ERIC Educational Resources Information Center
Gerber, Ralph W.; Oliver-Hoyo, Maria T.
2008-01-01
This experiment is designed to expose undergraduate students to the process of selective etching by using soft lithography and the resulting electrical properties of multilayered films fabricated via self-assembly of gold nanoparticles. Students fabricate a conductive film of gold on glass, apply a patterned resist using a polydimethylsiloxane…
Gold-implanted shallow conducting layers in polymethylmethacrylate
NASA Astrophysics Data System (ADS)
Teixeira, F. S.; Salvadori, M. C.; Cattani, M.; Brown, I. G.
2009-03-01
PMMA (polymethylmethacrylate) was ion implanted with gold at very low energy and over a range of different doses using a filtered cathodic arc metal plasma system. A nanometer scale conducting layer was formed, fully buried below the polymer surface at low implantation dose, and evolving to include a gold surface layer as the dose was increased. Depth profiles of the implanted material were calculated using the Dynamic TRIM computer simulation program. The electrical conductivity of the gold-implanted PMMA was measured in situ as a function of dose. Samples formed at a number of different doses were subsequently characterized by Rutherford backscattering spectrometry, and test patterns were formed on the polymer by electron beam lithography. Lithographic patterns were imaged by atomic force microscopy and demonstrated that the contrast properties of the lithography were well maintained in the surface-modified PMMA.
The role of tortuosity on ion conduction in block copolymer electrolyte thin films
NASA Astrophysics Data System (ADS)
Kambe, Yu; Arges, Christopher G.; Nealey, Paul F.
This talk discusses the role of grain tortuosity on ion conductivity in block copolymer electrolyte (BCE) thin films. In particular, we studied lamellae forming BCEs with both domains oriented perpendicular to the substrate surface and connected directly from one electrode to another - i.e., tortuosity of one. The BCE is composed of ion-conducting, poly(2-vinyl n-methylpyridinium) blocks and non-ionic polystyrene blocks. Prior to creating the BCE, the pristine block copolymer, poly(styrene- b-2-vinyl pyridine), was directly self-assembled (DSA) on topographical or chemical patterns via graphoepitaxy and chemoepitaxy. A chemical vapor infiltration reaction modified the P2VP block into positively charged, fixed quaternary ammonium groups paired with mobile counteranions. The graphoepitaxy process utilized topographical interdigitated gold nanoelectrodes (100s of nanometers spacing between electrodes) created via e-beam lithography. Alternatively, chemical patterns had gold electrodes incorporated into them with 10s to 100s of microns spacing using conventional optical lithography. The interdigitated gold electrodes enabled in-plane ion conductivity measurements of the DSA BCEs to study the role of grain tortuosity on ion conductivity. U.S. Department of Energy Office of Science: Contract No. DE-AC02-06CH11357.
Hu, Chengguo; Bai, Xiaoyun; Wang, Yingkai; Jin, Wei; Zhang, Xuan; Hu, Shengshui
2012-04-17
A simple approach to the mass production of nanoporous gold electrode arrays on cellulose membranes for electrochemical sensing of oxygen using ionic liquid (IL) electrolytes was established. The approach, combining the inkjet printing of gold nanoparticle (GNP) patterns with the self-catalytic growth of these patterns into conducting layers, can fabricate hundreds of self-designed gold arrays on cellulose membranes within several hours using an inexpensive inkjet printer. The resulting paper-based gold electrode arrays (PGEAs) had several unique properties as thin-film sensor platforms, including good conductivity, excellent flexibility, high integration, and low cost. The porous nature of PGEAs also allowed the addition of electrolytes from the back cellulose membrane side and controllably produced large three-phase electrolyte/electrode/gas interfaces at the front electrode side. A novel paper-based solid-state electrochemical oxygen (O(2)) sensor was therefore developed using an IL electrolyte, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF(6)). The sensor looked like a piece of paper but possessed high sensitivity for O(2) in a linear range from 0.054 to 0.177 v/v %, along with a low detection limit of 0.0075% and a short response time of less than 10 s, foreseeing its promising applications in developing cost-effective and environment-friendly paper-based electrochemical gas sensors.
NASA Astrophysics Data System (ADS)
Rodríguez-Cantó, Pedro J.; Martínez-Marco, Mariluz; Abargues, Rafael; Latorre-Garrido, Victor; Martínez-Pastor, Juan P.
2013-03-01
In this work, we present a novel patternable conducting nanocomposite containing gold nanoparticles. Here, the in-situ polymerization of 3T is carried out using HAuCl4 as oxidizing agent inside PMMA as host matrix. During the bake step, the gold salt is also reduced from Au(III) to Au(0) generating Au nanoparticles in the interpenetrating polymer network (IPN) system. We found that this novel multifunctional resist shows electrical conductivity and plasmonic properties as well as potential patterning capability provided by the host matrix. The resulting nanocomposite has been investigated by TEM and UV-Vis spectroscopy. Electrical characterization was also conducted for different concentration of 3T and Au(III) following a characteristic percolation behaviour. Conductivities values from 10-5 to 10 S/cm were successfully obtained depending on the IPN formulation. Moreover, The Au nanoparticles generated exhibited a localized surface plasmon resonance at around 520 nm. This synthetic approach is of potential application to modify the conductivity of numerous insulating polymers and synthesize Au nanoparticles preserving to some extent their physical and chemical properties. In addition, combination of optical properties (Plasmonics), electrical, and lithographic capability in the same material allows for the design of materials with novel functionalities and provides the basis for next generation devices.
NASA Technical Reports Server (NTRS)
Buehler, M.; Ryan, M.
1995-01-01
A new test chip is being developed to characterize conducting polymers used in gas sensors. The chip, a seven-layer cofired alumina substrate with gold electrodes, contains 11 comb and U- bend test structures. These structures are designed to measure the sheet resistance, conduction anisotropy, and peripheral conduction of spin-coated films that are not subsequently patterned.
DNA origami metallized site specifically to form electrically conductive nanowires.
Pearson, Anthony C; Liu, Jianfei; Pound, Elisabeth; Uprety, Bibek; Woolley, Adam T; Davis, Robert C; Harb, John N
2012-09-06
DNA origami is a promising tool for use as a template in the design and fabrication of nanoscale structures. The ability to engineer selected staple strands on a DNA origami structure provides a high density of addressable locations across the structure. Here we report a method using site-specific attachment of gold nanoparticles to modified staple strands and subsequent metallization to fabricate conductive wires from DNA origami templates. We have modified DNA origami structures by lengthening each staple strand in select regions with a 10-base nucleotide sequence and have attached DNA-modified gold nanoparticles to the lengthened staple strands via complementary base-pairing. The high density of extended staple strands allowed the gold nanoparticles to pack tightly in the modified regions of the DNA origami, where the measured median gap size between neighboring particles was 4.1 nm. Gold metallization processes were optimized so that the attached gold nanoparticles grew until gaps between particles were filled and uniform continuous nanowires were formed. Finally, electron beam lithography was used to pattern electrodes in order to measure the electrical conductivity of metallized DNA origami, which showed an average resistance of 2.4 kΩ per metallized structure.
Enhanced performance of VOx-based bolometer using patterned gold black absorber
NASA Astrophysics Data System (ADS)
Smith, Evan M.; Panjwani, Deep; Ginn, James; Warren, Andrew; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E.; Shelton, David J.
2015-06-01
Patterned highly absorbing gold black film has been selectively deposited on the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves gold black's near unity absorption. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. Infrared responsivity is substantially improved by the gold black coating without significantly increasing noise. The increase in the time constant caused by the additional mass of gold black is a modest 14%.
Quantitative analysis of the Dermott-Gold theory for Uranus's rings
NASA Technical Reports Server (NTRS)
Aksnes, K.
1977-01-01
A summary is presented of an investigation which supplements the largely qualitative analysis conducted by Dermott and Gold (1977). Dermott and Gold have attempted to explain the locations of Uranus's rings in terms of resonances between ring particles and pairs of satellites. An equation of motion, analogous to that of a pendulum, is derived, taking into account a study by Wilkens (1933) of possible three-body resonances involving one minor and two major planets. Dermott and Gold had concluded that the observed pattern is probably due primarily to the effect of Ariel-Titania and Ariel-Oberon pairs. However, on the basis of the values derived in the reported investigation it is seen that Miranda plays the key role rather than Ariel, in spite of the small mass of the former. It is concluded that a decisive test of the Dermott-Gold theory has to await further observational details concerning the Uranus's rings.
Smith, Evan M; Panjwani, Deep; Ginn, James; Warren, Andrew P; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Nath, Janardan; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E; Shelton, David
2016-03-10
Infrared-absorbing gold black has been selectively patterned onto the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves much of gold black's high absorptance. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. For our fabricated devices, infrared responsivity is improved 22% in the long-wave IR and 70% in the mid-wave IR by the gold black coating, with no significant change in detector noise, using a 300°C blackbody and 80 Hz chopping rate. The increase in the time constant caused by the additional mass of gold black is ∼15%.
Reinhardt, Hendrik M; Bücker, Kerstin; Hampp, Norbert A
2015-05-04
Laser-induced reorganization and simultaneous fusion of nanoparticles is introduced as a versatile concept for pattern formation on surfaces. The process takes advantage of a phenomenon called laser-induced periodic surface structures (LIPSS) which originates from periodically alternating photonic fringe patterns in the near-field of solids. Associated photonic fringe patterns are shown to reorganize randomly distributed gold nanoparticles on a silicon wafer into periodic gold nanostructures. Concomitant melting due to optical heating facilitates the formation of continuous structures such as periodic gold nanowire arrays. Generated patterns can be converted into secondary structures using directed assembly or self-organization. This includes for example the rotation of gold nanowire arrays by arbitrary angles or their fragmentation into arrays of aligned gold nanoparticles.
Patterning of oxide-hardened gold black by photolithography and metal lift-off
Deep Panjwani; Mehmet Yesiltas; Janardan Nath; D.E. Maukonen; Imen Rezadad; Evan M. Smith; R.E. Peale; Carol Hirschmugl; Julia Sedlmair; Ralf Wehlitz; Miriam Unger; Glenn Boreman
2014-01-01
A method to pattern infrared-absorbing gold black by conventional photolithography and lift-off is described. A photo-resist pattern is developed on a substrate by standard photolithography. Gold black is deposited over the whole by thermal evaporation in an inert gas at
Cho, Heesook; Yoo, Hana; Park, Soojin
2010-05-18
Disposable topographic silicon oxide patterns were fabricated from polymeric replicas of sawtoothed glass surfaces, spin-coating of poly(dimethylsiloxane) (PDMS) thin films, and thermal annealing at certain temperature and followed by oxygen plasma treatment of the thin PDMS layer. A simple imprinting process was used to fabricate the replicated PDMS and PS patterns from sawtoothed glass surfaces. Next, thin layers of PDMS films having different thicknesses were spin-coated onto the sawtoothed PS surfaces and annealed at 60 degrees C to be drawn the PDMS into the valley of the sawtoothed PS surfaces, followed by oxygen plasma treatment to fabricate topographic silicon oxide patterns. By control of the thickness of PDMS layers, silicon oxide patterns having various line widths were fabricated. The silicon oxide topographic patterns were used to direct the self-assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films via solvent annealing process. A highly ordered PS-b-P2VP micellar structure was used to let gold precursor complex with P2VP chains, and followed by oxygen plasma treatment. When the PS-b-P2VP thin films containing gold salts were exposed to oxygen plasma environments, gold salts were reduced to pure gold nanoparticles without changing high degree of lateral order, while polymers were completely degraded. As the width of trough and crest in topographic patterns increases, the number of gold arrays and size of gold nanoparticles are tuned. In the final step, the silicon oxide topographic patterns were selectively removed by wet etching process without changing the arrays of gold nanoparticles.
Hamzawy, Mohamed A; Abo-Youssef, Amira M; Salem, Heba F; Mohammed, Sameh A
2017-11-01
The current study aimed to develop gold nanoparticles (GNPs) and liposome-embedded gold nanoparticles (LGNPs) as drug carriers for temozolomide (TMZ) and investigate the possible therapeutic effects of intratracheal inhalation of nanoformulation of TMZ-loaded gold nanoparticles (TGNPs) and liposome-embedded TGNPs (LTGNPs) against urethane-induced lung cancer in BALB/c mice. Physicochemical characters and zeta potential studies for gold nanoparticles (GNPs) and liposome-embedded gold nanoparticles (LGNPs) were performed. The current study was conducted by inducing lung cancer chemically via repeated exposure to urethane in BALB/C mice. GNPs and LGNPs were exhibited in uniform spherical shape with adequate dispersion stability. GNPs and LGNPs showed no significant changes in comparison to control group with high safety profile, while TGNPs and LTGNPs succeed to improve all biochemical data and histological patterns. GNPs and LGNPs are promising drug carriers and succeeded in the delivery of small and efficient dose of temozolomide in treatment lung cancer. Antitumor activity was pronounced in animal-treated LTGNPs, these effects may be due to synergistic effects resulted from combination of temozolomide and gold nanoparticles and liposomes that may improve the drug distribution and penetration.
Patterning of oxide-hardened gold black by photolithography and metal lift-off
NASA Astrophysics Data System (ADS)
Panjwani, Deep; Yesiltas, Mehmet; Nath, Janardan; Maukonen, D. E.; Rezadad, Imen; Smith, Evan M.; Peale, R. E.; Hirschmugl, Carol; Sedlmair, Julia; Wehlitz, Ralf; Unger, Miriam; Boreman, Glenn
2014-01-01
A method to pattern infrared-absorbing gold black by conventional photolithography and lift-off is described. A photo-resist pattern is developed on a substrate by standard photolithography. Gold black is deposited over the whole by thermal evaporation in an inert gas at ˜1 Torr. SiO2 is then deposited as a protection layer by electron beam evaporation. Lift-off proceeds by dissolving the photoresist in acetone. The resulting sub-millimeter size gold black patterns that remain on the substrate retain high infrared absorption out to ˜5 μm wavelength and exhibit good mechanical stability. This technique allows selective application of gold black coatings to the pixels of thermal infrared imaging array detectors.
2015-08-24
microcontact printing techniques to deposit and pattern intrinsically polar self - assembled monolayers (SAMs) on smooth template-stripped gold films...and large piezoresponse. Stamp Stamp Gold Gold 10 μm 10 μ m 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 nm Fig. 7. Patterned self - assembled monolayers of...SAM. Importantly, deposition and patterning of thiol self - assembled monolayers on gold surfaces is facile, creating in intrinsically polar film for
1993-12-06
CAH.,)’Il]iCl• i. AUTHOR(S) Ceceli A. Duchi, M. Kanskar, J.C. Wu, M.N. WYbourne, Sui Xiong Cai, Hingdi Yan, and John F. W. Keana PERFORMING...13 < Eugene, OR 97403 1 M- Attn: John F. W. Keana* and Martin N. Wybjurne** SPONSORINGIMONITORING AGENCY NAME(S) AND AODRESS(ES) 10...M. Kanskart, J.C. Wut , M.N. Wybourne, Sui Xiong Cail, Mingdi Yan’, and John F.W. Keanaý Department of Physicst and Chemistry*, University of Oregon
Wei, Mingjie; Wang, Yong
2015-01-01
Patterning metallic nanoparticles on substrate surfaces is important in a number of applications. However, it remains challenging to fabricate such patterned nanoparticles with easily controlled structural parameters, including particle sizes and densities, from simple methods. We report on a new route to directly pattern pre-formed gold nanoparticles with different diameters on block copolymer micellar monolayers coated on silicon substrates. Due to the synergetic effect of complexation and electrostatic interactions between the micellar cores and the gold particles, incubating the copolymer-coated silicon in a gold nanoparticles suspension leads to a monolayer of gold particles attached on the coated silicon. The intermediate micellar film was then removed using oxygen plasma treatment, allowing the direct contact of the gold particles with the Si substrate. We further demonstrate that the gold nanoparticles can serve as catalysts for the localized etching of the silicon substrate, resulting in nanoporous Si with a top layer of straight pores. PMID:28793407
Fabrication of patterned surface by soft lithographic technique for confinement of lipid bilayer
NASA Astrophysics Data System (ADS)
Moulick, Ranjita Ghosh; Mayer, Dirk
2018-04-01
In this paper we demonstrated that a 3D pattern can be well transferred from a silicon Master to a gold substrate using µcontact printing. In this process 1-Octadecanthiol served as an ink and printing followed by etching generated the desired pattern on the gold substrate. The prepatterned substrate was also used for lipid vesicle fusion and revealed that lipid molecules selectively bind to the gold layer.
NASA Astrophysics Data System (ADS)
Shibata, K.; Yoshida, K.; Daiguji, K.; Sato, H.; , T., Ii; Hirakawa, K.
2017-10-01
An electric-field control of quantized conductance in metal (gold) quantum point contacts (QPCs) is demonstrated by adopting a liquid-gated electric-double-layer (EDL) transistor geometry. Atomic-scale gold QPCs were fabricated by applying the feedback-controlled electrical break junction method to the gold nanojunction. The electric conductance in gold QPCs shows quantized conductance plateaus and step-wise increase/decrease by the conductance quantum, G0 = 2e2/h, as EDL-gate voltage is swept, demonstrating a modulation of the conductance of gold QPCs by EDL gating. The electric-field control of conductance in metal QPCs may open a way for their application to local charge sensing at room temperature.
The Self-Assembly of Nanogold for Optical Metamaterials
NASA Astrophysics Data System (ADS)
Nidetz, Robert A.
2011-12-01
Optical metamaterials are an emerging field that enables manipulation of light like never before. Producing optical metamaterials requires sub-wavelength building blocks. The focus here was to develop methods to produce building blocks for metamaterials from nanogold. Electron-beam lithography was used to define an aminosilane patterned chemical template in order to electrostatically self-assemble citrate-capped gold nanoparticles. Equilibrium self-assembly was achieved in 20 minutes by immersing chemical templates into gold nanoparticle solutions. The number of nanoparticles that self-assembled on an aminosilane dot was controlled by manipulating the diameters of the dots and nanoparticles. Adding salt to the nanoparticle solution enabled the nanoparticles to self-assemble in greater numbers on the same sized dot. However, the preparation of the nanoparticle solution containing salt was sensitive to spikes in the salt concentration which led to aggregation of the nanoparticles and non-specific deposition. Gold nanorods were also electrostatically self-assembled. Polyelectrolyte-coated gold nanorods were patterned with limited success. A polyelectrolyte chemical template also patterned gold nanorods, but the gold nanorods preferred to pattern on the edges of the pattern. Ligand-exchanged gold nanorods displayed the best self-assembly, but suffered from slow kinetics. Self-assembled gold nanoparticles were cross-linked with poly(diallyldimethylammonium chloride). The poly(diallyldimethylammonium chloride) allowed additional nanoparticles to pattern on top of the already patterned nanoparticles. Cross-linked nanoparticles were lifted-off of the substrate by sonication in a sodium hydroxide solution. The presence of van der Waals forces and/or amine bonding prevent the nanogold from lifting-off without sonication. A good-solvent evaporation process was used to self-assemble poly(styrene) coated gold nanoparticles into spherical microbead assemblies. The use of larger nanoparticles and larger poly(styrene) ligands resulted in larger and smaller assemblies, respectively. Stirring the solution resulted in a wider size distribution of microbead assemblies due to the stirring's shear forces. Two undeveloped methods to self-assemble nanogold were investigated. One method used block-copolymer thin films as chemical templates to direct the electrostatic self-assembly of nanogold. Another method used gold nanorods that are passivated with different ligands on different faces. The stability of an alkanethiol ligand in different acids and bases was investigated to determine which materials could be used to produce Janus nanorods.
Altered biodistribution of Ga-67 by intramuscular gold salts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moult, R.G.; Bekerman, C.
1989-11-01
The authors observed a deviation from the normal scintigraphic pattern of Ga-67 citrate biodistribution. An 8-year-old black girl with juvenile rheumatoid arthritis, who had been treated with intramuscular injections of gold salts, had a Ga-67 study as part of her workup. The study demonstrated no hepatic uptake, but showed elevated skeletal and renal activity. This characteristic biodistribution of Ga-67 may be due to inhibition of lysosomal enzymes by gold and/or to accumulation of gold in lysosomes. To study these possibilities, the authors reviewed the mechanisms of Ga-67 localization and gold metabolism. Alteration of the Ga-67 citrate scintigraphic pattern due tomore » earlier treatment with gold salts has not been reported previously.« less
NASA Astrophysics Data System (ADS)
Sbrana, F.; Parodi, M. T.; Ricci, D.; Di Zitti, E.
We present the results of a Scanning Probe Microscopy (SPM) investigation of ordered nanosized metallo-organic structures. Our aim is to investigate the organization and stability of thiolated gold nanoparticles in a compact pattern when deposited onto gold substrates functionalized with self-assembled monolayers made from two molecules that differ essentially in their terminating group: 1,4-benzenedimethanethiol and 4-methylbenzylthiol.
Mudedla, Sathish Kumar; Azhagiya Singam, Ettayapuram Ramaprasad; Balamurugan, Kanagasabai; Subramanian, Venkatesan
2015-11-11
The complexation of small interfering RNA (siRNA) with positively charged gold nanoclusters has been studied in the present investigation with the help of classical molecular dynamics and steered molecular dynamics simulations accompanied by free energy calculations. The results show that gold nanoclusters form a stable complex with siRNA. The wrapping of siRNA around the gold nanocluster depends on the size and charge on the surface of the gold cluster. The binding pattern of the gold nanocluster with siRNA is also influenced by the presence of another cluster. The interaction between the positively charged amines in the gold nanocluster and the negatively charged phosphate group in the siRNA is responsible for the formation of complexes. The binding free energy value increases with the size of the gold cluster and the number of positive charges present on the surface of the gold nanocluster. The results reveal that the binding energy of small gold nanoclusters increases in the presence of another gold nanocluster while the binding of large gold nanoclusters decreases due to the introduction of another gold nanocluster. Overall, the findings have clearly demonstrated the effect of size and charge of gold nanoclusters on their interaction pattern with siRNA.
NASA Astrophysics Data System (ADS)
Krupnik, D.; Khan, S.; Crockett, M.
2017-12-01
Understanding the origin, genesis, as well as depositional and structural mechanisms of gold mineralization as well as detailed mapping of gold-bearing mineral phases at centimeter scale can be useful for exploration. This work was conducted in the Goldstrike mining district near St. George, UT, a structurally complex region which contains Carlin-style disseminated gold deposits in permeable sedimentary layers near high-angle fault zones. These fault zones are likely a conduit for gold-bearing hydrothermal fluids, are silicified, and are frequently gold-bearing. Alteration patterns are complex, difficult to distinguish visually, composed of several phases, and vary significantly over centimeter to meter scale distances. This makes identifying and quantifying the extent of the target zones costly, time consuming, and discontinuous with traditional geochemical methods. A ground-based hyperspectral scanning system with sensors collecting data in the Visible Near Infrared (VNIR) and Short-Wave Infrared (SWIR) portions of the electromagnetic spectrum are utilized for close-range outcrop scanning. Scans were taken of vertical exposures of both gold-bearing and barren silicified rocks (jasperoids), with the intent to produce images which delineate and quantify the extent of each phase of alteration, in combination with discrete geochemical data. This ongoing study produces mineralogical maps of surface minerals at centimeter scale, with the intent of mapping original and alteration minerals. This efficient method of outcrop characterization increases our understanding of fluid flow and alteration of economic deposits.
Hybrid microcircuit metallization system for the SLL micro actuator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampy, R. E.; Knauss, G. L.; Komarek, E. E.
1976-03-01
A thin film technique developed for the SLL Micro Actuator in which both gold and aluminum can be incorporated on sapphire or fine grained alumina substrates in a two-level metallization system is described. Tungsten is used as a lateral transition metal permitting electrical contact between the gold and aluminum without the two metals coming in physical contact. Silicon dioxide serves as an insulator between the tungsten and aluminum for crossover purposes, and vias through the silicon dioxide permit interconnections where desired. Tungsten-gold is the first level conductor except at crossovers where tungsten only is used and aluminum is the secondmore » level conductor. Sheet resistances of the two levels can be as low as 0.01 ohm/square. Line widths and spaces as small as 0.025 mm can be attained. A second layer of silicon dioxide is deposited over the metallization and opened for all gold and aluminum bonding areas. The metallization system permits effective interconnection of a mixture of devices having both gold and aluminum terminations without creating undesirable gold-aluminum interfaces. Processing temperatures up to 400/sup 0/C can be tolerated for short times without effect on bondability, conductor, and insulator characteristics, thus permitting silicon-gold eutectic die attachment, component soldering, and higher temperatures during gold lead bonding. Tests conducted on special test pattern circuits indicate good stability over the temperature range -55 to +150/sup 0/C. Aging studies indicate no degradation in characteristics in tests of 500 h duration at 150/sup 0/C.« less
Electrically Conductive Polyimide Films Containing Gold Surface
NASA Technical Reports Server (NTRS)
Caplan, Maggie L.; Stoakley, Diane M.; St. Clair, Anne K.
1994-01-01
Polyimide films exhibiting high thermo-oxidative stability and including electrically conductive surface layers containing gold made by casting process. Many variations of basic process conditions, ingredients, and sequence of operations possible, and not all resulting versions of process yield electrically conductive films. Gold-containing layer formed on film surface during cure. These metallic gold-containing polyimides used in film and coating applications requiring electrical conductivity, high reflectivity, exceptional thermal stability, and/or mechanical integrity. They also find commercial potential in areas ranging from thin films for satellite antennas to decorative coatings and packaging.
Thermal conductance of gold plated metallic contacts at liquid helium temperatures
NASA Technical Reports Server (NTRS)
Kittel, Peter; Spivak, Alan L.; Salerno, Louis J.
1992-01-01
The thermal conductance of gold plated OFHC copper, 6061-T6 aluminum, free-machining brass, and 304 stainless steel contacts has been measured over the temperature range of 1.6 to 4.2 K, with applied forces from 22 N to 670 N. The contact surfaces were prepared with a 0.8 micron lapped finish prior to gold coating. It was found that for all materials, except stainless steel, the thermal conductance was significantly improved as the result of gold coating the contact surfaces.
Orthogonal chemical functionalization of patterned gold on silica surfaces
Léonard, Didier; Le Mogne, Thierry; Zuttion, Francesca; Chevalier, Céline; Phaner-Goutorbe, Magali; Souteyrand, Éliane
2015-01-01
Summary Single-step orthogonal chemical functionalization procedures have been developed with patterned gold on silica surfaces. Different combinations of a silane and a thiol were simultaneously deposited on a gold/silica heterogeneous substrate. The orthogonality of the functionalization (i.e., selective grafting of the thiol on the gold areas and the silane on the silica) was demonstrated by X-ray photoelectron spectroscopy (XPS) as well as time-of-flight secondary ion mass spectrometry (ToF–SIMS) mapping. The orthogonal functionalization was used to immobilize proteins onto gold nanostructures on a silica substrate, as demonstrated by atomic force microscopy (AFM). These results are especially promising in the development of future biosensors where the selective anchoring of target molecules onto nanostructured transducers (e.g., nanoplasmonic biosensors) is a major challenge. PMID:26734519
NASA Astrophysics Data System (ADS)
Jiang, Zhuoling; Wang, Hao; Sanvito, Stefano; Hou, Shimin
2016-03-01
The evolution of the atomic structure and the vibrational and electronic transport properties of gold atomic junctions incorporating molecular and atomic hydrogen upon elongation have been investigated with the nonequilibrium Green's function formalism combined with density functional theory. Our calculations show that for the case of gold junctions doped with a single H2 molecule the low-bias conductance drops rapidly with the electrodes' separation, while it remains almost constant if a single H atom replaces the molecule. In contrast, when one considers two H atoms adsorbed on a gold monatomic chain forming an Au-H-Au-H-Au double-bridge structure, the low-bias conductance increases first and then shows a plateau upon stretching the junction, in perfect agreement with experiments on gold nanocontacts in hydrogen environment. Furthermore, also the distribution of the calculated vibrational energies of the two H atoms is consistent with the experimental result in the low-conductance region, demonstrating clear evidence that hydrogen molecules can dissociate on stretched gold monatomic chains. These findings are helpful to improve our understanding of the structure-property relation of gold nanocontacts and also provide a new prospect for gold nanowires being used as chemical sensors and catalysts.
Gold-Decorated Supraspheres of Block Copolymer Micelles
NASA Astrophysics Data System (ADS)
Kim, M. P.; Kang, D. J.; Kannon, A. G.; Jung, D.-W.; Yi, G. R.; Kim, B. J.
2012-02-01
Gold-decorated supraspheres displaying various surface morphologies were prepared by infiltration of gold precursor into polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) supraspheres under acidic condition. The supraspheres were fabricated by emulsifying PS-b-P2VP polymer solution into surfactant solution. Selective swelling of P2VP in the suprasphere by gold precursor under acidic condition resulted in the formation of gold-decorated supraspheres with various surface structures. As evidenced by TEM and SEM images, dot pattern was formed in the case of smaller supraspheres than 800 nm; whereas fingerprint-like pattern was observed in larger supraspheres than 800 nm. Gold nanoparticles were located inside P2VP domains near the surface of prepared supraspheres as confirmed by TEM. The optical property of the supraspheres was characterized using UV-vis absorption spectroscopy and the maximum absorption peak at around 580 nm was observed, which means that gold nanoparticles densely packed into P2VP domain on the suprasphere. Our approach to prepare gold-decorated supraspheres can be extended to other metallic particles such as iron oxide or platinum nanoparticles, and those precursors can be also selectively incorporated into the P2VP domain.
Single Molecule and Nanoparticle Imaging in Biophysical, Surface, and Photocatalysis Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Ji Won
2013-01-01
A differential interference contrast (DIC) polarization anisotropy is reported that was successfully used for rotational tracking of gold nanorods attached onto a kinesin-driven microtubule. A dual-wavelength detection of single gold nanorods rotating on a live cell membrane is described. Both transverse and longitudinal surface plasmon resonance (SPR) modes were used for tracking the rotational motions during a fast dynamic process under a DIC microscope. A novel method is presented to determine the full three-dimensional (3D) orientation of single plasmonic gold nanorods rotating on live cell membranes by combining DIC polarization anisotropy with an image pattern recognition technique. Polarization- and wavelength-sensitivemore » DIC microscopy imaging of 2- m long gold nanowires as optical probes in biological studies is reported. A new method is demonstrated to track 3D orientation of single gold nanorods supported on a gold film without angular degeneracy. The idea is to use the interaction (or coupling) of gold nanorods with gold film, yielding characteristic scattering patterns such as a doughnut shape. Imaging of photocatalytic activity, polarity and selectivity on single Au-CdS hybrid nanocatalysts using a high-resolution superlocalization fluorescence imaging technique is described.« less
Simple Fabrication of Gold Nanobelts and Patterns
Zhang, Renyun; Hummelgård, Magnus; Olin, Håkan
2012-01-01
Gold nanobelts are of interest in several areas; however, there are only few methods available to produce these belts. We report here on a simple evaporation induced self-assembly (EISA) method to produce porous gold nanobelts with dimensions that scale across nanometer (thickness ∼80 nm) and micrometer (width ∼20 µm), to decimeter (length ∼0.15 m). The gold nanobelts are well packed on the beaker wall and can be easily made to float on the surface of the solution for depositing onto other substrates. Microscopy showed that gold nanobelts had a different structure on the two sides of the belt; the density of gold nanowires on one side was greater than on the other side. Electrical measurements showed that these nanobelts were sensitive to compressive or tensile forces, indicating a potential use as a strain sensor. The patterned nanobelts were further used as a template to grow ZnO nanowires for potential use in applications such as piezo-electronics. PMID:22291962
Conductance bistability of gold nanowires at room temperature
NASA Astrophysics Data System (ADS)
Kiguchi, Manabu; Konishi, Tatsuya; Murakoshi, Kei
2006-03-01
Quantized conductance behavior of gold nanowires was studied under electrochemical potential control. We fabricated 1-nm -long monoatomic wires in solution at room temperature. Electrochemical potential significantly affected the stability of the monoatomic wire and fractional conductance peak occurrence in the conductance histogram. We revealed that the hydrogen adsorption on gold monoatomic wires was a decisive factor of the fractional peak, which was originated from the dynamic structural transition between two bistable states of the monoatomic wire showing the unit and the fractional values of the conductance. We could tune the stability of these bistable states to make the fractional conductance state preferable.
Inelastic fingerprints of hydrogen contamination in atomic gold wire systems
NASA Astrophysics Data System (ADS)
Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads
2007-03-01
We present series of first-principles calculations for both pure and hydrogen contaminated gold wire systems in order to investigate how such impurities can be detected. We show how a single H atom or a single H2 molecule in an atomic gold wire will affect forces and Au-Au atom distances under elongation. We further determine the corresponding evolution of the low-bias conductance as well as the inelastic contributions from vibrations. Our results indicate that the conductance of gold wires is only slightly reduced from the conductance quantum G0 = 2e2/h by the presence of a single hydrogen impurity, hence making it difficult to use the conductance itself to distinguish between various configurations. On the other hand, our calculations of the inelastic signals predict significant differences between pure and hydrogen contaminated wires, and, importantly, between atomic and molecular forms of the impurity. A detailed characterization of gold wires with a hydrogen impurity should therefore be possible from the strain dependence of the inelastic signals in the conductance.
Preparation of conductive gold nanowires in confined environment of gold-filled polymer nanotubes.
Mitschang, Fabian; Langner, Markus; Vieker, Henning; Beyer, André; Greiner, Andreas
2015-02-01
Continuous conductive gold nanofibers are prepared via the "tubes by fiber templates" process. First, poly(l-lactide) (PLLA)-stabilized gold nanoparticles (AuNP) with over 60 wt% gold are synthesized and characterized, including gel permeation chromatography coupled with a diode array detector. Subsequent electrospinning of these AuNP with template PLLA results in composite nanofibers featuring a high gold content of 57 wt%. Highly homogeneous gold nanowires are obtained after chemical vapor deposition of 345 nm of poly(p-xylylene) (PPX) onto the composite fibers followed by pyrolysis of the polymers at 1050 °C. The corresponding heat-induced transition from continuous gold-loaded polymer tubes to smooth gold nanofibers is studied by transmission electron microscopy and helium ion microscopy using both secondary electrons and Rutherford backscattered ions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Feng, Jie; Athanassiou, Athanassia; Bonaccorso, Francesco; Fragouli, Despina
2018-06-01
The improvement of the electrical conductivity of polymers by incorporating graphene has been intensively studied in recent years. To further boost the electrical conductivity, blending third-party additives into the polymer/graphene systems has been demonstrated as a viable strategy. Herein, we propose a simple route to increase the electrical conductivity of poly(methyl methacrylate) (PMMA)/graphene nanoplatelet (GnP) composites, by the in situ synthesis of gold nanoparticles directly into the solid film. In particular, PMMA, GnPs and a gold precursor are solution blended to form the composite films. The subsequent heat-induced formation of gold nanoparticles directly in the solid state film, cause the significant decrease of the percolation threshold of GnPs loading, from 3% to 1% by weight in the composite. This is attributed to the preferential formation of the gold nanoparticles onto the GnPs, with synergistic effects beneficial for the improvement of the electrical conductivity. The formation procedure of the gold nanoparticles, and their arrangement into the composite matrix are studied. We demonstrate that following this straightforward process it is possible to form nanocomposites able to conduct efficiently electric current even at low graphene loadings preserving at the same time the mechanical properties of the polymer matrix.
Torres-Dowdall, Julián; Golcher-Benavides, Jimena; Machado-Schiaffino, Gonzalo; Meyer, Axel
2017-09-01
Genetically based stable colour polymorphisms provide a unique opportunity to study the evolutionary processes that preserve genetic variability in the wild. Different mechanisms are proposed to promote the stability of polymorphisms, but only few empirical examples have been documented, resulting in an incomplete understanding of these mechanisms. A remarkable genetically determined stable colour polymorphism is found in the Nicaraguan Midas cichlid species complex (Amphilophus cf. citrinellus). All Midas cichlids start their life with a dark-grey coloration (dark morph), but individuals carrying the dominant "gold" allele (c. 10%) lose their melanophores later in life, revealing the underlying orange coloration (gold morph). How this polymorphism is maintained remains unclear. Two main hypotheses have been proposed, both suggesting differential predation upon colour morphs as the proximate mechanism. One predicts that the conspicuous gold morph is more likely to be preyed upon, but this disadvantage is balanced by their competitive dominance over the dark morph. The second hypothesis suggests a rare morph advantage where the rarer gold morph experiences less predation. Empirical evidence for either of these mechanisms is still circumstantial and inconclusive. We conducted two field experiments in a Nicaraguan crater lake using wax models simulating both morphs to determine predation pressure upon Midas cichlid colour morphs. First, we tested the interaction of coloration and depth on attack rate. Second, we tested the interaction of fish size and coloration. We contrasted the pattern of attacks from these experiments to the predicted predation patterns from the hypotheses proposed to explain the colour polymorphism's stability. Large models imitating colour morphs were attacked at similar rates irrespectively of their position in the water column. Yet, attacks upon small models resembling juveniles were directed mainly towards dark models. This resulted in a significant size-by-colour interaction. We suggest that gold Midas cichlids experience a rare morph advantage as juveniles when individuals of this morph are extremely uncommon. But this effect is reduced or disappears among adults, where gold individuals are relatively more common. Thus, the interaction of rare morph advantage and conspicuousness, rather than either of those factors alone, is a likely mechanism resulting in the stability of the colour polymorphism in Midas cichlids. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Menezes, Ana M; Wehrmeister, Fernando C; Perez-Padilla, Rogelio; Viana, Karynna P; Soares, Claudia; Müllerova, Hana; Valdivia, Gonzalo; Jardim, José R; Montes de Oca, Maria
2017-01-01
The Global Initiative for Chronic Obstructive Lung Disease (GOLD) report provides a framework for classifying COPD reflecting the impacts of disease on patients and for targeting treatment recommendations. The GOLD 2017 introduced a new classification with 16 subgroups based on a composite of spirometry and symptoms/exacerbations. Data from the population-based PLATINO study, collected at baseline and at follow-up, in three sites in Latin America were analyzed to compare the following: 1) the distribution of COPD patients according to GOLD 2007, 2013, and 2017; 2) the stability of the 2007 and 2013 classifications; and 3) the mortality rate over time stratified by GOLD 2007, 2013, and 2017. Of the 524 COPD patients evaluated, most of them were classified as Grade I or II (GOLD 2007) and Group A or B (GOLD 2013), with ≈70% of those classified as Group A in GOLD 2013 also classified as Grade I in GOLD 2007 and the highest percentage (41%) in Group D (2013) classified as Grade III (2007). According to GOLD 2017, among patients with Grade I airflow limitation, 69% of them were categorized into Group A, whereas Grade IV patients were more evenly distributed among Groups A-D. Most of the patients classified by GOLD 2007 remained in the same airflow limitation group at the follow-up; a greater temporal variability was observed with GOLD 2013 classification. Incidence-mortality rate in patients classified by GOLD 2007 was positively associated with increasing severity of airflow obstruction; for GOLD 2013 and GOLD 2017 (Groups A-D), highest mortality rates were observed in Groups C and D. No clear pattern was observed for mortality across the GOLD 2017 subgroups. The PLATINO study data suggest that GOLD 2007 classification shows more stability over time compared with GOLD 2013. No clear patterns with respect to the distribution of patients or incidence-mortality rates were observed according to GOLD 2013/2017 classification.
Large area nano-patterning /writing on gold substrate using dip - pen nanolithography (DPN)
NASA Astrophysics Data System (ADS)
Saini, Sudhir Kumar; Vishwakarma, Amit; Agarwal, Pankaj B.; Pesala, Bala; Agarwal, Ajay
2014-10-01
Dip Pen Nanolithography (DPN) is utilized to pattern large area (50μmX50μm) gold substrate for application in fabricating Nano-gratings. For Nano-writing 16-MHA ink coated AFM tip was prepared using double dipping procedure. Gold substrate is fabricated on thermally grown SiO2 substrate by depositing ˜5 nm titanium layer followed by ˜30nm gold using DC pulse sputtering. The gratings were designed using period of 800nm and 25% duty cycle. Acquired AFM images indicate that as the AFM tip proceeds for nano-writing, line width decreases from 190nm to 100nm. This occurs probably due to depreciation of 16-MHA molecules in AFM tip as writing proceeds.
NASA Astrophysics Data System (ADS)
Pan, Zheng Wei; Dai, Sheng; Lowndes, Douglas H.
2005-04-01
Straight single-crystalline Ge nanowires with a uniform diameter distribution of 50-80 nm and lengths up to tens of micrometers were grown in a high yield on sol-gel prepared gold/silica substrates by using Ge powder as the Ge source. Detailed electron microscopy analyses show that the nanowires grow through a vapor-liquid-solid growth mechanism with gold nanoparticles located at the nanowire tips. By using transmission electron microscope grids as the shadow mask, the sol-gel technique can be readily adapted to prepare patterned film-like gold/silica substrates, so that regular micropatterns of Ge nanowires were obtained, which could facilitate the integration of Ge nanowires for characterization and devices.
Gkigkitzis, Ioannis; Austerlitz, Carlos; Haranas, Ioannis; Campos, Diana
2015-01-01
The aim of this report is to propose a new methodology to treat prostate cancer with macro-rod-shaped gold seeds irradiated with ultrasound and develop a new computational method for temperature and thermal dose control of hyperthermia therapy induced by the proposed procedure. A computer code representation, based on the bio-heat diffusion equation, was developed to calculate the heat deposition and temperature elevation patterns in a gold rod and in the tissue surrounding it as a result of different therapy durations and ultrasound power simulations. The numerical results computed provide quantitative information on the interaction between high-energy ultrasound, gold seeds and biological tissues and can replicate the pattern observed in experimental studies. The effect of differences in shapes and sizes of gold rod targets irradiated with ultrasound is calculated and the heat enhancement and the bio-heat transfer in tissue are analyzed.
NASA Astrophysics Data System (ADS)
Sinha, Tanur; Ahmaruzzaman, M.
2015-05-01
Herein, we describe a simple, green and template free method for the production of rice shaped gold nanostructures using an aqueous extract of the egg shells of Anas platyrhynchos. The synthesized nanoparticles were characterized by UV-visible, transmission electron microscopy (TEM), selected area electron diffraction pattern (SAED) and FT-IR studies. The UV-visible spectrum of the synthesized gold nanostructures showed a transverse mode surface plasmon resonance peaks (SPR) at around 540 nm and a longitudinal mode at 880 nm. The TEM and SAED pattern confirmed the morphology, size and crystallographic structure of the synthesized gold nanorice. The synthesized gold nanorice was utilized for the removal of a toxic Eosin Y dye by photodegradation. It was observed that the dye was degraded completely within 1 h and the percentage efficiency was found to be 96.1%.
Maziz, Ali; Plesse, Cédric; Soyer, Caroline; Cattan, Eric; Vidal, Frédéric
2016-01-27
Recent progress in the field of microsystems on flexible substrates raises the need for alternatives to the stiffness of classical actuation technologies. This paper reports a top-down process to microfabricate soft conducting polymer actuators on substrates on which they ultimately operate. The bending microactuators were fabricated by sequentially stacking layers using a layer polymerization by layer polymerization of conducting polymer electrodes and a solid polymer electrolyte. Standalone microbeams thinner than 10 μm were fabricated on SU-8 substrates associated with a bottom gold electrical contact. The operation of microactuators was demonstrated in air and at low voltage (±4 V).
Yu, Qing; Huang, Hongwen; Peng, Xinsheng; Ye, Zhizhen
2011-09-01
A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 10(5) for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm(-1) of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films.
NASA Astrophysics Data System (ADS)
Pasquale, M. A.; Nieto, F. J. Rodríguez; Arvia, A. J.
The electrochemical formation and reduction of O-layers on gold (111) films in 1 m sulfuric acid under different potentiodynamic routines are investigated utilizing in situ scanning tunneling microscopy. The surface dynamics is interpreted considering the anodic and cathodic reaction pathways recently proposed complemented with concurrent relaxation phenomena occurring after gold (111) lattice mild disruption (one gold atom deep) and moderate disruption (several atoms deep). The dynamics of both oxidized and reduced gold topographies depends on the potentiodynamic routine utilized to form OH/O surface species. The topography resulting from a mild oxidative disruption is dominated by quasi-2D holes and hillocks of the order of 5 nm, involving about 500-600 gold atoms each, and their coalescence. A cooperative turnover process at the O-layer, in which the anion ad-layer and interfacial water play a key role, determines the oxidized surface topography. The reduction of these O-layers results in gold clusters, their features depending on the applied potential routine. A moderate oxidative disruption produces a surface topography of hillocks and holes several gold atoms high and deep, respectively. The subsequent reduction leads to a spinodal gold pattern. Concurrent coalescence appears to be the result of an Ostwald ripening that involves the surface diffusion of both gold atoms and clusters. These processes produce an increase in surface roughness and an incipient gold faceting. The dynamics of different topographies can be qualitatively explained employing the arguments from colloidal science theory. For 1.1 V ≤ E ≅ Epzc weak electrostatic repulsions favor gold atom/cluster coalescence, whereas for E < Epzc the attenuated electrostatic repulsions among gold surfaces stabilize small clusters over the substrate producing string-like patterns.
NASA Astrophysics Data System (ADS)
Yu, Qing; Huang, Hongwen; Peng, Xinsheng; Ye, Zhizhen
2011-09-01
A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 105 for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm-1 of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films.A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 105 for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm-1 of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films. Electronic supplementary information (ESI) available: Figure S1, the SEM images and photograph of the films prepared from 10 ml, 20 nm gold nanoparticles. Scheme S1, the vibrations of 1534 and 1594 cm-1 of R6G. See DOI: 10.1039/c1nr10578g
NASA Astrophysics Data System (ADS)
Sinthiptharakoon, K.; Sapcharoenkun, C.; Nuntawong, N.; Duong, B.; Wutikhun, T.; Treetong, A.; Meemuk, B.; Kasamechonchung, P.; Klamchuen, A.
2018-05-01
The semicontinuous gold film, enabling various electronic applications including development of surface-enhanced Raman scattering (SERS) substrate, is investigated using conductive atomic force microscopy (CAFM) and Kelvin probe force microscopy (KPFM) to reveal and investigate local electronic characteristics potentially associated with SERS generation of the film material. Although the gold film fully covers the underlying silicon surface, CAFM results reveal that local conductivity of the film is not continuous with insulating nanoislands appearing throughout the surface due to incomplete film percolation. Our analysis also suggests the two-step photo-induced charge transfer (CT) play the dominant role in the enhancement of SERS intensity with strong contribution from free electrons of the silicon support. Silicon-to-gold charge transport is illustrated by KPFM results showing that Fermi level of the gold film is slightly inhomogeneous and far below the silicon conduction band. We propose that inhomogeneity of the film workfunction affecting chemical charge transfer between gold and Raman probe molecule is associated with the SERS intensity varying across the surface. These findings provide deeper understanding of charge transfer mechanism for SERS which can help in design and development of the semicontinuous gold film-based SERS substrate and other electronic applications.
Highly conductive and pure gold nanostructures grown by electron beam induced deposition
Shawrav, Mostafa M.; Taus, Philipp; Wanzenboeck, Heinz D.; Schinnerl, M.; Stöger-Pollach, M.; Schwarz, S.; Steiger-Thirsfeld, A.; Bertagnolli, Emmerich
2016-01-01
This work introduces an additive direct-write nanofabrication technique for producing extremely conductive gold nanostructures from a commercial metalorganic precursor. Gold content of 91 atomic % (at. %) was achieved by using water as an oxidative enhancer during direct-write deposition. A model was developed based on the deposition rate and the chemical composition, and it explains the surface processes that lead to the increases in gold purity and deposition yield. Co-injection of an oxidative enhancer enabled Focused Electron Beam Induced Deposition (FEBID)—a maskless, resistless deposition method for three dimensional (3D) nanostructures—to directly yield pure gold in a single process step, without post-deposition purification. Gold nanowires displayed resistivity down to 8.8 μΩ cm. This is the highest conductivity achieved so far from FEBID and it opens the possibility of applications in nanoelectronics, such as direct-write contacts to nanomaterials. The increased gold deposition yield and the ultralow carbon level will facilitate future applications such as the fabrication of 3D nanostructures in nanoplasmonics and biomolecule immobilization. PMID:27666531
Self-assembled nanogaps for molecular electronics.
Tang, Qingxin; Tong, Yanhong; Jain, Titoo; Hassenkam, Tue; Wan, Qing; Moth-Poulsen, Kasper; Bjørnholm, Thomas
2009-06-17
A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO2:Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during self-assembly and the gap length was determined by the molecule length. The gold nanorods and gold nanoparticles, respectively covalently bonded at the two ends of the molecule, had very small dimensions, e.g. a width of approximately 20 nm, and hence were expected to minimize the screening effect. The ultra-long conducting SnO2:Sb nanowires provided the bridge to connect one of the electrodes of the molecular device (gold nanoparticle) to the external circuit. The tip of the atomic force microscope (AFM) was contacted onto the other electrode (gold nanorod) for the electrical measurement of the OPV device. The conductance measurement confirmed that the self-assembly of the molecules and the subsequent self-assembly of the gold nanorods was a feasible method for the fabrication of the nanogap of the molecular devices.
Effect of ultrasonication in synthesis of gold nano fluid for thermal applications
NASA Astrophysics Data System (ADS)
Nath, G.; Giri, R.
2018-02-01
Ultrasonically synthesized nanofluids are efficient coolant and heat exchanger material has demonstrated its potential in various fields and thermal engineering. The computation of different acoustical parameter using the ultrasonic velocity data of gold nanofluids are taken in estimation of thermal conductivity. The computational and experimental measured values of thermal conductivity are well agrees. The results execute ultrasonically synthesized gold nanofluids is an economic and efficient technology for explaining the increase of thermal conductivity of nanofluids in suitable optimum conditions.
Enhanced Mechanical Stability of Gold Nanotips through Carbon Nanocone Encapsulation
Cano-Marquez, Abraham G.; Schmidt, Wesller G.; Ribeiro-Soares, Jenaina; Gustavo Cançado, Luiz; Rodrigues, Wagner N.; Santos, Adelina P.; Furtado, Clascidia A.; Autreto, Pedro A.S.; Paupitz, Ricardo; Galvão, Douglas S.; Jorio, Ado
2015-01-01
Gold is a noble metal that, in comparison with silver and copper, has the advantage of corrosion resistance. Despite its high conductivity, chemical stability and biocompatibility, gold exhibits high plasticity, which limits its applications in some nanodevices. Here, we report an experimental and theoretical study on how to attain enhanced mechanical stability of gold nanotips. The gold tips were fabricated by chemical etching and further encapsulated with carbon nanocones via nanomanipulation. Atomic force microscopy experiments were carried out to test their mechanical stability. Molecular dynamics simulations show that the encapsulated nanocone changes the strain release mechanisms at the nanoscale by blocking gold atomic sliding, redistributing the strain along the whole nanostructure. The carbon nanocones are conducting and can induce magnetism, thus opening new avenues on the exploitation of transport, mechanical and magnetic properties of gold covered by sp2 carbon at the nanoscale. PMID:26083864
Park, Jong Hyuk; Nagpal, Prashant; McPeak, Kevin M; Lindquist, Nathan C; Oh, Sang-Hyun; Norris, David J
2013-10-09
The template-stripping method can yield smooth patterned films without surface contamination. However, the process is typically limited to coinage metals such as silver and gold because other materials cannot be readily stripped from silicon templates due to strong adhesion. Herein, we report a more general template-stripping method that is applicable to a larger variety of materials, including refractory metals, semiconductors, and oxides. To address the adhesion issue, we introduce a thin gold layer between the template and the deposited materials. After peeling off the combined film from the template, the gold layer can be selectively removed via wet etching to reveal a smooth patterned structure of the desired material. Further, we demonstrate template-stripped multilayer structures that have potential applications for photovoltaics and solar absorbers. An entire patterned device, which can include a transparent conductor, semiconductor absorber, and back contact, can be fabricated. Since our approach can also produce many copies of the patterned structure with high fidelity by reusing the template, a low-cost and high-throughput process in micro- and nanofabrication is provided that is useful for electronics, plasmonics, and nanophotonics.
NASA Astrophysics Data System (ADS)
Kornbluth, Y. S.; Mathews, R. H.; Parameswaran, L.; Racz, L. M.; Velásquez-García, L. F.
2018-04-01
We report the design, modelling, and proof-of-concept demonstration of a continuously fed, atmospheric-pressure microplasma metal sputterer that is capable of printing conductive lines narrower than the width of the target without the need for post-processing or lithographic patterning. Ion drag-induced focusing is harnessed to print narrow lines; the focusing mechanism is modelled via COMSOL Multiphysics simulations and validated with experiments. A microplasma sputter head with gold target is constructed and used to deposit imprints with minimum feature sizes as narrow as 9 µm, roughness as small as 55 nm, and electrical resistivity as low as 1.1 µΩ · m.
Gold particle formation via photoenhanced deposition on lithium niobate
NASA Astrophysics Data System (ADS)
Zaniewski, A. M.; Meeks, V.; Nemanich, R. J.
2017-05-01
In this work, we report on a technique to reduce gold chloride into sub-micron particles and nanoparticles. We use photoelectron transfer from periodically polarized lithium niobate (PPLN) illuminated with above band gap light to drive the surface reactions required for the reduction and particle formation. The particle sizes and distributions on the PPLN surface are sensitive to the solution concentration, with inhibited nucleation and large particles (>150 nm) for both low (2E-8M to 9E-7M) and high (1E-5M to 1E-3M) concentrations of gold chloride. At midrange values of the concentration, nucleation is more frequent, resulting in smaller sized particles (<150 nm). We compare the deposition process to that for silver, which has been previously studied. We find that the reduction of gold chloride into nanoparticles is inhibited compared to silver ion reduction, due to the multi-step reaction required for gold particle formation. This also has consequences for the resulting deposition patterns: while silver deposits into nanowires along boundaries between areas with opposite signed polarizations, such patterning of the deposition is not observed for gold, for a wide range of concentrations studied (2E-8 to 1E-3M).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, L. W.; Lin, L.; Huang, S. L.
We report ultrafast relativistic electron diffraction operating at the megahertz repetition rate where the electron beam is produced in a superconducting radio-frequency (rf) photoinjector. We show that the beam quality is sufficiently high to provide clear diffraction patterns from gold and aluminium samples. With the number of electrons, several orders of magnitude higher than that from a normal conducting photocathode rf gun, such high repetition rate ultrafast MeV electron diffraction may open up many new opportunities in ultrafast science.
Boosting drug named entity recognition using an aggregate classifier.
Korkontzelos, Ioannis; Piliouras, Dimitrios; Dowsey, Andrew W; Ananiadou, Sophia
2015-10-01
Drug named entity recognition (NER) is a critical step for complex biomedical NLP tasks such as the extraction of pharmacogenomic, pharmacodynamic and pharmacokinetic parameters. Large quantities of high quality training data are almost always a prerequisite for employing supervised machine-learning techniques to achieve high classification performance. However, the human labour needed to produce and maintain such resources is a significant limitation. In this study, we improve the performance of drug NER without relying exclusively on manual annotations. We perform drug NER using either a small gold-standard corpus (120 abstracts) or no corpus at all. In our approach, we develop a voting system to combine a number of heterogeneous models, based on dictionary knowledge, gold-standard corpora and silver annotations, to enhance performance. To improve recall, we employed genetic programming to evolve 11 regular-expression patterns that capture common drug suffixes and used them as an extra means for recognition. Our approach uses a dictionary of drug names, i.e. DrugBank, a small manually annotated corpus, i.e. the pharmacokinetic corpus, and a part of the UKPMC database, as raw biomedical text. Gold-standard and silver annotated data are used to train maximum entropy and multinomial logistic regression classifiers. Aggregating drug NER methods, based on gold-standard annotations, dictionary knowledge and patterns, improved the performance on models trained on gold-standard annotations, only, achieving a maximum F-score of 95%. In addition, combining models trained on silver annotations, dictionary knowledge and patterns are shown to achieve comparable performance to models trained exclusively on gold-standard data. The main reason appears to be the morphological similarities shared among drug names. We conclude that gold-standard data are not a hard requirement for drug NER. Combining heterogeneous models build on dictionary knowledge can achieve similar or comparable classification performance with that of the best performing model trained on gold-standard annotations. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Shi, Chaohong; Zhu, Nengwu; Kang, Naixin; Wu, Pingxiao; Zhang, Xiaoping; Zhang, Yanhong
2017-09-01
Biorecovery is emerging as a promising process to retrieve gold from secondary resources. The present study aimed to explore the uptake pattern of Pycnoporus sanguineus biomass for gold, identify the effective functional groups in gold recovery process, and thus further intensify the process via microbial surface modification. Results showed that P. sanguineus biomass could effectively recover gold with the formation of highly crystal AuNPs without any exogeneous electron donor. Under the conditions of various initial gold concentrations (1.0, 2.0, and 3.0 mM), biomass dosage of 2.0 g/L, solution pH value of 4.0, and incubation temperature of 30°C, the uptake equilibrium established after 4, 8, and 12 h, respectively. The uptake process could be well described by pseudo-second order kinetics model (R 2 = 0.9988) and Langmuir isotherm model (R 2 = 0.9958). The maximum uptake capacity of P. sanguineus reached as high as 358.69 mg/g. Further analysis indicated that amino, carboxyl and hydroxyl groups positively contributed to the uptake process. Among them, amino group significantly favored the uptake of gold during recovery process. When P. sanguineus biomass was modified by introduction of amino group, the gold uptake process was successfully intensified by shortening the uptake period and enhancing the uptake capacity. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1314-1322, 2017. © 2017 American Institute of Chemical Engineers.
Electron transport in stretched monoatomic gold wires.
Grigoriev, A; Skorodumova, N V; Simak, S I; Wendin, G; Johansson, B; Ahuja, R
2006-12-08
The conductance of monoatomic gold wires containing 3-7 gold atoms has been obtained from ab initio calculations. The transmission is found to vary significantly depending on the wire stretching and the number of incorporated atoms. Such oscillations are determined by the electronic structure of the one-dimensional (1D) part of the wire between the contacts. Our results indicate that the conductivity of 1D wires can be suppressed without breaking the contact.
Absorber Materials for Transition-Edge Sensor X-ray Microcalorimeters
NASA Technical Reports Server (NTRS)
Brown, Ari-David; Bandler, Simon; Brekosky, Regis; Chervenak, James; Figueroa-Feliciano, Enectali; Finkbeiner, Fred; Sadleir, Jack; Iyomoto, Naoko; Kelley, Richard; Kilbourne, Caroline;
2007-01-01
Arrays of superconducting transition-edge sensors (TES) can provide high spatial and energy resolution necessary for x-ray astronomy. High quantum efficiency and uniformity of response can be achieved with a suitable absorber material, in which absorber x-ray stopping power, heat capacity, and thermal conductivity are relevant parameters. Here we compare these parameters for bismuth and gold. We have fabricated electroplated gold, electroplated gold/electroplated bismuth, and evaporated gold/evaporated bismuth 8x8 absorber arrays and find that a correlation exists between the residual resistance ratio (RRR) and thin film microstructure. This finding indicates that we can tailor absorber material conductivity via microstructure alteration, so as to permit absorber thermalization on timescales suitable for high energy resolution x-ray microcalorimetry. We show that by incorporating absorbers possessing large grain size, including electroplated gold and electroplated gold/electroplated bismuth, into our current Mo/Au TES, devices with tunable heat capacity and energy resolution of 2.3 eV (gold) and 2.1 eV (gold/bismuth) FWHM at 6 keV have been fabricated.
NASA Astrophysics Data System (ADS)
Eberle, Detlef; Bastian, Dennis; Ebel, Norbert; Schwarz, Rüdiger
2017-01-01
During the past 150 years, most of the modern day creeks were the target of miners roaming the Cariboo Mountains, British Columbia, in the search for placer gold. In these days, the probability to locate new placer gold occurrence in recent river beds is therefore substantially reduced. New, promising exploration targets appear to be channels mostly buried under alluvial cover sediments. It is airborne geophysical methods that can reveal hidden channels fast and cost-effectively as these penetrate the sub-surface contactless and reflect physical properties of the sub-surface, such as electric conductivity and magnetic susceptibility or magnetization, respectively. We applied the airborne geophysical exploration approach on four exploration areas in the Cariboo gold district. Helicopter-borne transient electromagnetic (TEM) and magnetic data were flown using the SkyTEM system. To our knowledge, it has been innovatory to apply high resolution, high density airborne geophysics in the search for placer gold deposited in pre-Holocene sedimentary channel fills of the Cariboo Mountains. A particular effort of our studies aimed at the Mary creek claims which straddle the boundary of the Quesnel and Kootenay terranes of the Canadian Cordillera and include the dormant Toop mine situated in the Mary creek area known for many finds of coarse nugget from the pre-glacial buried Toop channel. Our objective was to locate the southbound extension of the channel buried in Pleistocene sediments of the Toop plateau. Careful analysis of the airborne geophysical data sets provided indications from both the TEM and magnetic data sets favouring the existence of a hidden channel beneath the plateau. The evaluation of seven reverse circulation (RC) drill holes sunk into a promising elongated narrow conductor beneath the plateau was not conclusive as not clearly showing the sedimentary pattern of a channel with gravels typically at its bottom. Only electric conductivity-depth sections compiled from the airborne TEM and 2D direct current (DC) multi-electrode resistivity ground survey data enabled the interpretation of the airborne TEM and magnetic responses recorded over the Toop plateau. The sections suggest that the electric conductor is generated by an upwarp of a conductive layer extending at the bottom of the Pleistocene sediments. Another feature separated by ≤ 100 m from the conductor line is reflected by low electric conductivity, but is rarely prominent through its neat magnetic signature. Fine accumulations of black minerals, i.e. magnetite grains, in sediments of the area are frequently met when panning material from the creeks. We therefore interpret this low conductivity, magnetic feature as expression of a gravel lense hosting accumulations of magnetite grains and possibly indicating the southbound extension of the Toop channel beneath the plateau. Careful analysis of the airborne magnetic data set led to the result in that magnetite is not only wide-spread in present day rivers and creeks, but also in buried channels and palaeo precipitation run-off paths. Magnetic data proved to be very helpful in this project with regard of pursuing not only present day, but buried valleys and channels, in particular. Our experience made on the Mary creek claims is summarized in a straightforward exploration concept for hidden, possibly gold-bearing channels in the Cariboo gold district.
2013-01-01
The template-stripping method can yield smooth patterned films without surface contamination. However, the process is typically limited to coinage metals such as silver and gold because other materials cannot be readily stripped from silicon templates due to strong adhesion. Herein, we report a more general template-stripping method that is applicable to a larger variety of materials, including refractory metals, semiconductors, and oxides. To address the adhesion issue, we introduce a thin gold layer between the template and the deposited materials. After peeling off the combined film from the template, the gold layer can be selectively removed via wet etching to reveal a smooth patterned structure of the desired material. Further, we demonstrate template-stripped multilayer structures that have potential applications for photovoltaics and solar absorbers. An entire patterned device, which can include a transparent conductor, semiconductor absorber, and back contact, can be fabricated. Since our approach can also produce many copies of the patterned structure with high fidelity by reusing the template, a low-cost and high-throughput process in micro- and nanofabrication is provided that is useful for electronics, plasmonics, and nanophotonics. PMID:24001174
Gold coated metal nanostructures grown by glancing angle deposition and pulsed electroplating
NASA Astrophysics Data System (ADS)
Grüner, Christoph; Reeck, Pascal; Jacobs, Paul-Philipp; Liedtke, Susann; Lotnyk, Andriy; Rauschenbach, Bernd
2018-05-01
Nickel based nanostructures are grown by glancing angle deposition (GLAD) on flat and pre-patterned substrates. These fabricated porous thin films were subsequently coated by pulsed electroplating with gold. The morphology and conformity of the gold coating were investigated by scanning electron microscopy and X-ray diffraction. Controlled growth of closed gold layers on the nanostructures could be achieved, while the open-pore structure of the nanosculptured thin films was preserved. Such gold coated nanostructures are a candidate for optical sensing and catalysis applications. The demonstrated method can be applied for numerous material combinations, allowing to provide GLAD thin films with new surface properties.
Nanoscale patterning of two metals on silicon surfaces using an ABC triblock copolymer template.
Aizawa, Masato; Buriak, Jillian M
2006-05-03
Patterning technologically important semiconductor interfaces with nanoscale metal films is important for applications such as metallic interconnects and sensing applications. Self-assembling block copolymer templates are utilized to pattern an aqueous metal reduction reaction, galvanic displacement, on silicon surfaces. Utilization of a triblock copolymer monolayer film, polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO), with two blocks capable of selective transport of different metal complexes to the surface (PEO and P2VP), allows for chemical discrimination and nanoscale patterning. Different regions of the self-assembled structure discriminate between metal complexes at the silicon surface, at which time they undergo the spontaneous reaction at the interface. Gold deposition from gold(III) compounds such as HAuCl4(aq) in the presence of hydrofluoric acid mirrors the parent block copolymer core structure, whereas silver deposition from Ag(I) salts such as AgNO3(aq) does the opposite, localizing exclusively under the corona. By carrying out gold deposition first and silver second, sub-100-nm gold features surrounded by silver films can be produced. The chemical selectivity was extended to other metals, including copper, palladium, and platinum. The interfaces were characterized by a variety of methods, including scanning electron microscopy, scanning Auger microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy.
Extraction of gold (Au) particles from sea water by Delftia Acidovorans microbes
NASA Astrophysics Data System (ADS)
Yusoff, A. H. M.; Nading, M. E.; Salimi, M. N.
2017-10-01
Gold-mining activities have been an issue, especially when it involves in contamination of chemicals, for example arsenic and mercury. However, despite of these hazards, gold-mining activities are still being conducted. This is because the gold is worth, regardless of the problems. Gold-mining, as known needs a very large area of land, or site plant. Vast amount of labor force, mechanical force and fund are a must in order for the mining process to be continued. High demand of gold, made gold-mining industries as ones of the most profitable industries in the world. Thus, this has encouraged another alternative way to extract gold. At the mining site, researchers found that biomineralization of gold by Delftia acidovorans can be conducted. How it is done still cannot be understood. It is said that the bacteria secretes secondary metabolites, Delftibactin as a defensive mechanism against the toxicity of the soluble gold. Researchers try to find another source of elemental gold besides of the earth’s core. The options are either lava of a volcano or ocean. Here, the focus is seawater. The problem of seawater is that its composition still not yet to be proved. Dissolve gold existed as gold chloride in seawater, but in a very small amount. So, the gold separation should be focused, in order to make this process to be a successful one. Factors such as depth, climate, region, temperature need to be considered. If this difference affecting the separating process, standardized seawater composition have to be proposed.
NASA Astrophysics Data System (ADS)
Teixeira, F. S.; Salvadori, M. C.; Cattani, M.; Brown, I. G.
2009-09-01
We have investigated the fundamental structural properties of conducting thin films formed by implanting gold ions into polymethylmethacrylate (PMMA) polymer at 49 eV using a repetitively pulsed cathodic arc plasma gun. Transmission electron microscopy images of these composites show that the implanted ions form gold clusters of diameter ˜2-12 nm distributed throughout a shallow, buried layer of average thickness 7 nm, and small angle x-ray scattering (SAXS) reveals the structural properties of the PMMA-gold buried layer. The SAXS data have been interpreted using a theoretical model that accounts for peculiarities of disordered systems.
Conductance Switching Phenomena and H-Like Aggregates in Squarylium-Dye Langmuir-Blodgett Films
NASA Astrophysics Data System (ADS)
Kushida, Masahito; Inomata, Hisao; Tanaka, Yuichiro; Harada, Kieko; Saito, Kyoichi; Sugita, Kazuyuki
2002-03-01
The current-voltage characteristics of sandwich devices with the structure of top gold electrode/squarylium-dye Langmuir-Blodgett (SQ LB) films/bottom aluminum electrode indicated four kinds of conductivity depending on the evaporation conditions of the top gold electrode. The current densities of two, which showed conductance switching, of the four samples were 30-40 μA/cm2 and 20-30 mA/cm2 in the ON state. In the former case, the dependence of conductance switching voltage on the number of SQ LB films and ultraviolet-visible absorption spectra were studied. The results revealed that conductance switching phenomena were induced at the interface between the top gold electrode and SQ LB films, and caused by the presence of H-like aggregates in SQ LB films.
NASA Astrophysics Data System (ADS)
Holt, Lucy A.; Bushby, Richard J.; Evans, Stephen D.; Burgess, Andrew; Seeley, Gordon
2008-03-01
The presence of 1% (w/w) of methylbenzene thiol coated gold nanoparticles increases the conductivity of the discotic liquid crystal 2,3,6,7,10,11-hexakis(hexyloxy)triphenylene (HAT6) by about two orders of magnitude in all three phases (crystal, columnar liquid crystal, and isotropic liquid). However, when a field (above a certain critical value) is applied to the isotropic phase, the conductivity rapidly increases by another three or four orders of magnitude after which the higher conductivity is maintained regardless of phase, field, or temperature. This increase in conductivity is attributed to the formation of chains of gold nanoparticles. A similar phenomenon is observed for 1% (w/w) gold nanoparticles in the isotropic phase of hexadecane. However, the liquid crystal/nanoparticle mixture preserves its high conductivity when it is cooled into the crystalline phase whereas that of the hexadecane/nanoparticle mixture is lost. In hexadecane, crystal grain boundaries are expected to form in a random fashion and this disrupts the conductive pathways. However, if HAT6 crystallizes via the homeotropically aligned columnar phase, the grain boundaries form predominantly surface to surface (electrode to electrode) so that the conductive nanoparticle chains are trapped in a stabilizing solid matrix.
NASA Astrophysics Data System (ADS)
Borzenkov, Mykola; Chirico, Giuseppe; Collini, Maddalena; Määttänen, Anni; Ihalainen, Petri; Cabrini, Elisa; Dacarro, Giacomo; Pallavicini, Piersandro
2016-04-01
The research and development of personalized medical treatments is increasing steadily fostered by its large societal impact. The ability of non-spherical gold nanoparticles to locally and efficiently release heat when irradiated in Near Infrared (NIR) wavelength region is a promising tool for photothermal medical therapies. In the present work, stable inks containing PEGylated gold nanostars (GNS) were obtained and inkjet-printed on a pigment coated paper substrate. Significant photothermal effect of the printed patterns was observed under Near Infrared (NIR) excitation of the Localized Surface Plasmon Resonance (LSPR) of the GNS. These preliminary results support, in perspective, the application of printed GNS patterns for thermal medical treatments either by direct localized heating, or by temperature triggered drug release.
Fabrication and modeling of stretchable conductors for traumatic brain injury research
NASA Astrophysics Data System (ADS)
Cao, Wenzhe
Stretchable electronics are an emergent class of electronics that can retain their electric functionality under large mechanical deformation, such as stretching, bending and compression. Like traditional electric circuits, stretchable electronics rely on electrical conductors, but in this specific instance the conductors must also be stretchable. This thesis research had three goals: (1) fabricate elastically stretchable conductors that retain their electrical conductance when stretched by tens of percent of strain; (2) understand the underlying stretching mechanism of gold conductors on polydimethylsiloxane (PDMS) substrates; (3) produce a special device---a stretchable microelectrode array, which contains a matrix of stretchable conductors that enables a new approach to studying traumatic brain injury. We first developed and optimized the micro-fabrication process to make elastically stretchable thin gold film conductors on PDMS substrates. The conductors can retain electrical conduction while being stretched reversibly to 140% uniaxially and 16% radially. We further developed a fabrication process to encapsulate the conductors with either a commercially available photopatternable silicone (PPS) or with PDMS. 100 microm by 100 microm vias were patterned in the encapsulation layer to expose electrical contacts. PPS encapsulated conductors can be stretched uniaxially to 80%, and the PDMS encapsulated conductor can be stretched to ˜15%, without losing electrical conduction. We also introduced acrylate-based shape memory polymers (SMPs) as a new type of substrate for stretchable conductors. Their stiffness can be tuned by varying the monomer composition or by changing the ambient temperature. Thin gold film conductors deposited on pre-strained SMPs remain conductive when first stretched and then relaxed to their pre-strain value. Moreover, an SMP can also serve as a stretchable carrier to make pre-strained conductors on an overlying PDMS membrane. The resistance of gold conductors made on pre-strained PDMS changes less during stretching than that made on non-pre-strained PDMS substrate. We built a model of the electrical resistance in function of strain. The model is based on the topography of the thin gold film on PDMS. This model is a first attempt at predicting electrical resistance of stretchable thin gold film conductors. Lastly, we fabricated stretchable microelectrode arrays (SMEAs). They were utilized at Columbia University to study traumatic brain injury (TBI). Tissues cultured on SMEA remained viable for 19 days, and the electrodes were able to both stimulate and record neural tissue activity before, during and after stretching. Therefore SMEAs are able to bring together mechanical injury, electrophysiological recording and pharmacological studies. The SMEAs could serve as in vitro platforms for high throughput therapeutic screening and discovery for traumatic injury. The ability to reproducibly fabricate stretchable conductors using micro-fabrication technology will facilitate adoption by industry. The ability to understand the stretching mechanism will enable us to design more robust material systems. The SMEA prototypes demonstrate that stretchable conductors are practical, and their mechanical compatibility with biological systems also makes them candidates for use in biomedical devices.
Coeval emplacement and orogen-parallel transport of gold in oblique convergent orogens
NASA Astrophysics Data System (ADS)
Upton, Phaedra; Craw, Dave
2016-12-01
Varying amounts of gold mineralisation is occurring in all young and active collisional mountain belts. Concurrently, these syn-orogenic hydrothermal deposits are being eroded and transported to form placer deposits. Local extension occurs in convergent orogens, especially oblique orogens, and facilitates emplacement of syn-orogenic gold-bearing deposits with or without associated magmatism. Numerical modelling has shown that extension results from directional variations in movement rates along the rock transport trajectory during convergence, and is most pronounced for highly oblique convergence with strong crustal rheology. On-going uplift during orogenesis exposes gold deposits to erosion, transport, and localised placer concentration. Drainage patterns in variably oblique convergent orogenic belts typically have an orogen-parallel or sub-parallel component; the details of which varies with convergence obliquity and the vagaries of underlying geological controls. This leads to lateral transport of eroded syn-orogenic gold on a range of scales, up to > 100 km. The presence of inherited crustal blocks with contrasting rheology in oblique orogenic collision zones can cause perturbations in drainage patterns, but numerical modelling suggests that orogen-parallel drainage is still a persistent and robust feature. The presence of an inherited block of weak crust enhances the orogen-parallel drainage by imposition of localised subsidence zones elongated along a plate boundary. Evolution and reorientation of orogen-parallel drainage can sever links between gold placer deposits and their syn-orogenic sources. Many of these modelled features of syn-orogenic gold emplacement and varying amounts of orogen-parallel detrital gold transport can be recognised in the Miocene to Recent New Zealand oblique convergent orogen. These processes contribute little gold to major placer goldfields, which require more long-term recycling and placer gold concentration. Most eroded syn-orogenic gold becomes diluted by abundant lithic debris in rivers and sedimentary basins except where localised concentration occurs, especially on beaches.
Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frei M.; Hybertsen M.; Aradhya S.V.
We use a modified conducting atomic force microscope to simultaneously probe the conductance of a single-molecule junction and the force required to rupture the junction formed by alkanes terminated with four different chemical link groups which vary in binding strength and mechanism to the gold electrodes. Molecular junctions with amine, methylsulfide, and diphenylphosphine terminated molecules show clear conductance signatures and rupture at a force that is significantly smaller than the measured 1.4 nN force required to rupture the single-atomic gold contact. In contrast, measurements with a thiol terminated alkane which can bind covalently to the gold electrode show conductance andmore » force features unlike those of the other molecules studied. Specifically, the strong Au-S bond can cause structural rearrangements in the electrodes, which are accompanied by substantial conductance changes. Despite the strong Au-S bond and the evidence for disruption of the Au structure, the experiments show that on average these junctions also rupture at a smaller force than that measured for pristine single-atom gold contacts.« less
Diffraction data of core-shell nanoparticles from an X-ray free electron laser
Li, Xuanxuan; Chiu, Chun -Ya; Wang, Hsiang -Ju; ...
2017-04-11
X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Furthermore, scattering patterns resulting from single particles were selected and compiledmore » into a dataset which can be valuable for algorithm developments in single particle scattering research.« less
NASA Astrophysics Data System (ADS)
Singh, Amit; Chaudhari, Minakshi; Sastry, Murali
2006-05-01
Metal nanoparticles are interesting building blocks for realizing films for a number of applications that include bio- and chemical sensing. To date, spherical metal nanoparticles have been used to generate functional electrical coatings. In this paper we demonstrate the synthesis of electrically conductive coatings using biologically prepared gold nanotriangles as the building blocks. The gold nanotriangles are prepared by the reduction of aqueous chloroaurate ions using an extract of the lemongrass plant (Cymbopogon flexuosus) which are thereafter assembled onto a variety of substrates by simple solution casting. The conductivity of the film shows a drastic fall upon mild heat treatment, leading to the formation of electrically conductive thin films of nanoparticles. We have also investigated the possibility of using the gold nanotriangle films in vapour sensing. A large fall in film resistance is observed upon exposure to polar molecules such as methanol, while little change occurs upon exposure to weakly polar molecules such as chloroform.
Kim, Young Eun; Yi, So Yeon; Lee, Chang-Soo; Jung, Yongwon; Chung, Bong Hyun
2012-01-21
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of immuno-captured target protein efficiently complements conventional immunoassays by offering rich molecular information such as protein isoforms or modifications. Direct immobilization of antibodies on MALDI solid support enables both target enrichment and MS analysis on the same plate, allowing simplified and potentially multiplexing protein MS analysis. Reliable on-chip immuno-MALDI-TOF MS for multiple biomarkers requires successful adaptation of antibody array biochips, which also must accommodate consistent reaction conditions on antibody arrays during immuno-capture and MS analysis. Here we developed a facile fabrication process of versatile antibody array biochips for reliable on-chip MALDI-TOF-MS analysis of multiple immuno-captured proteins. Hydrophilic gold arrays surrounded by super-hydrophobic surfaces were formed on a gold patterned biochip via spontaneous chemical or protein layer deposition. From antibody immobilization to MALDI matrix treatment, this hydrophilic/phobic pattern allowed highly consistent surface reactions on each gold spot. Various antibodies were immobilized on these gold spots both by covalent coupling or protein G binding. Four different protein markers were successfully analyzed on the present immuno-MALDI biochip from complex protein mixtures including serum samples. Tryptic digests of captured PSA protein were also effectively detected by on-chip MALDI-TOF-MS. Moreover, the present MALDI biochip can be directly applied to the SPR imaging system, by which antibody and subsequent antigen immobilization were successfully monitored.
Mayhew, Terry M; Lucocq, John M
2011-03-01
Various methods for quantifying cellular immunogold labelling on transmission electron microscope thin sections are currently available. All rely on sound random sampling principles and are applicable to single immunolabelling across compartments within a given cell type or between different experimental groups of cells. Although methods are also available to test for colocalization in double/triple immunogold labelling studies, so far, these have relied on making multiple measurements of gold particle densities in defined areas or of inter-particle nearest neighbour distances. Here, we present alternative two-step approaches to codistribution and colocalization assessment that merely require raw counts of gold particles in distinct cellular compartments. For assessing codistribution over aggregate compartments, initial statistical evaluation involves combining contingency table and chi-squared analyses to provide predicted gold particle distributions. The observed and predicted distributions allow testing of the appropriate null hypothesis, namely, that there is no difference in the distribution patterns of proteins labelled by different sizes of gold particle. In short, the null hypothesis is that of colocalization. The approach for assessing colabelling recognises that, on thin sections, a compartment is made up of a set of sectional images (profiles) of cognate structures. The approach involves identifying two groups of compartmental profiles that are unlabelled and labelled for one gold marker size. The proportions in each group that are also labelled for the second gold marker size are then compared. Statistical analysis now uses a 2 × 2 contingency table combined with the Fisher exact probability test. Having identified double labelling, the profiles can be analysed further in order to identify characteristic features that might account for the double labelling. In each case, the approach is illustrated using synthetic and/or experimental datasets and can be refined to correct observed labelling patterns to specific labelling patterns. These simple and efficient approaches should be of more immediate utility to those interested in codistribution and colocalization in multiple immunogold labelling investigations.
NASA Astrophysics Data System (ADS)
Yu, Mei; Wang, Chong; Yang, Cancan; Yu, Zhe
2017-11-01
With the great deformability of stretch, compression, bend and twisting, while preserving electrical property, metal films on elastomeric substrates have many applications for serving as bioelectrical interfaces. However, at present, most polymer-supported thin metal films reported rupture at small elongations (<10%). In this work, highly stretchable thin gold films were fabricated on PDMS substrates by a novel micro-processing technology. The as deposited films can be stretched by a maximum 120% strain while maintaining their electrical conductivity. Electrical characteristics of the gold films under single-cycle and multi-cycle stretch deformations are investigated in this work. SEM images imply that the gold films are under the structure of nanocracks. The mechanisms of the stretchability of the gold films can be explained by the nanocraks, which uniformly distribute with random orientation in the films.
Modeling of gold production in Malaysia
NASA Astrophysics Data System (ADS)
Muda, Nora; Ainuddeen, Nasihah Rasyiqah; Ismail, Hamizun; Umor, Mohd Rozi
2013-04-01
This study was conducted to identify the main factors that contribute to the gold production and hence determine the factors that affect to the development of the mining industry in Malaysia. An econometric approach was used by performing the cointegration analysis among the factors to determine the existence of long term relationship between the gold prices, the number of gold mines, the number of workers in gold mines and the gold production. The study continued with the Granger analysis to determine the relationship between factors and gold production. Results have found that there are long term relationship between price, gold production and number of employees. Granger causality analysis shows that there is only one way relationship between the number of employees with gold production in Malaysia and the number of gold mines in Malaysia.
Chiral Antioxidant-based Gold Nanoclusters Reprogram DNA Epigenetic Patterns
Ma, Yue; Fu, Hualin; Zhang, Chunlei; Cheng, Shangli; Gao, Jie; Wang, Zhen; Jin, Weilin; Conde, João; Cui, Daxiang
2016-01-01
Epigenetic modifications sit ‘on top of’ the genome and influence DNA transcription, which can force a significant impact on cellular behavior and phenotype and, consequently human development and disease. Conventional methods for evaluating epigenetic modifications have inherent limitations and, hence, new methods based on nanoscale devices are needed. Here, we found that antioxidant (glutathione) chiral gold nanoclusters induce a decrease of 5-hydroxymethylcytosine (5hmC), which is an important epigenetic marker that associates with gene transcription regulation. This epigenetic change was triggered partially through ROS activation and oxidation generated by the treatment with glutathione chiral gold nanoclusters, which may inhibit the activity of TET proteins catalyzing the conversion of 5-methylcytosine (5mC) to 5hmC. In addition, these chiral gold nanoclusters can downregulate TET1 and TET2 mRNA expression. Alteration of TET-5hmC signaling will then affect several downstream targets and be involved in many aspects of cell behavior. We demonstrate for the first time that antioxidant-based chiral gold nanomaterials have a direct effect on epigenetic process of TET-5hmC pathways and reveal critical DNA demethylation patterns. PMID:27633378
The Effect of Voltage Charging on the Transport Properties of Gold Nanotube Membranes.
Experton, Juliette; Martin, Charles R
2018-05-01
Porous membranes are used in chemical separations and in many electrochemical processes and devices. Research on the transport properties of a unique class of porous membranes that contain monodisperse gold nanotubes traversing the entire membrane thickness is reviewed here. These gold nanotubes can act as conduits for ionic and molecular transports through the membrane. Because the tubes are electronically conductive, they can be electrochemically charged by applying a voltage to the membrane. How this "voltage charging" affects the transport properties of gold nanotube membranes is the subject of this Review. Experiments showing that voltage charging can be used to reversibly switch the membrane between ideally cation- and anion-transporting states are reviewed. Voltage charging can also be used to enhance the ionic conductivity of gold nanotube membranes. Finally, voltage charging to accomplish electroporation of living bacteria as they pass through gold nanotube membranes is reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raines, Gary L.
1999-12-15
The weights-of-evidence method provides a simple approach to the integration of diverse geologic information. The application addressed is to construct a model that predicts the locations of epithermal-gold mineral deposits in the Great Basin of the western United States. Weights of evidence is a data-driven method requiring known deposits and occurrences that are used as training sites in the evaluated area. Four hundred and fifteen known hot spring gold-silver, Comstock vein, hot spring mercury, epithermal manganese, and volcanogenic uranium deposits and occurrences in Nevada were used to define an area of 327.4 km{sup 2} as training sites to develop themore » model. The model consists of nine weighted-map patterns that are combined to produce a favorability map predicting the distribution of epithermal-gold deposits. Using a measure of the association of training sites with predictor features (or patterns), the patterns can be ranked from best to worst predictors. Based on proximity analysis, the strongest predictor is the area within 8 km of volcanic rocks younger than 43 Ma. Being close to volcanic rocks is not highly weighted, but being far from volcanic rocks causes a strong negative weight. These weights suggest that proximity to volcanic rocks define where deposits do not occur. The second best pattern is the area within 1 km of hydrothermally altered areas. The next best pattern is the area within 1 km of known placer-gold sites. The proximity analysis for gold placers weights this pattern as useful when close to known placer sites, but unimportant where placers do not exist. The remaining patterns are significantly weaker predictors. In order of decreasing correlation, they are: proximity to volcanic vents, proximity to east-west to northwest faults, elevated airborne radiometric uranium, proximity to northwest to west and north-northwest linear features, elevated aeromagnetics, and anomalous geochemistry. This ordering of the patterns is a function of the quality, applicability, and use of the data. The nine-pattern favorability map can be evaluated by comparison with the USGS National Assessment for hot spring gold-silver deposits. The Spearman's ranked correlation coefficient between the favorability and the National Assessment permissive tracts is 0.5. Tabulations of the areas of agreement and disagreement between the two maps show 74% agreement for the Great Basin. The posterior probabilities for 51 significant deposits in the Great Basin, both used and not used in the model, show the following: 26 classified as favorable; 25 classified as permissive; and 1, Florida Canyon, classified as nonpermissive.The Florida Canyon deposit has a low favorability because there are no volcanic rocks near the deposit on the Nevada geologic map used. The largest areas of disagreement are caused by the USGS National Assessment team concluding that volcanic rocks older than 27 Ma in Nevada are not permissive, which was not assumed in this model. The weights-of-evidence model is evaluated as reasonable and delineates permissive areas for epithermal deposits comparable to expert's delineation. The weights-of-evidence model has the additional characteristics that it is well defined, reproducible, objective, and provides a quantitative measure of confidence.« less
Orogenic gold and geologic time: A global synthesis
Goldfarb, R.J.; Groves, D.I.; Gardoll, S.
2001-01-01
Orogenic gold deposits have formed over more than 3 billion years of Earth's history, episodically during the Middle Archean to younger Precambrian, and continuously throughout the Phanerozoic. This class of gold deposit is characteristically associated with deformed and metamorphosed mid-crustal blocks, particularly in spatial association with major crustal structures. A consistent spatial and temporal association with granitoids of a variety of compositions indicates that melts and fluids were both inherent products of thermal events during orogenesis. Including placer accumulations, which are commonly intimately associated with this mineral deposit type, recognized production and resources from economic Phanerozoic orogenic-gold deposits are estimated at just over one billion ounces gold. Exclusive of the still-controversial Witwatersrand ores, known Precambrian gold concentrations are about half this amount. The recent increased applicability of global paleo-reconstructions, coupled with improved geochronology from most of the world's major gold camps, allows for an improved understanding of the distribution pattern of orogenic gold in space and time.
Optimization study of direct morphology observation by cold field emission SEM without gold coating.
He, Dan; Fu, Cheng; Xue, Zhigang
2018-06-01
Gold coating is a general operation that is generally applied on non-conductive or low conductive materials, during which the morphology of the materials can be examined by scanning electron microscopy (SEM). However, fatal deficiencies in the materials can result in irreversible distortion and damage. The present study directly characterized different low conductive materials such as hydroxyapatite, modified poly(vinylidene fluoride) (PVDF) fiber, and zinc oxide nanopillar by cold field emission scanning electron microscopy (FE-SEM) without a gold coating. According to the characteristics of the low conductive materials, various test conditions, such as different working signal modes, accelerating voltages, electron beam spots, and working distances, were characterized to determine the best morphological observations of each sample. Copyright © 2018 Elsevier Ltd. All rights reserved.
1992-10-01
organized into hexagonal patterns, but unlike the monoatomic iodine adlayers noted above the close-packed atomic strings tend to lie along the gold ...adsorbate systems. Illustrative results of the former type are presented for the potential-dependent adsorption of iodide at low-index gold electrodes. The...presented for the potential-dependent adsorption of iodide at low-index gold electrodes. The virtues of acquiring "composite-domain" STM images, where
Nanoscale functionalization and characterization of surfaces with hydrogel patterns and biomolecules
NASA Astrophysics Data System (ADS)
Dinakar, Hariharasudhan Chirra
The advent of numerous tools, ease of techniques, and concepts related to nanotechnology, in combination with functionalization via simple chemistry has made gold important for various biomedical applications. In this dissertation, the development and characterization of planar gold surfaces with responsive hydrogel patterns for rapid point of care sensing and the functionalization of gold nanoparticles for drug delivery are highlighted. Biomedical micro- and nanoscale devices that are spatially functionalized with intelligent hydrogels are typically fabricated using conventional UV-lithography. Herein, precise 3-D hydrogel patterns made up of temperature responsive crosslinked poly(N-isopropylacrylamide) over gold were synthesized. The XY control of the hydrogel was achieved using microcontact printing, while thickness control was achieved using atom transfer radical polymerization (ATRP). Atomic force microscopy analysis showed that to the ATRP reaction time governed the pattern growth. The temperature dependent swelling ratio was tailored by tuning the mesh size of the hydrogel. While nanopatterns exhibited a broad lower critical solution temperature (LCST) transition, surface roughness showed a sharp LCST transition. Quartz crystal microbalance with dissipation showed rapid response behavior of the thin films, which makes them applicable as functional components in biomedical devices. The easy synthesis, relative biocompatibility, inertness, and easy functionalization of gold nanoparticles (GNPs) have made them useful for various biomedical applications. Although ATRP can be successfully carried out over GNPs, the yield of stable solution based GNPs for biomedical applications prove to be low. As an alternative approach, a novel method of ISOlating, FUnctionalizing, and REleasing nanoparticles (ISOFURE) was proposed. Biodegradable poly(beta-amino ester) hydrogels were used to synthesize ISOFURE-GNP composites. ATRP was performed inside the composite, and the final hydrogel coated GNPs were released via matrix degradation. Response analysis confirmed that the ISOFURE method led to the increased stability and yield of the hydrogel coated ISOFURE-GNPs. The ISOFURE protocol was also utilized in functionalizing GNPs with enzyme catalase in the absence of a stabilizing reagent. Biotin-streptavidin affinity was used as the bioconjugation method. Activity analysis of the conjugated enzyme showed that the ISOFURE-GNPs showed enhanced biomolecular loading relative to solution based stabilizing reagent passivated GNPs. KEYWORDS: Hydrogel, Gold nanoparticle, ISOFURE, Atom transfer radical polymerization, Microcontact printing
Highly Conductive Thin Uniform Gold-Coated DNA Nanowires.
Stern, Avigail; Eidelshtein, Gennady; Zhuravel, Roman; Livshits, Gideon I; Rotem, Dvir; Kotlyar, Alexander; Porath, Danny
2018-06-01
Over the past decades, DNA, the carrier of genetic information, has been used by researchers as a structural template material. Watson-Crick base pairing enables the formation of complex 2D and 3D structures from DNA through self-assembly. Various methods have been developed to functionalize these structures for numerous utilities. Metallization of DNA has attracted much attention as a means of forming conductive nanostructures. Nevertheless, most of the metallized DNA wires reported so far suffer from irregularity and lack of end-to-end electrical connectivity. An effective technique for formation of thin gold-coated DNA wires that overcomes these drawbacks is developed and presented here. A conductive atomic force microscopy setup, which is suitable for measuring tens to thousands of nanometer long molecules and wires, is used to characterize these DNA-based nanowires. The wires reported here are the narrowest gold-coated DNA wires that display long-range conductivity. The measurements presented show that the conductivity is limited by defects, and that thicker gold coating reduces the number of defects and increases the conductive length. This preparation method enables the formation of molecular wires with dimensions and uniformity that are much more suitable for DNA-based molecular electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2011-01-01
Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis. The size, shape, and crystalline structure of the gold nanoparticles have been determined by high-resolution electron microscopy and full-pattern X-ray powder diffraction analyses. Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio. The chemical composition of gold nanoparticles and their interaction with thiols have been investigated by X-ray photoelectron spectroscopy. In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand. PMID:21711615
Non-invasive monitoring of chewing and swallowing for objective quantification of ingestive behavior
Sazonov, Edward; Schuckers, Stephanie; Lopez-Meyer, Paulo; Makeyev, Oleksandr; Sazonova, Nadezhda; Melanson, Edward L.; Neuman, Michael
2008-01-01
A methodology of studying of ingestive behavior by non-invasive monitoring of swallowing (deglutition) and chewing (mastication) has been developed. The target application for the developed methodology is to study the behavioral patterns of food consumption and producing volumetric and weight estimates of energy intake. Monitoring is non-invasive based on detecting swallowing by a sound sensor located over laryngopharynx or by a bone conduction microphone and detecting chewing through a below-the-ear strain sensor. Proposed sensors may be implemented in a wearable monitoring device, thus enabling monitoring of ingestive behavior in free living individuals. In this paper, the goals in the development of this methodology are two-fold. First, a system comprised of sensors, related hardware and software for multimodal data capture is designed for data collection in a controlled environment. Second, a protocol is developed for manual scoring of chewing and swallowing for use as a gold standard. The multi-modal data capture was tested by measuring chewing and swallowing in twenty one volunteers during periods of food intake and quiet sitting (no food intake). Video footage and sensor signals were manually scored by trained raters. Inter-rater reliability study for three raters conducted on the sample set of 5 subjects resulted in high average intra-class correlation coefficients of 0.996 for bites, 0.988 for chews, and 0.98 for swallows. The collected sensor signals and the resulting manual scores will be used in future research as a gold standard for further assessment of sensor design, development of automatic pattern recognition routines, and study of the relationship between swallowing/chewing and ingestive behavior. PMID:18427161
Sazonov, Edward; Schuckers, Stephanie; Lopez-Meyer, Paulo; Makeyev, Oleksandr; Sazonova, Nadezhda; Melanson, Edward L; Neuman, Michael
2008-05-01
A methodology of studying of ingestive behavior by non-invasive monitoring of swallowing (deglutition) and chewing (mastication) has been developed. The target application for the developed methodology is to study the behavioral patterns of food consumption and producing volumetric and weight estimates of energy intake. Monitoring is non-invasive based on detecting swallowing by a sound sensor located over laryngopharynx or by a bone-conduction microphone and detecting chewing through a below-the-ear strain sensor. Proposed sensors may be implemented in a wearable monitoring device, thus enabling monitoring of ingestive behavior in free-living individuals. In this paper, the goals in the development of this methodology are two-fold. First, a system comprising sensors, related hardware and software for multi-modal data capture is designed for data collection in a controlled environment. Second, a protocol is developed for manual scoring of chewing and swallowing for use as a gold standard. The multi-modal data capture was tested by measuring chewing and swallowing in 21 volunteers during periods of food intake and quiet sitting (no food intake). Video footage and sensor signals were manually scored by trained raters. Inter-rater reliability study for three raters conducted on the sample set of five subjects resulted in high average intra-class correlation coefficients of 0.996 for bites, 0.988 for chews and 0.98 for swallows. The collected sensor signals and the resulting manual scores will be used in future research as a gold standard for further assessment of sensor design, development of automatic pattern recognition routines and study of the relationship between swallowing/chewing and ingestive behavior.
Guo, Kai; Zhang, Yong-Liang; Qian, Cheng; Fung, Kin-Hung
2018-04-30
In this work, we demonstrate computationally that electric dipole-quadrupole hybridization (EDQH) could be utilized to enhance plasmonic SHG efficiency. To this end, we construct T-shaped plasmonic heterodimers consisting of a short and a long gold nanorod with finite element method simulation. By controlling the strength of capacitive coupling between two gold nanorods, we explore the effect of EDQH evolution on the SHG process, including the SHG efficiency enhancement, corresponding near-field distribution, and far-field radiation pattern. Simulation results demonstrate that EDQH could enhance the SHG efficiency by a factor >100 in comparison with that achieved by an isolated gold nanorod. Additionally, the far-field pattern of the SHG could be adjusted beyond the well-known quadrupolar distribution and confirms that EDQH plays an important role in the SHG process.
Polyelectrolyte Multilayer-Treated Electrodes for Real-Time Electronic Sensing of Cell Proliferation
Mijares, Geraldine I.; Reyes, Darwin R.; Geist, Jon; Gaitan, Michael; Polk, Brian J.; DeVoe, Don L.
2010-01-01
We report on the use of polyelectrolyte multilayer (PEM) coatings as a non-biological surface preparation to facilitate uniform cell attachment and growth on patterned thin-film gold (Au) electrodes on glass for impedance-based measurements. Extracellular matrix (ECM) proteins are commonly utilized as cell adhesion promoters for electrodes; however, they exhibit degradation over time, thereby imposing limitations on the duration of conductance-based biosensor experiments. The motivation for the use of PEM coatings arises from their long-term surface stability as promoters for cell attachment, patterning, and culture. In this work, a cell proliferation monitoring device was fabricated. It consisted of thin-film Au electrodes deposited with a titanium-tungsten (TiW) adhesion layer that were patterned on a glass substrate and passivated to create active electrode areas. The electrode surfaces were then treated with a poly(ethyleneimine) (PEI) anchoring layer and subsequent bilayers of sodium poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH). NIH-3T3 mouse embryonic fibroblast cells were cultured on the device, observed by optical microscopy, and showed uniform growth characteristics similar to those observed on a traditional polystyrene cell culture dish. The optical observations were correlated to electrical measurements on the PEM-treated electrodes, which exhibited a rise in impedance with cell proliferation and stabilized to an approximate 15 % increase as the culture approached confluency. In conclusion, cells proliferate uniformly over gold and glass PEM-treated surfaces, making them useful for continuous impedance-based, real-time monitoring of cell proliferation and for the determination of cell growth rate in cellular assays. PMID:27134780
NASA Astrophysics Data System (ADS)
Wang, Surui; Rogachev, A. A.; Yarmolenko, M. A.; Rogachev, A. V.; Xiaohong, Jiang; Gaur, M. S.; Luchnikov, P. A.; Galtseva, O. V.; Chizhik, S. A.
2018-01-01
Highly ordered conductive polyaniline (PANI) coatings containing gold nanoparticles were prepared by low-energy electron beam deposition method, with emeraldine base and chloroauric acid used as target materials. The molecular and chemical structure of the layers was studied by Fourier transform infrared, Raman, UV-vis and X-ray photoelectron spectroscopy. The morphology of the coatings was investigated by atomic force and transmission electron microscopy. Conductive properties were obtained by impedance spectroscopy method and scanning spreading resistance microscopy mode at the micro- and nanoscale. It was found that the emeraldine base layers formed from the products of electron-beam dispersion have extended, non-conductive polymer chains with partially reduced structure, with the ratio of imine and amine groups equal to 0.54. In case of electron-beam dispersion of the emeraldine base and chloroauric acid, a protoemeraldine structure is formed with conductivity 0.1 S/cm. The doping of this structure was carried out due to hydrochloric acid vapor and gold nanoparticles formed by decomposition of chloroauric acid, which have a narrow size distribution, with the most probable diameter about 40 nm. These gold nanoparticles improve the conductivity of the thin layers of PANI + Au composite, promoting intra- and intermolecular charge transfer of the PANI macromolecules aligned along the coating surface both at direct and alternating voltage. The proposed deposition method of highly oriented, conductive nanocomposite PANI-based coatings may be used in the direct formation of functional layers on conductive and non-conductive substrates.
Thermo-mechanical properties and microfabric of fly ash-stabilized gold tailings.
Lee, Joon Kyu; Shang, Julie Q; Jeong, Sangseom
2014-07-15
This paper studies the changes in thermal conductivity, temperature, and unconfined compressive strength of gold tailings and fly ash mixtures during the curing period of 5 days. The microfabric of the cured mixtures was investigated with mercury intrusion porosimetry (MIP). The mixture samples were prepared at their maximum dry unit weight and optimum moisture content. Effect of adding fly ash to gold tailings (i.e., 0, 20, and 40% of the dry weight of tailings) was examined, and a comparison was made on samples prepared at the same fly ash content by replacing gold tailings with humic acid (i.e., gold tailings and humic acid ratios of 100:0, 90:10, and 80:20 by weight) or by varying pore fluid chemistry (i.e., water and salt solutions of 1M NaCl and CaCl2). The results show that the initial thermal conductivity of the samples is sensitive to the mixture proportion and a declination in the thermal conductivity is observed due to hydration of fly ash and evaporation. Inclusion of fly ash and salts into gold tailings improves the unconfined compressive strength but the presence of humic acid in samples leads to the decrease of the strength. MIP results reveal the pore structure changes associated with the packing states of the samples that reflect the influential factors considered. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Devi, Jutika; Saikia, Rashmi; Datta, Pranayee
2016-10-01
The present paper describes the study of core-shell nanoparticles for application as nanoantenna in the optical domain. To obtain the absorption and extinction efficiencies as well as the angular distribution of the far field radiation pattern and the resonance wavelengths for these metal-dielectric, dielectric-metal and metal-metal core-shell nanoparticles in optical domain, we have used Finite Element Method based COMSOL Multiphysics Software and Mie Theory. From the comparative study of the extinction efficiencies of core-shell nanoparticles of different materials, it is found that for silica - gold core - shell nanoparticles, the resonant wavelength is greater than that of the gold - silver, silver-gold and gold-silica core - shell nanoparticles and also the radiation pattern of the silica-gold core-shell nanoparticle is the most suitable one from the point of view of directivity. The dielectric functions of the core and shell material as well as of the embedded matrix are extremely important and plays a very major role to tune the directivity and resonance wavelength. Such highly controllable parameters of the dielectric - metal core - shell nanoparticles make them suitable for efficient coupling of optical radiation into nanoscale structures for a broad range of applications in the field of communications.
NASA Astrophysics Data System (ADS)
Zhou, Jianyun
Single walled carbon nanotube based field effect transistors are fabricated using photolithography and electron beam lithography techniques. First catalyst islands are deposited onto the substrate using standard optical lithographic techniques, and the nanotubes are grown by catalytic chemical vapor deposition from the pre-patterned catalyst islands. After imaging the grown nanotubes, the metal contact electrodes are patterned using lithography, followed by metal deposition using a sputtering technique. Both single nanotube devices and nanotube film devices are fabricated using this method. The single nanotube devices can be semiconducting, ambipolar, or metallic, with the resistance ranging from tens of kilo ohms to a few mega ohms, while the film devices are generally metallic, with only a few kilo ohms of resistance. Semiconducting single nanotube devices are functionalized for sensor applications. An electrodeposition technique was developed to functionalize the nanotube with a few materials, including avidin, chitosan, and metal nanoparticles. Among them, metal nanoparticle deposition is the most successful, and both gold and silver nanoparticles have been successfully deposited onto the sidewalls of the nanotubes from an "in situ" sacrificial electrode. The size and density of the nanoparticles, to some extent, can be tailored by controlling the deposition voltage. The gold nanoparticles are generally spherical, while the silver nanoparticles have branching snowflake shapes. These nanoparticles change the ON-state conductance of the nanotube while maintaining its semiconducting characteristics. The gold nanoparticles on the nanotube sidewalls can serve as anchoring sites for thiol-terminated biomolecules to functionalize the device for biosensing purposes. Results have shown that the thiol-terminated molecules can bind to the Au nanoparticles; however, nonspecific binding to the SiO2 surface is still abundant. Therefore, a self assembled monolayer (SAM) of protein-resistant polyethylene glycol (PEG) is deposited onto the SiO 2 surface to provide protein resistance, which results in selective immobilization of bio-receptors to the gold nanoparticles on the nanotube only. This reduces possible noise signals from the nonspecific substrate binding, and is expected to improve the device sensitivity.
Structure and Stability of GeAu{sub n}, n = 1-10 clusters: A Density Functional Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priyanka,; Dharamvir, Keya; Sharma, Hitesh
2011-12-12
The structures of Germanium doped gold clusters GeAu{sub n} (n = 1-10) have been investigated using ab initio calculations based on density functional theory (DFT). We have obtained ground state geometries of GeAu{sub n} clusters and have it compared with Silicon doped gold clusters and pure gold clusters. The ground state geometries of the GeAu{sub n} clusters show patterns similar to silicon doped gold clusters except for n = 5, 6 and 9. The introduction of germanium atom increases the binding energy of gold clusters. The binding energy per atom of germanium doped cluster is smaller than the corresponding siliconmore » doped gold cluster. The HUMO-LOMO gap for Au{sub n}Ge clusters have been found to vary between 0.46 eV-2.09 eV. The mullikan charge analysis indicates that charge of order of 0.1e always transfers from germanium atom to gold atom.« less
Friction behavior of glass and metals in contact with glass in various environments
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1973-01-01
Sliding friction experiments have been conducted for heat-resistant glass and metals in contact with glass. These experiments were conducted in various environments including vacuum, moist air, dry air, octane, and stearic acid in hexadecane. Glass exhibited a higher friction force in moist air than it did in vacuum when in sliding contact with itself. The metals, aluminum, iron, and gold, all exhibited the same friction coefficient when sliding on glass in vacuum as glass sliding on glass. Gold-to-glass contacts were extremely sensitive to the environment despite the relative chemical inertness of gold.
Lim, Hyun-Ah; Mishra, Amrita; Yun, Soon-Il
2011-01-01
In the present study, the synthesis of gold and silver nanoparticles was investigated using the culture supernatant broth of the yeast Saccharomyces cerevisae. Gold nanoparticles were formed within 24 hours of gold ion coming in contact with the culture supernatant broth. In case of silver the reduction process took 48 hours. The synthesized nanoparticles were investigated by UV-Visible spectroscopy. Distinct surface plasmon peaks were observed at 540 nm and 415 nm for gold and silver nanoparticles respectively. Bio-TEM micrographs of the synthesized nanoparticles indicated that the particles were well dispersed and near spherical in shape. The size range of the gold and silver nanoparticles was around 20-100 nm and 5-20 nm respectively. XRD patterns showed the presence of three distinct peaks corresponding to gold and silver nanoparticles respectively. A pH range of 4 to 6 and 8 to 10 favored optimum synthesis of gold and silver nanoparticles respectively. The process of reduction being extra cellular could be used in future for downstream processing in an eco friendly manner.
Evaluation of stability of interface between CCM (Co-Cr-Mo) UCLA abutment and external hex implant.
Yoon, Ki-Joon; Park, Young-Bum; Choi, Hyunmin; Cho, Youngsung; Lee, Jae-Hoon; Lee, Keun-Woo
2016-12-01
The purpose of this study is to evaluate the stability of interface between Co-Cr-Mo (CCM) UCLA abutment and external hex implant. Sixteen external hex implant fixtures were assigned to two groups (CCM and Gold group) and were embedded in molds using clear acrylic resin. Screw-retained prostheses were constructed using CCM UCLA abutment and Gold UCLA abutment. The external implant fixture and screw-retained prostheses were connected using abutment screws. After the abutments were tightened to 30 Ncm torque, 5 kg thermocyclic functional loading was applied by chewing simulator. A target of 1.0 × 10 6 cycles was applied. After cyclic loading, removal torque values were recorded using a driving torque tester, and the interface between implant fixture and abutment was evaluated by scanning electronic microscope (SEM). The means and standard deviations (SD) between the CCM and Gold groups were analyzed with independent t-test at the significance level of 0.05. Fractures of crowns, abutments, abutment screws, and fixtures and loosening of abutment screws were not observed after thermocyclic loading. There were no statistically significant differences at the recorded removal torque values between CCM and Gold groups ( P >.05). SEM analysis revealed that remarkable wear patterns were observed at the abutment interface only for Gold UCLA abutments. Those patterns were not observed for other specimens. Within the limit of this study, CCM UCLA abutment has no statistically significant difference in the stability of interface with external hex implant, compared with Gold UCLA abutment.
NASA Astrophysics Data System (ADS)
Liu, Yingchao; Chen, Hailiang; Ma, Mingjian; Zhang, Wenxun; Wang, Yujun; Li, Shuguang
2018-03-01
We propose a tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated high birefringent photonic crystal fiber (HB-PCF). Gold film was applied to the inner walls of two cladding air holes and surface plasmon polaritons were generated on its surface. The two gold-coated cladding air holes acted as two defective cores. As the phase matching condition was satisfied, light transmitted in the fiber core and coupled to the two defective cores. The three-core PCF supported three super modes in two orthogonal polarization directions. The coupling characteristics among these modes were investigated using the finite-element method. We found that the coupling wavelengths and strength between these guided modes can be tuned by altering the structural parameters of the designed HB-PCF, such as the size of the voids, thickness of the gold-films and liquid infilling pattern. Under the optimized structural parameters, a tunable broadband polarization filter was realized. For one liquid infilling pattern, we obtained a broadband polarization filter which filtered out the light in y-polarization direction at the wavelength of 1550 nm. For another liquid infilling pattern, we filtered out light in the x-polarization direction at the wavelength of 1310 nm. Our studies on the designed HB-PCF made contributions to the further devising of tunable broadband polarization filters, which are extensively used in telecommunication and sensor systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61505175 and 61475134) and the Natural Science Foundation of Hebei Province (Grant Nos. F2017203110 and F2017203193).
NASA Astrophysics Data System (ADS)
Zhou, Yi; Hu, Xiaoyong; Gao, Wei; Song, Hanfa; Chu, Saisai; Yang, Hong; Gong, Qihuang
2018-06-01
Two-dimensional van der Waals materials are interesting for fundamental physics exploration and device applications because of their attractive physical properties. Here, we report a strategy to realize photoluminescence (PL) enhancement of two-dimensional transition-metal dichalcogenides (TMDCs) in the visible range using a plasmonic microstructure with patterned gold nanoantennas and a metal-insulator-semiconductor-insulator-metal structure. The PL intensity was enhanced by a factor of two under Y-polarization due to the increased radiative decay rate by the surface plasmon radiation channel in the gold nanoantennas and the decreased nonradiative decay rate by suppressing exciton quenching in the SiO2 isolation layer. The fluorescence lifetime of monolayer tungsten disulfide in this structure was shorter than that of a sample without patterned gold nanoantennas. Tailoring the light-matter interactions between two-dimensional TMDCs and plasmonic nanostructures may provide highly efficient optoelectronic devices such as TMDC-based light emitters.
NASA Astrophysics Data System (ADS)
Bhowal, Ashim Chandra; Kundu, Sarathi
2018-04-01
PEDOT:PSS is a water soluble conducting polymer consists of positively charged PEDOT and negatively charged PSS. However, this polymer suffers low conductivity problem which restrict its use. In this paper, electrical conductivity of PEDOT:PSS thin films is improved by using charged gold nanoparticles. The nanoparticles used are synthesized using lysozyme protein. The nanoparticles coated with lysozyme protein possess positive zeta potential. In the presence of gold nanoparticles due to electrostatic interaction between positively charged nanoparticles and negatively charged PSS chains, modification takes place in the surface morphology and electrical behaviors of PEDOT:PSS thin films. The changes in the polymer matrix conformations in the presence of nanoparticles are studied by Fourier transformed Infra-red (FTIR) spectroscopy, whereas the surface morphology of prepared thin films before and after interaction with nanoparticles is investigated through atomic force microscopy (AFM). Four probe method is used to measure the variation of electrical conductivity from I-V characteristics curves.
Eisler, R.
2003-01-01
Recovery of ionic and metallic gold (Au) from a wide variety of solutions by selected species of bacteria, yeasts, fungi, algae, and higher plants is documented. Gold accumulations were up to 7.0 g/kg dry weight (DW) in various species of bacteria, 25.0 g/kg DW in freshwater algae, 84.0 g/kg DW in peat, and 100.0 g/kg DW in dried fungus mixed with keratinous material. Mechanisms of accumulation include oxidation, dissolution, reduction, leaching, and sorption. Uptake patterns are significantly modified by the physicochemical milieu. Crab exoskeletons accumulate up to 4.9 g Au/kg DW; however, gold accumulations in various tissues of living teleosts, decapod crustaceans, and bivalve molluscs are negligible.
Use of array of conducting polymers for differentiation of coconut oil products.
Rañola, Rey Alfred G; Santiago, Karen S; Sevilla, Fortunato B
2016-01-01
An array of chemiresistors based on conducting polymers was assembled for the differentiation of coconut oil products. The chemiresistor sensors were fabricated through the potentiostatic electrodeposition of polyaniline (PANi), polypyrrole (PPy) and poly(3-methylthiophene) (P-3MTp) on the gap separating two planar gold electrodes set on a Teflon substrate. The change in electrical resistance of the sensors was measured and observed after exposing the array to the headspace of oil samples. The sensor response was found rapid, reversible and reproducible. Different signals were obtained for each coconut oil sample and pattern recognition techniques were employed for the analysis of the data. The developed system was able to distinguish virgin coconut oil (VCO) from refined, bleached & deodorised coconut oil (RBDCO), flavoured VCO, homemade VCO, and rancid VCO. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Caplan, Maggie L. (Inventor); Stoakley, Diane M. (Inventor); St. Clair, Anne K. (Inventor)
1996-01-01
An electrically conductive, thermooxidatively stable poltimide, especially a film thereof, is prepared from an intimate admixture of a particular polyimide and gold (III) ions, in an amount sufficient to provide between 17 and 21 percent by weight of gold (III) ions, based on the weight of electrically conductive, thermooxidatively stable polyimide. The particular polyimide is prepared from a polyamic acid which has been synthesized from a dianhydride/diamine combination selected from the group consisting of 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 2,2-bis[4-(4 -aminophenoxy)phenyl]hexafluoropropane; 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 4,4'-oxydianiline; 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride and 4,4'-oxydianiline; and 3,3'4,4'-benzophenonetetracarboxylic dianhydride and 2,2-bis(3-aminophenyl)hexafluoropropane.
High resolution SEM imaging of gold nanoparticles in cells and tissues.
Goldstein, A; Soroka, Y; Frušić-Zlotkin, M; Popov, I; Kohen, R
2014-12-01
The growing demand of gold nanoparticles in medical applications increases the need for simple and efficient characterization methods of the interaction between the nanoparticles and biological systems. Due to its nanometre resolution, modern scanning electron microscopy (SEM) offers straightforward visualization of metallic nanoparticles down to a few nanometre size, almost without any special preparation step. However, visualization of biological materials in SEM requires complicated preparation procedure, which is typically finished by metal coating needed to decrease charging artefacts and quick radiation damage of biomaterials in the course of SEM imaging. The finest conductive metal coating available is usually composed of a few nanometre size clusters, which are almost identical to the metal nanoparticles employed in medical applications. Therefore, SEM monitoring of metal nanoparticles within cells and tissues is incompatible with the conventional preparation methods. In this work, we show that charging artefacts related to non-conductive biological specimen can be successfully eliminated by placing the uncoated biological sample on a conductive substrate. By growing the cells on glass pre-coated with a chromium layer, we were able to observe the uptake of 10 nm gold nanoparticles inside uncoated and unstained macrophages and keratinocytes cells. Imaging in back scattered electrons allowed observation of gold nanoparticles located inside the cells, while imaging in secondary electron gave information on gold nanoparticles located on the surface of the cells. By mounting a skin cross-section on an improved conductive holder, consisting of a silicon substrate coated with copper, we were able to observe penetration of gold nanoparticles of only 5 nm size through the skin barrier in an uncoated skin tissue. The described method offers a convenient modification in preparation procedure for biological samples to be analyzed in SEM. The method provides high conductivity without application of surface coating and requires less time and a reduced use of toxic chemicals. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Patterning Self-Assembled Monolayers on Gold: Green Materials Chemistry in the Teaching Laboratory
ERIC Educational Resources Information Center
McFarland, Adam D.; Huffman, Lauren M.; Parent, Kathryn, E.; Hutchison, James E.; Thompson, John E.
2004-01-01
An experiment demonstrating self-assembled monolayer (SAM) chemistry, organic thin-film patterning and the use of molecular functionality to control macroscopic properties is described. Several important green chemistry principles are introduced.
Thermionic field emission in gold nitride Schottky nanodiodes
NASA Astrophysics Data System (ADS)
Spyropoulos-Antonakakis, N.; Sarantopoulou, E.; Kollia, Z.; Samardžija, Z.; Kobe, S.; Cefalas, A. C.
2012-11-01
We report on the thermionic field emission and charge transport properties of gold nitride nanodomains grown by pulsed laser deposition with a molecular fluorine laser at 157 nm. The nanodomains are sandwiched between the metallic tip of a conductive atomic force microscope and a thin gold layer forming thus a metal-semiconductor-metal junction. Although the limited existing data in the literature indicate that gold nitride was synthesized previously with low efficiency, poor stability, and metallic character; in this work, it is shown that gold nitride nanodomains exhibit semiconducting behavior and the metal-semiconductor-metal contact can be modeled with the back-to-back Schottky barrier model. From the experimental I-V curves, the main charge carrier transport process is found to be thermionic field emission via electron tunneling. The rectifying, near symmetric and asymmetric current response of nanocontacts is related to the effective contact area of the gold nitride nanodomains with the metals. A lower limit for the majority charge carriers concentration at the boundaries of nanodomains is also established using the full depletion approximation, as nanodomains with thickness as low as 6 nm were found to be conductive. Current rectification and charge memory effects are also observed in "quite small" conductive nanodomains (6-10 nm) due to stored charges. Indeed, charges near the surface are identified as inversion domains in the phase shift mapping performed with electrostatic force microscopy and are attributed to charge trapping at the boundaries of the nanodomains.
NASA Astrophysics Data System (ADS)
Hérail, Gérard; Fornari, Michel; Rouhier, Michel
1989-10-01
Gold placers are formed as a result of surficial processes but glacial and fluvioglacial systems are generally considered to be unfavourable for placer genesis. Nevertheless, some important glacial and fluvioglacial placers have been discovered and are currently being exploited in the Andes of Peru and Bolivia. In the Plio-Pleistocene Ananea-Ancocala basin (4300-4900 m above sea-level), the gold content of the various formations indicates that only glacial and fluvioglacial sediments related to the Ancocala and Chaquiminas Glaciations (middle and upper Pleistocene) contain gold in any notable quantity. Local concentrations of economic interest occur only where a glacier has cut through a primary mineralized zone. Glacial erosion of dispersed primary mineralizations does not produce high-content placers of the kind found in fluviatile environments. Gold distribution in tills is more irregular than in fluviatile sediments and no marked enrichment at bedrock occurs. The transition from a glacial to a fluvioglacial environment is characterized by an increase in gold content due to a relative concentration of the biggest gold flakes and by the appearance of a gold distribution pattern similar to that found in a fluviatile environment. During their transport by glacial and fluvioglacial processes, gold particles acquire specific features; the size and morphology of a gold flake population are determined by the sedimentological and geomorphological environment in which the flakes are carried.
Characterization of Gold-Sputtered Zinc Oxide Nanorods-a Potential Hybrid Material.
Perumal, Veeradasan; Hashim, Uda; Gopinath, Subash C B; Rajintra Prasad, Haarindraprasad; Wei-Wen, Liu; Balakrishnan, S R; Vijayakumar, Thivina; Rahim, Ruslinda Abdul
2016-12-01
Generation of hybrid nanostructures has been attested as a promising approach to develop high-performance sensing substrates. Herein, hybrid zinc oxide (ZnO) nanorod dopants with different gold (Au) thicknesses were grown on silicon wafer and studied for their impact on physical, optical and electrical characteristics. Structural patterns displayed that ZnO crystal lattice is in preferred c-axis orientation and proved the higher purities. Observations under field emission scanning electron microscopy revealed the coverage of ZnO nanorods by Au-spots having diameters in the average ranges of 5-10 nm, as determined under transmission electron microscopy. Impedance spectroscopic analysis of Au-sputtered ZnO nanorods was carried out in the frequency range of 1 to 100 MHz with applied AC amplitude of 1 V RMS. The obtained results showed significant changes in the electrical properties (conductance and dielectric constant) with nanostructures. A clear demonstration with 30-nm thickness of Au-sputtering was apparent to be ideal for downstream applications, due to the lowest variation in resistance value of grain boundary, which has dynamic and superior characteristics.
NASA Astrophysics Data System (ADS)
Ge, Yunfei; Zhang, Yuan; Weaver, Jonathan M. R.; Dobson, Phillip S.
2017-12-01
Scanning thermal microscopy (SThM) is a technique which is often used for the measurement of the thermal conductivity of materials at the nanometre scale. The impact of nano-scale feature size and shape on apparent thermal conductivity, as measured using SThM, has been investigated. To achieve this, our recently developed topography-free samples with 200 and 400 nm wide gold wires (50 nm thick) of length of 400-2500 nm were fabricated and their thermal resistance measured and analysed. This data was used in the development and validation of a rigorous but simple heat transfer model that describes a nanoscopic contact to an object with finite shape and size. This model, in combination with a recently proposed thermal resistance network, was then used to calculate the SThM probe signal obtained by measuring these features. These calculated values closely matched the experimental results obtained from the topography-free sample. By using the model to analyse the dimensional dependence of thermal resistance, we demonstrate that feature size and shape has a significant impact on measured thermal properties that can result in a misinterpretation of material thermal conductivity. In the case of a gold nanowire embedded within a silicon nitride matrix it is found that the apparent thermal conductivity of the wire appears to be depressed by a factor of twenty from the true value. These results clearly demonstrate the importance of knowing both probe-sample thermal interactions and feature dimensions as well as shape when using SThM to quantify material thermal properties. Finally, the new model is used to identify the heat flux sensitivity, as well as the effective contact size of the conventional SThM system used in this study.
NASA Astrophysics Data System (ADS)
Arif, J.; Baker, T.
2004-10-01
Gold is an important by-product in many porphyry-type deposits but the distribution and chemistry of gold in such systems remains poorly understood. Here we report the results of petrographic, electron microprobe, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and flotation test studies of gold and associated copper sulfides within a paragenetic framework from the world-class Batu Hijau (914 mt @ 0.53% Cu, 0.40 g/t Au) porphyry copper gold deposit, Indonesia. Unlike many other porphyry copper gold deposits, early copper minerals (bornite digenite chalcocite) are well preserved at Batu Hijau and the chalcopyrite pyrite overprint is less developed. Hence, it provides an excellent opportunity to study the entire gold paragenesis of the porphyry system. In 105 polished thin sections, 699 native gold grains were identified. Almost all of the native gold grains occurred either within quartz veins, attached to sulfide, or as free gold along quartz or silicate grain boundaries. The native gold grains are dominantly round in shape and mostly 1 12 μm in size. The majority of gold was deposited during the formation of early ‘A’ veins and is dominantly associated with bornite rather than chalcopyrite. The petrographic and LA-ICP-MS study results indicate that in bornite-rich ores gold mostly occurs within copper sulfide grains as invisible gold (i.e., within the sulfide structure) or as native gold grains. In chalcopyrite-rich ores gold mostly occurs as native gold grains with lesser invisible gold. Petrographic observations also indicate a higher proportion of free gold (native gold not attached to any sulfide) in chalcopyrite-rich ores compared to bornite rich ores. The pattern of free gold distribution appears to correlate with the flotation test data, where the average gold recovery value from chalcopyrite-rich ores is consistently lower than bornite-rich ores. Our data suggest that porphyry copper-gold deposits with chalcopyrite-rich ores are more likely to have a higher proportion of free gold and may require different ore processing strategies.
The increase in conductance of a gold single atom chain during elastic elongation
NASA Astrophysics Data System (ADS)
Tavazza, F.; Barzilai, S.; Smith, D. T.; Levine, L. E.
2013-02-01
The conductance of monoatomic gold wires has been studied using ab initio calculations and the transmission was found to vary with the elastic strain. Counter-intuitively, the conductance was found to increase for the initial stages of the elongation, where the structure has a zigzag shape and the bond angles increase from ≈140° toward ≈160°. After a certain elongation limit, where the angles are relatively high, the bond length elongation associated with a Peierls distortion reverses this trend and the conductance decreases. These simulations are in good agreement with previously unexplained experimental results.
III-V nanowire synthesis by use of electrodeposited gold particles.
Jafari Jam, Reza; Heurlin, Magnus; Jain, Vishal; Kvennefors, Anders; Graczyk, Mariusz; Maximov, Ivan; Borgström, Magnus T; Pettersson, Håkan; Samuelson, Lars
2015-01-14
Semiconductor nanowires are great candidates for building novel electronic devices. Considering the cost of fabricating such devices, substrate reuse and gold consumption are the main concerns. Here we report on implementation of high throughput gold electrodeposition for selective deposition of metal seed particles in arrays defined by lithography for nanowire synthesis. By use of this method, a reduction in gold consumption by a factor of at least 300 was achieved, as compared to conventional thermal evaporation for the same pattern. Because this method also facilitates substrate reuse, a significantly reduced cost of the final device is expected. We investigate the morphology, crystallography, and optical properties of InP and GaAs nanowires grown from electrodeposited gold seed particles and compare them with the properties of nanowires grown from seed particles defined by thermal evaporation of gold. We find that nanowire synthesis, as well as the material properties of the grown nanowires are comparable and quite independent of the gold deposition technique. On the basis of these results, electrodeposition is proposed as a key technology for large-scale fabrication of nanowire-based devices.
Shaw, C F; Schaeffer-Memmel, N; Krawczak, D
1986-03-01
The metabolites of gold in the urine of rats given the antiarthritic drug aurothiomalate were investigated by gel permeation chromatography, electrophoresis, and chemical studies. Following a single dose of aurtothiomalate, the excreted gold was protein-bound in the high-molecular-weight (greater than or equal to 150,000 dalton) and serum albumin fractions. Electrophoresis confirmed the presence of albumin, but showed that the other proteins present differ from those in normal or in vitro aurothiomalate-incubated rat sera. The pattern of the proteins establishes that the proteinuria was of the glomerular type. The alterations in the gold distribution produced by incubation of the urine with the low-molecular-weight thiol penicillamine and with exogenously added aurothiomalate indicated the existence of a labile equilibrium of gold among protein binding sites in the urine. Incubation of rat and human sera and commercially prepared serum albumins with aurothiomalate increased the electrophoretic mobility of the albumin. The significance of this change in electrophoretic mobility with respect to two models of gold binding by serum albumin is discussed.
Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation.
Pang, Zhaoguang; Zhang, Xinping
2011-04-08
We report direct writing of metallic photonic crystals (MPCs) through a single-shot exposure of a thin film of colloidal gold nanoparticles to the interference pattern of a single UV laser pulse before a subsequent annealing process. This is defined as interference ablation, where the colloidal gold nanoparticles illuminated by the bright interference fringes are removed instantly within a timescale of about 6 ns, which is actually the pulse length of the UV laser, whereas the gold nanoparticles located within the dark interference fringes remain on the substrate and form grating structures. This kind of ablation has been proven to have a high spatial resolution and thus enables successful fabrication of waveguided MPC structures with the optical response in the visible spectral range. The subsequent annealing process transforms the grating structures consisting of ligand-covered gold nanoparticles into plasmonic MPCs. The annealing temperature is optimized to a range from 250 to 300 °C to produce MPCs of gold nanowires with a period of 300 nm and an effective area of 5 mm in diameter. If the sample of the spin-coated gold nanoparticles is rotated by 90° after the first exposure, true two-dimensional plasmonic MPCs are produced through a second exposure to the interference pattern. Strong plasmonic resonance and its coupling with the photonic modes of the waveguided MPCs verifies the success of this new fabrication technique. This is the simplest and most efficient technique so far for the construction of large-area MPC devices, which enables true mass fabrication of plasmonic devices with high reproducibility and high success rate.
Evaluation of stability of interface between CCM (Co-Cr-Mo) UCLA abutment and external hex implant
Yoon, Ki-Joon; Park, Young-Bum; Choi, Hyunmin; Cho, Youngsung; Lee, Jae-Hoon
2016-01-01
PURPOSE The purpose of this study is to evaluate the stability of interface between Co-Cr-Mo (CCM) UCLA abutment and external hex implant. MATERIALS AND METHODS Sixteen external hex implant fixtures were assigned to two groups (CCM and Gold group) and were embedded in molds using clear acrylic resin. Screw-retained prostheses were constructed using CCM UCLA abutment and Gold UCLA abutment. The external implant fixture and screw-retained prostheses were connected using abutment screws. After the abutments were tightened to 30 Ncm torque, 5 kg thermocyclic functional loading was applied by chewing simulator. A target of 1.0 × 106 cycles was applied. After cyclic loading, removal torque values were recorded using a driving torque tester, and the interface between implant fixture and abutment was evaluated by scanning electronic microscope (SEM). The means and standard deviations (SD) between the CCM and Gold groups were analyzed with independent t-test at the significance level of 0.05. RESULTS Fractures of crowns, abutments, abutment screws, and fixtures and loosening of abutment screws were not observed after thermocyclic loading. There were no statistically significant differences at the recorded removal torque values between CCM and Gold groups (P>.05). SEM analysis revealed that remarkable wear patterns were observed at the abutment interface only for Gold UCLA abutments. Those patterns were not observed for other specimens. CONCLUSION Within the limit of this study, CCM UCLA abutment has no statistically significant difference in the stability of interface with external hex implant, compared with Gold UCLA abutment. PMID:28018564
Direct writing of large-area plasmonic photonic crystals using single-shot interference ablation
NASA Astrophysics Data System (ADS)
Pang, Zhaoguang; Zhang, Xinping
2011-04-01
We report direct writing of metallic photonic crystals (MPCs) through a single-shot exposure of a thin film of colloidal gold nanoparticles to the interference pattern of a single UV laser pulse before a subsequent annealing process. This is defined as interference ablation, where the colloidal gold nanoparticles illuminated by the bright interference fringes are removed instantly within a timescale of about 6 ns, which is actually the pulse length of the UV laser, whereas the gold nanoparticles located within the dark interference fringes remain on the substrate and form grating structures. This kind of ablation has been proven to have a high spatial resolution and thus enables successful fabrication of waveguided MPC structures with the optical response in the visible spectral range. The subsequent annealing process transforms the grating structures consisting of ligand-covered gold nanoparticles into plasmonic MPCs. The annealing temperature is optimized to a range from 250 to 300 °C to produce MPCs of gold nanowires with a period of 300 nm and an effective area of 5 mm in diameter. If the sample of the spin-coated gold nanoparticles is rotated by 90° after the first exposure, true two-dimensional plasmonic MPCs are produced through a second exposure to the interference pattern. Strong plasmonic resonance and its coupling with the photonic modes of the waveguided MPCs verifies the success of this new fabrication technique. This is the simplest and most efficient technique so far for the construction of large-area MPC devices, which enables true mass fabrication of plasmonic devices with high reproducibility and high success rate.
Daisy, P; Saipriya, K
2012-01-01
Cassia fistula stem bark was used for the preparation of aqueous extract and synthesis of gold nanoparticles to evaluate the hypoglycemic effects of the plant. The synthesized gold nanoparticles were characterized by ultraviolet-visible spectroscopy for their absorbance pattern, Fourier transform infrared spectroscopy to identify possible functional groups, and scanning electron microscopy to determine the size of the nanoparticles. The present investigation reports the efficacy of the gold nanoparticles as promising in the treatment of hyperglycemia. Body weight, serum glucose concentrations, liver function tests, kidney function tests, and lipid profile were analyzed. A significantly larger decrease in serum biochemistry parameters and an increase in body weight, total protein levels, and high-density lipoprotein were observed in rats with streptozotocin-induced diabetes treated with gold nanoparticles than in the ones treated with the aqueous extract. The results of this study confirm that C. fistula gold nanoparticles have promising antidiabetic properties. PMID:22419867
High photoreactivity in a non-fluorescent photocleavable ligands on gold
NASA Astrophysics Data System (ADS)
Robinson, Hans D.; Daengngam, Chalongrat; Stoianov, Stefan V.; Thorpe, Steven B.; Guo, Xi; Santos, Webster L.; Morris, John R.
2014-03-01
We report on the photo-patterning of a gold surface functionalized with a self-assembled monolayer of an o-nitrobenzyl-based photocleavable ligand bound to the gold surface with a thiol anchor. We find that the dose of UV light required to induce the photoreaction on gold is very similar to the dose in an alcohol solution, even though many optical phenomena are strongly suppressed on metal surfaces. We attribute this finding to a combination of the large skin depth in gold at UV wavelengths, the high speed of the photoreaction, and the spatially indirect nature of the lowest excited singlet. Any photoreactive compound where the quantum efficiency of fluorescence is sufficiently low, preferably no larger than about 10-5 in the case of gold surfaces, will show a similarly high photoreactivity in metal-surface monolayers. The implications of this result for optically driven self-assembly in plasmonic systems will be discussed. This work was supported by a grant from the National Science Foundation (DMR-106753).
Quantum sized gold nanoclusters with atomic precision.
Qian, Huifeng; Zhu, Manzhou; Wu, Zhikun; Jin, Rongchao
2012-09-18
Gold nanoparticles typically have a metallic core, and the electronic conduction band consists of quasicontinuous energy levels (i.e. spacing δ ≪ k(B)T, where k(B)T is the thermal energy at temperature T (typically room temperature) and k(B) is the Boltzmann constant). Electrons in the conduction band roam throughout the metal core, and light can collectively excite these electrons to give rise to plasmonic responses. This plasmon resonance accounts for the beautiful ruby-red color of colloidal gold first observed by Faraday back in 1857. On the other hand, when gold nanoparticles become extremely small (<2 nm in diameter), significant quantization occurs to the conduction band. These quantum-sized nanoparticles constitute a new class of nanomaterial and have received much attention in recent years. To differentiate quantum-sized nanoparticles from conventional plasmonic gold nanoparticles, researchers often refer to the ultrasmall nanoparticles as nanoclusters. In this Account, we chose several typical sizes of gold nanoclusters, including Au(25)(SR)(18), Au(38)(SR)(24), Au(102)(SR)(44), and Au(144)(SR)(60), to illustrate the novel properties of metal nanoclusters imparted by quantum size effects. In the nanocluster size regime, many of the physical and chemical properties of gold nanoparticles are fundamentally altered. Gold nanoclusters have discrete electronic energy levels as opposed to the continuous band in plasmonic nanoparticles. Quantum-sized nanoparticles also show multiple optical absorption peaks in the optical spectrum versus a single surface plasmon resonance (SPR) peak at 520 nm for spherical gold nanocrystals. Although larger nanocrystals show an fcc structure, nanoclusters often have non-fcc atomic packing structures. Nanoclusters also have unique fluorescent, chiral, and magnetic properties. Due to the strong quantum confinement effect, adding or removing one gold atom significantly changes the structure and the electronic and optical properties of the nanocluster. Therefore, precise atomic control of nanoclusters is critically important: the nanometer precision typical of conventional nanoparticles is not sufficient. Atomically precise nanoclusters are represented by molecular formulas (e.g. Au(n)(SR)(m) for thiolate-protected ones, where n and m denote the respective number of gold atoms and ligands). Recently, major advances in the synthesis and structural characterization of molecular purity gold nanoclusters have made in-depth investigations of the size evolution of metal nanoclusters possible. Metal nanoclusters lie in the intermediate regime between localized atomic states and delocalized band structure in terms of electronic properties. We anticipate that future research on quantum-sized nanoclusters will stimulate broad scientific and technological interests in this special type of metal nanomaterial.
355 nm UV laser patterning and post-processing of FR4 PCB for fine pitch components integration
NASA Astrophysics Data System (ADS)
Dupont, F.; Stoukatch, S.; Laurent, P.; Dricot, S.; Kraft, M.
2018-01-01
Laser direct patterning of fine pitch features on standard PCB (Printed Circuit Board) was investigated. As a feasibility study, eight parameter sets were selected and the smallest achievable grooves and tracks were determined. Three regular FR4 (Flame Resistant 4) PCB substrates have been experimented with. The first two have respectively 18 μm and 35 μm bare copper conductive layer without finish while the third one has a 18 μm copper layer with ENIG (Electroless Nickel Immersion Gold) finish. Laser patterning of PCB conductive structure is a single step, maskless and purely dry operation expected to allow reaching fine pitch features, even on thick copper layers (≥ 18 μm) for which the traditional chemical wet processes encounter underetch problems. Aside PCB complete structuring, a second objective is to evaluate laser post-processing of standard patterned PCB as an economically viable technique to integrate a few fine pitch components on low cost PCBs. This process is suitable for prototyping and for small and medium series. The widths of the smallest grooves and tracks that we achieved were measured about 11 μm and 19 μm on 18 μm thick cooper layer, 13 μm and 39 μm on 35 μm thick cooper layer, and 11 μm and 38 μm on 18 μm cooper layer with ENIG finish. These values are well below what can be achieved with a wet process. Etching results are presented at high magnification both from the top and from a cross-sectioning perspective. The latter allows observation of the TAZ (Thermal Affected Zone) in the conductive layer and the damages in the FR4.
Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy?
Yeo, Chien Ing; Ooi, Kah Kooi; Tiekink, Edward R T
2018-06-11
A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.
Gold nanoparticles with patterned surface monolayers for nanomedicine: current perspectives.
Pengo, Paolo; Şologan, Maria; Pasquato, Lucia; Guida, Filomena; Pacor, Sabrina; Tossi, Alessandro; Stellacci, Francesco; Marson, Domenico; Boccardo, Silvia; Pricl, Sabrina; Posocco, Paola
2017-12-01
Molecular self-assembly is a topic attracting intense scientific interest. Various strategies have been developed for construction of molecular aggregates with rationally designed properties, geometries, and dimensions that promise to provide solutions to both theoretical and practical problems in areas such as drug delivery, medical diagnostics, and biosensors, to name but a few. In this respect, gold nanoparticles covered with self-assembled monolayers presenting nanoscale surface patterns-typically patched, striped or Janus-like domains-represent an emerging field. These systems are particularly intriguing for use in bio-nanotechnology applications, as presence of such monolayers with three-dimensional (3D) morphology provides nanoparticles with surface-dependent properties that, in turn, affect their biological behavior. Comprehensive understanding of the physicochemical interactions occurring at the interface between these versatile nanomaterials and biological systems is therefore crucial to fully exploit their potential. This review aims to explore the current state of development of such patterned, self-assembled monolayer-protected gold nanoparticles, through step-by-step analysis of their conceptual design, synthetic procedures, predicted and determined surface characteristics, interactions with and performance in biological environments, and experimental and computational methods currently employed for their investigation.
Zhang, Jiajing; Nie, Xin; Ji, Yinglu; Liu, Ying; Wu, Xiaochun; Chen, Chunying; Fang, Xiaohong
2014-06-01
Gold nanostructures with promising applications in biomedical field have attracted great attention. However, some fundamental questions other than the development of novel applications should be elucidated before they can actually serve as biomedicines in the clinic. Bio-safety is one of the most important issues. Since numerous modifications (e.g., surface coating and composites) have been designed on gold nanoparticles (GNPs) to extend their application, there would be hundreds of GNPs synthesized in the lab although the prototypes of GNPs (i.e., cluster, shell, rod, sphere, cage, and star) are rather limited. Thus, in the present work we aim to conduct our experiments only on the most basic types of GNPs--including gold nanocluster (GNC), gold nanorod (GNR) and gold nanosphere (GNS), to investigate their biodistribution and toxicities in vivo, in the hope of revealing some basic rules which could be further extended to other complicated situations. Bovine serum albumin (BSA) was coated at the surface to increase their plasma stability and of the same BSA coating would help to compare the fate and behaviors of various GNPs in vivo. After intravenous administration of different GNPs with an equal content of gold element at 0.5 mg/kg in mice, samples were harvested at a series of time points. Biodistribution was compared among different GNPs and the process of accumulation-retention-clearance of each kind of GNP was also observed through quantification analysis by inductively coupled plasma-mass spectrometry (ICP-MS). The results showed, with the same BSA coating at the surface and similar negative charge, size rather than shape was dominating the in vivo fate of GNPs. Even between GNC and hydrolyzed GNC with their size at 7.1 and 3.2 nm, huge difference in the kidney accumulation was observed. Totally, GNR and GNS in relative large size preferred to accumulate in liver and spleen whereas GNC in relative small size tended to accumulate in liver and kidney. GNPs resided in liver were hardly cleared out of body till 28 d whereas their accumulation in kidney was almost entirely eliminated with prolonged time, although not as rapid as reported in previous work. In vivo toxicities evaluated by pathology observation and blood biochemical analysis also revealed slight liver and kidney damage, basically associated with the biodistribution pattern of GNPs.
Automated Algorithm to Detect Changes in Geostationary Satellites Configuration and Cross-Tagging
2015-10-18
Color Photometry Catalog (GCPC) and Geo Observations with Latitudinal Diversity Simultaneously ( GOLDS ) data sets are used to simulate configuration...stabilized geostationary satellites in the Geostationary Observations with Latitudinal Diversity Simultaneously ( GOLDS ) and GEO satellite Color...107.3o W. The GOLDS campaign was conducted in two phases, both lead by AFRL’s Space Vehicles Directorate with the participation of a consortium
Qian, Tao; Yu, Chenfei; Wu, Shishan; Shen, Jian
2013-12-01
Gold nanoparticles coated polystyrene/reduced graphite oxide (AuNPs@PS/RGO) microspheres have been successfully prepared via a facile process, and the decorative gold nanoparticles could prevent the aggregation of RGO by electrostatic repulsive interaction, and lead to high dispersibility of the composite. The prepared composite has a highly increased conductivity of 129Sm(-1) due to the unique electrical properties of citrate reduced gold nanoparticles. Being employed as an electrochemical sensor for detection of dopamine, the modified electrode exhibits remarkable sensitivity (3.44μA/μM) and lower detection limit (5nM), with linear response in a range of 0.05-20μM. Moreover, valid response to dopamine obtained in present work also indicates the prospective performances of AuNPs@PS/RGO microspheres to other biological molecules, such as nucleic acids, proteins and enzymes. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Philip, Daizy; Unni, C.
2011-05-01
Aqueous extract of Ocimum sanctum leaf is used as reducing agent for the environmentally friendly synthesis of gold and silver nanoparticles. The nanoparticles were characterized using UV-vis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. These methods allow the synthesis of hexagonal gold nanoparticles having size ∼30 nm showing two surface plasmon resonance (SPR) bands by changing the relative concentration of HAuCl 4 and the extract. Broadening of SPR is observed at larger quantities of the extract possibly due to biosorption of gold ions. Silver nanoparticles with size in the range 10-20 nm having symmetric SPR band centered around 409 nm are obtained for the colloid synthesized at room temperature at a pH of 8. Crystallinity of the nanoparticles is confirmed from the XRD pattern. Biomolecules responsible for capping are different in gold and silver nanoparticles as evidenced by the FTIR spectra.
KALMIOPSIS WILDERNESS, OREGON.
Page, Norman J; Miller, Michael S.
1984-01-01
Geologic, geochemical, geophysical field and laboratory, and mine and prospect studies conducted in the Kalmiopsis Wilderness, Oregon indicate that areas within and immediately adjacent to the wilderness have substantiated mineral-resource potential. The types of mineral resources which occur in these areas include massive sulfide deposits containing copper, zinc, lead, silver and gold; podiform chromite deposits; laterite deposits containing nickel, cobalt, and chromium; lode gold deposits; and placer gold deposits. Past production from existing mines is estimated to have been at least 7000 troy oz of gold, 4000 long tons of chromite, and few tens of tons of copper ore.
Harrison, R K; Ben-Yakar, Adela
2010-10-11
We present experimental results for the plasmonic laser ablation of silicon with nanoscale features as small as 22 x 66 nm using single near-infrared, femtosecond laser pulses incident on gold nanorods. Near the ablation threshold, these features are photo-imprints of gold nanorod particles positioned on the surface of the silicon and have feature sizes similar to the nanorods. The single rod-shaped ablation pattern matches the enhancement patterns of the Poynting vector magnitude on the surface of silicon, implying that the ablation is a result of the plasmonic enhancement of the incident electromagnetic waves in the near-field of the particles. Interestingly, the ablation pattern is different from the two separated holes at the ends of the nanorod, as would be expected from the electric field--|E|(2) enhancement pattern. We measured the plasmonic ablation threshold fluence to be almost two orders of magnitude less than the femtosecond laser ablation threshold of silica, present in the thin native oxide layer on the surface of silicon. This value also agrees with the enhancement of the Poynting vector of a nanorod on silicon as calculated with electromagnetic simulations. We thus conclude that plasmonic ablation with plasmonic nanoparticles depends directly on the polarization and the value of the near-field enhancement of the Poynting vector and not the square of the electric field as previously suggested.
Patterned Diblock Co-Polymer Thin Films as Templates for Advanced Anisotropic Metal Nanostructures.
Roth, Stephan V; Santoro, Gonzalo; Risch, Johannes F H; Yu, Shun; Schwartzkopf, Matthias; Boese, Torsten; Döhrmann, Ralph; Zhang, Peng; Besner, Bastian; Bremer, Philipp; Rukser, Dieter; Rübhausen, Michael A; Terrill, Nick J; Staniec, Paul A; Yao, Yuan; Metwalli, Ezzeldin; Müller-Buschbaum, Peter
2015-06-17
We demonstrate glancing-angle deposition of gold on a nanostructured diblock copolymer, namely polystyrene-block-poly(methyl methacrylate) thin film. Exploiting the selective wetting of gold on the polystyrene block, we are able to fabricate directional hierarchical structures. We prove the asymmetric growth of the gold nanoparticles and are able to extract the different growth laws by in situ scattering methods. The optical anisotropy of these hierarchical hybrid materials is further probed by angular resolved spectroscopic methods. This approach enables us to tailor functional hierarchical layers in nanodevices, such as nanoantennae arrays, organic photovoltaics, and sensor electronics.
NASA Astrophysics Data System (ADS)
Nguyen, Huu Chuong; Szyja, Bartłomiej M.; Doltsinis, Nikos L.
2014-09-01
Density functional theory (DFT) based molecular dynamics simulations have been performed of a 1,4-benzenedithiol molecule attached to two gold electrodes. To model the mechanical manipulation in typical break junction and atomic force microscopy experiments, the distance between two electrodes was incrementally increased up to the rupture point. For each pulling distance, the electric conductance was calculated using the DFT nonequilibrium Green's-function approach for a statistically relevant sample of configurations extracted from the simulation. With increasing mechanical strain, the formation of monoatomic gold wires is observed. The conductance decreases by three orders of magnitude as the initial twofold coordination of the thiol sulfur to the gold is reduced to a single S-Au bond at each electrode and the order in the electrodes is destroyed. Independent of the pulling distance, the conductance was found to fluctuate by at least two orders of magnitude depending on the instantaneous junction geometry.
Constructing, connecting and soldering nanostructures by environmental electron beam deposition
NASA Astrophysics Data System (ADS)
Mølhave, Kristian; Nørgaard Madsen, Dorte; Dohn, Søren; Bøggild, Peter
2004-08-01
Highly conductive nanoscale deposits with solid gold cores can be made by electron beam deposition in an environmental scanning electron microscope (ESEM), suggesting the method to be used for constructing, connecting and soldering nanostructures. This paper presents a feasibility study for such applications. We identify several issues related to contamination and unwanted deposition, relevant for deposition in both vacuum (EBD) and environmental conditions (EEBD). We study relations between scan rate, deposition rate, angle and line width for three-dimensional structures. Furthermore, we measure the conductivity of deposits containing gold cores, and find these structures to be highly conductive, approaching the conductivity of solid gold and capable of carrying high current densities. Finally, we study the use of the technique for soldering nanostructures such as carbon nanotubes. Based on the presented results we are able to estimate limits for the applicability of the method for the various applications, but also demonstrate that it is a versatile and powerful tool for nanotechnology within these limits.
Asymmetric statistical features of the Chinese domestic and international gold price fluctuation
NASA Astrophysics Data System (ADS)
Cao, Guangxi; Zhao, Yingchao; Han, Yan
2015-05-01
Analyzing the statistical features of fluctuation is remarkably significant for financial risk identification and measurement. In this study, the asymmetric detrended fluctuation analysis (A-DFA) method was applied to evaluate asymmetric multifractal scaling behaviors in the Shanghai and New York gold markets. Our findings showed that the multifractal features of the Chinese and international gold spot markets were asymmetric. The gold return series persisted longer in an increasing trend than in a decreasing trend. Moreover, the asymmetric degree of multifractals in the Chinese and international gold markets decreased with the increase in fluctuation range. In addition, the empirical analysis using sliding window technology indicated that multifractal asymmetry in the Chinese and international gold markets was characterized by its time-varying feature. However, the Shanghai and international gold markets basically shared a similar asymmetric degree evolution pattern. The American subprime mortgage crisis (2008) and the European debt crisis (2010) enhanced the asymmetric degree of the multifractal features of the Chinese and international gold markets. Furthermore, we also make statistical tests for the results of multifractatity and asymmetry, and discuss the origin of them. Finally, results of the empirical analysis using the threshold autoregressive conditional heteroskedasticity (TARCH) and exponential generalized autoregressive conditional heteroskedasticity (EGARCH) models exhibited that good news had a more significant effect on the cyclical fluctuation of the gold market than bad news. Moreover, good news exerted a more significant effect on the Chinese gold market than on the international gold market.
NASA Astrophysics Data System (ADS)
Blasco, Eva; Müller, Jonathan B.; Müller, Patrick; Fischer, Andreas C.; Barner-Kowollik, Christopher; Wegener, Martin
2017-02-01
During the last years there has been significant interest in the fabrication of conductive three-dimensional (3D) structures on the micrometer scale due to their potential applications in microelectronics or emerging fields such as flexible electronics, nanophotonics, and plasmonics. Two-photon direct laser writing (DLW) has been proposed as a potential tool for the fabrication of 3D microstructures in various contexts. The majority of these two-photon processes involve the preparation of insoluble polymeric networks using photopolymerizable photoresins based on acrylate or epoxy groups. Nevertheless, the preparation of conductive 3D microstructures is still very challenging. The aim of the current work has been the preparation of conductive 3D microstructures via DLW by employing a newly developed photoresist. The photoresist consists of acrylate-functionalized poly(ethylene glycol) derivates and HAuCl4 as the gold precursor. By varying the gold content of the photoresist, different structures have been prepared and characterized by SEM and XPS. Conductivity of individual wires between prefabricated macroelectrodes has been measured too. Subsequently, the material has been employed to demonstrate the possibility of true 3D microscale connections.
NASA Technical Reports Server (NTRS)
Hippensteele, S. A.; Russell, L. M.; Stepka, F. S.
1981-01-01
Commercially available elements of a composite consisting of a plastic sheet coated with liquid crystal, another sheet with a thin layer of a conducting material (gold or carbon), and copper bus bar strips were evaluated and found to provide a simple, convenient, accurate, and low-cost measuring device for use in heat transfer research. The particular feature of the composite is its ability to obtain local heat transfer coefficients and isotherm patterns that provide visual evaluation of the thermal performances of turbine blade cooling configurations. Examples of the use of the composite are presented.
Reducing wall plasma expansion with gold foam irradiated by laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lu; Ding, Yongkun, E-mail: ding-yk@vip.sina.com; Jiang, Shaoen, E-mail: jiangshn@vip.sina.com
The experimental study on the expanding plasma movement of low-density gold foam (∼1% solid density) irradiated by a high power laser is reported in this paper. Experiments were conducted using the SG-III prototype laser. Compared to solid gold with 19.3 g/cc density, the velocities of X-ray emission fronts moving off the wall are much smaller for gold foam with 0.3 g/cc density. Theoretical analysis and MULTI 1D simulation results also show less plasma blow-off, and that the density contour movement velocities of gold foam are smaller than those of solid gold, agreeing with experimental results. These results indicate that foam walls havemore » advantages in symmetry control and lowering plasma fill when used in ignition hohlraum.« less
Pulsed electric field assisted assembly of polyaniline
NASA Astrophysics Data System (ADS)
Kumar, Arun; Kazmer, David O.; Barry, Carol M. F.; Mead, Joey L.
2012-08-01
Assembling conducting polyaniline (PANi) on pre-patterned nano-structures by a high rate, commercially viable route offers an opportunity for manufacturing devices with nanoscale features. In this work we report for the first time the use of pulsed electric field to assist electrophoresis for the assembly of conducting polyaniline on gold nanowire interdigitated templates. This technique offers dynamic control over heat build-up, which has been a main drawback in the DC electrophoresis and AC dielectrophoresis as well as the main cause of nanowire template damage. The use of this technique allowed higher voltages to be applied, resulting in shorter assembly times (e.g., 17.4 s, assembly resolution of 100 nm). Moreover, the area coverage increases with the increase in number of pulses. A similar trend was observed with the deposition height and the increase in deposition height followed a linear trend with a correlation coefficient of 0.95. When the experimental mass deposited was compared with Hamaker’s theoretical model, the two were found to be very close. The pre-patterned templates with PANi deposition were subsequently used to transfer the nanoscale assembled PANi from the rigid templates to thermoplastic polyurethane using the thermoforming process.
WILD ROGUE WILDERNESS, OREGON.
Gray, Floyd; Miller, Michael S.
1984-01-01
A geologic, geochemical, and geophysical investigation and a survey of mines, prospects, and quarries were conducted to evaluate the mineral-resource potential of the Wild Rogue Wilderness, Oregon. Approximately 800 mining claims, one-third of which are placer gold locations, exist in or adjacent to the area. The Wild Rogue Wilderness has one area of probable resource for copper, lead, zinc, silver, and gold and two area of probable resource potential for gold.
Investigation of gold embrittlement in connector solder joints
NASA Technical Reports Server (NTRS)
Lane, F. L.
1972-01-01
An investigation was performed to determine to what extent typical flight connector solder joints may be embrittled by the presence of gold. In addition to mapping of gold content in connector solder joints by an electron microprobe analyzer, metallographic examinations and mechanical tests (thermal shock, vibration, impact and tensile strength) were also conducted. A description of the specimens and tests, a discussion of the data, and some conclusions are presented.
NASA Astrophysics Data System (ADS)
Du, L. C.; Xi, W. D.; Zhang, J. B.; Matsuzaki, H.; Furube, A.
2018-06-01
Photoinduced electron transfer from gold nanoparticles (NPs) to semiconductor under plasmon excitation is an important phenomenon in photocatalysis and solar cell applications. Femtosecond plasmon-induced electron transfer from gold NPs to the conduction band of different semiconductor like TiO2, SnO2, and ZnO was monitored at 3440 nm upon optical excitation of the surface plasmon band of gold NPs. It was found that electron injection was completed within 240 fs and the electron injection yield reached 10-30% under 570 nm excitation. It means TiO2 is not the only proper semiconductor as electron acceptors in such gold/semiconductor nanoparticle systems.
Schaal, Patrick A; Besmehn, Astrid; Maynicke, Eva; Noyong, Michael; Beschoten, Bernd; Simon, Ulrich
2012-02-07
We report the formation of thiol nanopatterns on SAM covered silicon wafers by converting sulfonic acid head groups via e-beam lithography. These thiol groups act as binding sites for gold nanoparticles, which can be enhanced to form electrically conducting nanostructures. This approach serves as a proof-of-concept for the combination of top-down and bottom-up processes for the generation of electrical devices on silicon.
Hydrogen in Mono-Atomic Gold Wires
NASA Astrophysics Data System (ADS)
Barnett, Robert N.; Sherbakov, Andrew G.; Landman, Uzi; Hakkinen, Hannu
2004-03-01
Results of ab-initio scalar relativistic density functional calculations of the interaction between a mono-atomic gold wire (suspended between two gold tips) and a hydrogen molecule, at various stages of wire stretching, are presented. The hydrogen molecule does not bind to the wire until the wire is sufficiently stretched, i.e. starting to break, at which time the molecule inserts itself into the wire restoring a fraction of the conductance quantum g. With subsequent compression of the wire the axis of the molecule gradually tips away from the wire axis until it becomes "quasi-dissociated" with the H-H axis perpendicular to the wire. At this point the conductance almost vanishes, while for the bare wire the conductance at this tip-to-tip separation is close to 1g. These results, and the frequency of various vibrational modes of the hydrogen molecule, are compared with recent experimental and theoretical work involving platinum wires.
Do patterns of change during treatment for panic disorder predict future panic symptoms?
Steinman, Shari A.; Hunter, Michael D.; Teachman, Bethany A.
2012-01-01
Background and Objectives Cognitive-behavioral therapies are currently the gold standard for panic disorder treatment, with well-documented treatment response. However, following interventions, some individuals continue to improve, while others experience a return of symptoms. The field lacks reliable ways to predict follow-up symptomology. In the current study, a cluster analysis with a repeated measures design was conducted to examine change patterns over 12 weeks of cognitive behavioral group therapy for panic disorder. The central aim of the study was to evaluate if change patterns predict level of panic symptom severity at a six month follow-up in this sample. Methods Individuals with panic disorder (N = 36) completed a measure of panic symptoms (Panic Disorder Severity Scale) at the outset of every therapy session and at a six month follow-up. Results Results revealed three patterns of change in this specific trial, which significantly predicted level of panic symptoms six months post-treatment, beyond initial or final level of panic symptoms, and beyond total symptom change. Limitations Given the relatively small, lab-based sample, replications in other settings and samples will be important. Conclusions Overall, results provide initial evidence that change patterns are meaningful predictors of panic symptom severity well after the final session of treatment. PMID:23187115
Detailed energy distributions in laser-produced plasmas of solid gold and foam gold planar targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Yunsong; Department of Engineering Physics, Tsinghua University, Beijing 100084; Zhang, Lu
Foam gold was proposed to increase the laser to x-ray conversion efficiency due to its important applications. To understand the mechanism of x-ray enhancement, the detailed energy distributions and plasma profiles for laser-irradiated solid gold and foam gold targets were studied comparatively by hydrodynamic simulations using the code Multi-1D. It is confirmed that the radiation heat wave is subsonic for the normal solid gold target, while supersonic for the foam gold target. The shock wave, which is behind the supersonic radiation heat wave for the foam gold target, generates a plasma temperature gradient with high temperature near the shock wavemore » front to produce an additional net outward radiation for enhancement of the x-ray emission. Much larger inward plasma velocity is also driven by the shock wave as an initial plasma velocity for the laser deposition and electron thermal conduct zone, which decreases the expanding plasma kinetic energy loss and helps to increase the x-ray radiation.« less
Monolayers and multilayers of conjugated polymers as nanosized electronic components.
Zotti, Gianni; Vercelli, Barbara; Berlin, Anna
2008-09-01
Conjugated polymers (CPs) are interesting materials for preparing devices based on nanoscopic molecular architectures because they exhibit electrical, electronic, magnetic, and optical properties similar to those of metals or semiconductors while maintaining the flexibility and ease of processing of polymers. The production of well-defined mono- and multilayers of CPs on electrodes with nanometer-scale, one-dimensional resolution remains, however, an important challenge. In this Account, we describe the preparation and conductive properties of nanometer-sized CP molecular structures formed on electrode surfaces--namely, self-assembled monolayer (SAM), brush-type, and self-assembled multilayer CPs--and in combination with gold nanoparticles (AuNPs). We have electrochemically polymerized SAMs of carboxyalkyl-functionalized terthiophenes aligned either perpendicular or parallel to the electrode surface. Anodic coupling of various pyrrole- and thiophene-based monomers in solution with the oligothiophene-based SAMs produced brush-like films. Microcontact printing of these SAMs produced patterns that, after heterocoupling, exhibited large height enhancements, as measured using atomic force microscopy (AFM). We have employed layer-by-layer self-assembly of water-soluble polythiophene-based polyelectrolytes to form self-assembled multilayers. The combination of isostructural polycationic and polyanionic polythiophenes produced layers of chains aligned parallel to the substrate plane. These stable, robust, and dense layers formed with high regularity on the preformed monolayers, with minimal interchain penetration. Infrared reflection/adsorption spectroscopy and X-ray diffraction analyses revealed unprecedented degrees of order. Deposition of soluble polypyrroles produced molecular layers that, when analyzed using a gold-coated AFM tip, formed gold-polymer-gold junctions that were either ohmic or rectifying, depending of the layer sequence. We also describe the electronic conduction of model alpha,omega-capped sexithiophenes featuring a range of electron donor/acceptor units and lengths of additional conjugation. The sexithiophene cores exhibit redox-type conductivity, developing at the neutral/cation and cation/dication levels with values depending the nature of the substitution and the redox system. Extending the conjugation beyond the sexithiophene frame introduces further oxidation processes displaying enhanced conductivity. Finally, we discuss the ability of CP-based monolayers to coordinate AuNPs. Although thiophene- and pyrrole-based oligomers aggregate toluene-soluble AuNPs, alkyl substitution inhibits the aggregation process through steric restraint. Consequently, we investigated the interactions between AuNPs and polypyrrole or polythiophene monolayers, including those formed from star-shaped molecules. The hindered aggregation provided by alkyl substituents allowed us to adsorb thiol-functionalized oligothiophenes and oligopyrroles directly onto preformed AuNPs. Novel materials incorporating AuNPs of the same size but bearing different conjugated ends or bridges have great promise for applications in electrocatalysis, electroanalysis, and organic electronics.
Directed assembly-based printing of homogeneous and hybrid nanorods using dielectrophoresis
NASA Astrophysics Data System (ADS)
Chai, Zhimin; Yilmaz, Cihan; Busnaina, Ahmed A.; Lissandrello, Charles A.; Carter, David J. D.
2017-11-01
Printing nano and microscale three-dimensional (3D) structures using directed assembly of nanoparticles has many potential applications in electronics, photonics and biotechnology. This paper presents a reproducible and scalable 3D dielectrophoresis assembly process for printing homogeneous silica and hybrid silica/gold nanorods from silica and gold nanoparticles. The nanoparticles are assembled into patterned vias under a dielectrophoretic force generated by an alternating current (AC) field, and then completely fused in situ to form nanorods. The assembly process is governed by the applied AC voltage amplitude and frequency, pattern geometry, and assembly time. Here, we find out that complete assembly of nanorods is not possible without applying both dielectrophoresis and electrophoresis. Therefore, a direct current offset voltage is used to add an additional electrophoretic force to the assembly process. The assembly can be precisely controlled to print silica nanorods with diameters from 20-200 nm and spacing from 500 nm to 2 μm. The assembled nanorods have good uniformity in diameter and height over a millimeter scale. Besides homogeneous silica nanorods, hybrid silica/gold nanorods are also assembled by sequentially assembling silica and gold nanoparticles. The precision of the assembly process is further demonstrated by assembling a single particle on top of each nanorod to demonstrate an additional level of functionalization. The assembled hybrid silica/gold nanorods have potential to be used for metamaterial applications that require nanoscale structures as well as for plasmonic sensors for biosensing applications.
Lakshmi, V Jhansi; Kannan, K P
2016-07-01
An indigenous fungal strain was isolated from Indian Kolar Gold Field mine soil. The isolate was heterothallic, branched septate, deeply floccose, fast-growing, dull green with white background conidial columnar mycelium from Aspergillus section Fumigati. Diverse metabolic patterns of the isolate exhibit high metal, thermal resistance which grews well from 28 ± 1 degrees C to 37 degrees C and pH concentration was significant on the growth of isolate. Phylogenetic analysis of 16srRNA β-Tubulin gene sequence established relationship among isolate and other taxa. Molecular identification and morphological features of fungal isolate were consistent with those of Neosartorya udagawae. Heterothallic N. udagawae FJ830683 strain was closely related to homothallic N. aureola EF661890. Fungal isolate extract synthesized narrow sized stable Gold nanoparticles (AuNPs).
High temperature superconducting YBCO microwave filters
NASA Astrophysics Data System (ADS)
Aghabagheri, S.; Rasti, M.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.; Mohammadpour-Aghdam, K.; Faraji-Dana, R.
2018-06-01
Epitaxial thin films of YBCO high temperature superconductor are widely used in telecommunication technology such as microwave filter, antenna, coupler and etc., due to their lower surface resistance and lower microwave loss than their normal conductor counterparts. Thin films of YBCO were fabricated by PLD technique on LAO substrate. Transition temperature and width were 88 K and 3 K, respectively. A filter pattern was designed and implemented by wet photolithography method on the films. Characterization of the filter at 77 K has been compared with the simulation results and the results for a made gold filter. Both YBCO and gold filters show high microwave loss. For YBCO filter, the reason may be due to the improper contacts on the feedlines and for gold filter, low thickness of the gold film has caused the loss increased.
Li, Yuan; Chopra, Nitin
2015-05-21
Patterned growth of multilayer graphene shell encapsulated gold nanoparticles (GNPs) and their covalent linking with inorganic quantum dots are demonstrated. GNPs were grown using a xylene chemical vapor deposition process, where the surface oxidized gold nanoparticles catalyze the multilayer graphene shell growth in a single step process. The graphene shell encapsulating gold nanoparticles could be further functionalized with carboxylic groups, which were covalently linked to amine-terminated quantum dots resulting in GNP-quantum dot heterostructures. The compositions, morphologies, crystallinity, and surface functionalization of GNPs and their heterostructures with quantum dots were evaluated using microscopic, spectroscopic, and analytical methods. Furthermore, optical properties of the derived architectures were studied using both experimental methods and simulations. Finally, GNP-quantum dot heterostructures were studied for photocatalytic degradation of phenol.
Sadeghi, Babak; Mohammadzadeh, M; Babakhani, B
2015-07-01
Various methods invented and developed for the synthesis of gold nanoparticles that increases daily consumed. According to this method, including potential environmental pollution problems and the complexity of the synthesis, in this study, the feasibility of using the leaves extract of Stevia rebaudiana (SR) for the reduction of gold ions to nanoparticles form have been studied. Stevia leaves were used to prepare the aqueous extract for this study. Gold nanoparticles were characterized with different techniques such as UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 5 to 20 nm. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary amine group (NH2), carbonyl group, OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of gold nanoparticles with size of 17 nm. The scanning electron microscopy (SEM) implies the right of forming gold nanoparticles. The results, confirm that gold nanoparticles have synthesized by the leaves extract of S. rebaudiana (SR). Copyright © 2015 Elsevier B.V. All rights reserved.
Preparation of Gelatin Layer Film with Gold Clusters in Using Photographic Film
NASA Astrophysics Data System (ADS)
Kuge, Ken'ichi; Arisawa, Michiko; Aoki, Naokazu; Hasegawa, Akira
2000-12-01
A gelatin layer film with gold clusters is produced by taking advantage of the photosensitivity of silver halide photography. Through exposure silver specks, which are called latent-image specks and are composed of several reduced silver atoms, are formed on the surface of silver halide grains in the photographic film. As the latent-image specks act as a catalyst for redox reaction, reduced gold atoms are deposited on the latent-image specks when the exposed film is immersed in a gold (I) thiocyanate complex solution for 5-20 days. Subsequently, when the silver halide grains are dissolved and removed, the gelatin layer film with gold clusters remains. The film produced by this method is purple and showed an absorption spectrum having a maximum of approximately 560 nm as a result of plasmon absorption. The clusters continued to grow with immersion time, and the growth rate increased as the concentration of the gold complex solution was increased. The cluster diameter changed from 20 nm to 100 nm. By this method, it is possible to produce a gelatin film of a large area with evenly dispersed gold clusters, and since it is produced only on the exposed area, pattern forming is also possible.
Anoxia stimulates microbially catalyzed metal release from Animas River sediments.
Saup, Casey M; Williams, Kenneth H; Rodríguez-Freire, Lucía; Cerrato, José M; Johnston, Michael D; Wilkins, Michael J
2017-04-19
The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amended with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2- -reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.
NASA Astrophysics Data System (ADS)
Ng, I.-Son; Yu, You-Jin; Yi, Ying-Chen; Tan, Shih-I.; Huang, Bo-Chuan; Han, Yin-Lung
2017-12-01
The proteomics strategy was utilized to analyze and identify the gold adsorption proteins from Tepidimonas fonticaldi AT-A2, due to its outstanding performance in gold-binding and recovery. The results showed that three small proteins, including histidine biosynthesis protein (HisIE), iron donor protein (CyaY) and hypothetical protein_65aa, have a higher ability to adsorb gold ions because of the negatively charged domains or metal binding sites. On the other hand, the Salmonella PmrA/PmrB two-component system first replaces the iron (III)-binding motif using the peptide sequence from hypothetical protein_65aa, and this is then used to reveal the sensing and responsiveness to gold metal ions, which is totally different from the performance of traditional gold binding peptide (GBP) on the crystals on the surface of gold (111). We have successfully demonstrated an integrative proteomics and bacterial two-component system to explore the novel gold binding peptide. Finally, the heterologous over-expression of gold binding peptide by E. coli and the equilibrium of binding capacity for Au(III) have been conducted.
Synthesis and characterization of Au-MWCNT/PEDOT: PSS composite film for optoelectronic applications
NASA Astrophysics Data System (ADS)
Jasna, M.; Anjana, R.; Jayaraj, M. K.
2017-08-01
Recently, flexible organic optoelectronics have got great attention because of their light weight, mechanical flexibility and cost effective fabrication process. Conjugated polymers like PEDOT: PSS are widely used for the transparent electrode applications due to its chemical stability, high conductivity, flexibility and optical transparency in the visible region. Conductivity of the PEDOT: PSS polymer can be enhanced by adding organic solvents or conducting nano fillers like CNT, graphene, etc. Carbon nanotubes are good nano fillers to enhance the conductivity and mechanical strength of PEDOT: PSS composite film. Inthe present work, the effect of gold nano particles in PEDOT: PSS/CNT composite is studied. The conductivity enhancement in PEDOT: PSS/CNT thin films can be attributed to the formation of CNT network in the polymer matrix and conformational change of the PEDOT from benzoid to quinoid structure. Even though the conductivity was enhanced, the transparency of the composite thin films decreased with increase in CNT concentration. To overcome this problem, gold nano particles were attached to CNT walls via chemical route. AuMWCNT/PEDOT: PSS composite films were prepared by spin coating method. TEM images confirmed the decoration of gold nano particles on CNT walls. Electrical and optical properties of the composite films were studied. This simple solution processed conducting films are suitable for optoelectronic applications
Complexes of DNA bases and Watson-Crick base pairs with small neutral gold clusters.
Kryachko, E S; Remacle, F
2005-12-08
The nature of the DNA-gold interaction determines and differentiates the affinity of the nucleobases (adenine, thymine, guanine, and cytosine) to gold. Our preliminary computational study [Kryachko, E. S.; Remacle, F. Nano Lett. 2005, 5, 735] demonstrates that two major bonding factors govern this interaction: the anchoring, either of the Au-N or Au-O type, and the nonconventional N-H...Au hydrogen bonding. In this paper, we offer insight into the nature of nucleobase-gold interactions and provide a detailed characterization of their different facets, i.e., geometrical, energetic, and spectroscopic aspects; the gold cluster size and gold coordination effects; proton affinity; and deprotonation energy. We then investigate how the Watson-Crick DNA pairing patterns are modulated by the nucleobase-gold interaction. We do so in terms of the proton affinities and deprotonation energies of those proton acceptors and proton donors which are involved in the interbase hydrogen bondings. A variety of properties of the most stable Watson-Crick [A x T]-Au3 and [G x C]-Au3 hybridized complexes are described and compared with the isolated Watson-Crick A x T and G x C ones. It is shown that enlarging the gold cluster size to Au6 results in a rather short gold-gold bond in the Watson-Crick interbase region of the [G x C]-Au6 complex that bridges the G x C pair and thus leads to a significant strengthening of G x C pairing.
McVety, K J; Shaikh, Z A
1987-11-01
Administration of sodium aurothioglucose (10 mg/kg per day) to female rats for up to 8 weeks resulted in no apparent effects on the kidney. Gold accumulated in kidney, liver, spleen, pancreas, skin and blood. Although plasma and hepatic gold levels increased with time, no remarkable change in either copper, zinc or metallothionein (MT) levels was observed. Gel filtration chromatography of plasma showed binding of gold to albumin, whereas copper was associated with albumin, ceruloplasmin and a protein eluting in the void volume of the Sephadex G-150 column. Almost all of the hepatic gold was bound to proteins other than MT. In the kidney, not only gold but also copper and MT increased rapidly, reached a maximum between 2 and 4 weeks and exhibited insignificant change thereafter. Gold-treated animals showed an increase in binding of copper to the very high molecular weight plasma protein, which may be involved in transport of copper to the kidneys. Urinary gold and MT followed a pattern similar to that in the kidney. Renal zinc also increased but returned to normal by week 8. In renal cytosol 57% and 54% of the gold and copper, respectively, were associated with MT. It appears that the elevated levels of copper and zinc, rather than gold, are responsible for the induction of MT synthesis. This then provides a mechanism by which gold and the inducing metals are retained by the kidney.
Nazi Dental Gold: from Dead Bodies to Swiss Banks.
Riaud, Xavier
2015-06-01
On the 23rd of September 1940 SS Reichsfürher Heinrich Himmler, gave the SS doctors orders to collect the gold teeth from the mouths of those killed in death camps. Here we ask: who were the SS dentists who are directly implicated in that collection, what were the figures behind the process and how did the Nazis conduct this retrieval of gold? Here we give the answers for the first time...
Wavelength specific excitation of gold nanoparticle thin-films
NASA Astrophysics Data System (ADS)
Lucas, Thomas M.; James, Kurtis T.; Beharic, Jasmin; Moiseeva, Evgeniya V.; Keynton, Robert S.; O'Toole, Martin G.; Harnett, Cindy K.
2014-01-01
Advances in microelectromechanical systems (MEMS) continue to empower researchers with the ability to sense and actuate at the micro scale. Thermally driven MEMS components are often used for their rapid response and ability to apply relatively high forces. However, thermally driven MEMS often have high power consumption and require physical wiring to the device. This work demonstrates a basis for designing light-powered MEMS with a wavelength specific response. This is accomplished by patterning surface regions with a thin film containing gold nanoparticles that are tuned to have an absorption peak at a particular wavelength. The heating behavior of these patterned surfaces is selected by the wavelength of laser directed at the sample. This method also eliminates the need for wires to power a device. The results demonstrate that gold nanoparticle films are effective wavelength-selective absorbers. This "hybrid" of infrared absorbent gold nanoparticles and MEMS fabrication technology has potential applications in light-actuated switches and other mechanical structures that must bend at specific regions. Deposition methods and surface chemistry will be integrated with three-dimensional MEMS structures in the next phase of this work. The long-term goal of this project is a system of light-powered microactuators for exploring cellular responses to mechanical stimuli, increasing our fundamental understanding of tissue response to everyday mechanical stresses at the molecular level.
Clinical characteristics, treatment patterns, and socio-economic burden of COPD in Bulgaria.
Kamusheva, Maria; Dimitrova, Maria; van Boven, Job F M; Postma, Maarten J; van der Molen, Thys; Kocks, Janwillem W H; Mitov, Konstantin; Doneva, Miglena; Petrova, Daniela; Georgiev, Ognyan; Petkova, Valentina; Petrova, Guenka
2017-05-01
While the impact of COPD in Western-Europe is known, data from Eastern-Europe is scarce. This study aimed to evaluate clinical characteristics, treatment patterns, and the socio-economic burden of COPD in Eastern-Europe, taking Bulgaria as a reference case. A representative sample of Bulgarian patients with COPD was randomly chosen by pulmonologists, based on the following inclusion criteria: COPD diagnosis with at least 1 year of living with COPD, ≥40 years of age, and use of COPD medication. Patient characteristics, treatment, quality-of-life, healthcare resource use, and costs were systematically assessed. A total of 426 COPD patients were enrolled. Approximately 69% were male, 40% had occupational risk factors, 45% had severe and 11% had very severe COPD. Mean CAT scores were 13.80 (GOLD A), 21.80 (GOLD B), 17.35 (GOLD C), and 26.70 (GOLD D). Annual per-patient costs of healthcare utilization were €579. Yearly pharmacotherapy costs were €693. Indirect costs (reduced and lost work productivity) outnumbered direct costs three times. Bulgaria has relatively high percentages of (very) severe COPD patients, resulting in considerable socio-economic burden. High smoking rates, occupational risk factors, air pollution, and a differential health system may be related to this finding. Eastern-European COPD strategies should focus on prevention, risk-factor awareness, and early detection.
Lai, Wenjia; Wang, Qingsong; Li, Lumeng; Hu, Zhiyuan; Chen, Jiankui; Fang, Qiaojun
2017-04-01
Determining how nanomaterials interact with plasma will assist in understanding their effects on the biological system. This work presents a systematic study of the protein corona formed from human plasma on 20nm silver and gold nanoparticles with three different surface modifications, including positive and negative surface charges. The results show that all nanoparticles, even those with positive surface modifications, acquire negative charges after interacting with plasma. Approximately 300 proteins are identified on the coronas, while 99 are commonly found on each nanomaterial. The 20 most abundant proteins account for over 80% of the total proteins abundance. Remarkably, the surface charge and core of the nanoparticles, as well as the isoelectric point of the plasma proteins, are found to play significant roles in determining the nanoparticle coronas. Albumin and globulins are present at levels of less than 2% on these nanoparticle coronas. Fibrinogen, which presents in the plasma but not in the serum, preferably binds to negatively charged gold nanoparticles. These observations demonstrate the specific plasma protein binding pattern of silver and gold nanoparticles, as well as the importance of the surface charge and core in determining the protein corona compositions. The potential downstream biological impacts of the corona proteins were also investigated. Copyright © 2017 Elsevier B.V. All rights reserved.
Gold nanoparticles deposited on glass: physicochemical characterization and cytocompatibility
2013-01-01
Properties of gold films sputtered under different conditions onto borosilicate glass substrate were studied. Mean thickness of sputtered gold film was measured by gravimetry, and film contact angle was determined by goniometry. Surface morphology was examined by atomic force microscopy, and electrical sheet resistance was determined by two-point technique. The samples were seeded with rat vascular smooth muscle cells, and their adhesion and proliferation were studied. Gold depositions lead to dramatical changes in the surface morphology and roughness in comparison to pristine substrate. For sputtered gold structures, the rapid decline of the sheet resistance appears on structures deposited for the times above 100 s. The thickness of deposited gold nanoparticles/layer is an increasing function of sputtering time and current. AFM images prove the creation of separated gold islands in the initial deposition phase and a continuous gold coverage for longer deposition times. Gold deposition has a positive effect on the proliferation of vascular smooth muscle cells. Largest number of cells was observed on sample sputtered with gold for 20 s and at the discharge current of 40 mA. This sample exhibits lowest contact angle, low relative roughness, and only mild increase of electrical conductivity. PMID:23705782
Determination of glucose in human urine by cyclic voltammetry method using gold electrode
NASA Astrophysics Data System (ADS)
Riyanto; Supwatul Hakim, Muh.
2018-01-01
This study has been the determination of glucose in human urine by cyclic voltammetry method using gold electrode. The gold electrode was prepared using gold wire with purity 99.99%, size 1.0 mm by length and wide respectively, connected with silver wire using silver conductive paint. The effect of electrolyte, pH and glucose concentration has been determined to produce the optimum method. The research showed the KNO3 is a good electrolyte for determination of glucose in human urine using gold electrode. The effect of glucose concentration have the coefficient correlation is R2 = 0.994. The results of the recovery using addition method showed at range95-105%. As a conclusion isa gold electrode is a good electrode for electrochemical sensors to the determination of glucose in human urine.
NASA Astrophysics Data System (ADS)
Dubosq, Renelle; Rogowitz, Anna; Lawley, Christopher; Schneider, David; Jackson, Simon
2017-04-01
Pyrite is an important and ubiquitous gold-bearing phase in many orogenic gold deposits making the study of its deformation behaviour under metamorphic conditions crucial to the understanding of gold (re)mobilization. However, pyrite deformation mechanisms and their influence on the retention or release of trace elements during deformation and metamorphism remain poorly understood. We propose a syn- to post-peak metamorphic and deformation driven gold upgrading model where gold is remobilized through deformation-induced diffusion pathways in the form of substructures in pyrite. The middle amphibolite facies assemblage (actinolite-biotite-plagioclase-almandine) of the Detour Lake deposit (Canada) makes it an ideal study area due to maximum temperatures reaching 550°C, exceeding the conditions for plastic deformation in pyrite (450°C). The world-class Detour Lake deposit, containing 16.4 Moz of Au at 1 g/t, is a Neoarchean orogenic gold ore body located in the northern Abitibi district within the Superior Province. The mine is situated along the high strain, sub-vertical ductile-brittle Sunday Lake Deformation Zone (SLDZ) parallel to the broadly E-W trending Abitibi greenstone belt. Herein we combine orientation contrast (OC) forescatter imaging, electron backscatter diffraction (EBSD) and 2D laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) trace element pyrite mapping to evaluate the influence of pyrite brittle and plastic deformation on the release of trace elements during syn-metamorphic gold remobilization. Local misorientation patterns in pyrite exhibit parallel bands that can be described by continuous rotation around one of the <100> axes, whereas higher strain areas reveal more heterogeneous misorientation patterns and the development of low-angle grain boundaries with late fractures indicative of dislocation creep and strain hardening. These late fractures are an important micro-structural setting for gold and clusters of precious-metal mineral inclusions (telluride minerals). Minor recrystallization processes can also be observed along phase boundaries between pyrite and more competent amphibole crystals. LA-ICP-MS trace element maps document primary, syn-metamorphic oscillatory zoning of some chalcophile and siderophile elements during crystallization of pyrite porphyroblasts. These primary pyrite features are cut by late metal-rich fractures suggesting that remobilization of gold occurred with trace element enrichment of other chalcophile and siderophile elements (Cu, Pb, Zn, Ag, Bi, Te), which post-dates the main period of syn-metamorphic pyrite crystallization at the margins of pre- to syn-deformation, high-grade gold veins. Pyrite grain boundaries and subgrains are also base and precious metal rich, suggesting that late gold remobilization also occurred during pyrite recrystallization. Additional trace element mapping will help determine to what extent pyrite plastic deformation facilitates the diffusion of gold and other trace elements during gold precipitation and remobilization, which, in turn, will inform the source to sink pathways of ore deposition.
Ultrasensitive molecular detection using thermal conductance of a hydrophobic gold-water interface.
Green, Andrew J; Alaulamie, Arwa A; Baral, Susil; Richardson, Hugh H
2013-09-11
The thermal conductance from a hydrophobic gold aqueous interface is measured with increasing solute concentration. A small amount of aqueous solute molecules (1 solute molecule in 550 water molecules) dramatically increases the heat dissipation into the surrounding liquid. This result is consistent with a thermal conductance that is limited by an interface interaction where minority aqueous components significantly alter the surface properties and heat transport through the interface. The increase in heat dissipation can be used to make an extremely sensitive molecular detector that can be scaled to give single molecule detection without amplification or utilizing fluorescence labels.
NASA Astrophysics Data System (ADS)
Brondijk, J. J.; Li, X.; Akkerman, H. B.; Blom, P. W. M.; de Boer, B.
2009-04-01
By patterning a self-assembled monolayer (SAM) of thiolated molecules with opposing dipole moments on a gold anode of a polymer light-emitting diode (PLED), the charge injection and, therefore, the light-emission of the device can be controlled with a micrometer-scale resolution. Gold surfaces were modified with SAMs based on alkanethiols and perfluorinated alkanethiols, applied by microcontact printing, and their work functions have been measured. The molecules form a chemisorbed monolayer of only ˜1.5 nm on the gold surface, thereby locally changing the work function of the metal. Kelvin probe measurements show that the local work function can be tuned from 4.3 to 5.5 eV, which implies that this anode can be used as a hole blocking electrode or as a hole injecting electrode, respectively, in PLEDs based on poly( p-phenylene vinylene) (PPV) derivatives. By microcontact printing of SAMs with opposing dipole moments, the work function was locally modified and the charge injection in the PLED could be controlled down to the micrometer length scale. Consequently, the local light-emission exhibits a high contrast. Microcontact printing of SAMs is a simple and inexpensive method to pattern, with micrometer resolution, the light-emission for low-end applications like static displays.
Evaluation and comparison of castability between an indigenous and imported Ni-Cr alloy.
Ramesh, Ganesh; Padmanabhan, T V; Ariga, Padma; Subramanian, R
2011-01-01
Since 1907 casting restorations have been in use in dentistry. Numerous companies have been manufacturing and marketing base metal alloys. Gold was a major component of casting alloys. But alloys with less than 65% gold tarnished easily and the increase in cost of gold post-1970s lead to the revival of base metal alloys such as nickel-chromium and cobalt-chromium alloys which were in use since 1930s. This study was conducted to evaluate and compare the castability between an indigenous alloy and an imported alloy, as imported base metal alloys are considered to be expensive for fabrication of crowns and bridges. This study was conducted to evaluate and compare the castability (for the accurate fabrication of crowns and bridges) between an indigenous base metal alloy-Non-ferrous Materials Technology Development Centre (NFTDC), Hyderabad (Alloy A) -and an imported base metal alloys (Alloy B). Castability measurement was obtained by counting the number of completely formed line segments surrounding the 81 squares in the pattern and later calculating the percentage values. The percentage obtained was taken as the castability value for a particular base metal alloy. The percentage of castability was determined by counting only the number of completely cast segments in a perfect casting (81 × 2 = 162), and then multiplying the resulting fraction by 100 to give the percentage completeness. The Student t-test was used. When the castability of alloys A and B was compared, the calculated value was less than the tabular value (1.171 < 2.048) leading to the conclusion that castability between alloys A and B is insignificant. Therefore we conclude that both the alloys have the same castability. Using the above-mentioned materials and following the method to test castability, we were able to derive favorable results. As the results were satisfactory, we can conclude that the castability of the indigenous alloy is on par with the imported alloy.
Aqueous Black Colloids of Reticular Nanostructured Gold
NASA Astrophysics Data System (ADS)
Stanca, S. E.; Fritzsche, W.; Dellith, J.; Froehlich, F.; Undisz, A.; Deckert, V.; Krafft, C.; Popp, J.
2015-01-01
Since ancient times, noble gold has continuously contributed to several aspects of life from medicine to electronics. It perpetually reveals its new features. We report the finding of a unique form of gold, reticular nanostructured gold (RNG), as an aqueous black colloid, for which we present a one-step synthesis. The reticules consist of gold crystals that interconnect to form compact strands. RNG exhibits high conductivity and low reflection, and these features, coupled with the high specific surface area of the material, could prove valuable for applications in electronics and catalysis. Due to high absorption throughout the visible and infrared domain, RNG has the potential to be applied in the construction of sensitive solar cells or as a substrate for Raman spectroscopy.
Direct patterning of gold nanoparticles using flexographic printing for biosensing applications
NASA Astrophysics Data System (ADS)
Benson, Jamie; Fung, Chung Man; Lloyd, Jonathan Stephen; Deganello, Davide; Smith, Nathan Andrew; Teng, Kar Seng
2015-03-01
In this paper, we have presented the use of flexographic printing techniques in the selective patterning of gold nanoparticles (AuNPs) onto a substrate. Highly uniform coverage of AuNPs was selectively patterned on the substrate surface, which was subsequently used in the development of a glucose sensor. These AuNPs provide a biocompatible site for the attachment of enzymes and offer high sensitivity in the detection of glucose due to their large surface to volume ratio. The average size of the printed AuNPs is less than 60 nm. Glucose sensing tests were performed using printed carbon-AuNP electrodes functionalized with glucose oxidase (GOx). The results showed a high sensitivity of 5.52 μA mM-1 cm-2 with a detection limit of 26 μM. We have demonstrated the fabrication of AuNP-based biosensors using flexographic printing, which is ideal for low-cost, high-volume production of the devices.
Direct patterning of a cyclotriveratrylene derivative for directed self-assembly of C60
NASA Astrophysics Data System (ADS)
Osner, Zachary R.; Nyamjav, Dorjderem; Holz, Richard C.; Becker, Daniel P.
2011-07-01
A novel apex-modified cyclotriveratrylene (CTV) derivative with an attached thiolane-containing lipoic acid linker was directly patterned onto gold substrates via dip-pen nanolithography (DPN). The addition of a dithiolane-containing linker to the apex of CTV provides a molecule that can adhere to a gold surface with its bowl-shaped cavity directed away from the surface, thereby providing a surface-bound CTV host that can be used for the directed assembly of guest molecules. Subsequent exposure of these CTV microarrays to C60 in toluene resulted in the directed assembly of predesigned, spatially controlled, high-density microarrays of C60. The molecular recognition capabilities of this CTV template toward C60 provides proof-of-concept that supramolecular CTV scaffolds can be directly patterned onto surfaces providing a foundation for the development of organic electronic and optoelectronic materials.
Observation of phonon-polaritons in thin flakes of hexagonal boron nitride on gold
NASA Astrophysics Data System (ADS)
Ciano, C.; Giliberti, V.; Ortolani, M.; Baldassarre, L.
2018-04-01
Hexagonal Boron Nitride (hBN) is a layered van der Waals material able to sustain hyperbolic phonon-polaritons within its mid-infrared reststrahlen bands. We study the effect of a metallic substrate adjacent to hBN flakes on the polariton dispersion and on the standing wave patterns in nanostructures by means of mid-infrared nanospectroscopy and nanoimaging. We exploit the gold-coated tip apex for atomic force microscopy to launch polaritons in thin hBN flakes. The photo-thermal induced mechanical resonance is used to detect the amplitude profile of polariton standing waves with a lateral resolution of 30 nm. We observe the polariton excitation spectra on hBN flakes as thin as 4 nm, thanks to the infrared field enhancement in the nanogap between the gold-coated tip apex and an ultraflat gold substrate. The data indicate no major effect of remote screening of the free electrons in gold on the phonon-polariton excitation that appears robust also against geometrical imperfections.
Zettl, Thomas; Mathew, Rebecca S.; Seifert, Sönke; ...
2016-05-31
Accurate determination of molecular distances is fundamental to understanding the structure, dynamics, and conformational ensembles of biological macromolecules. Here we present a method to determine the full,distance,distribution between small (~7 Å) gold labels attached to macromolecules with very high-precision(≤1 Å) and on an absolute distance scale. Our method uses anomalous small-angle X-ray scattering close to a gold absorption edge to separate the gold-gold interference pattern from other scattering contributions. Results for 10-30 bp DNA constructs achieve excellent signal-to-noise and are in good agreement with previous results obtained by single-energy,SAXS measurements without requiring the preparation and measurement of single labeled andmore » unlabeled samples. Finally, the use of small gold labels in combination with ASAXS read out provides an attractive approach to determining molecular distance distributions that will be applicable to a broad range of macromolecular systems.« less
Preparation and characterization of gold nanodumbbells
NASA Astrophysics Data System (ADS)
Huang, Chien-Jung; Chiu, Pin-Hsiang; Wang, Yeong-Her; Chen, Wen-Ray; Meen, Teen-Hang; Yang, Cheng-Fu
2006-11-01
Well-dispersed gold nanodumbbells (GNDs) in an aqueous phase have been successfully fabricated by an electrochemical method using a micelle template formed by two surfactants with the addition of acetone solvent during electrolysis, the primary surfactant being cetyltrimethylammonium bromide (CTABr) and the cosurfactant being tetradecyltrimethylammonium bromide (TTABr). The role of acetone solvent is found to change the gold nanoparticles' shape from a rod to a dumbbell. The shape of the GNDs is fatter at the two ends and thinner in the middle section. The GNDs have been determined to be pure gold with a single-crystalline face-centred cubic (FCC) structure from selected area electron diffraction (SAED) patterns. Morphology features of GNDs in cross-section have also been investigated by dark field (DF) transmission electron microscopy (TEM) images. These GNDs exhibit octagonal structure in cross-section and an aspect ratio of around 3.
Houmed Adabo, Ali; Zeggari, Rabah; Mohamed Saïd, Nasser; Bazzi, Rana; Elie-Caille, Céline; Marquette, Christophe; Martini, Matteo; Tillement, Olivier; Perriat, Pascal; Chaix, Carole; Boireau, Wilfrid; Roux, Stéphane
2016-04-01
Since it was demonstrated that nanostructured surfaces are more efficient for the detection based on the specific capture of analytes, there is a real need to develop strategies for grafting nanoparticles onto flat surfaces. Among the different routes for the functionalization of a surface, the reduction of diazonium salts appears very attractive for the covalent immobilization of nanoparticles because this method does not require a pre-treatment of the surface. For achieving this goal, gold nanoparticles coated by precursor of diazonium salts were synthesized by reduction of gold salt in presence of mercaptoaniline. These mercaptoaniline-coated gold nanoparticles (Au@MA) were successfully immobilized onto various conducting substrates (indium tin oxide (ITO), glassy carbon (GC) and gold electrodes with flat terraces) after addition of sodium nitrite at fixed potential. When applied onto the gold electrodes, such a grafting strategy led to an obvious enhancement of the luminescence of luminol used for the biodetection. Copyright © 2016 Elsevier Inc. All rights reserved.
Methodological Pluralism: The Gold Standard of STEM Evaluation
ERIC Educational Resources Information Center
Lawrenz, Frances; Huffman, Douglas
2006-01-01
Nationally, there is continuing debate about appropriate methods for conducting educational evaluations. The U.S. Department of Education has placed a priority on "scientifically" based evaluation methods and has advocated a "gold standard" of randomized controlled experimentation. The priority suggests that randomized control methods are best,…
The Death's-Head Pin: Using a Mock Trial to Introduce the Cariboo Gold Rush.
ERIC Educational Resources Information Center
Hou, Charles
1983-01-01
The roles and procedures for holding a mock trial based on actual events that took place during the Canadian Cariboo gold rush are described. Intended for use with secondary history students, the trial can be conducted in one classroom period. (RM)
Bond Strength of Gold Alloys Laser Welded to Cobalt-Chromium Alloy
Watanabe, Ikuya; Wallace, Cameron
2008-01-01
The objective of this study was to investigate the joint properties between cast gold alloys and Co-Cr alloy laser-welded by Nd:YAG laser. Cast plates were fabricated from three types of gold alloys (Type IV, Type II and low-gold) and a Co-Cr alloy. Each gold alloy was laser-welded to Co-Cr using a dental laser-welding machine. Homogeneously-welded and non-welded control specimens were also prepared. Tensile testing was conducted and data were statistically analyzed using ANOVA. The homogeneously-welded groups showed inferior fracture load compared to corresponding control groups, except for Co-Cr. In the specimens welded heterogeneously to Co-Cr, Type IV was the greatest, followed by low-gold and Type II. There was no statistical difference (P<0.05) in fracture load between Type II control and that welded to Co-Cr. Higher elongations were obtained for Type II in all conditions, whereas the lowest elongation occurred for low-gold welded to Co-Cr. This study indicated that, of the three gold alloys tested, the Type IV gold alloy was the most suitable alloy for laser-welding to Co-Cr. PMID:19088892
Selective Plasma Deposition of Fluorocarbon Films on SAMs
NASA Technical Reports Server (NTRS)
Crain, Mark M., III; Walsh, Kevin M.; Cohn, Robert W.
2006-01-01
A dry plasma process has been demonstrated to be useful for the selective modification of self-assembled monolayers (SAMs) of alkanethiolates. These SAMs are used, during the fabrication of semiconductor electronic devices, as etch masks on gold layers that are destined to be patterned and incorporated into the devices. The selective modification involves the formation of fluorocarbon films that render the SAMs more effective in protecting the masked areas of the gold against etching by a potassium iodide (KI) solution. This modification can be utilized, not only in the fabrication of single electronic devices but also in the fabrication of integrated circuits, microelectromechanical systems, and circuit boards. In the steps that precede the dry plasma process, a silicon mold in the desired pattern is fabricated by standard photolithographic techniques. A stamp is then made by casting polydimethylsiloxane (commonly known as silicone rubber) in the mold. The stamp is coated with an alkanethiol solution, then the stamp is pressed on the gold layer of a device to be fabricated in order to deposit the alkanethiol to form an alkanethiolate SAM in the desired pattern (see figure). Next, the workpiece is exposed to a radio-frequency plasma generated from a mixture of CF4 and H2 gases. After this plasma treatment, the SAM is found to be modified, while the exposed areas of gold remain unchanged. This dry plasma process offers the potential for forming masks superior to those formed in a prior wet etching process. Among the advantages over the wet etching process are greater selectivity, fewer pin holes in the masks, and less nonuniformity of the masks. The fluorocarbon films formed in this way may also be useful as intermediate layers for subsequent fabrication steps and as dielectric layers to be incorporated into finished products.
Li, Mingfang; Zhao, Guohua; Geng, Rong; Hu, Huikang
2008-11-01
The flower-like gold nanoparticles together with spherical and convex polyhedron gold nanoparticles were fabricated on boron-doped diamond (BDD) surface by one-step and simple electrochemical method through easily controlling the applied potential and the concentration of HAuCl(4). The recorded X-ray diffraction (XRD) patterns confirmed that these three shapes of gold nanoparticles were dominated by different crystal facets. The cyclic voltammetric results indicated that the morphology of gold nanoparticles plays big role in their electrochemical behaviors. The direct electrochemistry of hemoglobin (Hb) was realized on all the three different shapes of nanogold-attached BDD surface without the aid of any electron mediator. In pH 4.5 acetate buffer solutions (ABS), Hb showed a pair of well defined and quasi-reversible redox peaks. However, the results obtained demonstrated that the redox peak potential, the average surface concentration of electroactive heme, and the electron transfer rates of Hb are greatly dependent upon the surface morphology of gold nanoparticles. The electron transfer rate constant of hemoglobin over flower-like nanogold/BDD electrode was more than two times higher than that over spherical and convex polyhedron nanogold. The observed differences may be ascribed to the difference in gold particle characteristics including surface roughness, exposed surface area, and crystal structure.
Facile synthesis of biocompatible gold nanoparticles with organosilicone-coated surface properties
NASA Astrophysics Data System (ADS)
Xia, Lijin; Yi, Sijia; Lenaghan, Scott C.; Zhang, Mingjun
2012-07-01
In this study, a simple method for one-step synthesis of gold nanoparticles has been developed using an organosilicone surfactant, Silwet L-77, as both a reducing and capping agent. Synthesis of gold nanoparticles using this method is rapid and can be conducted conveniently at ambient temperature. Further refinement of the method, through the addition of sodium hydroxide and/or silver nitrate, allowed fine control over the size of spherical nanoparticles produced. Coated on the surface with organosilicone, the as-prepared gold nanoparticles were biocompatible and stable over the pH range from 5 to 12, and have been proven effective at transportation into MC3T3 osteoblast cells. The proposed method is simple, fast, and can produce size-controlled gold nanoparticles with unique surface properties for biomedical applications.
NASA Technical Reports Server (NTRS)
Hair, Jonathan W.; Browell, Edward V.; McGee, Thomas; Butler, Carolyn; Fenn, Marta; Os,ao (. Sued); Notari, Anthony; Collins, James; Cleckner, Craig; Hostetler, Chris
2010-01-01
A compact ozone (O3) and aerosol lidar system is being developed for conducting global atmospheric investigations from the NASA Global Hawk Uninhabited Aerial Vehicle (UAV) and for enabling the development and test of a space-based O3 and aerosol lidar. GOLD incorporates advanced technologies and designs to produce a compact, autonomously operating O3 and aerosol Differential Absorption Lidar (DIAL) system for a UAV platform. The GOLD system leverages advanced Nd:YAG and optical parametric oscillator laser technologies and receiver optics, detectors, and electronics. Significant progress has been made toward the development of the GOLD system, and this paper describes the objectives of this program, basic design of the GOLD system, and results from initial ground-based atmospheric tests.
SOM guided fuzzy logic prospectivity model for gold in the Häme Belt, southwestern Finland
NASA Astrophysics Data System (ADS)
Leväniemi, Hanna; Hulkki, Helena; Tiainen, Markku
2017-04-01
This study investigated gold prospectivity in the Paleoproterozoic Häme Belt, located in southwestern Finland. The Häme Belt comprises calc-alkaline and tholeitic volcanic rocks, migmatites, granitoids, and mafic to ultramafic intrusions. Mineral exploration in the region has resulted in the discovery of several gold occurrences during recent decades; however, no prospectivity modeling for gold has yet been conducted. This study integrated till geochemical and geophysical data to examine and extract data characteristics critical for gold occurrences. Modeling was guided by self-organizing map (SOM) analysis to define essential data associations and to aid in model input data selection and generation. The final fuzzy logic prospectivity model map yielded high predictability values for most known Au or Cu-Au occurrences, but also highlighted new targets for exploration.
NASA Astrophysics Data System (ADS)
Peratt, A. L.
2008-11-01
A past intense solar outburst and its effect on Earth circa 8,000 BCE was proposed by Gold who based his hypotheses on astronomical and geophysical evidence [1]. The discovery of high-current Z-pinch patterns in Neolithic petroglyphs provides evidence for this occurrence and insight into the origin and meaning of these ancient symbols produced by mankind. These correspond to mankind's visual observations of ancient aurora if the solar wind had increased between one and two orders of magnitude millennia ago [2]. Our data show identical MHD patterns from surveys along 300 km of the Orinoco River (Venezuela), the Chuluut River (Mongolia), the Columbia River (USA), Red Gorge (South Australia) and the Urubamba River (Peru). Three-dimensional, high-fidelity PIC simulations of intense Z-pinches replicate the carved data [3]. 1. T. Gold, Pontificiae Academiae Scientiarvm Scripta Varia, 25, 159, 1962. 2. A. L. Peratt. Trans. Plasma Sci. 35. 778. 2007. 3. A. L. Peratt and W. F. Yao, Physica Scripta, T130, August 2008.
Laser polymerization-based novel lift-off technique
NASA Astrophysics Data System (ADS)
Bhuian, B.; Winfield, R. J.; Crean, G. M.
2009-03-01
The fabrication of microstructures by two-photon polymerization has been widely reported as a means of directly writing three-dimensional nanoscale structures. In the majority of cases a single point serial writing technique is used to form a polymer model. Single layer writing can also be used to fabricate two-dimensional patterns and we report an extension of this capability by using two-photon polymerization to form a template that can be used as a sacrificial layer for a novel lift-off process. A Ti:sapphire laser, with wavelength 795 nm, 80 MHz repetition rate, 100 fs pulse duration and an average power of 700 mW, was used to write 2D grid patterns with pitches of 0.8 and 1.0 μm in a urethane acrylate resin that was spun on to a lift-off base layer. This was overcoated with gold and the grid lifted away to leave an array of gold islands. The optical transmission properties of the gold arrays were measured and found to be in agreement with a rigorous coupled-wave analysis simulation.
Pratesi, Alessandro; Gabbiani, Chiara; Michelucci, Elena; Ginanneschi, Mauro; Papini, Anna Maria; Rubbiani, Riccardo; Ott, Ingo; Messori, Luigi
2014-07-01
Gold-based drugs typically behave as strong inhibitors of the enzyme thioredoxin reductase (hTrxR), possibly as the consequence of direct Gold(I) coordination to its active site selenocysteine. To gain a deeper insight into the molecular basis of enzyme inhibition and prove gold-selenocysteine coordination, the reactions of three parent Gold(I) NHC compounds with the synthetic C-terminal dodecapeptide of hTrxR containing Selenocysteine at position 498, were investigated by electrospray ionization mass spectrometry (ESI-MS). Formation of 1:1 Gold-peptide adducts, though in highly different amounts, was demonstrated in all cases. In these adducts the same [Au-NHC](+) moiety is always associated to the intact peptide. Afterward, tandem MS experiments, conducted on a specific Gold-peptide complex, pointed out that Gold is coordinated to the selenolate group. The relatively large strength of the Gold-selenolate coordinative bond well accounts for potent enzyme inhibition typically afforded by these Gold(I) compounds. In a selected case, the time course of enzyme inhibition was explored. Interestingly, enzyme inhibition turned out to show up very quickly and reached its maximum just few minutes after mixing. Overall, the present results offer some clear insight into the process of thioredoxin reductase inhibition by Gold-based compounds. Copyright © 2014 Elsevier Inc. All rights reserved.
Conductivity of an atomically defined metallic interface
Oliver, David J.; Maassen, Jesse; El Ouali, Mehdi; Paul, William; Hagedorn, Till; Miyahara, Yoichi; Qi, Yue; Guo, Hong; Grütter, Peter
2012-01-01
A mechanically formed electrical nanocontact between gold and tungsten is a prototypical junction between metals with dissimilar electronic structure. Through atomically characterized nanoindentation experiments and first-principles quantum transport calculations, we find that the ballistic conduction across this intermetallic interface is drastically reduced because of the fundamental mismatch between s wave-like modes of electron conduction in the gold and d wave-like modes in the tungsten. The mechanical formation of the junction introduces defects and disorder, which act as an additional source of conduction losses and increase junction resistance by up to an order of magnitude. These findings apply to nanoelectronics and semiconductor device design. The technique that we use is very broadly applicable to molecular electronics, nanoscale contact mechanics, and scanning tunneling microscopy. PMID:23129661
NASA Astrophysics Data System (ADS)
Saleem, Iram; Widger, William; Chu, Wei-Kan
2017-07-01
We demonstrate that the gold nano-ripple localized surface plasmon resonance (LSPR) chip is a low cost and a label-free method for detecting the presence of an antigen. A uniform stable layer of an antibody was coated on the surface of a nano-ripple gold pattern chip followed by the addition of different concentrations of the antigen. A red shift was observed in the LSPR spectral peak caused by the change in the local refractive index in the vicinity of the nanostructure. The LSPR chip was fabricated using oblique gas cluster ion beam (GCIB) irradiation. The plasmon-resonance intensity of the scattered light was measured by a simple optical spectroscope. The gold nano ripple chip shows monolayer scale sensitivity and high selectivity. The LSPR substrate was used to detect antibody-antigen reaction of rabbit X-DENTT antibody and DENTT blocking peptide (antigen).
ERIC Educational Resources Information Center
Ragsdale, Adrienne
2011-01-01
Bright, shining gold, so daring and intense. Patterns reflecting the spirit of the portrait's subject, wisps of a look that intrigue the viewer. Something sultry in the eye, something shimmering on the lip... these are the works of Gustav Klimt. Klimt was Vienna's golden boy of painting. Through his use of pattern and the mosaic qualities in his…
Anoxia stimulates microbially catalyzed metal release from Animas River sediments
Saup, Casey M.; Williams, Kenneth H.; Rodríguez-Freire, Lucía; ...
2017-03-06
The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amendedmore » with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2-reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.« less
Anoxia stimulates microbially catalyzed metal release from Animas River sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saup, Casey M.; Williams, Kenneth H.; Rodríguez-Freire, Lucía
The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amendedmore » with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2-reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.« less
Superconducting bolometers for millimeter and sub-millimeter wavelengths
NASA Astrophysics Data System (ADS)
Jethava, N.; Kreysa, E.; Siringo, G.; Esch, W.; Gemünd, H.-P.; Menten, K. M.; May, T.; Anders, S.; Fritzsch, L.; Boucher, R.; Zakosarenko, V.; Meyer, H.-G.
2008-07-01
We present the experimental results and a bolometer model of the voltage-biased superconducting bolometer on the low stress silicon nitride (Si3N4) membrane, developed in collaboration between the Max-Planck-Institut fur Radioastronomie (MPIfR), Bonn and the Institute for Photonic Technology (IPHT), Jena, Germany. The superconducting thermistor, deposited on the low stress silicon nitride membrane, is a bilayer of gold-palladium and molybdenum and is designed for a transition temperature of 450 mK. Bolometers for the 1.2 mm atmospheric window were designed, built and tested. The thermal conductance of the bolometer is tuned by structuring the silicon nitride membrane into spider-like geometries. The incident radiation is absorbed by crossed dipoles made from gold-palladium alloy with a surface resistance of 10 Ω/. Using the COSMOS finite element analysis package, the thermal conductance is obtained for the bolometers of different geometries. FEA simulations showed that the deposition of a gold ring around the absorbing area could increase the sensitivity of the bolometer. Therefore, a gold ring is deposited around the center absorbing patch of the silicon nitride membrane. For the bolometer with a gold ring, the measured NEP is 1.7 × 10-16W/√ Hz and the time constant is in the range between 1.4 and 2 ms.
Selective detection and recovery of gold at tannin-immobilized non-conducting electrode.
Banu, Khaleda; Shimura, Takayoshi; Sadeghi, Saman
2015-01-01
A tannin-immobilized glassy carbon electrode (TIGC) was prepared via electrochemical oxidation of the naturally occurring polyphenolic mimosa tannin, which generated a non-conducting polymeric film (NCPF) on the electrode surface. The fouling of the electrode surface by the electropolymerized film was evaluated by monitoring the electrode response of ferricyanide ions as a redox marker. The NCPF was permselective to HAuCl4, and the electrochemical reduction of HAuCl4 to metallic gold at the TIGC electrode was evaluated by recording the reduction current during cyclic voltammetry measurement. In the mixed electrolyte containing HAuCl4 along with FeCl3 and/or CuCl2, the NCPF remained selective toward the electrochemical reduction of HAuCl4 into the metallic state. The chemical reduction of HAuCl4 into metallic gold was also observed when the NCPF was inserted into an acidic gold solution overnight. The adsorption capacity of Au(III) on tannin-immobilized carbon fiber was 29±1.45 mg g(-1) at 60°C. In the presence of excess Cu(II) and Fe(III), tannin-immobilized NCPF proved to be an excellent candidate for the selective detection and recovery of gold through both electrochemical and chemical processes. Copyright © 2014 Elsevier B.V. All rights reserved.
Kestell, John; Boscoboinik, J. Anibal; Cheng, Lanxia; ...
2015-07-23
The self-accelerated adsorption of CO on 1,4-phenylene diisocyanide (PDI)-derived oligomers on Au(111) is explored by reflection–absorption infrared spectroscopy and scanning tunneling microscopy. PDI incorporates gold adatoms from the Au(111) surface to form one-dimensional —(Au–PDI) n— chains that can also connect between gold nanoparticles on mica to form a conductive pathway between them. CO adsorption occurs in two stages; it first adsorbs adjacent to the oligomers that move to optimize CO adsorption. Further CO exposure induces PDI decoordination to form Au–PDI adatom complexes thereby causing the conductivity of a PDI-linked gold nanoparticle array on mica to decrease to act as amore » chemically drive molecular switch. This simple system enables the adsorption process to be explored in detail. DFT calculations reveal that both the —(Au–PDI) n— oligomer chain and the Au–PDI adatom complex are stabilized by coadsorbed CO. A kinetic “foot-in-the-door” model is proposed in which fluctuations in PDI coordination allow CO to diffuse into the gap between gold adatoms to prevent the PDI from reattaching, thereby allowing additional CO to adsorb, to provide kinetic model for allosteric CO adsorption on PDI-covered gold.« less
NASA Astrophysics Data System (ADS)
Haggar, K. S.; Nelson, H. R., Jr.; Berent, L. J.
2017-12-01
The Barite Hills/Nevada Gold Fields mines are in Late Proterozoic and early Paleozoic rocks of the gold and iron sulfides rich Carolina slate belt. The mines were active from 1989 to1995. EPA and USGS site investigations in 2003 resulted in the declaration of the waste pit areas as a superfund site. The USGS and private consulting firms have evaluated subsurface water flow paths, faults & other groundwater-related features at this superfund site utilizing 2-D conductivity & 3-D electromagnetic (EM) surveys. The USGS employed conductivity to generate instantaneous 2-D profiles to evaluate shallow groundwater patterns. Porous regolith sediments, contaminated water & mine debris have high conductivity whereas bedrock is identified by its characteristic low conductivity readings. Consulting contractors integrated EM technology, magnetic & shallow well data to generate 3-D images of groundwater flow paths at given depths across the superfund site. In so doing several previously undetected faults were identified. Lighting strike data was integrated with the previously evaluated electrical and EM data to determine whether this form of natural-sourced EM data could complement and supplement the more traditional geophysical data described above. Several lightning attributes derived from 3-D lightning volumes were found to correlate to various features identified in the previous geophysical studies. Specifically, the attributes Apparent Resistivity, Apparent Permittivity, Peak Current & Tidal Gravity provided the deepest structural geological framework & provided insights into rock properties & earth tides. Most significantly, Peak Current showed remarkable coincidence with the preferred groundwater flow map identified by one of the contractors utilizing EM technology. This study demonstrates the utility of robust integrated EM technology applications for projects focused on hydrology, geohazards to dams, levees, and structures, as well as mineral and hydrocarbon exploration.
Khedekar, Sanjay; Rukkudin, Galib; Ravishankar, Basavaiah; Prajapati, Pradeepkumar
2016-01-01
Makaradhwaja a gold containing mercurial preparation used for diabetes mellitus in indigenous system of medicine. It is a popular aphrodisiac and rejuvenator traditional medicine. It is prepared by using processed gold, mercury and sulfur in different ratios by applying intermittent heating pattern in Valuka Yantra. The aim of the study was to evaluate anti-diabetic effect of Shadguna Balijarita Makaradhwaja (SBM) on streptozotocin (STZ) induced diabetic rats. Diabetes was induced to normal rats by injecting STZ in dose 40 mg/kg. Powdered SBM and dried extract of Tinospora cordifolia were mixed with honey and administered orally for 20 days at dose 2.63 mg/kg and 42.34 mg/kg body weight, respectively. The effects of treatment on body weight changes and blood glucose levels were quantified on day 1, 5, 10, 15 and 21 of the experiments. On the 21(st) day, animals were sacrificed and gross histopathological changes in liver, kidney and pancreas were illustrated. Blood sugar level, glyacated hemoglobin, blood urea, serum cholesterol, serum creatinine, serum triglyceride and serum protein were estimated with standard methods. The study was conducted in the year 2011. Test drug observed significant decrease (P < 0.001) in glyacated hemoglobin level compared to diabetic control rats. Blood sugar level of test drug group shown a significant decrease (279.11 ± 57.95) compared with diabetic rats. The present study demonstrates that SBM and dried extract of T. cordifolia with honey significantly reduces the blood glucose level and shows anti-diabetic effect.
Khedekar, Sanjay; Rukkudin, Galib; Ravishankar, Basavaiah; Prajapati, Pradeepkumar
2016-01-01
Background: Makaradhwaja a gold containing mercurial preparation used for diabetes mellitus in indigenous system of medicine. It is a popular aphrodisiac and rejuvenator traditional medicine. It is prepared by using processed gold, mercury and sulfur in different ratios by applying intermittent heating pattern in Valuka Yantra. Objectives: The aim of the study was to evaluate anti-diabetic effect of Shadguna Balijarita Makaradhwaja (SBM) on streptozotocin (STZ) induced diabetic rats. Materials and Methods: Diabetes was induced to normal rats by injecting STZ in dose 40 mg/kg. Powdered SBM and dried extract of Tinospora cordifolia were mixed with honey and administered orally for 20 days at dose 2.63 mg/kg and 42.34 mg/kg body weight, respectively. The effects of treatment on body weight changes and blood glucose levels were quantified on day 1, 5, 10, 15 and 21 of the experiments. On the 21st day, animals were sacrificed and gross histopathological changes in liver, kidney and pancreas were illustrated. Blood sugar level, glyacated hemoglobin, blood urea, serum cholesterol, serum creatinine, serum triglyceride and serum protein were estimated with standard methods. The study was conducted in the year 2011. Results: Test drug observed significant decrease (P < 0.001) in glyacated hemoglobin level compared to diabetic control rats. Blood sugar level of test drug group shown a significant decrease (279.11 ± 57.95) compared with diabetic rats. Conclusion: The present study demonstrates that SBM and dried extract of T. cordifolia with honey significantly reduces the blood glucose level and shows anti-diabetic effect. PMID:27104037
Structure of disordered gold-polymer thin films using small angle x-ray scattering
NASA Astrophysics Data System (ADS)
Teixeira, F. S.; Salvadori, M. C.; Cattani, M.; Brown, I. G.
2010-11-01
We have investigated the structure of disordered gold-polymer thin films using small angle x-ray scattering and compared the results with the predictions of a theoretical model based on two approaches—a structure form factor approach and the generalized Porod law. The films are formed of polymer-embedded gold nanoclusters and were fabricated by very low energy gold ion implantation into polymethylmethacrylate (PMMA). The composite films span (with dose variation) the transition from electrically insulating to electrically conducting regimes, a range of interest fundamentally and technologically. We find excellent agreement with theory and show that the PMMA-Au films have monodispersive or polydispersive characteristics depending on the implanted ion dose.
NASA Astrophysics Data System (ADS)
Wang, Minglang; Wang, Yongfeng; Sanvito, Stefano; Hou, Shimin
2017-08-01
The atomic structure and electronic transport properties of two types of molecular junctions, in which a series of saturated and conjugated molecules are symmetrically connected to gold electrodes through methylsulfide groups, are investigated using the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that the low-bias junction conductance is determined by the electronic tunneling between the two Au-S donor-acceptor bonds formed at the molecule-electrode interfaces. For alkanes with 4, 6, and 8 carbon atoms in the chain, the Au-S bonds moderately couple with the σ-type frontier molecular orbitals of the alkane backbone and thus prefer to be coplanar with the alkane backbone in the junction. This results in an exponential decrease of the junction conductance as a function of the number of methylene groups. In contrast, the Au-S bonds couple strongly with the π-type orbitals of the 1,4'-bis(methylsulfide)benzene and 4,4'-bis(methylsulfide)biphenyl molecules and thus tend to be perpendicular to the neighboring benzene rings, leading to the rather large junction conductance. Our findings contribute to the understanding of the low-bias conducting mechanism and facilitate the design of molecular electronic devices with methylsulfide groups and gold electrodes.
ERIC Educational Resources Information Center
Gerber, Ralph W.; Oliver-Hoyo, Maria
2007-01-01
The development of a new low-cost, six-electrode instrument for measuring the electrical properties of the self-assembled monolayers of gold particles is being described. The system can also be used to measure conductive liquids, except for those that contain aqua region.
NAEP: Gold Standard or Fool's Gold?
ERIC Educational Resources Information Center
Popham, W. James
2005-01-01
Results of tests of students' skills and knowledge conducted by the National Assessment of Educational Progress (NAEP) and the state accountability tests required by the No Child Left Behind (NCLB) program should not be compared. The two tests are based on different standards and have different measurement functions and judging the results of one…
NASA Astrophysics Data System (ADS)
Chilcott, Terry; Guo, Chuan; Coster, Hans
2013-04-01
Maxwell-Wagner modeling of electrical impedance measurements of tetradecane-electrolyte systems yielded three interfacial layers between the tetradecane layer and the bulk electrolytes of concentration ranging from 1-300 mM KCl whereas the gold-electrolyte system yielded only one layer. The conductivity and thickness for the surface layer were orders of magnitude different from that expected for the Gouy-Chapman layer and did not reflect dependencies of the Debye length on concentration. Conductivity values for the three layers were less than those of the bulk electrolyte but exhibited a dependency on concentration similar to that expected for the bulk. Thickness values for the layers indicate an interface extending ~106 Å into the bulk electrolyte, which contrasts with the gold-electrolyte interface that extended only 20-30 Å into the bulk. Maxwell-Wagner characterizations of both interfaces were consistent with spatial distributions of ionic partitioning arising from the Born energy as determined by the dielectric properties of the substrates and electrolyte. The distributions for the membranous and silicon interfaces were similar but the antitheses of that for the gold interface.
Joseph, Siby; Mathew, Beena
2015-02-05
Herein, we report a simple microwave assisted method for the green synthesis of silver and gold nanoparticles by the reduction of aqueous metal salt solutions using leaf extract of the medicinal plant Aerva lanata. UV-vis., FTIR, XRD, and HR-TEM studies were conducted to assure the formation of nanoparticles. XRD studies clearly confirmed the crystalline nature of the synthesized nanoparticles. From the HR-TEM images, the silver nanoparticles (AgNPs) were found to be more or less spherical and gold nanoparticles (AuNPs) were observed to be of different morphology with an average diameter of 18.62nm for silver and 17.97nm for gold nanoparticles. In order to evaluate the effect of microwave heating upon rate of formation, the synthesis was also conducted under ambient condition without the assistance of microwave radiation and the former method was found to be much faster than the later. The synthesized nanoparticles were used as nanocatalysts in the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. Copyright © 2014 Elsevier B.V. All rights reserved.
2014-01-01
The electrical conductance response of single ZnO microwire functionalized with amine-groups was tested upon an acid pH variation of a solution environment after integration on a customized gold electrode array chip. ZnO microwires were easily synthesized by hydrothermal route and chemically functionalized with aminopropyl groups. Single wires were deposited from the solution and then oriented through dielectrophoresis across eight nanogap gold electrodes on a platform single chip. Therefore, eight functionalized ZnO microwire-gold junctions were formed at the same time, and being integrated on an ad hoc electronic platform, they were ready for testing without any further treatment. Experimental and simulation studies confirmed the high pH-responsive behavior of the amine-modified ZnO-gold junctions, obtaining in a simple and reproducible way a ready-to-use device for pH detection in the acidic range. We also compared this performance to bare ZnO wires on the same electronic platform, showing the superiority in pH response of the amine-functionalized material. PMID:24484615
Adhesion and friction behavior of group 4 elements germanium, silicon, tin, and lead
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1975-01-01
Adhesion and friction studies were conducted with thin films of the group IV elements silicon, germanium, tin, and lead ion plated on the nickel (011) substrate. The mating surface was gold (111). Contacts were made for the elements in the clean state and with oxygen present. Adhesion and friction experiments were conducted at very light loads of 1 to 10 g. Sliding was at a speed of 0.7 mm/min. Friction results indicate that the more covalently bonded elements silicon and germanium exhibit lower adhesion and friction than the more metallic bonded tin and lead. The adhesion of gold to germanium was observed, and recrystallization of the transferred gold occurred. Plastic flow of germanium was seen with sliding. Oxygen reduced, but did not eliminate, the adhesion observed with germanium and silicon.
Erdman, J.A.; Cookro, T.M.; O'Leary, R. M.; Harms, T.F.
1988-01-01
Big sagebrush - a cold-desert species that dominates the terrain over large parts of western United States - was sampled along several traverses that crossed thermally metamorphosed limestone, phyllitic shale, and schist of the Middle and Upper Cambrian Preble Formation that host skarn-, disseminated gold and silver-, and hot springs gold-type mineral occurrences. Patterns of detectable levels of gold (8 to 28 ppb or ng g-1) in ash of new growth were consistent with areas affected by known or suspected gold mineralization. Soils collected along one of the traverses where a selenium-indicator plant was common contained no gold above background levels of 2ppb, but were consistently high in As, Sb, and Zn, and several samples were unusually high in Se (maximum 11 ppm or ??g g-1). Sagebrush along this traverse contained Li at levels above norms for this species. We also found a puzzling geochemical anomaly at a site basinward from active hot springs along a range-front fault scarp. Sagebrush at this site contained a trace of gold and an unusually high concentration of Cd (13 ppm) and the soil had anomalous concentrations of Cd and Bi (3.2 and 6 ppm, respectively). The source of this anomaly could be either metal-rich waters from an irrigation ditch or leakage along a buried fault. Despite the limited nature of the study, we conclude that gold in sagebrush could be a cost-effective guide to drilling locations in areas where the geology seems favorable for disseminated and vein precious metals. ?? 1988.
Nanomolar Trace Metal Analysis of Copper at Gold Microband Arrays
NASA Astrophysics Data System (ADS)
Wahl, A.; Dawson, K.; Sassiat, N.; Quinn, A. J.; O'Riordan, A.
2011-08-01
This paper describes the fabrication and electrochemical characterization of gold microband electrode arrays designated as a highly sensitive sensor for trace metal detection of copper in drinking water samples. Gold microband electrodes have been routinely fabricated by standard photolithographic methods. Electrochemical characterization were conducted in 0.1 M H2SO4 and found to display characteristic gold oxide formation and reduction peaks. The advantages of gold microband electrodes as trace metal sensors over currently used methods have been investigated by employing under potential deposition anodic stripping voltammetry (UPD-ASV) in Cu2+ nanomolar concentrations. Linear correlations were observed for increasing Cu2+ concentrations from which the concentration of an unknown sample of drinking water was estimated. The results obtained for the estimation of the unknown trace copper concentration in drinking was in good agreement with expected values.
Constraining Modern and Historic Mercury Emissions From Gold Mining
NASA Astrophysics Data System (ADS)
Strode, S. A.; Jaeglé, L.; Selin, N. E.; Sunderland, E.
2007-12-01
Mercury emissions from both historic gold and silver mining and modern small-scale gold mining are highly uncertain. Historic mercury emissions can affect the modern atmosphere through reemission from land and ocean, and quantifying mercury emissions from historic gold and silver mining can help constrain modern mining sources. While estimates of mercury emissions during historic gold rushes exceed modern anthropogenic mercury emissions in North America, sediment records in many regions do not show a strong gold rush signal. We use the GEOS-Chem chemical transport model to determine the spatial footprint of mercury emissions from mining and compare model runs from gold rush periods to sediment and ice core records of historic mercury deposition. Based on records of gold and silver production, we include mercury emissions from North and South American mining of 1900 Mg/year in 1880, compared to modern global anthropogenic emissions of 3400 Mg/year. Including this large mining source in GEOS-Chem leads to an overestimate of the modeled 1880 to preindustrial enhancement ratio compared to the sediment core record. We conduct sensitivity studies to constrain the level of mercury emissions from modern and historic mining that is consistent with the deposition records for different regions.
Borriello, A; Agoretti, P; Cassinese, A; D'Angelo, P; Mohanraj, G T; Sanguigno, L
2009-11-01
A novel electrical bistable hybrid nanocomposite based on doped Polyaniline nanofibers with 1-Dodecanethiol-protected Gold nanoparticle (PAni.AuDT), 3-4 nm in size, as the conductive component and polystyrene as polymer matrix was prepared. The structural morphology of the composite and the dispersion of nanoparticles inside it were evaluated using Transmission Electron Microscopy (TEM). The thermal stability and the ratio Polyaniline/Gold nanoparticles in the composite were determined by using thermogravimetric analysis. The electrical bistability of the PAni.AuDT-PS composite, the influence of the dispersion of the PAni.AuDT conductive network and the basic operation mechanism, have been assessed by measuring the electrical response of planar device architectures, also as a function of the environmental temperature (in the range 200 K < T < 360 K). The basic operation mechanism of the hybrid compound has been then correlated to the combined action of the thermally-induced scattering of charge carriers and the thermal contraction of the hosting polymeric matrix. Moreover, the right compromise between these two effects in terms of the most efficient bistability has been studied, founding the concentration of the conductive component which optimizes the device on-off ratio (I(on)/ I(off)).
A novel method for accurate patterning and positioning of biological cells
NASA Astrophysics Data System (ADS)
Jing, Gaoshan; Labukas, Joseph P.; Iqbal, Aziz; Perry, Susan Fueshko; Ferguson, Gregory S.; Tatic-Lucic, Svetlana
2007-05-01
The ability to anchor cells in predefined patterns on a surface has become very important for the development of cell-based sensors, tissue-engineering applications, and the understanding of basic cell functions. Currently, the most widely used technique to generate micrometer or sub-micrometer-sized patterns for various biological applications is microcontact printing (μCP). However, the fidelity of the final pattern may be compromised by deformation of the PDMS stamps used during printing. A novel technique for accurately patterning and positioning biological cells is presented, which can overcome this obstacle. We have fabricated a chip on a silicon wafer using standard photolithographic and deposition processes consisting of gold patterns on top of PECVD silicon dioxide. A hydrophobic self-assembled monolayer (SAM) derived from 1-hexadecanethiol (HDT) was coated on the gold surface to prevent cell growth, and a hydrophilic SAM derived from (3-trimethoxysilyl propyl)-diethylenetriamine (DETA) was coated on the exposed PECVD silicon dioxide surface to promote cell growth. Immortalized mouse hypothalamic neurons (GT1-7) were cultured in vitro on the chip, and patterned cells were fluorescently stained and visualized by fluorescence microscopy. By our method, hydrophobic and hydrophilic regions can be reliably generated and easily visualized under a microscope prior to cell culturing. Cell growth was precisely controlled and limited to specific areas. The achieved resolution was 2 microns, and it could be improved with high resolution photolithographic methods.
Field enhanced graphene based dual hexagonal ring optical antenna for tip-enhanced spectroscopy
NASA Astrophysics Data System (ADS)
Aditya, Rachakonda A. N. S.; Thampy, Anand Sreekantan
2018-05-01
Field enhanced graphene based dual hexagonal ring optical antenna has been designed in IR regime. Outcomes of hexagonal rings with gold and graphene materials and their effect has been studied and analyzed. Graphene based structures are found to have better and enhanced results as compared to that of gold. In addition, a two fold increase in bandwidth (∼30 THz) and cross-section (∼6.00E+06 nm2) has been observed in case of graphene. Field patterns for various tip/corner curvatures are simulated and localized/regional field patterns are justified. The effect of inter ring spacing on absorption cross section has been studied for every 10 nm increase in spacing. This absorption enhancement in addition to field localization makes the current structure feasible for tip enhanced spectroscopy.
Thiolated polyethylene oxide as a non-fouling element for nano-patterned bio-devices
NASA Astrophysics Data System (ADS)
Lisboa, Patrícia; Valsesia, Andrea; Colpo, Pascal; Gilliland, Douglas; Ceccone, Giacomo; Papadopoulou-Bouraoui, Andri; Rauscher, Hubert; Reniero, Fabiano; Guillou, Claude; Rossi, François
2007-03-01
This work describes the synthesis of a thiolated polyethylene oxide that self-assembles on gold to create a non-fouling surface. Thiolated polyethylene oxide was synthesised by reacting 16-mercaptohexadecanoic acid with polyethylene glycol mono methyl ether. The coverage of the thiolated polyethylene oxide on gold was studied by cyclic voltammetry, and the modified surfaces were characterised by X-ray photoelectron spectroscopy and ellipsometry. Protein resistance was assessed using quartz crystal microbalance. Results showed a non-fouling character produced by the thiolated polyethylene oxide. The synthesised product was used as the passivation layer on nano-patterned surfaces consisting of arrayed nano-spots, fabricated by plasma based colloidal lithography. The specific adsorption of anti-bovine serum albumin in the mercaptohexadecanoic acid spots was verified by atomic force microscopy.
Nanoamplifiers synthesized from gadolinium and gold nanocomposites for magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Tian, Xiumei; Shao, Yuanzhi; He, Haoqiang; Liu, Huan; Shen, Yingying; Huang, Wenlin; Li, Li
2013-03-01
We have synthesized an efficient and highly sensitive nanoamplifier composed of gadolinium-doped silica nanoparticles and gold nanoparticles (AuNPs). Magnetic resonance imaging (MRI) in vitro and in vivo assays revealed enhancement of signal sensitivity, which may be explained by electron transfer between water and gadolinium-doped nanoparticles, apparent in the presence of gold. In vitro and in vivo evaluation demonstrated nanoamplifier incurred minimal cytotoxicity and immunotoxicity, increased stability, and gradual excretion patterns. Tumor targeted properties were preliminarily determined when the nanoamplifier was injected into mouse models of colon cancer liver metastasis. Furthermore, although AuNPs departed from the nanoamplifiers in specific mice tissues, optical and magnetic resonance imaging was efficient, especially in metastatic tumors. These assays validate our nanoamplifier as an effective MRI signal enhancer with sensitive cancer diagnosis potential.We have synthesized an efficient and highly sensitive nanoamplifier composed of gadolinium-doped silica nanoparticles and gold nanoparticles (AuNPs). Magnetic resonance imaging (MRI) in vitro and in vivo assays revealed enhancement of signal sensitivity, which may be explained by electron transfer between water and gadolinium-doped nanoparticles, apparent in the presence of gold. In vitro and in vivo evaluation demonstrated nanoamplifier incurred minimal cytotoxicity and immunotoxicity, increased stability, and gradual excretion patterns. Tumor targeted properties were preliminarily determined when the nanoamplifier was injected into mouse models of colon cancer liver metastasis. Furthermore, although AuNPs departed from the nanoamplifiers in specific mice tissues, optical and magnetic resonance imaging was efficient, especially in metastatic tumors. These assays validate our nanoamplifier as an effective MRI signal enhancer with sensitive cancer diagnosis potential. Electronic supplementary information (ESI) available: Protocols for the characterization, immunotoxicity and pharmacokinetics analyses. Additional supporting figures. See DOI: 10.1039/c3nr00170a
Gold(I)-Catalyzed Cascade Cyclization of Allenyl Epoxides
Tarselli, Michael A.; Lucas Zuccarello, J
2009-01-01
Cationic gold(I) phosphite catalysts activate allenes for epoxide cascade reactions. The system is tolerant of numerous functional groups (sulfones, esters, ethers, sulfonamides) and proceeds at room temperature in dichloromethane. The cyclization pathway is sensitive to the substitution pattern of the epoxide, and the backbone structure of the A-ring. It is capable of producing medium-ring ethers, fused 6-5 bicyclic, and linked pyran-furan structures. The resulting cycloisomers are reminiscent of structures found in numerous polyether natural products. PMID:19588972
NASA Astrophysics Data System (ADS)
Møller, Søren H.; Vester-Petersen, Joakim; Nazir, Adnan; Eriksen, Emil H.; Julsgaard, Brian; Madsen, Søren P.; Balling, Peter
2018-02-01
Quantitative measurements of the electric near-field distribution of star-shaped gold nanoparticles have been performed by femtosecond laser ablation. Measurements were carried out on and off the plasmon resonance. A detailed comparison with numerical simulations of the electric fields is presented. Semi-quantitative agreement is found, with slight systematic differences between experimentally observed and simulated near-field patterns close to strong electric-field gradients. The deviations are attributed to carrier transport preceding ablation.
Performance of a four-element Ka-band high-temperature superconducting microstrip antenna
NASA Technical Reports Server (NTRS)
Richard, M. A.; Bhasin, K. B.; Gilbert, C.; Metzler, S.; Koepf, G.; Claspy, P. C.
1992-01-01
Superconducting four-element microstrip array antennas operating at 30 GHz have been designed and fabricated on a lanthanum aluminate (LaAlO3) substrates. The experimental performance of these thin film Y-Ba-Cu-O superconducting antennas is compared with that of identical antenna patterned with evaporated gold. Efficiency measurements of these antennas show an improvement of 2 dB at 70 K and as much as 3.5 dB at 40 K in the superconducting antenna over the gold antenna.
Armchair and zigzag nanoribbons of gold and silver: A DFT study
NASA Astrophysics Data System (ADS)
Kapoor, Pooja; Sharma, Munish; Kumar, Ashok; Ahluwalia, P. K.
2018-04-01
This paper presents the results from a DFT-based computational study of structural and electronic properties of zigzag and armchair edge shaped nanoribbons of gold and silver in hexagonal phase. The cohesive energy of the considered nanoribbons are found to be more than the corresponding 2D counterpart, thereby, suggesting Au and Ag nanoribbons to be more stable in 1D as compared to 2D. All nanoribbons are found to be metallic with a modulation in quantum ballistic conductance with length and edge type of the nanoribbon. Au nanoribbons are found to have higher conductance than Ag nanoribbon. There is increase in conductance with increase in length of nanoribbon.
NASA Astrophysics Data System (ADS)
Zade, Vishal; Kang, Hung-Sen; Lee, Min Hwan
2018-01-01
Conductive atomic force microscopy has been widely employed to study the localized electrical properties of a wide range of substrates in non-vacuum conditions by the use of noble metal-coated tips. However, quantitative characterization of the electrical properties was often precluded by unpredictable changes in the tip apex morphology, and/or electronic transport characteristics of undesired oxide overcoats on the tip. In this paper, the impact of mechanical and electrical stimuli on the apex geometry of gold coated tips and electrical conduction properties at the tip-substrate contact is discussed by choosing gold and highly ordered pyrolytic graphite as the representative tip and substrate materials, respectively.
Electronic structure of metal-semiconductor nanojunctions in gold CdSe nanodumbbells.
Steiner, D; Mokari, T; Banin, U; Millo, O
2005-07-29
The electronic properties of metal-semiconductor nanojunctions are investigated by scanning tunneling spectroscopy of gold-tipped CdSe rods. A gap similar to that in bare CdSe nanorods is observed near the nanodumbbell center, while subgap structure emerges near the metal-semiconductor nanocontact. This behavior is attributed to the formation of subgap interface states that vanish rapidly towards the center of the rod, consistent with theoretical predictions. These states lead also to modified Coulomb staircase, and in some cases to negative differential conductance, on the gold tips.
Exposure of Small-Scale Gold Miners in Prestea to Mercury, Ghana, 2012
Mensah, Ebenezer Kofi; Afari, Edwin; Wurapa, Frederick; Sackey, Samuel; Quainoo, Albert; Kenu, Ernest; Nyarko, Kofi Mensah
2016-01-01
Introduction Small-scale gold miners in Ghana have been using mercury to amalgamate gold for many years. Mercury is toxic even at low concentration. We assessed occupational exposure of small-scale gold miners to mercury in Prestea, a gold mining town in Ghana. Methods We conducted a cross-sectional study in which we collected morning urine samples from 343 small-scale gold miners and tested for elemental mercury. Data on small-scale gold miner's socio-demographics, adverse health effects and occupational factors for mercury exposure were obtained and analyzed using SPSS Version 16 to determine frequency and percentage. Bivariate analysis was used to determine occupational factors associated with mercury exposure at 95% confidence level. Results The mean age of the small-scale gold miners was 29.5 ±9.6 years, and 323(94.20%) were males. One hundred and sixty (46.65%) of the small-scale gold miners had urine mercury above the recommended exposure limit (<5.0ug/L). Complaints of numbness were significantly associated with mercury exposure among those who have previously worked at other small-scale gold mines (χ2=4.96, p=0.03). The use of personal protective equipment among the small-scale gold miners was low. Retorts, which are globally recommended for burning amalgam, were not found at mining sites. Conclusion A large proportion of small-scale gold miners in Prestea were having mercury exposure in excess of occupational exposure limits, and are at risk of experiencing adverse health related complications. Ghana Environmental Protection Agency should organize training for the miners. PMID:28210374
HUNTER-FRYINGPAN WILDERNESS AND PORPHYRY MOUNTAIN WILDERNESS STUDY AREA, COLORADO.
Ludington, Steve; Ellis, Clarence E.
1984-01-01
A mineral survey of the Hunter-Fryingpan Wilderness and the Porphyry Mountain Wilderness study area, Colorado was conducted. Substantiated gold and silver resource potential was identified in one area and a surrounding area is judged to have probable mineral-resource potential for gold and silver. No other mineral or energy resources were identified in the study.
Focused ion beam-assisted technology in sub-picolitre micro-dispenser fabrication
NASA Astrophysics Data System (ADS)
Lopez, M. J.; Caballero, D.; Campo, E. M.; Perez-Castillejos, R.; Errachid, A.; Esteve, J.; Plaza, J. A.
2008-07-01
Novel medical and biological applications are driving increased interest in the fabrication of micropipette or micro-dispensers. Reduced volume samples and drug dosages are prime motivators in this effort. We have combined microfabrication technology with ion beam milling techniques to successfully produce cantilever-type polysilicon micro-dispensers with 3D enclosed microchannels. The microfabrication technology described here allows for the designing of nozzles with multiple shapes. The contribution of ion beam milling has had a large impact on the fabrication process and on further customizing shapes of nozzles and inlet ports. Functionalization tests were conducted to prove the viability of ion beam-fabricated micro-dispensers. Self-assembled monolayers were successfully formed when a gold surface was patterned with a thiol solution dispensed by the fabricated micro-dispensers.
A consensus-based gold standard for the evaluation of mass casualty triage systems.
Lerner, E Brooke; McKee, Courtney H; Cady, Charles E; Cone, David C; Colella, M Riccardo; Cooper, Arthur; Coule, Phillip L; Lairet, Julio R; Liu, J Marc; Pirrallo, Ronald G; Sasser, Scott M; Schwartz, Richard; Shepherd, Greene; Swienton, Raymond E
2015-01-01
Accuracy and effectiveness analyses of mass casualty triage systems are limited because there are no gold standard definitions for each of the triage categories. Until there is agreement on which patients should be identified by each triage category, it will be impossible to calculate sensitivity and specificity or to compare accuracy between triage systems. To develop a consensus-based, functional gold standard definition for each mass casualty triage category. National experts were recruited through the lead investigators' contacts and their suggested contacts. Key informant interviews were conducted to develop a list of potential criteria for defining each triage category. Panelists were interviewed in order of their availability until redundancy of themes was achieved. Panelists were blinded to each other's responses during the interviews. A modified Delphi survey was developed with the potential criteria identified during the interview and delivered to all recruited experts. In the early rounds, panelists could add, remove, or modify criteria. In the final rounds edits were made to the criteria until at least 80% agreement was achieved. Thirteen national and local experts were recruited to participate in the project. Six interviews were conducted. Three rounds of voting were performed, with 12 panelists participating in the first round, 12 in the second round, and 13 in the third round. After the first two rounds, the criteria were modified according to respondent suggestions. In the final round, over 90% agreement was achieved for all but one criterion. A single e-mail vote was conducted on edits to the final criterion and consensus was achieved. A consensus-based, functional gold standard definition for each mass casualty triage category was developed. These gold standard definitions can be used to evaluate the accuracy of mass casualty triage systems after an actual incident, during training, or for research.
Russo, Christopher J.; Passmore, Lori A.
2016-01-01
Electron cryomicroscopy (cryo-EM) allows structure determination of a wide range of biological molecules and specimens. All-gold supports improve cryo-EM images by reducing radiation-induced motion and image blurring. Here we compare the mechanical and electrical properties of all-gold supports to amorphous carbon foils. Gold supports are more conductive, and have suspended foils that are not compressed by differential contraction when cooled to liquid nitrogen temperatures. These measurements show how the choice of support material and geometry can reduce specimen movement by more than an order of magnitude during low-dose imaging. We provide methods for fabrication of all-gold supports and preparation of vitrified specimens. We also analyse illumination geometry for optimal collection of high resolution, low-dose data. Together, the support structures and methods herein can improve the resolution and quality of images from any electron cryomicroscope. PMID:26592474
Friction and hardness of gold films deposited by ion plating and evaporation
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1983-01-01
Sliding friction experiments were conducted with ion-plated and vapor-deposited gold films on various substrates in contact with a 0.025-mm-radius spherical silicon carbide rider in mineral oil. Hardness measurements were also made to examine the hardness depth profile of the coated gold on the substrate. The results indicate that the hardness is influenced by the depth of the gold coating from the surface. The hardness increases with an increase in the depth. The hardness is also related to the composition gradient in the graded interface between the gold coating and the substrate. The graded interface exhibited the highest hardness resulting from an alloy hardening effect. The coefficient of friction is inversely related to the hardness, namely, the load carrying capacity of the surface. The greater the hardness that the metal surface possesses, the lower is the coefficient of friction. The graded interface exhibited the lowest coefficient of friction.
High surface area electrodes by template-free self-assembled hierarchical porous gold architecture.
Morag, Ahiud; Golub, Tatiana; Becker, James; Jelinek, Raz
2016-06-15
The electrode active surface area is a crucial determinant in many electrochemical applications and devices. Porous metal substrates have been employed in electrode design, however construction of such materials generally involves multistep processes, generating in many instances electrodes exhibiting incomplete access to internal pore surfaces. Here we describe fabrication of electrodes comprising hierarchical, nano-to-microscale porous gold matrix, synthesized through spontaneous crystallization of gold thiocyanate in water. Cyclic voltammetry analysis revealed that the specific surface area of the conductive nanoporous Au microwires was very high and depended only upon the amount of gold used, not electrode areas or geometries. Application of the electrode in a pseudo-capacitor device is presented. Copyright © 2016 Elsevier Inc. All rights reserved.
Global demand for gold is another threat for tropical forests
NASA Astrophysics Data System (ADS)
Alvarez-Berríos, Nora L.; Aide, T. Mitchell
2015-01-01
The current global gold rush, driven by increasing consumption in developing countries and uncertainty in financial markets, is an increasing threat for tropical ecosystems. Gold mining causes significant alteration to the environment, yet mining is often overlooked in deforestation analyses because it occupies relatively small areas. As a result, we lack a comprehensive assessment of the spatial extent of gold mining impacts on tropical forests. In this study, we provide a regional assessment of gold mining deforestation in the tropical moist forest biome of South America. Specifically, we analyzed the patterns of forest change in gold mining sites between 2001 and 2013, and evaluated the proximity of gold mining deforestation to protected areas (PAs). The forest cover maps were produced using the Land Mapper web application and images from the MODIS satellite MOD13Q1 vegetation indices 250 m product. Annual maps of forest cover were used to model the incremental change in forest in ˜1600 potential gold mining sites between 2001-2006 and 2007-2013. Approximately 1680 km2 of tropical moist forest was lost in these mining sites between 2001 and 2013. Deforestation was significantly higher during the 2007-2013 period, and this was associated with the increase in global demand for gold after the international financial crisis. More than 90% of the deforestation occurred in four major hotspots: Guianan moist forest ecoregion (41%), Southwest Amazon moist forest ecoregion (28%), Tapajós-Xingú moist forest ecoregion (11%), and Magdalena Valley montane forest and Magdalena-Urabá moist forest ecoregions (9%). In addition, some of the more active zones of gold mining deforestation occurred inside or within 10 km of ˜32 PAs. There is an urgent need to understand the ecological and social impacts of gold mining because it is an important cause of deforestation in the most remote forests in South America, and the impacts, particularly in aquatic systems, spread well beyond the actual mining sites.
NASA Astrophysics Data System (ADS)
Wang, Wei; Huang, Jingyu; Murphy, Catherine; Cahill, David; University of Illinois At Urbana Champaign, Department of Materials Science; Engineering Team; Department Collaboration
2011-03-01
While heat transfer via phonons across solid-solid boundary has been a core field in condense matter physics for many years, vibrational energy transport across molecular layers has been less well elucidated. We heat rectangular-shaped gold nanocrystals (nanorods) with Ti-sapphire femtosecond pulsed laser at their longitudinal surface plasmon absorption wavelength to watch how their temperature evolves in picoseconds transient. We observed single exponential decay behavior, which suggests that the heat dissipation is only governed by a single interfacial conductance value. The ``RC'' time constant was 300ps, corresponding to a conductance value of 95MW/ m 2 K. This interfacial conductance value is also a function of ambient temperature since at temperatures as low as 80K, which are below the Debye temperature of organic layers, several phonon modes were quenched, which shut down the dominating channels that conduct heat at room temperature.
NASA Astrophysics Data System (ADS)
Aswathy Aromal, S.; Philip, Daizy
2012-11-01
The development of new synthesis methods for monodispersed nanocrystals using cheap and nontoxic chemicals, environmentally benign solvents and renewable materials remains a challenge to the scientific community. Most of the current methods involve known protocols which may be potentially harmful to either environment or human health. Recent research has been focused on green synthesis methods to produce new nanomaterials, ecofriendly and safer with sustainable commercial viability. The present work reports the green synthesis of gold nanoparticles using the aqueous extract of fenugreek (Trigonella foenum-graecum) as reducing and protecting agent. The pathway is based on the reduction of AuCl4- by the extract of fenugreek. This method is simple, efficient, economic and nontoxic. Gold nanoparticles having different sizes in the range from 15 to 25 nm could be obtained by controlling the synthesis parameters. The nanoparticles have been characterized by UV-Visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. The high crystallinity of nanoparticles is evident from clear lattice fringes in the HRTEM images, bright circular spots in the SAED pattern and peaks in the XRD pattern. FTIR spectrum indicates the presence of different functional groups present in the biomolecule capping the nanoparticles. The synthesized gold nanoparticles show good catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol by excess NaBH4. The catalytic activity is found to be size-dependent, the smaller nanoparticles showing faster activity.
NASA Astrophysics Data System (ADS)
Roy, Sam; Upton, Phaedra; Craw, Dave
2018-01-01
Formation of placer accumulations in fluvial environments requires 103-106 or even greater times concentration of heavy minerals. For this to occur, regular sediment supply from erosion of adjacent topography is required, the river should remain within a single course for an extended period of time and the material must be reworked such that a high proportion of the sediment is removed while a high proportion of the heavy minerals remains. We use numerical modeling, constrained by observations of circum-Pacific placer gold deposits, to explore processes occurring in evolving river systems in dynamic tectonic environments. A fluvial erosion/transport model is used to determine the mobility of placer gold under variable uplift rate, storm intensity, and rock mass strength conditions. Gold concentration is calculated from hydraulic and bedload grain size conditions. Model results suggest that optimal gold concentration occurs in river channels that frequently approach a threshold between detachment-limited and transport-limited hydraulic conditions. Such a condition enables the accumulation of gold particles within the framework of a residual gravel lag. An increase in transport capacity, which can be triggered by faster uplift rates, more resistant bedrock, or higher intensity storm events, will strip all bedload from the channel. Conversely, a reduction in transport capacity, triggered by a reduction in uplift rate, bedrock resistance, or storm intensity, will lead to a greater accumulation of a majority of sediments and a net decrease in gold concentration. For our model parameter range, the optimal conditions for placer gold concentration are met by 103 times difference in strength between bedrock and fault, uplift rates between 1 and 5 mm a-1, and moderate storm intensities. Fault damage networks are shown to be a critical factor for high Au concentrations and should be a target for exploration.
Portable X-ray diffractometer equipped with XRF for archaeometry
NASA Astrophysics Data System (ADS)
Uda, M.; Ishizaki, A.; Satoh, R.; Okada, K.; Nakajima, Y.; Yamashita, D.; Ohashi, K.; Sakuraba, Y.; Shimono, A.; Kojima, D.
2005-09-01
A portable X-ray diffractometer equipped with an X-ray fluorescence spectrometer was improved so as to get a diffraction pattern and a fluorescence spectrum simultaneously in air from one and the same small area on a specimen. Here, diffraction experiments were performed in two modes, i.e. an angle rotation mode and an energy dispersive mode. In the latter a diffraction pattern and a fluorescence spectrum were simultaneously recorded in a short time, 100 s or less, on one display. The diffractometer was tested in the field to confirm its performance. Targets chosen for this purpose were a bronze mirror from the Eastern Han Dynasty (25-220), and a stupa and its pedestal which are part of the painted statue of "Tamonten holding a stupa" from the Heian Period (794-1192), enshrined in the Engyouji temple founded in 996. The bronze mirror was identified as a product of the Han Dynasty from its chemical composition and the existence of the δ phase in the Cu-Sn alloy. The stupa and its pedestal were decorated with gold powder and gold leaf, respectively. From the XRF data of the pedestal, the underlying layer of gold leaf seems to have been painted with emerald green.
Improvement of infrared single-photon detectors absorptance by integrated plasmonic structures
Csete, Mária; Sipos, Áron; Szalai, Anikó; Najafi, Faraz; Szabó, Gábor; Berggren, Karl K.
2013-01-01
Plasmonic structures open novel avenues in photodetector development. Optimized illumination configurations are reported to improve p-polarized light absorptance in superconducting-nanowire single-photon detectors (SNSPDs) comprising short- and long-periodic niobium-nitride (NbN) stripe-patterns. In OC-SNSPDs consisting of ~quarter-wavelength dielectric layer closed by a gold reflector the highest absorptance is attainable at perpendicular incidence onto NbN patterns in P-orientation due to E-field concentration at the bottom of nano-cavities. In NCAI-SNSPDs integrated with nano-cavity-arrays consisting of vertical and horizontal gold segments off-axis illumination in S-orientation results in polar-angle-independent perfect absorptance via collective resonances in short-periodic design, while in long-periodic NCAI-SNSPDs grating-coupled surface waves promote EM-field transportation to the NbN stripes and result in local absorptance maxima. In NCDAI-SNSPDs integrated with nano-cavity-deflector-array consisting of longer vertical gold segments large absorptance maxima appear in 3p-periodic designs due to E-field enhancement via grating-coupled surface waves synchronized with the NbN stripes in S-orientation, which enable to compensate fill-factor-related retrogression. PMID:23934331
NASA Astrophysics Data System (ADS)
Kunieda, Yuichi; Fukuda, Daiji; Ohno, Masashi; Takahashi, Hiroyuki; Nakazawa, Masaharu; Inou, Tadashi; Ataka, Manabu
2004-05-01
We are developing a high-energy-resolution X-ray microcalorimeter for X-ray fluorescent spectrometry using a superconducting transition edge sensor (TES) that consists of a bilayer of iridium and gold (Ir/Au). In this paper, we have studied the superconducting transition characteristics of two different bilayer structures. Type 1 is a simple stacked bilayer where a square-pattern film of iridium is covered with an identical pattern of gold. Type 2 is based on the Type 1 Ir/Au film, however, it has Au side banks. The resistance-temperature characteristics of these films are investigated by a four-wired resistance measurement method. As a result, the transition curve of Type 2 obeyed the Ginzburg-Landau (GL) theory; however, the transition curve of Type 1 was entirely different from that of Type 2. The reason there was a difference in these transition curves of the two devices is discussed in terms of the difference in the electric current distribution inside TESs. Even if we assume a uniform bilayer film and a uniform proximity effect over the entire film, the current density inside the device affects the characteristics of the transition curves.
Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.; Alpers, Charles N.
2010-01-01
This study examined mercury concentrations in whole fish from Camp Far West Reservoir, an 830-ha reservoir in northern California, USA, located downstream from lands mined for gold during and following the Gold Rush of 1848–1864. Total mercury (reported as dry weight concentrations) was highest in spotted bass (mean, 0.93 μg/g; range, 0.16–4.41 μg/g) and lower in bluegill (mean, 0.45 μg/g; range, 0.22–1.96 μg/g) and threadfin shad (0.44 μg/g; range, 0.21–1.34 μg/g). Spatial patterns for mercury in fish indicated high concentrations upstream in the Bear River arm and generally lower concentrations elsewhere, including downstream near the dam. These findings coincided with patterns exhibited by methylmercury in water and sediment, and suggested that mercury-laden inflows from the Bear River were largely responsible for contaminating the reservoir ecosystem. Maximum concentrations of mercury in all three fish species, but especially bass, were high enough to warrant concern about toxic effects in fish and consumers of fish.
Green synthesis of Silver and Gold Nanoparticles for Enhanced catalytic and bactericidal activity
NASA Astrophysics Data System (ADS)
Naraginti, S.; Tiwari, N.; Sivakumar, A.
2017-11-01
A rapid one step green synthetic method using kiwi fruit extract was employed for preparation of silver and gold nanoparticles. The synthesized nanoparticles were successfully used as green catalysts for the reduction of 4-nitrophenol (4-NP) and methylene blue (MB). They also exhibited excellent antimicrobial activity against clinically isolated Pseudomonas aeruginosa (P.aeruginosa) and Staphylococcus aureus (S.aureus). It was noticed that with increase in concentration of the aqueous silver and gold solutions, particle size of the Ag and Au NPS showed increase as evidenced from UV-Visible spectroscopy and TEM micrograph. The method employed for the synthesis required only a few minutes for more than 90% formation of nanoparticles when the temperature was raised to 80°C. It was also noticed that the catalytic activity of nanoparticles depends upon the size of the particles. These nanoparticles were observed to be crystalline from the clear lattice fringes in the transmission electron microscopic (TEM) images, bright circular spots in the selected area electron diffraction (SAED) pattern and peaks in the X-ray diffraction (XRD) pattern. The Fourier-transform infrared (FTIR) spectrum indicated the presence of different functional groups in the biomolecule capping the nanoparticles.
2012-06-01
assets; or Cobra Gold, a six-week exercise conducted jointly with the Royal Thai Armed Forces (U.S. Army, Pacific, 2012). Because these operations do...point of use. An example of this type of mobilization is Cobra Gold, a six-week exercise conducted jointly with the Royal Thai Armed Forces...in the same theatre , and to discontinue the loss of maintenance man-hours in packing and unpacking the entire support package upon each deployment
Molecular self-assembly for biological investigations and nanoscale lithography
NASA Astrophysics Data System (ADS)
Cheunkar, Sarawut
Small, diffusible molecules when recognized by their binding partners, such as proteins and antibodies, trigger enzymatic activity, cell communication, and immune response. Progress in analytical methods enabling detection, characterization, and visualization of biological dynamics at the molecular level will advance our exploration of complex biological systems. In this dissertation, analytical platforms were fabricated to capture membrane-associated receptors, which are essential proteins in cell signaling pathways. The neurotransmitter serotonin and its biological precursor were immobilized on gold substrates coated with self-assembled monolayers (SAMs) of oligo(ethylene glycol)alkanethiols and their reactive derivatives. The SAM-coated substrates present the biologically selective affinity of immobilized molecules to target native membrane-associated receptors. These substrates were also tested for biospecificity using antibodies. In addition, small-molecule-functionalized platforms, expressing neurotransmitter pharmacophores, were employed to examine kinetic interactions between G-protein-coupled receptors and their associated neurotransmitters. The binding interactions were monitored using a quartz crystal microbalance equipped with liquid-flow injection. The interaction kinetics of G-protein-coupled serotonin 1A receptor and 5-hydroxytyptophan-functionalized surfaces were studied in a real-time, label-free environment. Key binding parameters, such as equilibrium dissociation constants, binding rate constants, and dissociative half-life, were extracted. These parameters are critical for understanding and comparing biomolecular interactions in modern biomedical research. By integrating self-assembly, surface functionalization, and nanofabrication, small-molecule microarrays were created for high-throughput screening. A hybrid soft-lithography, called microcontact insertion printing, was used to pattern small molecules at the dilute scales necessary for highly selective biorecognition. By carefully tuning the polar surface energy of polymeric stamps, problems associated with patterning hydrophilic tether molecules inserted into hydrophilic preformed SAMs are surmounted. The patterned substrates presenting neurotransmitter precursors selectively capture membrane-associated receptors. These advances provide new avenues for fabricating small-molecule arrays. Furthermore, a novel strategy based on a conventional microcontact printing, called chemical lift-off lithography, was invented to overcome the micrometer-scale resolution limits of molecular ink diffusion in soft lithography. Self-assembled monolayers of hydroxyl-terminated alkanethiols, preformed on gold substrates, were selectively removed by oxygen-plasma-treated polymeric stamps in a subtractive stamping process with high pattern fidelity. The covalent interactions formed at the stamp-substrate interface are believed to be responsible for removing not only alkanethiol molecules but also a monolayer of gold atoms from the substrates. A variety of high-resolution patterned features were fabricated, and stamps were cleaned and reused many times without feature deterioration. The remaining SAMs acted as resists for etching exposed gold features. Monolayer backfilling into lifted-off areas enabled patterned protein capture, and 40-nanometer chemical patterns were achieved.
2009-09-01
exploding foil initiator ( EFI ) type fuzes are being explored to...Acronyms Au gold Cr chromium Cu copper EFI exploding foil initiator BOE buffered oxide etch MEMS microelectromechanical systems RIE reactive ion...Patterning of Thick Parylene Films by Oxygen Plasma for Application as Exploding Foil Initiator Flyer Material by Eugene Zakar and Michael
Toward Single Electron Nanoelectronics Using Self-Assembled DNA Structure.
Tapio, Kosti; Leppiniemi, Jenni; Shen, Boxuan; Hytönen, Vesa P; Fritzsche, Wolfgang; Toppari, J Jussi
2016-11-09
DNA based structures offer an adaptable and robust way to develop customized nanostructures for various purposes in bionanotechnology. One main aim in this field is to develop a DNA nanobreadboard for a controllable attachment of nanoparticles or biomolecules to form specific nanoelectronic devices. Here we conjugate three gold nanoparticles on a defined size TX-tile assembly into a linear pattern to form nanometer scale isolated islands that could be utilized in a room temperature single electron transistor. To demonstrate this, conjugated structures were trapped using dielectrophoresis for current-voltage characterization. After trapping only high resistance behavior was observed. However, after extending the islands by chemical growth of gold, several structures exhibited Coulomb blockade behavior from 4.2 K up to room temperature, which gives a good indication that self-assembled DNA structures could be used for nanoelectronic patterning and single electron devices.
NASA Astrophysics Data System (ADS)
Ebrahimpour, Zeinab; Mansour, Nastaran
2017-02-01
This paper reports on the electrical behavior of self-assembled gold nanoparticle films before and after high-temperature annealing in ambient environment. These films are made by depositing gold nanoparticles from a colloidal solution on glass substrates using centrifuge deposition technique. The current-voltage (I-V) characteristics of these films exhibits ohmic and non-ohmic properties for un-annealed and annealed films respectively. As the annealing time duration increases, the onset of non-ohmic behavior occurs at higher voltages. To understand the underlying mechanisms for the observed electrical conduction behavior in these films and how electrical conduction is effected by film morphology and structural properties before and after annealing, systematic comparative studies based on scanning electron microscopy (SEM), UV-vis absorption spectroscopy and X-ray photoelectron spectroscopy (XPS) have been performed. The morphology of the films shows that the assembled gold nanoparticles are distributed on the substrate in a random way before annealing. After 2 h annealing gold nanoparticles exhibit a higher filling fraction when examined by SEM, which means that they coalesce, upon annealing, with respect to un-annealed films. The UV-vis absorption spectra of the films show that there is a red-shift and broadening in the absorption band for the annealed films. The observed phenomenon is related to the plasmon near-field coupling effect and suggests that the nanoparticle ensembles interspacing has decreased. The structural and crystallinity of the films exhibit amorphous structure before annealing and pure crystalline phases with a preferential growth direction along the (111) plane after annealing. The XPS analysis further suggests the existence of the stable thin oxide layer in the phase of Au2O3 in the annealed films. The I-V characteristics have been described by Simmons' model for tunnel transport through metal-insulator-metal (MIM) junctions. The Fowler-Nordheim (F-N) plots show the transition of the in-plane charge transport mechanism from direct tunneling to field emission in annealed films. Our results suggest that, the formation of a thin layer of Au2O3 , the proximity of the nanoparticles as well as their higher filling fraction are important parameters related with the tunneling process enhancement. The observed non-ohmic conductivity property can make these self-assembled gold nanoparticle films very useful structures in different applications such as sensing, resistors and other nanoelectronic applications.
Conductive connection induced speed-up of localized-surface-plasmon dynamics
NASA Astrophysics Data System (ADS)
Cun, Peng; Wang, Meng; Huang, Cuiying; Huang, Pei; He, Xinkui; Wei, Zhiyi; Zhang, Xinping
2018-01-01
Conductive connection of localized surface plasmons (LSPs) was achieved by depositing a layer of continuous gold film onto the top surface of a matrix of randomly distributed gold nanoparticles (AuNPs) that were originally isolated on a glass substrate. Ultrafast spectroscopic response of such plasmonic nanostructures was investigated by femtosecond pump-probe detection technique. The transient-absorption data showed large redshift and broadening of the resonance spectrum of the conductively connected AuNPs with respect to the isolated ones. Such effects led to modulation on the evolution dynamics of LSPs in a transient transition spectral band. Making use of the temporal and spectral dislocation between the edges of transition band, we achieved much increased speed of the plasmonic optical switching effect.
Electrodeposition of gold particles on aluminum substrates containing copper.
Olson, Tim S; Atanassov, Plamen; Brevnov, Dmitri A
2005-01-27
Electrodeposition of adhesive metal films on aluminum is traditionally preceded by the zincate process, which activates the aluminum surface. This paper presents an alternative approach for activation of aluminum by using films containing 99.5% aluminum and 0.5% copper. Aluminum/copper films are made amenable for subsequent electrodeposition by anodization followed by chemical etching of aluminum oxide. The electrodeposition of gold is monitored with electrochemical impedance spectroscopy (EIS). Analysis of EIS data suggests that electrodeposition of gold increases the interfacial capacitance from values typical for electrodes with thin oxide layers to values typical for metal electrodes. Scanning electron microscopy examination of aluminum/copper films following gold electrodeposition shows the presence of gold particles with densities of 10(5)-10(7) particles cm(-2). The relative standard deviation of mean particle diameters is approximately 25%. Evaluation of the micrographs suggests that the electrodeposition occurs by instantaneous nucleation followed by growth of three-dimensional semispherical particles. The gold particles, which are electrically connected to the conductive aluminum/copper film, support a reversible faradaic process for a soluble redox couple. The deposited gold particles are suitable for subsequent metallization of aluminum and fabrication of particle-type films with interesting catalytic, electrical, and optical properties.
Gopika, G; Asha, A M; Sivakumar, N; Balakrishnan, A; Nair, S V; Subramanian, K R V
2015-09-01
In this paper, we have synthesized electrospun TiO2 nanofibers embedded with bimodal sized and prismatic gold nanoparticles. The surface plasmons generated in the gold nanoparticles were used to enhance the performance of photocatalysis. The photocatalytic conversion efficiencies of these bimodal sized/prismatic gold nanoparticles when embedded in electrospun TiO2 fibres showed an enhancement of upto 60% over bare fiber systems and also show higher efficiencies than electrospun fibrous systems embedded with unimodal sized gold nanoparticles. Anisotropic bimodal gold nanoparticles show the highest degree of photocatalytic activity. This may be attributed to greater density/concentration of nanoparticles with higher effective surface area and formation of a junction between the smaller and larger nanoparticles. Such a bimodally distributed range of nanoparticles could also lead to greater trapping of charge carriers at the TiO2 conduction band edge and promoting catalytic reactions on account of these trapped charges. This enhanced photocatalytic activity is explained by invoking different operating mechanisms such as improved surface area, greater trapping, coarse plasmon resonance and band effects. Thus, a useful applicability of the gold nanoparticles is shown in the area of photocatalysis.
Controlling the Nanoscale Patterning of AuNPs on Silicon Surfaces
Williams, Sophie E.; Davies, Philip R.; Bowen, Jenna L.; Allender, Chris J.
2013-01-01
This study evaluates the effectiveness of vapour-phase deposition for creating sub-monolayer coverage of aminopropyl triethoxysilane (APTES) on silicon in order to exert control over subsequent gold nanoparticle deposition. Surface coverage was evaluated indirectly by observing the extent to which gold nanoparticles (AuNPs) deposited onto the modified silicon surface. By varying the distance of the silicon wafer from the APTES source and concentration of APTES in the evaporating media, control over subsequent gold nanoparticle deposition was achievable to an extent. Fine control over AuNP deposition (AuNPs/μm2) however, was best achieved by adjusting the ionic concentration of the AuNP-depositing solution. Furthermore it was demonstrated that although APTES was fully removed from the silicon surface following four hours incubation in water, the gold nanoparticle-amino surface complex was stable under the same conditions. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to study these affects. PMID:28348330
ITO/Au/ITO sandwich structure for near-infrared plasmonics.
Fang, Xu; Mak, Chee Leung; Dai, Jiyan; Li, Kan; Ye, Hui; Leung, Chi Wah
2014-09-24
ITO/Au/ITO trilayers with varying gold spacer layer thicknesses were deposited on glass substrates by pulsed laser deposition. Transmission electron microscopy measurements demonstrated the continuous nature of the Au layer down to 2.4 nm. XRD patterns clearly showed an enhanced crystallinity of the ITO films promoted by the insertion of the gold layer. Compared with a single layer of ITO with a carrier concentration of 7.12 × 10(20) cm(-3), the ITO/Au/ITO structure achieved an effective carrier concentration as high as 3.26 × 10(22) cm(-3). Transmittance and ellipsometry measurements showed that the optical properties of ITO/Au/ITO films were greatly influenced by the thickness of the inserted gold layer. The cross-point wavelength of the trilayer samples was reduced with increasing gold layer thickness. Importantly, the trilayer structure exhibited a reduced loss (compared with plain Au) in the near-infrared region, suggesting its potential for plasmonic applications in the near-infrared range.
Dennis A. Lemly
2001-01-01
The Argentina Federal Secretary of Natural Resources oversees a wide array of mining operations conducted on public lands. Recently, selenium has emerged as a contaminant issue associated with several gold mines in the northern mountain ranges. The Secretary's Office contacted me and requested assistance interpreting selenium concentrations and possible impacts on...
Oreshoot zoning in the Carlin-type Betze orebody, Goldstrike Mine, Eureka County, Nevada
Peters, Stephen G.; Ferdock, Gregory C.; Woitsekhowskaya, Maria B.; Leonardson, Robert; Rahn, Jerry
1998-01-01
Field and laboratory investigations of the giant Betze gold orebody, the largest Carlin-type deposit known, in the north-central Carlin trend, Nevada document that the orebody is composed of individual high-grade oreshoots that contain different geologic, mineralogic, and textural characteristics. The orebody is typical of many structurally controlled Carlin-type deposits, and is hosted in thin-bedded, impure carbonate or limy siltstone, breccia bodies, and intrusive or calc-silicate rock. Most ores in the Betze orebody are highly sheared or brecciated and show evidence of syndeformational hydrothermal deposition. The interplay between rock types and pre- and syn-structural events accounts for most of the distribution and zoning of the oreshoots. Hydrothermal alteration is scale dependent, either in broad, pervasive alteration patterns, or in areas related to various oreshoots. Alteration includes decarbonatization (~decalcification) of carbonate units, argillization (illite-clay), and silicification. Patterns of alteration zoning in and surrounding the Betze orebody define a large porous, dilated volume of rock where high fluid flow predominated. Local restriction of alteration to narrow illite- and clay-rich selvages around unaltered marble or calc-silicate rock phacoids implies that fluid flow favored permeable structures and deformed zones. Gold mainly is present as disseminated sub-micron-sized particles, commonly associated with Asñrich pyrite, although one type of oreshoot contains micron-size free gold. Oreshoots form a three-dimensional zoning pattern in the orebody within a WNW-striking structural zone of shearing and shear folding, termed the Dillon deformation zone (DDZ). Main types of oreshoots are: (1) rutile-bearing siliceous oreshoots; (2) illite-clay-pyrite oreshoots; (3) realgar- and orpiment-bearing oreshoots; (4) stibnite-bearing siliceous oreshoots; and (5) polymetallic oreshoots. Zoning patterns result from paragenetically early development of illite-clay-pyrite oreshoots during movement along the DDZ, and subsequent silicification and brecciation, associated with formation of the realgar- and orpiment-bearing, and stibnite-bearing oreshoots. Additional shear movement along the DDZ followed. Polymetallic oreshoots, which contain minerals rich in Hg, Cu, Zn, Ag, and native Au, were the last ores to form and overprint most earlier oreshoots. Ore textures, gouge, phyllonitic rock, alteration style, and previously documented isotopic and fluid-inclusion data, all indicate a weakly to moderately saline fluid that ascended and cooled during structural displacements. Changing conditions, due to water-wall rock reactions and P-T changes during deformation, are probably responsible for fluid variation that resulted in zoning of the different oreshoots during dynamic interaction of the Au-bearing fluid with the wall rock. This investigation indicates that isolated As-, Sb-, and Hg-rich ores are separate parts of a larger single gold system. This large gold system was contemporaneous with post-Jurassic brittle-ductile deformation, on the basis of deformed mineralized pods of the Jurassic Goldstrike pluton, and large-scale hydrothermal flow, and together they appear to be an integral part of the formation of some Carlin-type gold deposits in north-central Nevada.
Nanoporous Gold: Fabrication, Characterization, and Applications
Seker, Erkin; Reed, Michael L.; Begley, Matthew R.
2009-01-01
Nanoporous gold (np-Au) has intriguing material properties that offer potential benefits for many applications due to its high specific surface area, well-characterized thiol-gold surface chemistry, high electrical conductivity, and reduced stiffness. The research on np-Au has taken place on various fronts, including advanced microfabrication and characterization techniques to probe unusual nanoscale properties and applications spanning from fuel cells to electrochemical sensors. Here, we provide a review of the recent advances in np-Au research, with special emphasis on microfabrication and characterization techniques. We conclude the paper with a brief outline of challenges to overcome in the study of nanoporous metals.
Shawe, Daniel R.; Hoffman, James D.; Doe, Bruce R.; Foord, Eugene E.; Stein, Holly J.; Ayuso, Robert A.
2003-01-01
Geochemistry maps showing the distribution and abundance of 18 elements in about 1,400 rock samples, both mineralized and unmineralized, from the southern Toquima Range, Nev., indicate major structural and lithologic controls on mineralization, and suggest sources of the elements. Radiometric age data, lead mineralogy and paragenesis data, and lead-isotope data supplement the geochemical and geologic data, providing further insight into timing, sources, and controls on mineralization. Major zones of mineralization are centered on structural margins of calderas and principal northwest-striking fault zones, as at Round Mountain, Manhattan, and Jefferson mining districts, and on intersections of low-angle and steep structures, as at Belmont mining district. Paleozoic sedimentary rocks, mostly limestones (at Manhattan, Jefferson, and Belmont districts), and porous Oligocene ash-flow tuffs (at Round Mountain district) host the major deposits, although all rock types have been mineralized as evidenced by numerous prospects throughout the area. Principal mineral systems are gold-silver at Round Mountain where about 7 million ounces of gold and more than 4 million ounces of silver has been produced; gold at Gold Hill in the west part of the Manhattan district where about a half million ounces of gold has been produced; gold-mercury-arsenic-antimony in the east (White Caps) part of the Manhattan district where a few hundred thousand ounces of gold has been produced; and silver-lead-antimony at Belmont where more than 150,000 ounces of silver has been produced. Lesser amounts of gold and silver have been produced from the Jefferson district and from scattered mines elsewhere in the southern Toquima Range. A small amount of tungsten was produced from mines in the granite of the Round Mountain pluton exposed east of Round Mountain, and small amounts of arsenic, antimony, and mercury have been produced elsewhere in the southern Toquima Range. All elements show unique distribution patterns that suggest specific sources and lithologic influences on deposition, as well as multiple episodes of mineralization. Principal episodes of mineralization are Late Cretaceous (molybdenum and tungsten in and near granite; silver at Belmont and Silver Point mines), early Oligocene [tourmaline and base- and precious-metals around the granodiorite of Dry Canyon stock as well as at Manhattan(?)], late Oligocene (gold at Round Mountain and Jefferson), and Miocene (gold at Manhattan). Most likely principal sources of molybdenum, tungsten, silver, and bismuth are Cretaceous granites; of antimony, arsenic, and mercury are intermediate-composition early Oligocene intrusives; and of gold are early and late Oligocene and early Miocene magmas of the volcanic cycle. Lead may have been derived principally from Cretaceous granitic magma and Paleozoic sedimentary rocks. Several areas prospective for undiscovered mineral deposits are suggested by spatial patterns of element distributions related to geologic features. The Manhattan district in the vicinity of the White Caps mine may be underlain by a copper-molybdenum porphyry system related to a buried stock; peripheral high-grade gold veins and skarn deposits may be present below deposits previously mined. The Jefferson district also may be underlain by a copper-molybdenum porphyry system related to a buried stock, it too with peripheral high-grade gold deposits. The Bald Mountain Canyon belt of small gold veins has potential for deeper deposits in buried porous ash-flow tuff similar to the huge Round Mountain low-grade gold-silver deposit. Several other areas have potential for a variety of mineral deposits. Altogether the geochemical, geochronologic, mineralogic, and geologic evidence suggests recurring mineralizing episodes of varied character, from Late Cretaceous to late Tertiary time, related to a long-lived hot spot deep in the crust or in the upper mantle. Granite plutons of Late Cretaceous age were minerali
NASA Astrophysics Data System (ADS)
Humbert, C.; Dreesen, L.; Mani, A. A.; Caudano, Y.; Lemaire, J.-J.; Thiry, P. A.; Peremans, A.
2002-04-01
We measured IR-visible sum-frequency generation spectra of CH 3-(C 6H 4) 2-(CH 2) 3-S-H (Biphenyl-3) self-assembled monolayers on a silver and a gold substrate. For the latter substrate, we observed different interference patterns between the resonant signal of the CH vibration and the non-resonant contribution of the substrate as a function of the visible beam wavelength. The non-linear response of the gold substrate is enhanced around 480 nm corresponding to the s-d interband transition. Such effect is not observed for the silver substrate the interband transition of which is located out of the investigated visible spectral range of 450-700 nm.
Ten Ghz YBa2Cu3O(7-Delta) Superconducting Ring Resonators on NdGaO3 Substrates
NASA Technical Reports Server (NTRS)
To, H. Y.; Valco, G. J.; Bhasin, K. B.
1993-01-01
YBa2Cu3O(7-delta) thin films were formed on NdGaO3 substrates by laser ablation. Critical temperatures greater than 89 K and critical current densities exceeding 2 x 10(exp 8) Acm(sub -2) at 77 K were obtained. The microwave performance of films patterned into microstrip ring resonators with gold ground planes was measured. An unloaded quality factor six times larger than that of a gold resonator of identical geometry was achieved. The unloaded quality factor decreased below 70 K for both the superconducting and gold resonators due to increasing dielectric losses in the substrate. The temperature dependence of the loss tangent of NdGaO3 was extracted from the measurements.
NASA Astrophysics Data System (ADS)
Zheng, Zhikun; Yang, Menglong; Liu, Yaqing; Zhang, Bailin
2006-11-01
Both bare and self-assembled monolayer (SAM) protected gold substrate could be etched by allyl bromide according to atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometric (ICPMS) analysis results. With this allyl bromide ink material, negative nanopatterns could be fabricated directly by dip-pen nanolithography (DPN) on SAMs of 16-mercaptohexadecanoic acid (MHA) on Au(111) substrate. A tip-promoted etching mechanism was proposed where the gold-reactive ink could penetrate the MHA resist film through tip-induced defects resulting in local corrosive removal of the gold substrate. The fabrication mechanism was also confirmed by electrochemical characterization, energy dispersive spectroscopy (EDS) analysis and fabrication of positive nanopatterns via a used DPN tip.
NASA Technical Reports Server (NTRS)
Spalvins, T.
1973-01-01
Solid film lubricants of radio frequency sputtered molybdenum disulfide (MoS2) were applied to silver, gold, copper, and bronze surfaces that had various pretreatments (mechanical polishing, sputter etching, oxidation, and sulfurization). Optical and electron transmission micrographs and electron diffraction patterns were used to interpret the film formation characteristics and to evaluate the sputtering conditions in regard to the film and substrate compatibility. Sputtered MoS2 films flaked and peeled on silver, copper, and bronze surfaces except when the surfaces had been specially oxidized. The flaking and peeling was a result of sulfide compound formation and the corresponding grain growth of the sulfide film. Sputtered MoS2 films showed no peeling and flaking on gold surfaces regardless of surface pretreatment.
NASA Astrophysics Data System (ADS)
Swint, Amy Lynn
Changes in the in-plane conductance of conductive thin films are observed as a result of chemical adsorption at the surface. Reaction of the indium tin oxide (ITO) surface with Bronsted acids (bases) leads to increases (decreases) in its in-plane conductance as measured by a four-point probe configuration. The conductance varies monotonically with pH suggesting that the degree of surface protonation or hydroxylation controls the surface charge density, which in turn affects the width of the n-type depletion layer, and ultimately the in-plane conductance. Measurements at constant pH with a series of tetraalkylammonium hydroxide species of varying cation size indicate that surface dipoles also affect ITO conductance by modulating the magnitude of the surface polarization. Modulating the double layer with varying aqueous salt solutions also affects ITO conductance, though not to the same degree as strong Bronsted acids and bases. Solvents of varying dielectric constant and proton donating ability (ethanol, dimethylformamide) decrease ITO conductance relative to H2O. In addition, changing solvent gives rise to thermally-derived conductance transients, which result from exothermic solvent mixing. The self-assembly of alkanethiols at the surface increases the conductance of ITO films, most likely through carrier population effects. In all cases examined the combined effects of surface charge, adsorbed dipole layer magnitude and carrier injection are responsible for altering the ITO conductance. Besides being directly applicable to the control of electronic properties, these results also point to the use of four-point probe resistance measurements in condensed phase sensing applications. Ultrasensitive conductance-based gas phase sensing of organothiol adsorption to gold nanowires is accomplished with a limit of detection in the 105 molecule range. Further refinement of the inherently low noise resistance measurement may lead to observation of single adsorption events at the gold surface.
X Ray Mask Of Gold-Carbon Mixture Absorber On BCN Compound Substrate Fabricated By Plasma Processes
NASA Astrophysics Data System (ADS)
Aiyer, Chandrasekhar R.; Itoh, Satoshi; Yamada, Hitomi; Morita, Shinzo; Hattori, Shuzo
1988-06-01
X-ray mask fabrication based on BCN compound membrane and gold containing polymeric carbon ( Au-C ) absorber by totally dry processes is proposed. The Au-C films were depo-sited by plasma polymerization of propylene or styrene monomers and co-evaporation of gold. These films have 2 to 5 times higher etching rate than that of pure gold for 09 RIE, depending on the Au content. The stress in the films could be reduced to 1.9 E 7 N/m2 by annealing. The BCN films were deposited on silicon wafers by rf (13.56 MHz) plasma CVD with diborane, methane and nitrogen as source gases at typical deposition rate of 30 nm/min. The optical (633nm) and X ray (Pd L~) transparencies were nearly 80% for film thickness of 6 um. Patterning of Au-C was achieved by using tungsten as intermediate layer and PMMA electron beam resist. CF4 RIE was used to etch the tungsten layer which in turn acted as mask for the gold carbide 02 RIE. The process parameters and the characteristics of the Au-C and BCN films are presented.
Detection of aniline oligomers on polyaniline-gold interface using resonance Raman scattering.
Trchová, Miroslava; Morávková, Zuzana; Dybal, Jiří; Stejskal, Jaroslav
2014-01-22
In situ deposited conducting polyaniline films prepared by the oxidation of aniline with ammonium peroxydisulfate in aqueous media of various acidities on gold and silicon supports were characterized by Raman spectroscopy. Enhanced Raman bands were found in the spectra of polyaniline films produced in the solutions of weak acids or in water on gold surface. These bands were weak for the films prepared in solutions of a strong acid on a gold support. The same bands are present in the Raman spectra of the reaction intermediates deposited during aniline oxidation in water or aqueous solutions of weak or strong acids on silicon removed from the reaction mixture at the beginning of the reaction. Such films are formed by aniline oligomers adsorbed on the surface. They were detected on the polyaniline-gold interface using resonance Raman scattering on the final films deposited on gold. The surface resonance Raman spectroscopy of the monolayer of oligomers found in the bulk polyaniline film makes this method advantageous in surface science, with many applications in electrochemistry, catalysis, and biophysical, polymer, or analytical chemistry.
Pulse-voltammetric glucose detection at gold junction electrodes.
Rassaei, Liza; Marken, Frank
2010-09-01
A novel glucose sensing concept based on the localized change or "modulation" in pH within a symmetric gold-gold junction electrode is proposed. A paired gold-gold junction electrode (average gap size ca. 500 nm) is prepared by simultaneous bipotentiostatic electrodeposition of gold onto two closely spaced platinum disk electrodes. For glucose detection in neutral aqueous solution, the potential of the "pH-modulator" electrode is set to -1.5 V vs saturated calomel reference electrode (SCE) to locally increase the pH, and simultaneously, either cyclic voltammetry or square wave voltammetry experiments are conducted at the sensor electrode. A considerable improvement in the sensor electrode response is observed when a normal pulse voltammetry sequence is applied to the modulator electrode (to generate "hydroxide pulses") and the glucose sensor electrode is operated with fixed bias at +0.5 V vs SCE (to eliminate capacitive charging currents). Preliminary data suggest good linearity for the glucose response in the medically relevant 1-10 mM concentration range (corresponding to 0.18-1.8 g L(-1)). Future electroanalytical applications of multidimensional pulse voltammetry in junction electrodes are discussed.
Svensson, Sara; Forsberg, Magnus; Hulander, Mats; Vazirisani, Forugh; Palmquist, Anders; Lausmaa, Jukka; Thomsen, Peter; Trobos, Margarita
2014-01-01
The role of material surface properties in the direct interaction with bacteria and the indirect route via host defense cells is not fully understood. Recently, it was suggested that nanostructured implant surfaces possess antimicrobial properties. In the current study, the adhesion and biofilm formation of Staphylococcus epidermidis and human monocyte adhesion and activation were studied separately and in coculture in different in vitro models using smooth gold and well-defined nanostructured gold surfaces. Two polystyrene surfaces were used as controls in the monocyte experiments. Fluorescent viability staining demonstrated a reduction in the viability of S. epidermidis close to the nanostructured gold surface, whereas the smooth gold correlated with more live biofilm. The results were supported by scanning electron microscopy observations, showing higher biofilm tower formations and more mature biofilms on smooth gold compared with nanostructured gold. Unstimulated monocytes on the different substrates demonstrated low activation, reduced gene expression of pro- and anti-inflammatory cytokines, and low cytokine secretion. In contrast, stimulation with opsonized zymosan or opsonized live S. epidermidis for 1 hour significantly increased the production of reactive oxygen species, the gene expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and IL-10, as well as the secretion of TNF-α, demonstrating the ability of the cells to elicit a response and actively phagocytose prey. In addition, cells cultured on the smooth gold and the nanostructured gold displayed a different adhesion pattern and a more rapid oxidative burst than those cultured on polystyrene upon stimulation. We conclude that S. epidermidis decreased its viability initially when adhering to nanostructured surfaces compared with smooth gold surfaces, especially in the bacterial cell layers closest to the surface. In contrast, material surface properties neither strongly promoted nor attenuated the activity of monocytes when exposed to zymosan particles or S. epidermidis. PMID:24550671
Invisible and microscopic gold in pyrite: Methods and new data for massive sulfide ores of the Urals
NASA Astrophysics Data System (ADS)
Vikentyev, I. V.
2015-07-01
Au speciation in sulfides (including "invisible" Au), which mostly controls the loss of Au during ore dressing, is discussed. Modern methods of analysis of Au speciation, with discussion of limitations by locality and sensitivity, are reviewed. The results of sulfide investigation by the methods of scanning and transmission electron microscopy, mass spectrometric analysis with laser ablation (LA-ICP-MS), the thermochemical method (study of ionic Au speciation), and automated "quantitative mineralogy," are demonstrated for weakly metamorphosed VHMS deposits of the Urals (Galkinsk and Uchaly). Significant content of Au is scattered in sulfides, such as pyrite, chalcopyrite, and sphalerite, with quantitative predomination of pyrite. The portion of such "invisible" gold ranges from <10% (Galkinsk deposit) to 85% (Uchaly deposit). Major part of "invisible" gold occurs as micron- to nanoscale particles of Au minerals. The portion of gold structurally bound in pyrite lattice (from the bulk concentration of Au in pyrite) is estimated to be from few % (the Galkinsk deposit) to 20-25% (the Uchaly deposit). The presence of As and Sb in pyrite and sphalerite, as well as other trace elements (Te, Co, Mn, Cu, Hg, and Ag in both as well as Fe in sphalerite) stimulates the incorporation of Au in sulfide, but mostly in defect-associated, not isomorphic form. Micron particles of Ag sulfosalts (pyrargyrite, freibergite, stephanite, polybasite, pyrostilpnite, argentotetrahedrite, pearceite, proustite), Au-Ag alloys (from gold of high fineness to küstelite), Ag and Au-Ag tellurides (hessite, empressite, calaverite), and occasional Au-Ag sulfides (petrovskaite, uytenbogaardtite) were registered in the areas of Au enrichment of both deposits; selenotelluride (kurilite) particles were found on the Galkinsk deposit. Nanoscale (1-50 nm) native gold (spherical and disk-shaped particles, flakes) with a monocrystal diffraction pattern of some particles and a ring diffraction pattern of other particles was registered in the ores of these deposits by the methods of transmission electron microscopy. The low degree (or absence) of metamorphic recrystallization results in (1) predomination of thin intergrowths of sulfides, which is the main reason for the bad concentration of ores (especially for the Galkinsk deposit) and (2) the high portion of "invisible" gold in the massive sulfide ores, which explains the low yield of Au in copper and zinc concentrates, since it is lost in tailings with predominating pyrite.
Clay alteration and gold deposition in the genesis and blue star deposits, Eureka County, Nevada
Drews-Armitage, S. P.; Romberger, S.B.; Whitney, C.G.
1996-01-01
The Genesis and Blue Star sedimentary rock-hosted gold deposits occur within the 40-mile-long Carlin trend and are located in Eureka County, Nevada. The deposits are hosted within the Devonian calcareous Popovich Formation, the siliciclastic Rodeo Creek unit and the siliciclastic Vinini Formation. The host rocks have undergone contact metamorphism, decalcification, silicification, argillization, and supergene oxidation. Detailed characterization of the alteration patterns, mineralogy, modes of occurrence, and associated geochemistry of clay minerals resulted in the following classifications: least altered rocks, found distal to the orebody, consisting of both metamorphosed and unmetamorphosed host rock that has not been completely decalcified; and altered rocks, found proximal to the orebody that have been decalcified. Altered rocks are classified further into the following groups based on clay mineral content: silicic, 1 to 10 percent clay; silicicargillic, 10 to 35 percent clay; and argillic, 35 to 80 percent clay. Clay species identified are 1M illite, 2M1 illite, kaolinite, halloysite, and dioctahedral smectite. An early hydrothermal event resulted in the precipitation of euhedral kaolinite and at least one generation of silica. This event occurred contemporaneously with decalcification which increased rock permeability and porosity. A second clay alteration event resulted in the precipitation of hydrothermal 1M illite which replaced hydrothermal kaolinite and is associated with gold deposition. Silver and silica deposition is also associated with this phase of hydrothermal alteration. Hydrothermal alteration was followed by supergene alteration which resulted in the formation of supergene kaolinite, halloysite, and smectite as well as the oxidation of iron-bearing minerals. Supergene clays are concentrated along faults, dike margins, and within rocks containing carbonate. Gold mineralization is not associated with supergene clay minerals within the Genesis and Blue Star deposits. Rocks classified as silicic-argillic in the Popovich Formation represent the most significant gold host. Silicicargillic rocks commonly exhibit bedding-parallel alteration zones. This pattern of alteration indicates that stratigraphy as well as northwest-trending structures played a significant role in the migration of gold-bearing fluids. Based on K-Ar age determinations of hydrothermal 1M illite associated with gold, the main event of mineralization in the Genesis and Blue Star deposits occurred between 93 and 100 Ma, during mid-Cretaceous time.
Advances in single-molecule magnet surface patterning through microcontact printing.
Mannini, Matteo; Bonacchi, Daniele; Zobbi, Laura; Piras, Federica M; Speets, Emiel A; Caneschi, Andrea; Cornia, Andrea; Magnani, Agnese; Ravoo, Bart Jan; Reinhoudt, David N; Sessoli, Roberta; Gatteschi, Dante
2005-07-01
We present an implementation of strategies to deposit single-molecule magnets (SMMs) using microcontact printing microCP). We describe different approaches of microCP to print stripes of a sulfur-functionalized dodecamanganese (III, IV) cluster on gold surfaces. Comparison by atomic force microscopy profile analysis of the patterned structures confirms the formation of a chemically stable single layer of SMMs. Images based on chemical contrast, obtained by time-of-flight secondary ion mass spectrometry, confirm the patterned structure.
Park, Ji Su; Ahn, Eun-Young; Park, Youmie
2017-01-01
Mangosteen (Garcinia mangostana) pericarp waste extract was used to synthesize gold and silver nanoparticles by a green strategy. The extract was both a reducing and stabilizing agent during synthesis. Phytochemical screening of the extract was conducted to obtain information regarding the presence/absence of primary and secondary metabolites in the extract. The in vitro antioxidant activity results demonstrated that the extract had excellent antioxidant activity, which was comparable to a standard (butylated hydroxy toluene). Spherical gold nanoparticles (gold nanoparticles green synthesized by mangosteen pericarp extract [GM-AuNPs]) with an average size of 15.37±3.99 to 44.20±16.99 nm were observed in high-resolution transmission electron microscopy (HR-TEM) images. Most interestingly, the silver nanoparticles (silver nanoparticles green synthesized by mangosteen pericarp extract [GM-AgNPs]) had asymmetric nanodumbbell shapes where one tail grew from a spherical head. The average head size was measured to be 13.65±5.07 to 31.08±3.99 nm from HR-TEM images. The hydrodynamic size of both nanoparticles tended to increase with increasing extract concentration. Large negative zeta potentials (−18.92 to −34.77 mV) suggested that each nanoparticle solution possessed excellent colloidal stability. The reaction yields were 99.7% for GM-AuNPs and 82.8% for GM-AgNPs, which were assessed by inductively coupled plasma optical emission spectroscopy. A high-resolution X-ray diffraction pattern confirmed the face-centered cubic structure of both nanoparticles. Based on phytochemical screening and Fourier transform infrared spectra, the hydroxyl functional groups of carbohydrates, flavonoids, glycosides, and phenolic compounds were most likely involved in a reduction reaction of gold or silver salts to their corresponding nanoparticles. The in vitro cytotoxicity (based on a water-soluble tetrazolium assay) demonstrated that GM-AgNPs were toxic to both A549 (a human lung cancer cell) and NIH3T3 (a mouse fibroblast cell). The cytotoxicity of GM-AgNPs on A549 cells was related to apoptotic cell death. However, GM-AuNPs did not show any significant cytotoxicity to either cell. These results suggest that GM-AuNPs have the potential to be drug delivery vehicles or carriers for pharmaceutical and biomedical applications. PMID:29066885
Park, Ji Su; Ahn, Eun-Young; Park, Youmie
2017-01-01
Mangosteen ( Garcinia mangostana ) pericarp waste extract was used to synthesize gold and silver nanoparticles by a green strategy. The extract was both a reducing and stabilizing agent during synthesis. Phytochemical screening of the extract was conducted to obtain information regarding the presence/absence of primary and secondary metabolites in the extract. The in vitro antioxidant activity results demonstrated that the extract had excellent antioxidant activity, which was comparable to a standard (butylated hydroxy toluene). Spherical gold nanoparticles (gold nanoparticles green synthesized by mangosteen pericarp extract [GM-AuNPs]) with an average size of 15.37±3.99 to 44.20±16.99 nm were observed in high-resolution transmission electron microscopy (HR-TEM) images. Most interestingly, the silver nanoparticles (silver nanoparticles green synthesized by mangosteen pericarp extract [GM-AgNPs]) had asymmetric nanodumbbell shapes where one tail grew from a spherical head. The average head size was measured to be 13.65±5.07 to 31.08±3.99 nm from HR-TEM images. The hydrodynamic size of both nanoparticles tended to increase with increasing extract concentration. Large negative zeta potentials (-18.92 to -34.77 mV) suggested that each nanoparticle solution possessed excellent colloidal stability. The reaction yields were 99.7% for GM-AuNPs and 82.8% for GM-AgNPs, which were assessed by inductively coupled plasma optical emission spectroscopy. A high-resolution X-ray diffraction pattern confirmed the face-centered cubic structure of both nanoparticles. Based on phytochemical screening and Fourier transform infrared spectra, the hydroxyl functional groups of carbohydrates, flavonoids, glycosides, and phenolic compounds were most likely involved in a reduction reaction of gold or silver salts to their corresponding nanoparticles. The in vitro cytotoxicity (based on a water-soluble tetrazolium assay) demonstrated that GM-AgNPs were toxic to both A549 (a human lung cancer cell) and NIH3T3 (a mouse fibroblast cell). The cytotoxicity of GM-AgNPs on A549 cells was related to apoptotic cell death. However, GM-AuNPs did not show any significant cytotoxicity to either cell. These results suggest that GM-AuNPs have the potential to be drug delivery vehicles or carriers for pharmaceutical and biomedical applications.
Experimentally validated 3D MD model for AFM-based tip-based nanomanufacturing
NASA Astrophysics Data System (ADS)
Promyoo, Rapeepan
In order to control AFM-based TBN to produce precise nano-geometry efficiently, there is a need to conduct a more focused study of the effects of different parameters, such as feed, speed, and depth of cut on the process performance and outcome. This is achieved by experimentally validating a MD simulation model of nanomachining, and using it to conduct parametric studies to guide AFM-based TBN. A 3D MD model with a larger domain size was developed and used to gain a unique insight into the nanoindentation and nanoscratching processes such as the effect of tip speed (e.g. effect of tip speed on indentation force above 10 nm of indentation depth). The model also supported a more comprehensive parametric study (than other published work) in terms of number of parameters and ranges of values investigated, as well as a more cost effective design of experiments. The model was also used to predict material properties at the nanoscale (e.g. hardness of gold predicted within 6% error). On the other hand, a comprehensive experimental parametric study was conducted to produce a database that is used to select proper machining conditions for guiding the fabrication of nanochannels (e.g. scratch rate = 0.996 Hz, trigger threshold = 1 V, for achieving a nanochannel depth = 50 nm for the case of gold device). Similar trends for the variation of indentation force with depth of cut, pattern of the material pile-up around the indentation mark or scratched groove were found. The parametric studies conducted using both MD model simulations and AFM experiments showed the following: Normal forces for both nanoindentation and nanoscratching increase as the depth of cut increases. The indentation depth increases with tip speed, but the depth of scratch decrease with increasing tip speed. The width and depth of scratched groove also depend on the scratch angle. The recommended scratch angle is at 90°. The surface roughness increases with step over, especially when the step over is larger than the tip radius. The depth of cut also increases as the step over decreases. Additional study is conducted using the MD model to understand the effect of crystal structure and defects in material when subjected to a stress. Several types of defects, including vacancies and Shockley partial dislocation loops, can be observed during the MD simulation for the case of gold, copper and aluminum. Finally, AFM-based TBN is used with photolithography to fabricate a nano-fluidic device for medical application. In fact, the photolithography process is used to create microchannels on top of a silicon wafer, and AFM-based TBN is applied to fabricate nanochannels between the microchannels that connect to the reservoirs. Fluid flow test was conducted on the devices to ensure that the nanochannel was open and the bonding sealed.
Single molecule junction conductance and binding geometry
NASA Astrophysics Data System (ADS)
Kamenetska, Maria
This Thesis addresses the fundamental problem of controlling transport through a metal-organic interface by studying electronic and mechanical properties of single organic molecule-metal junctions. Using a Scanning Tunneling Microscope (STM) we image, probe energy-level alignment and perform STM-based break junction (BJ) measurements on molecules bound to a gold surface. Using Scanning Tunneling Microscope-based break-junction (STM-BJ) techniques, we explore the effect of binding geometry on single-molecule conductance by varying the structure of the molecules, metal-molecule binding chemistry and by applying sub-nanometer manipulation control to the junction. These experiments are performed both in ambient conditions and in ultra high vacuum (UHV) at cryogenic temperatures. First, using STM imaging and scanning tunneling spectroscopy (STS) measurements we explore binding configurations and electronic properties of an amine-terminated benzene derivative on gold. We find that details of metal-molecule binding affect energy-level alignment at the interface. Next, using the STM-BJ technique, we form and rupture metal-molecule-metal junctions ˜104 times to obtain conductance-vs-extension curves and extract most likely conductance values for each molecule. With these measurements, we demonstrated that the control of junction conductance is possible through a choice of metal-molecule binding chemistry and sub-nanometer positioning. First, we show that molecules terminated with amines, sulfides and phosphines bind selectively on gold and therefore demonstrate constant conductance levels even as the junction is elongated and the metal-molecule attachment point is modified. Such well-defined conductance is also obtained with paracyclophane molecules which bind to gold directly through the pi system. Next, we are able to create metal-molecule-metal junctions with more than one reproducible conductance signatures that can be accessed by changing junction geometry. In the case of pyridine-linked molecules, conductance can be reliably switched between two distinct conductance states using sub-nanometer mechanical manipulation. Using a methyl sulfide linker attached to an oligoene backbone, we are able to create a 3-nm-long molecular potentiometer, whose resistance can be tuned exponentially with Angstom-scale modulations in metal-molecule configuration. These experiments points to a new paradigm for attaining reproducible electrical characteristics of metal-organic devices which involves controlling linker-metal chemistry rather than fabricating identically structured metal-molecule interfaces. By choosing a linker group which is either insensitive to or responds reproducibly to changes in metal-molecule configuration, one can design single molecule devices with functionality more complex than a simple resistor. These ambient temperature experiments were combined with UHV conductance measurements performed in a commercial STM on amine-terminated benzene derivatives which conduct through a non-resonant tunneling mechanism, at temperatures varying from 5 to 300 Kelvin. Our results indicate that while amine-gold binding remains selective irrespective of environment, conductance is not temperature independent, in contrast to what is expected for a tunneling mechanism. Furthermore, using temperature-dependent measurements in ambient conditions we find that HOMO-conducting amines and LUMO-conducting pyridines show opposite dependence of conductance on temperature. These results indicate that energy-level alignment between the molecule and the electrodes changes as a result of varying electrode structure at different temperatures. We find that temperature can serve as a knob with which to tune transport properties of single molecule-metal junctions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Sze-Shun Season
1999-12-10
This dissertation presented several results which add to the general knowledge base regarding organothiolates monolayer spontaneously adsorbed at gold films. Common to the body of this work is the use of voltammetric reductive resorption and variants of scanning probe microscopy to gain insight into the nature of the monolayer formation process as well as the resulting interface. The most significant result from this work is the success of using friction force microscopy to discriminate the end group orientation of monolayer chemisorbed at smooth gold surfaces with micrometer resolution (Chapter 4). The ability to detect the differences in the orientational dispositionmore » is demonstrated by the use PDMS polymer stamp to microcontact print an adlayer of n-alkanethiolate of length n in a predefine pattern onto a gold surface, followed by the solution deposition of a n-alkanethiol of n ± 1 to fill in the areas on the gold surface intentionally not coated by the stamping process. These two-component monolayers can be discriminated by using friction force microscopy which detects differences in friction contributed by the differences in the orientation of the terminal groups at surfaces. This success has recently led to the detection of the orientation differences at nanometer scale. Although the substrates examined in this work consisted entirely of smooth gold films, the same test can be performed on other smooth substrates and monolayer materials.« less
Direct mapping of electrical noise sources in molecular wire-based devices
Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun
2017-01-01
We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices. PMID:28233821
Direct mapping of electrical noise sources in molecular wire-based devices
NASA Astrophysics Data System (ADS)
Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun
2017-02-01
We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices.
NASA Astrophysics Data System (ADS)
Sayin, Mustafa; Dahint, Reiner
2017-03-01
Nanostructure formation via self-assembly processes offers a fast and cost-effective approach to generate surface patterns on large lateral scale. In particular, if the high precision of lithographic techniques is not required, a situation typical of many biotechnological and biomedical applications, it may be considered as the method of choice as it does not require any sophisticated instrumentation. However, in many cases the variety and complexity of the surface structures accessible with a single self-assembly based technique is limited. Here, we report on a new approach which combines two different self-assembly strategies, colloidal lithography and layer-by-layer deposition of polyelectrolytes, in order to significantly expand the spectrum of accessible patterns. In particular, flat and donut-like charge-patterned templates have been generated, which facilitate subsequent deposition of gold nanoparticles in dot, grid, ring, out-of-ring and circular patch structures. Potential applications are e.g. in the fields of biofunctional interfaces with well-defined lateral dimensions, optical devices with tuned properties, and controlled three-dimensional material growth.
Scheibel, Thomas; Parthasarathy, Raghuveer; Sawicki, George; Lin, Xiao-Min; Jaeger, Heinrich; Lindquist, Susan L
2003-04-15
Recent research in the field of nanometer-scale electronics has focused on the operating principles of small-scale devices and schemes to realize useful circuits. In contrast to established "top-down" fabrication techniques, molecular self-assembly is emerging as a "bottom-up" approach for fabricating nanostructured materials. Biological macromolecules, especially proteins, provide many valuable properties, but poor physical stability and poor electrical characteristics have prevented their direct use in electrical circuits. Here we describe the use of self-assembling amyloid protein fibers to construct nanowire elements. Self-assembly of a prion determinant from Saccharomyces cerevisiae, the N-terminal and middle region (NM) of Sup35p, produced 10-nm-wide protein fibers that were stable under a wide variety of harsh physical conditions. Their lengths could be roughly controlled by assembly conditions in the range of 60 nm to several hundred micrometers. A genetically modified NM variant that presents reactive, surface-accessible cysteine residues was used to covalently link NM fibers to colloidal gold particles. These fibers were placed across gold electrodes, and additional metal was deposited by highly specific chemical enhancement of the colloidal gold by reductive deposition of metallic silver and gold from salts. The resulting silver and gold wires were approximately 100 nm wide. These biotemplated metal wires demonstrated the conductive properties of a solid metal wire, such as low resistance and ohmic behavior. With such materials it should be possible to harness the extraordinary diversity and specificity of protein functions to nanoscale electrical circuitry.
Laser ablation under different electron heat conduction models in inertial confinement fusion
NASA Astrophysics Data System (ADS)
Li, Shuanggui; Ren, Guoli; Huo, Wen Yi
2018-06-01
In this paper, we study the influence of three different electron heat conduction models on the laser ablation of gold plane target. Different from previous studies, we concentrate on the plasma conditions, the conversion efficiency from laser into soft x rays and the scaling relation of mass ablation, which are relevant to hohlraum physics study in indirect drive inertial confinement fusion. We find that the simulated electron temperature in corona region is sensitive to the electron heat conduction models. For different electron heat conduction models, there are obvious differences in magnitude and spatial profile of electron temperature. For the flux limit model, the calculated conversion efficiency is sensitive to flux limiters. In the laser ablation of gold, most of the laser energies are converted into x rays. So the scaling relation of mass ablation rate is quite different from that of low Z materials.
NASA Astrophysics Data System (ADS)
Huang, Xiaohua; Kang, Bin; Qian, Wei; Mackey, Megan A.; Chen, Po C.; Oyelere, Adegboyega K.; El-Sayed, Ivan H.; El-Sayed, Mostafa A.
2010-09-01
We conduct a comparative study on the efficiency and cell death pathways of continuous wave (cw) and nanosecond pulsed laser photothermal cancer therapy using gold nanospheres delivered to either the cytoplasm or nucleus of cancer cells. Cytoplasm localization is achieved using arginine-glycine-aspartate peptide modified gold nanospheres, which target integrin receptors on the cell surface and are subsequently internalized by the cells. Nuclear delivery is achieved by conjugating the gold nanospheres with nuclear localization sequence peptides originating from the simian virus. Photothermal experiments show that cell death can be induced with a single pulse of a nanosecond laser more efficiently than with a cw laser. When the cw laser is applied, gold nanospheres localized in the cytoplasm are more effective in inducing cell destruction than gold nanospheres localized at the nucleus. The opposite effect is observed when the nanosecond pulsed laser is used, suggesting that plasmonic field enhancement of the nonlinear absorption processes occurs at high localization of gold nanospheres at the nucleus. Cell death pathways are further investigated via a standard apoptosis kit to show that the cell death mechanisms depend on the type of laser used. While the cw laser induces cell death via apoptosis, the nanosecond pulsed laser leads to cell necrosis. These studies add mechanistic insight to gold nanoparticle-based photothermal therapy of cancer.
Malpeli, Katherine C.; Chirico, Peter G.; McLoughlin, Isabel H.
2013-01-01
This study is a reconnaissance investigation of the placer gold deposits in the Zarkashan Area of Interest (AOI) in Ghazni Province, Afghanistan. Detailed investigations of the Zarkashan gold deposits were conducted by Soviet and Afghan geologists in the 1960s and 1970s, prior to the development of satellite-based remote-sensing platforms and new methods of geomorphic mapping. The purpose of this study was to integrate new mapping techniques with previously collected concentration and borehole sampling data and geomorphologic interpretations to reassess the placer gold deposits in the Zarkashan AOI. A methodology combining the collection and analysis of historical sampling data, digital database development, hydrologic analysis, and geomorphic modeling was used. The analysis led to the reinterpretation of four gold-bearing seams along the Zarkashan River, and the calculation of an estimated gold reserve of approximately 3,000 kilograms (kg). This estimate is approximately 1,500 kg greater than the Soviet estimate. The result differs in large part due to the reinterpretation of the seams based on a much lower cutoff grade of 100 mg/m3. Because cutoff grade is dependent in part on the price of gold, the sevenfold increase in the price of gold since the undertaking of the Soviet investigation warranted our re-evaluation of their 500 mg/m3 cutoff grade.
NASA Astrophysics Data System (ADS)
Foroutan, Masumeh; Darvishi, Mehdi; Fatemi, S. Mahmood
2017-09-01
The positioning, adsorption, and movement of water on substrates is dependent upon the chemical nature and arrangement of the atoms of the surface. Therefore the behavior of water molecules on a substrate is a reflection of properties of the surface. Based on this premise, graphene and gold substrates were chosen to study this subject from a molecular perspective. In this work, the structural and dynamical behaviors of a water nanodroplet on Au (100) and the graphene interfaces have been studied by molecular dynamics simulation. The results have shown how the structural and dynamical behaviors of water molecules at the interface reflect the characteristics of these surfaces. The results have demonstrated that residence time and hydrogen bonds' lifetime at the water-Au (100) interface are bigger than at the water-graphene interface. Energy contour map analysis indicates a more uniform surface energy on graphene than on the gold surface. The obtained results illustrate that water clusters on gold and graphene form tetramer and hexamer structures, respectively. Furthermore, the water molecules are more ordered on the gold surface than on graphene. The study of hydrogen bonds showed that the order, stability, and the number of hydrogen bonds is higher on the gold surface. The positioning pattern of water molecules is also similar to the arrangement of gold atoms while no regularity was observed on graphene. The study of dynamical behavior of water molecules revealed that the movement of water on gold is much less than on graphene which is in agreement with the strong water-gold interaction in comparison to the water-graphene interaction.
Modeling inelastic phonon scattering in atomic- and molecular-wire junctions
NASA Astrophysics Data System (ADS)
Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads
2005-11-01
Computationally inexpensive approximations describing electron-phonon scattering in molecular-scale conductors are derived from the nonequilibrium Green’s function method. The accuracy is demonstrated with a first-principles calculation on an atomic gold wire. Quantitative agreement between the full nonequilibrium Green’s function calculation and the newly derived expressions is obtained while simplifying the computational burden by several orders of magnitude. In addition, analytical models provide intuitive understanding of the conductance including nonequilibrium heating and provide a convenient way of parameterizing the physics. This is exemplified by fitting the expressions to the experimentally observed conductances through both an atomic gold wire and a hydrogen molecule.
NASA Astrophysics Data System (ADS)
Cho, Chu-Young; Choe, Minhyeok; Lee, Sang-Jun; Hong, Sang-Hyun; Lee, Takhee; Lim, Wantae; Kim, Sung-Tae; Park, Seong-Ju
2013-03-01
We report on gold (Au)-doped multi-layer graphene (MLG), which can be used as a transparent conducting layer in near-ultraviolet light-emitting diodes (NUV-LEDs). The optical output power of NUV-LEDs with thermally annealed Au-doped MLG was increased by 34% compared with that of NUV-LEDs with a bare MLG. This result is attributed to the reduced sheet resistance and the enhanced current injection efficiency of NUV-LEDs by the thermally annealed Au-doped MLG film, which shows high transmittance in NUV and UV regions and good adhesion of Au-doped MLG on p-GaN layer of NUV-LEDs.
Size-dependent Hamaker constants for silver and gold nanoparticles
NASA Astrophysics Data System (ADS)
Pinchuk, Pavlo; Jiang, Ke
2015-08-01
Hamaker-Lifshitz constants are material specific constants that are used to calculate van der Waals interaction forces between small particles in solution. Typically, these constants are size-independent and material specific. According to the Lifshitz theory, the Hamaker-Lifshitz constants can be calculated by taking integrals that include the dielectric permittivity, as a function of frequency, of the interacting particles and the medium around particles. The dielectric permittivity of interacting metal nanoparticles can be calculated using the Drude model, which is based on the assumption of motion of free conducting electrons. For bulk metals, the Drude model does not predict any sizedependence of the dielectric permittivity. However, the conducting electrons in small noble metal nanoparticles (R ~ 10nm) exhibit surface scattering, which changes the complex permittivity function. In this work, we show theoretically that scattering of the free conducting electrons inside silver and gold nanoparticles with the size of 1 - 50 nm leads to size-dependent dielectric permittivity and Hamaker-Lifshitz constants. We calculate numerically the Hamaker-Lifshitz constants for silver and gold nanoparticles with different diameters. The results of the study might be of interests for understanding colloidal stability of metal nanoparticles.
Quantized thermal transport in single-atom junctions
NASA Astrophysics Data System (ADS)
Cui, Longji; Jeong, Wonho; Hur, Sunghoon; Matt, Manuel; Klöckner, Jan C.; Pauly, Fabian; Nielaba, Peter; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod
2017-03-01
Thermal transport in individual atomic junctions and chains is of great fundamental interest because of the distinctive quantum effects expected to arise in them. By using novel, custom-fabricated, picowatt-resolution calorimetric scanning probes, we measured the thermal conductance of gold and platinum metallic wires down to single-atom junctions. Our work reveals that the thermal conductance of gold single-atom junctions is quantized at room temperature and shows that the Wiedemann-Franz law relating thermal and electrical conductance is satisfied even in single-atom contacts. Furthermore, we quantitatively explain our experimental results within the Landauer framework for quantum thermal transport. The experimental techniques reported here will enable thermal transport studies in atomic and molecular chains, which will be key to investigating numerous fundamental issues that thus far have remained experimentally inaccessible.
DNA polymorphism sensitive impedimetric detection on gold-nanoislands modified electrodes.
Bonanni, Alessandra; Pividori, Maria Isabel; del Valle, Manel
2015-05-01
Nanocomposite materials are being increasingly used in biosensing applications as they can significantly improve biosensor performance. Here we report the use of a novel impedimetric genosensor based on gold nanoparticles graphite-epoxy nanocomposite (nanoAu-GEC) for the detection of triple base mutation deletion in a cystic-fibrosis (CF) related human DNA sequence. The developed platform consists of chemisorbing gold nano-islands surrounded by rigid, non-chemisorbing, and conducting graphite-epoxy composite. The ratio of the gold nanoparticles in the composite was carefully optimized by electrochemical and microscopy studies. Such platform allows the very fast and stable thiol immobilization of DNA probes on the gold islands, thus minimizing the steric and electrostatic repulsion among the DNA probes and improving the detection of DNA polymorphism down to 2.25fmol by using electrochemical impedance spectroscopy. These findings are very important in order to develop new and renewable platforms to be used in point-of-care devices for the detection of biomolecules. Copyright © 2015 Elsevier B.V. All rights reserved.
The Process of People Gold Mining in Paningkaban Village Banyumas Indonesia
NASA Astrophysics Data System (ADS)
Muslihudin; Bambang, Azis Nur; Hendarto, Eko; Putranto, Thomas Triadi
2018-02-01
Gold mining in Paningkaban Banyumas conducted by the community is called the People gold mining. At the beginning, many miners from outside the region have involved and transferred of method, technic and knowledge about gold mining to local people. The aim of the study is to identify the existing process of public gold mining. The method of the study is qualitative by using observation and interview. The result showed that the mining process are: 1. Determining the location of mining well; in this determination there are two references; rational and intuition 2. Mining; at this stage, a deep well is drawn about 50-100 meters that leads vertically and horizontally. It is the most high-risk stage because of work accidents that occurred and potentially environment destruction. 3. Pulverization; this stage is classified as the lowest level of difficulty and risk, therefore in this work many woman included. 4. Rolling; in this stage involves enough technology, electrical mechanic and energy with the dynamo and using mercury that potentially contaminate environment. 5. Filtering; this stage is a quite risky because the workers contact directly with mercury. 6. Burning; is the shortest process to separate mercury with gold grains. 7. Sales to local buyer guided by the international gold market in every Thursday.
Keers, R Y
1980-01-01
Although from the time of Koch onwards there had been desultory experiments with a variety of gold preparations in the management of pulmonary tuberculosis, gold as a recognised and accepted treatment did not emerge until 1925. In that year Holger Mollgaard of Copenhagen introduced sanocrysin, a double thiosulphate of gold and sodium, with which he had conducted an extensive series of animal experiments. The results of these were considered to justify its use in clinical practice and two physicians, Secher and Faber, undeterred by its toxicity, reported enthusiastically in its favour. Other Danish physicians followed but, alarmed by violent reactions, modified the dosage, an example followed by British workers. Encouraging results continued to be reported although each series contained a significant proportion of failures, and toxicity remained high. The first properly planned and fully controlled clinical trial took place in the United States and produced a report which was wholly adverse and which sounded the death knell of gold therapy throughout America. Until 1934-35 gold was used extensively in Europe but thereafter there was a sudden and largely universal cessation of interest and within a few years gold, introduced with such éclat and carrying so many high hopes, had vanished from the therapy of tuberculosis even though, at that point, no better alternative was available. PMID:6791290
NASA Astrophysics Data System (ADS)
Delfino, I.; Bonanni, B.; Andolfi, L.; Baldacchini, C.; Bizzarri, A. R.; Cannistraro, S.
2007-06-01
Various aspects of redox protein integration with nano-electronic elements are addressed by a multi-technique investigation of different yeast cytochrome c (YCC)-based hybrid systems. Three different immobilization strategies on gold via organic linkers are explored, involving either covalent bonding or electrostatic interaction. Specifically, Au surfaces are chemically modified by self-assembled monolayers (SAMs) exposing thiol-reactive groups, or by acid-oxidized single-wall carbon nanotubes (SWNTs). Atomic force microscopy and scanning tunnelling microscopy are employed to characterize the morphology and the electronic properties of single YCC molecules adsorbed on the modified gold surfaces. In each hybrid system, the protein molecules are stably assembled, in a native configuration. A standing-up arrangement of YCC on SAMs is suggested, together with an enhancement of the molecular conduction, as compared to YCC directly assembled on gold. The electrostatic interaction with functionalized SWNTs allows several YCC adsorption geometries, with a preferential high-spin haem configuration, as outlined by Raman spectroscopy. Moreover, the conduction properties of YCC, explored in different YCC nanojunctions by conductive atomic force microscopy, indicate the effectiveness of electrical conduction through the molecule and its dependence on the electrode material. The joint employment of several techniques confirms the key role of a well-designed immobilization strategy, for optimizing biorecognition capabilities and electrical coupling with conductive substrates at the single-molecule level, as a starting point for advanced applications in nano-biotechnology.
Zhang, Jing; Nie, Huagui; Wu, Zhan; Yang, Zhi; Zhang, Lijie; Xu, Xiangju; Huang, Shaoming
2014-01-21
A simple and sensitive gap-electrical biosensor based on self-catalytic growth of unmodified gold nanoparticles (AuNPs) as conductive bridges has been developed for amplifying DNA hybridization events. In this strategy, the signal amplification degree of such conductive bridges is closely related to the variation of the glucose oxidase (GOx)-like catalytic activity of AuNPs upon interaction with single- and double-stranded DNA (ssDNA and dsDNA), respectively. In the presence of target DNA, the obtained dsDNA product cannot adsorb onto the surface of AuNPs due to electrostatic interaction, which makes the unmodified AuNPs exhibit excellent GOx-like catalytic activity. Such catalytic activity can enlarge the diameters of AuNPs in the glucose and HAuCl4 solution and result in a connection between most of the AuNPs and a conductive gold film formation with a dramatically increased conductance. For the control sample, the catalytic activity sites of AuNPs are fully blocked by ssDNA due to the noncovalent interaction between nucleotide bases and AuNPs. Thus, the growth of the assembled AuNPs will not happen and the conductance between microelectrodes will be not changed. Under the optimal experimental conditions, the developed strategy exhibited a sensitive response to target DNA with a high signal-to-noise ratio. Moreover, this strategy was also demonstrated to provide excellent differentiation ability for single-nucleotide polymorphism. Such performances indicated the great potential of this label-free electrical strategy for clinical diagnostics and genetic analysis under real biological sample separation.
NASA Astrophysics Data System (ADS)
Singh, Shailendra; Maurya, Ved P.; Singh, Roshan K.; Srivastava, Shalivahan; Tripathi, Anurag; Adhikari, P. K.
2018-04-01
Greenstone belts are well known for gold occurrences at different regions of the world. The Dhanjori basin in the eastern Singhbhum region shows major characteristics of a rifted greenstone belt. Initially, we conducted 14 audio-magnetotelluric (AMT) measurements for a profile of ˜ 20 km in the frequency range of 1 kHz to 10 Hz over this rather complex geologic environment covering Dhanjori Volcanics (DhV) and Kolhan Group (KG). Subsequently, gravity and magnetic surveys were also conducted over this AMT profile. The purpose of the survey was to identify and map conductive features and to relate them to metallogeny of the area along with the mapping of the basement of Dhanjori basin. The strike analysis showed N30°W strike for DhV for all the frequencies and for sites over KG domain in the frequency range of 100-10 Hz, but for KG domain, the obtained strike in 1 kHz to 100 Hz is N45°E. As the combination of transverse electric (TE), transverse magnetic (TM) and tipper (Tzy) can recover the electrical signature in complex geological environment, we discuss the conductivity model obtained from TE+TM+Tzy only. The inversion was carried for the regional profile with 14 sites and for 7 sites over KG domain. Conductivity model shows two well resolved conductors, one each in KG and Quartz Pebble Conglomerate Dhanjori (QPCD) domains respectively showing common linked concordant features between these regional and KG profiles. The conductors are interpreted as sulfide mineralization linked with QPCD group of rocks which may host gold. These conductors are also horizontally disposed due to the intrusive younger Mayurbhanj Granite. These intrusives correlate well with the gravity modeling as well. The thickness of the Dhanjori basin at the central is about 3.0 km, similar to that from gravity modeling. The conductivity model also indicates the presence of shallow conductors, but could not be resolved due to lack of high frequency data. However, the results from the close-by drill site indicate the presence of shallow sulfide mineralization hosting gold. The deep level conductors delineated from AMT studies are associated with gravity high and low magnetic. ICP-AES results of Dhanjori samples show significant concentration of gold ˜ 5.0 g/t, which is of economic consideration. Thus, it can be inferred that the conductors have evidences of sulfide mineralization which host gold.
A spatial and temporal analysis of four cancers in African gold miners from Southern Africa.
Harington, J S; McGlashan, N D; Bradshaw, E; Geddes, E W; Purves, L R
1975-06-01
The pattern of cancer in African gold miners over the 8-year period 1964-71, comprising 2,926,461 man-years of employment was studied. Of the 1344 cancers found, primary liver cancer accounted for 52-8%, oesophageal cancer 12-1%, cancer of the respiratory system 5-4% and cancer of the bladder 4-8%. Analysis of the spatial distribution of these four cancers, both on subcontinental and local scale, showed distinct gradients of occurrence between areas of significantly higher and lower incidence than expected. In the case of primary liver cancer in Mozambique and oesophageal cancer in the Transkei, the spatial distribution reflects closely that found in the general resident population of each territory. The crude incidence rate of primary liver cancer in gold miners from Mozambique dropped sharply over the period of the survey.
NASA Astrophysics Data System (ADS)
Durand, J. F.
2012-06-01
The Witwatersrand has been subjected to geological exploration, mining activities, parallel industrial development and associated settlement patterns over the past century. The gold mines brought with them not only development, employment and wealth, but also the most devastating war in the history of South Africa, civil unrest, economical inequality, social uprooting, pollution, negative health impacts and ecological destruction. One of the most consistent and pressing problems caused by mining has been its impact on the water bodies in and adjacent to the Witwatersrand. The dewatering and rewatering of the karstic aquifer overlying and adjacent to the Witwatersrand Supergroup and the pollution caused by Acid Mine Drainage (AMD) are some of the most serious consequences of gold mining in South Africa and will affect the lives of many South Africans.
Preliminary magnetotelluric results across Dalma Volcanics, Eastern India: Inferences on metallogeny
NASA Astrophysics Data System (ADS)
Maurya, Ved P.; Shalivahan; Bhattacharya, B. B.; Adhikari, P. K.; Das, L. K.
2015-04-01
The regional magnetotelluric (MT) survey across Dalma Volcanics (DVs) in North Singhbhum Mobile Belt (NSMB) was carried out to obtain the conductivity model and to understand the metallogeny. The structure in general is 2-D and the average strike is N60°W. 2-D inversions using TE + TM and TE + TM + Tzy were carried out. Both inversions derived models with similar features but with modified shape. The TE + TM + Tzy inversion brings up two conducting zones enveloping three anomalous conducting bodies. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis of the samples collected from 8 to 10 m pit from different stratigraphic units of Dalma volcano-sedimentary belt indicates the presence of gold, silver, uranium and copper. The study area is a felsic dominated rifted margin and shows high conductivity contrast along with high gravity, magnetic and significant radiometric anomaly. Thus, the conducting zones indicate the presence of volcanogenic massive sulfide (VMS) or volcano hosted gold deposit (Au-VMS) in NSMB.
Haeussler, Peter J.; Bradley, Dwight C.; Goldfarb, Richard J.
2003-01-01
A spreading center was subducted diachronously along a 2200 km segment of what is now the Gulf of Alaska margin between 61 and 50 Ma, and left in its wake near-trench intrusions and high-T, low-P metamorphic rocks. Gold-quartz veins and dikes, linked to ridge subduction by geochronological and relative timing evidence, provide a record of brittle deformation during and after passage of the ridge. The gold-quartz veins are typically hosted by faults, and their regional extent indicates there was widespread deformation of the forearc above the slab window at the time of ridge subduction. Considerable variability in the strain pattern was associated with the slab window and the trailing plate. A diffuse network of dextral, sinistral, and normal faults hosted small lode-gold deposits (<50,000 oz) in south-central Alaska, whereas crustal-scale dextral faults in southeastern Alaska are spatially associated with large gold deposits (up to 800,000 oz).We interpret the gold-quartz veins as having formed above an eastward-migrating slab window, where the forearc crust responded to the diminishing influence of the forward subducting plate, the increasing influence of the trailing plate, and the thermal pulse and decreased basal friction from the slab window. In addition, extensional deformation of the forearc resulted from the diverging motions of the two oceanic plates at the margins of the slab window. Factors that complicate interpretations of fault kinematics and near-trench dike orientations include a change in plate motions at ca. 52 Ma, northward translation of the accretionary complex, oroclinal bending of the south-central Alaska margin, and subduction of transform segments. We find the pattern of syn-ridge subduction faulting in southern Alaska is remarkably similar to brittle faults near the Chile triple junction and to earthquake focal mechanisms in the Woodlark basin - the two modern sites of ridge subduction. Therefore, extensional and strike-slip deformation above slab windows may be a common occurrence.
Sub-Optical Lithography With Nanometer Definition Masks
NASA Technical Reports Server (NTRS)
Hartley, Frank T.; Malek, Chantal Khan; Neogi, Jayant
2000-01-01
Nanometer feature size lithography represents a major paradigm shift for the electronics and micro-electro-mechanical industries. In this paper, we discuss the capacity of dynamic focused reactive ion beam (FIB) etching systems to undertake direct and highly anisotropic erosion of thick evaporated gold coatings on boron-doped silicon X-ray mask membranes. FIB offers a new level of flexibility in micro fabrication, allowing for fast fabrication of X-ray masks, where pattern definition and surface alteration are combined in the same step which eliminates the whole lithographic process, in particular resist, resist development, electro-deposition and resist removal. Focused ion beam diameters as small as 7 nm can be obtained enabling fabrication well into the sub-20 nm regime. In preliminary demonstrations of this X-ray mask fabrication technique 22 nm width lines were milled directly through 0.9 microns of gold and a miniature mass spectrometer pattern was milled through over 0.5 microns of gold. Also presented are the results of the shadow printing, using the large depth of field of synchrotron high energy parallel X-ray beam, of these and other sub-optical defined patterns in photoresist conformally coated over surfaces of extreme topographical variation. Assuming that electronic circuits and/or micro devices scale proportionally, the surface area of devices processed with X-ray lithography and 20 nm critical dimension X-ray masks would be 0.5% that of contemporary devices (350 nm CD). The 20 CD mask fabrication represents an initial effort - a further factor of three reduction is anticipated which represents a further order-of-magnitude reduction in die area.
NASA Astrophysics Data System (ADS)
Hai, Aviad; Kamber, Dotan; Malkinson, Guy; Erez, Hadas; Mazurski, Noa; Shappir, Joseph; Spira, Micha E.
2009-12-01
Microelectrode arrays increasingly serve to extracellularly record in parallel electrical activity from many excitable cells without inflicting damage to the cells by insertion of microelectrodes. Nevertheless, apart from rare cases they suffer from a low signal to noise ratio. The limiting factor for effective electrical coupling is the low seal resistance formed between the plasma membrane and the electronic device. Using transmission electron microscope analysis we recently reported that cultured Aplysia neurons engulf protruding micron size gold spines forming tight apposition which significantly improves the electrical coupling in comparison with flat electrodes (Hai et al 2009 Spine-shaped gold protrusions improve the adherence and electrical coupling of neurons with the surface of micro-electronic devices J. R. Soc. Interface 6 1153-65). However, the use of a transmission electron microscope to measure the extracellular cleft formed between the plasma membrane and the gold-spine surface may be inaccurate as chemical fixation may generate structural artifacts. Using live confocal microscope imaging we report here that cultured Aplysia neurons engulf protruding spine-shaped gold structures functionalized by an RGD-based peptide and to a significantly lesser extent by poly-l-lysine. The cytoskeletal elements actin and associated protein cortactin are shown to organize around the stalks of the engulfed gold spines in the form of rings. Neurons grown on the gold-spine matrix display varying growth patterns but maintain normal electrophysiological properties and form functioning synapses. It is concluded that the matrices of functionalized gold spines provide an improved substrate for the assembly of neuro-electronic hybrids.
Electronic Devices With Diffusion Barrier and Process for Making Same
2000-05-03
components. Diffusion is also a problem with other high 10 conductivity metallization materials such as gold , silver, and platinum. As can be...those of subgroup IB of the Periodic Table (i.e., copper, silver, gold ), as well as platinum. These metals are highly attractive 10 for...the metal halide molecules of the desired thickness, is formed upon the monolayer portion of the barrier -7- material. The monolayer ( monoatomic
Electronic Devices with Diffusion Barrier and Process for Making Same
2001-05-09
conductivity metallization materials such as gold , silver, and platinum. As can be appreciated from the foregoing, a barrier film is needed which... gold ), as well as platinum. These metals are highly attractive 10 for interconnect strategies on account of there intrinsic low resistivity and...the monolayer portion of the barrier -7- material. The monolayer ( monoatomic ) layer of metal atoms and the homoepitaxial film of metal halide
Test Of A Microwave Amplifier With Superconductive Filter
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Toncich, S. S.; Chorey, C. M.; Bonetti, R. R.; Williams, A. E.
1995-01-01
Report describes design and low-temperature tests of low-noise GaAs microwave amplifier combined with microstrip band-pass filter. Two versions of microstrip filter used in alternate tests; in one version, microstrips formed as films of high-transition-temperature superconductor Y/Ba/Cu/O on lanthanum aluminate substrate with gold film as ground plane. Other version identical except microstrips as well as ground plane made of gold, normally conductive.
Thermal boundary conductance of hydrophilic and hydrophobic ionic liquids
NASA Astrophysics Data System (ADS)
Oyake, Takafumi; Sakata, Masanori; Yada, Susumu; Shiomi, Junichiro
2015-03-01
A solid/liquid interface plays a critical role for understanding mechanisms of biological and physical science. Moreover, carrier density of the surface is dramatically enhanced by electric double layer with ionic liquid, salt in the liquid state. Here, we have measured the thermal boundary conductance (TBC) across an interface of gold thin film and ionic liquid by using time-domain thermoreflectance technique. Following the prior researches, we have identified the TBC of two interfaces. One is gold and hydrophilic ionic liquid, N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate (DEME-BF4), which is a hydrophilic ionic liquid, and the other is N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide (DEME-TFSI), which is a hydrophobic ionic liquid. We found that the TBC between gold and DEME-TFIS (19 MWm-2K-1) is surprisingly lower than the interface between gold and DEME-BF4 (45 MWm-2K-1). With these data, the importance of the wetting angle and ion concentration for the thermal transport at the solid/ionic liquid interface is discussed. Part of this work is financially supported by Japan Society for the Promotion of Science (JSPS) and Japan Science and Technology Agency. The author is financially supported by JSPS Fellowship.
Computer-Assisted Classification Patterns in Autoimmune Diagnostics: The AIDA Project
Benammar Elgaaied, Amel; Cascio, Donato; Bruno, Salvatore; Ciaccio, Maria Cristina; Cipolla, Marco; Fauci, Alessandro; Morgante, Rossella; Taormina, Vincenzo; Gorgi, Yousr; Marrakchi Triki, Raja; Ben Ahmed, Melika; Louzir, Hechmi; Yalaoui, Sadok; Imene, Sfar; Issaoui, Yassine; Abidi, Ahmed; Ammar, Myriam; Bedhiafi, Walid; Ben Fraj, Oussama; Bouhaha, Rym; Hamdi, Khouloud; Soumaya, Koudhi; Neili, Bilel; Asma, Gati; Lucchese, Mariano; Catanzaro, Maria; Barbara, Vincenza; Brusca, Ignazio; Fregapane, Maria; Amato, Gaetano; Friscia, Giuseppe; Neila, Trai; Turkia, Souayeh; Youssra, Haouami; Rekik, Raja; Bouokez, Hayet; Vasile Simone, Maria; Fauci, Francesco; Raso, Giuseppe
2016-01-01
Antinuclear antibodies (ANAs) are significant biomarkers in the diagnosis of autoimmune diseases in humans, done by mean of Indirect ImmunoFluorescence (IIF) method, and performed by analyzing patterns and fluorescence intensity. This paper introduces the AIDA Project (autoimmunity: diagnosis assisted by computer) developed in the framework of an Italy-Tunisia cross-border cooperation and its preliminary results. A database of interpreted IIF images is being collected through the exchange of images and double reporting and a Gold Standard database, containing around 1000 double reported images, has been settled. The Gold Standard database is used for optimization of a CAD (Computer Aided Detection) solution and for the assessment of its added value, in order to be applied along with an Immunologist as a second Reader in detection of autoantibodies. This CAD system is able to identify on IIF images the fluorescence intensity and the fluorescence pattern. Preliminary results show that CAD, used as second Reader, appeared to perform better than Junior Immunologists and hence may significantly improve their efficacy; compared with two Junior Immunologists, the CAD system showed higher Intensity Accuracy (85,5% versus 66,0% and 66,0%), higher Patterns Accuracy (79,3% versus 48,0% and 66,2%), and higher Mean Class Accuracy (79,4% versus 56,7% and 64.2%). PMID:27042658
Effect of Bed Temperature on the Laser Energy Required to Sinter Copper Nanoparticles
NASA Astrophysics Data System (ADS)
Roy, N. K.; Dibua, O. G.; Cullinan, M. A.
2018-03-01
Copper nanoparticles (NPs), due to their high electrical conductivity, low cost, and easy availability, provide an excellent alternative to other metal NPs such as gold, silver, and aluminum in applications ranging from direct printing of conductive patterns on metal and flexible substrates for printed electronics applications to making three-dimensional freeform structures for interconnect fabrication for chip-packaging applications. Lack of research on identification of optimum sintering parameters such as fluence/irradiance requirements for sintering of Cu NPs serves as the primary motivation for this study. This article focuses on the identification of a good sintering irradiance window for Cu NPs on an aluminum substrate using a continuous wave (CW) laser. The study also includes the comparison of CW laser sintering irradiance windows obtained with substrates at different initial temperatures. The irradiance requirements for sintering of Cu NPs with the substrate at 150-200°C were found to be 5-17 times smaller than the irradiance requirements for sintering with the substrate at room temperature. These findings were also compared against the results obtained with a nanosecond (ns) laser and a femtosecond (fs) laser.
Mercury Distribution in the Processing of Jatiroto Gold Mine Wonogiri Central Java Indonesia
NASA Astrophysics Data System (ADS)
Fitri Yudiantoro, Dwi; Nurcholis, Muhammad; Sri Sayudi, Dewi; Abdurrachman, Mirzam; Paramita Haty, Intan; Pambudi, Wiryan; Subroborini, Arum
2017-06-01
The research area is one of the Wonogiri gold producer. In this region there are nearly 30 gold processing locations. This area has a steep morphology which is part of Mt. Mas. The work of the gold processing is a part time job besides for the local farmer population. To get the gold bearing rocks, are by digging holes manually around Mt. Mas, while gold processing is carried out in their homes. As a result of these activities, then identified the distribution of mercury in the surrounding settlements. Analytical methods used in this study is the measurement mercury content using Hg meter on altered rocks, soil and using XRF (X-Ray Fluorescence) for plant samples. This results of research shows that there are conducted on mercury contents in the altered rocks, soil and plants showed significant mercury contents in altered rocks, soil and plants. This proves that mercury has polluted the environment surrounding residents, both of people living in the hill down on the lower plain areas. The results of this study are expected to be used as reference to help overcome the pollution of the area.
A nonlinear model of gold production in Malaysia
NASA Astrophysics Data System (ADS)
Ramli, Norashikin; Muda, Nora; Umor, Mohd Rozi
2014-06-01
Malaysia is a country which is rich in natural resources and one of it is a gold. Gold has already become an important national commodity. This study is conducted to determine a model that can be well fitted with the gold production in Malaysia from the year 1995-2010. Five nonlinear models are presented in this study which are Logistic model, Gompertz, Richard, Weibull and Chapman-Richard model. These model are used to fit the cumulative gold production in Malaysia. The best model is then selected based on the model performance. The performance of the fitted model is measured by sum squares error, root mean squares error, coefficient of determination, mean relative error, mean absolute error and mean absolute percentage error. This study has found that a Weibull model is shown to have significantly outperform compare to the other models. To confirm that Weibull is the best model, the latest data are fitted to the model. Once again, Weibull model gives the lowest readings at all types of measurement error. We can concluded that the future gold production in Malaysia can be predicted according to the Weibull model and this could be important findings for Malaysia to plan their economic activities.
Inverse opal photonic crystals with photonic band gaps in the visible and near-infrared
NASA Astrophysics Data System (ADS)
Jarvis, Brandon C.; Gilleland, Cody L.; Renfro, Tim; Gutierrez, Jose; Parikh, Kunjal; Glosser, R.; Landon, Preston B.
2005-08-01
Colloidal silica spheres with 200nm, 250nm, and 290nm diameters were self-assembled with single crystal crystallites 4-5mm wide and 10-15mm long. Larger spheres with diameters between 1000-2300nm were self-assembled with single crystal crystallites up to 1.5mm wide and 2mm long. The silica opals self-assembled vertically along the [100] direction of the face centered cubic lattice resulting in self-templated opals. Inverse opal photonic crystals with a partial band gap possessing a maximum in the near infrared at 3.8μm were constructed from opal templates composed of 2300nm diameter spheres with chalcogenide Ge33As12Se55 (AMTIR-1), a transparent glass in the near infrared with high refractive index. Inverse gold and gold/ polypropylene composite photonic crystals were fabricated from synthetic opal templates composed of 200-290nm silica spheres. The reflectance spectra and electrical conductance of the resulting structures is presented. Gold was infiltrated into opal templates as gold chloride and heat converted to metallic gold. Opals partially infiltrated with gold were co-infiltrated with polypropylene plastic for mechanical support prior to removal of the silica template with hydrofluoric acid.
Semenikhin, Nikolay S; Kadasala, Naveen Reddy; Moon, Robert J; Perry, Joseph W; Sandhage, Kenneth H
2018-04-17
Cellulose nanocrystals (CNCs) can be attractive templates for the generation of functional inorganic/organic nanoparticles, given their fine sizes, aspect ratios, and sustainable worldwide availability in abundant quantities. Here, we present for the first time a scalable, surfactant-free, tailorable wet chemical process for converting commercially available CNCs into individual aspected gold nanoshell-bearing particles with tunable surface plasmon resonance bands. Using a rational cellulose functionalization approach, stable suspensions of positively charged CNCs have been generated. Continuous, conductive, nanocrystalline gold coatings were then applied to the individual, electrostatically stabilized CNCs via decoration with 1-3 nm diameter gold particles followed by electroless gold deposition. Optical analyses indicated that these core-shell nanoparticles exhibited two surface plasmon absorbance bands, with one located in the visible range (near 550 nm) and the other at near infrared (NIR) wavelengths. The NIR band possessed a peak maximum wavelength that could be tuned over a wide range (1000-1300 nm) by adjusting the gold coating thickness. The bandwidth and wavelength of the peak maximum of the NIR band were also sensitive to the particle size distribution and could be further refined by fractionation using viscosity gradient centrifugation.
An Engineered Membrane to Measure Electroporation: Effect of Tethers and Bioelectronic Interface
Hoiles, William; Krishnamurthy, Vikram; Cranfield, Charles G.; Cornell, Bruce
2014-01-01
This article reports on the construction and predictive models for a platform comprised of an engineered tethered membrane. The platform provides a controllable and physiologically relevant environment for the study of the electroporation process. The mixed self-assembled membrane is formed via a rapid solvent exchange technique. The membrane is tethered to the gold electrode and includes an ionic reservoir separating the membrane and gold surface. Above the membrane, there is an electrolyte solution, and a gold counterelectrode. A voltage is applied between the gold electrodes and the current measured. The current is dependent on the energy required to form aqueous pores and the conductance of each pore. A two-level predictive model, consisting of a macroscopic and a continuum model, is developed to relate the pore dynamics to the measured current. The macroscopic model consists of an equivalent circuit model of the tethered membrane, and asymptotic approximations to the Smoluchowski-Einstein equation of electroporation that is dependent on the pore conductance and the energy required to form aqueous pores. The continuum model is a generalized Poisson-Nernst-Planck (GPNP) system where an activity coefficient to account for steric effects of ions is added to the standard PNP system. The GPNP is used to evaluate the conductance of aqueous pores, and the electrical energy required to form the pores. As an outcome of the setup of the device and the two-level model, biologically important variables can be estimated from experimental measurements. To validate the accuracy of the two-level model, the predicted current is compared with experimentally measured current for different tethering densities. PMID:25229142
Self-organized broadband light trapping in thin film amorphous silicon solar cells.
Martella, C; Chiappe, D; Delli Veneri, P; Mercaldo, L V; Usatii, I; Buatier de Mongeot, F
2013-06-07
Nanostructured glass substrates endowed with high aspect ratio one-dimensional corrugations are prepared by defocused ion beam erosion through a self-organized gold (Au) stencil mask. The shielding action of the stencil mask is amplified by co-deposition of gold atoms during ion bombardment. The resulting glass nanostructures enable broadband anti-reflection functionality and at the same time ensure a high efficiency for diffuse light scattering (Haze). It is demonstrated that the patterned glass substrates exhibit a better photon harvesting than the flat glass substrate in p-i-n type thin film a-Si:H solar cells.
A wearable and highly sensitive pressure sensor with ultrathin gold nanowires
NASA Astrophysics Data System (ADS)
Gong, Shu; Schwalb, Willem; Wang, Yongwei; Chen, Yi; Tang, Yue; Si, Jye; Shirinzadeh, Bijan; Cheng, Wenlong
2014-02-01
Ultrathin gold nanowires are mechanically flexible yet robust, which are novel building blocks with potential applications in future wearable optoelectronic devices. Here we report an efficient, low-cost fabrication strategy to construct a highly sensitive, flexible pressure sensor by sandwiching ultrathin gold nanowire-impregnated tissue paper between two thin polydimethylsiloxane sheets. The entire device fabrication process is scalable, enabling facile large-area integration and patterning for mapping spatial pressure distribution. Our gold nanowires-based pressure sensors can be operated at a battery voltage of 1.5 V with low energy consumption (<30 μW), and are able to detect pressing forces as low as 13 Pa with fast response time (<17 ms), high sensitivity (>1.14 kPa-1) and high stability (>50,000 loading-unloading cycles). In addition, our sensor can resolve pressing, bending, torsional forces and acoustic vibrations. The superior sensing properties in conjunction with mechanical flexibility and robustness enabled real-time monitoring of blood pulses as well as detection of small vibration forces from music.
Schneider, Julian; Rohner, Patrik; Galliker, Patrick; Raja, Shyamprasad N; Pan, Ying; Tiwari, Manish K; Poulikakos, Dimos
2015-06-07
Gold nanoparticles with unique electronic, optical and catalytic properties can be efficiently synthesized in colloidal suspensions and are of broad scientific and technical interest and utility. However, their orderly integration on functional surfaces and devices remains a challenge. Here we show that single gold nanoparticles can be directly grown in individually printed, stabilized metal-salt ink attoliter droplets, using a nanoscale electrohydrodynamic printing method with a stable high-frequency dripping mode. This enables controllable sessile droplet nanoreactor formation and sustenance on non-wetting substrates, despite simultaneous rapid evaporation. The single gold nanoparticles can be formed inside such reactors in situ or by subsequent thermal annealing and plasma ashing. With this non-contact technique, single particles with diameters tunable in the range of 5-35 nm and with narrow size distribution, high yield and alignment accuracy are generated on demand and patterned into arbitrary arrays. The nanoparticles feature good catalytic activity as shown by the exemplary growth of silicon nanowires from the nanoparticles and the etching of nanoholes by the printed nanoparticles.
NASA Astrophysics Data System (ADS)
Subramanian, Shyamala
This thesis explores two applications of self-assembled monolayers (SAMs) (a) for developing novel molecular assembly based nanolithography techniques and (b) for tailoring zeta-potential of surfaces towards achieving directional control of catalytically induced fluid flow. The first half of the thesis develops the process of molecular ruler lithography using sacrificial host structures. This is a novel hybrid nanolithography technique which combines chemical self-assembly with conventional fabrication methods for improving the resolution of existing lithography tools to sub-50 nm. Previous work related to molecular ruler lithography have shown the use of thiol-SAMs, placed one on top of the other like a molecular resist, for scaling down feature sizes. In this thesis various engineering solutions for improving the reproducibility, yield, nanoscale roughness and overall manufacturability of the process are introduced. This is achieved by introducing a sacrificial inert layer underneath the gold parent structure. This bilayer sacrificial host allows for preferential, easy and quick removal of the parent structures, isolates the parent metal from the underlying substrate and improves reproducibility of the lift-off process. Also it opens avenues for fabrication of high aspect ratio features. Also molecular layer vapor deposition method is developed for building the multilayer molecular resist via vapor phase to reduce contaminations and yield issues associated with solution phase deposition. The smallest isolated metal features produced using this process were 40 nm in width. The second half of the thesis describes application of thiol-SAMs to tailor surface properties of gold, specifically the surface charge or zeta potential. Previous work has demonstrated that the direction of movement of fluid in the vicinity of a catalytically active bimetallic junction placed in a solution of dilute hydrogen peroxide depends on the charge of the gold surface. SAMs with different end-group functionality impart different surface zeta potential to the gold surface. Zeta-potential engineering via patterning various end-group functionalized SAMs on gold surface to control direction of catalytically induced electroosmotic fluid flow is demonstrated for the first time. This work also describes the application of catalytic power to produce controlled rotational motion. Gold gears-like structures made using conventional microfabrication techniques and propelled by catalytic power are shown to rotate at speeds of 1 rotation/sec in a dilute solution of hydrogen peroxide. Fabrication of a force sensor for detection and measurement of catalytic forces is also introduced. The force sensor, with sensitivity in the piconewton range, consists of a microcantilever with a catalytically active silver post patterned on the tip. Changes in cantilever displacement and resonance frequency due to the catalytic force were monitored as a function of concentration of hydrogen peroxide. Overall, this thesis integrates SAM deposition and patterning techniques with conventional fabrication methods to engineer and control nanoscale structures and devices. Possible future device designs are described including CMOS devices having channel width defined using molecular ruler lithography with sacrificial hosts, drug delivery device based on AFM force sensor and channeless pumps powered by catalytic reactions with SAM controlled electroosmotic fluid flow.
Electron-microscopical localization of gelsolin in various crustacean muscles.
Unger, Andreas; Hinssen, Horst
2010-08-01
Gelsolin was localized by immunoelectron microscopy in fast and slow cross-striated muscles of the lobster Homarus americanus. When ultrathin sections of the muscles were labelled with anti-gelsolin and a gold-conjugated second antibody, 90% of all gold particles in the myoplasm were detected on myofibrils, preferentially in the I-band and AI-region of the sarcomeres. Both the region of the H-zone (lacking thin filaments) and the Z-disc contained no or little gold label. Under physiological conditions, a close association of gelsolin with the thin filaments was observed for both muscle types. The preferential localization of particles in the I- and AI-region indicated that gelsolin was distributed randomly over the whole length of the thin filaments. Preincubation of muscle strips with Ringer solution containing 0.5 mM EGTA resulted in a significantly different distribution pattern; gold particles were now localized preferentially in the cell periphery close to the sarcolemma, with significantly decreased abundance in the centre of the cell. Compared with the muscle under physiological conditions, the number of gold particles over sarcomeric structures was significantly reduced. Thus, binding of gelsolin to the thin filaments is apparently reversible in vivo and depends on the presence of calcium ions. We assume a functional role for gelsolin in the actin turnover processes in invertebrate muscle systems.
Plasmonic Gold Decorated MWCNT Nanocomposite for Localized Plasmon Resonance Sensing
Ozhikandathil, J.; Badilescu, S.; Packirisamy, M.
2015-01-01
The synergism of excellent properties of carbon nanotubes and gold nanoparticles is used in this work for bio-sensing of recombinant bovine growth hormones (rbST) by making Multi Wall Carbon Nanotubes (MWCNT) locally optically responsive by augmenting it optical properties through Localized Surface Plasmon Resonance (LSPR). To this purpose, locally gold nano particles decorated gold–MWCNT composite was synthesized from a suspension of MWCNT bundles and hydrogen chloroauric acid in an aqueous solution, activated ultrasonically and, then, drop-casted on a glass substrate. The slow drying of the drop produces a “coffee ring” pattern that is found to contain gold–MWCNT nanocomposites, accumulated mostly along the perimeter of the ring. The reaction is studied also at low-temperature, in the vacuum chamber of the Scanning Electron Microscope and is accounted for by the local melting processes that facilitate the contact between the bundle of tubes and the gold ions. Biosensing applications of the gold–MWCNT nanocomposite using their LSPR properties are demonstrated for the plasmonic detection of traces of bovine growth hormone. The sensitivity of the hybrid platform which is found to be 1 ng/ml is much better than that measuring with gold nanoparticles alone which is only 25 ng/ml. PMID:26282187
The Evolution of Fabricated Gold Thin Films to Nano-Micro Particles Under Thermal Annealing Process
NASA Astrophysics Data System (ADS)
Hajivaliei, Mahdi; Nazari, Saeed
2016-06-01
Gold (Au) thin films with thickness of 35nm were prepared by electron beam deposition onto flat glass substrates under high vacuum (5.3×10-3Pa) condition and they were annealed in the range of 573-873 K for 1 and 2h in atmospheric pressure. The influence of the annealing temperature on the evolution of Au thin film to nano-micro particles was studied. Moreover, the basic properties of the films, namely morphological, structural and optical were investigated. The X-ray diffraction (XRD) analysis revealed that the Au thin films were cubic structure phase with lattice parameter around a=4.0786Å. The most preferential orientation is along (111) planes for all Au films. The lattice parameter and grain size in the films were calculated by X-ray patterns and correlated with annealing temperatures. The obtained results of ultraviolet-visible spectrometry (UV-Vis) indicate that with increasing annealing temperature, the surface plasmon resonance peak of gold nanocrystallite will disappear which implies the size of particles are grown. Field-emission scanning electron microscopy (FE-SEM) results show that the prepared gold thin films have been converted to nano-micro gold particles in different annealing temperatures. These results lead to controlling the size of produced nanocrystallite.
Dimensional effects on the tunneling conductivity of gold-implanted nanocomposite films
NASA Astrophysics Data System (ADS)
Grimaldi, C.; Cattani, M.; Salvadori, M. C.
2015-03-01
We study the dependence of the electrical conductivity on the gold concentration of Au-implanted polymethylmethacrylate (PMMA) and alumina nanocomposite thin films. For Au contents larger than a critical concentration, the conductivity of Au-PMMA and Au-alumina is well described by percolation in two dimensions, indicating that the critical correlation length for percolation is larger than the thickness of the films. Below the critical loading, the conductivity is dominated by tunneling processes between isolated Au particles dispersed in PMMA or alumina continuous matrices. Using an effective medium analysis of the tunneling conductivity, we show that Au-PMMA behaves as a tunneling system in two dimensions, as the film thickness is comparable to the mean Au particle size. On the contrary, the conductivity of Au-alumina films is best described by tunneling in three dimensions, although the film thickness is only a few times larger than the particle size. We interpret the enhancement of the effective dimensionality of Au-alumina films in the tunneling regime as due to the larger film thickness as compared to the mean interparticle distances.
Highly conductive ribbons prepared by stick-slip assembly of organosoluble gold nanoparticles.
Lawrence, Jimmy; Pham, Jonathan T; Lee, Dong Yun; Liu, Yujie; Crosby, Alfred J; Emrick, Todd
2014-02-25
Precisely positioning and assembling nanoparticles (NPs) into hierarchical nanostructures is opening opportunities in a wide variety of applications. Many techniques employed to produce hierarchical micrometer and nanoscale structures are limited by complex fabrication of templates and difficulties with scalability. Here we describe the fabrication and characterization of conductive nanoparticle ribbons prepared from surfactant-free organosoluble gold nanoparticles (Au NPs). We used a flow-coating technique in a controlled, stick-slip assembly to regulate the deposition of Au NPs into densely packed, multilayered structures. This affords centimeter-scale long, high-resolution Au NP ribbons with precise periodic spacing in a rapid manner, up to 2 orders-of-magnitude finer and faster than previously reported methods. These Au NP ribbons exhibit linear ohmic response, with conductivity that varies by changing the binding headgroup of the ligands. Controlling NP percolation during sintering (e.g., by adding polymer to retard rapid NP coalescence) enables the formation of highly conductive ribbons, similar to thermally sintered conductive adhesives. Hierarchical, conductive Au NP ribbons represent a promising platform to enable opportunities in sensing, optoelectronics, and electromechanical devices.
Metallization of Self-Assembled DNA Templates for Electronic Circuit Fabrication
NASA Astrophysics Data System (ADS)
Uprety, Bibek
This work examines the deposition of metallic and semiconductor elements onto self-assembled DNA templates for the fabrication of nanodevices. Biological molecules like DNA self-assemble into a variety of 2- and 3-D architectures without the need for patterning tools. The templates can also be designed to controllably place functional nanomaterials with molecular precision. These characteristics make DNA an attractive template for fabricating electronic circuits. However, electrically conductive structures are needed for electronic applications. While metallized DNA nanostructures have been demonstrated, the ability to make thin, continuous wires that are electrically conductive still represents a formidable challenge. DNA-templated wires have generally been granular in appearance with a resistivity approximately two to three orders of magnitude higher than that of the bulk material. An improved method for the metallization of DNA origami is examined in this work that addresses these challenges of size, morphology and conductivity of the metallized structure. Specifically, we demonstrated a metallization process that uses gold nanorod seeds followed by anisotropic electroless (autocatalytic) plating to provide improved morphology and greater control of the final metallized width of conducting metal lines. Growth during electroless deposition occurs preferentially in the length direction at a rate that is approximately four times the growth rate in the width direction, which enables fabrication of narrow, continuous wires. The electrical properties of 49 nanowires with widths ranging from 13 nm to 29 nm were characterized, and resistivity values as low as 8.9 x 10-7 -m were measured, which represent some of the smallest nanowires and the lowest resistivity values reported in the literature. The metallization procedure developed on smaller templates was also successfully applied to metallize bigger DNA templates of tens of micrometers in length. In addition, a polymer-assisted annealing process was discovered to possibly improve the resistivity of DNA metal nanowires. Following metallization of bigger DNA origami structures, controlled placement of nanorods on a DNA breadboard to make rectangular, square and T-shaped metallic structures was also demonstrated. For site-specific placement, we modified the surface of the gold nanorods with single-stranded DNA. The rods were then attached to DNA templates via complementary base-pairing between the DNA on the nanorods and the attachment strands engineered into the DNA "breadboard" template. Gaps between the nanorods were then filled controllably via anisotropic plating to make 10 nm diameter continuous metallic structures. Finally, controlled placement of metal (gold) - semiconductor (tellurium) materials on a single DNA origami template was demonstrated. The combination of molecularly directed deposition of different nanomaterials and anisotropic metallization presented in this work represents important progress towards the creation of nanoelectronic devices from self-assembled biological templates.
Otte, M A; Solis-Tinoco, V; Prieto, P; Borrisé, X; Lechuga, L M; González, M U; Sepulveda, B
2015-09-02
In current top-down nanofabrication methodologies the design freedom is generally constrained to the two lateral dimensions, and is only limited by the resolution of the employed nanolithographic technique. However, nanostructure height, which relies on certain mask-dependent material deposition or etching techniques, is usually uniform, and on-chip variation of this parameter is difficult and generally limited to very simple patterns. Herein, a novel nanofabrication methodology is presented, which enables the generation of high aspect-ratio nanostructure arrays with height gradients in arbitrary directions by a single and fast etching process. Based on metal-assisted chemical etching using a catalytic gold layer perforated with nanoholes, it is demonstrated how nanostructure arrays with directional height gradients can be accurately tailored by: (i) the control of the mass transport through the nanohole array, (ii) the mechanical properties of the perforated metal layer, and (iii) the conductive coupling to the surrounding gold film to accelerate the local electrochemical etching process. The proposed technique, enabling 20-fold on-chip variation of nanostructure height in a spatial range of a few micrometers, offers a new tool for the creation of novel types of nano-assemblies and metamaterials with interesting technological applications in fields such as nanophotonics, nanophononics, microfluidics or biomechanics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electronic and transport properties of a molecular junction with asymmetric contacts.
Tsai, M-H; Lu, T-H
2010-02-10
Asymmetric molecular junctions have been shown experimentally to exhibit a dual-conductance transport property with a pulse-like current-voltage characteristic, by Reed and co-workers. Using a recently developed first-principles integrated piecewise thermal equilibrium current calculation method and a gold-benzene-1-olate-4-thiolate-gold model molecular junction, this unusual transport property has been reproduced. Analysis of the electrostatics and the electronic structure reveals that the high-current state results from subtle bias induced charge transfer at the electrode-molecule contacts that raises molecular orbital energies and enhances the current-contributing molecular density of states and the probabilities of resonance tunneling of conduction electrons from one electrode to another.
NASA Astrophysics Data System (ADS)
Wang, Chunyang; Du, Kui; Song, Kepeng; Ye, Xinglong; Qi, Lu; He, Suyun; Tang, Daiming; Lu, Ning; Jin, Haijun; Li, Feng; Ye, Hengqiang
2018-05-01
Low-angle grain boundaries generally exist in the form of dislocation arrays, while high-angle grain boundaries (misorientation angle >15 ° ) exist in the form of structural units in bulk metals. Here, through in situ atomic resolution aberration corrected electron microscopy observations, we report size-dependent grain-boundary structures improving both stabilities of electrical conductivity and mechanical properties in sub-10-nm-sized gold crystals. With the diameter of a nanocrystal decreasing below 10 nm, the high-angle grain boundary in the crystal exists as an array of dislocations. This size effect may be of importance to a new generation of interconnects applications.
Umamaheswari, C; Lakshmanan, A; Nagarajan, N S
2018-01-01
The present study reports, novel and greener method for synthesis of gold nanoparticles (AuNPs) using 5,7-dihydroxy-6-metoxy-3 ' ,4 ' methylenedioxyisoflavone (Dalspinin), isolated from the roots of Dalbergia coromandeliana was carried out for the first time. The synthesized gold nanoparticles were characterized by UV-Vis spectroscopy, high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The observed surface plasmon resonance (SPR) at 532nm in the UV-Vis absorption spectrum indicates the formation of gold nanoparticles. The powder XRD and SAED pattern for synthesized gold nanoparticles confirms crystalline nature. The HR-TEM images showed that the AuNPs formed were small in size, highly monodispersed and spherical in shape. The average particle sizes of the AuNPs are found to be ~10.5nm. The prepared AuNPs were found to be stable for more than 5months without any aggregation. The catalytic degradation studies of the synthesized AuNPs towards degradation of congo red and methyl orange, showed good catalytic in the complete degradation of both the dyes. The reduction catalyzed by gold nanoparticles followed the pseudo-first order kinetics, with a rate constant of 4.5×10 -3 s -1 (R 2 =0.9959) and 1.7×10 -3 s -1 (R 2 =0.9918) for congo red (CR) and methyl orange (MO), respectively. Copyright © 2017. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Spalvins, T.; Buckley, D. H.
1983-01-01
For the case of ion-plated gold, the graded interface between gold and a nickel substrate and a nickel substrate, such tribological properties as friction and microhardness are examined by means of X-ray photoelectron spectroscopy analysis and depth profiling. Sliding was conducted against SiC pins in both the adhesive process, where friction arises from adhesion between sliding surfaces, and abrasion, in which friction is due to pin indentation and groove-plowing. Both types of friction are influenced by coating depth, but with opposite trends: the graded interface exhibited the highest adhesion, but the lowest abrasion. The coefficient of friction due to abrasion is inversely related to hardness. Graded interface microhardness values are found to be the highest, due to an alloying effect. There is almost no interface gradation between the vapor-deposited gold film and the substrate.
NASA Astrophysics Data System (ADS)
Zhang, Jian; Irannejad, Mehrdad; Yavuz, Mustafa; Cui, Bo
2015-05-01
Nanofabrication technology plays an important role in the performance of surface plasmonic devices such as extraordinary optical transmission (EOT) sensor. In this work, a double liftoff process was developed to fabricate a series of nanohole arrays of a hole diameter between 150 and 235 nm and a period of 500 nm in a 100-nm-thick gold film on a silica substrate. To improve the surface quality of the gold film, thermal annealing was conducted, by which an ultra-smooth gold film with root-mean-square (RMS) roughness of sub-1 nm was achieved, accompanied with a hole diameter shrinkage. The surface sensitivity of the nanohole arrays was measured using a monolayer of 16-mercaptohexadecanoic acid (16-MHA) molecule, and the surface sensitivity was increased by 2.5 to 3 times upon annealing the extraordinary optical transmission (EOT) sensor.
NASA Astrophysics Data System (ADS)
Lee, Hyunjae; Choi, Tae Kyu; Lee, Young Bum; Cho, Hye Rim; Ghaffari, Roozbeh; Wang, Liu; Choi, Hyung Jin; Chung, Taek Dong; Lu, Nanshu; Hyeon, Taeghwan; Choi, Seung Hong; Kim, Dae-Hyeong
2016-06-01
Owing to its high carrier mobility, conductivity, flexibility and optical transparency, graphene is a versatile material in micro- and macroelectronics. However, the low density of electrochemically active defects in graphene synthesized by chemical vapour deposition limits its application in biosensing. Here, we show that graphene doped with gold and combined with a gold mesh has improved electrochemical activity over bare graphene, sufficient to form a wearable patch for sweat-based diabetes monitoring and feedback therapy. The stretchable device features a serpentine bilayer of gold mesh and gold-doped graphene that forms an efficient electrochemical interface for the stable transfer of electrical signals. The patch consists of a heater, temperature, humidity, glucose and pH sensors and polymeric microneedles that can be thermally activated to deliver drugs transcutaneously. We show that the patch can be thermally actuated to deliver Metformin and reduce blood glucose levels in diabetic mice.
Multicomponent patterned ultrathin carbon nanomembranes by laser ablation
NASA Astrophysics Data System (ADS)
Frese, Natalie; Scherr, Julian; Beyer, André; Terfort, Andreas; Gölzhäuser, Armin; Hampp, Norbert; Rhinow, Daniel
2018-01-01
Carbon nanomembranes (CNMs) are a class of two-dimensional materials, which are obtained by electron beam-induced crosslinking of aromatic self-assembled monolayers (SAMs) on solid substrates. CNMs made from a single type of precursor molecule are uniform with homogeneous chemical and physical properties. We have developed a method for the fabrication of internally patterned CNMs resembling a key feature of biological membranes. Direct laser patterning is used to obtain multicomponent patterned SAMs on gold, which are subsequently crosslinked by electron irradiation. We demonstrate that the structure of internally patterned CNMs is preserved upon transfer to different substrates. The method enables rapid fabrication of patterned 2D materials with local variations in chemical and physical properties on the micrometer to centimeter scale.
Electrical Conductivity of Ferritin Proteins by Conductive AFM
NASA Technical Reports Server (NTRS)
Xu, Degao; Watt, Gerald D.; Harb, John N.; Davis, Robert C.
2005-01-01
Electrical conductivity measurements were performed on single apoferritin and holoferritin molecules by conductive atomic force microscopy. Conductivity of self-assembled monolayer films of ferritin molecules on gold surfaces was also measured. Holoferritin was 5-25 times more conductive than apoferritin, indicating that for holoferritin most electron-transfer goes through the ferrihydrite core. With 1 V applied, the average electrical currents through single holoferritin and apoferritin molecules were 2.6 PA and 0.19 PA, respectively.
Structural evolution and properties of small-size thiol-protected gold nanoclusters
NASA Astrophysics Data System (ADS)
Ma, Miaomiao; Liu, Liren; Zhu, Hengjiang; Lu, Junzhe; Tan, Guiping
2018-07-01
Ligand-protected gold clusters are widely used in biosensors and catalysis. Understanding the structural evolution of these kinds of nanoclusters is important for experimental synthesis. Herein, based on the particle swarm optimisation algorithm and density functional theory method, we use [Au1(SH)2]n, [Au2(SH)3]n, [Au3(SH)4]n (n = 1-3) as basic units to research the structural evolution relationships from building blocks to the final whole structures. Results show that there is a 'line-ring-core' structural evolution pattern in the growth process of the nanoclusters. The core structures of the ligand-protected gold clusters consist of Au3, Au4, Au6 and Au7 atoms. The electronics and optics analysis reflects that stability and optical properties gradually enhance with increase in size. These results can be used to understand the initial growth stage and design new ligand-protected nanoclusters.
Daima, Hemant K.; Selvakannan, P. R.; Shukla, Ravi; Bhargava, Suresh K.; Bansal, Vipul
2013-01-01
Antimicrobial action of nanomaterials is typically assigned to the nanomaterial composition, size and/or shape, whereas influence of complex corona stabilizing the nanoparticle surface is often neglected. We demonstrate sequential surface functionalization of tyrosine-reduced gold nanoparticles (AuNPsTyr) with polyoxometalates (POMs) and lysine to explore controlled chemical functionality-driven antimicrobial activity. Our investigations reveal that highly biocompatible gold nanoparticles can be tuned to be a strong antibacterial agent by fine-tuning their surface properties in a controllable manner. The observation from the antimicrobial studies on a gram negative bacterium Escherichia coli were further validated by investigating the anticancer properties of these step-wise surface-controlled materials against A549 human lung carcinoma cells, which showed a similar toxicity pattern. These studies highlight that the nanomaterial toxicity and biological applicability are strongly governed by their surface corona. PMID:24147146
Daima, Hemant K; Selvakannan, P R; Shukla, Ravi; Bhargava, Suresh K; Bansal, Vipul
2013-01-01
Antimicrobial action of nanomaterials is typically assigned to the nanomaterial composition, size and/or shape, whereas influence of complex corona stabilizing the nanoparticle surface is often neglected. We demonstrate sequential surface functionalization of tyrosine-reduced gold nanoparticles (AuNPs(Tyr)) with polyoxometalates (POMs) and lysine to explore controlled chemical functionality-driven antimicrobial activity. Our investigations reveal that highly biocompatible gold nanoparticles can be tuned to be a strong antibacterial agent by fine-tuning their surface properties in a controllable manner. The observation from the antimicrobial studies on a gram negative bacterium Escherichia coli were further validated by investigating the anticancer properties of these step-wise surface-controlled materials against A549 human lung carcinoma cells, which showed a similar toxicity pattern. These studies highlight that the nanomaterial toxicity and biological applicability are strongly governed by their surface corona.
Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment.
Tilakaratne, Buddhi P; Chen, Quark Y; Chu, Wei-Kan
2017-09-08
In this study, we used a 30 keV argon cluster ion beam bombardment to investigate the dynamic processes during nano-ripple formation on gold surfaces. Atomic force microscope analysis shows that the gold surface has maximum roughness at an incident angle of 60° from the surface normal; moreover, at this angle, and for an applied fluence of 3 × 10 16 clusters/cm², the aspect ratio of the nano-ripple pattern is in the range of ~50%. Rutherford backscattering spectrometry analysis reveals a formation of a surface gradient due to prolonged gas cluster ion bombardment, although the surface roughness remains consistent throughout the bombarded surface area. As a result, significant mass redistribution is triggered by gas cluster ion beam bombardment at room temperature. Where mass redistribution is responsible for nano-ripple formation, the surface erosion process refines the formed nano-ripple structures.
Gold-based thin multilayers for ohmic contacts in RF-MEMS switches
NASA Astrophysics Data System (ADS)
Mulloni, V.; Iannacci, J.; Bartali, R.; Micheli, V.; Colpo, S.; Laidani, N.; Margesin, B.
2011-06-01
In RF-MEMS switches many reliability issues are related to the metal contacts in the switching area. The characteristics of this contact influence not only contact resistance and insertion loss, but also the most relevant switch failure mechanisms that are wear of ohmic contact, adhesion and stiction. Gold is widely used for this purpose because of its good conductivity and chemical inertness, but is a soft metal, and the development of hard contact materials with low resistivity is of great interest for RF-MEMS switch reliability. It is possible to increase the contact hardness preserving the convenient gold properties alternating gold layers with thin layers of different metals. The material becomes harder not only by simple alloying but also by the presence of interfaces which act as barriers for mechanical dislocation migration. A detailed study of mechanical, electrical and morphological properties of gold-chromium, gold-platinum and gold-palladium multilayers is presented and discussed. It is found that the annealing treatments are important for tuning hardness values, and a careful choice of the alloying metal is essential when the material is inserted in a real switch fabrication cycle, because hardness improvements can vanish during oxygen plasma treatments usually involved in RF-switches fabrication. Platinum is the only metal tested that is unaffected by oxidation, and also modifies the chromium adhesion layer diffusion on the contact surface.
Wang, Yong-Lei; Golets, Mikhail; Li, Bin; Sarman, Sten; Laaksonen, Aatto
2017-02-08
Atomistic molecular dynamics simulations have been performed to study microscopic the interfacial ionic structures, molecular arrangements, and orientational preferences of trihexyltetradecylphosphonium-bis(mandelato)borate ([P 6,6,6,14 ][BMB]) ionic liquid confined between neutral and charged gold electrodes. It was found that both [P 6,6,6,14 ] cations and [BMB] anions are coabsorbed onto neutral electrodes at different temperatures. The hexyl and tetradecyl chains in [P 6,6,6,14 ] cations lie preferentially flat on neutral electrodes. The oxalato and phenyl rings in [BMB] anions are characterized by alternative parallel-perpendicular orientations in the mixed innermost ionic layer adjacent to neutral electrodes. An increase in temperature has a marginal effect on the interfacial ionic structures and molecular orientations of [P 6,6,6,14 ][BMB] ionic species in a confined environment. Electrifying gold electrodes leads to peculiar changes in the interfacial ionic structures and molecular orientational arrangements of [P 6,6,6,14 ] cations and [BMB] anions in negatively and positively charged gold electrodes, respectively. As surface charge density increases (but lower than 20 μC/cm 2 ), the layer thickness of the mixed innermost interfacial layer gradually increases due to a consecutive accumulation of [P 6,6,6,14 ] cations and [BMB] anions at negatively and positively charged electrodes, respectively, before the formation of distinct cationic and anionic innermost layers. Meanwhile, the molecular orientations of two oxalato rings in the same [BMB] anions change gradually from a parallel-perpendicular feature to being partially characterized by a tilted arrangement at an angle of 45° from the electrodes and finally to a dominant parallel coordination pattern along positively charged electrodes. Distinctive interfacial distribution patterns are also observed accordingly for phenyl rings that are directly connected to neighboring oxalato rings in [BMB] anions.
Westcott, Nathan P; Pulsipher, Abigail; Lamb, Brian M; Yousaf, Muhammad N
2008-09-02
An expedient and inexpensive method to generate patterned aldehydes on self-assembled monolayers (SAMs) of alkanethiolates on gold with control of density for subsequent chemoselective immobilization from commercially available starting materials has been developed. Utilizing microfluidic cassettes, primary alcohol oxidation of tetra(ethylene glycol) undecane thiol and 11-mercapto-1-undecanol SAMs was performed directly on the surface generating patterned aldehyde groups with pyridinium chlorochromate. The precise density of surface aldehydes generated can be controlled and characterized by electrochemistry. For biological applications, fibroblast cells were seeded on patterned surfaces presenting biospecifc cell adhesive (Arg-Glyc-Asp) RGD peptides.
Topography printing to locally control wettability.
Zheng, Zijian; Azzaroni, Omar; Zhou, Feng; Huck, Wilhelm T S
2006-06-21
This paper reports a new patterning method, which utilizes NaOH to facilitate the irreversible binding between the PDMS stamp and substrates and subsequent cohesive mechanical failure to transfer the PDMS patterns. Our method shows high substrate tolerance and can be used to "print" various PDMS geometries on a wide range of surfaces, including Si100, glass, gold, polymers, and patterned SU8 photoresist. Using this technique, we are able to locally change the wettability of substrate surfaces by printing well-defined PDMS architectures on the patterned SU8 photoresist. It is possible to generate differential wetting and dewetting properties in microchannels and in the PDMS printed area, respectively.
Guo, Limin; Ma, Lipo; Zhang, Yelong; Cheng, Xun; Xu, Ye; Wang, Jin; Wang, Erkang; Peng, Zhangquan
2016-11-08
Electroreduction of aryl diazonium salts on gold can produce organic films that are more robust than their analogous self-assembled monolayers formed from chemical adsorption of organic thiols on gold. However, whether the enhanced stability is due to the Au-C bond formation remains debated. In this work, we report the electroreduction of an aryl diazonium salt of 4,4'-disulfanediyldibenzenediazonium on gold forming a multilayer of Au-(Ar-S-S-Ar) n , which can be further degraded to a monolayer of Au-Ar-S - by electrochemical cleavage of the S-S moieties within the multilayer. By conducting an in situ surface-enhanced Raman spectroscopic study of both the multilayer formation/degradation and the monolayer reduction/oxidation processes, coupled to density functional theory calculations, we provide compelling evidence that an Au-C bond does form upon electroreduction of aryl diazonium salts on gold and that the enhanced stability of the electrografted organic films is due to the Au-C bond being intrinsically stronger than the Au-S bond for a given phenylthiolate compound by ca. 0.4 eV.
Sujitha, Mohanan V; Kannan, Soundarapandian
2013-02-01
This study reports the biological synthesis of gold nanoparticles by the reduction of HAuCl(4) by using citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) juice extract as the reducing and stabilizing agent. A various shape and size of gold nanoparticles were formed when the ratio of the reactants were altered with respect to 1.0mM chloroauric acid solution. The gold nanoparticles obtained were characterized by UV-visible spectra, transmission electron microscopy (TEM) and X-ray diffraction (XRD). TEM studies showed the particles to be of various shapes and sizes and particle size ranges from 15 to 80 nm. Selected-area electron diffraction (SAED) pattern confirmed fcc phase and crystallinity of the particles. The X-ray diffraction analysis revealed the distinctive facets (111, 200, 220 and 222 planes) of gold nanoparticles. Dynamic light scattering (DLS) studies revealed that the average size for colloid gp(3) of C. limon, C. reticulata and C. sinensis are 32.2 nm, 43.4 nm and 56.7 nm respectively. The DLS graph showed that the particles size was larger and more polydispersed compared to the one observed by TEM due to the fact that the measured size also includes the bio-organic compounds enveloping the core of the Au NPs. Zeta potential value for gold nanoparticles obtained from colloid gp(3) of C. limon, C. reticulata and C. sinensis are -45.9, -37.9 and -31.4 respectively indicating the stability of the synthesized nanoparticles. Herein we propose a novel, previously unexploited method for the biological syntheses of polymorphic gold nanoparticles with potent biological applications. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Brenes-Badilla, D.; Coutinho, D. J.; Amorim, D. R. B.; Faria, R. M.; Salvadori, M. C.
2018-04-01
In this work, we performed a study on the recovery of the photovoltaic performance of an ITO/PEDOT:PSS/P3HT:PCBM/Ca/Al solar cell after the hole transport layer (PEDOT:PSS) had been degraded by contact with the environment. A device that was fully built in an inert environment exhibited a fill factor (FF) of 0.64, while the device whose hole transport layer was exposed to air presented a FF equal to 0.2. In addition, the J-V characteristic curve of the degraded device did not follow the photovoltaic pattern exhibiting the degenerate S shape. However, the elimination of the deleterious effect was achieved by bombarding gold ions on the contaminated surface of PEDOT:PSS by means of the Metal Plasma Immersion Ion Implantation technique. Due to the low energy of the ionic beam of gold, the implanted gold atoms were located at few nanometers off the surface, forming nanometric clusters, that is, gold nanoparticles. Most probably, the degradation of the J-V photovoltaic curve, represented by the S-kink effect, was caused by the appearance of a potential barrier at PEDOT:PSS/P3HT:PCBM interface, which was demolished by the gold nanoparticles that have work function close to HOMO of P3HT. This S-kink effect was also simulated by using an equivalent circuit model constituted by a two-diode circuit, one of which plays the role of the undesirable potential barrier formed at the PEDOT:PSS/P3HT:PCBM interface. Our analysis shows that deposition of gold nanoparticles next to the interface recovers the good hole injection condition from the PEDOT:PSS into the active layer, restoring the fill factor and the device efficiency.
Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarycheva, Asia; Makaryan, Taron; Maleski, Kathleen
Here, noble metal (gold or silver) nanoparticles or patterned films are typically used as substrates for surface-enhanced Raman spectroscopy (SERS). Two-dimensional (2D) carbides and nitrides (MXenes) exhibit unique electronic and optical properties, including metallic conductivity and plasmon resonance in the visible or near-infrared range, making them promising candidates for a wide variety of applications. Herein, we show that 2D titanium carbide, Ti 3C 2T x, enhances Raman signal from organic dyes on a substrate and in solution. As a proof of concept, MXene SERS substrates were manufactured by spray-coating and used to detect several common dyes, with calculated enhancement factorsmore » reaching ~10 6. Titanium carbide MXene demonstrates SERS effect in aqueous colloidal solutions, suggesting the potential for biomedical or environmental applications, where MXene can selectively enhance positively charged molecules.« less
Conductometric Sensors for Monitoring Degradation of Automotive Engine Oil†
Latif, Usman; Dickert, Franz L.
2011-01-01
Conductometric sensors have been fabricated by applying imprinted polymers as receptors for monitoring engine oil quality. Titania and silica layers are synthesized via the sol-gel technique and used as recognition materials for acidic components present in used lubricating oil. Thin-film gold electrodes forming an interdigitated structure are used as transducers to measure the conductance of polymer coatings. Optimization of layer composition is carried out by varying the precursors, e.g., dimethylaminopropyltrimethoxysilane (DMAPTMS), and aminopropyl-triethoxysilane (APTES). Characterization of these sensitive materials is performed by testing against oil oxidation products, e.g., carbonic acids. The results depict that imprinted aminopropyltriethoxysilane (APTES) polymer is a promising candidate for detecting the age of used lubricating oil. In the next strategy, polyurethane-nanotubes composite as sensitive material is synthesized, producing appreciable differentiation pattern between fresh and used oils at elevated temperature with enhanced sensitivity. PMID:22164094
Nepal, Dhriti; Onses, M Serdar; Park, Kyoungweon; Jespersen, Michael; Thode, Christopher J; Nealey, Paul F; Vaia, Richard A
2012-06-26
The synergy of self- and directed-assembly processes and lithography provides intriguing avenues to fabricate translationally ordered nanoparticle arrangements, but currently lacks the robustness necessary to deliver complex spatial organization. Here, we demonstrate that interparticle spacing and local orientation of gold nanorods (AuNR) can be tuned by controlling the Debye length of AuNR in solution and the dimensions of a chemical contrast pattern. Electrostatic and hydrophobic selectivity for AuNR to absorb to patterned regions of poly(2-vinylpyridine) (P2VP) and polystyrene brushes and mats was demonstrated for AuNR functionalized with mercaptopropane sulfonate (MS) and poly(ethylene glycol), respectively. For P2VP patterns of stripes with widths comparable to the length of the AuNR, single- and double-column arrangements of AuNR oriented parallel and perpendicular to the P2VP line were obtained for MS-AuNR. Furthermore, the spacing of the assembled AuNR was uniform along the stripe and related to the ionic strength of the AuNR dispersion. The different AuNR arrangements are consistent with predictions based on maximization of packing of AuNR within the confined strip.
Highly patterned growth of SnO2 nanowires using a sub-atmospheric vapor-liquid-solid deposition
NASA Astrophysics Data System (ADS)
Akbari, M.; Mohajerzadeh, S.
2017-08-01
We report the realization of tin-oxide nanowires on patterned structures using a vapor-liquid-solid (VLS) process. While gold acts as the catalyst for the growth of wires, a tin-oxide containing sol-gel solution is spin coated on silicon substrate to act as the source for SnO vapor. The growth of tin-oxide nano-structures occurs mostly at the vicinity of the pre-deposited solution. By patterning the gold as the catalyst material, one is able to observe the growth at desired places. The growth of nanowires is highly dense within 100 µm away from such in situ source and their length is of the order of 5 µm. By further distancing from the source, the growth becomes more limited and nanowires become shorter and more sparsely distributed. The growth of nanowires has been studied using scanning and transmission electron microscopy tools while their composition has been investigated using XRD and EDS analyses. As a novel application, we have employed the grown nanowires as electron detection elements to measure the emitted electrons from electron sources. This configuration can be further used as electron detectors for scanning electron microscopes.
Controlling enhanced absorption in graphene metamaterial
NASA Astrophysics Data System (ADS)
Zhou, Qihui; Liu, Peiguo; Bian, Li-an; Liu, Hanqing; Liu, Chenxi; Chen, Genghui
2018-04-01
In this paper, a controllable terahertz (THz) metamaterial absorber (MA) is designed with the circuit analog method. Taking advantage of the patterned graphene on SiO2/doped Si/polyimide substrates with a gold reflector, the controllable MA achieves perfect absorption at 0.75 THz. The chemical potential of graphene is regulated by controlling the voltage between graphene and doped Si layers. As the chemical potential varies from 0 eV to 0.5 eV, the MA is changed from reflection (<0.37) to absorption (>0.99). The distributions of surface current and electric field are illustrated to analyze the resonant characteristic of patterned graphene. According to the resonant characteristic, we introduce patterned graphene elements with different dimension in a unit cell, which effectively extends the effective absorption bandwidth (absorption > 0 . 9) from 0.67-0.93 THz to 0.52-0.95 THz. Moreover, replacing part of the graphene structure with gold, the switchable MA is turned into a frequency tunable MA. The absorption peak moves from 0.62 THz to 0.92 THz as the chemical potential increases from 0.1 eV to 0.5 eV. These designs overcome limitation of traditional absorbers and exhibit great potentials in many practical applications.
Individual Template-Stripped Conductive Gold Pyramids for Tip-Enhanced Dielectrophoresis
2015-01-01
Gradient fields of optical, magnetic, or electrical origin are widely used for the manipulation of micro- and nanoscale objects. Among various device geometries to generate gradient forces, sharp metallic tips are one of the most effective. Surface roughness and asperities present on traditionally produced tips reduce trapping efficiencies and limit plasmonic applications. Template-stripped, noble metal surfaces and structures have sub-nm roughness and can overcome these limits. We have developed a process using a mix of conductive and dielectric epoxies to mount template-stripped gold pyramids on tungsten wires that can be integrated with a movable stage. When coupled with a transparent indium tin oxide (ITO) electrode, the conductive pyramidal tip functions as a movable three-dimensional dielectrophoretic trap which can be used to manipulate submicrometer-scale particles. We experimentally demonstrate the electrically conductive functionality of the pyramidal tip by dielectrophoretic manipulation of fluorescent beads and concentration of single-walled carbon nanotubes, detected with fluorescent microscopy and Raman spectroscopy. PMID:25541619
NASA Astrophysics Data System (ADS)
Matthews, James; Bastatas, Lyndon
2012-03-01
There is a direct relation between the survival of a patient diagnosed with prostate or breast cancer and the metastatic potential of the patient's cancer. It is therefore extremely important to prognose metastatic potentials. In this study we investigated whether the behaviors of cancer cells responding to our state of the art nano-patterns differ by the metastatic potential of the cancer cells. We have used lowly (LNCaP) and highly (CL-1) metastatic human prostate cancer cells and lowly (MCF-7) and highly (MB231) metastatic breast cancer cells. A surface functionalization study was then performed first on uniform gold and glass surfaces, then on gold nano-patterned surfaces made by nano-sphere lithography using nano-spheres in diameter of 200nm to 800nm. The gold surfaces were functionalized with fibronectin (FN) and confirmed through XPS analysis. The CL-1, MCF-7, and MB231 cells show similar proliferation on all surfaces regardless of the presence of FN, whereas LNCaP show a clear preference for FN coated surfaces. The proliferation of the LNCaP was reduced when grown on finer nano-scaffolds, but the more aggressive CL-1, MB231, and MCF-7 cells show an abnormal proliferation regardless of pattern size. The difference in adhesion is intrinsic and was verified through dual fluorescent imaging. Clear co-localization of actin-vinculin were found on CL-1, MCF-7, and MB231. However LNCaP cells showed the co-localization only on the tips of the cells. These results provide vital clues to the bio-mechanical differences between the cancer cells with different metastatic potential.
Smits, M J; Loots, C M; van Wijk, M P; Bredenoord, A J; Benninga, M A; Smout, A J P M
2015-05-01
Despite existing criteria for scoring gastro-esophageal reflux (GER) in esophageal multichannel pH-impedance measurement (pH-I) tracings, inter- and intra-rater variability is large and agreement with automated analysis is poor. To identify parameters of difficult to analyze pH-I patterns and combine these into a statistical model that can identify GER episodes with an international consensus as gold standard. Twenty-one experts from 10 countries were asked to mark GER presence for adult and pediatric pH-I patterns in an online pre-assessment. During a consensus meeting, experts voted on patterns not reaching majority consensus (>70% agreement). Agreement was calculated between raters, between consensus and individual raters, and between consensus and software generated automated analysis. With eight selected parameters, multiple logistic regression analysis was performed to describe an algorithm sensitive and specific for detection of GER. Majority consensus was reached for 35/79 episodes in the online pre-assessment (interrater κ = 0.332). Mean agreement between pre-assessment scores and final consensus was moderate (κ = 0.466). Combining eight pH-I parameters did not result in a statistically significant model able to identify presence of GER. Recognizing a pattern as retrograde is the best indicator of GER, with 100% sensitivity and 81% specificity with expert consensus as gold standard. Agreement between experts scoring difficult impedance patterns for presence or absence of GER is poor. Combining several characteristics into a statistical model did not improve diagnostic accuracy. Only the parameter 'retrograde propagation pattern' is an indicator of GER in difficult pH-I patterns. © 2015 John Wiley & Sons Ltd.
Investigation on micro-patterned gold-plated polymer substrate for a micro hydraulic actuator
NASA Astrophysics Data System (ADS)
Sundaresan, Vishnu Baba; Akle, Barbar; Leo, Donald J.
2006-03-01
Plants have the ability to develop large mechanical force from chemical energy available with bio-fuels. The energy released by the cleavage of a terminal phosphate ion during the hydrolysis of a bio-fuel assists the transport of ions and fluids in cellular homeostasis. Materials that develop pressure and hence strain similar to the response of plants to an external stimuli are classified as nastic materials. This new class of actuators use protein transporters as functional units to move species and result in deformation [Leo et al 2005 (Proceedings of IMECE - 06)]. The ion transporters are hydrocarbons which are formed across the cellular membranes. The membranes that house the ion transporters are aggregates of phospholipids rigidized by cytoskeleton. Reconstituting these nano-machines on a harder matrix is quintessential to build a functional device. Artificial phospholipid membranes or Biliayer lipid membranes (BLM) have poor structural integrity and do not adhere to most surfaces. Patterned arrays of pores made on Poly-propylene glycol-diacrylate (PPG-DA) substrate, a photo curable polymer was made available to us for initial design iterations for an actuator. Hydrophobicity of PPG-DA posed initial problems to support a BLM. We modified the surface of micropatterned PPG-DA membrane by gold plating it. The surface of the porous PPG-DA membranes was plated with gold (Au). A 10nm seeding layer of Au was sputtered on the surface of the membrane. Further gold was reduced onto the sputtered gold surface [Supriya et al(Langmuir 2004, 20, 8870-8876)] by suspending the samples in a solution of hydroxylamine and Hydrogen tetrachloroaurate(III) trihydrate [HAuCl4.3H2O]. This reduction process increased the thickness of the gold, enhanced its adhesion to the PPG-DA substrate and improved the shapes of the pores. This surface modification of PPG-DA helped us form stable BLM with 1-Palmitoyl-2-Oleoyl-sn-Glycero-3- [Phospho-L-Serine] (Sodium Salt) (POPS), 1-Palmitoyl-2-Oleoyl-sn-Glycero- 3-Phosphoethanolamine (POPE) lipids. The observed ionic resistance of the BLM remained stable and sustained 4 mm water column for the the four hours observation period. This article describes the procedure we adopted to modify the PPG-DA substrate, form a BLM and the procedure to quantify the stability of the BLM formed with -amine and -thiol head groups in the lipids.
Lehmann, Hauke; Willing, Svenja; Möller, Sandra; Volkmann, Mirjam; Klinke, Christian
2016-08-14
Metallic nanoparticles offer possibilities to build basic electric devices with new functionality and improved performance. Due to the small volume and the resulting low self-capacitance, each single nanoparticle exhibits a high charging energy. Thus, a Coulomb-energy gap emerges during transport experiments that can be shifted by electric fields, allowing for charge transport whenever energy levels of neighboring particles match. Hence, the state of the device changes sequentially between conducting and non-conducting instead of just one transition from conducting to pinch-off as in semiconductors. To exploit this behavior for field-effect transistors, it is necessary to use uniform nanoparticles in ordered arrays separated by well-defined tunnel barriers. In this work, CoPt nanoparticles with a narrow size distribution are synthesized by colloidal chemistry. These particles are deposited via the scalable Langmuir-Blodgett technique as ordered, homogeneous monolayers onto Si/SiO2 substrates with pre-patterned gold electrodes. The resulting nanoparticle arrays are limited to stripes of adjustable lengths and widths. In such a defined channel with a limited number of conduction paths the current can be controlled precisely by a gate voltage. Clearly pronounced Coulomb oscillations are observed up to temperatures of 150 K. Using such systems as field-effect transistors yields unprecedented oscillating current modulations with on/off-ratios of around 70%.
Assessing local instrument reliability and validity: a field-based example from northern Uganda.
Betancourt, Theresa S; Bass, Judith; Borisova, Ivelina; Neugebauer, Richard; Speelman, Liesbeth; Onyango, Grace; Bolton, Paul
2009-08-01
This paper presents an approach for evaluating the reliability and validity of mental health measures in non-Western field settings. We describe this approach using the example of our development of the Acholi psychosocial assessment instrument (APAI), which is designed to assess depression-like (two tam, par and kumu), anxiety-like (ma lwor) and conduct problems (kwo maraco) among war-affected adolescents in northern Uganda. To examine the criterion validity of this measure in the absence of a traditional gold standard, we derived local syndrome terms from qualitative data and used self reports of these syndromes by indigenous people as a reference point for determining caseness. Reliability was examined using standard test-retest and inter-rater methods. Each of the subscale scores for the depression-like syndromes exhibited strong internal reliability ranging from alpha = 0.84-0.87. Internal reliability was good for anxiety (0.70), conduct problems (0.83), and the pro-social attitudes and behaviors (0.70) subscales. Combined inter-rater reliability and test-retest reliability were good for most subscales except for the conduct problem scale and prosocial scales. The pattern of significant mean differences in the corresponding APAI problem scale score between self-reported cases vs. noncases on local syndrome terms was confirmed in the data for all of the three depression-like syndromes, but not for the anxiety-like syndrome ma lwor or the conduct problem kwo maraco.
Mediterranean diet and life expectancy; beyond olive oil, fruits and vegetables
Martinez-Gonzalez, Miguel A.; Martín-Calvo, Nerea
2018-01-01
Purpose to review the recent relevant evidence of the effects of the Mediterranean diet and lifestyle on health (2015 and first months of 2016). Recent findings Large observational prospective epidemiological studies with adequate control of confounding and two large randomized trials support the benefits of the Mediterranean dietary pattern to increase life expectancy, reduce the risk of major chronic disease, and improve quality of life and well-being. Recently, 19 new reports from large prospective studies showed –with nearly perfect consistency– strong benefits of the Mediterranean diet to reduce the risk of myocardial infarction, stroke, total mortality, heart failure and disability. Interestingly, two large and well-conducted cohorts reported significant cardiovascular benefits after using repeated measurements of diet during a long follow-up period. Besides, PREDIMED, the largest randomized trial with Mediterranean diet, recently reported benefits of this dietary pattern to prevent cognitive decline and breast cancer. Summary In the era of evidence-based medicine, the Mediterranean diet represents the gold standard in preventive medicine, probably due to the harmonic combination of many elements with antioxidant and antiinflammatory properties, which overwhelm any single nutrient or food item. The whole seems more important than the sum of its parts. PMID:27552476
Mediterranean diet and life expectancy; beyond olive oil, fruits, and vegetables.
Martinez-Gonzalez, Miguel A; Martin-Calvo, Nerea
2016-11-01
The recent relevant evidence of the effects of the Mediterranean diet (MedDiet) and lifestyle on health (2015 and first months of 2016). Large observational prospective epidemiological studies with adequate control of confounding and two large randomized trials support the benefits of the Mediterranean dietary pattern to increase life expectancy, reduce the risk of major chronic disease, and improve quality of life and well-being. Recently, 19 new studies from large prospective studies showed - with nearly perfect consistency - strong benefits of the MedDiet to reduce the risk of myocardial infarction, stroke, total mortality, heart failure, and disability. Interestingly, two large and well conducted cohorts reported significant cardiovascular benefits after using repeated measurements of diet during a long follow-up period. In addition, Prevención con Dieta Mediterránea, the largest randomized trial with MedDiet, recently reported benefits of this dietary pattern to prevent cognitive decline and breast cancer. In the era of evidence-based medicine, the MedDiet represents the gold standard in preventive medicine, probably because of the harmonic combination of many elements with antioxidant and anti-inflammatory properties, which overwhelm any single nutrient or food item. The whole seems more important than the sum of its parts.
Immobilization of magnetic nanoparticles onto conductive surfaces modified by diazonium chemistry.
Ktari, Nadia; Quinson, Jonathan; Teste, Bruno; Siaugue, Jean-Michel; Kanoufi, Frédéric; Combellas, Catherine
2012-08-28
Core-shell γ-Fe(2)O(3)@SiO(2) nanoparticles (NPs) substituted by PEG and NH(2) groups may be immobilized on metal surfaces (glassy carbon or gold) substituted by 4-carboxyphenyl groups through electrostatic interactions. Such immobilization is evidenced by (i) IRRAS owing to the Si-O band, (ii) SEM images, which show that the surface coverage by the NPs is nearly 100%, and (iii) the NPs film thickness measured by ellipsometry or AFM, which corresponds to about one NPs monolayer. Such NPs film is permeable to redox probes, which allows us to propose electrochemical methods based on direct or local measurements as a way to inspect the NPs assembly steps through their ability to alter mass and charge transfer. This process also applies to patterned polystyrene surfaces, and selective immobilization of NPs substituted by amino groups was carried out onto submillimeter patterns obtained by local oxidation. Biological applications are then expected for hyperthermia activation of the NPs to trigger cellular death. Finally, some tests were performed to further derivatize the immobilized NPs onto surfaces through either a covalent bond or electrostatic interactions. Future work will be dedicated to the recovery of such Janus NPs from the substrate surface.
2015-05-25
nanoparticles , Nature Nanotechnology 7, 197-203. 11. Dreaden, E. C., Alkilany, A. M., Huang, X. H., Murphy, C. J., and El-Sayed, M. A. (2012) The...13840-13851. 14. Llevot, A., and Astruc, D. (2012) Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer , Chem. Soc. Rev...caused by the injection of gold nanoparticles , Nanotechnology 21, 485102. 25. Dykman, L. A., Matora, L. Y., and Bogatyrev, V. A. (1996) Use of
A smart all-in-one device to measure vital signs in admitted patients
van Goor, Harry; van Acht, Maartje; van de Belt, Tom H.; Bredie, Sebastian J. H.
2018-01-01
Background Vital sign measurements in hospitalized patients by nurses are time consuming and prone to operational errors. The Checkme, a smart all-in-one device capable of measuring vital signs, could improve daily patient monitoring by reducing measurement time, inter-observer variability, and incorrect inputs in the Electronic Health Record (EHR). We evaluated the accuracy of self measurements by patient using the Checkme in comparison with gold standard and nurse measurements. Methods and findings This prospective comparative study was conducted at the Internal Medicine ward of an academic hospital in the Netherlands. Fifty non-critically ill patients were enrolled in the study. Time-related measurement sessions were conducted on consecutive patients in a randomized order: vital sign measurement in duplicate by a well-trained investigator (gold standard), a Checkme measurement by the patient, and a routine vital sign measurement by a nurse. In 41 patients (82%), initial calibration of the Checkme was successful and results were eligible for analysis. In total, 69 sessions were conducted for these 41 patients. The temperature results recorded by the patient with the Checkme differed significantly from the gold standard core temperature measurements (mean difference 0.1 ± 0.3). Obtained differences in vital signs and calculated Modified Early Warning Score (MEWS) were small and were in range with predefined accepted discrepancies. Conclusions Patient-calculated MEWS using the Checkme, nurse measurements, and gold standard measurements all correlated well, and the small differences observed between modalities would not have affected clinical decision making. Using the Checkme, patients in a general medical ward setting are able to measure their own vital signs easily and accurately by themselves. This could be time saving for nurses and prevent errors due to manually entering data in the EHR. PMID:29432461
A smart all-in-one device to measure vital signs in admitted patients.
Weenk, Mariska; van Goor, Harry; van Acht, Maartje; Engelen, Lucien Jlpg; van de Belt, Tom H; Bredie, Sebastian J H
2018-01-01
Vital sign measurements in hospitalized patients by nurses are time consuming and prone to operational errors. The Checkme, a smart all-in-one device capable of measuring vital signs, could improve daily patient monitoring by reducing measurement time, inter-observer variability, and incorrect inputs in the Electronic Health Record (EHR). We evaluated the accuracy of self measurements by patient using the Checkme in comparison with gold standard and nurse measurements. This prospective comparative study was conducted at the Internal Medicine ward of an academic hospital in the Netherlands. Fifty non-critically ill patients were enrolled in the study. Time-related measurement sessions were conducted on consecutive patients in a randomized order: vital sign measurement in duplicate by a well-trained investigator (gold standard), a Checkme measurement by the patient, and a routine vital sign measurement by a nurse. In 41 patients (82%), initial calibration of the Checkme was successful and results were eligible for analysis. In total, 69 sessions were conducted for these 41 patients. The temperature results recorded by the patient with the Checkme differed significantly from the gold standard core temperature measurements (mean difference 0.1 ± 0.3). Obtained differences in vital signs and calculated Modified Early Warning Score (MEWS) were small and were in range with predefined accepted discrepancies. Patient-calculated MEWS using the Checkme, nurse measurements, and gold standard measurements all correlated well, and the small differences observed between modalities would not have affected clinical decision making. Using the Checkme, patients in a general medical ward setting are able to measure their own vital signs easily and accurately by themselves. This could be time saving for nurses and prevent errors due to manually entering data in the EHR.
NASA Astrophysics Data System (ADS)
Gamyanin, G. N.; Vikent'eva, O. V.; Prokof'ev, V. Yu.; Bortnikov, N. S.
2015-11-01
The formation sequence of orebodies, chemical composition of gangue and ore minerals, fluid inclusions, REE patterns, 40Ar/39Ar isotopic age, and relationships of stable isotopes (C, O, S) in minerals of the Arkachan gold-bismuth-siderite-sulfide deposit have been studied. The deposit has been localized in the Kuranakh Anticlinorium of the Verkhoyansky Fold-Nappe Belt at the intersection of the near-meridional Kygyltas and the NE-trending North Tirekhtyakh faults. The orebodies are extended (>2 km) and steeply dipping zones of veins and veinlets are hosted in Carbonaceous and Permian sandstones and siltstones deformed in anticlines and cut through by dikes pertaining to diorite-granodiorite-granite association. The deposit was formed during hydrothermal-metamorphic, productive main gold, silver-polymetallic, and silver-antimony stages. The orebodies are largely composed of quartz and siderite; arsenopyrite, pyrite, and pyrrhotite are widespread; bismuthinite, chalcopyrite, sphalerite, galena, and bismuth sulfosalts (gustavite, cosalite, matildite) are less abundant. The REE patterns of carbonates and quartz are characterized by a negative Eu anomaly. Three types of fluid inclusions (FI) in quartz and carbonates are distinguished: (I) liquid H2O + CO2 ± CH4 + NaCl, (II) gaseous CO2 ± CH4, and (III) aqueous salt solutions. The homogenization temperature and salinity of FI I vary from 385 to 280°C and 18.8 to 26.2 wt % NaCl equiv, respectively, whereas in FI III these parameters vary from 261 to 324°C and 3.7 to 9.5 wt % NaCl equiv. The pressure is estimated at 1830 to 1060 bar. The δ18O of quartz II associated with siderite I, native gold, and sulfosalts changes from +13.6 to 16.3‰(SMOW); δ18O and δ13C of siderite I related to gold-ore stage vary from +13.6 to +17.7‰ (SMOW) and from-6.0 to-3.0 (PDB). A wide range of δ34S from-5.7 to 16.0‰ (CDT) has been obtained for sulfides. The isotopic 40Ar/39Ar age of muscovite is 101.9 ± 1.4 Ma. The isotopic compositions of C, O, and S in fluids and their REE patterns suggest that magmatic components are predominant. Metamorphic H2O, CO2, and occasionally CH4 are derived from the apical part of a hidden intrusion, whereas sulfur is delivered from country rocks as a result of heating.
NASA Astrophysics Data System (ADS)
Dikht, Nataliya I.; Bucharskaya, Alla B.; Maslyakova, Galina N.; Terentyuk, Georgy S.; Matveeva, Olga V.; Navolokin, Nikita A.; Khlebtsov, Boris N.; Khlebtsov, Nikolai G.
2015-03-01
In study the evaluation of the influence of gold nanorods on morphological indicators of red bone marrow and peripheral blood of rats with diabetes and transplanted liver tumor after intravenous administration of gold nanorods was conducted. We used gold nanorods with length 41 ± 8 nm and diameter of 10.2±2 nm, synthesized in the laboratory of nanobiotechnology IBPPM RAS (Saratov). After intravenous administration of gold nanorods the decrease of leukocytes, platelets and lymphocytes was observed in animals of control group in blood. It was marked the decrease of the number of mature cellular elements of the leukocyte germ in bone marrow - stab neutrophils and segmented leukocytes, and the increase of immature elements- metamyelocytes, indicating the activation of leukocyte germ after nanoparticle administration. The decrease of leukocyte amount was noted in blood and the increase of cellular elements of the leukocyte germ was revealed in bone marrow, indicating the activation of leukocyte germ in rats with alloxan diabetes and transplanted tumors. The changes of morphological indicators of blood and bone marrow testify about stimulation of myelocytic sprouts of hemopoiesis in bone marrow as a result of reduction of mature cells in peripheral blood after gold nanoparticle administration.
NASA Astrophysics Data System (ADS)
Avakyan, L. A.; Heinz, M.; Skidanenko, A. V.; Yablunovski, K. A.; Ihlemann, J.; Meinertz, J.; Patzig, C.; Dubiel, M.; Bugaev, L. A.
2018-01-01
The formation of a localized surface plasmon resonance (SPR) spectrum of randomly distributed gold nanoparticles in the surface layer of silicate float glass, generated and implanted by UV ArF-excimer laser irradiation of a thin gold layer sputter-coated on the glass surface, was studied by the T-matrix method, which enables particle agglomeration to be taken into account. The experimental technique used is promising for the production of submicron patterns of plasmonic nanoparticles (given by laser masks or gratings) without damage to the glass surface. Analysis of the applicability of the multi-spheres T-matrix (MSTM) method to the studied material was performed through calculations of SPR characteristics for differently arranged and structured gold nanoparticles (gold nanoparticles in solution, particles pairs, and core-shell silver-gold nanoparticles) for which either experimental data or results of the modeling by other methods are available. For the studied gold nanoparticles in glass, it was revealed that the theoretical description of their SPR spectrum requires consideration of the plasmon coupling between particles, which can be done effectively by MSTM calculations. The obtained statistical distributions over particle sizes and over interparticle distances demonstrated the saturation behavior with respect to the number of particles under consideration, which enabled us to determine the effective aggregate of particles, sufficient to form the SPR spectrum. The suggested technique for the fitting of an experimental SPR spectrum of gold nanoparticles in glass by varying the geometrical parameters of the particles aggregate in the recurring calculations of spectrum by MSTM method enabled us to determine statistical characteristics of the aggregate: the average distance between particles, average size, and size distribution of the particles. The fitting strategy of the SPR spectrum presented here can be applied to nanoparticles of any nature and in various substances, and, in principle, can be extended for particles with non-spherical shapes, like ellipsoids, rod-like and other T-matrix-solvable shapes.
Geo-Spatial Characterization of Soil Mercury and Arsenic at a High-Altitude Bolivian Gold Mine.
Johnson, Glen D; Pavilonis, Brian; Caravanos, Jack; Grassman, Jean
2018-02-01
Soil mercury concentrations at a typical small-scale mine site in the Bolivian Andes were elevated (28-737 mg/kg or ppm) in localized areas where mercury amalgams were either formed or vaporized to release gold, but was not detectable beyond approximately 10 m from its sources. Arsenic was measurable, exceeding known background levels throughout the mine site (77-137,022 ppm), and was also measurable through the local village of Ingenio (36-1803 ppm). Although arsenic levels were high at all surveyed locations, its spatial pattern followed mercury, being highest where mercury was high.
Gayduchenko, I A; Fedorov, G E; Moskotin, M V; Yagodkin, D I; Seliverstov, S V; Goltsman, G N; Yu Kuntsevich, A; Rybin, M G; Obraztsova, E D; Leiman, V G; Shur, M S; Otsuji, T; Ryzhii, V I
2018-06-15
We report on the sub-terahertz (THz) (129-450 GHz) photoresponse of devices based on single layer graphene and graphene nanoribbons with asymmetric source and drain (vanadium and gold) contacts. Vanadium forms a barrier at the graphene interface, while gold forms an Ohmic contact. We find that at low temperatures (77 K) the detector responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. Graphene nanoribbon devices display a similar pattern, albeit with a lower responsivity.
NASA Astrophysics Data System (ADS)
Gayduchenko, I. A.; Fedorov, G. E.; Moskotin, M. V.; Yagodkin, D. I.; Seliverstov, S. V.; Goltsman, G. N.; Kuntsevich, A. Yu; Rybin, M. G.; Obraztsova, E. D.; Leiman, V. G.; Shur, M. S.; Otsuji, T.; Ryzhii, V. I.
2018-06-01
We report on the sub-terahertz (THz) (129–450 GHz) photoresponse of devices based on single layer graphene and graphene nanoribbons with asymmetric source and drain (vanadium and gold) contacts. Vanadium forms a barrier at the graphene interface, while gold forms an Ohmic contact. We find that at low temperatures (77 K) the detector responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. Graphene nanoribbon devices display a similar pattern, albeit with a lower responsivity.
Periodically patterned structures for nanoplasmonic and biomedical applications
NASA Astrophysics Data System (ADS)
Peer, Akshit
Periodically patterned nanostructures have imparted profound impact on diverse scientific disciplines. In physics, chemistry, and materials science, artificially engineered photonic crystals have demonstrated an unprecedented ability to control the propagation of photons through light concentration and diffraction. The field of photonic crystals has led to many technical advances in fabricating periodically patterned nanostructures in dielectric/metallic materials and controlling the light-matter interactions at the nanoscale. In the field of biomaterials, it is of great interest to apply our knowledge base of photonic materials and explore how such periodically patterned structures control diverse biological functions by varying the available surface area, which is a key attribute for surface hydrophobicity, cell growth and drug delivery. Here we describe closely related scientific applications of large-scale periodically patterned polymers and metal nanostructures. The dissertation starts with nanoplasmonics for improving photovoltaic devices, where we design and optimize experimentally realizable light-trapping nanostructures using rigorous scattering matrix simulations for enhancing the performance of organic and perovskite solar cells. The use of periodically patterned plasmonic metal cathode in conjunction with polymer microlens array significantly improves the absorption in solar cells, providing new opportunities for photovoltaic device design. We further show the unprecedented ability of nanoplasmonics to concentrate light at the nanoscale by designing a large-area plasmonic nanocup array with frequency-selective optical transmission. The fabrication of nanostructure is achieved by coating non-uniform gold layer over a submicron periodic nanocup array imprinted on polystyrene using soft lithography. The gold nanocup array shows extraordinary optical transmission at a wavelength close to the structure period. The resonance wavelength for transmission can be tuned by changing the period of the gold nanocup array, which opens up new avenues in subwavelength optics for designing optoelectronic devices and biological sensors. We then demonstrate strong exciton-plasmon coupling between non-toxic CuInS2/ZnS quantum dots in solution and plasmonic gold nanocup array. The photoluminescence decay rate of quantum dots can be enhanced by more than an order of magnitude due to the high electric field intensity enhancement inside the plasmonic nanocup cavity. This solution based metal-nanocrystal coupled system has great promise for biological applications such as biosensing and biolabeling. Moving to the area of biomedical applications, we fabricate nanopatterned biopolymers as templates for controlling the release of therapeutic drugs coated on the polymer surface. From careful drug release experiments performed over extended time periods (e.g. eight days), we find that nanopatterned polymers release the drug slower as compared to the flat polymer surfaces. The slow-down in the drug release from nanopatterned surfaces is attributed to increase in the surface hydrophobicity confirmed by the contact angle measurements and microfluidic simulations. This nanoscale drug release control scheme has great promise for improving the performance of drug-eluting stents in cardiac therapies.
Microbial Activity Influences Electrical Conductivity of Biofilm Anode
This study assessed the conductivity of a Geobacter-enriched biofilm anode along with biofilm activity in a microbial electrochemical cell (MxC) equipped with two gold anodes (25 mM acetate medium), as different proton gradients were built throughout the biofilm. There was no pH ...
NASA Astrophysics Data System (ADS)
He, Zhaohan; Nees, John; Hou, Bixue; Krushelnick, Karl; Thomas, Alec; Beaurepaire, Benoît; Malka, Victor; Faure, Jérôme
2013-10-01
Femtosecond bunches of electrons with relativistic to ultra-relativistic energies can be robustly produced in laser plasma wakefield accelerators (LWFA). Scaling the electron energy down to sub-relativistic and MeV level using a millijoule laser system will make such electron source a promising candidate for ultrafast electron diffraction (UED) applications due to the intrinsic short bunch duration and perfect synchronization with the optical pump. Recent results of electron diffraction from a single crystal gold foil, using LWFA electrons driven by 8-mJ, 35-fs laser pulses at 500 Hz, will be presented. The accelerated electrons were collimated with a solenoid magnetic lens. By applying a small-angle tilt to the magnetic lens, the diffraction pattern can be streaked such that the temporal evolution is separated spatially on the detector screen after propagation. The observable time window and achievable temporal resolution are studied in pump-probe measurements of photo-induced heating on the gold foil.
Tug-of-war of microtubule filaments at the boundary of a kinesin- and dynein-patterned surface
NASA Astrophysics Data System (ADS)
Ikuta, Junya; Kamisetty, Nagendra K.; Shintaku, Hirofumi; Kotera, Hidetoshi; Kon, Takahide; Yokokawa, Ryuji
2014-06-01
Intracellular cargo is transported by multiple motor proteins. Because of the force balance of motors with mixed polarities, cargo moves bidirectionally to achieve biological functions. Here, we propose a microtubule gliding assay for a tug-of-war study of kinesin and dynein. A boundary of the two motor groups is created by photolithographically patterning gold to selectively attach kinesin to the glass and dynein to the gold surface using a self-assembled monolayer. The relationship between the ratio of two antagonistic motor numbers and the velocity is derived from a force-velocity relationship for each motor to calculate the detachment force and motor backward velocity. Although the tug-of-war involves >100 motors, values are calculated for a single molecule and reflect the collective dynein and non-collective kinesin functions when they work as a team. This assay would be useful for detailed in vitro analysis of intracellular motility, e.g., mitosis, where a large number of motors with mixed polarities are involved.
Tug-of-war of microtubule filaments at the boundary of a kinesin- and dynein-patterned surface
Ikuta, Junya; Kamisetty, Nagendra K.; Shintaku, Hirofumi; Kotera, Hidetoshi; Kon, Takahide; Yokokawa, Ryuji
2014-01-01
Intracellular cargo is transported by multiple motor proteins. Because of the force balance of motors with mixed polarities, cargo moves bidirectionally to achieve biological functions. Here, we propose a microtubule gliding assay for a tug-of-war study of kinesin and dynein. A boundary of the two motor groups is created by photolithographically patterning gold to selectively attach kinesin to the glass and dynein to the gold surface using a self-assembled monolayer. The relationship between the ratio of two antagonistic motor numbers and the velocity is derived from a force-velocity relationship for each motor to calculate the detachment force and motor backward velocity. Although the tug-of-war involves >100 motors, values are calculated for a single molecule and reflect the collective dynein and non-collective kinesin functions when they work as a team. This assay would be useful for detailed in vitro analysis of intracellular motility, e.g., mitosis, where a large number of motors with mixed polarities are involved. PMID:24923426
Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica
NASA Astrophysics Data System (ADS)
Sett, Arghya; Gadewar, Manoj; Sharma, Pragya; Deka, Manab; Bora, Utpal
2016-06-01
In this study, we report a novel method of gold nanoparticle (AuNP) synthesis using aqueous fruit extract of Dillenia indica. The phytochemicals present in the fruit extract act as an effective reducing and capping agent to synthesize AuNPs. The synthesized AuNPs were characterized by spectrophotometry, transmission electron microscopy (TEM), x-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. TEM studies revealed the particles of various sizes and mainly spherical in shape. Selected-area electron diffraction (SAED) patterns and high-resolution transmission electron microscopy (HRTEM) images confirmed the crystallinity of the particles. The XRD patterns showed peaks at (111), (200), (220) which exhibited preferential orientation of the AuNPs as face-centered cubic crystal. FTIR measurements confirmed the coating of phenolic compounds on the AuNPs indicating a possible role of biomolecules for the capping and efficient stabilization of the AuNPs. The synthesized AuNPs did not show any form of cytotoxicity in the normal fibroblast cell line L929.
Merely Measuring the UV-Visible Spectrum of Gold Nanoparticles Can Change Their Charge State.
Navarrete, Jose; Siefe, Chris; Alcantar, Samuel; Belt, Michael; Stucky, Galen D; Moskovits, Martin
2018-02-14
Metallic nanostructures exhibit a strong plasmon resonance at a wavelength whose value is sensitive to the charge density in the nanostructure, its size, shape, interparticle coupling, and the dielectric properties of its surrounding medium. Here we use UV-visible transmission and reflectance spectroscopy to track the shifts of the plasmon resonance in an array of gold nanoparticles buried under metal-oxide layers of varying thickness produced using atomic layer deposition (ALD) and then coated with bulk layers of one of three metals: aluminum, silver, or gold. A significant shift in the plasmon resonance was observed and a precise value of ω p , the plasmon frequency of the gold comprising the nanoparticles, was determined by modeling the composite of gold nanoparticles and metal-oxide layer as an optically homogeneous film of core-shell particles bounded by two substrates: one of quartz and the other being one of the aforementioned metals, then using a Maxwell-Garnett effective medium expression to extract ω p for the gold nanoparticles before and after coating with the bulk metals. Under illumination, the change in the charge density of the gold nanoparticles per particle determined from the change in the values of ω p is found to be some 50-fold greater than what traditional electrostatic contact electrification models compute based on the work function difference of the two conductive materials. Moreover, when using bulk gold as the capping layer, which should have resulted in a negligible charge exchange between the gold nanoparticles and the bulk gold, a significant charge transfer from the bulk gold layer to the nanoparticles was observed as with the other metals. We explain these observations in terms of the "plasmoelectric effect", recently described by Atwater and co-workers, in which the gold nanoparticles modify their charge density to allow their resonant wavelength to match that of the incident light, thereby achieving, a lower value of the chemical potential due to the entropy increase resulting from the conversion of the plasmon's energy to heat. We conclude that even the act of registering the spectrum of nanoparticles is at times sufficient to alter their charge densities and hence their UV-visible spectra.
Efficient thermoelectric device
NASA Technical Reports Server (NTRS)
Ila, Daryush (Inventor)
2010-01-01
A high efficiency thermo electric device comprising a multi nanolayer structure of alternating insulator and insulator/metal material that is irradiated across the plane of the layer structure with ionizing radiation. The ionizing radiation produces nanocrystals in the layered structure that increase the electrical conductivity and decrease the thermal conductivity thereby increasing the thermoelectric figure of merit. Figures of merit as high as 2.5 have been achieved using layers of co-deposited gold and silicon dioxide interspersed with layers of silicon dioxide. The gold to silicon dioxide ratio was 0.04. 5 MeV silicon ions were used to irradiate the structure. Other metals and insulators may be substituted. Other ionizing radiation sources may be used. The structure tolerates a wide range of metal to insulator ratio.
Nanoscale patterning of gold-coated optical fibers for improved plasmonic sensing
NASA Astrophysics Data System (ADS)
Antohe, Iulia; Spasic, Dragana; Delport, Filip; Li, Jiaqi; Lammertyn, Jeroen
2017-05-01
Merging surface plasmon resonance (SPR) to fiber optic (FO) technology has brought remarkable achievements in the field by offering attractive advantages over the conventional prism-based SPR platforms, such as simplicity, cost-effectiveness and miniaturization. However, the performance of the existing FO-SPR instruments mainly depends on the device surface condition and in particular on the structural aspect of the thin gold (Au) plasmonic film deposited on the FO substrate. In this work, a simple cost-effective colloidal lithography technique (CLT) was adapted and applied for the first time to the micrometer-sized FO substrate, to design end reflection-type FO-SPR sensors with periodic arrays of Au triangularly-shaped nanostructures on the Au mirror FO tip distal end. The nanopatterned FO-SPR sensor tips were afterwards subjected to refractometric measurements in a sucrose dilution series and subsequently compared with their non-patterned counterparts. It was observed that the spectral dips of the nanopatterned FO-SPR sensor tips were shifted towards longer wavelengths after CLT patterning. Moreover, the sensor sensitivity was improved with up to 25% compared to the conventional non-patterned FO-SPR devices. The obtained results represent important steps in the development of a new generation of FO-SPR sensors with improved performance, which can ultimately be used in various applications, ranging from food analysis and environmental monitoring, to health control and medical diagnosis.
Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes.
Barik, Avijit; Chen, Xiaoshu; Oh, Sang-Hyun
2016-10-12
We demonstrate nanogap electrodes for rapid, parallel, and ultralow-power trapping of nanoparticles. Our device pushes the limit of dielectrophoresis by shrinking the separation between gold electrodes to sub-10 nm, thereby creating strong trapping forces at biases as low as the 100 mV ranges. Using high-throughput atomic layer lithography, we manufacture sub-10 nm gaps between 0.8 mm long gold electrodes and pattern them into individually addressable parallel electronic traps. Unlike pointlike junctions made by electron-beam lithography or larger micron-gap electrodes that are used for conventional dielectrophoresis, our sub-10 nm gold nanogap electrodes provide strong trapping forces over a mm-scale trapping zone. Importantly, our technology solves the key challenges associated with traditional dielectrophoresis experiments, such as high voltages that cause heat generation, bubble formation, and unwanted electrochemical reactions. The strongly enhanced fields around the nanogap induce particle-transport speed exceeding 10 μm/s and enable the trapping of 30 nm polystyrene nanoparticles using an ultralow bias of 200 mV. We also demonstrate rapid electronic trapping of quantum dots and nanodiamond particles on arrays of parallel traps. Our sub-10 nm gold nanogap electrodes can be combined with plasmonic sensors or nanophotonic circuitry, and their low-power electronic operation can potentially enable high-density integration on a chip as well as portable biosensing.
Stabilized gold nanoparticles by laser ablation in ferric chloride solutions
NASA Astrophysics Data System (ADS)
Nouraddini, M. I.; Ranjbar, M.; Dobson, P. J.; Farrokhpour, H.; Johnston, C.; Jurkschat, K.
2017-12-01
In this study, laser ablation of gold was performed in different ferric chloride solutions and water as a reference. The ferric chloride solutions included hexachloro iron(III) and aquachloro iron(III) having low and high hydrolysis degree. Transmission electron microscope (TEM) images showed spherical gold nanoparticles (GNPs) in water, particles which are strongly agglomerated with intimate contact at their interfaces in hexachloro iron(III) and individual separated particles with a halo of an iron component in aquachloro iron(III). In addition, no combination of Au and Fe was found in HAADF analysis or X-ray diffraction (XRD) patterns. In optical investigations, it was observed that gold nanoparticles made in hexachloro iron(III) solutions have localized surface plasmon resonance (LSPR) peaks broader than in the case of water that are quenched after a few hours, while ablation in the aquachloro iron(III) solution provides narrow LSPR absorption with a long-term stability. According to X-ray photoelectron spectroscopy (XPS) there are metallic Au and Fe2+ states in the drop-casted samples. By comparison of cyclic voltammetry of solutions before and after laser ablation, strong agglomeration in hexachloro iron(III) was attributed to the reducing role of iron(III) creating an unstable gold surface in the chloride solution. In aquachloro iron(III), however, the observed stability was attributed to the formation of the halo of an iron compound around the particles.
Digital Plasmonic Patterning for Localized Tuning of Hydrogel Stiffness.
Hribar, Kolin C; Choi, Yu Suk; Ondeck, Matthew; Engler, Adam J; Chen, Shaochen
2014-08-20
The mechanical properties of the extracellular matrix (ECM) can dictate cell fate in biological systems. In tissue engineering, varying the stiffness of hydrogels-water-swollen polymeric networks that act as ECM substrates-has previously been demonstrated to control cell migration, proliferation, and differentiation. Here, "digital plasmonic patterning" (DPP) is developed to mechanically alter a hydrogel encapsulated with gold nanorods using a near-infrared laser, according to a digital (computer-generated) pattern. DPP can provide orders of magnitude changes in stiffness, and can be tuned by laser intensity and speed of writing. In vitro cellular experiments using A7R5 smooth muscle cells confirm cell migration and alignment according to these patterns, making DPP a useful technique for mechanically patterning hydrogels for various biomedical applications.
Land Use Change Driven by Gold Mining; Peruvian Amazon
NASA Astrophysics Data System (ADS)
Swenson, J. J.; Carter, C. E.; domec, J.; Delgado, C. I.
2011-12-01
Many factors such as poverty, ineffective institutions and environmental regulations may prevent developing countries from managing how natural resources are extracted to meet a strong market demand. Extraction for some resources has reached such proportions that evidence is measurable from space. We present recent evidence of the global demand for a single commodity and the ecosystem destruction resulting from commodity extraction, recorded by satellites for one of the most biodiverse areas of the world. We find that since 2003, recent mining deforestation in Madre de Dios, Peru is increasing nonlinearly alongside a constant annual rate of increase in international gold price (~18%/yr). We detect that the new pattern of mining deforestation (1915 ha/year, 2006-2009) is outpacing that of nearby settlement deforestation. We show that gold price is linked with exponential increases in Peruvian national mercury imports over time (R2 = 0.93, p = 0.04, 2003- 2009). Given the past rates of increase we predict that mercury imports may more than double for 2011 (~500 t/year). Virtually all of Peru's mercury imports are used in artisanal gold mining. Much of the mining increase is unregulated/ artisanal in nature, lacking environmental impact analysis or miner education. As a result, large quantities of mercury are being released into the atmosphere, sediments and waterways. Other developing countries endowed with gold deposits are likely experiencing similar environmental destruction in response to recent record high gold prices. The increasing availability of satellite imagery ought to evoke further studies linking economic variables with land use and cover changes on the ground.
Gold mining in the Peruvian Amazon: global prices, deforestation, and mercury imports.
Swenson, Jennifer J; Carter, Catherine E; Domec, Jean-Christophe; Delgado, Cesar I
2011-04-19
Many factors such as poverty, ineffective institutions and environmental regulations may prevent developing countries from managing how natural resources are extracted to meet a strong market demand. Extraction for some resources has reached such proportions that evidence is measurable from space. We present recent evidence of the global demand for a single commodity and the ecosystem destruction resulting from commodity extraction, recorded by satellites for one of the most biodiverse areas of the world. We find that since 2003, recent mining deforestation in Madre de Dios, Peru is increasing nonlinearly alongside a constant annual rate of increase in international gold price (∼18%/yr). We detect that the new pattern of mining deforestation (1915 ha/year, 2006-2009) is outpacing that of nearby settlement deforestation. We show that gold price is linked with exponential increases in Peruvian national mercury imports over time (R(2) = 0.93, p = 0.04, 2003-2009). Given the past rates of increase we predict that mercury imports may more than double for 2011 (∼500 t/year). Virtually all of Peru's mercury imports are used in artisanal gold mining. Much of the mining increase is unregulated/artisanal in nature, lacking environmental impact analysis or miner education. As a result, large quantities of mercury are being released into the atmosphere, sediments and waterways. Other developing countries endowed with gold deposits are likely experiencing similar environmental destruction in response to recent record high gold prices. The increasing availability of satellite imagery ought to evoke further studies linking economic variables with land use and cover changes on the ground.
Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi
2014-01-01
Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30–100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects of gold nanoparticles with ionizing radiation. PMID:24899803
Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi
2014-01-01
Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30-100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects of gold nanoparticles with ionizing radiation.
Enhancement of gold recovery using bioleaching from gold concentrate
NASA Astrophysics Data System (ADS)
Choi, S. H.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.
2012-04-01
The gold in refractory ores is encapsulated as fine particles (sometimes at a molecular level) in the crystal structure of the sulfide (typically pyrite with or without arsenopyrite) matrix. This makes it impossible to extract a significant amount of refractory gold by cyanidation since the cyanide solution cannot penetrate the pyrite/arsenopyrite crystals and dissolve gold particles, even after fine grinding. To effectively extract gold from these ores, an oxidative pretreatment is necessary to break down the sulfide matrix. The most popular methods of pretreatment include nitric acid oxidation, roasting, pressure oxidation and biological oxidation by microorganisms. This study investigated the bioleaching efficiency of Au concentrate under batch experimental conditions (adaptation cycles and chemical composition adaptation) using the indigenous acidophilic bacteria collected from gold mine leachate in Sunsin gold mine, Korea. We conducted the batch experiments at two different chemical composition (CuSO4 and ZnSO4), two different adaptation cycles 1'st (3 weeks) and 2'nd (6 weeks). The results showed that the pH in the bacteria inoculating sample decreased than initial condition and Eh increased. In the chemical composition adaptation case, the leached accumulation content of Fe and Pb was exhibited in CuSO4 adaptation bacteria sample more than in ZnSO4 adaptation bacteria samples, possibly due to pre-adaptation effect on chalcopyrite (CuFeS2) in gold concentrate. And after 21 days on the CuSO4 adaptation cycles case, content of Fe and Pb was appeared at 1'st adaptation bacteria sample(Fe - 1.82 and Pb - 25.81 times per control sample) lower than at 2'nd adaptation bacteria sample(Fe - 2.87 and Pb - 62.05 times per control sample). This study indicates that adaptation chemical composition and adaptation cycles can play an important role in bioleaching of gold concentrate in eco-/economic metallurgy process.
Mazloum-Ardakani, Mohammad; Barazesh, Behnaz; Khoshroo, Alireza; Moshtaghiun, Mohammad; Sheikhha, Mohammad Hasan
2018-06-01
In this work we report the synthesis of a stable composite with excellent electrical properties, on the surface of a biosensor. Conductive polymers offer both high electrical conductivity and mechanical strength. Many reports have focused on synthesizing conductive polymers with the aid of high-cost enzymes. In the current work we introduce a novel electrochemical, one-step, facile and cost effective procedure for synthesizing poly (catechol), without using expensive enzymes. The poly (catechol) conductivity was enhanced by modification with graphene sheets and biosynthesized gold nanoparticles. Four different robust methods, DPV, EIS, CV and chronoamperometry, were used to monitor the biosensor modifications. The peak currents of the catechol (an electroactive probe) were linearly related to the logarithm of the concentrations of target DNA in the range 100.0 μM to 10.0 pM, with a detection limit of 1.0 pM for the DNA strand. The current work investigates a new, stable composite consisting of conductive polymers and nanoparticles, which was applied to the detection of acute lymphoblastic leukemia. Copyright © 2018 Elsevier B.V. All rights reserved.
Rodríguez-Fanjul, Vanessa; López-Torres, Elena; Mendiola, M Antonia; Pizarro, Ana María
2018-03-25
Gold(III) compounds have received increasing attention in cancer research. Three gold complexes of general formula [Au III L]Cl, where L is benzil bis(thiosemicarbazonate), compound 1, benzil bis(4-methyl-3-thiosemicarbazonate), compound 2, or benzil bis(4-cyclohexyl-3-thiosemicarbazonate), compound 3, have been synthesized and fully characterized, including the X-ray crystal structure of compound 3, confirming square-planar geometry around the gold(III) centre. Compound 1 showed moderate cytotoxicity and accumulation in MCF7 breast cancer cells but did not inhibit thioredoxin reductase (TrxR) activity and did not induce reactive oxygen species (ROS) production. Compound 2, the least cytotoxic, was found to be capable of modestly inhibiting TrxR activity and produced low levels of ROS in the MCF7 cell line. The most cytotoxic compound, 3, had the highest cellular accumulation and its distribution pattern showed a clear preference for the cytosol and mitochondria of MCF7 cells. It readily hampered intracellular TrxR activity leading to a dramatic alteration of the cellular redox state and to the induction of cell death. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Grimes, David J.; Earhart, Robert L.; de Carvalho, Delfim; Oliveira, Vitor; Oliveira, Jose T.; Castro, Paulo
1998-01-01
This report describes geochemical and geological studies which were conducted by the U.S. Geological Survey (USGS) and the Servicos Geologicos de Portugal (SPG) in the Portuguese pyrite belt (PPB) in southern Portugal. The studies included rare earth element (REE) distributions and geological and geochemical controls on the distribution of gold. Rare earth element distributions were determined in representative samples of the volcanic rocks from five west-trending sub-belts of the PPB in order to test the usefulness of REE as a tool for the correlation of volcanic events, and to determine their mobility and application as hydrothermal tracers. REE distributions in felsic volcanic rocks show increases in the relative abundances of heavy REE and a decrease in La/Yb ratios from north to south in the Portuguese pyrite belt. Anomalous amounts of gold are distributed in and near massive and disseminated sulfide deposits in the PPB. Gold is closely associated with copper in the middle and lower parts of the deposits. Weakly anomalous concentrations of gold were noted in exhalative sedimentary rocks that are stratigraphically above massive sulfide deposits in a distal manganiferous facies, whereas anomalously low concentrations were detected in the barite-rich, proximal-facies exhalites. Altered and pyritic felsic volcanic rocks locally contain highly anomalous concentrations of gold, suggesting that disseminated sulfide deposits and the non-ore parts of massive sulfide deposits should be evaluated for their gold potential.
Electrochemical method of controlling thiolate coverage on a conductive substrate such as gold
NASA Technical Reports Server (NTRS)
Porter, Marc D. (Inventor); Weisshaar, Duane E. (Inventor)
1998-01-01
An electrochemical method for forming a partial monomolecular layer of a predetermined extent of coverage of a thiolate of the formula, XRS--, therein R can be a linear or branched chain hydrocarbon or an aromatic or the like and X can be any compatible end group, e.g., OH, COOH, CH.sub.3 or the like, upon a substrate such as gold, which involves applying in an electrochemical system a constant voltage preselected to yield the desired predetermined extent of coverage.
Electrochemical method of controlling thiolate coverage on a conductive substrate such as gold
Porter, Marc D.; Weisshaar, Duane E.
1998-10-27
An electrochemical method for forming a partial monomolecular layer of a predetermined extent of coverage of a thiolate of the formula, XRS--, therein R can be a linear or branched chain hydrocarbon or an aromatic or the like and X can be any compatible end group, e.g., OH, COOH, CH.sub.3 or the like, upon a substrate such as gold, which involves applying in an electrochemical system a constant voltage preselected to yield the desired predetermined extent of coverage.
Electrochemical method of controlling thiolate coverage on a conductive substrate such as gold
Porter, Marc D.; Weisshaar, Duane E.
1997-06-03
An electrochemical method for forming a partial monomolecular layer of a predetermined extent of coverage of a thiolate of the formula, XRS.sup.-, wherein R can be a linear or branched chain hydrocarbon or an aromatic or the like and X can be any compatible end group, e.g., OH, COOH, CH.sub.3 or the like, upon a substrate such as gold, which involves applying in an electrochemical system a constant voltage preselected to yield the desired predetermined extent of coverage.
Electrochemical Corrosion of Stainless Steel in Thiosulfate Solutions Relevant to Gold Leaching
NASA Astrophysics Data System (ADS)
Choudhary, Lokesh; Wang, Wei; Alfantazi, Akram
2016-01-01
This study aims to characterize the electrochemical corrosion behavior of stainless steel in the ammoniacal thiosulfate gold leaching solutions. Electrochemical corrosion response was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy, while the semi-conductive properties and the chemical composition of the surface film were characterized using Mott-Schottky analysis and X-ray photoelectron spectroscopy, respectively. The morphology of the corroded specimens was analyzed using scanning electron microscopy. The stainless steel 316L showed no signs of pitting in the ammoniacal thiosulfate solutions.
Surface Enhanced Raman Scattering Monitoring of Chain Alignment in Freely Suspended Nanomembranes
NASA Astrophysics Data System (ADS)
Jiang, Chaoyang; Lio, Wilber Y.; Tsukruk, Vladimir V.
2005-09-01
The molecular chain reorganization in freely standing membranes with encapsulated gold nanoparticles was studied with surface enhanced Raman scattering (SERS) in the course of their elastic deformations. The efficient SERS was enabled by optimizing the design of gold nanoparticle forming chainlike aggregates, thus creating an exceptional ability to conduct in situ monitoring. Small deformations resulted in the radial orientation of side phenyl rings of polymer backbones while larger deflections led to the polymer chains bridging adjacent nanoparticles within one-dimensional aggregates.
Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser
Hribar, Kolin C.; Meggs, Kyle; Liu, Justin; Zhu, Wei; Qu, Xin; Chen, Shaochen
2015-01-01
We report a methodology for three-dimensional (3D) cell patterning in a hydrogel in situ. Gold nanorods within a cell-encapsulating collagen hydrogel absorb a focused near-infrared femtosecond laser beam, locally denaturing the collagen and forming channels, into which cells migrate, proliferate, and align in 3D. Importantly, pattern resolution is tunable based on writing speed and laser power, and high cell viability (>90%) is achieved using higher writing speeds and lower laser intensities. Overall, this patterning technique presents a flexible direct-write method that is applicable in tissue engineering systems where 3D alignment is critical (such as vascular, neural, cardiac, and muscle tissue). PMID:26603915
Effect of nanoscale size and medium on metal work function in oleylamine-capped gold nanocrystals
NASA Astrophysics Data System (ADS)
Abdellatif, M. H.; Ghosh, S.; Liakos, I.; Scarpellini, A.; Marras, S.; Diaspro, A.; Salerno, M.
2016-02-01
The work function is an important material property with several applications in photonics and optoelectronics. We aimed to characterize the work function of clusters resulting from gold nanocrystals capped with oleylamine surfactant and drop-casted onto gold substrate. We used scanning Kelvin probe microscopy to investigate the work function, and complemented our study mainly with X-ray diffraction and X-ray photoelectron spectroscopy. The oleylamine works as an electron blocking layer through which the electrical conduction takes place by tunneling effect. The surface potential appears to depend on the size of the clusters, which can be ascribed to their difference in effective work function with the substrate. The charge state of gold clusters is discussed in comparison with theory, and their capacitance is calculated from a semi-analytical equation. The results suggest that at the nanoscale the work function is not an intrinsic property of a material but rather depends on the size and morphology of the clusters, including also effects of the surrounding materials.
Bipolar resistive switching of single gold-in-Ga2O3 nanowire.
Hsu, Chia-Wei; Chou, Li-Jen
2012-08-08
We have fabricated single nanowire chips on gold-in-Ga(2)O(3) core-shell nanowires using the electron-beam lithography techniques and realized bipolar resistive switching characteristics having invariable set and reset voltages. We attribute the unique property of invariance to the built-in conduction path of gold core. This invariance allows us to fabricate many resistive switching cells with the same operating voltage by simple depositing repetitive metal electrodes along a single nanowire. Other characteristics of these core-shell resistive switching nanowires include comparable driving electric field with other thin film and nanowire devices and a remarkable on/off ratio more than 3 orders of magnitude at a low driving voltage of 2 V. A smaller but still impressive on/off ratio of 10 can be obtained at an even lower bias of 0.2 V. These characteristics of gold-in-Ga(2)O(3) core-shell nanowires make fabrication of future high-density resistive memory devices possible.
Mok, Pooi Ling; Leow, Sue Ngein; Koh, Avin Ee-Hwan; Mohd Nizam, Hairul Harun; Ding, Suet Lee Shirley; Luu, Chi; Ruhaslizan, Raduan; Wong, Hon Seng; Halim, Wan Haslina Wan Abdul; Ng, Min Hwei; Idrus, Ruszymah Binti Hj; Chowdhury, Shiplu Roy; Bastion, Catherine Mae-Lynn; Subbiah, Suresh Kumar; Higuchi, Akon; Alarfaj, Abdullah A; Then, Kong Yong
2017-02-08
Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases.
Mok, Pooi Ling; Leow, Sue Ngein; Koh, Avin Ee-Hwan; Mohd Nizam, Hairul Harun; Ding, Suet Lee Shirley; Luu, Chi; Ruhaslizan, Raduan; Wong, Hon Seng; Halim, Wan Haslina Wan Abdul; Ng, Min Hwei; Idrus, Ruszymah Binti Hj.; Chowdhury, Shiplu Roy; Bastion, Catherine Mae-Lynn; Subbiah, Suresh Kumar; Higuchi, Akon; Alarfaj, Abdullah A.; Then, Kong Yong
2017-01-01
Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases. PMID:28208719
Kamalakar, M Venkata; Prendergast, Úna; Kübel, Christian; Lemma, Tibebe; Dayen, Jean-François
2014-01-01
Summary We prepare and investigate two-dimensional (2D) single-layer arrays and multilayered networks of gold nanoparticles derivatized with conjugated hetero-aromatic molecules, i.e., S-(4-{[2,6-bipyrazol-1-yl)pyrid-4-yl]ethynyl}phenyl)thiolate (herein S-BPP), as capping ligands. These structures are fabricated by a combination of self-assembly and microcontact printing techniques, and are characterized by electron microscopy, UV–visible spectroscopy and Raman spectroscopy. Selective binding of the S-BPP molecules to the gold nanoparticles through Au–S bonds is found, with no evidence for the formation of N–Au bonds between the pyridine or pyrazole groups of BPP and the gold surface. Subtle, but significant shifts with temperature of specific Raman S-BPP modes are also observed. We attribute these to dynamic changes in the orientation and/or increased mobility of the molecules on the gold nanoparticle facets. As for their conductance, the temperature-dependence for S-BPP networks differs significantly from standard alkanethiol-capped networks, especially above 220 K. Relating the latter two observations, we propose that dynamic changes in the molecular layers effectively lower the molecular tunnel barrier for BPP-based arrays at higher temperatures. PMID:25383278
Devid, Edwin J; Martinho, Paulo N; Kamalakar, M Venkata; Prendergast, Úna; Kübel, Christian; Lemma, Tibebe; Dayen, Jean-François; Keyes, Tia E; Doudin, Bernard; Ruben, Mario; van der Molen, Sense Jan
2014-01-01
We prepare and investigate two-dimensional (2D) single-layer arrays and multilayered networks of gold nanoparticles derivatized with conjugated hetero-aromatic molecules, i.e., S-(4-{[2,6-bipyrazol-1-yl)pyrid-4-yl]ethynyl}phenyl)thiolate (herein S-BPP), as capping ligands. These structures are fabricated by a combination of self-assembly and microcontact printing techniques, and are characterized by electron microscopy, UV-visible spectroscopy and Raman spectroscopy. Selective binding of the S-BPP molecules to the gold nanoparticles through Au-S bonds is found, with no evidence for the formation of N-Au bonds between the pyridine or pyrazole groups of BPP and the gold surface. Subtle, but significant shifts with temperature of specific Raman S-BPP modes are also observed. We attribute these to dynamic changes in the orientation and/or increased mobility of the molecules on the gold nanoparticle facets. As for their conductance, the temperature-dependence for S-BPP networks differs significantly from standard alkanethiol-capped networks, especially above 220 K. Relating the latter two observations, we propose that dynamic changes in the molecular layers effectively lower the molecular tunnel barrier for BPP-based arrays at higher temperatures.
Boonwaat, Leng; Moore, Terry; Chavada, Ruchir; Conaty, Stephen
2015-01-01
Introduction Staphylococcus aureus is a common cause of staphylococcal food poisoning in Australia with several outbreaks associated with foods prepared by commercial caterers. Laboratory testing on cases of gastrointestinal illness caused by enterotoxin-producing S. aureus is not routinely done as this condition is self-limiting. Hence outbreaks of such illness may go undetected. Methods A retrospective cohort study was conducted among a group of tourists who were hospitalized in Sydney shortly after flying from Queensland. The group had consumed food prepared by a restaurant on the Gold Coast before transit. Laboratory analyses on stool specimens were conducted in Sydney. An environmental assessment of the restaurant in the Gold Coast was conducted, and environmental specimens were assessed for contamination. Results Epidemiological investigations linked the outbreak to a restaurant in the Gold Coast where the suspected food was produced. Stool samples from two of the hospitalized cases were confirmed to have enterotoxin-producing S. aureus, and several environmental samples were found to be contaminated with S. aureus as well. Investigations suggested that absence of hand washing and other unhygienic food handling at the implicated restaurant was the likely cause of this outbreak. Conclusion Food poisoning due to toxin-mediated S. aureus is frequently undetected and underreported. Public health units should consider toxin-producing pathogens such as S. aureus when investigating outbreaks where vomiting is the predominant symptom and occurs rapidly after consuming food. PMID:26306211
Mapping Partners Master Drug Dictionary to RxNorm using an NLP-based approach.
Zhou, Li; Plasek, Joseph M; Mahoney, Lisa M; Chang, Frank Y; DiMaggio, Dana; Rocha, Roberto A
2012-08-01
To develop an automated method based on natural language processing (NLP) to facilitate the creation and maintenance of a mapping between RxNorm and a local medication terminology for interoperability and meaningful use purposes. We mapped 5961 terms from Partners Master Drug Dictionary (MDD) and 99 of the top prescribed medications to RxNorm. The mapping was conducted at both term and concept levels using an NLP tool, called MTERMS, followed by a manual review conducted by domain experts who created a gold standard mapping. The gold standard was used to assess the overall mapping between MDD and RxNorm and evaluate the performance of MTERMS. Overall, 74.7% of MDD terms and 82.8% of the top 99 terms had an exact semantic match to RxNorm. Compared to the gold standard, MTERMS achieved a precision of 99.8% and a recall of 73.9% when mapping all MDD terms, and a precision of 100% and a recall of 72.6% when mapping the top prescribed medications. The challenges and gaps in mapping MDD to RxNorm are mainly due to unique user or application requirements for representing drug concepts and the different modeling approaches inherent in the two terminologies. An automated approach based on NLP followed by human expert review is an efficient and feasible way for conducting dynamic mapping. Copyright © 2011 Elsevier Inc. All rights reserved.
Local terahertz field enhancement for time-resolved x-ray diffraction
Kozina, M.; Pancaldi, M.; Bernhard, C.; ...
2017-02-20
We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.
Local terahertz field enhancement for time-resolved x-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozina, M.; Pancaldi, M.; Bernhard, C.
We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.
Rodríguez-Villamizar, Laura Andrea; Jaimes, Diana Carolina; Manquián-Tejos, Adelaida; Sánchez, Luz Helena
2015-08-01
Artisanal mining commonly extracts gold with an amalgamation process that uses mercury. The reproductive effects from exposure to elemental mercury used in gold mining have not been sufficiently studied. To evaluate the effect of the exposure to elemental mercury used in gold mining on menstrual cycle regularity and the occurrence of miscarriages in Colombia. An analytical cross-sectional study was conducted. The participants were female residents of gold mining districts, with a history of exposure to elemental mercury. Menstrual regularity and the occurrence of miscarriages were compared between these women and an unexposed group. Exposure and outcome variables were registered based on a questionnaire which was evaluated for its test-retest reproducibility. Prevalence rates were calculated using a binomial model and goodness-of-fit was evaluated. A total of 72 women exposed to mercury and 121 unexposed women participated. The average time of exposure to mercury among exposed women was 19.58 ± 9.53 years. The adjusted prevalence of irregular menstruation over the last six months was higher in the group of women chronically exposed to mercury vapors (PR=1.59, 95% CI 0.93-2.73), while there was no difference in the proportion of women with a history of miscarriages. Exposure to elemental mercury used in artisanal gold mining may be associated with a higher prevalence of irregular menstrual cycles but not with the occurrence of miscarriage.
Biological response of HeLa cells to gold nanoparticles coated with organic molecules.
Cardoso Avila, P E; Rangel Mendoza, A; Pichardo Molina, J L; Flores Villavicencio, L L; Castruita Dominguez, J P; Chilakapati, M K; Sabanero Lopez, M
2017-08-01
In this work, gold nanospheres functionalized with low weight organic molecules (4-aminothiphenol and cysteamine) were synthesized in a one-step method for their in vitro cytotoxic evaluation on HeLa cells. To enhance the biocompatibility of the cysteamine-capped GNPs, BSA was used due to its broad PH stability and high binding affinity to gold nanoparticles. Besides, the widely reported silica coated gold nanorods were tested here to contrast their toxic response against our nanoparticles coated with organic molecules. Our results shown, the viability measured at 1.9×10 -5 M did not show significant differences against negative controls for all the samples; however, the metabolic activity of HeLa cells dropped when they were exposed to silica gold nanorods in the range of concentrations from 2.9×10 -7 M to 3.0×10 -4 M, while in the cases of gold nanospheres, we found that only at concentrations below 1.9×10 -5 M metabolic activity was normal. Our preliminary results did not indicate any perceivable harmful toxicity to cell membrane, cytoskeleton or nucleus due to our nanospheres at 1.9×10 -5 M. Additional test should be conducted in order to ensure a safe use of them for biological applications, and to determine the extent of possible damage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Envisaging quantum transport phenomenon in a muddled base pair of DNA
NASA Astrophysics Data System (ADS)
Vohra, Rajan; Sawhney, Ravinder Singh
2018-05-01
The effect of muddled base pair on electron transfer through a deoxyribonucleic acid (DNA) molecule connected to the gold electrodes has been elucidated using tight binding model. The effect of hydrogen and nitrogen bonds on the resistance of the base pair has been minutely observed. Using the semiempirical extended Huckel approach within NEGF regime, we have determined the current and conductance vs. bias voltage for disordered base pairs of DNA made of thymine (T) and adenine (A). The asymmetrical behaviour amid five times depreciation in the current characteristics has been observed for deviated Au-AT base pair-Au devices. An interesting revelation is that the conductance of the intrinsic AT base pair configuration attains dramatically high values with the symmetrical zig-zag pattern of current, which clearly indicates the transformation of the bond length within the strands of base pair when compared with other samples. A thorough investigation of the transmission coefficients T( E) and HOMO-LUMO gap reveals the misalignment of the strands in base pairs of DNA. The observed results present an insight to extend this work to build biosensing devices to predict the abnormality with the DNA.
Bao, Chunxiong; Zhu, Weidong; Yang, Jie; Li, Faming; Gu, Shuai; Wang, Yangrunqian; Yu, Tao; Zhu, Jia; Zhou, Yong; Zou, Zhigang
2016-09-14
Organolead trihalide perovskites (OTPs) such as CH3NH3PbI3 (MAPbI3) have attracted much attention as the absorbing layer in solar cells and photodetectors (PDs). Flexible OTP devices have also been developed. Transparent electrodes (TEs) with higher conductivity, stability, and flexibility are necessary to improve the performance and flexibility of flexible OTP devices. In this work, patterned Au nanowire (AuNW) networks with high conductivity and stability are prepared and used as TEs in self-powered flexible MAPbI3 PDs. These flexible PDs show peak external quantum efficiency and responsivity of 60% and 321 mA/W, which are comparable to those of MAPbI3 PDs based on ITO TEs. The linear dynamic range and response time of the AuNW-based flexible PDs reach ∼84 dB and ∼4 μs, respectively. Moreover, they show higher flexibility than ITO-based devices, around 90%, and 60% of the initial photocurrent can be retained for the AuNW-based flexible PDs when bent to radii of 2.5 and 1.5 mm. This work suggests a high-performance, highly flexible, and stable TE for OTP flexible devices.
Ambipolar pentacene field-effect transistor with double-layer organic insulator
NASA Astrophysics Data System (ADS)
Kwak, Jeong-Hun; Baek, Heume-Il; Lee, Changhee
2006-08-01
Ambipolar conduction in organic field-effect transistor is very important feature to achieve organic CMOS circuitry. We fabricated an ambipolar pentacene field-effect transistors consisted of gold source-drain electrodes and double-layered PMMA (Polymethylmethacrylate) / PVA (Polyvinyl Alcohol) organic insulator on the ITO(Indium-tin-oxide)-patterned glass substrate. These top-contact geometry field-effect transistors were fabricated in the vacuum of 10 -6 Torr and minimally exposed to atmosphere before its measurement and characterized in the vacuum condition. Our device showed reasonable p-type characteristics of field-effect hole mobility of 0.2-0.9 cm2/Vs and the current ON/OFF ratio of about 10 6 compared to prior reports with similar configurations. For the n-type characteristics, field-effect electron mobility of 0.004-0.008 cm2/Vs and the current ON/OFF ratio of about 10 3 were measured, which is relatively high performance for the n-type conduction of pentacene field-effect transistors. We attributed these ambipolar properties mainly to the hydroxyl-free PMMA insulator interface with the pentacene active layer. In addition, an increased insulator capacitance due to double-layer insulator structure with high-k PVA layer also helped us to observe relatively good n-type characteristics.
Interplay between Mechanics, Electronics, and Energetics in Atomic-Scale Junctions
NASA Astrophysics Data System (ADS)
Aradhya, Sriharsha V.
The physical properties of materials at the nanoscale are controlled to a large extent by their interfaces. While much knowledge has been acquired about the properties of material in the bulk, there are many new and interesting phenomena at the interfaces that remain to be better understood. This is especially true at the scale of their constituent building blocks - atoms and molecules. Studying materials at this intricate level is a necessity at this point in time because electronic devices are rapidly approaching the limits of what was once thought possible, both in terms of their miniaturization as well as our ability to design their behavior. In this thesis I present our explorations of the interplay between mechanical properties, electronic transport and binding energetics of single atomic contacts and single-molecule junctions. Experimentally, we use a customized conducting atomic force microscope (AFM) that simultaneously measures the current and force across atomic-scale junctions. We use this instrument to study single atomic contacts of gold and silver and single-molecule junctions formed in the gap between two gold metallic point contacts, with molecules with a variety of backbones and chemical linker groups. Combined with density functional theory based simulations and analytical modeling, these experiments provide insight into the correlations between mechanics and electronic structure at the atomic level. In carrying out these experimental studies, we repeatedly form and pull apart nanoscale junctions between a metallized AFM cantilever tip and a metal-coated substrate. The force and conductance of the contact are simultaneously measured as each junction evolves through a series of atomic-scale rearrangements and bond rupture events, frequently resulting in single atomic contacts before rupturing completely. The AFM is particularly optimized to achieve high force resolution with stiff probes that are necessary to create and measure forces across atomic-size junctions that are otherwise difficult to fabricate using conventional lithographic techniques. In addition to the instrumentation, we have developed new algorithmic routines to perform statistical analyses of force data, with varying degrees of reliance on the conductance signatures. The key results presented in this thesis include our measurements with gold metallic contacts, through which we are able to rigorously characterize the stiffness and maximum forces sustained by gold single atomic contacts and many different gold-molecule-gold single-molecule junctions. In our experiments with silver metallic contacts we use statistical correlations in conductance to distinguish between pristine and oxygen-contaminated silver single atomic contacts. This allows us to separately obtain mechanical information for each of these structural motifs. The independently measured force data also provides new insights about atomic-scale junctions that are not possible to obtain through conductance measurements alone. Using a systematically designed set of molecules, we are able to demonstrate that quantum interference is not quenched in single-molecule junctions even at room temperature and ambient conditions. We have also been successful in conducting one of the first quantitative measurements of van der Waals forces at the metal-molecule interface at the single-molecule level. Finally, towards the end of this thesis, we present a general analytical framework to quantitatively reconstruct the binding energy curves of atomic-scale junctions directly from experiments, thereby unifying all of our mechanical measurements. I conclude with a summary of the work presented in this thesis, and an outlook for potential future studies that could be guided by this work.
Ultrafast Imaging of Surface Plasmons Propagating on a Gold Surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Yu; Joly, Alan G.; Hu, Dehong
2015-05-13
We record time-resolved nonlinear photoemission electron microscopy (tr-PEEM) images of propagating surface plasmons (PSPs) launched from a lithographically patterned rectangular trench on a flat gold surface. Our tr-PEEM scheme involves a pair of identical, spatially separated, and interferometrically-locked femtosecond laser pulses. Power dependent PEEM images provide experimental evidence for a sequential coherent nonlinear photoemission process, in which one laser source creates a PSP polarization state through a linear interaction, and the second subsequently probes the prepared state via two photon photoemission. The recorded time-resolved movies of a PSP allow us to directly measure various properties of the surface-bound wave packet,more » including its carrier wavelength (785 nm) and group velocity (0.95c). In addition, tr-PEEM in concert with finite-difference time domain simulations together allow us to set a lower limit of 75 μm for the decay length of the PSP on a 100 nm thick gold film.« less
Roh, Sung-Hee; Cheong, Hyeonsook; Kim, Do-Heyoung; Woo, Hee-Gweon; Lee, Byeong-Gweon; Yang, Kap-Seung; Kim, Bo-Hye; Sohn, Honglae
2013-01-01
The generation of silver nanoparticle/bis(o-phenolpropyl)silicone composites have been facilitated by the addition of sodium tetrachloroaurate or gold(Ill) chloride (< 1 wt% of NaAuCl4 or AuCl3) to the reaction of silver nitrate (AgNO3) with bis(o-phenolpropyl)silicone [BPPS, (o-phenolpropyl)2(SiMe2O)n, n = 2,3,8,236]. TEM and FE-SEM data showed that the silver nanoparticles having the size of < 20 nm are well dispersed throughout the BPPS silicone matrix in the composites. XRD patterns are consistent with those for polycrystalline silver. The size of silver nanoparticles augmented with increasing the relative molar concentration of AgNO3 added with respect to BPPS. The addition of gold complexes (1-3 wt%) did not affect the size distribution of silver nanoparticles appreciably. In the absence of BPPS, the macroscopic precipitation of silver by agglomeration, indicating that BPPS is necessary to stabilize the silver nanoparticles surrounded by coordination.
NASA Astrophysics Data System (ADS)
Roqué Rosell, Josep; Portillo Serra, Joaquim; Aiglsperger, Thomas; Plana-Ruiz, Sergi; Trifonov, Trifon; Proenza, Joaquín A.
2018-02-01
In the present work, a lamella from an Au-Ag aggregate found in Ni-laterites has been examined using Transmission Electron Microscope to produce a series of Precision Electron Diffraction (PED) patterns. The analysis of the structural data obtained, coupled with Energy Dispersive X-ray microanalysis, made it possible to determine the orientation of twinned native gold growing on the Au-Ag aggregate. The native Au crystal domains are found to have grown at the outermost part of the aggregate whereas the inner core of the aggregate is an Au-Ag alloy (∼4 wt% Ag). The submicron structural study of the natural occurring Au aggregate points to the mobilization and precipitation of gold in laterites and provides insights on Au aggregates development at supergene conditions. This manuscript demonstrates the great potential of electron crystallographic analysis, and in particular, PED to study submicron structural features of micron sized mineral aggregates by using the example of a gold grain found in a Ni-laterite deposits.
Adsorption of squaraine molecules to Au(111) and Ag(001) surfaces
NASA Astrophysics Data System (ADS)
Luft, Maike; Groß, Boris; Schulz, Matthias; Lützen, Arne; Schiek, Manuela; Nilius, Niklas
2018-02-01
The adsorption of anilino squaraines, an important chromophore for the use in organic solar cells, to Ag(001) and Au(111) has been studied with scanning tunneling microscopy. Self-assembly into square building blocks with eight molecules per unit cell is revealed on the Ag surface, while no ordering effects occur on gold. The squaraine-silver interaction is mediated by the carbonyl and hydroxyl oxygens located in the center of the molecule. The intermolecular coupling, on the other hand, is governed by hydrogen bonds formed between the terminal isobutyl groups and oxygen species of adjacent molecules. The latter gets maximized by rotating the molecules by a few degrees against a perfect square alignment. A similar molecular pattern does not form on Au(111) due to symmetry mismatch. Moreover, the high electronegativity of gold reduces the directing effect of oxygen-metal bonds that trigger the ordering process on silver. As a consequence, only frustrated three-fold symmetric units that do not expand into an ordered molecular network are present on the gold surface.
Bubble template synthesis of hollow gold nanoparticles and their applications as theranostic agents
NASA Astrophysics Data System (ADS)
Huang, Chienwen
Hollow gold nanoparticle with a sub-30nm polycrystalline shell and a 50 nm hollow core has been successfully synthesized through the reduction of sodium gold sulfite by electrochemically evolved hydrogen. Such hollow gold nanoparticles exhibit unique plasmonic properties. They strongly scatter and absorb near infrared light. In this thesis we seek to understand the formation mechanism of hollow gold nanoparticles in this new synthesis process and their plasmonic properties. Also, we explore their biomedical applications as theranostic agents (therapeutic and diagnostic imaging). A lithographically patterned electrode consisting of Ag stripes on a glass substrate was used to investigate the formation process of hollow gold nanoparticles. Ag stripes served as working electrode for electrochemically evolution of hydrogen, and adjacent glass areas provided supporting surface for hydrogen nanobubbles nucleation and growth. Hydrogen nanobubbles served as both templates and reducing agents to trigger the autocatalytic disproportionation reaction of sodium gold sulfite. The effects of applied potential and the additives in the electrolyte have been studied. It has been found that the size and size distribution of hollow gold nanoparticle are directly relative to the applied potential, i.e. the hydrogen evolution rate. It has also been found the addition of Ni2+ ions can greatly improve the size distribution of hollow gold nanoparticles that can be contributed to that the newly electrodeposited nickel metal can enhance the hydrogen evolution efficiency. Another additive, ethylenediamine (EDA) can suppress the autocatalytic reaction of gold sulfite to increase the stability of sodium gold sulfite electrolyte. To capture such electrochemically evolved hydrogen nanobubbles, and subsequently to generate hollow gold nanoparticles in large numbers, alumina membranes were placed on the top of the working electrode. Anodic alumina membrane consists of ~200 nm pores, which provides a large surface area for the formation of hydrogen nanobubbles. By this approach, the electroless reaction can be easily separated from the electrodeposition process, and hollow gold nanoparticles can be easily collected. Synthesized hollow gold nanoparticles exhibit unique plasmonic properties; the surface plasmon resonance (SPR) lies in the near infrared region (NIR). This is very different from the solid spherical gold nanoparticles. Three-dimensional finite difference time domain (FDTD) simulation was employed to study the plasmonic properties of hollow gold nanoparticles. It has been found that the red-shifts of SPR peaks are mainly caused by their surface roughness, and the hollow nature of these particles only plays a minor role. The surface roughness of hollow gold nanoparticles can be tuned by adjusting the pH of the electrolyte (from 6.0 to 7.0) by adding sodium sulfite. Different surface roughness (from smooth to very rough) can be readily obtained, and correspondingly, surface plasmon resonance (SPR) peaks red-shift from ~600 nm to ~750 nm. Using hollow gold nanoparticles as multifunctional agents for biomedical applications have been explored. Two kinds of agents have been constructed. It has been demonstrated that pegylated Raman dye encoded hollow gold nanoparticles, terms as Raman nanotags, can serve as both diagnostic imaging agents and photothermal therapy agents. When illuminated by near infrared light, the enhanced Raman signal makes the hollow gold nanoparticles to become optically detectable for biomedical imaging, and absorbed light rapidly heat up the hollow gold nanoparticles which can be used to photothermal ablation therapy. The cytotoxicity evaluation using [3H] thymidine incorporation method has shown non-toxicity of the Raman nanotags. The photothermal effects of hollow gold nanoparticles have been examined by two methods: (1) by embedding hollow gold nanoparticles in tissue-like phantom environment; (2) by recording infrared images as temperature increase. The results show that hollow gold nanoparticles are capable to generate sufficiency heat for photothermal therapy. To fully take advantage of the unique hollow core space of hollow gold nanoparticles, a facile route has been develop to trap Fe3O4 nanoparticles into the hollow gold nanoparticles to form Fe3O4/Au core/shell nanoparticles. Fe3O4/Au core/shell nanoparticles possess the desirable magnetic and plasmonic properties that can be used as magnetic resonance contrast (MRI) agents and photothermal therapy agents.
NASA Astrophysics Data System (ADS)
Ansarino, Masoud; Ravan, Bahram Abedi
Some experimental research works report on the superb magnetoresistance properties of magnetically contacted gold nanowires. With the intention of trying to understand the spin-dependent transport mechanism of these structures, in this work we have used first-principles density functional theory methods to investigate effects of interface structure on the spintronic characteristics of Au nanowires. Monatomic chains of gold are sandwiched between two ferromagnetic electrodes of Fe and by substituting the interfacial Fe atoms with some other transition metal elements (including Cr, Mn, Co and Ni) the occurrence of possible enhancement in the electronic conductance and magnetoresistance characteristics of the device are investigated. It is observed that replacing the interfacial atoms with Ni raises the junction’s magnetoresistance ratio to as high as 2000%.
Cater, Fred W.; Weldin, R.D.
1984-01-01
Mineral surveys conducted in the Idaho Wilderness identified 28 areas with probable or substantiated mineral-resource potential, and 5 mines with demonstrated or inferred resources. Metals including gold, silver, copper, lead, zinc, and tungsten, have been extracted from deposits inside the wilderness. Current studies indicate additional areas of probable mineral-resource potential for gold, tungsten, mercury, rare-earth elements, and base metals related to intrusive rocks that follow structures formed by cauldron subsidence. These on-going studies also indicate that there is probable and substantiated resource potential for cobalt with copper, silver, and gold in the Precambrian rocks in the northeastern part of the wilderness in a geologic environment similar to that of the Blackbird mine that lies outside the area. The nature of the geologic terrane precludes the potential for organic fuels.
Two-dimensional semiconducting gold
NASA Astrophysics Data System (ADS)
Liu, Ning; Jin, Shifeng; Guo, Liwei; Wang, Gang; Shao, Hezhu; Chen, Liang; Chen, Xiaolong
2017-04-01
We show that two-dimensional (2D) honeycomb gold (HG) could be thermodynamic and lattice dynamic stable owing in part to the relativistic effect and electronic configuration. HG exhibits a covalent characteristic in its bonding and is a semiconductor with an energy gap of 0.1 eV at the Brillouin zone K point caused by strong spin-orbit coupling. The gap can be further widened to about 0.3 eV if HG is tailored into nanoribbons with the armchair type of edges. In contrast, 2D close-packed gold (CPG) is metallic with a small effective mass. Both HG and CPG are more transparent to visible light than graphene. They are expected to outperform graphene as a semiconducting material in an electronic logic device and as a transparent conducting material in fabricating a display device, respectively.
NASA Astrophysics Data System (ADS)
Ding, Weihua; Huang, Chuanqi; Guan, Lingmei; Liu, Xianhu; Luo, Zhixun; Li, Weixue
2017-05-01
Here we report a successful synthesis of water-soluble 13-atoms gold clusters under the monolayer protection of binary thiolates, glutathione and penicillamine, under a molecular formula of Au13(SG)5(PA)7. This monolayer-protected cluster (MPC) finds decent stability and is demonstrated to possess an icosahedral geometry pertaining to structural accommodation in contrast to a planar bare Au13 of local minima energy. Natural bond orbital (NBO) analysis depicts the interaction patterns between gold and the ligands, enlightening to understand the origin of enhanced stability of the Au13 MPCs. Further, the water-soluble Au13 MPCs are found to be a decent candidate for chemosensing and bioimaging.
Khalil, Rania; Homaeigohar, Shahin; Häußler, Dietrich; Elbahri, Mady
2016-01-01
In this study, the transparent conducting polymer of poly (3,4-ethylenendioxythiophene): poly(styrene sulphonate) (PEDOT:PSS) was nanohybridized via inclusion of gold nanofillers including nanospheres (NSs) and nanorods (NRs). Such nanocomposite thin films offer not only more optimum conductivity than the pristine polymer but also excellent resistivity against volatile organic compounds (VOCs). Interestingly, such amazing properties are achieved in the diluted regimes of the nanofillers and depend on the characteristics of the interfacial region of the polymer and nanofillers, i.e. the aspect ratio of the latter component. Accordingly, a shape dependent response is made that is more desirable in case of using the Au nanorods with a much larger aspect ratio than their nanosphere counterparts. This transparent nanocomposite thin film with an optimized conductivity and very low sensitivity to organic gases is undoubtedly a promising candidate material for the touch screen panel production industry. Considering PEDOT as a known material for integrated electrodes in energy saving applications, we believe that our strategy might be an important progress in the field. PMID:27654345
Polymer Brushes as Functional, Patterned Surfaces for Nanobiotechnology.
Welch, M Elizabeth; Xu, Youyong; Chen, Hongjun; Smith, Norah; Tague, Michele E; Abruña, Héctor D; Baird, Barbara; Ober, Christopher K
2013-01-01
Polymer brushes have many desirable characteristics such as the ability to tether molecules to a substrate or change the properties of a surface. Patterning of polymer films has been an area of great interest due to the broad range of applications including bio-related and medicinal research. Consequently, we have investigated patterning techniques for polymer brushes which allow for two different functionalities on the same surface. This method has been applied to a biosensor device which requires both polymer brushes and a photosensitizer to be polymerized on a patterned gold substrate. Additionally, the nature of patterned polymer brushes as removable thin films was explored. An etching process has enabled us to lift off very thin membranes for further characterization with the potential of using them as Janus membranes for biological applications.
Pommier de Santi, Vincent; Girod, Romain; Mura, Marie; Dia, Aissata; Briolant, Sébastien; Djossou, Félix; Dusfour, Isabelle; Mendibil, Alexandre; Simon, Fabrice; Deparis, Xavier; Pagès, Frédéric
2016-01-22
In December 2010, a Plasmodium vivax malaria outbreak occurred among French forces involved in a mission to control illegal gold mining in French Guiana. The findings of epidemiological and entomological investigations conducted after this outbreak are presented here. Data related to malaria cases reported to the French armed forces epidemiological surveillance system were collected during the epidemic period from December 2010 to April 2011. A retrospective cohort study was conducted to identify presumed contamination sites. Anopheles mosquitoes were sampled at the identified sites using Mosquito Magnet and CDC light traps. Specimens were identified morphologically and confirmed using molecular methods (sequencing of ITS2 gene and/or barcoding). Anopheles infections with Plasmodium falciparum and P. vivax were tested by both enzyme-linked immunosorbent assay and real-time PCR. Seventy-two P. vivax malaria cases were reported (three were mixed P. falciparum/P. vivax infections), leading to a global attack rate of 26.5% (72/272). Lack of compliance with vector control measures and doxycycline chemoprophylaxis was reported by patients. Two illegal gold mining sites located in remote areas in the primary forest were identified as places of contamination. In all, 595 Anopheles females were caught and 528 specimens were formally identified: 305 Anopheles darlingi, 145 Anopheles nuneztovari s.l., 63 Anopheles marajoara and 15 Anopheles triannulatus s.l. Three An. darlingi were infected by P. falciparum (infection rate: 1.1%) and four An. marajoara by P. vivax (infection rate: 6.4%). The main drivers of the outbreak were the lack of adherence by military personnel to malaria prevention measures and the high level of malaria transmission at illegal gold mining sites. Anopheles marajoara was clearly implicated in malaria transmission for the first time in French Guiana. The high infection rates observed confirm that illegal gold mining sites must be considered as high level malaria transmission areas in the territory. Illegal gold mining activities are challenging the control of malaria in French Guiana. Collaboration with neighbouring countries is necessary to take into account mobile populations such as gold miners. Malaria control strategies in the French armed forces must be adapted to P. vivax malaria and sylvatic Anopheles species.
NASA Astrophysics Data System (ADS)
Xu, Daili; Huang, Wei; Zhang, Letian
2017-03-01
The West Qinling belt is the westward extensioin of the Qinling-Dabie-Sulu orogen in central China. It links the Kunlun and Qilian orogens to the west and the Songpan-Ganze belt to the south, making it an important tectonics syntaxis in China. According to the collection and analysis of the data of West Qinling Mountains gold deposit metallogenic chronology, the gold deposits in this area can be divided into five groups by time: 225-245 Ma, 220-190 Ma, 170 Ma±, 135-110 Ma, 75-45 Ma. The formation time is related to the geological process at that time. The relationship between the formation of gold deposit and geological structure can be explored by the research on the present geological structures. According to the regional tectonic evolution and magmatic activity, the gold deposits are divided into four metallogenic epoches: from the end of the Indo-Chinese epoch to the early Yanshanian (245-225 Ma), is one of the initial stages of gold mineralization; the early and the middle Yanshanian (220-190 Ma, 170 Ma±), is the main forming time of the gold mineralization in the West Qinling; the late Yanshanian (135-110 Ma), is the superimposed mineralization stage; at last, the effect of Himalayan hydrothermal activity to the gold deposits. Under the support of three projects naemed " the research on the conductivity of the lithosphere of the Central Orogenic in China ", " the MT array observation of the intersection area of COC(Central Orogen in China) and the North-South seismic belt ", " the experiment research of MT standard network observation in the area of Qinghai-Tibetan Plateau and the North-China " (Sinoprobe-01-02), we collected massive magnetotellurics data for futher study of the present geological strusctures to discess the relationship between gold deposites and geotectonic in West Qinling.
Gough, Larry P.; Day, Warren C.
2010-01-01
This report presents summary papers of work conducted between 2002 and 2007 under a 5-year project effort funded by the U.S. Geological Survey Mineral Resources Program, formerly entitled 'Tintina Metallogenic Province: Integrated Studies on Geologic Framework, Mineral Resources, and Environmental Signatures.' As the project progressed, the informal title changed from 'Tintina Metallogenic Province' project to 'Tintina Gold Province' project, the latter being more closely aligned with the terminology used by the mineral industry. As Goldfarb and others explain in the first chapter of this report, the Tintina Gold Province is a convenient term used by the mineral exploration community for a 'region of very varied geology, gold deposit types, and resource potential'. The Tintina Gold Province encompasses roughly 150,000 square kilometers, bounded by the Kaltag-Tintina fault system on the north and the Farewell-Denali fault system on the south. It extends westward in a broad arc, some 200 km wide, from northernmost British Columbia, through the Yukon, through southeastern and central Alaska, to southwestern Alaska. The climate is subarctic and, in Alaska, includes major physiographic delineations and ecoregions such as the Yukon-Tanana Upland, Tanana-Kuskokwim Lowlands, Yukon River Lowlands, and the Kuskokwim Mountains. Although the Tintina Gold Province is historically important for some of the very first placer and lode gold discoveries in northern North America, it has recently seen resurgence in mineral exploration, development, and mining activity. This resurgence is due to both new discoveries (for example, Pogo and Donlin Creek) and to the application of modern extraction methods to previously known, but economically restrictive, low-grade, bulk-tonnage gold resources (for example, Fort Knox, Clear Creek, and Scheelite Dome). In addition, the Tintina Gold Province hosts numerous other mineral deposit types, possessing both high and low sulfide content, which are not currently in development.
Gold Mining in the Peruvian Amazon: Global Prices, Deforestation, and Mercury Imports
Swenson, Jennifer J.; Carter, Catherine E.; Domec, Jean-Christophe; Delgado, Cesar I.
2011-01-01
Many factors such as poverty, ineffective institutions and environmental regulations may prevent developing countries from managing how natural resources are extracted to meet a strong market demand. Extraction for some resources has reached such proportions that evidence is measurable from space. We present recent evidence of the global demand for a single commodity and the ecosystem destruction resulting from commodity extraction, recorded by satellites for one of the most biodiverse areas of the world. We find that since 2003, recent mining deforestation in Madre de Dios, Peru is increasing nonlinearly alongside a constant annual rate of increase in international gold price (∼18%/yr). We detect that the new pattern of mining deforestation (1915 ha/year, 2006–2009) is outpacing that of nearby settlement deforestation. We show that gold price is linked with exponential increases in Peruvian national mercury imports over time (R2 = 0.93, p = 0.04, 2003–2009). Given the past rates of increase we predict that mercury imports may more than double for 2011 (∼500 t/year). Virtually all of Peru's mercury imports are used in artisanal gold mining. Much of the mining increase is unregulated/artisanal in nature, lacking environmental impact analysis or miner education. As a result, large quantities of mercury are being released into the atmosphere, sediments and waterways. Other developing countries endowed with gold deposits are likely experiencing similar environmental destruction in response to recent record high gold prices. The increasing availability of satellite imagery ought to evoke further studies linking economic variables with land use and cover changes on the ground. PMID:21526143
Parida, Sheetal; Maiti, Chiranjit; Rajesh, Y; Dey, Kaushik K; Pal, Ipsita; Parekh, Aditya; Patra, Rusha; Dhara, Dibakar; Dutta, Pranab Kumar; Mandal, Mahitosh
2017-01-01
Gold nanorods, by virtue of surface plasmon resonance, convert incident light energy (NIR) into heat energy which induces hyperthermia. We designed unique, multifunctional, gold nanorod embedded block copolymer micelle loaded with GW627368X for targeted drug delivery and photothermal therapy. Glutathione responsive diblock co-polymer was synthesized by RAFT process forming self-assembled micelle on gold nanorods prepared by seed mediated method and GW627368X was loaded on to the reduction responsive gold nanorod embedded micelle. Photothermal therapy was administered using cwNIR laser (808nm; 4W/cm 2 ). Efficacy of nanoformulated GW627368X, photothermal therapy and combination of both were evaluated in vitro and in vivo. In response to photothermal treatment, cells undergo regulated, patterned cell death by necroptosis. Combining GW627368X with photothermal treatment using single nanoparticle enhanced therapeutic outcome. In addition, these nanoparticles are effective X-ray CT contrast agents, thus, can help in monitoring treatment. Reduction responsive nanorod embedded micelle containing folic acid and lipoic acid when treated on cervical cancer cells or tumour bearing mice, aggregate in and around cancer cells. Due to high glutathione concentration, micelles degrade releasing drug which binds surface receptors inducing apoptosis. When incident with 808nm cwNIR lasers, gold nanorods bring about photothermal effect leading to hyperthermic cell death by necroptosis. Combination of the two modalities enhances therapeutic efficacy by inducing both forms of cell death. Our proposed treatment strategy achieves photothermal therapy and targeted drug delivery simultaneously. It can prove useful in overcoming general toxicities associated with chemotherapeutics and intrinsic/acquired resistance to chemo and radiotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.
Henning, Frederico; Renz, Adina Josepha; Fukamachi, Shoji; Meyer, Axel
2010-05-01
Natural populations of the Midas cichlid species in several different crater lakes in Nicaragua exhibit a conspicuous color polymorphism. Most individuals are dark and the remaining have a gold coloration. The color morphs mate assortatively and sympatric population differentiation has been shown based on neutral molecular data. We investigated the color polymorphism using segregation analysis and a candidate gene approach. The segregation patterns observed in a mapping cross between a gold and a dark individual were consistent with a single dominant gene as a cause of the gold phenotype. This suggests that a simple genetic architecture underlies some of the speciation events in the Midas cichlids. We compared the expression levels of several candidate color genes Mc1r, Ednrb1, Slc45a2, and Tfap1a between the color morphs. Mc1r was found to be up regulated in the gold morph. Given its widespread association in color evolution and role on melanin synthesis, the Mc1r locus was further investigated using sequences derived from a genomic library. Comparative analysis revealed conserved synteny in relation to the majority of teleosts and highlighted several previously unidentified conserved non-coding elements (CNEs) in the upstream and downstream regions in the vicinity of Mc1r. The identification of the CNEs regions allowed the comparison of sequences from gold and dark specimens of natural populations. No polymorphisms were found between in the population sample and Mc1r showed no linkage to the gold phenotype in the mapping cross, demonstrating that it is not causally related to the color polymorphism in the Midas cichlid.
Sana, Adama; De Brouwer, Christophe; Hien, Hervé
2017-01-01
Introduction Artisanal gold mining is an activity ensuring the survival of about 700,000 families in Burkina Faso with a considerable contribution to the national economy. Techniques and chemicals used in the operation, have adverse impacts on health and the environment. Our study aims to evaluate the perceptions and knowledge of these different impacts among artisanal gold miners. Methods A cross-sectional survey was conducted in artisanal gold mines Bouda and Nagsene in the region of the North of Burkina Faso. Two hundred miners over 18 years of age were interviewed. Results All the participants have recognized that gold mining has health impacts and 88.5% felt these impacts as important with a significantly higher proportion among those with more than 3 years' seniority (p = 0.001). The environmental impacts were perceived as important by 64.5% of miners, with a significant difference according to the position (p = 0.004). Sixty percent (60%) of respondents could identify at least 3 of the 5 health impacts of gold mining listed and 49.5% acknowledged at least 3 impacts on the environment. The diggers had significantly more knowledge about the symptoms (p < 0.001). Conclusion Study highlights the lack of knowledge of the Stampeders on the health and environmental impacts of artisanal gold mining. Findings might be used to develop more effective awareness campaigns in the future. Communication with diggers must focus on the risk perception because it appears that raising risk perceptions from low to high would have a major effect on behavior. PMID:29187949
Sana, Adama; De Brouwer, Christophe; Hien, Hervé
2017-01-01
Artisanal gold mining is an activity ensuring the survival of about 700,000 families in Burkina Faso with a considerable contribution to the national economy. Techniques and chemicals used in the operation, have adverse impacts on health and the environment. Our study aims to evaluate the perceptions and knowledge of these different impacts among artisanal gold miners. A cross-sectional survey was conducted in artisanal gold mines Bouda and Nagsene in the region of the North of Burkina Faso. Two hundred miners over 18 years of age were interviewed. All the participants have recognized that gold mining has health impacts and 88.5% felt these impacts as important with a significantly higher proportion among those with more than 3 years' seniority (p = 0.001). The environmental impacts were perceived as important by 64.5% of miners, with a significant difference according to the position (p = 0.004). Sixty percent (60%) of respondents could identify at least 3 of the 5 health impacts of gold mining listed and 49.5% acknowledged at least 3 impacts on the environment. The diggers had significantly more knowledge about the symptoms (p < 0.001). Study highlights the lack of knowledge of the Stampeders on the health and environmental impacts of artisanal gold mining. Findings might be used to develop more effective awareness campaigns in the future. Communication with diggers must focus on the risk perception because it appears that raising risk perceptions from low to high would have a major effect on behavior.
NASA Astrophysics Data System (ADS)
Smoak, Evan M.; Carlo, Andrew D.; Fowles, Catherine C.; Banerjee, Ipsita A.
2010-01-01
Gibberellins are a group of naturally occurring diterpenoid based phytohormones that play a vital role in plant growth and development. In this work, we have studied the self-assembly of gibberellic acid, a phytohormone, which belongs to the family of gibberellins, and designed amide derivatives of gibberellic acid (GA3) for the facile, green synthesis of gold nanoparticles. It was found that the derivatives self-assembled into nanofibers and nanoribbons in aqueous solutions at varying pH. Further, upon incubation with tetrachloroaurate, the self-assembled GA3-amide derivatives efficiently nucleated and formed gold nanoparticles when heated to 60 °C. Energy dispersive x-ray spectroscopy, transmission electron microscopy and scanning electron microscopy analyses revealed that uniform coatings of gold nanoparticles in the 10-20 nm range were obtained at low pH on the nanowire surfaces without the assistance of additional reducing agents. This simple method for the development of morphology controlled gold nanoparticles using a plant hormone derivative opens doors for a new class of plant biomaterials which can efficiently yield gold nanoparticles in an environmentally friendly manner. The gold encrusted nanowires formed using biomimetic methods may lead on to the formation of conductive nanowires, which may be useful for a wide range of applications such as in optoelectronics and sensors. Further, the spontaneous formation of highly organized nanostructures obtained from plant phytohormone derivatives such as gibberellic acid is of particular interest as it might help in further understanding the supramolecular assembly mechanism of more highly organized biological structures.
Khalil, Ibrahim; Julkapli, Nurhidayatullaili Muhd; Yehye, Wageeh A.; Basirun, Wan Jefrey; Bhargava, Suresh K.
2016-01-01
Graphene is a single-atom-thick two-dimensional carbon nanosheet with outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These extraordinary features of graphene make it a key component for different applications in the biosensing and imaging arena. However, the use of graphene alone is correlated with certain limitations, such as irreversible self-agglomerations, less colloidal stability, poor reliability/repeatability, and non-specificity. The addition of gold nanostructures (AuNS) with graphene produces the graphene–AuNS hybrid nanocomposite which minimizes the limitations as well as providing additional synergistic properties, that is, higher effective surface area, catalytic activity, electrical conductivity, water solubility, and biocompatibility. This review focuses on the fundamental features of graphene, the multidimensional synthesis, and multipurpose applications of graphene–Au nanocomposites. The paper highlights the graphene–gold nanoparticle (AuNP) as the platform substrate for the fabrication of electrochemical and surface-enhanced Raman scattering (SERS)-based biosensors in diverse applications as well as SERS-directed bio-imaging, which is considered as an emerging sector for monitoring stem cell differentiation, and detection and treatment of cancer. PMID:28773528
Transport in ultrathin gold films decorated with magnetic Gd atoms
NASA Astrophysics Data System (ADS)
Alemani, Micol; Helgren, Erik; Hugel, Addison; Hellman, Frances
2008-03-01
We have performed four-probe transport measurements of ultrathin Au films decorated with Gd ad-atoms. The samples were prepared by quench condensation, i.e., sequential evaporation on a cryogenically cooled substrate under UHV conditions while monitoring the film thickness and resistance. Electrically continuous Au films at thickness of about 2 mono-layers of material are grown on an amorphous Ge wetting layer. The quench condensation method provides a sensitive control on the sample growth process, allowing us to tune the morphological and electrical configuration of the system. The ultrathin gold films develop from an insulating to a metallic state as a function of film thickness. The temperature dependence of the Au conductivity for different thickness is studied. It evolves from hopping transport for the insulating films, to a ln T dependence for thicker films. For gold films in the insulating regime we found a decreasing resistance by adding Gd. This is in agreement with a decreasing tunneling barrier height between metallic atoms. The Gd magnetic moments are randomly oriented for isolated atoms. This magnetic disorder leads to scattering of the charge carriers and a reduced conductivity compared to nonmagnetic materials.
Khalil, Ibrahim; Julkapli, Nurhidayatullaili Muhd; Yehye, Wageeh A; Basirun, Wan Jefrey; Bhargava, Suresh K
2016-05-24
Graphene is a single-atom-thick two-dimensional carbon nanosheet with outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These extraordinary features of graphene make it a key component for different applications in the biosensing and imaging arena. However, the use of graphene alone is correlated with certain limitations, such as irreversible self-agglomerations, less colloidal stability, poor reliability/repeatability, and non-specificity. The addition of gold nanostructures (AuNS) with graphene produces the graphene-AuNS hybrid nanocomposite which minimizes the limitations as well as providing additional synergistic properties, that is, higher effective surface area, catalytic activity, electrical conductivity, water solubility, and biocompatibility. This review focuses on the fundamental features of graphene, the multidimensional synthesis, and multipurpose applications of graphene-Au nanocomposites. The paper highlights the graphene-gold nanoparticle (AuNP) as the platform substrate for the fabrication of electrochemical and surface-enhanced Raman scattering (SERS)-based biosensors in diverse applications as well as SERS-directed bio-imaging, which is considered as an emerging sector for monitoring stem cell differentiation, and detection and treatment of cancer.
NASA Astrophysics Data System (ADS)
Voute, F.; Thébaud, N.
2015-08-01
In the Norseman-Wiluna belt, Yilgarn Craton, the Agnew-Mt. White district is the host of many gold deposits. Located in the hinge of the regional Lawlers anticline, the Turret gold deposit is structurally controlled by the Table Hill shear zone that transects the Agnew Ultramafic unit. Geochemistry, coupled with petrographic data, allowed the delineation of the paragenetic sequence associated with gold mineralisation and include (1) a pervasive talc-carbonate alteration assemblage, (2) a pre-mineralisation stage associated with pervasive arsenopyrite + chalcopyrite + pyrrhotite + pyrite alteration, followed by (3) a late deformation event along a dilatational segment of the main Table Hill shear zone, leading to the formation of a breccia hosting a Cu-Bi-Mo-Au (± Ag ± Zn ± Te ± W) metal assemblage. The presence of Au-Ag-Cu alloys, native bismuth, chalcopyrite and other Bi-Te-S phases in the mineralisation stage suggest that gold may have been scavenged from the hydrothermal fluids by composite Bi-Te-Cu-Au-Ag-S liquids or melts. Using this mineral paragenetic sequence, together with mineralogical re-equilibration textures observed, we show that the gold deposition at Turret occurred over a temperature range approximately between c. 350 and 270 °C. This temperature range, together with the structural control and typical mesothermal alteration pattern including carbonate-chlorite alteration, shows that the Turret deposit shares common characteristics with the orogenic gold deposit class. However, the metal association of Cu, Au, Bi, and Mo, the quartz-poor, and high copper-sulphide content (up to 15 %) are characteristics that depart from the typical orogenic gold deposit mineralogy. Through comparison with similar deposits in the Yilgarn Craton and worldwide, we propose that the Turret deposit represents an example of a porphyry-derived Au-Cu-Bi-Mo deposit.
Choy, D; Sham, J S; Wei, W I; Ho, C M; Wu, P M
1993-02-15
To evaluate the efficacy of radioactive gold grain implant via the split palate approach in the control of locally recurrent or persistent nasopharyngeal carcinoma. Forty-three patients, 10 for persistent NPC, 28 for first relapse in the nasopharynx, and five for second relapse in the nasopharynx, were treated. The diameter of the tumors at the time of gold grain implant ranged from 0.5 to 5 cm, the number of gold grains inserted varied from 4 to 14, the median number was seven. There was no significant difference in the control of the primary tumor for persistent disease (80% at 5 years), first relapse (61% at 5 years) and second relapse (80% at 3 years), p = 0.8845. The difference in survival between the three subgroups of patients, however, was highly significant (p = 0.0040). Thirty patients had CT evaluation before gold grain implant and the tumor was found confined to the nasopharynx in 21, in the remaining nine patients erosion of the sphenoid sinus or other parts of the base of skull was noted. The difference in the control between those patients with tumors confined to the nasopharynx and those patients with extranasopharyngeal extension of tumor almost reached statistical significance (81% and 44% respectively at 5 years, p = 0.0554). For the six patients who developed local recurrence after gold grain implant and were evaluable for the pattern of failure, the recurrent tumors were considered originating from another region of the nasopharynx in four, and in-field failure in the other two cases. Radioactive gold grain implant as salvage treatment provides satisfactory control of persistent and recurrent nasopharyngeal carcinoma. The local control was better when the tumor was localized to the nasopharynx, thus underlines the importance of close follow-up for early recognition of relapse and persistent tumor. However, such patients still suffered from high incidence of regional and distant failure, the pathophysiology and management of which require further investigation.
Probing the location of displayed cytochrome b562 on amyloid by scanning tunnelling microscopy
NASA Astrophysics Data System (ADS)
Forman, C. J.; Wang, N.; Yang, Z. Y.; Mowat, C. G.; Jarvis, S.; Durkan, C.; Barker, P. D.
2013-05-01
Amyloid fibres displaying cytochrome b562 were probed using scanning tunnelling microscopy (STM) in vacuo. The cytochromes are electron transfer proteins containing a haem cofactor and could, in principle, mediate electron transfer between the tip and the gold substrate. If the core fibres were insulating and electron transfer within the 3D haem network was detected, then the electron transport properties of the fibre could be controlled by genetic engineering. Three kinds of STM images were obtained. At a low bias (<1.5 V) the fibres appeared as regions of low conductivity with no evidence of cytochrome mediated electron transfer. At a high bias, stable peaks in tunnelling current were observed for all three fibre species containing haem and one species of fibre that did not contain haem. In images of this kind, some of the current peaks were collinear and spaced around 10 nm apart over ranges longer than 100 nm, but background monomers complicate interpretation. Images of the third kind were rare (1 in 150 fibres); in these, fully conducting structures with the approximate dimensions of fibres were observed, suggesting the possibility of an intermittent conduction mechanism, for which a precedent exists in DNA. To test the conductivity, some fibres were immobilized with sputtered gold, and no evidence of conduction between the grains of gold was seen. In control experiments, a variation of monomeric cytochrome b562 was not detected by STM, which was attributed to low adhesion, whereas a monomeric multi-haem protein, GSU1996, was readily imaged. We conclude that the fibre superstructure may be intermittently conducting, that the cytochromes have been seen within the fibres and that they are too far apart for detectable current flow between sites to occur. We predict that GSU1996, being 10 nm long, is more likely to mediate successful electron transfer along the fibre as well as being more readily detectable when displayed from amyloid.
Cacao, Eliedonna E.; Nasrullah, Azeem; Sherlock, Tim; Kemper, Steven; Kourentzi, Katerina; Ruchhoeft, Paul; Stein, Gila E.; Willson, Richard C.
2013-01-01
In this work, a collimated helium beam was used to activate a thiol-poly(ethylene glycol) (SH-PEG) monolayer on gold to selectively capture proteins in the exposed regions. Protein patterns were formed at high throughput by exposing a stencil mask placed in proximity to the PEG-coated surface to a broad beam of helium particles, followed by incubation in a protein solution. Attenuated Total Reflectance–Fourier Transform Infrared Spectroscopy (ATR–FTIR) spectra showed that SH-PEG molecules remain attached to gold after exposure to beam doses of 1.5–60 µC/cm2 and incubation in PBS buffer for one hour, as evidenced by the presence of characteristic ether and methoxy peaks at 1120 cm−1 and 2870 cm−1, respectively. X-ray Photoelectron Spectroscopy (XPS) spectra showed that increasing beam doses destroy ether (C–O) bonds in PEG molecules as evidenced by the decrease in carbon C1s peak at 286.6 eV and increased alkyl (C–C) signal at 284.6 eV. XPS spectra also demonstrated protein capture on beam-exposed PEG regions through the appearance of a nitrogen N1s peak at 400 eV and carbon C1s peak at 288 eV binding energies, while the unexposed PEG areas remained protein-free. The characteristic activities of avidin and horseradish peroxidase were preserved after attachment on beam-exposed regions. Protein patterns created using a 35 µm mesh mask were visualized by localized formation of insoluble diformazan precipitates by alkaline phosphatase conversion of its substrate bromochloroindoyl phosphate-nitroblue tetrazolium (BCIP-NBT) and by avidin binding of biotinylated antibodies conjugated on 100 nm gold nanoparticles (AuNP). Patterns created using a mask with smaller 300 nm openings were detected by specific binding of 40 nm AuNP probes and by localized HRP-mediated deposition of silver nanoparticles. Corresponding BSA-passivated negative controls showed very few bound AuNP probes and little to no enzymatic formation of diformazan precipitates or silver nanoparticles. PMID:23717382
NASA Astrophysics Data System (ADS)
Licsandru, Erol-Dan; Schneider, Susanne; Tingry, Sophie; Ellis, Thomas; Moulin, Emilie; Maaloum, Mounir; Lehn, Jean-Marie; Barboiu, Mihail; Giuseppone, Nicolas
2016-03-01
Biocompatible silica-based mesoporous materials, which present high surface areas combined with uniform distribution of nanopores, can be organized in functional nanopatterns for a number of applications. However, silica is by essence an electrically insulating material which precludes applications for electro-chemical devices. The formation of hybrid electroactive silica nanostructures is thus expected to be of great interest for the design of biocompatible conducting materials such as bioelectrodes. Here we show that we can grow supramolecular stacks of triarylamine molecules in the confined space of oriented mesopores of a silica nanolayer covering a gold electrode. This addressable bottom-up construction is triggered from solution simply by light irradiation. The resulting self-assembled nanowires act as highly conducting electronic pathways crossing the silica layer. They allow very efficient charge transfer from the redox species in solution to the gold surface. We demonstrate the potential of these hybrid constitutional materials by implementing them as biocathodes and by measuring laccase activity that reduces dioxygen to produce water.Biocompatible silica-based mesoporous materials, which present high surface areas combined with uniform distribution of nanopores, can be organized in functional nanopatterns for a number of applications. However, silica is by essence an electrically insulating material which precludes applications for electro-chemical devices. The formation of hybrid electroactive silica nanostructures is thus expected to be of great interest for the design of biocompatible conducting materials such as bioelectrodes. Here we show that we can grow supramolecular stacks of triarylamine molecules in the confined space of oriented mesopores of a silica nanolayer covering a gold electrode. This addressable bottom-up construction is triggered from solution simply by light irradiation. The resulting self-assembled nanowires act as highly conducting electronic pathways crossing the silica layer. They allow very efficient charge transfer from the redox species in solution to the gold surface. We demonstrate the potential of these hybrid constitutional materials by implementing them as biocathodes and by measuring laccase activity that reduces dioxygen to produce water. Electronic supplementary information (ESI) available: Synthetic protocols, XPS measurements, contact angle measurements, additional cyclic voltammograms and electrochemical impedance spectroscopy. See DOI: 10.1039/c5nr06977g
NASA Astrophysics Data System (ADS)
Zhou, T.; Popescu, S. C.; Krause, K.
2016-12-01
Waveform Light Detection and Ranging (LiDAR) data have advantages over discrete-return LiDAR data in accurately characterizing vegetation structure. However, we lack a comprehensive understanding of waveform data processing approaches under different topography and vegetation conditions. The objective of this paper is to highlight a novel deconvolution algorithm, the Gold algorithm, for processing waveform LiDAR data with optimal deconvolution parameters. Further, we present a comparative study of waveform processing methods to provide insight into selecting an approach for a given combination of vegetation and terrain characteristics. We employed two waveform processing methods: 1) direct decomposition, 2) deconvolution and decomposition. In method two, we utilized two deconvolution algorithms - the Richardson Lucy (RL) algorithm and the Gold algorithm. The comprehensive and quantitative comparisons were conducted in terms of the number of detected echoes, position accuracy, the bias of the end products (such as digital terrain model (DTM) and canopy height model (CHM)) from discrete LiDAR data, along with parameter uncertainty for these end products obtained from different methods. This study was conducted at three study sites that include diverse ecological regions, vegetation and elevation gradients. Results demonstrate that two deconvolution algorithms are sensitive to the pre-processing steps of input data. The deconvolution and decomposition method is more capable of detecting hidden echoes with a lower false echo detection rate, especially for the Gold algorithm. Compared to the reference data, all approaches generate satisfactory accuracy assessment results with small mean spatial difference (<1.22 m for DTMs, < 0.77 m for CHMs) and root mean square error (RMSE) (<1.26 m for DTMs, < 1.93 m for CHMs). More specifically, the Gold algorithm is superior to others with smaller root mean square error (RMSE) (< 1.01m), while the direct decomposition approach works better in terms of the percentage of spatial difference within 0.5 and 1 m. The parameter uncertainty analysis demonstrates that the Gold algorithm outperforms other approaches in dense vegetation areas, with the smallest RMSE, and the RL algorithm performs better in sparse vegetation areas in terms of RMSE.
Gold-catalyzed oxide nanopatterns for the directed assembly of Ge island arrays on Si.
Robinson, Jeremy T; Ratto, Fulvio; Moutanabbir, Oussama; Heun, Stefan; Locatelli, Andrea; Mentes, T Onur; Aballe, Lucia; Dubon, Oscar D
2007-09-01
The heteroepitaxial growth of Ge on Au-patterned Si(001) is investigated using in situ spectromicroscopy. Patterning of a hydrogen-terminated Si surface with a square array of Au dots followed by brief exposure to air leads to the spontaneous, local oxidation of Si. The resulting oxide nanopattern limits the surface migration of Au during annealing up to 600 degrees C, resulting in complete preservation of the Au pattern. Subsequent deposition of Ge induces a redistribution of Au across the surface even as the oxide nanopattern persists. As a result, the oxide pattern drives the growth of Ge islands into an ordered assembly, while Au decorates the surfaces of the Ge islands and modifies their shape.
NASA Astrophysics Data System (ADS)
Park, Hyungmin; Kim, Jae-Up; Park, Soojin
2012-02-01
A simple, straightforward process for fabricating multi-scale micro- and nanostructured patterns from polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP)/poly(methyl methacrylate) (PMMA) homopolymer in a preferential solvent for PS and PMMA is demonstrated. When the PS-b-P2VP/PMMA blend films were spin-coated onto a silicon wafer, PS-b-P2VP micellar arrays consisting of a PS corona and a P2VP core were formed, while the PMMA macrodomains were isolated, due to the macrophase separation caused by the incompatibility between block copolymer micelles and PMMA homopolymer during the spin-coating process. With an increase of PMMA composition, the size of PMMA macrodomains increased. Moreover, the P2VP blocks have a strong interaction with a native oxide of the surface of the silicon wafer, so that the P2VP wetting layer was first formed during spin-coating, and PS nanoclusters were observed on the PMMA macrodomains beneath. Whereas when a silicon surface was modified with a PS brush layer, the PS nanoclusters underlying PMMA domains were not formed. The multi-scale patterns prepared from copolymer micelle/homopolymer blend films are used as templates for the fabrication of gold nanoparticle arrays by incorporating the gold precursor into the P2VP chains. The combination of nanostructures prepared from block copolymer micellar arrays and macrostructures induced by incompatibility between the copolymer and the homopolymer leads to the formation of complex, multi-scale surface patterns by a simple casting process.A simple, straightforward process for fabricating multi-scale micro- and nanostructured patterns from polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP)/poly(methyl methacrylate) (PMMA) homopolymer in a preferential solvent for PS and PMMA is demonstrated. When the PS-b-P2VP/PMMA blend films were spin-coated onto a silicon wafer, PS-b-P2VP micellar arrays consisting of a PS corona and a P2VP core were formed, while the PMMA macrodomains were isolated, due to the macrophase separation caused by the incompatibility between block copolymer micelles and PMMA homopolymer during the spin-coating process. With an increase of PMMA composition, the size of PMMA macrodomains increased. Moreover, the P2VP blocks have a strong interaction with a native oxide of the surface of the silicon wafer, so that the P2VP wetting layer was first formed during spin-coating, and PS nanoclusters were observed on the PMMA macrodomains beneath. Whereas when a silicon surface was modified with a PS brush layer, the PS nanoclusters underlying PMMA domains were not formed. The multi-scale patterns prepared from copolymer micelle/homopolymer blend films are used as templates for the fabrication of gold nanoparticle arrays by incorporating the gold precursor into the P2VP chains. The combination of nanostructures prepared from block copolymer micellar arrays and macrostructures induced by incompatibility between the copolymer and the homopolymer leads to the formation of complex, multi-scale surface patterns by a simple casting process. Electronic supplementary information (ESI) available: AFM images of PS-b-P2VP/PMMA blend films and cross-sectional line scans. See DOI: 10.1039/c2nr11792d
Management of COPD in the UK primary-care setting: an analysis of real-life prescribing patterns
Price, David; West, Daniel; Brusselle, Guy; Gruffydd-Jones, Kevin; Jones, Rupert; Miravitlles, Marc; Rossi, Andrea; Hutton, Catherine; Ashton, Valerie L; Stewart, Rebecca; Bichel, Katsiaryna
2014-01-01
Background Despite the availability of national and international guidelines, evidence suggests that chronic obstructive pulmonary disease (COPD) treatment is not always prescribed according to recommendations. This study evaluated the current management of patients with COPD using a large UK primary-care database. Methods This analysis used electronic patient records and patient-completed questionnaires from the Optimum Patient Care Research Database. Data on current management were analyzed by the Global Initiative for Chronic Obstructive Lung Disease (GOLD) group and presence or absence of a concomitant asthma diagnosis, in patients with a COPD diagnosis at ≥35 years of age and with spirometry results supportive of the COPD diagnosis. Results A total of 24,957 patients were analyzed, of whom 13,557 (54.3%) had moderate airflow limitation (GOLD Stage 2 COPD). The proportion of patients not receiving pharmacologic treatment for COPD was 17.0% in the total COPD population and 17.7% in the GOLD Stage 2 subset. Approximately 50% of patients in both cohorts were receiving inhaled corticosteroids (ICS), either in combination with a long-acting β2-agonist (LABA; 26.7% for both cohorts) or a LABA and a long-acting muscarinic antagonist (LAMA; 23.2% and 19.9%, respectively). ICS + LABA and ICS + LABA + LAMA were the most frequently used treatments in GOLD Groups A and B. Of patients without concomitant asthma, 53.7% of the total COPD population and 50.2% of the GOLD Stage 2 subset were receiving ICS. Of patients with GOLD Stage 2 COPD and no exacerbations in the previous year, 49% were prescribed ICS. A high proportion of GOLD Stage 2 COPD patients were symptomatic on their current management (36.6% with modified Medical Research Council score ≥2; 76.4% with COPD Assessment Test score ≥10). Conclusion COPD is not treated according to GOLD and National Institute for Health and Care Excellence recommendations in the UK primary-care setting. Some patients receive no treatment despite experiencing symptoms. Among those on treatment, most receive ICS irrespective of severity of airflow limitation, asthma diagnosis, and exacerbation history. Many patients on treatment continue to have symptoms. PMID:25210450
Photoresponses in Gold Nanoparticle Single-Electron Transistors with Molecular Floating Gates
NASA Astrophysics Data System (ADS)
Noguchi, Yutaka; Yamamoto, Makoto; Ishii, Hisao; Ueda, Rieko; Terui, Toshifumi; Imazu, Keisuke; Tamada, Kaoru; Sakano, Takeshi; Matsuda, Kenji
2013-11-01
We have proposed a simple method of activating advanced functions in single-electron transistors (SETs) based on the specific properties of individual molecules. As a prototype, we fabricated a copper phthalocyanine (CuPc)-doped SET. The device consists of a gold-nanoparticle (GNP)-based SET doped with CuPc as a photoresponsive floating gate. In this paper, we report the details of the photoresponses of the CuPc-doped SET, such as conductance switching, sensitivity to the wavelength of the incident light, and multiple induced states.
First-principles molecular transport calculation for the benzenedithiolate molecule
NASA Astrophysics Data System (ADS)
Rumetshofer, M.; Dorn, G.; Boeri, L.; Arrigoni, E.; von der Linden, W.
2017-10-01
A first-principles approach based on density functional theory and non-equilibrium Green’s functions is used to study the molecular transport system consisting of benzenedithiolate connected with monoatomic gold and platinum electrodes. Using symmetry arguments we explain why the conductance mechanism is different for gold and platinum electrodes. We present the charge stability diagram for the benzenedithiolate connected with monoatomic platinum electrodes including many-body effects in terms of an extended Hubbard Hamiltonian and discuss how the electrodes and the many-body effects influence the transport properties of the system.
First-principles Theory of Inelastic Transport and Local Heating in Atomic Gold Wires
NASA Astrophysics Data System (ADS)
Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads; Jauho, Antti-Pekka
2007-04-01
We present theoretical calculations of the inelastic transport properties in atomic gold wires. Our method is based on a combination of density functional theory and non-equilibrium Green's functions. The vibrational spectra for extensive series of wire geometries have been calculated using SIESTA, and the corresponding effects in the conductance are analyzed. In particular, we focus on the heating of the active vibrational modes. By a detailed comparison with experiments we are able to estimate an order of magnitude for the external damping of the active vibrations.
Electrochemical method of controlling thiolate coverage on a conductive substrate such as gold
Porter, M.D.; Weisshaar, D.E.
1998-10-27
An electrochemical method is described for forming a partial monomolecular layer of a predetermined extent of coverage of a thiolate of the formula, XRS-, therein R can be a linear or branched chain hydrocarbon or an aromatic or the like and X can be any compatible end group, e.g., OH, COOH, CH{sub 3} or the like, upon a substrate such as gold, which involves applying in an electrochemical system a constant voltage preselected to yield the desired predetermined extent of coverage. 13 figs.
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration
2017-11-01
The STAR Collaboration reports on the photoproduction of π+π- pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly real photon emitted by one ion scatters from the other ion. We fit the π+π- invariant-mass spectrum with a combination of ρ0 and ω resonances and a direct π+π- continuum. This is the first observation of the ω in ultraperipheral collisions, and the first measurement of ρ -ω interference at energies where photoproduction is dominated by Pomeron exchange. The ω amplitude is consistent with the measured γ p →ω p cross section, a classical Glauber calculation, and the ω →π+π- branching ratio. The ω phase angle is similar to that observed at much lower energies, showing that the ρ -ω phase difference does not depend significantly on photon energy. The ρ0 differential cross section d σ /d t exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with two minima visible. The positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.
Francis, Sijo; Joseph, Siby; Koshy, Ebey P; Mathew, Beena
2017-07-01
Plant-derived nanomaterials opened a green approach in solving the current environment issues. Present study focused on rapid microwave-assisted synthesis and applications of gold and silver nanoparticles mediated by aqueous leaf extract of Mussaenda glabrata. The synthesized nanoparticles were characterized by UV-vis, FT-IR, powder XRD, energy-dispersive X-ray spectroscopy (EDX), transmission electron (TEM), and atomic force microscopic techniques (AFM). FCC crystal structure of both nanoparticles was confirmed by peaks corresponding to (111), (200), (220), and (311) planes in XRD spectra and bright circular spots in SAED pattern. IC 50 values shown by gold and silver nanoparticles (44.1 ± 0.82 and 57.92 ± 1.33 μg/mL) reflected their high free radical scavenging potential. The synthesized gold and silver nanoparticles revealed their potency to inhibit pathogenic microorganisms Bacillus pumilus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Aspergillus niger, and Penicillium chrysogenum. Anthropogenic pollutants rhodamine B and methyl orange were effectively degraded from aquatic environment and waste water sewages of dye industries using the prepared nanocatalysts. The catalytic capacities of the synthesized nanoparticles were also exploited in the reduction of 4-nitrophenol. Graphical abstract.
Keen, P; Conway, D P; Cunningham, P; McNulty, A; Couldwell, D L; Davies, S C; Smith, D E; Gray, J; Holt, M; O'Connor, C C; Read, P; Callander, D; Prestage, G; Guy, R
2017-01-01
The Trinity Biotech Uni-Gold HIV test (Uni-Gold) is often used as a supplementary rapid test in testing algorithms. To evaluate the operational performance of the Uni-Gold as a first-line screening test among gay and bisexual men (GBM) in a setting where 4th generation HIV laboratory assays are routinely used. We compared the performance of Uni-Gold with conventional HIV serology conducted in parallel among GBM attending 22 testing sites. Sensitivity was calculated separately for acute and established infection, defined using 4th generation screening Ag/Ab immunoassay (EIA) and Western blot results. Previous HIV testing history and results of supplementary 3rd generation HIV Ab EIA, and p24 antigen EIA were used to further characterise cases of acute infection. Of 10,793 specimens tested with Uni-Gold and conventional serology, 94 (0.90%, 95%CI:0.70-1.07) were confirmed as HIV-positive by conventional serology, and 37 (39.4%) were classified as acute infection. Uni-Gold sensitivity was 81.9% overall (77/94, 95%CI:72.6-89.1); 56.8% for acute infection (21/37, 95%CI:39.5-72.9) and 98.2% for established infection (56/57, 95%CI:90.6-100.0). Of 17 false non-reactive Uni-Gold results, 16 were acute infections, and of these seven were p24 antigen reactive but antibody negative. Uni-Gold specificity was 99.9% (10,692/10,699, 95%CI:99.9-100.0), PPV was 91.7% (95%CI:83.6-96.6) and NPV was 99.8% (95%CI:99.7-99.9), respectively. In this population, Uni-Gold had good specificity and sensitivity was high for established infections when compared to 4th generation laboratory assays, however sensitivity was lower in acute infections. Where rapid tests are used in populations with a high proportion of acute infections, additional testing strategies are needed to detect acute infections. Copyright © 2016 Elsevier B.V. All rights reserved.
Diffuse cylindrical bronchiectasis due to eosinophilic bronchopneumopathy in a dog
Meler, Erika; Pressler, Barrak M.; Heng, Hock Gan; Baird, Debra K.
2010-01-01
A miniature pinscher-cross was evaluated for chronic coughing. Computed tomography and bronchoscopy revealed severe, diffuse, cylindrical bronchiectasis secondary to eosinophilic bronchopneumopathy. Computed tomography is the gold standard for diagnosis of bronchiectasis in humans, and should be further investigated in dogs as a means of characterizing severity and pattern of disease. PMID:20885829
Large-scale protein/antibody patterning with limiting unspecific adsorption
NASA Astrophysics Data System (ADS)
Fedorenko, Viktoriia; Bechelany, Mikhael; Janot, Jean-Marc; Smyntyna, Valentyn; Balme, Sebastien
2017-10-01
A simple synthetic route based on nanosphere lithography has been developed in order to design a large-scale nanoarray for specific control of protein anchoring. This technique based on two-dimensional (2D) colloidal crystals composed of polystyrene spheres allows the easy and inexpensive fabrication of large arrays (up to several centimeters) by reducing the cost. A silicon wafer coated with a thin adhesion layer of chromium (15 nm) and a layer of gold (50 nm) is used as a substrate. PS spheres are deposited on the gold surface using the floating-transferring technique. The PS spheres were then functionalized with PEG-biotin and the defects by self-assembly monolayer (SAM) PEG to prevent unspecific adsorption. Using epifluorescence microscopy, we show that after immersion of sample on target protein (avidin and anti-avidin) solution, the latter are specifically located on polystyrene spheres. Thus, these results are meaningful for exploration of devices based on a large-scale nanoarray of PS spheres and can be used for detection of target proteins or simply to pattern a surface with specific proteins.
Heterospecific aggression bias towards a rarer colour morph.
Lehtonen, Topi K; Sowersby, Will; Wong, Bob B M
2015-09-22
Colour polymorphisms are a striking example of phenotypic diversity, yet the sources of selection that allow different morphs to persist within populations remain poorly understood. In particular, despite the importance of aggression in mediating social dominance, few studies have considered how heterospecific aggression might contribute to the maintenance or divergence of different colour morphs. To redress this gap, we carried out a field-based study in a Nicaraguan crater lake to investigate patterns of heterospecific aggression directed by the cichlid fish, Hypsophrys nicaraguensis, towards colour polymorphic cichlids in the genus Amphilophus. We found that H. nicaraguensis was the most frequent territorial neighbour of the colour polymorphic A. sagittae. Furthermore, when manipulating territorial intrusions using models, H. nicaraguensis were more aggressive towards the gold than dark colour morph of the sympatric Amphilophus species, including A. sagittae. Such a pattern of heterospecific aggression should be costly to the gold colour morph, potentially accounting for its lower than expected frequency and, more generally, highlighting the importance of considering heterospecific aggression in the context of morph frequencies and coexistence in the wild. © 2015 The Author(s).
Electron beam patterning for writing of positively charged gold colloidal nanoparticles
NASA Astrophysics Data System (ADS)
Zafri, Hadar; Azougi, Jonathan; Girshevitz, Olga; Zalevsky, Zeev; Zitoun, David
2018-02-01
Synthesis at the nanoscale has progressed at a very fast pace during the last decades. The main challenge today lies in precise localization to achieve efficient nanofabrication of devices. In the present work, we report on a novel method for the patterning of gold metallic nanoparticles into nanostructures on a silicon-on-insulator (SOI) wafer. The fabrication makes use of relatively accessible equipment, a scanning electron microscope (SEM), and wet chemical synthesis. The electron beam implants electrons into the insulating material, which further anchors the positively charged Au nanoparticles by electrostatic attraction. The novel fabrication method was applied to several substrates useful in microelectronics to add plasmonic particles. The resolution and surface density of the deposition were tuned, respectively, by the electron energy (acceleration voltage) and the dose of electronic irradiation. We easily achieved the smallest written feature of 68 ± 18 nm on SOI, and the technique can be extended to any positively charged nanoparticles, while the resolution is in principle limited by the particle size distribution and the scattering of the electrons in the substrate. [Figure not available: see fulltext.
Gold recovery from low concentrations using nanoporous silica adsorbent
NASA Astrophysics Data System (ADS)
Aledresse, Adil
The development of high capacity adsorbents with uniform porosity denoted 5%MP-HMS (5% Mercaptopropyl-Hexagonal Mesoporous Structure) to extract gold from noncyanide solutions is presented. The preliminary studies from laboratory simulated noncyanide gold solutions show that the adsorption capacities of these materials are among the highest reported. The high adsorption saturation level of these materials, up to 1.9 mmol/g (37% of the adsorbent weight) from gold chloride solutions (potassium tetrachloroaurate) and 2.9 mmol/g (57% of the adsorbent weight) from gold bromide solutions (potassium tetrabromoaurate) at pH = 2, is a noteworthy feature of these materials. This gold loading from [AuC4]- and [AuBr4 ]- solutions corresponds to a relative Au:S molar ratio of 2.5:1 and 3.8:1, respectively. These rates are significantly higher than the usual 1:1 (Au:S) ratio expected for metal ion binding with the material. The additional gold ions loaded have been spontaneously reduced to metallic gold in the mesoporous material. Experimental studies indicated high maximum adsorptions of gold as high as 99.9% recovery. Another promising attribute of these materials is their favourable adsorption kinetics. The MP-HMS reaches equilibrium (saturation) in less than 1 minute of exposure in gold bromide and less than 10 minutes in gold chloride. The MP-HMS materials adsorption is significantly improved by agitation and the adsorption capacity of Au (III) ions increases with the decrease in pH. The recovery of adsorbed gold and the regeneration of spent adsorbent were investigated for MP-HMS adsorbent. The regenerated adsorbent (MP-HMS) maintained its adsorption capacity even after repeated use and all the gold was successfully recovered from the spent adsorbent. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-inpulp (CIP) and carbon-in-leach (CIL) systems fail. The gold adsorption shows the high affinity of the mesoporous material to the gold-thiosulphate ([Au (S2O3)2]3- ) ions. A high adsorption saturation level for these materials was found, up to 0.25 mmol (5 mg) Au/g of HMS from gold-thiosulphate solutions. When ammonia was added to the thiosulphate solutions, with or without added copper, the mesoporous material (HMS) achieved the maximum adsorption, 0.24 mmol (47 mg) Au/g of HMS at pH = 7, where as 0.14 mmol (28 mg) Au/g was adsorbed from ammonia-thiosulphate solution at pH > 6. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-in-pulp (CIP) and carbon-in-leach (CIL) systems fail. For process design of gold adsorption by HMS particles, certain engineering conditions and practical limitations have to be considered, including particle size of the MP-HMS. Therefore, several experiments have been conducted to enlarge the size of the very fine MP-HMS particles to a size (1--2mm) satisfying the engineering requirements for process design in a real practical and industrial process. The agglomerated mesoporous materials, using sodium metasilicate (Na 2SiO3) binder, adsorbed gold ions in the range of 51%--63% of what the parent HMS powder adsorb. That means the agglomerates can adsorb 19--23% of their own weight (or 190--230 mg Au per one gram of the agglomerated HMS) from [AuCL4]- which is still very satisfactory and acceptable comparing to the current used adsorbents.
NASA Astrophysics Data System (ADS)
Sam, F. Laurent M.; Dabera, G. Dinesha M. R.; Lai, Khue T.; Mills, Christopher A.; Rozanski, Lynn J.; Silva, S. Ravi P.
2014-08-01
Organic light emitting diodes (OLEDs) incorporating grid transparent conducting electrodes (TCEs) with wide grid line spacing suffer from an inability to transfer charge carriers across the gaps in the grids to promote light emission in these areas. High luminance OLEDs fabricated using a hybrid TCE composed of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS PH1000) or regioregular poly(3-hexylthiophene)-wrapped semiconducting single-walled carbon nanotubes (rrP3HT-SWCNT) in combination with a nanometre thin gold grid are reported here. OLEDs fabricated using the hybrid gold grid/PH1000 TCE have a luminance of 18 000 cd m-2 at 9 V; the same as the reference indium tin oxide (ITO) OLED. The gold grid/rrP3HT-SWCNT OLEDs have a lower luminance of 8260 cd m-2 at 9 V, which is likely due to a rougher rrP3HT-SWCNT surface. These results demonstrate that the hybrid gold grid/PH1000 TCE is a promising replacement for ITO in future plastic electronics applications including OLEDs and organic photovoltaics. For applications where surface roughness is not critical, e.g. electrochromic devices or discharge of static electricity, the gold grid/rrP3HT-SWCNT hybrid TCE can be employed.
Optimum Particle Size for Gold-Catalyzed CO Oxidation
2018-01-01
The structure sensitivity of gold-catalyzed CO oxidation is presented by analyzing in detail the dependence of CO oxidation rate on particle size. Clusters with less than 14 gold atoms adopt a planar structure, whereas larger ones adopt a three-dimensional structure. The CO and O2 adsorption properties depend strongly on particle structure and size. All of the reaction barriers relevant to CO oxidation display linear scaling relationships with CO and O2 binding strengths as main reactivity descriptors. Planar and three-dimensional gold clusters exhibit different linear scaling relationship due to different surface topologies and different coordination numbers of the surface atoms. On the basis of these linear scaling relationships, first-principles microkinetics simulations were conducted to determine CO oxidation rates and possible rate-determining step of Au particles. Planar Au9 and three-dimensional Au79 clusters present the highest CO oxidation rates for planar and three-dimensional clusters, respectively. The planar Au9 cluster is much more active than the optimum Au79 cluster. A common feature of optimum CO oxidation performance is the intermediate binding strengths of CO and O2, resulting in intermediate coverages of CO, O2, and O. Both these optimum particles present lower performance than maximum Sabatier performance, indicating that there is sufficient room for improvement of gold catalysts for CO oxidation. PMID:29707098
Peng, Zhaofeng; Chen, Zhaopeng; Jiang, Jianhui; Zhang, Xiaobing; Shen, Guoli; Yu, Ruqin
2007-01-30
This study reports a novel, simple and sensitive immunoassay using fluorescence quenching caused by gold nanoparticles coated with antibody. The method is based on a non-competitive heterogeneous immunoassay of human IgG conducted by the typical procedure of sandwich immunocomplex formation. Goat anti-human IgG was first adsorbed on polystyrene microwells, and human IgG analyte was captured by the primary antibody and then sandwiched by antibody labeled with gold nanoparticles. The sandwich-type immunocomplex was subsequently dissociated by the mixed solution of sodium hydroxide and trisodium citrate, the solution obtained, which contains gold nanoparticles coated with antibody, was used to quench fluorescence. The fluorescence intensity of fluorescein at 517 nm was inversely proportional to the logarithm of the concentration of human IgG in the dynamic range of 10-5000 ng mL(-1) with a detection limit of 4.7 ng mL(-1). The electrochemical experiments and the UV-vis measurements were applied to demonstrate whether the immunogold was dissociated completely and whether the gold nanoparticles aggregated after being dissociated, respectively. The proposed system can be extended to detect target molecules such as other kinds of antigen and DNA strands, and has broad potential applications in disease diagnosis.
Wuest, Craig R.; Bionta, Richard M.; Ables, Elden
1994-01-01
An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesseux, G. G., E-mail: lesseux@ifi.unicamp.br; Urbano, R. R.; Iwamoto, W.
2014-05-07
The Electron Spin Resonance (ESR) of diluted Er{sup 3+} magnetic ions in Au nanoparticles (NPs) is reported. The NPs were synthesized by reducing chloro triphenyl-phosphine gold(I) and erbium(III) trifluoroacetate. The Er{sup 3+} g-value along with the observed hyperfine splitting indicate that the Er{sup 3+} impurities are in a local cubic symmetry. Furthermore, the Er{sup 3+} ESR spectra show that the exchange interaction between the 4f and the conduction electrons (ce) is absent or negligible in Au{sub 1–x}Er{sub x} NPs, in contrast to the ESR results in bulk Au{sub 1–x}Er{sub x}. Therefore, the nature of this interaction needs to be reexaminedmore » at the nano scale range.« less
Adhesion and friction of iron and gold in contact with elemental semiconductors
NASA Technical Reports Server (NTRS)
Buckley, D. H.; Brainard, W. A.
1977-01-01
Adhesion and friction experiments were conducted with single crystals of iron and gold in contact with single crystals of germanium and silicon. Surfaces were examined in the sputter cleaned state and in the presence of oxygen and a lubricant. All experiments were conducted at room temperature with loads of 1 to 50 grams, and sliding friction was at a sliding velocity of 0.7 mm/min. Results indicate that the friction nature of metals in contact with semiconductors is sensitive to orientation, that strong adhesion of metals to both germanium and silicon occurs, and that friction is lower with silicon than with germanium for the same orientation. Surface effects are highly sensitive to environment. Silicon, for example, behaves in an entirely brittle manner in the clean state, but in the presence of a lubricant the surface deforms plastically.
Wuest, C.R.; Bionta, R.M.; Ables, E.
1994-05-03
An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.
NASA Astrophysics Data System (ADS)
Gogurla, Narendar; Mondal, Suvra P.; Sinha, Arun K.; Katiyar, Ajit K.; Banerjee, Writam; Kundu, Subhas C.; Ray, Samit K.
2013-08-01
The growing demand for biomaterials for electrical and optical devices is motivated by the need to make building blocks for the next generation of printable bio-electronic devices. In this study, transparent and flexible resistive memory devices with a very high ON/OFF ratio incorporating gold nanoparticles into the Bombyx mori silk protein fibroin biopolymer are demonstrated. The novel electronic memory effect is based on filamentary switching, which leads to the occurrence of bistable states with an ON/OFF ratio larger than six orders of magnitude. The mechanism of this process is attributed to the formation of conductive filaments through silk fibroin and gold nanoparticles in the nanocomposite. The proposed hybrid bio-inorganic devices show promise for use in future flexible and transparent nanoelectronic systems.
Templated electrochemical deposition of zirconia thin films on "recordable CDs.".
Yu, Hua-Zhong; Rowe, Aaron W; Waugh, Damien M
2002-11-15
In this paper, we describe a practical method of using gold films constructed from recordable compact disks (CD-Rs) as simple, inexpensive, and micropatterned conductive substrates for the fabrication of inorganic material microstructures. Extending from their application for the fabrication of self-assembled monolayers (SAMs) reported recently, bare and SAM-modified CD-R gold substrates have been used for template-directed electrodeposition of zirconia (ZrO2) thin films (i.e., the controlled formation of zirconia thin films on the different areas of the prefabricated, micrometer mountain-valley CD-R gold substrate surfaces). The present results demonstrate that the variation of the functional groups of the selected SAMs combined with electrodynamic control can be very successful to "customize" the formation and microstructure of functional inorganic thin films, which hold promise for modern technological applications.
Self-assembled pit arrays as templates for the integration of Au nanocrystals in oxide surfaces.
Konstantinović, Z; Sandiumenge, F; Santiso, J; Balcells, Ll; Martínez, B
2013-02-07
We report on the fabrication of long-range ordered arrays of Au nanocrystals (sub-50 nm range) on top of manganite (La(2/3)Sr(1/3)MnO(3)) thin films achieving area densities around 2 × 10(10) gold nanocrystals per cm(2), well above the densities achievable by using conventional nanofabrication techniques. The gold-manganite interface exhibits excellent conduction properties. Long-range order is achieved by a guided self-assembling process of Au nanocrystals on self-organized pit-arrays acting as a template for the nucleation of gold nanocrystals. Self-organization of pits on the manganite film surface promoted by the underlying stepped SrTiO(3) substrate is achieved by a fine tuning of the growth kinetic pathway, taking advantage of the unusual misfit strain relaxation behaviour of manganite films.
Advantages of using gold hollow nanoshells in cancer photothermal therapy
NASA Astrophysics Data System (ADS)
Abbasi, Sattar; Servatkhah, Mojtaba; Keshtkar, Mohammad Mehdi
2016-08-01
Lots of studies have been conducted on the optical properties of gold nanoparticles in the first region of near infrared (650 nm-950 nm), however new findings show that the second region of near-infrared (1000 nm-1350 nm) penetrates to the deeper tissues of the human body. Therefore, using the above-mentioned region in photo-thermal therapy (PTT) of cancer will be more appropriate. In this paper, absorption efficiency is calculated for gold spherical and rod-shaped nanoshells by the finite element method (FEM). The results show that the surface plasmon frequency of these nanostructures is highly dependent on the dimension and thickness of shell and it can be adjusted to the second region of near-infrared. Thus, due to their optical tunability and their high absorption efficiency the hollow nanoshells are the most appropriate options for eradicating cancer tissues.
Advances in fractal germanium micro/nanoclusters induced by gold: microstructures and properties.
Chen, Zhiwen; Shek, Chan-Hung; Wu, C M Lawrence; Lai, Joseph K L
2014-02-01
Germanium materials are a class of unique semiconductor materials with widespread technological applications because of their valuable semiconducting, electrical, optical, and thermoelectric power properties in the fields of macro/mesoscopic materials and micro/nanodevices. In this review, we describe the efforts toward understanding the microstructures and various properties of the fractal germanium micro/nanoclusters induced by gold prepared by high vacuum thermal evaporation techniques, highlighting contributions from our laboratory. First, we present the integer and non-integer dimensional germanium micro/nanoclusters such as nanoparticles, nanorings, and nanofractals induced by gold and annealing. In particular, the nonlinear electrical behavior of a gold/germanium bilayer film with the interesting nanofractal is discussed in detail. In addition, the third-order optical nonlinearities of the fractal germanium nanocrystals embedded in gold matrix will be summarized by using the sensitive and reliable Z-scan techniques aimed to determine the nonlinear absorption coefficient and nonlinear refractive index. Finally, we emphasize the thermoelectric power properties of the gold/germanium bilayer films. The thermoelectric power measurement is considered to be a more effective method than the conductivity for investigating superlocalization in a percolating system. This research may provide a novel insight to modulate their competent performance and promote rational design of micro/nanodevices. Once mastered, germanium thin films with a variety of fascinating micro/nanoclusters will offer vast and unforeseen opportunities in the semiconductor industry as well as in other fields of science and technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkby, C; The University of Calgary, Calgary, AB; Koger, B
2016-06-15
Purpose: Gold nanoparticles (GNPs) can enhance radiotherapy effects. The high photoelectric cross section of gold relative to tissue, particularly at lower energies, leads to localized dose enhancement. However in a clinical context, photon energies must also be sufficient to reach a target volume at a given depth. These properties must be balanced to optimize such a therapy. Given that nanoscale energy deposition patterns around GNPs play a role in determining biological outcomes, in this work we seek to establish their role in this optimization process. Methods: The PENELOPE Monte Carlo code was used to generate spherical dose deposition kernels inmore » 1000 nm diameter spheres around 50 nm diameter GNPs in response to monoenergetic photons incident on the GNP. Induced “lesions” were estimated by either a local effect model (LEM) or a mean dose model (MDM). The ratio of these estimates was examined for a range of photon energies (10 keV to 2 MeV), for three sets of linear-quadratic parameters. Results: The models produce distinct differences in expected lesion values, the lower the alpha-beta ratio, the greater the difference. The ratio of expected lesion values remained constant within 5% for energies of 40 keV and above across all parameter sets and rose to a difference of 35% for lower energies only for the lowest alpha-beta ratio. Conclusion: Consistent with other work, these calculations suggest nanoscale energy deposition patterns matter in predicting biological response to GNP-enhanced radiotherapy. However the ratio of expected lesions between the different models is largely independent of energy, indicating that GNP-enhanced radiotherapy scenarios can be optimized in photon energy without consideration of the nanoscale patterns. Special attention may be warranted for energies of 20 keV or below and low alpha-beta ratios.« less
NASA Astrophysics Data System (ADS)
Masoumi, Masoud; Wang, Ya; Liu, Mingzhao; Tewolde, Mahder; Longtin, Jon
2015-04-01
In this work, nano-transducers with a superparamagnetic iron oxide (SPIO) core have been synthesized by preparation of precursor gold nanoseeds loaded on SPIO-embedded silica to form a gold nanoshell. The goal is for such nanotansducers to be used in theranostics to detect brain tumors by using MRI imaging and then assist in their treatment by using photothermal ablation. The iron oxide core provides for the use of a magnetic-field to guide the particles to the target (tumor) site. The gold nanoshell can be then readily heated using incident light and/or an alternating magneticfield. After synthesis of nano-transducer samples, Transmission Electron Microscopy was employed to analyze the formation of each layer. Then UV spectroscopy experiments were conducted to examine the light absorbance of the synthesized samples. The UV-visible absorption spectra shows a clear surface plasmon resonance (SPR) band around 530 nm, verifying the presence of gold coating nanoshells. Finally photothermal experiments using a high-power laser beam with a wavelength of 527 nm were performed to heat the samples. It was found that the temperature reaches 45° C in 12 minutes.
Ding, Nan; Cao, Qian; Zhao, Hong; Yang, Yimin; Zeng, Lixi; He, Yujian; Xiang, Kaixiang; Wang, Guangwei
2010-01-01
In this report, we present a new method for visual detection of Pb2+. Gold nanoparticles (Au-NPs) were synthesized in one step at room temperature, using gallic acid (GA) as reducer and stabilizer. Pb2+ is added during the gold nanoparticle formation. Analysis of Pb2+ is conducted by a dual strategy, namely, colorimetry and spectrometry. During Au-NPs synthesis, addition of Pb2+ would lead to formation of Pb-GA complex, which can induce the aggregation of newly-formed small unstable gold nanoclusters. Consequently, colorimetric detection of trace Pb2+ can be realized. As the Pb2+ concentration increases, the color turns from red-wine to purple, and finally blue. This method offers a sensitive linear correlation between the shift of the absorption band (Δλ) and logarithm of Pb2+ concentration ranging from 5.0 × 10−8 to 1.0 × 10−6 M with a linear fit coefficient of 0.998, and a high selectivity for Pb2+ detection with a low detection limit down to 2.5 × 10−8 M. PMID:22163517
Dose enhancement effects of gold nanoparticles specifically targeting RNA in breast cancer cells
Metzler, Philipp; Pilarczyk, Götz; Bobu, Vladimir; Kriz, Wilhelm; Hosser, Hiltraud; Fleckenstein, Jens; Krufczik, Matthias; Bestvater, Felix; Wenz, Frederik; Hausmann, Michael
2018-01-01
Localization microscopy has shown to be capable of systematic investigations on the arrangement and counting of cellular uptake of gold nanoparticles (GNP) with nanometer resolution. In this article, we show that the application of specially modified RNA targeting gold nanoparticles (“SmartFlares”) can result in ring like shaped GNP arrangements around the cell nucleus. Transmission electron microscopy revealed GNP accumulation in vicinity to the intracellular membrane structures including them of the endoplasmatic reticulum. A quantification of the radio therapeutic dose enhancement as a proof of principle was conducted with γH2AX foci analysis: The application of both—SmartFlares and unmodified GNPs—lead to a significant dose enhancement with a factor of up to 1.2 times the dose deposition compared to non-treated breast cancer cells. This enhancement effect was even more pronounced for SmartFlares. Furthermore, it was shown that a magnetic field of 1 Tesla simultaneously applied during irradiation has no detectable influence on neither the structure nor the dose enhancement dealt by gold nanoparticles. PMID:29346397
Morphology in electrochemically grown conducting polymer films
Rubinstein, Israel; Gottesfeld, Shimshon; Sabatani, Eyal
1992-01-01
A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventioonally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol.
Morphology in electrochemically grown conducting polymer films
Rubinstein, I.; Gottesfeld, S.; Sabatani, E.
1992-04-28
A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventionally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol. 2 figs.
Gold nanoparticle-enabled blood test for early stage cancer detection and risk assessment.
Zheng, Tianyu; Pierre-Pierre, Nickisha; Yan, Xin; Huo, Qun; Almodovar, Alvin J O; Valerio, Felipe; Rivera-Ramirez, Inoel; Griffith, Elizabeth; Decker, David D; Chen, Sixue; Zhu, Ning
2015-04-01
When citrate ligands-capped gold nanoparticles are mixed with blood sera, a protein corona is formed on the nanoparticle surface due to the adsorption of various proteins in the blood to the nanoparticles. Using a two-step gold nanoparticle-enabled dynamic light scattering assay, we discovered that the amount of human immunoglobulin G (IgG) in the gold nanoparticle protein corona is increased in prostate cancer patients compared to noncancer controls. Two pilot studies conducted on blood serum samples collected at Florida Hospital and obtained from Prostate Cancer Biorespository Network (PCBN) revealed that the test has a 90-95% specificity and 50% sensitivity in detecting early stage prostate cancer, representing a significant improvement over the current PSA test. The increased amount of human IgG found in the protein corona is believed to be associated with the autoantibodies produced in cancer patients as part of the immunodefense against tumor. Proteomic analysis of the nanoparticle protein corona revealed molecular profile differences between cancer and noncancer serum samples. Autoantibodies and natural antibodies produced in cancer patients in response to tumorigenesis have been found and detected in the blood of many cancer types. The test may be applicable for early detection and risk assessment of a broad spectrum of cancer. This new blood test is simple, low cost, requires only a few drops of blood sample, and the results are obtained within minutes. The test is well suited for screening purpose. More extensive studies are being conducted to further evaluate and validate the clinical potential of the new test.
Liu, Shizhao; Plawsky, Joel L
2017-12-12
A composite film made of a stable gold nanoparticle (NP) array with well-controlled separation and size atop a TiO 2 nanorod film was fabricated via the oblique angle deposition (OAD) technique. The fabrication of the NP array is based on controlled, Rayleigh-instability-induced, solid-state dewetting of as-deposited gold aggregates on the TiO 2 nanorods. It was found that the initial spacing between as-deposited gold aggregates along the vapor flux direction should be greater than the TiO 2 interrod spacing created by 80° OAD to control dewetting and produce NP arrays. A numerical investigation of the process was conducted using a phase-field modeling approach. Simulation results showed that coalescence between neighboring gold aggregates is likely to have caused the uncontrolled dewetting in the 80° deposition, and this could be circumvented if the initial spacing between gold aggregates is larger than a critical value s min . We also found that TiO 2 nanorod tips affect dewetting dynamics differently than planar TiO 2 . The topology of the tips can induce contact line pinning and an increase in the contact angle along the vapor flux direction to the supported gold aggregates. These two effects are beneficial for the fabrication of monodisperse NPs based on Rayleigh-instability-governed self-assembly of materials, as they help to circumvent the undesired coalescence and facilitate the instability growth on the supported material. The findings uncover the application potential of OAD as a new method to fabricate structured films as template substrates to mediate dewetting. The reported composite films would have uses in optical coatings and photocatalytic systems, taking advantage of their ability to combine plasmonic nanostructures within a nanostructured dielectric film.
Acosta-García, Ma Cristina; Morales-Reyes, Israel; Jiménez-Anguiano, Anabel; Batina, Nikola; Castellanos, N P; Godínez-Fernández, R
2018-02-01
This paper shows the simultaneous recording of electrical activity and the underlying ionic currents by using a gold substrate to culture NG108-15 cells. Cells grown on two different substrates (plastic Petri dishes and gold substrates) were characterized quantitatively through scanning electron microscopy (SEM) as well as qualitatively by optical and atomic force microscopy (AFM). No significant differences were observed between the surface area of cells cultured on gold substrates and Petri dishes, as indicated by measurements performed on SEM images. We also evaluated the electrophysiological compatibility of the cells through standard patch-clamp experiments by analyzing features such as the resting potential, membrane resistance, ionic currents, etc. Cells grown on both substrates showed no significant differences in their dependency on voltage, as well as in the magnitude of the Na+ and K+ current density; however, cells cultured on the gold substrate showed a lower membrane capacitance when compared to those grown on Petri dishes. By using two separate patch-clamp amplifiers, we were able to record the membrane current with the conventional patch-clamp technique and through the gold substrate simultaneously. Furthermore, the proposed technique allowed us to obtain simultaneous recordings of the electrical activity (such as action potentials firing) and the underlying membrane ionic currents. The excellent conductivity of gold makes it possible to overcome important difficulties found in conventional electrophysiological experiments such as those presented by the resistance of the electrolytic bath solution. We conclude that the technique here presented constitutes a solution to the problem of the simultaneous recording of electrical activity and the underlying ionic currents, which for decades, had been solved only partially.
Magnetic Calorimeter Arrays with High Sensor Inductance and Dense Wiring
NASA Astrophysics Data System (ADS)
Stevenson, T. R.; Balvin, M. A.; Bandler, S. R.; Devasia, A. M.; Nagler, P. C.; Smith, S. J.; Yoon, W.
2018-05-01
We describe prototype arrays of magnetically coupled microcalorimeters fabricated with an approach scalable to very large format arrays. The superconducting interconnections and sensor coils have sufficiently low inductance in the wiring and sufficiently high inductance in the coils in each pixel, to enable arrays containing greater than 4000 sensors and 100,000 X-ray absorbers to be used in future astrophysics missions such as Lynx. We have used projection lithography to create submicron patterns (e.g., 400 nm lines and spaces) in our niobium sensor coils and wiring, integrated with gold-erbium sensor films and gold X-ray absorbers. Our prototype devices will explore the device physics of metallic magnetic calorimeters as feature sizes are reduced to nanoscale.
NASA Astrophysics Data System (ADS)
Long, Kailin; Du, Deyang; Luo, Xiaoguang; Zhao, Weiwei; Wu, Zhangting; Si, Lifang; Qiu, Teng
2014-08-01
This work reports a facile method to fabricate gold coated copper(II) hydroxide pine-needle-like micro/nanostructures for surface-enhanced Raman scattering (SERS) application. The effects of reaction parameters on the shape, size and surface morphology of the products are systematically investigated. The as-prepared 3D hierarchical structures have the advantage of a large surface area available for the formation of hot spots and the adsorption of target analytes, thus dramatically improving the Raman signals. The finite difference time domain calculations indicate that the pine-needle-like model pattern may demonstrate a high quality SERS property owing to the high density and abundant hot spot characteristic in closely spaced needle-like arms.
Huang, Shuo; Chang, Shuai; He, Jin; Zhang, Peiming; Liang, Feng; Tuchband, Michael; Li, Shengqing; Lindsay, Stuart
2010-12-09
The DNA bases interact strongly with gold electrodes, complicating efforts to measure the tunneling conductance through hydrogen-bonded Watson Crick base pairs. When bases are embedded in a self-assembled alkane-thiol monolayer to minimize these interactions, new features appear in the tunneling data. These new features track the predictions of density-functional calculations quite well, suggesting that they reflect tunnel conductance through hydrogen-bonded base pairs.
Huang, Shuo; Chang, Shuai; He, Jin; Zhang, Peiming; Liang, Feng; Tuchband, Michael; Li, Shengqing; Lindsay, Stuart
2010-01-01
The DNA bases interact strongly with gold electrodes, complicating efforts to measure the tunneling conductance through hydrogen-bonded Watson Crick base pairs. When bases are embedded in a self-assembled alkane-thiol monolayer to minimize these interactions, new features appear in the tunneling data. These new features track the predictions of density-functional calculations quite well, suggesting that they reflect tunnel conductance through hydrogen-bonded base pairs. PMID:21197382
Lei, Yu; Zhang, Xianyun; Xu, Dingding; Yu, Minfeng; Yi, Zhiran; Li, Zhixiang; Sun, Aihua; Xu, Gaojie; Cui, Ping; Guo, Jianjun
2018-05-03
Micro- and nanopatterning of cost-effective addressable metallic nanostructures has been a long endeavor in terms of both scientific understanding and industrial needs. Herein, a simple and efficient dynamic meniscus-confined electrodeposition (MCED) technique for precisely positioned copper line micropatterns with superior electrical conductivity (greater than 1.57 × 10 4 S/cm) on glass, silicon, and gold substrates is reported. An unexpected higher printing speed in the evaporative regime is realized for precisely positioned copper lines patterns with uniform width and height under horizontal scanning-mode. The final line height and width depend on the typical behavior of traditional flow coating process, while the surface morphologies and roughness are mainly governed by evaporation-driven electrocrystallization dynamics near the receding moving contact line. Integrated 3D structures and a rapid prototyping of 3D hot-wire anemometer are further demonstrated, which is very important for the freedom integration applications in advanced conceptual devices, such as miniaturized electronics and biomedical sensors and actuators.
Lithography Assisted Fiber-Drawing Nanomanufacturing
Gholipour, Behrad; Bastock, Paul; Cui, Long; Craig, Christopher; Khan, Khouler; Hewak, Daniel W.; Soci, Cesare
2016-01-01
We present a high-throughput and scalable technique for the production of metal nanowires embedded in glass fibres by taking advantage of thin film properties and patterning techniques commonly used in planar microfabrication. This hybrid process enables the fabrication of single nanowires and nanowire arrays encased in a preform material within a single fibre draw, providing an alternative to costly and time-consuming iterative fibre drawing. This method allows the combination of materials with different thermal properties to create functional optoelectronic nanostructures. As a proof of principle of the potential of this technique, centimetre long gold nanowires (bulk Tm = 1064 °C) embedded in silicate glass fibres (Tg = 567 °C) were drawn in a single step with high aspect ratios (>104); such nanowires can be released from the glass matrix and show relatively high electrical conductivity. Overall, this fabrication method could enable mass manufacturing of metallic nanowires for plasmonics and nonlinear optics applications, as well as the integration of functional multimaterial structures for completely fiberised optoelectronic devices. PMID:27739543
Lithography Assisted Fiber-Drawing Nanomanufacturing
NASA Astrophysics Data System (ADS)
Gholipour, Behrad; Bastock, Paul; Cui, Long; Craig, Christopher; Khan, Khouler; Hewak, Daniel W.; Soci, Cesare
2016-10-01
We present a high-throughput and scalable technique for the production of metal nanowires embedded in glass fibres by taking advantage of thin film properties and patterning techniques commonly used in planar microfabrication. This hybrid process enables the fabrication of single nanowires and nanowire arrays encased in a preform material within a single fibre draw, providing an alternative to costly and time-consuming iterative fibre drawing. This method allows the combination of materials with different thermal properties to create functional optoelectronic nanostructures. As a proof of principle of the potential of this technique, centimetre long gold nanowires (bulk Tm = 1064 °C) embedded in silicate glass fibres (Tg = 567 °C) were drawn in a single step with high aspect ratios (>104) such nanowires can be released from the glass matrix and show relatively high electrical conductivity. Overall, this fabrication method could enable mass manufacturing of metallic nanowires for plasmonics and nonlinear optics applications, as well as the integration of functional multimaterial structures for completely fiberised optoelectronic devices.
Nanosphere Lithography on Fiber: Towards Engineered Lab-On-Fiber SERS Optrodes
Quero, Giuseppe; Zito, Gianluigi; Cusano, Andrea
2018-01-01
In this paper we report on the engineering of repeatable surface enhanced Raman scattering (SERS) optical fiber sensor devices (optrodes), as realized through nanosphere lithography. The Lab-on-Fiber SERS optrode consists of polystyrene nanospheres in a close-packed arrays configuration covered by a thin film of gold on the optical fiber tip. The SERS surfaces were fabricated by using a nanosphere lithography approach that is already demonstrated as able to produce highly repeatable patterns on the fiber tip. In order to engineer and optimize the SERS probes, we first evaluated and compared the SERS performances in terms of Enhancement Factor (EF) pertaining to different patterns with different nanosphere diameters and gold thicknesses. To this aim, the EF of SERS surfaces with a pitch of 500, 750 and 1000 nm, and gold films of 20, 30 and 40 nm have been retrieved, adopting the SERS signal of a monolayer of biphenyl-4-thiol (BPT) as a reliable benchmark. The analysis allowed us to identify of the most promising SERS platform: for the samples with nanospheres diameter of 500 nm and gold thickness of 30 nm, we measured values of EF of 4 × 105, which is comparable with state-of-the-art SERS EF achievable with highly performing colloidal gold nanoparticles. The reproducibility of the SERS enhancement was thoroughly evaluated. In particular, the SERS intensity revealed intra-sample (i.e., between different spatial regions of a selected substrate) and inter-sample (i.e., between regions of different substrates) repeatability, with a relative standard deviation lower than 9 and 15%, respectively. Finally, in order to determine the most suitable optical fiber probe, in terms of excitation/collection efficiency and Raman background, we selected several commercially available optical fibers and tested them with a BPT solution used as benchmark. A fiber probe with a pure silica core of 200 µm diameter and high numerical aperture (i.e., 0.5) was found to be the most promising fiber platform, providing the best trade-off between high excitation/collection efficiency and low background. This work, thus, poses the basis for realizing reproducible and engineered Lab-on-Fiber SERS optrodes for in-situ trace detection directed toward highly advanced in vivo sensing. PMID:29495322
NASA Astrophysics Data System (ADS)
Zhao, Fusheng; Zenasni, Oussama; Li, Jingting; Shih, Wei-Chuan
2017-02-01
Localized surface plasmon resonance (LSPR) arises from the interaction of light with noble metal nanoparticles, which induces a collective oscillation in the free electrons. The size and shape of the metallic nanostructure significantly impact LSPR frequency and strength. Nanoplasmonic sensor has become a recent research focus due to its significant signal enhancement and robust signal transduction measured by extinction spectroscopy, fluorescence, Raman scattering, and absorption spectroscopy. Dark-field microscopy, in contrast, reports the scattered photons after light-matter interactions. In this case, the nanoparticles can be understood as dipole radiators whose free electrons oscillate in concert. Coupled with spectroscopy, this platform allows the collection of plasmonically scattered spectra from gold nanoparticles. Plasmonic coupling between electron-beam lithography patterned gold nanodisks (AuND) and colloidal gold nanoparticles (AuNP) can change the plasmonic resonance of the original entities, and can be effectively studied by dark-field hyperspectral microscopy. Typically, a pronounced redshift can be observed when plasmonic coupling occurs. When these nano-entities are functionalized with interactive surface moieties, biochemistry and molecular processes can be studied. In this paper, we will present the capability of assessing the process of immobilizing streptavidin-functionalized AuNPs on an array of biotin-terminated AuNDs. By monitoring changes in the LSPR band of AuNDs, we are able to evaluate similar processes in other molecular systems. In addition, plasmon coupling induced scattering intensity variations can be measured by an electron-multiplied charge-coupled device camera for rapid in situ monitoring. This method can potentially be useful in studying dynamic biophysical and biochemical processes in situ.
Cruz-Alonso, María; Fernandez, Beatriz; Álvarez, Lydia; González-Iglesias, Héctor; Traub, Heike; Jakubowski, Norbert; Pereiro, Rosario
2017-12-18
An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma - mass spectrometry (ICP-MS). Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. Graphical abstract Gold nanoclusters (AuNCs) conjugated to a primary specific antibody serve as a label for amplified bioimaging of metallothioneins (MTs) by laser ablation coupled to inductively coupled plasma - mass spectrometry (ICP-MS) in human ocular tissue sections.
Digital Plasmonic Patterning for Localized Tuning of Hydrogel Stiffness
Hribar, Kolin C.; Choi, Yu Suk; Ondeck, Matthew; Engler, Adam J.
2015-01-01
The mechanical properties of the extracellular matrix (ECM) can dictate cell fate in biological systems. In tissue engineering, varying the stiffness of hydrogels—water-swollen polymeric networks that act as ECM substrates—has previously been demonstrated to control cell migration, proliferation, and differentiation. Here, “digital plasmonic patterning” (DPP) is developed to mechanically alter a hydrogel encapsulated with gold nanorods using a near-infrared laser, according to a digital (computer-generated) pattern. DPP can provide orders of magnitude changes in stiffness, and can be tuned by laser intensity and speed of writing. In vitro cellular experiments using A7R5 smooth muscle cells confirm cell migration and alignment according to these patterns, making DPP a useful technique for mechanically patterning hydrogels for various biomedical applications. PMID:26120293
Programmable assembly of pressure sensors using pattern-forming bacteria.
Cao, Yangxiaolu; Feng, Yaying; Ryser, Marc D; Zhu, Kui; Herschlag, Gregory; Cao, Changyong; Marusak, Katherine; Zauscher, Stefan; You, Lingchong
2017-11-01
Biological systems can generate microstructured materials that combine organic and inorganic components and possess diverse physical and chemical properties. However, these natural processes in materials fabrication are not readily programmable. Here, we use a synthetic-biology approach to assemble patterned materials. We demonstrate programmable fabrication of three-dimensional (3D) materials by printing engineered self-patterning bacteria on permeable membranes that serve as a structural scaffold. Application of gold nanoparticles to the colonies creates hybrid organic-inorganic dome structures. The dynamics of the dome structures' response to pressure is determined by their geometry (colony size, dome height, and pattern), which is easily modified by varying the properties of the membrane (e.g., pore size and hydrophobicity). We generate resettable pressure sensors that process signals in response to varying pressure intensity and duration.
NASA Astrophysics Data System (ADS)
Visart de Bocarmé, Thierry; Chau, Thoi-Dai; Kruse, Norbert
2006-09-01
The dynamic interaction of pure gold nanocrystals ("tips") with H 2O/CO gas mixtures was studied by means of video-field ion microscopy (FIM). While imaging with nano-scale resolution selected areas of the equivalent of ˜200 atomic Au sites were analysed for their chemical composition using short field pulses and injecting respective ions into a time-of-flight mass spectrometer (pulsed field desorption mass spectrometry, PFDMS). At room temperature the exposure of a clean Au sample to water gas at 10 -4 Pa, in the presence of an electric field of ˜10 V/nm, led to water adsorption and formation of bright patterns in FIM. Additional exposure to CO gas at 5 × 10 -3 Pa led to the removal of the water layer. This was associated with the occurrence of bright wave fronts which ignited simultaneously in several regions of the Au surface with no preference for a certain crystallographic surface plane. In some cases wave fronts were seen to collide resulting in more complicated patterns such as concentric rings. Surface areas free of water appeared with low brightness. The phenomena were completely reversible. PFDMS demonstrated water ions to be responsible for image formation. Surface hydroxyl was also detected mass spectrometrically and respective ion intensities decreased during the titration with CO. The results suggest that gold nanocrystals, in the absence of oxidic support materials, may be active in the reaction between water and CO at temperatures as low as 300 K and in the presence of an electric field of ˜10 V/nm.
Halpern, Aaron R; Corn, Robert M
2013-02-26
A novel low-cost nanoring array fabrication method that combines the process of lithographically patterned nanoscale electrodeposition (LPNE) with colloidal lithography is described. Nanoring array fabrication was accomplished in three steps: (i) a thin (70 nm) sacrificial nickel or silver film was first vapor-deposited onto a plasma-etched packed colloidal monolayer; (ii) the polymer colloids were removed from the surface, a thin film of positive photoresist was applied, and a backside exposure of the photoresist was used to create a nanohole electrode array; (iii) this array of nanoscale cylindrical electrodes was then used for the electrodeposition of gold, silver, or nickel nanorings. Removal of the photoresist and sacrificial metal film yielded a nanoring array in which all of the nanoring dimensions were set independently: the inter-ring spacing was fixed by the colloidal radius, the radius of the nanorings was controlled by the plasma etching process, and the width of the nanorings was controlled by the electrodeposition process. A combination of scanning electron microscopy (SEM) measurements and Fourier transform near-infrared (FT-NIR) absorption spectroscopy were used to characterize the nanoring arrays. Nanoring arrays with radii from 200 to 400 nm exhibited a single strong NIR plasmonic resonance with an absorption maximum wavelength that varied linearly from 1.25 to 3.33 μm as predicted by a simple standing wave model linear antenna theory. This simple yet versatile nanoring array fabrication method was also used to electrodeposit concentric double gold nanoring arrays that exhibited multiple NIR plasmonic resonances.
High conductivity composite metal
Zhou, Ruoyi; Smith, James L.; Embury, John David
1998-01-01
Electrical conductors and methods of producing them, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps.
Lu, Zhiwei; Dai, Wanlin; Liu, Baichen; Mo, Guangquan; Zhang, Junjun; Ye, Jiaping; Ye, Jianshan
2018-04-18
In this work, we report a facile and green strategy for one pot and in-situ synthesis of a dandelion-like conductive polyaniline coated gold nanoparticle nanocomposites (Au@PANI). The Au@PANI was characterized by SEM, TEM, XRD, TGA, FTIR, UV-vis and conductivity measurement, respectively. Newly-designed Au@PANI materials possessed a significantly high conductivity and strong adsorption capability. Thus, the Au@PANI modified glassy carbon electrode (GCE) was utilized for construct a novel electrochemical sensor for the simultaneous assay of Pb 2+ and Cu 2+ using square wave anodic stripping voltammetry (SWASV). Under the optimized conditions, an excellent electrochemical response in the simultaneous of Pb 2+ and Cu 2+ with detection limit of 0.003 and 0.008 μM (S/N = 3), respectively. Moreover, the prepared sensors realized an excellent reproducibility, repeatability and long term stability, as well as reliable practical assays in real water samples. Besides, the possible formation mechanism and sensing mechanism of Au@PANI nanocomposites have been discussed in detail. We believe this study provides a novel method of fabrication of noble metal nanoparticles decorated conducting polymer materials for the electrochemical sensing applications. Copyright © 2018 Elsevier Inc. All rights reserved.
Self-assisted optothermal trapping of gold nanorods under two-photon excitation
Chen, Hongtao; Gratton, Enrico; Digman, Michelle A
2017-01-01
We report a self-assisted optothermal trapping and patterning of gold nanorods (GNRs) on glass surfaces with a femtosecond laser. We show that GNRs are not only the trapping targets, but also can enhance the optothermal trapping of other particles. This trapping phenomenon is the net result of thermophoresis and a convective flow caused by localized heating. The heating is due to the conversion of absorbed photons into heat at GNR’s longitudinal surface plasmon resonance (LSPR) wavelength. First, we investigated the optothermal trapping of GNRs at their LSPR wavelength on the glass surface with as low as 0.5 mW laser power. The trapping range was observed to be larger than a typical field of view, e.g. 210 μm × 210 μm here. Second, by adjusting the distance between the laser focus and the glass surface, ring patterns of GNRs on the glass surface were obtained. These patterns could be controlled by the laser power and the numerical aperture of the microscope objective. Moreover, we examined the spectral emission of GNRs under different trapping conditions using the spectral phasor approach to reveal the temperature and association status of GNRs. Our study will help understanding manipulation of flows in solution and in biological systems that can be applied in future investigations of GNR-induced heating and flows. PMID:28355163
Bio-Inspired Nanomaterials: Protein Cage Nano-Architectures
2008-04-01
chemical modification of protein cage materials and controlled chemical synthesis under mild biological conditions. High- resolution structural...properties based on a combination of controlled mobility and metal ligand interactions. Using the exterior surface of the CCMV viral cage we have chemically ...follows: Patterning by microplotter was achieved by depositing a preselected antibody solution directly onto chemically activated silicon or gold
Development of flexible plasmonic plastic sensor using nanograting textured laminating film
NASA Astrophysics Data System (ADS)
Kumari, Sudha; Mohapatra, Saswat; Moirangthem, Rakesh S.
2017-02-01
The work presented in this paper describes the development of a cost-effective, flexible plasmonic plastic sensor using gold-coated nanograting nanoimprinted on a laminating plastic. The fabrication of plasmonic plastic sensor involved the transfer of nanograting pattern from polydimethylsiloxane (PDMS) polymer stamp to laminating plastic via thermal nanoimprint lithography, and subsequent gold film deposition. Gold-coated nanograting sample acted as a plasmonic chip, which exhibited surface plasmon resonance (SPR) mode in reflectance spectra under the white light illumination. The theoretical calculation was performed to study and analyze the excited SPR mode on the plasmonic chip. Further, the bulk refractive index sensitivity was demonstrated with respect to changing surrounding dielectric medium giving a value about 800 ± 27 nm/RIU (refractive index unit). In addition, the surface binding sensitivity upon adsorption of bovine serum albumin protein on the sensor surface was approximately 4.605 nm/(ng/mm2).We believe that our proposed low-cost plastic based plasmonic sensing device could be a potential candidate for the label-free and high-throughput screening of biological molecules.
Cholesteric liquid crystals doped with gold nanoparticles
NASA Astrophysics Data System (ADS)
Bitar, Rajaa; Agez, Gonzague; Mitov, Michel
2012-10-01
The reflection color of a cholesteric liquid crystal depends on material parameters such as the molecular chirality or the concentration of chiral dopant, the helical pitch of the twisted structure and the optical indices. We show that the color may be selected simply by varying the annealing time of an open cholesteric oligomer film with hybrid anchoring. The 3D representation of the structure is provided by combining complementary imaging techniques. The color selectivity is due to controlled changes of the orientation of the helix axis with respect to the air-material interface. Potential applications are chiral microreflectors and microlenses. Then, we demonstrate the symbiotic association of gold nanoparticles within such cholesteric textures and their long-range self-organized arrangements. We show that the nanoparticles can be patterned on demand only by playing with the film thickness and the interfacial properties of the CLC film. We investigate how the selective reflection is affected by the in situ organization of gold nanoparticles and what is the plasmon response of nanoparticle chains. Potential applications are envisioned in the field of soft nanotechnology and optical materials.
Building an Evaluation Scale using Item Response Theory.
Lalor, John P; Wu, Hao; Yu, Hong
2016-11-01
Evaluation of NLP methods requires testing against a previously vetted gold-standard test set and reporting standard metrics (accuracy/precision/recall/F1). The current assumption is that all items in a given test set are equal with regards to difficulty and discriminating power. We propose Item Response Theory (IRT) from psychometrics as an alternative means for gold-standard test-set generation and NLP system evaluation. IRT is able to describe characteristics of individual items - their difficulty and discriminating power - and can account for these characteristics in its estimation of human intelligence or ability for an NLP task. In this paper, we demonstrate IRT by generating a gold-standard test set for Recognizing Textual Entailment. By collecting a large number of human responses and fitting our IRT model, we show that our IRT model compares NLP systems with the performance in a human population and is able to provide more insight into system performance than standard evaluation metrics. We show that a high accuracy score does not always imply a high IRT score, which depends on the item characteristics and the response pattern.
Building an Evaluation Scale using Item Response Theory
Lalor, John P.; Wu, Hao; Yu, Hong
2016-01-01
Evaluation of NLP methods requires testing against a previously vetted gold-standard test set and reporting standard metrics (accuracy/precision/recall/F1). The current assumption is that all items in a given test set are equal with regards to difficulty and discriminating power. We propose Item Response Theory (IRT) from psychometrics as an alternative means for gold-standard test-set generation and NLP system evaluation. IRT is able to describe characteristics of individual items - their difficulty and discriminating power - and can account for these characteristics in its estimation of human intelligence or ability for an NLP task. In this paper, we demonstrate IRT by generating a gold-standard test set for Recognizing Textual Entailment. By collecting a large number of human responses and fitting our IRT model, we show that our IRT model compares NLP systems with the performance in a human population and is able to provide more insight into system performance than standard evaluation metrics. We show that a high accuracy score does not always imply a high IRT score, which depends on the item characteristics and the response pattern.1 PMID:28004039
NASA Astrophysics Data System (ADS)
Labouta, Hagar I.; Thude, Sibylle; Schneider, Marc
2013-06-01
Owing to the limited source of human skin (HS) and the ethical restrictions of using animals in experiments, in vitro skin equivalents are a possible alternative for conducting particle penetration experiments. The conditions for conducting penetration experiments with model particles, 15-nm gold nanoparticles (AuNP), through nonsealed skin equivalents are described for the first time. These conditions include experimental setup, sterility conditions, effective applied dose determination, skin sectioning, and skin integrity check. Penetration at different exposure times (two and 24 h) and after tissue fixation (fixed versus unfixed skin) are examined to establish a benchmark in comparison to HS in an attempt to get similar results to HS experiments presented earlier. Multiphoton microscopy is used to detect gold luminescence in skin sections. λex=800 nm is used for excitation of AuNP and skin samples, allowing us to determine a relative index for particle penetration. Despite the observed overpredictability of penetration into skin equivalents, they could serve as a first fast screen for testing the behavior of nanoparticles and extrapolate their penetration behavior into HS. Further investigations are required to test a wide range of particles of different physicochemical properties to validate the skin equivalent-human skin particle penetration relationship.
Capturing a DNA duplex under near-physiological conditions
NASA Astrophysics Data System (ADS)
Zhang, Huijuan; Xu, Wei; Liu, Xiaogang; Stellacci, Francesco; Thong, John T. L.
2010-10-01
We report in situ trapping of a thiolated DNA duplex with eight base pairs into a polymer-protected gold nanogap device under near-physiological conditions. The double-stranded DNA was captured by electrophoresis and covalently attached to the nanogap electrodes through sulfur-gold bonding interaction. The immobilization of the DNA duplex was confirmed by direct electrical measurements under near-physiological conditions. The conductance of the DNA duplex was estimated to be 0.09 μS. We also demonstrate the control of DNA dehybridization by heating the device to temperatures above the melting point of the DNA.
Fielding, Katherine L; Grant, Alison D; Hayes, Richard J; Chaisson, Richard E; Corbett, Elizabeth L; Churchyard, Gavin J
2011-05-01
South Africa has the third highest annual number of new tuberculosis (TB) cases globally. The resurgence of TB which has particularly affected gold miners in South Africa, is attributed to occupational risk factors for TB including silica dust exposure and high HIV prevalence. Isoniazid preventive therapy (IPT) is recommended for individuals at high risk to prevent both HIV-related TB and silicotuberculosis, but global uptake has been poor. We describe the design of a cluster randomised study, "Thibela TB", which compares routine IPT targeted to those identified as at higher risk of TB (due to HIV infection or silicosis) against a "community-wide" approach in which IPT is offered to all employees. The trial is registered with the Current Controlled Trials: Registration number ISRCTN63327174. We describe the rationale for the intervention of community-wide IPT, drawing on studies conducted in 1950-1960s in the pre-HIV era. The design of the study, including the definition of the cluster, is presented and advantages and limitations of such a design are discussed. If successful in reducing TB incidence and prevalence, this trial has potential to make a major contribution to TB control policy in high HIV settings, providing evidence concerning efficacy, and additionally safety and population-level effects on drug susceptibility patterns. Such rigorous evaluation is essential to provide policy makers with an evidence base to guide community-level TB prevention strategies. Copyright © 2010 Elsevier Inc. All rights reserved.
Validity of self-assessment in a quality improvement collaborative in Ecuador.
Hermida, Jorge; Broughton, Edward I; Miller Franco, Lynne
2011-12-01
Health care quality improvement (QI) efforts commonly use self-assessment to measure compliance with quality standards. This study investigates the validity of self-assessment of quality indicators. Cross sectional. A maternal and newborn care improvement collaborative intervention conducted in health facilities in Ecuador in 2005. Four external evaluators were trained in abstracting medical records to calculate six indicators reflecting compliance with treatment standards. About 30 medical records per month were examined at 12 participating health facilities for a total of 1875 records. The same records had already been reviewed by QI teams at these facilities (self-assessment). Overall compliance, agreement (using the Kappa statistic), sensitivity and specificity were analyzed. We also examined patterns of disagreement and the effect of facility characteristics on levels of agreement. External evaluators reported compliance of 69-90%, while self-assessors reported 71-92%, with raw agreement of 71-95% and Kappa statistics ranging from fair to almost perfect agreement. Considering external evaluators as the gold standard, sensitivity of self-assessment ranged from 90 to 99% and specificity from 48 to 86%. Simpler indicators had fewer disagreements. When disagreements occurred between self-assessment and external valuators, the former tended to report more positive findings in five of six indicators, but this tendency was not of a magnitude to change program actions. Team leadership, understanding of the tools and facility size had no overall impact on the level of agreement. When compared with external evaluation (gold standard), self-assessment was found to be sufficiently valid for tracking QI team performance. Sensitivity was generally higher than specificity. Simplifying indicators may improve validity.
Development of a UAV-based Global Ozone Lidar Demonstrator (GOLD)
NASA Astrophysics Data System (ADS)
Browell, E. V.; Deyoung, R. J.; Hair, J. W.; Ismail, S.; McGee, T.; Hardesty, R. M.; Brewer, W. A.; McDermid, I. S.
2006-12-01
Global ozone measurements are needed across the troposphere with high vertical resolution to enable comprehensive studies of continental and intercontinental atmospheric chemistry and dynamics, which are affected by diverse natural and human-induced processes. The development of a unattended aerial vehicle (UAV) based Global Ozone Lidar Demonstrator (GOLD) is an important step in enabling a space-based ozone and aerosol lidar and for conducting unique UAV-based large-scale atmospheric investigations. The GOLD system will incorporate the most advanced technology developed under the NASA Laser Risk Reduction Program (LRRP) and the Small Business Innovative Research (SBIR) program to produce a compact, autonomously operating ozone and aerosol Differential Absorption Lidar (DIAL) system for a UAV platform. This system will leverage advanced Nd:YAG and optical parametric oscillator (OPO) laser technologies being developed by ITT Industries under the LRRP and the autonomously operating ozone DIAL system being developed by Science and Engineering Services Inc. (SESI) under an SBIR Phase-3 contract. Laser components from ITT will be integrated into the SESI DIAL system, and the resulting GOLD system will be flight tested on a NASA UAV. The development of the GOLD system was initiated as part of the NASA Instrument Incubator Program in December 2005, and great progress has been made towards completing major GOLD subsystems. ITT has begun construction of the high-power Nd:YAG pump laser and the ultraviolet OPO for generating the ozone DIAL wavelengths of 290 and 300 nm and the aerosol visible wavelength at 532 nm. SESI is completing the Phase-3 SBIR contract for the delivery and demonstration of the ozone DIAL receiver and data system, and NOAA is completing detector evaluations for use in the GOLD system. Welch Mechanical is examining system designs for integrating GOLD into the external pod that will be hung under the new IKANA (Predator-B) UAV that NASA Dryden is acquiring. Details of the GOLD system design and development will be presented in this paper, and science applications for a UAV-based and space-based ozone lidar will be discussed.
NASA Astrophysics Data System (ADS)
Ernawati, Rika; Idrus, Arifudin; TBMP, Himawan
2017-06-01
Lamuntet is one of gold ore mining area carried out by the Artisanal Small scale Gold Mining (ASGM) located in West Sumbawa, Indonesia. Most of the miners at this area are not the local miners but also those from other regions. Mineralization of this area is strong identified as low sulfidation epithermal system. There are two blocks of this mining location, namely, Ngelampar block with an area of 0.164 km2 and Song block with an area of 0.067 km2. This study was focused on Ngelampar block. The characteristic of epithermal system is the existence of quartz vein with comb, vuggy, and sugary texture. The aim of this research was to analyze the gold grade and other metals, such as Cu, Ag, Pb, As, Zn, and Hg. The research methods included literature study from previous researches, field work, laboratory work, and interpretation. The literature study was performed on previous researches with similar study area. The field work comprised of direct observation and sampling. Fieldwork was done for a week to obtain gold ore/vein. Sixteen samples were analyzed to obtain the grade of ore/metal. The Hg laboratory analysis was then performed on the six samples with the highest gold grade. Laboratory works were conducted at Intertek Jakarta by using Fire Assay (FA) for gold grade and Atomic Absorption Spectrophotometry (AAS) for Cu, Ag, Pb, As, Zn, and Hg. Results of the analysis showed the range of Au was grade (0.1 ppm - 27.8 ppm), Cu was 26 ppm -1740 ppm, Pb was 101 ppm- >4000 ppm, Zn of 73 ppm- >10,000 ppm, Ag of 3 ppm -185 ppm, As was 150 ppm-6530 ppm, and Hg of 0.08 ppm - 1.89 ppm. L1 and L15 had high grade for all values (Au, Ag, Zn, Cu, As, and Hg). Gold mineralization was formed as electrum because of Ag content is higher than 20%. Associated minerals of the samples in the study area were galena, sphalerite, arsenopyrite, and chalcopyrite which showed the characteristic of rich base metal of Pb, Zn, and Cu at LS epithermal.
Cunningham, C.G.; Austin, G.W.; Naeser, C.W.; Rye, R.O.; Ballantyne, G.H.; Stamm, R.G.; Barker, C.E.
2004-01-01
The thermal history of the Oquirrh Mountains, Utah, indicates that hydrothermal fluids associated with emplacement of the 37 Ma Bingham Canyon porphyry Cu-Au-Mo deposit extended at least 10 km north of the Bingham pit. An associated paleothermal anomaly enclosed the Barneys Canyon and Melco disseminated gold deposits and several smaller gold deposits between them. Previous studies have shown the Barneys Canyon deposit is near the outer limit of an irregular distal Au-As geochemical halo, about 3 km beyond an intermediate Pb-Zn halo, and 7 km beyond a proximal pyrite halo centered on the Bingham porphyry copper deposit. The Melco deposit also lies near the outer limit of the Au-As halo. Analysis of several geothermometers from samples collected tip to 22 km north of the Bingham Canyon porphyry Cu-Au-Mo deposit indicate that most sedimentary rocks of the Oquirrh Mountains, including those at the gold deposits, have not been regionally heated beyond the "oil window" (less than about 150??C). For geologically reasonable heating durations, the maximum sustained temperature at Melco, 6 km north of the Bingham pit, and at Barneys Canyon, 7.5 km north of the pit, was between 100??C and 140??C, as indicated by combinations of conodont color alteration indices of 1.5 to 2, mean random solid bitumen reflectance of about 1.0 percent, lack of annealing of zircon fission tracks, and partial to complete annealing of apatite fission tracks. The pattern of reset apatite fission-track ages indicates that the gold deposits are located approximately on the 120??C isotherm of the 37 Ma paleothermal anomaly assuming a heating duration of about 106 years. The conodont data further constrain the duration of heating to between 5 ?? 104 and 106 years at approximately 120??C. The ??18O of quartzite host rocks generally increases from about 12.6 per mil at the porphyry to about 15.8 per mil approximately 11 km from the Bingham deposit. This change reflects interaction of interstitial clays in the quartzite with circulating meteoric water related to the Bingham Canyon porphyry system. The ??18O and ??13C values of limestone vary with respect to degree of recrystallization and proximity to open fractures. Recrystallized limestone at the Melco and Barneys Canyon gold deposits has the highest ??18O values (about 30???), whereas limestone adjacent to the porphyry copper deposit has the lowest values (about 10???). The high ??18O values for the recrystallized limestone at Barneys Canyon and Melco strongly suggest that mineralization was related to low temperature fluids with exceptionally high ??18OH2O values such as could be derived from water in a crater lake of an active volcano. The age of formation of the gold deposits has been interpreted to range from Jurassic to Eocene. The mineralized rocks at the Barneys Canyon and Melco deposits are likely the same age as the geochemically similar deposits that are present in north-striking, late faults that cut the Bingham Canyon porphyry. The patterns of apatite and zircon fission-track data, conodont color alteration indices, solid bitumen reflectivity, stable isotope data, and mineral zoning are consistent with the gold deposits being genetically related to formation of the 37 Ma Bingham porphyry deposit. We interpret the disseminated gold mineralization to be related to collapse of the Bingham Canyon hydrothermal system in which isotopically heavy, oxidizing, acidic waters, possibly from an internally draining acidic crater lake, mixed with and were entrained into reduced gold-bearing meteoric water fluids in the collapsing main-stage hydrothermal system. Most of this fluid mixing and cooling was probably located close to the hydrologic interface between the sedimentary basement rocks and overlying volcanic rocks. ??2004 by Economic Geology.
Park, Hyungmin; Kim, Jae-Up; Park, Soojin
2012-02-21
A simple, straightforward process for fabricating multi-scale micro- and nanostructured patterns from polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP)/poly(methyl methacrylate) (PMMA) homopolymer in a preferential solvent for PS and PMMA is demonstrated. When the PS-b-P2VP/PMMA blend films were spin-coated onto a silicon wafer, PS-b-P2VP micellar arrays consisting of a PS corona and a P2VP core were formed, while the PMMA macrodomains were isolated, due to the macrophase separation caused by the incompatibility between block copolymer micelles and PMMA homopolymer during the spin-coating process. With an increase of PMMA composition, the size of PMMA macrodomains increased. Moreover, the P2VP blocks have a strong interaction with a native oxide of the surface of the silicon wafer, so that the P2VP wetting layer was first formed during spin-coating, and PS nanoclusters were observed on the PMMA macrodomains beneath. Whereas when a silicon surface was modified with a PS brush layer, the PS nanoclusters underlying PMMA domains were not formed. The multi-scale patterns prepared from copolymer micelle/homopolymer blend films are used as templates for the fabrication of gold nanoparticle arrays by incorporating the gold precursor into the P2VP chains. The combination of nanostructures prepared from block copolymer micellar arrays and macrostructures induced by incompatibility between the copolymer and the homopolymer leads to the formation of complex, multi-scale surface patterns by a simple casting process. This journal is © The Royal Society of Chemistry 2012
Yang, Haifeng; Liu, Yanli; Liu, Zhimin; Yang, Yu; Jiang, Jianhui; Zhang, Zongrang; Shen, Guoli; Yu, Ruqin
2005-02-24
The self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) were formed at the roughened polycrystalline gold surfaces in acid and alkaline media. The time-dependent Raman mapping spectral analysis in conjunction with the quantum calculations for the vibrational modes using ab initio BLYP/6-31G method suggested that both of the resulted 6MP SAMs adopted the same adsorption mode through the S atom of pyrimidine moiety and the N7 atom of the imidazole moiety anchoring the gold surface in a vertical way. The in situ surface-enhanced Raman scattering spectroelectrochemical experiment was conducted to examine the stability of the SAMs at various bias potentials. It was found that the detaching process of the 6MP SAMs from the surface involved one electron reduction as the voltage was applied at ca. 0.7 V vs a standard calomel electrode.
The Perceived Consequences of Gold Mining in Postwar El Salvador: A Qualitative Study.
Zakrison, Tanya L; Cabezas, Pedro; Valle, Evan; Kornfeld, Julie; Muntaner, Carles; Soklaridis, Sophie
2015-11-01
We investigated themes related to the health and environmental impacts of gold mining in El Salvador. Over a 1-month period in 2013, we conducted focus groups (n = 32 participants in total) and individual semistructured interviews (n = 11) with community leaders until we achieved thematic saturation. Data collection took place in 4 departments throughout the country. We used a combination of criterion-purposive and snowballing sampling techniques to identify participants. Multiple themes emerged: (1) the fallacy of economic development; (2) critique of mining activities; (3) the creation of mining-related violence, with parallels to El Salvador's civil war; and (4) solutions and alternatives to mining activity. Solutions involved the creation of cooperative microenterprises for sustainable economic growth, political empowerment within communities, and development of local participatory democracies. Gold mining in El Salvador is perceived as a significant environmental and public health threat. Local solutions may be applicable broadly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alberding, Brian G.; Heilweil, Edwin J., E-mail: edwin.heilweil@nist.gov; Kushto, Gary P.
2016-05-30
Non-contact, optical time-resolved terahertz spectroscopy has been used to study the transient photoconductivity of nanometer-scale metallic films deposited on the fused quartz substrates. Samples of 8 nm thick gold or titanium show an instrument-limited (ca. 0.5 ps) decrease in conductivity following photoexcitation due to electron-phonon coupling and subsequent increased lattice temperatures which increases charge carrier scattering. In contrast, for samples of 8 nm gold with a 4 nm adhesion layer of titanium or chromium, a ca. 70 ps rise time for the lattice temperature increase is observed. These results establish the increased transient terahertz transmission sign change of metallic compared to semiconductor materials.more » The results also suggest nanoscale gold films that utilize an adhesion material do not consist of distinct layers.« less
WHETSTONE ROADLESS AREA, ARIZONA.
Wrucke, Chester T.; McColly, Robert A.
1984-01-01
A mineral survey conducted has shown that areas in and adjacent to the Whetstone Roadless Area, Arizona have a substantiated resource potential for copper, lead, gold, silver, and quartz, and a probable mineral-resource potential for copper silver, lead, gold, molybdenum, tungsten, uranium, and gypsum. Copper and silver occur in a small vein deposit in the southwestern part of the roadless area. Copper, lead, silver, gold, and molybdenum are known in veins associated with a porphyry copper deposit in a reentrant near the southern border of the roadless area. Vein deposits of tungsten and uranium are possible in the northeast part of the roadless area near areas of known production of these commodities. Demonstrated resources of quartz for smelter flux extend into the roadless area from the Ricketts mine. Areas of probable potential for gypsum resources also occur within the roadless area. No potential for fossil fuel resources was identified in the study.
NASA Astrophysics Data System (ADS)
Doiron, Brock; Li, Yi; Mihai, Andrei P.; Cohen, Lesley F.; Petrov, Peter K.; Alford, Neil M.; Oulton, Rupert F.; Maier, Stefan A.
2017-08-01
With similar optical properties to gold and high thermal stability, titanium nitride continues to prove itself as a promising plasmonic material for high-temperature applications in the visible and near-infrared. In this work, we use transient pump probe differential reflection measurements to compare the electron energy decay channels in titanium nitride and gold thin films. Using an extended two temperature model to incorporate the photoexcited electrons, it is possible to separate the electron-electron and electron-phonon scattering contributions immediately following the arrival of the pump pulse. This model allows for incredibly accurate determination of the internal electronic properties using only optical measurements. As the electronic properties are key in hot electron applications, we show that titanium nitide has substantially longer electron thermalization and electron-phonon scattering times. With this, we were also able to resolve electron thermal conduction in the film using purely optical measurements.
Thermal Conductivity in Nanoporous Gold Films during Electron-Phonon Nonequilibrium
Hopkins, Patrick E.; Norris, Pamela M.; Phinney, Leslie M.; ...
2008-01-01
The reduction of nanodevices has given recent attention to nanoporous materials due to their structure and geometry. However, the thermophysical properties of these materials are relatively unknown. In this article, an expression for thermal conductivity of nanoporous structures is derived based on the assumption that the finite size of the ligaments leads to electron-ligament wall scattering. This expression is then used to analyze the thermal conductivity of nanoporous structures in the event of electron-phonon nonequilibrium.
NASA Astrophysics Data System (ADS)
Hong, Yoochan; Jo, Seongjae; Park, Joohyung; Park, Jinsung; Yang, Jaemoon
2018-05-01
In this paper, we describe the development of a nanoplasmonic biosensor based on the localized surface plasmon resonance (LSPR) effect that enables a sensitive and selective recognition of copper II ions. First, we fabricated the nanoplasmonics as LSPR substrates using gold nanorods (GNR) and the nano-adsorption method. The LSPR sensitivity of the nanoplasmonics was evaluated using various solvents with different refractive indexes. Subsequently, D-penicillamine (DPA)—a chelating agent of copper II ions—was conjugated to the surface of the GNR. The limit of detection (LOD) for the DPA-conjugated nanoplasmonics was 100 pM. Furthermore, selectivity tests were conducted using various divalent cations, and sensitivity tests were conducted on the nanoplasmonics under blood-like environments. Finally, the developed nanoplasmonic biosensor based on GNR shows great potential for the effective recognition of copper II ions, even in human blood conditions.
Negative differential resistance observation in complex convoluted fullerene junctions
NASA Astrophysics Data System (ADS)
Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick
2018-04-01
In this work, we simulated the smallest fullerene molecule, C20 in a two-probe device model with gold electrodes. The gold electrodes comprised of (011) miller planes were carved to construct the novel geometry based four unique shapes, which were strung to fullerene molecules through mechanically controlled break junction techniques. The organized devices were later scrutinized using non-equilibrium Green's function based on the density functional theory to calculate their molecular orbitals, energy levels, charge transfers, and electrical parameters. After intense scrutiny, we concluded that five-edged and six-edged devices have the lowest and highest current-conductance values, which result from their electrode-dominating and electrode-subsidiary effects, respectively. However, an interesting observation was that the three-edged and four-edged electrodes functioned as semi-metallic in nature, allowing the C20 molecule to demonstrate its performance with the complementary effect of these electrodes in the electron conduction process of a two-probe device.
Tattoolike Polyaniline Microparticle-Doped Gold Nanowire Patches as Highly Durable Wearable Sensors.
Gong, Shu; Lai, Daniel T H; Wang, Yan; Yap, Lim Wei; Si, Kae Jye; Shi, Qianqian; Jason, Naveen Noah; Sridhar, Tam; Uddin, Hemayet; Cheng, Wenlong
2015-09-09
Wearable and highly sensitive strain sensors are essential components of electronic skin for future biomonitoring and human machine interfaces. Here we report a low-cost yet efficient strategy to dope polyaniline microparticles into gold nanowire (AuNW) films, leading to 10 times enhancement in conductivity and ∼8 times improvement in sensitivity. Simultaneously, tattoolike wearable sensors could be fabricated simply by a direct "draw-on" strategy with a Chinese penbrush. The stretchability of the sensors could be enhanced from 99.7% to 149.6% by designing curved tattoo with different radius of curvatures. We also demonstrated roller coating method to encapusulate AuNWs sensors, exhibiting excellent water resistibility and durability. Because of improved conductivity of our sensors, they can directly interface with existing wireless circuitry, allowing for fabrication of wireless flexion sensors for a human finger-controlled robotic arm system.
Hong, Yoochan; Jo, Seongjae; Park, Joohyung; Park, Jinsung; Yang, Jaemoon
2018-05-25
In this paper, we describe the development of a nanoplasmonic biosensor based on the localized surface plasmon resonance (LSPR) effect that enables a sensitive and selective recognition of copper II ions. First, we fabricated the nanoplasmonics as LSPR substrates using gold nanorods (GNR) and the nano-adsorption method. The LSPR sensitivity of the nanoplasmonics was evaluated using various solvents with different refractive indexes. Subsequently, D-penicillamine (DPA)-a chelating agent of copper II ions-was conjugated to the surface of the GNR. The limit of detection (LOD) for the DPA-conjugated nanoplasmonics was 100 pM. Furthermore, selectivity tests were conducted using various divalent cations, and sensitivity tests were conducted on the nanoplasmonics under blood-like environments. Finally, the developed nanoplasmonic biosensor based on GNR shows great potential for the effective recognition of copper II ions, even in human blood conditions.