrxR activity and produced low levels of ROS in the MCF7 cell line. The most cytotoxic compound, 3, had the highest cellular accumulation and its distribution pattern showed a clear preference for the cytosol and mitochondria of MCF7 cells. It readily hampered intracellular TrxR activity leading to a dramatic alteration of the cellular redox state and to the induction of cell death. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Chaves, Joana Darc S; Tunes, Luiza Guimarães; de J Franco, Chris Hebert; Francisco, Thiago Martins; Corrêa, Charlane Cimini; Murta, Silvane M F; Monte-Neto, Rubens Lima; Silva, Heveline; Fontes, Ana Paula S; de Almeida, Mauro V
2017-02-15
The current anticancer and antileishmanial drug arsenal presents several limitations concerning their specificity, efficacy, costs and the emergence of drug-resistant cells lines, which encourages the urgent need to search for new alternatives. Inspired by the fact that gold(I)-based compounds are promising antitumoral and antileishmanial drug candidates, we synthesized novel gold(I) complexes containing phosphine and 5-phenyl-1,3,4-oxadiazole-2-thione and evaluated their anticancer and antileishmanial activities. Synthesis was performed by reacting 5-phenyl-1,3,4-oxadiazole-2-thione derivatives with chloro(triphenylphosphine)gold(I) and chloro(triethylphosphine)gold(I). The novel compounds were characterized by infrared, Raman, 1 H, 13 C nuclear magnetic resonance, high-resolution mass spectra, and x-ray crystallography. The coordination of the ligands to gold(I) occurred through the exocyclic sulfur atom. All gold(I) complexes were active at low micromolar or nanomolar range with IC 50 values ranging from <0.10 to 1.66 μM against cancer cell lines and from 0.9 to 4.2 μM for Leishmania infantum intracellular amastigotes. Compound (6-A) was very selective against murine melanoma B16F10, colon cancer CT26.WT cell lines and L. infantum intracellular amastigotes. Compound (7-B) presented the highest anticancer activity against both cancer cell lines while the promising antileishmanial lead was compound (6-A). Tiethylphosphine gold(I) complexes were more active than the conterparts triphenylphosphine derivatives for both anticancer and antileishmanial activities. Triethylphosphine gold(I) derivatives presented antimony cross-resistance in L. guyanensis demonstrating their potential to be used as chemical tools to better understand mechanisms of drug resistance and action. These findings revealed the anticancer and antileishmanial potential of gold(I) oxadiazole phosphine derivatives. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawtelle, S.M.
The determination of the electron transfer properties of gold, tin, and titanium compounds using electrochemical and spectroelectrochemical techniques is the focus of this dissertation. The investigations of the gold compounds include the determination of the properties of Au[PR[sub 3
Zhang, Qun Lin; Wu, Liang; Lv, Chen; Zhang, Xiao Yue
2012-06-15
A novel on-line gold nanoparticle-catalyzed luminol-H(2)O(2) chemiluminescence (CL) detector for high-performance liquid chromatography (HPLC) was established, in which gold nanoparticles were produced by the on-line reaction of H(2)O(2), NaHCO(3)-Na(2)CO(3) (buffer solution of luminol), and HAuCl(4). Eight phenolic compounds (gallic acid, protocatechuic acid, protocatechuic aldehyde, 2,5-dihydroxybenzoic acid, caffeic acid, 2,3-dihydroxybenzoic acid, (+)-catechin, and (-)-epicatechin) were chosen as the model compounds. Every separated phenolic compound in the column eluent strongly enhanced the CL signal of on-line gold nanoparticle-catalyzed luminol system. The CL and UV-visible absorption spectra and transmission electron microscopy studies were carried out, and the CL enhancement mechanism was ascribed to that the presence of phenolic compound promoted the on-line formation of 38-nm-diameter gold nanoparticles, which better catalyzed the luminol-H(2)O(2) CL reaction. The effects of methanol and phosphoric acid in the proposed HPLC configuration were performed by two gradient elution programs, and the baseline profile revealed that on-line gold nanoparticle-catalyzed luminol-H(2)O(2) CL detector had better compatibility than 38 nm gold colloids-luminol-H(2)O(2) CL detector. The proposed CL detector exhibits excellent analytical performance with the low detection limit (S/N=3) of 0.53-0.97 ng/mL (10.6-19.4 pg) phenolic compounds, and offers a new strategy for developing on-line nanoparticle-catalyzed CL detector for HPLC with sensitive analysis. Copyright © 2012 Elsevier B.V. All rights reserved.
The history of gold therapy for tuberculosis.
Benedek, Thomas G
2004-01-01
This is a historical study of the popularization of a medical therapy contrary to pertinent experimental findings. Presumably this circumstance reflects the desperation about tuberculosis: highly prevalent, highly fatal, and lacking any etiologically directed therapy. Gold compounds were introduced, based initially on the reputation of Robert Koch, who had found gold cyanide effective against M. tuberculosis in cultures, but not in experimentally infected animals. Treatment of pulmonary tuberculosis with these compounds was popularized, particularly by Danish physicians, in the mid-1920s, despite consistently negative experimental results, based on Paul Ehrlich's theories of antimicrobial drug effects. Difficulties in the design of interpretable clinical studies were soon recognized but also generally ignored, thus permitting data to be interpreted as favorable to antituberculous gold therapy. Eventually toxicity was considered to outweigh the alleged therapeutic benefit of all gold compounds. This resulted in their discard shortly before the introduction of streptomycin therapy.
Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy?
Yeo, Chien Ing; Ooi, Kah Kooi; Tiekink, Edward R T
2018-06-11
A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.
NASA Astrophysics Data System (ADS)
Zümreoglu-Karan, B.
2009-07-01
Preparation of gold nanoparticles, particularly gold nanorods, by wet chemistry processes involves gold seeds, an Au(III) salt, structure directing surfactants, and metal ion additives in the growth solution into which a weak reducing agent is added. The most commonly employed weak reducing agent is l-ascorbic acid (vitamin C) which is known to reduce many metal ions in the solution phase and form complexes with relatively low stability constants. A purple-gray gold-ascorbate compound, obtained from the reaction of sodium tetrachloroaurate(III) with sodium ascorbate, is now reported. The compound possesses the expected structural features of vitamin C-metal complexes as verified by its 13C CP-MAS NMR spectrum. A discussion is also presented on the possibility of gold-ascorbate complexation operating in gold nanoparticle formation.
Craig, Sandra; Gao, Lei; Lee, Irene; Gray, Thomas; Berdis, Anthony J.
2012-01-01
This report describes the design and application of several distinct gold-containing indoles as anti-cancer agents. When used individually, all gold-bearing compounds display cytostatic effects against leukemia and adherent cancer cell lines. However, two gold-bearing indoles show unique behavior by increasing the cytotoxic effects of clinically relevant levels of ionizing radiation. Quantifying the amount of DNA damage demonstrates that each gold-indole enhances apoptosis by inhibiting DNA repair. Both Au(I)-indoles were tested for inhibitory effects against various cellular targets including thioredoxin reductase, a known target of several gold compounds, and various ATP-dependent kinases. While neither compound significantly inhibits the activity of thioreoxin reductase, both showed inhibitory effects against several kinases associated with cancer initiation and progression. The inhibition of these kinases provides a possible mechanism for the ability of these Au(I)-indoles potentiate the cytotoxic effects of ionizing radiation. Clinical applications of combining Au(I)-indoles with ionizing radiation are discussed as a new strategy to achieve chemosensitization of cancer cells. PMID:22289037
Anti-trypanosomal activity of cationic N-heterocyclic carbene gold(I) complexes.
Winter, Isabel; Lockhauserbäumer, Julia; Lallinger-Kube, Gertrud; Schobert, Rainer; Ersfeld, Klaus; Biersack, Bernhard
2017-06-01
Two gold(I) N-heterocyclic carbene complexes 1a and 1b were tested for their anti-trypanosomal activity against Trypanosoma brucei parasites. Both gold compounds exhibited excellent anti-trypanosomal activity (IC 50 =0.9-3.0nM). The effects of the gold complexes 1a and 1b on the T. b. brucei cytoskeleton were evaluated. Rapid detachment of the flagellum from the cell body occurred after treatment with the gold complexes. In addition, a quick and complete degeneration of the parasitic cytoskeleton was induced by the gold complexes, only the microtubules of the detached flagellum remained intact. Both gold compounds 1a and 1b feature selective anti-trypanosomal agents and were distinctly more active against T. b. brucei cells than against human HeLa cells. Thus, the gold complexes 1a and 1b feature promising drug candidates for the treatment of trypanosome infections such as sleeping sickness (human African Trypanosomiasis caused by Trypanosoma brucei parasites). Copyright © 2017 Elsevier B.V. All rights reserved.
Gold Complexes for Therapeutic Purposes: an Updated Patent Review (2010-2015).
Nardon, Chiara; Pettenuzzo, Nicolò; Fregona, Dolores
2016-01-01
Gold has always aroused great interest in the history of mankind. It has been used for thousands of years for jewelry, religious cult valuables, durable goods and in the art world. However, few know that such a precious and noble metal was exploited in the past by the ancients also for its therapeutic properties. More recently, in the twentieth century some complexes containing gold centers in the oxidation state +1 were studied for the treatment of the rheumatoid arthritis and the orally-administered drug Auranofin was approved by the FDA in 1985. From the chemical point of view, gold derivatives deserve special attention due to the unique position of this metal within the periodic table, which results in unconventional relativistic effects and, ultimately, in the highest electronegativity, electron affinity and redox potential among all metals. In this review, after an introduction concerning the use of gold complexes in medicine, we have examined all the patents internationally or nationally published in the years 2010-2015 (until December 31, 2015) and describing new inorganic compounds containing gold(I) and gold(III) with proved therapeutic properties. These patents were filed to mainly protect compounds with promising anticancer and anti-inflammatory activities (total 18 and 4, respectively). In particular, this work explores both coordination compounds containing ligands with various donor atoms (e.g., N-, O-, S- and -P) and organo-gold derivatives with at least one Au-C bond. The toxicological profile and the intracellular targets reported for some among the patented gold derivatives are discussed.
Gold-coated nanoparticles for use in biotechnology applications
Berning, Douglas E [Los Alamos, NM; Kraus, Jr., Robert H.; Atcher, Robert W [Los Alamos, NM; Schmidt, Jurgen G [Los Alamos, NM
2009-07-07
A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.
Gold-coated nanoparticles for use in biotechnology applications
Berning, Douglas E [Los Alamos, NM; Kraus, Jr., Robert H.; Atcher, Robert W [Los Alamos, NM; Schmidt, Jurgen G [Los Alamos, NM
2007-06-05
A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.
Silver enhancement of nanogold and undecagold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hainfield, J.F.; Furuya, F.R.
1995-07-01
A recent advance in immunogold technology has been the use of molecular gold instead of colloidal gold. A number of advantages are realized by this approach, such as stable covalent, site-specific attachment, small probe size and absence of aggregates for improved penetration. Silver enhancement has led to improved and unique results for electron and light microscopy, as well as their use with blots and gels. Most previous work with immunogold silver staining has been done with colloidal gold particles. More recently, large gold compounds (``clusters``) having a definite number of gold atoms and defined organic shell, have been used, frequentlymore » with improved results. These gold dusters, large compared to simple compounds, are, however, at the small end of the colloidal gold scale in size; undecagold is 0.8 nm and Nanogold is 1.4 nm. They may be used in practically all applications where colloidal gold is used (Light and electron microscopy, dot blots, etc.) and in some unique applications, where at least the larger colloidal golds don`t work, such as running gold labeled proteins on gels (which are later detected by silver enhancement). The main differences between gold clusters and colloidal golds are the small size of the dusters and their covalent attachment to antibodies or other molecules.« less
Maiore, Laura; Cinellu, Maria Agostina; Nobili, Stefania; Landini, Ida; Mini, Enrico; Gabbiani, Chiara; Messori, Luigi
2012-03-01
Gold(III) compounds form a family of promising cytotoxic and potentially anticancer agents that are currently undergoing intense preclinical investigations. Four recently synthesized and characterized gold(III) derivatives of 2-substituted pyridines are evaluated here for their biological and pharmacological behavior. These include two cationic adducts with 2-pyridinyl-oxazolines, [Au(pyox(R))Cl(2)][PF(6)], [pyox(R)=(S)-4-benzyl-2-(pyridin-2-yl)-4,5-dihydrooxazole, I; (S)-4-iso-propyl-2-(pyridin-2-yl)-4,5-dihydrooxazole, II] and two neutral complexes [Au(N,N'OH)Cl(2)], III, and [Au(N,N',O)Cl], IV, containing the deprotonated ligand N-(1-hydroxy-3-iso-propyl-2-yl)pyridine-2-carboxamide, N,N'H,OH, resulting from ring opening of bound pyox(R) ligand of complex II by hydroxide ions. The solution behavior of these compounds was analyzed. These behave as classical prodrugs: activation of the metal center typically takes place through release of the labile chloride ligands while the rest of the molecule is not altered; alternatively, activation may occur through gold(III) reduction. All compounds react eagerly with the model protein cyt c leading to extensive protein metalation. ESI MS experiments revealed details of gold-cyt c interactions and allowed us to establish the nature of protein bound metal containing fragments. The different behavior displayed by I and II compared to III and IV is highlighted. Remarkable cytotoxic properties, against the reference human ovarian carcinoma cell lines A2780/S and A2780/R were disclosed for all tested compounds with IC(50) values ranging from 1.43 to 6.18 μM in the sensitive cell line and from 1.59 to 10.86 μM in the resistant one. The common ability of these compounds to overcome cisplatin resistance is highlighted. The obtained results are thoroughly discussed in the frame of current knowledge on cytotoxic gold compounds. Copyright © 2011 Elsevier Inc. All rights reserved.
Lee, M T; Ahmed, T; Haddad, R; Friedman, M E
1989-01-01
Bovine liver beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32), wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) and bovine liver L-malate dehydrogenase (L-malate: NAD oxidoreductase, EC 1.1.1.37) were inhibited by a series of gold (I) complexes that have been used as anti-inflammatory drugs. Both sodium thiosulfatoaurate (I) (Na AuTs) and sodium thiomalatoraurate (NaAuTM) effectively inhibited all three enzymes, while thioglucosoaurate (I) (AuTG) only inhibited L-malate dehydrogenase. The equilibrium constants (K1) ranged from nearly 4000 microM for the NaAuTM-beta-glucuronidase interaction to 24 microM for the NaAuTS-beta-glucuronidase interaction. The rate of covalent bond formation (kp) ranged from 0.00032 min-1 for NaAuTM-beta-glucuronidase formation to 1.7 min-1 for AuTG-L-malate dehydrogenase formation. The equilibrium data shows that the gold (I) drugs bind by several orders lower than the gold (III) compounds, suggesting a significantly stronger interaction between the more highly charged gold ion and the enzyme. Yet the rate of covalent bond formation depends as much on the structure of the active site as upon the lability of the gold-ligand bond. It was also observed that the more effective the gold inhibition the more toxic the compound.
Aguilar, David; Contel, Maria; Urriolabeitia, Esteban P
2010-08-09
Propargylamines can be obtained from secondary amines and terminal alkynes in chlorinated solvents by a three- and two-component synthesis catalyzed by gold compounds and nanoparticles (Au-NP) under mild conditions. The use of dichloromethane allows for the activation of two C-Cl bonds and a clean transfer of the methylene fragment to the final product. The scope of the reaction as well as the influence of different gold(III) cycloaurated complexes and salts has been investigated. The involvement of gold nanoparticles generated in situ in the process is discussed and a plausible reaction mechanism is proposed on the basis of the data obtained.
Gambini, Valentina; Tilio, Martina; Maina, Eunice Wairimu; Andreani, Cristina; Bartolacci, Caterina; Wang, Junbiao; Iezzi, Manuela; Ferraro, Stefano; Ramadori, Anna Teresa; Simon, Oumarou Camille; Pucciarelli, Stefania; Wu, Guojun; Dou, Q Ping; Marchini, Cristina; Galassi, Rossana; Amici, Augusto
2018-06-02
Basal like breast cancer (BLBC) is a very aggressive subtype of breast cancer giving few chances of survival, against which cisplatin based therapy is a compromise among the anticancer activity, the resistance development and the severe side effects. With the aim of finding new anticancer agents alternative to cisplatin, seven gold(I) azolate/phosphane compounds were evaluated in vitro by MTT tests in human MDA-MB-231, human mammary epithelial HMLE cells overexpressing FoxQ1, and murine A17 cells as models of BLBC. Two compounds, (4,5-dichloro-1H-imidazolate-1-yl)-(triphenylphosphane)-gold(I) 1 and (4,5-dicyano-1H-imidazolate-1-yl)-(triphenylphosphane)-gold(I) 2 were found very active and chosen for an in vivo study in A17 tumors transplanted in syngeneic mice. The compounds resulted to be more active than cisplatin, less nephrotoxic and generally more tolerated by the mice. This study also provides evidence that both gold(I) complexes inhibited the 19 S proteasome-associated deubiquitinase USP14 and induced apoptosis, while compound 1's mechanism of action depends also on its ability to down-regulate key molecules governing cancer growth and progression, such as STAT3 and Cox-2. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Arunachalam, Kantha D; Annamalai, Sathesh Kumar; Hari, Shanmugasundaram
2013-01-01
In this experiment, green-synthesized silver and gold nanoparticles were produced rapidly by treating silver and gold ions with an extract of Memecylon umbellatum leaf. The reaction process was simple and easy to handle, and was monitored using ultraviolet-visible spectroscopy. The effect of the phytochemicals present in M. umbellatum, including saponins, phenolic compounds, phytosterols, and quinones, on formation of stable silver and gold nanoparticles was investigated by Fourier-transform infrared spectroscopy. The morphology and crystalline phase of the nanoparticles were determined by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The results indicate that the saponins, phytosterols, and phenolic compounds present in the plant extract play a major role in formation of silver and gold nanoparticles in their respective ions in solution. The characteristics of the nanoparticles formed suggest application of silver and gold nanoparticles as chemical sensors in the future. Given the simple and eco-friendly approach for synthesis, these nanoparticles could easily be commercialized for large-scale production.
Arunachalam, Kantha D; Annamalai, Sathesh Kumar; Hari, Shanmugasundaram
2013-01-01
In this experiment, green-synthesized silver and gold nanoparticles were produced rapidly by treating silver and gold ions with an extract of Memecylon umbellatum leaf. The reaction process was simple and easy to handle, and was monitored using ultraviolet-visible spectroscopy. The effect of the phytochemicals present in M. umbellatum, including saponins, phenolic compounds, phytosterols, and quinones, on formation of stable silver and gold nanoparticles was investigated by Fourier-transform infrared spectroscopy. The morphology and crystalline phase of the nanoparticles were determined by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The results indicate that the saponins, phytosterols, and phenolic compounds present in the plant extract play a major role in formation of silver and gold nanoparticles in their respective ions in solution. The characteristics of the nanoparticles formed suggest application of silver and gold nanoparticles as chemical sensors in the future. Given the simple and eco-friendly approach for synthesis, these nanoparticles could easily be commercialized for large-scale production. PMID:23569372
Serratrice, Maria; Maiore, Laura; Zucca, Antonio; Stoccoro, Sergio; Landini, Ida; Mini, Enrico; Massai, Lara; Ferraro, Giarita; Merlino, Antonello; Messori, Luigi; Cinellu, Maria Agostina
2016-01-14
A novel platinum(ii) organometallic complex, [Pt(pbi)(Me)(DMSO)], bearing the 2-(2'-pyridyl)-benzimidazole (pbiH) ligand, was synthesized and fully characterized. Interestingly, the reaction of this organometallic platinum(ii) complex with two distinct gold(i) phosphane compounds afforded the corresponding heterobimetallic derivatives with the pbi ligand bridging the two metal centers. The antiproliferative properties in vitro of [Pt(pbi)(Me)(DMSO)] and its gold(i) derivatives as well as those of the known coordination platinum(ii) and palladium(ii) complexes with the same ligand, of the general formula [MCl2(pbiH)], were comparatively evaluated against A2780 cancer cells, either sensitive or resistant to cisplatin. A superior biological activity of the organometallic compound clearly emerged compared to the corresponding platinum(ii) complex; the antiproliferative effects are further enhanced upon attaching the gold(i) triphenylphosphine moiety to the organometallic Pt compound. Remarkably, these novel metal species are able to overcome nearly complete resistance to cisplatin. Significant mechanistic insight into the study compounds was gained after investigating their reactions with a few representative biomolecules by electrospray mass spectrometry and X-ray crystallography. The obtained results are comprehensively discussed.
Chaves, Joana Darc Souza; Damasceno, Jaqueline Lopes; Paula, Marcela Cristina Ferreira; de Oliveira, Pollyanna Francielli; Azevedo, Gustavo Chevitarese; Matos, Renato Camargo; Lourenço, Maria Cristina S; Tavares, Denise Crispim; Silva, Heveline; Fontes, Ana Paula Soares; de Almeida, Mauro Vieira
2015-10-01
Novel gold(I) and gold(III) complexes containing derivatives of D-galactose, D-ribose and D-glucono-1,5-lactone as ligands were synthesized and characterized by IR, (1)H, and (13)C NMR, high resolution mass spectra and cyclic voltammetry. The compounds were evaluated in vitro for their cytotoxicity against three types of tumor cells: cervical carcinoma (HeLa) breast adenocarcinoma (MCF-7) and glioblastoma (MO59J) and one non-tumor cell line: human lung fibroblasts (GM07492A). Their antitubercular activity was evaluated as well expressed as the minimum inhibitory concentration (MIC90) in μg/mL. In general, the gold(I) complexes were more active than gold(III) complexes, for example, the gold(I) complex (1) was about 8.8 times and 7.6 times more cytotoxic than gold(III) complex (8) in MO59J and MCF-7 cells, respectively. Ribose and alkyl phosphine derivative complexes were more active than galactose and aryl phosphine complexes. The presence of a thiazolidine ring did not improve the cytotoxicity. The study of the cytotoxic activity revealed effective antitumor activities for the gold(I) complexes, being more active than cisplatin in all the tested tumor cell lines. Gold(I) compounds (1), (2), (3), (4) and (6) exhibited relevant antitubercular activity even when compared with first line drugs such as rifampicin.
Gold-Catalyzed Formal C-C Bond Insertion Reaction of 2-Aryl-2-diazoesters with 1,3-Diketones.
Ren, Yuan-Yuan; Chen, Mo; Li, Ke; Zhu, Shou-Fei
2018-06-29
The transition-metal-catalyzed formal C-C bond insertion reaction of diazo compounds with monocarbonyl compounds is well established, but the related reaction of 1,3-diketones instead gives C-H bond insertion products. Herein, we report a protocol for a gold-catalyzed formal C-C bond insertion reaction of 2-aryl-2-diazoesters with 1,3-diketones, which provides efficient access to polycarbonyl compounds with an all-carbon quaternary center. The aryl ester moiety plays a crucial role in the unusual chemoselectivity, and the addition of a Brønsted acid to the reaction mixture improves the yield of the C-C bond insertion product. A reaction mechanism involving cyclopropanation of a gold carbenoid with an enolate and ring-opening of the resulting donor-acceptor-type cyclopropane intermediate is proposed. This mechanism differs from that of the traditional Lewis-acid-catalyzed C-C bond insertion reaction of diazo compounds with monocarbonyl compounds, which involves a rearrangement of a zwitterion intermediate as a key step. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Németh, A; Magyar, P
1989-04-01
Broncho-Vaxom (BV) inhibited in dose-dependent manner the release of histamine from and degranulation of isolated rat peritoneal mast cells stimulated with compound 48/80 and the ionophore A23187. Inhibition persisted after removal of BV from the incubation medium before stimulation, but did not occur when bovine serum albumin (BSA) was used instead of BV. Binding of BV to mast cells was observed by electron microscopy on cells that had been incubated with colloidal-gold labelled BV. There was no significant difference between the binding of BV gold and BSA gold to the mast cells. Washing before fixation removed most of the BV gold from the cells. This study establishes BV as an in vitro histamine release inhibitor.
2015-01-01
New organometallic gold(III) and platinum(II) complexes containing iminophosphorane ligands are described. Most of them are more cytotoxic to a number of human cancer cell lines than cisplatin. Cationic Pt(II) derivatives 4 and 5, which differ only in the anion, Hg2Cl62– or PF6– respectively, display almost identical IC50 values in the sub-micromolar range (25–335-fold more active than cisplatin on these cell lines). The gold compounds induced mainly caspase-independent cell death, as previously reported for related cycloaurated compounds containing IM ligands. Cycloplatinated compounds 3, 4, and 5 can also activate alternative caspase-independent mechanisms of death. However, at short incubation times cell death seems to be mainly caspase dependent, suggesting that the main mechanism of cell death for these compounds is apoptosis. Mercury-free compound 5 does not interact with plasmid (pBR322) DNA or with calf thymus DNA. Permeability studies of 5 by two different assays, in vitro Caco-2 monolayers and a rat perfusion model, have revealed a high permeability profile for this compound (comparable to that of metoprolol or caffeine) and an estimated oral fraction absorbed of 100%, which potentially makes it a good candidate for oral administration. PMID:26147404
NASA Astrophysics Data System (ADS)
Nieuwoudt, Michél. K.; Martin, Jacob W.; Oosterbeek, Reece N.; Novikova, Nina I.; Wang, Xindi; Malmström, Jenny; Williams, David E.; Simpson, M. C.
2015-03-01
Surface Enhanced Raman spectroscopy (SERS) offers sensitive and non-invasive detection of a variety of compounds as well as unparalleled information for establishing the molecular identity of both inorganic and organic compounds, not only in biological fluids but in all other aqueous and non-aqueous media. The localized hotspots produced through SERS at the solution/nanostructure interface of clustered gold or silver nano-particles enables detection levels of parts per trillion. Recent developments in advanced fabrication methods have enabled the manufacture of SERS substrates with repeatable surface nanostructures which provide reproducible quantitative analysis, historically a weakness of the SERS technique. In this paper we describe the novel use of gold sputtered Blu-Ray surfaces as SERS substrates. Blu-Ray disks provide ideal surfaces of SERS substrates with their repeatable and regular nano-gratings. We show that the unique surface features and composition of the recording surface enables the formation of gold nano-islands with nanogaps, simply through gold sputtering, and relate this to a 600 fold signal increase of the melamine Raman signal in aqueous solutions and detection to 68 ppb. Melamine is a triazine compound and appears not only as environmental contaminant in environmental groundwater but also as an adulterant in foods due to its high nitrogen content. We have shown significant SERS signal enhancements for spectra of melamine using gold-sputtered Blu-Ray disk surfaces, with reproducibility of 12%. Blu-Ray disks have a unique combination of design, surface features and composition of the recording surface which makes them ideal for preparation of SERS substrates by gold sputter-coating.
Study on Sumbawa gold recovery using centrifuge
NASA Astrophysics Data System (ADS)
Ferdana, A. D.; Petrus, H. T. B. M.; Bendiyasa, I. M.; Prijambada, I. D.; Hamada, F.; Sachiko, T.
2018-01-01
The Artisanal Small Gold Mining in Sumbawa has been processing gold with mercury (Hg), which poses a serious threat to the mining and global environment. One method of gold processing that does not use mercury is by gravity method. Before processing the ore first performed an analysis of Mineragraphy and analysis of compound with XRD. Mineragraphy results show that gold is associated with chalcopyrite and covelite and is a single particle (native) on size 58.8 μm, 117 μm up to 294 μm. characterization with XRD shows that the Sumbawa Gold Ore is composed of quartz, pyrite, pyroxene, and sericite compounds. Sentrifugation is one of separation equipment of gravity method to increase concentrate based on difference of specific gravity. The optimum concentration result is influenced by several variables, such as water flow rate and particle size. In this present research, the range of flow rate is 5 lpm and 10 lpm, the particle size - 100 + 200 mesh and -200 +300 mesh. Gold concentration in concentrate is measured by EDX. The result shows that the optimum condition is obtained at a separation with flow rate 5 lpm and a particle size of -100 + 200 mesh.
Synthesis and characterization of mixed monolayer protected gold nanorods and their Raman activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mlambo, Mbuso; Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125; Mdluli, Phumlani S.
2013-10-15
Graphical abstract: Gold nanorods surface functionalization. - Highlights: • Mixed monolayer protected gold nanorods. • Surface enhanced Raman spectroscopy. • HS-(CH{sub 2}){sub 11}-NHCO-coumarin as a Raman active compound. - Abstract: The cetyltrimethylammonium bromide (CTAB) gold nanorods (AuNRs) were prepared by seed-mediated route followed by the addition of a Raman active compound (HS-(CH{sub 2}){sub 11}-NHCO-coumarin) on the gold nanorods surfaces. Different stoichiometric mixtures of HS-(CH{sub 2}){sub 11}-NHCO-coumarin and HS-PEG-(CH{sub 2}){sub 11}COOH were evaluated for their Raman activities. The lowest stoichiometric ratio HS-(CH{sub 2}){sub 11}-NHCO-coumarin adsorbed on gold nanorods surface was detected and enhanced by Raman spectroscopy. The produced mixed monolayer protectedmore » gold nanorods were characterized by UV-vis spectrometer for optical properties, transmission electron microscope (TEM) for structural properties (shape and aspect ratio) and their zeta potentials (charges) were obtained from ZetaSizer to determine the stability of the produced mixed monolayer protected gold nanorods. The Raman results showed a surface enhanced Raman scattering (SERS) enhancement at the lowest stoichiometric ratio of 1% HS-(CH{sub 2}){sub 11}-NHCO-coumarin compared to high ratio of 50% HS-(CH{sub 2}){sub 11}-NHCO-coumarin on the surface of gold nanorods.« less
Gold - Old Drug with New Potentials.
Faa, Gavino; Gerosa, Clara; Fanni, Daniela; Lachowicz, Joanna I; Nurchi, Valeria M
2018-01-01
Research into gold-based drugs for a range of human diseases has seen a revival in recent years. This article reviews the most important applications of gold products in different fields of human pathology. Au(I) and Au(III) compounds have been re-introduced in clinical practice for targeting the cellular components involved in the onset and progression of viral and parasitic diseases, rheumatoid arthritis and cancer. After some brief historical notes, this article takes into account the applications of gold compounds against Mycobacterium tuberculosis, and also in tuberculosis and in rheumatoid arthritis treatment. The use of gold containing drugs in the cure of cancer are then considered, with special emphasis to the use of nanoparticles and to the photo-thermal cancer therapy. The use of colloidal gold in diagnostics, introduced in the last decade is widely discussed. As a last point a survey on the adverse effects and on the toxicity of the various gold derivatives in use in medicine is presented. In this review, we described the surprisingly broad spectrum of possible uses of gold in diagnostics and in therapeutic approaches to multiple human diseases, ranging from degenerative to infectious diseases, and to cancer. In particular, gold nanoparticles appear as attractive elements in modern clinical medicine, combining high therapeutic properties, high selectivity in targeting cancer cells and low toxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Praveen, Chandrasekaran; Ayyanar, Asairajan; Perumal, Paramasivan Thirumalai
2011-07-15
A highly regioselective synthesis of pyrano[3,4-b]indol-1(9H)-ones via gold(III) chloride catalyzed cycloisomerization of 3-ethynyl-indole-2-carboxylic acid was achieved in good to excellent yields. These compounds were screened for their in vitro cytotoxicity against human cervical (HeLa) cell lines. Out of ten compounds, three compounds (7d, 7e and 7j) showed comparable proliferation inhibitory activity against the standard drug cisplatin. Compound 7d was found to be the most efficacious with IC(50) value of 0.22μM. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gatea, Florentina; Teodor, Eugenia Dumitra; Seciu, Ana-Maria; Covaci, Ovidiu Ilie; Mănoiu, Sorin; Lazăr, Veronica; Radu, Gabriel Lucian
2015-07-01
The Romanian propolis was extracted in five different media, respectively, in water (pH 6.8), glycine buffer (pH 2.5), acetate buffer (pH 5), phosphate buffer (pH 7.4) and carbonate buffer (pH 9.2). The extracts presented different amounts of flavonoids and phenolic acids, increasing pH leading to higher concentrations of active compounds. Five variants of gold nanoparticles suspensions based on different pH Romanian propolis aqueous extracts were successfully synthesized. The obtained nanoparticles presented dimensions between 20 and 60 nm in dispersion form and around 18 nm in dried form, and different morphologies (spherical, hexagonal, triangular). Fourier transform infrared spectroscopy proved the attachment of organic compounds from propolis extracts to the colloidal gold suspensions and X-ray diffraction certified that the suspensions contain metallic gold. The obtained propolis gold nanoparticles do not exhibit any antibacterial or antifungal activity, but presented different catalytic activities and toxicity on tumour cells.
Novel Gold Intermetallics with Unique Properties and Bonding Patterns
NASA Astrophysics Data System (ADS)
Celania, Christopher Ranger
Gold has drawn the fascination of society through its brilliant color, malleability, and chemical resistance (hence its chemical nobility) since its discovery in ancient times. Today, this material is still highly coveted by consumers, but also for research within the scientific realm. The inclusion of gold in intermetallics often leads to notably unique structural and bonding features due to the pronounced relativistic effects on its 5d and 6s orbitals. Examples include quasicrystals and their approximants, unique gold clusters such as isolated Au7 clusters in A4Au7X2 (A = K, Rb, Cs; X = Ge, Sn), one dimensional columns such as Au zig-zag chains through Ca3Au3In, two dimensional slabs, such as in K2 Au3, as well as three dimensional gold networks as observed in the interconnected trigonal bipyramids in KAu5, hexagonal diamond-like frameworks of Au tetrahedra in Au-rich Sr-Au-Al systems; and combinations of tetrahedral and fourfold planar Au atoms in Rb3Au7. In recent years, compounds in the gold-rich region of the R-Au- M system (R = rare earth, M = groups 13-15) have come under increased study. Many compounds within this system produce varied electronic and magnetic properties such as Pauli paramagnetism, superconductivity, thermoelectricity, etc. The shielded 4f electrons of the added rare earth elements provide the unpaired spins that lead to the wealth of interesting magnetic properties in their compounds. Metals and metalloids from groups 13-15 may then be used as a bank of available options useful in tuning the valence electron count of the R-Au system toward the formation of stable compounds. Exploration of the Gd-Au-Sb system by utilizing common solid state synthesis techniques frequently used for the production of intermetallics (such as arc melting and high-temperature furnaces for self-flux reactions with low melting components) has yielded rich outcomes. These results include the discovery of a new R3Au9Pn series of compounds (R = Y, Gd-Ho; Pn = Sb, Bi), which undergo interesting metamagnetic transitions, varied coloring schemes for Sb substitutions in the known R14Au51 compound forming R 14(Au, M)51 (R = Y, La-Nd, Sm-Tb, Ho, Er, Yb, Lu; M = Al, Ga, Ge, In, Sn, Sb, Bi), and a complex tetragonal Gd-Au-Sb structure with significant Sb site mixing and positional disorder, as well as preliminary structure results of several other previously unreported compounds within the R-Au- M family.
Gold(I)-catalyzed diazo coupling: strategy towards alkene formation and tandem benzannulation.
Zhang, Daming; Xu, Guangyang; Ding, Dong; Zhu, Chenghao; Li, Jian; Sun, Jiangtao
2014-10-06
A gold(I)-catalyzed cross-coupling of diazo compounds to afford tetrasubstituted alkenes has been developed by taking advantage of a trivial electronic difference between two diazo substrates. A N-heterocyclic-carbene-derived gold complex is the most effective catalyst for this transformation. Based on this new strategy, a gold(I)-initiated benzannulation has been achieved through a tandem reaction involving a diazo cross-coupling, 6π electrocyclization, and oxidative aromatization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The extractive metallurgy of gold
NASA Astrophysics Data System (ADS)
Kongolo, K.; Mwema, M. D.
1998-12-01
Mössbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Mössbauer spectroscopy could be applied.
Wang, Lai-Hao; Zhang, Yu-Han
2017-02-16
A flow-electrolytic cell that consists of a bare gold wire or of different thiol-compound-modified gold electrodes (such as 2,4-thiazolidinedione, 2-mercapto-5-thiazoline, 2-mercaptothiazoline, l-cysteine, thioglycolic acid) was designed to be used in a voltammetric detector to identify l-selenomethionine and Se-methylseleno-l-cysteine using high-performance liquid chromatography. Both l-selenomethionine and Se-methylseleno-l-cysteine are more efficiently electrochemically oxidized on a thiol/gold than on a bare gold electrode. For the DC mode, and for measurements with suitable experimental parameters, a linear concentration from 10 to 1600 ng·mL -1 was found. The limits of quantification for l-selenomethionine and Se-methylseleno-l-cysteine were below 10 ng·mL -1 . The method can be applied to the quantitative determination of l-selenomethionine and Se-methylseleno-l-cysteine in commercial selenium-containing supplement products. Findings using high-performance liquid chromatography with a flow-through voltammetric detector and ultraviolet detector are comparable.
[History of gold--with danish contribution to tuberculosis and rheumatoid arthritis].
Norn, Svend; Permin, Henrik; Kruse, Poul R; Kruse, Edith
2011-01-01
Gold has a long history as a therapeutic agent, first as gold particles and colloidal gold, then as a soluble salt made by the alchemists, and potable gold was recommended almost as a panacea against different diseases. Gold compounds were introduced in the treatment of tuberculosis, based initially on the reputation of Robert Koch, who found gold cyanide effective against Mycobacterium tuberculosis in cultures. Although several investigations of gold salts showed no convincing effect in experimental tuberculosis in guinea pigs, the idea of using gold compounds as chemotherapy was furthermore encouraged from the work of Paul Ehrlich with arsenicals. The enthusiasm and the craving desperately for a remedy for tuberculosis forced Danish physicians, in the mid-1920s to treat tuberculosis with Sanocrysin (gold sodium thiosulfate). Professor Holger Møllgaard, in collaboration with the clinicians the professors Knud Secher and Knud Faber, was the theoretical promoter of the project. He recommended sanocrysin-antiserum therapy, since sanocrysin caused serious reactions in tuberculosis animals, possible by releasing toxins from tubercle bacilli "killed" by sanocrysin. However the enthusiastic response to sanocrysin in Europe declined along by controlled trials and reports on toxicity in the 1930s. The belief that rheumatoid arthritis was a form of tuberculosis caused a renaissance in chrysotherapy. In France Jacques Forestier obtained encouraging results in the treatment of rheumatoid arthritis with myochrysine and other gold salts, and he pointed out the disease modifying effect of chrysotherapy. In Denmark Knud Secher, who was the clinical initiator of Sanocrysin therapy in tuberculosis, now became the founder of chrysotherapy in rheumatoid arthritis. Although new potential agents are now taking over in the treatment of arthritis, it is still believed, that there is a place for the chrysotherapy. However a new future for gold, in the form of nanoparticles, appears on the horizon, especially in the imaging, diagnostics and therapies of cancer.
Ortiz, Mayreli; Mehdi, Ahmed; Methivier, Christophe; Thorimbert, Serge; Hasenknopf, Bernold; O'Sullivan, Ciara K
2018-05-21
Self-assembled monolayers formed by chemisorption of thiolated molecules on gold surfaces are widely applied for biosensing. Moreover, and due to the low stability of thiol-gold chemistry, contributions to the functionalisation of gold substrates with linkers that provide a more stable platform for the immobilisation of electroactive or biological molecules are highly appreciated. In the work reported here, we demonstrate that a carboxylated organotin compound can be successfully grafted onto gold substrates to form a highly stable organic layer with reactivity for subsequent binding to an aminated molecule. A battery of techniques was used to characterise the surface chemistry. The grafted layer was used to anchor aminoferrocene and subjected to both thermostability tests and long term stability studies over the period of one year, demonstrating thermostability up to 90 oC and storage stability for at least 12 months when stored at 4 oC protected from light. The stable surface tethering of molecules on gold substrates can be exploited in a plethora of applications including molecular techniques such as solid-phase amplification and solid-phase melting curve analysis that require elevated temperature stability, as well as biosensors, which require long-term storage stability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reductive precipitation of metals photosensitized by tin and antimony porphyrins
Shelnutt, John A.; Gong, Weiliang; Abdelouas, Abdesselam; Lutze, Werner
2003-09-30
A method for reducing metals using a tin or antimony porphyrin by forming an aqueous solution of a tin or antimony porphyrin, an electron donor, such as ethylenediaminetetraaceticacid, triethylamine, triethanolamine, and sodium nitrite, and at least one metal compound selected from a uranium-containing compound, a mercury-containing compound, a copper-containing compound, a lead-containing compound, a gold-containing compound, a silver-containing compound, and a platinum-containing compound through irradiating the aqueous solution with light.
Deng, Heng; Zhong, Yanqi; Du, Meihong; Liu, Qinjun; Fan, Zhanming; Dai, Fengying; Zhang, Xin
2014-01-01
The controllable self-assembly of amphiphilic mixed polymers grafted gold nanoparitcles (AuNPs) leads to strong interparticle plasmonic coupling, which can be tuned to the near-infrared (NIR) region for enhanced photothermal therapy (PTT). In this study, an improved thiolation method was adopted for ATRP and ROP polymer to obtain amphiphilic brushes of PMEO2MA-SH and PCL-SH. By anchoring PCL-SH and PMEO2MA-SH onto the 14 nm AuNPs, a smart hybrid building block for self-assembly was obtained. Increasing the PCL/PMEO2MA chain ratio from 0.8:1, 2:1 and 3:1 to 7:1, the structure of gold assemblies (GAs) was observed to transfer from vesicle to large compound micelle (LCM). Contributed to the special dense packed structure of gold nanoparticles in LCM, the absorption spectrometry of gold nanoparticles drastically red-shifted from 520 nm to 830 nm, which endowed the GAs remarkable NIR photothermal conversion ability. In addition, gold has high X-ray absorption coefficient which qualifies gold nanomaterial a potential CT contrast agent Herein, we obtain a novel gold assembly structure which can be utilized as potential photothermal therapeutic and CT contrast agents. In vitro and In vivo studies testified the excellent treatment efficacy of optimum GAs as a PTT and CT contrast agent. In vitro degradation test, MTT assay and histology study indicated that GAs was a safe, low toxic reagent with good biodegradability. Therefore, the optimum GAs with strong NIR absorption and high X-ray absorption coefficient could be used as a theranostic agent and the formation of novel gold large compound micelle might offers a new theory foundation for engineering design and synthesis of polymer grafted AuNPs for biomedical applications.
An efficient and sustainable protocol is described for the oxidative esterification of aldehydes and the reduction of aromatic nitro compounds that uses magnetically separable and reusable maghemite-supported gold nanocatalyst (nanocat-Fe-Au) under mild conditions. The complex ch...
X Ray Mask Of Gold-Carbon Mixture Absorber On BCN Compound Substrate Fabricated By Plasma Processes
NASA Astrophysics Data System (ADS)
Aiyer, Chandrasekhar R.; Itoh, Satoshi; Yamada, Hitomi; Morita, Shinzo; Hattori, Shuzo
1988-06-01
X-ray mask fabrication based on BCN compound membrane and gold containing polymeric carbon ( Au-C ) absorber by totally dry processes is proposed. The Au-C films were depo-sited by plasma polymerization of propylene or styrene monomers and co-evaporation of gold. These films have 2 to 5 times higher etching rate than that of pure gold for 09 RIE, depending on the Au content. The stress in the films could be reduced to 1.9 E 7 N/m2 by annealing. The BCN films were deposited on silicon wafers by rf (13.56 MHz) plasma CVD with diborane, methane and nitrogen as source gases at typical deposition rate of 30 nm/min. The optical (633nm) and X ray (Pd L~) transparencies were nearly 80% for film thickness of 6 um. Patterning of Au-C was achieved by using tungsten as intermediate layer and PMMA electron beam resist. CF4 RIE was used to etch the tungsten layer which in turn acted as mask for the gold carbide 02 RIE. The process parameters and the characteristics of the Au-C and BCN films are presented.
Vetchinkina, Elena P; Loshchinina, Ekaterina A; Vodolazov, Ilya R; Kursky, Viktor F; Dykman, Lev A; Nikitina, Valentina E
2017-02-01
The work shows the ability of cultured Basidiomycetes of different taxonomic groups-Lentinus edodes, Pleurotus ostreatus, Ganoderma lucidum, and Grifola frondosa-to recover gold, silver, selenium, and silicon, to elemental state with nanoparticles formation. It examines the effect of these metal and metalloid compounds on the parameters of growth and accumulation of biomass; the optimal cultivation conditions and concentrations of the studied ion-containing compounds for recovery of nanoparticles have been identified. Using the techniques of transmission electron microscopy, dynamic light scattering, X-ray fluorescence and X-ray phase analysis, the degrees of oxidation of the bioreduced elements, the ζ-potential of colloidal solutions uniformity, size, shape, and location of the nanoparticles in the culture fluid, as well as on the surface and the inside of filamentous hyphae have been determined. The study has found the part played by homogeneous chromatographically pure fungal phenol-oxidizing enzymes (laccases, tyrosinases, and Mn-peroxidases) in the recovery mechanism with formation of electrostatically stabilized colloidal solutions. A hypothetical mechanism of gold(III) reduction from HAuCl 4 to gold(0) by phenol oxidases with gold nanoparticles formation of different shapes and sizes has been introduced.
DESIGN AND ANALYSIS OF AN EXPERIMENT FOR ASSESSING CYANIDE IN GOLD MINING WASTES
Gold mining wastes treated by heap leaching cyanidization typically contain several metallo-cyanide species. Accurate measurement of total cyanide by the most common methods in such a case may be hampered by the inadequate recoveries that occur for certain cyanide compounds (e.g....
The chemistry of gold as an anion.
Jansen, Martin
2008-09-01
Due to relativistic and classical shell structure effects, the 6s orbital of gold is significantly contracted and energetically stabilized. This is reflected by a strikingly high electron affinity, and a distinct tendency to adopt negatively polarized valence states. This tutorial review focuses on the chemistry of gold as an anion, displaying the integral ionic charge number of 1-. Two synthetic approaches to compounds containing monoatomic gold anions have become available: (1) reacting elemental gold with molten caesium and an oxide, e.g. Cs2O; (2) metathesis reactions involving Au- dissolved in liquid ammonia. Both procedures have proven to be rather versatile. Aurides synthesized along these routes are surveyed, in particular with respect to their structures and bonding properties.
Fernández-Gallardo, Jacob; Elie, Benelita T; Sanaú, Mercedes; Contel, María
2016-02-21
We describe a versatile and quick route to cationic gold(i) complexes containing N-heterocyclic carbenes and a second ancillary ligand (such as phosphanes, phosphites, arsines and amines) of interest for the synthesis of compounds with potential catalytic and medicinal applications. The general synthetic strategy has been applied in the preparation of novel cationic heterobimetallic ruthenium(ii)-gold(i) complexes that are highly cytotoxic to renal cancer Caki-1 and colon cancer HCT 116 cell lines while showing a synergistic effect and being more selective than their monometallic counterparts.
Misiorek, Maria; Sekuła, Justyna; Ruman, Tomasz
2017-11-01
Garlic (Allium sativum) is the subject of many studies due to its numerous beneficial properties. Although compounds of garlic have been studied by various analytical methods, their tissue distributions are still unclear. Mass spectrometry imaging (MSI) appears to be a very powerful tool for the identification of the localisation of compounds within a garlic clove. Visualisation of the spatial distribution of garlic low-molecular weight compounds with nanoparticle-based MSI. Compounds occurring on the cross-section of sprouted garlic has been transferred to gold-nanoparticle enhanced target (AuNPET) by imprinting. The imprint was then subjected to MSI analysis. The results suggest that low molecular weight compounds, such as amino acids, dipeptides, fatty acids, organosulphur and organoselenium compounds are distributed within the garlic clove in a characteristic manner. It can be connected with their biological functions and metabolic properties in the plant. New methodology for the visualisation of low molecular weight compounds allowed a correlation to be made between their spatial distribution within a sprouted garlic clove and their biological function. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Cho, Eunji; Ahn, Miri; Kim, Young Hwan; Kim, Jongwon; Kim, Sunghwan
2013-10-01
A proton source employing a nanostructured gold surface for use in (+)-mode laser desorption ionization mass spectrometry (LDI-MS) was evaluated. Analysis of perdeuterated polyaromatic hydrocarbon compound dissolved in regular toluene, perdeuterated toluene, and deuterated methanol all showed that protonated ions were generated irregardless of solvent system. Therefore, it was concluded that residual water on the surface of the LDI plate was the major source of protons. The fact that residual water remaining after vacuum drying was the source of protons suggests that protons may be the limiting reagent in the LDI process and that overall ionization efficiency can be improved by incorporating an additional proton source. When extra proton sources, such as thiolate compounds and/or citric acid, were added to a nanostructured gold surface, the protonated signal abundance increased. These data show that protons are one of the limiting components in (+)-mode LDI MS analyses employing nanostructured gold surfaces. Therefore, it has been suggested that additional efforts are required to identify compounds that can act as proton donors without generating peaks that interfere with mass spectral interpretation.
Ylide Ligands as Building Blocks for Bioactive Group 11 Metal Complexes.
Gimeno, M Concepción; Johnson, Alice; Marzo, Isabel
2018-05-22
The reactivity of the phosphonium salt, (cyanomethyl)triphenylphosphonium chloride, and the ylide, triphenylphosphoniumcyanomethylide, towards group eleven metal complexes is described. Mononuclear neutral gold(I) and gold(III) complexes of the type [AuX{CH(CN)PPh3}] or [AuX3{CH(CN)PPh3}], and cationic derivatives such as [AuL{CH(CN)PPh3}]X have been prepared. Surprisingly the cationic gold species could only be prepared with ligands with a large steric hindrance such as bulky NHCs or the JohnPhos phosphine, in contrast with silver and copper derivatives which have dimeric structures with coordination to the cyano group of the ylide. Bis(ylide)metal complexes have been synthesised in which a different structure is observed for gold compared to copper and silver. While gold shows mononuclear species, the silver complex presents a bidimensional polymeric structure as a result of further coordination of the silver centre to the nitrogen of the cyano group. These complexes possess two chiral centres and the gold compound is obtained as a mixture of diastereoisomers, whereas the copper and silver derivatives afford only one diastereroisomer. These compounds were screened for the in vitro cytotoxic activity against the human lung carcinoma cell line (A549). The IC50 values reveal an excellent cytotoxic activity for these metal complexes compared with cisplatin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz
2015-05-22
Preparation is described of a durable surface of cationic gold nanoparticles (AuNPs), covering commercial and custom-made MALDI targets, along with characterization of the nanoparticle surface properties and examples of the use in MS analyses and MS imaging (IMS) of low molecular weight (LMW) organic compounds. Tested compounds include nucleosides, saccharides, amino acids, glycosides, and nucleic bases for MS measurements, as well as over one hundred endogenous compounds in imaging experiment. The nanoparticles covering target plate were enriched in sodium in order to promote sodium-adduct formation. The new surface allows fast analysis, high sensitivity of detection and high mass determination accuracy. Example of application of new Au nanoparticle-enhanced target for fast and simple MS imaging of a fingerprint is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Svetlitskaya, Tatyana V.; Nevolko, Peter A.; Kolpakov, Vladislav V.; Tolstykh, Nadezhda D.
2018-03-01
The Inagli alluvial Pt-Au placer deposit in the Republic of Sakha (Yakutia), Russia, is linked to the Inagli massif, one of the several Uralian-Alaskan-type alkaline-ultrabasic complexes in the Aldan Shield. Gold from the placer is heterogeneous in composition and is represented by three types. Type 1 gold is the most abundant and is characterized by simple Au-Ag alloys with 4-34 wt% Ag, low Cu (up to 0.08 wt%) and negligible Hg, Pt, and Pd contents, and silver-tellurium sulfosalts (Ag-Cu-Te-S-As compounds) in the inclusion suite. Silicate inclusions are biotite, K-feldspar, Fe-Mg amphibole, chlorite, plagioclase, Fe-Mg pyroxene, zircon, and titanite. Distinctive features of this gold type are most similar to those derived from low-sulfidation systems linked to iron oxide copper-gold or iron skarn types of mineralization. The bedrock source of type 1 gold could be related with monzonite to syenite intrusions surrounding the Inagli massif. Distinctive features of type 2 gold include a wide discontinuous range of Ag content (1-18 wt%), elevated Cu (up to 0.5 wt%), and occasional Pd (up to 0.3 wt%) levels, non-detectable Pt and Hg contents, and rare inclusions of simple sulfides (digenite, pyrrhotite) and Na amphibole. Type 3 gold is distinguished by a narrow range in Ag content (5-8 wt%), elevated Hg (0.5-1 wt%) contents, negligible Cu, Pt and Pd levels, and Au-Pb compounds + K-feldspar inclusions. Microchemical characteristics of type 2 and type 3 gold are interpreted as suggestive of an alkaline-magmatic-related fluid. Based on the grain morphology and microchemical signatures, potential bedrock sources for both gold types could be related to the numerous alkaline veins and potassic alteration zones within the dunite core. A comparison of the Inagli and the Kondyor placer gold allows to generate distinctive generic signatures for gold from Uralian-Alaskan-type alkaline-ultrabasic complexes in the Aldan Shield.
Robbins, E.I.; D'Agostino, J. P.; Haas, J.L.; Larson, R.R.; Dulong, F.T.
1990-01-01
Organic tissues and metallic minerals were studied in acid residues and thin section of the Jerritt Canyon (Bell Mine) gold deposit. The purpose was to compare gold-bearing and gold-free rocks, characterize their differences, and assess a possible relationship between the invisible gold and the organic tissues in these early Paleozoic, carbonaceous limestones, dolomites, and claystones. The most visually abundant acid-resistant component in the sooty, unoxidized, gold-bearing rocks is a black, rectangular, carbon-bearing mineraloid. In X-ray diffraction, it is poorly crystalline; in nuclear magnetic resonance, it is a highly aromatized structure. The increase in gold content that accompanies the increase in content of this protographite suggests that it may be the major gold-bearing compound. Less abundant among the acid-resistant residues are uncarbonized organic tissues that are typical of marine settings. The tissues not in the vicinity of silicified veins are medium to dark brown. The dominant tissues are the amorphous remains of algae and their zooplankton predators. These uncarbonized indigenous tissues indicate that temperatures were lower than those determined by geochemical and fluid inclusion methods. The presence of different kinds of carbon-bearing compounds could account for the discrepancy between the palynological and geochemical data. The uncarbonized organic tissues comprise such a small percentage of these rocks that they could be easily missed by bulk analytical methods. The presence of uncarbonized tissues helps to constrain the duration of the high heat flow that is shown by the fluid inclusion data. The presence of mixed signals suggests that the protographite may be the product of chemical rather than thermal reactions. ?? 1990.
Bioassisted Phytomining of Gold
NASA Astrophysics Data System (ADS)
Maluckov, Biljana S.
2015-05-01
Bioassisted phytomining implies targeted use of microorganisms and plants for the selective recovery of the metal. Metals from undissolved compounds are dissolved by applying specially chosen microorganisms and therefore become available to the hyperaccumulating plants. In the article, the selective extraction method of base metals and the precious metal gold by using microorganisms and plants is discussed.
Della Pelle, Flavio; Vilela, Diana; González, María Cristina; Lo Sterzo, Claudio; Compagnone, Darío; Del Carlo, Michele; Escarpa, Alberto
2015-07-01
A simple gold nanoparticles (AuNPs) based colorimetric assay for the antioxidant activity determination has been developed. The AuNP formation is mediated by extra virgin olive oil (EVOO's) endogenous polyphenols; the reaction is described by a sigmoidal curve. The ratio KAuNPs/Xc(50) (slope of the linear part of the sigmoid/concentration at half value of the absorbance) was found to be the optimal parameter to report the antioxidant capacity with respect to the single KAuNPs or Xc(50) values. The obtained data demonstrated that the compounds with ortho-diphenols functionality are most active in reducing gold (III) to gold (0). Thus, intermediate activity was found for gallic acid, while tyrosol (mono-phenols) had a significant lower activity than the others antioxidant compounds (at least one order of magnitude). In the analysis of olive oil samples, a significant correlation among classical methods used to determine antioxidant activity and the proposed parameter was found with R values in the 0.96-0.97 range. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xu, Guangyang; Zhu, Chenghao; Gu, Weijin; Li, Jian; Sun, Jiangtao
2015-01-12
An unprecedented gold-catalyzed ligand-controlled cross-coupling of diazo compounds by sequential selective denitrogenation and cyclization affords N-substituted pyrazoles in a position-switchable mode. This novel transformation features selective decomposition of one diazo moiety and simultaneous preservation of the other one from two substrates. Notably, the choice of the ancillary ligand to the gold complex plays a pivotal role on the chemo- and regioselectivity of the reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Americium alloys with gold and copper
NASA Astrophysics Data System (ADS)
Radchenko, V. M.; Ryabinin, M. A.; Chernakova, T. A.; Tomilin, S. V.
2010-03-01
Presented are results of the production and X-ray examination of micro-samples of americium-241 compounds with gold and copper produced by high-temperature condensation of metal americium vapor onto corresponding substrates. No mutual solubility of the investigated system components was revealed at room temperature. The following three intermetallic compounds were revealed in the Am-Au system: Au6Am with tetragonal lattice of the Au6Sm structural type, AuAm with orthorhombic lattice of the CuCe structural type and AuAm with cubic lattice. The Am-Cu system showed the intermetallic compound Cu5Am (Cu7Am) with a hexagonal lattice of the Cu5Ca(Cu7Tb) structure type. An effect of the 241Am nuclide alpha-activity on the crystal structure of the produced intermetallide was studied.
Tomasello, Marianna F; Nardon, Chiara; Lanza, Valeria; Di Natale, Giuseppe; Pettenuzzo, Nicolò; Salmaso, Stefano; Milardi, Danilo; Caliceti, Paolo; Pappalardo, Giuseppe; Fregona, Dolores
2017-09-29
The gold(III)-dithiocarbamate complex AuL12 (dibromo [ethyl-N-(dithiocarboxy-kS,kS')-N-methylglycinate] gold(III)), is endowed with promising in vitro/in vivo antitumor activity and toxicological profile. Here, we report our recent strategies to improve its water solubility and stability under physiological conditions along with our efforts for unravelling its tangled mechanism of action. We used three types of α-cyclodextrins (CDs), namely β-CD, Me-β-CD and HP-β-CD to prepare aqueous solutions of AuL12. The ability of these natural oligosaccharide carriers to enhance water solubility of hydrophobic compounds, allowed drug stability of AuL12 to be investigated. Moreover, pharmacokinetic experiments were first carried out for a gold(III) coordination compound, after i.v. injection of the nanoformulation AuL12/HP-β-CD to female mice. The gold content in the blood samples was detected at scheduled times by AAS (atomic absorption spectrometry) analysis, highlighting a fast biodistribution with a t β1/2 of few minutes and a slow escretion (t α1/2 of 14.3 h). The in vitro cytotoxic activity of AuL12 was compared with the AuL12/HP-β-CD mixture against a panel of three human tumor cell lines (i.e., HeLa, KB and MCF7). Concerning the mechanism of action, we previously reported the proteasome-inhibitory activity of some our gold(III)-based compounds. In this work, we moved from the proteasome target to upstream of the important ubiquitin-proteasome pathway, testing the effects of AuL12 on the polyubiquitination reactions involving the Ub-activating (E1) and -conjugating (E2) enzymes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Use of Soybean Lecithin in Shape Controlled Synthesis of Gold Nanoparticles
NASA Astrophysics Data System (ADS)
Ayres, Benjamin Robert
The work presented in this dissertation is a composite of experiments in the growth of gold nanoparticles with specific optical properties of interest. The goal is to synthesize these gold nanoparticles using soybean extract for not only shape control, but for propensity as a biocompatible delivery system. The optical properties of these nanoparticles has found great application in coloring glass during the Roman empire and, over the centuries, has grown into its own research field in applications of nanoparticulate materials. Many of the current functions include use in biological systems as biosensors and therapeutic applications, thus making biocompatibility a necessity. Current use of cetyltrimethylammonium bromide leads to rod-shaped gold nanoparticles, however, the stability of these gold nanoparticles does not endure for extended periods of time in aqueous media. In my research, two important components were found to be necessary for stable, anisotropic growth of gold nanoparticles. In the first experiments, it was found that bromide played a key role in shape control. Bromide exchange on the gold atoms led to specific packing of the growing crystals, allowing for two-dimensional growth of gold nanoparticles. It was also discerned that soybean lecithin contained ligands that blocked specific gold facets leading to prismatic gold nanoparticle growth. These gold nanoprisms give a near infrared plasmon absorption similar to that of rod-shaped gold nanoparticles. These gold nanoprisms are discovered to be extremely stable in aqueous media and remain soluble for extended periods of time, far longer than that of gold nanoparticles grown using cetyltrimethylammonium bromide. Since soy lecithin has a plethora of compounds present, it became necessary to discover which compound was responsible for the shape control of the gold nanoprisms in order to optimize the synthesis and allow for a maximum yield of the gold nanoprisms. Many of these components were identified by high performance liquid chromatography and liquid chromatography-mass spectrometry. However, re-spike of these components into growth solutions did not enhance the growth of gold nanoprisms. Upon separating the shapes of the gold nanoparticles using gel electrophoresis, addition of KCN to the separated gold nanoparticles allowed us to extract the culpable ligands for shape control. Analysis of these ligands by mass spectrometry elucidated the identity of PA and upon re-spike of the PA into a growth solution of PC95, the growth of a near-infrared plasmon absorption was seen. The stability of these gold nanoparticles was tested with and without the addition of decane thiol and it was concluded that addition of the thiol allowed for improved stability of the gold nanoparticles towards cyanide. It was determined that at a concentration of 2 μM decanethiol, spherical gold nanoparticles remained stable to cyanide at the expense of the prismatic gold nanoparticles. However, at 5 μM decanethiol, both spherical and prismatic gold nanoparticles retained stability to cyanide in aqueous conditions.
Biosynthesis and characterization of gold nanoparticles using extracts of tamarindus indica L leaves
NASA Astrophysics Data System (ADS)
Correa, S. N.; Naranjo, A. M.; Herrera, A. P.
2016-02-01
This study reports the biosynthesis of gold nanoparticles using an extract of Tamarindus indica L. leaves. Phenols, ketones and carboxyls were present in the leaves of T. indica. These organic compounds that allowed the synthesis of nanoparticles were identified by gas chromatography coupled to mass spectrometry (GC/MS) and High Pressure Liquid Chromatographic (HPLC). Synthesis of gold nanoparticles was performed with the extract of T. indica leaves and an Au+3 aqueous solutions (HAuCl4) at room temperature with one hour of reaction time. Characterization of gold nanoparticles was performed by UV visible spectroscopy, scanning electron microscopy (SEM) and EDX. The results indicated the formation of gold nanoparticles with a wavelength of 576nm and an average size of 52±5nm. The EDX technique confirmed the presence of gold nanoparticles with 12.88% in solution.
Naked Gold Nanoparticles and hot Electrons in Water.
Ghandi, Khashayar; Wang, Furong; Landry, Cody; Mostafavi, Mehran
2018-05-08
The ionizing radiation in aqueous solutions of gold nanoparticles, stabilized by electrostatic non-covalent intermolecular forces and steric interactions, with antimicrobial compounds, are investigated with picosecond pulse radiolysis techniques. Upon pulse radiolysis of an aqueous solution containing very low concentrations of gold nanoparticles with naked surfaces available in water (not obstructed by chemical bonds), a change to Cerenkov spectrum over a large range of wavelengths are observed and pre-solvated electrons are captured by gold nanoparticles exclusively (not by ionic liquid surfactants used to stabilize the nanoparticles). The solvated electrons are also found to decay rapidly compared with the decay kinetics in water. These very fast reactions with electrons in water could provide an enhanced oxidizing zone around gold nanoparticles and this could be the reason for radio sensitizing behavior of gold nanoparticles in radiation therapy.
Macaskie, L E; Creamer, N J; Essa, A M M; Brown, N L
2007-03-01
A new approach is described for the recovery of precious metals (PMs: Au, Pd and Ag) with >99% efficiency from aqueous solution utilising biogas produced during the aerobic growth of Klebsiella pneumoniae. Gold was recovered from electronic scrap leachate ( approximately 95%) by this method, with some selectivity against Cu. The recovered PM solids all contained metal and sulphur as determined by energy dispersive X-ray microanalysis (EDX). X-ray powder diffraction analysis (XRD) showed no crystalline metal sulphur compounds but a crystalline palladium amine was recorded. Silver was recovered as a sulphide (found by EDX), carbonate and oxide (found by XRD). EDX analysis of the Au-precipitate showed mainly gold and sulphur, with some metallic Au(0) detected by XRD. The gold compound was shock-sensitive; upon grinding it detonated to leave a sooty black deposit.
Cancer cell death induced by phosphine gold(I) compounds targeting thioredoxin reductase.
Gandin, Valentina; Fernandes, Aristi Potamitou; Rigobello, Maria Pia; Dani, Barbara; Sorrentino, Francesca; Tisato, Francesco; Björnstedt, Mikael; Bindoli, Alberto; Sturaro, Alberto; Rella, Rocco; Marzano, Cristina
2010-01-15
The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH (nicotinamide adenine dinucleotide phosphate), plays a central role in regulating cellular redox homeostasis and signaling pathways. TrxR, overexpressed in many tumor cells and contributing to drug resistance, has emerged as a new target for anticancer drugs. Gold complexes have been validated as potent TrxR inhibitors in vitro in the nanomolar range. In order to obtain potent and selective TrxR inhibitors, we have synthesized a series of linear, 'auranofin-like' gold(I) complexes all containing the [Au(PEt(3))](+) synthon and the ligands: Cl(-), Br(-), cyanate, thiocyanate, ethylxanthate, diethyldithiocarbamate and thiourea. Phosphine gold(I) complexes efficiently inhibited cytosolic and mitochondrial TrxR at concentrations that did not affect the two related oxidoreductases glutathione reductase (GR) and glutathione peroxidase (GPx). The inhibitory effect of the redox proteins was also observed intracellularly in cancer cells pretreated with gold(I) complexes. Gold(I) compounds were found to induce antiproliferative effects towards several human cancer cells some of which endowed with cisplatin or multidrug resistance. In addition, they were able to activate caspase-3 and induce apoptosis observed as nucleosome formation and sub-G1 cell accumulation. The complexes with thiocyanate and xanthate ligands were particularly effective in inhibiting thioredoxin reductase and inducing apoptosis. Pharmacodynamic studies in human ovarian cancer cells allowed for the correlation of intracellular drug accumulation with TrxR inhibition that leads to the induction of apoptosis via the mitochondrial pathway.
Gold-catalyzed synthesis of benzil derivatives and α-keto imides via oxidation of alkynes.
Xu, Cheng-Fu; Xu, Mei; Jia, Yi-Xia; Li, Chuan-Ying
2011-03-18
An efficient process based on the gold-catalyzed redox reaction has been developed to oxidize 1,2-diarylacetylene or ynamide to 1,2-diaryldiketone or α-keto imide respectively. This process can tolerate a variety of functional groups and affords 1,2-dicarbonyl compounds in excellent yields under mild reaction conditions.
Silva, Nataly; Muñoz, Camila; Diaz-Marcos, Jordi; Samitier, Josep; Yutronic, Nicolás; Kogan, Marcelo J; Jara, Paul
2016-12-01
Evidence of guest migration in α-cyclodextrin-octylamine (α-CD-OA) inclusion compound (IC) generated via plasmonic heating of gold nanoparticles (AuNPs) has been studied. In this report, we demonstrate local effects generated by laser-mediated irradiation of a sample of AuNPs covered with inclusion compounds on surface-derivatized glass under liquid conditions by atomic force microscopy (AFM). Functionalized AuNPs on the glass and covered by the ICs were monitored by recording images by AFM during 5 h of irradiation, and images showed that after irradiation, a drastic decrease in the height of the AuNPs occurred. The absorption spectrum of the irradiated sample showed a hypsochromic shift from 542 to 536 nm, evidence suggesting that much of the population of nanoparticles lost all of the parts of the overlay of ICs due to the plasmonic heat generated by the irradiation. Mass spectrometry matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) performed on a sample containing a collection of drops obtained from the surface of the functionalized glass provided evidence that the irradiation lead to disintegration of the ICs and therefore exit of the octylamine molecule (the guest) from the cyclodextrin cavity (the matrix). Graphical Abstract Atomic Force Microscopy observation of the disintegration of a cyclodextrin inclusion compound by gold nanoparticles photothermal effect.
Lee, M T; Ahmed, T; Friedman, M E
1989-01-01
Purified bovine liver beta-glucuronidase (beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32) and wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) were inhibited with freshly dissolved and 24 h aquated tetrahaloaurate (III) compounds. Rate and equilibrium inhibition constants were measured. From this data two acid phosphatases species were observed. Equilibrium inhibition constants ranged from 1 to 12.5 microM for the various gold compounds toward both enzymes. The first order rate constants ranged between 0.005 and 0.04 min.-1 for most reactions with the exception of the fast reacting acid phosphatase which had values as high as 2.6 and 2.8 min.-1. It is observed that the beta-glucuronidase is rapidly inhibited during the equilibrium phase before the more slower reaction covalent bond formation takes place. The acid phosphatases form the covalent bonds more rapidly, especially the faster reacting species suggesting a unique difference in the active site geometry to that of the more slowly reacting species. The tightly bonded gold (III)-enzyme complex is probably the reason for its toxicity and non-anti-inflammatory use as a drug.
An element through the looking glass: exploring the Au–C, Au–H and Au–O energy landscape
Roşca, Dragoş-Adrian; Wright, Joseph A.
2015-01-01
Gold, the archetypal “noble metal”, used to be considered of little interest in catalysis. It is now clear that this was a misconception, and a multitude of gold-catalysed transformations has been reported. However, one consequence of the long-held view of gold as inert metal is that its organometallic chemistry contains many “unknowns”, and catalytic cycles devised to explain gold's reactivity draw largely on analogies with other transition metals. How realistic are such mechanistic assumptions? In the last few years a number of key compound classes have been discovered that can provide some answers. This Perspective attempts to summarise these developments, with particular emphasis on recently discovered gold(iii) complexes with bonds to hydrogen, oxygen, alkenes and CO ligands. PMID:26584519
NASA Astrophysics Data System (ADS)
Rao, Xi; Guyon, Cédric; Ognier, Stephanie; Da Silva, Bradley; Chu, Chenglin; Tatoulian, Michaël; Hassan, Ali Abou
2018-05-01
Immobilization of colloidal particles (e.g. gold nanoparticles (AuNps)) on the inner surface of micro-/nano- channels has received a great interest for catalysis. A novel catalytic ozonation setup using a gold-immobilized microchannel reactor was developed in this work. To anchor AuNps, (3-aminopropyl) triethoxysilane (APTES) with functional amine groups was deposited using plasma enhanced chemical vapor deposition (PECVD) process. The results clearly evidenced that PECVD processing exhibited relatively high efficiency for grafting amine groups and further immobilizing AuNPs. The catalytic activity of gold immobilized microchannel was evaluated by pyruvic acid ozonation. The decomposition rate calculated from High Performance Liquid Chromatography (HPLC) indicated a much better catalytic performance of gold in microchannel than that in batch. The results confirmed immobilizing gold nanoparticles on plasma deposited APTES for preparing catalytic microreactors is promising for the wastewater treatment in the future.
Parthasarathy, K; Praveen, Chandrasekar; Jeyaveeran, J C; Prince, A A M
2016-09-01
Microwave assisted synthesis of spirooxindoles via tandem double condensation between isatins and 4-hydroxycoumarin under gold catalysis is reported. The reaction is practical to perform, since the products can be isolated by simple filtration without requiring tedious column chromatography. The scope of this chemistry is exemplified by preparing structurally diverse spirooxindoles (22 examples) in excellent yields. Antimicrobial evaluation of the synthesized compounds revealed that three compounds (3a, 3f and 3s) exhibited significant MIC values in comparison to the standard drugs. Molecular docking studies of these compounds with AmpC-β-lactamase receptor revealed that 3a exhibited minimum binding energy (-117.819kcal/mol) indicating its strong affinity towards amino acid residues via strong hydrogen bond interaction. All compounds were also evaluated for their in vitro cytotoxicity against COLO320 cancer cells. Biological assay and molecular docking studies demonstrated that 3g is the most active compound in terms of its low IC50 value (50.0μM) and least free energy of binding (-8.99kcal/mol) towards CHK1 receptor, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Balamurugan, Rengarajan; Manojveer, Seetharaman
2011-10-21
Activation of the aci-form of nitromethane using Lewis acids for the attack of carbon nucleophiles was studied. 1,3-Dicarbonyl compounds in the presence of catalytic amounts of AuCl(3) or Cu(OTf)(2) in nitromethane solvent could be converted into methylene-bridged bis-1,3-dicarbonyl compounds.
Single-molecule optical-trapping measurements with DNA anchored to an array of gold nanoposts.
Paik, D Hern; Perkins, Thomas T
2012-01-01
Gold-thiol chemistry is one of the most successful chemistries for conjugating biomolecules to surfaces, but such chemistry has not been exploited in optical-trapping experiments because of laser-induced ablation of gold. In this work, we describe a method to combine these two separate technologies without undue heating using DNA anchored to gold nanostructures (r = 50-250 nm; h ≈ 20 nm). Moreover, we demonstrate a quantitative and mechanically robust (>100 pN) optical-trapping assay. By using three dithiol phosphoramidites (DTPAs) incorporated into a polymerase chain reaction (PCR) primer, the gold-DNA bond remained stable in the presence of excess thiolated compounds. This chemical robustness allowed us to reduce nonspecific sticking by passivating the unreacted gold with methoxy-(polyethylene glycol)-thiol (mPEG-SH). Overall, this surface conjugation of biomolecules onto an ordered array of gold nanostructures by chemically and mechanically robust bonds provides a unique way to carry out spatially controlled, repeatable measurements of single molecules.
NASA Astrophysics Data System (ADS)
Jonnard, P.; Bercegol, H.; Lamaignère, L.; Morreeuw, J.-P.; Rullier, J.-L.; Cottancin, E.; Pellarin, M.
2005-03-01
The electronic structure of gold nanoparticles embedded in a silica film is studied, both before and after irradiation at 355nm by a laser. The Au 5d occupied valence states are observed by x-ray emission spectroscopy. They show that before irradiation the gold atoms are in metallic states within the nanoparticles. After irradiation with a fluence of 0.5J/cm2, it is found that gold valence states are close to those of a metal-poor gold silicide; thanks to a comparison of the experimental Au 5d states with the calculated ones for gold silicides using the density-functional theory. The formation of such a compound is driven by the diffusion of the gold atoms into the silica film upon the laser irradiation. At higher fluence, 1J/cm2, we find a higher percentage of metallic gold that could be attributed to annealing in the silica matrix.
Functionalization of lamellar molybdenum disulphide nanocomposite with gold nanoparticles
NASA Astrophysics Data System (ADS)
Lavayen, V.; O'Dwyer, C.; Ana, M. A. Santa; Mirabal, N.; Benavente, E.; Cárdenas, G.; González, G.; Torres, C. M. Sotomayor
2007-01-01
This work explores the functionalization of an organic-inorganic MoS2 lamellar compound, prepared by a chemical liquid deposition method (CLD), that has an interlamellar distance of ∼5.2 nm, using clusters of gold nanoparticles. The gold nanoparticles have a mean diameter of 1.2 nm, a stability of ∼85 days, and a zeta potential measured to be ζ = -6.8 mV (solid). The nanoparticles are localized in the hydrophilic zones, defined by the presence of amine groups of the surfactant between the lamella of MoS2. SEM, TEM, EDAX and electron diffraction provide conclusive evidence of the interlamellar insertion of the gold nanoparticles in the MoS2.
The Seminal Literature of Nanotechnology Research
2005-01-01
membrane-based synthetic approach to nanomaterials (Martin, 1994) was followed by synthesis of thiol derivatized gold nanoparticles in a two phase liquid... nanoparticles into macroscopic materials (Mirkin et al, 1996). A study on general synthesis of compound semiconductor nanowires provided a rational...Bethell D, Schiffrin DJ, Whyman R. (1994). Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. Journal of the
Henderson, Luke C; Altimari, Jarrad M; Dyson, Gail; Servinis, Linden; Niranjan, Birunthi; Risbridger, Gail P
2012-02-01
A group of α-lipoic acid N-phenylamides were synthesized employing a variety of amide coupling protocols utilizing electron deficient anilines. These compounds were then assessed for their ability to block androgen-stimulated proliferation of a human prostate cancer cell line, LNCaP. These structurally simple compounds displayed anti-proliferative activities at, typically, 5-20 μM concentrations and were comparable to a commonly used anti-androgen Bicalutamide®. The inclusion of a disulfide (RS-SR) moiety, serving as an anchor to several metal nanoparticle systems (Au, Ag, Fe(2)O(3), etc.), does not impede any biological activity. Conjugation of these compounds to a gold nanoparticle surface resulted in a high degree of cellular toxicity, attributed to the absence of a biocompatible group such as PEG within the organic scaffold. Copyright © 2011 Elsevier Inc. All rights reserved.
Integrating a high-force optical trap with gold nanoposts and a robust gold-DNA bond.
Paik, D Hern; Seol, Yeonee; Halsey, Wayne A; Perkins, Thomas T
2009-08-01
Gold-thiol chemistry is widely used in nanotechnology but has not been exploited in optical-trapping experiments due to laser-induced ablation of gold. We circumvented this problem by using an array of gold nanoposts (r = 50-250 nm, h approximately 20 nm) that allowed for quantitative optical-trapping assays without direct irradiation of the gold. DNA was covalently attached to the gold via dithiol phosphoramidite (DTPA). By using three DTPAs, the gold-DNA bond was not cleaved in the presence of excess thiolated compounds. This chemical robustness allowed us to reduce nonspecific sticking by passivating the unreacted gold with methoxy-(polyethylene glycol)-thiol. We routinely achieved single beads anchored to the nanoposts by single DNA molecules. We measured DNA's elasticity and its overstretching transition, demonstrating moderate- and high-force optical-trapping assays using gold-thiol chemistry. Force spectroscopy measurements were consistent with the rupture of the strepavidin-biotin bond between the bead and the DNA. This implied that the DNA remained anchored to the surface due to the strong gold-thiol bond. Consistent with this conclusion, we repeatedly reattached the trapped bead to the same individual DNA molecule. Thus, surface conjugation of biomolecules onto an array of gold nanostructures by chemically and mechanically robust bonds provides a unique way to carry out spatially controlled, repeatable measurements of single molecules.
NASA Astrophysics Data System (ADS)
Ioutsi, A. N.; Shapovalova, E. N.; Ioutsi, V. A.; Mazhuga, A. G.; Shpigun, O. A.
2017-12-01
New stationary phases for HPLC are obtained via layer-by-layer deposition of polyelectrolytes and studied: (1) silica gel modified layer-by-layer with 6,10-ionene and dextran sulfate (Sorbent 1); (2) silica gel twice subjected to the above modification (Sorbent 2); and (3) silica gel modified with 6,10-ionene, gold nanoparticles, and dextran sulfate (Sorbent 3). The effect the content of the organic solvent in the mobile phase and the concentration and pH of the buffer solution have on the chromatographic behavior of several pharmacologically active nitrogen-containing compounds is studied. The sorbents are stable during the process and allow the effective separation of beta-blockers, calcium channel blockers, alpha-agonists, and antihistamines. A mixture of caffeine, nadolol, tetrahydrozoline, pindolol, orphenadrine, doxylamine, carbinoxamine, and chlorphenamine is separated in 6.5 min on the silica gel modified with 6,10-ionene, gold nanoparticles, and dextran sulfate.
Towards the elaboration of new gold-based optical theranostics.
Doulain, Pierre-Emmanuel; Decréau, Richard; Racoeur, Cindy; Goncalves, Victor; Dubrez, Laurence; Bettaieb, Ali; Le Gendre, Pierre; Denat, Franck; Paul, Catherine; Goze, Christine; Bodio, Ewen
2015-03-21
Four new red BODIPY-gold(I) theranostic compounds were synthesized. Some of them were vectorized by tethering a biovector (glucose or bombesin derivatives) to the metallic center. Their photophysical properties were studied. Additionally, their cytotoxicity was examined on different cancer cell lines and on a normal cell line, they were tracked in vitro by fluorescence detection, and their uptake was evaluated by ICP-MS measurements.
Jian, Rih-Sheng; Huang, Rui-Xuan; Lu, Chia-Jung
2012-01-15
Aspects of the design, fabrication, and characterization of a chemiresistor type of microdetector for use in conjunction with gas chromatograph are described. The detector was manufactured on silicon chips using microelectromechanical systems (MEMS) technology. Detection was based on measuring changes in resistance across a film comprised of monolayer-protected gold nanoclusters (MPCs). When chromatographic separated molecules entered the detector cell, the MPC film absorbed vapor and undergoes swelling, then the resistance changes accordingly. Thiolates were used as ligand shells to encapsulate the nano-gold core and to manipulate the selectivity of the detector array. The dimensions of the μ-detector array were 14(L)×3.9(W)×1.2(H)mm. Mixtures of eight volatile organic compounds with different functional groups and volatility were tested to characterize the selectivity of the μ-detector array. The detector responses were rapid, reversible, and linear for all of the tested compounds. The detection limits ranged from 2 to 111ng, and were related to both the compound volatility and the selectivity of the surface ligands on the gold nanoparticles. Design and operation parameters such as flow rate, detector temperature, and width of the micro-fluidic channel were investigated. Reduction of the detector temperature resulted in improved sensitivity due to increased absorption. When a wider flow channel was used, the signal-to-noise ratio was improved due to the larger sensing area. The extremely low power consumption and small size makes this μ-detector array potentially useful for the development of integrated μ-GC. Copyright © 2011 Elsevier B.V. All rights reserved.
Autopsy findings in Witwatersrand gold miners, 1907-1913.
Ndlovu, Ntombizodwa; Murray, Jill; Davies, Anthony
2008-06-01
This article reports autopsy findings in black Witwatersrand gold miners who originated mainly from Portuguese East Africa. These men died at the Witwatersrand Native Labour Association compound in Johannesburg between 1907 and 1913, just over 20 years after the discovery of gold in South Africa. At that time there were shockingly high levels of death and disease on the mines. The main causes of death were pneumonia, meningitis, tuberculosis and dysentery. Pneumonia and meningitis were the principle causes of death in new recruits arriving from Portuguese East Africa and tuberculosis the main cause of mortality in referrals from the mines.
A biocompatible synthesis of gold nanoparticles by Tris(hydroxymethyl)aminomethane
NASA Astrophysics Data System (ADS)
Chen, Feng; Wang, Yanwei; Ma, Jun; Yang, Guangcan
2014-05-01
Gold nanoparticles' novel properties are widely realized in catalysis, plasmonics, electronics, and biomedical applications. For biomedical application, one challenge is to find a non-toxic chemical and/or physical method of functionalizing gold nanoparticles with biomolecular compounds that can promote efficient binding, clearance, and biocompatibility and to assess their safety to other biological systems and their long-term effects on human health and reproduction. In the present study, we describe a new method by using Tris(hydroxymethyl)aminomethane (Tris), a widely used buffer solvent of nucleic acid and proteins, as the reducing agent for synthesizing gold nanoparticles by one step. It is found that Tris carries out the reduction reactions in relatively mild conditions for biomacromolecules. Particularly, it can be used to modify the DNA during the process of preparation of gold nanoparticles. The morphology and size distribution of gold nanoparticles are consistent and were confirmed by many different approaches including dynamic light scattering (DLS), UV-visible (UV-vis) spectrophotometry, atomic force microscopy (AFM), and transmission electron microscopy (TEM).
High photoreactivity in a non-fluorescent photocleavable ligands on gold
NASA Astrophysics Data System (ADS)
Robinson, Hans D.; Daengngam, Chalongrat; Stoianov, Stefan V.; Thorpe, Steven B.; Guo, Xi; Santos, Webster L.; Morris, John R.
2014-03-01
We report on the photo-patterning of a gold surface functionalized with a self-assembled monolayer of an o-nitrobenzyl-based photocleavable ligand bound to the gold surface with a thiol anchor. We find that the dose of UV light required to induce the photoreaction on gold is very similar to the dose in an alcohol solution, even though many optical phenomena are strongly suppressed on metal surfaces. We attribute this finding to a combination of the large skin depth in gold at UV wavelengths, the high speed of the photoreaction, and the spatially indirect nature of the lowest excited singlet. Any photoreactive compound where the quantum efficiency of fluorescence is sufficiently low, preferably no larger than about 10-5 in the case of gold surfaces, will show a similarly high photoreactivity in metal-surface monolayers. The implications of this result for optically driven self-assembly in plasmonic systems will be discussed. This work was supported by a grant from the National Science Foundation (DMR-106753).
Smart textile device using ion polymer metal compound.
Nakamura, Taro; Ihara, Tadashi
2013-01-01
We have developed a smart textile device that detects angular displacement of attached surface using ion polymer metal compound. The device was composed of ion polymer metal compound (IPMC) which was fabricated from Nafion resin by heat-press and chemical gold plating. The generated voltage from IPMC was measured as a function of bending angle. Fabricated IPMC device was weaved into a cotton cloth and multidirectional movements were detected.
Bottom-up formation of robust gold carbide
Westenfelder, Benedikt; Biskupek, Johannes; Meyer, Jannik C.; Kurasch, Simon; Lin, Xiaohang; Scholz, Ferdinand; Gross, Axel; Kaiser, Ute
2015-01-01
A new phenomenon of structural reorganization is discovered and characterized for a gold-carbon system by in-situ atomic-resolution imaging at temperatures up to 1300 K. Here, a graphene sheet serves in three ways, as a quasi transparent substrate for aberration-corrected high-resolution transmission electron microscopy, as an in-situ heater, and as carbon supplier. The sheet has been decorated with gold nanoislands beforehand. During electron irradiation at 80 kV and at elevated temperatures, the accumulation of gold atoms has been observed on defective graphene sites or edges as well as at the facets of gold nanocrystals. Both resulted in clustering, forming unusual crystalline structures. Their lattice parameters and surface termination differ significantly from standard gold nanocrystals. The experimental data, supported by electron energy loss spectroscopy and density-functional theory calculations, suggests that isolated gold and carbon atoms form – under conditions of heat and electron irradiation – a novel type of compound crystal, Au-C in zincblende structure. The novel material is metastable, but surprisingly robust, even under annealing condition. PMID:25772348
Fazaeli, Yousef; Amini, Mostafa M; Ashourion, Hamed; Heydari, Homayoun; Majdabadi, Abbas; Jalilian, Amir Reza; Abolmaali, Shamsozoha
2011-01-01
The goal of this research was to investigate the potential of newly synthesized gold complex trichloro(2,4,6-trimethylpyridine)Au(III) as an anticancer agent. The gold(III) complex was synthesized and grafted on nanoporous silica, MCM-41, to produce AuCl(3)@PF-MCM- 41 (AuCl(3) grafted on pyridine-functionalized MCM-41). The toxicity of trichloro(2,4,6- trimethylpyridine)Au(III) and AuCl(3)@PF-MCM-41 in Saccharomyces cerevisiae (as a model system) was studied. The gold(III) complex showed a mid cytotoxic effect on yeast viability. Using the drug delivery system, nanoporous MCM-41, the gold(III) complex became a strong inhibitor for growth of yeast cells at a very low concentration. Furthermore, the animal tests revealed a high uptake of AuCl(3)@PF-MCM-41 in tumor cells. The stability of the compound was confirmed in human serum.
Bazzicalupi, Carla; Ferraroni, Marta; Papi, Francesco; Massai, Lara; Bertrand, Benoît; Messori, Luigi; Gratteri, Paola; Casini, Angela
2016-03-18
The dicarbene gold(I) complex [Au(9-methylcaffein-8-ylidene)2 ]BF4 is an exceptional organometallic compound of profound interest as a prospective anticancer agent. This gold(I) complex was previously reported to be highly cytotoxic toward various cancer cell lines in vitro and behaves as a selective G-quadruplex stabilizer. Interactions of the gold complex with various telomeric DNA models have been analyzed by a combined ESI MS and X-ray diffraction (XRD) approach. ESI MS measurements confirmed formation of stable adducts between the intact gold(I) complex and Tel 23 DNA sequence. The crystal structure of the adduct formed between [Au(9-methylcaffein-8-ylidene)2 ](+) and Tel 23 DNA G-quadruplex was solved. Tel 23 maintains a characteristic propeller conformation while binding three gold(I) dicarbene moieties at two distinct sites. Stacking interactions appear to drive noncovalent binding of the gold(I) complex. The structural basis for tight gold(I) complex/G-quadruplex recognition and its selectivity are described. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Lequan; Qiao, Botao; Chen, Zhengjian; Zhang, Juan; Deng, Youquan
2009-02-14
Chemoselective hydrogenation of aromatic nitro compounds were first efficiently achieved over Au/Fe(OH)(x) at 100-120 degrees C for 1.5-6 h (depending on different substrates) in the presence of CO and H(2)O.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smetana, Volodymyr; Lin, Qisheng; Pratt, Daniel K.
2013-09-26
Gold macht stabil: Na 13Au 12Ga 15, ein natriumhaltiges thermodynamisch stabiles quasikristallines Material, wurde bei einer systematischen Studie des polaren Na-Au-Ga-Intermetallsystems entdeckt. Sein Elektron/Atom-Verhältnis von 1.75 ist für Bergman-Ikosaederphasen extrem klein, doch der substanzielle Au-Anteil sorgt für eine Hume-Rothery-Stabilisierung und neuartige polar-kovalente Na-Au-Wechselwirkungen.
Prado, Adilson R; Souza, Danilo Oliveira de; Oliveira, Jairo P; Pereira, Rayssa H A; Guimarães, Marco C C; Nogueira, Breno V; Dixini, Pedro V; Ribeiro, Moisés R N; Pontes, Maria J
2017-12-01
Gold nanoparticles (AuNP) exhibit particular plasmonic properties when stimulated by visible light, which makes them a promising tool to many applications in sensor technology and biomedical applications, especially when associated to sulfur-based compounds. Sulfur species form a great variety of self-assembled structures that cap AuNP and this interaction rules the optical and plasmonic properties of the system. Here, we report the behavior of citrate-stabilized gold nanospheres in two distinct sulfur colloidal solutions, namely, thiocyanate and sulfide ionic solutions. Citrate-capped gold nanospheres were characterized using ultraviolet-visible (UV-Vis) absorption, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM). In the presence of sulfur species, we have observed the formation of NP clusters and chain-like structures, giving rise to surface-enhanced effects. Surface-enhanced Raman spectroscopy (SERS) pointed to a modification in citrate vibrational modes, which suggests substitution of citrate by either thiocyanate or sulfide ions with distinct dynamics, as showed by in situ fluorescence. Moreover, we report the emergence of surface-enhanced infrared absorption (SEIRA) effect, which corroborates SERS conclusions. Further, SEIRA shows a great potential as a tool for specification of sulfur compounds in colloidal solutions, which is particularly useful when dealing with sensor technology.
Gold nanocages covered by smart polymers for controlled release with near-infrared light.
Yavuz, Mustafa S; Cheng, Yiyun; Chen, Jingyi; Cobley, Claire M; Zhang, Qiang; Rycenga, Matthew; Xie, Jingwei; Kim, Chulhong; Song, Kwang H; Schwartz, Andrea G; Wang, Lihong V; Xia, Younan
2009-12-01
Photosensitive caged compounds have enhanced our ability to address the complexity of biological systems by generating effectors with remarkable spatial/temporal resolutions. The caging effect is typically removed by photolysis with ultraviolet light to liberate the bioactive species. Although this technique has been successfully applied to many biological problems, it suffers from a number of intrinsic drawbacks. For example, it requires dedicated efforts to design and synthesize a precursor compound for each effector. The ultraviolet light may cause damage to biological samples and is suitable only for in vitro studies because of its quick attenuation in tissue. Here we address these issues by developing a platform based on the photothermal effect of gold nanocages. Gold nanocages represent a class of nanostructures with hollow interiors and porous walls. They can have strong absorption (for the photothermal effect) in the near-infrared while maintaining a compact size. When the surface of a gold nanocage is covered with a smart polymer, the pre-loaded effector can be released in a controllable fashion using a near-infrared laser. This system works well with various effectors without involving sophisticated syntheses, and is well suited for in vivo studies owing to the high transparency of soft tissue in the near-infrared region.
Gold nanocages covered by smart polymers for controlled release with near-infrared light
Yavuz, Mustafa S.; Cheng, Yiyun; Chen, Jingyi; Cobley, Claire M.; Zhang, Qiang; Rycenga, Matthew; Xie, Jingwei; Kim, Chulhong; Schwartz, Andrea G.; Wang, Lihong V.; Xia, Younan
2009-01-01
Photosensitive caged compounds have enhanced our ability to address the complexity of biological systems by generating effectors with remarkable spatial/temporal resolutions1-3. The caging effect is typically removed by photolysis with ultraviolet light to liberate the bioactive species. Although this technique has been successfully applied to many biological problems, it suffers from a number of intrinsic drawbacks. For example, it requires dedicated efforts to design and synthesize a precursor compound to the effector. The ultraviolet light may cause damage to biological samples and is only suitable for in vitro studies because of its quick attenuation in tissue4. Here we address these issues by developing a platform based on the photothermal effect of gold nanocages. Gold nanocages represent a class of nanostructures with hollow interiors and porous walls5. They can have strong absorption (for the photothermal effect) in the near-infrared (NIR) while maintaining a compact size. When the surface of a gold nanocage is covered with a smart polymer, the pre-loaded effector can be released in a controllable fashion using a NIR laser. This system works well with various effectors without involving sophiscated syntheses, and is well-suited for in vivo studies due to the high transparency of soft tissue in NIR6. PMID:19881498
Woodall, Christopher H.; Fuertes, Sara; Beavers, Christine M.; ...
2014-10-21
A systematic investigation into the relationship between the solid-state luminescence and the intermolecular Au∙∙∙Au interactions in a series of pyrazolate-based gold(I) trimers; tris(μ 2-pyrazolato-N,N')-tri-gold(I) (1), tris(μ 2-3,4,5-trimethylpyrazolato-N,N')-tri-gold(I) (2), tris(μ 2-3-methyl-5-phenylpyrazolato-N,N')-tri-gold(I) (3) and tris(μ 2-3,5-diphenylpyrazolato-N,N')-tri-gold(I) (4) has been carried out using variable temperature and high pressure X-ray crystallography, solid-state emission spectroscopy, Raman spectroscopy and computational techniques. Single-crystal X-ray studies show that there is a significant reduction in the intertrimer Au∙∙∙Au distances both with decreasing temperature and increasing pressure. In the four complexes, the reduction in temperature from 293 to 100 K is accompanied by a reduction in the shortest intermolecular Au∙∙∙Aumore » contacts of between 0.04 and 0.08 Å. The solid-state luminescent emission spectra of 1 and 2 display a red shift with decreasing temperature or increasing pressure. Compound 3 does not emit under ambient conditions but displays increasingly red-shifted luminescence upon cooling or compression. Compound 4 remains emissionless, consistent with the absence of intermolecular Au∙∙∙Au interactions. The largest pressure induced shift in emission is observed in 2 with a red shift of approximately 630 cm -1 per GPa between ambient and 3.80 GPa. The shifts in all the complexes can be correlated with changes in Au∙∙∙Au distance observed by diffraction.« less
Fernández-Gallardo, Jacob; Elie, Benelita T.; Sadhukha, Tanmoy; Prabha, Swayam; Sanaú, Mercedes; Rotenberg, Susan A.
2015-01-01
Following recent work on heterometallic titanocene–gold complexes as potential chemotherapeutics for renal cancer, we report here on the synthesis, characterization and stability studies of new titanocene complexes containing a methyl group and a carboxylate ligand (mba = S–C6H4–COO–) bound to gold(i)-phosphane fragments through a thiolate group [(η-C5H5)2TiMe(μ-mba)Au(PR3)]. The compounds are more stable in physiological media than those previously reported and are highly cytotoxic against human cancer renal cell lines. We describe here preliminary mechanistic data involving studies on the interaction of selected compounds with plasmid (pBR322) DNA used as a model nucleic acid, and with selected protein kinases from a panel of 35 protein kinases having oncological interest. Preliminary mechanistic studies in Caki-1 renal cells indicate that the cytotoxic and anti-migration effects of the most active compound 5 [(η-C5H5)2TiMe(μ-mba)Au(PPh3)] involve inhibition of thioredoxin reductase and loss of expression of protein kinases that drive cell migration (AKT, p90-RSK, and MAPKAPK3). The co-localization of both titanium and gold metals (1 : 1 ratio) in Caki-1 renal cells was demonstrated for 5 indicating the robustness of the heterometallic compound in vitro. Two compounds were selected for further in vivo studies on mice based on their selectivity in vitro against renal cancer cell lines when compared to non-tumorigenic human kidney cell lines (HEK-293T and RPTC) and the favourable preliminary toxicity profile in C57BL/6 mice. Evaluation of Caki-1 xenografts in NOD.CB17-Prkdc SCID/J mice showed an impressive tumor reduction (67%) after treatment for 28 days (3 mg per kg per every other day) with heterometallic compound 5 as compared with the previously described [(η-C5H5)2Ti{OC(O)-4-C6H4-P(Ph2)AuCl}2] 3 which was non-inhibitory. These findings indicate that structural modifications on the ligand scaffold affect the in vivo efficacy of this class of compounds. PMID:27213034
Marsico, Alyssa L M; Creran, Brian; Duncan, Bradley; Elci, S Gokhan; Jiang, Ying; Onasch, Timothy B; Wormhoudt, Joda; Rotello, Vincent M; Vachet, Richard W
2015-11-01
Effective detection of low molecular weight compounds in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is often hindered by matrix interferences in the low m/z region of the mass spectrum. Here, we show that monolayer-protected gold nanoparticles (AuNPs) can serve as alternate matrices for the very sensitive detection of low molecular weight compounds such as amino acids. Amino acids can be detected at low fmol levels with minimal interferences by properly choosing the AuNP deposition method, density, size, and monolayer surface chemistry. By inkjet-printing AuNPs at various densities, we find that AuNP clusters are essential for obtaining the greatest sensitivity. Graphical Abstract ᅟ.
Method of synthesizing metal doped diamond-like carbon films
NASA Technical Reports Server (NTRS)
Ueno, Mayumi (Inventor); Sunkara, Mahendra Kumar (Inventor)
2003-01-01
A method of synthesizing metal doped carbon films by placing a substrate in a chamber with a selected amount of a metalorganic compound. An electron cyclotron resonance is applied to the chamber in order to vaporize the metalorganic compound. The resonance is applied to the chamber until a metal doped carbon film is formed. The metalorganic compound is preferably selected from the group consisting of an organic salt of ruthenium, palladium, gold or platinum.
Fungal Biorecovery of Gold From E-waste.
Bindschedler, Saskia; Vu Bouquet, Thi Quynh Trang; Job, Daniel; Joseph, Edith; Junier, Pilar
2017-01-01
Waste electric and electronic devices (e-waste) represent a source of valuable raw materials of great interest, and in the case of metals, e-waste might become a prized alternative source. Regarding gold, natural ores are difficult to mine due to their refractory nature and the richest ores have almost all been exploited. Additionally, some gold mining areas are present in geopolitically unstable regions. Finally, the gold mining industry produces toxic compounds, such as cyanides. As a result, the gold present in e-waste represents a nonnegligible resource (urban mining). Extraction methods of gold from natural ores (pyro- and hydrometallurgy) have been adapted to this particular type of matrix. However, to propose novel approaches with a lower environmental footprint, biotechnological methods using microorganisms are being developed (biometallurgy). These processes use the extensive metabolic potential of microbes (algae, bacteria, and fungi) to mobilize and immobilize gold from urban and industrial sources. In this review, we focus on the use of fungi for gold biomining. Fungi interact with gold by mobilizing it through mechanical attack as well as through biochemical leaching by the production of cyanides. Moreover, fungi are also able to release Au through the degradation of cyanide from aurocyanide complexes. Finally, fungi immobilize gold through biosorption, bioaccumulation, and biomineralization, in particular, as gold nanoparticles. Overall, the diversity of mechanisms of gold recycling using fungi combined with their filamentous lifestyle, which allows them to thrive in heterogeneous and solid environments such as e-waste, makes fungi an important bioresource to be harnessed for the biorecovery of gold. Copyright © 2017 Elsevier Inc. All rights reserved.
A Non-Diazo Approach to α-Oxo Gold Carbenes via Gold-Catalyzed Alkyne Oxidation
2015-01-01
For the past dozen years, homogeneous gold catalysis has evolved from a little known topic in organic synthesis to a fully blown research field of significant importance to synthetic practitioners, due to its novel reactivities and reaction modes. Cationic gold(I) complexes are powerful soft Lewis acids that can activate alkynes and allenes toward efficient attack by nucleophiles, leading to the generation of alkenyl gold intermediates. Some of the most versatile aspects of gold catalysis involve the generation of gold carbene intermediates, which occurs through the approach of an electrophile to the distal end of the alkenyl gold moiety, and their diverse transformations thereafter. On the other hand, α-oxo metal carbene/carbenoids are highly versatile intermediates in organic synthesis and can undergo various synthetically challenging yet highly valuable transformations such as C–H insertion, ylide formation, and cyclopropanation reactions. Metal-catalyzed dediazotizations of diazo carbonyl compounds are the principle and most reliable strategy to access them. Unfortunately, the substrates contain a highly energetic diazo moiety and are potentially explosive. Moreover, chemists need to use energetic reagents to prepare them, putting further constrains on operational safety. In this Account, we show that the unique access to the gold carbene species in homogeneous gold catalysis offers an opportunity to generate α-oxo gold carbenes if both nucleophile and electrophile are oxygen. Hence, this approach would enable readily available and safer alkynes to replace hazardous α-diazo carbonyl compounds as precursors in the realm of gold carbene chemistry. For the past several years, we have demonstrated that alkynes can indeed effectively serve as precursors to versatile α-oxo gold carbenes. In our initial study, we showed that a tethered sulfoxide can be a suitable oxidant, which in some cases leads to the formation of α-oxo gold carbene intermediates. The intermolecular approach offers excellent synthetic flexibility because no tethering of the oxidant is required, and its reduced form is not tangled with the product. We were the first research group to develop this strategy, through the use of pyridine/quinolone N-oxides as the external oxidants. In this manner, we can effectively make a C–C triple bond a surrogate of an α-diazo carbonyl moiety in various gold catalyses. With terminal alkynes, we demonstrated that we can efficiently trap exclusively formed terminal carbene centers by internal nucleophiles en route to the formation of cyclic products, including strained oxetan-3-ones and azetidin-3-ones, and by external nucleophiles when a P,N-bidentate ligand is coordinated to gold. With internal alkynes, we generated synthetically useful regioselectivities in the generation of the α-oxo gold carbene moiety, which enables expedient formation of versatile enone products. Other research groups have also applied this strategy en route to versatile synthetic methods. The α-oxo gold carbenes appear to be more electrophilic than their Rh counterpart, which many chemists have focused on in a large array of excellent work on metal carbene chemistry. The ease of accessing the reactive gold carbenes opens up a vast area for developing new synthetic methods that would be distinctively different from the known Rh chemistry and promises to generate a new round of “gold rush”. PMID:24428596
A non-diazo approach to α-oxo gold carbenes via gold-catalyzed alkyne oxidation.
Zhang, Liming
2014-03-18
For the past dozen years, homogeneous gold catalysis has evolved from a little known topic in organic synthesis to a fully blown research field of significant importance to synthetic practitioners, due to its novel reactivities and reaction modes. Cationic gold(I) complexes are powerful soft Lewis acids that can activate alkynes and allenes toward efficient attack by nucleophiles, leading to the generation of alkenyl gold intermediates. Some of the most versatile aspects of gold catalysis involve the generation of gold carbene intermediates, which occurs through the approach of an electrophile to the distal end of the alkenyl gold moiety, and their diverse transformations thereafter. On the other hand, α-oxo metal carbene/carbenoids are highly versatile intermediates in organic synthesis and can undergo various synthetically challenging yet highly valuable transformations such as C-H insertion, ylide formation, and cyclopropanation reactions. Metal-catalyzed dediazotizations of diazo carbonyl compounds are the principle and most reliable strategy to access them. Unfortunately, the substrates contain a highly energetic diazo moiety and are potentially explosive. Moreover, chemists need to use energetic reagents to prepare them, putting further constrains on operational safety. In this Account, we show that the unique access to the gold carbene species in homogeneous gold catalysis offers an opportunity to generate α-oxo gold carbenes if both nucleophile and electrophile are oxygen. Hence, this approach would enable readily available and safer alkynes to replace hazardous α-diazo carbonyl compounds as precursors in the realm of gold carbene chemistry. For the past several years, we have demonstrated that alkynes can indeed effectively serve as precursors to versatile α-oxo gold carbenes. In our initial study, we showed that a tethered sulfoxide can be a suitable oxidant, which in some cases leads to the formation of α-oxo gold carbene intermediates. The intermolecular approach offers excellent synthetic flexibility because no tethering of the oxidant is required, and its reduced form is not tangled with the product. We were the first research group to develop this strategy, through the use of pyridine/quinolone N-oxides as the external oxidants. In this manner, we can effectively make a C-C triple bond a surrogate of an α-diazo carbonyl moiety in various gold catalyses. With terminal alkynes, we demonstrated that we can efficiently trap exclusively formed terminal carbene centers by internal nucleophiles en route to the formation of cyclic products, including strained oxetan-3-ones and azetidin-3-ones, and by external nucleophiles when a P,N-bidentate ligand is coordinated to gold. With internal alkynes, we generated synthetically useful regioselectivities in the generation of the α-oxo gold carbene moiety, which enables expedient formation of versatile enone products. Other research groups have also applied this strategy en route to versatile synthetic methods. The α-oxo gold carbenes appear to be more electrophilic than their Rh counterpart, which many chemists have focused on in a large array of excellent work on metal carbene chemistry. The ease of accessing the reactive gold carbenes opens up a vast area for developing new synthetic methods that would be distinctively different from the known Rh chemistry and promises to generate a new round of "gold rush".
Xu, Wenqing; Wang, Wei; Wang, Xiang
2015-08-10
A gold-catalyzed desilylative cyclization was developed for facile synthesis of bridged tetracyclic indolenines, a common motif in many natural indole alkaloids. An antimicrobial screen of the cyclization products identified one compound which selectively potentiates β-lactam antibiotics in methicillin-resistant S. aureus (MRSA), and re-sensitizes a variety of MRSA strains to β-lactams. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kang, Hee; Hwang, Yun-Gu; Lee, Taek-Guen; Jin, Cheng-Ri; Cho, Chi Heung; Jeong, Hee-Yeong; Kim, Dae-Ok
2016-10-28
Red ginseng, a steamed and sun-dried ginseng, is a popular health-promoting food in Korea and other Asian countries. We introduced nanofertilizer technology using gold nanoparticles in an effort to develop red ginseng with an elevated level of ginsenosides, the main active compounds of ginseng. Shoots of 6-year-old ginseng plants were fertilized three times with colloidal gold nanoparticle sprays. Red ginseng extract was prepared from the main roots. The concentrations of gold and ginsenosides were measured following gold nanoparticle treatment. To evaluate the anti-inflammatory effects, mouse peritoneal macrophages of male BALB/c mouse were stimulated with lipopolysaccharide plus interferon-γ in the presence of extracts from red ginseng with or without gold nanoparticle treatment. The content of ginsenosides, such as Rg1, Re, Rf, and Rb1, increased in ginseng treated with gold nanofertilizer whereas the steaming process increased only the levels of Rd and Rg3. The levels of nitric oxide, inducible nitric oxide synthase, and interleukin-6, but not tumor necrosis factor-α, were more suppressed in macrophages treated with extract from gold nanoparticle-treated red ginseng. Our results show that the use of a colloidal gold nanoparticle fertilizer improved the synthesis of ginsenosides in ginseng and enhanced the anti-inflammatory effects of red ginseng. Further research is required to elucidate the causal factors for the gold-induced change in ginsenoside synthesis and to determine the in vivo effect of gold nanoparticle-treated ginseng.
NASA Astrophysics Data System (ADS)
Curry, Dennis; Cameron, Amanda; MacDonald, Bruce; Nganou, Collins; Scheller, Hope; Marsh, James; Beale, Stefanie; Lu, Mingsheng; Shan, Zhi; Kaliaperumal, Rajendran; Xu, Heping; Servos, Mark; Bennett, Craig; Macquarrie, Stephanie; Oakes, Ken D.; Mkandawire, Martin; Zhang, Xu
2015-11-01
Gold nanomaterials have received great interest for their use in cancer theranostic applications over the past two decades. Many gold nanoparticle-based drug delivery system designs rely on adsorbed ligands such as DNA or cleavable linkers to load therapeutic cargo. The heightened research interest was recently demonstrated in the simple design of nanoparticle-drug conjugates wherein drug molecules are directly adsorbed onto the as-synthesized nanoparticle surface. The potent chemotherapeutic, doxorubicin often serves as a model drug for gold nanoparticle-based delivery platforms; however, the specific interaction facilitating adsorption in this system remains understudied. Here, for the first time, we propose empirical and theoretical evidence suggestive of the main adsorption process where (1) hydrophobic forces drive doxorubicin towards the gold nanoparticle surface before (2) cation-π interactions and gold-carbonyl coordination between the drug molecule and the cations on AuNP surface facilitate DOX adsorption. In addition, biologically relevant compounds, such as serum albumin and glutathione, were shown to enhance desorption of loaded drug molecules from AuNP at physiologically relevant concentrations, providing insight into the drug release and in vivo stability of such drug conjugates.Gold nanomaterials have received great interest for their use in cancer theranostic applications over the past two decades. Many gold nanoparticle-based drug delivery system designs rely on adsorbed ligands such as DNA or cleavable linkers to load therapeutic cargo. The heightened research interest was recently demonstrated in the simple design of nanoparticle-drug conjugates wherein drug molecules are directly adsorbed onto the as-synthesized nanoparticle surface. The potent chemotherapeutic, doxorubicin often serves as a model drug for gold nanoparticle-based delivery platforms; however, the specific interaction facilitating adsorption in this system remains understudied. Here, for the first time, we propose empirical and theoretical evidence suggestive of the main adsorption process where (1) hydrophobic forces drive doxorubicin towards the gold nanoparticle surface before (2) cation-π interactions and gold-carbonyl coordination between the drug molecule and the cations on AuNP surface facilitate DOX adsorption. In addition, biologically relevant compounds, such as serum albumin and glutathione, were shown to enhance desorption of loaded drug molecules from AuNP at physiologically relevant concentrations, providing insight into the drug release and in vivo stability of such drug conjugates. Electronic supplementary information (ESI) available: DOX-AuNP absorption spectra and colored solution images, citrate displacement data, original DOX-AuNP loading isotherm, XPS data and TEM micrographs, modelling data. See DOI: 10.1039/c5nr05826k
Okeke, Claudia C; Allen, Loyd V
2009-01-01
The standard operating procedures suggested in this article are presented to compounding pharmacies to ensure the quality of the environment in which a CSP is prepared. Since United States Pharmacopeia Chapter 797 provides minimum standards, each facility should aim for best practice gold standard. The standard operating procedures should be tailored to meet the expectations and design of each facility. Compounding personnel are expected to know and understand each standard operating procedure to allow for complete execution of the procedures.
Inui, Hideyuki; Wakai, Taketo; Gion, Keiko; Yamazaki, Kiyoshi; Kim, Yun-Seok; Eun, Heesoo
2011-01-01
Zucchini cultivars Cucurbita pepo subsp. ovifera cv. Patty Green and subsp. pepo cv. Gold Rush were cultivated hydroponically in a nutrient solution supplemented with a mixture of dioxins and dioxin-like compounds. Patty Green and Gold Rush showed low and high accumulation of these compounds in the aerial parts respectively. In both cultivars, the accumulation of each congener negatively depended on its hydrophobicity. This suggests that desorption and solubilization were partly responsible for congener specificity of accumulation, since this was not found in soil experiments. In contrast, no clear difference in accumulation in the roots was observed between the cultivars, whereas the translocation factors, which are indicators of efficient translocation from the roots to the aerial parts, differed among the congeners hydrophobicity-dependently. There were positive correlations between accumulation in the roots and the hydrophobicity of the polychlorinated biphenyl congeners in both cultivars. These results indicate that translocation was also partly responsible for the congener specificity and accumulation concentrations.
Au102(p-MBA)44 nanocluster, a superatom suitable for bio-applications
NASA Astrophysics Data System (ADS)
Häkkinen, Hannu
2016-12-01
Inorganic nanoparticles, including metals, semiconductors and metal oxides, comprise a common set of structures exhibiting an inorganic core `passivated' by an organic shell. Ligated inorganic nanoparticles currently provoke widespread fundamental interest in their structural, optical and magnetic properties, which differ fundamentally from bulk counterparts. These nanomaterials are already finding applications in biology, medicine, solar energy, and display panels. 1-6 Conjugating inorganic nanoparticles with organic (biological) material for applications in nanobiology and nanomedicine creates significant challenges for controlling the effects on the environment, particularly regarding toxicity. Chemical reactions of almost identical substances can lead to drastically different outcomes in a biological environment. As a simplistic example one can consider the case of ethanol vs. methanol. Ethanol (CH3CH2OH) can be consumed by humans while even a small dose of methanol (CH3OH) can be fatal, yet the difference between the molecular formulas of these substances is just the smallest meaningful hydrocarbon unit CH2. This illuminates the fact that minute differences in the size and structure of molecular compounds can have drastically different end effects in a biological environment due to the way the compounds start to react with the environment. In recent years, gold nanoparticles covered by ligands that make them water-soluble have become a popular target for research in nanobiology and nanomedicine. 1,2 In most cases up to now, colloidal nanoparticles (5 nm and larger) have been used for sensing and photothermal applications. However, this class of gold-based nanomaterials still has large uncertainties regarding the atomic composition of the nanoparticle surface and particularly the metal-ligand interface. A simple example illuminates the facts. The density of atoms in the fcc lattice of macrosocopic gold metal is about 59 atoms/nm3. This means that a spherical colloidal gold nanoparticle with radius of 5 nm has about 3850 atoms. Even in a sample of extremely narrow range of diameters ranging from 5.25 nm to 4.75 nm (+/- 5% of the mean) the particles will have anywhere between 3300 and 4750 atoms, and their surface area can differ up to 20%. It is clear that such particles are not suitable for applications that would need molecularly precise size, structure and shape of the metal nanoparticle and precise knowledge of the composition of its organic surface. In 1994, Brust, Schiffrin and coworkers published a landmark synthesis recipe on how to prepare thiol(ate)-stabilized small gold nanoparticles of about 2 nm in size. 7 This paper started a completely new field which has now matured to studies of several "atom-precise" or "molecularly precise" gold-thiolate compounds for which molecular formulas Aux(SR)y can be written and the substances in most cases have a good ambient stability allowing for storage and later use.8 Atomic structures of the gold core and the thiolate layer have been resolved for many of these compounds, opening doors for detailed density functional theory (DFT) simulations of their properties. This Perspective discusses developments in understanding the structure and properties of one of such compounds, which can be used for site-specific (or "molecularly precise") targeting of capsid proteins on a viral surface.
Meng, Da-Li; Shang, Lei; Feng, Xiao-He; Huang, Xing-Fei; Che, Xin
2016-06-15
In order to increase the solubility of poorly water-soluble natural product, xanthoceraside, an effective anti-AD compound from Xanthoceras sorbifolia Bunge, and maintain its natural property, the xanthoceraside hollow gold nanoparticles were successively prepared by green ultrasonic method with silica spheres as templates and HF solution as selective etching solvent. Hollow gold nanoparticles and drug-loaded hollow gold nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The solubilities of xanthoceraside loaded on hollow gold nanoparticles were increased obviously from 3.0μg/ml and 2.5μg/ml to 12.7μg/ml and 10.7μg/ml at 25°C and 37°C, respectively. The results of XRD and DSC indicated that the reason for this increase was mainly due to the amorphous state of xanthoceraside loaded on the hollow gold nanoparticles. In summary, the method of loading xanthoceraside onto hollow gold nanoparticles was a green and useful strategy to improve the solubility and dissolution of poorly water-soluble natural products and worth to applying to other natural products. Copyright © 2016 Elsevier B.V. All rights reserved.
Inhibition of amyloid peptide fibril formation by gold-sulfur complexes.
Wang, Wenji; Zhao, Cong; Zhu, Dengsen; Gong, Gehui; Du, Weihong
2017-06-01
Amyloid-related diseases are characterized by protein conformational change and amyloid fibril deposition. Metal complexes are potential inhibitors of amyloidosis. Nitrogen-coordinated gold complexes have been used to disaggregate prion neuropeptide (PrP106-126) and human islet amyloid polypeptide (hIAPP). However, the roles of metal complexes in peptide fibril formation and related bioactivity require further exploration. In this work, we investigated the interactions of amyloid peptides PrP106-126 and hIAPP with two tetracoordinated gold-sulfur complexes, namely, dichloro diethyl dithiocarbamate gold complex and dichloro pyrrolidine dithiocarbamate gold complex. We also determined the effects of these complexes on peptide-induced cytotoxicity. Thioflavin T assay, morphological characterization, and particle size analysis indicated that the two gold-sulfur complexes effectively inhibited the fibrillation of the amyloid peptides, which led to the formation of nanoscale particles. The complexes reduced the cytotoxicity induced by the amyloid peptides. Intrinsic fluorescence, nuclear magnetic resonance, and mass spectrometry revealed that the complexes interacted with PrP106-126 and hIAPP via metal coordination and hydrophobic interaction, which improved the inhibition and binding of the two gold-sulfur compounds. Our study provided new insights into the use of tetracoordinated gold-sulfur complexes as drug candidates against protein conformational disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
Extracellular mycosynthesis of gold nanoparticles using Fusarium solani
NASA Astrophysics Data System (ADS)
Gopinath, K.; Arumugam, A.
2014-08-01
The development of eco-friendly methods for the synthesis of nanomaterial shape and size is an important area of research in the field of nanotechnology. The present investigation deals with the extracellular rapid biosynthesis of gold nanoparticles using Fusarium solani culture filtrate. The UV-vis spectra of the fungal culture filtrate medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. FTIR spectra provide an evidence for the presence of heterocyclic compound in the culture filtrate, which increases the stability of the synthesized gold nanoparticles. The X-ray analysis respects the Bragg's law and confirmed the crystalline nature of the gold nanoparticles. AFM analysis showed the results of particle sizes (41 nm). Transmission electron microscopy (TEM) showed that the gold nanoparticles are spherical in shape with the size range from 20 to 50 nm. The use of F. solani will offer several advantages since it is considered as a non-human pathogenic organism. The fungus F. solani has a fast growth rate, rapid capacity of metallic ions reduction, NPs stabilization and facile and economical biomass handling. Extracellular biosynthesis of gold nanoparticles could be highly advantageous from the point of view of synthesis in large quantities, time consumption, eco-friendly, non-toxic and easy downstream processing.
NASA Astrophysics Data System (ADS)
Hurh, Joon; Markus, Josua; Kim, Yeon-Ju; Ahn, Sungeun; Castro-Aceituno, Veronica; Mathiyalagan, Ramya; Kim, Yu Jin; Yang, Deok Chun
2017-09-01
Gold nanoparticles (GNPs) are forecasted to provide an attractive platform in biomedicine and catalysis with their potentials of combining a variety of biophysicochemical properties into an integrated nanodevice with great therapeutic and optical functions. There are several reports of crude plant extracts mediating the conversion of metal ions into nanoparticles. However, we aimed to investigate the capability of single bioactive compounds, namely ginsenosides compound K (C-K) and Rh2, to accommodate a synergistic chemical reduction of gold salts by one-pot green chemistry. Ginsenosides C-K and Rh2 are unique triterpenoid saponins present in Panax ginseng Meyer, a perennial plant traditionally used as an oriental medicinal herbal with long history. C-K and Rh2 have demonstrated diverse pharmacological properties such as anticancer, anti-inflammation, anti-aging, and neuroprotective properties. The reduction of gold ions by these ginsenosides led to the production of nontoxic GNPs as tested in mouse macrophage (J774A.1) and human kidney epithelial (HEK-293) in vitro. The kinetics of the bioreduction and the influence of pH were examined by an ultraviolet-visible (UV-Vis) spectrophotometer. GNPs were characterized by field emission transmission electron microscopy (FE-TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and Fourier transform infrared (FTIR) spectroscopy. Ginsenoside loading efficiency of C-K-GNPs and Rh2-GNPs was determined to be approximately 62.83% and 54.91%, respectively, by thermogravimetric analysis (TGA). These results suggest that one-pot synthesis by ginsenosides C-K and Rh2 may be useful for producing ginsenoside-loaded gold nanocarriers. [Figure not available: see fulltext.
Cytotoxicity of ferrocenyl-ethynyl phosphine metal complexes of gold and platinum.
Fourie, Eleanor; Erasmus, Elizabeth; Swarts, Jannie C; Jakob, Alexander; Lang, Heinrich; Joone, Gisela K; VAN Rensburg, Constance E J
2011-03-01
Ferrocene derivatives may possess antineoplastic activity. Those with low ferrocenyl reduction potentials often have the highest anticancer activity, as cell components have to oxidise them to the active ferrocenium species before cytotoxicity can be recorded. Some gold(I) complexes also possess anticancer activity. This study examined the cytotoxicity of ferrocenyl-ethynyl and ruthenocenyl-ethynyl complexes of gold and platinum. The results were related to the ease of iron oxidation in the ferrocenyl fragment and compared with the cytotoxicity of cisplatin, [(H(3)N)(2)PtCl(2)] and [Au(PPh(2)CH(2)CH(2)PPh(2))(2)]Cl. Ferrocene-containing gold and platinum complexes of the type Fc-C≡C-PPh(2), 1, and Fc-C≡C-PPh(2)→M with Fc=ferrocenyl (Fe(II)(η(5)-C(5)H(5)) (η(5)-C(5)H(4))), Ph=phenyl (C(6)H(5)) and M=Au-Cl, 2, Au-C≡C-Fc, 3, or Au-C≡C-Rc, 4 (Rc=ruthenocenyl, (Ru(II)(η(5)-C(5)H(5)) (η(5)-C(5)H(4))) and the complex [(Fc-C≡C-PPh(2))(2)PtCl(2)], 5, were investigated. Cytotoxicity tests were determined on the HeLa (human cervix epitheloid) cancer cell line, ATCC CCL-2. Cell survival was measured by means of the colorometric 3-(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide assay. The IC(50) values of compounds 1-4 from four experiments causing 50% cell growth inhibition, ranged between 4.6 and 27 μmol dm(-3). Drug activity was inversely proportional to the sum of all formal reduction potentials, E(o'), of the ferrocenyl groups of the Fc-C≡C-PPh(2) and Fc-C≡C-ligands coordinated to the gold centre. The Fc-C≡C-PPh(2)→Au-Cl complex, compound 2, was most cytotoxic with IC(50)=4.6 μmol dm(-3) , demonstrating the beneficial effect the Cl(-) ion has on the cytotoxicity of these neutral gold complexes. The platinum complex [(Fc-C≡C-PPh(2))(2)PtCl(2)], compound 5, resembling the structure of cisplatin, in principle should exhibit good cytotoxicity, but was not tested due to its total insolubility in any biocompatible medium.
Jin, Xiongjie; Yamaguchi, Kazuya; Mizuno, Noritaka
2014-01-07
Although enaminals (β-enaminals) are very important compounds and have been utilized as useful synthons for various important compounds, they have been synthesized through non-green and/or limited procedures until now. Herein, we have successfully developed a green synthetic procedure using a heterogeneous catalyst. In the presence of gold nanoparticles supported on manganese-oxide-based octahedral molecular sieves OMS-2 (Au/OMS-2), dehydrogenative amination of α,β-unsaturated aldehydes with amines proceeded efficiently, with the corresponding enaminals isolated in moderate to high yields (50-97 %). The catalysis was truly heterogeneous, and Au/OMS-2 could be reused. Furthermore, the formal Wacker-type oxidation of α,β-unsaturated aldehydes to enaminones has been realized. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
PST-Gold nanoparticle as an effective anticancer agent with immunomodulatory properties.
Joseph, Manu M; Aravind, S R; Varghese, Sheeja; Mini, S; Sreelekha, T T
2013-04-01
Polysaccharide PST001, which is isolated from the seed kernels of Tamarindus indica (Ti), is an antitumor and immunomodulatory compound. Gold nanoparticles have been used for various applications in cancer. In the present report, a novel strategy for the synthesis and stabilization of gold nanoparticles using anticancer polysaccharide PST001 was employed and the nanoparticles' antitumor activity was evaluated. PST-Gold nanoparticles were prepared such that PST001 acted both as a reducing agent and as a capping agent. PST-Gold nanoparticles showed high stability, no obvious aggregation for months and a wide range of pH tolerance. PST-Gold nanoparticles not only retained the antitumor effect of PST001 but also showed an enhanced effect even at a low concentration. It was also found that the nanoparticles exerted their antitumor effects through the induction of apoptosis. In vivo assays on BALB/c mice revealed that PST-Gold nanoparticles exhibited immunomodulatory effects. Evaluation of biochemical, hematological and histopathological features of mice revealed that PST-Gold nanoparticles could be administered safely without toxicity. Using the polysaccharide PST001 for the reduction and stabilization of gold nanoparticles does not introduce any environmental toxicity or biological hazards, and these particles are more effective than the parent polysaccharide. Further studies should be employed to exploit these particles as anticancer agents with imaging properties. Copyright © 2012 Elsevier B.V. All rights reserved.
Antiplasmodial activities of gold(I) complexes involving functionalized N-heterocyclic carbenes.
Hemmert, Catherine; Ramadani, Arba Pramundita; Boselli, Luca; Fernández Álvarez, Álvaro; Paloque, Lucie; Augereau, Jean-Michel; Gornitzka, Heinz; Benoit-Vical, Françoise
2016-07-01
A series of twenty five molecules, including imidazolium salts functionalized by N-, O- or S-containing groups and their corresponding cationic, neutral or anionic gold(I) complexes were evaluated on Plasmodium falciparum in vitro and then on Vero cells to determine their selectivity. Among them, eight new compounds were synthesized and fully characterized by spectroscopic methods. The X-ray structures of three gold(I) complexes are presented. Except one complex (18), all the cationic gold(I) complexes show potent antiplasmodial activity with IC50 in the micro- and submicromolar range, correlated with their lipophilicity. Structure-activity relationships enable to evidence a lead-complex (21) displaying a good activity (IC50=210nM) close to the value obtained with chloroquine (IC50=514nM) and a weak cytotoxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thermoelectric Mechanism and Interface Characteristics of Cyanide-Free Nanogold-Coated Silver Wire
NASA Astrophysics Data System (ADS)
Tseng, Yi-Wei; Hung, Fei-Yi; Lui, Truan-Sheng
2016-01-01
Traditional bath-plated gold contains a cyanide complex, which is an environmental hazard. In response, our study used a green plating process to produce cyanide-free gold-coated silver (cyanide-free ACA) bonding wire that has been proven to be a feasible alternative to gold bonding wire in semiconductor packaging. In this work, ACA wire annealed at 550°C was found to have stable microstructure and superior mechanical properties. Intermetallic compounds Ag2Al and AuAl2 grew from Ag-Au balls and Al pads after aging at 175°C for 500 h. After current testing, ACA wire was found to have improved electrical properties due to equiaxed grain growth. The gold nanolayer on the Ag surface increased the oxidation resistance. These results provide insights regarding the reliability of ACA wire in advanced bonding processes.
Synthesis of new liquid crystals embedded gold nanoparticles for photoswitching properties.
Rahman, Md Lutfor; Biswas, Tapan Kumar; Sarkar, Shaheen M; Yusoff, Mashitah Mohd; Yuvaraj, A R; Kumar, Sandeep
2016-09-15
A new series of liquid crystals decorated gold nanoparticles is synthesized whose molecular architecture has azobenzenes moieties as the peripheral units connected to gold nanoparticles (Au NPs) via alkyl groups. The morphology and mesomorphic properties were investigated by field emission scanning electron microscope, high-resolution transmission electron microscopy, differential scanning calorimetry and polarizing optical microscopy. The thiolated ligand molecules (3a-c) showed enantiotropic smectic A phase, whereas gold nanoparticles (5a-c) exhibit nematic and smectic A phase with monotropic nature. HR-TEM measurement showed that the functionalized Au NPs are of the average size of 2nm and they are well dispersed without any aggregation. The trans-form of azo compounds showed a strong band in the UV region at ∼378nm for the π-π(∗) transition, and a weak band in the visible region at ∼472nm due to the n-π(∗) transition. These molecules exhibit attractive photoisomerization behaviour in which trans-cis transition takes about 15s whereas the cis-trans transition requires about 45min for compound 5c. The extent of reversible isomerization did not decay after 10 cycles, which proved that the photo-responsive properties of 5c were stable and repeatable. Therefore, these materials may be suitably exploited in the field of molecular switches and the optical storage devices. Copyright © 2016 Elsevier Inc. All rights reserved.
Chemical constituents of gold-red apple and their α-glucosidase inhibitory activities.
He, Qian-Qian; Yang, Liu; Zhang, Jia-Yu; Ma, Jian-Nan; Ma, Chao-Mei
2014-10-01
Ten compounds were isolated and purified from the peels of gold-red apple (Malus domestica) for the 1st time. The identified compounds are 3β, 20β-dihydroxyursan-28-oic acid (1), 2α-hydroxyoleanolic acid (2), euscaphic acid (3), 3-O-p-coumaroyl tormentic acid (4), ursolic acid (5), 2α-hydroxyursolic acid (6), oleanolic acid (7), betulinic acid (8), linolic acid (9), and α-linolenic acid (10). Their structures were determined by interpreting their nuclear magnetic resonance and mass spectrometry (MS) spectra, and by comparison with literature data. Compound 1 is new, and compound 2 is herein reported for the 1st time for the genus Malus. α-Glucosidase inhibition assay revealed 6 of the triterpenoid isolates as remarkable α-glucosidase inhibitors, with betulinic acid showing the strongest inhibition (IC50 = 15.19 μM). Ultra-performance liquid chromatography-electrospray ionization MS analysis of the fruit peels, pomace, flesh, and juice revealed that the peels and pomace contained high levels of triterpenes, suggesting that wastes from the fruit juice industry could serve as rich sources of bioactive triterpenes. © 2014 Institute of Food Technologists®
A Mechanistic Investigation of the Gold(III)-Catalyzed Hydrofurylation of C-C Multiple Bonds.
Hossein Bagi, Amin; Khaledi, Yousef; Ghari, Hossein; Arndt, Sebastian; Hashmi, A Stephen K; Yates, Brian F; Ariafard, Alireza
2016-11-09
The gold-catalyzed direct functionalization of aromatic C-H bonds has attracted interest for constructing organic compounds which have application in pharmaceuticals, agrochemicals, and other important fields. In the literature, two major mechanisms have been proposed for these catalytic reactions: inner-sphere syn-addition and outer-sphere anti-addition (Friedel-Crafts-type mechanism). In this article, the AuCl 3 -catalyzed hydrofurylation of allenyl ketone, vinyl ketone, ketone, and alcohol substrates is investigated with the aid of density functional theory calculations, and it is found that the corresponding functionalizations are best rationalized in terms of a novel mechanism called "concerted electrophilic ipso-substitution" (CEIS) in which the gold(III)-furyl σ-bond produced by furan auration acts as a nucleophile and attacks the protonated substrate via an outer-sphere mechanism. This unprecedented mechanism needs to be considered as an alternative plausible pathway for gold(III)-catalyzed arene functionalization reactions in future studies.
Near-edge study of gold-substituted YBa2Cu3O(7-delta)
NASA Technical Reports Server (NTRS)
Ruckman, Mark W.; Hepp, Aloysius F.
1991-01-01
The valence of Cu and Au in YBa2Au0.3Cu2.7O7-delta was investigated using X-ray absorption near edge structure (XANES). X-ray and neutron diffraction studies indicate that Au goes on the Cu(1) site and Cu K-edge XANES shows that this has little effect on the oxidation state of the remaining copper. The Au L3 edge develops a white line feature whose position lies between that of trivalent gold oxide and monovalent potassium gold cyanide, and whose height relative to the edge step is smaller than in the two reference compounds. The appearance of the Au L3 edge suggests that fewer Au 3d states are involved in forming the Au-O bond in YBa2Au0.3Cu2.7O7-delta than in trivalent gold oxide.
Near-edge study of gold-substituted YBa2Cu3O(7-delta)
NASA Technical Reports Server (NTRS)
Ruckman, Mark W.; Hepp, Aloysius F.
1991-01-01
The valence of Cu and Au in YBa2Au0.3Cu2.7O7-delta was investigated using x-ray absorption near edge structure (XANES). X-ray and neutron diffraction studies indicate that Au goes on the Cu(1) site and Cu K-edge XANES shows that this has little effect on the oxidation state of the remaining copper. The Au L3 edge develops a white line feature whose position lies between that of trivalent gold oxide and monovalent potassium gold cyanide, and whose height relative to the edge step is smaller than in the two reference compounds. The appearance of the Au L3 edge suggests that fewer Au 3d states are involved in forming the Au-O bond in YBa2Au0.3Cu2.7O7-delta than in trivalent gold oxide.
Relativistic effects on acidities and basicities of Brønsted acids and bases containing gold.
Koppel, Ilmar A; Burk, Peeter; Kasemets, Kalev; Koppel, Ivar
2013-11-07
It is usually believed that relativistic effects as described by the Dirac-Schrödinger equation (relative to the classical or time-independent Schrödinger equation) are of little importance in chemistry. A closer look, however, reveals that some important and widely known properties (e.g., gold is yellow, mercury is liquid at room temperature) stem from relativistic effects. So far the influence of relativistic effects on the acid-base properties has been mostly ignored. Here we show that at least for compounds of gold such omission is completely erroneous and would lead to too high basicity and too low acidity values with errors in the range of 25-55 kcal mol(-1) (or 20 to 44 powers of ten in pK(a) units) in the gas-phase. These findings have important implications for the design of new superstrong acids and bases, and for the understanding of gold-catalysed reactions.
Body of Knowledge (BOK) for Copper Wire Bonds
NASA Technical Reports Server (NTRS)
Rutkowski, E.; Sampson, M. J.
2015-01-01
Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications. An evaluation of copper wire bond technology for applicability to spaceflight hardware may be warranted along with concurrently compiling a comprehensive understanding of the failure mechanisms involved with copper wire bonded semiconductor devices.
Enomoto, Junko; Kageyama, Tatsuto; Myasnikova, Dina; Onishi, Kisaki; Kobayashi, Yuka; Taruno, Yoko; Kanai, Takahiro; Fukuda, Junji
2018-05-01
Self-assembled monolayers (SAMs) have been used to elucidate interactions between cells and material surface chemistry. Gold surfaces modified with oligopeptide SAMs exhibit several unique characteristics, such as cell-repulsive surfaces, micropatterns of cell adhesion and non-adhesion regions for control over cell microenvironments, and dynamic release of cells upon external stimuli under culture conditions. However, basic procedures for the preparation of oligopeptide SAMs, including appropriate cleaning methods of the gold surface before modification, have not been fully established. Because gold surfaces are readily contaminated with organic compounds in the air, cleaning methods may be critical for SAM formation. In this study, we examined the effects of four gold cleaning methods: dilute aqua regia, an ozone water, atmospheric plasma, and UV irradiation. Among the methods, UV irradiation most significantly improved the formation of oligopeptide SAMs in terms of repulsion of cells on the surfaces. We fabricated an apparatus with a UV light source, a rotation table, and HEPA filter, to treat a number of gold substrates simultaneously. Furthermore, UV-cleaned gold substrates were capable of detaching cell sheets without serious cell injury. This may potentially provide a stable and robust approach to oligopeptide SAM-based experiments for biomedical studies. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yonemura, Hiroaki; Niimi, Tomoki; Yamada, Sunao
2016-03-01
Composite films of zinc-porphyrin-viologen (ZnP-V2+) linked compound containing six methylene group [ZnP(6)V]-gold nanoparticles (AuNP) were fabricated by combining electrostatic layer-by-layer adsorption and the Langmuir-Blodgett method. The anodic photocurrents of the ZnP(6)V-AuNP composite films are higher than those of the ZnP(6)V films. The large photocurrents in ZnP(6)V-AuNP composite films are most likely attributable to the combination of localized surface plasmon resonance due to AuNP and photoinduced intramolecular electron transfer from excited state of ZnP to V2+. The photocurrents of the ZnP(6)V-AuNP composite films increase in the presence of magnetic field. The photocurrents increase with low magnetic fields (B ≤ 150 mT) and are almost constant under high magnetic fields (B ≥ 150 mT). Magnetic field effects (MFEs) were clearly observed for both ZnP(6)V-AuNP composite films and ZnP(6)V films. The MFEs can be explained by a radical pair mechanism.
Chemical studies of elements with Z ⩾ 104 in gas phase
NASA Astrophysics Data System (ADS)
Türler, Andreas; Eichler, Robert; Yakushev, Alexander
2015-12-01
Chemical investigations of superheavy elements in the gas-phase, i.e. elements with Z ≥ 104, allow assessing the influence of relativistic effects on their chemical properties. Furthermore, for some superheavy elements and their compounds quite unique gas-phase chemical properties were predicted. The experimental verification of these properties yields supporting evidence for a firm assignment of the atomic number. Prominent examples are the high volatility observed for HsO4 or the very weak interaction of Cn with gold surfaces. The unique properties of HsO4 were exploited to discover the doubly-magic even-even nucleus 270Hs and the new isotope 271Hs. The combination of kinematic pre-separation and gas-phase chemistry allowed gaining access to a new class of relatively fragile compounds, the carbonyl complexes of elements Sg through Mt. A not yet resolved issue concerns the interaction of Fl with gold surfaces. While competing experiments agree on the fact that Fl is a volatile element, there are discrepancies concerning its adsorption on gold surfaces with respect to its daughter Cn. The elucidation of these and other questions amounts to the fascination that gas-phase chemical investigations exert on current research at the extreme limits of chemistry today.
NASA Astrophysics Data System (ADS)
Pięta, Ewa; Paluszkiewicz, Czesława; Oćwieja, Magdalena; Kwiatek, Wojciech M.
2017-05-01
An extremely important aspect of planning cancer treatment is not only the drug efficiency but also a number of challenges associated with the side effects and control of this process. That is why it is worth paying attention to the promising potential of the gold nanoparticles combined with a compound treated as a potential drug. This work presents Raman (RS), infrared absorption (IR) and surface-enhanced Raman scattering (SERS) spectroscopic investigations of N-acetyl-5-methoxytryptamine (melatonin) and α-methyl-DL-tryptophan, regarding as anti breast cancer agents. The experimental spectroscopic analysis was supported by the quantum-chemical calculations based on the B3LYP hybrid density functional theory (DFT) at the B3LYP 6-311G(d,p) level of theory. The studied compounds were adsorbed onto two colloidal gold nanosensors synthesized by a chemical reduction method using sodium borohydride (SB) and trisodium citrate (TC), respectively. Its morphology characteristics were obtained using transmission electron microscopy (TEM). It has been suggested that the NH moiety from the aromatic ring, a well-known proton donor, causes the formation of hydrogen bonds with the negatively charged gold surface.
Effect of pulsed laser parameters on the corrosion limitation for electric connector coatings
NASA Astrophysics Data System (ADS)
Georges, C.; Semmar, N.; Boulmer-Leborgne, C.
2006-12-01
Materials used in electrical contact applications are usually constituted of multilayered compounds (e.g.: copper alloy electroplated with a nickel layer and finally by a gold layer). After the electro-deposition, micro-channels and pores within the gold layer allow undesirable corrosion of the underlying protection. In order to modify the gold-coating microstructure, a laser surface treatment was applied. The laser treatment suppressing porosity and smoothing the surface sealed the original open structure as a low roughness allows a good electrical contact. Corrosion tests were carried out in humid synthetic air containing three polluting gases. SEM characterization of cross-sections was performed to estimate the gold melting depth and to observe the modifications of gold structure obtained after laser treatment. The effects of the laser treatment were studied according to different surface parameters (roughness of the substrate and thickness of the gold layer) and different laser parameters (laser wavelength, laser fluence, pulse duration and number of pulses). A thermokinetic model was used to understand the heating and melting mechanism of the multilayered coating to optimize the process in terms of laser wavelength, energy and time of interaction.
Massai, Lara; Fernández-Gallardo, Jacob; Guerri, Annalisa; Arcangeli, Annarosa; Pillozzi, Serena
2015-01-01
Two heterobimetallic complexes, i.e. [RuCl2(p-cymene)(µ-dppm)AuC] (1) and [RuCl2(p-cymene)(µ-dppm)Au S(thiazoline)] (3), based on known cytotoxic [Ru(p-cymene)Cl2(PR3)] and [AuX(PR3)] (X = Cl, SR) molecular scaffolds, with the diphosphane linker 1,1-bis(diphenylphosphino) methane, dppm, were conveniently prepared and characterised. Remarkably, the new compounds manifested a more favourable in vitro pharmacological profile toward cancer cells than individual ruthenium and gold species being either more cytotoxic or more selective. The interactions of the study compounds with (pBR322) DNA and their inhibitory effects on cathepsin B were also assessed. In addition, their reactivity toward suitable models of protein targets was explored and clear evidence gained for disruption of the bimetallic motif and for protein binding of monometallic fragments. Overall, the data reported here strongly support the concept of multifunctional heterometallic compounds as “improved” candidate agents for cancer treatment. The mechanistic and pharmacological implications of the present findings are discussed. PMID:25996553
Massai, Lara; Fernández-Gallardo, Jacob; Guerri, Annalisa; Arcangeli, Annarosa; Pillozzi, Serena; Contel, María; Messori, Luigi
2015-06-28
Two heterobimetallic complexes, i.e. [RuCl2(p-cymene)(μ-dppm)AuC] (1) and [RuCl2(p-cymene)(μ-dppm)Au(S-thiazoline)] (3), based on known cytotoxic [Ru(p-cymene)Cl2(PR3)] and [AuX(PR3)] (X = Cl, SR) molecular scaffolds, with the diphosphane linker 1,1-bis(diphenylphosphino)methane, dppm, were conveniently prepared and characterised. Remarkably, the new compounds manifested a more favourable in vitro pharmacological profile toward cancer cells than individual ruthenium and gold species being either more cytotoxic or more selective. The interactions of the studied compounds with (pBR322) DNA and their inhibitory effects on cathepsin B were also assessed. In addition, their reactivity toward suitable models of protein targets was explored and clear evidence gained for disruption of the bimetallic motif and for protein binding of monometallic fragments. Overall, the data reported here strongly support the concept of multifunctional heterometallic compounds as "improved" candidate agents for cancer treatment. The mechanistic and pharmacological implications of the present findings are discussed.
Mendes, Marta; Pombeiro, Armando J. L.
2018-01-01
Gold nanoparticles (AuNPs) were prepared using an eco-friendly approach in a single step by reduction of HAuCl4 with polyphenols from tea extracts, which act as both reducing and capping agents. The obtained AuNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV–vis), and X-ray photoelectron spectroscopy (XPS). They act as highly efficient catalysts in the reduction of various aromatic nitro compounds in aqueous solution. The effects of a variety of factors (e.g., reaction time, type and amount of reducing agent, shape, size, or amount of AuNPs) were studied towards the optimization of the processes. The total polyphenol content (TPC) was determined before and after the catalytic reaction and the results are discussed in terms of the tea extract percentage, the size of the AuNPs, and their catalytic activity. The reusability of the AuNP catalyst in the reduction of 4-nitrophenol was also tested. The reactions follow pseudo first-order kinetics. PMID:29748502
Alegria, Elisabete C B A; Ribeiro, Ana P C; Mendes, Marta; Ferraria, Ana M; do Rego, Ana M Botelho; Pombeiro, Armando J L
2018-05-10
Gold nanoparticles (AuNPs) were prepared using an eco-friendly approach in a single step by reduction of HAuCl₄ with polyphenols from tea extracts, which act as both reducing and capping agents. The obtained AuNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet⁻visible spectroscopy (UV⁻vis), and X-ray photoelectron spectroscopy (XPS). They act as highly efficient catalysts in the reduction of various aromatic nitro compounds in aqueous solution. The effects of a variety of factors (e.g., reaction time, type and amount of reducing agent, shape, size, or amount of AuNPs) were studied towards the optimization of the processes. The total polyphenol content (TPC) was determined before and after the catalytic reaction and the results are discussed in terms of the tea extract percentage, the size of the AuNPs, and their catalytic activity. The reusability of the AuNP catalyst in the reduction of 4-nitrophenol was also tested. The reactions follow pseudo first-order kinetics.
Preparation and Photoacoustic Analysis of Cellular Vehicles Containing Gold Nanorods.
Cavigli, Lucia; Tatini, Francesca; Borri, Claudia; Ratto, Fulvio; Centi, Sonia; Cini, Alberto; Lelli, Beatrice; Matteini, Paolo; Pini, Roberto
2016-05-02
Gold nanorods are attractive for a range of biomedical applications, such as the photothermal ablation and the photoacoustic imaging of cancer, thanks to their intense optical absorbance in the near-infrared window, low cytotoxicity and potential to home into tumors. However, their delivery to tumors still remains an issue. An innovative approach consists of the exploitation of the tropism of tumor-associated macrophages that may be loaded with gold nanorods in vitro. Here, we describe the preparation and the photoacoustic inspection of cellular vehicles containing gold nanorods. PEGylated gold nanorods are modified with quaternary ammonium compounds, in order to achieve a cationic profile. On contact with murine macrophages in ordinary Petri dishes, these particles are found to undergo massive uptake into endocytic vesicles. Then these cells are embedded in biopolymeric hydrogels, which are used to verify that the stability of photoacoustic conversion of the particles is retained in their inclusion into cellular vehicles. We are confident that these results may provide new inspiration for the development of novel strategies to deliver plasmonic particles to tumors.
Facile Synthesis of Monodisperse Gold Nanocrystals Using Virola oleifera
NASA Astrophysics Data System (ADS)
Milaneze, Bárbara A.; Oliveira, Jairo P.; Augusto, Ingrid; Keijok, Wanderson J.; Côrrea, Andressa S.; Ferreira, Débora M.; Nunes, Otalíbio C.; Gonçalves, Rita de Cássia R.; Kitagawa, Rodrigo R.; Celante, Vinícius G.; da Silva, André Romero; Pereira, Ana Claudia H.; Endringer, Denise C.; Schuenck, Ricardo P.; Guimarães, Marco C. C.
2016-10-01
The development of new routes and strategies for nanotechnology applications that only employ green synthesis has inspired investigators to devise natural systems. Among these systems, the synthesis of gold nanoparticles using plant extracts has been actively developed as an alternative, efficient, cost-effective, and environmentally safe method for producing nanoparticles, and this approach is also suitable for large-scale synthesis. This study reports reproducible and completely natural gold nanocrystals that were synthesized using Virola oleifera extract. V. oleifera resin is rich in epicatechin, ferulic acid, gallic acid, and flavonoids (i.e., quercetin and eriodictyol). These gold nanoparticles play three roles. First, these nanoparticles exhibit remarkable stability based on their zeta potential. Second, these nanoparticles are functionalized with flavonoids, and third, an efficient, economical, and environmentally friendly mechanism can be employed to produce green nanoparticles with organic compounds on the surface. Our model is capable of reducing the resin of V. oleifera, which creates stability and opens a new avenue for biological applications. This method does not require painstaking conditions or hazardous agents and is a rapid, efficient, and green approach for the fabrication of monodisperse gold nanoparticles.
Guo, Limin; Ma, Lipo; Zhang, Yelong; Cheng, Xun; Xu, Ye; Wang, Jin; Wang, Erkang; Peng, Zhangquan
2016-11-08
Electroreduction of aryl diazonium salts on gold can produce organic films that are more robust than their analogous self-assembled monolayers formed from chemical adsorption of organic thiols on gold. However, whether the enhanced stability is due to the Au-C bond formation remains debated. In this work, we report the electroreduction of an aryl diazonium salt of 4,4'-disulfanediyldibenzenediazonium on gold forming a multilayer of Au-(Ar-S-S-Ar) n , which can be further degraded to a monolayer of Au-Ar-S - by electrochemical cleavage of the S-S moieties within the multilayer. By conducting an in situ surface-enhanced Raman spectroscopic study of both the multilayer formation/degradation and the monolayer reduction/oxidation processes, coupled to density functional theory calculations, we provide compelling evidence that an Au-C bond does form upon electroreduction of aryl diazonium salts on gold and that the enhanced stability of the electrografted organic films is due to the Au-C bond being intrinsically stronger than the Au-S bond for a given phenylthiolate compound by ca. 0.4 eV.
Praveen, Chandrasekar; Ananth, D Babu
2016-05-15
Reported herein is the gold(III)-catalyzed 6-endo-dig cycloisomerization of 2-alkynyl-indole-3-carboxylic acids to form pyrano[4,3-b]indol-1(5H)-ones, which are pharmaceutically important structural motifs. The hitherto unknown substrates required for this methodology were conveniently synthesized in five steps with good overall yields. The utility of this new cycloisomerization is demonstrated by the excellent regioselectivity obtained using a range of substrates. The mildness of the method allowed functional group compatibility towards hydroxyl tether, displaying exquisite chemoselectivity. All the synthesized compounds were screened for their tumor cell growth inhibitory activity against human cervix adenocarcinoma (HeLa). Compound 7d emerged as the most active (IC50=0.69μM) among the tested series compared to the standard cis-platin (IC50=0.08μM). Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HAINFELD,J.F.POWELL,R.D.FURUYA,F.R.
2003-04-17
Gold has been used for immunocytochemistry since 1971 when Faulk and Taylor discovered adsorption of antibodies to colloidal gold. It is an ideal label for electron microscopy (EM) due to its high atomic number, which scatters electrons efficiently, and the fact that preparative methods have been developed to make uniform particles in the appropriate size range of 5 to 30 nm. Use in light microscopy (LM) generally requires silver enhancement (autometallography; AMG) of these small gold particles. Significant advances in this field since that time have included a better understanding of the conditions for best antibody adsorption, more regular goldmore » size production, adsorption of other useful molecules, like protein A, and advances in silver enhancement. Many studies have also been accomplished showing the usefulness of these techniques to cell biology and biomedical research. A further advance in this field was the development of Nanogold{trademark}, a 1.4 nm gold cluster. A significant difference from colloidal gold is that Nanogold is actually a coordination compound containing a gold core covalently linked to surface organic groups. These in turn may be covalently attached to antibodies. This approach to immunolabeling has several advantages compared to colloidal gold such as vastly better penetration into tissues, generally greater sensitivity, and higher density of labeling. Since Nanogold is covalently coupled to antibodies, it may also be directly coupled to almost any protein, peptide, carbohydrate, or molecule of interest, including molecules which do not adsorb to colloidal gold. This increases the range of probes possible, and expands the applications of gold labeling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Lloyd R.A.; Xu, Zhi-Qiang; Sluyter, Ronald
Gold(I) complexes are an important tool in the arsenal of established approaches for treating rheumatoid arthritis (RA), while some recent studies have suggested that gold nanoparticles (Au NPs) may also be therapeutically efficacious. These observations prompted the current biological studies involving gold(I) anti-RA agents and Au NPs, which are aimed towards improving our knowledge of how they work. The cytotoxicity of auranofin, aurothiomalate, aurothiosulfate and Au NPs towards RAW264.7 macrophages was evaluated using the MTT assay, with the former compound proving to be the most toxic. The extent of cellular uptake of the various gold agents was determined using graphitemore » furnace atomic absorption spectrometry, while their distribution within macrophages was examined using microprobe synchrotron radiation X-ray fluorescence spectroscopy. The latter technique showed accumulation of gold in discrete regions of the cell, and co-localisation with sulfur in the case of cells treated with aurothiomalate or auranofin. Electrospray ionization mass spectrometry was used to characterize thioredoxin reductase (TrxR) in which the penultimate selenocysteine residue was replaced by cysteine. Mass spectra of solutions of TrxR and aurothiomalate, aurothiosulfate or auranofin showed complexes containing bare gold atoms bound to the protein, or protein adducts containing gold atoms retaining some of their initial ligands. These results support TrxR being an important target of gold(I) drugs used to treat RA, while the finding that Au NPs are incorporated into macrophages, but elicit little toxicity, indicates further exploration of their potential for treatment of RA is warranted.« less
Sutherland, Daniel R; Kinsman, Luke; Angiolini, Stuart M; Rosair, Georgina M; Lee, Ai-Lan
2018-05-11
Hydroarylation of enantioenriched 1,3-disubstituted allenes has the potential to proceed with axial-to-point chirality transfer to yield enantioenriched allylated (hetero)aryl compounds. However, the gold-catalysed intermolecular reaction was previously reported to occur with no chirality transfer owing to competing allene racemisation. Herein, we describe the development of the first intermolecular hydroarylations of allenes to proceed with efficient chirality transfer and summarise some of the key criteria for achieving high regio- and stereoselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Suna; Yang, Pu; Peng, Shiyong; Zhu, Chenghao; Cao, Shengyu; Li, Jian; Sun, Jiangtao
2017-01-17
A gold-catalyzed sequential annulation reaction to prepare 3,4-fused bicyclic furan compounds has been realized by employing 2-(1-alkynyl)-2-alken-1-ones and 1,3,5-triazines as the starting materials under mild reaction conditions. This protocol features multiple bond formation in a single operation with the incorporation of two nitrogen and two carbon atoms into the final products. A mechanistic investigation reveals that the sequential annulations involved an unprecedented stepwise [3+2+2]-cycloaddition.
Preparation of gold nanoparticles and determination of their particles size via different methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iqbal, Muhammad; Usanase, Gisele; Oulmi, Kafia
Graphical abstract: Preparation of gold nanoparticles via NaBH{sub 4} reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH{sub 4} reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be preparedmore » in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH{sub 4}) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.« less
[Molecular mechanisms of action of gold in treatment of rheumatoid arthritis--an update].
Burmester, G R
2001-06-01
Gold was first used 90 years ago by Robert Koch for the treatment of tuberculosis based on the assumption that rheumatoid arthritis was caused by microbacteria. It soon became clear that this would not explain the action of gold in rheumatoid arthritis, and since then scientists have been struggling to elucidate the mechanisms of gold's action in the treatment of rheumatic diseases. In nearly every area of immunology inhibiting actions of gold could be documented; however, it is still unclear if there is a common denominator or if there are parallel modes of actions which are independent of each other. In any case, also based on recent studies the reactivity of gold compounds with thiol groups appears to the predominant factor. Analyzing the actions of gold in the different phases of an immune reaction suggested that gold plays an important role already in the initiation, namely the uptake and presentation of foreign antigens. Thus, gold is taken up by the macrophages and stored in the lysosomes which are called aureosomes where gold inhibits antigen processing. Especially peptide antigens, which contain sulfur such as cysteine and methionine, are important. Moreover, it could be shown that gold suppresses NF-kappa B binding activity as well as the activation of the I-kappa B-kinase. This mechanism results in a subsequently reduced production of pro-inflammatory cytokines, most notably TNF-alpha, interleukin-1 and interleukin-6. On the subsequent T-cell level, gold has been shown to induce an upregulation of IL-4 mRNA, resulting in a shift of the T-cell population to the Th2 phenotype. Moreover, the activation of T-cells is inhibited. On the effector level, gold inhibits proteolytic enzymes and can result in the destruction of synovial fibroblasts. In conclusion, gold remains one of the most fascinating antirheumatic drugs with multiple modes of actions. The future analysis of molecular mechanisms, especially with regard to signal transduction, will lead to new fundamental knowledge of gold action, possible allowing a further understanding of the pathogenesis of rheumatoid arthritis.
MacCoy, Dorene E.; Domagalski, Joseph L.
1999-01-01
Elevated levels of trace elements and hydrophobic organic compounds were detected in streambed sediments and aquatic biota [Asiatic clam (Corbicula fluminea) or bottom-feeding fish] of the Sacramento River Basin, California, during October and November 1995. Trace elements detected included cadmium, copper, mercury, lead, and zinc. Elevated levels of cadmium, copper, and zinc in the upper Sacramento River are attributed to a mining land use, and elevated levels of zinc and lead in an urban stream, and possibly in the lower Sacramento River, are attributed to urban runoff processes. Elevated levels of mercury in streambed sediment are attributed to either past mercury mining or to the use of mercury in past gold mining operations. Mercury mining was an important land use within the Coast Ranges in the past and gold mining was an important land use of the Sierra Nevada in the past. Mercury was the only trace element found in elevated levels in the tissue of aquatic biota, and those levels also could be attributed to either mining or urban runoff. Hydrophobic organic compounds also were detected in streambed sediments and aquatic biota. The most frequently detected compounds were DDT and its breakdown products, dieldrin, oxychlordane, and toxaphene. Differences were found in the types of compounds detected at agricultural sites and the urban site. Although both types of sites had measurable concentrations of DDT or its breakdown products, the urban site also had measurable concentrations of pesticides used for household pest control. Few semivolatile compounds were detected in the streambed sediments of any site. The semivolatile compound p-cresol, a coal-tar derivative associated with road maintenance, was found in the highest concentration.
NASA Technical Reports Server (NTRS)
Spalvins, T.
1973-01-01
Solid film lubricants of radio frequency sputtered molybdenum disulfide (MoS2) were applied to silver, gold, copper, and bronze surfaces that had various pretreatments (mechanical polishing, sputter etching, oxidation, and sulfurization). Optical and electron transmission micrographs and electron diffraction patterns were used to interpret the film formation characteristics and to evaluate the sputtering conditions in regard to the film and substrate compatibility. Sputtered MoS2 films flaked and peeled on silver, copper, and bronze surfaces except when the surfaces had been specially oxidized. The flaking and peeling was a result of sulfide compound formation and the corresponding grain growth of the sulfide film. Sputtered MoS2 films showed no peeling and flaking on gold surfaces regardless of surface pretreatment.
Venanzi, Mariano; Gatto, Emanuela; Caruso, Mario; Porchetta, Alessandro; Formaggio, Fernando; Toniolo, Claudio
2014-08-21
Photoinduced electron transfer (PET) experiments have been carried out on peptide self-assembled monolayers (SAM) chemisorbed on a gold substrate. The oligopeptide building block was exclusively formed by C(α)-tetrasubstituted α-aminoisobutyric residues to attain a helical conformation despite the shortness of the peptide chain. Furthermore, it was functionalized at the C-terminus by a pyrene choromophore to enhance the UV photon capture cross-section of the compound and by a lipoic group at the N-terminus for linking to gold substrates. Electron transfer across the peptide SAM has been studied by photocurrent generation experiments in an electrochemical cell employing a gold substrate modified by chemisorption of a peptide SAM as a working electrode and by steady-state and time-resolved fluorescence experiments in solution and on a gold-coated glass. The results show that the electronic flow through the peptide bridge is strongly asymmetric; i.e., PET from the C-terminus to gold is highly favored with respect to PET in the opposite direction. This effect arises from the polarity of the Au-S linkage (Au(δ+)-S(δ-), junction effect) and from the electrostatic field generated by the peptide helix.
NASA Astrophysics Data System (ADS)
Cabral, Alexandre Raphael; Ließmann, Wilfried; Lehmann, Bernd
2015-10-01
At Roter Bär, a former underground mine in the polymetallic deposits of St. Andreasberg in the middle-Harz vein district, Germany, native gold and palladium minerals occur very locally in clausthalite-hematite pockets of few millimetres across in carbonate veinlets. The native gold is a Au-Ag intermetallic compound and the palladium minerals are characterised as mertieite-II [Pd8(Sb,As)3] and empirical PdCuBiSe3 with some S. The latter coexists with bohdanowiczite (AgBiSe2), a mineral that is stable below 120 °C. The geological setting of Roter Bär, underneath a post-Variscan unconformity, and its hematite-selenide-gold association suggest that oxidising hydrothermal brines of low temperature were instrumental to the Au-Pd mineralisation. The Roter Bär Au-Pd mineralisation can be explained by Permo-Triassic, red-bed-derived brines in the context of post-Variscan, unconformity-related fluid overprint.
NASA Astrophysics Data System (ADS)
Plyusnin, Pavel E.; Makotchenko, Evgenia V.; Shubin, Yury V.; Baidina, Iraida A.; Korolkov, Ilya V.; Sheludyakova, Liliya A.; Korenev, Sergey V.
2015-11-01
Double complex salts of rhodium(III) and gold(III) of the composition [Au(en)2][Rh(NO2)6]·2H2O (1) and [Au(en)2][Rh(NO2)6] (2) have been prepared. Crystal structures of the compounds have been determined by single crystal X-ray diffraction. The compounds have been characterized by PXRD, IR, far-IR, CHN and DTA. The complexes have a layered structures. The presence of water in 1 makes the structure of the hydrated DCS less dense as compared to the anhydrous one. The environment of the cation and the anion in the two structures is the same, oxygen atoms of the nitro groups are involved in hydrogen bonds N-H⋯O, N⋯O distances being approximately the same. The structures of 1 and 2 are notable in having shortened contacts between the gold atoms and the oxygen atoms of the nitro groups of the neighboring complex anions. The thermal behavior of the complexes in a hydrogen atmosphere was investigated. The final product of thermolysis prepared at the temperature 600°C is a two-phase mixture of pure metallic gold and the solid solution Rh0.93Au0.07.
Dooyema, Carrie A; Neri, Antonio; Lo, Yi-Chun; Durant, James; Dargan, Paul I; Swarthout, Todd; Biya, Oladayo; Gidado, Saheed O; Haladu, Suleiman; Sani-Gwarzo, Nasir; Nguku, Patrick M; Akpan, Henry; Idris, Sa'ad; Bashir, Abdullahi M; Brown, Mary Jean
2012-04-01
In May 2010, a team of national and international organizations was assembled to investigate children's deaths due to lead poisoning in villages in northwestern Nigeria. Our goal was to determine the cause of the childhood lead poisoning outbreak, investigate risk factors for child mortality, and identify children < 5 years of age in need of emergency chelation therapy for lead poisoning. We administered a cross-sectional, door-to-door questionnaire in two affected villages, collected blood from children 2-59 months of age, and obtained soil samples from family compounds. Descriptive and bivariate analyses were performed with survey, blood lead, and environmental data. Multivariate logistic regression techniques were used to determine risk factors for childhood mortality. We surveyed 119 family compounds. Of 463 children < 5 years of age, 118 (25%) had died in the previous year. We tested 59% (204/345) of children < 5 years of age, and all were lead poisoned (≥ 10 µg/dL); 97% (198/204) of children had blood lead levels (BLLs) ≥ 45 µg/dL, the threshold for initiating chelation therapy. Gold ore was processed inside two-thirds of the family compounds surveyed. In multivariate modeling, significant risk factors for death in the previous year from suspected lead poisoning included the age of the child, the mother's work at ore-processing activities, community well as primary water source, and the soil lead concentration in the compound. The high levels of environmental contamination, percentage of children < 5 years of age with elevated BLLs (97%, > 45 µg/dL), and incidence of convulsions among children before death (82%) suggest that most of the recent childhood deaths in the two surveyed villages were caused by acute lead poisoning from gold ore-processing activities. Control measures included environmental remediation, chelation therapy, public health education, and control of mining activities.
Neri, Antonio; Lo, Yi-Chun; Durant, James; Dargan, Paul I.; Swarthout, Todd; Biya, Oladayo; Gidado, Saheed O.; Haladu, Suleiman; Sani-Gwarzo, Nasir; Nguku, Patrick M.; Akpan, Henry; Idris, Sa’ad; Bashir, Abdullahi M.; Brown, Mary Jean
2011-01-01
Background: In May 2010, a team of national and international organizations was assembled to investigate children’s deaths due to lead poisoning in villages in northwestern Nigeria. Objectives: Our goal was to determine the cause of the childhood lead poisoning outbreak, investigate risk factors for child mortality, and identify children < 5 years of age in need of emergency chelation therapy for lead poisoning. Methods: We administered a cross-sectional, door-to-door questionnaire in two affected villages, collected blood from children 2–59 months of age, and obtained soil samples from family compounds. Descriptive and bivariate analyses were performed with survey, blood lead, and environmental data. Multivariate logistic regression techniques were used to determine risk factors for childhood mortality. Results: We surveyed 119 family compounds. Of 463 children < 5 years of age, 118 (25%) had died in the previous year. We tested 59% (204/345) of children < 5 years of age, and all were lead poisoned (≥ 10 µg/dL); 97% (198/204) of children had blood lead levels (BLLs) ≥ 45 µg/dL, the threshold for initiating chelation therapy. Gold ore was processed inside two-thirds of the family compounds surveyed. In multivariate modeling, significant risk factors for death in the previous year from suspected lead poisoning included the age of the child, the mother’s work at ore-processing activities, community well as primary water source, and the soil lead concentration in the compound. Conclusion: The high levels of environmental contamination, percentage of children < 5 years of age with elevated BLLs (97%, > 45 µg/dL), and incidence of convulsions among children before death (82%) suggest that most of the recent childhood deaths in the two surveyed villages were caused by acute lead poisoning from gold ore–processing activities. Control measures included environmental remediation, chelation therapy, public health education, and control of mining activities. PMID:22186192
NASA Astrophysics Data System (ADS)
Ahmad, Tausif; Bustam, Mohamad Azmi; Irfan, Muhammad; Moniruzzaman, Muhammad; Anwaar Asghar, Hafiz Muhammad; Bhattacharjee, Sekhar
2018-05-01
In the last decade, development of bioinspired protocols to synthesize gold nanoparticles (AuNPs) using plants and their extracts have been dealt by researchers due to their low cost, renewability and non-toxic features. A simple, cheap and ecofriendly method is reported to synthesize stabilized AuNPs of size 35-75 nm at room temperature using aqueous Elaeis guineensis (oil palm) leaves extract without addition of any external agent. Oil palm leaves mediated AuNPs were characterized using FTIR, UV-vis spectrophotometer, EDAX, XPS, FESEM, TEM, DLS and TGA. FTIR spectra results revealed contribution of phenolic, carboxylic, amines and amides in reduction of trivalent gold ions and stabilization of formed gold atoms. Reaction solution color change and UV-vis spectra confirmed reduction of gold ions to generate gold atoms. Reaction mechanism explained the role of phenolic compounds in reduction reaction using FTIR and UV-vis spectra results. EDAX and XPS results further validated the formation of metallic gold particles through bioreduction of gold ions. Crystal structure of metallic gold particles was confirmed through XRD peaks indexing to (111), (200), (220) and (311) planes. TEM and FESEM particles size measurements exhibited the formation of nanostructured AuNPs. Synthesis of well scattered and spherical shaped AuNPs was revealed through FESEM and TEM images. The excellent stability of AuNPs was shown through high negative zeta potential value (-14.7 ± 4.68 mV) and uniform dispersion in aqueous media. Our results disclosed the excellent potential of Elaeis guineensis (oil palm) leaves as reducing and stabilizing agents in green synthesis of well scattered spherical shaped AuNPs, which can be employed as strong candidates in medical drug delivery and industrial applications.
Cennamo, Nunzio; D'Agostino, Girolamo; Porto, Gianni; Biasiolo, Adriano; Perri, Chiara; Arcadio, Francesco; Zeni, Luigi
2018-06-05
A novel Molecularly Imprinted Polymer (MIP) able to bind perfluorinated compounds, combined with a surface plasmon resonance (SPR) optical fiber platform, is presented. The new MIP receptor has been deposited on a D-shaped plastic optical fiber (POF) covered with a photoresist buffer layer and a thin gold film. The experimental results have shown that the developed SPR-POF-MIP sensor makes it possible to selectively detect the above compounds. In this work, we present the results obtained with perfluorooctanoate (PFOA) compound, and they hold true when obtained with a perfluorinated alkylated substances (PFAs) mixture sample. The sensor's response is the same for PFOA, perfluorooctanesulfonate (PFOS) or PFA contaminants in the C₄⁻C 11 range. We have also tested a sensor based on a non-imprinted polymer (NIP) on the same SPR in a D-shaped POF platform. The limit of detection (LOD) of the developed chemical sensor was 0.13 ppb. It is similar to the one obtained by the configuration based on a specific antibody for PFOA/PFOS exploiting the same SPR-POF platform, already reported in literature. The advantage of an MIP receptor is that it presents a better stability out of the native environment, very good reproducibility, low cost and, furthermore, it can be directly deposited on the gold layer, without modifying the metal surface by functionalizing procedures.
Naked eye detection of mutagenic DNA photodimers using gold nanoparticles.
Kim, Joong Hyun; Chung, Bong Hyun
2011-01-15
We developed a method to detect mutagenic DNA photodimers by the naked eye using gold nanoparticles. The stability of gold nanoparticles in a high ionic strength solution is maintained by straight ssDNA adsorbed physically on the AuNPs. However, we found that UV-irradiated DNA was less adsorptive onto gold nanoparticles because of a conformational change of UV-irradiated DNA. The accumulated deformation of the DNA structure by multiple-dimer formation triggered aggregation of the gold nanoparticles mixed with the UV-irradiated DNA and thus red to purple color changes of the mixture, which allowed colorimetric detection of the DNA photodimers by the naked eye. No fragmented mass and reactive oxygen species production under the UVB irradiation confirmed that the aggregation of gold nanoparticles was solely attributed to the accumulated deformation of the UV irradiated DNA. The degree of gold nanoparticles-aggregation was dependent on the UVB irradiated time and base compositions of the UV-irradiated oligonucleotides. In addition, we successfully demonstrated how to visually qualify the photosensitizing effect of chemical compounds in parallel within only 10 min by applying this new method. Since our method does not require any chemical or biochemical treatments or special instruments for purifying and qualifying the DNA photolesions, it should provide a feasible tool for the studies of the UV-induced mutagenic or carcinogenic DNA dimers and accelerate screening of a large number of drug candidates. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
2013-01-01
Background The use of microorganisms in the synthesis of nanoparticles emerges as an eco-friendly and exciting approach, for production of nanoparticles due to its low energy requirement, environmental compatibility, reduced costs of manufacture, scalability, and nanoparticle stabilization compared with the chemical synthesis. Results The production of gold nanoparticles by the thermophilic bacterium Geobacillus sp. strain ID17 is reported in this study. Cells exposed to Au3+ turned from colourless into an intense purple colour. This change of colour indicates the accumulation of intracellular gold nanoparticles. Elemental analysis of particles composition was verified using TEM and EDX analysis. The intracellular localization and particles size were verified by TEM showing two different types of particles of predominant quasi-hexagonal shape with size ranging from 5–50 nm. The mayority of them were between 10‒20 nm in size. FT-IR was utilized to characterize the chemical surface of gold nanoparticles. This assay supports the idea of a protein type of compound on the surface of biosynthesized gold nanoparticles. Reductase activity involved in the synthesis of gold nanoparticles has been previously reported to be present in others microorganisms. This reduction using NADH as substrate was tested in ID17. Crude extracts of the microorganism could catalyze the NADH-dependent Au3+ reduction. Conclusions Our results strongly suggest that the biosynthesis of gold nanoparticles by ID17 is mediated by enzymes and NADH as a cofactor for this biological transformation. PMID:23919572
Assessment of the effluent quality from a gold mining industry in Ghana.
Acheampong, Mike A; Paksirajan, Kannan; Lens, Piet N L
2013-06-01
The physical and chemical qualities of the process effluent and the tailings dam wastewater of AngloGold-Ashanti Limited, a gold mining company in Ghana, were studied from June to September, 2010. The process effluent from the gold extraction plant contains high amounts of suspended solids and is therefore highly turbid. Arsenic, copper and cyanide were identified as the major pollutants in the process effluent with average concentrations of 10.0, 3.1 and 21.6 mg L(-1), respectively. Arsenic, copper, iron and free cyanide (CN(-)) concentrations in the process effluent exceeded the Ghana EPA discharge limits; therefore, it is necessary to treat the process effluent before it can be discharged into the environment. Principal component analysis of the data indicated that the process effluent characteristics were influenced by the gold extraction process as well as the nature of the gold-bearing ore processed. No significant correlation was observed between the wastewater characteristics themselves, except for the dissolved oxygen and the biochemical oxygen demand. The process effluent is fed to the Sansu tailings dam, which removes 99.9 % of the total suspended solids and 99.7 % of the turbidity; but copper, arsenic and cyanide concentrations were still high. The effluent produced can be classified as inorganic with a high load of non-biodegradable compounds. It was noted that, though the Sansu tailings dam stores the polluted effluent from the gold extraction plant, there will still be serious environmental problems in the event of failure of the dam.
Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons.
Temnov, Vasily V; Klieber, Christoph; Nelson, Keith A; Thomay, Tim; Knittel, Vanessa; Leitenstorfer, Alfred; Makarov, Denys; Albrecht, Manfred; Bratschitsch, Rudolf
2013-01-01
Fundamental interactions induced by lattice vibrations on ultrafast time scales have become increasingly important for modern nanoscience and technology. Experimental access to the physical properties of acoustic phonons in the terahertz-frequency range and over the entire Brillouin zone is crucial for understanding electric and thermal transport in solids and their compounds. Here we report on the generation and nonlinear propagation of giant (1 per cent) acoustic strain pulses in hybrid gold/cobalt bilayer structures probed with ultrafast surface plasmon interferometry. This new technique allows for unambiguous characterization of arbitrary ultrafast acoustic transients. The giant acoustic pulses experience substantial nonlinear reshaping after a propagation distance of only 100 nm in a crystalline gold layer. Excellent agreement with the Korteveg-de Vries model points to future quantitative nonlinear femtosecond terahertz-ultrasonics at the nano-scale in metals at room temperature.
2014-01-24
Interfacial Tuning via Electron-Blocking/Hole-Transport Layers and Indium Tin Oxide Surface Treatment in Bulk- Heterojunction Organic Photovoltaic Cells...devices Figure 3 shows the compounds we prepared to assemble on gold (Au) surfaces. Results of TPA-C60 dyads (1 and 2) self-assembled on Au electrodes...surface hydroxyl groups, respectively, we decided to prepare compounds 5-7 to attach as SAMs, see Figure 5. Difficulties and unexpected problems
Pan, Yong; Yang, Liu; Mu, Ning; Shao, Shengyu; Wang, Wen; Xie, Xiao; He, Shitang
2014-05-19
This paper presents a new effective approach for the sensitive film deposition of surface acoustic wave (SAW) chemical sensors for detecting organophosphorus compounds such as O-ethyl-S-2-diisopropylaminoethyl methylphosphonothiolate (VX) containing sulfur at extremely low concentrations. To improve the adsorptive efficiency, a two-step technology is proposed for the sensitive film preparation on the SAW delay line utilizing gold electrodes. First, mono[6-deoxy-6-[(mercaptodecamethylene)thio
Pan, Yong; Yang, Liu; Mu, Ning; Shao, Shengyu; Wang, Wen; Xie, Xiao; He, Shitang
2014-01-01
This paper presents a new effective approach for the sensitive film deposition of surface acoustic wave (SAW) chemical sensors for detecting organophosphorus compounds such as O-ethyl-S-2-diisopropylaminoethyl methylphosphonothiolate (VX) containing sulfur at extremely low concentrations. To improve the adsorptive efficiency, a two-step technology is proposed for the sensitive film preparation on the SAW delay line utilizing gold electrodes. First, mono[6-deoxy-6-[(mercaptodecamethylene)thio
Investigation of thiol derivatized gold nanoparticle sensors for gas analysis
NASA Astrophysics Data System (ADS)
Stephens, Jared S.
Analysis of volatile organic compounds (VOCs) in air and exhaled breath by sensor array is a very useful testing technique. It can provide non-invasive, fast, inexpensive testing for many diseases. Breath analysis has been very successful in identifying cancer and other diseases by using a chemiresistor sensor or array with gold nanoparticles to detect biomarkers. Acetone is a biomarker for diabetes and having a portable testing device could help to monitor diabetic and therapeutic progress. An advantage to this testing method is it is conducted at room temperature instead of 200 degrees Celsius. 3. The objective of this research is to determine the effect of thiol derivatized gold nanoparticles based on sensor(s) detection of VOCs. The VOCs to be tested are acetone, ethanol, and a mixture of acetone and ethanol. Each chip is tested under all three VOCs and three concentration levels (0.1, 1, and 5.0 ppm). VOC samples are used to test the sensors' ability to detect and differentiate VOCs. Sensors (also referred to as a chip) are prepared using several types of thiol derivatized gold nanoparticles. The factors are: thiol compound and molar volume loading of the thiol in synthesis. The average resistance results are used to determine the VOC selectivity of the sensors tested. The results show a trend of increasing resistance as VOC concentration is increased relative to dry air; which is used as baseline for VOCs. Several sensors show a high selectivity to one or more VOCs. Overall the 57 micromoles of 4-methoxy-toluenethiol sensor shows the strongest selectivity for VOCs tested. 3. Gerfen, Kurt. 2012. Detection of Acetone in Air Using Silver Ion Exchanged ZSM-5 and Zinc Oxide Sensing Films. Master of Science thesis, University of Louisville.
Hopper, Melissa; Yun, Jeong-Fil; Zhou, Bianhua; Le, Christine; Kehoe, Katelin; Le, Ryan; Hill, Ryan; Jongeward, Gregg; Debnath, Anjan; Zhang, Liangfang; Miyamoto, Yukiko; Eckmann, Lars; Land, Kirkwood M; Wrischnik, Lisa A
2016-12-01
Trichomoniasis, caused by the protozoan parasite Trichomonas vaginalis, is the most common, non-viral, sexually transmitted infection in the world, but only two closely related nitro drugs are approved for its treatment. New antimicrobials against trichomoniasis remain an urgent need. Several organic gold compounds were tested for activity against T. vaginalis thioredoxin reductase (TrxR) in cell-free systems as well as for activity against different trichomonads in vitro and in a murine infection model. The organic gold(I) compounds auranofin and chloro(diethylphenylphosphine)gold(I) inhibited TrxR in a concentration-dependent manner in assays with recombinant purified reductase and in cytoplasmic extracts of T. vaginalis transfected with a haemagglutinin epitope-tagged form of the reductase. Auranofin potently suppressed the growth of three independent clinical T. vaginalis isolates as well as several strains of another trichomonad (Tritrichomonas foetus) in a 24 h-assay, with 50% inhibitory concentrations of 0.7-2.5 µM and minimum lethal concentrations of 2-6 µM. The drug also compromised the ability of the parasite to overcome oxidant stress, supporting the notion that auranofin acts, in part, by inactivating TrxR-dependent antioxidant defences. Chloro(diethylphenylphosphine)gold(I) was 10-fold less effective against T. vaginalis in vitro than auranofin. Oral administration of auranofin for 4 days cleared the parasites in a murine model of vaginal T. foetus infection without displaying any apparent adverse effects. The approved human drug auranofin may be a promising agent as an alternative treatment of trichomoniasis in cases when standard nitro drug therapies have failed. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
An electro-conductive organic coating for scanning electron microscopy (déjà vu)
NASA Astrophysics Data System (ADS)
Burnett, Bryan R.
2014-09-01
An organic compound, originally marketed as an antistatic, can form an extremely thin electro-conductive coating upon drying. A scanning electron microscope (SEM) application for this compound was first explored in the late 1960s. A coating of this compound eliminates the need for carbon or gold coating in some applications. It is well suited for the viewing of fabric samples and associated gunshot residue (GSR) in the SEM and makes it possible to quickly analyze fabric bullet wipe and bore wipe GSR. Fabric samples can also be examined for GSR from intermediate-range shots to estimate muzzle-target distances. Scanning
To, Wai-Pong; Zou, Taotao; Sun, Raymond Wai-Yin; Che, Chi-Ming
2013-07-28
Transition metal compounds are well documented to have diverse applications such as in catalysis, light-emitting materials and therapeutics. In the areas of photocatalysis and photodynamic therapy, metal compounds of heavy transition metals are highly sought after because they can give rise to triplet excited states upon photoexcitation. The long lifetimes (more than 1 μs) of the triplet states of transition metal compounds allow for bimolecular reactions/processes such as energy transfer and/or electron transfer to occur. Reactions of triplet excited states of luminescent metal compounds with oxygen in cells may generate reactive oxygen species and/or induce damage to DNA, leading to cell death. This article recaps the recent findings on photochemical and phototoxic properties of luminescent platinum(II) and gold(III) compounds both from the literature and experimental results from our group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubart, M.A.; Chandler, B.D.; Gould, R.A.T.
Platinum- and palladium-gold cluster compounds were evaluated with respect to their ability to catalyze H{sub 2}-D{sub 2} equilibration. In addition, these phosphine-stabilized complexes were structurally characterized. Mechanistic studies for this reaction were performed by kinetic and spectroscopic analysis. The catalytic reaction appears to occur in three steps, which were determined.
A theoretical study of the decomposition of gold (I) complexes
NASA Astrophysics Data System (ADS)
Tossell, J. A.
1998-04-01
Structures, energetics and excitation energies are calculated for the gold (I) complexes CH 3Au, (CH 3) 2Au -, CH 3AuOH 2, CH 3AuPH 3 and PH 3AuCl at the Hartree-Fock and MP2 levels of theory, and for CH 3AuP(CH 3) 3, CH 3AuP(OH) 3 and Au 3Cl 3 at the HF level. The lowest-energy neutral triplet state of each 2-coordinate compound dissociates into either two or three radical species (always including the CH 3 radical), with the exception of (CH 3) 2Au - which shows only slight Au-C bond elongation. In contrast, the doublet anion states dissociate neutral ligands, like PH 3, but do not dissociate CH 3. These results indicate that gold (I) chemical vapor deposition processes must involve excited states of the neutrals rather than their anions.
Nanowire growth and sublimation: CdTe quantum dots in ZnTe nanowires
NASA Astrophysics Data System (ADS)
Orrù, M.; Robin, E.; Den Hertog, M.; Moratis, K.; Genuist, Y.; André, R.; Ferrand, D.; Cibert, J.; Bellet-Amalric, E.
2018-04-01
The role of the sublimation of the compound and of the evaporation of the constituents from the gold nanoparticle during the growth of semiconductor nanowires is exemplified with CdTe-ZnTe heterostructures. Operating close to the upper temperature limit strongly reduces the amount of Cd present in the gold nanoparticle and the density of adatoms on the nanowire sidewalls. As a result, the growth rate is small and strongly temperature dependent, but a good control of the growth conditions allows the incorporation of quantum dots in nanowires with sharp interfaces and adjustable shape, and it minimizes the radial growth and the subsequent formation of additional CdTe clusters on the nanowire sidewalls, as confirmed by photoluminescence. Uncapped CdTe segments dissolve into the gold nanoparticle when interrupting the flux, giving rise to a bulblike (pendant-droplet) shape attributed to the Kirkendall effect.
Li, Chi-Lin; Lu, Chia-Jung
2009-08-15
Linear solvation energy relationships (LSERs) have been recognized as a useful model for investigating the chemical forces behind the partition coefficients between vapor molecules and absorbents. This study is the first to determine the solvation properties of monolayer-protected gold nanoclusters (MPCs) with different surface ligands. The ratio of partition coefficients/MPC density (K/rho) of 18 volatile organic compounds (VOCs) for four different MPCs obtained through quartz crystal microbalance (QCM) experiments were used for the LSER model calculations. LSER modeling results indicate that all MPC surfaces showed a statistically significant (p<0.05) preference to hydrogen-bond acidic molecules. Through dipole-dipole attraction, 4-methoxythiophenol-capped MPCs can also interact with polar organics (s=1.04). Showing a unique preference for the hydrogen bond basicity of vapors (b=1.11), 2-benzothiazolethiol-capped MPCs provide evidence of an intra-molecular, proton-shift mechanism on surface of nano-gold.
Controllable biosynthesis of gold nanoparticles from a Eucommia ulmoides bark aqueous extract
NASA Astrophysics Data System (ADS)
Guo, Mingxia; Li, Wei; Yang, Feng; Liu, Huihong
2015-05-01
The present work reports the green synthesis of gold nanoparticles (AuNPs) by water extract of Eucommia ulmoides (E. ulmoides) bark. The effects of various parameters such as the concentration of reactants, pH of the reaction mixture, temperature and the time of incubation were explored to the controlled formation of gold nanoparticles. The characterization through high resolution-transmission electron microscopic (HRTEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) infer that the as-synthesized AuNPs were spherical in shape with a face cubic crystal (FCC) structure. The results from zeta potential and dynamic light scattering (DLS) suggest the good stability and narrow size distribution of the AuNPs. This method for synthesis of AuNPs is simple, economic, nontoxic and efficient. The as-synthesized AuNPs show excellent catalytic activity for the catalytic reducing decoloration of model compounds of azo-dye: reactive yellow 179 and Congo red.
XANES and EXAFS study of Au-substituted YBa2Cu3O(7-delta)
NASA Technical Reports Server (NTRS)
Ruckman, Mark W.; Hepp, Aloysius F.
1990-01-01
The near-edge structure (XANES) of the Au L3 and Cu K edges of YBa2Au(0.3)Cu(2.7)O(7-delta) was studied. X ray diffraction suggests that Au goes on the Cu(1) site and XANES shows that this has little effect on the oxidation state of the remaining copper. The gold L3 edge develops a white line feature whose position lies between that of trivalent gold oxide (Au2O3) and monovalent potassium gold cyanide (KAu(CN)2) and whose intensity relative to the edge step is smaller than in the two reference compounds. The L3 EXAFS for Au in the superconductor resembles that of Au2O3. However, differences in the envelope of the Fourier filtered component for the first shell suggest that the local structure of the Au in the superconductor is not equivalent to Au2O3.
NASA Astrophysics Data System (ADS)
Dobrowolski, Ryszard; Mróz, Agnieszka; Dąbrowska, Marzena; Olszański, Piotr
2017-06-01
A novelty method for the determination of gold in geological samples by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry (SS HR CS GF AAS) after solid-phase extraction onto modified carbon nanotubes (CNT) was described. The methodology developed is based on solid phase extraction of Au(III) ions from digested samples to eliminate strong interference caused by iron compounds and problems related to inhomogeneities of the samples. The use of aqueous or solid standard for calibration was studied and the slope of calibration curve was the same for both of these modes. This statement indicates the possibility to perform the calibration of the method using aqueous standard solutions. Under optimum conditions the absolute detection limit for gold was equal to 2.24 · 10- 6 μg g- 1 while the adsorption capacity of modified carbon nanotubes was 264 mg g- 1. The proposed procedure was validated by the application of certified reference materials (CRMs) with different content of gold and different matrix, the results were in good agreement with certified values. The method was successfully applied for separation and determination of gold ions in complex geological samples, with precision generally better than 8%.
NASA Astrophysics Data System (ADS)
Wijesinghe, Ruchire Eranga; Lee, Seung-Yeol; Kim, Pilun; Jung, Hee-Young; Jeon, Mansik; Kim, Jeehyun
2017-09-01
Seed germination rate differs based on chemical treatments, and nondestructive measurements of germination rate have become an essential requirement in the field of agriculture. Seed scientists and other biologists are interested in optical sensing technologies-based biological discoveries due to nondestructive detection capability. Optical coherence tomography (OCT) has recently emerged as a powerful method for biological and plant material discoveries. We report an extended application of OCT by monitoring the germination rate acceleration of chemically primed seeds. To validate the versatility of the method, Capsicum annum seeds were primed using three chemical compounds: sterile distilled water (SDW), butandiol, and 1-hexadecene. Monitoring was performed using a 1310-nm swept source OCT system. The results confirmed more rapid morphological variations in the seeds treated with 1-hexadecene medium than the seeds treated with SDW and butandiol within 8 consecutive days. In addition, fresh weight measurements (gold standard) of seeds were monitored for 15 days, and the obtained results were correlated with the OCT results. Thus, such a method can be used in various agricultural fields, and OCT shows potential as a rigorous sensing method for selecting the optimal plant growth-promoting chemical compounds rapidly, when compared with the gold standard methods.
NASA Astrophysics Data System (ADS)
Silva, Nataly; Muñoz, Camila; Diaz-Marcos, Jordi; Samitier, Josep; Yutronic, Nicolás; Kogan, Marcelo J.; Jara, Paul
2016-04-01
Evidence of guest migration in α-cyclodextrin-octylamine (α-CD-OA) inclusion compound (IC) generated via plasmonic heating of gold nanoparticles (AuNPs) has been studied. In this report, we demonstrate local effects generated by laser-mediated irradiation of a sample of AuNPs covered with inclusion compounds on surface-derivatized glass under liquid conditions by atomic force microscopy (AFM). Functionalized AuNPs on the glass and covered by the ICs were monitored by recording images by AFM during 5 h of irradiation, and images showed that after irradiation, a drastic decrease in the height of the AuNPs occurred. The absorption spectrum of the irradiated sample showed a hypsochromic shift from 542 to 536 nm, evidence suggesting that much of the population of nanoparticles lost all of the parts of the overlay of ICs due to the plasmonic heat generated by the irradiation. Mass spectrometry matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) performed on a sample containing a collection of drops obtained from the surface of the functionalized glass provided evidence that the irradiation lead to disintegration of the ICs and therefore exit of the octylamine molecule (the guest) from the cyclodextrin cavity (the matrix).
Lowery, Colin A; Abe, Takumi; Park, Junguk; Eubanks, Lisa M; Sawada, Daisuke; Kaufmann, Gunnar F; Janda, Kim D
2009-11-04
Quorum sensing (QS) systems have been discovered in a wide variety of bacteria, and mediate both intra- and interspecies communication. The AI-2-based QS system represents the most studied of these proposed interspecies systems and has been shown to regulate diverse functions such as bioluminescence, expression of virulence factors, and biofilm formation. As such, the development of modulatory compounds, both agonists and antagonists, is of great interest for the study of unknown AI-2-based QS systems and the potential treatment of bacterial infections. The fimbrolide class of natural products has exhibited excellent inhibitory activity against AI-2-based QS and as such may be considered the "gold standard" of AI-2 inhibitors. Thus, we sought to include a fimbrolide as a control compound for our recently developed alkyl-DPD panel of AI-2 modulators. Herein, we present a revised synthesis of a commonly studied fimbrolide as well as a direct comparison between the fimbrolide and alkyl-DPD analogues. We demonstrate that our alkyl-DPD analogues are more potent inhibitors of QS in both Vibrio harveyi and Salmonella typhimurium, the two organisms with defined AI-2 QS systems, and in doing so call into question the widely accepted use of fimbrolide-derived compounds as the "gold standard" of AI-2 inhibition.
Sinterless Fabrication Of Contact Pads On InP Devices
NASA Technical Reports Server (NTRS)
Weizer, Victor G.; Fatemi, Navid S.; Korenyi-Both, Andras L.
1995-01-01
Research has shown that with proper choice of material, low-resistance contact pads deposited on solar cells and other devices by improved technique that does not involve sintering. Research directed at understanding mechanisms involved in contact-sintering process has resulted in identification of special group of materials that includes phosphides of gold, silver, and nickel; specifically, Au(2)P(3), AgP(2), and Ni(3)P. Incorporation of phosphide interlayer substantially reduces resistivity between gold current-carrying layer and indium phosphide substrate. Further research indicated only very thin interlayer of any of these compounds needed to obtain low contact resistance, without subjecting contact to destructive sintering process.
Abbehausen, Camilla; de Paiva, Raphael Enoque Ferraz; Bjornsson, Ragnar; Gomes, Saulo Quintana; Du, Zhifeng; Corbi, Pedro Paulo; Lima, Frederico Alves; Farrell, Nicholas
2018-01-02
A combination of two elements' (Au, Zn) X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TD-DFT) allowed the elucidation of differential substitution pathways of Au(I) and Au(III) compounds reacting with biologically relevant zinc fingers (ZnFs). Gold L 3 -edge XAS probed the interaction of gold and the C-terminal Cys 2 HisCys finger of the HIV-1 nucleocapsid protein NCp7, and the Cys 2 His 2 human transcription factor Sp1. The use of model compounds helped assign oxidation states and the identity of the gold-bound ligands. The computational studies accurately reproduced the experimental XAS spectra and allowed the proposition of structural models for the interaction products at early time points. The direct electrophilic attack on the ZnF by the highly thiophilic Au(I) resulted in a linear P-Au-Cys coordination sphere after zinc ejection whereas for the Sp1, loss of PEt 3 results in linear Cys-Au-Cys or Cys-Au-His arrangements. Reactions with Au(III) compounds, on the other hand, showed multiple binding modes. Prompt reaction between [AuCl(dien)] 2+ and [Au(dien)(DMAP)] 3+ with Sp1 showed a partially reduced Au center and a final linear His-Au-His coordination. Differently, in the presence of NCp7, [AuCl(dien)] 2+ readily reduces to Au(I) and changes from square-planar to linear geometry with Cys-Au-His coordination, while [Au(dien)(DMAP)] 3+ initially maintains its Au(III) oxidation state and square-planar geometry and the same first coordination sphere. The latter is the first observation of a "noncovalent" interaction of a Au(III) complex with a zinc finger and confirms early hypotheses that stabilization of Au(III) occurs with N-donor ligands. Modification of the zinc coordination sphere, suggesting full or partial zinc ejection, is observed in all cases, and for [Au(dien)(DMAP)] 3+ this represents a novel mechanism for nucleocapsid inactivation. The combination of XAS and TD-DFT presents the first direct experimental observation that not only compound reactivity, but also ZnF core specificity, can be modulated on the basis of the coordination sphere of Au(III) compounds.
The Gold Standard for determining freely dissolved concentrations (Cfree) of hydrophobic organic compounds in sediment interstitial water would be in situ deployment combined with equilibrium sampling, which is generally difficult to achieve. In the present study, ex situ equilib...
Zhang, Ya-li; Luo, Xiao-ping; Zhou, Li
2012-05-01
To study the effect of sintering gold paste coating of pure titanium on the adhesion of three porcelains following the protocol ISO 9693, and to investigate the titanium-porcelains interfaces. Sixty machined pure titanium samples were prepared in a rectangular shape according to ISO 9693 and divided equally into six groups. Half of the strips were coated with gold paste (Deckgold) and sintered. Three ultra-low-fusing dental porcelains (I: Initial Ti, S: Super porcelain Ti-22, T: TitanKeramik) were fused onto the titanium surfaces. A thin layer of bonding agent was only applied on the surfaces of uncoated gold specimens. The interface of the porcelain and titanium was observed with a field emission scanning electron microscope (FE-SEM) after metallographic preparation and sputtered with a very thin carbon layer of the embedded titanium-porcelain interface. After three-point bending test was performed, optical stereomicroscope was used to characterize the titanium-porcelains adhesion and determine the mode of failure. FE-SEM illustrated intermetallic compounds of Au-Ti formed with some visible microcracks in the gold layer and the interface of gold layer and ceramic. All the uncoated gold titanium-porcelain system showed predominately adhesive fracture at the titanium oxidation, whereas the failure modes in all gold coated systems were cohesive and adhesive, mainly cohesive. The three-point-bending test showed that the bonding strength of GS and GI groups [(37.08 ± 4.32) and (36.20 ± 2.40) MPa] were higher than those in uncoated groups [(31.56 ± 3.74) and (30.88 ± 2.60) MPa, P < 0.05], while no significant difference was found between T group and GT group (P > 0.05). The gold paste intermediate coatings can improve bond strengths of Super porcelain Ti-22 system and Initial Ti system, which have potential applications in clinical fields.
Soulère, Laurent; Alix, Pascaline M; Croze, Marine L; Soulage, Christophe O
2018-04-10
An Asinex Gold Platinium chemical library subset of 12 055 compounds was screened employing docking simulations in the active site of the human FAS KS domain. Among them, 13 compounds were further evaluated for their ability to inhibit fatty acid biosynthesis. Four compounds were found to be active in particular ASN05064661 and ASN05374526 with IC50 values of 6.6 and 10.5 μm, respectively. A binding mode study was further conducted with these two compounds structurally related to benzene sulfonamide and aromatic polyamide. This study showed that they fit tightly with the active site with several interactions, notably with the key residues Cys161, His293, and His331. © 2018 John Wiley & Sons A/S.
Kaufman, John A; Brown, Mary Jean; Umar-Tsafe, Nasir T; Adbullahi, Muhammad Bashir; Getso, Kabiru I; Kaita, Ibrahim M; Sule, Binta Bako; Ba'aba, Ahmed; Davis, Lora; Nguku, Patrick M; Sani-Gwarzo, Nasir
2016-09-01
In March 2010, Medecins Sans Frontieres/Doctors Without Borders detected an outbreak of acute lead poisoning in Zamfara State, northwestern Nigeria, linked to low-technology gold ore processing. The outbreak killed more than 400 children ≤5 years of age in the first half of 2010 and has left more than 2,000 children with permanent disabilities. The aims of this study were to estimate the statewide prevalence of children ≤5 years old with elevated blood lead levels (BLLs) in gold ore processing and non-ore-processing communities, and to identify factors associated with elevated blood lead levels in children. A representative, population-based study of ore processing and non-ore-processing villages was conducted throughout Zamfara in 2012. Blood samples from children, outdoor soil samples, indoor dust samples, and survey data on ore processing activities and other lead sources were collected from 383 children ≤5 years old in 383 family compounds across 56 villages. 17.2% of compounds reported that at least one member had processed ore in the preceding 12 months (95% confidence intervals (CI): 9.7, 24.7). The prevalence of BLLs ≥10 µg/dL in children ≤5 years old was 38.2% (95% CI: 26.5, 51.4) in compounds with members who processed ore and 22.3% (95% CI: 17.8, 27.7) in compounds where no one processed ore. Ore processing activities were associated with higher lead concentrations in soil, dust, and blood samples. Other factors associated with elevated BLL were a child's age and sex, breastfeeding, drinking water from a piped tap, and exposure to eye cosmetics. Childhood lead poisoning is widespread in Zamfara State in both ore processing and non-ore-processing settings, although it is more prevalent in ore processing areas. Although most children's BLLs were below the recommended level for chelation therapy, environmental remediation and use of safer ore processing practices are needed to prevent further exposures. Obtained. The study protocol was approved by the US Centers for Disease Control Institutional Review Board-A and the National Health Research Ethics Committee of Nigeria. The authors declare no competing financial interests.
Jones, Joseph; Rios, Rosemarie; Jones, Mary; Lewis, Douglas; Plate, Charles
2009-01-01
The use of meconium as a drug-screening matrix for newborns has been the gold standard of care for the past two decades. A recent study using matched pairs of meconium and umbilical cord demonstrated a high degree of agreement. The use of liquid chromatography-tandem mass spectrometry as a means to confirm amphetamines presumptive positive umbilical cord specimens for amphetamine and methamphetamine is described here for the first time. The limit of detection for both compounds was 0.2 ng/g. The limit of quantitation for both compounds was 0.6 ng/g. The assay was linear for both compounds up to 100 ng/g. PMID:19783234
Balakumar, C; Lamba, P; Kishore, D Pran; Narayana, B Lakshmi; Rao, K Venkat; Rajwinder, K; Rao, A Raghuram; Shireesha, B; Narsaiah, B
2010-11-01
A series of novel 8/10-trifluoromethyl-substituted-imidazo[1,2-c] quinazolines have been synthesized and evaluated in vivo (rat paw edema) for their anti-inflammatory activity and in silico (docking studies) to recognize the hypothetical binding motif of the title compounds with the cyclooxygenase isoenzymes (COX-1 and COX-2) employing GOLD (CCDC, 4.0.1 version) software. The compounds, 9b and 10b, were found to have good anti-inflammatory activity [around 80% of the standard: indomethacin]. The binding mode of the title compounds has been proposed based on the docking studies. Crown Copyright © 2010. Published by Elsevier Masson SAS. All rights reserved.
Sujitha, Mohanan V; Kannan, Soundarapandian
2013-02-01
This study reports the biological synthesis of gold nanoparticles by the reduction of HAuCl(4) by using citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) juice extract as the reducing and stabilizing agent. A various shape and size of gold nanoparticles were formed when the ratio of the reactants were altered with respect to 1.0mM chloroauric acid solution. The gold nanoparticles obtained were characterized by UV-visible spectra, transmission electron microscopy (TEM) and X-ray diffraction (XRD). TEM studies showed the particles to be of various shapes and sizes and particle size ranges from 15 to 80 nm. Selected-area electron diffraction (SAED) pattern confirmed fcc phase and crystallinity of the particles. The X-ray diffraction analysis revealed the distinctive facets (111, 200, 220 and 222 planes) of gold nanoparticles. Dynamic light scattering (DLS) studies revealed that the average size for colloid gp(3) of C. limon, C. reticulata and C. sinensis are 32.2 nm, 43.4 nm and 56.7 nm respectively. The DLS graph showed that the particles size was larger and more polydispersed compared to the one observed by TEM due to the fact that the measured size also includes the bio-organic compounds enveloping the core of the Au NPs. Zeta potential value for gold nanoparticles obtained from colloid gp(3) of C. limon, C. reticulata and C. sinensis are -45.9, -37.9 and -31.4 respectively indicating the stability of the synthesized nanoparticles. Herein we propose a novel, previously unexploited method for the biological syntheses of polymorphic gold nanoparticles with potent biological applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Matlock, Matthew M; Howerton, Brock S; Van Aelstyn, Mike A; Nordstrom, Fredrik L; Atwood, David A
2002-04-01
Mercury contamination in the Gold-Cyanide Process (GCP) is a serious health and environmental problem. Following the heap leaching of gold and silver ores with NaCN solutions, portions of the mercury-cyano complexes often adhere to the activated carbon (AC) used to extract the gold. During the electrowinning and retorting steps, mercury can be (and often is) emitted to the air as a vapor. This poses a severe health hazard to plant workers and the local environment. Additional concerns relate to the safety of workers when handling the mercury-laden AC. Currently, mercury treatment from the heap leach solution is nonexistent. This is due to the fact that chelating ligands which can effectively work under the adverse pH conditions (as present in the heap leachate solutions) do not exist. In an effort to economically and effectively treat the leachate solution prior to passing over the AC, a dipotassium salt of 1,3-benzenediamidoethanethiol (BDET2-) has been developed to irreversibly bind and precipitate the mercury. The ligand has proven to be highly effective by selectively reducing mercury levels from average initial concentrations of 34.5 ppm (parts per million) to 0.014 ppm within 10 min and to 0.008 ppm within 15 min. X-ray powder diffraction (XRD), proton nuclear magnetic resonance (1H NMR), Raman, and infrared (IR) spectroscopy demonstrate the formation of a mercury-ligand compound, which remains insoluble over pH ranges of 0.0-14.0. Leachate samples from an active gold mine in Peru have been analyzed using cold vapor atomic fluorescence (CVAF) and inductively coupled plasma optical emission spectroscopy (ICP-OES) for metal concentrations before and after treatment with the BDET2- ligand.
Tzeng, Biing-Chiau; Chao, An
2015-01-26
The treatment of [AuCl(SMe2 )] with an equimolar amount of NaO5 NCS2 (O5 NCS2 =(aza-[18]crown-6)dithiocarbamate) in CH3 CN gave [Au2 (O5 NCS2 )2 ]⋅2 CH3 CN (2⋅2 CH3 CN), and its crystal structure displays a dinuclear gold(I)-azacrown ether ring and an intermolecular gold(I)⋅⋅⋅gold(I) contact of 2.8355(3) Å in crystal lattices. It is noted that two other single crystals of 2⋅tert-butylbenzene⋅H2 O and 2⋅0.5 m-xylene can be successfully obtained from a single-crystal-to-single-crystal (SCSC) transformation process by immersing single crystals of 2⋅2 CH3 CN in the respective solvents, and both also show intermolecular gold(I)⋅⋅⋅gold(I) contacts of 2.9420(5) and 2.890(2)-2.902(2) Å, respectively. Significantly, the emissions of all three 2⋅solvates are well correlated with their respective intermolecular gold(I)⋅⋅⋅gold(I) contacts, where such contacts increase with 2⋅2 CH3 CN (2.8355(3) Å)<2⋅0.5 m-xylene (2.890(2)-2.902(2) Å)<2⋅tert-butylbenzene⋅H2 O (2.9420(5) Å), and their emission energies increase with 2⋅2 CH3 CN (602 nm)<2⋅0.5 m-xylene (583 nm)<2⋅tert-butylbenzene⋅H2 O (546 nm) as well. In this regard, we further examine the solvochromic luminescence for some other aromatics, and finally their emissions are within 546-602 nm. Obviously, the above results are mostly ascribed to the occurrence of intermolecular gold(I)⋅⋅⋅gold(I) contacts in 2⋅solvates, which are induced by the presence of various solvates in the solid state, as a key role to be responsible for their solvochromic luminescence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A dual wavelength-activatable gold nanorod complex for synergistic cancer treatment
NASA Astrophysics Data System (ADS)
Pacardo, Dennis B.; Neupane, Bhanu; Rikard, S. Michaela; Lu, Yue; Mo, Ran; Mishra, Sumeet R.; Tracy, Joseph B.; Wang, Gufeng; Ligler, Frances S.; Gu, Zhen
2015-07-01
A multifunctional gold nanorod (AuNR) complex is described with potential utility for theranostic anticancer treatment. The AuNR was functionalized with cyclodextrin for encapsulation of doxorubicin, with folic acid for targeting, and with a photo-responsive dextran-azo compound for intracellular controlled drug release. The interaction of a AuNR complex with HeLa cells was facilitated via a folic acid targeting ligand as displayed in the dark-field images of cells. Enhanced anticancer efficacy was demonstrated through the synergistic combination of promoted drug release upon ultraviolet (UV) light irradiation and photothermal therapy upon infrared (IR) irradiation. This multifunctional AuNR-based system represents a novel theranostic strategy for spatiotemporal delivery of anticancer therapeutics.A multifunctional gold nanorod (AuNR) complex is described with potential utility for theranostic anticancer treatment. The AuNR was functionalized with cyclodextrin for encapsulation of doxorubicin, with folic acid for targeting, and with a photo-responsive dextran-azo compound for intracellular controlled drug release. The interaction of a AuNR complex with HeLa cells was facilitated via a folic acid targeting ligand as displayed in the dark-field images of cells. Enhanced anticancer efficacy was demonstrated through the synergistic combination of promoted drug release upon ultraviolet (UV) light irradiation and photothermal therapy upon infrared (IR) irradiation. This multifunctional AuNR-based system represents a novel theranostic strategy for spatiotemporal delivery of anticancer therapeutics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01568e
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters-Golden, M.; Shelly, C.
1988-12-01
We examined the effect of in vitro incubation with the oral gold compound auranofin (AF) on arachidonic acid (AA) release and metabolism by rat alveolar macrophages (AMs). AF stimulated dose- and time-dependent release of /sup 14/C-AA from prelabeled AMs, which reached 4.7 +/- 0.3% (mean +/- SEM) of incorporated radioactivity at 10 micrograms/ml for 90 min, as compared to 0.5 +/- 0.1% release following control incubation for 90 min (p less than 0.001). Similar dose- and time-dependent synthesis of thromboxane (Tx) A2 (measured as TxB2) and prostaglandin (PG) E2 was demonstrated by radioimmunoassay of medium from unlabeled cultures, reaching 18-foldmore » and 9-fold, respectively, of the control values at 10 micrograms/ml AF for 90 min (p less than 0.001 for both). AF-induced TxB2 and PGE2 synthesis was inhibited by indomethacin as well as by pretreatment with methylprednisolone. No increase in the synthesis of immunoreactive leukotrienes (LT) B4 or C4 was noted at any dose or time of AF. High performance liquid chromatographic separation of /sup 14/C-eicosanoids synthesized by prelabeled AMs confirmed that AF induced the release of free AA and its metabolism to cyclooxygenase, but not 5-lipoxygenase, metabolites. The ability of AF to trigger macrophage AA metabolism may be relevant to the exacerbation of certain inflammatory processes which sometimes accompany gold therapy.« less
USDA-ARS?s Scientific Manuscript database
The content of glycoalkaloids a-chaconine and a-solanine, individual and total phenolics compounds, and total flavonoids for three peels prepared from conventional and three from organic commercial potatoes as well antioxidant activities using three different methods were evaluated. Glycoalkaloids ...
Khalil, Rania; Homaeigohar, Shahin; Häußler, Dietrich; Elbahri, Mady
2016-01-01
In this study, the transparent conducting polymer of poly (3,4-ethylenendioxythiophene): poly(styrene sulphonate) (PEDOT:PSS) was nanohybridized via inclusion of gold nanofillers including nanospheres (NSs) and nanorods (NRs). Such nanocomposite thin films offer not only more optimum conductivity than the pristine polymer but also excellent resistivity against volatile organic compounds (VOCs). Interestingly, such amazing properties are achieved in the diluted regimes of the nanofillers and depend on the characteristics of the interfacial region of the polymer and nanofillers, i.e. the aspect ratio of the latter component. Accordingly, a shape dependent response is made that is more desirable in case of using the Au nanorods with a much larger aspect ratio than their nanosphere counterparts. This transparent nanocomposite thin film with an optimized conductivity and very low sensitivity to organic gases is undoubtedly a promising candidate material for the touch screen panel production industry. Considering PEDOT as a known material for integrated electrodes in energy saving applications, we believe that our strategy might be an important progress in the field. PMID:27654345
High-sensitivity immunochromatographic assay for fumonisin B1 based on indirect antibody labeling.
Urusov, Alexandr E; Petrakova, Alina V; Gubaydullina, Milyausha K; Zherdev, Anatoly V; Eremin, Sergei A; Kong, Dezhao; Liu, Liqiang; Xu, Chuanlai; Dzantiev, Boris B
2017-05-01
To develop a high-sensitivity immunochromatographic test for fumonisin B1 in plant extracts. Unlike conventional immunochromatographic tests, this assay is performed in two stages: competitive reaction with free specific antibodies and identifying immune complexes by their interaction with the anti-species antibody-conjugated gold nanoparticles. The use of a new geometry for the test strip membranes and a novel reagent application method ensures the proper order of these stages without additional manipulations. The contact of the ready-to-use test strip with the liquid sample suffices in initiating all stages of the assay and obtaining test results. The developed test was used on corn extracts; its instrumental limit of fumonisin B1 detection was 0.6 ng ml -1 at 15 min of assay duration. The proposed approach is flexible and can be used for a wide range of low molecular compounds. The use of anti-species antibody-conjugated gold nanoparticles in immunochromatography significantly facilitates the development of test systems by eliminating the need to synthesize and characterize the conjugates with specific antibodies for each new compound to be detected.
Interaction between a cationic porphyrin and ctDNA investigated by SPR, CV and UV-vis spectroscopy.
Xu, Zi-Qiang; Zhou, Bo; Jiang, Feng-Lei; Dai, Jie; Liu, Yi
2013-10-01
The interaction between ctDNA and a cationic porphyrin was studied in this work. The binding process was monitored by surface plasmon resonance (SPR) spectroscopy in detail. The association, dissociation rate constants and the binding constants calculated by global analysis were 2.4×10(2)±26.4M(-1)s(-1), 0.011±0.0000056s(-1) and 2.18×10(4)M(-1), respectively. And the results were confirmed by cyclic voltammetry and UV-vis absorption spectroscopy. The binding constants obtained from cyclic voltammetry and UV-vis absorption spectroscopy were 8.28×10(4)M(-1) and 6.73×10(4)M(-1) at 298K, respectively. The covalent immobilization methodology of ctDNA onto gold surface modified with three different compounds was also investigated by SPR. These compounds all contain sulfydryl but with different terminated functional groups. The results indicated that the 11-MUA (HS(CH2)10COOH)-modified gold film is more suitable for studying the DNA-drug interaction. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Purusottam Reddy, B.; Mallikarjuna, K.; Narasimha, G.; Park, Si-Hyun
2017-08-01
Bio-based green nanotechnology aims to characterize compounds from natural sources and establish efficient routes for the preparation of nontoxic materials that have applicability in biodegradable and biocompatible devices. The present study has investigated the use of Plectranthus amboinicus leaf extracts as reducing and capping materials for the green fabrication of silver, gold, and silver-gold (Ag, Au, and Ag/Au) metal and bimetallic nanoparticles. The catalytic behavior of these phyto-inspired nanoparticles was then assessed in terms of the reduction of 4-nitrophenol. Transmission electron microscopy was used to investigate the shape, morphology, distribution, and diameter of the phytomolecules capped with Ag, Au, and Ag/Au metal nanoparticles. The nature of the crystallinity of the nanoparticles was studied by small area electron diffraction (SAED) and x-ray diffraction analysis (XRD), and Fourier transform infrared (FTIR) spectroscopy was used to study the reduction and stabilizing involvement of the phyto-organic moieties in aqueous medium. The phyto-inspired Ag and Ag/Au nanoparticles demonstrated good antibacterial properties toward Gram-negative Escherichia coli and Pseudomonas spp. and Gram-positive Bacillus spp. and Staphylococcus spp. microorganisms using the well diffusion method. Notably, the Ag nanoparticles were shown to possess effective antibacterial properties.
Laser generated gold nanocorals with broadband plasmon absorption for photothermal applications
NASA Astrophysics Data System (ADS)
Poletti, Annamaria; Fracasso, Giulio; Conti, Giamaica; Pilot, Roberto; Amendola, Vincenzo
2015-08-01
Gold nanoparticles with efficient plasmon absorption in the visible and near infrared (NIR) regions, biocompatibility and easy surface functionalization are of interest for photothermal applications. Herein we describe the synthesis and photothermal properties of gold ``nanocorals'' (AuNC) obtained by laser irradiation of Au nanospheres (AuNS) dispersed in liquid solution. AuNC are formed in two stages: by photofragmentation of AuNS, followed by spontaneous unidirectional assembly of gold nanocrystals. The whole procedure is performed without chemicals or templating compounds, hence the AuNC can be coated with thiolated molecules in one step. We show that AuNC coated with thiolated polymers are easily dispersed in an aqueous environment or in organic solvents and can be included in polymeric matrixes to yield a plasmonic nanocomposite. AuNC dispersions exhibit flat broadband plasmon absorption ranging from the visible to the NIR and unitary light-to-heat conversion. Besides, in vitro biocompatibility experiments assessed the absence of cytotoxic effects even at a dose as high as 100 μg mL-1. These safe-by-designed AuNC are promising for use in various applications such as photothermal cancer therapy, light-triggered drug release, antimicrobial substrates, optical tomography, obscurant materials and optical coatings.
Gold Nanoparticle Microwave Synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin
At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves formore » gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.« less
The golden age: gold nanoparticles for biomedicine†
Dreaden, Erik C.; Alkilany, Alaaldin M.; Huang, Xiaohua; Murphy, Catherine J.; El-Sayed, Mostafa A.
2018-01-01
Gold nanoparticles have been used in biomedical applications since their first colloidal syntheses more than three centuries ago. However, over the past two decades, their beautiful colors and unique electronic properties have also attracted tremendous attention due to their historical applications in art and ancient medicine and current applications in enhanced optoelectronics and photovoltaics. In spite of their modest alchemical beginnings, gold nanoparticles exhibit physical properties that are truly different from both small molecules and bulk materials, as well as from other nanoscale particles. Their unique combination of properties is just beginning to be fully realized in range of medical diagnostic and therapeutic applications. This critical review will provide insights into the design, synthesis, functionalization, and applications of these artificial molecules in biomedicine and discuss their tailored interactions with biological systems to achieve improved patient health. Further, we provide a survey of the rapidly expanding body of literature on this topic and argue that gold nanotechnology-enabled biomedicine is not simply an act of ‘gilding the (nanomedicinal) lily’, but that a new ‘Golden Age’ of biomedical nanotechnology is truly upon us. Moving forward, the most challenging nanoscience ahead of us will be to find new chemical and physical methods of functionalizing gold nanoparticles with compounds that can promote efficient binding, clearance, and biocompatibility and to assess their safety to other biological systems and their long-term term effects on human health and reproduction (472 references). PMID:22109657
Stabilized gold nanoparticles by laser ablation in ferric chloride solutions
NASA Astrophysics Data System (ADS)
Nouraddini, M. I.; Ranjbar, M.; Dobson, P. J.; Farrokhpour, H.; Johnston, C.; Jurkschat, K.
2017-12-01
In this study, laser ablation of gold was performed in different ferric chloride solutions and water as a reference. The ferric chloride solutions included hexachloro iron(III) and aquachloro iron(III) having low and high hydrolysis degree. Transmission electron microscope (TEM) images showed spherical gold nanoparticles (GNPs) in water, particles which are strongly agglomerated with intimate contact at their interfaces in hexachloro iron(III) and individual separated particles with a halo of an iron component in aquachloro iron(III). In addition, no combination of Au and Fe was found in HAADF analysis or X-ray diffraction (XRD) patterns. In optical investigations, it was observed that gold nanoparticles made in hexachloro iron(III) solutions have localized surface plasmon resonance (LSPR) peaks broader than in the case of water that are quenched after a few hours, while ablation in the aquachloro iron(III) solution provides narrow LSPR absorption with a long-term stability. According to X-ray photoelectron spectroscopy (XPS) there are metallic Au and Fe2+ states in the drop-casted samples. By comparison of cyclic voltammetry of solutions before and after laser ablation, strong agglomeration in hexachloro iron(III) was attributed to the reducing role of iron(III) creating an unstable gold surface in the chloride solution. In aquachloro iron(III), however, the observed stability was attributed to the formation of the halo of an iron compound around the particles.
Bejarano-Villafuerte, Ángela; van der Meijden, Maarten W; Lingenfelder, Magalí; Wurst, Klaus; Kellogg, Richard M; Amabilino, David B
2012-12-07
A new chiral nonracemic thiol derived from a popular acidic resolving agent that incorporates a cyclic disubstituted phosphate group (phencyphos) has been prepared in enantiomerically pure form. The stereochemistry and absolute configuration were established by performing a single-crystal X-ray structural analysis of a synthetic intermediate. The thiol compound was used for the preparation of self-assembled monolayers (SAMs) on both monocrystalline and polycrystalline metallic gold, which have very different surface roughness. The monolayers were used to promote the nucleation and growth of crystals from nonaqueous solutions of an organic molecule (the parent phencyphos) of similar structure to the compound present in the monolayer. The template layers influence the nucleation and growth of the phencyphos crystals despite the lack of two-dimensional order in the surfaces. Heterogeneous nucleation of phencyphos takes place upon evaporation of either CHCl(3) or isopropanol solutions of the compound on the SAM surfaces, where the evaporation rate merely influences the size and homogeneity of the crystals. The roughness of the surface also plays an important role; the polycrystalline gold produces more homogeneous samples because of the greater number of nucleation sites. Clear evidence for nucleation and growth on the surfaces is shown by scanning electron microscopy. The variation in crystal form achieved by using different surfaces and solvents suggests that the layers are applicable for the preparation of organic crystals from organic solutions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mercury in breast milk - a health hazard for infants in gold mining areas?
Bose-O'Reilly, Stephan; Lettmeier, Beate; Roider, Gabriele; Siebert, Uwe; Drasch, Gustav
2008-10-01
Breast-feeding can be a source of mercury exposure for infants. The main concern up to now is methyl-mercury exposure of women at child-bearing age. Certain fish species have high levels of methyl-mercury leading to consumer's advisory guidelines in regard of fish consumption to protect infants from mercury exposure passing through breast milk. Little is known about the transfer of inorganic mercury passing through breast milk to infants. Epidemiological studies showed negative health effects of inorganic mercury in gold mining areas. Small-scale gold miners use mercury to extract the gold from the ore. Environmental and health assessments of gold mining areas in Indonesia, Tanzania and Zimbabwe showed a high exposure with inorganic mercury in these gold mining areas, and a negative health impact of the exposure to the miners and the communities. This paper reports about the analysis and the results of 46 breast milk samples collected from mercury-exposed mothers. The median level of 1.87mug/l is fairly high compared to other results from literature. Some breast milk samples showed very high levels of mercury (up to 149mug/l). Fourteen of the 46 breast milk samples exceed 4mug/l which is considered to be a "high" level. US EPA recommends a "Reference Dose" of 0.3mug inorganic mercury/kg body weight/day [United States Environmental Protection Agency, 1997. Volume V: Health Effects of Mercury and Mercury Compounds. Study Report EPA-452/R-97-007: US EPA]. Twenty-two of the 46 children from these gold mining areas had a higher calculated total mercury uptake. The highest calculated daily mercury uptake of 127mug exceeds by far the recommended maximum uptake of inorganic mercury. Further systematic research of mercury in breast milk from small-scale gold mining areas is needed to increase the knowledge about the bio-transfer of mercury from mercury vapour-exposed mothers passing through breast milk to the breast-fed infant.
Perrier, Aurélie; Maurel, François; Aubard, Jean
2007-10-04
In the course of developing electronic devices on a molecular scale, dithienylethenes photochromic molecules constitute promising candidates for optoelectronic applications such as memories and switches. There is thus a great interest to understand and control the switching behavior of photochromic compounds deposited on metallic surfaces or nanoparticles. Within the framework of the density functional theory, we studied the effect of small gold clusters (Au3 and Au9) on the electronic structure and absorption spectrum of a model dithienylethene molecule. The molecular orbital interactions between the photochromic molecule and the gold cluster made it possible to rationalize some experimental findings (Dulic, D.; van der Molen, S. J.; Kudernac, T.; Jonkman, H. T.; de Jong, J. J. D.; Bowden, T. N.; van Esch, J.; Feringa, B. L.; van Wees, B. J. Phys. Rev. Lett. 2003, 91, 207402). For the closed-ring isomer, grafting a photochromic molecule on a small gold cluster does not change the characteristics of the electronic transition involved in the ring-opening reaction. On the opposite, the absorption spectrum of the photochromic open-ring isomer is strongly modified by the inclusion of the metallic cluster. In agreement with experimental results, our study thus showed that the cycloreversion reaction which involves the closed-ring isomer should be still possible, whereas the ring-closure reaction which involves the open-ring isomer should be inhibited. Connecting a dithienylethene molecule to a small gold cluster hence provides a qualitative comprehension of the photochromic activities of dithienylethenes connected to a gold surface.
Schmidt, Claudia; Karge, Bianka; Misgeld, Rainer; Prokop, Aram; Franke, Raimo; Brönstrup, Mark; Ott, Ingo
2017-02-03
Gold complexes with N-heterocyclic carbene (NHC) ligands represent a promising class of metallodrugs for the treatment of cancer or infectious diseases. In this report, the synthesis and the biological evaluation of halogen-containing NHC-Au I -Cl complexes are described. The complexes 1 and 5 a-5 f displayed good cytotoxic activity against tumor cells, and cellular uptake studies suggested that an intact Au-NHC fragment is essential for the accumulation of high amounts of both the metal and the NHC ligand. However, the bioavailability was negatively affected by serum components of the cell culture media and was influenced by likely transformations of the complex. One example (5 d) efficiently induced apoptosis in vincristine- and daunorubicin-resistant P-glycoprotein overexpressing Nalm-6 leukemia cells. Cellular uptake studies with this compound showed that both the wild-type and resistant Nalm-6 cells accumulated comparable amounts of gold, indicating that the gold drug was not excreted by P-glycoprotein or other efflux transporters. The effective inhibition of mammalian and bacterial thioredoxin reductases (TrxR) was confirmed for all of the gold complexes. Antibacterial screening of the gold complexes showed a particularly high activity against Gram-positive strains, reflecting their high dependence on an intact Trx/TrxR system. This result is of particular interest as the inhibition of bacterial TrxR represents a relatively little explored mechanism of new anti-infectives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inhibition of antigen- and mitogen-induced human lymphocyte proliferation by gold compounds.
Lipsky, P E; Ziff, M
1977-01-01
Gold sodium thiomalate (GST) inhibited in vitro antigen- and mitogen-triggered human lymphocyte DNA synthesis. Inhibition of responsiveness was observed with concentrations of GST equivalent to gold levels found in serum or tissues of patients receiving chrysotherapy, Inhibition was dependent upon the gold ion itself since GST and gold chloride were both inhibitory whereas thiomalic acid was not. Inhibition could not be explained by nonspecific killing of cells or by an alteration in the kinetics of the responses. GST inhibited mitogen-induced proliferation most effectively when present from the initiation of culture and could not inhibit the responsiveness of cells which previously had been activated by concanvalin A. These findings indicated that GST blocked a critical early step in lymphocyte activation. The degree of GST-induced inhibition of proliferation was increased in cultures of cells partially depleted of monocytes. Moreover, inhibition was reversed by supplementation of these cultures with purified monocytes. These observations suggested that GST blocked thymus-derived (T)-lymphocyte activation by interfering with a requisite function of the monocyte population in initiating such responses. Prolonged incubation of peripheral blood mononuclear cells with GST resulted in diminished mitogen responsiveness upon subsequent culture in the absence of gold. The addition of fresh monocytes restored responsiveness to these populations. Furthermore, preincubation of purified monocytes with GST rendered them deficient in their ability to support mitogen-induced T-lymphocyte proliferation on subsequent culture. These observations indicate that the major effect of GST results from interference with the functional capability of the monocyte population. PMID:838859
Kohonen, Pekka; Benfenati, Emilio; Bower, David; Ceder, Rebecca; Crump, Michael; Cross, Kevin; Grafström, Roland C; Healy, Lyn; Helma, Christoph; Jeliazkova, Nina; Jeliazkov, Vedrin; Maggioni, Silvia; Miller, Scott; Myatt, Glenn; Rautenberg, Michael; Stacey, Glyn; Willighagen, Egon; Wiseman, Jeff; Hardy, Barry
2013-01-01
The aim of the SEURAT-1 (Safety Evaluation Ultimately Replacing Animal Testing-1) research cluster, comprised of seven EU FP7 Health projects co-financed by Cosmetics Europe, is to generate a proof-of-concept to show how the latest technologies, systems toxicology and toxicogenomics can be combined to deliver a test replacement for repeated dose systemic toxicity testing on animals. The SEURAT-1 strategy is to adopt a mode-of-action framework to describe repeated dose toxicity, combining in vitro and in silico methods to derive predictions of in vivo toxicity responses. ToxBank is the cross-cluster infrastructure project whose activities include the development of a data warehouse to provide a web-accessible shared repository of research data and protocols, a physical compounds repository, reference or "gold compounds" for use across the cluster (available via wiki.toxbank.net), and a reference resource for biomaterials. Core technologies used in the data warehouse include the ISA-Tab universal data exchange format, REpresentational State Transfer (REST) web services, the W3C Resource Description Framework (RDF) and the OpenTox standards. We describe the design of the data warehouse based on cluster requirements, the implementation based on open standards, and finally the underlying concepts and initial results of a data analysis utilizing public data related to the gold compounds. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of nanostars as a biocompatible tumor contrast agent: toward in vivo SERS imaging.
D'Hollander, Antoine; Mathieu, Evelien; Jans, Hilde; Vande Velde, Greetje; Stakenborg, Tim; Van Dorpe, Pol; Himmelreich, Uwe; Lagae, Liesbet
2016-01-01
The need for sensitive imaging techniques to detect tumor cells is an important issue in cancer diagnosis and therapy. Surface-enhanced Raman scattering (SERS), realized by chemisorption of compounds suitable for Raman spectroscopy onto gold nanoparticles, is a new method for detecting a tumor. As a proof of concept, we studied the use of biocompatible gold nanostars as sensitive SERS contrast agents targeting an ovarian cancer cell line (SKOV3). Due to a high intracellular uptake of gold nanostars after 6 hours of exposure, they could be detected and located with SERS. Using these nanostars for passive targeting after systemic injection in a xenograft mouse model, a detectable signal was measured in the tumor and liver in vivo. These signals were confirmed by ex vivo SERS measurements and darkfield microscopy. In this study, we established SERS nanostars as a highly sensitive contrast agent for tumor detection, which opens the potential for their use as a theranostic agent against cancer.
Přibylka, Adam; Krchňák, Viktor
2017-11-13
Here, we report the efficient solid-phase synthesis of N-propargyl peptides using Fmoc-amino acids and propargyl alcohol as key building blocks. Gold-catalyzed nucleophilic addition to the triple bond induced C-N bond formation, which triggered intramolecular cyclization, yielding 1,3,4-trisubstituted-5-methyl-3,4-dihydropyrazin-2(1H)-ones. Conformations of acyclic and constrained peptides were compared using a two-step conformer distribution analysis at the molecular mechanics level and density functional theory. The results indicated that the incorporation of heterocyclic molecular scaffold into a short peptide sequence adopted extended conformation of peptide chain. The amide bond adjacent to the constraint did not show significant preference for either cis or trans isomerism. Prepared model compounds demonstrate a proof of concept for gold-catalyzed polymer-supported synthesis of variously substituted 3,4-dihydropyrazin-2(1H)-ones for applications in drug discovery and peptide backbone constraints.
NASA Astrophysics Data System (ADS)
Lee, Yen-Chun; Patil, Sumersing; Golz, Christopher; Strohmann, Carsten; Ziegler, Slava; Kumar, Kamal; Waldmann, Herbert
2017-02-01
The selective transformation of different starting materials by different metal catalysts under individually optimized reaction conditions to structurally different intermediates and products is a powerful approach to generate diverse molecular scaffolds. In a more unified albeit synthetically challenging strategy, common starting materials would be exposed to a common metal catalysis, leading to a common intermediate and giving rise to different scaffolds by tuning the reactivity of the metal catalyst through different ligands. Herein we present a ligand-directed synthesis approach for the gold(I)-catalysed cycloisomerization of oxindole-derived 1,6-enynes that affords distinct molecular scaffolds following different catalytic reaction pathways. Varying electronic properties and the steric demand of the gold(I) ligands steers the fate of a common intermediary gold carbene to selectively form spirooxindoles, quinolones or df-oxindoles. Investigation of a synthesized compound collection in cell-based assays delivers structurally novel, selective modulators of the Hedgehog and Wnt signalling pathways, autophagy and of cellular proliferation.
NASA Astrophysics Data System (ADS)
Tąta, Agnieszka; Szkudlarek, Aleksandra; Kim, Younkyoo; Proniewicz, Edyta
2017-02-01
This work demonstrates the application of commercially available stable surface composed of gold nanograins with diameters ranging from 70 to 226 nm deposited onto silicon wafer for surface-enhanced Raman scattering investigations of biologically active compounds, such as bombesin (BN) and its fragments. BN is an important neurotransmitter involved in a complex signaling pathways and biological responses; for instance, hypertensive action, contractive on uterus, colon or ileum, locomotor activity, stimulation of gastric and insulin secretion as well as growth promotion of various tumor cell lines, including: lung, prostate, stomach, colon, and breast. It has also been shown that 8-14 BN C-terminal fragment partially retains the biological activity of BN. The SERS results for BN and its fragment demonstrated that (1) three amino acids from these peptides sequence; i.e., L-histidine, L-methionine, and L-tryptophan, are involved in the interaction with gold coated silicon wafer and (2) the strength of these interactions depends upon the aforementioned amino acids position in the peptide sequence.
Wackerbarth, Hainer; Gundrum, Lars; Salb, Christian; Christou, Konstantin; Viöl, Wolfgang
2010-08-10
A challenge in the detection of explosives is the differentiation between explosives and contaminants. Synthetic musk-containing perfumes can cause false alarms, as these perfumes are nitroaromatic compounds, which can be mistaken for trinitro toluene (TNT) by some detectors. We present a detection principle based on surface-enhanced Raman scattering (SERS). A stream of the airborne compounds is focused and resublimated on a cooled nanostructured gold surface. We recorded high-resolution SERS spectra of TNT, musk xylene, and musk ketone. The nitroaromatic compounds can be identified unambiguously by their SERS spectra. Even the dominant bands containing nitro-group scissoring and symmetric stretching modes are significantly shifted by the difference in molecular structure.
NASA Astrophysics Data System (ADS)
Morales-Cruz, Angel L.; Tremont, Rolando; Martínez, Ramón; Romañach, Rodolfo; Cabrera, Carlos R.
2005-03-01
Chemical and mechanical properties of different compounds can be elucidated by measuring fundamental forces such as adhesion, attraction and repulsion, between modified surfaces by means of atomic force microscopy (AFM) in force mode calibration. This work presents a combination of AFM, self-assembled monolayers (SAMs), and crystallization techniques to study the forces of interaction between excipients and active ingredients used in pharmaceutical formulations. SAMs of 16-mercaptohexadecanoate, which represent magnesium stereate, were used to modify the probe tip, whereas CH3-, OH- and CONHCH3-functional SAMs were formed on a gold-coated mica substrate, and used as examples of the surfaces of lactose and theophylline. The crystals of lactose and theophylline were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The modification of gold surfaces with 16-mercaptohexadecanoate, 10-mercapto-1-decanol (OH-functional SAM), 1-decanethiol (CH3-functional) and N-methyl-11-mercaptoundecanamide (CONHCH3-functional SAM) was studied by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and Fourier transform-infrared spectroscopy (FT-IR) in specular reflectance mode. XPS and AES results of the modified surfaces showed the presence of sulfur binding, and kinetic energies that correspond to the presence of 10-mercapto-1-decanol, 1-decanethiol, N-methyl-11-mercaptoundecanamide and the salt of 16-mercaptohexadecanoic acid. The absorption bands in the IR spectra further confirm the modification of the gold-coated substrates with these compounds. Force versus distance measurements were performed between the modified tip and the modified gold-coated mica substrates. The mean adhesion forces between the COO-Ca2+ functionalized tip and the CH3-, OH-, and CONHCH3-modified substrates were determined to be 4.5, 8.9 and 6.3 nN, respectively. The magnitude of the adhesion force (ion-dipole) interaction between the modified tip and substrate decreases in the following order: COO-Ca2+/OH > COO-Ca2+/CONHCH3 > COO-Ca2+/CH3.
Ekanem, A P; Wang, M; Simon, J E; Obiekezie, A I; Morah, F
2004-10-01
Methanol extracts of the seeds of Piper guineense (Piperaceae) were active against gold fish (Carassius auratus auratus L. Pisces Cyprinidae) monogenean parasites. The seed extract of P. guineense was administered at different concentrations (0.5-2.0 mg/L) under in vivo and in vitro conditions. There was a higher efficacy of the effects of the extracts against fish parasites under in vitro situations than under in vivo. Three major compounds (piperanine, N-isobutyl (E,E)-2,4 decadienamide and Deltaalpha,beta-dihydrowasanine) were identified from the seed extract of Piper guineense by LC-MS analysis. Copyright 2004 John Wiley & Sons, Ltd.
Cellular imaging using temporally flickering nanoparticles.
Ilovitsh, Tali; Danan, Yossef; Meir, Rinat; Meiri, Amihai; Zalevsky, Zeev
2015-02-04
Utilizing the surface plasmon resonance effect in gold nanoparticles enables their use as contrast agents in a variety of applications for compound cellular imaging. However, most techniques suffer from poor signal to noise ratio (SNR) statistics due to high shot noise that is associated with low photon count in addition to high background noise. We demonstrate an effective way to improve the SNR, in particular when the inspected signal is indistinguishable in the given noisy environment. We excite the temporal flickering of the scattered light from gold nanoparticle that labels a biological sample. By preforming temporal spectral analysis of the received spatial image and by inspecting the proper spectral component corresponding to the modulation frequency, we separate the signal from the wide spread spectral noise (lock-in amplification).
A general access to organogold(iii) complexes by oxidative addition of diazonium salts.
Huang, Long; Rominger, Frank; Rudolph, Matthias; Hashmi, A Stephen K
2016-05-11
At room temperature under mild photochemical conditions, namely irradiation with a simple blue light LED, gold(i) chloro complexes of both phosphane and carbene ligands in combination with aryldiazonium salts afford arylgold(iii) complexes. With chelating P,N-ligands cationic six- or five-membered chelate complexes were isolated in the form of salts with weakly coordinating counter anions that were brought in from the diazonium salt. With monodentate P ligands or N-heterocyclic carbene ligands and diazonium chlorides neutral arylgold(iii) dichloro complexes were obtained. The coordination geometry was determined by X-ray crystal structure analyses of representative compounds, a cis arrangement of the aryl and the phosphane ligand at the square planar gold(iii) center is observed.
von Lilienfeld, O. Anatole
2013-02-26
A well-defined notion of chemical compound space (CCS) is essential for gaining rigorous control of properties through variation of elemental composition and atomic configurations. Here, we give an introduction to an atomistic first principles perspective on CCS. First, CCS is discussed in terms of variational nuclear charges in the context of conceptual density functional and molecular grand-canonical ensemble theory. Thereafter, we revisit the notion of compound pairs, related to each other via “alchemical” interpolations involving fractional nuclear charges in the electronic Hamiltonian. We address Taylor expansions in CCS, property nonlinearity, improved predictions using reference compound pairs, and the ounce-of-gold prizemore » challenge to linearize CCS. Finally, we turn to machine learning of analytical structure property relationships in CCS. Here, these relationships correspond to inferred, rather than derived through variational principle, solutions of the electronic Schrödinger equation.« less
Gold(III) complexes with ONS-Tridentate thiosemicarbazones: Toward selective trypanocidal drugs.
Rettondin, Andressa R; Carneiro, Zumira A; Gonçalves, Ana C R; Ferreira, Vanessa F; Oliveira, Carolina G; Lima, Angélica N; Oliveira, Ronaldo J; de Albuquerque, Sérgio; Deflon, Victor M; Maia, Pedro I S
2016-09-14
Tridentate thiosemicarbazone ligands with an ONS donor set, H2L(R) (R = Me and Et) were prepared by reactions of 1-phenyl-1,3-butanedione with 4-R-3-thiosemicarbazides. H2L(R) reacts with Na[AuCl4]·2H2O in MeOH in a 1:1 M ratio under formation of green gold(III) complexes of composition [AuCl(L(R))]. These compounds represent the first examples of gold(III) complexes with ONS chelate-bonded thiosemicarbazones. The in vitro anti-Trypanosoma cruzi activity against both trypomastigote and amastigote forms (IC50try/ama) of CL Brener strains as well as the cytotoxicity against LLC-MK2 cells of the free ligands and complexes was evaluated. The complex [AuCl(L(Me))] was found to be more active and more selective than its precursor ligand and the standard drug benznidazole with a SItry/ama value higher than 200, being considered as a lead candidate for Chagas disease treatment. Moreover the in vitro activity against the replicative amastigote form (IC50ama) of T. cruzi was additionally investigated revealing that [AuCl(L(Me))] was also more potent than benznidazole still with a similar selectivity index. Finally, docking studies showed that free ligands and complexes interact with the same residues of the parasite protease cruzain but with different intensities, suggesting that this protease could be a possible target for the trypanocidal action of the obtained compounds. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Armitage, Emily G; Godzien, Joanna; Peña, Imanol; López-Gonzálvez, Ángeles; Angulo, Santiago; Gradillas, Ana; Alonso-Herranz, Vanesa; Martín, Julio; Fiandor, Jose M; Barrett, Michael P; Gabarro, Raquel; Barbas, Coral
2018-05-18
A lack of viable hits, increasing resistance, and limited knowledge on mode of action is hindering drug discovery for many diseases. To optimize prioritization and accelerate the discovery process, a strategy to cluster compounds based on more than chemical structure is required. We show the power of metabolomics in comparing effects on metabolism of 28 different candidate treatments for Leishmaniasis (25 from the GSK Leishmania box, two analogues of Leishmania box series, and amphotericin B as a gold standard treatment), tested in the axenic amastigote form of Leishmania donovani. Capillary electrophoresis-mass spectrometry was applied to identify the metabolic profile of Leishmania donovani, and principal components analysis was used to cluster compounds on potential mode of action, offering a medium throughput screening approach in drug selection/prioritization. The comprehensive and sensitive nature of the data has also made detailed effects of each compound obtainable, providing a resource to assist in further mechanistic studies and prioritization of these compounds for the development of new antileishmanial drugs.
Kaufman, John A.; Brown, Mary Jean; Umar-Tsafe, Nasir T.; Adbullahi, Muhammad Bashir; Getso, Kabiru I.; Kaita, Ibrahim M.; Sule, Binta Bako; Ba’aba, Ahmed; Davis, Lora; Nguku, Patrick M.; Sani-Gwarzo, Nasir
2018-01-01
Background In March 2010, Medecins Sans Frontieres/Doctors Without Borders detected an outbreak of acute lead poisoning in Zamfara State, northwestern Nigeria, linked to low-technology gold ore processing. The outbreak killed more than 400 children ≤5 years of age in the first half of 2010 and has left more than 2,000 children with permanent disabilities. Objectives The aims of this study were to estimate the statewide prevalence of children ≤5 years old with elevated blood lead levels (BLLs) in gold ore processing and non-ore-processing communities, and to identify factors associated with elevated blood lead levels in children. Methods A representative, population-based study of ore processing and non-ore-processing villages was conducted throughout Zamfara in 2012. Blood samples from children, outdoor soil samples, indoor dust samples, and survey data on ore processing activities and other lead sources were collected from 383 children ≤5 years old in 383 family compounds across 56 villages. Results 17.2% of compounds reported that at least one member had processed ore in the preceding 12 months (95% confidence intervals (CI): 9.7, 24.7). The prevalence of BLLs ≥10 µg/dL in children ≤5 years old was 38.2% (95% CI: 26.5, 51.4) in compounds with members who processed ore and 22.3% (95% CI: 17.8, 27.7) in compounds where no one processed ore. Ore processing activities were associated with higher lead concentrations in soil, dust, and blood samples. Other factors associated with elevated BLL were a child’s age and sex, breastfeeding, drinking water from a piped tap, and exposure to eye cosmetics. Conclusions Childhood lead poisoning is widespread in Zamfara State in both ore processing and non-ore-processing settings, although it is more prevalent in ore processing areas. Although most children’s BLLs were below the recommended level for chelation therapy, environmental remediation and use of safer ore processing practices are needed to prevent further exposures. Patient consent Obtained Ethics approval The study protocol was approved by the US Centers for Disease Control Institutional Review Board-A and the National Health Research Ethics Committee of Nigeria. Competing Interests The authors declare no competing financial interests. PMID:29416933
Ballantyne, Andrew D; Forrest, Gregory C H; Frisch, Gero; Hartley, Jennifer M; Ryder, Karl S
2015-11-11
In this study we compare the electrochemical and structural properties of three gold salts AuCl, AuCN and KAu(CN)2 in a Deep Eutectic Solvent (DES) electrolyte (Ethaline 200) in order to elucidate factors affecting the galvanic deposition of gold coatings on nickel substrates. A chemically reversible diffusion limited response was observed for AuCl, whereas AuCN and KAu(CN)2 showed much more complicated, kinetically limited responses. Galvanic exchange reactions were performed on nickel substrates from DES solutions of the three gold salts; the AuCN gave a bright gold coating, the KAu(CN)2 solution give a visibly thin coating, whilst the coating from AuCl was dull, friable and poorly adhesive. This behaviour was rationalised by the differing speciation for each of these compounds, as evidenced by EXAFS methods. Analysis of EXAFS data shows that AuCl forms the chlorido-complex [AuCl2](-), AuCN forms a mixed [AuCl(CN)](-) species, whereas KAu(CN)2 maintains its [Au(CN)2](-) structure. The more labile Cl(-) enables easier reduction of Au when compared to the tightly bound cyanide species, hence leading to slower kinetics of deposition and differing electrochemical behaviour. We conclude that metal speciation in DESs is a function of the initial metal salt and that this has a strong influence on the mechanism and rate of growth, as well as on the morphology of the metal deposit obtained. In addition, these coatings are also extremely promising from a technological perspective as Electroless Nickel Immersion Gold (ENIG) finishes in the printed circuit board (PCB) industry, where the elimination of acid in gold plating formulation could potentially lead to more reliable coatings. Consequently, these results are both significant and timely.
Salinas, Gustavo; Gao, Wei; Wang, Yang; Bonilla, Mariana; Yu, Long; Novikov, Andrey; Virginio, Veridiana G; Ferreira, Henrique B; Vieites, Marisol; Gladyshev, Vadim N; Gambino, Dinorah; Dai, Shaodong
2017-12-20
New drugs are needed to treat flatworm infections that cause severe human diseases such as schistosomiasis. The unique flatworm enzyme thioredoxin glutathione reductase (TGR), structurally different from the human enzyme, is a key drug target. Structural studies of the flatworm Echinococcus granulosus TGR, free and complexed with Au I -MPO, a novel gold inhibitor, together with inhibition assays were performed. Au I -MPO is a potent TGR inhibitor that achieves 75% inhibition at a 1:1 TGR:Au ratio and efficiently kills E. granulosus in vitro. The structures revealed salient insights: (i) unique monomer-monomer interactions, (ii) distinct binding sites for thioredoxin and the glutaredoxin (Grx) domain, (iii) a single glutathione disulfide reduction site in the Grx domain, (iv) rotation of the Grx domain toward the Sec-containing redox active site, and (v) a single gold atom bound to Cys 519 and Cys 573 in the Au I -TGR complex. Structural modeling suggests that these residues are involved in the stabilization of the Sec-containing C-terminus. Consistently, Cys→Ser mutations in these residues decreased TGR activities. Mass spectroscopy confirmed these cysteines are the primary binding site. The identification of a primary site for gold binding and the structural model provide a basis for gold compound optimization through scaffold adjustments. The structural study revealed that TGR functions are achieved not only through a mobile Sec-containing redox center but also by rotation of the Grx domain and distinct binding sites for Grx domain and thioredoxin. The conserved Cys 519 and Cys 573 residues targeted by gold assist catalysis through stabilization of the Sec-containing redox center. Antioxid. Redox Signal. 27, 1491-1504.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salinas, Gustavo; Gao, Wei; Wang, Yang
Aims: New drugs are needed to treat flatworm infections that cause severe human diseases such as schistosomiasis. The unique flatworm enzyme thioredoxin glutathione reductase (TGR), structurally different from the human enzyme, is a key drug target. Structural studies of the flatworm Echinococcus granulosus TGR, free and complexed with AuI-MPO, a novel gold inhibitor, together with inhibition assays were performed. Results: AuI-MPO is a potent TGR inhibitor that achieves 75% inhibition at a 1:1 TGR:Au ratio and efficiently kills E. granulosus in vitro. The structures revealed salient insights: (i) unique monomer–monomer interactions, (ii) distinct binding sites for thioredoxin and the glutaredoxinmore » (Grx) domain, (iii) a single glutathione disulfide reduction site in the Grx domain, (iv) rotation of the Grx domain toward the Sec-containing redox active site, and (v) a single gold atom bound to Cys519 and Cys573 in the AuI-TGR complex. Structural modeling suggests that these residues are involved in the stabilization of the Sec-containing C-terminus. Consistently, Cys→Ser mutations in these residues decreased TGR activities. Mass spectroscopy confirmed these cysteines are the primary binding site. Innovation: The identification of a primary site for gold binding and the structural model provide a basis for gold compound optimization through scaffold adjustments. Conclusions: The structural study revealed that TGR functions are achieved not only through a mobile Sec-containing redox center but also by rotation of the Grx domain and distinct binding sites for Grx domain and thioredoxin. The conserved Cys519 and Cys573 residues targeted by gold assist catalysis through stabilization of the Sec-containing redox center. Antioxid. Redox Signal. 27, 1491–1504.« less
NASA Astrophysics Data System (ADS)
Kuo, C.-Y.; Chen, P.-S.; Chen, H.-T.; Lu, C.-J.; Tian, W.-C.
2017-03-01
In this study, a simple process for fabricating a novel micromachined preconcentrator (μPCT) and a gas chromatographic separation column (μSC) for use in a micro gas chromatograph (μGC) using one photomask is described. By electroless gold plating, a high-surface-area gold layer was deposited on the surface of channels inside the μPCT and μSC. For this process, (3-aminopropyl) trimethoxysilane (APTMS) was used as a promoter for attaching gold nanoparticles on a silicon substrate to create a seed layer. For this purpose, a gold sodium sulfite solution was used as reagent for depositing gold to form heating structures. The microchannels of the μPCT and μSC were coated with the adsorbent and stationary phase, Tenax-TA and polydimethylsiloxane (DB-1), respectively. μPCTs were heated at temperatures greater than 280 °C under an applied electrical power of 24 W and a heating rate of 75 °C s-1. Repeatable thermal heating responses for μPCTs were achieved; good linearity (R 2 > 0.9997) was attained at three heating rates for the temperature programme for the μSC (0.2, 0.5 and 1 °C s-1). The volatile organic compounds (VOCs) toluene and m-xylene were concentrated over the μPCT by rapid thermal desorption (peak width of half height (PWHH) <1.5 s) preconcentration factors for both VOCs are >7900. The VOCs acetone, benzene, toluene, m-xylene and 1,3,5-trimethylbenzene were also separated on the μSC as evidenced by their different retention times (47-184 s).
Recovering lead from cupel waste generated in gold analysis by Pb-Fire assay.
Cerceau, Cristiane Isaac; Carvalho, Cornélio de Freitas; Rabelo, Ana Carolina Silveira; Dos Santos, Cláudio Gouvea; Gonçalves, Sabrina Mayra Dias; Varejão, Eduardo Vinícius Vieira
2016-12-01
Because of its precision and accuracy, Pb-Fire assay is the most employed method for gold analysis in geological materials. At the second stage of the method, namely cupellation, lead is oxidized to PbO which is absorbed by the cupel, leading to metallic gold as a tiny bend at the bottom of the recipient. After cupellation, cupel becomes highly contaminated with lead, making its disposal a serious risk of environmental contamination. In the present work, a leaching process for removing lead from cupel waste is proposed, which allowed for removing 96% of PbO by weight. After a precipitation step, 92.0% of lead was recovered from leachates in the form of PbSO 4 . Lead in the solid wastes left by the extraction was above the limit established by Brazilian legislation and these were classified as non-hazardous. Finally, secondary effluents generated after the precipitation step presented lead content more than twenty times lower than that of leachates from cupel waste. Tons of cupel waste are annually generated from gold analysis by Pb-Fire assay. Thus, the proposed method can contribute to prevent the discharge of high amounts of lead into the environment. Also, recovery of lead can help to partially meet the industrial demand for lead compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.
Determination of trace elements in triglycine sulfate solutions
NASA Technical Reports Server (NTRS)
Tadros, Shawky H.
1993-01-01
Ten elements were divided into 2 groups. The elements in the first group included iron, nickel, chromium, manganese, copper, and gold. The elements in the second group included zinc, cobalt, lead, cadmium, and gold. Five ppm of each element in each group was spiked in a 1 percent triglycine sulfate (TGS) solution. Glycine was removed with 1-naphthyl isocyanate in ether medium. The glycine derivative 1-naphthyl isocyanate glycine was removed by filtration, and the filtrates were analyzed for the different elements. Analysis of these elements was performed by using the 5100 Perkin-Elmer Atomic Absorption Spectrophotometer. The result of these experiments was the observation that there was a decrease in the concentration of chromium and gold, which was interpreted to be due to the chelation of these elements by the derivative 1-naphthyl isocyanate glycine. Further research is needed to determine the concentration of other elements in triglycine sulfate (TGS) solutions. These elements will include lithium, sodium, rubidium, magnesium, calcium, strontium, barium, aluminum, and silicon. These are the most likely elements to be found in the sulfuric acid used in manufacturing the TGS crystal. Moreover, we will extend our research to investigate the structural formula of the violet colored chelated compounds, which had been formed by interaction of the derivative 1-naphthyl isocyanate glycine with the different elements, such as gold, chromium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ying-Jung; Lee, Yuan-Chin; Huang, Chia-Hui
Triple-negative breast cancers (TNBCs) are highly invasive and have a higher rate of distant metastasis. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in EGF/EGFR-mediated malignant progression and metastasis of TNBCs. Various studies have revealed that treatment with gallic acid down-regulates MMP-9 expression in cancer cells, and that conjugation of phytochemical compounds with gold nanoparticles (AuNPs) increases the anti-tumor activity of the phytochemical compounds. Thus, the effect of gallic acid-capped AuNPs (GA-AuNPs) on MMP-9 expression in EGF-treated TNBC MDA-MB-231 cells was analyzed in the present study. The so-called green synthesis of AuNPs by means of gallic acid was performed at pHmore » 10, and the resulting GA-AuNPs had spherical shape with an average diameter of approximately 50 nm. GA-AuNPs notably suppressed migration and invasion of EGF-treated cells, and inhibited EGF-induced MMP-9 up-regulation. GA-AuNPs abrogated EGF-induced Akt/p65 and ERK/c-Jun phosphorylation, leading to down-regulation of MMP-9 mRNA and protein expression in EGF-treated cells. Meanwhile, EGF-induced p300 stabilization was found to be involved in MMP-9 expression, whereas GA-AuNPs inhibited the EGF-promoted stability of the p300 protein. Although GA-AuNPs and gallic acid suppressed EGF-induced MMP-9 up-regulation via the same signaling pathway, the effective concentration of gallic acid was approximately 100-fold higher than that of GA-AuNPs for inhibition of MMP-9 expression in EGF-treated cells to a similar extent. Collectively, our data indicate that, in comparison with gallic acid, GA-AuNPs have a superior ability to inhibit EGF/EGFR-mediated MMP-9 expression in TNBC MDA-MB-231 cells. Our findings also point to a way to improve the anti-tumor activity of gallic acid. - Highlights: • Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression. • EGF-induced MMP-9 expression via p300 stabilization and NFκB/c-Jun activation. • Gallic acid-capped gold nanoparticles inhibit EGF-modulated p300 stabilization. • Gallic acid-capped gold nanoparticles abrogate EGF-induced NFκB/c-Jun activation.« less
Ion-selective gold-thiol film on integrated screen-printed electrodes for analysis of Cu(II) ions.
Li, Meng; Zhou, Hao; Shi, Lei; Li, Da-Wei; Long, Yi-Tao
2014-02-07
A novel type of ion-selective electrode (ISE) was manufactured for detecting trace amounts of Cu(II) ions. The basic substrates of ISE were fabricated using screen-printing technology, which could produce disposable electrodes on a large-scale with good repeatability. Moreover, the printed integrated three-electrode system of ISE could be directly used to read out the open-circuit potentials by a handheld device through a USB port. The ion-selective film was composed of gold nanorods (GNRs) and 6-(bis(pyridin-2-ylmethyl)amino)hexane-1-thiol (compound ), which were layer-by-layer modified on the electrode through an easily controlled self-assembly method. Compound contained the 2,2'-dipyridylamine (dpa) group that could coordinate with Cu(II) ions to form a 2 : 1 complex, therefore the screen-printed ISEs exhibited Nernstian potentiometric responses to Cu(II) ions with a detection limit of 6.3 × 10(-7) mol L(-1) over the range of 1.0 × 10(-6) to 1.0 × 10(-2) mol L(-1). The easily prepared screen-printed ion-selective electrode reported here was appropriate for in field analysis and pollutant detection in remote environments.
Enhancement of antibiotic effect via gold:silver-alloy nanoparticles
NASA Astrophysics Data System (ADS)
dos Santos, Margarida Moreira; Queiroz, Margarida João; Baptista, Pedro V.
2012-05-01
A strategy for the development of novel antimicrobials is to combine the stability and pleiotropic effects of inorganic compounds with the specificity and efficiency of organic compounds, such as antibiotics. Here we report on the use of gold:silver-alloy (Au:Ag-alloy) nanoparticles, obtained via a single-step citrate co-reduction method, combined to conventional antibiotics to enhance their antimicrobial effect on bacteria. Addition of the alloy nanoparticles considerably decreased the dose of antibiotic necessary to show antimicrobial effect, both for bacterial cells growing in rich medium in suspension and for bacterial cells resting in a physiological buffer on a humid cellulose surface. The observed effect was more pronounced than the sum of the individual effects of the nanoparticles and antibiotic. We demonstrate the enhancement effect of Au:Ag-alloy nanoparticles with a size distribution of 32.5 ± 7.5 nm mean diameter on the antimicrobial effect of (i) kanamycin on Escherichia coli (Gram-negative bacterium), and (ii) a β-lactam antibiotic on both a sensitive and resistant strain of Staphylococcus aureus (Gram-positive bacterium). Together, these results may pave the way for the combined use of nanoparticle-antibiotic conjugates towards decreasing antibiotic resistance currently observed for certain bacteria and conventional antibiotics.
Pirhadi, Somayeh; Ghasemi, Jahan B
2012-12-01
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have gained a definitive place due to their unique antiviral potency, high specificity and low toxicity in antiretroviral combination therapies used to treat HIV. In this study, chemical feature based pharmacophore models of different classes of NNRT inhibitors of HIV-1 have been developed. The best HypoRefine pharmacophore model, Hypo 1, which has the best correlation coefficient (0.95) and the lowest RMS (0.97), contains two hydrogen bond acceptors, one hydrophobic and one ring aromatic feature, as well as four excluded volumes. Hypo 1 was further validated by test set and Fischer validation method. The best pharmacophore model was then utilized as a 3D search query to perform a virtual screening to retrieve potential inhibitors. The hit compounds were subsequently subjected to filtering by Lipinski's rule of five and docking studies by Libdock and Gold methods to refine the retrieved hits. Finally, 7 top ranked compounds based on Gold score fitness function were subjected to in silico ADME studies to investigate for compliance with the standard ranges. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Potential interaction of natural dietary bioactive compounds with COX-2.
Maldonado-Rojas, Wilson; Olivero-Verbel, Jesus
2011-09-01
Bioactive natural products present in the diet play an important role in several biological processes, and many have been involved in the alleviation and control of inflammation-related diseases. These actions have been linked to both gene expression modulation of pro-inflammatory enzymes, such as cyclooxygenase 2 (COX-2), and to an action involving a direct inhibitory binding on this protein. In this study, several food-related compounds with known gene regulatory action on inflammation have been examined in silico as COX-2 ligands, utilizing AutoDock Vina, GOLD and Surflex-Dock (SYBYL) as docking protocols. Curcumin and all-trans retinoic acid presented the maximum absolute AutoDock Vina-derived binding affinities (9.3 kcal/mol), but genistein, apigenin, cyanidin, kaempferol, and docosahexaenoic acid, were close to this value. AutoDock Vina affinities and GOLD scores for several known COX-2 inhibitors significatively correlated with reported median inhibitory concentrations (R² = 0.462, P < 0.001 and R² = 0.238, P = 0.029, respectively), supporting the computational reliability of the predictions made by our docking simulations. Moreover, docking analysis insinuate the synergistic action of curcumin on celecoxib-induced inhibition of COX-2 may occur allosterically, as this natural compound docks to a place different from the inhibitor binding site. These results suggest that the anti-inflammatory properties of some food-derived molecules could be the result of their direct binding capabilities to COX-2, and this process can be modeled using protein-ligand docking methodologies. Copyright © 2011 Elsevier Inc. All rights reserved.
Reimers, Jeffrey R; Ford, Michael J; Halder, Arnab; Ulstrup, Jens; Hush, Noel S
2016-03-15
The synthetic chemistry and spectroscopy of sulfur-protected gold surfaces and nanoparticles is analyzed, indicating that the electronic structure of the interface is Au(0)-thiyl, with Au(I)-thiolates identified as high-energy excited surface states. Density-functional theory indicates that it is the noble character of gold and nanoparticle surfaces that destabilizes Au(I)-thiolates. Bonding results from large van der Waals forces, influenced by covalent bonding induced through s-d hybridization and charge polarization effects that perturbatively mix in some Au(I)-thiolate character. A simple method for quantifying these contributions is presented, revealing that a driving force for nanoparticle growth is nobleization, minimizing Au(I)-thiolate involvement. Predictions that Brust-Schiffrin reactions involve thiolate anion intermediates are verified spectroscopically, establishing a key feature needed to understand nanoparticle growth. Mixing of preprepared Au(I) and thiolate reactants always produces Au(I)-thiolate thin films or compounds rather than monolayers. Smooth links to O, Se, Te, C, and N linker chemistry are established.
Reimers, Jeffrey R.; Ford, Michael J.; Halder, Arnab; Ulstrup, Jens; Hush, Noel S.
2016-01-01
The synthetic chemistry and spectroscopy of sulfur-protected gold surfaces and nanoparticles is analyzed, indicating that the electronic structure of the interface is Au(0)–thiyl, with Au(I)–thiolates identified as high-energy excited surface states. Density-functional theory indicates that it is the noble character of gold and nanoparticle surfaces that destabilizes Au(I)–thiolates. Bonding results from large van der Waals forces, influenced by covalent bonding induced through s–d hybridization and charge polarization effects that perturbatively mix in some Au(I)–thiolate character. A simple method for quantifying these contributions is presented, revealing that a driving force for nanoparticle growth is nobleization, minimizing Au(I)–thiolate involvement. Predictions that Brust–Schiffrin reactions involve thiolate anion intermediates are verified spectroscopically, establishing a key feature needed to understand nanoparticle growth. Mixing of preprepared Au(I) and thiolate reactants always produces Au(I)–thiolate thin films or compounds rather than monolayers. Smooth links to O, Se, Te, C, and N linker chemistry are established. PMID:26929334
Catalytic efficiency of macrocyclic-capped gold nanoparticles: cucurbit[n]urils versus cyclodextrins
NASA Astrophysics Data System (ADS)
del Pozo, María; Blanco, Elías; Hernández, Pedro; Casas, José A.; Quintana, Carmen
2018-05-01
In this work, different macrocyclic systems, belonging to cucurbit[n]urils and cyclodextrins families, were employed as stabilizers of gold nanoparticles and their performance as catalysts in the reduction reaction of the toxic 4-nitrophenol to produce the valuable 4-aminophenol, was evaluated. To this goal, six nanosystems were prepared and compared under identical experimental conditions. The influence that (i) differences in shape, (ii) nature of chemical groups constituting the receptor entrances and (iii) differences in the portal sizes of those stabilizing agents have in the activity of these nanoparticles as catalysts in a nitro compound reduction reaction is evaluated and discussed. The TEM characterization of the nanocatalysts prepared is included. From these data, nanoparticles ranging from 3.7-10.7 nm in diameter, depending on the stabilizer employed, were obtained. The evaluation of kinetic rate constants normalized respect to gold concentration and catalyst surface for each system is included and discussed. In addition, the stability of the different nanocatalyst depending on the capping agent employed is also evaluated. [Figure not available: see fulltext.
Tilgner, Dominic; Kempe, Rhett
2017-03-02
Porous coordination polymers (PCP) or metal- organic frameworks (MOF) are promising materials for the generation of photocatalytically active composite materials. Here, a novel synthesis concept is reported, which permits the formation of PCP/MOF-core-Au/anatase-shell materials. These materials are photocatalysts for wastewater purification and hydrogen generation from water under visible-light illumination. MIL-101 (Cr) is utilized as the core material, which directs the size of the core-shell compound and ensures the overall stability. In addition, its excellent reversible large molecule sorption behavior allows the materials synthesis. The crystalline anatase shell is generated stepwise under mild conditions using titanium(IV) isopropoxide as a precursor. The high degree of control of the vapor phase deposition process permits the precise anatase shell formation. The generation of plasmonic active gold particles on the TiO 2 shell leads to an efficient material for visible-light-driven photocatalysis with a higher activity than gold-decorated P25 (Degussa). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teka, S.; Gaied, A.; Jaballah, N.
Highlights: • Microwave-assisted synthesis of rotaxane based on anthracene and β-cyclodextrin. • Morphological and optical characterization of thin solid film. • Elaboration of impedimetric gold/rotaxane sensor. • Investigation of the membrane sensitivity towards Hg{sup 2+}, Cu{sup 2+} and Pb{sup 2+} cations. - Abstract: An impedimetric sensor based on a new semi-conducting rotaxane has been described for detection of toxic cations. The rotaxane, consists on a π-conjugated material encapsulated into β-cyclodextrin (β-CD); it has been synthesized via the Williamson reaction under microwaves irradiation. The supramolecular structure of the compound was confirmed by NMR and FT-IR spectroscopies. A thin solid film ofmore » the rotaxane was deposited by spin-coating to develop a new electrochemical sensor. The morphological properties of the organic membrane were evaluated using contact angle measurements and atomic force microscopy. The gold/rotaxane/solution interfaces were investigated by electrochemical impedance spectroscopy and the obtained data were fitted using an equivalent electrical circuit. The response of the gold/rotaxane membrane towards Hg{sup 2+}, Cu{sup 2+} and Pb{sup 2+} cations was studied and the results showed a good sensitivity to the mercury cations.« less
Dasary, Samuel S R; Senapati, Dulal; Singh, Anant Kumar; Anjaneyulu, Yerramilli; Yu, Hongtao; Ray, Paresh Chandra
2010-12-01
TNT is one of the most commonly used nitro aromatic explosives for landmines of military and terrorist activities. As a result, there is an urgent need for rapid and reliable methods for the detection of trace amount of TNT for screenings in airport, analysis of forensic samples, and environmental analysis. Driven by the need to detect trace amounts of TNT from environmental samples, this article demonstrates a label-free, highly selective, and ultrasensitive para-aminothiophenol (p-ATP) modified gold nanoparticle based dynamic light scattering (DLS) probe for TNT recognition in 100 pico molar (pM) level from ethanol:acetonitile mixture solution. Because of the formation of strong π-donor-acceptor interaction between TNT and p-ATP, para-aminothiophenol attached gold nanoparticles undergo aggregation in the presence of TNT, which changes the DLS intensity tremendously. A detailed mechanism for significant DLS intensity change has been discussed. Our experimental results show that TNT can be detected quickly and accurately without any dye tagging in 100 pM level with excellent discrimination against other nitro compounds.
NASA Astrophysics Data System (ADS)
Medhe, Sharad; Bansal, Prachi; Srivastava, Man Mohan
2014-02-01
The antioxidative effect of selected dietary compounds (3,6-dihydroxyflavone, lutein and selenium methyl selenocysteine) was determined in single and combination using DPPH (2,2-diphenyl-l-picrylhydrazyl), OH (hydroxyl), H2O2 (hydrogen peroxide) and NO (nitric oxide) radical scavenging assays. Radical scavenging effect of the dietary phytochemicals individually are found to be in the order: ascorbic acid (standard) > lutein > 3,6-dihydroxyflavone > selenium methyl selenocysteine, at concentration 100 μg/ml, confirmed by all the four bioassays (p < 0.05). Among the various combinations studied, the triplet combination of 3,6-dihydroxyflavone, lutein and selenium methyl selenocysteine (1:1:1), exhibited enhancement in the target activity at same concentration level. Synthesized gold nanoparticle embedded 3,6-dihydroxyflavone further enhanced the target antioxidant activity. The combinational study including gold nanoparticle embedded 3,6-dihydroxyflavone with other native dietary nutrients showed remarkable increase in antioxidant activity at the same concentration level. The present in vitro study on combinational and nanotech enforcement of dietary phytochemicals shows the utility in the architecture of nanoparticle embedded phytoproducts having a wide range of applications in medical science.
NASA Astrophysics Data System (ADS)
Lepková, K.; Clohessy, J.; Cunnane, V. J.
2007-09-01
A controlled synthesis of metal nanoparticles co-deposited in a polymer matrix at various pH conditions has been investigated at the interface between two immiscible phases. The pH value of the aqueous phase is modified, resulting in various types of reaction between the gold compound and the monomer. The types of electrochemical processes and their kinetic parameters are determined using both the method of Nicholson and a method based on the Butler-Volmer equation. Cyclic voltammetry is the experimental method used. A material analysis via transmission electron microscopy and particle size distribution calculations confirm that nanoparticles of different sizes can be synthesized by modification of the system pH. The stability of the generated nanocomposite is also discussed.
Donnelly, Aoife A.; MacIntyre, Tadhg E.; O’Sullivan, Nollaig; Warrington, Giles; Harrison, Andrew J.; Igou, Eric R.; Jones, Marc; Gidlow, Chris; Brick, Noel; Lahart, Ian; Cloak, Ross; Lane, Andrew M.
2016-01-01
This paper considers the environmental impact on well-being and performance in elite athletes during Olympic competition. The benefits of exercising in natural environments are recognized, but less is known about the effects on performance and health in elite athletes. Although some Olympic events take place in natural environments, the majority occur in the host city, usually a large densely populated area where low exposure to natural environments is compounded by exposure to high levels of air, water, and noise pollution in the ambient environment. By combining methods and expertise from diverse but inter-related disciplines including environmental psychology, exercise physiology, biomechanics, environmental science, and epidemiology, a transdisciplinary approach will facilitate a greater understanding of the effects of the environment on Olympic athletes. PMID:27540370
Donnelly, Aoife A; MacIntyre, Tadhg E; O'Sullivan, Nollaig; Warrington, Giles; Harrison, Andrew J; Igou, Eric R; Jones, Marc; Gidlow, Chris; Brick, Noel; Lahart, Ian; Cloak, Ross; Lane, Andrew M
2016-01-01
This paper considers the environmental impact on well-being and performance in elite athletes during Olympic competition. The benefits of exercising in natural environments are recognized, but less is known about the effects on performance and health in elite athletes. Although some Olympic events take place in natural environments, the majority occur in the host city, usually a large densely populated area where low exposure to natural environments is compounded by exposure to high levels of air, water, and noise pollution in the ambient environment. By combining methods and expertise from diverse but inter-related disciplines including environmental psychology, exercise physiology, biomechanics, environmental science, and epidemiology, a transdisciplinary approach will facilitate a greater understanding of the effects of the environment on Olympic athletes.
Low-resistance noble metal contacts to high-temperature superconductors
NASA Technical Reports Server (NTRS)
Selim, R.; Caton, R.; Buoncristiani, A. M.; Byvik, C. E.; Edahl, R. A., Jr.
1990-01-01
Low-resistance contacts were made to both YBa2Cu3O(7-x) and Bi2BaSr2Cu2O8, and to related superconducting compounds by melting gold or silver pads onto the samples before the final oxygen treatment. Scanning electron microscope studies show that both gold and silver do not diffuse far from the contact area. The surface contact resistivity of the best contacts made by the melting technique has an upper limit value in the 10 to the -8th ohm sq cm range at 77 K. This contact resistivity shows no significant change in its value over a period of 17 months. Furthermore, an electron radiation dose of 5.7 x 10 to the 17th electron/sq cm only doubled the contact resistivity.
NASA Astrophysics Data System (ADS)
Dash, Shib Shankar; Bag, Braja Gopal
2014-01-01
Punica granatum juice, a delicious multivitamin drink of great medicinal significance, is rich in different types of phytochemicals, such as terpenoids, alkaloids, sterols, polyphenols, sugars, fatty acids, aromatic compounds, amino acids, tocopherols, etc. We have demonstrated the use of the juice for the synthesis of gold nanoparticles (AuNPs) at room temperature under very mild conditions. The synthesis of the AuNPs was complete in few minutes and no extra stabilizing or capping agents were necessary. The size of the nanoparticles could be controlled by varying the concentration of the fruit extract. The AuNPs were characterized by surface plasmon resonance spectroscopy, high resolution transmission electron microscopy, fourier transform infrared spectroscopy and X-ray diffraction studies. Catalytic activity of the synthesized colloidal AuNPs has also been demonstrated.
Hubble, Lee J; Cooper, James S; Sosa-Pintos, Andrea; Kiiveri, Harri; Chow, Edith; Webster, Melissa S; Wieczorek, Lech; Raguse, Burkhard
2015-02-09
Chemiresistor sensor arrays are a promising technology to replace current laboratory-based analysis instrumentation, with the advantage of facile integration into portable, low-cost devices for in-field use. To increase the performance of chemiresistor sensor arrays a high-throughput fabrication and screening methodology was developed to assess different organothiol-functionalized gold nanoparticle chemiresistors. This high-throughput fabrication and testing methodology was implemented to screen a library consisting of 132 different organothiol compounds as capping agents for functionalized gold nanoparticle chemiresistor sensors. The methodology utilized an automated liquid handling workstation for the in situ functionalization of gold nanoparticle films and subsequent automated analyte testing of sensor arrays using a flow-injection analysis system. To test the methodology we focused on the discrimination and quantitation of benzene, toluene, ethylbenzene, p-xylene, and naphthalene (BTEXN) mixtures in water at low microgram per liter concentration levels. The high-throughput methodology identified a sensor array configuration consisting of a subset of organothiol-functionalized chemiresistors which in combination with random forests analysis was able to predict individual analyte concentrations with overall root-mean-square errors ranging between 8-17 μg/L for mixtures of BTEXN in water at the 100 μg/L concentration. The ability to use a simple sensor array system to quantitate BTEXN mixtures in water at the low μg/L concentration range has direct and significant implications to future environmental monitoring and reporting strategies. In addition, these results demonstrate the advantages of high-throughput screening to improve the performance of gold nanoparticle based chemiresistors for both new and existing applications.
Chen, Fong-Yi; Chang, Wei-Cheng; Jian, Rih-Sheng; Lu, Chia-Jung
2014-06-03
This paper presents the design, assembly, and evaluation of a novel gas chromatographic detector intended to measure the absorbance of the localized surface plasmon resonance (LSPR) of a gold nanoparticle monolayer in response to eluted samples from a capillary column. Gold nanoparticles were chemically immobilized on the inner wall of a glass capillary (i.d. 0.8 mm, length = 5-15 cm). The eluted samples flowed through the glass capillary and were adsorbed onto a gold nanoparticle surface, which resulted in changes in the LSPR absorbance. The LSPR probing light source used a green light-emitting diode (LED; λ(center) = 520 nm), and the light traveled through the glass wall of the capillary with multiple total reflections. The changes in the light intensity were measured by a photodiode at the rear of the glass capillary. The sensitivity of this detector can be improved by using a longer spiral glass capillary. The detector is more sensitive when operated at a lower temperature and at a slower carrier velocity. The calibration lines of 8 preliminary test compounds were all linear (R(2) > 0.99). The detection limits (3σ) ranged from 22 ng (n-butanol) to 174 ng (2-pentanone) depending on the volatility of the chemicals and the affinity to the citrate lignads attached to the gold nanoparticle surface. This detector consumed a very low amount of energy and could be operated with an air carrier gas, which makes this detector a promising option for portable GC or μGC.
Salts of alkali metal anions and process of preparing same
Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak
1978-01-01
Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.
NASA Astrophysics Data System (ADS)
Agbeworvi, George; Assefa, Zerihun; Sykora, Richard E.; Taylor, Jared; Crawford, Carlos
2016-03-01
The structures and spectroscopic properties of two high coordinate gold(I) phosphine complexes with the TFFPP=tri(4-fluorophenyl)phosphine ligand are reported. Synthesis in a 1:3 metal to ligand ratio provided the compound [AuCl(TFFPP)3] (2) that crystallize in the P 1 bar space group, where the asymmetric unit consists of three independent molecules. In all three sites, two sets of bond angles display distinctly different ranges. The three P-Au-P angles have average values of 117.92°, 117.57°, and 114.78° for sites A, B, and C, with the corresponding P-Au-Cl angles of 98.31°, 99.05°, and 103.38°, respectively. The chloride ion coordinates as the fourth ligand, at the corresponding Au-Cl distance of 2.7337, 2.6825, and 2.6951 Å for the three sites. This distance is longer by 0.40-0.45 Å than the Au-Cl distance found in the mono TFFPP complex 1 (2.285 Å) indicating a weakening of the Au-Cl interaction as the coordination number increases. In compound 3, [Au(TFFPP)3]Cl·½CH2Cl2·H2O, the structure consists of three phosphine ligands bound to the gold(I) atom, but the Cl- exists as uncoordinated counter anion. The structural differences observed in the two complexes are attributable to crystal-packing effects caused by the introduction of H-bonding as well as enhanced intra and inter-molecular π-interaction in 3. The photoluminescence of the complexes compared with that of the ligand show ligand centered emission perturbed by the metal coordination. Theoretical DFT studies conducted on these complexes supports assignments of the electronic transitions observed in these systems.
Entropy-driven loss of gas-phase Group 5 species from GOLD/3-5 compound semiconductor systems
NASA Astrophysics Data System (ADS)
Pugh, J. H.; Williams, R. S.
1986-02-01
Temperature dependent chemical interactions between Au and nine 3-5 compound semiconductors (3=A1, Ga, In and V=P, As, Sb) have been calculated using bulk thermodynamic properties. Enthalpic considerations alone are insufficient to predict metal/compound-semiconductor reactivities. The entropy of vaporization of the group 5 elements is shown to be an extremely important driving force for chemical reactions involving the 3-5's, since it enables several endothermic reactions to occur spontaneously under certain temperature and pressure conditions. Plots of either Gibb's free energies of reaction or equilibrium vapor pressure of the group 5 element versus temperature are used to predict critical reaction temperatures for each of the systems studied. These plots agree extremely well with previous experimental observations of thin film reactions of Au on GaAs.
Nanoparticles of noble metals in the supergene zone
NASA Astrophysics Data System (ADS)
Zhmodik, S. M.; Kalinin, Yu. A.; Roslyakov, N. A.; Mironov, A. G.; Mikhlin, Yu. L.; Belyanin, D. K.; Nemirovskaya, N. A.; Spiridonov, A. M.; Nesterenko, G. V.; Airiyants, E. V.; Moroz, T. N.; Bul'bak, T. A.
2012-04-01
Formation of noble metal nanoparticles is related to various geological processes in the supergene zone. Dispersed mineral phases appear during weathering of rocks with active participation of microorganisms, formation of soil, in aqueous medium and atmosphere. Invisible gold and other noble metals are incorporated into oxides, hydroxides, and sulfides, as well as in dispersed organic and inorganic carbonic matter. Sulfide minerals that occur in bedrocks and ores unaltered by exogenic processes and in cementation zone are among the main concentrators of noble metal nanoparticles. The ability of gold particles to disaggregate is well-known and creates problems in technological and analytical practice. When Au and PGE nanoparticles and clusters occur, these problems are augmented because of their unusual reactions and physicochemical properties. The studied gold, magnetite, titanomagnetite and pyrite microspherules from cementation zone and clay minerals of laterites in Republic of Guinea widen the knowledge of their abundance and inferred formation conditions, in particular, in the contemporary supergene zone. Morphology and composition of micrometer-sized Au mineral spherules were studied with SEM and laser microprobe. The newly formed segregations of secondary gold on the surface of its residual grains were also an object of investigation. The character of such overgrowths is the most indicative for nanoparticles. The newly formed Au particles provide evidence for redistribution of ultradispersed gold during weathering. There are serious prerequisites to state that microorganisms substantially control unusual nano-sized microspherical morphology of gold particles in the supergene zone. This is supported by experiments indicating active absorption of gold by microorganisms and direct evidence for participation of Ralstonia metallidurans bacteria in the formation of peculiar corroded bacteriomorphic surface of gold grains. In addition, the areas enriched in carbon and nitrogen have been detected with SEM on the surface of gold spherules from Guinea. Such organic compounds as serine, alanine, and glycine are identified on their surface with Raman spectroscopy. The experiments have been carried out and new data have been obtained indicating the role of micromycetes in concentration and distribution of noble metals in ferromanganese nodules of the World Ocean. Au and Pt were detected in the system with radioisotopes. It has been established that two forms of gold distribution develop within pseudomorphs of fungi colonies: (1) as pseudomorphic concentrates and (2) dispersed form unrelated to the colony structure. Inhomogeneities in distribution of dispersed platinum are manifested in the form of linear anomalies with elevated concentrations at the margins of the colonies.
Nanoscale patterning of two metals on silicon surfaces using an ABC triblock copolymer template.
Aizawa, Masato; Buriak, Jillian M
2006-05-03
Patterning technologically important semiconductor interfaces with nanoscale metal films is important for applications such as metallic interconnects and sensing applications. Self-assembling block copolymer templates are utilized to pattern an aqueous metal reduction reaction, galvanic displacement, on silicon surfaces. Utilization of a triblock copolymer monolayer film, polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO), with two blocks capable of selective transport of different metal complexes to the surface (PEO and P2VP), allows for chemical discrimination and nanoscale patterning. Different regions of the self-assembled structure discriminate between metal complexes at the silicon surface, at which time they undergo the spontaneous reaction at the interface. Gold deposition from gold(III) compounds such as HAuCl4(aq) in the presence of hydrofluoric acid mirrors the parent block copolymer core structure, whereas silver deposition from Ag(I) salts such as AgNO3(aq) does the opposite, localizing exclusively under the corona. By carrying out gold deposition first and silver second, sub-100-nm gold features surrounded by silver films can be produced. The chemical selectivity was extended to other metals, including copper, palladium, and platinum. The interfaces were characterized by a variety of methods, including scanning electron microscopy, scanning Auger microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy.
Alkynyl gold(I) complex triggers necroptosis via ROS generation in colorectal carcinoma cells.
Mármol, Inés; Virumbrales-Muñoz, María; Quero, Javier; Sánchez-de-Diego, Cristina; Fernández, Luis; Ochoa, Ignacio; Cerrada, Elena; Yoldi, Mª Jesús Rodríguez
2017-11-01
Given the rise of apoptosis-resistant tumors, there exist a growing interest in developing new drugs capable of inducing different types of cell death to reduce colorectal cancer-related death rates. As apoptosis and necroptosis do not share cellular machinery, necroptosis induction may have a great therapeutic potential on those apoptosis-resistant cancers, despite the inflammatory effects associated with it. We have synthesized an alkynyl gold(I) complex [Au(CC-2-NC 5 H 4 )(PTA)] whose anticancer effect was tested on the colorectal adenocarcinoma Caco-2 cell line. With regard to its mechanism of action, this gold complex enters the mitochondria and disrupts its normal function, leading to an increase in ROS production, which triggers necroptosis. Necroptosis induction has been found dependent of TNF-α (Tumor necrosisfactor α) and TNFR1(Tumor necrosisfactor receptor 1) binding, RIP1(Receptor-Interacting Protein 1) activation and NF-κB (Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells) signaling. Moreover, the antitumor potential of [Au(CC-2-NC 5 H 4 )(PTA)] has also been confirmed on the 3D cancer model spheroid. Overall, the obtained data show firstly that gold complexes might have the ability of inducing necroptosis, and secondarily that our compound [Au(CC-2-NC 5 H 4 )(PTA)] is an interesting alternative to current chemotherapy drugs in cases of apoptosis resistance. Copyright © 2017. Published by Elsevier Inc.
Sarfraz, Muhammad; Sultana, Nargis; Rashid, Umer; Akram, Muhammad Safwan; Sadiq, Abdul; Tariq, Muhammad Ilyas
2017-02-01
In search of potent inhibitors of cholinesterases, we have synthesized and evaluate a number of 2,3-dihydroquinazolin-4(1H)-one derivatives. The synthetic approach provided an efficient synthesis of the target molecules with excellent yield. All the tested compounds showed activity against both the enzymes in micromolar range. In many case, the inhibition of both enzymes are higher than or comparable to the standard drug galatamine. With the selectivity index of 2.3 for AChE, compound 5f can be considered as a potential lead compound with a feature of dual AChE/BChE inhibition with IC 50 =1.6±0.10μM (AChE) and 3.7±0.18μM (BChE). Binding modes of the synthesized compounds were explored by using GOLD (Genetic Optimization for Ligand Docking) suit v5.4.1. The computed binding modes of these compounds in the active site of AChE and BChE provide an insight into the mechanism of inhibition of these two enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jia, S.; Bud'Ko, S. L.; Samolyuk, G. D.; Canfield, P. C.
2007-05-01
One of the historic goals of alchemy was to turn base elements into precious ones. Although the practice of alchemy has been superseded by chemistry and solid-state physics, the desire to dramatically change or tune the properties of a compound, preferably through small changes in stoichiometry or composition, remains. This desire becomes even more compelling for compounds that can be tuned to extremes in behaviour. Here, we report that the RT2Zn20 (R=rare earth and T=transition metal) family of compounds manifests exactly this type of versatility, even though they are more than 85% Zn. By tuning T, we find that YFe2Zn20 is closer to ferromagnetism than elemental Pd, the classic example of a nearly ferromagnetic Fermi liquid. By submerging Gd in this highly polarizable Fermi liquid, we tune the system to a remarkably high-temperature ferromagnetic (TC=86K) state for a compound with less than 5% Gd. Although this is not quite turning lead into gold, it is essentially tuning Zn to become a variety of model compounds.
NASA Astrophysics Data System (ADS)
Seo, Wonil; Kim, Kyoung-Ho; Kim, Young-Ho; Yoo, Sehoon
2018-01-01
The growth of interfacial intermetallic compound and the brittle fracture behavior of Sn-3.0Ag-0.5-Cu solder (SAC305) joints on electroless nickel immersion gold (ENIG) surface finish have been investigated using Ni-P plating solution at temperatures from 75°C to 85°C and fixed pH of 4.5. SAC305 solder balls with diameter of 450 μm were mounted on the prepared ENIG-finished Cu pads and reflowed with peak temperature of 250°C. The interfacial intermetallic compound (IMC) thickness after reflow decreased with increasing Ni-P plating temperature. After 800 h of thermal aging, the IMC thickness of the sample prepared at 85°C was higher than for that prepared at 75°C. Scanning electron microscopy of the Ni-P surface after removal of the Au layer revealed a nodular structure on the Ni-P surface. The nodule size of the Ni-P decreased with increasing Ni-P plating temperature. The Cu content near the IMC layer increased to 0.6 wt.%, higher than the original Cu content of 0.5 wt.%, indicating that Cu diffused from the Cu pad to the solder ball through the Ni-P layer at a rate depending on the nodule size. The sample prepared at 75°C with thicker interfacial IMC showed greater high-speed shear strength than the sample prepared at 85°C. Brittle fracture increased with decreasing Ni-P plating temperature.
Sultana, Nargis; Sarfraz, Muhammad; Tanoli, Saba Tahir; Akram, Muhammad Safwan; Sadiq, Abdul; Rashid, Umer; Tariq, Muhammad Ilyas
2017-06-01
Pursuing the strategy of developing potent AChE inhibitors, we attempted to carry out the N 1 -substitution of 2,3-dihydroquinazolin-4(1H)-one core. A set of 32 N-alkylated/benzylated quinazoline derivatives were synthesized, characterized and evaluated for their inhibition against cholinesterases. N-alkylation of the series of the compounds reported previously (N-unsubstituted) resulted in improved activity. All the compounds showed inhibition of both enzymes in the micromolar to submicromolar range. Structure activity relationship (SAR) of the 32 derivatives showed that N-benzylated compounds possess good activity than N-alkylated compounds. N-benzylated compounds 2ad and 2af were found very active with their IC 50 values toward AChE in submicromolar range (0.8µM and 0.6µM respectively). Binding modes of the synthesized compounds were explored by using GOLD (Genetic Optimization for Ligand Docking) suit v5.4.1. Computational predictions of ADMET studies reveal that all the compounds have good pharmacokinetic properties with no AMES toxicity and carcinogenicity. Moreover, all the compounds are predicted to be absorbed in human intestine and also have the ability to cross blood brain barrier. Overall, the synthesized compounds have established a structural foundation for the design of new inhibitors of cholinesterase. Copyright © 2017 Elsevier Inc. All rights reserved.
Konno, Hiroyuki; Wakabayashi, Masaki; Takanuma, Daiki; Saito, Yota; Akaji, Kenichi
2016-03-15
Synthesis of serine derivatives having the essential functional groups for the inhibitor of SARS 3CL protease and evaluation of their inhibitory activities using SARS 3CL R188I mutant protease are described. The lead compounds, functionalized serine derivatives, were designed based on the tetrapeptide aldehyde and Bai's cinnamoly inhibitor, and additionally performed with simulation on GOLD softwear. Structure activity relationship studies of the candidate compounds were given reasonable inhibitors ent-3 and ent-7k against SARS 3CL R188I mutant protease. These inhibitors showed protease selectivity and no cytotoxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Substrate solder barriers for semiconductor epilayer growth
Drummond, Timothy J.; Ginley, David S.; Zipperian, Thomas E.
1989-01-01
During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.
Substrate solder barriers for semiconductor epilayer growth
Drummond, T.J.; Ginley, D.S.; Zipperian, T.E.
1989-05-09
During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.
Substrate solder barriers for semiconductor epilayer growth
Drummond, T.J.; Ginley, D.S.; Zipperian, T.E.
1987-10-23
During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In molecular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating. 1 tab.
Effect of Gold Nanorod Surface Chemistry on Cellular Interactions In Vitro
2010-09-01
properties of GNRs on cells. Previous studies on the cytotoxicity of various nanoparticles indicated that surface chemistry has a strong influence on cell...supplemented with 10% fetal bovine serum (FBS, ATCC) and 1% penicillin/streptomycin (pen/strep, Sigma). For nanoparticle exposure, media was supplemented...reagent ( phenazine ethosulfate; PES). Metabolically active cells reduce the MTS compound into a colored formazan product that is soluble in tissue
Martínez-González, J J; Guevara-Flores, A; Rendón, J L; Arenal, I P Del
2015-05-01
Previously, we have studied the effect of the gold-compound auranofin (AF) on both thioredoxin-glutathione reductasa (TGR) activity and viability of Taenia crassiceps cysticerci. It was demonstrated that micromolar concentrations of AF were high enough to fully inhibit TGR and kill the parasites. In this work, the dynamics of changes in the glutathione pool of T. crassiceps cysticerci following the addition of AF, was analyzed. A dose-dependent decrease in the internal glutathione concentration, concomitant with an increase in ROS production was observed. These changes were simultaneous with the formation of glutathione-protein complexes and the export of glutathione disulfide (GSSG) to the culture medium. Incubation of cysticerci in the presence of both AF and N-acetyl cysteine (NAC) prevents all the above changes, maintaining cysticerci viability. By contrast, the presence of both AF and buthionine sulfoximine (BSO) resulted in a potentiation of the effects of the gold compound, jeopardizing cysticerci viability. These results suggest the lethal effect of AF on T. crassiceps cysticerci, observed at micromolar concentrations, can be explained as a consequence of major changes in the glutathione status, which results in a significant increase in the oxidative stress of the parasites. Copyright © 2015 Elsevier B.V. All rights reserved.
Kumar, Pavitra V; Singh, Beena G; Maiti, Nandita; Iwaoka, Michio; Priyadarsini, K Indira
2014-12-15
Binding of a cyclic organoselenium compound, DL-trans-3,4-dihydroxy-1-selenolane (DHSred) with gold nanoparticles (GNP) of different sizes was studied by absorption spectroscopy, dynamic light scattering (DLS), transmission electron microscope (TEM), surface enhanced Raman spectroscopy (SERS) and zeta-potential (ζ) measurements. GNP of different size were synthesized by varying the reaction conditions and their size was determined by DLS and TEM techniques. The absorption spectral data showed red shift in the surface plasmon resonance (SPR) band indicating increase in the size of GNP on binding to DHSred. SERS studies confirmed that the binding of DHSred with GNP is through selenium center with planar orientation of DHSred on the GNP surface. The product of the number of binding sites (n) in GNP and the binding constant (K) was estimated for GNP of different particle size. The zeta potential (ζ) value of GNP decreased marginally in the presence of DHSred. Further, the binding of DHSred with GNP was found to enhance its reactivity with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radicals (ABTS(·-)) and the reactivity increased with decrease in the GNP size. Such enhancement in the reducing ability may have a greater impact on the antioxidant activity of DHSred. Copyright © 2014 Elsevier Inc. All rights reserved.
Yao, Hiroshi; Iwatsu, Mana
2016-04-05
Synthesis of atomically precise, water-soluble phosphine-protected gold clusters is still currently limited probably due to a stability issue. We here present the synthesis, magic-number isolation, and exploration of the electronic structures as well as the asymmetric conversion of triphenylphosphine monosulfonate (TPPS)-protected gold clusters. Electrospray ionization mass spectrometry and elemental analysis result in the primary formation of Au11(TPPS)9Cl undecagold cluster compound. Magnetic circular dichroism (MCD) spectroscopy clarifies that extremely weak transitions are present in the low-energy region unresolved in the UV-vis absorption, which can be due to the Faraday B-terms based on the magnetically allowed transitions in the cluster. Asymmetric conversion without changing the nuclearity is remarkable by the chiral phase transfer in a synergistic fashion, which yields a rather small anisotropy factor (g-factor) of at most (2.5-7.0) × 10(-5). Quantum chemical calculations for model undecagold cluster compounds are then used to evaluate the optical and chiroptical responses induced by the chiral phase transfer. On this basis, we find that the Au core distortion is ignorable, and the chiral ion-pairing causes a slight increase in the CD response of the Au11 cluster.
Micron to Mine: Synchrotron Science for Mineral Exploration, Production, and Remediation
NASA Astrophysics Data System (ADS)
Banerjee, N.; Van Loon, L.; Flynn, T.
2017-12-01
Synchrotron science for mineral exploration, production, and remediation studies is a powerful tool that provides industry with relevant micron to macro geochemical information. Synchrotron micro X-ray fluorescence (SR-µXRF) offers a direct, high-resolution, rapid, and cost-effective chemical analysis while preserving the context of the sample by mapping ore minerals with ppm detection limits. Speciation of trace and deleterious elements can then be probed using X-ray absorption near-edge structure (XANES) spectroscopy. Large-scale (tens of cm) µXRF mapping and XANES analysis of samples collected at various mine locations have been undertaken to address questions regarding mineralization history to develop novel trace element exploration vectors. This information provides integral insights into trace element associations with ore minerals, local redox conditions responsible for mineralization, and mineralizing mechanisms. Gold is commonly intimately associated with sulfide mineralization (e.g., pyrite, arsenopyrite, etc.) and is present both as inclusions and filling fractures in sulfide grains. Gold may also occur as nanoparticles and/or in the sulfide mineral crystal lattice, known as "invisible gold". Understanding the nature and distribution of invisible gold in ore is integral to processing efficiency. The high flux and energy of a synchrotron light source allows for the detection of invisible gold by µXRF, and can probe its nature (metallic Au0 vs. lattice bound Au1+) using XANES spectroscopy. The long-term containment and management of arsenic is necessary to protect the health of both humans and the environment. Understanding the relationship of arsenic mineralization to gold deposits can lead to more sophisticated planning for mineral processing and the eventual storage of gangue materials. µXANES spectroscopy is an excellent tool for determining arsenic speciation within the context of the sample. Mineral phases such as arsenopyrite, scorodite, and arsenic trioxide can be accurately identified as well as relative amounts determined. With this information the oxidation-reduction of arsenic-bearing compounds can be monitored to optimize management practices for the long-term capture of arsenic contaminants.
Signs and symptoms of mercury-exposed gold miners.
Bose-O'Reilly, Stephan; Bernaudat, Ludovic; Siebert, Uwe; Roider, Gabriele; Nowak, Dennis; Drasch, Gustav
2017-03-30
Gold miners use mercury to extract gold from ore adding liquid mercury to the milled gold-containing ore. This results in a mercury-gold compound, called amalgam. Miners smelt this amalgam to obtain gold, vaporizing it and finally inhaling the toxic mercury fumes. The objective was to merge and analyze data from different projects, to identify typical signs and symptoms of chronic inorganic mercury exposure. Miners and community members from various artisanal small-scale gold mining areas had been examined (Philippines, Mongolia, Tanzania, Zimbabwe, Indonesia). Data of several health assessments were pooled. Urine, blood and hair samples were analyzed for mercury (N = 1252). Questionnaires, standardized medical examinations and neuropsychological tests were used. Participants were grouped into: Controls (N = 209), living in an exposed area (N = 408), working with mercury as panners (N = 181), working with mercury as amalgam burners (N = 454). Chi2 test, linear trend test, Mann-Whitney test, Kruskal-Wallis test, correlation coefficient, Spearman's rho, and analysis of variance tests were used. An algorithm was used to define participants with chronic mercury intoxication. Mean mercury concentrations in all exposed subgroups were elevated and above threshold limits, with amalgam burners showing highest levels. Typical symptoms of chronic metallic mercury intoxication were tremor, ataxia, coordination problems, excessive salivation and metallic taste. Participants from the exposed groups showed poorer results in different neuropsychological tests in comparison to the control group. Fifty-four percent of the high-exposed group (amalgam burners) were diagnosed as being mercury-intoxicated, compared to 0% within the control group (Chi2 p < 0.001). Chronic mercury intoxication, with tremor, ataxia and other neurological symptoms together with a raised body burden of mercury was clinically diagnosed in exposed people in artisanal small-scale mining areas. The mercury exposure needs to be urgently reduced. Health care systems need to be prepared for this emerging problem of chronic mercury intoxication among exposed people. Int J Occup Med Environ Health 2017;30(2):249-269. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Issues in the analyze of low content gold mining samples by fire assay technique
NASA Astrophysics Data System (ADS)
Cetean, Valentina
2016-04-01
The classic technique analyze of samples with low gold content - below 0.1 g/t (=100 ppb = parts per billion), either ore or gold sediments, involves the preparation of sample by fire assay extraction, followed by the chemical attack with aqua regia (hydrochloric and nitric acid) and measuring the gold content by atomic absorption spectrometry or inductively coupled mass spectrometry. The issues raised by this analysis are well known for the world laboratories, commercial or research ones. The author's knowledge regarding this method of determining the gold content, accumulated in such laboratory from Romania (with more than 40 years of experience, even if not longer available from 2014) confirms the obtaining of reliable results required a lot of attention, amount of work and the involving of an experienced fire assayer specialist. The analytical conclusion for a research laboratory is that most reliable and statistically valid results are till reached for samples with more than 100 ppb gold content; the degree of confidence below this value is lower than 90%. Usually, for samples below 50 ppb, it does not exceed 50-70 %, unless without very strictly control of each stage, that involve additional percentage of hours allocated for successive extracting tests and knowing more precisely the other compounds that appear in the sample (Cu, Sb, As, sulfur / sulphides, Te, organic matter, etc.) or impurities. The most important operation is the preparation, namely: - grinding and splitting of sample (which can cause uneven distribution of gold flakes in the double samples for analyzed); - pyro-metallurgical recovery of gold = fire assay stage, involving the more precise temperature control in furnace during all stages (fusion and cupellation) and adjusting of the fire assay flux components to produce a successful fusion depending of the sample matrix and content; - reducing the sample weight to decrease the amount of impurities that can be concentrated in the lead button during oxidation stage. The better metal recovery and the decreasing of the amount of errors for low gold content samples are controlled in this case by: - the management of the quantity of one or more components of the flux, depending on the chemical composition of the sample (sometimes just by observing the behavior and the visual characteristics of lead Au + Ag button/bead and the resulted slag); - addition of gold-free silver, which will be removed by chemical reduction with aqua regia after the fire assay stage. Regarding the instrumental analyze stage of the samples with less than 100 ppb gold content, there were obtained similar values by both techniques: atomic absorption and inductively coupled mass spectrometry, taking into account each of them has different detection limit. It is mandatory the quality control with a certified reference material with known content, both in the fire assay stage and the reading instrumental stage. This abstract are written in the frame of the SUSMIN project: "Tools for sustainable gold mining in EU".
Metals and kidney autoimmunity.
Bigazzi, P E
1999-01-01
The causes of autoimmune responses leading to human kidney pathology remain unknown. However, environmental agents such as microorganisms and/or xenobiotics are good candidates for that role. Metals, either present in the environment or administered for therapeutic reasons, are prototypical xenobiotics that cause decreases or enhancements of immune responses. In particular, exposure to gold and mercury may result in autoimmune responses to various self-antigens as well as autoimmune disease of the kidney and other tissues. Gold compounds, currently used in the treatment of patients with progressive polyarticular rheumatoid arthritis, can cause a nephrotic syndrome. Similarly, an immune-mediated membranous nephropathy frequently occurred when drugs containing mercury were commonly used. Recent epidemiologic studies have shown that occupational exposure to mercury does not usually result in autoimmunity. However, mercury induces antinuclear antibodies, sclerodermalike disease, lichen planus, or membranous nephropathy in some individuals. Laboratory investigations have confirmed that the administration of gold or mercury to experimental animals leads to autoimmune disease quite similar to that observed in human subjects exposed to these metals. In addition, studies of inbred mice and rats have revealed that a few strains are susceptible to the autoimmune effects of gold and mercury, whereas the majority of inbred strains are resistant. These findings have emphasized the importance of genetic (immunogenetic and pharmacogenetic) factors in the induction of metal-associated autoimmunity. (italic)In vitro(/italic) and (italic)in vivo(/italic) research of autoimmune disease caused by mercury and gold has already yielded valuable information and answered a number of important questions. At the same time it has raised new issues about possible immunostimulatory or immunosuppressive mechanisms of xenobiotic activity. Thus it is evident that investigations of metal-induced renal autoimmunity have the potential to produce new knowledge with relevance to autoimmune disease caused by xenobiotics in general as well as to idiopathic autoimmunity. PMID:10502542
Ilari, Andrea; Baiocco, Paola; Messori, Luigi; Fiorillo, Annarita; Boffi, Alberto; Gramiccia, Marina; Di Muccio, Trentina; Colotti, Gianni
2012-02-01
Auranofin is a gold(I)-containing drug in clinical use as an antiarthritic agent. Recent studies showed that auranofin manifests interesting antiparasitic actions very likely arising from inhibition of parasitic enzymes involved in the control of the redox metabolism. Trypanothione reductase is a key enzyme of Leishmania infantum polyamine-dependent redox metabolism, and a validated target for antileishmanial drugs. As trypanothione reductase contains a dithiol motif at its active site and gold(I) compounds are known to be highly thiophilic, we explored whether auranofin might behave as an effective enzyme inhibitor and as a potential antileishmanial agent. Notably, enzymatic assays revealed that auranofin causes indeed a pronounced enzyme inhibition. To gain a deeper insight into the molecular basis of enzyme inhibition, crystals of the auranofin-bound enzyme, in the presence of NADPH, were prepared, and the X-ray crystal structure of the auranofin-trypanothione reductase-NADPH complex was solved at 3.5 Å resolution. In spite of the rather low resolution, these data were of sufficient quality as to identify the presence of the gold center and of the thiosugar of auranofin, and to locate them within the overall protein structure. Gold binds to the two active site cysteine residues of TR, i.e. Cys52 and Cys57, while the thiosugar moiety of auranofin binds to the trypanothione binding site; thus auranofin appears to inhibit TR through a dual mechanism. Auranofin kills the promastigote stage of L. infantum at micromolar concentration; these findings will contribute to the design of new drugs against leishmaniasis.
Polylysine as a functional biopolymer to couple gold nanorods to tumor-tropic cells.
Borri, Claudia; Centi, Sonia; Ratto, Fulvio; Pini, Roberto
2018-05-31
The delivery of plasmonic particles, such as gold nanorods, to the tumor microenvironment has attracted much interest in biomedical optics for topical applications as the photoacoustic imaging and photothermal ablation of cancer. However, the systemic injection of free particles still crashes into a complexity of biological barriers, such as the reticuloendothelial system, that prevent their efficient biodistribution. In this context, the notion to exploit the inherent features of tumor-tropic cells for the creation of a Trojan horse is emerging as a plausible alternative. We report on a convenient approach to load cationic gold nanorods into murine macrophages that exhibit chemotactic sensitivity to track gradients of inflammatory stimuli. In particular, we compare a new model of poly-L-lysine-coated particles against two alternatives of cationic moieties that we have presented elsewhere, i.e. a small quaternary ammonium compound and an arginine-rich cell-penetrating peptide. Murine macrophages that are exposed to poly-L-lysine-coated gold nanorods at a dosage of 400 µM Au for 24 h undertake efficient uptake, i.e. around 3 pg Au per cell, retain the majority of their cargo until 24 h post-treatment and maintain around 90% of their pristine viability, chemotactic and pro-inflammatory functions. With respect to previous models of cationic coatings, poly-L-lysine is a competitive solution for the preparation of biological vehicles of gold nanorods, especially for applications that may require longer life span of the Trojan horse, say in the order of 24 h. This biopolymer combines the cost-effectiveness of small molecules and biocompatibility and efficiency of natural peptides and thus holds potential for translational developments.
2011-01-01
3,5-Dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2-carboxylic acid ethyl ester is a promising antitubulin lead agent that targets the colchicine site of tubulin. C-2 analogues were synthesized and tested for microtubule depolymerizing and antiproliferative activity. Molecular modeling studies using both GOLD docking and HINT (Hydropathic INTeraction) scoring revealed two distinct binding modes that explain the structure–activity relationships and are in accord with the structural basis of colchicine binding to tubulin. The binding mode of higher activity compounds is buried deeper in the site and overlaps well with rings A and C of colchicine, while the lower activity binding mode shows fewer critical contacts with tubulin. The model distinguishes highly active compounds from those with weaker activities and provides novel insights into the colchicine site and compound design. PMID:22611477
Da, Chenxiao; Telang, Nakul; Barelli, Peter; Jia, Xin; Gupton, John T; Mooberry, Susan L; Kellogg, Glen E
2012-01-12
3,5-dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2-carboxylic acid ethyl ester is a promising antitubulin lead agent that targets the colchicine site of tubulin. C-2 analogs were synthesized and tested for microtubule depolymerizing and antiproliferative activity. Molecular modeling studies using both GOLD docking and HINT (Hydropathic INTeraction) scoring revealed two distinct binding modes that explain the structural-activity relationships and are in accord with the structural basis of colchicine binding to tubulin. The binding mode of higher activity compounds is buried deeper in the site and overlaps well with rings A and C of colchicine, while the lower activity binding mode shows fewer critical contacts with tubulin. The model distinguishes highly active compounds from those with weaker activities and provides novel insights into the colchicine site and compound design.
Self-Assembled Monolayers of Dithiophosphinic Acids on Gold
NASA Astrophysics Data System (ADS)
San Juan, Ronan Roca
This dissertation reports the synthesis of derivatives of dithiophosphinic acids (R1R2DTPAs), and the formation and characterization of DTPA SAMs on gold to build a knowledge base on their nature of binding, organization of the alkyl chains and electrochemical barrier properties. The binding of DTPA molecules on gold depends on the morphology of the gold film: They bind in a mixed monodentate and bidentate modes on standard as-deposited (As-Dep) gold, while they fully chelate on smoother template-stripped (TS) gold. Chapter 2 focuses on van der Waals interactions of various alkyl chain lengths of symmetrical R2DTPA SAMs, which increase with increasing chain lengths similar to those of the analogous n-alkanethiol SAMs, but with alkyl chains that are generally less dense than those of n-alkanethiol SAMs. Chapter 3 addresses why the DTPA compounds do not chelate on the standard As-Dep gold by comparing (C16)2DTPA SAM to (C16 )2DDP SAM. Here, side chain crystallinity stabilizes DTPA SAM structure at the expense of chelation of the DTPA molecules, which leads to a mixture of bidentate and monodentate DTPA molecules, whereas the increased flexibility of the chains in DDP due to the oxygen atoms retains chelation of the DDP molecules. Chapter 4 focuses on the SAMs formed from RlongRshort DTPAs, which shows that the length of the short chain spacer affects SAM packing density and thickness. The SAMs of these molecules also show homogeneous mixing of Rlong and Rshort chains. Chapter 5 investigates PhRDTPA SAMs in preparation for molecular junction studies. The chelation of PhRDTPA molecules on TS gold allows the PhRDTPAs to act as molecular alligator clips. The length of the alkyl chains controls the density of the phenyl group and they fill in the voids between adsorbates to prevent electrical shorting. Finally, Chapter 6 incorporates OH tail group(s) to control the wettability of DTPA SAMs. The presence of OH groups in DTPAs forms hydrophilic SAMs. The symmetrical OH-terminated DTPA forms a SAM with similar packing density to that of an analogous CH3-terminated DTPA SAM, while the OH/CH 3-terminated DTPA forms a thin SAM with low molecular packing, however, the chains of this SAM are homogeneously mixed.
Nanoparticle Treated Stainless Steel Filters for Metal Vapor Sequestration
NASA Astrophysics Data System (ADS)
Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul; Coopersmith, Kaitlin J.; Summer, Ansley J.; Lewis, Rebecca
2017-02-01
The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown onto various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. The effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.
Corrosion testing of candidates for the alkaline fuel cell cathode
NASA Technical Reports Server (NTRS)
Singer, Joseph; Fielder, William L.
1989-01-01
It is desirable to employ a corrosion screening test for catalyst or support candidates for the fuel cell cathode before entering upon optimization of the candidate or of the catalytic electrode. To this end, corrosion test electrodes, intended for complete immersion and maximum wetting, have been made with 30 to 40 vol. pct Teflon; with perovskites this is about 10 to 15 pct. The candidates were synthesized by methods intended for single-phase product without special emphasis on high surface area, although the substances tested were no coarser than 2 m squared/g. A typical loading was 25 mg/cm sq of the pure substance, usually on gold screen, a few mm squared of which were left bare for contacting. Contact to the gold lead wire was made by welding with a micro-torch or a spot-welder. Corrosion testing consisted of obtaining current-voltage data under flowing inert gas in the potential region for reduction of O2. The electrode was immersed in 30 pct KOH. Observations were made at 20 C and 80 C, and the results compared with data from gold standards. Results with some perovskites, pyrochlores, spinels, and interstitial compounds will be discussed.
NASA Astrophysics Data System (ADS)
Sarecka-Hujar, Beata; Balwierz, Radoslaw; Ostrozka-Cieslik, Aneta; Dyja, Renata; Lukowiec, Dariusz; Jankowski, Andrzej
2017-11-01
The quality of the drug, its purity and identification of degradation products provide the highest quality of pharmaceutical products. The energy dispersive spectroscopy (EDS) method analyses the percentage of each element form as well as their distribution, and morphological characteristics of the drug form. We analysed the usefulness of EDS method in testing orally disintegrating tablets (ODT) with trimetazidine hydrochloride with high resolution scanning electron microscopy (SEM, SUPRA25 Carl Zeiss company) with spectrophotometer equipped with an X-ray energy dispersion (EDAX Company). The samples of the analysed tablets were imaged after applying conductive layers of gold on their surface. In the EDS analysis the compositions of each sample of the obtained tablets were observed to be virtually identical. The differences in the content of carbon and oxygen came from differences in the composition of particular tablets. The presence of gold in the composition resulted from the sputtering the surface of tablets with gold during the analysis. Knowing the composition of the tablet, SEM-EDS method helps to locate and identify the impurities and degradation products of the compounds, leading to a better understanding of the mechanisms of their formation.
He, Yi; Cheng, Yang
2016-08-01
We report a simple, rapid, and sensitive assay for visual and spectrophotometric detection of the 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) explosive. The assay is based on different interactions between LLM-105 and gold nanoparticle (AuNP) dispersions at two pH values, leading to the formation of dispersed or aggregated AuNPs. Two AuNP dispersions at two pH values were applied to recognize and detect LLM-105 instead of traditional AuNP dispersion under an aptotic pH to improve the anti-interference ability. The developed assay showed excellent sensitivity with a detection limit of 3 ng/mL, and the presence of as low as 0.2 μg/mL LLM-105 can be directly detected with the bare eye. This sensitivity is about six orders of magnitude higher than that of the reported traditional assays. Additionally, the assay exhibited good selectivity toward LLM-105 over other explosives, sulfur-containing compounds, and amines. Graphical abstract A simple, sensitive, and selective assay for LLM-105 was developed based on the pH-dependent interaction between the LLM-105 explosive and gold nanoparticle dispersion.
Borriello, A; Agoretti, P; Cassinese, A; D'Angelo, P; Mohanraj, G T; Sanguigno, L
2009-11-01
A novel electrical bistable hybrid nanocomposite based on doped Polyaniline nanofibers with 1-Dodecanethiol-protected Gold nanoparticle (PAni.AuDT), 3-4 nm in size, as the conductive component and polystyrene as polymer matrix was prepared. The structural morphology of the composite and the dispersion of nanoparticles inside it were evaluated using Transmission Electron Microscopy (TEM). The thermal stability and the ratio Polyaniline/Gold nanoparticles in the composite were determined by using thermogravimetric analysis. The electrical bistability of the PAni.AuDT-PS composite, the influence of the dispersion of the PAni.AuDT conductive network and the basic operation mechanism, have been assessed by measuring the electrical response of planar device architectures, also as a function of the environmental temperature (in the range 200 K < T < 360 K). The basic operation mechanism of the hybrid compound has been then correlated to the combined action of the thermally-induced scattering of charge carriers and the thermal contraction of the hosting polymeric matrix. Moreover, the right compromise between these two effects in terms of the most efficient bistability has been studied, founding the concentration of the conductive component which optimizes the device on-off ratio (I(on)/ I(off)).
Dos Santos, Hélio F; Paschoal, Diego; Burda, Jaroslav V
2012-11-15
The reactivity of gold(III) complexes is analyzed for a series of derivatives of 3-azapentane-1,5-diamine (dien) tridentate ligand that can contain some bulky substituents. Two distinct series of compounds are considered where the dien ligand is either deprotonated (R-dien-H) or protonated (R-dien) at the secondary amine where R = ethyl (Et) or methyl (Me). While the deprotonated species will occur in neutral and basic solutions, the protonated forms are likely to be present in acidic environment. Hydration reaction (water/Cl(-) ligand exchange) of 14 complexes is modeled with quantum chemical calculations. Our calculations predict that the reactivity decreases with the increase in the molecular volume of the substituted dien ligand, and the calculated rate constants are in satisfactory agreement with experimental results. In addition, quantitative structure/reactivity models are proposed where the angle between the entering and leaving groups in the transition state structure (the reactivity angle) is used as a molecular descriptor. These models explain the trend of the relative reactivity of these complexes and can be used to design new ligands for gold(III) complexes aiming to adjust the reactivity of the complex.
Thin Films from Solvated Metal Atoms and Metal-Metal Bonded Compounds
1988-07-01
University 1596 Manhattan, Kansas 66506 1 1 . CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE July 1988 13. NUMBER OF PAGES 14. MONITORING AGENCY...these colloidal particles are of interest: ( 1 ) the particles appear to scavenge electrons to become negatively charged, and (2) strong salvation...of metal doped polymers. C. A Listing of Technical Reports Submitted 1 . S. T. Lin, M. T. Franklin, and K. J. Klabunde, "Non-Aqueous Colloidal Gold
2016-10-01
evaluated using 209, 639, and 1269 magnification. For repre- sentative documentation of the morphology of each specimen, the photographs were taken from the...Holmes SJ, Kaplan SL, Jubelirer DP, Stechenberg BW, Hirsh SK (1984) Prospective evaluation of hearing impairment as a sequela of acute bacterial...enters the field of gene therapy and human studies commence, the question arises whether audiograms e the current gold standard for the evaluation of
Gold, nickel and copper mining and processing.
Lightfoot, Nancy E; Pacey, Michael A; Darling, Shelley
2010-01-01
Ore mining occurs in all Canadian provinces and territories except Prince Edward Island. Ores include bauxite, copper, gold, iron, lead and zinc. Workers in metal mining and processing are exposed, not only to the metal of interest, but also to various other substances prevalent in the industry, such as diesel emissions, oil mists, blasting agents, silica, radon, and arsenic. This chapter examines cancer risk related to the mining of gold, nickel and copper. The human carcinogenicity of nickel depends upon the species of nickel, its concentration and the route of exposure. Exposure to nickel or nickel compounds via routes other than inhalation has not been shown to increase cancer risk in humans. As such, cancer sites of concern include the lung, and the nasal sinus. Evidence comes from studies of nickel refinery and leaching, calcining, and sintering workers in the early half of the 20th century. There appears to be little or no detectable risk in most sectors of the nickel industry at current exposure levels. The general population risk from the extremely small concentrations detectable in ambient air are negligible. Nevertheless, animal carcinogenesis studies, studies of nickel carcinogenesis mechanisms, and epidemiological studies with quantitative exposure assessment of various nickel species would enhance our understanding of human health risks associated with nickel. Definitive conclusions linking cancer to exposures in gold and copper mining and processing are not possible at this time. The available results appear to demand additional study of a variety of potential occupational and non-occupational risk factors.
Megarajan, Sengan; Ayaz Ahmed, Khan Behlol; Rajendra Kumar Reddy, G; Suresh Kumar, P; Anbazhagan, Veerappan
2016-02-01
Herein, we present a simple and green method for the synthesis of gold nanoparticles (AuNPs) using the phytoproteins of spinach leaves. Under ambient sunlight irradiation, the isolated phytoprotein complex from spinach leaves reduces the gold chloride aqueous solution and stabilizes the formed AuNPs. As prepared nanoparticles were characterized by UV-visible spectroscopy, Fourier transform infra-red (FTIR) spectroscopy, zeta potential, transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDS). The surface plasmon resonance (SPR) maximum for AuNPs was observed at 520 nm. The zeta potential value estimated for the AuNPs is -27.0 mV, indicating that the NPs are well separated. Transmission electron micrographs revealed that the particles are spherical in nature with the size range from 10 to 15 nm. AuNPs act as a catalyst in the degradation of an azo dye, methyl orange in an aqueous environment. The reduction rate was determined to be pseudo-first order. Electrocatalytic efficiency of the synthesized AuNPs via this green approach was studied by chronoamperometry using ascorbic acid and hydrogen peroxide as a model compound for oxidation and reduction, respectively. Electrocatalytic studies indicate that the gold nanoparticles can be used to detect ascorbic acid and hydrogen peroxide in micromolar concentrations with response time less than 3s. Copyright © 2015 Elsevier B.V. All rights reserved.
Classification of lung cancer histology by gold nanoparticle sensors
Barash, Orna; Peled, Nir; Tisch, Ulrike; Bunn, Paul A.; Hirsch, Fred R.; Haick, Hossam
2016-01-01
We propose a nanomedical device for the classification of lung cancer (LC) histology. The device profiles volatile organic compounds (VOCs) in the headspace of (subtypes of) LC cells, using gold nanoparticle (GNP) sensors that are suitable for detecting LC-specific patterns of VOC profiles, as determined by gas chromatography–mass spectrometry analysis. Analyzing the GNP sensing signals by support vector machine allowed significant discrimination between (i) LC and healthy cells; (ii) small cell LC and non–small cell LC; and between (iii) two subtypes of non–small cell LC: adenocarcinoma and squamous cell carcinoma. The discriminative power of the GNP sensors was then linked with the chemical nature and composition of the headspace VOCs of each LC state. These proof-of-concept findings could totally revolutionize LC screening and diagnosis, and might eventually allow early and differential diagnosis of LC subtypes with detectable or unreachable lung nodules. PMID:22033081
NASA Astrophysics Data System (ADS)
Eydoux, Benoit; Baris, Bulent; Khoussa, Hassan; Guillermet, Olivier; Gauthier, Sébastien; Bouju, Xavier; Martrou, David
2017-10-01
Noncontact atomic force microscopy images show that gold grows on the (2 ×2 )-Nad reconstructed polar (0001) surface of AlN insulating films, in the form of large monatomic islands. High-resolution images and in situ reflection high-energy electron diffraction spectra reveal two moiré patterns from which an atomic model can be built. Density functional theory calculations confirm this model and give insight into the mechanisms that lead to the stabilization of the monolayer. Gold adsorption is accompanied, first, by a global vertical charge transfer from the AlN substrate that fulfills the electrostatic stability criterion for a polar material, and second, by lateral charge transfers that are driven by the local chemical properties of the (2 ×2 )-Nad reconstruction. These results present alternative strategies to grow metal electrodes onto nitride compounds with a better controlled interface, a crucial issue for applications.
SEURAT-1 liver gold reference compounds: a mechanism-based review.
Jennings, Paul; Schwarz, Michael; Landesmann, Brigitte; Maggioni, Silvia; Goumenou, Marina; Bower, David; Leonard, Martin O; Wiseman, Jeffrey S
2014-12-01
There is an urgent need for the development of alternative methods to replace animal testing for the prediction of repeat dose chemical toxicity. To address this need, the European Commission and Cosmetics Europe have jointly funded a research program for 'Safety Evaluation Ultimately Replacing Animal Testing.' The goal of this program was the development of in vitro cellular systems and associated computational capabilities for the prediction of hepatic, cardiac, renal, neuronal, muscle, and skin toxicities. An essential component of this effort is the choice of appropriate reference compounds that can be used in the development and validation of assays. In this review, we focus on the selection of reference compounds for liver pathologies in the broad categories of cytotoxicity and lipid disorders. Mitochondrial impairment, oxidative stress, and apoptosis are considered under the category of cytotoxicity, while steatosis, cholestasis, and phospholipidosis are considered under the category of lipid dysregulation. We focused on four compound classes capable of initiating such events, i.e., chemically reactive compounds, compounds with specific cellular targets, compounds that modulate lipid regulatory networks, and compounds that disrupt the plasma membrane. We describe the molecular mechanisms of these compounds and the cellular response networks which they elicit. This information will be helpful to both improve our understanding of mode of action and help in the selection of appropriate mechanistic biomarkers, allowing us to progress the development of animal-free models with improved predictivity to the human situation.
Pauling, Linus
1977-01-01
A general theory of the structure of complexes of the transition metals is developed on the basis of the enneacovalence of the metals and the requirements of the electroneutrality principle. An extra orbital may be provided through the small but not negligible amount of f and g character of spd bond orbitals, and an extra electron or electron pair may be accepted in this orbital for a single metal or a cluster to neutralize the positive electric charge resulting from the partial ionic character of the bonds with ligands, such as the carbonyl group. Examples of cluster compounds of cobalt, ruthenium, rhodium, osmium, and gold are discussed. PMID:16592470
Pauling, L
1977-12-01
A general theory of the structure of complexes of the transition metals is developed on the basis of the enneacovalence of the metals and the requirements of the electroneutrality principle. An extra orbital may be provided through the small but not negligible amount of f and g character of spd bond orbitals, and an extra electron or electron pair may be accepted in this orbital for a single metal or a cluster to neutralize the positive electric charge resulting from the partial ionic character of the bonds with ligands, such as the carbonyl group. Examples of cluster compounds of cobalt, ruthenium, rhodium, osmium, and gold are discussed.
Godoy-Caballero, María del Pilar; Acedo-Valenzuela, María Isabel; Galeano-Díaz, Teresa; Costa-García, Agustín; Fernández-Abedul, María Teresa
2012-11-07
The relevance of the development of microchip electrophoresis applications in the field of food analysis is considered in this work. A novel method to determine important phenolic compounds in extra virgin olive oil samples using a miniaturized chemical analysis system is presented in this paper. Three interesting phenolic compounds in olive oil and fruit (tyrosol, hydroxytyrosol and oleuropein glucoside) were studied by end-channel amperometric detection using a 100 μm gold wire as working electrode in glass microchip electrophoresis. The electrochemical behavior of these compounds was studied and the medium to carry out their detection was selected (0.1 M aqueous sulfuric acid). The best conditions for the separation were achieved in sodium tetraborate (10% methanol, pH 9.50) with different concentrations for the sample and the running buffer in order to allow the sample stacking phenomenon. The injection was carried out using 600 V for 3 s and the separation voltage was set at 1000 V. The quality of the method was evaluated through its analytical figures of merit and by its performance on real extra virgin olive oil samples. Determination of these compounds was carried out using the standard addition calibration method with good recoveries.
Fabbro, Simone Del; Nazzi, Francesco
2013-01-01
Tick-borne zoonoses are considered as emerging diseases. Tick repellents represent an effective tool for reducing the risk of tick bite and pathogens transmission. Previous work demonstrated the repellent activity of the phenylpropanoid eugenol against Ixodes ricinus; here we investigate the relationship between molecular structure and repellency in a group of substances related to that compound. We report the biological activity of 18 compounds varying for the presence/number of several moieties, including hydroxyl and methoxy groups and carbon side-chain. Each compound was tested at different doses with a bioassay designed to measure repellency against individual tick nymphs. Both vapor pressure and chemical features of the tested compounds appeared to be related to repellency. In particular, the hydroxyl and methoxy groups as well as the side-chain on the benzene ring seem to play a role. These results are discussed in light of available data on chemical perception in ticks. In the course of the study new repellent compounds were identified; the biological activity of some of them (at least as effective as the “gold standard” repellent DEET) appears to be very promising from a practical point of view. PMID:23805329
Aroma profile and volatiles odor activity along gold cultivar pineapple flesh.
Montero-Calderón, Marta; Rojas-Graü, María Alejandra; Martín-Belloso, Olga
2010-01-01
Physicochemical attributes, aroma profile, and odor contribution of pineapple flesh were studied for the top, middle, and bottom cross-sections cut along the central axis of Gold cultivar pineapple. Relationships between volatile and nonvolatile compounds were also studied. Aroma profile constituents were determined by headspace solid-phase microextraction at 30 °C, followed by gas chromatography/mass spectrometry analysis. A total of 20 volatile compounds were identified and quantified. Among them, esters were the major components which accounted for 90% of total extracted aroma. Methyl butanoate, methyl 2-methyl butanoate, and methyl hexanoate were the 3 most abundant components representing 74% of total volatiles in pineapple samples. Most odor active contributors were methyl and ethyl 2-methyl butanoate and 2,5-dimethyl 4-methoxy 3(2H)-furanone (mesifuran). Aroma profile components did not vary along the fruit, but volatile compounds content significantly varied (P < 0.05) along the fruit, from 7560 to 10910 μg/kg, from the top to the bottom cross-sections of the fruit, respectively. In addition, most odor-active volatiles concentration increased from the top to the bottom 3rd of the fruit, concurrently with soluble solids content (SSC) and titratable acidity (TA) differences attributed to fruitlets distinct degree of ripening. Large changes in SSC/TA ratio and volatiles content throughout the fruit found through this study are likely to provoke important differences among individual fresh-cut pineapple trays, compromising consumer perception and acceptance of the product. Such finding highlighted the need to include volatiles content and SSC/TA ratio and their variability along the fruit as selection criteria for pineapples to be processed and quality assessment of the fresh-cut fruit. © 2010 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Sonny, Susanna; Sesay, Adama M.; Virtanen, Vesa
2010-11-01
The aim of the study is to develop diagnostic tests for the detection of pharmaceutical compounds in saliva. Oral fluid is increasingly being considered as an ideal sample matrix. It can be collected non-invasively and causes less stress to the person being tested. The detection of pharmaceutical compounds and drugs in saliva can give valuable information on individual bases on dose response, usage, characterization and clinical diagnostics. Surface plasmon resonance (SPR) is a highly sensitive, fast and label free analytical technique for the detection of molecular interactions. The specific binding of measured analyte onto the active gold sensing surface of the SPR device induces a refractive index change that can be monitored. To monitor these pharmaceutical compounds in saliva the immunoassays were developed using a SPR instrument. The instrument is equipped with a 670nm laser diode and has two sensing channels. Monoclonal antibodies against the pharmaceutical compounds were used to specifically recognise and capture the compounds which intern will have an effect of the refractive index monitored. Preliminary results show that the immunoassays for cocaine and MDMA (3,4-methylenedioxymethamphetamine) are very sensitive and have linear ranges of 0.01 pg/ml - 1 ng/ml and 0.1 pg/ml - 100 ng/ml, respectively.
Gold in the layered structures of R 3Au 7Sn 3: From relativity to versatility
Provino, Alessia; Steinberg, Simon Alexander; Smetana, Volodymyr; ...
2016-07-11
A new isotypic series of ternary rare earth element-gold-tetrel intermetallic compounds has been synthesized and their structures and properties have been characterized. R 3Au 7Sn 3 (R = Y, La-Nd, Sm, Gd-Tm, Lu) crystallize with the hexagonal Gd 3Au 7Sn 3 prototype (Pearson symbol hP26; P6 3/m, a = 8.110-8.372 Å, c = 9.351-9.609 Å, V cell = 532.7-583.3 Å3, Z = 2), an ordered variant of the Cu 10Sn 3-type. Their structure is built up by GdPt 2Sn-type layers, which feature edge-sharing Sn@Au 6 trigonal antiprisms connected by trigonal R3 groups. Additional insertion of gold atoms leads to themore » formation of new homoatomic Au clusters, Au@Au 6; alternatively, the structure can be considered as a superstructural polyhedral packing of the ZrBeSi-type. The magnetization, heat ca-pacity and electrical resistivity have been measured for R 3Au 7Sn 3 (R = Ce, Pr, Nd and Tb). All four compounds order antiferromagnetically with the highest T N of 13 K for Tb 3Au 7Sn 3. In Ce 3Au 7Sn 3, which has a T N of 2.9 K, the heat capacity and electrical resistivity data in zero and applied fields indicate the presence of Kondo interactions. The coefficient of the linear term in the electronic heat capacity, γ, derived from the heat capacity data below 0.5 K is 211 mJ/Ce mol K 2 suggesting strong electronic correlations due to the Kondo interaction. The electronic structure calculations based on the projector augmented wave method for particular representatives of the series suggest different tendencies of the localized R-4f AOs to hybridize with the valence states. LMTO-based bonding analysis on the non-magnetic La 3Au 7Sn 3 indicates that the integrated crystal orbital Hamilton popu-lations (COHPs) are dominated by the heteroatomic Au–Sn contacts; however, contributions from La–Au and La–Sn separations are significant, both together exceeding 40 % in the overall bonding. Furthermore, homoatomic Au–Au interactions are evident for the Au@Au 6 units but, despite of the high atomic concentration of Au in the compound, they do not dominate the entire bonding picture.« less
Gold in the layered structures of R 3Au 7Sn 3: From relativity to versatility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Provino, Alessia; Steinberg, Simon Alexander; Smetana, Volodymyr
A new isotypic series of ternary rare earth element-gold-tetrel intermetallic compounds has been synthesized and their structures and properties have been characterized. R 3Au 7Sn 3 (R = Y, La-Nd, Sm, Gd-Tm, Lu) crystallize with the hexagonal Gd 3Au 7Sn 3 prototype (Pearson symbol hP26; P6 3/m, a = 8.110-8.372 Å, c = 9.351-9.609 Å, V cell = 532.7-583.3 Å3, Z = 2), an ordered variant of the Cu 10Sn 3-type. Their structure is built up by GdPt 2Sn-type layers, which feature edge-sharing Sn@Au 6 trigonal antiprisms connected by trigonal R3 groups. Additional insertion of gold atoms leads to themore » formation of new homoatomic Au clusters, Au@Au 6; alternatively, the structure can be considered as a superstructural polyhedral packing of the ZrBeSi-type. The magnetization, heat ca-pacity and electrical resistivity have been measured for R 3Au 7Sn 3 (R = Ce, Pr, Nd and Tb). All four compounds order antiferromagnetically with the highest T N of 13 K for Tb 3Au 7Sn 3. In Ce 3Au 7Sn 3, which has a T N of 2.9 K, the heat capacity and electrical resistivity data in zero and applied fields indicate the presence of Kondo interactions. The coefficient of the linear term in the electronic heat capacity, γ, derived from the heat capacity data below 0.5 K is 211 mJ/Ce mol K 2 suggesting strong electronic correlations due to the Kondo interaction. The electronic structure calculations based on the projector augmented wave method for particular representatives of the series suggest different tendencies of the localized R-4f AOs to hybridize with the valence states. LMTO-based bonding analysis on the non-magnetic La 3Au 7Sn 3 indicates that the integrated crystal orbital Hamilton popu-lations (COHPs) are dominated by the heteroatomic Au–Sn contacts; however, contributions from La–Au and La–Sn separations are significant, both together exceeding 40 % in the overall bonding. Furthermore, homoatomic Au–Au interactions are evident for the Au@Au 6 units but, despite of the high atomic concentration of Au in the compound, they do not dominate the entire bonding picture.« less
Electronic tongue for nitro and peroxide explosive sensing.
González-Calabuig, Andreu; Cetó, Xavier; Del Valle, Manel
2016-06-01
This work reports the application of a voltammetric electronic tongue (ET) towards the simultaneous determination of both nitro-containing and peroxide-based explosive compounds, two families that represent the vast majority of compounds employed either in commercial mixtures or in improvised explosive devices. The multielectrode array was formed by graphite, gold and platinum electrodes, which exhibited marked mix-responses towards the compounds examined; namely, 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), pentaerythritol tetranitrate (PETN), 2,4,6-trinitrotoluene (TNT), N-methyl-N,2,4,6-tetranitroaniline (Tetryl) and triacetone triperoxide (TATP). Departure information was the set of voltammograms, which were first analyzed by means of principal component analysis (PCA) allowing the discrimination of the different individual compounds, while artificial neural networks (ANNs) were used for the resolution and individual quantification of some of their mixtures (total normalized root mean square error for the external test set of 0.108 and correlation of the obtained vs. expected concentrations comparison graphs r>0.929). Copyright © 2016 Elsevier B.V. All rights reserved.
Elie, Benelita T.; Levine, Chaya; Ubarretxena-Belandia, Iban; Varela-Ramírez, Armando; Aguilera, Renato J.; Ovalle, Rafael; Contel, María
2013-01-01
Water-soluble compounds of the type [AuCl(PR3)] with alkyl-bis-(m-sulfonated-phenyl)-(mC6H4SO3Na)2 and dialkyl-(m-sulfonated-phenyl)-(mC6H4SO3Na) (R = nBu, Cp) phosphanes have been prepared. Dialkyl-phosphane compounds generate water-soluble nanoparticles of 10-15 nm radius when dissolved in water. These air-stable complexes have been evaluated as catalysts in the synthesis of propargylamines via a three-component coupling reaction of aldehydes, amines and alkynes in water. The antimicrobial activity of the new complexes against Gram-positive and Gram-negative bacteria and yeast has been evaluated. The new compounds display moderate to high antibacterial activity. The more lipophilic compounds are also potent against fungi. Their cytotoxic properties have been analyzed in vitro utilizing human Jurkat T-cell acute lymphoblastic leukemia cells. Compounds with dialkyl-(m-sulfonated-phenyl)-(mC6H4SO3Na) phosphanes displayed moderate to high cytotoxicity on this cell line. Death cell mechanism occurs mainly by early apoptosis. The catalytic/biological activity of the previously described compound with commercial m-trisulfonated-triphenylphosphine [AuCl(TPPTS)] (6) has been also evaluated to compare the effects of the higher basicity and lipophilicity of the alkyl- and di-alkyl-(m-sulfonated-phenyl) phosphanes on these new compounds. PMID:23524957
Adherence and Bonding of the Ion Plated Films.
1983-07-01
adhesion strength is, therefore, governed by the physical interactions and van der waals forces yield the lower bound estimates(42). c) Compound interfaces...plasma and 30% for gold- argon plasma, when using high current densities of the or- der of several milliamperes per square centimetere. Buckely et.al...resulted only from ions following the field lines, whereas that on the front surface was the re- sult of both ions and neut ils. In the present work we
Jyotshna; Shanker, Karuna; Khare, Puja; Tiwari, Nimisha; Mohanty, Shilpa; Bawankule, Dnyaneshwar U; Pal, Anirban
2016-01-01
Metals reduction into submicro/nano size through bhasma preparations for therapeutic use is well established in ancient traditional system of Indian medicines i.e. Ayurveda. Recently, nanotechnology has drawn the attention of researchers to develeope various size and shape nanoparicles / composite for number of applications.In this article, we report the enrichment of lactone enriched fraction (LEF) by liquid-liquid portioning of Vernonia cinerea metabolic extract and sysnthesis of mediated nano-gold composite (LEF-AuNPs) in single step process. The morphological characteristic based on transmission electron microscope (TEM) image analysis showed that LEF-AuNPs were predominantly nanopolygons and nanobots in shapes ranging from 50-200 nm in size. Abundance of phytochemicals in both LEF and LEF-AuNPs was dissimilar. In LEF, montanol- a diterpenoid, while in LEF-AuNPs, neophytadiene- a phytanes was the major compound. HPLC profile of relatively polar compounds also varied drastically. In-vitro biocompatibility, cytotoxicity [MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) based assay] and storage stabilitiy of LEF-AuNPs were evaluated. The moderate ability of LEF-AuNPs to restrict parasitaemia, extended mean survival time of mice infected with Plasmodium berghei and lack of any evident toxicity provides new opportunities for the safe delivery and applications of such nanocomposites in malaria therapy.
Effects of climate change on the wash-off of volatile organic compounds from urban roads.
Mahbub, Parvez; Goonetilleke, Ashantha; Ayoko, Godwin A; Egodawatta, Prasanna
2011-09-01
The predicted changes in rainfall characteristics due to climate change could adversely affect stormwater quality in highly urbanised coastal areas throughout the world. This in turn will exert a significant influence on the discharge of pollutants to estuarine and marine waters. Hence, an in-depth analysis of the effects of such changes on the wash-off of volatile organic compounds (VOCs) from urban roads in the Gold Coast region in Australia was undertaken. The rainfall characteristics were simulated using a rainfall simulator. Principal Component Analysis (PCA) and Multicriteria Decision tools such as PROMETHEE and GAIA were employed to understand the VOC wash-off under climate change. It was found that low, low to moderate and high rain events due to climate change will affect the wash-off of toluene, ethylbenzene, meta-xylene, para-xylene and ortho-xylene from urban roads in Gold Coast. Total organic carbon (TOC) was identified as predominant carrier of toluene, meta-xylene and para-xylene in <1 μm to 150 μm fractions and for ethylbenzene in 150 μm to >300 μm fractions under such dominant rain events due to climate change. However, ortho-xylene did not show such affinity towards either TOC or TSS (total suspended solids) under the simulated climatic conditions. Copyright © 2011 Elsevier B.V. All rights reserved.
Wang, Changsheng; Bryce, Martin R; Gigon, Joanna; Ashwell, Geoffrey J; Grace, Iain; Lambert, Colin J
2008-07-04
We report the synthesis of new oligo(aryleneethynylene) molecular wires of ca. 4 nm length scale by palladium-catalyzed Sonogashira cross-coupling methodology. Key structural features are the presence of electron donor 9-(1,3-dithiol-2-ylidene)fluorene (compounds 13 and 14) and electron acceptor 9-[di(4-pyridyl)methylene]fluorene units (compound 16) at the core of the molecules. Terminal thiolate substituents are protected as cyanoethylsulfanyl (13 and 16) or thioacetate derivatives (14). The molecules display well-defined redox processes in solution electrochemical studies. The optical properties in solution are similar to those of the fluorenone analog 6: the strongest absorptions for 6, 13 and 16 are in the region lambda(max) = 387-393 nm, with 13 showing an additional shoulder at 415 nm which is not present for 6 and 16; this shoulder is assigned to a HOMO-LUMO transition from the dithiole to the fluorene unit. Molecules 6, 13, 14 and 16 form self-assembled monolayers on gold substrates which exhibit essentially symmetrical current-voltage (I-V) characteristics when contacted by a gold scanning tunelling microscope (STM) tip. The effects of the chemical modifications at the central unit of 6, 14 and 16 on the HOMO-LUMO levels and electron transport through the molecules in vacuum have been computed by an ab initio approach.
NASA Astrophysics Data System (ADS)
Li, Yali; Li, Qianwen; Sun, Chengbin; Jin, Sila; Park, Yeonju; Zhou, Tieli; Wang, Xu; Zhao, Bing; Ruan, Weidong; Jung, Young Mee
2018-01-01
A new type of surface-enhanced Raman scattering (SERS) substrate was fabricated through the layer-by-layer self-assembly of silver nanoparticles (AgNPs, av. 45 nm in diameter) and porous gold nanoclusters/nanoparticles (AuNPs, av. 143 nm in diameter). The development of the porosity of the AuNPs was investigated, and successful SERS applications of the porous AuNPs were also examined. As compared with AgNP films, the enhancement factor of Ag-Au compound substrates is increased 6 times at the concentration of 10-6 M. This additional enhancement contributes to the trace-amount-detection of target molecules enormously. The contribution is generated through the increase of the usable surface area arising from the nanoscale pores distributed three-dimensionally in the porous AuNPs, which enrich the adsorption sites and hot spots for the adsorption of probe molecules, making the developed nanofilms highly sensitive SERS substrates. The substrates were used for the detection of a physiological metabolite of urea molecules. The results reached to a very low concentration of 1 mM and exhibited good quantitative character over the physiological concentration range (1 ∼ 20 mM) under mimicking biophysical conditions. These results show that the prepared substrate has great potential in the ultrasensitive SERS-based detection and in SERS-based biosensors.
DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics
NASA Astrophysics Data System (ADS)
Latorre, Alfonso; Posch, Christian; Garcimartín, Yolanda; Celli, Anna; Sanlorenzo, Martina; Vujic, Igor; Ma, Jeffrey; Zekhtser, Mitchell; Rappersberger, Klemens; Ortiz-Urda, Susana; Somoza, Álvaro
2014-06-01
Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further reduce toxicity by increasing targeted delivery towards malignant cells.Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further reduce toxicity by increasing targeted delivery towards malignant cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00019f
XPS and Ag L3-edge XANES characterization of silver and silver-gold sulfoselenides
NASA Astrophysics Data System (ADS)
Mikhlin, Yuri L.; Pal'yanova, Galina A.; Tomashevich, Yevgeny V.; Vishnyakova, Elena A.; Vorobyev, Sergey A.; Kokh, Konstantin A.
2018-05-01
Gold and silver sulfoselenides are of interest as materials with high ionic conductivity and promising magnetoresistive, thermoelectric, optical, and other physico-chemical properties, which are strongly dependent on composition and structure. Here, we applied X-ray photoelectron spectroscopy and Ag L3 X-ray absorption near-edge structure (XANES) to study the electronic structures of low-temperature compounds and solid solutions Ag2SxSe1-x (0 < x < 1), AgAuS, and Ag3AuSxSe2-x (x = 0, 1, 2). Upon substitution of Se with S, a steady increase in the positive charge at Ag(I) sites and only minor changes in the local charge at chalcogen atoms were found from the photoelectron Ag 3d, S 2p, Se 3d, and Ag M4,5VV Auger spectra. The intensity of the Ag L3-edge peak, which is known to correlate with hole counts in the Ag 4d shell having a formal d10 configuration, was enhanced by 20-25% from Ag2Se to Ag2S and from Ag3AuSe2 to Ag3AuS2. The effect of gold is more pronounced, and the number of Ag d holes and the negative charge of S and Se notably decreased for Au-containing compounds; in particular, the Ag L3-edge peak is about 35% lower for AgAuS relative to Ag2S. At the same time, the Au 4f binding energy and, therefore, charge at Au(I) sites increase with increasing S content due to the transfer of electron density from Au to Ag atoms. It was concluded that the effects mainly originate from shortening of the metal-chalcogen and especially the Ausbnd Ag interatomic distances in substances having similar coordination geometry.
Rocchigiani, Luca; Fernandez-Cestau, Julio; Budzelaar, Peter H M; Bochmann, Manfred
2018-06-21
The factors affecting the rates of reductive C-C cross-coupling reactions in gold(III) aryls were studied by using complexes that allow easy access to a series of electronically modified aryl ligands, as well as to gold methyl and vinyl complexes, by using the pincer compounds [(C^N^C)AuR] (R=C 6 F 5 , CH=CMe 2 , Me and p-C 6 H 4 X, where X=OMe, F, H, tBu, Cl, CF 3 , or NO 2 ) as starting materials (C^N^C=2,6-(4'-tBuC 6 H 3 ) 2 pyridine dianion). Protodeauration followed by addition of one equivalent SMe 2 leads to the quantitative generation of the thioether complexes [(C^N-CH)AuR(SMe 2 )] + . Upon addition of a second SMe 2 pyridine is displaced, which triggers the reductive aryl-R elimination. The rates for these cross-couplings increase in the sequence k(vinyl)>k(aryl)≫k(C 6 F 5 )>k(Me). Vinyl-aryl coupling is particularly fast, 1.15×10 -3 L mol -1 s -1 at 221 K, whereas both C 6 F 5 and Me couplings encountered higher barriers for the C-C bond forming step. The use of P(p-tol) 3 in place of SMe 2 greatly accelerates the C-C couplings. Computational modelling shows that in the C^N-bonded compounds displacement of N by a donor L is required before the aryl ligands can adopt a conformation suitable for C-C bond formation, so that elimination takes place from a four-coordinate intermediate. The C-C bond formation is the rate-limiting step. In the non-chelating case, reductive C(sp 2 )-C(sp 2 ) elimination from three-coordinate ions [(Ar 1 )(Ar 2 )AuL] + is almost barrier-free, particularly if L=phosphine. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mahmood, Fawad; Jan, Muhammad S.; Ahmad, Sajjad; Rashid, Umer; Ayaz, Muhammad; Ullah, Farhat; Hussain, Fida; Ahmad, Ashfaq; Khan, Arif-ullah; Aasim, Muhammad; Sadiq, Abdul
2017-12-01
The development of novel and more effective drugs is slow asthe resistance produced by pathogens.From the current scenario it can be imagine that this field of research will enter into the pre-antibiotic era. This work aims to study and evaluate the preliminary antibacterial, anthelmintic and cytotoxic potentials of ethyl 3-oxo-2-(2,5-dioxopyrrolidin-3-yl)butanoates.Among all of the four compounds, compound 2 has displayed remarkable potency with MIC values of 0.125, 0.083, 0.073 and 0.109 mg/ml against E. sakazakii, E. coli. S. aureus and K. pneumonia respectively. Compared to etoposide (LC50 9.8 µg/ml), the compounds demonstrated LC50 values from 280 to 765 µg/ml. For anthelmintic assay, three concentrations of each compound and standard drug were studied in determination of time of death of the two species. Excellent anthelmintic activity was observed by all four compounds against P. posthuma and A. gallibetter than standard albendazole. High GOLD fitness score data from docking analysis towards the targets represent better protein–ligand binding affinity and thus indicate a high propensity for all the active compounds to bind to the active site.Thepromisingin-vitro antimicrobial, anthelmintic activity and cytotoxicity data conclusively revealed that these compounds may serve as viable lead compounds for the treatment of bacterial and parasitic infections, and therefore, could help the medicinal chemists to design future chemotherapeutic agents to avoid rapid drug resistance.
2015-01-01
Reaction of [Au(C6F5)(tht)] (tht = tetrahydrothiophene) with 2,2′:6′,2″-terpyridine (terpy) leads to complex [Au(C6F5)(η1-terpy)] (1). The chemical oxidation of complex (1) with 2 equiv of [N(C6H4Br-4)3](PF6) or using electrosynthetic techniques affords the Au(III) complex [Au(C6F5)(η3-terpy)](PF6)2 (2). The X-ray diffraction study of complex 2 reveals that the terpyridine acts as tridentate chelate ligand, which leads to a slightly distorted square-planar geometry. Complex 1 displays fluorescence in the solid state at 77 K due to a metal (gold) to ligand (terpy) charge transfer transition, whereas complex 2 displays fluorescence in acetonitrile due to excimer or exciplex formation. Time-dependent density functional theory calculations match the experimental absorption spectra of the synthesized complexes. In order to further probe the frontier orbitals of both complexes and study their redox behavior, each compound was separately characterized using cyclic voltammetry. The bulk electrolysis of a solution of complex 1 was analyzed by spectroscopic methods confirming the electrochemical synthesis of complex 2. PMID:26496068
Advanced screening of electrode couples
NASA Technical Reports Server (NTRS)
Giner, J. D.; Cahill, K.
1980-01-01
The chromium (Cr(3+)/Cr(2+)) redox couple (electrolyte and electrode) was investigated to determine its suitability as negative electrode for the iron (Fe(3+)/Fe(2+))-chromium (Cr(3+)/Cr(2+)) redox flow battery. Literature search and laboratory investigation established that the solubility and stability of aqueous acidic solutions of chromium(3) chloride and chromium(2) chloride are sufficient for redox battery application. Four categories of electrode materials were tested; namely, metals and metalloid materials (elements and compounds), alloys, plated materials, and Teflon-bonded materials. In all, the relative performance of 26 candidate electrode materials was evaluated on the basis of slow scan rate linear sweep voltammetry in stirred solution. No single material tested gave both acceptable anodic an acceptable cathodic performance. However, the identification of lead as a good cathodic electrocatalyst and gold as a good anodic electrocatalyst led to the invention of the lead/gold combination electrocatalyst. This type of catalyst can be fabricated in several ways and appears to offer the advantages of each metal without the disadvantages associated with their use as single materials. This lead/gold electrocatalyst was tested by NASA-Lewis Research Center in complete, flowing, redox batteries comprising a stack of several cells. A large improvement in the battery's coulombic and energy efficiency was observed.
Nanoparticle treated stainless steel filters for metal vapor sequestration
Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul; ...
2016-12-07
The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown ontomore » various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. Furthermore, the effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.« less
Nanoparticle treated stainless steel filters for metal vapor sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul
The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown ontomore » various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. Furthermore, the effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.« less
Houben, Adam James; D’Onofrio, Rebecca; Kokelj, Steven V; Blais, Jules M
2016-01-01
Gold mines in the Yellowknife, NT, region—in particular, the Giant Mine—operated from 1949–99, releasing 237,000 tonnes of waste arsenic trioxide (As2O3) dust, among other compounds, from gold ore extraction and roasting processes. For the first time, we show the geospatial distribution of roaster-derived emissions of several chemical species beyond the mine property on otherwise undisturbed taiga shield lakes within a 25 km radius of the mine, 11 years after its closing. Additionally, we demonstrate that underlying bedrock is not a significant source for the elevated concentrations in overlying surface waters. Aquatic arsenic (As) concentrations are well above guidelines for drinking water (10 μg/L) and protection for aquatic life (5 μg/L), ranging up to 136 μg/L in lakes within 4 km from the mine, to 2.0 μg/L in lakes 24 km away. High conversion ratios of methyl mercury were shown in lakes near the roaster stack as well, with MeHg concentrations reaching 44% of total mercury. The risk of elevated exposures by these metals is significant, as many lakes used for recreation and fishing near the City of Yellowknife are within this radius of elevated As and methyl Hg concentrations. PMID:27050658
Site-directed introduction of disulfide groups on antibodies for highly sensitive immunosensors.
Acero Sánchez, Josep Ll; Fragoso, Alex; Joda, Hamdi; Suárez, Guillaume; McNeil, Calum J; O'Sullivan, Ciara K
2016-07-01
The interface between the sample and the transducer surface is critical to the performance of a biosensor. In this work, we compared different strategies for covalent self-assembly of antibodies onto bare gold substrates by introducing disulfide groups into the immunoglobulin structure, which acted as anchor molecules able to chemisorb spontaneously onto clean gold surfaces. The disulfide moieties were chemically introduced to the antibody via the primary amines, carboxylic acids, and carbohydrates present in its structure. The site-directed modification via the carbohydrate chains exhibited the best performance in terms of analyte response using a model system for the detection of the stroke marker neuron-specific enolase. SPR measurements clearly showed the potential for creating biologically active densely packed self-assembled monolayers (SAMs) in a one-step protocol compared to both mixed SAMs of alkanethiol compounds and commercial immobilization layers. The ability of the carbohydrate strategy to construct an electrochemical immunosensor was investigated using electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) transduction. Graphical Abstract Left: Functionalization strategies of bare gold substrates via direct bio-SAM using disulfide-containing antibody chemically modified via their primary amines (A), carbohydrates (B) and carboxylic acids (C). Right: Dependence of the peak height with NSE concentration at NSE21-CHO modified electrochemical immunosensor. Inset: Logarithmic calibration plot.
ACID EVAPORATION OF ULTIMA GOLD TM AB LIQUID SCINTILLATION COCKTAIL RESIDUE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyser, E.; Fondeur, F.; Crump, S.
2011-12-21
Prior analyses of samples from the F/H Lab solutions showed the presence of diisopropylnapthalene (DIN), a major component of Ultima Gold{trademark} AB liquid scintillation cocktail (LSC). These solutions are processed through H-Canyon Tank 10.5 and ultimately through the 17.8E evaporator. Similar solutions originated in SRNL streams sent to the same H Canyon tanks. This study examined whether the presence of these organics poses a process-significant hazard for the evaporator. Evaporation and calorimetry testing of surrogate samples containing 2000 ppm of Ultima Gold{trademark} AB LSC in 8 M nitric acid have been completed. These experiments showed that although reactions between nitricmore » acid and the organic components do occur, they do not appear to pose a significant hazard for runaway reactions or generation of energetic compounds in canyon evaporators. The amount of off-gas generated was relatively modest and appeared to be well within the venting capacity of the H-Canyon evaporators. A significant fraction of the organic components likely survives the evaporation process primarily as non-volatile components that are not expected to represent any new process concerns during downstream operations such as neutralization. Laboratory Waste solutions containing minor amounts of DIN can be safely received, stored, transferred, and processed through the canyon waste evaporator.« less
Tabrizi, Leila; Chiniforoshan, Hossein
2017-10-24
New multinuclear gold(iii), palladium(ii) pincer complexes containing bis(diphenylphosphino) ferrocene/non-ferrocene ligands of formula [(L)Au(μ 2 -η 2 -CS 3 )Pd(dppf)](PF 6 ) 2 , 1, and [(L)Au(μ 2 -η 2 -CS 3 )Pd(dppe)](PF 6 ) 2 , 2 (HL = 5-methoxy-1,3-bis (1-methyl-1H-benzo[d]imidazol-2-yl)benzene, dppf = 1,1'-bis(diphenylphosphino)ferrocene, and dppe = bis(diphenylphosphino)ethane) have been synthesized and fully characterized. Both complexes are more cytotoxic to a number of human cancer cell lines than cisplatin. Moreover, complex 1 is more active than auranofin as the reference gold compound against a panel of several human tumor cell lines. Chemosensitivity tests completed on cisplatin sensitive and resistant cell lines have confirmed that both complexes were able to overcome cisplatin resistance. The complexes successfully inhibited the enzymes thioredoxin reductase (TrxR) and glutathione reductase (GR). The cellular uptake of both gold and palladium of the complexes was studied, which indicated a high biological stability of the complexes. The complexes 1 and 2 increase the production of ROS in HCT-15 cells. In addition, these complexes induce major levels of cancer cell death by apoptosis.
Kellenberger, Esther; Foata, Nicolas; Rognan, Didier
2008-05-01
Structure-based virtual screening is a promising tool to identify putative targets for a specific ligand. Instead of docking multiple ligands into a single protein cavity, a single ligand is docked in a collection of binding sites. In inverse screening, hits are in fact targets which have been prioritized within the pool of best ranked proteins. The target rate depends on specificity and promiscuity in protein-ligand interactions and, to a considerable extent, on the effectiveness of the scoring function, which still is the Achilles' heel of molecular docking. In the present retrospective study, virtual screening of the sc-PDB target library by GOLD docking was carried out for four compounds (biotin, 4-hydroxy-tamoxifen, 6-hydroxy-1,6-dihydropurine ribonucleoside, and methotrexate) of known sc-PDB targets and, several ranking protocols based on GOLD fitness score and topological molecular interaction fingerprint (IFP) comparison were evaluated. For the four investigated ligands, the fusion of GOLD fitness and two IFP scores allowed the recovery of most targets, including the rare proteins which are not readily suitable for statistical analysis, while significantly filtering out most false positive entries. The current survey suggests that selecting a small number of targets (<20) for experimental evaluation is achievable with a pure structure-based approach.
Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys.
Kikuchi, Masafumi; Takahashi, Masatoshi; Okuno, Osamu
2006-07-01
This study investigated the effect of alloying titanium with gold, silver, or copper on the elastic properties of the alloys. A series of binary titanium alloys was made with four concentrations of gold, silver, or copper (5, 10, 20, and 30 mass%) in an argon-arc melting furnace. The Young's moduli and Poisson's ratios of the alloy castings were determined with an ultrasonic-pulse method. The density of each alloy was previously measured by the Archimedes' principle. Results were analyzed using one-way ANOVA and the Scheffé's test. The densities of Ti-Au, Ti-Ag, and Ti-Cu alloys monotonically increased as the concentration of alloying elements increased. As the concentration of gold or silver increased to 20%, the Young's modulus significantly decreased, followed by a subsequent increase in value. As the concentration of copper increased, the Young's modulus monotonically increased. The Young's moduli of all the Ti-Cu alloys were significantly higher than that of the titanium. The density of all the experimental alloys was virtually independent of the alloy phases, while the Young's moduli and Poisson's ratios of the alloys were dependent. The addition of gold or silver slightly reduced the Young's modulus of the titanium when the alloy phase was single alpha. The increase in the Young's modulus of the Ti-Cu alloys is probably due to the precipitation of intermetallic compound Ti2Cu. Copper turned out to be a moderate stiffener that gains a Young's modulus of titanium up to 20% at the copper concentration of 30 mass%.
Pukenas, Laurynas; Prompinit, Panida; Nishitha, Boda; Tate, Daniel J; Singh, N D Pradeep; Wälti, Christoph; Evans, Stephen D; Bushby, Richard J
2017-05-31
Under a layer of 0.1 M HCl in isopropanol, soft ultraviolet (UV) (365 nm) photolysis of the thiol-on-gold self-assembled monolayer (SAM) derived from the lipoic acid ester of α-hydroxy-1-acetylpyrene results in the expected removal of the acetylpyrene protecting group. When photolyzing through a mask, this can be used to produce a patterned surface and, at a controlled electrochemical potential, it is then possible to selectively and reversibly electrodeposit copper on the photolyzed regions. Rather surprisingly, under these photolysis conditions, there is not only the expected photodeprotection of the ester but also partial removal of the lipoic acid layer which has been formed. In further studies, it is shown that this type of acid-catalyzed photoremoval of SAM layers by soft UV is a rather general phenomenon and results in the partial removal of the thiol-on-gold SAM layers derived from other ω-thiolated carboxylic acids. However, this phenomenon is chain-length dependent. Under conditions in which there is a ∼60% reduction in the thickness of the SAM derived from dithiobutyric acid, the SAM derived from mercaptoundecanoic acid is almost unaffected. The process by which the shorter-chain SAM layers are partially removed is not fully understood because these compounds do not absorb significantly in the 365 nm region of the spectrum! Significantly, this study shows that acid catalysis photolysis of thiol-on-gold SAMs needs to be used with caution.
Lanzellotto, C; Favero, G; Antonelli, M L; Tortolini, C; Cannistraro, S; Coppari, E; Mazzei, F
2014-05-15
In this work a novel electrochemical biosensing platform based on the coupling of two different nanostructured materials (gold nanoparticles and fullerenols) displaying interesting electrochemical features, has been developed and characterized. Gold nanoparticles (AuNPs) exhibit attractive electrocatalytic behavior stimulating in the last years, several sensing applications; on the other hand, fullerene and its derivatives are a very promising family of electroactive compounds although they have not yet been fully employed in biosensing. The methodology proposed in this work was finalized to the setup of a laccase biosensor based on a multilayer material consisting in AuNPs, fullerenols and Trametes versicolor Laccase (TvL) assembled layer by layer onto a gold (Au) electrode surface. The influence of different modification step procedures on the electroanalytical performance of biosensors has been evaluated. Cyclic voltammetry, chronoamperometry, surface plasmon resonance (SPR) and scanning tunneling microscopy (STM) were used to characterize the modification of surface and to investigate the bioelectrocatalytic biosensor response. This biosensor showed fast amperometric response to gallic acid, which is usually considered a standard for polyphenols analysis of wines, with a linear range 0.03-0.30 mmol L(-1) (r(2)=0.9998), with a LOD of 0.006 mmol L(-1) or expressed as polyphenol index 5.0-50 mg L(-1) and LOD 1.1 mg L(-1). A tentative application of the developed nanostructured enzyme-based biosensor was performed evaluating the detection of polyphenols either in buffer solution or in real wine samples. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2006-01-01
Microcircuits encapsulated in three plastic package styles were stored in different environments at temperatures varying from 130 C to 225 C for up to 4,000 hours in some cases. To assess the effect of oxygen, the parts were aged at high temperatures in air and in vacuum chambers. The effect of humidity was evaluated during long-term highly accelerated temperature and humidity stress testing (HAST) at temperatures of 130 C and 150 C. High temperature storage testing of decapsulated microcircuits in air, vacuum, and HAST chambers was carried out to evaluate the role of molding compounds in the environmentally-induced degradation and failure of wire bonds (WB). This paper reports on accelerating factors of environment and molding compound on WB failures. It has been shown that all environments, including oxygen, moisture, and the presence of molding compounds reduce time-to-failures compared to unencapsulated devices in vacuum conditions. The mechanism of the environmental effect on KB degradation is discussed.
Montero-Calderón, Marta; Rojas-Graü, María Alejandra; Aguiló-Aguayo, Ingrid; Soliva-Fortuny, Robert; Martín-Belloso, Olga
2010-04-28
The effects of modified atmosphere packaging on volatile compound content and physicochemical and antioxidant attributes of Gold cultivar fresh-cut pineapples were assessed throughout storage at 5 degrees C. Fresh-cut pineapple pieces were packed under LO (low oxygen, 12% O(2), 1% CO(2)), AIR (20.9% O(2)) and HO (high oxygen, 38% O(2)) headspace atmospheres. Methyl butanoate, methyl 2-methylbutanoate, and methyl hexanoate were the most abundant volatiles regardless of the packaging atmosphere and days of storage; whereas most odor active volatiles were methyl and ethyl 2-methylbutanoate, 2,5-dimethyl-4-methoxy-3(2H)-furanone and ethyl hexanoate. Physicochemical attributes of pineapple did not significantly vary, whereas vitamin C content and total antioxidant capacity were lower for fresh-cut pineapple in HO (488 +/- 38 mg/100 mg(fw) and 54.4 +/- 5.7%, respectively) than for LO and AIR packages. Storage life of fresh-cut pineapple was limited to 14 days by volatile compounds losses and fermentation processes.
NASA Astrophysics Data System (ADS)
Fogel, Gary B.; Cheung, Mars; Pittman, Eric; Hecht, David
2008-01-01
Modeling studies were performed on known inhibitors of the quadruple mutant Plasmodium falciparum dihydrofolate reductase (DHFR). GOLD was used to dock 32 pyrimethamine derivatives into the active site of DHFR obtained from the x-ray crystal structure 1J3K.pdb. Several scoring functions were evaluated and the Molegro Protein-Ligand Interaction Score was determined to have one of the best correlation to experimental p K i . In conjunction with Protein-Ligand Interaction scores, predicted binding modes and key protein-ligand interactions were evaluated and analyzed in order to develop criteria for selecting compounds having a greater chance of activity versus resistant strains of Plasmodium falciparum. This methodology will be used in future studies for selection of compounds for focused screening libraries.
NASA Astrophysics Data System (ADS)
Kong, Ge-Xing; Ma, Xiao-Juan; Liu, Qi-Jun; Li, Yong; Liu, Zheng-Tang
2018-03-01
Using first-principles calculations method based on density functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE) implementation of the generalized gradient approximation (GGA), we investigate the structural, elastic and thermodynamic properties of gold-copper intermetallic compounds (Au-Cu ICs). The calculated lattice parameters are in excellent agreement with experimental data. The elastic constants show that all the investigated Au-Cu alloys are mechanically stable. Elastic properties, including the shear modulus, Young's modulus, Poisson's ratio and Pugh's indicator, of the intermetallic compounds are evaluated and discussed, with special attention to the remarkable anisotropy displayed by Au-Cu ICs. Thermodynamic and transport properties including the Debye temperature, thermal conductivity and melting point are predicted from the averaged sound velocity and elastic moduli, using semi-empirical formulas.
Electrophilic activation and cycloisomerization of enynes: a new route to functional cyclopropanes.
Bruneau, Christian
2005-04-15
Transformations of enynes in the presence of transition-metal catalysts have played an important role in the preparation of a variety of cyclic compounds. Recent developments in the activation of triple carbon-carbon bonds by electrophilic metal centers have provided a new entry to the selective synthesis of cyclopropane derivatives from enynes. The mechanisms of these reactions involve catalytic species with both ionic and cyclopropylcarbenoid character. This type of activation will undoubtedly be further developed for application to other unsaturated hydrocarbons and inspire new catalytic cascade reaction sequences. This Minireview discusses the recent developments in electrophilic activation of enynes and shows that simple catalysts such as [Ru(3)(CO)(12)], PtCl(2), and cationic gold complexes are efficient precursors to promote the formation of functional polyclic compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volotskova, O; Sun, C; Pratx, G
2014-06-15
Purpose: Cerenkov photons are produced when charged particles, emitted from radionuclides, travel through a media with a speed greater than that of the light in the media. Cerenkov radiation is mostly in the UV/Blue region and, thus, readily absorbed by biological tissue. Cerenkov Radiation Energy Transfer (CRET) is a wavelength-shifting phenomenon from blue Cerenkov light to more penetrating red wavelengths. We demonstrate the feasibility of in-depth imaging of CRET light originating from radionuclides realized by down conversion of gold nanoclusters (AuNCs, a novel particle composed of few atoms of gold coated with serum proteins) in vivo. Methods: Bovine Serum Albumin,more » Human Serum Albumin and Transferrin conjugated gold nanoclusters were synthesized, characterized and examined for CRET. Three different clinically used radiotracers: 18F-FDG, 90Y and 99mTc were used. Optical spectrum (440–750 nm) was recorded by sensitive bioluminescence imaging system at physiological temperature. Dose dependence (activity range from 0.5 up to 800uCi) and concentration dependence (0.01 to 1uM) studies were carried out. The compound was also imaged in a xenograft mouse model. Results: Only β+ and β--emitting radionuclides (18F-FDG, 90Y) are capable of CRET; no signal was found in 99mTc (γ-emitter). The emission peak of CRET by AuNCs was found to be ∼700 nm and was ∼3 fold times of background. In vitro studies showed a linear dependency between luminescence intensity and dose and concentration. CRET by gold nanoclusters was observed in xenografted mice injected with 100uCi of 18F-FDG. Conclusion: The unique optical, transport and chemical properties of AuNCs (gold nanoclusters) make them ideal candidates for in-vivo imaging applications. Development of new molecular imaging probes will allow us to achieve substantially improved spatiotemporal resolution, sensitivity and specificity for tumor imaging and detection.« less
Ligand-protected gold clusters: the structure, synthesis and applications
NASA Astrophysics Data System (ADS)
Pichugina, D. A.; Kuz'menko, N. E.; Shestakov, A. F.
2015-11-01
Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Aun with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au15 and Au25) and on anchorage to a support surface (Au25/SiO2, Au20/C, Au10/FeOx) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR)n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters MxAunLm (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR)x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active sites. The bibliography includes 345 references.
Phase I Clinical Trial Results of Auranofin, a Novel Antiparasitic Agent
Capparelli, Edmund V.; Bricker-Ford, Robin; Rogers, M. John; McKerrow, James H.
2016-01-01
ABSTRACT Under an NIH priority to identify new drugs to treat class B parasitic agents, we performed high-throughput screens, which identified the activity of auranofin (Ridaura) against Entamoeba histolytica and Giardia intestinalis, major causes of water- and foodborne outbreaks. Auranofin, an orally administered, gold (Au)-containing compound that was approved by the FDA in 1985 for treatment of rheumatoid arthritis, was effective in vitro and in vivo against E. histolytica and both metronidazole-sensitive and -resistant strains of Giardia. We now report the results of an NIH-sponsored phase I trial to characterize the pharmacokinetics (PK) and safety of auranofin in healthy volunteers using modern techniques to measure gold levels. Subjects received orally 6 mg (p.o.) of auranofin daily, the recommended dose for rheumatoid arthritis, for 7 days and were followed for 126 days. Treatment-associated adverse events were reported by 47% of the subjects, but all were mild and resolved without treatment. The mean gold maximum concentration in plasma (Cmax) at day 7 was 0.312 μg/ml and the half-life (t1/2) 35 days, so steady-state blood levels would not be reached in short-term therapy. The highest concentration of gold, 13 μM (auranofin equivalent), or more than 25× the 50% inhibitory concentration (IC50) for E. histolytica and 4× that for Giardia, was in feces at 7 days. Modeling of higher doses (9 and 21 mg/day) was performed for systemic parasitic infections, and plasma gold levels of 0.4 to 1.0 μg/ml were reached after 14 days of treatment at 21 mg/day. This phase I trial supports the idea of the safety of auranofin and provides important PK data to support its potential use as a broad-spectrum antiparasitic drug. (This study has been registered at ClinicalTrials.gov under identifier NCT02089048.) PMID:27821451
Zhang, Bin Bin; Shi, Yi; Chen, Hui; Zhu, Qing Xia; Lu, Feng; Li, Ying Wei
2018-01-02
By coupling surface-enhanced Raman spectroscopy (SERS) with thin-layer chromatography (TLC), a powerful method for detecting complex samples was successfully developed. However, in the TLC-SERS method, metal nanoparticles serving as the SERS-active substrate are likely to disturb the detection of target compounds, particularly in overlapping compounds after TLC development. In addition, the SERS detection of compounds that are invisible under both visible light and UV 254/365 after TLC development is still a significant challenge. In this study, we demonstrated a facile strategy to fabricate a TLC plate with metal-organic framework-modified gold nanoparticles as a separable SERS substrate, on which all separated components, including overlapping and invisible compounds, could be detected by a point-by-point SERS scan along the developing direction. Rhodamine 6G (R6G) was used as a probe to evaluate the performance of the substrate. The results indicated that the substrate provided good sensitivity and reproducibility, and optimal SERS signals could be collected in 5 s. Furthermore, this new substrate exhibited a long shelf life. Thus, our method has great potential for the sensitive and rapid detection of overlapping and invisible compounds in complex samples after TLC development. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Metal resistance sequences and transgenic plants
Meagher, Richard Brian; Summers, Anne O.; Rugh, Clayton L.
1999-10-12
The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samal, Saroj L.; Lin, Qisheng; Corbett, John D.
The Na-Au-Zn system contains the two intermetallic phases Na(0.97(4))Au(2)Zn(4)(I) and Na(0.72(4))Au(2)Zn(2)(II) that are commensurately and incommensurately modulated derivatives of K(0.37)Cd(2), respectively. Compound I crystallizes in tetragonal space group P4/mbm (No. 127), a = 7.986(1) Å, c = 7.971(1) Å, Z = 4, as a 1 × 1 × 3 superstructure derivative of K(0.37)Cd(2)(I4/mcm). Compound II is a weakly incommensurate derivative of K(0.37)Cd(2) with a modulation vector q = 0.189(1) along c. Its structure was solved in superspace group P4/mbm(00g)00ss, a = 7.8799(6) Å, c = 2.7326(4) Å, Z = 2, as well as its average structure in P4/mbm with themore » same lattice parameters.. The Au-Zn networks in both consist of layers of gold or zinc squares that are condensed antiprismatically along c ([Au(4/2)Zn(4)Zn(4)Au(4/2)] for I and [Au(4/2)Zn(4)Au(4/2)] for II) to define fairly uniform tunnels. The long-range cation dispositions in the tunnels are all clearly and rationally defined by electron density (Fourier) mapping. These show only close, somewhat diffuse, pairs of opposed, ≤50% occupied Na sites that are centered on (I)(shown) or between (II) the gold squares. Tight-binding electronic structure calculations via linear muffin-tin-orbital (LMTO) methods, assuming random occupancy of ≤ ∼100% of nonpaired Na sites, again show that the major Hamilton bonding populations in both compounds arise from the polar heteroatomic Au-Zn interactions. Clear Na-Au (and lesser Na-Zn) bonding is also evident in the COHP functions. These two compounds are the only stable ternary phases in the (Cs,Rb,K,Na)-Au-Zn systems, emphasizing the special bonding and packing requirements in these sodium structures« less
Takahashi, Shigehiro; Suzuki, Iwao; Ojima, Takuto; Minaki, Daichi; Anzai, Jun-Ichi
2018-01-22
Alizarin red S (ARS) was confined in layer-by-layer (LbL) films composed of phenylboronic acid-modified poly(ethyleneimine) (PBA-PEI) and carboxymethylcellulose (CMC) to study the voltammetric response to diol and polyol compounds. The LbL film-coated gold (Au) electrode and quartz slide were immersed in an ARS solution to uptake ARS into the film. UV-visible absorption spectra of ARS-confined LbL film suggested that ARS formed boronate ester (ARS-PBS) in the film. The cyclic voltammetry of the ARS-confined LbL film-coated electrodes exhibited oxidation peaks at -0.50 and -0.62 V, which were ascribed to the oxidation reactions of ARS-PBS and free ARS, respectively, in the LbL film. The peak current at -0.62 V increased upon the addition of diol or polyol compounds such as L-dopa, glucose, and sorbitol into the solution, depending on the concentration, whereas the peak current at -0.50 V decreased. The results suggest a possible use of ARS-confined PBA-PEI/CMC LbL film-coated Au electrodes for the construction of voltammetric sensors for diol and polyol compounds.
REDUCTION OF INORGANIC COMPOUNDS WITH MOLECULAR HYDROGEN BY MICROCOCCUS LACTILYTICUS I.
Woolfolk, C. A.; Whiteley, H. R.
1962-01-01
Woolfolk, C. A. (University of Washington, Seattle) and H. R. Whiteley. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J. Bacteriol. 84:647–658. 1962.—Extracts of Micrococcus lactilyticus (Veillonella alcalescens) oxidize molecular hydrogen at the expense of certain compounds of arsenic, bismuth, selenium, tellurium, lead, thallium, vanadium, manganese, iron, copper, molybdenum, tungsten, osmium, ruthenium, gold, silver, and uranium, as well as molecular oxygen. Chemical and manometric data indicate that the following reductions are essentially quantitative: arsenate to arsenite, pentavalent and trivalent bismuth to the free element, selenite via elemental selenium to selenide, tellurate and tellurite to tellurium, lead dioxide and manganese dioxide to the divalent state, ferric to ferrous iron, osmium tetroxide to osmate ion, osmium dioxide and trivalent osmium to the metal, uranyl uranium to the tetravalent state, vanadate to the level of vanadyl, and polymolybdate ions to molybdenum blues with an average valence for molybdenum of +5. The results of a study of certain other hydrogenase-containing bacteria with respect to their ability to carry out some of the same reactions are also presented. PMID:14001842
Property-Guided Synthesis of Aza-Tricyclic Indolines: Development of Gold Catalysis En Route.
Barbour, Patrick M; Wang, Wei; Chang, Le; Pickard, Kasey L; Rais, Rana; Slusher, Barbara S; Wang, Xiang
2016-04-28
Antibiotic resistance is a worldwide public health threat that needs to be addressed by improved antibiotic stewardship and continuing development of new chemical entities to treat resistant bacterial infections. Compounds that work alongside known antibiotics as combination therapies offer an efficient and sustainable approach to counteract antibiotic resistance in bacteria. Guided by property-based analysis, a series of aza-tricyclic indolines (ATIs) were synthesized to optimize their physiochemical properties as novel combination therapies with β-lactams to treat methicillin-resistant S. aureus (MRSA) infections. A novel and highly efficient gold-catalyzed tandem cyclization was developed to facilitate the synthesis of these ATIs. One guanidine-containing ATI was discovered to possess both improved anti-MRSA activity and lower mammalian toxicity both in vitro and in vivo. In addition, it also showed significantly enhanced aqueous solubility and metabolic stability. These results indicated that the ATIs are a novel class of anti-MRSA agents suitable for further evaluations as adjuvant therapy in animal model studies.
Synthesis of tetra- and octa-aurated heteroaryl complexes towards probing aromatic indoliums
Yuan, Jun; Sun, Tingting; He, Xin; An, Ke; Zhu, Jun; Zhao, Liang
2016-01-01
Polymetalated aromatic compounds are particularly challenging synthetic goals because of the limited thermodynamic stability of polyanionic species arising from strong electrostatic repulsion between adjacent carbanionic sites. Here we describe a facile synthesis of two polyaurated complexes including a tetra-aurated indole and an octa-aurated benzodipyrrole. The imido trinuclear gold(I) moiety exhibits nucleophilicity and undergoes an intramolecular attack on a gold(I)-activated ethynyl to generate polyanionic heteroaryl species. Their computed magnetic properties reveal the aromatic character in the five-membered ring. The incorporation of the aurated substituents at the nitrogen atom can convert non-aromaticity in the parent indolium into aromaticity in the aurated one because of hyperconjugation. Thus, the concept of hyperconjugative aromaticity is extended to heterocycles with transition metal substituents. More importantly, further analysis indicates that the aurated substituents can perform better than traditional main-group substituents. This work highlights the difference in aromaticity between polymetalated aryls and their organic prototypes. PMID:27186982
NASA Astrophysics Data System (ADS)
Yulizar, Y.; Ayun, Q.
2017-03-01
Metal nanoparticle is a great interest to researches due to its applications toward catalysis, sensors, and drug delivery. Biosynthesis of gold nanoparticles (AuNPs) using aqueous leaf extract of Polycias fruticosa (PFE) is reported in this article. PFE plays a role as reductor and stabilizer of AuNPs. The formation of PFE-AuNPs under radiation of natrium lamp for 15 min was monitored by UV - Vis spectrophotometer. The growth process and stability of PFE-AuNPs was observed from the colour and absorbance change in the wavelength range of 529-533 nm. The optimum synthesis condition of PFE-AuNPs was obtained at 0.06% (w/v) of PFE concentration. Size and its distribution of PFE-AuNPs were identified by particle size analyzer (PSA) as 35.02 nm and stable up until 21 days. The stable PFE-AuNPs was further characterized by Fourier transform infrared (FT-IR) spectroscopy to identify the functional group in phenolic compound of PFE interact with AuNps.
Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica
NASA Astrophysics Data System (ADS)
Sett, Arghya; Gadewar, Manoj; Sharma, Pragya; Deka, Manab; Bora, Utpal
2016-06-01
In this study, we report a novel method of gold nanoparticle (AuNP) synthesis using aqueous fruit extract of Dillenia indica. The phytochemicals present in the fruit extract act as an effective reducing and capping agent to synthesize AuNPs. The synthesized AuNPs were characterized by spectrophotometry, transmission electron microscopy (TEM), x-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. TEM studies revealed the particles of various sizes and mainly spherical in shape. Selected-area electron diffraction (SAED) patterns and high-resolution transmission electron microscopy (HRTEM) images confirmed the crystallinity of the particles. The XRD patterns showed peaks at (111), (200), (220) which exhibited preferential orientation of the AuNPs as face-centered cubic crystal. FTIR measurements confirmed the coating of phenolic compounds on the AuNPs indicating a possible role of biomolecules for the capping and efficient stabilization of the AuNPs. The synthesized AuNPs did not show any form of cytotoxicity in the normal fibroblast cell line L929.
Methods for determining time of death.
Madea, Burkhard
2016-12-01
Medicolegal death time estimation must estimate the time since death reliably. Reliability can only be provided empirically by statistical analysis of errors in field studies. Determining the time since death requires the calculation of measurable data along a time-dependent curve back to the starting point. Various methods are used to estimate the time since death. The current gold standard for death time estimation is a previously established nomogram method based on the two-exponential model of body cooling. Great experimental and practical achievements have been realized using this nomogram method. To reduce the margin of error of the nomogram method, a compound method was developed based on electrical and mechanical excitability of skeletal muscle, pharmacological excitability of the iris, rigor mortis, and postmortem lividity. Further increasing the accuracy of death time estimation involves the development of conditional probability distributions for death time estimation based on the compound method. Although many studies have evaluated chemical methods of death time estimation, such methods play a marginal role in daily forensic practice. However, increased precision of death time estimation has recently been achieved by considering various influencing factors (i.e., preexisting diseases, duration of terminal episode, and ambient temperature). Putrefactive changes may be used for death time estimation in water-immersed bodies. Furthermore, recently developed technologies, such as H magnetic resonance spectroscopy, can be used to quantitatively study decompositional changes. This review addresses the gold standard method of death time estimation in forensic practice and promising technological and scientific developments in the field.
Griffiths, Stephen R; Donato, David B; Lumsden, Linda F; Coulson, Graeme
2014-01-01
Wildlife and livestock that ingest bioavailable cyanide compounds in gold mining tailings dams are known to experience cyanide toxicosis. Elevated levels of salinity in open impoundments have been shown to prevent wildlife cyanide toxicosis by reducing drinking and foraging. This finding appears to be consistent for diurnal wildlife interacting with open impoundments, however the risks to nocturnal wildlife of cyanide exposure are unknown. We investigated the activity of insectivorous bats in the airspace above both fresh (potable to wildlife) and saline water bodies at two gold mines in the goldfields of Western Australian. During this study, cyanide-bearing solutions stored in open impoundments at both mine sites were hypersaline (range=57,000-295,000 mg/L total dissolved solids (TDS)), well above known physiological tolerance of any terrestrial vertebrate. Bats used the airspace above each water body monitored, but were more active at fresh than saline water bodies. In addition, considerably more terminal echolocation buzz calls were recorded in the airspace above fresh than saline water bodies at both mine sites. However, it was not possible to determine whether these buzz calls corresponded to foraging or drinking bouts. No drinking bouts were observed in 33 h of thermal video footage recorded at one hypersaline tailings dam, suggesting that this water is not used for drinking. There is no information on salinity tolerances of bats, but it could be assumed that bats would not tolerate salinity in drinking water at concentrations greater than those documented as toxic for saline-adapted terrestrial wildlife. Therefore, when managing wastewater impoundments at gold mines to avoid wildlife mortalities, adopting a precautionary principle, bats are unlikely to drink solutions at salinity levels ≥50,000 mg/L TDS. © 2013 Published by Elsevier Inc.
Zacharis, Constantinos K; Tzanavaras, Paraskevas D
2013-10-10
Analytical derivatization either in pre or post column modes is one of the most widely used sample pretreatment techniques coupled to liquid chromatography. In the present review article we selected to discuss the post column derivatization mode for the analysis of organic compounds. The first part of the review focuses to the instrumentation of post-column setups including not only fundamental components such as pumps and reactors but also less common parts such as static mixers and back-pressure regulators; the second part of the article discusses the most popular "chemistries" that are involved in post column applications, including reagent-less approaches and new sensing platforms such as the popular gold nanoparticles. Some representative recent applications are also presented as tables. Copyright © 2013 Elsevier B.V. All rights reserved.
Dragovic-Uzelac, Verica; Delonga, Karmela; Levaj, Branka; Djakovic, Senka; Pospisil, Jasna
2005-06-15
The possibility of proving the undeclared addition of pumpkin puree in apricot nectars and jams has been investigated by using the phenol compound fingerprint and sensory evaluation. The cheaper pumpkin admixtures in apricot nectars and jams could not be detected by the sensory evaluation, particularly if present in quantities of <15%. The lower admixtures of pumpkin puree in apricot nectars and jams could be detected by the presence of syringic acid, a phenolic compound characteristic of the investigated pumpkins (Cucurbita pepo cv. Gleisdorff and Table Gold, Cucurbita maxima cv. Turkinja, and Cucurbita moschata cv. Argenta). Syringic acid was isolated from pumpkin puree and determined by using HPLC with diode array detection. By using the phenolic profile, undeclared pumpkin admixture (> or =5%) in the apricot nectars and jams could be proven.
Study of the adsorbed layer on a solid electrode surface by specular reflection measurement
NASA Astrophysics Data System (ADS)
Kusu, Fumiyo; Takamura, Kiyoko
1985-07-01
Specular reflection measurements were carried out to study the adsorbed layers of certain heterocyclic compounds such as adenine, barbital, 2'-deoxyadenosine, phenobarbital, pyridine and thymine. When pyridine was present in 0.1M NaClO 4, a marked decrease in the reflectivity of a gold electrode was observed. In the potential range near the point of zero charge on the reflectivity-potential curve, the decrease was due to the adsorption of pyridine. Assuming the reflectivity change to be proportional to the surface coverage, the potential and concentration dependence of pyridine adsorption was determined and analysed on the basis of a Langmuir-type adsorption isotherm. The refractive indices and extinction coefficients for the adsorbed layers of the compounds investigated were evaluated using the observed reflectivity change, according to relations proposed by McIntyre and Aspnes.
Preparation of cellular vehicles for delivery of gold nanorods to tumors
NASA Astrophysics Data System (ADS)
Centi, S.; Borri, C.; Lai, S.; Tatini, F.; Colagrande, S.; Ratto, F.; Pini, R.
2016-03-01
Over recent years, gold nanorods (GNRs) have emerged as a promising material in biomedical optics and have been proposed as contrast agents for the photothermal therapy and the photoacoustic imaging of tumors. A pioneering approach to target tumors is the use of cellular vehicles, i.e. cells of the immune system that exhibit an innate tropism to tumors and that can be serve as Trojan horses. This strategy relies on cell types, such as tumor-associated macrophages or T cells, that are recruited by or naturally traffic to the microenvironment of tumors and that can be isolated from a patient and loaded with plasmonic particles in vitro. In this work, GNRs were synthesized and designed to combine high optical and photo-stability and the ability to accumulate into cells of the immuno system. Particles were silanized, PEGylated and conjugated with cationic moieties. Different cationic compounds were tested and the cell viability and uptake of the particles were studied on complementary cell types. The cytotoxicity test was based on a colorimetric WST-8 assay while the intracellular amount of gold and the optical absorbance of the cells were quantified by spectrophotometry. Moreover, we investigated the effect of GNRs on the cell migration and the production of cytokines in the presence of pro-inflammatory stimuli, which provide a functional overview on the feasibility of this approach to target.
González-Ballesteros, N; Rodríguez-González, J B; Rodríguez-Argüelles, M C
2018-01-01
In recent years, the management of food waste processing has emerged as a major concern. One such type of food waste, grape pomace, has been shown to be a great source of bioactive compounds which might be used for more environmentally - friendly processes for the synthesis of nanomaterials. In this study, grape pomace of Vitis vinifera has been used for the obtainment of an aqueous extract. Firstly, the reducing activity, total phenolic content and DPPH scavenging activity of the aqueous extract were determined. Then, the aqueous extract was used for the synthesis of gold and silver nanoparticles. The formation of spherical and stable nanoparticles with mean diameters of 35.3±5.2nm for Au@GP and 42.9±6.4nm for Ag@GP was confirmed by UV-vis spectroscopy and transmission electron microscopy. Furthermore, the functional group of biomolecules present in grape pomace extract, Au@GP and Ag@GP, were characterized by Fourier transform infrared spectroscopy prior to and after the synthesis, in order to obtain information about the biomolecules involved in the reducing and stabilization process. This study is the first to deal with the use of Vitis vinifera grape pomace in obtaining gold and silver nanoparticles through an eco-friendly, quick, one-pot synthetic route. Copyright © 2017 Elsevier B.V. All rights reserved.
Theranostic gold-magnetite hybrid nanoparticles for MRI-guided radiosensitization.
Maniglio, D; Benetti, F; Minati, L; Jovicich, J; Valentini, A; Speranza, G; Migliaresi, C
2018-08-03
The main limitation of drug-enhanced radiotherapy concerns the difficulty to evaluate the effectiveness of cancer targeting after drug administration hindering the standardization of therapies based on current radiosensitizing compounds. The challenge regards the development of systems able to combine imaging and radiotherapy enhancement in order to perform highly reliable cancer theragnosis. For these reasons, gold-magnetite hybrid nanoparticles (H-NPs) are proposed as innovative theranostic nanotools for imaging-guided radiosensitization in cancer treatment. In this work we propose a novel method for the synthesis of hydrophilic and superparamagnetic Tween20-stabilized gold-magnetite H-NPs. Morphology and chemical composition of nanoparticles were assessed by transmission electron microscopy, x-ray diffraction analysis and ion-coupled plasma optical emission spectroscopy. Colloidal stability and magnetic properties of nanoparticles were determined by dynamic light scattering and magnetometry. The potentialities of H-NPs for magnetic resonance imaging were studied using a human 4T-MRI scanner. Nanoparticles were proven to induce concentration-dependent contrast enhancement in T2*-weighted MR-images. The cytotoxicity, the cellular uptake and the radiosensitization activity of H-NPs were investigated in human osteosarcoma MG63 cell cultures and murine 3T3 fibroblasts, using specific bioassays and laser scanning confocal microscopy. H-NPs did not exhibit significant toxicity and were demonstrated to be internalized by cells. A significant x-ray enhancement at specific H-NPs exposure concentrations was evidenced on MG63 cell line.
Yuan, Chun-Gang; Huo, Can; Gui, Bing; Cao, Wei-Ping
2017-08-01
The peel of Citrus maxima ( C. maxima ) is the primary byproducts during the process of fruit or juice in food industries, and it was always considered as biomass waste for further treatments. In this study, the authors reported a simple and eco-friendly method to synthesise gold nanoparticles (AuNPs) using C. maxima peel extract as reducing and capping agents. The synthesised AuNPs were characterised by UV-visible spectrum, X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier-transform infrared spectroscopy (FTIR). The UV-visible spectrum of the AuNPs colloid showed a characteristic peak at 540 nm. The peaks of XRD analysis at (2 θ ) 38.30°, 44.28°, 64.62°, 77.57° and 81.75° were assigned to (111), (200), (220), (311) and (222) planes of the face-centered cubic (fcc) lattice of gold. The TEM images showed that AuNPs were nearly spherical in shape with the size of 8-25 nm. The FTIR spectrum revealed that some bioactive compounds capped the surface of synthesised AuNPs. The biosynthesised AuNPs performed strong catalytic activity in degradation of 4-nitrophenol to 4-aminophenol and good antibacterial activity against both gram negative ( Escherichia coli ) and gram positive ( Staphylococcus aureus ) bacterium. The synthesis procedure was proved simple, cost effective and environment friendly.
Biomolecular recognition and detection using gold-based nanoprobes
NASA Astrophysics Data System (ADS)
Crew, Elizabeth
The ability to control the biomolecular interactions is important for developing bioanalytical probes used in biomolecule and biomarker detections. This work aims at a fundamental understanding of the interactions and reactivities involving DNA, miRNA, and amino acids using gold-based nanoparticles as nanoprobes, which has implications for developing new strategies for the early detection of diseases, such as cancer, and controlled delivery of drugs. Surface modifications of the nanoprobes with DNA, miRNA, and amino acids and the nanoprobe directed biomolecular reactivities, such as complementary-strand binding, enzymatic cutting and amino acid interactions, have been investigated. Among various analytical techniques employed for the analysis of the biomolecule-nanoprobe interactions, surface enhanced Raman scattering spectroscopy (SERS) has been demonstrated to provide a powerful tool for real time monitoring of the DNA assembly and enzymatic cutting processes in solutions. This demonstration harnesses the "hot-spot" characteristic tuned by the interparticle biomolecular-regulated interactions and distances. The assembly of gold nanoparticles has also been exploited as sensing thin films on chemiresistor arrays for the detection of volatile organic compounds, including biomarker molecules associated with diabetes. Important findings of the nanoprobes in delivering miRNA to cells, detecting DNA hybridization kinetics, discerning chiral recognition with enantiomeric cysteines, and sensing biomarker molecules with the nanostructured thin films will be discussed, along with their implications to enhancing sensitivity, selectivity and limits of detection.
Gold(I) Complexes of 9-Deazahypoxanthine as Selective Antitumor and Anti-Inflammatory Agents
Vančo, Ján; Gáliková, Jana; Hošek, Jan; Dvořák, Zdeněk; Paráková, Lenka; Trávníček, Zdeněk
2014-01-01
The gold(I) mixed-ligand complexes involving O-substituted derivatives of 9-deazahypoxanthine (HLn) and triphenylphosphine (PPh3) with the general formula [Au(Ln)(PPh3)] (1–5) were prepared and thoroughly characterized by elemental analysis, FT-IR and multinuclear NMR spectroscopy, ESI+ mass spectrometry, single crystal X-ray (HL5 and complex 2) and TG/DTA analyses. Complexes 1–5 were evaluated for their in vitro antitumor activity against nine human cancer lines, i.e. MCF7 (breast carcinoma), HOS (osteosarcoma), A549 (adenocarcinoma), G361 (melanoma), HeLa (cervical cancer), A2780 (ovarian carcinoma), A2780R (ovarian carcinoma resistant to cisplatin), 22Rv1 (prostate cancer) and THP-1 (monocytic leukaemia), for their in vitro anti-inflammatory activity using a model of LPS-activated macrophages, and for their in vivo antiedematous activity by λ-carrageenan-induced hind paw edema model on rats. The results showed that the complexes 1–5 exhibit selective in vitro cytotoxicity against MCF7, HOS, 22Rv1, A2780 and A2780R, with submicromolar IC50 values for 2 against the MCF7 (0.6 µM) and HOS (0.9 µM). The results of in vitro cytotoxicity screening on primary culture of human hepatocytes (HEP220) revealed up to 30-times lower toxicity of compounds against healthy cells as compared with cancer cells. Additionally, the complexes 1–5 significantly influence the secretion and expression of pro-inflammatory cytokines TNF-α and IL-1β by a similar manner as a commercially used anti-arthritic drug Auranofin. The tested complexes also significantly influence the rate and overall volume of the edema, caused by the intraplantar application of λ-carrageenan polysaccharide to rats. Based on these promising results, the presented compounds could qualify to become feasible candidates for advanced testing as potential antitumor and anti-inflammatory drug-like compounds. PMID:25333949
Modulated growth of nanoparticles. Application for sensing nerve gases.
Virel, Ana; Saa, Laura; Pavlov, Valeri
2009-01-01
Hydrolysis of acetylthiocholine mediated by acetylcholine esterase yields the thiol-bearing compound thiocholine. At trace concentrations, thiocholine modulates the growth of Au-Ag nanoparticles on seeding gold nanoparticles in the presence of ascorbic acid. Inhibition of the enzyme by 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide (BW284c51) or by diethyl p-nitrophenyl phosphate (paraoxon) produces lower yields of thiocholine, promoting the catalytic growth of Au-Ag nanoparticles. Here, we describe the development of a simple and sensitive colorimetric assay for the detection of AChE inhibitors.
NASA Astrophysics Data System (ADS)
Zubkov, S. Yu.; Antonov, I. N.; Gorshkov, O. N.; Kasatkin, A. P.; Kryukov, R. N.; Nikolichev, D. E.; Pavlov, D. A.; Shenina, M. E.
2018-03-01
Nanosized films of stabilized zirconia with Au nanoparticles formed by implanting Au ions are studied by X-ray photoelectron spectroscopy and transmission electron microscopy. The effect of irradiation of films with Au ions and postimplantation annealing on the distribution of chemical elements and zirconium- containing ZrO x compounds over the depth of the films is studied. Based on the data on the dimensional shift of the Au 4 f photoelectron line, the average value of the nanoparticle size is determined.
PRODUCTION OF TRIFLUOROACETIC ACID COMPOUNDS
Haworth, W.N.; Stacey, M.
1949-08-30
A process is described for the preparation of trifluoroacetic acid. Acetone vapor diluted wlth nitrogen and fluorine also diluted with nltrogen are fed separately at a temperature of about 210 deg C into a reaction vessel containing a catalyst mass selected from-the group consisting of silver and gold. The temperature in the reaction vessel is maintained in the range of 200 deg to 250 deg C. The reaction product, trifluoroacetyl fluoride, is absorbed in aqueous alkali solution. Trifluoroacetic acid is recovered from the solution by acidification wlth an acid such as sulfuric followed by steam distillation.
The Science Teacher: Spring 2008
NASA Astrophysics Data System (ADS)
Long, Steve
2008-06-01
This article reviews chemistry-related articles published between Summer 2007 and February 2008, in The Science Teacher ( TST ). A new TST column addresses safety-with emphases in reviewed articles on chemical hygiene plans, bloodborne pathogens, ionizing radiation, eyewash and shower stations, electrical safety, and chemical management. In addition, activities for teaching about ionic compounds, an inquiry-based lab and card sorting project on freezing point depressions, and a simulation of Rutherford's Gold Foil Experiment are described. Also included is a career focus on a green product chemist. Supplementary JCE articles for these articles and topics are referenced.
Pathogenesis of rheumatoid arthritis and the immune response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheinberg, M.A.
1983-08-01
The interrelationship among lymphocytes, macrophages, and neutrophils appears to be an important aspect of the synovial inflammation that is characteristic of rheumatoid arthritis. In a study comparing gold sodium aurothiomalate (GST) with auranofin (Au), an orally absorbed compound, both appeared to inhibit the disease process and no difference between parenteral and oral administration was observed. Another study involved two groups of nine patients with severe rheumatoid arthritis. One group underwent plasmapheresis. The second group underwent total lymphoid irradiation. Both agents appeared to inhibit the disease process. Plasmapheresis was better tolerated that irradiation.
1990-08-01
Langmuir, I. J. Am. Chem. Soc. 1917, 39, 1848-1906. b ) Blodgett, K. B . J. Am. Chem. Soc. 1935, 57, 1007-1022. c) Blinov , L. M. Russ. Chem. Rev. 1988, 52...pressure producing a polarization b ) Converse piezoelectric effect (structural deformation) caused by applying a potential across the crystal...of Ferrocenamide phenyl disulfide in: A) IM HC104, B ) IM HNO 3 , and C) iM H2 SO4 versus SSCE ....... ...... ................ s34 Figure 3.7 Study of
Sow, Boubacar; Bellavance, Gabriel; Barabé, Francis
2011-01-01
Summary The rapid synthesis of bicyclo[m.n.1]alkanone cores possessing quaternary carbon centers adjacent to a bridged ketone represents a significant synthetic challenge. This type of architectural feature is embedded in various complex biologically active compounds such as hyperforin and garsubellin A. Herein, we report a highly diastereoselective one-pot Diels–Alder reaction/Au(I)-catalyzed carbocyclization to generate bicyclo[3.3.1]alkanones in yields ranging from 48–93%. PMID:21915201
NASA Astrophysics Data System (ADS)
Dominguez Medina, Sergio
When nanoparticles come in contact with biological fluids they become coated with a mixture of proteins present in the media, forming what is known as the nanoparticle-protein 'corona'. This corona changes the nanoparticles' original surface properties and plays a central role in how these get screened by cellular receptors. In the context of biomedical research, this presents a bottleneck for the transition of nanoparticles from research laboratories to clinical settings. It is therefore fundamental to probe these nanoparticle-protein interactions in order to understand the different physico-chemical mechanisms involved. This thesis is aimed to investigate the exposure of colloidal gold nanoparticles to model serum proteins, particularly serum albumin, the main transporter of molecular compounds in the bloodstream of mammals. A set of experimental tools based on optical microscopy and spectroscopy were developed in order to probe these interactions in situ. First, the intrinsic photoluminescence and elastic scattering of individual gold nanoparticles were investigated in order to understand its physical origin. These optical signals were then used to measure the size of the nanoparticles while in Brownian diffusion using fluctuation correlation spectroscopy. This spectroscopic tool was then applied to detect the binding of serum albumin onto the nanoparticle surface, increasing its hydrodynamic size. By performing a binding isotherm as a function of protein concentration, it was determined that serum albumin follows an anti-cooperative binding mechanism on negatively charged gold nanoparticles. This protein monolayer substantially enhanced the stability of the colloid, preventing their aggregation in saline solutions with ionic strength higher than biological media. Cationic gold nanoparticles in contrast, aggregated when serum albumin was present at a low protein-to-nanoparticle ratio, but prevented aggregation if exposed in excess. Single-molecule fluorescence microscopy revealed that under low protein-to-nanoparticle binding ratios, serum albumin irreversibly unfolds upon adsorption and spreads across the available nanoparticle surface area. Unfolded proteins then interact with one another, triggering nanoparticle aggregation. Fibrinogen and globulin also triggered aggregation when exposed to cationic nanoparticles. In an effort to relate these physico-chemical observations to relevant biological parameters, the uptake of protein coated gold nanoparticles by a model cancer cell line was investigated under different incubation conditions. Those nanoparticles pre-incubated with bovine serum albumin before fetal bovine serum were found to be uptaken three times more than those only incubated in serum.
Langaro, Ana P; Souza, Ana K R; Morassuti, Claudio Y; Lima, Sandro M; Casagrande, Gleison A; Deflon, Victor M; Nunes, Luiz A O; Da Cunha Andrade, Luis H
2016-11-23
An uncommon emissive pseudotetranuclear compound, {[Au 2 (C 3 H 6 NS 2 ) 2 ][Au(C 3 H 6 NS 2 ) 2 ] 2 (PF 6 ) 2 }, was synthesized and characterized in terms of its structure and optical properties. The synthesis produced a crystalline compound composed of four gold atoms with two different oxidation states (Au + and Au 3+ ) in the same crystalline structure. The title complex belonged to a triclinic crystalline system involving the centrosymmetric P1̅ space group. X-ray diffractometry and vibrational spectroscopy (infrared, Raman, and SERS) were used for structural characterization of the new crystal. The vibrational spectroscopy techniques supported the X-ray diffraction results and confirmed the presence of bonds including Au-Au and Au-S. Optical characterization performed using UV-vis spectroscopy showed that under ultraviolet excitation, the emissive crystalline complex presented characteristic broad luminescent bands centered at 420 and 670 nm.
Anusha, Paulraj; Thangaviji, Vijayaragavan; Velmurugan, Subramanian; Michaelbabu, Mariavincent; Citarasu, Thavasimuthu
2014-02-01
Herbals such as Ixora coccinea, Daemia extensa and Tridax procumbens were selected to screen in vitro antibacterial and immunostimulant activity against the freshwater fish pathogen Aeromonas hydrophila using different organic polar and non-polar solvents. Initial screening results revealed that, ethyl acetate extracts and its purified fraction of I. coccinea was able to suppress the A. hydrophila strains at more than 15 mm of zone of inhibition and positive immunostimulant activity. The purified active fraction, which eluted from H40: EA60 mobile phase was structurally characterized by GC-MS analysis. Two compounds such as Diethyl Phthalate (1,2-Benzene dicarboxylic acid, monobutyl ester) and Dibutyl Phthalate were characterized using NIST database search. In order to study the in vivo immunostimulant influence of the compounds, the crude extracts (ICE) and purified fractions (ICF) were incorporated to the artificial diets at the concentration of 400 mg kg⁻¹ and fed to the ornamental gold fish Carassius auratus for 30 days. After termination of feeding experiment, they were challenged with highly virulent A. hydrophila AHV-1 which was isolated from infected gold fish and studied the survival, specific bacterial load reduction, serum biochemistry, haematology, immunology and histological parameters. The control diet fed fishes succumbed to death within five days at 100% mortality whereas ICE and ICF fed groups survived 60 and 80% respectively after 10 days. The diets also helped to decrease the Aeromonas load after challenge and significantly (P ≤ 0.01) improved the serum albumin, globulin and protein. The diets also helped to increase the RBC and haemoglobin level significantly (P ≤ 0.05) from the control group. Surprisingly the immunological parameters like phagocytic activity, serum bactericidal activity and lysozyme activity were significantly increased (P ≤ 0.001) in the experimental diets. Macrophages and erythrocytes were abundantly expressed in the treated groups and the present work concluded that, the Phthalate derivatives from I. coccinea helps to stimulate the immune system against A. hydrophila challenge in C. auratus. Copyright © 2013 Elsevier Ltd. All rights reserved.
Jiménez Pérez, Zuly Elizabeth; Mathiyalagan, Ramya; Markus, Josua; Kim, Yeon-Ju; Kang, Hyun Mi; Abbai, Ragavendran; Seo, Kwang Hoon; Wang, Dandan; Soshnikova, Veronika; Yang, Deok Chun
2017-01-01
There has been a growing interest in the design of environmentally affable and biocompatible nanoparticles among scientists to find novel and safe biomaterials. Panax ginseng Meyer berries have unique phytochemical profile and exhibit beneficial pharmacological activities such as antihyperglycemic, antiobesity, antiaging, and antioxidant properties. A comprehensive study of the biologically active compounds in ginseng berry extract (GBE) and the ability of ginseng berry (GB) as novel material for the biosynthesis of gold nanoparticles (GBAuNPs) and silver nanoparticles (GBAgNPs) was conducted. In addition, the effects of GBAuNPs and GBAgNPs on skin cell lines for further potential biological applications are highlighted. GBAuNPs and GBAgNPs were synthesized using aqueous GBE as a reducing and capping agent. The synthesized nanoparticles were characterized for their size, morphology, and crystallinity. The nanoparticles were evaluated for antioxidant, anti-tyrosinase, antibacterial, and cytotoxicity activities and for morphological changes in human dermal fibroblast and murine melanoma skin cell lines. The phytochemicals contained in GBE effectively reduced and capped gold and silver ions to form GBAuNPs and GBAgNPs. The optimal synthesis conditions (ie, temperature and v/v % of GBE) and kinetics were investigated. Polysaccharides and phenolic compounds present in GBE were suggested to be responsible for stabilization and functionalization of nanoparticles. GBAuNPs and GBAgNPs showed increased scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radicals compared to GBE. GBAuNPs and GBAgNPs effectively inhibited mushroom tyrosinase, while GBAgNPs showed antibacterial activity against Escherichia coli and Staphylococcus aureus. In addition, GBAuNPs were nontoxic to human dermal fibroblast and murine melanoma cell lines, and GBAgNPs showed cytotoxic effect on murine melanoma cell lines. The current results evidently suggest that GBAgNPs can act as potential agents for antioxidant, anti-tyrosinase, and antibacterial activities. In addition, GBAuNPs can be further developed into mediators in drug delivery and as antioxidant, anti-tyrosinase, and protective skin agents in cosmetic products. Consequently, the study showed the advantages of using nanotechnology and green chemistry to enhance the natural properties of GBs. PMID:28260881
Cuibus, Flavia; Sevastre, Bogdan; Stiufiuc, Gabriela; Duma, Mihaela; Hanganu, Daniela; Iacovita, Cristian; Stiufiuc, Rares; Lucaciu, Constantin Mihai
2018-01-01
Purpose The leaves and flowering stem of Origanum vulgare contain essential oils, flavonoids, phenolic acids and anthocyanins. We propose a new, simple, one-pot, O. vulgare extract (OVE) mediated green synthesis method of biocompatible gold nanoparticles (AuNPs) possessing improved antioxidant, antimicrobial and plasmonic properties. Materials and methods Different concentrations of OVEs were used to reduce gold ions and to synthetize biocompatible spherical AuNPs. Their morphology and physical properties have been investigated by means of transmission electron microscopy, ultraviolet–visible absorption spectroscopy, photon correlation spectroscopy and Fourier transform infrared spectroscopy, whereas their plasmonic properties have been tested using surface-enhanced Raman spectroscopy (SERS). The antioxidant properties of nanoparticles (NPs) have been evaluated by 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay, and the antimicrobial tests were performed using the disk diffusion assay. Their cytotoxicity has been assessed by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results The experimental results confirmed the successful synthesis of biocompatible, spherical, plasmonic NPs having a mean diameter of ~40 nm and an outstanding aqueous stability. This new class of NPs exhibits a very good antioxidant activity and presents interesting inhibitory effects against Staphylococcus aureus and Candida albicans. Due to their plasmonic properties, AuNPs are used as SERS substrates for the detection of a test molecule (methylene blue) up to a concentration of 10−7 M and a pharmaceutical compound (propranolol) in solution. Cytotoxicity assays revealed that AuNPs are better tolerated by normal human dermal fibroblast cells, while the melanoma cancer cells are more sensitive. Conclusion The biocompatible AuNPs synthetized using OVEs showed significant bactericidal and antimycotic activities, the most sensitive microorganisms being S. aureus and C. albicans, both commonly involved in various dermatological infections. Moreover, the significant antioxidant effect might recommend their use for protective and/or preventive effect in various skin inflammatory conditions, including the reduction in side effects in dermatological infections. Meanwhile, the as-synthesized biocompatible AuNPs can be successfully used as SERS substrates for the detection of pharmaceutical compounds in aqueous solutions. PMID:29503540
Identification of novel target sites and an inhibitor of the dengue virus E protein.
Yennamalli, Ragothaman; Subbarao, Naidu; Kampmann, Thorsten; McGeary, Ross P; Young, Paul R; Kobe, Bostjan
2009-06-01
Dengue and related flaviviruses represent a significant global health threat. The envelope glycoprotein E mediates virus attachment to a host cell and the subsequent fusion of viral and host cell membranes. The fusion process is driven by conformational changes in the E protein and is an essential step in the virus life cycle. In this study, we analyzed the pre-fusion and post-fusion structures of the dengue virus E protein to identify potential novel sites that could bind small molecules, which could interfere with the conformational transitions that mediate the fusion process. We used an in silico virtual screening approach combining three different docking algorithms (DOCK, GOLD and FlexX) to identify compounds that are likely to bind to these sites. Seven structurally diverse molecules were selected to test experimentally for inhibition of dengue virus propagation. The best compound showed an IC(50) in the micromolar range against dengue virus type 2.
Identification of novel target sites and an inhibitor of the dengue virus E protein
NASA Astrophysics Data System (ADS)
Yennamalli, Ragothaman; Subbarao, Naidu; Kampmann, Thorsten; McGeary, Ross P.; Young, Paul R.; Kobe, Bostjan
2009-06-01
Dengue and related flaviviruses represent a significant global health threat. The envelope glycoprotein E mediates virus attachment to a host cell and the subsequent fusion of viral and host cell membranes. The fusion process is driven by conformational changes in the E protein and is an essential step in the virus life cycle. In this study, we analyzed the pre-fusion and post-fusion structures of the dengue virus E protein to identify potential novel sites that could bind small molecules, which could interfere with the conformational transitions that mediate the fusion process. We used an in silico virtual screening approach combining three different docking algorithms (DOCK, GOLD and FlexX) to identify compounds that are likely to bind to these sites. Seven structurally diverse molecules were selected to test experimentally for inhibition of dengue virus propagation. The best compound showed an IC50 in the micromolar range against dengue virus type 2.
A Generalized Crystallographic Description of All Tellurium Nanostructures.
Kim, Min-Seok; Ma, Xing-Hua; Cho, Ki-Hyun; Jeon, Seung-Yeol; Hur, Kahyun; Sung, Yun-Mo
2018-02-01
Despite tellurium being less abundant in the Earth's crust than gold, platinum, or rare-earth elements, the number of industrial applications of tellurium has rapidly increased in recent years. However, to date, many properties of tellurium and its associated compounds remain unknown. For example, formation mechanisms of many tellurium nanostructures synthesized so far have not yet been verified, and it is unclear why tellurium can readily transform to other compounds like silver telluride by simply mixing with solutions containing silver ions. This uncertainty appears to be due to previous misunderstandings about the tellurium structure. Here, a new approach to the tellurium structure via synthesized structures is proposed. It is found that the proposed approach applies not only to these structures but to all other tellurium nanostructures. Moreover, some unique tellurium nanostructures whose formation mechanism are, until now, unconfirmed can be explained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anatomy of an Elementary Chemical Reaction
NASA Astrophysics Data System (ADS)
Alexander, Andrew J.; Zare, Richard N.
1998-09-01
The alchemists of old sought the knowledge to transform one material to another-for example, base metals into gold-as a path to the elixir of life. As chemists have concerned themselves with the transformation from compound to compound, so they have become involved in trying to uncover the structures of molecules and the pathways that reactions follow. Classically, the study of reaction mechanisms in chemistry encompasses reaction kinetics, the study of velocities or rates of reactions, and reaction dynamics, the study of the nanoscopic motion and rearrangement of atoms during a reactive event. An essential aim of this article is to bring the reader to a favorable vantage point with a brief introduction to reactive dynamics, and from there to describe some examples of recent strategies that have been employed to promote a fundamental understanding of the anatomy of elementary chemical reactions. In the final section we ponder future directions for this rapidly evolving field of research.
Vos, Martijn W.; Stone, Will J. R.; Koolen, Karin M.; van Gemert, Geert-Jan; van Schaijk, Ben; Leroy, Didier; Sauerwein, Robert W.; Bousema, Teun; Dechering, Koen J.
2015-01-01
Current first-line treatments for uncomplicated falciparum malaria rapidly clear the asexual stages of the parasite, but do not fully prevent parasite transmission by mosquitoes. The standard membrane feeding assay (SMFA) is the biological gold standard assessment of transmission reducing activity (TRA), but its throughput is limited by the need to determine mosquito infection status by dissection and microscopy. Here we present a novel dissection-free luminescence based SMFA format using a transgenic Plasmodium falciparum reporter parasite without resistance to known antimalarials and therefore unrestricted in its utility in compound screening. Analyses of sixty-five compounds from the Medicines for Malaria Venture validation and malaria boxes identified 37 compounds with high levels of TRA (>80%); different assay modes allowed discrimination between gametocytocidal and downstream modes of action. Comparison of SMFA data to published assay formats for predicting parasite infectivity indicated that individual in vitro screens show substantial numbers of false negatives. These results highlight the importance of the SMFA in the screening pipeline for transmission reducing compounds and present a rapid and objective method. In addition we present sixteen diverse chemical scaffolds from the malaria box that may serve as a starting point for further discovery and development of malaria transmission blocking drugs. PMID:26687564
Takahashi, Shigehiro; Suzuki, Iwao; Ojima, Takuto; Minaki, Daichi
2018-01-01
Alizarin red S (ARS) was confined in layer-by-layer (LbL) films composed of phenylboronic acid-modified poly(ethyleneimine) (PBA-PEI) and carboxymethylcellulose (CMC) to study the voltammetric response to diol and polyol compounds. The LbL film-coated gold (Au) electrode and quartz slide were immersed in an ARS solution to uptake ARS into the film. UV-visible absorption spectra of ARS-confined LbL film suggested that ARS formed boronate ester (ARS-PBS) in the film. The cyclic voltammetry of the ARS-confined LbL film-coated electrodes exhibited oxidation peaks at −0.50 and −0.62 V, which were ascribed to the oxidation reactions of ARS-PBS and free ARS, respectively, in the LbL film. The peak current at −0.62 V increased upon the addition of diol or polyol compounds such as L-dopa, glucose, and sorbitol into the solution, depending on the concentration, whereas the peak current at −0.50 V decreased. The results suggest a possible use of ARS-confined PBA-PEI/CMC LbL film-coated Au electrodes for the construction of voltammetric sensors for diol and polyol compounds. PMID:29361775
Rodriguez, Jocelyn; Maibach, Howard I
2016-01-01
Increased awareness of skin cancer and mosquito-transmitted diseases has increased use of insect repellents and sunscreens. The challenge in setting recommendations for use and reapplication, especially when used concomitantly, lies in finding the balance between applying a durable product effective in withstanding natural and physical factors such as water, sweat, temperature and abrasion, while limiting percutaneous absorption and decreasing risk of potential dermal and systemic toxicity. Inorganic sunscreens show no or little percutaneous absorption or toxic effects in comparison to organic sunscreens, which show varying levels of dermal penetration and cutaneous adverse effects. An alternative to N,N-diethyl-m-toluamide (DEET), the traditional gold standard compound in insect repellents, picaridin appears as efficacious, has lower risk of toxicity, and when used simultaneously with sunscreen may decrease percutaneous absorption of both compounds. Conversely, combined use of DEET and sunscreen results in significantly higher absorption of both compounds. It is important to increase consumer awareness of "washing in" of various compounds leading to increased risk of toxicity, as well as differences in reapplication need due to "washing off" caused by water, sweat and abrasion. Although much remains to be studied, to maximize efficacy and decrease toxicity, contemporary research tools, including dermatopharmokinetics, should aid these prospective advances.
Sugahara, Mai; Nishi, Takahiro; Tanaka, Shinji; Kurita, Noriaki; Sai, Keiko; Kano, Tatsuya; Nishio, Kyosuke; Sugimoto, Tokuichiro; Mise, Naobumi
2013-11-01
We report two patients with rheumatoid arthritis (RA) who were suspected of microscopic polyangiitis during maintenance dialysis. Case 1 was a 52-year-old woman with RA diagnosed at the age of 38 years and treated successfully with gold compounds. At the age of 43 years, she presented with progressive renal dysfunction and abnormal urine sediments, and a renal biopsy revealed crescentic nephritis with advanced glomerular sclerosis. Myeloperoxidase antineutrophil cytoplasmic antibody (MPO-ANCA) was not measured on that occasion. She reached end-stage renal failure within 4 months and started peritoneal dialysis. Eight years later, soon after she was switched to hemodialysis, she developed fever of unknown origin. MPO-ANCA was elevated to 37 EU, although there were no other signs or symptoms suggestive of vasculitis. After taking prednisolone orally (10 mg/day), her fever withdrew, and MPO-ANCA became undetectable. Case 2 was a 71-year-old woman with RA diagnosed at the age of 60 years and treated with gold compounds. She developed renal failure of unknown cause (no biopsy was performed), and started hemodialysis at the age of 69 years. One year later, she presented with fever and subsequently developed cough with hemoptysis. MPO-ANCA was elevated to 62 EU. Treatment with azathioprine 50 mg and prednisolone 35 mg daily brought remarkable clinical improvement, and MPO-ANCA became undetectable. These cases highlight the importance of measuring ANCA even in RA patients on dialysis who present with fever of unknown origin or with underlying kidney disease of uncertain etiology.
Li, Bin; Kim, Sung-Jin; Miller, Gordon J; Corbett, John D
2009-12-07
The new phase K(12)Au(21)Sn(4) has been synthesized by direct reaction of the elements at elevated temperatures. Single crystal X-ray diffraction established its orthorhombic structure, space group Pmmn (No. 59), a = 12.162(2); b = 18.058(4); c = 8.657(2) A, V = 1901.3(7) A(3), and Z = 2. The structure consists of infinite puckered sheets of vertex-sharing gold tetrahedra (Au(20)) that are tied together by thin layers of alternating four-bonded-Sn and -Au atoms (AuSn(4)). Remarkably, the dense but electron-poorer blocks of Au tetrahedra coexist with more open and saturated Au-Sn layers, which are fragments of a zinc blende type structure that maximize tetrahedral heteroatomic bonding outside of the network of gold tetrahedra. LMTO band structure calculations reveal metallic properties and a pseudogap at 256 valence electrons per formula unit, only three electrons fewer than in the title compound and at a point at which strong Au-Sn bonding is optimized. Additionally, the tight coordination of the Au framework atoms by K plays an important bonding role: each Au tetrahedra has 10 K neighbors and each K atom has 8-12 Au contacts. The appreciably different role of the p element Sn in this structure from that in the triel members in K(3)Au(5)In and Rb(2)Au(3)Tl appears to arise from its higher electron count which leads to better p-bonding (valence electron concentrations = 1.32 versus 1.22).
In-channel electrochemical detection in the middle of microchannel under high electric field.
Kang, Chung Mu; Joo, Segyeong; Bae, Je Hyun; Kim, Yang-Rae; Kim, Yongseong; Chung, Taek Dong
2012-01-17
We propose a new method for performing in-channel electrochemical detection under a high electric field using a polyelectrolytic gel salt bridge (PGSB) integrated in the middle of the electrophoretic separation channel. The finely tuned placement of a gold working electrode and the PGSB on an equipotential surface in the microchannel provided highly sensitive electrochemical detection without any deterioration in the separation efficiency or interference of the applied electric field. To assess the working principle, the open circuit potentials between gold working electrodes and the reference electrode at varying distances were measured in the microchannel under electrophoretic fields using an electrically isolated potentiostat. In addition, "in-channel" cyclic voltammetry confirmed the feasibility of electrochemical detection under various strengths of electric fields (∼400 V/cm). Effective separation on a microchip equipped with a PGSB under high electric fields was demonstrated for the electrochemical detection of biological compounds such as dopamine and catechol. The proposed "in-channel" electrochemical detection under a high electric field enables wider electrochemical detection applications in microchip electrophoresis.
Yang, Fang; Riedel, René; Del Pino, Pablo; Pelaz, Beatriz; Said, Alaa Hassan; Soliman, Mahmoud; Pinnapireddy, Shashank R; Feliu, Neus; Parak, Wolfgang J; Bakowsky, Udo; Hampp, Norbert
2017-03-22
The adhesion of cells to an oscillating cantilever sensitively influences the oscillation amplitude at a given frequency. Even early stages of cytotoxicity cause a change in the viscosity of the cell membrane and morphology, both affecting their adhesion to the cantilever. We present a generally applicable method for real-time, label free monitoring and fast-screening technique to assess early stages of cytotoxicity recorded in terms of loss of cell adhesion. We present data taken from gold nanoparticles of different sizes and surface coatings as well as some reference substances like ethanol, cadmium chloride, and staurosporine. Measurements were recorded with two different cell lines, HeLa and MCF7 cells. The results obtained from gold nanoparticles confirm earlier findings and attest the easiness and effectiveness of the method. The reported method allows to easily adapt virtually every AFM to screen and assess toxicity of compounds in terms of cell adhesion with little modifications as long as a flow cell is available. The sensitivity of the method is good enough indicating that even single cell analysis seems possible.
Mössbauer, TEM/SAED and XRD investigation on waste dumps of the Valea lui Stan gold mines
NASA Astrophysics Data System (ADS)
Constantinescu, Serban Grigore; Udubasa, Sorin S.; Udubasa, Gheorghe; Kuncser, Victor; Popescu-Pogrion, Nicoleta; Mercioniu, Ionel; Feder, Marcel
2012-03-01
The complementary investigation techniques, Mössbauer spectroscopy, transmission electron microscopy with selected area electron diffraction (TEM/SAED), X-ray diffraction (XRD) have been used to investigate the fate of the Valea lui Stan, Romania, gold-ore nanoscale-minerals during the long time of residence in the waste dumps. The preliminary investigations showed such waste dumps to contain significant amount of metals which cannot be identified by conventional methods. An intense research activity started up in order to evaluate the possibilities to recycle Valea lui Stan waste dumps and to recover metals by chemical or phytoextraction procedures. The waste dumps naturally show different mineral constituents with clay minerals as major phases, observed by XRD-technique. Although the waste dumps materials have whitish-yellowish colours, MÖSSBAUER technique evidences the presence of the finely dispersed iron bearing minerals. The authors are focusing to inspect and analyze Fe-compounds in the samples collected from Valea lui Stan's waste dumps in order to identify the magnetic phases by Mössbauer technique.
Synthesis of Gold Nanoparticles Using Garcinia Indica Fruit Rind Extract
NASA Astrophysics Data System (ADS)
Krishnaprabha, M.; Pattabi, Manjunatha
2016-10-01
This report presents the easily reproducible biosynthesis of gold nanoparticles (AuNPs) at room temperature with extract prepared using three year old dried Garcinia Indica (GI) fruit rind. Due to the presence of two major bioactive compounds garcinol and hydroxy citric acid, rinds of GI fruit exhibit anti-cancer and anti-obesity properties. The quantity of fruit rind extract directed the morphology of the as synthesized particles. The nucleation and growth of AuNPs and catalytic activity are studied using UV-Vis spectroscopy. The crystalline nature of biosynthesized AuNPs is corroborated by X-ray Diffraction techniques. The morphology is studied using field emission scanning electron microscopy (FESEM). Fourier transform infra-red (FTIR) spectroscopy analysis revealed that biomolecules were involved in the synthesis and capping of AuNPs. As the Fermi potential of noble metal NPs becomes more negative, they are used in various electron transfer processes. The AuNPs produced using GI extract showed excellent catalytic activity when used as a catalyst in the reduction of well-known toxic pollutant 4-Nitrophenol (4-NP) to 4-Aminophenol (4-AP) in the presence of excess sodium borohydride.
Sani Usman, Muhammad; Hussein, Mohd Zobir; Fakurazi, Sharida; Masarudin, Mas Jaffri; Ahmad Saad, Fathinul Fikri
2017-08-31
We have developed gadolinium-based theranostic nanoparticles for co-delivery of drug and magnetic resonance imaging (MRI) contrast agent using Zn/Al-layered double hydroxide as the nanocarrier platform, a naturally occurring phenolic compound, gallic acid (GA) as therapeutic agent, and Gd(NO₃)₃ as diagnostic agent. Gold nanoparticles (AuNPs) were grown on the system to support the contrast for MRI imaging. The nanoparticles were characterized using techniques such as Hi-TEM, XRD, ICP-ES. Kinetic release study of the GA from the nanoparticles showed about 70% of GA was released over a period of 72 h. The in vitro cell viability test for the nanoparticles showed relatively low toxicity to human cell lines (3T3) and improved toxicity on cancerous cell lines (HepG2). A preliminary contrast property test of the nanoparticles, tested on a 3 Tesla MRI machine at various concentrations of GAGZAu and water (as a reference) indicates that the nanoparticles have a promising dual diagnostic and therapeutic features to further develop a better future for clinical remedy for cancer treatment.
Nosratabadi, Reza; Rastin, Maryam; Sankian, Mojtaba; Haghmorad, Dariush; Mahmoudi, Mahmoud
2016-10-01
Hyperforin an herbal compound, is commonly used in traditional medicine due to its anti-inflammatory activities. The aim of this study was to use a hyperforin loaded gold nanoparticle (Hyp-GNP) in the treatment of experimental autoimmune encephalomyelitis (EAE) an animal model of multiple sclerosis (MS). Hyp-GNP and hyperforin significantly reduced clinical severity of EAE, which was accompanied by a decrease in the number of inflammatory cell infiltration in the spinal cord. Additionally, treatment with Hyp-GNP significantly inhibited disease-associated cytokines as well as an increase in the anti-inflammatory cytokines in comparison to all groups including the free-hyp group. Furthermore, hyperforin and Hyp-GNP inhibited the differentiation of Th1 and Th17 cells while promoting Treg and Th2 cell differentiation via regulating their master transcription factors. The current study demonstrated the although, free-hyp improved clinical and laboratory data Hyp-GNP is significantly more efficient than free hyperforin in the treatment of EAE. Copyright © 2016 Elsevier Inc. All rights reserved.
Patil, Maheshkumar Prakash; Kim, Gun-Do
2017-01-01
This review covers general information about the eco-friendly process for the synthesis of silver nanoparticles (AgNP) and gold nanoparticles (AuNP) and focuses on mechanism of the antibacterial activity of AgNPs and the anticancer activity of AuNPs. Biomolecules in the plant extract are involved in reduction of metal ions to nanoparticle in a one-step and eco-friendly synthesis process. Natural plant extracts contain wide range of metabolites including carbohydrates, alkaloids, terpenoids, phenolic compounds, and enzymes. A variety of plant species and plant parts have been successfully extracted and utilized for AgNP and AuNP syntheses. Green-synthesized nanoparticles eliminate the need for a stabilizing and capping agent and show shape and size-dependent biological activities. Here, we describe some of the plant extracts involved in nanoparticle synthesis, characterization methods, and biological applications. Nanoparticles are important in the field of pharmaceuticals for their strong antibacterial and anticancer activity. Considering the importance and uniqueness of this concept, the synthesis, characterization, and application of AgNPs and AuNPs are discussed in this review.
Upadhyayula, Venkata K K
2012-02-17
There is a great necessity for development of novel sensory concepts supportive of smart sensing capabilities in defense and homeland security applications for detection of chemical and biological threat agents. A smart sensor is a detection device that can exhibit important features such as speed, sensitivity, selectivity, portability, and more importantly, simplicity in identifying a target analyte. Emerging nanomaterial based sensors, particularly those developed by utilizing functionalized gold nanoparticles (GNPs) as a sensing component potentially offer many desirable features needed for threat agent detection. The sensitiveness of physical properties expressed by GNPs, e.g. color, surface plasmon resonance, electrical conductivity and binding affinity are significantly enhanced when they are subjected to functionalization with an appropriate metal, organic or biomolecular functional groups. This sensitive nature of functionalized GNPs can be potentially exploited in the design of threat agent detection devices with smart sensing capabilities. In the presence of a target analyte (i.e., a chemical or biological threat agent) a change proportional to concentration of the analyte is observed, which can be measured either by colorimetric, fluorimetric, electrochemical or spectroscopic means. This article provides a review of how functionally modified gold colloids are applied in the detection of a broad range of threat agents, including radioactive substances, explosive compounds, chemical warfare agents, biotoxins, and biothreat pathogens through any of the four sensory means mentioned previously. Copyright © 2011 Elsevier B.V. All rights reserved.
Vidya, Raj; Saji, Alex
2018-05-01
The development of an easy to use, one-pot, environmentally friendly, non-invasive and label-free colorimetric probe for the determination of semen protamines, the biochemical marker of male fertility, using heparin gold nanoparticles (HAuNPs) is presented. The affinity of HAuNPs for protamines was due to the electrostatic interactions between polycationic protamine and polyanionic heparin. The binding of HAuNPs to protamine was characterized by variation in the plasmon absorption spectra followed by a visibly observable colour change of the solution from red to blue. We observed a red shift in the plasmon peak and the method exhibited linearity in the range of 10-70 ng/mL with a detection limit of 5 ng/mL, which is much lower than that reported for colorimetric sensors of protamine. The colour change and the variation in the absorbance of HAuNPs were highly specific for protamines in the presence of different interfering compounds and the method was successfully applied for determining protamine in real samples of semen and serum. Rather than a quantitative estimation, it seems that the method provides a quick screening between a large array of positive and negative samples and, moreover, it maintains the privacy of the user. The method appears to be simple and would be very useful in third-world countries where high-tech diagnostic aids are inaccessible to the majority of the population. Graphical Abstract Heparin gold nanoparticles aided visual detection of infertility.
Self-assembled organic radicals on Au(111) surfaces: a combined ToF-SIMS, STM, and ESR study.
Mannini, Matteo; Sorace, Lorenzo; Gorini, Lapo; Piras, Federica M; Caneschi, Andrea; Magnani, Agnese; Menichetti, Stefano; Gatteschi, Dante
2007-02-27
Electron spin resonance (ESR), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and scanning tunneling microscopy (STM) have been used in parallel to characterize the deposition on gold surface of a series of nitronyl nitroxide radicals. These compounds have been specifically synthesized with methyl-thio linking groups suitable to interact with the gold surface to form self-assembled monolayers (SAMs), which can be considered relevant in the research for molecular-based spintronics devices, as suggested in recent papers. The degree of the expected ordering on the surface of these SAMs has been tuned by varying the chemical structure of synthesized radicals. ToF-SIMS has been used to support the evidence of the occurrence of the deposition process. STM has shown the different qualities of the obtained SAMs, with the degree of local order increasing as the degree of freedom of the molecules on the surface is decreased. Finally, ESR has confirmed that the deposition process does not affect the paramagnetic characteristics of radicals and that it affords a complete single-layered coverage of the surface. Further, the absence of angular dependence in the spectra indicates that the small regions of local ordering do not give rise to a long-range order and suggests a quite large mobility of the radical on the surface, probably due to the weak interaction with gold provided by the methyl-thio linking group.
Spherical gold nanoparticles and gold nanorods for the determination of gentamicin
NASA Astrophysics Data System (ADS)
Miranda-Andrades, Jarol R.; Pérez-Gramatges, Aurora; Pandoli, Omar; Romani, Eric C.; Aucélio, Ricardo Q.; da Silva, Andrea R.
2017-02-01
Gentamicin is an antibiotic indicated to treat mastitis in dairy cattle and for the treatment of bacterial resistance in the context of hospital infections. The effect caused by gentamicin on the optical properties of gold nanoparticles aqueous dispersions were used to develop quantitative methods to determine this antibiotic. Two different aqueous dispersions, one containing spherical Au nanoparticles (AuNPs) and the other containing Au nanorods (AuNRs), had their conditions adjusted to enable a stable and sensitive response towards gentamicin. The use of AuNPs, with measurement at 681 nm of the rising coupling plasmon band, enabled a limit of detection (LOD) of 0.4 ng mL- 1 (0.02 ng absolute LOD), ten times lower than the one achieved by measuring the decreasing of the longitudinal surface plasmon resonance band (at 662 nm). The linear analytical response of AuNPs measured at 681 nm did not require rationing of signal values to correct for linearity. Stability of the analytical response resulted in intermediary precision below 2%. No significant interference was imposed by excipients traditionally present in injectable solutions for veterinary use. Percent recoveries obtained in such formulations were between 94.5 and 98.2% regardless the existence of any difference in the proportion of the compounds known as gentamicin (C1, C1a and C2) in standard and in the samples. The method requires no derivatization with toxic reagents as usually is required in other spectroscopic approaches.
Mal, Kanchan; Sharma, Abhinandan; Das, Indrajit
2014-09-08
This report describes a gold(III)-catalyzed efficient general route to densely substituted chiral 3-formyl furans under extremely mild conditions from suitably protected 5-(1-alkynyl)-2,3-dihydropyran-4-one using H2 O as a nucleophile. The reaction proceeds through the initial formation of an activated alkyne-gold(III) complex intermediate, followed by either a domino nucleophilic attack/anti-endo-dig cyclization, or the formation of a cyclic oxonium ion with subsequent attack by H2 O. To confirm the proposed mechanistic pathway, we employed MeOH as a nucleophile instead of H2 O to result in a substituted furo[3,2-c]pyran derivative, as anticipated. The similar furo[3,2-c]pyran skeleton with a hybrid carbohydrate-furan derivative has also been achieved through pyridinium dichromate (PDC) oxidation of a substituted chiral 3-formyl furan. The corresponding protected 5-(1-alkynyl)-2,3-dihydropyran-4-one can be synthesized from the monosaccharides (both hexoses and pentose) following oxidation, iodination, and Sonogashira coupling sequences. Furthermore, to demonstrate the potentiality of chiral 3-formyl furan derivatives, a TiBr4 -catalyzed reaction of these derivatives has been shown to offer efficient access to 1,5-dicarbonyl compounds, which on treatment with NH4 OAc in slightly acidic conditions afforded substituted furo[3,2-c]pyridine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Silent and higher-order vibrations of C 60 and its compounds
NASA Astrophysics Data System (ADS)
Graja, Andrzej; Łapiński, Andrzej; Król, Sylwia
1997-02-01
We present rich IR spectra of solid samples of C 60 and its derivatives. Most of the IR lines are identified as the activated silent modes of the C 60 or second-order combination modes. The method of preparation of a complex of C 60 and chloro(triphenyl-phosphine) gold grown from toluene solution is described. Basic physical properties, in particular IR transmission of the single crystals of the complex, are studied as a function of temperature. Anomalies in the temperature dependences of the linewidths, their frequencies and intensities are observed and discussed.
Experimental study of an isochorically heated heterogeneous interface. A progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, Juan Carlos
2015-08-20
Outline of the presentation: Studying possible mix / interface motion between heterogeneous low/high Z interfaces driven by 2-fluid or kinetic plasma effects (Heated to few eV, Sharp (sub µm) interface); Isochoric heating to initialize interface done with Al quasimonoenergetic ion beams on Trident; Have measured isochoric heating in individual materials intended for compound targets; Fielded experiments on Trident to measure interface motion (Gold-diamond, tin-aluminium); Measured heated-sample temperature with streaked optical pyrometry (SOP) (UT Austin led (research contract), SOP tests → heating uniformity Vs thickness on Al foils. Results are being analyzed.
Phytonanotherapy for management of diabetes using green synthesis nanoparticles.
Anand, K; Tiloke, C; Naidoo, Pragalathan; Chuturgoon, A A
2017-08-01
The world has a rich diversity of indigenous medicinal plants. The World Health Organization (WHO) gives high priority to eco-friendly, non-hazardous and cost effective healthcare such as the use of medicinal plants to treat various illnesses, including Human immunodeficiency virus (HIV) infection and Acquired immune deficiency syndrome (AIDS), tuberculosis (TB), diabetes mellitus (DM), malaria, and cancer. In developing countries, a high proportion of the population tends to use complementary and alternative medicines (CAM) together with conventional prescription drugs. Globally, CAM has been used in both developed and developing countries. In China, 30-50% of medicinal use is based on traditional alternative medicine. In Africa, it is estimated that 80% of primary health care is CAM, whilst in the USA, about 158 million people us CAM. This increase is due to three main influences: improve their eminence of life, relieve symptoms and preclude long-term complications. Despite the advances and advantages of conventional pharmaceutical medication, these are associated with long-term side effects and pose risks of inefficacy for treatment of chronic diseases such as cancer and DM. The biosynthesis of metal nanoparticles (NPs) using medicinal plants has received considerable attention as a proper alternative to using hazardous chemical and physical synthetic techniques. Plants are being exploited for their unique metal tolerance and effective production of gold metal NPs. A single medicinal plant contains an orchestra of chemical elements (e.g. proteins, vitamins, enzymes, amino acids, polysaccharides and organic compounds) that are "environmentally benign, yet chemically complex" and therefore serve as ideal tools for enhanced medicinal applications. It is reported that phytocompounds such as terpenoids, polysaccharides, polyols and flavones take part in the bio-reduction, stabilization and bio-capping mechanisms to form stable gold and silver NPs. Also the inhibitory potential of plant compounds against diabetic targets followed by a study of enzyme inhibitor kinetics, ligand binding dynamics supported by in silico docking studies that reveal the mode of bioactive compounds and their inhibitory activities. The present review focuses on the potential anticancer, antidiabetic and antimicrobial activity of phyto-synthesized gold and silver NPs. In phytonanotherapy, synergistic features of plant and metal NPs are unique as they offer healing properties that may be the clinical bioequivalent to many synthetic drugs, with minimal side effects. This could provide alternative treatment for chronic diseases that is efficient to overcome the disadvantages of synthetic monotherapy and allows medicinal plant therapy to co-exist with current synthetic treatments. This creates a much needed paradigm shift for further clinical studies in non-communicable and communicable diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Size-dependent tuning of horseradish peroxidase bioreactivity by gold nanoparticles
NASA Astrophysics Data System (ADS)
Wu, Haohao; Liu, Yi; Li, Meng; Chong, Yu; Zeng, Mingyong; Lo, Y. Martin; Yin, Jun-Jie
2015-02-01
Molecules with diverse biological functions, such as heme peroxidases, can be useful tools for identifying potential biological effects of gold nanoparticles (AuNPs) at the molecular level. Here, using UV-Vis, circular dichroism, dynamic light scattering, and electron spin resonance spectroscopy, we report tuning of horseradish peroxidase (HRP) bioactivity by reactant-free AuNPs with diameters of 5, 10, 15, 30 and 60 nm (Au-5 nm, Au-10 nm, Au-15 nm, Au-30 nm and Au-60 nm). HRP conjugation to AuNPs was observed with only Au-5 nm and Au-10 nm prominently increasing the α-helicity of the enzyme to extents inversely related to their size. Au-5 nm inhibited both HRP peroxidase activity toward 3,3',5,5'-tetramethylbenzidine and HRP compound I/II reactivity toward 5,5-dimethyl-1-pyrroline N-oxide. Au-5 nm enhanced the HRP peroxidase activity toward ascorbic acid and the HRP compound I/II reactivity toward redox-active residues in the HRP protein moiety. Further, Au-5 nm also decreased the catalase- and oxidase-like activities of HRP. Au-10 nm showed similar, but weaker effects, while Au-15 nm, Au-30 nm and Au-60 nm had no effect. Results suggest that AuNPs can size-dependently enhance or inhibit HRP bioreactivity toward substrates with different redox potentials via a mechanism involving extension of the HRP substrate access channel and decline in the redox potentials of HRP catalytic intermediates.Molecules with diverse biological functions, such as heme peroxidases, can be useful tools for identifying potential biological effects of gold nanoparticles (AuNPs) at the molecular level. Here, using UV-Vis, circular dichroism, dynamic light scattering, and electron spin resonance spectroscopy, we report tuning of horseradish peroxidase (HRP) bioactivity by reactant-free AuNPs with diameters of 5, 10, 15, 30 and 60 nm (Au-5 nm, Au-10 nm, Au-15 nm, Au-30 nm and Au-60 nm). HRP conjugation to AuNPs was observed with only Au-5 nm and Au-10 nm prominently increasing the α-helicity of the enzyme to extents inversely related to their size. Au-5 nm inhibited both HRP peroxidase activity toward 3,3',5,5'-tetramethylbenzidine and HRP compound I/II reactivity toward 5,5-dimethyl-1-pyrroline N-oxide. Au-5 nm enhanced the HRP peroxidase activity toward ascorbic acid and the HRP compound I/II reactivity toward redox-active residues in the HRP protein moiety. Further, Au-5 nm also decreased the catalase- and oxidase-like activities of HRP. Au-10 nm showed similar, but weaker effects, while Au-15 nm, Au-30 nm and Au-60 nm had no effect. Results suggest that AuNPs can size-dependently enhance or inhibit HRP bioreactivity toward substrates with different redox potentials via a mechanism involving extension of the HRP substrate access channel and decline in the redox potentials of HRP catalytic intermediates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07056a
Gold(I) and Gold(III) Complexes of Cyclic (Alkyl)(amino)carbenes
2016-01-01
The chemistry of Au(I) complexes with two types of cyclic (alkyl)(amino)carbene (CAAC) ligands has been explored, using the sterically less demanding dimethyl derivative Me2CAAC and the 2-adamantyl ligand AdCAAC. The conversion of (AdCAAC)AuCl into (AdCAAC)AuOH by treatment with KOH is significantly accelerated by the addition of tBuOH. (AdCAAC)AuOH is a convenient starting material for the high-yield syntheses of (AdCAAC)AuX complexes by acid/base and C–H activation reactions (X = OAryl, CF3CO2, N(Tf)2, C2Ph, C6F5, C6HF4, C6H2F3, CH2C(O)C6H4OMe, CH(Ph)C(O)Ph, CH2SO2Ph), while the cationic complexes [(AdCAAC)AuL]+ (L = CO, CNtBu) and (AdCAAC)AuCN were obtained by chloride substitution from (AdCAAC)AuCl. The reactivity toward variously substituted fluoroarenes suggests that (AdCAAC)AuOH is able to react with C–H bonds with pKa values lower than about 31.5. This, together with the spectroscopic data, confirm the somewhat stronger electron-donor properties of CAAC ligands in comparison to imidazolylidene-type N-heterocyclic carbenes (NHCs). In spite of this, the oxidation of Me2CAAC and AdCAAC gold compounds is much less facile. Oxidations proceed with C–Au cleavage by halogens unless light is strictly excluded. The oxidation of (AdCAAC)AuCl with PhICl2 in the dark gives near-quantitative yields of (AdCAAC)AuCl3, while [Au(Me2CAAC)2]Cl leads to trans-[AuCl2(Me2CAAC)2]Cl. In contrast to the chemistry of imidazolylidene-type gold NHC complexes, oxidation products containing Au–Br or Au–I bonds could not be obtained; whereas the reaction with CsBr3 cleaves the Au–C bond to give mixtures of [AdCAAC-Br]+[AuBr2]− and [(AdCAAC-Br)]+ [AuBr4]−, the oxidation of (AdCAAC)AuI with I2 leads to the adduct (AdCAAC)AuI·I2. Irrespective of the steric demands of the CAAC ligands, their gold complexes proved more resistant to oxidation and more prone to halogen cleavage of the Au–C bonds than gold(I) complexes of imidazole-based NHC ligands. PMID:26146436
NASA Astrophysics Data System (ADS)
Izadiyan, Zahra; Shameli, Kamyar; Hara, Hirofumi; Mohd Taib, Siti Husnaa
2018-01-01
The unique properties of gold nanoparticles (Au-NPs) produce in plant extract make them attractive for use in medical and industrial applications, it is necessary to develop environmentally friendly methods for their synthesis. This can be accomplished by replacing the traditional chemical compounds for the reduction of the gold ions to Au-NPs during synthesis with natural plant extracts or with plasmas atmospheric pressure. Here, the biosynthesis of Au-NPs using the Juglans regia (J. regia) green husk extract was investigated as the reducing and stabilizing agent. The formation of Au-NPs was initially monitored by visual observation and then characterized with the help of various characterization techniques. UV-vis spectroscopy results showed that Au-NPs synthesized using moderate temperature have a blue shifting, good distribution and smaller size compare with Au-NPs fabricated in room temperature. X-ray diffraction (XRD) results revealed the distinctive formation of the crystalline structure of Au-NPs with a spherical shape. According to transmission electron microscopy (TEM), the mean diameter and standard deviation of Au-NPs at room and moderate temperatures were 19.19 ± 4.7 and 14.32 ± 3.24 nm, respectively. The result of Field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) are in good agreement with each other and confirm that by using the moderate temperature compare to the room temperature the yield of reaction increased. Based on the zeta potential result, Au-NPs has sufficient value for the stability of the solution. According to FTIR spectrum, the J. regia would be coated on the gold ions surface in a successful manner. The non-toxic effect of Au-NPs concentration below 250 μg/ml was observed in the studies of in vitro cytotoxicity on normal and cancerous cell lines, respectively. The dose-dependent toxicity made it a suitable candidate for various medical applications.
Jaworska, Aleksandra; Jablonska, Anna; Wilanowski, Tomasz; Palys, Barbara; Sek, Slawomir; Kudelski, Andrzej
2018-05-24
Adsorption of molecules of DNA (deoxyribonucleic acid) or modified DNA on gold surfaces is often the first step in construction of many various biosensors, including biosensors for detection of DNA with a particular sequence. In this work we study the influence of amine and thiol modifications at the 3' ends of single stranded DNA (ssDNA) molecules on their adsorption on the surface of gold substrates and on the efficiency of hybridization of immobilized DNA with the complementary single stranded DNA. The characterization of formed layers has been carried out using infrared spectroscopy and atomic force microscopy. As model single stranded DNA we used DNA containing 20 adenine bases, whereas the complementary DNA contained 20 thymine bases. We found that the bands in polarization modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS) spectra of layers formed from thiol-modified DNA are significantly narrower and sharper, indicating their higher regularity in the orientation of DNA on gold surface when using thiol linker. Also, hybridization of the layer of thiol-modified DNA containing 20 adenine bases with the respective DNA containing thymine bases leads to formation of much more organized structures than in the case of unmodified DNA or DNA with the amine linker. We conclude that the thiol-modified ssDNA is more promising for the preparation of biosensors, in comparison with the amine-modified or unmodified ssDNA. We have also found that the above-mentioned modifications at the 3' end of ssDNA significantly influence the IR spectrum (and hence the structure) of polycrystalline films formed from such compounds, even though adsorbed fragments contain less than 5% of the DNA chain. This effect should be taken into account when comparing IR spectra of various polycrystalline films formed from modified and unmodified DNA. Copyright © 2018. Published by Elsevier B.V.
Lee, Hyun A; Castro-Aceituno, Veronica; Abbai, Ragavendran; Moon, Seong Soo; Kim, Yeon-Ju; Simu, Shakina Yesmin; Yang, Deok Chun
2018-03-29
The water extract of Anemarrhena asphodeloides, the traditional oriental medicinal plant, mediated the eco-friendly synthesis of silver nanoparticles (Aa-AgNPs) and gold nanoparticles (Aa-AuNPs). First, its therapeutic rhizome was powdered prior to water extraction and then silver, gold nanoparticles were synthesized. Aa-AgNPs and Aa-AuNPs were found to be spherical, face-centred cubic nanocrystals with a Z-average hydrodynamic diameter of 190 and 258 nm, respectively. In addition, proteins and aromatic biomolecules were the plausible players associated with the production and stabilization of Aa-AgNPs; instead, phenolic compounds were responsible for the synthesis and stability of Aa-AuNPs. In vitro cytotoxic analysis revealed that up to 50 μg.mL -1 concentration Aa-AuNPs did not exhibit any toxicity on 3T3-L1, HT29 and MCF7 cell lines, while being specifically cytotoxic to A549 cell line. On the contrary, Aa-AgNPs displayed a significantly higher toxicity in comparison to Aa-AuNPs in all cell lines specially MCF7 cell line. Since cancer cells were more sensitive to Aa-Au/AgNPs treatments, further evaluation was done in order to determine their anticancer potential. Reactive oxygen species (ROS) generation was not affected by Aa-AuNPs, on the other hand, Aa-AgNPs treatment exhibited a higher potential to induce oxidative stress in A549 cells than HT29 and MCF7 cells. In addition, Aa-Ag/AuNPs reduced cell migration in A549 cells at 10 and 50 μg.mL -1 , respectively. So far, this is the only report uncovering the ability of A. asphodeloides to synthesize silver and gold nanoparticles with anticancer potential and also indirectly enabling its large-scale utilization with value addition.
Jie, Mingsha; Yu, Songcheng; Yu, Fei; Liu, Lie; He, Leiliang; Li, Yanqiang; Zhang, Hongquan; Qu, Lingbo; Harrington, Peter de B; Wu, Yongjun
2018-07-01
In the present study, a novel highly sensitive magnetic enzyme chemiluminescence immunoassay (MECLIA) was developed to detect fumonisin B 1 (FB 1 ) in cereal samples. The gold-coated magnetic nanoparticles (Fe 3 O 4 @Au, GoldMag) were used as solid phase carrier to develop a competitive CLIA for detecting FB 1 , in which FB 1 in samples would compete with FB 1 -ovalbumin coated on the surface of Fe 3 O 4 @Au nanoparticles for binding with FB 1 antibodies. Successively, horseradish peroxidase labeled goat anti-rabbit IgG (HRP-IgG) was conjugated with FB 1 antibodies on the microplate. In substrate solution containing luminol and H 2 O 2 , HRP-IgG catalyzed luminol oxidation by H 2 O 2 , generating a high chemiluminescence signal. The FB 1 immune GoldMag particles were characterized by Fourier transform infrared spectroscopy, scanning electron microscope and zeta potential analysis, etc. RESULTS: The concentrations and the reaction times of these immunoreagents were optimized to improve the performances of this method. The established method could detect as low as 0.027 ng mL -1 FB 1 from 0.05 ng mL -1 to 25 ng mL -1 , demonstrating little cross-reaction (less than 2.4%) with other structurally related compounds. The average intrassay relative SD (RSD) (n = 6) was 3.4% and the average interassay RSD (n = 6) was 5.4%. This method was successfully applied for the determination of FB 1 in corn and wheat and gave recoveries of between 98-110% and 91-105%, respectively. The results of the present study suggest that the MECLIA approach has potential application for high-throughput fumonisin screening in cereals. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Medina-Plaza, C; García-Cabezón, C; García-Hernández, C; Bramorski, C; Blanco-Val, Y; Martín-Pedrosa, F; Kawai, T; de Saja, J A; Rodríguez-Méndez, M L
2015-01-01
A chemically modified electrode consisting of Langmuir-Blodgett (LB) films of n-dodecanethiol functionalized gold nanoparticles (SDODAuNP-LB), was investigated as a voltammetric sensor of organic and phenolic acids of interest in the wine industry. The nanostructured films demonstrated interfacial properties being able to detect the main organic acids present in grapes and wines (tartaric, malic, lactic and citric). Compared to a bare ITO electrode, the modified electrodes exhibited a shift of the reduction potential in the less positive direction and a marked enhancement in the current response. Moreover, the increased electrocatalytic properties made it possible to distinguish between the different dissociable protons of polyprotic acids. The SDODAuNP-LB sensor was also able to provide enhanced responses toward aqueous solutions of phenolic acids commonly found in wines (caffeic and gallic acids). The presence of nanoparticles increased drastically the sensitivity toward organic acids and phenolic compounds. Limits of detection as low as 10(-6) mol L(-1) were achieved. Efficient catalytic activity was also observed in mixtures of phenolic acid/tartaric in the range of pHs typically found in wines. In such mixtures, the electrode was able to provide simultaneous information about the acid and the phenol concentrations with a complete absence of interferences. The excellent sensing properties shown by these sensors could be attributed to the electrocatalytic properties of the nanoparticles combined with the high surface to volume ratio and homogeneity provided by the LB technique used for the immobilization. Moreover, the LB technique also provided an accurate method to immobilize the gold nanoparticles giving rise to stable and reproducible sensors showing repeatability lower than 2% and reproducibility lower than 4% for all the compounds analyzed. Copyright © 2014. Published by Elsevier B.V.
Charoenkitamorn, Kanokwan; Chailapakul, Orawon; Siangproh, Weena
2015-01-01
For the first time, gold nanoparticles (AuNPs) modified screen-printed carbon electrode (SPCE) was developed as working electrode in ultra-high performance liquid chromatography (UHPLC) coupled with electrochemical detection (UHPLC-ED) for simultaneous determination of thiram, disulfiram, and N,N-diethyl-N',N'-dimethylthiuram disulfide, their derivative compound. The separation was performed in reversed-phase mode using C18 column, mobile phase consisting of 55:45 (v/v) ratio of 0.05 M phosphate buffer solution (pH 5) and acetonitrile at a flow rate of 1.5 mL min(-1). For the detection part, the amperometric detection was chosen with a detection potential of 1.2 V vs. Ag/AgCl. Under the optimal conditions, the good linear relationship was obtained in the range of 0.07-15, 0.07-12, and 0.5-15 µg mL(-1) (correlation coefficient more than 0.9900) for thiram, N,N-diethyl-N',N'-dimethylthiuram disulfide, and disulfiram, respectively. The limits of detection (LODs) of thiram, N,N-diethyl-N',N'-dimethylthiuram disulfide, and disulfiram were 0.022, 0.023, and 0.165 µg mL(-1), respectively. Moreover, this method was successfully applied for the detection of these compounds in real samples (apple, grape and lettuce) with the recoveries ranging from 94.3% to 108.8%. To validate this developed method, a highly quantitative agreement was clearly observed compared to standard UHPLC-UV system. Therefore, the proposed electrode can be effectively used as an alternative electrode in UHPLC-ED for rapid, selective, highly sensitive, and simultaneous determination of thiram, disulfiram, and N,N-diethyl-N',N'-dimethylthiuram disulfide. Copyright © 2014 Elsevier B.V. All rights reserved.
Pulling monatomic gold wires with single molecules: an Ab initio simulation.
Krüger, Daniel; Fuchs, Harald; Rousseau, Roger; Marx, Dominik; Parrinello, Michele
2002-10-28
Car-Parrinello molecular dynamics simulations demonstrate that pulling a single thiolate molecule anchored on a stepped gold surface does not preferentially break the sulfur-gold chemical bond. Instead, it is found that this process leads to the formation of a monoatomic gold nanowire, followed by breaking a gold-gold bond with a rupture force of about 1.2 nN. The simulations also indicate that previous single-molecule thiolate-gold and gold-gold rupture experiments both probe the same phenomenon, namely, the breaking of a gold-gold bond within a gold nanowire.
Xu, Lu; Dong, Shuli; Hao, Jingcheng; Cui, Jiwei; Hoffmann, Heinz
2017-03-28
It is difficult to synthesize magnetic gold nanoparticles (AuNPs) with ultrafine sizes (<2 nm) based on a conventional method via coating AuNPs using magnetic particles, compounds, or ions. Here, magnetic cationic surfactants C 16 H 33 N + (CH 3 ) 3 [CeCl 3 Br] - (CTACe) and C 16 H 33 N + (CH 3 ) 3 [GdCl 3 Br] - (CTAGd) are prepared by a one-step coordination reaction, i.e., C 16 H 33 N + (CH 3 ) 3 Br - (CTABr) + CeCl 3 or GdCl 3 → CTACe or CTAGd. A simple strategy for fabricate ultrafine (<2 nm) magnetic gold nanoparticles (AuNPs) via surface modification with weak oxidizing paramagnetic cationic surfactants, CTACe or CTAGd, is developed. The resulting AuNPs can highly concentrate the charges of cationic surfactants on their surfaces, thereby presenting strong electrostatic interaction with negatively charged biomacromolecules, DNA, and proteins. As a consequence, they can converge DNA and proteins over 90% at a lower dosage than magnetic surfactants or existing magnetic AuNPs. The surface modification with these cationic surfactants endows AuNPs with strong magnetism, which allows them to magnetize and migrate the attached biomacromolecules with a much higher efficiency. The native conformation of DNA and proteins can be protected during the migration. Besides, the captured DNA and proteins could be released after adding sufficient inorganic salts such as at c NaBr = 50 mmol·L -1 . Our results could offer new guidance for a diverse range of systems including gene delivery, DNA transfection, and protein delivery and separation.
Lacher, Sebastian; Matsuo, Yutaka; Nakamura, Eiichi
2011-10-26
The surface properties of inorganic substrates can be altered by coating with organic molecules, which may result in the improvement of the properties suitable for electronic or biological applications. This article reports a systematic experimental study on the influence of the molecular and supramolecular properties of umbrella-shaped penta(organo)[60]fullerene derivatives, and on the work function and the water contact angle of indium-tin oxide (ITO) and gold surfaces. We could relate these macroscopic characteristics to single-molecular level properties, such as ionization potential and molecular dipole. The results led us to conclude that the formation of a SAM of a polar compound generates an electronic field through intermolecular interaction of the molecular charges, and this field makes the overall dipole of the SAM much smaller than the one expected from the simple sum of the dipoles of all molecules in the SAM. This effect, which was called depolarization and previously discussed theoretically, is now quantitatively probed by experiments. The important physical properties in surface science such as work function, ionization potential, and water contact angles have been mutually correlated at the level of molecular structures and molecular orientations on the substrate surface. We also found that the SAMs on ITO and gold operate under the same principle except that the "push-back" effect operates specifically for gold. The study also illustrates the ability of the photoelectron yield spectroscopy technique to rapidly measure the work function of a SAM-covered substrate and the ionization potential value of a molecule on the surface.
Kim, Dongkyu; Park, Sangjin; Lee, Jae Hyuk; Jeong, Yong Yeon; Jon, Sangyong
2007-06-20
Current computed tomography (CT) contrast agents such as iodine-based compounds have several limitations, including short imaging times due to rapid renal clearance, renal toxicity, and vascular permeation. Here, we describe a new CT contrast agent based on gold nanoparticles (GNPs) that overcomes these limitations. Because gold has a higher atomic number and X-ray absorption coefficient than iodine, we expected that GNPs can be used as CT contrast agents. We prepared uniform GNPs ( approximately 30 nm in diameter) by general reduction of HAuCl4 by boiling with sodium citrate. The resulting GNPs were coated with polyethylene glycol (PEG) to impart antibiofouling properties, which extends their lifetime in the bloodstream. Measurement of the X-ray absorption coefficient in vitro revealed that the attenuation of PEG-coated GNPs is 5.7 times higher than that of the current iodine-based CT contrast agent, Ultravist. Furthermore, when injected intravenously into rats, the PEG-coated GNPs had a much longer blood circulation time (>4 h) than Ultravist (<10 min). Consequently, CT images of rats using PEG-coated GNPs showed a clear delineation of cardiac ventricles and great vessels. On the other hand, relatively high levels of GNPs accumulated in the spleen and liver, which contain phagocytic cells. Intravenous injection of PEG-coated GNPs into hepatoma-bearing rats resulted in a high contrast ( approximately 2-fold) between hepatoma and normal liver tissue on CT images. These results suggest that PEG-coated GNPs can be useful as a CT contrast agent for a blood pool and hepatoma imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin, E-mail: caephxb2003@aliyun.com
2015-11-15
Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter tomore » yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.« less
Park, Ji Su; Ahn, Eun-Young; Park, Youmie
2017-01-01
Mangosteen (Garcinia mangostana) pericarp waste extract was used to synthesize gold and silver nanoparticles by a green strategy. The extract was both a reducing and stabilizing agent during synthesis. Phytochemical screening of the extract was conducted to obtain information regarding the presence/absence of primary and secondary metabolites in the extract. The in vitro antioxidant activity results demonstrated that the extract had excellent antioxidant activity, which was comparable to a standard (butylated hydroxy toluene). Spherical gold nanoparticles (gold nanoparticles green synthesized by mangosteen pericarp extract [GM-AuNPs]) with an average size of 15.37±3.99 to 44.20±16.99 nm were observed in high-resolution transmission electron microscopy (HR-TEM) images. Most interestingly, the silver nanoparticles (silver nanoparticles green synthesized by mangosteen pericarp extract [GM-AgNPs]) had asymmetric nanodumbbell shapes where one tail grew from a spherical head. The average head size was measured to be 13.65±5.07 to 31.08±3.99 nm from HR-TEM images. The hydrodynamic size of both nanoparticles tended to increase with increasing extract concentration. Large negative zeta potentials (−18.92 to −34.77 mV) suggested that each nanoparticle solution possessed excellent colloidal stability. The reaction yields were 99.7% for GM-AuNPs and 82.8% for GM-AgNPs, which were assessed by inductively coupled plasma optical emission spectroscopy. A high-resolution X-ray diffraction pattern confirmed the face-centered cubic structure of both nanoparticles. Based on phytochemical screening and Fourier transform infrared spectra, the hydroxyl functional groups of carbohydrates, flavonoids, glycosides, and phenolic compounds were most likely involved in a reduction reaction of gold or silver salts to their corresponding nanoparticles. The in vitro cytotoxicity (based on a water-soluble tetrazolium assay) demonstrated that GM-AgNPs were toxic to both A549 (a human lung cancer cell) and NIH3T3 (a mouse fibroblast cell). The cytotoxicity of GM-AgNPs on A549 cells was related to apoptotic cell death. However, GM-AuNPs did not show any significant cytotoxicity to either cell. These results suggest that GM-AuNPs have the potential to be drug delivery vehicles or carriers for pharmaceutical and biomedical applications. PMID:29066885
Park, Ji Su; Ahn, Eun-Young; Park, Youmie
2017-01-01
Mangosteen ( Garcinia mangostana ) pericarp waste extract was used to synthesize gold and silver nanoparticles by a green strategy. The extract was both a reducing and stabilizing agent during synthesis. Phytochemical screening of the extract was conducted to obtain information regarding the presence/absence of primary and secondary metabolites in the extract. The in vitro antioxidant activity results demonstrated that the extract had excellent antioxidant activity, which was comparable to a standard (butylated hydroxy toluene). Spherical gold nanoparticles (gold nanoparticles green synthesized by mangosteen pericarp extract [GM-AuNPs]) with an average size of 15.37±3.99 to 44.20±16.99 nm were observed in high-resolution transmission electron microscopy (HR-TEM) images. Most interestingly, the silver nanoparticles (silver nanoparticles green synthesized by mangosteen pericarp extract [GM-AgNPs]) had asymmetric nanodumbbell shapes where one tail grew from a spherical head. The average head size was measured to be 13.65±5.07 to 31.08±3.99 nm from HR-TEM images. The hydrodynamic size of both nanoparticles tended to increase with increasing extract concentration. Large negative zeta potentials (-18.92 to -34.77 mV) suggested that each nanoparticle solution possessed excellent colloidal stability. The reaction yields were 99.7% for GM-AuNPs and 82.8% for GM-AgNPs, which were assessed by inductively coupled plasma optical emission spectroscopy. A high-resolution X-ray diffraction pattern confirmed the face-centered cubic structure of both nanoparticles. Based on phytochemical screening and Fourier transform infrared spectra, the hydroxyl functional groups of carbohydrates, flavonoids, glycosides, and phenolic compounds were most likely involved in a reduction reaction of gold or silver salts to their corresponding nanoparticles. The in vitro cytotoxicity (based on a water-soluble tetrazolium assay) demonstrated that GM-AgNPs were toxic to both A549 (a human lung cancer cell) and NIH3T3 (a mouse fibroblast cell). The cytotoxicity of GM-AgNPs on A549 cells was related to apoptotic cell death. However, GM-AuNPs did not show any significant cytotoxicity to either cell. These results suggest that GM-AuNPs have the potential to be drug delivery vehicles or carriers for pharmaceutical and biomedical applications.
Hu, Bo; Kong, Fanpeng; Gao, Xiaonan; Jiang, Lulu; Li, Xiaofeng; Gao, Wen; Xu, Kehua; Tang, Bo
2018-05-04
Gold nanoparticles (Au NPs) assembled through Au-S covalent bonds have been widely used in biomolecule-sensing technologies. However, during the process, detection distortions caused by high levels of thiol compounds can still significantly influence the result and this problem has not really been solved. Based on the higher stability of Au-Se bonds compared to Au-S bonds, we prepared selenol-modified Au NPs as an Au-Se nanoplatform (NPF). Compared with the Au-S NPF, the Au-Se NPF exhibits excellent anti-interference properties in the presence of millimolar levels of glutathione (GSH). Such an Au-Se NPF that can effectively avoid detection distortions caused by high levels of thiols thus offers a new perspective in future nanomaterial design, as well as a novel platform with higher stability and selectivity for the in vivo application of chemical sensing and clinical therapies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ahmadi, Mahmoud Kamal; Fawaz, Samar; Fang, Lei; Yu, Zhipeng; Pfeifer, Blaine A
2016-05-01
The production of the mixed nonribosomal peptide-polyketide natural product yersiniabactin (Ybt) has been established using E. coli as a heterologous host. In this study, precursor-directed biosynthesis was used to generate five new analogs of Ybt, demonstrating the flexibility of the heterologous system and the biosynthetic process in allowing compound diversity. A combination of biosynthetic and cellular engineering was then used to influence the production metrics of the resulting analogs. First, the cellular levels and activity of FadL, a hydrocarbon transport protein, were tested for subsequent influence upon exogenous precursor uptake and Ybt analog production with a positive correlation observed between FadL over-production and analog formation. Next, a Ybt biosynthetic editing enzyme was removed from the heterologous system which decreased native compound production but increased analog formation. A final series of experiments enhanced endogenous anthranilate towards complete pathway formation of the associated analog which showed a selective ability to bind gold. © 2015 Wiley Periodicals, Inc.
Novel hits for acetylcholinesterase inhibition derived by docking-based screening on ZINC database.
Doytchinova, Irini; Atanasova, Mariyana; Valkova, Iva; Stavrakov, Georgi; Philipova, Irena; Zhivkova, Zvetanka; Zheleva-Dimitrova, Dimitrina; Konstantinov, Spiro; Dimitrov, Ivan
2018-12-01
The inhibition of the enzyme acetylcholinesterase (AChE) increases the levels of the neurotransmitter acetylcholine and symptomatically improves the affected cognitive function. In the present study, we searched for novel AChE inhibitors by docking-based virtual screening of the standard lead-like set of ZINC database containing more than 6 million small molecules using GOLD software. The top 10 best-scored hits were tested in vitro for AChE affinity, neurotoxicity, GIT and BBB permeability. The main pharmacokinetic parameters like volume of distribution, free fraction in plasma, total clearance, and half-life were predicted by previously derived models. Nine of the compounds bind to the enzyme with affinities from 0.517 to 0.735 µM, eight of them are non-toxic. All hits permeate GIT and BBB and bind extensively to plasma proteins. Most of them are low-clearance compounds. In total, seven of the 10 hits are promising for further lead optimisation. These are structures with ZINC IDs: 00220177, 44455618, 66142300, 71804814, 72065926, 96007907, and 97159977.
Abbas, Aamer; Josefson, Mats; Nylund, Göran M; Pavia, Henrik; Abrahamsson, Katarina
2012-08-06
Surface enhanced Raman spectroscopy combined with transposed Orthogonal Partial Least Squares (T-OPLS) was shown to produce chemical images of the natural antibacterial surface-active compound 1,1,3,3-tetrabromo-2-heptanone (TBH) on Bonnemaisonia hamifera. The use of gold colloids functionalised with the internal standard 4-mercapto-benzonitrile (MBN) made it possible to create images of the relative concentration of TBH over the surfaces. A gradient of TBH could be mapped over and in the close vicinity of the B. hamifera algal vesicles at the attomol/pixel level. T-OPLS produced a measure of the spectral correlation for each pixel of the hyperspectral images whilst not including spectral variation that was linearly independent of the target spectrum. In this paper we show the possibility to retrieve specific spectral information with a low magnitude in a complex matrix. Copyright © 2012 Elsevier B.V. All rights reserved.
Lighting market alchemy: Will we find a pot of gold at the end of the III-V rainbow?
NASA Astrophysics Data System (ADS)
Conway, Kathryn M.
2004-12-01
With a focus on visible spectrum light emitting diodes (LEDs), three questions frame this update. First, what are the market and financial outlooks for light-producing compound semiconductor materials and devices? Second, which applications offer the greatest growth potential for the next five to ten years and with which technologies will they likely compete for market share? Third, how can photonics experts contribute to accelerated successes for LEDs and other solid-state lighting technologies such as quantum dots? Using the rainbow as a metaphor for the market, the author examines developments in single color, multiple color and "white light" products.
Peng, Jiale; Li, Yaping; Zhou, Yeheng; Zhang, Li; Liu, Xingyong; Zuo, Zhili
2018-05-29
Gout is a common inflammatory arthritis caused by the deposition of urate crystals within joints. It is increasingly in prevalence during the past few decades as shown by the epidemiological survey results. Xanthine oxidase (XO) is a key enzyme to transfer hypoxanthine and xanthine to uric acid, whose overproduction leads to gout. Therefore, inhibiting the activity of xanthine oxidase is an important way to reduce the production of urate. In the study, in order to identify the potential natural products targeting XO, pharmacophore modeling was employed to filter databases. Here, two methods, pharmacophore based on ligand and pharmacophore based on receptor-ligand, were constructed by Discovery Studio. Then GOLD was used to refine the potential compounds with higher fitness scores. Finally, molecular docking and dynamics simulations were employed to analyze the interactions between compounds and protein. The best hypothesis was set as a 3D query to screen database, returning 785 and 297 compounds respectively. A merged set of the above 1082 molecules was subjected to molecular docking, which returned 144 hits with high-fitness scores. These molecules were clustered in four main kinds depending on different backbones. What is more, molecular docking showed that the representative compounds established key interactions with the amino acid residues in the protein, and the RMSD and RMSF of molecular dynamics results showed that these compounds can stabilize the protein. The information represented in the study confirmed previous reports. And it may assist to discover and design new backbones as potential XO inhibitors based on natural products.
Shih, Wei-Chuan; Santos, Greggy M; Zhao, Fusheng; Zenasni, Oussama; Arnob, Md Masud Parvez
2016-07-13
Near-infrared (NIR) absorption spectroscopy provides molecular and chemical information based on overtones and combination bands of the fundamental vibrational modes in the infrared wavelengths. However, the sensitivity of NIR absorption measurement is limited by the generally weak absorption and the relatively poor detector performance compared to other wavelength ranges. To overcome these barriers, we have developed a novel technique to simultaneously obtain chemical and refractive index sensing in 1-2.5 μm NIR wavelength range on nanoporous gold (NPG) disks, which feature high-density plasmonic hot-spots of localized electric field enhancement. For the first time, surface-enhanced near-infrared absorption (SENIRA) spectroscopy has been demonstrated for high sensitivity chemical detection. With a self-assembled monolayer (SAM) of octadecanethiol (ODT), an enhancement factor (EF) of up to ∼10(4) has been demonstrated for the first C-H combination band at 2400 nm using NPG disk with 600 nm diameter. Together with localized surface plasmon resonance (LSPR) extinction spectroscopy, simultaneous sensing of sample refractive index has been achieved for the first time. The performance of this technique has been evaluated using various hydrocarbon compounds and crude oil samples.
Zhou, Lin; Glennon, Jeremy D; Luong, John H T
2010-08-15
Field-amplified sample stacking using a fused silica capillary coated with gold nanoparticles (AuNPs) embedded in poly(diallyl dimethylammonium) chloride (PDDA) has been investigated for the electrophoretic separation of indoxyl sulfate, homovanillic acid (HVA), and vanillylmandelic acid (VMA). AuNPs (27 nm) exhibit ionic and hydrophobic interactions, as well as hydrogen bonding with the PDDA network to form a stable layer on the internal wall of the capillary. This approach reverses electro-osmotic flow allowing for fast migration of the analytes while retarding other endogenous compounds including ascorbic acid, uric acid, catecholamines, and indoleamines. Notably, the two closely related biomarkers of clinical significance, HVA and VMA, displayed differential interaction with PDDA-AuNPs which enabled the separation of this pair. The detection limit of the three analytes obtained by using a boron doped diamond electrode was approximately 75 nM, which was significantly below their normal physiological levels in biological fluids. This combined separation and detection scheme was applied to the direct analysis of these analytes and other interfering chemicals including uric and ascorbic acids in urine samples without off-line sample treatment or preconcentration.
Sani Usman, Muhammad; Hussein, Mohd Zobir; Fakurazi, Sharida; Ahmad Saad, Fathinul Fikri
2017-01-01
We have developed gadolinium-based theranostic nanoparticles for co-delivery of drug and magnetic resonance imaging (MRI) contrast agent using Zn/Al-layered double hydroxide as the nanocarrier platform, a naturally occurring phenolic compound, gallic acid (GA) as therapeutic agent, and Gd(NO3)3 as diagnostic agent. Gold nanoparticles (AuNPs) were grown on the system to support the contrast for MRI imaging. The nanoparticles were characterized using techniques such as Hi-TEM, XRD, ICP-ES. Kinetic release study of the GA from the nanoparticles showed about 70% of GA was released over a period of 72 h. The in vitro cell viability test for the nanoparticles showed relatively low toxicity to human cell lines (3T3) and improved toxicity on cancerous cell lines (HepG2). A preliminary contrast property test of the nanoparticles, tested on a 3 Tesla MRI machine at various concentrations of GAGZAu and water (as a reference) indicates that the nanoparticles have a promising dual diagnostic and therapeutic features to further develop a better future for clinical remedy for cancer treatment. PMID:28858229
NASA Astrophysics Data System (ADS)
Longo, E.; Bravin, A.; Brun, F.; Bukreeva, I.; Cedola, A.; Fratini, M.; Le Guevel, X.; Massimi, L.; Sancey, L.; Tillement, O.; Zeitoun, P.; de La Rochefoucauld, O.
2018-01-01
The word "theranostic" derives from the fusion of two terms: therapeutic and diagnostic. It is a promising research field that aims to develop innovative therapies with high target specificity by exploiting the therapeutic and diagnostic properties, in particular for metal-based nanoparticles (NPs) developed to erase cancer. In the framework of a combined research program on low dose X-ray imaging and theranostic nanoparticles (NPs), high resolution Phase-Contrast Tomography images of mice organs injected with gadolinium and gold-NPs were acquired at the European Synchrotron Radiation Facility (ESRF). Both compounds are good X-ray contrast agents due to their high attenuation coefficient with respect to biological tissues, especially immediately above K-edge energy. X-ray tomography is a powerful non-invasive technique to image the 3D vasculature network in order to detect abnormalities. Phase contrast methods provide more detailed anatomical information with higher discrimination among soft tissues. We present the images of mice liver and brain injected with gold and gadolinium NPs, respectively. We discuss different image processing methods used aiming at enhancing the accuracy on localizing nanoparticles.
Glycation Reactions of Casein Micelles.
Moeckel, Ulrike; Duerasch, Anja; Weiz, Alexander; Ruck, Michael; Henle, Thomas
2016-04-13
After suspensions of micellar casein or nonmicellar sodium caseinate had been heated, respectively, in the presence and absence of glucose for 0-4 h at 100 °C, glycation compounds were quantitated. The formation of Amadori products as indicators for the "early" Maillard reaction were in the same range for both micellar and nonmicellar caseins, indicating that reactive amino acid side chains within the micelles are accessible for glucose in a comparable way as in nonmicellar casein. Significant differences, however, were observed concerning the formation of the advanced glycation end products (AGEs), namely, N(ε)-carboxymethyllysine (CML), pyrraline, pentosidine, and glyoxal-lysine dimer (GOLD). CML could be observerd in higher amounts in nonmicellar casein, whereas in the micelles the pyrraline formation was increased. Pentosidine and GOLD were formed in comparable amounts. Furthermore, the extent of protein cross-linking was significantly higher in the glycated casein micelles than in the nonmicellar casein samples. Dynamic light scattering and scanning electron microscopy showed that glycation has no influence on the size of the casein micelles, indicating that cross-linking occurs only in the interior of the micelles, but altered the surface morphology. Studies on glycation and nonenzymatic cross-linking can contribute to the understanding of the structure of casein micelles.
Nardon, Chiara; Schmitt, Sara M.; Yang, Huanjie; Zuo, Jian
2014-01-01
Since the serendipitous discovery of cisplatin, platinum-based drugs have become well-established antitumor agents, despite the fact that their clinical use is limited by many severe side-effects. In order to both improve the chemotherapeutic index and broaden the therapeutic spectrum of current drugs, our most recent anti-neoplastic agents, Au(III) complexes, were designed as carrier-mediated delivery systems exploiting peptide transporters, which are up-regulated in some cancers. Among all, we focused on two compounds and tested them on human MDA-MB-231 (resistant to cisplatin) breast cancer cell cultures and xenografts, discovering the proteasome as a major target both in vitro and in vivo. 53% inhibition of breast tumor growth in mice was observed after 27 days of treatment at 1.0 mg kg−1 d−1, compared to control. Remarkably, if only the most responsive mice are taken into account, 85% growth inhibition, with some animals showing tumor shrinkage, was observed after 13 days. These results led us to file an international patent, recognizing this class of gold(III) peptidomimetics as suitable candidates for entering phase I clinical trials. PMID:24392119
Effects of Burning Conditions to the Formation of Gold Layer Photograph and Gold Layer Hologram
NASA Astrophysics Data System (ADS)
Kuge, Ken'ichi; Takahashi, Ataru; Harada, Takahito; Doi, Keiji; Sakai, Tomoko
Burning stage from gold nanoparticles to gold layer in the formation process of gold-layer photograph using gold deposition development was investigated. The gelatin layer holding gold nanoparticles is carbonized at about 400°C and burned out until about 500°C. Because gold nanoparticles would be compressed only to vertical direction and then melt to form the gold layer, the gold-layer photograph still holds the high resolution. Gold nanoparaticles do not melt completely even at 900°C, and form continuous clusters of several hundred nm.
31 CFR 100.4 - Gold coin and gold certificates in general.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Gold coin and gold certificates in... MONETARY OFFICES, DEPARTMENT OF THE TREASURY EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before...
31 CFR 100.4 - Gold coin and gold certificates in general.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Gold coin and gold certificates in... MONETARY OFFICES, DEPARTMENT OF THE TREASURY EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before...
31 CFR 100.4 - Gold coin and gold certificates in general.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Gold coin and gold certificates in... MONETARY OFFICES, DEPARTMENT OF THE TREASURY EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before...
31 CFR 100.4 - Gold coin and gold certificates in general.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Gold coin and gold certificates in... MONETARY OFFICES, DEPARTMENT OF THE TREASURY EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before...
31 CFR 100.4 - Gold coin and gold certificates in general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Gold coin and gold certificates in... EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before January 30, 1934, are exchangeable, as provided...
NASA Astrophysics Data System (ADS)
Arif, J.; Baker, T.
2004-10-01
Gold is an important by-product in many porphyry-type deposits but the distribution and chemistry of gold in such systems remains poorly understood. Here we report the results of petrographic, electron microprobe, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and flotation test studies of gold and associated copper sulfides within a paragenetic framework from the world-class Batu Hijau (914 mt @ 0.53% Cu, 0.40 g/t Au) porphyry copper gold deposit, Indonesia. Unlike many other porphyry copper gold deposits, early copper minerals (bornite digenite chalcocite) are well preserved at Batu Hijau and the chalcopyrite pyrite overprint is less developed. Hence, it provides an excellent opportunity to study the entire gold paragenesis of the porphyry system. In 105 polished thin sections, 699 native gold grains were identified. Almost all of the native gold grains occurred either within quartz veins, attached to sulfide, or as free gold along quartz or silicate grain boundaries. The native gold grains are dominantly round in shape and mostly 1 12 μm in size. The majority of gold was deposited during the formation of early ‘A’ veins and is dominantly associated with bornite rather than chalcopyrite. The petrographic and LA-ICP-MS study results indicate that in bornite-rich ores gold mostly occurs within copper sulfide grains as invisible gold (i.e., within the sulfide structure) or as native gold grains. In chalcopyrite-rich ores gold mostly occurs as native gold grains with lesser invisible gold. Petrographic observations also indicate a higher proportion of free gold (native gold not attached to any sulfide) in chalcopyrite-rich ores compared to bornite rich ores. The pattern of free gold distribution appears to correlate with the flotation test data, where the average gold recovery value from chalcopyrite-rich ores is consistently lower than bornite-rich ores. Our data suggest that porphyry copper-gold deposits with chalcopyrite-rich ores are more likely to have a higher proportion of free gold and may require different ore processing strategies.
NASA Astrophysics Data System (ADS)
Koděra, Peter; Kozák, Jaroslav; Brčeková, Jana; Chovan, Martin; Lexa, Jaroslav; Jánošík, Michal; Biroň, Adrián; Uhlík, Peter; Bakos, František
2018-03-01
The Biely Vrch deposit in the Western Carpathians is assigned to the shallow, sulfide-poor porphyry gold deposit type and has an exceptionally low Cu/Au ratio. According to 3-D geochemical models, there is a limited spatial correlation between Au and Cu due to the primary introduction of gold by a salt melt and Cu by low-density vapor. Despite a rough spatial correlation of gold grades with quartz stockwork intensity, gold is hosted mostly by altered rock, exclusively in native form. Three main gold mineral assemblages were recognized here. In the deepest parts of the system, the K- and Ca-Na silicate gold assemblage is associated with minerals of high-temperature alteration (plagioclase, K-feldspar, actinolite), with gold grades and fineness depending on depth and potassium content of the host rock: K-silicate alteration hosts the lowest fineness gold ( 914), whereas Ca-Na silicate alteration has the highest ( 983). The intermediate argillic gold assemblage is the most widespread, with gold hosted mainly by chlorite, illite, smectite, and interstratified illite-chlorite-smectite minerals. The gold fineness is mostly variable (875-990) and inherited from the former gold mineral assemblages. The latest advanced argillic gold assemblage has its gold mostly in kaolinite. The extremely high fineness ( 994) results from gold remobilization by late-stage aqueous magmatic-hydrothermal fluids. Uncommon bonanza-grade appears where the earlier gold mineral assemblages were further enriched by this remobilized gold. Primary precipitation of gold occurred during ascent and cooling of salt melts at 450 to 309 °C, mostly during retrograde quartz solubility.
LOCALIZATION OF GOLD IN MOUSE BRAIN IN RELATION TO GOLD THIOGLUCOSE OBESITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debons, A.F.; Silver, L.; Cronkite, E.P.
1962-04-01
Administration of gold thioglucose led to the development of hyperphagia and obesity in mice; this confirmed findings by previous investigators. By employing neutron activation analysis and radioautography, it was observed that this syndrome was associated with focal accumulation of gold in the hypothalamus. Animals treated with gold thiomalate failed to show any hypothalamic Iocalization of gold radioautographically or any evidence of the syndrome of hyperphagla and obesity. In additlon, other foci of gold locallzation were found in gold thioglucose-treated but not in the gold thiomalate-treated animals. Gamma spectroscopy studies made possible quantitative measurements of the gold content ln the brainsmore » of both treated groups. Gold thioglucose-treated as well as gold thiomalate-treated animals had appreciable quantities of gold in the brain proper. Phosphorus-32 generated by neutron activation of the sulfur moiety of gold thioglucose proved to be insigniflcant in its contribution to the radioautographic flndings. Implication of the above findings for the glucostatic theory of appetite regulation is discussed. (auth)« less
Diversifying Homogenous Au(I)-Catalysis through New Reaction Discovery
NASA Astrophysics Data System (ADS)
Motika, Stephen
Homogenous Au(I)-catalysis has become a valuable synthetic tool to activate a host of unsaturated carbon functional groups towards nucleophilic addition. Over the course of the past two decades, many have embarked on new journeys within this field. Notably, the advancements in this field hinge on the development of new ligand systems that impart novel reactivity at the metal. Our group has focused on this area, as we have successfully demonstrated the utility of 1,2,3-triazoles as ligands for gold and a host of other transition metals and Lewis acids. With respect to gold catalysis, these ligands enhance the stability of the metal center, thus inhibiting typical reductive decomposition pathways that have plagued this field. The enhanced stability comes with a price though as higher temperatures can be required. We've addressed this challenge by discovering an interesting synergy between triazole-gold and Lewis acids, allowing us to overcome the lower reactivity of these catalysts. During my time as a graduate student, I have focused heavily on enlisting these catalytic systems for new reaction discovery. In my first experimental chapter, I was able to develop an interesting reaction cascade in which triazole-gold and secondary amine catalysts were used. I started with a well-known gold-catalyzed Claisen rearrangement of propargyl vinyl ether, yielding functionalized allenes. The identical oxidation state between these allenes and synthetically appealing dienals was an impetus to develop a new isomerization strategy. After screening various conditions, I was able to successfully execute this design. Most of the work I have been involved in over the past two years has surrounded a gold-catalyzed hydroboration to yield interesting hetercocycles containing a N-B bond. The N-B bond offers some unique properties as it is isoelectronic to a C-C double bond. Despite the simplicity in this design, it would become apparent early on in this research that mitigating the reducing strength of the starting materials was absolutely critical. Starting materials that were too strongly reducing led to rapid catalyst decomposition. Through thorough reaction screening, we have been able to identify a catalytic system that performs extremely well in this context. Ultimately, our goal in this work is to access 1,2-azaborines, which are isosteres of benzene. This compound exhibits aromaticity, as determined through structural and quantitative analyses by several groups. However, subtle differences in properties between the azaborine and benzene, such as its polarity, have intrigued many researchers across various disciplines. Moreover, the ubiquity of its carbonaceous parent in biological systems has prompted many to pursue new synthetic routes to access 1,2-azaborines.
Kim, Jungok; Kim, Dong-Hun; Lee, Sylvia J; Rheem, Youngwoo; Myung, Nosang V; Hur, Hor-Gil
2016-08-01
Although biological synthesis methods for the production of gold structures by microorganisms, plant extracts, proteins, and peptide have recently been introduced, there have been few reports pertaining to controlling their size and morphology. The gold ion and peptide concentrations affected on the size and uniformity of gold plates by a gold-binding peptide Midas-11. The higher concentration of gold ions produced a larger size of gold structures reached 125.5 μm, but an increased amount of Midas-11 produced a smaller size of gold platelets and increased the yield percentage of polygonal gold particles rather than platelets. The mechanisms governing factors controlling the production of gold structures were primarily related to nucleation and growth. These results indicate that the synthesis of gold architectures can be controlled by newly isolated and substituted peptides under different reaction conditions.
Phage based green chemistry for gold ion reduction and gold retrieval.
Setyawati, Magdiel I; Xie, Jianping; Leong, David T
2014-01-22
The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.
NASA Astrophysics Data System (ADS)
Wu, Mianmian; Li, Pan; Zhu, Qingxia; Wu, Meiran; Li, Hao; Lu, Feng
2018-05-01
There has been an increasing demand for rapid and sensitive techniques for the identification of Sudan compounds that emerged as the most often illegally added fat-soluble dyes in herbal medicine. In this report, we have designed and fabricated a functionalized filter paper consisting of gold nanorods (GNRs) and mono-6-thio-cyclodextrin (HS-β-CD) as a surface-enhanced Raman spectroscopy (SERS) substrate, in which the GNR provides sufficient SERS enhancement, and the HS-β-CD with strong chemical affinity toward GNR provides the inclusion compound to capture hydrophobic molecules. Moreover, the CD-GNR were uniformly assembled on filter paper cellulose through the electrostatic adsorption and hydrogen bond, so that the CD-GNR paper-based SERS substrate (CD-GNR-paper) demonstrated higher sensitivity for the determination of Sudan III (0.1 μM) and Sudan IV (0.5 μM) than GNRs paper-based SERS substrate (GNR-paper), with high stability after the storage in the open air for 90 days. Importantly, CD-GNR-paper can effectively collect the Sudan dyes from illegally adulterated onto samples of Resina Draconis with a simple operation, further open up new exciting opportunity for SERS detection of more compounds illegally added with high sensitivity and fast signal responses.
2013-01-01
Calcium phosphate apatites are inorganic compounds encountered in many different mineralized tissues. Bone mineral, for example, is constituted of nanocrystalline nonstoichiometric apatite, and the production of “analogs” through a variety of methods is frequently reported. In another context, the ability of solid surfaces to favor the nucleation and growth of “bone-like” apatite upon immersion in supersaturated fluids such as SFB is commonly used as one evaluation index of the “bioactivity” of such surfaces. Yet, the compounds or deposits obtained are not always thoroughly characterized, and their apatitic nature is sometimes not firmly assessed by appropriate physicochemical analyses. Of particular importance are the “actual” conditions in which the precipitation takes place. The precipitation of a white solid does not automatically indicate the formation of a “bone-like carbonate apatite layer” as is sometimes too hastily concluded: “all that glitters is not gold.” The identification of an apatite phase should be carefully demonstrated by appropriate characterization, preferably using complementary techniques. This review considers the fundamentals of calcium phosphate apatite characterization discussing several techniques: electron microscopy/EDX, XRD, FTIR/Raman spectroscopies, chemical analyses, and solid state NMR. It also underlines frequent problems that should be kept in mind when making “bone-like apatites.” PMID:23984373
Morita, Clara; Tanuma, Hiromitsu; Kawai, Chika; Ito, Yuki; Imura, Yoshiro; Kawai, Takeshi
2013-02-05
A series of long-chain amidoamine derivatives with different alkyl chain lengths (CnAA where n is 12, 14, 16, or 18) were synthesized and studied with regard to their ability to form organogels and to act as soft templates for the production of Au nanomaterials. These compounds were found to self-assemble into lamellar structures and exhibited gelation ability in some apolar solvents. The gelation concentration, gel-sol phase transition temperature, and lattice spacing of the lamellar structures in organic solvent all varied on the basis of the alkyl chain length of the particular CnAA compound employed. The potential for these molecules to function as templates was evaluated through the synthesis of Au nanowires (NWs) in their organogels. Ultrathin Au NWs were obtained from all CnAA/toluene gel systems, each within an optimal temperature range. Interestingly, in the case of C12AA and C14AA, it was possible to fabricate ultrathin Au NWs at room temperature. In addition, two-dimensional parallel arrays of ultrathin Au NWs were self-assembled onto TEM copper grids as a result of the drying of dispersion solutions of these NWs. The use of CnAA compounds with differing alkyl chain lengths enabled precise tuning of the distance between the Au NWs in these arrays.
Development of a surface-enhanced Raman technique for biomarker studies on Mars.
Dunn, Darrell S; Sridhar, Narasi; Miller, Michael A; Price, Kendra T; Pabalan, Roberto; Abrajano, Teofilo A
2007-01-01
Raman spectroscopy has been identified as a potentially useful tool to collect evidence of past or present life on extraterrestrial bodies. However, it is limited by its inherently low signal strength. In this investigation, laboratory tests were conducted using surface-enhanced Raman spectroscopy (SERS) in an "inverted" mode to detect the presence of organic compounds that may be similar to possible biomarkers present on Mars. SERS was used to overcome the inherently low signal intensity of Raman spectroscopy and was an effective method for detecting small concentrations of organic compounds on a number of surfaces. For small organic molecules, dissolution of the molecule to be analyzed in a suitable solvent and depositing it on a prepared SERS substrate for analysis is possible. However, for larger molecules, an "inverted" SERS (iSERS) technique was shown to be effective. In iSERS, nanoparticles of silver or gold were deposited on the mineral substrate/organic compound to be analyzed. Benzotriazole, benzoic acid, and phthalic acid were used as test organic analogs and the iSERS technique was able to detect femtomole levels of the analytes. The interference from various mineral substrates was also examined. Different methods of depositing silver particles were evaluated, including ion beam-assisted vapor deposition and deposition from aqueous colloidal suspensions.
Online Compound-Specific δ13C and δD Determinations Using Laser Spectroscopy
NASA Astrophysics Data System (ADS)
Saad, N.; Hoffnagle, J.
2012-04-01
A unique laser spectroscopic approach for making online high-precision compound-specific isotope analysis (CSIA) of both δ13C and δD of the CO2 and H2O organic combustion products is described. The system consists of a gas chromatograph (GC) for the separation of an organic mixture coupled to a novel micro-fabricated microreactor (MFMR) for the complete combustion of each organic compound into CO2 and H2O and the precise measurements of δ13C in the CO2 gas and δ2H in the H2O vapor from the well established infrared spectrum of both gases, using an isotopic CO2 Cavity Ring-Down Spectroscopy (CRDS) analyzer and an isotopic H2O vapor CRDS analyzer, respectively. Light hydrocarbons are used as our test compounds in this study. The analyses of CH4, C2H6 and C3H8 for δ13C and δ2H values resulted in precisions of SD(δ13C)<1‰ and SD(δ2H)<2‰, respectively. These results were further compared to the gold standard method using Dual Inlet IRMS (DI-IRMS) and showed excellent agreements in isotopic measurements. The preliminary results presented here pave the way for a single CRDS analyzer-based system that simultaneously measures δ13C and δD, is field-deployable, less costly and necessitates less operator expertise than IRMS-based systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klobukowski, Erik
2011-01-01
This work involves two projects. The first project entails the study of bulk gold as a catalyst in oxidation reactions of isocyanides and amines. The main goal of this project was to study the activation and reactions of molecules at metal surfaces in order to assess how organometallic principles for homogeneous processes apply to heterogeneous catalysis. Since previous work had used oxygen as an oxidant in bulk gold catalyzed reactions, the generality of gold catalysis with other oxidants was examined. Amine N-oxides were chosen for study, due to their properties and use in the oxidation of carbonyl ligands in organometallicmore » complexes. When amine N-oxides were used as an oxidant in the reaction of isocyanides with amines, the system was able to produce ureas from a variety of isocyanides, amines, and amine N-oxides. In addition, the rate was found to generally increase as the amine N-oxide concentration increased, and decrease with increased concentrations of the amine. Mechanistic studies revealed that the reaction likely involves transfer of an oxygen atom from the amine N-oxide to the adsorbed isocyanide to generate an isocyanate intermediate. Subsequent nucleophilic attack by the amine yields the urea. This is in contrast to the bulk gold-catalyzed reaction mechanism of isocyanides with amines and oxygen. Formation of urea in this case was proposed to proceed through a diaminocarbene intermediate. Moreover, formation of the proposed isocyanate intermediate is consistent with the reactions of metal carbonyl ligands, which are isoelectronic to isocyanides. Nucleophilic attack at coordinated CO by amine N-oxides produces CO{sub 2} and is analogous to the production of an isocyanate in this gold system. When the bulk gold-catalyzed oxidative dehydrogenation of amines was examined with amine N-oxides, the same products were afforded as when O{sub 2} was used as the oxidant. When the two types of oxidants were directly compared using the same reaction system and conditions, it was found that the oxidative dehydrogenation of dibenzylamine to Nbenzylidenebenzylamine, with N-methylmorpholine N-oxide (NMMO), was nearly quantitative (96%) within 24 h. However, the reaction with oxygen was much slower, with only a 52% yield of imine product over the same time period. Moreover, the rate of reaction was found to be influenced by the nature of the amine N-oxide. For example, the use of the weakly basic pyridine N-oxide (PyNO) led to an imine yield of only 6% after 24 h. A comparison of amine N-oxide and O2 was also examined in the oxidation of PhCH{sub 2}OH to PhCHO catalyzed by bulk gold. In this reaction, a 52% yield of the aldehyde was achieved when NMMO was used, while only a 7% product yield was afforded when O{sub 2} was the oxidant after 48 h. The bulk gold-catalyzed oxidative dehydrogenation of cyclic amines generates amidines, which upon treatment with Aerosil and water were found to undergo hydrolysis to produce lactams. Moreover, 5-, 6-, and 7-membered lactams could be prepared through a one-pot reaction of cyclic amines by treatment with oxygen, water, bulk gold, and Aerosil. This method is much more atom economical than industrial processes, does not require corrosive acids, and does not generate undesired byproducts. Additionally, the gold and Aerosil catalysts can be readily separated from the reaction mixture. The second project involved studying iron(III) tetraphenylporphyrin chloride, Fe(TPP)Cl, as a homogeneous catalyst for the generation of carbenes from diazo reagents and their reaction with heteroatom compounds. Fe(TPP)Cl, efficiently catalyzed the insertion of carbenes derived from methyl 2-phenyldiazoacetates into O-H bonds of aliphatic and aromatic alcohols. Fe(TPP)Cl was also found to be an effective catalyst for tandem N-H and O-H insertion/cyclization reactions when 1,2-diamines and 1,2-alcoholamines were treated with diazo reagents. This approach provides a one-pot process for synthesizing piperazinones and morpholinones and related analogues such as quinoxalinones and benzoxazin-2-ones.« less
Mammalian sensitivity to elemental gold (Au?)
Eisler, R.
2004-01-01
There is increasing documentation of allergic contact dermatitis and other effects from gold jewelry, gold dental restorations, and gold implants. These effects were especially pronounced among females wearing body-piercing gold objects. One estimate of the prevalence of gold allergy worldwide is 13%, as judged by patch tests with monovalent organogold salts. Eczema of the head and neck was the most common response of individuals hypersensitive to gold, and sensitivity can last for at least several years. Ingestion of beverages containing flake gold can result in allergic-type reactions similar to those seen in gold-allergic individuals exposed to gold through dermal contact and other routes. Studies with small laboratory mammals and injected doses of colloidal gold showed increased body temperatures, accumulations in reticular cells, and dose enhancement in tumor therapy; gold implants were associated with tissue injuries. It is proposed that Au? toxicity to mammals is associated, in part, with formation of the more reactive Au+ and Au3+ species.
Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex.
Lengke, Maggy F; Ravel, Bruce; Fleet, Michael E; Wanger, Gregory; Gordon, Robert A; Southam, Gordon
2006-10-15
The mechanisms of gold bioaccumulation by cyanobacteria (Plectonema boryanum UTEX 485) from gold(III)-chloride solutions have been studied at three gold concentrations (0.8,1.7, and 7.6 mM) at 25 degrees C, using both fixed-time laboratory and real-time synchrotron radiation absorption spectroscopy (XAS) experiments. Interaction of cyanobacteria with aqueous gold(III)-chloride initially promoted the precipitation of nanoparticles of amorphous gold(I)-sulfide at the cell walls, and finally deposited metallic gold in the form of octahedral (111) platelets (approximately 10 nm to 6 microm) near cell surfaces and in solutions. The XAS results confirm that the reduction mechanism of gold(III)-chloride to metallic gold by cyanobacteria involves the formation of an intermediate Au(I) species, gold(I)-sulfide.
A unique ore-placer cluster with high-Hg gold mineralization in the Amur region (Russia)
NASA Astrophysics Data System (ADS)
Stepanov, V. A.; Moyseenko, V. G.; Melnikov, A. V.
2017-02-01
This work presents the geological structure and a description of gold-ore manifestations and gold placers in the Un'ya-Bom ore-placer cluster of the Amur gold-bearing province. The host rocks are Late Paleozoic and Mesozoic black-shale formations. Intrusive formations are rare. The sublatitudinal Un'ya thrust fault, along which Paleozoic sandstones overlap Mesozoic flyschoid deposits, is regarded as an orecontrolling structure. Gold-quartz and low-sulfide ores are confined to quartz-vein zones. Ore minerals are arsenopyrite, scheelite, ferberite, galena, and native gold. Gold-ore manifestations and placers contain high-Hg native gold. The high Hg content in native gold is explained by the occurrence of the eroded frontal part of the gold-ore pipe in the ore cluster, a source of native gold.
Miksa, Beata J; Sochacki, Marek; Sroka-Bartnicka, Anna; Uznański, Paweł; Nosal, Andrzej; Potrzebowski, Marek J
2013-04-15
Synthetic polymers of molecular masses up to a few kDa can be analyzed without the use of any matrix by direct laser desorption/ionization mass spectrometry (LDI-MS). In this technique, the surface of the sample plate plays a crucial role, and many attempts have been made to understand the influence of the surface on the ease of desorption. Since this technique requires no tedious sample pretreatment, it is a promising method for the rapid characterization of various synthetic polymers. Parylene (poly(p-xylylenes), PPX) was tested as a surface support for studying the molecular masses of biocompatible polymers: poly(ethylene glycol) (PEG), poly(L-lactide) (PLLA), and poly(methyl methacrylate) (PMMA). The average molecular masses of the polymers were: PEG (600.0 Da and 3.5 kDa), PMMA (2.0 kDa), and PLLA (2.8 kDa). LDI mass spectra of polymers deposited on parylene were enhanced by a factor of two over those obtained directly from the gold target plate. Modification of the surface of the target plate by the addition of a PPX layer extended the functionality of LDI-TOF MS, especially for the analysis of low-mass compounds. The LDI analysis using the PPX-coated target plate provided details of polymers including: end-group, composition, monomer unit, and molecular mass distribution. The average molecular weights of four tested polymers on the gold target plate and the PPX support were unchanged, indicating that sample degradation was not occurring despite the high energy of the laser beam. The LDI investigations showed that the PPX support boosted ion yields by a factor of two compared with the gold target plate. Copyright © 2013 John Wiley & Sons, Ltd.
Plumlee, Geoffrey S; Durant, James T; Morman, Suzette A; Neri, Antonio; Wolf, Ruth E; Dooyema, Carrie A; Hageman, Philip L; Lowers, Heather A; Fernette, Gregory L; Meeker, Gregory P; Benzel, William M; Driscoll, Rhonda L; Berry, Cyrus J; Crock, James G; Goldstein, Harland L; Adams, Monique; Bartrem, Casey L; Tirima, Simba; Behbod, Behrooz; von Lindern, Ian; Brown, Mary Jean
2013-06-01
In 2010, Médecins Sans Frontières discovered a lead poisoning outbreak linked to artisanal gold processing in northwestern Nigeria. The outbreak has killed approximately 400 young children and affected thousands more. Our aim was to undertake an interdisciplinary geological- and health-science assessment to clarify lead sources and exposure pathways, identify additional toxicants of concern and populations at risk, and examine potential for similar lead poisoning globally. We applied diverse analytical methods to ore samples, soil and sweep samples from villages and family compounds, and plant foodstuff samples. Natural weathering of lead-rich gold ores before mining formed abundant, highly gastric-bioaccessible lead carbonates. The same fingerprint of lead minerals found in all sample types confirms that ore processing caused extreme contamination, with up to 185,000 ppm lead in soils/sweep samples and up to 145 ppm lead in plant foodstuffs. Incidental ingestion of soils via hand-to-mouth transmission and of dusts cleared from the respiratory tract is the dominant exposure pathway. Consumption of water and foodstuffs contaminated by the processing is likely lesser, but these are still significant exposure pathways. Although young children suffered the most immediate and severe consequences, results indicate that older children, adult workers, pregnant women, and breastfed infants are also at risk for lead poisoning. Mercury, arsenic, manganese, antimony, and crystalline silica exposures pose additional health threats. Results inform ongoing efforts in Nigeria to assess lead contamination and poisoning, treat victims, mitigate exposures, and remediate contamination. Ore deposit geology, pre-mining weathering, and burgeoning artisanal mining may combine to cause similar lead poisoning disasters elsewhere globally.
Durant, James T.; Morman, Suzette A.; Neri, Antonio; Wolf, Ruth E.; Dooyema, Carrie A.; Hageman, Philip L.; Lowers, Heather A.; Fernette, Gregory L.; Meeker, Gregory P.; Benzel, William M.; Driscoll, Rhonda L.; Berry, Cyrus J.; Crock, James G.; Goldstein, Harland L.; Adams, Monique; Bartrem, Casey L.; Tirima, Simba; Behbod, Behrooz; von Lindern, Ian; Brown, Mary Jean
2013-01-01
Background: In 2010, Médecins Sans Frontières discovered a lead poisoning outbreak linked to artisanal gold processing in northwestern Nigeria. The outbreak has killed approximately 400 young children and affected thousands more. Objectives: Our aim was to undertake an interdisciplinary geological- and health-science assessment to clarify lead sources and exposure pathways, identify additional toxicants of concern and populations at risk, and examine potential for similar lead poisoning globally. Methods: We applied diverse analytical methods to ore samples, soil and sweep samples from villages and family compounds, and plant foodstuff samples. Results: Natural weathering of lead-rich gold ores before mining formed abundant, highly gastric-bioaccessible lead carbonates. The same fingerprint of lead minerals found in all sample types confirms that ore processing caused extreme contamination, with up to 185,000 ppm lead in soils/sweep samples and up to 145 ppm lead in plant foodstuffs. Incidental ingestion of soils via hand-to-mouth transmission and of dusts cleared from the respiratory tract is the dominant exposure pathway. Consumption of water and foodstuffs contaminated by the processing is likely lesser, but these are still significant exposure pathways. Although young children suffered the most immediate and severe consequences, results indicate that older children, adult workers, pregnant women, and breastfed infants are also at risk for lead poisoning. Mercury, arsenic, manganese, antimony, and crystalline silica exposures pose additional health threats. Conclusions: Results inform ongoing efforts in Nigeria to assess lead contamination and poisoning, treat victims, mitigate exposures, and remediate contamination. Ore deposit geology, pre-mining weathering, and burgeoning artisanal mining may combine to cause similar lead poisoning disasters elsewhere globally. PMID:23524139
A novel in situ electrochemical NMR cell with a palisade gold film electrode
NASA Astrophysics Data System (ADS)
Ni, Zu-Rong; Cui, Xiao-Hong; Cao, Shuo-Hui; Chen, Zhong
2017-08-01
In situ electrochemical nuclear magnetic resonance (EC-NMR) has attracted considerable attention because of its ability to directly observe real-time electrochemical processes. Therefore, minimizing the incompatibility between the electrochemical device and NMR detection has become an important challenge. A circular thin metal film deposited on the outer surface of a glass tube with a thickness considerably less than the metal skin depth is considered to be the ideal working electrode. In this study, we demonstrate that such a thin film electrode still has a great influence on the radio frequency field homogeneity in the detective zone of the NMR spectrometer probe and provide theoretical and experimental confirmation of its electromagnetic shielding. Furthermore, we propose a novel palisade gold film device to act as the working electrode. The NMR nutation behavior of protons shows that the uniformity of the radio frequency field is greatly improved, increasing the sensitivity in NMR detection. Another advantage of the proposed device is that an external reference standard adapted to the reaction compound can be inserted as a probe to determine the fluctuation of the physico-chemical environment and achieve high-accuracy quantitative NMR analysis. A three-chamber electrochemical device based on the palisade gold film design was successfully fabricated and the in situ electrochemical NMR performance was validated in a standard 5 mm NMR probe by acquiring voltammograms and high-resolution NMR spectra to characterize the electrochemically generated species. The evolution of in situ EC-NMR spectrum monitoring of the redox transformation between p-benzoquinone and hydroquinone demonstrates the ability of the EC-NMR device to simultaneously quantitatively determine the reactants and elucidate the reaction mechanism at the molecular level.
Li, Jiulong; Li, Qinghao; Ma, Xiaoqiong; Tian, Bing; Li, Tao; Yu, Jiangliu; Dai, Shang; Weng, Yulan; Hua, Yuejin
Deinococcus radiodurans is an extreme bacterium known for its high resistance to stresses including radiation and oxidants. The ability of D. radiodurans to reduce Au(III) and biosynthesize gold nanoparticles (AuNPs) was investigated in aqueous solution by ultraviolet and visible (UV/Vis) absorption spectroscopy, electron microscopy, X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). D. radiodurans efficiently synthesized AuNPs from 1 mM Au(III) solution in 8 h. The AuNPs were of spherical, triangular and irregular shapes with an average size of 43.75 nm and a polydispersity index of 0.23 as measured by DLS. AuNPs were distributed in the cell envelope, across the cytosol and in the extracellular space. XRD analysis confirmed the crystallite nature of the AuNPs from the cell supernatant. Data from the FTIR and XPS showed that upon binding to proteins or compounds through interactions with carboxyl, amine, phospho and hydroxyl groups, Au(III) may be reduced to Au(I), and further reduced to Au(0) with the capping groups to stabilize the AuNPs. Biosynthesis of AuNPs was optimized with respect to the initial concentration of gold salt, bacterial growth period, solution pH and temperature. The purified AuNPs exhibited significant antibacterial activity against both Gram-negative ( Escherichia coli ) and Gram-positive ( Staphylococcus aureus ) bacteria by damaging their cytoplasmic membrane. Therefore, the extreme bacterium D. radiodurans can be used as a novel bacterial candidate for efficient biosynthesis of AuNPs, which exhibited potential in biomedical application as an antibacterial agent.
Wagner, P; Hegner, M; Kernen, P; Zaugg, F; Semenza, G
1996-01-01
We have worked out a procedure for covalent binding of native biomacromolecules on flat gold surfaces for scanning probe microscopy in aqueous buffer solutions and for other nanotechnological applications, such as the direct measurement of interaction forces between immobilized macromolecules, of their elastomechanical properties, etc. It is based on the covalent immobilization of amino group-containing biomolecules (e.g., proteins, phospholipids) onto atomically flat gold surfaces via omega-functionalized self-assembled monolayers. We present the synthesis of the parent compound, dithio-bis(succinimidylundecanoate) (DSU), and a detailed study of the chemical and physical properties of the monolayer it forms spontaneously on Au(111). Scanning tunneling microscopy and atomic force microscopy (AFM) revealed a monolayer arrangement with the well-known depressions that are known to stem from an etch process during the self-assembly. The total density of the omega-N-hydroxysuccinimidyl groups on atomically flat gold was 585 pmol/cm(2), as determined by chemisorption of (14)C-labeled DSU. This corresponded to approximately 75% of the maximum density of the omega-unsubstituted alkanethiol. Measurements of the kinetics of monolayer formation showed a very fast initial phase, with total coverage within 30 S. A subsequent slower rearrangement of the chemisorbed molecules, as indicated by AFM, led to a decrease in the number of monolayer depressions in approximately 60 min. The rate of hydrolysis of the omega-N-hydroxysuccinimide groups at the monolayer/water interface was found to be very slow, even at moderately alkaline pH values. Furthermore, the binding of low-molecular-weight amines and of a model protein was investigated in detail. Images FIGURE 1 FIGURE 2 FIGURE 9 PMID:9172730
Bao, Quan-Ying; Zhang, Ning; Geng, Dong-Dong; Xue, Jing-Wei; Merritt, Mackenzie; Zhang, Can; Ding, Ya
2014-12-30
Organic and inorganic drug delivery systems both demonstrate their own advantages and challenges in practical applications. Combining these two drug delivery strategies in one system is expected to solve their current issues and achieve desirable functions. In this paper, gold nanoparticles (GNPs) and liposomes have been chosen as the model systems to construct a hybrid system and investigate its performance for the tumor therapy of Paclitaxel (PTX). The thiol-terminated polyethylene glycol (PEG400)-PTX derivative has been covalently modified on the surface of GNPs, followed by the encapsulation of PTX-conjugated GNPs (PTX-PEG400@GNPs) in liposomes. The hybrid liposomes solve the solubility and stability problems of gold conjugates and show high drug loading capacity. In vitro PTX release from the hybrid system maintains the similar sustained behavior demonstrated in its conjugates. Under the protection of a biocompatible liposome shell, encapsulated PTX shows enhanced circulation longevity and liver targetability compared to Taxol(®) and PTX-PEG400@GNPs suspension in the pharmacokinetic and biodistribution studies. These indicate that encapsulating drug-conjugated inorganic nanoparticles inside organic carriers maintains the superiority of both vehicles and improves the performance of hybrid systems. Although these attributes of hybrid liposomes lead to a better therapeutic capacity in a murine liver cancer model than that of the comparison groups, it shows no significant difference from Taxol(®) and conjugate suspension. This result could be due to the delayed and sustained drug release from the system. However, it indicates the promising potential for these hybrid liposomes will allow further construction of a compound preparation with improved performance that is based on their enhanced longevity and liver targetability of Paclitaxel. Copyright © 2014 Elsevier B.V. All rights reserved.
Oliveira, Elisabete; Genovese, Damiano; Juris, Riccardo; Zaccheroni, Nelsi; Capelo, José Luis; Raposo, M Manuela M; Costa, Susana P G; Prodi, Luca; Lodeiro, Carlos
2011-09-19
Seven new bioinspired chemosensors (2-4 and 7-10) based on fluorescent peptides were synthesized and characterized by elemental analysis, (1)H and (13)C NMR, melting point, matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS), and IR and UV-vis absorption and emission spectroscopy. The interaction with transition- and post-transition-metal ions (Cu(2+), Ni(2+), Ag(+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), and Fe(3+)) has been explored by absorption and fluorescence emission spectroscopy and MALDI-TOF-MS. The reported fluorescent peptide systems, introducing biological molecules in the skeleton of the probes, enhance their sensitivity and confer them strong potential for applications in biological fields. Gold and silica nanoparticles functionalized with these peptides were also obtained. All nanoparticles were characterized by dynamic light scattering, transmission electron microscopy, and UV-vis absorption and fluorescence spectroscopy. Stable gold nanoparticles (diameter 2-10 nm) bearing ligands 1 and 4 were obtained by common reductive synthesis. Commercial silica nanoparticles were decorated at their surface using compounds 8-10, linked through a silane spacer. The same chemosensors were also taken into aqueous solutions through their dispersion in the outer layer of silica core/poly(ethylene glycol) shell nanoparticles. In both cases, these complex nanoarchitectures behaved as new sensitive materials for Ag(+) and Hg(2+) in water. The possibility of using these species in this solvent is particularly valuable because the impact on human health of heavy- and transition-metal-ion pollution is very severe, and all analytical and diagnostics investigations involve a water environment.
Plumlee, Geoffrey S.; Durant, James T.; Morman, Suzette A.; Neri, Antonio; Wolf, Ruth E.; Dooyema, Carrie A.; Hageman, Philip L.; Lowers, Heather; Fernette, Gregory L.; Meeker, Gregory P.; Benzel, William M.; Driscoll, Rhonda L.; Berry, Cyrus J.; Crock, James G.; Goldstein, Harland L.; Adams, Monique; Bartrem, Casey L.; Tirima, Simba; Behrooz, Behbod; von Lindern, Ian; Brown, Mary Jean
2013-01-01
Background: In 2010, Médecins Sans Frontières discovered a lead poisoning outbreak linked to artisanal gold processing in northwestern Nigeria. The outbreak has killed approximately 400 young children and affected thousands more. Objectives: Our aim was to undertake an interdisciplinary geological- and health-science assessment to clarify lead sources and exposure pathways, identify additional toxicants of concern and populations at risk, and examine potential for similar lead poisoning globally. Methods: We applied diverse analytical methods to ore samples, soil and sweep samples from villages and family compounds, and plant foodstuff samples. Results: Natural weathering of lead-rich gold ores before mining formed abundant, highly gastric-bioaccessible lead carbonates. The same fingerprint of lead minerals found in all sample types confirms that ore processing caused extreme contamination, with up to 185,000 ppm lead in soils/sweep samples and up to 145 ppm lead in plant foodstuffs. Incidental ingestion of soils via hand-to-mouth transmission and of dusts cleared from the respiratory tract is the dominant exposure pathway. Consumption of water and foodstuffs contaminated by the processing is likely lesser, but these are still significant exposure pathways. Although young children suffered the most immediate and severe consequences, results indicate that older children, adult workers, pregnant women, and breastfed infants are also at risk for lead poisoning. Mercury, arsenic, manganese, antimony, and crystalline silica exposures pose additional health threats. Conclusions: Results inform ongoing efforts in Nigeria to assess lead contamination and poisoning, treat victims, mitigate exposures, and remediate contamination. Ore deposit geology, pre-mining weathering, and burgeoning artisanal mining may combine to cause similar lead poisoning disasters elsewhere globally.
Yoshinari, Masao; Uzawa, Shinobu; Komiyama, Yataro
2016-10-01
The aim of this in vitro study was to evaluate tensile bond strengths and corrosion resistance of CoCr alloys joined with gold cylinder by a soldering system in comparison with the conventional cast-joining system. CoCr alloys joined with gold cylinder by a soldering system using a high-fusing gold solder (CoCr/Solder/Gold cylinder), gold alloy joined with gold cylinder by a cast joining system (Gold alloy/Gold cylinder) and CoCr castings were fabricated. The tensile bond strength and corrosion resistance in 0.9% NaCl solution (pH 7.4 and pH 2.3) were evaluated. Scanning electron microscopy (SEM) of the fractured surface and electron probe microanalysis (EPMA) of the joined interfaces were also performed. The tensile bond strengths of the CoCr/Solder/Gold cylinder specimens showed similar values as the Gold alloy/Gold cylinder specimens. SEM observation and EPMA analyses suggested firm bonding between the CoCr alloy and gold cylinder. The released elements from the CoCr/Solder/Gold cylinder specimens were similar to ones from CoCr castings. Results showed that superstructures made of CoCr alloys joined with the gold cylinder using a high-fusing gold solder had sufficient bond strength and high corrosion resistance. These hybrid frameworks with cobalt-chromium alloy and gold cylinder are promising prosthesis for implant superstructures with the low cost and favorable mechanical properties instead of conventional high-gold alloys. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Filimonova, Valentina; Gonçalves, Fernando; Marques, João C; De Troch, Marleen; Gonçalves, Ana M M
2016-08-01
In Europe, mainly in the Mediterranean region, an intensive usage of pesticides was recorded during the past 30 years. According to information from agricultural cooperatives of the Mondego valley (Figueira da Foz, Portugal), Primextra(®) Gold TZ is the most used herbicide in corn crop fields and one of the 20 best-selling herbicides in Portugal. Copper is mainly used in pesticide formulations. This study aims to determine the ecotoxicological and biochemical (namely fatty acid profiles) effects of the herbicide Primextra(®) Gold TZ and the metal copper on marine plankton. The organisms used in this study are three planktonic species: the marine diatom Thalassiosira weissflogii, the estuarine copepod Acartia tonsa and nauplii of the marine brine shrimp Artemia franciscana. Fatty acids (FAs) are one of the most important molecules transferred across the plant-animal interface in aquatic food webs and can be used as good indicators of stress. The conducted lab incubations show that T. weissflogii is the most sensitive species to the herbicide followed by A. tonsa (EC50=0.0078mg/L and EC50=0.925mg/L, respectively), whereas the copepod was the most sensitive species to the metal followed by T. weissflogii (EC50=0.234mg/L and EC50=0.383mg/L, respectively). A. franciscana was the most tolerant organism both to the herbicide and to the metal (EC50=20.35mg/L and EC50=18.93mg/L, respectively). Changes in the FA profiles of primary producer and primary consumers were observed, with the increase of saturated FA and decrease of unsaturated FA contents, especially of highly unsaturated FAs that can be obtained mainly from food and therefore are referred to as 'essential FA'. The study suggests that discharges of Primextra(®) Gold TZ or other pesticides mainly composed by copper may be a threat to plankton populations causing changes in the FA contents and thus in their nutritive value, with severe repercussions for higher trophic levels and thus the entire food web. Copyright © 2016 Elsevier B.V. All rights reserved.
Features of Inner Structure of Placer Gold of the North-Eastern Part Siberian Platform
NASA Astrophysics Data System (ADS)
Gerasimov, Boris; Zhuravlev, Anatolii; Ivanov, Alexey
2017-12-01
Mineral and raw material base of placer and ore gold is based on prognosis evaluation, which allows to define promising areas regarding gold-bearing deposit prospecting. But there are some difficulties in gold primary source predicting and prospecting at the North-east Siberian platform, because the studied area is overlapped by thick cover of the Cenozoic deposits, where traditional methods of gold deposit prospecting are ineffective. In this connection, detailed study of typomorphic features of placer gold is important, because it contains key genetic information, necessary for development of mineralogical criteria of prognosis evaluation of ore gold content. Authors studied mineralogical-geochemical features of placer gold of the Anabar placer area for 15 years, with a view to identify indicators of gold, typical for different formation types of primary sources. This article presents results of these works. In placer regions, where primary sources of gold are not identified, there is need to study typomorphic features of placer gold, because it contains important genetic information, necessary for the development of mineralogical criteria of prognosis evaluation of ore gold content. Inner structures of gold from the Anabar placer region are studied, as one of the diagnostic typomorphic criteria as described in prominent method, developed by N.V. Petrovskaya [1980]. Etching of gold was carried out using reagent: HCl + HNO3 + FeCl3 × 6H2O + CrO3 +thioureat + water. Identified inner structures wer studied in details by means of scanning electron microscope JEOL JSM-6480LV. Two types of gold are identified according to the features of inner structure of placer gold of the Anabar region. First type - medium-high karat fine, well processed gold with significantly changed inner structure. This gold is allochthonous, which was redeposited many times from ancient intermediate reservoirs to younger deposits. Second type - low-medium karat, poorly rounded gold with unchanged inner structure. Poor roundness of gold particles and preservation of their primary inner structures indicate close proximity of primary source.
Mineral resource of the month: gold
George, Micheal W.
2009-01-01
The article presents information on the valuable mineral called gold. It states that early civilizations valued gold because of its scarcity, durability and characteristics yellow color. By the late 20th century, gold was used as an industrial metal because of its unique physicochemical properties. The U.S. has several productive deposits of gold, including placer, gold-quartz lode, epithermal and Carlin-type gold deposits.
Lichenoid dermatitis after consumption of gold-containing liquor.
Russell, M A; Langley, M; Truett, A P; King, L E; Boyd, A S
1997-05-01
Medicinal gold has a well-known side effect profile that includes mucocutaneous eruptions. We describe three patients with a pruritic dermatitis that began after consumption of a gold-containing alcoholic beverage. Blood and urine gold levels, chemistry panels, hepatitis screens, skin biopsies, and patch tests were performed. The gold-containing liquor was analyzed for the presence and quantity of gold. The liquor consumed by all of the patients was a cinnamon schnapps with free-floating gold-colored flakes. Gold is present in the liquid portion of this liquor and in the solid flakes. Elevated levels of gold in the urine and blood were present in one patient 3 months after last drinking this beverage. Another patient had a positive patch test to gold sodium thiosulfate. All patients experienced improvement of their dermatitis after they stopped drinking the gold-containing liquor.
Lu, Xiaonan; Rasco, Barbara A.; Jabal, Jamie M. F.; Aston, D. Eric; Lin, Mengshi; Konkel, Michael E.
2011-01-01
Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy were used to study the cell injury and inactivation of Campylobacter jejuni from exposure to antioxidants from garlic. C. jejuni was treated with various concentrations of garlic concentrate and garlic-derived organosulfur compounds in growth media and saline at 4, 22, and 35°C. The antimicrobial activities of the diallyl sulfides increased with the number of sulfur atoms (diallyl sulfide < diallyl disulfide < diallyl trisulfide). FT-IR spectroscopy confirmed that organosulfur compounds are responsible for the substantial antimicrobial activity of garlic, much greater than those of garlic phenolic compounds, as indicated by changes in the spectral features of proteins, lipids, and polysaccharides in the bacterial cell membranes. Confocal Raman microscopy (532-nm-gold-particle substrate) and Raman mapping of a single bacterium confirmed the intracellular uptake of sulfur and phenolic components. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to verify cell damage. Principal-component analysis (PCA), discriminant function analysis (DFA), and soft independent modeling of class analogs (SIMCA) were performed, and results were cross validated to differentiate bacteria based upon the degree of cell injury. Partial least-squares regression (PLSR) was employed to quantify and predict actual numbers of healthy and injured bacterial cells remaining following treatment. PLSR-based loading plots were investigated to further verify the changes in the cell membrane of C. jejuni treated with organosulfur compounds. We demonstrated that bacterial injury and inactivation could be accurately investigated by complementary infrared and Raman spectroscopies using a chemical-based, “whole-organism fingerprint” with the aid of chemometrics and electron microscopy. PMID:21642409
Not All That Glitters is Gold: Gold Imitations in History.
Karpenko, Vladimír
2007-07-01
When gold became considered as a precious metal for decorative purposes and later for coinage, attempts at producing imitations soon began to appear. There were two motives behind this activity: to make a metal that could pass as gold, and to quite openly imitate this precious metal for people who could not afford true gold. Imitation gold was produced by metallurgists, and later also by alchemists. This paper is about gold imitations that did not contain any precious metal. Gold-like alloys of silver are thus excluded. An attempt is further undertaken to classify into separate groups the various gold imitations that have appeared in different cultures throughout time, with an emphasis on brass as a typical imitation of gold.
Integrated circuit package with lead structure and method of preparing the same
NASA Technical Reports Server (NTRS)
Kennedy, B. W. (Inventor)
1973-01-01
A beam-lead integrated circuit package assembly including a beam-lead integrated circuit chip, a lead frame array bonded to projecting fingers of the chip, a rubber potting compound disposed around the chip, and an encapsulating molded plastic is described. The lead frame array is prepared by photographically printing a lead pattern on a base metal sheet, selectively etching to remove metal between leads, and plating with gold. Joining of the chip to the lead frame array is carried out by thermocompression bonding of mating goldplated surfaces. A small amount of silicone rubber is then applied to cover the chip and bonded joints, and the package is encapsulated with epoxy resin, applied by molding.
Reproducible surface-enhanced Raman quantification of biomarkers in multicomponent mixtures.
De Luca, Anna Chiara; Reader-Harris, Peter; Mazilu, Michael; Mariggiò, Stefania; Corda, Daniela; Di Falco, Andrea
2014-03-25
Direct and quantitative detection of unlabeled glycerophosphoinositol (GroPIns), an abundant cytosolic phosphoinositide derivative, would allow rapid evaluation of several malignant cell transformations. Here we report label-free analysis of GroPIns via surface-enhanced Raman spectroscopy (SERS) with a sensitivity of 200 nM, well below its apparent concentration in cells. Crucially, our SERS substrates, based on lithographically defined gold nanofeatures, can be used to predict accurately the GroPIns concentration even in multicomponent mixtures, avoiding the preliminary separation of individual compounds. Our results represent a critical step toward the creation of SERS-based biosensor for rapid, label-free, and reproducible detection of specific molecules, overcoming limits of current experimental methods.
Plasmonic Films Can Easily Be Better: Rules and Recipes
2015-01-01
High-quality materials are critical for advances in plasmonics, especially as researchers now investigate quantum effects at the limit of single surface plasmons or exploit ultraviolet- or CMOS-compatible metals such as aluminum or copper. Unfortunately, due to inexperience with deposition methods, many plasmonics researchers deposit metals under the wrong conditions, severely limiting performance unnecessarily. This is then compounded as others follow their published procedures. In this perspective, we describe simple rules collected from the surface-science literature that allow high-quality plasmonic films of aluminum, copper, gold, and silver to be easily deposited with commonly available equipment (a thermal evaporator). Recipes are also provided so that films with optimal optical properties can be routinely obtained. PMID:25950012
Mechanical properties and grindability of experimental Ti-Au alloys.
Takahashi, Masatoshi; Kikuchi, Masafumi; Okuno, Osamu
2004-06-01
Experimental Ti-Au alloys (5, 10, 20 and 40 mass% Au) were made. Mechanical properties and grindability of the castings of the Ti-Au alloys were examined. As the concentration of gold increased to 20%, the yield strength and the tensile strength of the Ti-Au alloys became higher without markedly deteriorating their ductility. This higher strength can be explained by the solid-solution strengthening of the a titanium. The Ti-40%Au alloy became brittle because the intermetallic compound Ti3Au precipitated intensively near the grain boundaries. There was no significant difference in the grinding rate and grinding ratio among all the Ti-Au alloys and the pure titanium at any speed.
NASA Astrophysics Data System (ADS)
Gu, Ying; Li, Junheng; Xu, De-Yu; Zhang, Zi-Qi; Huang, Yingcai; Wang, Kai
1995-03-01
A new sensitizer, hematoporphyrin monomethyl ether (HMME), purified by the Second Military Medical University was used with a gold vapor laser for PDT in 8 cases of alimentary cancers. The results showed that 2 cases of early stage gastric cancer and 1 case of rectal polyps with malignancy revealed CR, SR was obtained in 1 case of esophageal cancer and 4 others were MR. No sunburn occurred within the 8 patients who received 12 doses of HMME at 5 mg/kg 2 - 3 hours prior to laser treatment and who were kept away from sun light only 6 hours. Hematoporphyrin monomethyl ether is an effective single compound and safer for PDT.
Gold Leaching Characteristics and Intensification of a High S and As-Bearing Gold Concentrate
NASA Astrophysics Data System (ADS)
Yang, Yong-bin; Liu, Xiao-liang; Jiang, Tao; Li, Qian; Xu, Bin; Zhang, Yan
Some high sulfur and arsenic-bearing gold concentrate has a gold leaching rate less than 80% by oxidation roasting-pickling-cyanidation process. The characteristics and intensification of gold leaching were studied systemically. By combining chemical composition and phase analysis, the low gold leaching rate was found to lie in the capsulation of gold by iron-containing phases including iron oxides, arsenopyrite and pyrite. 96.66% of gold in the industrial leaching residue was capsulated and 95.88% of the capsulated turned out to be in the iron-containing phases. The results of laboratory pickling-cyanidation experiments on the calcine and industrial leaching residue presented further demonstration for the fact that gold capsulated in the iron-containing phases was hard to be leached. However, the gold cyanide leaching rate of calcine could be raised over 95% by a reduction roasting-pickling pretreatment which played such a significant role in exposing the capsulated gold that gold leaching was intensified remarkably.
NASA Astrophysics Data System (ADS)
Wang, Gang; Wu, Nanhua; Chen, Jionghua; Wang, Jinjian; Shao, Jingling; Zhu, Xiaolei; Lu, Xiaohua; Guo, Lucun
2016-11-01
The thermodynamic and kinetic behaviors of gold nanoparticles confined between two-layer graphene nanosheets (two-layer-GNSs) are examined and investigated during heating and cooling processes via molecular dynamics (MD) simulation technique. An EAM potential is applied to represent the gold-gold interactions while a Lennard-Jones (L-J) potential is used to describe the gold-GNS interactions. The MD melting temperature of 1345 K for bulk gold is close to the experimental value (1337 K), confirming that the EAM potential used to describe gold-gold interactions is reliable. On the other hand, the melting temperatures of gold clusters supported on graphite bilayer are corrected to the corresponding experimental values by adjusting the εAu-C value. Therefore, the subsequent results from current work are reliable. The gold nanoparticles confined within two-layer GNSs exhibit face center cubic structures, which is similar to those of free gold clusters and bulk gold. The melting points, heats of fusion, and heat capacities of the confined gold nanoparticles are predicted based on the plots of total energies against temperature. The density distribution perpendicular to GNS suggests that the freezing of confined gold nanoparticles starts from outermost layers. The confined gold clusters exhibit layering phenomenon even in liquid state. The transition of order-disorder in each layer is an essential characteristic in structure for the freezing phase transition of the confined gold clusters. Additionally, some vital kinetic data are obtained in terms of classical nucleation theory.
Gold in minerals and the composition of native gold
Jones, Robert Sprague; Fleischer, Michael
1969-01-01
Gold occurs in nature mainly as the metal and as various alloys. It forms complete series of solid solutions with silver, copper, nickel, palladium, and platinum. In association with the platinum metals, gold occurs as free gold as well as in solid solution. The native elements contain the most gold, followed by the sulfide minerals. Several gold tellurides are known, but no gold selenides have been reported, and only one sulfide, the telluride-sulfide mineral nagyagite, is known. The nonmetallic minerals carry the least gold, and the light-colored minerals generally contain less gold than the dark minerals. Some conclusions in the literature are conflicting in regard to the relation of fineness of native gold to its position laterally and vertically within a lode, the nature of the country rocks, and the location and size of nuggets in a streambed, as well as to the variation of fineness within an individual nugget.
Hylander, Lars D; Plath, David
2006-09-01
Small-scale gold miners lose annually 500-700 tonnes of mercury when amalgamating gold with mercury and subsequent burning. So far, mercury-free alternatives have been demanding more skill, time, or capital investments and the interest from the miners to reduce the mercury emissions has been limited. Recent development of mercury free methods, an increasing mercury price, and increased awareness of health and environmental damages caused by mercury is changing the attitudes. This trend could be spurred by certification of gold with added value due to clean production methods. Our objectives are to present a method to distinguish gold recovered without using mercury or harmful chemicals such as cyanide. Thereby, this gold could be certified and thus obtain a higher market price. The method is based on inspection of the gold grain surfaces with a light microscope. This method separated natural gold grains from gold recovered by amalgamation or cyanidation. The method also demonstrated different characteristics of gold grains from different gold fields and a basis for a catalogue with photomicrographs of gold grains from different gold fields has been established and partly presented in this article. In conclusion, studies of gold grains with a light microscope and photo documentation is an inexpensive but reliable method to distinguish environment-friendly recovered gold, which could be used for certification to get a higher market price.
Wangchuk, Phurpa; Pearson, Mark S; Giacomin, Paul R; Becker, Luke; Sotillo, Javier; Pickering, Darren; Smout, Michael J; Loukas, Alex
2016-08-01
Whipworms and blood flukes combined infect almost one billion people in developing countries. Only a handful of anthelmintic drugs are currently available to treat these infections effectively; there is therefore an urgent need for new generations of anthelmintic compounds. Medicinal plants have presented as a viable source of new parasiticides. Ajania nubigena, the Bhutanese daisy, has been used in Bhutanese traditional medicine for treating various diseases and our previous studies revealed that small molecules from this plant have antimalarial properties. Encouraged by these findings, we screened four major compounds isolated from A. nubigena for their anthelmintic properties. Here we studied four major compounds derived from A. nubigena for their anthelmintic properties against the nematode whipworm Trichuris muris and the platyhelminth blood fluke Schistosoma mansoni using the xWORM assay technique. Of four compounds tested, two compounds-luteolin (3) and (3R,6R)-linalool oxide acetate (1)-showed dual anthelmintic activity against S. mansoni (IC50 range = 5.8-36.9 μg/mL) and T. muris (IC50 range = 9.7-20.4 μg/mL). Using scanning electron microscopy, we determined luteolin as the most efficacious compound against both parasites and additionally was found effective against the schistosomula, the infective stage of S. mansoni (IC50 = 13.3 μg/mL). Luteolin induced tegumental damage to S. mansoni and affected the cuticle, bacillary bands and bacillary glands of T. muris. Our in vivo assessment of luteolin (3) against T. muris infection at a single oral dosing of 100 mg/kg, despite being significantly (27.6%) better than the untreated control group, was markedly weaker than mebendazole (93.1%) in reducing the worm burden in mice. Among the four compounds tested, luteolin demonstrated the best broad-spectrum activity against two different helminths-T. muris and S. mansoni-and was effective against juvenile schistosomes, the stage that is refractory to the current gold standard drug, praziquantel. Medicinal chemistry optimisation including cytotoxicity analysis, analogue development and structure-activity relationship studies are warranted and could lead to the identification of more potent chemical entities for the control of parasitic helminths of humans and animals.
ERIC Educational Resources Information Center
Harris, Harold H.
1999-01-01
Features acid tests for determining whether jewelry is "real" gold or simply gold-plated. Describes the carat system of denoting gold content and explains how alloys are used to create various shades of gold jewelry. Addresses the question of whether gold jewelry can turn a wearer's skin green by considering various oxidation reactions.…
Method for aqueous gold thiosulfate extraction using copper-cyanide pretreated carbon adsorption
Young, Courtney; Melashvili, Mariam; Gow, Nicholas V
2013-08-06
A gold thiosulfate leaching process uses carbon to remove gold from the leach liquor. The activated carbon is pretreated with copper cyanide. A copper (on the carbon) to gold (in solution) ratio of at least 1.5 optimizes gold recovery from solution. To recover the gold from the carbon, conventional elution technology works but is dependent on the copper to gold ratio on the carbon.
Modeling of gold production in Malaysia
NASA Astrophysics Data System (ADS)
Muda, Nora; Ainuddeen, Nasihah Rasyiqah; Ismail, Hamizun; Umor, Mohd Rozi
2013-04-01
This study was conducted to identify the main factors that contribute to the gold production and hence determine the factors that affect to the development of the mining industry in Malaysia. An econometric approach was used by performing the cointegration analysis among the factors to determine the existence of long term relationship between the gold prices, the number of gold mines, the number of workers in gold mines and the gold production. The study continued with the Granger analysis to determine the relationship between factors and gold production. Results have found that there are long term relationship between price, gold production and number of employees. Granger causality analysis shows that there is only one way relationship between the number of employees with gold production in Malaysia and the number of gold mines in Malaysia.
Mudedla, Sathish Kumar; Azhagiya Singam, Ettayapuram Ramaprasad; Balamurugan, Kanagasabai; Subramanian, Venkatesan
2015-11-11
The complexation of small interfering RNA (siRNA) with positively charged gold nanoclusters has been studied in the present investigation with the help of classical molecular dynamics and steered molecular dynamics simulations accompanied by free energy calculations. The results show that gold nanoclusters form a stable complex with siRNA. The wrapping of siRNA around the gold nanocluster depends on the size and charge on the surface of the gold cluster. The binding pattern of the gold nanocluster with siRNA is also influenced by the presence of another cluster. The interaction between the positively charged amines in the gold nanocluster and the negatively charged phosphate group in the siRNA is responsible for the formation of complexes. The binding free energy value increases with the size of the gold cluster and the number of positive charges present on the surface of the gold nanocluster. The results reveal that the binding energy of small gold nanoclusters increases in the presence of another gold nanocluster while the binding of large gold nanoclusters decreases due to the introduction of another gold nanocluster. Overall, the findings have clearly demonstrated the effect of size and charge of gold nanoclusters on their interaction pattern with siRNA.
Kong, Lingbing; Ganguly, Rakesh; Li, Yongxin
2015-01-01
The reactivity of a tricoordinate organoboron L2PhB: (L = oxazol-2-ylidene) 1 towards metal precursors and its coordination chemistry were comprehensively studied. While the boron center in 1 is reluctant to coordinate to the alkali metals in their trifluoromethanesulfonate salts (MOTf) (M = Li, Na, K), the unprecedented compound 2 containing two L2PhB: units linked by a cyclic Li(OTf)2Li spacer was obtained from the reaction of 1 with LiOTf. Treatment of 1 with group 9 metal complexes [MCl(COD)]2 (M = Rh, Ir) afforded the first zwitterionic rhodium(i)–boronium complex 3 and the iridium(iii)–borane complex 4, respectively. The reaction pathway may involve C–H activation followed by proton migration from the metals to the boron center, demonstrating the first example of the deprotonation of metal hydrides by a basic boron. In the reactions with coinage metals, 1 could act as a two-electron reducing agent towards the metal chlorides MCl (M = Cu, Ag, Au). Meanwhile, the reaction of 1 with gold chloride supported by a N-heterocyclic carbene (NHC) produced a heteroleptic cationic gold complex [(L2PhB)Au(NHC)]Cl (6) featuring both carbene and L2PhB: ligands on the gold atom. In contrast, an isolable gold chloride complex (L2PhB)AuCl (8) was obtained by direct complexation between 1 and triphenylphosphine-gold chloride via ligand exchange. X-ray diffraction analysis and computational studies revealed the nature of the B:→Au bonding interaction in complexes 6 and 8. Natural Population Analysis (NPA) and Natural Bond Orbital (NBO) analysis support the strong σ-donating property of the L2PhB: ligand. Moreover, preliminary studies showed that complex 8 can serve as an efficient precatalyst for the addition of X–H (X = N, O, C) to alkynes under ambient conditions, demonstrating the first application of a metal complex featuring a neutral boron-based ligand in catalysis. PMID:29308167
Jones, Paul W; Nadeau, Gilbert; Small, Mark; Adamek, Lukasz
2014-01-01
GOLD proposed a COPD assessment framework focussed on symptoms measured by the COPD Assessment Test™ (CAT) or the mMRC and on exacerbation risk based on poor lung function (FEV1 <50%) or a history of ≥2 exacerbations in the previous year. This analysis examined the characteristics of COPD patients recruited from routine clinical settings and classified using the GOLD framework. 1041 European COPD patients (38.5% from primary care) from the Adelphi Respiratory Disease Specific Programme with information on CAT, mMRC, spirometry and exacerbation history in the previous year were analysed. Their mean age was 64.9 ± 9.9 years and mean FEV1 was 62.5 ± 17.8% predicted; 80% were in GOLD 2 spirometric grade or milder. CAT and mMRC cut points identified different groups of patients; using CAT, the composition was: Group A 9.3%, Group B 48.5%, Group C 0.7% and Group D 41.5%. 80% were classified as high risk based on exacerbation history and 25% of patients in a low risk category (GOLD A and B) had 1 exacerbation in the previous year. The incidence of diabetes, hypertension and hyperlipidaemia rose with worsening GOLD group (all p < 0.0001); diabetes GOLD A 4%, GOLD B 16%, GOLD D 29%; hypertension GOLD A 38%, GOLD B 55%, GOLD D 65%; hyperlipidaemia GOLD A 13%, GOLD B 30%, GOLD D 37%. In patients seen in routine clinical settings, 25% of GOLD low risk patients had one exacerbation per year and the incidence of cardio-vascular and metabolic diseases increases with worsening GOLD group. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lengke, M. F.; Ravel, B.; Fleet, M. E.
2007-10-01
The mechanisms of gold precipitation by the interaction of cyanobacteria (Plectonema boryanum UTEX 485) and gold(III) chloride aqueous solutions (7.6 mmol/L final gold) have been studied at 25, 60, and 80 C, using both laboratory and real-time synchrotron radiation absorption spectroscopy experiments. Addition of aqueous gold(III) chloride to the cyanobacterial culture initially promoted the precipitation of amorphous gold(I) sulfide at the cell walls and finally caused the formation of octahedral (111) platelets (<1 to 6 {micro}m) of gold metal near cell surfaces and in solutions. X-ray absorption spectroscopy results confirmed that the reduction mechanism of gold(III) chloride to elemental goldmore » by cyanobacteria involves the formation of an intermediate Au(I) species, gold(I) sulfide, with sulfur originating from cyanobacterial proteins, presumably cysteine or methionine. Although the bioreduction of gold(III) chloride to gold(I) sulfide was relatively rapid at all temperatures, the reaction rate increased with the increase in temperature. At the completion of the experiments, elemental gold was the major species present at all temperatures.« less
Lawrence, Philip J; Kolsum, Umme; Gupta, Vandana; Donaldson, Gavin; Singh, Richa; Barker, Bethan; George, Leena; Webb, Adam; Brookes, Anthony J; Brightling, Christopher; Wedzicha, Jadwiga; Singh, Dave
2017-02-20
The characteristics and natural history of GOLD B COPD patients are not well described. The clinical characteristics and natural history of GOLD B patients over 1 year in a multicentre cohort of COPD patients in the COPDMAP study were assessed. We aimed to identify the subgroup of patients who progressed to GOLD D (unstable GOLD B patients) and identify characteristics associated with progression. Three hundred seventy COPD patients were assessed at baseline and 12 months thereafter. Demographics, lung function, health status, 6 min walk tests and levels of systemic inflammation were assessed. Students t tests and Mann Whitney-U tests were used. One hundred seven (28.9%) of patients were categorised as GOLD B at baseline. These GOLD B patients had similar FEV1 to GOLD A patients (66% predicted). More GOLD B patients were current smokers (p = 0.031), had chronic bronchitis (p = 0.0003) and cardiovascular comorbidities (p = 0.019) compared to GOLD A. At 12 months, 25.3% of GOLD B patients progressed to GOLD D. These patients who progressed (unstable patients) had worse health status and symptoms (SGRQ-C Total, 50.0 v 41.1, p = 0.019 and CAT, 21.0 v 14.0, p = 0.006) and lower FEV 1 (60% v 69% p = 0.014) at baseline compared to stable patients who remained in GOLD B. Unstable GOLD B patients who progressed to GOLD D had a higher level of symptoms at baseline. A high symptom burden may predict an increased likelihood of disease progression in GOLD B patients.
Singh, Priyanka; Pandit, Santosh; Garnæs, Jørgen; Tunjic, Sanja; Mokkapati, Venkata RSS; Sultan, Abida; Thygesen, Anders; Mackevica, Aiga; Mateiu, Ramona Valentina; Daugaard, Anders Egede; Baun, Anders; Mijakovic, Ivan
2018-01-01
Background Cannabis sativa (hemp) is a source of various biologically active compounds, for instance, cannabinoids, terpenes and phenolic compounds, which exhibit antibacterial, antifungal, anti-inflammatory and anticancer properties. With the purpose of expanding the auxiliary application of C. sativa in the field of bio-nanotechnology, we explored the plant for green and efficient synthesis of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs). Methods and results The nanoparticles were synthesized by utilizing an aqueous extract of C. sativa stem separated into two different fractions (cortex and core [xylem part]) without any additional reducing, stabilizing and capping agents. In the synthesis of AuNPs using the cortex enriched in bast fibers, fiber-AuNPs (F-AuNPs) were achieved. When using the core part of the stem, which is enriched with phenolic compounds such as alkaloids and cannabinoids, core-AuNPs (C-AuNPs) and core-AgNPs (C-AgNPs) were formed. Synthesized nanoparticles were character-ized by UV–visible analysis, transmission electron microscopy, atomic force microscopy, dynamic light scattering, Fourier transform infrared, and matrix-assisted laser desorption/ionization time-of-flight. In addition, the stable nature of nanoparticles has been shown by thermogravimetric analysis and inductively coupled plasma mass spectrometry (ICP-MS). Finally, the AgNPs were explored for the inhibition of Pseudomonas aeruginosa and Escherichia coli biofilms. Conclusion The synthesized nanoparticles were crystalline with an average diameter between 12 and 18 nm for F-AuNPs and C-AuNPs and in the range of 20–40 nm for C-AgNPs. ICP-MS analysis revealed concentrations of synthesized nanoparticles as 0.7, 4.5 and 3.6 mg/mL for F-AuNPs, C-AuNPs and C-AgNPs, respectively. Fourier transform infrared spectroscopy revealed the presence of flavonoids, cannabinoids, terpenes and phenols on the nanoparticle surface, which could be responsible for reducing the salts to nanoparticles and further stabilizing them. In addition, the stable nature of synthesized nanoparticles has been shown by thermogravimetric analysis and ICP-MS. Finally, the AgNPs were explored for the inhibition of P. aeruginosa and E. coli biofilms. The nanoparticles exhibited minimum inhibitory concentration values of 6.25 and 5 µg/mL and minimum bactericidal concentration values of 12.5 and 25 µg/mL against P. aeruginosa and E. coli, respectively.
NASA Astrophysics Data System (ADS)
Leem, Jung Woo; Song, Young Min; Yu, Jae Su
2013-10-01
We report the biomimetic artificial silicon (Si) compound eye structures for broadband and wide-angle antireflection by integrating nanostructures (NSs) into periodically patterned microstructures (p-MSs) via thermal dewetting of gold and subsequent dry etching. The truncated cone microstructures with a two-dimensional hexagonal symmetry pattern were fabricated by photolithography and dry etching processes. The desirable shape and density of the nanostructures were obtained by controlled dewetting. The incorporation of p-MSs into the NS/Si surface further reduced the surface total reflectance over a wide wavelength range of 300-1030 nm at near normal incidence, indicating the average reflectance (Ravg) and solar weighted reflectance (RSWR) values of ~2.5% and 2%, respectively, compared to the only NSs on the flat Si surface (i.e., Ravg ~ 4.9% and RSWR ~ 4.5%). Additionally, the resulting structure improved the angle-dependent antireflection property due to its relatively omnidirectional shape, which exhibited the Ravg < 4.3% and RSWR < 3.7% in the wavelength region of 300-1100 nm even at a high incident light angle of 70° in the specular reflectance.We report the biomimetic artificial silicon (Si) compound eye structures for broadband and wide-angle antireflection by integrating nanostructures (NSs) into periodically patterned microstructures (p-MSs) via thermal dewetting of gold and subsequent dry etching. The truncated cone microstructures with a two-dimensional hexagonal symmetry pattern were fabricated by photolithography and dry etching processes. The desirable shape and density of the nanostructures were obtained by controlled dewetting. The incorporation of p-MSs into the NS/Si surface further reduced the surface total reflectance over a wide wavelength range of 300-1030 nm at near normal incidence, indicating the average reflectance (Ravg) and solar weighted reflectance (RSWR) values of ~2.5% and 2%, respectively, compared to the only NSs on the flat Si surface (i.e., Ravg ~ 4.9% and RSWR ~ 4.5%). Additionally, the resulting structure improved the angle-dependent antireflection property due to its relatively omnidirectional shape, which exhibited the Ravg < 4.3% and RSWR < 3.7% in the wavelength region of 300-1100 nm even at a high incident light angle of 70° in the specular reflectance. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr02806b
ERIC Educational Resources Information Center
Brahier, Daniel J.
1997-01-01
Describes a mathematical investigation of gold--how it is weighed, stored, used, and valued. For grades 3-4, children estimate the value of treasure chests filled with gold coins and explore the size and weight of gold bars. Children in grades 5-6 explore how gold is mined and used, and how the value of gold changes over time. (PVD)
Gold leaf counter electrodes for dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Shimada, Kazuhiro; Toyoda, Takeshi
2018-03-01
In this study, a gold leaf 100 nm thin film is used as the counter electrode in dye-sensitized solar cells. The traditional method of hammering gold foil to obtain a thin gold leaf, which requires only small amounts of gold, was employed. The gold leaf was then attached to the substrate using an adhesive to produce the gold electrode. The proposed approach for fabricating counter electrodes is demonstrated to be facile and cost-effective, as opposed to existing techniques. Compared with electrodes prepared with gold foil and sputtered gold, the gold leaf counter electrode demonstrates higher catalytic activity with a cobalt-complex electrolyte and higher cell efficiency. The origin of the improved performance was investigated by surface morphology examination (scanning electron microscopy), various electrochemical analyses (cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy), and crystalline analysis (X-ray diffractometry).
Menezes, Ana M; Wehrmeister, Fernando C; Perez-Padilla, Rogelio; Viana, Karynna P; Soares, Claudia; Müllerova, Hana; Valdivia, Gonzalo; Jardim, José R; Montes de Oca, Maria
2017-01-01
The Global Initiative for Chronic Obstructive Lung Disease (GOLD) report provides a framework for classifying COPD reflecting the impacts of disease on patients and for targeting treatment recommendations. The GOLD 2017 introduced a new classification with 16 subgroups based on a composite of spirometry and symptoms/exacerbations. Data from the population-based PLATINO study, collected at baseline and at follow-up, in three sites in Latin America were analyzed to compare the following: 1) the distribution of COPD patients according to GOLD 2007, 2013, and 2017; 2) the stability of the 2007 and 2013 classifications; and 3) the mortality rate over time stratified by GOLD 2007, 2013, and 2017. Of the 524 COPD patients evaluated, most of them were classified as Grade I or II (GOLD 2007) and Group A or B (GOLD 2013), with ≈70% of those classified as Group A in GOLD 2013 also classified as Grade I in GOLD 2007 and the highest percentage (41%) in Group D (2013) classified as Grade III (2007). According to GOLD 2017, among patients with Grade I airflow limitation, 69% of them were categorized into Group A, whereas Grade IV patients were more evenly distributed among Groups A-D. Most of the patients classified by GOLD 2007 remained in the same airflow limitation group at the follow-up; a greater temporal variability was observed with GOLD 2013 classification. Incidence-mortality rate in patients classified by GOLD 2007 was positively associated with increasing severity of airflow obstruction; for GOLD 2013 and GOLD 2017 (Groups A-D), highest mortality rates were observed in Groups C and D. No clear pattern was observed for mortality across the GOLD 2017 subgroups. The PLATINO study data suggest that GOLD 2007 classification shows more stability over time compared with GOLD 2013. No clear patterns with respect to the distribution of patients or incidence-mortality rates were observed according to GOLD 2013/2017 classification.
Nieto, Elena; Delgado, Mercedes; Sobrado, Mónica; de Ceballos, María L; Alajarín, Ramón; García-García, Luis; Kelly, James; Lizasoain, Ignacio; Pozo, Miguel A; Álvarez-Builla, Julio
2015-08-28
The synthesis of the new radiotracer precursor 4-Br-NITTP and the radiolabeling of the new tracer 1-(4-bromo-2-nitroimidazol-1-yl)-3-[(18)F]fluoropropan-2-ol (4-Br-[(18)F]FMISO) is reported. The cyclic voltammetry behaviour, neuronal cell toxicity, transport through the brain endothelial cell monolayer, in vivo PET imaging and preliminary calculations of the tracer uptake for a rodent model of stroke were studied for the new compound and the results were compared to those obtained with [(18)F]FMISO, the current gold standard PET hypoxia tracer. The new PET brain hypoxia tracer is more easily reduced, has higher CLogP than [(18)F]FMISO and it diffuses more rapidly through brain endothelial cells. The new compound is non-toxic to neuronal cells and it allows the in vivo mapping of stroke in mice with higher sensitivity. 4-Br-[(18)F]FMISO is a good candidate for further development in ischemic stroke. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Current approaches of the management of mercury poisoning: need of the hour
2014-01-01
Mercury poisoning cases have been reported in many parts of the world, resulting in many deaths every year. Mercury compounds are classified in different chemical types such as elemental, inorganic and organic forms. Long term exposure to mercury compounds from different sources e.g. water, food, soil and air lead to toxic effects on cardiovascular, pulmonary, urinary, gastrointestinal, neurological systems and skin. Mercury level can be measured in plasma, urine, feces and hair samples. Urinary concentration is a good indicator of poisoning of elemental and inorganic mercury, but organic mercury (e.g. methyl mercury) can be detected easily in feces. Gold nanoparticles (AuNPs) are a rapid, cheap and sensitive method for detection of thymine bound mercuric ions. Silver nanoparticles are used as a sensitive detector of low concentration Hg2+ ions in homogeneous aqueous solutions. Besides supportive therapy, British anti lewisite, dimercaprol (BAL), 2,3-dimercaptosuccinic acid (DMSA. succimer) and dimercaptopropanesulfoxid acid (DMPS) are currently used as chelating agents in mercury poisoning. Natural biologic scavengers such as algae, azolla and other aquatic plants possess the ability to uptake mercury traces from the environment. PMID:24888360
Lovley, D.R.; Giovannoni, S.J.; White, D.C.; Champine, J.E.; Phillips, E.J.P.; Gorby, Y.A.; Goodwin, S.
1993-01-01
The gram-negative metal-reducing microorganism, previously known as strain GS-15, was further characterized. This strict anaerobe oxidizes several short-chain fatty acids, alcohols, and monoaromatic compounds with Fe(III) as the sole electron acceptor. Furthermore, acetate is also oxidized with the reduction of Mn(IV), U(VI), and nitrate. In whole cell suspensions, the c-type cytochrome(s) of this organism was oxidized by physiological electron acceptors and also by gold, silver, mercury, and chromate. Menaquinone was recovered in concentrations comparable to those previously found in gram-negative sulfate reducers. Profiles of the phospholipid ester-linked fatty acids indicated that both the anaerobic desaturase and the branched pathways for fatty acid biosynthesis were operative. The organism contained three lipopolysaccharide hydroxy fatty acids which have not been previously reported in microorganisms, but have been observed in anaerobic freshwater sediments. The 16S rRNA sequence indicated that this organism belongs in the delta proteobacteria. Its closest known relative is Desulfuromonas acetoxidans. The name Geobacter metallireducens is proposed.
Contrast-induced acute kidney injury: potential new strategies.
Briguori, Carlo; Donnarumma, Elvira; Quintavalle, Cristina; Fiore, Danilo; Condorelli, Gerolama
2015-03-01
Contrast-induced acute kidney injury (CI-AKI) is an impairment of renal function following contrast media administration in the absence of an alternative cause. It represents a powerful predictor of poor early and late outcomes. Here, we review the major strategies to prevent CI-AKI. Hydration represents the gold standard as a prophylactic measure to prevent CI-AKI, acting by increasing urine flow rate and, thereby, by limiting the time of contact between the contrast media and the tubular epithelial cells. An optimal hydration regimen should be defined according to predefined clinical markers, such as urine flow rate, or left ventricular end-diastolic pressure. Recently, high-dose statins pretreatment has been included in the guidelines of CI-AKI prevention. However, uncertainty still exists on the efficacy of several compounds tested in both observational trials and randomized studies to prevent CI-AKI. Compounds evaluated include diuretics (furosemide), antioxidants (i.e. N-acetylcysteine and statins) and vasodilators (i.e. calcium antagonists, dopamine and fenoldopam). Hydration still represents the most reliable strategy to prevent CI-AKI. New prophylactic strategies for acute kidney injury are still under investigation.
Solid phase microextraction of macrolide, trimethoprim, and sulfonamide antibiotics in wastewaters.
McClure, Evelyn L; Wong, Charles S
2007-10-26
In this work, we optimize a solid phase microextraction (SPME) method for the simultaneous collection of antibiotics (sulfonamides, macrolides, and trimethoprim) present in wastewaters. The performance of the SPME method is compared to a solid phase extraction (SPE) method. Analytes in both cases were quantified by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) with electrospray ionization. The advantages offered by SPME in this application are: decreased sample volume requirements, ease of sample processing and extraction, decreased cost, and most importantly, elimination of electrospray matrix effects. Despite having higher limits of quantification (16-1380 ng/L in influent and 35-260 ng/L in effluent), nearly all of the compounds found to be present in Edmonton Gold Bar wastewater by SPE were measurable by SPME (i.e., sulfamethoxazole, trimethoprim, erythromycin, and clarithromycin), with values similar to those obtained using the former method. Limits of quantification for the SPE method for the measured compounds were 4.7-15 ng/L and 0.86-6.1 ng/L for influent and effluent, respectively.
Bertrand, Benoît; Citta, Anna; Franken, Inge L; Picquet, Michel; Folda, Alessandra; Scalcon, Valeria; Rigobello, Maria Pia; Le Gendre, Pierre; Casini, Angela; Bodio, Ewen
2015-09-01
While N-heterocyclic carbenes (NHC) are ubiquitous ligands in catalysis for organic or industrial syntheses, their potential to form transition metal complexes for medicinal applications has still to be exploited. Within this frame, we synthesized new homo- and heterobimetallic complexes based on the Au(I)-NHC scaffold. The compounds were synthesized via a microwave-assisted method developed in our laboratories using Au(I)-NHC complexes carrying a pentafluorophenol ester moiety and another Au(I) phosphane complex or a bipyridine ligand bearing a pendant amine function. Thus, we developed two different methods to prepare homo- and heterobimetallic complexes (Au(I)/Au(I) or Au(I)/Cu(II), Au(I)/Ru(II), respectively). All the compounds were fully characterized by several spectroscopic techniques including far infrared, and were tested for their antiproliferative effects in a series of human cancer cells. They showed moderate anticancer properties. Their toxic effects were also studied ex vivo using the precision-cut tissue slices (PCTS) technique and initial results concerning their reactivity with the seleno-enzyme thioredoxin reductase were obtained.
Angerer, Verena; Bisel, Philippe; Moosmann, Bjoern; Westphal, Folker; Auwärter, Volker
2016-09-01
Synthetic cannabinoids have become an integral part of the drugs of abuse market since many years. The most frequent form of consumption for this class of substances is smoking of herbal mixtures purchased via the Internet. In this article the identification and structure elucidation of a new synthetic cannabinoid, [1-(cyclohexylmethyl)-1H-indol-3-yl](naphthalen-1-yl)methanone, is described. The compound was found along with 5F-ADB in a 'herbal mixture' called 'Jamaican Gold Extreme', which was sent to our laboratory in the context of a suspected intoxication. For isolation of the substance a flash chromatography separation was applied. Structure elucidation was performed using gas chromatography-mass spectrometry (GC-MS), gas chromatography solid-state infrared (GC-sIR) and nuclear magnetic resonance (NMR) analysis. The new compound can be described as the cyclohexyl methyl derivative of the first generation synthetic cannabinoid JWH-018, and the authors suggest to use "NE-CHMIMO" as a semisystematic name. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Andres, Jérémy; Arsène-Ploetze, Florence; Barbe, Valérie; Brochier-Armanet, Céline; Cleiss-Arnold, Jessica; Coppée, Jean-Yves; Dillies, Marie-Agnès; Geist, Lucie; Joublin, Aurélie; Koechler, Sandrine; Lassalle, Florent; Marchal, Marie; Médigue, Claudine; Muller, Daniel; Nesme, Xavier; Plewniak, Frédéric; Proux, Caroline; Ramírez-Bahena, Martha Helena; Schenowitz, Chantal; Sismeiro, Odile; Vallenet, David; Santini, Joanne M.; Bertin, Philippe N.
2013-01-01
Arsenic is widespread in the environment and its presence is a result of natural or anthropogenic activities. Microbes have developed different mechanisms to deal with toxic compounds such as arsenic and this is to resist or metabolize the compound. Here, we present the first reference set of genomic, transcriptomic and proteomic data of an Alphaproteobacterium isolated from an arsenic-containing goldmine: Rhizobium sp. NT-26. Although phylogenetically related to the plant-associated bacteria, this organism has lost the major colonizing capabilities needed for symbiosis with legumes. In contrast, the genome of Rhizobium sp. NT-26 comprises a megaplasmid containing the various genes, which enable it to metabolize arsenite. Remarkably, although the genes required for arsenite oxidation and flagellar motility/biofilm formation are carried by the megaplasmid and the chromosome, respectively, a coordinate regulation of these two mechanisms was observed. Taken together, these processes illustrate the impact environmental pressure can have on the evolution of bacterial genomes, improving the fitness of bacterial strains by the acquisition of novel functions. PMID:23589360
de la Fuente, Jesús M; Alcántara, David; Eaton, Peter; Crespo, Patricia; Rojas, Teresa C; Fernandez, Asunción; Hernando, Antonio; Penadés, Soledad
2006-07-06
The preparation, characterization and the magnetic properties of gold and gold-iron oxide glyconanoparticles (GNPs) are described. Glyconanoparticles were prepared in a single step procedure in the presence of aqueous solution of thiol functionalized neoglycoconjugates and either gold salts or both gold and iron salts. Neoglycoconjugates of lactose and maltose disaccharides with different linkers were used. Iron-free gold or gold-iron oxide GNPs with controlled gold-iron ratios were obtained. The average core-size diameters are in the range of 1.5-2.5 nm. The GNPs are fully characterized by (1)H NMR spectrometry, transmission electron microscopy (TEM), and UV-vis and X-ray absorption (XAS) spectroscopies. Inductive plasma-atomic emission spectrometry (ICP) and elemental analysis gave the average number of neoglycoconjugates per cluster. The magnetic properties were measured in a SQUID magnetometer. The most remarkable results was the observation of a permanent magnetism up to room temperature in the iron-free gold GNPs, that was not present in the corresponding gold-iron oxide GNPs.
Gold and its relationship to neurological/glandular conditions.
Richards, Douglas G; McMillin, David L; Mein, Eric A; Nelson, Carl D
2002-01-01
Despite increasing sales of gold supplements, and claims of benefits for neurological and glandular conditions, gold has received little attention in modern medical literature except as a drug for rheumatoid arthritis. Historically, however, gold had a reputation as a "nervine," a therapy for nervous disorders. A review of the historical literature shows gold in use during the 19th century for conditions including depression, epilepsy, migraine, and glandular problems such as amenorrhea and impotence. The most notable use of gold was in a treatment for alcoholism developed by Keeley (1897). In the modern medical literature, gold-containing medicines for rheumatoid arthritis are known to have occasional neurotoxic adverse effects. There are also a few studies suggesting a role for gold as a naturally occurring trace element in the reproductive glands. One small recent study demonstrated a possible positive effect of gold on cognitive ability. There is a need for more experimental and clinical research of the neuropharmacology and neurochemistry of gold, and for the exploration of gold's possible role as a trace element.
Structure and reactivity of a mononuclear gold(II) complex
NASA Astrophysics Data System (ADS)
Preiß, Sebastian; Förster, Christoph; Otto, Sven; Bauer, Matthias; Müller, Patrick; Hinderberger, Dariush; Hashemi Haeri, Haleh; Carella, Luca; Heinze, Katja
2017-12-01
Mononuclear gold(II) complexes are very rare labile species. Transient gold(II) species have been suggested in homogeneous catalysis and in medical applications, but their geometric and electronic structures have remained essentially unexplored: even fundamental data, such as the ionic radius of gold(II), are unknown. Now, an unprecedentedly stable neutral gold(II) complex of a porphyrin derivative has been isolated, and its structural and spectroscopic features determined. The gold atom adopts a 2+2 coordination mode in between those of gold(III) (four-coordinate square planar) and gold(I) (two-coordinate linear), owing to a second-order Jahn-Teller distortion enabled by the relativistically lowered 6s orbital of gold. The reactivity of this gold(II) complex towards dioxygen, nitrosobenzene and acids is discussed. This study provides insight on the ionic radius of gold(II), and allows it to be placed within the homologous series of nd9 Cu/Ag/Au divalent ions and the 5d8/9/10 Pt/Au/Hg 'relativistic' triad in the periodic table.
Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint
NASA Astrophysics Data System (ADS)
Yoon, Jeong-Won; Noh, Bo-In; Jung, Seung-Boo
2011-09-01
Interfacial reactions and joint reliability of Sn-3.0Ag-0.5Cu solder with two different surface finishes, electroless nickel-immersion gold (ENIG) and electroless nickel-electroless palladium-immersion gold (ENEPIG), were evaluated during a reflow process. We first compared the interfacial reactions of the two solder joints and also successfully revealed a connection between the interfacial reaction behavior and mechanical reliability. The Sn-Ag-Cu/ENIG joint exhibited a higher intermetallic compound (IMC) growth rate and a higher consumption rate of the Ni(P) layer than the Sn-Ag-Cu/ENEPIG joint. The presence of the Pd layer in the ENEPIG suppressed the growth of the interfacial IMC layer and the consumption of the Ni(P) layer, resulting in the superior interfacial stability of the solder joint. The shear test results show that the ENIG joint fractured along the interface, exhibiting indications of brittle failure possibly due to the brittle IMC layer. In contrast, the failure of the ENEPIG joint only went through the bulk solder, supporting the idea that the interface is mechanically reliable. The results from this study confirm that the Sn-Ag-Cu/ENEPIG solder joint is mechanically robust and, thus, the combination is a viable option for a Pb-free package system.
Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut
2016-01-01
Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP–GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core–shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP–GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP–GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP–GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP–GA was significantly decreased (P<0.0001) compared to that of GA. Fourier transform infrared analysis revealed that AuNP–GA resulted in alterations of lipids, proteins, and nucleic acids at the bacterial cell membrane. Our findings show that AuNP–GA has potential for further application in biomedical sciences. PMID:27555764
Hu, Liuyi; Zheng, Jing; Zhao, Kang; Deng, Anping; Li, Jianguo
2018-03-15
In this study, a novel competition-type electrochemiluminescent (ECL) immunosensor for detecting diclofenac (DCF) was fabricated with graphene oxide coupled graphite-like carbon nitride (GO-g-C 3 N 4 ) as signal probe for the first time. The ECL intensity of carboxylated g-C 3 N 4 was significantly enhanced after being combined with graphene oxide (GO) which exhibited excellent charge-transport property. The sensing platform was constructed by multiwalled carbon nanotubes and gold nanoparticles (MWCNTs-AuNPs), which not only provided an effective matrix for immobilizing a large amount of coating antigen but also facilitated the electronic transmission rate to enhance the ECL intensity. Based on the synergistic effect of GO-g-C 3 N 4 and MWCNTs-AuNPs composite, the proposed sensor showed high sensitivity, good stability, and wide linearity for the detection of DCF in the range of 0.005-1000ngmL -1 with a detection limit of 1.7pgmL -1 . Furthermore, the developed immunoassay has been applied to real samples with satisfactory results. Therefore, this work provided a promising method for the detection of DCF and other small molecular compounds in the future. Copyright © 2017 Elsevier B.V. All rights reserved.
Oskoei, Yones Mosaei; Fattahi, Hassan; Hassanzadeh, Javad; Azar, Ali Mousavi
2016-01-01
A fluorescence resonance energy transfer (FRET) system between carbon dots (C-dots) and amine-capped gold nanoparticles (AuNPs) was developed for the selective determination of 2,4,6-trinitrotoluene (TNT). C-dots have an intrinsic florescence emission depending on their exciting wavelength. In the presence of AuNPs, C-dots adsorb on the Au surfaces, and NPs treat as energy acceptor, which can receive light emitted by C-dots, leading to decrease the fluorescence intensity of C-dots. Furthermore, it is observed that nitroaromatic compounds, especially TNT, could restore this fluorescence due to selective interaction with AuNPs via amine groups, and so releasing the C-dots. Based on this effect, a sensitive and selective fluorescence turn-on probe was designed for the determination of TNT. Some important factors including AuNPs and C-dot concentrations and media pH, which would affect the efficiency of the probe, were optimized. Under the optimum experimental conditions, good linear relationships in the range of 7 - 250 nmol L(-1) TNT with the detection limit of 2.2 nmol L(-1) were obtained. The proposed method was satisfactorily applied to the determination of TNT in the environmental water samples. Compared with previous reports, the developed method has relatively high sensitivity, short analysis time, low cost and ease of operation.
Lin, Pingtan; Zhao, Shulin; Lu, Xin; Ye, Fanggui; Wang, Hengshan
2013-08-01
A CE method based on a dual-enzyme co-immobilized capillary microreactor was developed for the simultaneous screening of multiple enzyme inhibitors. The capillary microreactor was prepared by co-immobilizing adenosine deaminase and xanthine oxidase on the inner wall at the inlet end of the separation capillary. The enzymes were first immobilized on gold nanoparticles, and the functionalized gold nanoparticles were then assembled on the inner wall at the inlet end of the separation capillary treated with polyethyleneimine. With the developed CE method, the substrates and products were baseline separated within 3 min. The activity of the immobilized enzyme can be directly detected by measuring the peak height of the products. A statistical parameter Z' factor was recommended for evaluation of the accuracy of a drug screening system. In the present study, it was calculated to be larger than 0.5, implying a good accuracy. Finally, screening a small compound library containing two known enzyme inhibitors and 20 natural extracts by the proposed method was demonstrated. The known inhibitors were identified, and some natural extracts were found to be positive for two-enzyme inhibition by the present method. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Exposure of the blue mussel, Mytilus edulis, to gold nanoparticles and the pro-oxidant menadione.
Tedesco, Sara; Doyle, Hugh; Blasco, Julian; Redmond, Gareth; Sheehan, David
2010-03-01
Relatively little is known about how gold nanoparticles (GNP) might interact in vivo with marine organisms. Mytilus edulis was exposed (24h) to approximately 15 nm GNP, menadione and both compounds simultaneously (GNP/menadione). GNP was detected by inductively coupled plasma-optical emission spectroscopy mainly in digestive gland of samples exposed to GNP though not GNP/menadione, perhaps due to impaired feeding. Thioredoxin reductase activity and malondialdehyde levels were determined in all tissues. Thioredoxin reductase inhibition was detected only in digestive gland exposed to menadione whilst malondialdehyde levels did not vary in response to treatment in all tissues. GNP caused a decrease in the reduced/oxidized glutathione ratio in digestive gland, but no difference was found in other tissues or for other treatments. One dimensional electrophoresis of proteins containing thiol groups was performed in all tissues and revealed a reduction in protein thiols for all treatments in digestive gland. Two dimensional electrophoresis of digestive gland extracts, from GNP and control groups, showed decreased levels of thiol proteins in response to GNP which we attribute to oxidation. Our results suggest that GNP causes a modest level of oxidative stress sufficient to oxidize thiols in glutathione and proteins but without causing lipid peroxidation or induction of thioredoxin reductase activity.
Atmospheric mercury concentrations in the basin of the amazon, Brazil.
Hachiya, N; Takizawa, Y; Hisamatsu, S; Abe, T; Abe, Y; Motohashi, Y
1998-01-01
A wide regional mercury pollution in Amazon, Brazil is closely associated with goldmining that has been carried out in the basin of tributaries of the Amazon since the eighteenth century. Possible involvement has been discussed on atmospheric circulation in distributing the volatile pollutant. We developed a portable air sampler for the collection of mercury compounds and determined atmospheric mercury concentrations at several sites in Brazil including the basin of the Amazon tributaries. The mean concentration of total mercury was between 9.1 and 14.0 ng/m(3) in the basin of the Uatumã River located in the tropical rain forest far from goldmining sites and from urbanized area. These mercury levels exceeded the background level previously reported in rural area and, furthermore, were higher than concentrations observed in Rio de Janeiro and in Manaus that were compatible with the reference values for urban area. Mercury concentrations were also determined in gold refineries in the basin of the Tapajos River, and detected at a significant but not a health deteriorating level. Although only preliminary data were available, the present observations were in favor of the hypothesis that mercury is distributed widely by long distant transport by the atmospheric circulation after released at gold mining sites.
Yu, Yingchang; Lu, Chao; Zhang, Meining
2015-08-04
Herein, it is the first report that a cathodic electrochemiluminescence (ECL) resonance energy transfer (ERET) system is fabricated by layer-by-layer (LBL) electrostatic assembly of CoAl layered double hydroxide (LDH) nanosheets with a mixture of blue BSA-gold nanoclusters (AuNCs) and Ru(bpy)3(2+) (denoted as AuNCs@Ru) on an Au electrode. The possible ECL mechanism indicates that the appearance of CoAl-LDH nanosheets generates a long-range stacking order of the AuNCs@Ru on an Au electrode, facilitating the occurrence of the ERET between BSA-AuNC donors and Ru(bpy)3(2+) acceptors on the as-prepared AuNCs@Ru-LDH ultrathin films (UTFs). Furthermore, it is observed that the cathodic ECL intensity can be quenched efficiently in the presence of 6-mercaptopurine (6-MP) in a linear range of 2.5-100 nM with a detection limit of 1.0 nM. On the basis of these interesting phenomena, a facile cathodic ECL sensor has successfully distinguished 6-MP from other thiol-containing compounds (e.g., cysteine and glutathione) in human serum and urine samples. The proposed sensing scheme opens a way for employing the layered UTFs as a platform for the cathodic ECL of Ru(bpy)3(2+).
Yu, Zhao; Smith, Michael E; Zhang, Jinnan; Zhou, Yan; Zhang, Peng
2018-06-18
A surface-enhanced Raman scattering (SERS) method has been developed to determine the concentration of trichloroethylene (TCE) in environmental water. Au-core/Ag-shell nanoparticles containing 4-mercaptophenylboronic acid (4-MPBA) between the core and shell are used as the SERS substrate. 4-MPBA serves as an internal reference with a Raman shift at 534 cm -1 . TCE reacts with 4-mercaptopyridine (4-MPy) in a so-called Fujiwara reaction. With the presence of TCE in water, the consumption of 4-MPy results in a change in the intensity of its Raman signal at 1220 cm -1 . The ratio of the Raman shift at 1220 cm -1 and 534 cm -1 decreases linearly in the 0.2 to 1.0 μM TCE concentration range, and the detection limit of TCE is as low as 8 ppb (60 nM). The method has been successfully applied to the determination of TCE in spiked lake water. Graphical abstract Gold-core/silver-shell nanoparticles with internal reference embedded have been fabracated to improve the quantitative measurement of SERS. These nanoparticles as SERS substrates, are used to indirectly quantify the concentration of trichloroethylene (a typical halogenated organic compound) by the consumption of 4-mercaptopyridine through the Fujiwara reaction.
NASA Astrophysics Data System (ADS)
Fang, Jiasheng; Zhang, Yiwei; Zhou, Yuming; Zhao, Shuo; Zhang, Chao; Huang, Mengqiu; Gao, Yan
2017-08-01
Novel NiO-TiO2 hybrids/mSiO2 yolk-shell architectures loaded with ultrasmall Au nanoparticles (STNVS-Au) were developed via the rational synthetic strategy. The hierarchical yolk-shell nanostructures (STNVS) with high surface areas were constructed by a facile "bottom-up" assembly process using SiO2 materials and polymer resins as cores/shells and sacrificial templates, accompanied by a simple hydrothermal incorporation of NiO into uniform amorphous TiO2 layers that were converted to NiO-anatase TiO2 p-n heterojunction hybrids. Then, numerous sub-3 nm Au nanoparticles were post encapsulated within STNVS nanostructures through the low-temperature hydrogen reduction based on the unique deposition-precipitation method with Au(en)2Cl3 compounds as gold precursors. The NiO-TiO2 hybrids alloying with Au nanoparticles were effectively protected and entrapped within STNVS architectures, and interacted with outer mSiO2-Au shells, which comprised the powerful STNVS-Au yolk-shell nanoreactors and produced stronger configural synergies in enhancing the heterogeneous catalysis. Into catalyzing the reduction of 4-nitrophenol to 4-aminophenol, the STNVS-Au was shown with outstanding activity and reusability, and its pristine morphology was well retained during the recycling process.
Wu, Chung-Shu; Liu, Fu-Ken; Ko, Fu-Hsiang
2011-01-01
Nanoparticle-based material is a revolutionary scientific and engineering venture that will invariably impact the existing analytical separation and preconcentration for a variety of analytes. Nanoparticles can be regarded as a hybrid between small molecule and bulk material. A material on the nanoscale produces considerable changes on various properties, making them size- and shape-dependent. Gold nanoparticles (Au NPs), one of the wide variety of core materials available, coupled with tunable surface properties in the form of inorganic or inorganic-organic hybrid have been reported as an excellent platform for a broad range of analytical methods. This review aims to introduce the basic principles, examples, and descriptions of methods for the characterization of Au NPs by using chromatography, electrophoresis, and self-assembly strategies for separation science. Some of the latest important applications of using Au NPs as stationary phases toward open-tubular capillary electrochromatography, gas chromatography, and liquid chromatography as well as roles of run buffer additive to enhance separation and preconcentration in the field of chromatographic, electrophoretic and in chip-based systems are reviewed. Additionally, we review Au NPs-assisted state-of-the-art techniques involving the use of micellar electrokinetic chromatography, an online diode array detector, solid-phase extraction, and mass spectrometry for the preconcentration of some chemical compounds and biomolecules.
Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut
2016-01-01
Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP-GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core-shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP-GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP-GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP-GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP-GA was significantly decreased (P<0.0001) compared to that of GA. Fourier transform infrared analysis revealed that AuNP-GA resulted in alterations of lipids, proteins, and nucleic acids at the bacterial cell membrane. Our findings show that AuNP-GA has potential for further application in biomedical sciences.
Azzouzi, Sawsen; Rotariu, Lucian; Benito, Ana M; Maser, Wolfgang K; Ben Ali, Mounir; Bala, Camelia
2015-07-15
In this work, a novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide (RGO-AuNPs) and l-lactate dehydrogenase (LDH) was developed for the sensing of l-lactate. Firstly, the RGO-AuNPs modified screen printed electrodes were tested for NADH detection showing a wide dynamic range and a low detection limit. Next, the biosensor was constructed by incorporating both enzyme and RGO-AuNPs in a sol gel matrix derived from tetrametoxysilane and methyltrimetoxysilane. The enzyme loading, working pH, and coenzyme concentration were optimized. The biosensor linearly responded to l-lactate in the range of 10µM-5mM and showed a good specific sensitivity of 154µA/mMcm(2) with a detection limit of 0.13µM. This was accompanied by good reproducibility and operational stability. Tests on artificial serum proved that l-lactate can be determined practically without interferences from commonly interfering compounds such as urate, paracetamol and l-ascorbate. Our LDH/RGO-AuNPs/SPCE based biosensor thus performs as electrochemical device for the detection of l-lactate as a viable early cancer bio-marker. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhao, Yinli; Zhang, Gaiping; Liu, Qingtang; Teng, Man; Yang, Jifei; Wang, Jianhua
2008-12-24
A rapid immunochromatographic lateral flow test strip of competitive format has been developed using a gold-conjugated monoclonal antibody for the specific determination of enrofloxacin (ENR) residues in chicken muscles. For this purpose, a specific monoclonal antibody (mAb) for ENR was generated and characterized. The mAb showed negligible cross-reactivity with other related compounds. Using ENR standards prepared in chicken muscle extracts from 0 to 24.3 ng/mL (microg/kg), the method indicated that the detection limit of the test strip, as measured in a strip scanner, was as low as 0.138 microg/kg of ENR and the half-maximal inhibition concentration (IC(50)) was 0.935 microg/kg. For samples spiked at 10, 20, and 30 microg/kg, the recovery was between 85.3 and 96.1% and the coefficient of variation [CV (%)] was between 4.5 and 7.91%. Parallel analysis of muscle samples from chickens fed ENR showed good comparable results obtained from the test strip and LC-MS. Each test requires 5-10 min. The data indicate that the method has high sensitivity, specificity, and the advantages of simplicity and speed of performance. Therefore, the test strip provides a useful screening method for quantitative, semiquantitative, or qualitative detection of ENR residues in chicken muscles.
Molecularly stabilised ultrasmall gold nanoparticles: synthesis, characterization and bioactivity
NASA Astrophysics Data System (ADS)
Leifert, Annika; Pan-Bartnek, Yu; Simon, Ulrich; Jahnen-Dechent, Willi
2013-06-01
Gold nanoparticles (AuNPs) are widely used as contrast agents in electron microscopy as well as for diagnostic tests. Due to their unique optical and electrical properties and their small size, there is also a growing field of potential applications in medical fields of imaging and therapy, for example as drug carriers or as active compounds in thermotherapy. Besides their intrinsic optical properties, facile surface decoration with (bio)functional ligands renders AuNPs ideally suited for many industrial and medical applications. However, novel AuNPs may have toxicological profiles differing from bulk and therefore a thorough analysis of the quantitative structure-activity relationship (QSAR) is required. Several mechanisms are proposed that cause adverse effects of nanoparticles in biological systems. Catalytic generation of reactive species due to the large and chemically active surface area of nanomaterials is well established. Because nanoparticles approach the size of biological molecules and subcellular structures, they may overcome natural barriers by active or passive uptake. Ultrasmall AuNPs with sizes of 2 nm or less may even behave as molecular ligands. These types of potential interactions would imply a size and ligand-dependent behaviour of any nanomaterial towards biological systems. Thus, to fully understand their QSAR, AuNPs bioactivity should be analysed in biological systems of increasing complexity ranging from cell culture to whole animal studies.
Seedless synthesis of gold nanorods using resveratrol as a reductant
NASA Astrophysics Data System (ADS)
Wang, Wenjing; Li, Jing; Lan, Shijie; Rong, Li; Liu, Yi; Sheng, Yu; Zhang, Hao; Yang, Bai
2016-04-01
Gold nanorods (GNRs) attract extensive attention in current diagnostic and therapeutic applications which require the synthesis of GNRs with high yields, adjustable aspect ratio, size monodispersity, and easy surface decoration. In the seed-mediated synthesis of GNRs using cetyl trimethyl ammonium bromide (CTAB) micelles as templates, the additives of aromatic compounds have been found to be important for improving the size monodispersity of the as-synthesized GNRs; this is hopeful in terms of the further optimization of the synthetic methodology of GNRs. In this work, resveratrol, a natural polyphenol in grapes with an anti-oxidization behavior, is employed as the reductant for the seedless synthesis of GNRs with a good size monodispersity and a tunable aspect ratio. Accordingly, the longitudinal localized surface plasmon resonance (LSPR) peak is tunable from 570 to 950 nm. The success of our approach is attributed to the aromatic structure and mild reducibility of resveratrol. The embedment of resveratrol into CTAB micelles strengthens the facet-selective adsorption of CTAB, and therewith facilitates the anisotropic growth of GNRs. In addition, the mild reducibility of resveratrol is capable of supporting GNR growth by avoiding secondary nucleation, thus allowing the seedless synthesis of GNRs with a good size monodispersity. As a chemopreventive agent, the combination of resveratrol in GNR synthesis will consolidate the theranostic applications of GNRs.
John, Shalini; Thangapandian, Sundarapandian; Lee, Keun Woo
2012-01-01
Human pancreatic cholesterol esterase (hCEase) is one of the lipases found to involve in the digestion of large and broad spectrum of substrates including triglycerides, phospholipids, cholesteryl esters, etc. The presence of bile salts is found to be very important for the activation of hCEase. Molecular dynamic simulations were performed for the apoform and bile salt complexed form of hCEase using the co-ordinates of two bile salts from bovine CEase. The stability of the systems throughout the simulation time was checked and two representative structures from the highly populated regions were selected using cluster analysis. These two representative structures were used in pharmacophore model generation. The generated pharmacophore models were validated and used in database screening. The screened hits were refined for their drug-like properties based on Lipinski's rule of five and ADMET properties. The drug-like compounds were further refined by molecular docking simulation using GOLD program based on the GOLD fitness score, mode of binding, and molecular interactions with the active site amino acids. Finally, three hits of novel scaffolds were selected as potential leads to be used in novel and potent hCEase inhibitor design. The stability of binding modes and molecular interactions of these final hits were re-assured by molecular dynamics simulations.
Analysis of gold(I/III)-complexes by HPLC-ICP-MS demonstrates gold(III) stability in surface waters.
Ta, Christine; Reith, Frank; Brugger, Joël; Pring, Allan; Lenehan, Claire E
2014-05-20
Understanding the form in which gold is transported in surface- and groundwaters underpins our understanding of gold dispersion and (bio)geochemical cycling. Yet, to date, there are no direct techniques capable of identifying the oxidation state and complexation of gold in natural waters. We present a reversed phase ion-pairing HPLC-ICP-MS method for the separation and determination of aqueous gold(III)-chloro-hydroxyl, gold(III)-bromo-hydroxyl, gold(I)-thiosulfate, and gold(I)-cyanide complexes. Detection limits for the gold species range from 0.05 to 0.30 μg L(-1). The [Au(CN)2](-) gold cyanide complex was detected in five of six waters from tailings and adjacent monitoring bores of working gold mines. Contrary to thermodynamic predictions, evidence was obtained for the existence of Au(III)-complexes in circumneutral, hypersaline waters of a natural lake overlying a gold deposit in Western Australia. This first direct evidence for the existence and stability of Au(III)-complexes in natural surface waters suggests that Au(III)-complexes may be important for the transport and biogeochemical cycling of gold in surface environments. Overall, these results show that near-μg L(-1) enrichments of Au in environmental waters result from metastable ligands (e.g., CN(-)) as well as kinetically controlled redox processes leading to the stability of highly soluble Au(III)-complexes.
Preliminary evidence for the involvement of budding bacteria in the origin of Alaskan placer gold
Watterson, J.R.
1992-01-01
Lacelike networks of micrometre-size filiform gold associated wtih Alaskan placer gold particles are interpreted as low-temperature pseudomorphs of a Pedomicrobium-like budding bacterium. Submicron reproductive structures (hyphae) and other morphological features similar to those of Pedomicrobium manganicum occur as detailed three-dimensional facsimiles in high purity gold in and on placer gold particles from Lillian Creek, Alaska. In a scanning electron microscope survey, the majority of gold particles at nine Alaskan placer deposits appear to include gold that has accumulated chemically at low temperatures in and on the cells of P. manganicum. Similar bacterioform gold from a Paleozoic deposit in China and from the Precambrian Witwatersrand deposit in South Africa may indicate that bacterioform gold is widespread. -Author
A Comparative XAFS Study of Gold-thiolate Nanoparticles and Nanoclusters
NASA Astrophysics Data System (ADS)
Chevrier, D. M.; Chatt, A.; Sham, T. K.; Zhang, P.
2013-04-01
Tiopronin-capped gold nanoparticles and gold nanoclusters of sizes 3.0 and 1.5 nm, respectively, were investigated with XAFS at the gold L3-edge. The specific EXAFS fitting procedure is discussed for obtaining reliable fit parameters for each system. The difficulties and challenges faced when analysing EXAFS data for gold nanoparticles and nanoclusters are also mentioned. Fitting results for gold nanoparticles reveal a small amount of surface Au-thiolate interactions with a large Au-Au metal core. For gold nanoclusters, only a one-shell fit was obtainable. Instead of Au-Au metal core, long-range interactions are expected for gold nanoclusters. Tiopronin-capped gold nanoclusters are proposed to be polymeric in nature, which helps explain the observed red luminescence.
The origin or the Archean Jardine iron formation-hosted lode gold deposit. Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ping, Liu.
1992-06-09
While there is considerable controversy concerning the origin of greenstone-hosted lode gold deposits of Archean age, there is a general consensus that these deposits are epigenetic. By contrast, iron formation-hosted lode gold deposits of Archean or Proterozoic age are considered either epigenetic or syngenetic. At least three genetic models have been proposed for these gold deposits: a syngenetic model involving simultaneous deposition of gold and the iron formation; an epigenetic model involving a later introduction of gold, arsenic, and sulfur into the iron formation; and a multistage model involving primary concentration of gold during deposition of iron formation followed bymore » remobilization and reconcentration of gold during later events. The Jardine district is one of only three Archean lode gold districts in the United States that have reserves of greater than 300,000 ounces of gold. The other two are the South Pass-Atlantic City district, Wyoming, and the Ropes mine, Michigan. The fact that two of the three districts are in the Wyoming province suggests that the province might be an Archean gold province similar to Archean provinces in Canada. Placer gold was discovered near Jardine in 1866, and gold quartz veins were mined in the 1880's at Mineral Hill. Exploration by the Jardine Joint Venture has concentrated on the Jardine area, including Crevasse Mountain, where minor lode gold mineralization occurs in quartz-biotite schists. In order to complement previous geochemical, mineralogical, petrological and structural studies, the present study has concentrated on fluid inclusion, stable isotope, and electron microprobe studies with the intention of determining: (1) the source of the ore-forming fluids and gold, and (2) the genetic relationship between gold mineralization and iron formation, alteration and metamorphism.« less
The origin or the Archean Jardine iron formation-hosted lode gold deposit. Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ping, Liu
1992-06-09
While there is considerable controversy concerning the origin of greenstone-hosted lode gold deposits of Archean age, there is a general consensus that these deposits are epigenetic. By contrast, iron formation-hosted lode gold deposits of Archean or Proterozoic age are considered either epigenetic or syngenetic. At least three genetic models have been proposed for these gold deposits: a syngenetic model involving simultaneous deposition of gold and the iron formation; an epigenetic model involving a later introduction of gold, arsenic, and sulfur into the iron formation; and a multistage model involving primary concentration of gold during deposition of iron formation followed bymore » remobilization and reconcentration of gold during later events. The Jardine district is one of only three Archean lode gold districts in the United States that have reserves of greater than 300,000 ounces of gold. The other two are the South Pass-Atlantic City district, Wyoming, and the Ropes mine, Michigan. The fact that two of the three districts are in the Wyoming province suggests that the province might be an Archean gold province similar to Archean provinces in Canada. Placer gold was discovered near Jardine in 1866, and gold quartz veins were mined in the 1880`s at Mineral Hill. Exploration by the Jardine Joint Venture has concentrated on the Jardine area, including Crevasse Mountain, where minor lode gold mineralization occurs in quartz-biotite schists. In order to complement previous geochemical, mineralogical, petrological and structural studies, the present study has concentrated on fluid inclusion, stable isotope, and electron microprobe studies with the intention of determining: (1) the source of the ore-forming fluids and gold, and (2) the genetic relationship between gold mineralization and iron formation, alteration and metamorphism.« less
Thompson, Lucas B; Carfagno, Gerardo L F; Andresen, Kurt; Sitton, Andrea J; Bury, Taylor; Lee, Laura L; Lerner, Kevin T; Fong, Peter P
2017-12-01
Engineered nanoparticles are aquatic contaminants of emerging concern that exert ecotoxicological effects on a wide variety of organisms. We exposed cetyltrimethylammonium bromide-capped spherical gold nanoparticles to wood frog and bullfrog tadpoles with conspecifics and in combination with the other species continuously for 21 d, then measured uptake and localization of gold. Wood frog tadpoles alone and in combination with bullfrog tadpoles took up significantly more gold than bullfrogs. Bullfrog tadpoles in combination with wood frogs took up significantly more gold than controls. The rank order of weight-normalized gold uptake was wood frogs in combination > wood frogs alone > bullfrogs in combination > bullfrogs alone > controls. In all gold-exposed groups of tadpoles, gold was concentrated in the anterior region compared with the posterior region of the body. The concentration of gold nanoparticles in the anterior region of wood frogs both alone and in combination with bullfrogs was significantly higher than the corresponding posterior regions. We also measured depuration time of gold in wood frogs. After 21 d in a solution of gold nanoparticles, tadpoles lost >83% of internalized gold when placed in gold-free water for 5 d. After 10 d in gold-free water, tadpoles lost 94% of their gold. After 15 d, gold concentrations were below the level of detection. Our finding of differential uptake between closely related species living in similar habitats with overlapping geographical distributions argues against generalizing toxicological effects of nanoparticles for a large group of organisms based on measurements in only one species. Environ Toxicol Chem 2017;36:3351-3358. © 2017 SETAC. © 2017 SETAC.
Increased cellular uptake of peptide-modified PEGylated gold nanoparticles.
He, Bo; Yang, Dan; Qin, Mengmeng; Zhang, Yuan; He, Bing; Dai, Wenbing; Wang, Xueqing; Zhang, Qiang; Zhang, Hua; Yin, Changcheng
2017-12-09
Gold nanoparticles are promising drug delivery vehicles for nucleic acids, small molecules, and proteins, allowing various modifications on the particle surface. However, the instability and low bioavailability of gold nanoparticles compromise their clinical application. Here, we functionalized gold nanoparticles with CPP fragments (CALNNPFVYLI, CALRRRRRRRR) through sulfhydryl PEG to increase their stability and bioavailability. The resulting gold nanoparticles were characterized with transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible spectrometry and X-ray photoelectron spectroscopy (XPS), and the stability in biological solutions was evaluated. Comparing to PEGylated gold nanoparticles, CPP (CALNNPFVYLI, CALRRRRRRRR)-modified gold nanoparticles showed 46 folds increase in cellular uptake in A549 and B16 cell lines, as evidenced by the inductively coupled plasma atomic emission spectroscopy (ICP-AES). The interactions between gold nanoparticles and liposomes indicated CPP-modified gold nanoparticles bind to cell membrane more effectively than PEGylated gold nanoparticles. Surface plasmon resonance (SPR) was used to measure interactions between nanoparticles and the membrane. TEM and uptake inhibitor experiments indicated that the cellular entry of gold nanoparticles was mediated by clathrin and macropinocytosis. Other energy independent endocytosis pathways were also identified. Our work revealed a new strategy to modify gold nanoparticles with CPP and illustrated the cellular uptake pathway of CPP-modified gold nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.
Gold and gold working in Late Bronze Age Northern Greece.
Vavelidis, M; Andreou, S
2008-04-01
Numerous objects of gold displaying an impressive variety of types and manufacturing techniques are known from the Late Bronze Age (LBA) contexts of Mycenaean Greece, but very little is known about the origin and processing of gold during the second millennium B.C: . Ancient literature and recent research indicate that northern Greece is probably the richest gold-bearing region in Greece, and yet, very little evidence exists regarding the exploitation of its deposits and the production as well as use of gold in the area during prehistory. The unusual find of a group of small stone crucibles at the prehistoric settlement of Thessaloniki Toumba, one with visible traces of gold melting, proves local production and offers a rare opportunity to examine the process of on-site gold working. Furthermore, the comparison of the chemical composition of prehistoric artefacts from two settlements with those of gold deposits in their immediate areas supports the local extraction of gold and opens up the prospect for some of the Mycenaean gold to have originated in northern Greece. The scarcity of gold items in northern Greek LBA contexts may not represent the actual amount of gold produced and consumed, but could be a result of the local social attitudes towards the circulation and deposition of artefacts from precious metals.
Gold and gold working in Late Bronze Age Northern Greece
NASA Astrophysics Data System (ADS)
Vavelidis, M.; Andreou, S.
2008-04-01
Numerous objects of gold displaying an impressive variety of types and manufacturing techniques are known from the Late Bronze Age (LBA) contexts of Mycenaean Greece, but very little is known about the origin and processing of gold during the second millennium b.c. Ancient literature and recent research indicate that northern Greece is probably the richest gold-bearing region in Greece, and yet, very little evidence exists regarding the exploitation of its deposits and the production as well as use of gold in the area during prehistory. The unusual find of a group of small stone crucibles at the prehistoric settlement of Thessaloniki Toumba, one with visible traces of gold melting, proves local production and offers a rare opportunity to examine the process of on-site gold working. Furthermore, the comparison of the chemical composition of prehistoric artefacts from two settlements with those of gold deposits in their immediate areas supports the local extraction of gold and opens up the prospect for some of the Mycenaean gold to have originated in northern Greece. The scarcity of gold items in northern Greek LBA contexts may not represent the actual amount of gold produced and consumed, but could be a result of the local social attitudes towards the circulation and deposition of artefacts from precious metals.
Cyanide hazards to plants and animals from gold mining and related water issues
Eisler, R.; Wiemeyer, Stanley N.
2004-01-01
Highly toxic sodium cyanide (NaCN) is used by the international mining community to extract gold and other precious metals through milling of high-grade ores and heap leaching of low-grade ores (Korte et al. 2000). The process to concentrate gold using cyanide was developed in Scotland in 1887 and was used almost immediately in the Witwatersrand gold fields of the Republic of South Africa. Heap leaching with cyanide was proposed by the U.S. Bureau of Mines in 1969 as a means of extracting gold from low-grade ores. The gold industry adopted the technique in the 1970s, soon making heap leaching the dominant technology in gold extraction (Da Rosa and Lyon 1997). The heap leach and milling processes, which involve dewatering of gold-bearing ores, spraying of dilute cyanide solutions on extremely large heaps of ores containing low concentrations of gold, or the milling of ores with the use of cyanide and subsequent recovery of the gold-cyanide complex, have created a number of serious environmental problems affecting wildlife and water management. In this account, we review the history of cyanide use in gold mining with emphasis on heap leach gold mining, cyanide hazards to plants and animals, water management issues associated with gold mining, and proposed mitigation and research needs.
Beneficiation of the gold bearing ore by gravity and flotation
NASA Astrophysics Data System (ADS)
Gül, Alim; Kangal, Olgaç; Sirkeci, Ayhan A.; Önal, Güven
2012-02-01
Gold concentration usually consists of gravity separation, flotation, cyanidation, or the combination of these processes. The choice among these processes depends on the mineralogical characterization and gold content of the ore. Recently, the recovery of gold using gravity methods has gained attention because of low cost and environmentally friendly operations. In this study, gold pre-concentrates were produced by the stepwise gravity separation and flotation techniques. The Knelson concentrator and conventional flotation were employed for the recovery of gold. Gold bearing ore samples were taken from Gümüşhane Region, northern east part of Turkey. As a result of stepwise Knelson concentration experiments, a gold concentrate assaying around 620 g/t is produced with 41.4wt% recovery. On the other hand, a gold concentrate about 82 g/t is obtained with 89.9wt% recovery from a gold ore assaying 6 g/t Au by direct flotation.
A unique ore-placer area of the Amur region with high-Hg gold
NASA Astrophysics Data System (ADS)
Melnikov, A. V.; Stepanov, V. A.; Moiseenko, V. G.
2017-10-01
This work presents the geological structure and a description of the gold-ore occurrences and gold placers of the Un'ya-Bom ore-placer cluster of the Amur gold-bearing province. The host rocks are Late Paleozoic and Mesozoic black shales. Intrusive formations occur rarely. The sublatitudinal Un'ya Thrust is the principal ore-controlling structure. Paleozoic sandstones are thrust over Mesozoic flysch deposits along the Un'ya Thrust. The gold-ore occurrences are represented by quartz-vein zones. The ores are gold-quartz, low-sulfide. Ore minerals are arsenopyrite, scheelite, ferberite, galena, and native gold. High-Hg native gold was revealed in the ore occurrences and placers. The high Hg content in native gold is explained by the presence of the frontal part of the gold-bearing column located within the cluster; the rich placers were formed due to crushing of this column.
Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate
NASA Astrophysics Data System (ADS)
Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin
2018-04-01
Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.