Science.gov

Sample records for gold isotopes

  1. Stable Isotopes (O, H, and S) in the Muteh Gold Deposit, Golpaygan Area, Iran

    SciTech Connect

    Abdollahi, M. J. Karimpour, M. H.; Kheradmand, A.; Zarasvandi, A. R.

    2009-06-15

    The Muteh gold district with nine gold deposits is located in the Sanandaj-Sirjan metamorphic zone. Gold mineralization occurs in a pre-Permian complex which mainly consists of green schists, meta-volcanics, and gneiss rocks. Shear zones are the host of gold mineralization. Gold paragenesis minerals include pyrite, chalcopyrite, pyrrhotite, and secondary minerals. Pyrites occur as pre-, syn-, and post-metamorphism minerals. To determine the source of the ore-bearing fluids, fifty samples were selected for petrographical and stable isotope studies. The mean values of 12.4 per mille , and -42 per mille for {delta}{sup 18}O and {delta}D isotopes, respectively, and a mean value of 7.75 per mille of calculated fractionation factors for {delta}{sup 18}O H{sub 2}O, from quartz veins indicate that metamorphic host rocks are the most important source for the fluids and gold mineralization. Three generations of pyrite can be distinguished showing a wide range of {delta}{sup 34}S. Gold mineralization is closely associated with intense hydrothermal alteration along the ductile shear zones. The characteristics of the gold mineralization in the study area are similar to those of orogenic gold deposits elsewhere.

  2. Isotopic tracers of gold deposition in Paleozoic limestones, Southern Nevada

    SciTech Connect

    Peterman, Z.E.; Widmann, B.L.; Marshall, B.D.; Aleinikoff, J.N.; Futa, K.; Mahan, S.A.

    1994-12-31

    Strontium isotopic analyses of barren and mineralized Paleozoic carbonate rocks show that hydrothermal fluids added radiogenic strontium ({sup 87}Sr) to the mineralized zones. At Bare Mountain, samples collected from mineralized areas have {delta}{sup 87}Sr{sub t} values ranging from +3.0 to +23.0, whereas unmineralized carbonate rocks have {delta}{sup 87}Sr, values of {minus}0.6 to +2.9. In other ranges, {delta}{sup 87}Sr, values of the unmineralized carbonate rocks are even lower and virtually indistinguishable from primary marine values. This correlation of elevated {delta}{sup 87}Sr{sub t} values with mineralized zones provides a useful technique for assessing the mineral potential of the Paleozoic basement beneath Yucca Mountain, and may find broader use in mineral exploration in the Basin and Range province as a whole.

  3. Isotopic tracers of gold deposition in Paleozoic limestones, southern Nevada

    USGS Publications Warehouse

    Peterman, Z.E.; Widmann, B.L.; Marshall, B.D.; Aleinikoff, J.N.; Futa, K.; Mahan, S.A.

    1994-01-01

    Strontium isotopic analyses of barren and mineralized Paleozoic carbonate rocks show that hydrothermal fluids added radiogenic strontium (87Sr) to the mineralized zones. At Bare Mountain, samples collected from mineralized areas have ??87Srt values (per mil deviation from primary marine values) ranging from +3.0 to +23.0 (mean of this log-normal distribution is +7.0), whereas unmineralized carbonate rocks have ??87Srt values of -0.6 to +2.9 (mean of +1.07??1.03). In other ranges (Striped Hills, Spring Mountains, and ranges in the vicinity of Indian Springs Valley), ??87Srt values of the unmineralized carbonate rocks are even lower and virtually indistinguishable from primary marine values. This correlation of elevated ??87Srt values with mineralized zones provided a useful technique for assessing the mineral potential of the Paleozoic basement beneath Yucca Mountain, and may find broader use in mineral exploration in the Basin and Range province as a whole.

  4. Fluid inclusions, stable isotopes and gold deposition at Björkdal, northern Sweden

    NASA Astrophysics Data System (ADS)

    Broman, C.; Billström, K.; Gustavsson, K.; Fallick, A. E.

    1994-06-01

    The Björkdal gold deposit is located in the eastern part of the Early Proterozoic Skellefte district in northern Sweden. The ore zone is hosted by a granitoid which intrudes a 1.9 Ga old supracrustal sequence and consists of a network of quartz veins between two shear zones. The ore mineralogy, alteration assemblages, ore fluid characteristics and general setting of the Björkdal deposit reveal many similarities with mesothermal Archean systems. Three types of fluids are represented by fluid inclusions observed in quartz, scheelite and calcite. The first type consists of a CO2-rich fluid which is syngenetic with the formation of the quartz veins. These inclusions occur in quartz and scheelite. Isotopic equilibrium temperatures derived from quartz-scheelite pairs reflect depositional temperatures around 375 °C. Molar volumes of the carbonic fluid inclusions, ranging down to 55 cm3mole, indicate a maximum lithostatic trapping pressure of 1.8 kbar. These fluids were generated at depth in conjunction with early orogenic magma-forming processes. The gold was introduced to the vein system by the carbonic fluid but the gold was deposited after reactions between this fluid and the wall-rock, producing a slightly alkaline, more CH4-rich aqueous type 2 fluid. Fluid inclusions of this chemically modified fluid indicate that the precipitation of the gold, together with pyrrhotite, pyrite and chalcopyrite, occurred under heterogenous conditions at a temperature of 220 °C and a hydrostatic pressure of 0.5 kbar. The gold deposition occurred from fluids with a δ 18O signature of around +8‰ and δD values close to zero per mil. Any metamorphic influence on the stable isotopic signatures is regarded as minimal. The isotope data suggest rather that a surface-derived fluid component had access to the vein system during this process. At a post-vein forming stage (metamorphic stage ?) a secondary episode of gold mobilization occurred as suggested by the aqueous type 3 inclusions

  5. Assessment of mercury exposure among small-scale gold miners using mercury stable isotopes

    SciTech Connect

    Sherman, Laura S.; Blum, Joel D.; Basu, Niladri; Rajaee, Mozhgon; Evers, David C.; Buck, David G.; Petrlik, Jindrich; DiGangi, Joseph

    2015-02-15

    Total mercury (Hg) concentrations in hair and urine are often used as biomarkers of exposure to fish-derived methylmercury (MeHg) and gaseous elemental Hg, respectively. We used Hg stable isotopes to assess the validity of these biomarkers among small-scale gold mining populations in Ghana and Indonesia. Urine from Ghanaian miners displayed similar Δ{sup 199}Hg values to Hg derived from ore deposits (mean urine Δ{sup 199}Hg=0.01‰, n=6). This suggests that urine total Hg concentrations accurately reflect exposure to inorganic Hg among this population. Hair samples from Ghanaian miners displayed low positive Δ{sup 199}Hg values (0.23–0.55‰, n=6) and low percentages of total Hg as MeHg (7.6–29%, n=7). These data suggest that the majority of the Hg in these miners' hair samples is exogenously adsorbed inorganic Hg and not fish-derived MeHg. Hair samples from Indonesian gold miners who eat fish daily displayed a wider range of positive Δ{sup 199}Hg values (0.21–1.32‰, n=5) and percentages of total Hg as MeHg (32–72%, n=4). This suggests that total Hg in the hair samples from Indonesian gold miners is likely a mixture of ingested fish MeHg and exogenously adsorbed inorganic Hg. Based on data from both populations, we suggest that total Hg concentrations in hair samples from small-scale gold miners likely overestimate exposure to MeHg from fish consumption. - Highlights: • Mercury isotopes were measured in hair and urine from small-scale gold miners. • Mercury isotopes indicate that Hg in urine comes from mining activity. • Mercury isotopes suggest Hg in hair is a mixture of fish MeHg and inorganic Hg. • A large percentage of Hg in miner’s hair is released during amalgam burning and adsorbed.

  6. Iron isotope constraints on the mineralization processes of the Sandaowanzi telluride gold deposit, NE China

    NASA Astrophysics Data System (ADS)

    Li, Xingxing; Liu, Junlai; Lu, Di; Ren, Shunli; Liu, Zhengyang

    2016-04-01

    Iron isotopes have been widely applied to interpret the fluid evolution, supergene alteration and the metallogenic material sources of the hydrothermal deposit. It may also have significant potentials on the research of the deposit. The Sandaowanzi telluride gold deposit, located in the Great Hinggan Range metallogenic Belt in NE China, is a large epithermal gold deposit of low-sulphidation type. It has a total reserve of ≥25t of Au and an average of 15 g/t. Gold-bearing quartz veins or gold lodes strike to the NW and dip 50-80°northeastward. Ore bodies, including low-grade ores along margins and high-grade ores in the central parts, principally occur in quartz veins. More than the 95 percent Au budgets are hosted in gold-silver tellurides. A six-stage paragenetic sequence of mineralization is revealed according to the compositions and microstructures of the mineral assemblages. Although sulfide minerals in the bonanza quartz veins are rare, pyrite are widespread in quartz veins and altered host rocks. Meanwhile there are always chalcopyrite veins within bonanza quartz veins. Pyrite Fe isotope compositions from different levels (from +50m to +210m) of the main ore body of the Sandaowanzi gold ore deposit are investigated. There is an overall variation in δ57Fe values from -0.09 to +0.99 (av. 0.33). Among them, twenty three samples from different mining levels give positiveδ57Fe values, with the maximum positive value at the economic bonanza ores (level +130m). Four samples, however, possess negative values, one at level 170m, one at level 130m, and two at level 50m, respectively. The two negative values from the levels 170m and 130m are near the cores of the high grade ore body. The two negative values from the level 50m occur at one end of the lode ore body. The above data set shows that the δ57Fe values are not homogeneous at different levels of the ore body. On the other hand, a general trend for the positive values is that the highest δ57Fe value is

  7. Geochemical and Isotopic Constrains on the Origin of Kaymaz Gold Deposit, Eskisehir, NW Turkey

    NASA Astrophysics Data System (ADS)

    Toygar, Ozlem; Sendir, Huseyin; Mutlu, Halim; Demirbilek, Mehmet

    2016-04-01

    The Alpine-Himalayan orogenic system produced several gold deposits in Turkey related to subduction, collision, post-collision and rifting processes. The Kaymaz gold deposit in mid-west Anatolia, 65 km southeast of Eskisehir city, is an orogenic gold deposit which formed in association with listwaenites. The gold occurrence is closely related to listwaenitization process and intense silicification. SiO2 content is up to 96% due to pervasive hydrothermal alteration. Listwaenites are enriched in Au, Ag and several metals in varying levels which are also variably correlated with other trace elements. Regarding rare earth element concentrations in the mineralized zone, light rare earth elements are found to display different variations with respect to gold content. It is proposed that these differences are due to the presence of more than one fluid type in the system and/or different phases which transported ore minerals at varying extent. According to microthermometric data on quartz samples, the temperature of the mineralization between 200°C-420°C and 3.9%-9.6% NaCl eq., the deposit is an epithermal-mesothermal type mineralization. δ18O compositions of quartz samples and calculated δ18OH2O values at homogenization temperatures indicate that boiling process and/or hydrothermal fluids affected the system at more than one stage. δ34S compositions of pyrite samples show a magmatic source for sulfur in the system probably originating from local granite intrusion in the area. Keywords: Kaymaz, Eskisehir, gold, geochemistry, stable isotopes, fluid inclusion

  8. Gold

    USGS Publications Warehouse

    Kirkemo, Harold; Newman, William L.; Ashley, Roger P.

    1998-01-01

    Through the ages, men and women have cherished gold, and many have had a compelling desire to amass great quantities of it -- so compelling a desire, in fact, that the frantic need to seek and hoard gold has been aptly named "gold fever." Gold was among the first metals to be mined because it commonly occurs in its native form -- that is, not combined with other elements -- because it is beautiful and imperishable, and because exquisite objects can be made from it.

  9. Geology and stable isotope studies of the Carlin gold deposit, Nevada

    SciTech Connect

    Radtke, A.S.; Rye, R.O.; Dickson, F.W.

    1980-08-01

    This paper presents the results of studies on the geology, fluid inclusions, and stable isotope geochemistry of the Carlin deposit, the largest disseminated replacement gold deposit in carbonate rocks discovered to date in the western United States. The deposit is in secs. 13 and 14, T. 35 N., R. 50 E., in the Tuscarora Mountains in northern Eureka County, Nevada. Since 1965, the Carlin mine has produced over 4 million troy ounces of gold. The Carlin deposit is the principal example of a group of deposits that have many geologic, mineralogic, and geochemical features in common. These deposits are characteristically fine-grained replacements of silty carbonate rocks by silica and minor pyrite, and they contain gold and an associated group of heavy elements, including mercury, arsenic, antimony, and thallium, dispersed in ore and at lower concentrations in altered rocks. The deposits are of middle or late Tertiary age and everywhere are shallow seated. Every deposit is spatialy related to strong normal faults, some of which are occupied by preore dikes; some of the normal faults served as conduits for hydrothermal fluids. Apparently the deposits formed by a hydrothermal system that circulated in response to thermal anomalies associated with Tertiary igneous and tectonic activity, possibly without any deeper seated contribution from the igneous rocks. The striking similarities among Carlin-type deposits in the western United States strongly suggest that some general set of processes has operated repeatedly in various places.

  10. Re Os isotopes applied to the epithermal gold deposits near Bucaramanga, northeastern Colombia

    NASA Astrophysics Data System (ADS)

    Mathur, R.; Ruiz, J.; Herb, P.; Hahn, L.; Burgath, K.-P.

    2003-01-01

    The epithermal gold mineralization near Bucaramanga, Colombia, is spatially associated with a dacitic porphyry of Upper Cretaceous to Early Tertiary age. Two mining districts in the vicinity of Bucaramanga, the California and the Vetas, host different styles of mineralization that could be interpreted as high- and low-sulfidation style mineralization, respectively. Re-Os isotope systematics were used on sulfide-gold-rich gravity concentrates in an attempt to determine both the ages of the epithermal deposits and the possible genetic relationships between the porphyry and the epithermal mineralization. The concentration of Os for sulfide samples taken from both systems is relatively uniform, ranging from 19 to 35 ppt (parts per trillion), whereas the Re concentration varies significantly, with the California system averaging 10 ppb (parts per billion) and the Vetas system averaging 140 ppb. The samples from the high-sulfidation California deposit form an isochron with an age of 57±10 Ma (MSWD=0.8), which overlaps with the age of the dacitic volcanism. The initial 187Os/ 188Os of the isochron is 1.20±0.13 and indicates a predominately crustal source for the Os and, by inference, gold. The samples from the Vetas low-sulfidation system have very high Re/Os ratios and do not lie on the isochron. These data reveal a difference between two epithermal systems that border one intrusion. Sulfide samples from the high-sulfidation system are isotopically homogenous with respect to Re-Os (form an isochron) and probably represent mineralization linked closely with the high temperature volatiles/fluids from the magma. In contrast, the sulfides from the Vetas system are in disequilibrium with respect to Re-Os and may illustrate mineralization that is not directly related to similar magmatic fluids.

  11. The Cipoeiro gold deposit, Gurupi Belt, Brazil: Geology, chlorite geochemistry, and stable isotope study

    NASA Astrophysics Data System (ADS)

    Klein, Evandro L.; Harris, Chris; Giret, André; Moura, Candido A. V.

    2007-02-01

    The Cipoeiro gold deposit, located in the Gurupi Belt, northern Brazil, is hosted by tonalites of 2148 Ma. The deposit is controlled by splays related to the major strike-slip Tentugal shear zone, and at the deposit scale, the mineralization is confined to ductile-brittle shear zones. Mineralization style comprises thick quartz veins and narrow and discontinuous quartz-carbonate veinlets associated with disseminations in altered host rocks. The postmetamorphic hydrothermal paragenesis is composed of quartz, calcite, chlorite, white mica (phengite), pyrite, and minor albite. Electron microprobe analysis of chlorites reveals a relatively uniform chemical composition at depths of more than 100 m. The chlorites are characterized by (Fe + Mg) ratios between 0.37 and 0.47 and Al IV ranging between 2.22 and 2.59 a.p.f.u. and are classified as Fe-chlinochlore. Temperatures calculated by applying the Al IV contents of chlorites yield a relatively narrow interval of 305 ± 15°C. Stable isotope (O, H, C, S) compositions have been determined in silicate, carbonate, and sulfide minerals. The δ18O and δD values of the mineralizing fluid range from +2.4 to +5.7 and from -43‰ to -20‰, respectively, and are interpreted as having a metamorphic origin. The δ13C values of fluid CO 2 are in the range -10.7‰ to -3.9‰, whereas the fluid δ34S is around 0‰. Carbon and sulfur compositions are not diagnostic of their sources, compatible as they are with mantle, magmatic, or average crustal reservoirs. The hydrothermal paragenesis, chlorite-pyrite coexistence, temperature of ore formation, and sulfur isotope evidence indicate relatively reduced fO 2 conditions for the mineralizing fluid. Geologic, chemical, and isotopic characteristics of the Cipoeiro deposit are compatible with the class of orogenic gold deposits.

  12. Isotopic Composition of Inorganic Mercury and Methylmercury Downstream of a Historical Gold Mining Region.

    PubMed

    Donovan, Patrick M; Blum, Joel D; Singer, Michael Bliss; Marvin-DiPasquale, Mark; Tsui, Martin T K

    2016-02-16

    We measured total mercury (THg) and monomethyl mercury (MMHg) concentrations and mercury (Hg) isotopic compositions in sediment and aquatic organisms from the Yuba River (California, USA) to identify Hg sources and biogeochemical transformations downstream of a historical gold mining region. Sediment THg concentrations and δ(202)Hg decreased from the upper Yuba Fan to the lower Yuba Fan and the Feather River. These results are consistent with the release of Hg during gold mining followed by downstream mixing and dilution. The Hg isotopic composition of Yuba Fan sediment (δ(202)Hg = -0.38 ± 0.17‰ and Δ(199)Hg = 0.04 ± 0.03‰; mean ± 1 SD, n = 7) provides a fingerprint of inorganic Hg (IHg) that could be methylated locally or after transport downstream. The isotopic composition of MMHg in the Yuba River food web was estimated using biota with a range of %MMHg (the percent of THg present as MMHg) and compared to IHg in sediment, algae, and the food web. The estimated δ(202)Hg of MMHg prior to photodegradation (-1.29 to -1.07‰) was lower than that of IHg and we suggest this is due to mass-dependent fractionation (MDF) of up to -0.9‰ between IHg and MMHg. This result is in contrast to net positive MDF (+0.4 to +0.8‰) previously observed in lakes, estuaries, coastal oceans, and forests. We hypothesize that this unique relationship could be due to differences in the extent or pathway of biotic MMHg degradation in stream environments.

  13. Isotopic composition of inorganic mercury and methylmercury downstream of a historical gold mining region

    USGS Publications Warehouse

    Donovan, Patrick M.; Blum, Joel D.; Singer, Michael B.; Marvin-DiPasquale, Mark C.; Tsui, Martin T.K.

    2016-01-01

    We measured total mercury (THg) and monomethyl mercury (MMHg) concentrations and mercury (Hg) isotopic compositions in sediment and aquatic organisms from the Yuba River (California, USA) to identify Hg sources and biogeochemical transformations downstream of a historical gold mining region. Sediment THg concentrations and δ202Hg decreased from the upper Yuba Fan to the lower Yuba Fan and the Feather River. These results are consistent with the release of Hg during gold mining followed by downstream mixing and dilution. The Hg isotopic composition of Yuba Fan sediment (δ202Hg = −0.38 ± 0.17‰ and Δ199Hg = 0.04 ± 0.03‰; mean ± 1 SD, n = 7) provides a fingerprint of inorganic Hg (IHg) that could be methylated locally or after transport downstream. The isotopic composition of MMHg in the Yuba River food web was estimated using biota with a range of %MMHg (the percent of THg present as MMHg) and compared to IHg in sediment, algae, and the food web. The estimated δ202Hg of MMHg prior to photodegradation (−1.29 to −1.07‰) was lower than that of IHg and we suggest this is due to mass-dependent fractionation (MDF) of up to −0.9‰ between IHg and MMHg. This result is in contrast to net positive MDF (+0.4 to +0.8‰) previously observed in lakes, estuaries, coastal oceans, and forests. We hypothesize that this unique relationship could be due to differences in the extent or pathway of biotic MMHg degradation in stream environments.

  14. Isotopic Composition of Inorganic Mercury and Methylmercury Downstream of a Historical Gold Mining Region.

    PubMed

    Donovan, Patrick M; Blum, Joel D; Singer, Michael Bliss; Marvin-DiPasquale, Mark; Tsui, Martin T K

    2016-02-16

    We measured total mercury (THg) and monomethyl mercury (MMHg) concentrations and mercury (Hg) isotopic compositions in sediment and aquatic organisms from the Yuba River (California, USA) to identify Hg sources and biogeochemical transformations downstream of a historical gold mining region. Sediment THg concentrations and δ(202)Hg decreased from the upper Yuba Fan to the lower Yuba Fan and the Feather River. These results are consistent with the release of Hg during gold mining followed by downstream mixing and dilution. The Hg isotopic composition of Yuba Fan sediment (δ(202)Hg = -0.38 ± 0.17‰ and Δ(199)Hg = 0.04 ± 0.03‰; mean ± 1 SD, n = 7) provides a fingerprint of inorganic Hg (IHg) that could be methylated locally or after transport downstream. The isotopic composition of MMHg in the Yuba River food web was estimated using biota with a range of %MMHg (the percent of THg present as MMHg) and compared to IHg in sediment, algae, and the food web. The estimated δ(202)Hg of MMHg prior to photodegradation (-1.29 to -1.07‰) was lower than that of IHg and we suggest this is due to mass-dependent fractionation (MDF) of up to -0.9‰ between IHg and MMHg. This result is in contrast to net positive MDF (+0.4 to +0.8‰) previously observed in lakes, estuaries, coastal oceans, and forests. We hypothesize that this unique relationship could be due to differences in the extent or pathway of biotic MMHg degradation in stream environments. PMID:26789018

  15. Exploiting Stable Mercury Isotopic Analysis to Differentiate between Mercury Sources: Gold Mining vs. Land-Use Change (Invited)

    NASA Astrophysics Data System (ADS)

    Bergquist, B. A.; Adler Miserendino, R. A.; Guimarães, J. R.; Veiga, M.; Velasquez-López, P.; Lees, P. S.; Thibodeau, A. M.; Fernandez, L. E.

    2013-12-01

    In parts of the developing world, mercury (Hg) is used to extract gold by amalgamation during artisanal and small-scale gold mining (ASGM) and this can lead to contamination of downstream aquatic ecosystems. Differentiation between Hg from ASGM and from other sources of Hg, such as increased erosion from land cover and land use change (LCLUC), is challenging and has lead to heated debates over the dominant sources of elevated Hg in some ecosystems. Here, stable Hg isotopic analysis was applied in two aquatic ecosystems in South America: (1) the Amazonian aquatic ecosystem of Amapá, Brazil downstream of artisanal gold mining (AGM) and (2) the Puyango-Tumbes River ecosystem downstream of Portovelo-Zaruma, Ecuador, a large mining area where both AGM and small-scale gold mining (SGM) are in operation. The Hg isotopic analyses from Amapá, Brazil, do not support AGM as the source of elevated Hg in the downstream aquatic ecosystem. Instead, Hg isotopes are most consistent with the elevated Hg being from preferential migration of Hg from soil erosion, which is likely associated with land use change. Although soils are regarded as Hg sinks in the global Hg cycle, this work suggests that LCLUC can disrupt Hg stores with significant ecological consequences. In contrast in the Southwestern Andean region of Ecuador and Peru, analysis of Hg isotopes and other toxic metals (i.e., Pb, Zn, Cu), which are associated with the larger scale mining and cyanide used during SGM, demonstrate Hg used during gold mining is the predominant source of Hg downstream and can be traced far from the dominant mining area. Although it has been speculated that Hg from SGM in Ecuador was not that mobile or that Hg far downstream of SGM processing plants was from erosion due to LCLUC or from AGM taking place downstream, the isotopically heavy signature of Hg used during gold mining and elevated other metal concentrations were observed ~120 km downstream of Portovelo-Zaruma. Mercury isotopes appear

  16. Preliminary mineralogic, fluid inclusion, and stable isotope study of the Mahd adh Dhahab gold mine, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Rye, Robert O.; Hall, W.E.; Cunningham, C.G.; Czamanske, G.K.; Afifi, A.M.; Stacey, J.S.

    1983-01-01

    The Mahd adh Dhahab mine, located about 280 km northeast of Jiddah, Kingdom of Saudi Arabia, has yielded more than 2 million ounces of gold from periodic production during the past 3,000 years. A new orebody on the southern side of the ancient workings, known as the South orebody, is being developed by Gold Fields-Mahd adh Dhahab Limited. A suite of samples was collected from the newly exposed orebody for preliminary mineralogic, stable isotope, fluid inclusion, and geochemical studies. The Mahd adh Dhahab deposit is in the carapace of a Proterozoic epizonal rhyolite stock that domed pyroclastic and metasedimentary rocks of the Proterozoic Halaban group. Ore of gold, silver, copper, zinc, tellurium, and lead is associated with north-trending, steeply dipping quartz veins in a zone 1,000 m long and 400 m wide. The veins include an assemblage of quartz-chlorite-pyrite-hematite-chalcopyrite-sphalerite-precious metals, which is similar to the mineral assemblage at the epithermal deposit at Creede, Colorado. The primary ore contains abundant chalcopyrite, sphalerite, and pyrite in addition to a complex precious metal assemblage. Gold and silver occur principally as minute grains of telluride minerals disseminated in quartz-chlorite-hematite and as inclusions in chalcopyrite and sphalerite. Telluride minerals include petzite, hessite, and sylvanite. Free gold is present but not abundant. All of the vein-quartz samples contained abundant, minute inclusions of both low-density, vapor-rich fluids and liquid-rich fluids. Primary fluid inclusions yielded homogenization temperatures of from 110? to 238? C. Preliminary light-stable isotope studies of the sulfide minerals and quartz showed that all of the d34S values are between 1.2 and 6.3 per mil, which is a typical range for hydrothermal sulfide minerals that derive their sulfur from an igneous source. The data-suggest that the sulfide sulfur isotope geochemistry was controlled by exchange with la large sulfur isotope

  17. Fate of process solution cyanide and nitrate at three nevada gold mines inferred from stable carbon and nitrogen isotope measurements

    USGS Publications Warehouse

    Johnson, C.A.; Grimes, D.J.; Rye, R.O.

    2000-01-01

    Stable isotope methods have been used to identify the mechanisms responsible for cyanide consumption at three heap-leach operations that process Carlin-type gold ores in Nevada, U.S.A. The reagent cyanide had ??15N values ranging from -5 to -2??? and ??13C values from -60 to -35???. The wide ??13C range reflects the use by different suppliers of isotopically distinct natural-gas feedstocks and indicates that isotopes may be useful in environmental studies where there is a need to trace cyanide sources. In heap-leach circuits displaying from 5 to 98% consumption of cyanide, barren-solution and pregnant-solution cyanide were isotopically indistinguishable. The similarity is inconsistent with cyanide loss predominantly by HCN offgassing (a process that in laboratory experiments caused substantial isotopic changes), but it is consistent with cyanide retention within the heaps as solids, a process that caused minimal isotopic changes in laboratory simulations, or with cyanide oxidation, which also appears to cause minimal changes. In many pregnant solutions cyanide was carried entirely as metal complexes, which is consistent with ferrocyanides having precipitated or cyanocomplexes having been adsorbed within the heaps. It is inferred that gaseous cyanide emissions from operations of this type are less important than has generally been thought and that the dissolution or desorption kinetics of solid species is an important control on cyanide elution when the spent heaps undergo rinsing. Nitrate, nitrite and ammonium had ??15N values of 1-16???. The data reflect isotopic fractionation during ammonia offgassing or denitrification of nitrate - particularly in reclaim ponds - but do not indicate the extent to which nitrate is derived from cyanide or from explosive residues. ?? The Institution of Mining and Metallurgy 2000.

  18. Sulfur- and lead-isotope signatures of orogenic gold mineralisation associated with the Hill End Trough, Lachlan Orogen, New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Downes, P. M.; Seccombe, P. K.; Carr, G. R.

    2008-11-01

    The Hill End Trough (HET) is a deformed middle Silurian to Early Devonian sediment-dominated rift within the northeastern Lachlan Orogen. The HET hosts the Hill End, Hargraves, Napoleon Reefs, Stuart Town and Windeyer low-sulfide orogenic gold deposits. Adjacent to the HET are the Bodangora and Gulgong gold deposits. In this study we present 91 new sulfur- and 18 new lead-isotope analyses and collate a further 25 sulfur- and 32 lead-isotopes analyses from unpublished sources for these deposits. Larger gold deposits in the HET have near 0 δ34S‰ values indicating that sulfur in these systems was sourced from a magmatic reservoir. The dominant lead isotope signature for HET-hosted deposits reflects a crustal source however some mantle-derived lead has been introduced into the HET. Sulfur- and lead-isotopic results suggest that gold was sourced from mantle-derived magmatic units beneath the HET. The study supports earlier studies at Hill End by concluding that the majority of orogenic gold mineralisation in and adjacent to the HET formed during the Early Carboniferous period.

  19. Isotope tracing of Hg pollution from artisanal small scale gold mining in an aquatic ecosystem of Amapá, Brazil

    NASA Astrophysics Data System (ADS)

    Adler Miserendino, R.; Silbergeld, E. K.; Guimarães, J. D.; Ghosh, S.; Bergquist, B. A.

    2010-12-01

    Artisinal small scale gold mining (ASGM) is a central economic activity throughout the developing world. It is both a poverty driven and poverty alleviating process; however, ASGM leads to extensive pollution of waterways through the use of Hg to extract gold from deposits. There have been many studies conducted in the Amazon showing elevated levels of Hg in fish and sediment downstream of ASGM sites; however, the debate continues about the contribution of Hg from ASGM versus other potential sources of Hg. In this study, we investigate whether Hg stable isotope analysis can be used to trace mercury pollution from an ASGM site through an aquatic ecosystem in Amapá, Brazil. We measured the Hg isotopic composition of sediment cores from two lakes, only one of which was heavily impacted by the use of elemental Hg in ASGM, as well as from grab samples at the AGSM site and upstream and downstream from the AGSM site along the river which connects the polluted lake to the ASGM site. Hg from all samples were trapped via combustion using the Leeman Labs Hydra-C mercury analyzer and analyzed for both mass-independent and mass-dependent signatures using cold vapor multi-collector inductively coupled plasma mass spectrometry (CV-MC-ICP-MS). Detectable variations in the Hg isotopic signatures were apparent across our field sites, suggesting stable isotopic analysis has great potential to trace contamination pathways in waterways. Preliminary data demonstrate Hg from the ASGM site has unique isotopic signatures that are seen downstream. However, the impacted lake sediments do not have the mining signature despite having three times more Hg than the non-impacted lake. Based on this data, it may be possible to trace Hg from ASGM and assess whether it is impacting local ecosystems and food webs. Hair and soil samples will also be discussed. This demonstration is essential for the broader application of these tools for understanding and applying Hg isotopic analysis in other

  20. Geochemical evolution of tourmaline in the Darasun gold district, Transbaikal region, Russia: evidence from chemical and boron isotopic compositions

    NASA Astrophysics Data System (ADS)

    Baksheev, Ivan A.; Prokofiev, Vsevolod Yu.; Trumbull, Robert B.; Wiedenbeck, Michael; Yapaskurt, Vasilii O.

    2015-01-01

    The Darasun gold district, Transbaikal region, eastern Russia comprises three deposits: Teremkyn, Talatui, and Darasun, where gold-bearing quartz veins are hosted in metagabbro and granitoids. Tourmaline is a common gangue mineral in these deposits and a useful indicator of fluid source. The tourmaline compositions are oxy-dravite-povondraite, dravite, and schorl. We report here in situ B-isotope analyses by secondary ion mass spectrometry (SIMS) on tourmaline from veins in metagabbro and K-rich granodiorite, as well as from a breccia pipe at the margin of granodiorite porphyry. The B-isotope composition of tourmalines from the Darasun gold district as a whole covers a very wide range from -15.7 to +11.2 ‰, with distinctive differences among the three deposits. The δ11B values in the Teremkyn tourmalines are the most diverse, from -15.7 to +2.5 ‰. Tourmaline core compositions yield an inferred δ11B value of the initial fluid of ca. -12 ‰, suggesting granitic rocks as the B source, whereas the heavier rims and late-stage grains reflect Rayleigh fractionation. The δ11B values of tourmaline from Talatuiare -5.2 to -0.9 ‰. Taking into account fluid inclusion temperatures from vein quartz (ca. 400 °C), the inferred δ11B value of fluid is heavy (-2.5 to +2.2 ‰) suggesting a B source from the host metagabbro. At the Darasun deposit, tourmaline from the breccia pipe is isotopically uniform (δ11 B -6 to -5 ‰) and suggested to have precipitated from a 10B-depleted, residual fluid derived from granitic rocks. The Darasun vein-hosted tourmalines I and II (δ11B from -4.4 to +1.5 ‰) may have crystallized from strongly fractionated residual granitic fluid although mixing with heavy boron from the metagabbro rocks probably occurred as well; the boron isotopic composition of tourmaline III (-11.2 ‰) is attributed to a less-fractionated fluid, possibly a recharge from the same source.

  1. Geochronological and He-Ar-S isotopic constraints on the origin of the Sandaowanzi gold-telluride deposit, northeastern China

    NASA Astrophysics Data System (ADS)

    Zhai, Degao; Liu, Jiajun; Ripley, Edward M.; Wang, Jianping

    2015-01-01

    Northeastern China is characterized by widespread Mesozoic volcanic rocks and Au-Cu-Mo mineral deposits with a total gold reserve of > 2000 t. Amongst those gold deposits, the newly discovered Sandaowanzi has a total reserve of ≥ 25 t of Au and an average grade of 15 g/t. This deposit is important because it is the first reported case of a dominantly Au(± Ag)-telluride deposit containing economically valuable bonanza Au- and Ag-telluride ores in the region. The Sandaowanzi quartz vein system and associated Au-(± Ag)-telluride mineralization are mainly hosted by trachyandesites and andesitic breccias. Native gold is closely associated with abundant tellurides including petzite, sylvanite, calaverite, hessite, and altaite. Twelve pyrite samples from the alteration zone yield a well defined Rb-Sr isochron age of 119.1 ± 3.9 Ma, which is in agreement with a robust Rb-Sr isochron age of 121.3 ± 2.6 Ma derived from 10 auriferous quartz samples. The obtained isochron age of ~ 120 Ma represents the formation of the Sandaowanzi gold-telluride epithermal system, which is much younger than the host trachyandesite with a zircon U-Pb age of 312.5 ± 0.5 Ma and the spatially associated monzogranite with a zircon U-Pb age of 182.2 ± 1.1 Ma. Dating results indicate a close relationship between the local Au-Ag-Te mineralization and a magmatism episode in the Early Cretaceous. Noble gas (He and Ar) isotopes obtained from telluride, sulfide and quartz and sulfur isotopes determined from sulfides including chalcopyrite, sphalerite and pyrite demonstrate clear mixing trends between crustal and mantle-derived components, confirming a significant contribution of fluid produced from mantle-derived magmas into the epithermal system. Like many Mesozoic porphyry Cu-Mo ± Au deposits, the coeval epithermal Au-Ag ± Te deposits in the region are genetically related to magmatism triggered by the subduction of the Pacific oceanic plate beneath the Eurasian continent at the time.

  2. Different carbon reservoirs of auriferous fluids in African Archean and Proterozoic gold deposits? Constraints from stable carbon isotopic compositions of quartz-hosted CO2-rich fluid inclusions

    NASA Astrophysics Data System (ADS)

    Lüders, Volker; Klemd, Reiner; Oberthür, Thomas; Plessen, Birgit

    2015-04-01

    Stable carbon (and when present, nitrogen) isotope ratios of fluid inclusions in quartz from selected gold deposits in Ghana and Zimbabwe have been analyzed using a crushing device interfaced to an isotopic ratio mass spectrometer (IRMS) in order to constrain possible sources of the auriferous fluids. The study revealed a striking difference in stable carbon isotopic compositions of CO2 in quartz-hosted fluid inclusions from Archean and Paleoproterozoic orogenic gold deposits and points to diverse sources of CO2 in the studied deposits. Whether this finding can be generalized for other Archean and Proterozoic orogenic gold deposits worldwide remains open. However, a significant CO2 contribution by mantle degassing can be ruled out for every deposit studied. Devolatilization of greenstone belt rocks is the most likely source for CO2 in some Archean Au deposits in Zimbabwe, whereas CO2 in Proterozoic vein-type Au deposits in the West African Craton is most likely derived from Corg-bearing metasedimentary rocks. The δ13CCO2 values of high-density CO2-rich, water-poor inclusions hosted in quartz pebbles from the world-class Au-bearing conglomerate deposits at Tarkwa (Ghana) differ considerably from the δ13CCO2 values of similar high-density CO2-rich inclusions in vein quartz from the giant Ashanti deposit (Ghana) and disprove the idea of derivation of the Tarkwaian quartz (and gold?) from an older equivalent to the Ashanti vein-type gold deposit.

  3. Geochronology and isotopic-geochemical characteristics of magmatic complexes of gold-silver ore-magmatic structures in the Chukotka sector of the Russian Arctic coast

    NASA Astrophysics Data System (ADS)

    Sakhno, V. G.; Grigoriev, N. V.; Kurashko, V. V.

    2016-05-01

    The first results of SHRIMP dating of magmatic complexes and associated gold-silver deposits and ore occurrences (Kupol, Dvoinoe, Moroshka, and others) in the Chukotka sector of the Russian Arctic coast are discussed. The petrological and isotopic-geochronological data are used for reconstructing their formation conditions.

  4. Isotopic geochronological evidence for the Paleoproterozoic age of gold mineralization in Archean greenstone belts of Karelia, the Baltic Shield

    NASA Astrophysics Data System (ADS)

    Larionova, Yu. O.; Samsonov, A. V.; Shatagin, K. N.; Nosova, A. A.

    2013-09-01

    The Rb-Sr age of metasomatic rocks from four gold deposits and occurrences localized in Archean granite-greenstone belts of the western, central, and southern Karelian Craton of the Baltic Shield has been determined. At the Pedrolampi deposit in central Karelia, the dated Au-bearing beresite and quartz-carbonate veins are located in the shear zone and replace Mesoarchean (˜2.9 Ga) mafic and felsic metavolcanic rocks of the Koikar-Kobozero greenstone belt. At the Taloveis ore occurrence in the Kostomuksha greenstone belt of western Karelia, the dated beresite replaces Neoarchean (˜2.7 Ga) granitoids and is conjugated with quartz veins in the shear zone. At the Faddeinkelja occurrence of southern Karelia, Aubearing beresite in the large tectonic zone, which transects Archean granite and Paleoproterozoic mafic dikes, has been studied. At the Hatunoja occurrence in the Jalonvaara greenstone belt of southwestern Karelia, the studied quartz veins and related gold mineralization are localized in Archean granitoids. The Rb-Sr isochrons based on whole-rock samples and minerals from ore-bearing and metasomatic wall rocks and veins yielded ˜1.7 Ga for all studied objects. This age is interpreted as the time of development of ore-bearing tectonic zones and ore-forming hydrothermal metasomatic alteration. New isotopic data in combination with the results obtained by our precursors allow us to recognize the Paleoproterozoic stage of gold mineralization in the Karelian Craton. This stage was unrelated to the Archean crust formation in the Karelian Block and is a repercussion of the Paleoproterozoic (2.0-1.7 Ga) crust-forming tectonic cycle, which gave rise to the formation of the Svecofennian and Lapland-Kola foldbelts in the framework of the Karelain Craton. The oreforming capability of Paleoproterozoic tectonics in the Archean complexes of the Karelian Craton was probably not great, and its main role consisted in reworking of the Archean gold mineralization of various

  5. He-Ar isotope geochemistry of iron and gold deposits reveals heterogeneous lithospheric destruction in the North China Craton

    NASA Astrophysics Data System (ADS)

    Shen, Junfeng; Li, Shengrong; Santosh, M.; Meng, Kai; Dong, Guochen; Wang, Yanjuan; Yin, Na; Ma, Guanggang; Yu, Hongjun

    2013-12-01

    The North China Craton (NCC) provides a classic example for extensive destruction of the cratonic lithosphere. The Mesozoic magmatism which contributed to the decratonization of the NCC was also accompanied by the formation of a variety of mineral deposits. In order to gain further insights into the cratonic destruction process, typical iron and gold deposits are investigated here. Helium-argon isotopic data on pyrite, from typical skarn iron deposits of the Beiminghe and Fushan in the Han-Xing district of the central NCC, and the Linglong and Canzhuang gold deposits in the Jiaodong district in the eastern NCC, are presented in this paper. The 3He/4He, 40Ar/36Ar and 40Ar/4He ratios show generally uniform patterns within the individual deposits and reveal a complex evolutionary history of the ore-forming fluids with varying degree of crust-mantle interaction. The ore-forming fluids associated with the gold mineralization at the Jiaodong mine have higher content of fluids of mantle origin with mantle helium ranging from 1.24% to 18.02% (average 6.73%; N = 18). In contrast, the ore-forming fluids related to the iron ore deposits contain less mantle contribution with mantle helium ranging from 0.12% to 4.96% (average 1.29%; N = 10). Our results suggest complex and heterogeneous crust-mantle processes associated with the magmatism and metallogeny, where the lithosphere of the eastern NCC was subjected to more extensive thinning and destruction as compared with that in the western part, consistent with the observations from geophysical studies in the region. Our study demonstrates that fluids associated with the Mesozoic metallogenic processes in the NCC provide useful insights into the geodynamics of destruction and refertilization of the cratonic lithosphere.

  6. Accounting for cyanide and its degradation products at three Nevada gold mines; constraints from stable C- and N-isotopes

    USGS Publications Warehouse

    Johnson, C.A.; Grimes, D.J.; Rye, R.O.

    1998-01-01

    An understanding of the fate of cyanide (CN-) in mine process waters is important for addressing environmental concerns and for taking steps to minimize reagent costs. The utility of stable isotope methods in identifying cyanide loss pathways has been investigated in case studies at three Nevada gold mines. Freshly prepared barren solutions at the mines have cyanide d15N and d13C values averaging -4 ? and -36 ?, respectively, reflecting the nitrogen and carbon sources used by commercial manufacturers, air and natural gas methane. Pregnant solutions returning from ore heaps display small isotopic shifts to lower d15N and d13C values. The shifts are similar to those observed in laboratory experiments where cyanide was progressively precipitated as a cyanometallic compound, and are opposite in sign and much smaller in magnitude than the shifts observed in experiments where HCN was offgassed. Offgassing is inferred to be a minor cyanide loss mechanism in the heap leach operations at the three mines, and precipitation as cyanometallic compounds, and possibly coprecipitation with ferric oxides, is inferred to be an important loss mechanism. Isotopic analysis of dissolved inorganic carbon (DIC) shows that uptake of high d13C air CO2 has been important in many barren and pregnant solutions. However, DIC in reclaim pond waters at all three mines has low d13C values of -28 to -34 ? indicating cyanide breakdown either by hydrolysis or by other chemical pathways that break the C-N bond. Isotope mass balance calculations indicate that about 40 % of the DIC load in the ponds, at a minimum, was derived from cyanide breakdown. This level of cyanide hydrolysis accounts for 14-100 % of the dissolved inorganic nitrogen species present in the ponds. Overall, isotope data provide quantitative evidence that only minor amounts of cyanide are lost via offgassing and that significant amounts are destroyed via hydrolysis and related pathways. The data also highlight the possibility that

  7. Stable isotopes of nitrogen in plants of contaminated soils and sediments by an abandoned gold mine

    NASA Astrophysics Data System (ADS)

    Becerra, O. F.; Sanchez, A.; Marmolejo, A. J.; Magallanes, V. R.

    2013-05-01

    Mining industry is an economic activity which generates high ecological impact. In the mining district "El Triunfo", the concentration of potential toxic elements (PTE: As, Cd, Hg, Sb) have exceeded 50 times allowable limits. Nowadays, environmental pollution levels can be evaluated through the use of stable isotopes of N. For this, isotopic analysis of nitrogen and concentrations of metals and metalloids were considered in the area where plants are exposed (Prosopis spp., Parkinsonia spp. and Salicornia spp.) Polluted sediments were collected over 48 km of the Las Gallinas-El Hondo-El Carrizal arroyo. PTE concentrations, with a previous acidic digestion (HF, HCl, HNO3 and H2SO4) were determined by ICP-MS. As and Sb were determined by NAA. For N isotopes, obtained samples were grounded to fine powder in an agate mortar with an acetone rinse between samples then analyzed by an EA-IRMS. Results showed that plants growing on the tailings decreased their δ15N proportionally to the metal concentration in the area.

  8. Sources of metals in the Porgera gold deposit, Papua New Guinea: Evidence from alteration, isotope, and noble metal geochemistry

    NASA Astrophysics Data System (ADS)

    Richards, Jeremy P.; McCulloch, Malcolm T.; Chappell, Bruce W.; Kerrich, Robert

    1991-02-01

    The Porgera gold deposit is spatially and temporally associated with the Late Miocene, mafic, alkalic, epizonal Porgera Intrusive Complex (PIC), located in the highlands of Papua New Guinea (PNG). The highlands region marks the site of a Tertiary age continent-island-arc collision zone, located on the northeastern edge of the Australasian craton. The PIC was emplaced within continental crust near the Lagaip Fault Zone, which represents an Oligocene suture between the craton and volcano-sedimentary rocks of the Sepik terrane. Magmatism at Porgera probably occurred in response to the Late Miocene elimination of an oceanic microplate, and subsequent Early Pliocene collision between the craton margin and an arc system located on the Bismarck Sea plate. Gold mineralization occurred within 1 Ma of the time of magmatism. Metasomatism accompanying early disseminated Au mineralization in igneous host rocks resulted in additions of K, Rb, Mn, S, and CO 2, and depletions of Fe, Mg, Ca, Na, Ba, and Sr; rare-earth and high-field-strength elements remained largely immobile. Pervasive development of illite-K-feldspar-quartz-carbonate alteration assemblages suggests alteration by mildly acidic, 200 to 350°C fluids, at high water/ rock ratios. Strontium and lead isotopic compositions of minerals from early base-metal sulphide veins associated with K-metasomatism, and later quartz-roscoelite veins carrying abundant free gold and tellurides, are remarkably uniform (e.g., 87Sr /86Sr = 0.70745 ± 0.00044 [n = 10] , 207Pb /204Pb = 15.603 ± 0.004 [n = 15] ). These compositions fall between those of unaltered igneous and sedimentary host rocks, and specifically sedimentary rocks from the Jurassic Om Formation which underlies the deposit (igneous rocks: 87Sr /86Sr ≈ 0.7035 , 207Pb /204Pb ≈ 15.560 ; Om Formation: 87Sr /86Sr |t~ 0.7153 , 207Pb /204Pb ≈ 15.636 ). It is therefore suggested that the hydrothermal fluids acquired their Sr and Pb isotopic signatures by interaction with, or

  9. A possible genetic model of the Shuangwang hydrothermal breccia gold deposit, Shaanxi Province, central China: Evidence from fluid inclusion and stable isotope

    NASA Astrophysics Data System (ADS)

    Wang, Jianping; Liu, Jiajun; Carranza, Emmanuel John M.; Liu, Zhenjiang; Liu, Chonghao; Liu, Bizheng; Wang, Kexin; Zeng, Xiangtao; Wang, Huan

    2015-11-01

    The Shuangwang gold deposit (with a gold resource of approximately 70 t Au), hosted in a NW-trending breccia belt, is located in the Fenxian-Taibai fore-arc basin in the West Qinling Orogen of central China. Four stages of ore paragenesis are identified, demonstrating mineral assemblages of ankerite-quartz-albite, quartz-albite-pyrite-ankerite, pyrite-calcite-quartz, and fluorite-dickite-gypsum, respectively. Fluid inclusions hosted in stages I, II, and III hydrothermal minerals yield homogeneous temperatures of 300-463 °C, 220-340 °C and 100-279 °C, with salinities lower than 22.7 wt% NaCl equiv. Trapping pressures estimated from CO2-H2O fluid inclusions show a gradual decrease from 100-170 MPa (KT8 ore body) to 17-55 MPa (KT2 ore body), corresponding to mineralization depths from 3.8-6.4 km (KT8) to 0.6-2.1 km (KT2). Hydrogen and oxygen isotopic data suggest that the ore-forming fluids evolved from metamorphic water to magmatic water, and lately meteoric water. Sulfur and carbon isotope compositions show that these fluids might have originated from interaction with the host rocks with minor additional magmatic source. Based on geochemical investigations, with combination of regional and ore deposit geology, a possible genetic model with a three-step ore-forming process is proposed. The Devonian Xinghongpu sedimentary rocks are characterized by a relatively high gold content, which might provide the initial gold source. Linear folds and faults formed during Triassic orogenic processes provided the subsequent pathways for ore-forming fluids and suitable space for gold mineralization. Postorogenic magmatic activity induced voluminous hydrothermal fluids that mixed with the basinal fluids and may have started the ore formation process. Over pressure led to hydrofracturing and the subsequent pressure drop promoted fluid boiling, which in turn resulted in abundant gold deposition. Induced by postorogenic magmatic hydrothermal activity, the Shuangwang gold deposit is

  10. Fluid inclusion and stable isotope (O, H, C, and S) constraints on the genesis of the Serrinha gold deposit, Gurupi Belt, northern Brazil

    NASA Astrophysics Data System (ADS)

    Klein, Evandro L.; Harris, Chris; Renac, Christophe; Giret, André; Moura, Candido A. V.; Fuzikawa, Kazuo

    2006-05-01

    The Serrinha gold deposit of the Gurupi Belt, northern Brazil, belongs to the class of orogenic gold deposits. The deposit is hosted in highly strained graphitic schist belonging to a Paleoproterozoic (˜2,160 Ma) metavolcano-sedimentary sequence. The ore-zones are up to 11 m thick, parallel to the regional NW-SE schistosity, and characterized by quartz-carbonate-sulfide veinlets and minor disseminations. Textural and structural data indicate that mineralization was syn- to late-tectonic and postmetamorphic. Fluid inclusion studies identified early CO2 (CH4-N2) and CO2 (CH4-N2)-H2O-NaCl inclusions that show highly variable phase ratios, CO2 homogenization, and total homogenization temperatures both to liquid and vapor, interpreted as the product of fluid immiscibility under fluctuating pressure conditions, more or less associated with postentrapment modifications. The ore-bearing fluid typically has 18-33mol% of CO2, up to 4mol% of N2, and less than 2mol% of CH4 and displays moderate to high densities with salinity around 4.5wt% NaCl equiv. Mineralization occurred around 310 to 335°C and 1.3 to 3.0 kbar, based on fluid inclusion homogenization temperatures and oxygen isotope thermometry with estimated oxygen fugacity indicating relatively reduced conditions. Stable isotope data on quartz, carbonate, and fluid inclusions suggest that veins formed from fluids with δ18OH2O and δDH2O (310-335°C) values of +6.2 to +8.4‰ and -19 to -80‰, respectively, which might be metamorphic and/or magmatic and/or mantle-derived. The carbon isotope composition (δ13C) varies from -14.2 to -15.7‰ in carbonates; it is -17.6‰ in fluid inclusion CO2 and -23.6‰ in graphite from the host rock. The δ34S values of pyrite are -2.6 to -7.9‰. The strongly to moderately negative carbon isotope composition of the carbonates and inclusion fluid CO2 reflects variable contribution of organic carbon to an originally heavier fluid (magmatic, metamorphic, or mantle-derived) at the site

  11. Sulfur and lead isotope geochemistry of hypogene mineralization at the Barite Hill Gold Deposit, Carolina Slate Belt, southeastern United States: A window into and through regional metamorphism

    USGS Publications Warehouse

    Seal, Robert R.; Ayuso, Robert A.; Foley, Nora K.; Clark, Sandra H.B.

    2001-01-01

    The Barite Hill gold deposit, at the southwestern end of the Carolina slate belt in the southeastern United States, is one of four gold deposits in the region that have a combined yield of 110 metric tons of gold over the past 10 years. At Barite Hill, production has dominantly come from oxidized ores. Sulfur isotope data from hypogene portions of the Barite Hill gold deposit vary systematically with pyrite–barite associations and provide insights into both the pre-metamorphic Late Proterozoic hydrothermal and the Paleozoic regional metamorphic histories of the deposit. The δ34S values of massive barite cluster tightly between 25.0 and 28.0‰, which closely match the published values for Late Proterozoic seawater and thus support a seafloor hydrothermal origin. The δ34S values of massive sulfide range from 1.0 to 5.3‰ and fall within the range of values observed for modern and ancient seafloor hydrothermal sulfide deposits. In contrast, δ34S values for finer-grained, intergrown pyrite (5.1–6.8‰) and barite (21.0–23.9‰) are higher and lower than their massive counterparts, respectively. Calculated sulfur isotope temperatures for the latter barite–pyrite pairs (Δ=15.9–17.1‰) range from 332–355 °C and probably reflect post-depositional equilibration at greenschist-facies regional metamorphic conditions. Thus, pyrite and barite occurring separately from one another provide pre-metamorphic information about the hydrothermal origin of the deposit, whereas pyrite and barite occurring together equilibrated to record the metamorphic conditions. Preliminary fluid inclusion data from sphalerite are consistent with a modified seawater source for the mineralizing fluids, but data from quartz and barite may reflect later metamorphic and (or) more recent meteoric water input. Lead isotope values from pyrites range for 206Pb/204Pb from 18.005–18.294, for 207Pb/204Pb from 15.567–15.645, and for 208Pb/204Pb from 37.555–38.015. The data

  12. Solar Wind Neon Isotopic Analyses by UV Laser Ablation on the Genesis Concentrator Gold Cross for Calibration of Oxygen Isotope Data

    NASA Astrophysics Data System (ADS)

    Heber, V. S.; Wiens, R. C.; Burnett, D. S.; Baur, H.; Wiechert, U. H.; Wieler, R.

    2005-12-01

    To determine the oxygen isotopic composition of the present day solar wind, a proxy for the solar nebula, is one of the key goals of the Genesis solar wind (SW) collection mission. In order to increase analytical precision on measured O isotopes, ions of incoming SW in the mass range to 28 amu were accelerated and focussed onto the target by an electrostatic mirror. The concentration factor is about 20. However, these processes are expected to fractionate the isotopic composition of SW ions, with fractionation varying as a function of target radius. We will directly measure the instrumental fractionation factors by analysing Ne isotopes with high precision and spatial resolution along the radius on the electroplated Au cross that framed the concentrator targets. Ne isotopes are most suitable to investigate fractionation because of i) it is an abundant element in the Sun, ii) its isotopic composition in SW is well understood, and iii) Ne is hardly influenced by terrestrial contamination. We will analyse Ne isotopes by UV laser ablation (248 nm) of small areas (0.1 x 0.1 mm) using a very sensitive noble gas mass spectrometer equipped with a molecular drag pump conveying the gas almost quantitatively into the ion source. The target precision of O isotopic composition is about 0.1% (2-sigma). Therefore, the most important issue for us is to achieve a similar high precision of the Ne isotope data allowing to determine the trend of instrumental fractionation along the target radius, which is computed to be in total about 2%. Currently, we obtain a reproducibility of <0.2% using standard calibration gas containing similar Ne amounts as expected. Blank analyses of the ultra-clean electroplated Au target result in absolutely negligible amounts of Ne. At the meeting we will present first Ne results of the first arm analysed of the Au cross.

  13. Sulfur isotopic zonation in the Cadia district, southeastern Australia: exploration significance and implications for the genesis of alkalic porphyry gold-copper deposits

    NASA Astrophysics Data System (ADS)

    Wilson, Alan J.; Cooke, David R.; Harper, Benjamin J.; Deyell, Cari L.

    2007-06-01

    The alkalic porphyry gold-copper deposits of the Cadia district occur in the eastern Lachlan Fold Belt of New South Wales, Australia. The district comprises four porphyry deposits (Ridgeway, Cadia Quarry, Cadia Hill, and Cadia East) and two iron-copper-gold skarn deposits (Big Cadia and Little Cadia). Almost 1,000 tonnes of contained gold and more than four million tonnes of copper have been discovered in these systems, making Cadia the world’s largest known alkalic porphyry district, in terms of contained gold. Porphyry gold-copper ore at Cadia is associated with quartz monzonite intrusive complexes, and is hosted by central stockwork and sheeted quartz-sulfide-(carbonate) vein systems. The Cadia porphyry deposits are characterized by cores of potassic and/or calc-potassic alteration assemblages, and peripheral halos of propylitic alteration, with late-stage phyllic alteration mostly restricted to fault zones. Hematite dusting is an important component of the propylitic alteration assemblage, and has produced a distinctive reddening of feldspar minerals in the volcanic wall rocks around the mineralized centers. Sulfide mineralization is strongly zoned at Ridgeway and Cadia East, with bornite-rich cores surrounded by chalcopyrite-rich halos and peripheral zones of pyrite mineralization. The Cadia Hill and Cadia Quarry deposits have chalcopyrite-rich cores and pyrite-rich halos, and Cadia Hill contains a high-level bornite-rich zone. Distinctive sulfur isotopic zonation patterns have been identified at Ridgeway, Cadia Hill, and Cadia East. The deposit cores are characterized by low δ34Ssulfide values (-10 to -4‰), consistent with sulfide precipitation from an oxidized (sulfate-predominant) magmatic fluid at 450 to 400°C. Pyrite grains that occur in the propylitic alteration halos typically have δ34Ssulfide values near 0‰. There is a gradual increase in δ34Ssulfide values outwards from the deposit cores through the propylitic halos. Water-rock interaction

  14. Genetic aspects of a gold deposit in high grade Cambro-Ordovician metasediments, Nova Scotia: geological, mineral, geochemical and isotopic evidence

    SciTech Connect

    Smith, P.K.

    1985-01-01

    The Cochrane Hill gold deposit is hosted by amphibolite grade turbidite metasediments of the Cambro-Ordovician Goldenville Formation. Interbedded pelitic, semipelitic and psammite host sediments were polydeformed, metamorphosed and intruded by granitoid plutons during the Devonian Acadian Orogeny. Six distinct types of quartz veins are recognized from the 30m wide mineralized zone. Textural evidence suggests that vein emplacement commenced prior to deformation and ceased after the termination of the Acadian Orogeny. Essential mineralogy of the veins is quartz, plagioclase, phyllo-silicates, aluminosilicates, amphiboles and garnet. Arsenopyrite, pyrrhotite, loellingite, pyrite, marcasite, sphalerite, galena, chalcopyrite, Fe-Ti oxides and gold are the ore minerals. FeO/MgO, Na/sub 2/O/K/sub 2/O and Al/sub 2/O/sub 3//K/sub 2/O ratios in biotite and muscovite increase in the ore zone. Whole rock geochemistry of pelitic lithologies shows marked increases in TiO/sub 2//MgO, TiO/sub 2//Fe/sub 3/O/sub 3/, TiO/sub 2//P/sub 2/O/sub 5/ and Na O/K/sub 2/O ratios across the ore horizon. In the psammitic units TiO/sub 2//P/sub 2/O/sub 5/ shows marked increase whereas CaO/MgO and Na/sub 2/O/K/sub 2/O ratios decrease slightly in the auriferous zone. Fluid inclusion temperatures from quartz vary from 260 to +450/sup 0/C. Preliminary lead isotope data on galenas from Cochrane Hill are substantially more radiogenic than whole rock leads from the Goldenville Formation. These lead isotopic data, which are similar to those from granite-hosted mineral deposits together with other lines of evidence, support a granite related epigenetic gold models.

  15. Lead isotope compositions as guides to early gold mineralization: The North Amethyst vein system, Creede district, Colorado

    USGS Publications Warehouse

    Foley, Nora K.; Ayuso, Robert A.

    1994-01-01

    Pb isotope compositions from the late stage of the North Amethyst vein system and from the Bondholder and central and southern Creede mining districts are more radiogenic than the host volcanic rocks of the central cluster of the San Juan volcanic field. Our Pb isotope results indicate that early Au mineralization of the North Amethyst area may represent the product of an older and relatively local hydrothermal system distinct from that of the younger base metal and Ag mineralization found throughout the region. Fluids that deposited Au minerals may have derived their Pb isotope composition by a greater degree of interaction with shallow, relatively less radiogenic volcanic wall rocks. The younger, base metal and Ag-rich mineralization that overprints the Au mineralization in the North Amethyst area clearly has a more radiogenic isotopic signature, which implies that the later mineralization derived a greater component of its Pb from Proterozoic source rocks, or sediments derived from them.Paragenetically early sulfide-rich vein assemblages have the least radiogenic galenas and generally also have the highest Au contents. Thus, identification of paragenetically early vein assemblages with relatively unradiogenic Pb isotope compositions similar to those of the North Amethyst area provides an additional exploration tool for Au in the central San Juan Mountains area.

  16. Fluid inclusion and stable isotopes studies of epithermal gold-bearing veins in the SE Afar Rift (Djibouti)

    NASA Astrophysics Data System (ADS)

    Moussa, N.; Boiron, M. C.; Grassineau, N.; Fouquet, Y.; Le Gall, B.; Mohamed, J.

    2015-12-01

    The Afar rift results from the interaction of a number of actively-propagating tectono-magmatic axes. Recent field investigations in the SE Afar rift have emphasized the importance of hydrothermal system in rift-related volcanic complexes. Mineralization occur as gold-silver bearing veins and are associated with felsic volcanism. Late carbonate veins barren of sulfides and gold are common. The morphologies and textures of quartz show crustiform colloform banding, massive and breccias. Microthermometric measurements were made on quartz-hosted two phases (liquid + vapor) inclusions; mean homogenization temperature range from 150°C to 340°C and ice-melting temperatures range from -0.2° to 1.6°C indicating that inclusion solutions are dilute and contain 0.35 to 2.7 equivalent wt. % NaCl. Furthermore, δ18O and δ13C values from calcite range from 3.7 to 26.6 ‰ and -7.5 to 0.3‰, respectively. The presence of platy calcite and adularia indicate that boiling condition existed. This study shows that precious-metal deposition mainly occurred from hydrothermal fluids at 200°C at around 300 and 450 m below the present-day surface in a typical low-sulphidation epithermal environment.

  17. Paleoproterozoic high-sulfidation mineralization in the Tapajós gold province, Amazonian Craton, Brazil: geology, mineralogy, alunite argon age, and stable-isotope constraints

    USGS Publications Warehouse

    Juliani, Caetano; Rye, Robert O.; Nunes, Carmen M.D.; Snee, Lawrence W.; Correa, Rafael H.; Monteiro, Lena V.S.; Bettencourt, Jorge S.; Neumann, Rainer; Neto, Arnaldo A.

    2005-01-01

    The Brazilian Tapajós gold province contains the first evidence of high-sulfidation gold mineralization in the Amazonian Craton. The mineralization appears to be in large nested calderas. The Tapajós–Parima (or Ventuari–Tapajós) geological province consists of a metamorphic, igneous, and sedimentary sequence formed during a 2.10 to 1.87 Ga ocean−continent orogeny. The high-sulfidation mineralization with magmatic-hydrothermal alunite is related to hydrothermal breccias hosted in a rhyolitic volcanic ring complex that contains granitic stocks ranging in age from 1.89 to 1.87 Ga. Cone-shaped hydrothermal breccias, which flare upward, contain vuggy silica and have an overlying brecciated cap of massive silica; the deposits are located in the uppermost part of a ring-structure volcanic cone. Drill cores of one of the hydrothermal breccias contain alunite, natroalunite, pyrophyllite, andalusite, quartz, rutile, diaspore, woodhouseite–svanbergite, kaolinite, and pyrite along with inclusions of enargite–luzonite, chalcopyrite, bornite, and covellite. The siliceous core of this alteration center is surrounded by advanced argillic and argillic alteration zones that grade outward into large areas of propylitically altered rocks with sericitic alteration assemblages at depth. Several occurrences and generations of alunite are observed. Alunite is disseminated in the advanced argillic haloes that envelop massive and vuggy silica or that underlie the brecciated silica cap. Coarse-grained alunite also occurs in branching veins and locally is partly replaced by a later generation of fine-grained alunite. Silicified hydrothermal breccias associated with the alunite contain an estimated reserve of 30 tonnes of gold in rock that grades up to 4.5 g t−1 Au. Seven alunite samples gave 40Ar/39Ar ages of 1.869 to 1.846 Ga, with various degrees of apparent minor Ar loss. Stable isotopic data require a magmatic-hydrothermal origin for the alunite, typical for high

  18. Evidence for a magmatic origin for Carlin-type gold deposits: isotopic composition of sulfur in the Betze-Post-Screamer Deposit, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Kesler, Stephen E.; Riciputi, Lee C.; Ye, Zaojun

    2005-03-01

    We report here new sulfur isotope analyses from the Betze-Post-Screamer deposit, the largest Carlin-type gold deposit in the world. Carlin-type deposits contain high concentrations of arsenic, antimony, mercury, tellurium and other elements of environmental interest, and are surrounded by large volumes of crust in which these elements are also enriched. Uncertainty about the source of sulfur and metals in and around Carlin-type deposits has hampered formulation of models for their origin, which are needed for improved mineral exploration and environmental assessment. Previous studies have concluded that most Carlin-type deposits formed from sulfide sulfur that is largely of sedimentary origin. Most of these studies are based on analyses of mineral separates consisting of pre-ore diagenetic pyrite with thin overgrowths of ore-related arsenian pyrite rather than pure, ore-related pyrite. Our SIMS spot analyses of ore-related pyrite overgrowths in the Screamer zone of the Betze-Post-Screamer deposit yield δ34S values of about -1 to 4‰ with one value of about 7‰. Conventional analyses of realgar and orpiment separates from throughout the deposit yield δ34S values of about 5-7‰ with one value of 10‰ in the Screamer zone. These results, along with results from an earlier SIMS study in the Post zone of the deposit and phase equilibrium constraints, indicate that early arsenian pyrite were formed from fluids of magmatic origin with variable contamination from sulfur in Paleozoic sedimentary rocks. Later arsenic sulfides were formed from solutions to which sulfur of sedimentary origin had been added. The presence of Paleozoic sedimentary sulfur in Carlin-type deposits does not require direct involvement of hydrothermal solutions of sedimentary origin. Instead, it could have been added by magmatic assimilation of Paleozoic sedimentary rocks or by hydrothermal leaching of sulfur from wall rocks to the deposit. Thus, the dominant process delivering sulfur, arsenic

  19. Extreme variation of sulfur isotopic compositions in pyrite from the Qiuling sediment-hosted gold deposit, West Qinling orogen, central China: an in situ SIMS study with implications for the source of sulfur

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Li, Xian-hua; Li, Jian-wei; Hofstra, Albert H.; Liu, Yu; Koenig, Alan E.

    2015-08-01

    High spatial resolution textural (scanning electron microscope (SEM)), chemical (electron microprobe (EMP)) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)), and sulfur isotopic (secondary ion mass spectrometry (SIMS)) analyses of pyrite from the Qiuling sediment-hosted gold deposit (232 ± 4 Ma) in the West Qinling orogen, central China were conducted to distinguish pyrite types and gain insights into the source and evolution of sulfur in hydrothermal fluids. The results reveal an enormous variation (-27.1 to +69.6 ‰) in sulfur isotopic composition of pyrite deposited during three paragenetic stages. Pre-ore framboidal pyrite, which is characterized by low concentrations of As, Au, Cu, Co, and Ni, has negative δ34S values of -27.1 to -7.6 ‰ that are interpreted in terms of bacterial reduction of marine sulfate during sedimentation and diagenesis of the Paleozoic carbonate and clastic sequences, the predominant lithologies in the deposit area, and the most important hosts of many sediment-hosted gold deposits throughout the West Qinling orogen. The ore-stage hydrothermal pyrite contains high concentrations of Au, As, Cu, Sb, Tl, and Bi and has a relatively narrow range of positive δ34S values ranging from +8.1 to +15.2 ‰. The sulfur isotope data are comparable to those of ore pyrite from many Triassic orogenic gold deposits and Paleozoic sedimentary exhalative (SEDEX) Pb-Zn deposits in the West Qinling orogen, both being hosted mainly in the Devonian sequence. This similarity indicates that sulfur, responsible for the auriferous pyrite at Qiuling, was largely derived from the metamorphic devolatization of Paleozoic marine sedimentary rocks. Post-ore-stage pyrite, which is significantly enriched in Co and Ni but depleted in Au and As, has unusually high δ34S values ranging from +37.4 to +69.6 ‰, that are interpreted to result from thermochemical reduction of evaporite sulfates in underlying Cambrian sedimentary rocks with very

  20. Mineralogical and stable isotope studies of gold-arsenic mineralisation in the Sams Creek peralkaline porphyritic granite, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Faure, Kevin; Brathwaite, Robert L.

    2006-03-01

    At Sams Creek, a gold-bearing, peralkaline granite porphyry dyke, which has a 7 km strike length and is up to 60 m in thickness, intrudes camptonite lamprophyre dykes and lower greenschist facies metapelites and quartzites of the Late Ordovician Wangapeka formation. The lamprophyre dykes occur as thin (< 3 m) slivers along the contacts of the granite dyke. δ18Omagma values (+5 to +8‰, VSMOW) of the A-type granite suggest derivation from a primitive source, with an insignificant mature crustal contribution. Hydrothermal gold-sulphide mineralisation is confined to the granite and adjacent lamprophyre; metapelite country rocks have only weak hydrothermal alteration. Three stages of hydrothermal alteration have been identified in the granite: Stage I alteration (high fO2) consisting of magnetite-siderite±biotite; Stage II consisting of thin quartz-pyrite veinlets; and Stage III (low fO2) consisting of sulphides, quartz and siderite veins, and pervasive silicification. The lamprophyre is altered to an ankerite-chlorite-sericite assemblage. Stage III sulphide veins are composed of arsenopyrite + pyrite ± galena ± sphalerite ± gold ± chalcopyrite ± pyrrhotite ± rutile ± graphite. Three phases of deformation have affected the area, and the mineralised veins and the granite and lamprophyre dykes have been deformed by two phases of folding, the youngest of which is Early Cretaceous. Locally preserved early-formed fluid inclusions are either carbonic, showing two- or three-phases at room temperature (liquid CO2-CH4 + liquid H2O ± CO2 vapour) or two-phase liquid-rich aqueous inclusions, some of which contain clathrates. Salinities of the aqueous inclusions are in the range of 1.4 to 7.6 wt% NaCl equiv. Final homogenisation temperatures (Th) of the carbonic inclusions indicate minimum trapping temperatures of 320 to 355°C, which are not too different from vein formation temperatures of 340-380°C estimated from quartz-albite stable isotope thermometry. δ18O values

  1. Petrogenesis of gold-mineralized magmatic rocks of the Taerbieke area, northwestern Tianshan (western China): Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopic compositions

    NASA Astrophysics Data System (ADS)

    Tang, Gong-Jian; Wang, Qiang; Wyman, Derek A.; Sun, Min; Zhao, Zhen-Hua; Jiang, Zi-Qi

    2013-09-01

    Many Late Paleozoic Cu-Au-Mo deposits occur in the Central Asian Orogenic Belt (CAOB). However, their tectonic settings and associated geodynamic processes have been disputed. This study provides age, petrologic and geochemical data for andesites and granitic porphyries of the Taerbieke gold deposit from the Tulasu Basin, in the northwestern Tianshan Orogenic Belt (western China). LA-ICP-MS zircon U-Pb dating indicates that the granitic porphyries have an Early Carboniferous crystallization age (349 ± 2 Ma) that is broadly contemporaneous with the eruption age (347 ± 2 Ma) of the andesites. The andesites have a restricted range of SiO2 (58.94-63.85 wt.%) contents, but relatively high Al2O3 (15.39-16.65 wt.%) and MgO (2.51-6.59 wt.%) contents, coupled with high Mg# (57-69) values. Geochemically, they are comparable to Cenozoic sanukites in the Setouchi Volcanic Belt, SW Japan. Compared with the andesites, the granitic porphyries have relatively high SiO2 (72.68-75.32 wt.%) contents, but lower Al2O3 (12.94-13.84 wt.%) and MgO (0.10-0.33 wt.%) contents, coupled with lower Mg# (9-21) values. The andesites and granitic porphyries are enriched in both large ion lithophile and light rare earth elements, but depleted in high field strength elements, similar to those of typical arc magmatic rocks. They also have similar Nd-Hf-Pb isotope compositions: ɛNd(t) (+0.48 to +4.06 and -0.27 to +2.97) and zircons ɛHf(t) (+3.4 to +8.0 and -1.7 to +8.2) values and high (206Pb/204Pb)i (18.066-18.158 and 17.998-18.055). We suggest that the Taerbieke high-Mg andesitic magmas were generated by the interaction between mantle wedge peridotites and subducted oceanic sediment-derived melts with minor basaltic oceanic crust-derived melts, and that the magmas then fractionated to produce the more felsic members (i.e., the Taerbieke granitic porphyries) during late-stage evolution. Taking into account the Carboniferous magmatic record from the western Tianshan Orogenic Belt, we suggest that

  2. Geochemical and stable isotopic data on barren and mineralized drill core in the Devonian Popovich Formation, Screamer sector of the Betze-Post gold deposit, northern Carlin trend, Nevada

    USGS Publications Warehouse

    Christiansen, William D.; Hofstra, Albert H.; Zohar, Pamela B.; Tousignant, Gilles

    2011-01-01

    The Devonian Popovich Formation is the major host for Carlin-type gold deposits in the northern Carlin trend of Nevada. The Popovich is composed of gray to black, thin-bedded, calcareous to dolomitic mudstone and limestone deposited near the carbonate platform margin. Carlin-type gold deposits are Eocene, disseminated, auriferous pyrite deposits characterized by acid leaching, sulfidation, and silicification that are typically hosted in Paleozoic calcareous sedimentary rocks exposed in windows through siliceous sedimentary rocks of the Roberts Mountains allochthon. The Carlin trend currently is the largest gold producer in the United States. The Screamer ore zone is a tabular body on the periphery of the huge Betze-Post gold deposit. Screamer is a good place to study both the original lithogeochemistry of the Popovich Formation and the effects of subsequent alteration and mineralization because it is below the level of supergene oxidation, mostly outside the contact metamorphic aureole of the Jurassic Goldstrike stock, has small, high-grade ore zones along fractures and Jurassic dikes, and has intervening areas with lower grade mineralization and barren rock. In 1997, prior to mining at Screamer, drill core intervals from barren and mineralized Popovich Formation were selected for geochemical and stable isotope analysis. The 332, five-foot core samples analyzed are from five holes separated by as much as 2000 feet (600 meters). The samples extend from the base of the Wispy unit up through the Planar and Soft sediment deformation units into the lower part of the upper Mud unit of the Popovich Formation.

  3. A fluid inclusion and isotopic study of an intrusion-related gold deposit (IRGD) setting in the 380 Ma South Mountain Batholith, Nova Scotia, Canada: evidence for multiple fluid reservoirs

    NASA Astrophysics Data System (ADS)

    Kontak, Daniel J.; Kyser, Kurt

    2011-04-01

    A set of sheeted quartz veins cutting 380 Ma monzogranite at Sandwich Point, Nova Scotia, Canada, provide an opportunity to address issues regarding fluid reservoirs and genesis of intrusion-related gold deposits. The quartz veins, locally with arsenopyrite (≤5%) and elevated Au-(Bi-Sb-Cu-Zn), occur within the reduced South Mountain Batholith, which also has other zones of anomalous gold enrichment. The host granite intruded ( P = 3.5 kbars) Lower Paleozoic metaturbiditic rocks of the Meguma Supergroup, well known for orogenic vein gold mineralization. Relevant field observations include the following: (1) the granite contains pegmatite segregations and is cut by aplitic dykes and zones (≤1-2 m) of spaced fracture cleavage; (2) sheeted veins containing coarse, comb-textured quartz extend into a pegmatite zone; (3) arsenopyrite-bearing greisens dominated by F-rich muscovite occur adjacent the quartz veins; and (4) vein and greisen formation is consistent with Riedel shear geometry. Although these features suggest a magmatic origin for the vein-forming fluids, geochemical studies indicate a more complex origin. Vein quartz contains two types of aqueous fluid inclusion assemblages (FIA). Type 1 is a low-salinity (≤3 wt.% equivalent NaCl) with minor CO2 (≤2 mol%) and has T h = 280-340°C. In contrast, type 2 is a high-salinity (20-25 wt.% equivalent NaCl), Ca-rich fluid with T h = 160-200°C. Pressure-corrected fluid inclusion data reflect expulsion of a magmatic fluid near the granite solidus (650°C) that cooled and mixed with a lower temperature (400°C), wall rock equilibrated, Ca-rich fluid. Evidence for fluid unmixing, an important process in some intrusion-related gold deposit settings, is lacking. Stable isotopic (O, D, S) analyses for quartz, muscovite and arsenopyrite samples from vein and greisens indicate the following: (1) δ18Oqtz = +11.7‰ to 17.8‰ and δ18Omusc = +10.7‰ to +11.2‰; (2) δDmusc = -44‰ to-54‰; and (3) δ34Saspy = +7.8

  4. Mineralogical, fluid inclusion, and stable isotope constraints on mechanisms of ore deposition at the Samgwang mine (Republic of Korea)—a mesothermal, vein-hosted gold-silver deposit

    NASA Astrophysics Data System (ADS)

    Yoo, Bong Chul; Lee, Hyun Koo; White, Noel C.

    2010-02-01

    The Samgwang mine is located in the Cheongyang gold district (Cheonan Metallogenic Province) of the Republic of Korea. It consists of eight massive, gold-bearing quartz veins that filled NE- and NW-striking fractures along fault zones in Precambrian granitic gneiss of the Gyeonggi massif. Their mineralogy and paragenesis allow two separate vein-forming episodes to be recognized, temporally separated by a major faulting event. The ore minerals occur in quartz and calcite of stage I, associated with fracturing and healing of veins. Hydrothermal wall-rock alteration minerals of stage I include Fe-rich chlorite (Fe/(Fe+Mg) ratios 0.74-0.81), muscovite, illite, K-feldspar, and minor arsenopyrite, pyrite, and carbonates. Sulfide minerals deposited along with electrum during this stage include arsenopyrite, pyrite, pyrrhotite, sphalerite, marcasite, chalcopyrite, galena, argentite, pyrargyrite, and argentian tetrahedrite. Only calcite was deposited during stage II. Fluid inclusions in quartz contain three main types of C-O-H fluids: CO2-rich, CO2-H2O, and aqueous inclusions. Quartz veins related to early sulfides in stage I were deposited from H2O-NaCl-CO2 fluids (1,500-5,000 bar, average 3,200) with T htotal values of 200°C to 383°C and salinities less than about 7 wt.% NaCl equiv. Late sulfide deposition was related to H2O-NaCl fluids (140-1,300 bar, average 700) with T htotal values of 110°C to 385°C and salinities less than about 11 wt.% NaCl equiv. These fluids either evolved through immiscibility of H2O-NaCl-CO2 fluids as a result of a decrease in fluid pressure, or through mixing with deeply circulated meteoric waters as a result of uplift or unloading during mineralization, or both. Measured and calculated sulfur isotope compositions (δ34SH2S = 1.5 to 4.8‰) of hydrothermal fluids from the stage I quartz veins indicate that ore sulfur was derived mainly from a magmatic source. The calculated and measured oxygen and hydrogen isotope compositions (δ18OH2O

  5. Radiochemical separation of gold by amalgam exchange

    USGS Publications Warehouse

    Ruch, R.R.

    1970-01-01

    A rapid and simple method for the radiochemical separation of gold after neutron activation. The technique is based on treatment with a dilute indium-gold amalgam, both chemical reduction and isotopic exchange being involved. The counting efficiency for 198Au in small volumes of the amalgam is good. Few interferences occur and the method is applicable to clays, rocks, salts and metals. The possibility of determining silver, platinum and palladium by a similar method is mentioned. ?? 1970.

  6. Geochemistry, geochronology, mineralogy, and geology suggest sources of and controls on mineral systems in the southern Toquima Range, Nye County, Nevada; with geochemistry maps of gold, silver, mercury, arsenic, antimony, zinc, copper, lead, molybdenum, bismuth, iron, titanium, vanadium, cobalt, beryllium, boron, fluorine, and sulfur; and with a section on lead associations, mineralogy and paragenesis, and isotopes

    USGS Publications Warehouse

    Shawe, Daniel R.; Hoffman, James D.; Doe, Bruce R.; Foord, Eugene E.; Stein, Holly J.; Ayuso, Robert A.

    2003-01-01

    Geochemistry maps showing the distribution and abundance of 18 elements in about 1,400 rock samples, both mineralized and unmineralized, from the southern Toquima Range, Nev., indicate major structural and lithologic controls on mineralization, and suggest sources of the elements. Radiometric age data, lead mineralogy and paragenesis data, and lead-isotope data supplement the geochemical and geologic data, providing further insight into timing, sources, and controls on mineralization. Major zones of mineralization are centered on structural margins of calderas and principal northwest-striking fault zones, as at Round Mountain, Manhattan, and Jefferson mining districts, and on intersections of low-angle and steep structures, as at Belmont mining district. Paleozoic sedimentary rocks, mostly limestones (at Manhattan, Jefferson, and Belmont districts), and porous Oligocene ash-flow tuffs (at Round Mountain district) host the major deposits, although all rock types have been mineralized as evidenced by numerous prospects throughout the area. Principal mineral systems are gold-silver at Round Mountain where about 7 million ounces of gold and more than 4 million ounces of silver has been produced; gold at Gold Hill in the west part of the Manhattan district where about a half million ounces of gold has been produced; gold-mercury-arsenic-antimony in the east (White Caps) part of the Manhattan district where a few hundred thousand ounces of gold has been produced; and silver-lead-antimony at Belmont where more than 150,000 ounces of silver has been produced. Lesser amounts of gold and silver have been produced from the Jefferson district and from scattered mines elsewhere in the southern Toquima Range. A small amount of tungsten was produced from mines in the granite of the Round Mountain pluton exposed east of Round Mountain, and small amounts of arsenic, antimony, and mercury have been produced elsewhere in the southern Toquima Range. All elements show unique

  7. Hydrothermal alteration, fluid inclusions and stable isotope systematics of the Alvo 118 iron oxide-copper-gold deposit, Carajás Mineral Province (Brazil): Implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Torresi, Ignacio; Xavier, Roberto Perez; Bortholoto, Diego F. A.; Monteiro, Lena V. S.

    2012-03-01

    The Alvo 118 iron oxide-copper-gold (IOCG) deposit (170 Mt at 1.0 wt.% Cu, 0.3 g/t Au) lies in the southern sector of the Itacaúnas Shear Belt, Carajás Mineral Province, along a WNW-ESE-striking, 60-km-long shear zone, close to the contact of the ~2.76-Ga metavolcano-sedimentary Itacaiúnas Supergroup and the basement (~3.0 Ga Xingu Complex). The Alvo 118 deposit is hosted by mafic and felsic metavolcanic rocks and crosscutting granitoid and gabbro intrusions that have been subjected to the following hydrothermal alteration sequence towards the ore zones: (1) poorly developed sodic alteration (albite and scapolite); (2) potassic alteration (biotite or K-feldspar) accompanied by magnetite formation and silicification; (3) widespread, pervasive chlorite alteration spatially associated with quartz-carbonate-sulphide infill ore breccia and vein stockworks; and (4) local post-ore quartz-sericite alteration. The ore assemblage is dominated by chalcopyrite (~60%), bornite (~10%), hematite (~20%), magnetite (10%) and subordinate chalcocite, native gold, Au-Ag tellurides, galena, cassiterite, F-rich apatite, xenotime, monazite, britholite-(Y) and a gadolinite-group mineral. Fluid inclusion studies in quartz point to a fluid regime composed of two distinct fluid types that may have probably coexisted within the timeframe of the Cu-Au mineralizing episode: a hot (>200°C) saline (32.8‰ to 40.6 wt.% NaCl eq.) solution, represented by salt-bearing aqueous inclusions, and a lower temperature (<200°C), low to intermediate salinity (<15 wt.% NaCl eq.) aqueous fluid defined by two-phase (LH2O + VH2O) fluid inclusions. This trend is very similar to those defined for other IOCG systems of the Carajás Mineral Province. δ 18OH2O values in equilibrium with calcite (-1.0‰ to 7.5‰ at 277°C to 344°C) overlap the lower range for primary magmatic waters, but the more 18O-depleted values also point to the involvement of externally derived fluids, possibly of meteoric origin

  8. Gold Coating

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Epner Technology Inc. responded to a need from Goddard Space Flight Center for the ultimate in electroplated reflectivity needed for the Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA). Made of beryllium, the MOLA mirror was coated by Epner Technology Laser Gold process, specially improved for the project. Improved Laser Gold- coated reflectors have found use in an epitaxial reactor built for a large semiconductor manufacturer as well as the waveguide in Braun-Thermoscan tympanic thermometer and lasing cavities in various surgical instruments.

  9. Gold Nanoantennas

    SciTech Connect

    2012-01-01

    An array of gold nanoantennas laced into an artificial membrane enhances the fluorescence intensity of three different molecules when they pass through plasmonic hot spots in the array. Watch for the blue, green and red flashes. The photobleaching at the end of each fluorescence event (white flashes) is indicative of single molecule observations.

  10. Gold liposomes

    SciTech Connect

    Hainfeld, J.F.

    1996-12-31

    Lipids are an important class of molecules, being found in membranes, HDL, LDL, and other natural structures, serving essential roles in structure and with varied functions such as compartmentalization and transport. Synthetic liposomes are also widely used as delivery and release vehicles for drugs, cosmetics, and other chemicals; soap is made from lipids. Lipids may form bilayer or multilammellar vesicles, micelles, sheets, tubes, and other structures. Lipid molecules may be linked to proteins, carbohydrates, or other moieties. EM study of this essential ingredient of life has lagged, due to lack of direct methods to visualize lipids without extensive alteration. OsO4 reacts with double bonds in membrane phospholipids, forming crossbridges. This has been the method of choice to both fix and stain membranes, thus far. An earlier work described the use of tungstate clusters (W{sub 11}) attached to lipid moieties to form lipid structures and lipid probes. With the development of gold clusters, it is now possible to covalently and specifically link a dense gold sphere to a lipid molecule; for example, reacting a mono-N-hydroxysuccinimide Nanogold cluster with the amino group on phosphatidyl ethanolaminine. Examples of a gold-fatty acid and a gold-phospholipid are shown.

  11. Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide-copper-gold deposit, Carajás Mineral Province, Brazil: paragenesis and stable isotope constraints

    NASA Astrophysics Data System (ADS)

    Monteiro, Lena V. S.; Xavier, Roberto P.; de Carvalho, Emerson R.; Hitzman, Murray W.; Johnson, Craig A.; de Souza Filho, Carlos Roberto; Torresi, Ignácio

    2008-02-01

    . Pyrrhotite and pyrite are minor constituents of ore in the Sequerinho orebodies while pyrite is relatively abundant in the Sossego-Curral bodies. Oxygen isotope partitioning between mineral pairs constrains temperatures in the deposit spatially and through time. In the Sequeirinho orebody, the early sodic-calcic alteration stage was characterized by temperatures exceeding 500°C and δ ^{{{text{18}}}} {text{O}}_{{{text{H}}_{{text{2}}} {text{O}}}} values for the alteration fluid of 6.9 ± 0.9‰. Temperature declines outward and upward from the zone of most intense alteration. Paragenetically later copper-gold mineralization displays markedly lower temperatures (<300°C) and was characterized by the introduction of 18O-depleted hydrothermal fluids -1.8 ± 3.4‰. The calculated δDH2O and δ ^{{{text{18}}}} {text{O}}_{{{text{H}}_{{text{2}}} {text{O}}}} values suggest that the fluids that formed the early calcic-sodic alteration assemblage were of formational/metamorphic or magmatic origin. The decrease of δ ^{{{text{18}}}} {text{O}}_{{{text{H}}_{{text{2}}} {text{O}}}} values through time may reflect influx of surficially derived waters during later alteration and mineralization events. Influx of such fluids could be related to episodic fluid overpressure, resulting in dilution and cooling of the metalliferous fluid, causing deposition of metals transported as metal chloride complexes.

  12. Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide-copper-gold deposit, Carajás Mineral Province, Brazil: Paragenesis and stable isotope constraints

    USGS Publications Warehouse

    Monteiro, Lena V.S.; Xavier, R.P.; Carvalho, E.R.; Hitzman, M.W.; Johnson, C.A.; Souza, Filho C.R.; Torresi, I.

    2008-01-01

    subsidiary siegenite, and millerite. Pyrrhotite and pyrite are minor constituents of ore in the Sequerinho orebodies while pyrite is relatively abundant in the Sossego–Curral bodies. Oxygen isotope partitioning between mineral pairs constrains temperatures in the deposit spatially and through time. In the Sequeirinho orebody, the early sodic–calcic alteration stage was characterized by temperatures exceeding 500°C and δ18OH2O values for the alteration fluid of 6.9 ± 0.9‰. Temperature declines outward and upward from the zone of most intense alteration. Paragenetically later copper–gold mineralization displays markedly lower temperatures (<300°C) and was characterized by the introduction of 18O-depleted hydrothermal fluids −1.8 ± 3.4‰. The calculated δDH2O and δ18OH2O values suggest that the fluids that formed the early calcic–sodic alteration assemblage were of formational/metamorphic or magmatic origin. The decrease of δ18OH2O values through time may reflect influx of surficially derived waters during later alteration and mineralization events. Influx of such fluids could be related to episodic fluid overpressure, resulting in dilution and cooling of the metalliferous fluid, causing deposition of metals transported as metal chloride complexes.

  13. Is It Real Gold?

    ERIC Educational Resources Information Center

    Harris, Harold H.

    1999-01-01

    Features acid tests for determining whether jewelry is "real" gold or simply gold-plated. Describes the carat system of denoting gold content and explains how alloys are used to create various shades of gold jewelry. Addresses the question of whether gold jewelry can turn a wearer's skin green by considering various oxidation reactions. (WRM)

  14. Constraints on the development of orogenic style gold mineralisation at Mineral de Talca, Coastal Range, central Chile: evidence from a combined structural, mineralogical, S and Pb isotope and geochronological study

    NASA Astrophysics Data System (ADS)

    Firth, Emily A.; Holwell, David A.; Oliver, Nicholas H. S.; Mortensen, James K.; Rovardi, Matthew P.; Boyce, Adrian J.

    2015-08-01

    Mineral de Talca is a rare occurrence of Mesozoic, gold-bearing quartz vein mineralisation situated within the Coastal Range of northern Chile. Quartz veins controlled by NNW-SSE-trending faults are hosted by Devonian-Carboniferous metasediments of greenschist facies and younger, undeformed granitoid and gabbro intrusions. The principal structural control in the area is the easterly dipping, NNW-SSE-trending El Teniente Fault, which most likely developed as an extensional normal fault in the Triassic but was later reactivated as a strike-slip fault during subsequent compression. A dilational zone in the El Teniente Fault appears to have focussed fluid flow, and an array of NW-SE-trending veins is present as splays off the El Teniente Fault. Mineralised quartz veins typically up to a metre thick occur in three main orientations: (1) parallel to and within NNW-SSE-trending, E-dipping faults throughout the area; (2) along NW-SE-trending, NE-dipping structures which may also host andesite dykes; and (3) rarer E-W-trending, subvertical veins. All mineralised quartz veins show evidence of multiple fluid events with anastomosing and crosscutting veins and veinlets, some of which contain up to 3.5 vol.% base metal sulphides. Mineralogically, Au is present in three textural occurrences, identified by 3D CT scanning: (1) with arsenopyrite and pyrite in altered wall rock and along the margins of some of the veins; (2) with Cu-Pb-Zn sulphides within quartz veins; and (3) as nuggets and clusters of native Au within quartz. Fluid inclusion work indicates the presence of CO2-CH4-bearing fluids with homogenisation temperatures of ˜350 °C and aqueous fluids with low-moderate salinities (0.4-15.5 wt% NaCl eq.) with homogenisation temperatures in the range of 161-321 °C. The presence of Au with arsenopyrite and pyrite in structurally controlled quartz veins and in greenschist facies rocks with evidence of CO2-bearing fluids is consistent with an orogenic style classification for

  15. Isotopic Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.

    1985-01-01

    An overview is provided of the biogeochemical research. The funding, productivity, personnel and facilities are reviewed. Some of the technical areas covered are: carbon isotopic records; isotopic studies of banded iron formations; isotope effects in microbial systems; studies of organic compounds in ancient sediments; and development in isotopic geochemistry and analysis.

  16. Osmium isotope constraints on ore metal recycling in subduction zones

    PubMed

    McInnes; McBride; Evans; Lambert; Andrew

    1999-10-15

    Veined peridotite xenoliths from the mantle beneath the giant Ladolam gold deposit on Lihir Island, Papua New Guinea, are 2 to 800 times more enriched in copper, gold, platinum, and palladium than surrounding depleted arc mantle. Gold ores have osmium isotope compositions similar to those of the underlying subduction-modified mantle peridotite source region, indicating that the primary origin of the metals was the mantle. Because the mantle is relatively depleted in gold, copper, and palladium, tectonic processes that enhance the advective transport and concentration of these fluid soluble metals may be a prerequisite for generating porphyry-epithermal copper-gold deposits. PMID:10521343

  17. Osmium isotope constraints on ore metal recycling in subduction zones

    PubMed

    McInnes; McBride; Evans; Lambert; Andrew

    1999-10-15

    Veined peridotite xenoliths from the mantle beneath the giant Ladolam gold deposit on Lihir Island, Papua New Guinea, are 2 to 800 times more enriched in copper, gold, platinum, and palladium than surrounding depleted arc mantle. Gold ores have osmium isotope compositions similar to those of the underlying subduction-modified mantle peridotite source region, indicating that the primary origin of the metals was the mantle. Because the mantle is relatively depleted in gold, copper, and palladium, tectonic processes that enhance the advective transport and concentration of these fluid soluble metals may be a prerequisite for generating porphyry-epithermal copper-gold deposits.

  18. Statistical gamma-ray emission of gold and its astrophysical implications

    NASA Astrophysics Data System (ADS)

    Giacoppo, F.; Bello, F.; Bernstein, L. A.; Bleuel, D.; Firestone, R. B.; Görgen, A.; Guttormsen, M.; Hagen, T. W.; Klintefjord, M.; Koehler, P. E.; Larsen, A. C.; Nyhus, H. T.; Renstrøm, T.; Sahin, E.; Siem, S.; Tornyi, T.

    2014-03-01

    The properties of the excited states of gold isotopes were investigated at the Oslo Cyclotron Laboratory. This study is important for the understanding of neutron capture rates in astrophysical plasmas relevant for heavy element nucleosynthesys.

  19. Amyloid Templated Gold Aerogels.

    PubMed

    Nyström, Gustav; Fernández-Ronco, María P; Bolisetty, Sreenath; Mazzotti, Marco; Mezzenga, Raffaele

    2016-01-20

    Amyloid fibril-based ultralow-density aerogels are designed by functionalization with gold nanoparticles and microcrystals, leading to hybrids of unprecedented lightness and functionality. By changing the colloidal gold shape, size, and concentration, the gold composition can be tuned to reach contents ≥20 kt equivalent, yet at densities ≈10(3) lighter than any equivalent gold alloys, and combining unique features such as porosity, catalytic properties, pressure sensing, and autofluorescence.

  20. Early Permian stage of formation of gold-ore deposits of northeastern Transbaikalia: Isotope-geochronological (Rb-Sr and 39Ar-40Ar) data for the Uryakh ore field

    NASA Astrophysics Data System (ADS)

    Chugaev, A. V.; Nosova, A. A.; Abramov, S. S.; Chernyshev, I. V.; Bortnikov, N. S.; Larionova, Yu. O.; Goltsman, Yu. V.; Moralev, G. V.; Volfson, A. A.

    2015-08-01

    This work presents the first results of geochronological study of metasomatic rocks accompanying gold-bearing quartz veins of the Uryakh ore field (UOF). Based on the Rb-Sr and 39Ar-40Ar geochronological data, it is shown that hydrothermal metasomatic processes in the ore field occurred about 280 Ma ago (Early Permian) and they are correlated with the terminal phases of formation of the Angara-Vitim batholith.

  1. Paramagnetic state of the isolated gold impurity in silicon

    NASA Astrophysics Data System (ADS)

    Son, N. T.; Gregorkiewicz, T.; Ammerlaan, C. A. J.

    1992-11-01

    The paper reports on the observation of the electron paramagnetic resonance spectrum of the isolated substitutional gold impurity in silicon. The spectrum has orthorhombic I (C2v) symmetry and an effective spin S=1/2. It has been detected in silver-doped samples with gold being introduced as contamination of the isotope used for diffusion. Parameters of the spectrum are given and an electronic model is proposed. With the results of the current study the puzzling question concerning paramagnetism of the isolated gold impurity in silicon appears to be clarified.

  2. Discovery of Cadmium, Indium, and Tin Isotopes

    NASA Astrophysics Data System (ADS)

    Amos, Stephanie; Thoennessen, Michael

    2009-10-01

    As of today, no comprehensive study has been made covering the initial observations and identifications of isotopes. A project has been undertaken at MSU to document the discovery of all the known isotopes. The criteria defining discovery of a given isotope is the publication of clear mass and element assignment in a refereed journal. Prior to the current work the documentation of the discovery of eleven elements had been completed^1. These elements are cerium^2, arsenic, gold, tungsten, krypton, silver, vanadium, einsteinium, iron, barium, and cobalt. We will present the new documentation for the cadmium, indium, and tin isotopes. Thirty-seven cadmium isotopes, thirty-eight indium isotopes, and thirty-eight tin isotopes have been discovered so far. The description for each discovered isotope includes the year of discovery, the article published on the discovery, the article's author, the method of production, the method of identification, and any previous information concerning the isotope discovery. A summary and overview of all ˜500 isotopes documented so far as a function of discovery year, method and place will also be presented. ^1http://www.nscl.msu.edu/˜thoennes/2009/discovery.htm ^2J.Q. Ginepro, J. Snyder, and M. Thoennessen, At. Data Nucl. Data. Tables, in press (2009), doi:10.1016/j.adt.2009.06.002

  3. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  4. GOLD PLATING PROCESS

    DOEpatents

    Seegmiller, R.

    1957-08-01

    An improved bath is reported for plating gold on other metals. The composition of the plating bath is as follows: Gold cyanide from about 15 to about 50 grams, potassium cyanide from about 70 to about 125 grams, and sulfonated castor oil from about 0.1 to about 10 cc. The gold plate produced from this bath is smooth, semi-hard, and nonporous.

  5. Magnetism in nanocrystalline gold.

    PubMed

    Tuboltsev, Vladimir; Savin, Alexander; Pirojenko, Alexandre; Räisänen, Jyrki

    2013-08-27

    While bulk gold is well known to be diamagnetic, there is a growing body of convincing experimental and theoretical work indicating that nanostructured gold can be imparted with unconventional magnetic properties. Bridging the current gap in experimental study of magnetism in bare gold nanomaterials, we report here on magnetism in gold nanocrystalline films produced by cluster deposition in the aggregate form that can be considered as a crossover state between a nanocluster and a continuous film. We demonstrate ferromagnetic-like hysteretic magnetization with temperature dependence indicative of spin-glass-like behavior and find this to be consistent with theoretical predictions, available in the literature, based on first-principles calculations.

  6. Microthermometric and stable isotopic (O and H) characteristics of fluid inclusions in the porphyry related Çöpler (İliç - Erzincan) gold deposit, central eastern Turkey

    NASA Astrophysics Data System (ADS)

    Canbaz, Oktay; Gökce, Ahmet

    2014-06-01

    The Çöpler gold deposit occurs within the stockwork of quartz hosted by the Çöpler granitoid (Eosen) and by surrounding metasediments of Keban metamorphic (Late Paleozoic - Early Mesozoic) and the Munzur limestones (Late Carboniferous - Early Cretaceous). Native gold accompanied by small amounts of chalcopyrite, pyrite, magnetite, maghemite, hematite, fahlerz, marcasite, bornite, galena, sphalerite, specular hematite, goethite, lepidochrosite and bravoitic pyrite within the stockwork ore veinlets. In addition, epidote (pistazite - zoisite), garnet, scapolite, chlorite, tremolite/actinolite, muscovite and opaque minerals were determined within the veinlets occurred in skarn zones. The study of fluid inclusions in quartz veinlets showed that the hydrothermal fluids contain CaCl2, MgCl2 and NaCl and the salinities of the two phases (L+V) inclusions range from 1.7 to 20.6% NaCl equivalent. Salinity values up to 44% were determined within the halite bearing three phases inclusions. Their homogenization temperature values have a wide range from 145.0 to 380.0°C, indicative of catathermal/hypothermal to epithermal conditions. The δ 18O and δD values of the fluid inclusion waters from the Çöpler granitoid correspond to those assigned to Primary Magmatic Water, those from the metasediments of Keban metamorphics fall outside of the Primary Magmatic and are within the Metamorphic Water field. A sample from a quartz vein within the skarn zone hosted by the Munzur limestones has a particularly low δD value. The results suggest that fluids derived from the granitoids were mixed with those derived from the metasediments of Keban metamorphics and the the Munzur limestones and resulting in quartz veinlets in these lithologies and the formation of stockwork ores. In view of the occurrence, the features described and processes envisaged for this study area may be applicable in similar settings.

  7. Transuranium isotopes

    SciTech Connect

    Hoffman, D.C.

    1985-12-01

    The needs of the research community for the production of transuranium isotopes, the quantities required, the continuity of production desired, and what a new steady state neutron source would have to provide to satisfy these needs are discussed. Examples of past frontier research which need these isotopes as well as an outline of the proposed Large Einsteinium Activation Program, LEAP, which requires roughly ten times the current production of /sup 254/Es are given. 15 refs., 5 figs., 4 tabs.

  8. Isotopic Paleoclimatology

    NASA Astrophysics Data System (ADS)

    Bowen, R.

    Paleotemperature scales were calculated by H. C. Urey and others in the 1950s to assess past temperatures, and later work using the stable isotopes of oxygen, hydrogen, and carbon employed standards such as Peedee belemnite (PDB) and Standard Mean Ocean Water (SMOW). Subsequently, subjects as diverse as ice volume and paleotemperatures, oceanic ice and sediment cores, Pleistocene/Holocene climatic changes, and isotope chronostratigraphy extending back to the Precambrian were investigated.

  9. Isotopic chirality

    SciTech Connect

    Floss, H.G.

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  10. Axially chiral allenyl gold complexes.

    PubMed

    Johnson, Alice; Laguna, Antonio; Gimeno, M Concepción

    2014-09-17

    Unprecedented allenyl gold complexes have been achieved starting from triphenylpropargylphosphonium bromide. Two different coordination modes of the allene isomer of triphenylphosphoniumpropargylide to gold have been found depending on the gold oxidation state. Bromo-, pentafluorophenyl-, and triphenylphosphine-gold(I) allenyl complexes were prepared in which the α carbon coordinates to the gold(I) center. A chiral pentafluorophenyl-gold(III) allenyl complex with the gold atoms coordinated to the γ carbon was also prepared. All the complexes have been structurally characterized by X-ray diffraction showing the characteristic distances for a C═C═C unit.

  11. Gold nanoprobes for theranostics

    PubMed Central

    Panchapakesan, Balaji; Book-Newell, Brittany; Sethu, Palaniappan; Rao, Madhusudhana; Irudayaraj, Joseph

    2011-01-01

    Gold nanoprobes have become attractive diagnostic and therapeutic agents in medicine and life sciences research owing to their reproducible synthesis with atomic level precision, unique physical and chemical properties, versatility of their morphologies, flexibility in functionalization, ease of targeting, efficiency in drug delivery and opportunities for multimodal therapy. This review highlights some of the recent advances and the potential for gold nanoprobes in theranostics. PMID:22122586

  12. Gold-bearing skarns

    USGS Publications Warehouse

    Theodore, Ted G.; Orris, Greta J.; Hammerstrom, Jane M.; Bliss, James D.

    1991-01-01

    In recent years, a significant proportion of the mining industry's interest has been centered on discovery of gold deposits; this includes discovery of additional deposits where gold occurs in skarn, such as at Fortitude, Nevada, and at Red Dome, Australia. Under the classification of Au-bearing skarns, we have modeled these and similar gold-rich deposits that have a gold grade of at least 1 g/t and exhibit distinctive skarn mineralogy. Two subtypes, Au-skarns and byproduct Au-skarns, can be recognized on the basis of gold, silver, and base-metal grades, although many other geological factors apparently are still undistinguishable largely because of a lack of detailed studies of the Au-skarns. Median grades and tonnage for 40 Au-skarn deposits are 8.6 g/t Au, 5.0 g/t Ag, and 213,000 t. Median grades and tonnage for 50 byproduct and Au-skarn deposits are 3.7 g/t Au, 37 g/t Ag, and 330,000 t. Gold-bearing skarns are generally calcic exoskarns associated with intense retrograde hydrosilicate alteration. These skarns may contain economic amounts of numerous other commodities (Cu, Fe, Pb, Zn, As, Bi, W, Sb, Co, Cd, and S) as well as gold and silver. Most Au-bearing skarns are found in Paleozoic and Cenozoic orogenic-belt and island-arc settings and are associated with felsic to intermediate intrusive rocks of Paleozoic to Tertiary age. Native gold, electru, pyrite, pyrrhotite, chalcopyrite, arsenopyrite, sphalerite, galena, bismuth minerals, and magnetite or hematite are the most common opaque minerals. Gangue minerals typically include garnet (andradite-grossular), pyroxene (diopside-hedenbergite), wollastonite, chlorite, epidote, quartz, actinolite-tremolite, and (or) calcite.

  13. Metallogeny of gold deposits

    SciTech Connect

    Hutchinson, R.W.

    1985-01-01

    The metallogeny of various gold deposits, particularly their broad temporal and spatial relations, and their relations to other metallic ores, is significant to genetic understanding and also useful in exploration. Archean gold deposits co-exist, both regionally and locally, with certain iron formations, massive base metal and nickel sulfide ores, but these occur generally in differing parts of the host stratigraphic sequences. Gold deposits in marine-eugeosynclinal environments are most important and numerous in Archean rocks. They become increasingly rare in successively younger strata where epithermal deposits in subaerial-continental rocks become important. The hydrothermal systems that formed both were apparently similar; one active in submarine tectonic settings, the other in sub-volcanic continental ones. Gold was apparently first introduced extensively into supracrustal rocks by sub-sea floor hydrothermal processes in Archean time, forming gold-enriched exhalites. These were reworked by metamorphic processes forming epithermal veins in many lode districts, and by sedimentary processes in the Witwatersrand. Epithermal gold deposits were generated where these older, auriferous basement source rocks were affected by younger, plutonic-volcanic-hydrothermal activity.

  14. Getting the Gold Treatment

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Epner Technology, Inc., worked with Goddard Space Center to apply gold coating to the Vegetation Canopy Lidar (VCL) mirror. This partnership resulted in new commercial applications for Epner's LaserGold(R) process in the automotive industry. Previously, the company did not have equipment large enough to handle the plating of the stainless steel panels cost effectively. Seeing a chance to renew this effort, Epner Technology and Goddard entered into an agreement by which NASA would fund the facility needed to do the gold-plating, and Epner Technology would cover all other costs as part of their internal research and development. The VCL mirror project proceeded successfully, fulfilling Goddard's needs and leaving Epner Technology with a new facility to provide LaserGold for the automotive industry. The new capability means increased power savings and improvements in both quality and production time for BMW Manufacturing Corporation of Spartanburg, South Carolina, and Cadillac of Detroit, Michigan, as well as other manufacturers who have implemented Epner Technology's LaserGold process. LaserGold(R) is a registered trademark of Epner Technology, Inc.

  15. Gold in minerals and the composition of native gold

    USGS Publications Warehouse

    Jones, Robert Sprague; Fleischer, Michael

    1969-01-01

    Gold occurs in nature mainly as the metal and as various alloys. It forms complete series of solid solutions with silver, copper, nickel, palladium, and platinum. In association with the platinum metals, gold occurs as free gold as well as in solid solution. The native elements contain the most gold, followed by the sulfide minerals. Several gold tellurides are known, but no gold selenides have been reported, and only one sulfide, the telluride-sulfide mineral nagyagite, is known. The nonmetallic minerals carry the least gold, and the light-colored minerals generally contain less gold than the dark minerals. Some conclusions in the literature are conflicting in regard to the relation of fineness of native gold to its position laterally and vertically within a lode, the nature of the country rocks, and the location and size of nuggets in a streambed, as well as to the variation of fineness within an individual nugget.

  16. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  17. LUMINOSITY INCREASES IN GOLD-GOLD OPERATION IN RHIC.

    SciTech Connect

    FISCHER,W.AHERNS,L.BAI,M.ET AL.

    2004-07-05

    After an exploratory phase, during which a number of beam parameters were varied, the RHIC experiments now demand higher luminosity to study heavy ion collisions in detail. In gold-gold, operation, RHIC delivers now twice the design luminosity. During the last gold-gold operating period (Run-4) the machine delivered 15 times more luminosity than during the previous gold-gold operating period (Run-2), two years ago. We give an overview of the changes that increased the instantaneous luminosity and luminosity lifetime, raised the reliability, and improved the operational efficiency.

  18. Gold carbenes, gold-stabilized carbocations, and cationic intermediates relevant to gold-catalysed enyne cycloaddition.

    PubMed

    Harris, R J; Widenhoefer, R A

    2016-08-21

    Cationic gold complexes in which gold is bound to a formally divalent carbon atom, typically formulated as gold carbenes or α-metallocarbenium ions, have been widely invoked in a range of gold-catalyzed transformations, most notably in the gold-catalyzed cycloisomerization of 1,n-enynes. Although the existence of gold carbene complexes as intermediates in gold-catalyzed transformations is supported by a wealth of indirect experimental data and by computation, until recently no examples of cationic gold carbenes/α-metallocarbenium ions had been synthesized nor had any cationic intermediates generated via gold-catalyzed enyne cycloaddition been directly observed. Largely for this reason, there has been considerable debate regarding the electronic structure of these cationic complexes, in particular the relative contributions of the carbene (LAu(+)[double bond, length as m-dash]CR2) and α-metallocarbenium (LAu-CR2(+)) forms, which is intimately related to the extent of d → p backbonding from gold to the C1 carbon atom. However, over the past ∼ seven years, a number of cationic gold carbene complexes have been synthesized in solution and generated in the gas phase and cationic intermediates have been directly observed in the gold-catalyzed cycloaddition of enynes. Together, these advances provide insight into the nature and electronic structure of gold carbene/α-metallocarbenium complexes and the cationic intermediates generated via gold-catalyzed enyne cycloaddition. Herein we review recent advances in this area. PMID:27146712

  19. Gold film with gold nitride - A conductor but harder than gold

    SciTech Connect

    Siller, L.; Peltekis, N.; Krishnamurthy, S.; Chao, Y.; Bull, S.J.; Hunt, M.R.C.

    2005-05-30

    The formation of surface nitrides on gold films is a particularly attractive proposition, addressing the need to produce harder, but still conductive, gold coatings which reduce wear but avoid the pollution associated with conventional additives. Here we report production of large area gold nitride films on silicon substrates, using reactive ion sputtering and plasma etching, without the need for ultrahigh vacuum. Nanoindentation data show that gold nitride films have a hardness {approx}50% greater than that of pure gold. These results are important for large-scale applications of gold nitride in coatings and electronics.

  20. Biorecovery of gold

    USGS Publications Warehouse

    Eisler, R.

    2003-01-01

    Recovery of ionic and metallic gold (Au) from a wide variety of solutions by selected species of bacteria, yeasts, fungi, algae, and higher plants is documented. Gold accumulations were up to 7.0 g/kg dry weight (DW) in various species of bacteria, 25.0 g/kg DW in freshwater algae, 84.0 g/kg DW in peat, and 100.0 g/kg DW in dried fungus mixed with keratinous material. Mechanisms of accumulation include oxidation, dissolution, reduction, leaching, and sorption. Uptake patterns are significantly modified by the physicochemical milieu. Crab exoskeletons accumulate up to 4.9 g Au/kg DW; however, gold accumulations in various tissues of living teleosts, decapod crustaceans, and bivalve molluscs are negligible.

  1. Chemistry for oncotheranostic gold nanoparticles.

    PubMed

    Trouiller, Anne Juliette; Hebié, Seydou; El Bahhaj, Fatima; Napporn, Teko W; Bertrand, Philippe

    2015-06-24

    This review presents in a comprehensive ways the chemical methods used to functionalize gold nanoparticles with focus on anti-cancer applications. The review covers the parameters required for the synthesis gold nanoparticles with defined shapes and sizes, method for targeted delivery in tumours, and selected examples of anti-cancers compounds delivered with gold nanoparticles. A short survey of bioassays for oncology based on gold nanoparticles is also presented.

  2. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry...—Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate... in any assay for quality of a karat gold industry product include springs, posts, and separable...

  3. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry...—Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate... in any assay for quality of a karat gold industry product include springs, posts, and separable...

  4. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry...—Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate... in any assay for quality of a karat gold industry product include springs, posts, and separable...

  5. Derivatized gold clusters and antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, J.F.; Furuya, F.R.

    1994-11-01

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be as small as 5.0 nm. Methods and reagents are disclosed in which antibodies, Fab' or F(ab')[sub 2] fragments are covalently bound to a stable cluster of gold atoms. The gold clusters may contain 6, 8, 9, 11, 13, 55 or 67 gold atoms in their inner core. The clusters may also contain radioactive gold. The antibody-cluster conjugates are useful in electron microscopy applications as well as in clinical applications that include imaging, diagnosis and therapy. 7 figs.

  6. Derivatized gold clusters and antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, James F.; Furuya, Frederic R.

    1994-11-01

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be as small as 5.0 nm. Methods and reagents are disclosed in which antibodies, Fab' or F(ab').sub.2 fragments thereof are covalently bound to a stable cluster of gold atoms. The gold clusters may contain 6, 8, 9, 11, 13, 55 or 67 gold atoms in their inner core. The clusters may also contain radioactive gold. The antibody-cluster conjugates are useful in electron microscopy applications as well as in clinical applications that include imaging, diagnosis and therapy.

  7. Thermal properties of holmium-implanted gold films for a neutrino mass experiment with cryogenic microcalorimeters

    SciTech Connect

    Prasai, K.; Yanardag, S. Basak; Galeazzi, M.; Uprety, Y.; Alves, E.; Rocha, J.; Bagliani, D.; Biasotti, M.; Gatti, F.; Gomes, M. Ribeiro

    2013-08-15

    In a microcalorimetric neutrino mass experiment using the radioactive decay of {sup 163}Ho, the radioactive material must be fully embedded in the microcalorimeter absorber. One option that is being investigated is to implant the radioactive isotope into a gold absorber, as gold is successfully used in other applications. However, knowing the thermal properties at the working temperature of microcalorimeters is critical for choosing the absorber material and for optimizing the detector performance. In particular, it is paramount to understand if implanting the radioactive material in gold changes its heat capacity. We used a bolometric technique to measure the heat capacity of gold films, implanted with various concentrations of holmium and erbium (a byproduct of the {sup 163}Ho fabrication), in the temperature range 70 mK–300 mK. Our results show that the specific heat capacity of the gold films is not affected by the implant, making this a viable option for a future microcalorimeter holmium experiment.

  8. Earth's continental crustal gold endowment

    NASA Astrophysics Data System (ADS)

    Frimmel, H. E.

    2008-03-01

    The analysis of the temporal distribution of gold deposits, combined with gold production data as well as reserve and resource estimates for different genetic types of gold deposit, revealed that the bulk of the gold known to be concentrated in ore bodies was added to the continental crust during a giant Mesoarchaean gold event at a time (3 Ga) when the mantle temperature reached a maximum and the dominant style of tectonic movement changed from vertical, plume-related to subhorizontal plate tectonic. A magmatic derivation of the first generation of crustal gold from a relatively hot mantle that was characterized by a high degree of partial melting is inferred from the gold chemistry, specifically high Os contents. While a large proportion of that gold is still present in only marginally modified palaeoplacer deposits of the Mesoarchaean Witwatersrand Basin in South Africa, accounting for about 40% of all known gold, the remainder has been recycled repeatedly on a lithospheric scale, predominantly by plate-tectonically induced magmatic and hydrothermal fluid circulation, to produce the current variety of gold deposit types. Post-Archaean juvenile gold addition to the continental crust has been limited, but a mantle contribution to some of the largest orogenic or intrusion-related gold deposits is indicated, notably for the Late Palaeozoic Tien Shan gold province. Magmatic fluids in active plate margins seem to be the most effective transport medium for gold mobilization, giving rise to a large proportion of volcanic-arc related gold deposits. Due to their generally shallow crustal level of formation, they have a low preservation potential. In contrast, those gold deposits that form at greater depth are more widespread also in older rocks. This explains the high proportion of orogenic (including intrusion-related) gold (32%) amongst all known gold deposits. The overall proportion of gold concentrated in known ore bodies is only 7 × 10- 7 of the estimated total

  9. Digging for Gold

    ERIC Educational Resources Information Center

    Waters, John K.

    2012-01-01

    In the case of higher education, the hills are more like mountains of data that "we're accumulating at a ferocious rate," according to Gerry McCartney, CIO of Purdue University (Indiana). "Every higher education institution has this data, but it just sits there like gold in the ground," complains McCartney. Big Data and the new tools people are…

  10. 'Cascade Gold' raspberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Cascade Gold’ is a new gold fruited, floricane fruiting raspberry cultivar (Rubus idaeus L.) jointly released by Washington State University (WSU), Oregon State University (OSU) and the U.S. Department of Agriculture (USDA). It has been evaluated at Puyallup, Wash. in plantings from 1988 to 2008. ...

  11. GOLD PRESSURE VESSEL SEAL

    DOEpatents

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  12. Gold Nanoparticles Cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana

    Over the last two decades gold nanoparticles (AuNPs) have been used for many scientific applications and have attracted attention due to the specific chemical, electronic and optical size dependent properties that make them very promising agents in many fields such as medicine, imagine techniques and electronics. More specifically, biocompatible gold nanoparticles have a huge potential for use as the contrast augmentation agent in X-ray Computed Tomography and Photo Acoustic Tomography for early tumor diagnostic as well these nanoparticles are extensively researched for enhancing the targeted cancer treatment effectiveness such as photo-thermal and radiotherapy. In most biomedical applications biocompatible gold nanoparticles are labeled with specific tumor or other pathology targeting antibodies and used for site specific drug delivery. However, even though gold nanoparticles poses very high level of anti cancer properties, the question of their cytotoxicity ones they are released in normal tissue has to be researched. Moreover, the huge amount of industrially produced gold nanoparticles raises the question of these particles being a health hazard, since the penetration is fairly easy for the "nano" size substances. This study focuses on the effect of AuNPs on a human skin tissue, since it is fall in both categories -- the side effects for biomedical applications and industrial workers and users' exposure during production and handling. Therefore, in the present project, gold nanoparticles stabilized with the biocompatible agent citric acid were generated and characterized by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The cytotoxic effect of AuNPs release to healthy skin tissue was modeled on 3 different cell types: human keratinocytes, human dermal fibroblasts, and human adipose derived stromal (ADS) cells. The AuNPs localization inside the cell was found to be cell type dependent. Overall cytotoxicity was found to be dependent

  13. Radioactive gold ring dermatitis

    SciTech Connect

    Miller, R.A.; Aldrich, J.E. )

    1990-08-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy.

  14. 'Pot of Gold'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows the rock dubbed 'Pot of Gold' (upper left), located near the base of the 'Columbia Hills' in Gusev Crater. The rock's nodules and layered appearance have inspired rover team members to investigate the rock's detailed chemistry in coming sols. This picture was taken on sol 158 (June 13, 2004).

  15. Oxidized and reduced mineral assemblages in greenstone belt rocks of the St. Ives gold camp, Western Australia: vectors to high-grade ore bodies in Archaean gold deposits?

    NASA Astrophysics Data System (ADS)

    Neumayr, Peter; Walshe, John; Hagemann, Steffen; Petersen, Klaus; Roache, Anthony; Frikken, Peter; Horn, Leo; Halley, Scott

    2008-03-01

    Hydrothermal sulfide-oxide-gold mineral assemblages in gold deposits in the Archaean St. Ives gold camp in Western Australia indicate extremely variable redox conditions during hydrothermal alteration and gold mineralization in space and time. Reduced alteration assemblages (pyrrhotite-pyrite) occur in deposits in the southwest of the camp (e.g., Argo, Junction deposits) and moderately to strongly oxidized assemblages (magnetite-pyrite, hematite-pyrite) occur in deposits in the Central Corridor in the northeast (e.g., North Orchin, Revenge deposits). Reduced mineral assemblages flank the Central Corridor of oxidized deposits and, locally, cut across it along E-W trending faults. Oxidized mineral assemblages in the Central Corridor are focused on gravity lows which are interpreted to reflect abundant felsic porphyritic intrusions at about 1,000 m below present surface. Hydrothermal magnetite predates and is synchronous with early phases of gold-associated albite-carbonate-pyrite-biotite-chlorite hydrothermal alteration. Later-stage, gold-associated pyrite is in equilibrium with hematite. The spatial distribution and temporal sequence of iron sulfides and oxides with gold indicate the presence of at least two spatially restricted but broadly synchronous hydrothermal fluids with contrasting redox states. Sulfur isotope constraints support the argument that the different mineral assemblages reflect differences in redox conditions. The δ 34S values for pyrite for the St. Ives gold camp range between -8.4‰ and +5.1‰ with the negative values occurring in oxidized magnetite-rich domains and slightly negative or positive values occurring in reduced, pyrrhotitic domains. Preliminary spatial and paragenetic analysis of the distribution of iron sulfides and oxides in the St. Ives camp suggests that gold grades are highest where the redox state of the hydrothermal alteration assemblages switches from relatively reduced pyrrhotite-pyrite to relatively oxidized magnetite

  16. When gold is not noble: Nanoscale gold catalysts

    SciTech Connect

    Sanchez, A.; Abbet, S.; Heiz, U.; Schneider, W.D.; Haekkinen, H.; Barnett, R.N.; Landman, U.

    1999-12-02

    While inert as bulk material, nanoscale gold particles dispersed on oxide supports exhibit a remarkable catalytic activity. Temperature-programmed reaction studies of the catalyzed combustion of CO on size-selected small monodispersed Au{sub n} (n {le} 20) gold clusters supported on magnesia, and first-principle simulations, reveal the microscopic origins of the observed unusual catalytic activity, with Au{sub 8} found to be the smallest catalytically active size. Partial electron transfer from the surface to the gold cluster and oxygen-vacancy F-center defects are shown to play an essential role in the activation of nanosize gold clusters as catalysts for the combustion reaction.

  17. Watching single gold nanorods grow.

    PubMed

    Wei, Zhongqing; Qi, Hua; Li, Min; Tang, Bochong; Zhang, Zhengzheng; Han, Ruiling; Wang, Jiaojiao; Zhao, Yuliang

    2012-05-01

    The consecutive evolution process of single gold nanorods is monitored using atomic force microscopy (AFM). The single-crystal gold nanorods investigated are grown directly on surfaces to which gold seed particles are covalently linked. The growth kinetics for single nanorods is derived from the 3D information recorded by AFM. A better understanding of the seed-mediated growth mechanism may ultimately lead to the direct growth of aligned nanorods on surfaces. PMID:22378704

  18. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Gold coin and gold certificates in... MONETARY OFFICES, DEPARTMENT OF THE TREASURY EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued...

  19. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Gold coin and gold certificates in... MONETARY OFFICES, DEPARTMENT OF THE TREASURY EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued...

  20. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Gold coin and gold certificates in... EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before January 30, 1934, are exchangeable, as...

  1. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Gold coin and gold certificates in... MONETARY OFFICES, DEPARTMENT OF THE TREASURY EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued...

  2. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Gold coin and gold certificates in... MONETARY OFFICES, DEPARTMENT OF THE TREASURY EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued...

  3. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  4. Stable isotope studies

    SciTech Connect

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

  5. The extractive metallurgy of gold

    NASA Astrophysics Data System (ADS)

    Kongolo, K.; Mwema, M. D.

    1998-12-01

    Mössbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Mössbauer spectroscopy could be applied.

  6. Surface-stabilized gold nanocatalysts

    DOEpatents

    Dai, Sheng [Knoxville, TN; Yan, Wenfu [Oak Ridge, TN

    2009-12-08

    A surface-stabilized gold nanocatalyst includes a solid support having stabilizing surfaces for supporting gold nanoparticles, and a plurality of gold nanoparticles having an average particle size of less than 8 nm disposed on the stabilizing surfaces. The surface-stabilized gold nanocatalyst provides enhanced stability, such as at high temperature under oxygen containing environments. In one embodiment, the solid support is a multi-layer support comprising at least a first layer having a second layer providing the stabilizing surfaces disposed thereon, the first and second layer being chemically distinct.

  7. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  8. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  9. Mineral resource of the month: gold

    USGS Publications Warehouse

    George, Micheal W.

    2009-01-01

    The article presents information on the valuable mineral called gold. It states that early civilizations valued gold because of its scarcity, durability and characteristics yellow color. By the late 20th century, gold was used as an industrial metal because of its unique physicochemical properties. The U.S. has several productive deposits of gold, including placer, gold-quartz lode, epithermal and Carlin-type gold deposits.

  10. When cyclopropenes meet gold catalysts

    PubMed Central

    Miege, Frédéric

    2011-01-01

    Summary Cyclopropenes as substrates entered the field of gold catalysis in 2008 and have proven to be valuable partners in a variety of gold-catalyzed reactions. The different contributions in this growing research area are summarized in this review. PMID:21804867

  11. The Gold at Fort Knox.

    ERIC Educational Resources Information Center

    Wood, William C.

    1994-01-01

    Maintains that, although U.S. currency today is pure fiat money and not backed by gold or any other precious metal, students frequently ask, "But what about the gold at Fort Knox?" Describes what is really located at Fort Knox, why it is there, its implications for public policy. (CFR)

  12. Antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, J.F.

    1988-06-28

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be about 5.0 nm. Methods and reagents are disclosed in which antibodies or Fab' fragments thereof are covalently bound to a stable cluster of gold atoms. 2 figs.

  13. Gold-promoted styrene polymerization.

    PubMed

    Urbano, Juan; Hormigo, A Jesús; de Frémont, Pierre; Nolan, Steven P; Díaz-Requejo, M Mar; Pérez, Pedro J

    2008-02-14

    Styrene can be polymerized at room temperature in the presence of equimolar mixtures of the gold(III) complexes (NHC)AuBr3 (NHC = N-heterocyclic carbene ligand) and NaBAr'4, in the first example of a gold-induced olefin polymerization reaction.

  14. The adjuvanticity of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Dykman, Lev A.; Bogatyrev, Vladimir A.; Staroverov, Sergey A.; Pristensky, Dmitry V.; Shchyogolev, Sergey Yu.; Khlebtsov, Nikolai G.

    2006-06-01

    A new variant of a technique for in vivo production of antibodies to various antigens with colloidal-gold nanoparticles as carrier is discussed. With this technique we obtained highly specific and relatively high-titre antibodies to different antigens. The antibodies were tested by an immunodot assay with gold nanoparticle markers. Our results provide the first demonstration that immunization of animals with colloidal gold complexed with either haptens or complete antigens gives rise to highly specific antibodies even without the use of complete Freund's adjuvant. These findings may attest to the adjuvanticity of gold nanoparticles itself. We provide also experimental results and discussion aimed at elucidation of possible mechanisms of the discovered colloidal-gold-adjuvanticity effect.

  15. Gold electrodes from recordable CDs

    PubMed

    Angnes; Richter; Augelli; Kume

    2000-11-01

    Gold electrodes are widely used in electrochemistry and electroanalytical chemistry. The notable performance when used in stripping analysis of many ionic species and the extraordinary affinity of thio compounds for its surface make these electrodes very suitable for many applications. This paper reports a simple and novel way to construct gold electrodes (CDtrodes) using recordable CDs as the gold source. The nanometer thickness of the gold layer of recordable disks (50-100 nm) favors the construction of band nanoelectrodes with areas as small as 10(-6) cm2. The plane surface can be easily used for the construction of conventional-sized gold electrodes for batch or flow injection analysis or even to obtain electrodes as large as 100 cm2. The low price of commercial recordable CDs allows a "one way use". The evaluation and applicability of these electrodes in the form of nanoelectrodes, in batch and associated with flow cells, are illustrated in this paper.

  16. Optical properties of gold-silica-gold multilayer nanoshells.

    PubMed

    Hu, Ying; Fleming, Ryan C; Drezek, Rebekah A

    2008-11-24

    The spectral and angular radiation properties of gold-silica-gold multilayer nanoshells are investigated using Mie theory for concentric multilayer spheres. The spectral tunability of multilayer nanoshells is explained and characterized by a plasmon hybridization model and a universal scaling principle. A thinner intermediate silica layer, scaled by particle size, red shifts the plasmon resonance. This shift is relatively insensitive to the overall particle size and follows the universal scaling principle with respect to the resonant wavelength of a conventional silica-gold core-shell nanoshell. The extra tunability provided by the inner core further shifts the extinction peak to longer wavelengths, which is difficult to achieve on conventional sub-100 nm nanoshells due to limitations in synthesizing ultrathin gold coatings. We found multilayer nanoshells to be more absorbing with a larger gold core, a thinner silica layer, and a thinner outer gold shell. Both scattering intensity and angular radiation pattern were found to differ from conventional nanoshells due to spectral modulation from the inner core. Multilayer nanoshells may provide more backscattering at wavelengths where silica-gold core-shell nanoshells predominantly forward scatter. PMID:19030045

  17. Gold-catalyzed homogeneous oxidative cross-coupling reactions.

    PubMed

    Zhang, Guozhu; Peng, Yu; Cui, Li; Zhang, Liming

    2009-01-01

    Oxidizing gold? A gold(I)/gold(III) catalytic cycle is essential for the first oxidative cross-coupling reaction in gold catalysis. By using Selectfluor for gold(I) oxidation, this chemistry reveals the synthetic potential of incorporating gold(I)/gold(III) catalytic cycles into contemporary gold chemistry and promises a new area of gold research by merging powerful gold catalysis and oxidative metal-catalyzed cross-coupling reactions.

  18. Synthesis of gold structures by gold-binding peptide governed by concentration of gold ion and peptide.

    PubMed

    Kim, Jungok; Kim, Dong-Hun; Lee, Sylvia J; Rheem, Youngwoo; Myung, Nosang V; Hur, Hor-Gil

    2016-08-01

    Although biological synthesis methods for the production of gold structures by microorganisms, plant extracts, proteins, and peptide have recently been introduced, there have been few reports pertaining to controlling their size and morphology. The gold ion and peptide concentrations affected on the size and uniformity of gold plates by a gold-binding peptide Midas-11. The higher concentration of gold ions produced a larger size of gold structures reached 125.5 μm, but an increased amount of Midas-11 produced a smaller size of gold platelets and increased the yield percentage of polygonal gold particles rather than platelets. The mechanisms governing factors controlling the production of gold structures were primarily related to nucleation and growth. These results indicate that the synthesis of gold architectures can be controlled by newly isolated and substituted peptides under different reaction conditions. PMID:27108675

  19. Synthesis of gold structures by gold-binding peptide governed by concentration of gold ion and peptide.

    PubMed

    Kim, Jungok; Kim, Dong-Hun; Lee, Sylvia J; Rheem, Youngwoo; Myung, Nosang V; Hur, Hor-Gil

    2016-08-01

    Although biological synthesis methods for the production of gold structures by microorganisms, plant extracts, proteins, and peptide have recently been introduced, there have been few reports pertaining to controlling their size and morphology. The gold ion and peptide concentrations affected on the size and uniformity of gold plates by a gold-binding peptide Midas-11. The higher concentration of gold ions produced a larger size of gold structures reached 125.5 μm, but an increased amount of Midas-11 produced a smaller size of gold platelets and increased the yield percentage of polygonal gold particles rather than platelets. The mechanisms governing factors controlling the production of gold structures were primarily related to nucleation and growth. These results indicate that the synthesis of gold architectures can be controlled by newly isolated and substituted peptides under different reaction conditions.

  20. Electrochemical isotope effect and lithium isotope separation.

    PubMed

    Black, Jay R; Umeda, Grant; Dunn, Bruce; McDonough, William F; Kavner, Abby

    2009-07-29

    A large electrochemical isotopic effect is observed upon the electrodeposition of lithium from solutions of propylene carbonate producing isotopically light metal deposits. The magnitude of fractionation is controlled by the applied overpotential and is largest close to equilibrium. Calculated partition function ratios for tetrahedrally coordinated lithium complexes and metallic lithium predict an equilibrium fractionation close to that measured experimentally.

  1. 20th-Century Gold Rush.

    ERIC Educational Resources Information Center

    Wargo, Joseph G.

    1992-01-01

    Presents Nevada's gold rush activities spurred by technological advancements in search methods. Describes the events that led to the twentieth-century gold rush, the techniques for finding deposits and the geological formation process of disseminated gold deposits. Vignettes present the gold extraction process, cross-section, and profile of a…

  2. 41 CFR 101-45.002 - Gold.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed...

  3. 41 CFR 101-45.002 - Gold.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed...

  4. 41 CFR 101-45.002 - Gold.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed...

  5. 41 CFR 101-45.002 - Gold.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed...

  6. 41 CFR 101-45.002 - Gold.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed...

  7. METHOD OF ISOTOPE CONCENTRATION

    DOEpatents

    Spevack, J.S.

    1957-04-01

    An isotope concentration process is described which consists of exchanging, at two or more different temperature stages, two isotopes of an element between substances that are physically separate from each other and each of which is capable of containing either of the isotopes, and withdrawing from a point between at least two of the temperatare stages one of the substances containing an increased concentration of the desired isotope.

  8. Enhancement of gold recovery using bioleaching from gold concentrate

    NASA Astrophysics Data System (ADS)

    Choi, S. H.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    The gold in refractory ores is encapsulated as fine particles (sometimes at a molecular level) in the crystal structure of the sulfide (typically pyrite with or without arsenopyrite) matrix. This makes it impossible to extract a significant amount of refractory gold by cyanidation since the cyanide solution cannot penetrate the pyrite/arsenopyrite crystals and dissolve gold particles, even after fine grinding. To effectively extract gold from these ores, an oxidative pretreatment is necessary to break down the sulfide matrix. The most popular methods of pretreatment include nitric acid oxidation, roasting, pressure oxidation and biological oxidation by microorganisms. This study investigated the bioleaching efficiency of Au concentrate under batch experimental conditions (adaptation cycles and chemical composition adaptation) using the indigenous acidophilic bacteria collected from gold mine leachate in Sunsin gold mine, Korea. We conducted the batch experiments at two different chemical composition (CuSO4 and ZnSO4), two different adaptation cycles 1'st (3 weeks) and 2'nd (6 weeks). The results showed that the pH in the bacteria inoculating sample decreased than initial condition and Eh increased. In the chemical composition adaptation case, the leached accumulation content of Fe and Pb was exhibited in CuSO4 adaptation bacteria sample more than in ZnSO4 adaptation bacteria samples, possibly due to pre-adaptation effect on chalcopyrite (CuFeS2) in gold concentrate. And after 21 days on the CuSO4 adaptation cycles case, content of Fe and Pb was appeared at 1'st adaptation bacteria sample(Fe - 1.82 and Pb - 25.81 times per control sample) lower than at 2'nd adaptation bacteria sample(Fe - 2.87 and Pb - 62.05 times per control sample). This study indicates that adaptation chemical composition and adaptation cycles can play an important role in bioleaching of gold concentrate in eco-/economic metallurgy process.

  9. Gold-Catalyzed Synthesis of Heterocycles

    NASA Astrophysics Data System (ADS)

    Arcadi, Antonio

    2014-04-01

    The following sections are included: * Introduction * Synthesis of Heterocycles via Gold-Catalyzed Heteroatom Addition to Unsaturated C-C Bonds * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cyclization of Polyunsaturated Compounds * Synthesis of Heterocyclic Compounds via α-Oxo Gold Carbenoid * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cycloaddition Reactions * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Activation of Carbonyl Groups and Alcohols * Synthesis of Heterocyclic Compounds through Gold-Mediated C-H Bond Functionalization * Gold-Catalyzed Domino Cyclization/Oxidative Coupling Reactions * Conclusions * References

  10. Isotope reference materials

    USGS Publications Warehouse

    Coplen, Tyler B.

    2010-01-01

    Measurement of the same isotopically homogeneous sample by any laboratory worldwide should yield the same isotopic composition within analytical uncertainty. International distribution of light element isotopic reference materials by the International Atomic Energy Agency and the U.S. National Institute of Standards and Technology enable laboratories to achieve this goal.

  11. Statistical clumped isotope signatures.

    PubMed

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-08-18

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  12. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  13. Statistical clumped isotope signatures

    NASA Astrophysics Data System (ADS)

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-08-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  14. Statistical clumped isotope signatures.

    PubMed

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  15. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  16. Protein-mediated autoreduction of gold salts to gold nanoparticles.

    PubMed

    Basu, Nivedita; Bhattacharya, Resham; Mukherjee, Priyabrata

    2008-09-01

    Here we report for the first time that proteins can function as unique reducing agents to produce gold nanoparticles from gold salts. We demonstrate that three different proteins, namely, bovine serum albumin (BSA), Rituximab (RIT--an anti-CD20 antibody) and Cetuximab (C225--anti-EGFR antibody), reduce gold salts to gold nanoparticles (GNP). Interestingly, among all the three proteins tested, only BSA can reduce gold salts to gold nanotriangles (GNT). BSA-induced formation of GNT can be controlled by carefully selecting the reaction condition. Heating or using excess of ascorbic acid (AA) as additional reducing agent shifts the reaction towards the formation of GNP with flower-like morphology, whereas slowing down the reaction either by cooling or by adding small amount of AA directs the synthesis towards GNT formation. GNT is formed only at pH 3; higher pHs (pH 7 and pH 10) did not produce any nanoparticles, suggesting the involvement of specific protein conformation in GNT formation. The nanomaterials formed by this method were characterized using UV-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). This is an important finding that will have uses in various nanotechnological applications, particularly in the green synthesis of novel nanomaterials based on protein structure.

  17. Geochemical constraints on the genesis of the Scheelite dome intrusion-related gold deposit, Tombstone gold belt, Yukon, Canada

    USGS Publications Warehouse

    Mair, J.L.; Goldfarb, R.J.; Johnson, C.A.; Hart, C.J.R.; Marsh, E.E.

    2006-01-01

    The Scheelite dome intrusion-related gold deposit, western Selwyn basin, Yukon, is hosted in hornfelsed metasedimentary strata that lie adjacent to the exposed apices of a monzogranite to quartz monzonite plutonic complex of the mid-Cretaceous Tombstone-Tungsten magmatic belt, Tintina gold province, Alaska and Yukon. A variety of mineralization styles occur throughout a 10- ?? 3-km east-trending corridor and include reduced Au- and W-rich skarns, Au, W- and Ag-Pb-Zn-Sb-rich quartz tension-vein arrays, and multiphase fault veins and isolated zones of Au-rich sericite-carbonate altered rock. Integrated U-Pb SHRIMP data for magmatic zircon and Ar-Ar data for magmatic and hydrotbermal biotite indicate that gold mineralization occurred within 1 to 2 m.y. of magma emplacement. Fluid inclusion, oxygen isotope, and arsenopyrite geothermometry data indicate that hydrothermal minerals formed at depths of 6 to 9 km over a temperature range from 550??C. High-temperature Au-rich skarns formed at >400??C, whereas vein-hosted mineralization formed at 280?? to 380??C. In skarns, Au is strongly associated with enrichments of Bi, Te, W, and As, whereas a variety of Au-rich veins occur, with Asrich (type 1), and Te- and W-rich (type 2) end members. Silver-Pb-Zn-Sb veins are typically Au poor and represent the latest and lowest temperature phase in the hydrothermal paragenesis. The fluid inclusion data indicate that all mineralization styles were formed from low-salinity (???4 wt % NaCl equiv) aqueous-carbonic fluids, consistent with the composition of fluid inclusions within infilled miarolitic cavities in the intrusive rocks. However, the nonaqueous fluid was predominantly CH4 in skarn, CO2 in Au-Te and Au-W veins, and a fluid with roughly equal amounts Of CO2, CH4, and N2 in Au-As and Ag-Pb-Zn-Sb veins. Oxygen isotope data are consistent with a mineralizing fluid of predominantly magmatic origin that was variably modified to more positive ??18O values during interaction with 18O

  18. Colloidal Synthesis of Gold Semishells

    PubMed Central

    Rodríguez-Fernández, Denis; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel; Liz-Marzán, Luis M

    2012-01-01

    This work describes a novel and scalable colloid chemistry strategy to fabricate gold semishells based on the selective growth of gold on Janus silica particles (500 nm in diameter) partly functionalized with amino groups. The modulation of the geometry of the Janus silica particles allows us to tune the final morphology of the gold semishells. This method also provides a route to fabricating hollow gold semishells through etching of the silica cores with hydrofluoric acid. The optical properties were characterized by visible near-infrared (vis-NIR) spectroscopy and compared with simulations performed using the boundary element method (BEM). These revealed that the main optical features are located beyond the NIR region because of the large core size. PMID:24551496

  19. Gold based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Schroers, Jan; Lohwongwatana, Boonrat; Johnson, William L.; Peker, Atakan

    2005-08-01

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644K, a glass transition temperature of 401K, and a supercooled liquid region of 58K. The Vickers hardness of the alloys in this system is ˜350Hv, twice that of conventional 18-karat crystalline gold alloys. This combination of properties makes the alloys attractive for many applications including electronic, medical, dental, surface coating, and jewelry.

  20. Gold, currencies and market efficiency

    NASA Astrophysics Data System (ADS)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2016-05-01

    Gold and currency markets form a unique pair with specific interactions and dynamics. We focus on the efficiency ranking of gold markets with respect to the currency of purchase. By utilizing the Efficiency Index (EI) based on fractal dimension, approximate entropy and long-term memory on a wide portfolio of 142 gold price series for different currencies, we construct the efficiency ranking based on the extended EI methodology we provide. Rather unexpected results are uncovered as the gold prices in major currencies lay among the least efficient ones whereas very minor currencies are among the most efficient ones. We argue that such counterintuitive results can be partly attributed to a unique period of examination (2011-2014) characteristic by quantitative easing and rather unorthodox monetary policies together with the investigated illegal collusion of major foreign exchange market participants, as well as some other factors discussed in some detail.

  1. GOLD: The Genomes Online Database

    DOE Data Explorer

    Kyrpides, Nikos; Liolios, Dinos; Chen, Amy; Tavernarakis, Nektarios; Hugenholtz, Philip; Markowitz, Victor; Bernal, Alex

    Since its inception in 1997, GOLD has continuously monitored genome sequencing projects worldwide and has provided the community with a unique centralized resource that integrates diverse information related to Archaea, Bacteria, Eukaryotic and more recently Metagenomic sequencing projects. As of September 2007, GOLD recorded 639 completed genome projects. These projects have their complete sequence deposited into the public archival sequence databases such as GenBank EMBL,and DDBJ. From the total of 639 complete and published genome projects as of 9/2007, 527 were bacterial, 47 were archaeal and 65 were eukaryotic. In addition to the complete projects, there were 2158 ongoing sequencing projects. 1328 of those were bacterial, 59 archaeal and 771 eukaryotic projects. Two types of metadata are provided by GOLD: (i) project metadata and (ii) organism/environment metadata. GOLD CARD pages for every project are available from the link of every GOLD_STAMP ID. The information in every one of these pages is organized into three tables: (a) Organism information, (b) Genome project information and (c) External links. [The Genomes On Line Database (GOLD) in 2007: Status of genomic and metagenomic projects and their associated metadata, Konstantinos Liolios, Konstantinos Mavromatis, Nektarios Tavernarakis and Nikos C. Kyrpides, Nucleic Acids Research Advance Access published online on November 2, 2007, Nucleic Acids Research, doi:10.1093/nar/gkm884]

    The basic tables in the GOLD database that can be browsed or searched include the following information:

    • Gold Stamp ID
    • Organism name
    • Domain
    • Links to information sources
    • Size and link to a map, when available
    • Chromosome number, Plas number, and GC content
    • A link for downloading the actual genome data
    • Institution that did the sequencing
    • Funding source
    • Database where information resides
    • Publication status and information

    • Photochemical synthesis of gold nanorods.

      PubMed

      Kim, Franklin; Song, Jae Hee; Yang, Peidong

      2002-12-01

      Gold nanorods have been synthesized by photochemically reducing gold ions within a micellar solution. The aspect ratio of the rods can be controlled with the addition of silver ions. This process reported here is highly promising for producing uniform nanorods, and more importantly it will be useful in resolving the growth mechanism of anisotropic metal nanoparticles due to its simplicity and the relatively slow growth rate of the nanorods. PMID:12452700

    • Bald Mountain gold mining district, Nevada: A Jurassic reduced intrusion-related gold system

      USGS Publications Warehouse

      Nutt, C.J.; Hofstra, A.H.

      2007-01-01

      The Bald Mountain mining district has produced about 2 million ounces (Moz) of An. Geologic mapping, field relationships, geochemical data, petrographic observations, fluid inclusion characteristics, and Pb, S, O, and H isotope data indicate that An mineralization was associated with a reduced Jurassic intrusion. Gold deposits are localized within and surrounding a Jurassic (159 Ma) quartz monzonite porphyry pluton and dike complex that intrudes Cambrian to Mississippian carbonate and clastic rocks. The pluton, associated dikes, and An mineralization were controlled by a crustal-scale northwest-trending structure named the Bida trend. Gold deposits are localized by fracture networks in the pluton and the contact metamorphic aureole, dike margins, high-angle faults, and certain strata or shale-limestone contacts in sedimentary rocks. Gold mineralization was accompanied by silicification and phyllic alteration, ??argillic alteration at shallow levels. Although An is typically present throughout, the system exhibits a classic concentric geochemical zonation pattern with Mo, W, Bi, and Cu near the center, Ag, Pb, and Zn at intermediate distances, and As and Sb peripheral to the intrusion. Near the center of the system, micron-sized native An occurs with base metal sulfides and sulfosalts. In peripheral deposits and in later stages of mineralization, Au is typically submicron in size and resides in pyrite or arsenopyrite. Electron microprobe and laser ablation ICP-MS analyses show that arsenopyrite, pyrite, and Bi sulfide minerals contain 10s to 1,000s of ppm Au. Ore-forming fluids were aqueous and carbonic at deep levels and episodically hypersaline at shallow levels due to boiling. The isotopic compositions of H and O in quartz and sericite and S and Pb in sulfides are indicative of magmatic ore fluids with sedimentary sulfur. Together, the evidence suggests that Au was introduced by reduced S-bearing magmatic fluids derived from a reduced intrusion. The reduced

    • Gold, coal and oil.

      PubMed

      Dani, Sergio U

      2010-03-01

      Jared Diamond has hypothesized that guns, germs and steel account for the fate of human societies. Here I propose an extension of Diamond's hypothesis and put it in other terms and dimensions: gold, coal and oil account not only for the fate of human societies but also for the fate of mankind through the bodily accumulation of anthropogenic arsenic, an invisible weapon of mass extinction and evolutionary change. The background is clear; arsenic species fulfill seven criteria for a weapon of mass extinction and evolutionary change: (i) bioavailability to all living organisms; (ii) imperceptibility; (iii) acute toxicity; (iv) bioaccumulation and chronic toxicity; (v) adverse impact on reproductive fitness and reproductive outcomes and early-age development and growth in a wide range of microbial, plant and animal species including man; (vi) widespread geographical distribution, mobility and ecological persistence on a centennial to millennial basis and (vii) availability in necessary and sufficient amounts to exert evolutionarily meaningful effects. The proof is becoming increasingly feasible as human exploitation of gold, coal and oil deposits cause sustainable rises of arsenic concentrations in the biosphere. Paradoxically, humans are among the least arsenic-resistant organisms because humans are long-lived, encephalized and complex social metazoans. An arsenic accumulation model is presented here to describe how arsenic accumulates in the human body with increasing age and at different provisionally safe exposure levels. Arsenic accumulates in the human body even at daily exposure levels which are within the lowest possible WHO provisional tolerance limits, yielding bodily arsenic concentrations which are above WHO provisional limits. Ongoing consequences of global scale arsenic poisoning of mankind include age-specific rises in morbidity and mortality followed by adaptive changes. The potential rise of successful forms of inborn resistance to arsenic in humans

    • Gold, coal and oil.

      PubMed

      Dani, Sergio U

      2010-03-01

      Jared Diamond has hypothesized that guns, germs and steel account for the fate of human societies. Here I propose an extension of Diamond's hypothesis and put it in other terms and dimensions: gold, coal and oil account not only for the fate of human societies but also for the fate of mankind through the bodily accumulation of anthropogenic arsenic, an invisible weapon of mass extinction and evolutionary change. The background is clear; arsenic species fulfill seven criteria for a weapon of mass extinction and evolutionary change: (i) bioavailability to all living organisms; (ii) imperceptibility; (iii) acute toxicity; (iv) bioaccumulation and chronic toxicity; (v) adverse impact on reproductive fitness and reproductive outcomes and early-age development and growth in a wide range of microbial, plant and animal species including man; (vi) widespread geographical distribution, mobility and ecological persistence on a centennial to millennial basis and (vii) availability in necessary and sufficient amounts to exert evolutionarily meaningful effects. The proof is becoming increasingly feasible as human exploitation of gold, coal and oil deposits cause sustainable rises of arsenic concentrations in the biosphere. Paradoxically, humans are among the least arsenic-resistant organisms because humans are long-lived, encephalized and complex social metazoans. An arsenic accumulation model is presented here to describe how arsenic accumulates in the human body with increasing age and at different provisionally safe exposure levels. Arsenic accumulates in the human body even at daily exposure levels which are within the lowest possible WHO provisional tolerance limits, yielding bodily arsenic concentrations which are above WHO provisional limits. Ongoing consequences of global scale arsenic poisoning of mankind include age-specific rises in morbidity and mortality followed by adaptive changes. The potential rise of successful forms of inborn resistance to arsenic in humans

    • ISOTOPE CONVERSION DEVICE

      DOEpatents

      Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

      1957-12-01

      This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

    • Isotopically controlled semiconductors

      SciTech Connect

      Haller, Eugene E.

      2001-12-21

      Semiconductor bulk crystals and multilayer structures with controlled isotopic composition have attracted much scientific and technical interest in the past few years. Isotopic composition affects a large number of physical properties, including phonon energies and lifetimes, bandgaps, the thermal conductivity and expansion coefficient and spin-related effects. Isotope superlattices are ideal media for self-diffusion studies. In combination with neutron transmutation doping, isotope control offers a novel approach to metal-insulator transition studies. Spintronics, quantum computing and nanoparticle science are emerging fields using isotope control.

    • Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis.

      PubMed

      Takale, Balaram S; Bao, Ming; Yamamoto, Yoshinori

      2014-04-01

      Organic synthesis using gold has gained tremendous attention in last few years, especially heterogeneous gold catalysis based on gold nanoparticles has made its place in almost all organic reactions, because of the robust and green nature of gold catalysts. In this context, gold nanopore (AuNPore) with a 3D metal framework is giving a new dimension to heterogeneous gold catalysts. Interestingly, AuNPore chemistry is proving better than gold nanoparticles based chemistry. In this review, along with recent advances, major discoveries in heterogeneous gold catalysis are discussed.

    • Modeling of gold production in Malaysia

      NASA Astrophysics Data System (ADS)

      Muda, Nora; Ainuddeen, Nasihah Rasyiqah; Ismail, Hamizun; Umor, Mohd Rozi

      2013-04-01

      This study was conducted to identify the main factors that contribute to the gold production and hence determine the factors that affect to the development of the mining industry in Malaysia. An econometric approach was used by performing the cointegration analysis among the factors to determine the existence of long term relationship between the gold prices, the number of gold mines, the number of workers in gold mines and the gold production. The study continued with the Granger analysis to determine the relationship between factors and gold production. Results have found that there are long term relationship between price, gold production and number of employees. Granger causality analysis shows that there is only one way relationship between the number of employees with gold production in Malaysia and the number of gold mines in Malaysia.

    • Probing the Structure, Composition, and Spatial Distribution of Ligands on Gold Nanorods.

      PubMed

      Hore, Michael J A; Ye, Xingchen; Ford, Jamie; Gao, Yuzhi; Fei, Jiayang; Wu, Qiong; Rowan, Stuart J; Composto, Russell J; Murray, Christopher B; Hammouda, Boualem

      2015-09-01

      The structure and size of ligands attached to the surfaces of gold nanorods, such as adsorbed surfactants or grafted polymers, are important considerations that facilitate the use of such nanoparticles in the human body, in advanced materials for energy harvesting, or in devices for single molecule detection. Here, we report small-angle neutron scattering (SANS) measurements from surfactant or poly(ethylene glycol) (PEG) coated gold nanorods in solution, which quantitatively determine the location, structure, and composition of these surface layers. In addition, by synthesizing gold nanorods using seed crystals which are coated with deuterated cetyltrimethylammonium bromide (dCTAB), we are able to exploit the isotopic sensitivity of SANS to study, for the first time, the retention of surfactant from the seed crystals to the final gold nanorod product, finding that very little exchange of the deuterated with hydrogenated surfactant occurs. Finally, we demonstrate that, when Au NRs are PEGylated using standard techniques, the surfactant bilayer remains intact, and while mass spectrometry detects the presence of both surfactant and PEG, the composition as measured from SANS is predominantly that of the surfactant. These measurements not only provide new insight into the synthesis and functionalization of gold nanorods but provide a quantitative picture of the structure of grafted polymer and surfactant layers on gold nanorod surfaces which has implications for the fabrication of plasmonic and biomedical materials.

    • Metamorphism and gold mineralization in the Blue Ridge, Southernmost Appalachians

      USGS Publications Warehouse

      Stowell, H.H.; Lesher, C.M.; Green, N.L.; Sha, P.; Guthrie, G.M.; Sinha, A.K.

      1996-01-01

      Lode gold mineralization in the Blue Ridge of the southernmost Appalachians is hosted by metavolcanic rocks (e.g., Anna Howe mine, AL; Royal Vindicator mine, GA), metaplutonic rocks (e.g., Hog Mountain mine, AL), and metasedimentary rocks (e.g., Lowe, Tallapoosa, and Jones Vein mines, AL). Most gold occurs in synkinematic quartz ?? plagioclase ?? pyrite ?? pyrrhotite ?? chlorite veins localized along polydeformational faults that juxtapose rocks with significantly different peak metamorphic mineral assemblages. Mineralogy, chemistry, and O and H isotope studies suggest that the three types of host rocks have undergone differing amounts and types of alteration during mineralization. Limited wall-rock alteration in metavolcanic- and metasediment-hosted deposits, and relatively extensive wall-rock alteration in granitoid-hosted deposits, suggests that most deposits formed from fluids that were close to equilibrium with metavolcanic and metasedimentary rocks. Stable isotope compositions of the fluids calculated from vein minerals and vein selvages are consistent with a predominantly metasedimentary fluid source, but vary from deposit to deposit (-22 to -47??? ??D, 4-5??? ??18O, and 5-7??? ??34S at Anna Howe and Royal Vindicator; -48 to -50??? ??D, 9-13??? ??18O, and ca. 19??? ??34S at Lowe and Jones Vein; and -22 to -23??? ??D, 8-11??? ??18O, 9-10??? ??34S, and -6 ??13C at Hog Mountain). Silicate mineral thermobarometry of vein, vein selvage, and wall-rock mineral assemblages indicate that mineralization and regional metamorphism occured at greenschist to amphibolite facies (480?? ?? 75??C at Anna Howe, 535?? ?? 50??C at 6.4 ?? 1 kbars at Lowe, 530?? ?? 50??C at 6.9 ?? 1 kbars at Tallapoosa, and 460?? ?? 50??C at 5.5 ?? 1 kbars at Hog Mountain). Oxygen isotope fractionation between vein minerals and selvage minerals consistently records equilibration temperatures that are similar to or slightly lower than those estimated from silicate thermometry. Auriferous veins

    • Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling mountains, central China

      USGS Publications Warehouse

      Mao, J.; Goldfarb, R.J.; Zhang, Z.; Xu, W.; Qiu, Y.; Deng, J.

      2002-01-01

      The gold-rich Xiaoqinling-Xiong'ershan region in eastern Shaanxi and western Henan provinces, central China, lies about 30-50 km inland of the southern margin of the North China craton. More than 100 gold deposits and occurrences are concentrated in the Xiaoqinling (west), Xiaoshan (middle), and Xiong'ershan (east) areas. Late Archean gneiss of the Taihua Group, and Middle Proterozoic metavolcanic rocks of the Xiong'er Group are the main host rocks for the deposits. Mesozoic granitoids (ca. 178-104 Ma) are present in most gold districts, but deposits are typically hosted in the Precambrian basement rocks hundreds of meters to as far as 10 km from the intrusions and related hornfels zones. Deposits in the Xiaoqinling and Xiaoshan areas are best classified as orogenic gold deposits, with ores occurring in a number of distinct belts both in quartz veins and disseminated in altered metamorphic rocks. Alteration assemblages are dominated by quartz, sericite, pyrite, and carbonate minerals. The ore-forming fluids were low salinity, CO2-rich, and characterized by isotopically heavy ??18O. Four deposits (Dongchuang, Wenyu, Yangzhaiyu, and Dahu) in the Xiaoqinling area each contain resources of about 1 Moz Au. Some of the gold deposits in the Xiong'ershan area represent more shallowly emplaced tellurium-enriched orogenic systems, which include resources of approximately 1-1.5 Moz Au at Shanggong and Beiling (or Tantou). Others are epithermal deposits (e.g., Qiyugou and Dianfang) that are hosted in volcanic breccia pipes. Isotopic dates for all gold deposits, although often contradictory, generally cluster between 172-99 Ma and are coeval with emplacement of the post-kinematic granitoids. The gold deposits formed during a period of relaxation of far-field compressional stresses, clearly subsequent to the extensive Paleozoic-early Mesozoic accretion of are terranes and the Yangtze craton onto the southern margin of the North China craton. Hydrothermal and magmatic events

    • Phage based green chemistry for gold ion reduction and gold retrieval.

      PubMed

      Setyawati, Magdiel I; Xie, Jianping; Leong, David T

      2014-01-22

      The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h. PMID:24359519

    • Phage based green chemistry for gold ion reduction and gold retrieval.

      PubMed

      Setyawati, Magdiel I; Xie, Jianping; Leong, David T

      2014-01-22

      The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

    • HORMONE MEASUREMENT GUIDELINES: Tracing lipid metabolism: the value of stable isotopes.

      PubMed

      Umpleby, A Margot

      2015-09-01

      Labelling molecules with stable isotopes to create tracers has become a gold-standard method to study the metabolism of lipids and lipoproteins in humans. There are a range of techniques which use stable isotopes to measure fatty acid flux and oxidation, hepatic fatty synthesis, cholesterol absorption and synthesis and lipoprotein metabolism in humans. Stable isotope tracers are safe to use, enabling repeated studies to be undertaken and allowing studies to be undertaken in children and pregnant women. This review provides details of the most appropriate tracers to use, the techniques which have been developed and validated for measuring different aspects of lipid metabolism and some of the limitations of the methodology.

    • Hybrid isotope separation scheme

      DOEpatents

      Maya, Jakob

      1991-01-01

      A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

    • Hybrid isotope separation scheme

      DOEpatents

      Maya, J.

      1991-06-18

      A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus. 2 figures.

    • HYDROGEN ISOTOPE TARGETS

      DOEpatents

      Ashley, R.W.

      1958-08-12

      The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

    • Gold deposits in metamorphic belts: Overview of current understanding, outstanding problems, future research, and exploration significance

      USGS Publications Warehouse

      Groves, D.I.; Goldfarb, R.J.; Robert, F.; Hart, C.J.R.

      2003-01-01

      Metamorphic belts are complex regions where accretion or collision has added to, or thickened, continental crust. Gold-rich deposits can be formed at all stages of orogen evolution, so that evolving metamorphic belts contain diverse gold deposit types that may be juxtaposed or overprint each other. This partly explains the high level of controversy on the origin of some deposit types, particularly those formed or overprinted/remobilized during the major compressional orogeny that shaped the final geometry of the hosting metamorphic belts. These include gold-dominated orogenic and intrusion-related deposits, but also particularly controversial gold deposits with atypical metal associations. There are a number of outstanding problems for all types of gold deposits in metamorphc belts. These include the following: (1) definitive classifications, (2) unequivocal recognition of fluid and metal sources, (3) understanding of fluid migration and focusing at all scales, (4) resolution of the precise role of granitoid magmatism, (5) precise gold-depositional mechanisms, particularly those producing high gold grades, and (6) understanding of the release of CO2-rich fluids from subducting slabs and subcreted oceanic crust and granitoid magmas at different crustal levels. Research needs to be better coordinated and more integrated, such that detailed fluid-inclusion, trace-element, and isotopic studies of both gold deposits and potential source rocks, using cutting-edge technology, are embedded in a firm geological framework at terrane to deposit scales. Ultimately, four-dimensional models need to be developed, involving high-quality, three-dimensional geological data combined with integrated chemical and fluid-flow modeling, to understand the total history of the hydrothermal systems involved. Such research, particularly that which can predict superior targets visible in data sets available to exploration companies before discovery, has obvious spin-offs for global- to deposit

    • PRINCIPAL ISOTOPE SELECTION REPORT

      SciTech Connect

      K. D. Wright

      1998-08-28

      Utilizing nuclear fuel to produce power in commercial reactors results in the production of hundreds of fission product and transuranic isotopes in the spent nuclear fuel (SNF). When the SNF is disposed of in a repository, the criticality analyses could consider all of the isotopes, some principal isotopes affecting criticality, or none of the isotopes, other than the initial loading. The selected set of principal isotopes will be the ones used in criticality analyses of the SNF to evaluate the reactivity of the fuel/waste package composition and configuration. This technical document discusses the process used to select the principal isotopes and the possible affect that these isotopes could have on criticality in the SNF. The objective of this technical document is to discuss the process used to select the principal isotopes for disposal criticality evaluations with commercial SNF. The principal isotopes will be used as supporting information in the ''Disposal Criticality Analysis Methodology Topical Report'' which will be presented to the United States Nuclear Regulatory Commission (NRC) when approved by the United States Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM).

  1. Gold nanoparticles for photoacoustic imaging

    PubMed Central

    Li, Wanwan; Chen, Xiaoyuan

    2015-01-01

    Photoacoustic (PA) imaging is a biomedical imaging modality that provides functional information regarding the cellular and molecular signatures of tissue by using endogenous and exogenous contrast agents. There has been tremendous effort devoted to the development of PA imaging agents, and gold nanoparticles as exogenous contrast agents have great potential for PA imaging due to their inherent and geometrically induced optical properties. The gold-based nanoparticles that are most commonly employed for PA imaging include spheres, rods, shells, prisms, cages, stars and vesicles. This article provides an overview of the current state of research in utilizing these gold nanomaterials for PA imaging of cancer, atherosclerotic plaques, brain function and image-guided therapy. PMID:25600972

  2. Recent Developments in Australian Gold Extraction.

    ERIC Educational Resources Information Center

    Thiele, Rodney B.

    1995-01-01

    Describes new technologies that have greatly improved the extraction efficiency of gold ore, including: altering plant layout to promote efficiency, engaging Filiblast forced oxidation and bioxidation systems, and updating the electrowinning procedure at the gold recovery stage. (JRH)

  3. Economic geology: Gold buried by oxygen

    NASA Astrophysics Data System (ADS)

    Gaillard, Fabrice; Copard, Yoann

    2015-03-01

    The Witwatersrand Basin in South Africa contains extraordinary amounts of gold. Thermodynamic calculations suggest that the gold may have accumulated there in response to a perfect storm of conditions available only during the Archaean.

  4. Colloidal gold nanorods: from reduction to growth

    NASA Astrophysics Data System (ADS)

    Park, Kyoungweon; El-Sayed, Mostafa; Srinivasarao, Mohan

    2005-03-01

    Formation of gold nanorods(NRs) in controlled reduction condition was investigated. Gold NRs were synthesized by seed mediated method where pre-made gold nanospheres were added to a growth solution containing surfactants, reducing agent and compound of gold ion and surfactant. Reduction mechanism was manipulated by changing catalytic activity of seed. Seed of different size and capping agent coverage led to different dispersity of NRs since seed plays a role as catalyst as well as nucleation site. The difference between the redox potentials of gold species and reducing agent(δE) was controlled by the strength of reducing agent and the stability of the gold compound. As δE leading to changing the morphology of resulting gold NRs. The surface of gold NRs with a series of aspect ratio was functionalized by thiolated beta cyclodextrin which binds preferentially to the end of NRs and promotes the orientation of rod-rod pair even without host-guest interaction.

  5. Structural Motifs of Gold Nanoparticles.

    NASA Astrophysics Data System (ADS)

    Cleveland, C. L.; Luedtke, W. D.; Landman, Uzi

    1996-03-01

    Through an extensive search, involving energy minimization using embedded atom potentials, we found(R.L. Whetten et al./), submitted to Nature (1995). that the energetically optimal sequence for AuN clusters (30 <= N <= 3000 atoms) consists of fcc crystallites, with a truncated-octahedral (TO) morphological motif, and variants thereof. These predictions for bare gold particles, and for particles coated by sef-assembled thiol monolayers, are discussed in light of recent experiments on the preparation and characterization (including mass spectrometry, electron microscopy, and X-ray diffraction) of nanocrystalline gold molecules (see Ref. 2).

  6. Isotopically engineered semiconductors

    NASA Astrophysics Data System (ADS)

    Haller, E. E.

    1995-04-01

    Scientific interest, technological promise, and increased availability of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This review of mostly recent activities begins with an introduction to some past classical experiments which have been performed on isotopically controlled semiconductors. A review of the natural isotopic composition of the relevant elements follows. Some materials aspects resulting in part from the high costs of enriched isotopes are discussed next. Raman spectroscopy studies with a number of isotopically pure and deliberately mixed Ge bulk crystals show that the Brillouin-zone-center optical phonons are not localized. Their lifetime is almost independent of isotopic disorder, leading to homogeneous Raman line broadening. Studies with short period isotope superlattices consisting of alternating layers of n atomic planes of 70Ge and 74Ge reveal a host of zone-center phonons due to Brillouin-zone folding. At n≳40 one observes two phonon lines at frequencies corresponding to the bulk values of the two isotopes. In natural diamond, isotope scattering of the low-energy phonons, which are responsible for the thermal conductivity, is very strongly affected by small isotope disorder. Isotopically pure 12C diamond crystals exhibit thermal conductivities as high as 410 W cm-1 K-1 at 104 K, leading to projected values of over 2000 W cm-1 K-1 near 80 K. The changes in phonon properties with isotopic composition also weakly affect the electronic band structures and the lattice constants. The latter isotope dependence is most relevant for future standards of length based on crystal lattice constants. Capture of thermal neutrons by isotope nuclei followed by nuclear decay produces new elements, resulting in a very large number of possibilities for isotope selective doping of semiconductors. This neutron transmutation of isotope nuclei, already used

  7. Formation, structure, and orientation of gold silicide on gold surfaces

    NASA Technical Reports Server (NTRS)

    Green, A. K.; Bauer, E.

    1976-01-01

    The formation of gold silicide on Au films evaporated onto Si(111) surfaces is studied by Auger electron spectroscopy (AES) and low-energy electron diffraction (LEED). Surface condition, film thickness, deposition temperature, annealing temperature, and heating rate during annealing are varied. Several oriented crystalline silicide layers are observed.

  8. Intracellular Cadmium Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  9. Discovery of the krypton isotopes

    SciTech Connect

    Heim, M.; Fritsch, A.; Schuh, A.; Shore, A.; Thoennessen, M.

    2010-07-15

    Thirty-two krypton isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  10. Detecting isotopic ratio outliers

    SciTech Connect

    Bayne, C.K.; Smith, D.H.

    1985-01-01

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers. 6 refs., 3 figs., 3 tabs.

  11. (Carbon isotope fractionation inplants)

    SciTech Connect

    O'Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  12. Gold color in dental alloys.

    PubMed

    Cameron, T

    1997-01-01

    This article will help the dental laboratory with alloy selection by exploring how the relationship among color, ductility and strength applies to gold and how color can be quantified. Because higher quality materials translate into higher profits, upselling to the dentist and patient is also discussed.

  13. Shape Stability of Gold Nanorods

    NASA Astrophysics Data System (ADS)

    Robertson, Steve; Bertone, Jane; Cizeron, Joel; Wahi, Raj; Colvin, Vicki

    2000-03-01

    Photoreduction of gold salts in inverse micelles can lead to the formation of colloidal gold. A wide variety of well-defined and facetted shapes are seen in the product; though these nanocrystals are highly crystalline, high resolution transmission electron microscopy reveal the presence of specific crystalline defects, primarily twin planes. These defects are correlated to the nanocrystals shape, and lead us to postulate a shape control mechanism dependent on the presence of crystalline defects. Among the observed shapes from this reaction are anisotropic nanocrystals with aspect ratios ranging from 5 to 10. The rod percentage can be maximized by controlling the water to surfactant ratio in the solution, and is only observed when the reduction process is photoinitiated. Rod growth can be activated, allowing for the formation of gold nanoneedles with aspect ratios exceeding 30. The smallest dimensions of these nanocrystals are 10 nm, which is large enough that melting point depressions because of finite size are expected to be minimal. Nevertheless, anisotropic particles anneal to more symmetric shapes at temperatures of only 600 to 700 C. Electron microscopy studies of these shape changing processes at high temperatures indicate that the nanocrystals anneal quite suddenly, with rapid movements of many gold atoms.

  14. Laser isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  15. Photochemical isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  16. Photochemical isotope separation

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  17. Laser isotope separation

    DOEpatents

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  18. Gold recycling; a materials flow study

    USGS Publications Warehouse

    Amey, Earle B.

    2000-01-01

    This materials flow study includes a description of trends in consumption, loss, and recycling of gold-containing materials in the United States in 1998 in order to illustrate the extent to which gold is presently being recycled and to identify recycling trends. The quantity of gold recycled, as a percent of the apparent supply of gold, was estimated to be about 30 percent. Of the approximately 446 metric tons of gold refined in the United States in 1998, the fabricating and industrial use losses were 3 percent.

  19. [Biosynthesis of gold nanoparticles by Azospirillum brasilense].

    PubMed

    Kupriashina, M A; Vetchinkina, E P; Burov, A M; Ponomareva, E G; Nikitina, V E

    2014-01-01

    Plant-associated nitrogen-fixing soil bacteria Azospirillum brasilense were shown to reduce the gold of chloroauric acid to elemental gold, resulting in formation of gold nanoparicles. Extracellular phenoloxidizing enzymes (laccases and Mn peroxidases) were shown to participate in reduction of Au+3 (HAuCl4) to Au(0). Transmission electron microscopy revealed accumulation of colloidal gold nanoparticles of diverse shape in the culture liquid of A. brasilense strains Sp245 and Sp7. The size of the electron-dense nanospheres was 5 to 50 nm, and the size of nanoprisms varied from 5 to 300 nm. The tentative mechanism responsible for formation of gold nanoparticles is discussed.

  20. Relativistic effects in homogeneous gold catalysis.

    PubMed

    Gorin, David J; Toste, F Dean

    2007-03-22

    Transition-metal catalysts containing gold present new opportunities for chemical synthesis, and it is therefore not surprising that these complexes are beginning to capture the attention of the chemical community. Cationic phosphine-gold(i) complexes are especially versatile and selective catalysts for a growing number of synthetic transformations. The reactivity of these species can be understood in the context of theoretical studies on gold; relativistic effects are especially helpful in rationalizing the reaction manifolds available to gold catalysts. This Review draws on experimental and computational data to present our current understanding of homogeneous gold catalysis, focusing on previously unexplored reactivity and its application to the development of new methodology.

  1. Heteroepitaxial gold (111) rings on mica substrates

    SciTech Connect

    Zhang, X.W.; Chen, N.F.; Yan, F.; Goedel, Werner A.

    2005-05-16

    Two-dimensionally arranged gold rings were prepared by depositing a polymeric membrane bearing a dense array of uniform pores onto a mica substrate, filling the pores with a solution of a gold precursor, evaporation of the solvent and calcinations. The epitaxy of gold rings is confirmed by x-ray diffraction measurements, and the epitaxial relationship between gold rings and the mica was found to be Au(111)[1-10] parallel mica(001)[010]. The polar and azimuthal angular spreads are 0.3 deg. and 1 deg., respectively, which is at least equal to or better than the quality of the corresponding epitaxial gold-film on mica.

  2. Gold nephropathy in juvenile rheumatoid arthritis.

    PubMed

    Husserl, F E; Shuler, S E

    1979-01-01

    A 2-year-old girl was treated with gold salts for juvenile rheumatoid arthritis. Treatment had to be discontinued when persistent proteinuria was detected. As this case report indicates, close monitoring of the urine is mandatory during treatment with gold salts to detect early signs of toxicity: hematuria followed by casts and then proteinuria as therapy is continued. Histologic examination with electron microscopy will help to differentiate the different forms of gold toxicity. When the findings are consistent with gold-induced renal involvement, therapy should be discontinued. The gold nephropathy usually resolves in time, with no permanent renal damage.

  3. Bimodal porous gold opals for molecular sensing

    NASA Astrophysics Data System (ADS)

    Chae, Weon-Sik; Yu, Hyunung; Ham, Sung-Kyoung; Lee, Myung-Jin; Jung, Jin-Seung; Robinson, David B.

    2013-11-01

    We have fabricated bimodal porous gold skeletons by double-templating routes using poly(styrene) colloidal opals as templates. The fabricated gold skeletons show a bimodal pore-size distribution, with small pores within spheres and large pores between spheres. The templated bimodal porous gold skeletons were applied in Raman scattering experiments to study sensing efficiency for probe molecules. We found that the bimodal porous gold skeletons showed obvious enhancement of Raman scattering signals versus that of the unimodal porous gold which only has interstitial pores of several hundred nanometers.

  4. Crustal-scale shear zones and their significance to Archaean gold mineralization in Western Australia

    NASA Astrophysics Data System (ADS)

    Eisenlohr, B. N.; Groves, D.; Partington, G. A.

    1989-01-01

    Many large Archaean epigenetic gold deposits show a broad spatial relationship to regional lineaments in greenstone belts, although in detail they are sited in subsidiary brittle-ductile fault structures. Fluids, originating from a deep source, follow a complex path and re-equilibrate with different lithologies and with metamorphic fluid during migration to higher crustal levels. Temperature and pressure conditions at or below the amphibolite/greenschist metamorphic boundary, where most gold deposits are located, favour the establishment of brittle-ductile and brittle subsidiary structures, the preferred structural setting of gold deposits. Physical gradients between the regional ductile structures and more brittle subsidiary structures ensure transient, strongly localized, fluid flow into the latter, where lower temperatures and suitable host rocks with high Fe/(Fe + Mg) ratios favour gold-deposition. The multi-source origin and continuous re-equilibration of the fluid with crustal rock, which includes granitoid and greenstone-belt lithologies of different ages, is reflected in the diverse isotopic and geochemical signature of the gold deposits.

  5. Mammalian sensitivity to elemental gold (Au?)

    USGS Publications Warehouse

    Eisler, R.

    2004-01-01

    There is increasing documentation of allergic contact dermatitis and other effects from gold jewelry, gold dental restorations, and gold implants. These effects were especially pronounced among females wearing body-piercing gold objects. One estimate of the prevalence of gold allergy worldwide is 13%, as judged by patch tests with monovalent organogold salts. Eczema of the head and neck was the most common response of individuals hypersensitive to gold, and sensitivity can last for at least several years. Ingestion of beverages containing flake gold can result in allergic-type reactions similar to those seen in gold-allergic individuals exposed to gold through dermal contact and other routes. Studies with small laboratory mammals and injected doses of colloidal gold showed increased body temperatures, accumulations in reticular cells, and dose enhancement in tumor therapy; gold implants were associated with tissue injuries. It is proposed that Au? toxicity to mammals is associated, in part, with formation of the more reactive Au+ and Au3+ species.

  6. Dating native gold by noble gas analyses

    NASA Technical Reports Server (NTRS)

    Niedermann, S.; Eugster, O.; Hofmann, B.; Thalmann, CH.; Reimold, W. U.

    1993-01-01

    Our recent work on He, Ne, and Ar in Alpine gold samples has demonstrated that gold is extremely retentive for He and could thus, in principle, be used for U/Th-He-4 dating. For vein-type gold from Brusson, Northern Italy, we derived a U/Th-He-4 age of 36 Ma, in agreement with the K-Ar formation age of associated muscovites and biotites. However, in placer gold from the Napf area, Central Switzerland, we observed large excesses of both He-4 and radiogenic Ar-40 (Ar-40 sub rad, defined as Ar-40-295.5-Ar-.36). The gas release systematics indicate two distinct noble gas components, one of which is released below about 800 C and the other one at the melting point of gold (1064 C). We now present results of He and Xe measurements in a 1 g placer gold sample from the river Kruempelgraben, as well as He and Ar data for Brusson vein-type gold and for gold from the Lily Gold Mine, South Africa. We calculate reasonable U/Th-He-4 as well as U-Xe ages based on those gases which are released at approximately 800 C. Probably the low-temperature components represent in-situ-produced radiogenic He and fission Xe, whereas the gases evolving when gold melts have been trapped during gold formation. Therefore, only the low-temperature components are relevant for dating purposes.

  7. Meteoritic Sulfur Isotopic Analysis

    NASA Technical Reports Server (NTRS)

    Thiemens, Mark H.

    1996-01-01

    Funds were requested to continue our program in meteoritic sulfur isotopic analysis. We have recently detected a potential nucleosynthetic sulfur isotopic anomaly. We will search for potential carriers. The documentation of bulk systematics and the possible relation to nebular chemistry and oxygen isotopes will be explored. Analytical techniques for delta(sup 33), delta(sup 34)S, delta(sup 36)S isotopic analysis were improved. Analysis of sub milligram samples is now possible. A possible relation between sulfur isotopes and oxygen was detected, with similar group systematics noted, particularly in the case of aubrites, ureilites and entstatite chondrites. A possible nucleosynthetic excess S-33 has been noted in bulk ureilites and an oldhamite separate from Norton County. High energy proton (approximately 1 GeV) bombardments of iron foils were done to experimentally determine S-33, S-36 spallogenic yields for quantitation of isotopic measurements in iron meteorites. Techniques for measurement of mineral separates were perfected and an analysis program initiated. The systematic behavior of bulk sulfur isotopes will continue to be explored.

  8. Brazil's premier gold province. Part II: geology and genesis of gold deposits in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero

    NASA Astrophysics Data System (ADS)

    Lobato, Lydia; Ribeiro-Rodrigues, Luiz; Vieira, Frederico

    2001-07-01

    Orogenic, gold deposits are hosted by rocks of the Archean Rio das Velhas greenstone belt in the Quadrilátero Ferrífero region, Minas Gerais state, Brazil, one of the major gold provinces in the world. The gold deposits occur at the base of the mafic-ultramafic succession, with the most important orebodies controlled by E-W-striking, strike-slip faults. The main mineralization styles are (1) structurally controlled, sulfide replacement zones in banded iron formation (BIF); (2) disseminated sulfide minerals and gold in hydrothermally altered rocks along shear zones; and (3) auriferous quartz-carbonate-sulfide veins and veinlets in mafic, ultramafic, and felsic volcanic rocks, and also in clastic sedimentary rocks. The most common host rocks for ore are metamorphosed oxide- and carbonate-facies banded iron (± iron-rich metachert) formations (e.g., the Cuiabá, São Bento and Raposos deposits) and the lapa seca unit, which is a local term for intensely carbonatized rock (e.g., the giant Morro Velho mine with >450 t of contained gold). Metabasalts host most of the remaining gold deposits. Mineralogical characteristics and fluid inclusion studies suggest variations in the H2O/CO2 ratio of a low-salinity, near-neutral, reducing, sulfur-bearing, ore fluid. The presence of abundant CH4-rich inclusions is related to reduction of the original H2O-CO2 fluid via interaction with carbonaceous matter in the wallrocks. Oxygen fugacity was close to that of graphite saturation, with variations likely to have been influenced by reaction with the carbonaceous matter. Carbon-rich phyllites and schists, which commonly bound ore-bearing horizons, seem to have played both a physical and chemical role in localizing hydrothermal mineral deposition. Microtextural studies indicate that gold deposition was mainly related to desulfidation reactions, and was paragenetically coeval with precipitation of arsenic-rich iron sulfide minerals. Carbon isotope data are compatible with dissolution of

  9. [Contact allergy to gold and its alloys. Pertinence of gold salt patch tests].

    PubMed

    Collet, E; Lacroix, M; Dalac, S; Ponnelle, C; Lambert, D

    1994-01-01

    Allergic contact dermatitis to gold and its alloys is a rare affection and it is difficult to interpret gold salts patch tests. We report two cases of patients with positive patch tests to 0.5% sodium aurothiosulfate discovered during a dermatology exploration of an occupational contact eczema (for the first patient) and an intolerance to gold jewelry (for the second). There is much confusion in the literature concerning the allergologic exploration of contact dermatitis to gold: no standardized test, possible cross reactions between different gold salts, the tests often irritate. The mechanism of sensitization to gold salts is unknown since pure gold is inalterable and does not contain any salts. The pertinence of a positive test to one or more gold salts must therefore be examined carefully and the diagnosis of gold allergy must not be made without sufficient evidence.

  10. Isotopically controlled semiconductors

    SciTech Connect

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  11. ISOTOPE SEPARATING APPARATUS

    DOEpatents

    Kudravetz, M.K.; Greene, H.B.

    1958-09-16

    This patent relates to control systems for a calutron and, in particular, describes an electro-mechanical system for interrupting the collection of charged particles when the ratio between the two isotopes being receivcd deviates from a predetermined value. One embodiment of the invention includes means responsive to the ratio between two isotopes being received for opening a normally closed shutter over the receiver entrance when the isotope ratio is the desired value. In another form of the invention the collection operation is interrupted by changing the beam accelerating voltage to deflect the ion beam away from the receiver.

  12. Carbon isotope techniques

    SciTech Connect

    Coleman, D.C. ); Fry, B. )

    1991-01-01

    This book is a hands-on introduction to using carbon isotope tracers in experimental biology and ecology. It is a bench-top reference with protocols for the study of plants, animals, and soils. The {sup 11}C, {sup 12}C, {sup 13}C, and {sup 14}C carbon isotopes are considered and standard techniques are described by established authors. The compilation includes the following features: specific, well-established, user-oriented techniques; carbon cycles in plants, animals, soils, air, and water; isotopes in ecological research; examples and sample calculations.

  13. ``Gold corrosion'': red stains on a gold Austrian Ducat

    NASA Astrophysics Data System (ADS)

    Gusmano, G.; Montanari, R.; Kaciulis, S.; Montesperelli, G.; Denk, R.

    Stains of different colours have been observed on historic and modern gold coins in several countries. An Austrian Ducat at the Kunsthistorisches Museum in Vienna has developed some red spots on its surface over the years. The same defects have also been observed in modern coins of higher gold purity. The spots have been examined by OM, SEM, EDS, XPS and AES. Optical microscopy showed that ``red'' defects exhibit in fact a nuance of colours. The surface analysis put in evidence the presence in the stains, in addition to gold, of silver and sulphur. The values of the modified Auger parameter α' of silver correspond to those of Ag2S; thus, it can be assumed that the stains are composed of silver sulphide (Ag2S). It was not possible to determine whether the presence of silver on the surface is due to segregation towards the surface or to external particles of silver embedded in the matrix. Depth profiling performed on modern coins suffering from the same problem allowed us to demonstrate that the nuance of colours is due to the inhomogeneous thickness of the spots. Moreover, it was demonstrated that spots are formed by two layers: an outer layer of silver sulphide and an inner layer of silver.

  14. Isotopic studies of mariposite-bearing rocks from the south- central Mother Lode, California.

    USGS Publications Warehouse

    Kistler, R.W.; Dodge, F.C.W.; Silberman, M.L.

    1983-01-01

    Gold-bearing vein formation in the Mother Lode belt of the study area apparently occurred during the Early Cretaceous between 127 and 108 m.y. B.P. The hydrothermal fluids that carried the gold precipitated quartz and mariposite at approx 320oC, similar to the T of precipitation of gold-bearing quartz veins in the Allegheny district. The O- and H-isotopic composition calculated for the fluid indicate that it was similar to formation water or was metamorphic in origin. If the carbonate in the veins was in isotopic equilibrium with this same fluid, it apparently precipitated at a higher T of approx 400oC. The Sr in the carbonate is much less radiogenic than that in any known marine carbonate, but is similar in isotopic composition to that in metamorphosed mafic volcanic rocks of the general region. These mafic rocks could have been the source for the Sr in the hydrothermal veins. This observation supports the contention that the gold-mariposite-quartz-carbonate rocks were formed as an alteration product of serpentinite and other mafic igneous rocks.-A.P.

  15. Efficient Radioisotope Energy Transfer by Gold Nanoclusters for Molecular Imaging.

    PubMed

    Volotskova, Olga; Sun, Conroy; Stafford, Jason H; Koh, Ai Leen; Ma, Xiaowei; Cheng, Zhen; Cui, Bianxiao; Pratx, Guillem; Xing, Lei

    2015-08-26

    Beta-emitting isotopes Fluorine-18 and Yttrium-90 are tested for their potential to stimulate gold nanoclusters conjugated with blood serum proteins (AuNCs). AuNCs excited by either medical radioisotope are found to be highly effective ionizing radiation energy transfer mediators, suitable for in vivo optical imaging. AuNCs synthesized with protein templates convert beta-decaying radioisotope energy into tissue-penetrating optical signals between 620 and 800 nm. Optical signals are not detected from AuNCs incubated with Technetium-99m, a pure gamma emitter that is used as a control. Optical emission from AuNCs is not proportional to Cerenkov radiation, indicating that the energy transfer between the radionuclide and AuNC is only partially mediated by Cerenkov photons. A direct Coulombic interaction is proposed as a novel and significant mechanism of energy transfer between decaying radionuclides and AuNCs.

  16. Plasma isotope separation methods

    SciTech Connect

    Grossman, M.W. ); Shepp, T.A. )

    1991-12-01

    Isotope separation has many important industrial, medical, and research applications. Large-scale processes have typically utilized complex cascade systems; for example, the gas centrifuge. Alternatively, high single-stage enrichment processes (as in the case of the calutron) are very energy intensive. Plasma-based methods being developed for the past 15 to 20 years have attempted to overcome these two drawbacks. In this review, six major types of isotope separation methods which involve plasma phenomena are discussed. These methods are: plasma centrifuge, AVLIS (atomic vapor laser isotope separation), ion wave, ICR (ion-cyclotron resonance), calutron, and gas discharge. The emphasis of this paper is to describe the plasma phenomena in these major categories. An attempt was made to include enough references so that more detailed study or evaluation of a particular method could readily be pursued. A brief discussion of isotope separation using mass balance concepts is also carried out.

  17. Stable isotopes in mineralogy

    USGS Publications Warehouse

    O'Neil, J.R.

    1977-01-01

    Stable isotope fractionations between minerals are functions of the fundamental vibrational frequencies of the minerals and therefore bear on several topics of mineralogical interest. Isotopic compositions of the elements H, C, O, Si, and S can now be determined routinely in almost any mineral. A summary has been made of both published and new results of laboratory investigations, analyses of natural materials, and theoretical considerations which bear on the importance of temperature, pressure, chemical composition and crystal structure to the isotopic properties of minerals. It is shown that stable isotope studies can sometimes provide evidence for elucidating details of crystal structure and can be a powerful tool for use in tracing the reaction paths of mineralogical reactions. ?? 1977 Springer-Verlag.

  18. Isotopically controlled semiconductors

    SciTech Connect

    Haller, E.E.

    2004-11-15

    A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of Solid State Communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.

  19. Perchlorate isotope forensics.

    PubMed

    Böhlke, John Karl; Sturchio, Neil C; Gu, Baohua; Horita, Juske; Brown, Gilbert M; Jackson, W Andrew; Batista, Jacimaria; Hatzinger, Paul B

    2005-12-01

    Perchlorate has been detected recently in a variety of soils, waters, plants, and food products at levels that may be detrimental to human health. These discoveries have generated considerable interest in perchlorate source identification. In this study, comprehensive stable isotope analyses (37Cl/35Cl and 18O/17O/16O) of perchlorate from known synthetic and natural sources reveal systematic differences in isotopic characteristics that are related to the formation mechanisms. In addition, isotopic analyses of perchlorate extracted from groundwater and surface water demonstrate the feasibility of identifying perchlorate sources in contaminated environments on the basis of this technique. Both natural and synthetic sources of perchlorate have been identified in water samples from some perchlorate occurrences in the United States by the isotopic method. PMID:16316196

  20. Rare Isotope Accelerators

    NASA Astrophysics Data System (ADS)

    Savard, Guy

    2002-04-01

    The next frontier for low-energy nuclear physics involves experimentation with accelerated beams of short-lived radioactive isotopes. A new facility, the Rare Isotope Accelerator (RIA), is proposed to produce large amount of these rare isotopes and post-accelerate them to energies relevant for studies in nuclear physics, astrophysics and the study of fundamental interactions at low energy. The basic science motivation for this facility will be introduced. The general facility layout, from the 400 kW heavy-ion superconducting linac used for production of the required isotopes to the novel production and extraction schemes and the highly efficient post-accelerator, will be presented. Special emphasis will be put on a number of technical breakthroughs and recent R&D results that enable this new facility.

  1. Perchlorate isotope forensics

    USGS Publications Warehouse

    Böhlke, J.K.; Sturchio, N.C.; Gu, B.; Horita, J.; Brown, G.M.; Jackson, W.A.; Batista, J.; Hatzinger, P.B.

    2005-01-01

    Perchlorate has been detected recently in a variety of soils, waters, plants, and food products at levels that may be detrimental to human health. These discoveries have generated considerable interest in perchlorate source identification. In this study, comprehensive stable isotope analyses ( 37Cl/35Cl and 18O/17O/ 16O) of perchlorate from known synthetic and natural sources reveal systematic differences in isotopic characteristics that are related to the formation mechanisms. In addition, isotopic analyses of perchlorate extracted from groundwater and surface water demonstrate the feasibility of identifying perchlorate sources in contaminated environments on the basis of this technique. Both natural and synthetic sources of perchlorate have been identified in water samples from some perchlorate occurrences in the United States by the isotopic method. ?? 2005 American Chemical Society.

  2. Biomolecular Assembly of Gold Nanocrystals

    SciTech Connect

    Micheel, Christine Marya

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  3. Methods of isotopic geochronology

    NASA Astrophysics Data System (ADS)

    Gorokhov, I. M.; Levchenkov, O. A.

    Papers are presented on such topics as the age of the chemical elements; the age of meteorites, the moon, and the earth; isotopic ages of the most ancient terrestrial formations; and the Archean evolution of Enderby Land in the Antarctic as evidenced by isotopic dating. Consideration is also given to a uranium-lead geochronology technique for investigating Precambrian ore deposits, a Pb-Pb technique of zircon dating, and the potentials and limitations of Sm-Nd geochronology.

  4. The isotopic distribution conundrum.

    PubMed

    Valkenborg, Dirk; Mertens, Inge; Lemière, Filip; Witters, Erwin; Burzykowski, Tomasz

    2012-01-01

    Although access to high-resolution mass spectrometry (MS), especially in the field of biomolecular MS, is becoming readily available due to recent advances in MS technology, the accompanied information on isotopic distribution in high-resolution spectra is not used at its full potential, mainly because of lack of knowledge and/or awareness. In this review, we give an insight into the practical problems related to calculating the isotopic distribution for large biomolecules, and present an overview of methods for the calculation of the isotopic distribution. We discuss the key events that triggered the development of various algorithms and explain the rationale of how and why the various isotopic-distribution calculations were performed. The review is focused around the developmental stages as briefly outlined below, starting with the first observation of an isotopic distribution. The observations of Beynon in the field of organic MS that chlorine appeared in a mass spectrum as two variants with odds 3:1 lie at the basis of the first wave of algorithms for the calculation of the isotopic distribution, based on the atomic composition of a molecule. From here on, we explain why more complex biomolecules such as peptides exhibit a highly complex isotope pattern when assayed by MS, and we discuss how combinatorial difficulties complicate the calculation of the isotopic distribution on computers. For this purpose, we highlight three methods, which were introduced in the 1980s. These are the stepwise procedure introduced by Kubinyi, the polynomial expansion from Brownawell and Fillippo, and the multinomial expansion from Yergey. The next development was instigated by Rockwood, who suggested to decompose the isotopic distribution in terms of their nucleon count instead of the exact mass. In this respect, we could claim that the term "aggregated" isotopic distribution is more appropriate. Due to the simplification of the isotopic distribution to its aggregated counterpart

  5. CO extrusion in homogeneous gold catalysis: reactivity of gold acyl species generated through water addition to gold vinylidenes.

    PubMed

    Bucher, Janina; Stößer, Tim; Rudolph, Matthias; Rominger, Frank; Hashmi, A Stephen K

    2015-01-26

    Herein, we describe a new gold-catalyzed decarbonylative indene synthesis. Synergistic σ,π-activation of diyne substrates leads to gold vinylidene intermediates, which upon addition of water are transformed into gold acyl species, a type of organogold compound hitherto only scarcely reported. The latter are shown to undergo extrusion of CO, an elementary step completely unknown for homogeneous gold catalysis. By tuning the electronic and steric properties of the starting diyne systems, this new reactivity could be exploited for the synthesis of indene derivatives in high yields.

  6. Archaean lode gold deposits: the solute source problem

    SciTech Connect

    Kerrich, R.

    1985-01-01

    On a regional scale lode gold deposits typically occur throughout the entire spectrum of greenstone belt stratigraphy. In the Abitibi Belt lode deposits are sited at the base of the volcanic cycle (Noranda), at the boundary of two volcanic cycles (Timmins) and in the stratigraphically highest groups at Kirkland Lake and Bousquet. The gold deposits are preferentially disposed along major structures apparently demarking rift zones, where extension was accommodated by listric normal faults that subsequently acted as thrusts during compression. These major structures were also sites of emplacement of trondhjemite magmas, lamprophyres and potassic basalts. From previous work Abitibi Belt volcanism spans 2725 to 2703 Ma, batholith emplacement 2675 to 2685 Ma (U-Pb on zircons), and the terminal Matachewan dyke swarm which transects all major structures is 2690 +/- 93 Ma. The lode deposits have age corrected /sup 87/Sr//sup 86/Sr initials of 0.7015 to 0.7025, as well as more radiogenic Pb and higher ..mu.. relative to contemporaneous mantle Sr and Pb isotope ratios. Tourmaline, scheelite, piemontite and apatites separated from 14 deposits all possess /sup 87/Sr//sup 86/Sr 0.7015 to 0.7025. These more radiogenic values contra-indicate a direct mantle source for Sr and Pb, but rather indicate that all mineralizing fluids carry contributions from a felsic crustal source having a significant production of Rb, U and Th radiogenic daughter nuclides as well as from komatiites and tholeiites. Gold, along with an array of lithophile elements including K, Rb, Pb, Li, Sr and CO/sub 2/ were distilled from this mixed source.

  7. Spatial-temporal and genetic relationships between gold and antimony mineralization at gold-sulfide deposits of the Ob-Zaisan folded zone

    NASA Astrophysics Data System (ADS)

    Kalinin, Yu. A.; Naumov, E. A.; Borisenko, A. S.; Kovalev, K. R.; Antropova, A. I.

    2015-05-01

    The Ob-Zaisan folded zone is a fragment of a single structure composed of Paleozoic sedimentary and volcanogenic rocks (mainly black shale), which was formed at the margin of the Siberian continent and features a common set of magmatic complexes and mineral systems. However, there are some differences that determine the specific geological and metallogenic features of the Irtysh-Zaisan and Kolyvan-Tomsk fragments of the Ob-Zaisan folded zone. In the gold deposits of the West Kalba and Kolyvan-Tomsk auriferous belt, the main gold-sulfide mineralization is controlled by zones of shearing and dynamic metamorphism in carbonaceous carbonate-terrigenous rocks. This type of mineralization was formed in tectonic blocks in a compressional setting. Antimony mineralization is characterized by brecciated textures and the vein-like morphology of ore bodies, reflecting extensional tectonics. At some deposits (Zherek, Mirazh, Dalny), Sb mineralization is spatially separated from the main gold-sulfide ores and shows cross-cutting relations to the principal ore-controlling structures. In other gold deposits, stibnite is spatially associated with disseminated gold-sulfide ores and forms mineral assemblages with Ni, Co, Au, Pb, and Fe (Alimbet, Zhanan, Legostaevskoe, Semiluzhenskoe, and Kamenskoe deposits). This study reveals no direct correlation between Au and Sb in gold-sulfide ores of these deposits. SEM analysis indicated the absence of free gold in stibnite veins. However, atomic absorption and electron microprobe analysis indicated the presence of "invisible gold" from a few ppm to several tens of ppm in the stibnite. High gold contents in the gold-sulfide ores overprinted by antimony mineralization (Suzdalskoe, Zhanan, and Legostaevskoe deposits) can be explained by the processes of regeneration and redeposition. The results of microstructural observations, isotope geochronology, studies of mineral assemblages and fluid inclusions in the ores from gold deposits of the Ob

  8. Physiological investigation of gold nanorods toward watermelon.

    PubMed

    Wan, Yujie; Li, Junli; Ren, Hongxuan; Huang, Jin; Yuan, Hong

    2014-08-01

    The objective of the present study was to evaluate the phytotoxicity and oxidant stress of the gold nanorods toward watermelon, and hence give a quantitative risk assessment of both seeds and plants phase. The seed germination, the activity of antioxidant enzymes, and the contents of soluble protein and malondialdehyde (MDA) have been measured while the plant roots were observed by transmission electron microscopy (TEM). It was found that the gold nanorods significantly promoted the root elongation. Furthermore, the results on the enzymes activities of plant indicated that oxidative stress happened in the plant treated with gold nanorods. However, the gold nanorods resulted in the phytotoxicity toward plant especially at high concentration. The TEM images of the plant roots with and without the treatment of gold nanorods showed the significant different size of starch granules. In conclusion, significant physiological changes of plant occurred after treatment with the gold nanorods. PMID:25936063

  9. Native gold from volcanic gases at Tolbachik 1975-76 and 2012-13 Fissure Eruptions, Kamchatka

    NASA Astrophysics Data System (ADS)

    Chaplygin, Ilya; Yudovskaya, Marina; Vergasova, Lidiya; Mokhov, Andrey

    2015-12-01

    Aggregates and euhedral crystals of native gold were found in sublimates formed during New Tolbachik Fissure Eruption in 2012-2013 (NTFE). Gold-bearing sublimate samples were taken from a red-hot (690 °C) degassing fracture in the roof of an active lava tunnel 1.5 km from active Naboko cinder cone in May 2013. The gas condensate collected at 690 °C in this site contains 16 ppb Au, 190 ppb Ag and 1180 ppm Cu compared to 3 ppb Au, 39 ppb Ag and 9.7 ppm Cu in the condensate of pristine magmatic gas sampled at 1030 °C. The 690 °C volcanic gas is most likely a mix of magmatic gas and local snow buried under the lava flows as indicated by oxygen and hydrogen isotope compositions of the condensate. The lower-temperature gas enrichment in gold, copper and chlorine is resulted from evaporation of the 690 °C condensate during forced gas pumping at sampling. Native gold was also found in fumarolic encrustations collected from caverns in basalt lava flows with temperature up to 600 °C in June 2014, in a year after eruption finished. The native gold precipitation in newly formed Cu-rich sublimates together with the well known gold occurrences in cinder cones of 1975-1976 Large Tolbachik Fissure Eruption manifest a transport capability of oxidized volcanic gas.

  10. Oxygen Isotopes in Meteorites

    NASA Astrophysics Data System (ADS)

    Clayton, R. N.

    2003-12-01

    Oxygen isotope abundance variations in meteorites are very useful in elucidating chemical and physical processes that occurred during the formation of the solar system (Clayton, 1993). On Earth, the mean abundances of the three stable isotopes are 16O: 99.76%, 17O: 0.039%, and 18O: 0.202%. It is conventional to express variations in abundances of the isotopes in terms of isotopic ratios, relative to an arbitrary standard, called SMOW (for standard mean ocean water), as follows:The isotopic composition of any sample can then be represented by one point on a "three-isotope plot," a graph of δ17O versus δ18O. It will be seen that such plots are invaluable in interpreting meteoritic data. Figure 1 shows schematically the effect of various processes on an initial composition at the center of the diagram. Almost all terrestrial materials lie along a "fractionation" trend; most meteoritic materials lie near a line of "16O addition" (or subtraction). (4K)Figure 1. Schematic representation of various isotopic processes shown on an oxygen three-isotope plot. Almost all terrestrial materials plot along a line of "fractionation"; most primitive meteoritic materials plot near a line of "16O addition." The three isotopes of oxygen are produced by nucleosynthesis in stars, but by different nuclear processes in different stellar environments. The principal isotope, 16O, is a primary isotope (capable of being produced from hydrogen and helium alone), formed in massive stars (>10 solar masses), and ejected by supernova explosions. The two rare isotopes are secondary nuclei (produced in stars from nuclei formed in an earlier generation of stars), with 17O coming primarily from low- and intermediate-mass stars (<8 solar masses), and 18O coming primarily from high-mass stars (Prantzos et al., 1996). These differences in type of stellar source result in large observable variations in stellar isotopic abundances as functions of age, size, metallicity, and galactic location ( Prantzos

  11. Electrochemical Assay of Gold-Plating Solutions

    NASA Technical Reports Server (NTRS)

    Chiodo, R.

    1982-01-01

    Gold content of plating solution is assayed by simple method that required only ordinary electrochemical laboratory equipment and materials. Technique involves electrodeposition of gold from solution onto electrode, the weight gain of which is measured. Suitable fast assay methods are economically and practically necessary in electronics and decorative-plating industries. If gold content in plating bath is too low, poor plating may result, with consequent economic loss to user.

  12. Physicochemical isotope anomalies

    SciTech Connect

    Esat, T.M.

    1988-06-01

    Isotopic composition of refractory elements can be modified, by physical processes such as distillation and sputtering, in unexpected patterns. Distillation enriches the heavy isotopes in the residue and the light isotopes in the vapor. However, current models appear to be inadequate to describe the detailed mass dependence, in particular for large fractionations. Coarse- and fine-grained inclusions from the Allende meteorite exhibit correlated isotope effects in Mg both as mass-dependent fractionation and residual anomalies. This isotope pattern can be duplicated by high temperature distillation in the laboratory. A ubiquitous property of meteoritic inclusions for Mg as well as for most of the other elements, where measurements exist, is mass-dependent fractionation. In contrast, terrestrial materials such as microtektites, tektite buttons as well as lunar orange and green glass spheres have normal Mg isotopic composition. A subset of interplanetary dust particles labelled as chondritic aggregates exhibit excesses in {sup 26}Mg and deuterium anomalies. Sputtering is expected to be a dominant mechanism in the destruction of grains within interstellar dust clouds. An active proto-sun as well as the present solar-wind and solar-flare flux are of sufficient intensity to sputter significant amounts of material. Laboratory experiments in Mg show widespread isotope effects including residual {sup 26}Mg excesses and mass dependent fractionation. It is possible that the {sup 26}Mg excesses in interplanetary dust is related to sputtering by energetic solar-wind particles. The implication if the laboratory distillation and sputtering effects are discussed and contrasted with the anomalies in meteoritic inclusions the other extraterrestrial materials the authors have access to.

  13. Lebediny gold deposit, Central Aldan: Mineral parageneses, stages, and formation conditions

    NASA Astrophysics Data System (ADS)

    Dobrovol'skaya, M. G.; Razin, M. V.; Prokof'ev, V. Yu.

    2016-07-01

    The mineral parageneses and succession of their formation are considered for the first time for the Zverevsky, Orekhovy, and Vodonosny ore lodes of the Lebediny gold deposit and the Radostny prospect in the Central Aldan ore district, which are genetically related to the epoch of Mesozoic tectonomagmatic reactivation. The orebodies, represented by two morphological varieties—ribbonlike lodes and steeply dipping veins—are hosted in lower part of the Vendian-Cambrian dolomitic sequence, which is cut through by Mesozoic subalkaline intrusive bodies. The chemistry of fahlore and rare minerals, including native gold and bismuth, altaite, aikinite, tetradymite, and sulfosalts of lillianite series, has been studied. Native gold is related to the late hydrothermal process and occurs in skarn and in quartz-tremolite-sulfide and quartz-carbonate-sulfide veins. The data on stable sulfur (δ34S) isotopes of sulfides, oxygen (δ18O) and carbon (δ13C) isotopes of carbonates, as well as on fluid inclusions in various generations of tremolite and quartz, provide evidence for the heterogeneity of ore-bearing solutions, their relationships to magmatism, the depth of the source feeding each specific lode, and different sources of ore-forming hydrothermal solutions.

  14. Native gold in Hawaiian alkalic magma

    USGS Publications Warehouse

    Sisson, T.W.

    2003-01-01

    Native gold found in fresh basanite glass from the early submarine phase of Kilauea volcano, Hawaii, may be the first documented case of the transport of gold as a distinct precious metal phase in a mantle-derived magma. The gold-bearing glass is a grain in bedded volcanic glass sandstone (Japan Marine Science and Technology Center (JAMSTEC) sample S508-R3) collected by the submersible Shinkai 6500 at 3879 m depth off Kilauea's south flank. Extensive outcrops there expose debris-flow breccias and sandstones containing submarine-erupted alkalic rock fragments and glasses from early Kilauea. Precipitation of an immiscible gold liquid resulted from resorption of magmatic sulfides during crystallization-differentiation, with consequent liberation of sulfide-hosted gold. Elevated whole-rock gold concentrations (to 36 ppb) for fresh lavas and clasts from early Kilauea further show that some magmas erupted at the beginning stages of Hawaiian shield volcanoes were distinctly gold rich, most likely owing to limited residual sulfide in their mantle source. Alkalic magmas at other ocean islands may also be gold rich, and oceanic hot-spot provinces may contain underappreciated gold resources.

  15. Gold ink coating of thermocouple sheaths

    DOEpatents

    Ruhl, H. Kenneth

    1992-01-01

    A method is provided for applying a gold ink coating to a thermocouple sheath which includes the steps of electropolishing and oxidizing the surface of the thermocouple sheath, then dipping the sheath into liquid gold ink, and finally heat curing the coating. The gold coating applied in this manner is highly reflective and does not degrade when used for an extended period of time in an environment having a temperature over 1000.degree. F. Depending on the application, a portion of the gold coating covering the tip of the thermocouple sheath is removed by abrasion.

  16. Gold Fever! Seattle Outfits the Klondike Gold Rush. Teaching with Historic Places.

    ERIC Educational Resources Information Center

    Blackburn, Marc K.

    This lesson is based on the National Register of Historic Places registration file, "Pioneer Square Historic District," and other sources about Seattle (Washington) and the Klondike Gold Rush. The lesson helps students understand how Seattle exemplified the prosperity of the Klondike Gold Rush after 1897 when news of a gold strike in Canada's…

  17. Transportation of medical isotopes

    SciTech Connect

    Nielsen, D.L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  18. Separation of sulfur isotopes

    DOEpatents

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  19. Ore-fluid evolution at the Getchell Carlin-type gold deposit, Nevada, USA

    USGS Publications Warehouse

    Cline, J.S.; Hofstra, A.A.

    2000-01-01

    Minerals and fluid-inclusion populations were examined using petrography, microthermometry, quadrupole mass-spectrometer gas analyses and stable-isotope studies to characterize fluids responsible for gold mineralization at the Getchell Carlin-type gold deposit. The gold-ore assemblage at Getchell is superimposed on quartz-pyrite vein mineralization associated with a Late-Cretaceous granodiorite stock that intruded Lower-Paleozoic sedimentary rocks. The ore assemblage, of mid-Tertiary age, consists of disseminated arsenian pyrite that contains submicrometer gold, jasperoid quartz, and later fluorite and orpiment that fill fractures and vugs. Late ore-stage realgar and calcite enclose ore-stage minerals. Pre-ore quartz trapped fluids with a wide range of salinities (1 to 21 wt.% NaCl equivalent), gas compositions (H2O, CO2, and CH4), and temperatures (120 to >360??C). Oxygen- and hydrogen-isotope ratios indicate that pre-ore fluids likely had a magmatic source, and were associated with intrusion of the granodiorite stock and related dikes. Ore-stage jasperoid contains moderate salinity, aqueous fluid inclusions trapped at 180 to 220??C. Ore fluids contain minor CO2 and trace H2S that allowed the fluid to react with limestone host rocks and transport gold, respectively. Aqueous inclusions in fluorite indicate that fluid temperatures declined to ~175??C by the end of ore-stage mineralization. As the hydrothermal system collapsed, fluid temperatures declined to 155 to 115??C and realgar and calcite precipitated. Inclusion fluids in ore-stage minerals have high ??D(H2O) and ??18O(H2O) values that indicate that the fluid had a deep source, and had a metamorphic or magmatic origin, or both. Late ore-stage fluids extend to lower ??D(H2O) values, and have a wider range of ??18O(H2O) values suggesting dilution by variably exchanged meteoric waters. Results show that deeply sourced ore fluids rose along the Getchell fault system, where they dissolved carbonate wall rocks and

  20. Isotope geochemistry. Biological signatures in clumped isotopes of O₂.

    PubMed

    Yeung, Laurence Y; Ash, Jeanine L; Young, Edward D

    2015-04-24

    The abundances of molecules containing more than one rare isotope have been applied broadly to determine formation temperatures of natural materials. These applications of "clumped" isotopes rely on the assumption that isotope-exchange equilibrium is reached, or at least approached, during the formation of those materials. In a closed-system terrarium experiment, we demonstrate that biological oxygen (O2) cycling drives the clumped-isotope composition of O2 away from isotopic equilibrium. Our model of the system suggests that unique biological signatures are present in clumped isotopes of O2—and not formation temperatures. Photosynthetic O2 is depleted in (18)O(18)O and (17)O(18)O relative to a stochastic distribution of isotopes, unlike at equilibrium, where heavy-isotope pairs are enriched. Similar signatures may be widespread in nature, offering new tracers of biological and geochemical cycling.

  1. Isotope geochemistry. Biological signatures in clumped isotopes of O₂.

    PubMed

    Yeung, Laurence Y; Ash, Jeanine L; Young, Edward D

    2015-04-24

    The abundances of molecules containing more than one rare isotope have been applied broadly to determine formation temperatures of natural materials. These applications of "clumped" isotopes rely on the assumption that isotope-exchange equilibrium is reached, or at least approached, during the formation of those materials. In a closed-system terrarium experiment, we demonstrate that biological oxygen (O2) cycling drives the clumped-isotope composition of O2 away from isotopic equilibrium. Our model of the system suggests that unique biological signatures are present in clumped isotopes of O2—and not formation temperatures. Photosynthetic O2 is depleted in (18)O(18)O and (17)O(18)O relative to a stochastic distribution of isotopes, unlike at equilibrium, where heavy-isotope pairs are enriched. Similar signatures may be widespread in nature, offering new tracers of biological and geochemical cycling. PMID:25908819

  2. Gold nanoparticle photosensitized radical photopolymerization.

    PubMed

    Anyaogu, Kelechi C; Cai, Xichen; Neckers, Douglas C

    2008-12-01

    We report the photopolymerization of an acrylic monomer using thiol-stabilized gold nanoparticles (AuNPs) and [4-[(octyloxy)phenyl] phenyl] iodonium hexafluoroantimonate (OPPI) as photoinitiator and coinitiator, respectively. Polymerization occurred only when the AuNPs, in the presence of the iodonium salt, were irradiated at the particle plasmonic absorption region (lambda>450 nm). The AuNPs activate the coinitiator by intermolecular electron transfer since OPPI has no absorption in the visible region. Fourier transform infrared spectroscopy was used to monitor polymerization. UV-Vis spectroscopy and transmission electron microscopy measurements were used to characterize the NPs. PMID:19037499

  3. Late-Hercynian intrusion-related gold deposits: An integrated model on the Tighza polymetallic district, central Morocco

    NASA Astrophysics Data System (ADS)

    Éric, Marcoux; Khadija, Nerci; Yannick, Branquet; Claire, Ramboz; Gilles, Ruffet; Jean-Jacques, Peucat; Ross, Stevenson; Michel, Jébrak

    2015-07-01

    radiogenic isotope studies. Nd and Sr isotope compositions of scheelite and granites suggest the participation of a juvenile component while lead isotopes demonstrate a major participation of the basement. Both gold mineralization and zoning suggest that the system developed at the end of the magmatic activity, accompanying a major transition in magmatic fluid composition. The morphology of the gold-bearing mineralization is dependent of the permeability and the reactivity of host-rocks: focus circulation of fluids through pre-existing tectonic corridors, reactivated by late-Hercynian intrusions favor the formation of large W-type gold veins, while infiltration of fluid within reactive stratigraphic layers gives rise to skarn mineralization. A 40Ar/39Ar date (W1 north vein: 291.8 ± 0.3 Ma) indicates that hydrothermal circulation predates gold and tungsten deposition in open fractures as well as Mine granite emplacement. The W-Au mineralization preceded the onset of a large convective hydrothermal cell around the intrusion that led to the formation of the Pb-Ag-Zn mined veins. The Tighza polymetallic district displays numerous similarities with the R-IRG model that was defined in the American Cordillera, such as thermal and zonation patterns, carbonic hydrothermal fluids and chronology of intrusion and related deposits, but also provides new insight to the R-IRG model such as wide Au-quartz veins instead of sheeted Au-veins, oxidation state of the magma, and Sr-Nd isotopic data. These results establish a major magmatic contribution and discard a direct genetic relationship between gold mineralization and major neighboring Pb-Ag-Zn veins. A large number of classic Pb-Zn district of the Western Hercynides belong to the same clan.

  4. Isotope separation apparatus

    DOEpatents

    Arnush, Donald; MacKenzie, Kenneth R.; Wuerker, Ralph F.

    1980-01-01

    Isotope separation apparatus consisting of a plurality of cells disposed adjacent to each other in an evacuated container. A common magnetic field is established extending through all of the cells. A source of energetic electrons at one end of the container generates electrons which pass through the cells along the magnetic field lines. Each cell includes an array of collector plates arranged in parallel or in tandem within a common magnetic field. Sets of collector plates are disposed adjacent to each other in each cell. Means are provided for differentially energizing ions of a desired isotope by applying energy at the cyclotron resonant frequency of the desired isotope. As a result, the energized desired ions are preferentially collected by the collector plates.

  5. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry..., Silver, and Platinum Industry Products (a) Exemptions recognized in the industry and not to be considered... in any assay for quality of a silver industry product include screws, rivets, springs, spring...

  6. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry..., Silver, and Platinum Industry Products (a) Exemptions recognized in the industry and not to be considered... in any assay for quality of a silver industry product include screws, rivets, springs, spring...

  7. Disseminated gold-sulfide mineralization at the Zhaima deposit, eastern Kazakhstan

    NASA Astrophysics Data System (ADS)

    Kovalev, K. R.; Kuzmina, O. N.; Dyachkov, B. A.; Vladimirov, A. G.; Kalinin, Yu. A.; Naumov, E. A.; Kirillov, M. V.; Annikova, I. Yu.

    2016-03-01

    The Zhaima gold-sulfide deposit is located in the northwestern part of the West Kalba gold belt in eastern Kazakhstan. The mineralization is hosted in Lower Carboniferous volcanic and carbonate rocks formed under conditions of marginal-sea and island-arc volcanic activity. The paper considers the mineralogy and geochemistry of primary gold-sulfide ore and Au-bearing weathering crusts. Au-bearing arsenopyrite-pyrite mineralization formed during only one productive stage. Disseminated, stringer-disseminated, and massive rocks are enriched in Ti, Cr, V, Cu, and Ni, which correspond to the mafic profile of basement. The main ores minerals are represented by finely acicular arsenopyrite containing Au (up to few tens of ppm) and cubic and pentagonal dodecahedral pyrite with sporadic submicroscopic inclusions of native gold. The sulfur isotopic composition of sulfides is close to that of the meteoritic standard (δ34S =-0.2 to +0.2). The 40Ar/39Ar age of three sericite samples from ore veinlets corresponds to the Early Permian: 279 ± 3.3, 275.6 ± 2.9, and 272.2 ± 2.9 Ma. The mantle source of sulfur, ore geochemistry, and spatial compatibility of mineralization with basic dikes allow us to speak about the existence of deep fluid-magmatic systems apparently conjugate with the Tarim plume.

  8. Hydrogen isotopes in Eocene river gravels and paleoelevation of the Sierra Nevada.

    PubMed

    Mulch, Andreas; Graham, Stephan A; Chamberlain, C Page

    2006-07-01

    We determine paleoelevation of the Sierra Nevada, California, by tracking the effect of topography on precipitation, as recorded in hydrogen isotopes of kaolinite exposed in gold-bearing river deposits from the Eocene Yuba River. The data, compared with the modern isotopic composition of precipitation, show that about 40 to 50 million years ago the Sierra Nevada stood tall (>/=2200 meters), a result in conflict with proposed young surface uplift by tectonic and climatic forcing but consistent with the Sierra Nevada representing the edge of a pre-Eocene continental plateau.

  9. Chlorine Isotope Variation in Eucrites

    NASA Astrophysics Data System (ADS)

    Barrett, T. J.; Barnes, J. J.; Anand, M.; Franchi, I. A.; Greenwood, R. C.; Charlier, B. L. A.; Grady, M. M.

    2016-08-01

    We present Cl isotopic compositions for several eucrites with a wide range of petrological and geochemical histories. Our results include some of the heaviest chlorine isotopic compositions recorded so far in the solar system.

  10. Atomic Weights and Isotopic Compositions

    National Institute of Standards and Technology Data Gateway

    SRD 144 Atomic Weights and Isotopic Compositions (Web, free access)   The atomic weights are available for elements 1 through 111, and isotopic compositions or abundances are given when appropriate.

  11. Sesquicentennial: Gold Rush to Golden Statehood.

    ERIC Educational Resources Information Center

    Sabato, George

    1998-01-01

    Provides an annotated bibliography of educational resources that can be used to support instructional units on the Gold Rush or the sesquicentennial of California's statehood. The materials include workbooks, videos, teacher's guides, monographs, and magazines. Offers a brief history of the Gold Rush and a set of relevant discussion questions.…

  12. A Placer-Gold Evaluation Exercise.

    ERIC Educational Resources Information Center

    Tunley, A. Tom

    1984-01-01

    A laboratory exercise allowing students to use drillhole data to simulate the process of locating a placer gold paystreak is presented. As part of the activity students arithmetically compute the value of their gold, mining costs, and personal profits or losses, and decide on development plans for the claim. (BC)

  13. Gold-Collar Workers. ERIC Digest.

    ERIC Educational Resources Information Center

    Wonacott, Michael E.

    The gold-collar worker has problem-solving abilities, creativity, talent, and intelligence; performs non-repetitive and complex work difficult to evaluate; and prefers self management. Gold-collar information technology workers learn continually from experience; recognize the synergy of teams; can demonstrate leadership; and are strategic thinkers…

  14. Gold-nickel-titanium brazing alloy

    DOEpatents

    Mizuhara, Howard

    1995-01-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99 gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  15. Gold-nickel-titanium brazing alloy

    DOEpatents

    Mizuhara, Howard

    1990-07-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99% gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  16. The Gold Mining Camp: A Simulation Game.

    ERIC Educational Resources Information Center

    Stoltman, Joseph P.; Keach, Everett T., Jr.

    This economics simulation game complements the third grade Gold Mining Unit developed by Project Social Studies at the University of Minnesota. The simulation is designed for three purposes: 1) to reinforce the prior learning which occurs in the gold mining camp unit; 2) to involve eight-year-olds in the process of solving simulated economic…

  17. Computational approaches to homogeneous gold catalysis.

    PubMed

    Faza, Olalla Nieto; López, Carlos Silva

    2015-01-01

    Homogenous gold catalysis has been exploding for the last decade at an outstanding pace. The best described reactivity of Au(I) and Au(III) species is based on gold's properties as a soft Lewis acid, but new reactivity patterns have recently emerged which further expand the range of transformations achievable using gold catalysis, with examples of dual gold activation, hydrogenation reactions, or Au(I)/Au(III) catalytic cycles.In this scenario, to develop fully all these new possibilities, the use of computational tools to understand at an atomistic level of detail the complete role of gold as a catalyst is unavoidable. In this work we aim to provide a comprehensive review of the available benchmark works on methodological options to study homogenous gold catalysis in the hope that this effort can help guide the choice of method in future mechanistic studies involving gold complexes. This is relevant because a representative number of current mechanistic studies still use methods which have been reported as inappropriate and dangerously inaccurate for this chemistry.Together with this, we describe a number of recent mechanistic studies where computational chemistry has provided relevant insights into non-conventional reaction paths, unexpected selectivities or novel reactivity, which illustrate the complexity behind gold-mediated organic chemistry.

  18. RF Sputtering of Gold Contacts On Niobium

    NASA Technical Reports Server (NTRS)

    Barr, D. W.

    1983-01-01

    Reliable gold contacts are deposited on niobium by combination of RF sputtering and photolithography. Process results in structures having gold only where desired for electrical contact. Contacts are stable under repeated cycling from room temperature to 4.2 K and show room-temperature contact resistance as much as 40 percent below indium contacts made by thermalcompression bonding.

  19. Spherical aggregates composed of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Chi-Chang; Kuo, Ping-Lin; Cheng, Yu-Chen

    2009-02-01

    Alkylated triethylenetetramine (C12E3) was synthesized and used as both a reductant in the preparation of gold nanoparticles by the reduction of HAuCl4 and a stabilizer in the subsequent self-assembly of the gold nanoparticles. In acidic aqueous solution, spherical aggregates (with a diameter of about 202 ± 22 nm) of gold nanoparticles (with the mean diameter of ~18.7 nm) were formed. The anion-induced ammonium adsorption of the alkylated amines on the gold nanoparticles was considered to provide the electrostatic repulsion and steric hindrance between the gold nanoparticles, which constituted the barrier that prevented the individual particles from coagulating. However, as the amino groups became deprotonated with increasing pH, the ammonium adsorption was weakened, and the amino groups were desorbed from the gold surface, resulting in discrete gold particles. The results indicate that the morphology of the reduced gold nanoparticles is controllable through pH-'tunable' aggregation under the mediation of the amino groups of alkylated amine to create spherical microstructures.

  20. Gold nanoparticles for nucleic acid delivery.

    PubMed

    Ding, Ya; Jiang, Ziwen; Saha, Krishnendu; Kim, Chang Soo; Kim, Sung Tae; Landis, Ryan F; Rotello, Vincent M

    2014-06-01

    Gold nanoparticles provide an attractive and applicable scaffold for delivery of nucleic acids. In this review, we focus on the use of covalent and noncovalent gold nanoparticle conjugates for applications in gene delivery and RNA-interference technologies. We also discuss challenges in nucleic acid delivery, including endosomal entrapment/escape and active delivery/presentation of nucleic acids in the cell. PMID:24599278

  1. Stellar neutron capture cross sections of the Nd isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.; Reffo, G.

    1998-01-01

    The neutron capture cross sections of {sup 142}Nd, {sup 143}Nd, {sup 144}Nd, {sup 145}Nd, {sup 146}Nd, and {sup 148}Nd have been measured in the energy range from 3 to 225 keV at the Karlsruhe 3.75 MV Van de Graaff accelerator. Neutrons were produced via the {sup 7}Li(p,n){sup 7}Be reaction by bombarding metallic Li targets with a pulsed proton beam. Capture events were registered with the Karlsruhe 4{pi} Barium Fluoride Detector. The cross sections were determined relative to the gold standard. The experiment was difficult due to the small cross sections of the even isotopes at or near the magic neutron number N=82, and also since the isotopic enrichment of some samples was comparably low. The necessary corrections for capture of scattered neutrons and for isotopic impurities could be determined reliably thanks to the high efficiency and the spectroscopic quality of the BaF{sub 2} detector, resulting in a consistent set of (n,{gamma}) cross sections for the six stable neodymium isotopes involved in the s process with typical uncertainties of 1.5{endash}2{percent}. From these data, Maxwellian averaged cross sections were calculated between kT=10 and 100 keV. The astrophysical implications of these results were investigated in an s-process analysis, which deals with the role of the s-only isotope {sup 142}Nd for the N{sub s}{l_angle}{sigma}{r_angle} systematics near the magic neutron number N=82, the decomposition of the Nd abundances into the respective r-, s-, and p-process components, and the interpretation of isotopic anomalies in meteoritic material. {copyright} {ital 1998} {ital The American Physical Society}

  2. Gold, palladium, and gold-palladium alloy nanoshells on silica nanoparticle cores.

    PubMed

    Kim, Jun-Hyun; Bryan, William W; Chung, Hae-Won; Park, Chan Young; Jacobson, Allan J; Lee, T Randall

    2009-05-01

    The synthesis of gold, palladium, and gold-palladium alloy nanoshells (approximately 15-20 nm thickness) was accomplished by the reduction of gold and palladium ions onto dielectric silica core particles (approximately 100 nm in diameter) seeded with small gold nanoparticles (approximately 2-3 nm in diameter). The size, morphology, elemental composition, and optical properties of the nanoshells were characterized using field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and ultraviolet-visible spectroscopy. The results demonstrate the successful growth of gold, palladium, and gold-palladium alloy nanoshells, where the optical properties systematically vary with the relative content of gold and palladium. The alloy nanoshells are being prepared for use in applications that stand to benefit from photoenhanced catalysis. PMID:20355892

  3. Preparation of conductive gold nanowires in confined environment of gold-filled polymer nanotubes.

    PubMed

    Mitschang, Fabian; Langner, Markus; Vieker, Henning; Beyer, André; Greiner, Andreas

    2015-02-01

    Continuous conductive gold nanofibers are prepared via the "tubes by fiber templates" process. First, poly(l-lactide) (PLLA)-stabilized gold nanoparticles (AuNP) with over 60 wt% gold are synthesized and characterized, including gel permeation chromatography coupled with a diode array detector. Subsequent electrospinning of these AuNP with template PLLA results in composite nanofibers featuring a high gold content of 57 wt%. Highly homogeneous gold nanowires are obtained after chemical vapor deposition of 345 nm of poly(p-xylylene) (PPX) onto the composite fibers followed by pyrolysis of the polymers at 1050 °C. The corresponding heat-induced transition from continuous gold-loaded polymer tubes to smooth gold nanofibers is studied by transmission electron microscopy and helium ion microscopy using both secondary electrons and Rutherford backscattered ions.

  4. Switchable imbibition in nanoporous gold

    PubMed Central

    Xue, Yahui; Markmann, Jürgen; Duan, Huiling; Weissmüller, Jörg; Huber, Patrick

    2014-01-01

    Spontaneous imbibition enables the elegant propelling of nano-flows because of the dominance of capillarity at small length scales. The imbibition kinetics are, however, solely determined by the static host geometry, the capillarity, and the fluidity of the imbibed liquid. This makes active control particularly challenging. Here we show for aqueous electrolyte imbibition in nanoporous gold that the fluid flow can be reversibly switched on and off through electric potential control of the solid–liquid interfacial tension, that is, we can accelerate the imbibition front, stop it, and have it proceed at will. Simultaneous measurements of the mass flux and the electrical current allow us to document simple scaling laws for the imbibition kinetics, and to explore the charge transport in the metallic nanopores. Our findings demonstrate that the high electric conductivity along with the pathways for fluid/ionic transport render nanoporous gold a versatile, accurately controllable electrocapillary pump and flow sensor for minute amounts of liquids with exceptionally low operating voltages. PMID:24980062

  5. Gold emissivities for hydrocode applications

    NASA Astrophysics Data System (ADS)

    Bowen, C.; Wagon, F.; Galmiche, D.; Loiseau, P.; Dattolo, E.; Babonneau, D.

    2004-10-01

    The Radiom model [M. Busquet, Phys Fluids B 5, 4191 (1993)] is designed to provide a radiative-hydrodynamic code with non-local thermodynamic equilibrium (non-LTE) data efficiently by using LTE tables. Comparison with benchmark data [M. Klapisch and A. Bar-Shalom, J. Quant. Spectrosc. Radiat. Transf. 58, 687 (1997)] has shown Radiom to be inaccurate far from LTE and for heavy ions. In particular, the emissivity was found to be strongly underestimated. A recent algorithm, Gondor [C. Bowen and P. Kaiser, J. Quant. Spectrosc. Radiat. Transf. 81, 85 (2003)], was introduced to improve the gold non-LTE ionization and corresponding opacity. It relies on fitting the collisional ionization rate to reproduce benchmark data given by the Averroès superconfiguration code [O. Peyrusse, J. Phys. B 33, 4303 (2000)]. Gondor is extended here to gold emissivity calculations, with two simple modifications of the two-level atom line source function used by Radiom: (a) a larger collisional excitation rate and (b) the addition of a Planckian source term, fitted to spectrally integrated Averroès emissivity data. This approach improves the agreement between experiments and hydrodynamic simulations.

  6. Synthesis of fluorescent phenylethanethiolated gold nanoclusters via pseudo-AGR method.

    PubMed

    Yao, Chuanhao; Tian, Shubo; Liao, Lingwen; Liu, Xinfeng; Xia, Nan; Yan, Nan; Gan, Zibao; Wu, Zhikun

    2015-10-21

    It is well known that the fluorescence of metal nanoclusters is strongly dependent of the protecting ligand and reports of phenylethanethiolated metal nanoclusters with distinct fluorescence are rare. Herein, a fluorescent phenylethanethiolated gold nanocluster is synthesized using an unexpected pseudo-AGR method (AGR: anti-galvanic reduction). The cluster is precisely determined to be Au24(SC2H4Ph)20 by isotope-resolved mass spectroscopy in tandem with thermogravimetric analysis (TGA). The fluorescence comparison between Au24(SC2H4Ph)20, Au25(SC2H4Ph)18, Au38(SC2H4Ph)24 and Au144(SC2H4Ph)60 is also presented. The finding of the fluorescent phenylethanethiolated gold nanocluster in this work has important implication for future study on the fluorescence of metal nanoclusters.

  7. Nonbiological fractionation of iron isotopes

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Roe, J. E.; Barling, J.; Nealson, K. H.

    2000-01-01

    Laboratory experiments demonstrate that iron isotopes can be chemically fractionated in the absence of biology. Isotopic variations comparable to those seen during microbially mediated reduction of ferrihydrite are observed. Fractionation may occur in aqueous solution during equilibration between inorganic iron complexes. These findings provide insight into the mechanisms of iron isotope fractionation and suggest that nonbiological processes may contribute to iron isotope variations observed in sediments.

  8. DEEP WATER ISOTOPIC CURRENT ANALYZER

    DOEpatents

    Johnston, W.H.

    1964-04-21

    A deepwater isotopic current analyzer, which employs radioactive isotopes for measurement of ocean currents at various levels beneath the sea, is described. The apparatus, which can determine the direction and velocity of liquid currents, comprises a shaft having a plurality of radiation detectors extending equidistant radially therefrom, means for releasing radioactive isotopes from the shaft, and means for determining the time required for the isotope to reach a particular detector. (AEC)

  9. Hydrofluorination of Alkynes Catalysed by Gold Bifluorides

    PubMed Central

    Nahra, Fady; Patrick, Scott R; Bello, Davide; Brill, Marcel; Obled, Alan; Cordes, David B; Slawin, Alexandra M Z; O'Hagan, David; Nolan, Steven P

    2015-01-01

    We report the synthesis of nine new N-heterocyclic carbene gold bifluoride complexes starting from the corresponding N-heterocyclic carbene gold hydroxides. A new methodology to access N,N′-bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) fluoride starting from N,N′-bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) hydroxide and readily available potassium bifluoride is also reported. These gold bifluorides were shown to be efficient catalysts in the hydrofluorination of symmetrical and unsymmetrical alkynes, thus affording fluorinated stilbene analogues and fluorovinyl thioethers in good to excellent yields with high stereo- and regioselectivity. The method is exploited further to access a fluorinated combretastatin analogue selectively in two steps starting from commercially available reagents. PMID:26236406

  10. The interaction of gold with gallium arsenide

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar-cell contact materials, are known to react readily with gallium arsenide. Experiments designed to identify the mechanisms involved in these GaAs-metal interactions have yielded several interesting results. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are also explained by invoking this mechanism.

  11. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  12. Molecular Beam Optical Study of Gold Sulfide and Gold Oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Ruohan; Yu, Yuanqin; Steimle, Timothy

    2016-06-01

    Gold-sulfur and gold-oxygen bonds are key components to numerous established and emerging technologies that have applications as far ranging as medical imaging, catalysis, electronics, and material science. A major theoretical challenge for describing this bonding is correctly accounting for the large relativistic and electron correlation effects. Such effects are best studied in diatomic, AuX, molecules. Recently, the observed AuS electronic state energy ordering was measured and compared to a simple molecular orbital diagram prediction. Here we more thoroughly investigate the nature of the electronic states of both AuS and AuO from the analysis of high-resolution (FWHM\\cong35MHz) optical Zeeman spectroscopy of the (0,0){B}2Σ--{X}2Π3/2 bands. The determined fine and hyperfine parameters for the {B}2Σ- state of AuO differ from those extracted from the analysis of a hot, Doppler-limited, spectrum. It is demonstrated that the nature of the {B}2Σ- states of AuO and AuS are radically different. The magnetic tuning of AuO and AuS indicates that the {B}2Σ- states are heavily contaminated. Supported by the National Science Foundation under Grant No.1265885. D. L. Kokkin, R. Zhang, T. C. Steimle, I. A. Wyse, B. W. Pearlman and T. D. Varberg, J. Phys. Chem. A., 119(48), 4412, 2015. L. C. O'Brien, B. A. Borchert, A. Farquhar, S. Shaji, J. J. O'Brien and R. W. Field, J. Mol. Spectrosc., 252(2), 136, 2008

  13. Forensic Stable Isotope Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  14. Sulfur isotopic data

    SciTech Connect

    Rye, R.O.

    1987-01-01

    Preliminary sulfur isotope data have been determined for samples of the Vermillion Creek coal bed and associated rocks in the Vermillion Creek basin and for samples of evaporites collected from Jurassic and Triassic formations that crop out in the nearby Uinta Mountains. The data are inconclusive, but it is likely that the sulfur in the coal was derived from the evaporites.

  15. Carbon isotope composition of carbonaceous matter from the precambrian of the witwatersrand system.

    PubMed

    Hoefs, J; Schidlowski, M

    1967-03-01

    Polymerized hydrocarbons occurring in the gold-uranium conglomerates of the Witwatersrand System (South Africa) show deltaC(13) values between -22.4 and -32.8 per mille, their isotopic composition thus falling into the range of sedimentary organic carbon. Accordingly, organic derivation of the material seems very probable. This conclusion is consistent with a model of the existence of organic evolution and biologic activity in times certainly older than 2.15 x 10(9) years.

  16. The 'price' of Olympic Gold.

    PubMed

    Hogan, K; Norton, K

    2000-06-01

    In 1981 the Commonwealth Government established the Australian Institute of Sport (AIS). The Australian Sports Commission (ASC) which administers the AIS has 2 objectives: (1) excellence in sports performances; and (2) increased participation in sports and sports activities. State-based institutes of sport have also been established with the same or very similar objectives. Federal policy directs the bulk of the ASC budget to elite athlete programs. A smaller proportion goes towards community participation. The official reason is based on the notion of the 'trickle-down' or 'demonstration' effect. That is, a flow-on of benefits to the broader community in the form of increased participation as a direct result of elite sports success. The aims of this study were to determine the (1) spending pattern to elite sports programs for the 5 Olympics 1976/77 to 1995/96, (2) evidence for the two ASC objectives having been met, and (3) expected medal tally at the 2000 Olympic Games. Results show funding (in 1998 dollars), has accelerated from about $1.2 million (1976/77) to $106 million in (1997/98), particularly since the Games were awarded to Sydney. The total amount spent on elite athletes was $0.918 billion. In the period 1980-96 Australia won 25 gold and 115 total Olympic medals. This equates to approximately $37 million per gold and $8 million per medal in general. There was a significant linear relationship between money spent and total medals won. This was also found when all medal types were analysed independently. The predicted medal tally in 2000 (based on the cost per medal and the expenditure towards Sydney) indicates the medal count will be about 14+/-1 gold, 15+/-2 silver and 33+/-4 bronze. Based on our nation's record of international sporting achievement, there is little doubt we have fulfilled the ASC's first objective. Current data on physical activity patterns of Australians suggest the second objective has not been met. Focusing attention on and achieving

  17. Isotope fractionation studies of molybdenum

    NASA Astrophysics Data System (ADS)

    Wieser, M. E.; de Laeter, J. R.; Varner, M. D.

    2007-08-01

    Mass spectrometric studies of the isotopic composition of molybdenum have become an active area of research in stable isotope geochemistry, biogeochemistry and cosmochemistry. The redox chemistry of Mo, together with its proclivity for covalent bonding, indicates its importance in isotope fractionation studies such as palaeoceanography. The measurement of the magnitude of isotope fractionation of Mo in natural systems is a challenging task, in that natural fractionation has to be carefully distinguished from chemical and instrumental isotope fractionation. An ion exchange chemical separation procedure has been developed with high efficiency and low blank, to ensure that the isobaric elements Zr and Ru are removed from the samples before mass spectrometric analysis. The isotope fractionation resulting from this procedure is 0.14[per mille sign] per u. The isotopic composition of Mo of a Laboratory Standard has been measured by positive and negative thermal ionization mass spectrometry (P-TIMS and N-TIMS, respectively), to give an isotope fractionation of 6.4[per mille sign] and 0.5[per mille sign] per u, respectively, with respect to the absolute isotope abundances of Mo. In both cases the lighter isotopes are enhanced with respect to the heavier isotopes. An ascorbic acid activator has enabled the sensitivity of P-TIMS to be improved as compared to traditional methods. The same experiment was repeated using a multiple collector-inductively coupled plasma-mass spectrometer (MC-ICP-MS) to give an isotope fractionation of approximately 17.0[per mille sign] per u. In this case the heavier isotopes are enhanced with respect to the lighter isotopes. The strengths and weaknesses of these three mass spectrometric techniques are evaluated. We conclude that MC-ICP-MS is the optimum mass spectrometric method for accurately measuring the isotope fractionation of Mo in natural materials, provided chemical and instrumental isotope fractionation can be resolved from naturally

  18. Coal-gold agglomeration: an alternative separation process in gold recovery

    SciTech Connect

    Akcil, A.; Wu, X.Q.; Aksay, E.K.

    2009-07-01

    Considering the increasing environmental concerns and the potential for small gold deposits to be exploited in the future, the uses of environmentally friendly processes are essential. Recent developments point to the potential for greatly increased plant performance through a separation process that combines the cyanide and flotation processes. In addition, this kind of alternative treatment processes to the traditional gold recovery processes may reduce the environmental risks of present small-scale gold mining. Gold recovery processes that applied to different types of gold bearing ore deposits show that the type of deposits plays an important role for the selection of mineral processing technologies in the production of gold and other precious metals. In the last 25 years, different alternative processes have been investigated on gold deposits located in areas where environmental issues are a great concern. In 1988, gold particles were first recovered by successful pilot trial of coal-gold agglomeration (CGA) process in Australia. The current paper reviews the importance of CGA in the production of gold ore and identifies areas for further development work.

  19. Genetic Aspects of Gold Mineralization at Some Occurrences in the Eastern Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Abd El Monsef, M.; Slobodník, M.; Salem, I. A.

    2012-04-01

    in each area and revealing the ore mineralogy and the ore textures, geochemical analyses (including rare earth elements) are to be used in order to determine the tectonic setting and magmatic evolution of the host intrusions, scanning electron microscope, microprobe analysis, stable isotopes and fluid inclusions will serve as a new part of this study in detection of the origin and the physico-chemical conditions (P-T condition) for the gold precipitation, Age dating of the host intrusion and mineralization will be based on K-Ar for dating potassium-bearing minerals in fresh host rocks and hydrothermal mineral phases.

  20. Gold-catalyzed naphthalene functionalization.

    PubMed

    Pérez, Pedro J; Díaz-Requejo, M Mar; Rivilla, Iván

    2011-01-01

    The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'(4) (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO(2)Et (R = H, Me) from N(2)C(R)CO(2)Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C-H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed.

  1. Gold-catalyzed naphthalene functionalization

    PubMed Central

    Rivilla, Iván

    2011-01-01

    Summary The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'4 (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO2Et (R = H, Me) from N2C(R)CO2Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C–H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed. PMID:21647320

  2. Citrate-Stabilized Gold Nanorods

    PubMed Central

    2015-01-01

    Stable aqueous dispersions of citrate-stabilized gold nanorods (cit-GNRs) have been prepared in scalable fashion by surfactant exchange from cetyltrimethylammonium bromide (CTAB)-stabilized GNRs, using polystyrenesulfonate (PSS) as a detergent. The surfactant exchange process was monitored by infrared spectroscopy, surface-enhanced Raman scattering (SERS), and X-ray photoelectron spectroscopy (XPS). The latter established the quantitative displacement of CTAB (by PSS) and of PSS (by citrate). The Cit-GNRs are indefinitely stable at low ionic strength, and are conducive to further ligand exchange without loss of dispersion stability. The reliability of the surface exchange process supports the systematic analysis of ligand structure on the hydrodynamic size of GNRs, as described in a companion paper. PMID:25254292

  3. Gold-catalyzed naphthalene functionalization.

    PubMed

    Pérez, Pedro J; Díaz-Requejo, M Mar; Rivilla, Iván

    2011-01-01

    The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'(4) (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO(2)Et (R = H, Me) from N(2)C(R)CO(2)Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C-H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed. PMID:21647320

  4. Gel Electrophoresis of Gold-DNA Nanoconjugates

    DOE PAGESBeta

    Pellegrino, T.; Sperling, R. A.; Alivisatos, A. P.; Parak, W. J.

    2007-01-01

    Gold-DNA conjugates were investigated in detail by a comprehensive gel electrophoresis study based on 1200 gels. A controlled number of single-stranded DNA of different length was attached specifically via thiol-Au bonds to phosphine-stabilized colloidal gold nanoparticles. Alternatively, the surface of the gold particles was saturated with single stranded DNA of different length either specifically via thiol-Au bonds or by nonspecific adsorption. From the experimentally determined electrophoretic mobilities, estimates for the effective diameters of the gold-DNA conjugates were derived by applying two different data treatment approaches. The first method is based on making a calibration curve for the relation between effectivemore » diameters and mobilities with gold nanoparticles of known diameter. The second method is based on Ferguson analysis which uses gold nanoparticles of known diameter as reference database. Our study shows that effective diameters derived from gel electrophoresis measurements are affected with a high error bar as the determined values strongly depend on the method of evaluation, though relative changes in size upon binding of molecules can be detected with high precision. Furthermore, in this study, the specific attachment of DNA via gold-thiol bonds to Au nanoparticles is compared to nonspecific adsorption of DNA. Also, the maximum number of DNA molecules that can be bound per particle was determined.« less

  5. Accumulation of Gold Nanoparticles in Brassic Juncea

    SciTech Connect

    Marshall, A.T.; Haverkamp, R.G.; Davies, C.E.; Parsons, J.G.; Gardea-Torresdey, J.L.; Agterveld, D.van

    2009-06-03

    Enzymatic digestion is proposed as a method for concentrating gold nanoparticles produced in plants. The mild conditions of digestion are used in order to avoid an increase in the gold particle size, which would occur with a high-temperature process, so that material suitable for catalysis may be produced. Gold nanoparticles of a 5-50-nm diameter, as revealed by transmission electron microscopy (TEM), at concentrations 760 and 1120 ppm Au, were produced within Brassica juncea grown on soil with 22-48 mg Au kg{sup -1}. X-ray absorption near edge spectroscopy (XANES) reveals that the plant contained approximately equal quantities of Au in the metallic (Au{sup 0}) and oxidized (Au{sup +1}) states. Enzymatic digestion dissolved 55-60 wt% of the plant matter. Due to the loss of the soluble gold fraction, no significant increase in the total concentration of gold in the samples was observed. However, it is likely that the concentration of the gold nanoparticles increased by a factor of two. To obtain a gold concentration suitable for catalytic reactions, around 95 wt% of the starting dry biomass would need to be solubilized or removed, which has not yet been achieved.

  6. Nature vs. nurture: gold perpetuates "stemness".

    PubMed

    Paul, Willi; Sharma, Chandra P; Deb, Kaushik Dilip

    2011-01-01

    Adult tissues contain quiescent reservoirs of multipotent somatic stem cells and pluripotent embryonic-like stem cells (ELSCs). Credited with regenerative properties gold is used across both -contemporary and -ancient medicines. Here, we show that gold exerted these effects by enhancing the pool of pluripotent ELSC while improving their stemness. We used hESCs as an in-vitro model to understand if gold could enhance self-renewal and pluripotency. Swarna-bhasma (SB), an ancient Indian gold microparticulate (41.1 nm), preparation, reduced spontaneous-differentiation, improved self-renewal, pluripotency and proliferation of hESCs. Colloidal gold-nanoparticles (GNP) (15.59 nm) were tested to confirm that the observations were attributable to nanoparticulate-gold. SB and GNP exposure: maintained -stemness, -karyotypic stability, enhanced pluripotency till day-12, increased average colony-sizes, and reduced the number of autonomously-derived differentiated FGFR1 positive fibroblast-niche-cells/colony. Particulate-gold induced upregulation of FGFR1 and IGF2 expression, and decrease in IGF1 secretion indicates IGF1/2 mediated support for enhanced pluripotency and self-renewal in hESCs.

  7. Nature vs. nurture: gold perpetuates "stemness".

    PubMed

    Paul, Willi; Sharma, Chandra P; Deb, Kaushik Dilip

    2011-01-01

    Adult tissues contain quiescent reservoirs of multipotent somatic stem cells and pluripotent embryonic-like stem cells (ELSCs). Credited with regenerative properties gold is used across both -contemporary and -ancient medicines. Here, we show that gold exerted these effects by enhancing the pool of pluripotent ELSC while improving their stemness. We used hESCs as an in-vitro model to understand if gold could enhance self-renewal and pluripotency. Swarna-bhasma (SB), an ancient Indian gold microparticulate (41.1 nm), preparation, reduced spontaneous-differentiation, improved self-renewal, pluripotency and proliferation of hESCs. Colloidal gold-nanoparticles (GNP) (15.59 nm) were tested to confirm that the observations were attributable to nanoparticulate-gold. SB and GNP exposure: maintained -stemness, -karyotypic stability, enhanced pluripotency till day-12, increased average colony-sizes, and reduced the number of autonomously-derived differentiated FGFR1 positive fibroblast-niche-cells/colony. Particulate-gold induced upregulation of FGFR1 and IGF2 expression, and decrease in IGF1 secretion indicates IGF1/2 mediated support for enhanced pluripotency and self-renewal in hESCs. PMID:23550337

  8. Functionalization of gold nanoparticles as antidiabetic nanomaterial

    NASA Astrophysics Data System (ADS)

    Venkatachalam, M.; Govindaraju, K.; Mohamed Sadiq, A.; Tamilselvan, S.; Ganesh Kumar, V.; Singaravelu, G.

    2013-12-01

    In the present investigation, functionalization of gold nanoparticles synthesized using propanoic acid 2-(3-acetoxy-4,4,14-trimethylandrost-8-en-17-yl) (PAT) an active biocomponent isolated from Cassia auriculata is studied in detail. On reaction of PAT with aqueous HAuCl4, rapid formation of stable gold nanoparticles was achieved. Formation of gold nanoparticles was confirmed by UV-vis spectroscopy, XRD, GC-MS, FTIR, TEM and SEM with EDAX. Gold nanoparticles mostly were monodisperse, spherical in shape and ranged in size 12-41 nm. Gold nanoparticles synthesised using PAT was administered to alloxan (150 mg/kg body weight) induced diabetic male albino rats at different doses (0.25, 0.5, 0.75 and 1.0 mg/kg body weight) for 28 days. Plasma glucose level, cholesterol and triglyceride were significantly (p < 0.001) reduced in experimental animals treated with gold nanoparticles at dosage of 0.5 mg/kg body weight and plasma insulin increased significantly. The newly genre green gold nanoparticles exhibit remarkable protein tyrosine phosphatase 1B inhibitory activity.

  9. Water isotopes in desiccating lichens.

    PubMed

    Hartard, Britta; Cuntz, Matthias; Máguas, Cristina; Lakatos, Michael

    2009-12-01

    The stable isotopic composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in non-vascular, poikilohydric organisms such as lichens and bryophytes. To understand basic isotope exchange processes of non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrate with the isotopic composition of surrounding water vapour. A model was developed as a proof of concept that accounts for the specific water relations of these poikilohydric organisms. The approach incorporates first their variable thallus water potential and second a compartmentation of the thallus water into two isotopically distinct but connected water pools. Moreover, the results represent first steps towards the development of poikilohydric organisms as a recorder of ambient vapour isotopic composition.

  10. Water isotopes in desiccating lichens

    PubMed Central

    Cuntz, Matthias; Máguas, Cristina; Lakatos, Michael

    2009-01-01

    The stable isotopic composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in non-vascular, poikilohydric organisms such as lichens and bryophytes. To understand basic isotope exchange processes of non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrate with the isotopic composition of surrounding water vapour. A model was developed as a proof of concept that accounts for the specific water relations of these poikilohydric organisms. The approach incorporates first their variable thallus water potential and second a compartmentation of the thallus water into two isotopically distinct but connected water pools. Moreover, the results represent first steps towards the development of poikilohydric organisms as a recorder of ambient vapour isotopic composition. PMID:19888598

  11. Designing Hollow Nano Gold Golf Balls

    PubMed Central

    2015-01-01

    Hollow/porous nanoparticles, including nanocarriers, nanoshells, and mesoporous materials have applications in catalysis, photonics, biosensing, and delivery of theranostic agents. Using a hierarchical template synthesis scheme, we have synthesized a nanocarrier mimicking a golf ball, consisting of (i) solid silica core with a pitted gold surface and (ii) a hollow/porous gold shell without silica. The template consisted of 100 nm polystyrene beads attached to a larger silica core. Selective gold plating of the core followed by removal of the polystyrene beads produced a golf ball-like nanostructure with 100 nm pits. Dissolution of the silica core produced a hollow/porous golf ball-like nanostructure. PMID:24937196

  12. Electrochemical control of creep in nanoporous gold

    SciTech Connect

    Ye, Xing-Long; Jin, Hai-Jun

    2013-11-11

    We have investigated the mechanical stability of nanoporous gold (npg) in an electrochemical environment, using in situ dilatometry and compression experiments. It is demonstrated that the gold nano-ligaments creep under the action of surface stress which leads to spontaneous volume contractions in macroscopic npg samples. The creep of npg, under or without external forces, can be controlled electrochemically. The creep rate increases with increasing potential in double-layer potential region, and deceases to almost zero when the gold surface is adsorbed with oxygen. Surprisingly, we also noticed a correlation between creep and surface diffusivity, which links the deformation of nanocrystals to mobility of surface atoms.

  13. Colloidal-gold electrosensor measuring device

    DOEpatents

    Wegner, Steven; Harpold, Michael A.; McCaffrey, Terence M.; Morris, Susan E.; Wojciechowski, Marek; Zhao, Junguo; Henkens, Robert W.; Naser, Najih; O'Daly, John P.

    1995-01-01

    The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 .mu.g/dL in blood samples as small as 10 .mu.L.

  14. Colloidal-gold electrosensor measuring device

    DOEpatents

    Wegner, S.; Harpold, M.A.; McCaffrey, T.M.; Morris, S.E.; Wojciechowski, M.; Zhao, J.; Henkens, R.W.; Naser, N.; O`Daly, J.P.

    1995-11-21

    The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 {micro}g/dL in blood samples as small as 10 {micro}L. 9 figs.

  15. Electrically Conductive Polyimide Films Containing Gold Surface

    NASA Technical Reports Server (NTRS)

    Caplan, Maggie L.; Stoakley, Diane M.; St. Clair, Anne K.

    1994-01-01

    Polyimide films exhibiting high thermo-oxidative stability and including electrically conductive surface layers containing gold made by casting process. Many variations of basic process conditions, ingredients, and sequence of operations possible, and not all resulting versions of process yield electrically conductive films. Gold-containing layer formed on film surface during cure. These metallic gold-containing polyimides used in film and coating applications requiring electrical conductivity, high reflectivity, exceptional thermal stability, and/or mechanical integrity. They also find commercial potential in areas ranging from thin films for satellite antennas to decorative coatings and packaging.

  16. 33 CFR 13.01-10 - Gold and silver bars.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Gold and silver bars. 13.01-10... DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-10 Gold and silver bars. No person shall receive more than one Gold Lifesaving Medal and...

  17. 33 CFR 13.01-10 - Gold and silver bars.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Gold and silver bars. 13.01-10... DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-10 Gold and silver bars. No person shall receive more than one Gold Lifesaving Medal and...

  18. 33 CFR 13.01-10 - Gold and silver bars.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Gold and silver bars. 13.01-10... DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-10 Gold and silver bars. No person shall receive more than one Gold Lifesaving Medal and...

  19. 33 CFR 13.01-10 - Gold and silver bars.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Gold and silver bars. 13.01-10... DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-10 Gold and silver bars. No person shall receive more than one Gold Lifesaving Medal and...

  20. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Misrepresentation as to gold content. 23.4... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.4 Misrepresentation as to gold content. (a) It is unfair or deceptive to misrepresent the presence of gold or gold alloy in an industry product, or...

  1. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Misrepresentation as to gold content. 23.4... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.4 Misrepresentation as to gold content. (a) It is unfair or deceptive to misrepresent the presence of gold or gold alloy in an industry product, or...

  2. 33 CFR 13.01-10 - Gold and silver bars.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Gold and silver bars. 13.01-10... DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-10 Gold and silver bars. No person shall receive more than one Gold Lifesaving Medal and...

  3. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Misrepresentation as to gold content. 23.4... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.4 Misrepresentation as to gold content. (a) It is unfair or deceptive to misrepresent the presence of gold or gold alloy in an industry product, or...

  4. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Misrepresentation as to gold content. 23.4... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.4 Misrepresentation as to gold content. (a) It is unfair or deceptive to misrepresent the presence of gold or gold alloy in an industry product, or...

  5. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Misrepresentation as to gold content. 23.4... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.4 Misrepresentation as to gold content. (a) It is unfair or deceptive to misrepresent the presence of gold or gold alloy in an industry product, or...

  6. Gold deposit styles and placer gold characterisation in northern and east-central Madagascar

    USGS Publications Warehouse

    Pitfield, Peter E. J; Styles, Michael T.; Taylor, Cliff D.; Key, Roger M.; Bauer,; Ralison, A

    2009-01-01

    Microchemical characterisation of bedrock and placer gold grains from six gold districts within the Archaean domains and intervening Neoproterozoic Anaboriana-Manampotsy belt of northern and east-central Madagascar show few opaque inclusions (e.g pyrrhotite, Bi tellurides) but wide range of Ag contents (40wt%). Some districts exhibit multiple source populations of grains. The ‘greenstone belt’ terranes have an orogenic gold signature locally with an intrusion-related to epithermal overprint. Proterozoic metasediments with felsic to ultramafic bodies yield dominantly intrusion-related gold. A high proportion of secondary gold (<0.5wt% Ag) is related to recycling of paleoplacers and erosion of post-Gondwana planation surfaces and indicates that some mesothermal gold systems were already partially to wholly removed by erosion by the PermoTriassic.

  7. Gold nanodumbbell-seeded growth of silver nanobars and nanobipyramids

    NASA Astrophysics Data System (ADS)

    Deng, Jin-Pei; Chen, Chih-Wei; Hsieh, Wei-Chi; Wang, Chao-Hsien; Hsu, Cheng-Yung; Lin, Jyun-Hao

    2014-03-01

    Gold nanodumbbells (NDs) are prepared by the reduction of gold ions in the presence of gold nanorods. Gold NDs are then employed for the synthesis of gold-silver core-shell nanoparticles (Au@Ag NPs). The quasi-ellipsoidal NPs could be found at room temperature, but Au@Ag bar and triangular bipyramid (TBP) NPs were obtained at 75 °C. Our results show that the long ends of gold NDs are in the position of the bar center and closely paralleled the shorter edge of TBP. Mechanisms in the growth of silver on gold NDs are proposed for the formations of these Au@Ag NPs.

  8. Iron isotope biosignatures.

    PubMed

    Beard, B L; Johnson, C M; Cox, L; Sun, H; Nealson, K H; Aguilar, C

    1999-09-17

    The (56)Fe/(54)Fe of Fe-bearing phases precipitated in sedimentary environments varies by 2.5 per mil (delta(56)Fe values of +0.9 to -1. 6 per mil). In contrast, the (56)Fe/(54)Fe of Fe-bearing phases in igneous rocks from Earth and the moon does not vary measurably (delta(56)Fe = 0.0 +/- 0.3 per mil). Experiments with dissimilatory Fe-reducing bacteria of the genus Shewanella algae grown on a ferrihydrite substrate indicate that the delta(56)Fe of ferrous Fe in solution is isotopically lighter than the ferrihydrite substrate by 1.3 per mil. Therefore, the range in delta(56)Fe values of sedimentary rocks may reflect biogenic fractionation, and the isotopic composition of Fe may be used to trace the distribution of microorganisms in modern and ancient Earth.

  9. New Isotope 263Hs

    SciTech Connect

    Dragojevic, I.; Gregorich, K.E.; Dullmann, Ch.E.; Dvorak, J.; Ellison, P.A.; Gates, J.M.; Nelson, S.L.; Stavsetra, L.; Nitsche, H.

    2010-03-16

    A new isotope of Hs was produced in the reaction 208Pb(56Fe, n)263Hs at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. Six genetically correlated nuclear decay chains have been observed and assigned to the new isotope 263Hs. The measured cross section was 21+13-8.4 pb at 276.4 MeV lab-frame center-of-target beam energy. 263Hs decays with a half-life of 0.74 ms by alpha-decay and the measured alpha-particle energies are 10.57 +- 0.06, 10.72 +- 0.06, and 10.89 +- 0.06 MeV. The experimental cross section is compared to a theoretical prediction based on the Fusion by Diffusion model [W. J. Swiatecki et al., Phys. Rev. C 71, 014602 (2005)].

  10. Iron isotope biosignatures

    NASA Technical Reports Server (NTRS)

    Beard, B. L.; Johnson, C. M.; Cox, L.; Sun, H.; Nealson, K. H.; Aguilar, C.

    1999-01-01

    The (56)Fe/(54)Fe of Fe-bearing phases precipitated in sedimentary environments varies by 2.5 per mil (delta(56)Fe values of +0.9 to -1. 6 per mil). In contrast, the (56)Fe/(54)Fe of Fe-bearing phases in igneous rocks from Earth and the moon does not vary measurably (delta(56)Fe = 0.0 +/- 0.3 per mil). Experiments with dissimilatory Fe-reducing bacteria of the genus Shewanella algae grown on a ferrihydrite substrate indicate that the delta(56)Fe of ferrous Fe in solution is isotopically lighter than the ferrihydrite substrate by 1.3 per mil. Therefore, the range in delta(56)Fe values of sedimentary rocks may reflect biogenic fractionation, and the isotopic composition of Fe may be used to trace the distribution of microorganisms in modern and ancient Earth.

  11. Single-step co-deposition of nanostructured tungsten oxide supported gold nanoparticles using a gold-phosphine cluster complex as the gold precursor

    NASA Astrophysics Data System (ADS)

    Molkenova, Anara; Sarip, Rozie; Sathasivam, Sanjay; Umek, Polona; Vallejos, Stella; Blackman, Chris; Hogarth, Graeme; Sankar, Gopinathan

    2014-12-01

    The use of a molecular gold organometallic cluster in chemical vapour deposition is reported, and it is utilized, together with a tungsten oxide precursor, for the single-step co-deposition of (nanostructured) tungsten oxide supported gold nanoparticles (NPs). The deposited gold-NP and tungsten oxide supported gold-NP are highly active catalysts for benzyl alcohol oxidation; both show higher activity than SiO2 supported gold-NP synthesized via a solution-phase method, and tungsten oxide supported gold-NP show excellent selectivity for conversion to benzaldehyde.

  12. Online Method for Oxygen Triple Isotope Analyses of Nitrate

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Hastings, M. G.; Houlton, B.; Roeckmann, T.; Sigman, D. M.

    2004-12-01

    Combined 17O/16O and 18O/16O isotope ratio analyses of nitrate in ground and surface waters help to understand the partitioning between atmospheric and terrestrial nitrate sources because only terrestrial nitrate shows mass-dependent relative enrichments in 17O and 18O, whereas atmospheric nitrate displays an anomalous enrichment in 17O. The 17O isotope anomaly of nitrate is therefore a sensitive tracer of fresh water pollution. Furthermore, isotope measurements of atmospheric nitrate in aerosols and precipitation provide insight into the partitioning between atmospheric NOx cycling pathways via ozone or hydroxy/peroxy radicals because only ozone has a significant non-mass dependent enrichment in 17O. Previous methods to analyze the oxygen triple isotope composition of nitrate rely on offline thermal decomposition of AgNO3 amounts in the µ mol range. We have recently developed an online (coupled gas chromatography-mass spectrometry) method that requires two to three orders of magnitude less material to achieve essentially the same analytical precision: 30 nmol of nitrate give a 1σ uncertainty of 1.0 ‰ for the δ ^{18}O value and 0.3 \\permil for the ^{17}O anomaly (\\Delta17O). The method uses a strain of bacterial denitrifiers to convert nitrate to N2O [Casciotti et al., 2002], which is then quantitatively converted to elemental nitrogen and oxygen in a gold furnace at 800° C. Both gases are separated on a molecular sieve capillary column and introduced into the isotope ratio mass spectrometer. There is no significant memory effect, but calibration via nitrate or N2O standards is required for scale normalization. This novel method was used to analyze nitrate isotopes in rain water and streams and, thanks to the low sample size requirements, will also be suitable for ice core samples, which have very low nitrate concentrations. A tight correlation between Δ 17O and δ 18O in rain water was found with a slope of about 0.3 (R2 = 0.86), which reflects the

  13. ISOTOPE SEPARATING APPARATUS CONTROL

    DOEpatents

    Barnes, S.W.

    1959-08-25

    An improved isotope separating apparatus of the electromagnetic type, commonly referred to as a calutron, is described. Improvements in detecting and maintaining optimum position and focus of the ion beam are given. The calutron collector is provided with an additional electrode insulated from and positioned between the collecting pockets. The ion beams are properly positioned and focused until the deionizing current which flows from ground to this additional electrode ts a minimum.

  14. Electrochemically controlled iron isotope fractionation

    NASA Astrophysics Data System (ADS)

    Black, Jay R.; Young, Edward D.; Kavner, Abby

    2010-02-01

    Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.

  15. ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.

    SciTech Connect

    BULLOCK,R.M.; BENDER,B.R.

    2000-12-01

    The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.

  16. Fabrication of gold microstructures using negative photoresists doped with gold ions through two-photon excitation.

    PubMed

    Nakamura, Ryotaro; Kinashi, Kenji; Sakai, Wataru; Tsutsumi, Naoto

    2016-06-22

    The fabrication of gold microstructures was investigated using a mixture of SU-8 and gold ions using two-photon excitation induced by a femtosecond laser. Energy dispersive X-ray spectrometry, micro-X-ray diffraction and X-ray photoelectron spectroscopy were performed to analyse the resulting microstructures. Electrical conductivity was also measured. Elemental analysis showed that the fabricated structures consisted of triangular, reduced gold crystals and small amounts of cross-linked SU-8. The conductivity of the fabricated structures was four orders of magnitude lower than that of pure gold because of the cross-linked SU-8 present in the material.

  17. Gold and gold-iron oxide magnetic glyconanoparticles: synthesis, characterization and magnetic properties.

    PubMed

    de la Fuente, Jesús M; Alcántara, David; Eaton, Peter; Crespo, Patricia; Rojas, Teresa C; Fernandez, Asunción; Hernando, Antonio; Penadés, Soledad

    2006-07-01

    The preparation, characterization and the magnetic properties of gold and gold-iron oxide glyconanoparticles (GNPs) are described. Glyconanoparticles were prepared in a single step procedure in the presence of aqueous solution of thiol functionalized neoglycoconjugates and either gold salts or both gold and iron salts. Neoglycoconjugates of lactose and maltose disaccharides with different linkers were used. Iron-free gold or gold-iron oxide GNPs with controlled gold-iron ratios were obtained. The average core-size diameters are in the range of 1.5-2.5 nm. The GNPs are fully characterized by (1)H NMR spectrometry, transmission electron microscopy (TEM), and UV-vis and X-ray absorption (XAS) spectroscopies. Inductive plasma-atomic emission spectrometry (ICP) and elemental analysis gave the average number of neoglycoconjugates per cluster. The magnetic properties were measured in a SQUID magnetometer. The most remarkable results was the observation of a permanent magnetism up to room temperature in the iron-free gold GNPs, that was not present in the corresponding gold-iron oxide GNPs. PMID:16805609

  18. Gold and gold-iron oxide magnetic glyconanoparticles: synthesis, characterization and magnetic properties.

    PubMed

    de la Fuente, Jesús M; Alcántara, David; Eaton, Peter; Crespo, Patricia; Rojas, Teresa C; Fernandez, Asunción; Hernando, Antonio; Penadés, Soledad

    2006-07-01

    The preparation, characterization and the magnetic properties of gold and gold-iron oxide glyconanoparticles (GNPs) are described. Glyconanoparticles were prepared in a single step procedure in the presence of aqueous solution of thiol functionalized neoglycoconjugates and either gold salts or both gold and iron salts. Neoglycoconjugates of lactose and maltose disaccharides with different linkers were used. Iron-free gold or gold-iron oxide GNPs with controlled gold-iron ratios were obtained. The average core-size diameters are in the range of 1.5-2.5 nm. The GNPs are fully characterized by (1)H NMR spectrometry, transmission electron microscopy (TEM), and UV-vis and X-ray absorption (XAS) spectroscopies. Inductive plasma-atomic emission spectrometry (ICP) and elemental analysis gave the average number of neoglycoconjugates per cluster. The magnetic properties were measured in a SQUID magnetometer. The most remarkable results was the observation of a permanent magnetism up to room temperature in the iron-free gold GNPs, that was not present in the corresponding gold-iron oxide GNPs.

  19. Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering

    SciTech Connect

    Ye Jian; Lodewijks, Kristof; Lagae, Liesbet; Van Dorpe, Pol; Shioi, Masahiko; Kawamura, Tatsuro

    2010-10-18

    We investigate the plasmonic properties of gold nanorings in close proximity to a gold film. The rings have been fabricated using nanosphere lithography and are optimized to boost their near-infrared surface enhanced Raman scattering (SERS) effects. A SERS enhancement factor as large as 1.4x10{sup 7} has been achieved by tuning the separation between the gold nanorings and the gold film. In addition, we have numerically and experimentally demonstrated an enhanced tunability of the plasmon resonance wavelength and a narrowing of the plasmon linewidth for increasing ring-film interaction.

  20. Novel Catalysis by Gold: A Modern Alchemy

    NASA Astrophysics Data System (ADS)

    Haruta, Masatake

    Gold has long been neglected as a catalyst because of its chemical inertness. However, when gold is deposited as nanoparticles on carbon and polymer materials as well as on base metal oxides and hydroxides, it exhibits unique catalytic properties for many reactions such as CO oxidation at a temperature as low as 200 K, gas phase direct epoxidation of propylene, and aerobic oxidation of glucose to gluconic acid. The structure-catalytic activity correlations are discussed with emphasis on the contact structure, support selection, and the size control of gold particles. Gold clusters with diameters smaller than 2 nm are expected to exhibit novel properties in catalysis, optics, and electronics depending on the size (number of atoms), shape, and the electronic and chemical interaction with the support materials. The above achievements and attempts can be regarded as a modern alchemy that creates valuables by means of the noblest element with little practical use.

  1. Anatomy of gold catalysts: facts and myths

    PubMed Central

    Ranieri, Beatrice; Escofet, Imma

    2015-01-01

    This review article covers the main types of gold(i) complexes used as precatalysts under homogeneous conditions in organic synthesis and discusses the different ways of catalyst activation as well as ligand, silver, and anion effects. PMID:26055272

  2. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, C.A.; Worden, E.F.

    1995-08-22

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of {sup 167}Er. The hyperfine structure of {sup 167}Er was used to find two three-step photoionization pathways having a common upper energy level. 3 figs.

  3. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, Christopher A.; Worden, Earl F.

    1995-01-01

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of .sup.167 Er. The hyperfine structure of .sup.167 Er was used to find two three-step photoionization pathways having a common upper energy level.

  4. Oxygen isotope studies and compilation of isotopic dates from Antarctica

    SciTech Connect

    Grootes, P.M.; Stuiver, M.

    1986-01-01

    The Quaternary Isotope Laboratory, alone or in collaboration with other investigators, is currently involved in a number of oxygen-isotope studies mainly in Antarctica. Studies of a drill core from the South Pole, seasonal oxygen-18 signals preserved in the Dominion Range, isotope dating of the Ross Ice Shelf, oxygen-18 profiles of the Siple Coast, McMurdo Ice Shelf sampling, and a data compilation of radiometric dates from Antarctica are discussed.

  5. Quantum sized gold nanoclusters with atomic precision.

    PubMed

    Qian, Huifeng; Zhu, Manzhou; Wu, Zhikun; Jin, Rongchao

    2012-09-18

    Gold nanoparticles typically have a metallic core, and the electronic conduction band consists of quasicontinuous energy levels (i.e. spacing δ ≪ k(B)T, where k(B)T is the thermal energy at temperature T (typically room temperature) and k(B) is the Boltzmann constant). Electrons in the conduction band roam throughout the metal core, and light can collectively excite these electrons to give rise to plasmonic responses. This plasmon resonance accounts for the beautiful ruby-red color of colloidal gold first observed by Faraday back in 1857. On the other hand, when gold nanoparticles become extremely small (<2 nm in diameter), significant quantization occurs to the conduction band. These quantum-sized nanoparticles constitute a new class of nanomaterial and have received much attention in recent years. To differentiate quantum-sized nanoparticles from conventional plasmonic gold nanoparticles, researchers often refer to the ultrasmall nanoparticles as nanoclusters. In this Account, we chose several typical sizes of gold nanoclusters, including Au(25)(SR)(18), Au(38)(SR)(24), Au(102)(SR)(44), and Au(144)(SR)(60), to illustrate the novel properties of metal nanoclusters imparted by quantum size effects. In the nanocluster size regime, many of the physical and chemical properties of gold nanoparticles are fundamentally altered. Gold nanoclusters have discrete electronic energy levels as opposed to the continuous band in plasmonic nanoparticles. Quantum-sized nanoparticles also show multiple optical absorption peaks in the optical spectrum versus a single surface plasmon resonance (SPR) peak at 520 nm for spherical gold nanocrystals. Although larger nanocrystals show an fcc structure, nanoclusters often have non-fcc atomic packing structures. Nanoclusters also have unique fluorescent, chiral, and magnetic properties. Due to the strong quantum confinement effect, adding or removing one gold atom significantly changes the structure and the electronic and optical

  6. Origin of high-grade gold ore, source of ore fluid components, and genesis of the Meikle and neighboring Carlin-type deposits, Northern Carlin Trend, Nevada

    USGS Publications Warehouse

    Emsbo, P.; Hofstra, A.H.; Lauha, E.A.; Griffin, G.L.; Hutchinson, R.W.

    2003-01-01

    The Meikle mine exploits one of the world's highest grade Carlin-type gold deposits with reserves of ca. 220 t gold at an average grade of 24.7 g/t. Locally, gold grades exceed 400 g/t. Several geologic events converged at Meikle to create these spectacular gold grades. Prior to mineralization, a Devonian hydrothermal system altered the Bootstrap limestone to Fe-rich dolomite. Subsequently the rocks were brecciated by faulting and Late Jurassic intrusive activity. The resulting permeability focused flow of late Eocene Carlin-type ore fluids and allowed them to react with the Fe-rich dolomite. Fluid inclusion data and mineral assemblages indicate that these fluids were hot (ca. 220??C),of moderate salinity (400 g/t. Petrographic observations, geochemical data, and stable isotope results from the Meikle mine and other deposits at the Goldstrike mine place important constraints on genetic models for Meikle and other Carlin-type gold deposits on the northern Carlin trend. The ore fluids were meteoric water (??D = -135???, ??18O = -5???) that interacted with sedimentary rocks at a water/rock ratio of ca. 1 and temperatures of ca. 220??C. The absence of significant silicification suggests that there was little cooling of the ore fluids during mineralization. These two observations strongly suggest that ore fluids were not derived from deep sources but instead flowed parallel to isotherms. The gold was transported by H2S (??34S = 9???), which was derived from Paleozoic sedimentary rocks. The presence of auriferous sedimentary exhalative mineralization in the local stratigraphic sequence raises the possibility that preexisting concentrations of gold contributed to the Carlin-type deposits. Taken together our observations suggest that meteoric water evolved to become an ore fluid by shallow circulation through previously gold- and sulfur-enriched rocks. Carlin-type gold deposits formed where these fluids encountered permeable, reactive Fe-rich rocks.

  7. The peptide route to multifunctional gold nanoparticles.

    PubMed

    Wang, Zhenxin; Lévy, Raphaël; Fernig, David G; Brust, Mathias

    2005-01-01

    Extremely stable, peptide-capped gold nanoparticles with two different biomolecular recognition motifs expressed on their surface have been prepared, and their specific and selective binding to artificial, DNA-modified target particles and to DNA and protein microarrays has been demonstrated. Stabilization and biofunctionalization has been achieved in a single preparative step starting with citrate-stabilized gold hydrosols and a derivatization cocktail of peptide-capping ligands, which carry the functionalities of choice.

  8. Nonlinear photoluminescence spectrum of single gold nanostructures.

    PubMed

    Knittel, Vanessa; Fischer, Marco P; de Roo, Tjaard; Mecking, Stefan; Leitenstorfer, Alfred; Brida, Daniele

    2015-01-27

    We investigate the multiphoton photoluminescence characteristics of gold nanoantennas fabricated from single crystals and polycrystalline films. By exciting these nanostructures with ultrashort pulses tunable in the near-infrared range, we observe distinct features in the broadband photoluminescence spectrum. By comparing antennas of different crystallinity and shape, we demonstrate that the nanoscopic geometry of plasmonic devices determines the shape of the emission spectra. Our findings rule out the contribution of the gold band structure in shaping the photoluminescence.

  9. PIXE analysis of Trojan gold jewelry

    NASA Astrophysics Data System (ADS)

    Swann, C. P.; Betancourt, P. P.; Fleming, S.; Floyd, C. R.

    1997-07-01

    Technological advancements in the production of gold jewelry from the Troad in northwest Anatolia in the third millennium BC are investigated by PIXE. Results indicate a higher percentage of Cu at the interface between joined pieces of gold than exists elsewhere on the jewelry, away from joinings. The results indicate the probable use of copper salts as a flux in the manufacture of jewelry with granulation.

  10. Nonlinear refraction in aqueous colloidal gold

    NASA Astrophysics Data System (ADS)

    Mehendale, S. C.; Mishra, S. R.; Bindra, K. S.; Laghate, M.; Dhami, T. S.; Rustagi, K. C.

    1997-02-01

    Nonlinear refraction in aqueous colloidal gold at 527 nm was studied using the z-scan technique. While a z-scan with a 35 ns laser showed a large negative lensing, a z-scan with a 4 ps laser showed no measurable refraction. The observed nonlinear refraction is shown to be of thermal origin resulting from energy transfer from gold particles to the water molecules.

  11. Silver and gold-catalyzed multicomponent reactions

    PubMed Central

    Abbiati, Giorgio

    2014-01-01

    Summary Silver and gold salts and complexes mainly act as soft and carbophilic Lewis acids even if their use as σ-activators has been rarely reported. Recently, transformations involving Au(I)/Au(III)-redox catalytic systems have been reported in the literature. In this review we highlight all these aspects of silver and gold-mediated processes and their application in multicomponent reactions. PMID:24605168

  12. Nickel isotopes and methanogens

    NASA Astrophysics Data System (ADS)

    Neubeck, A.; Ivarsson, M.

    2013-12-01

    Methanogens require Ni for their growth and as a consequence the microbial fractionation of Ni isotopes can be used as a biomarker for activity of methanogenic communities1. Anaerobic laboratory experiments was performed using methanogens to investigate methanogenic growth in a modified nutrient media2 with olivine Fo91 (5g/l) added as an additional mineral nutrient source and as the only H2 provider. One of the investigated methanogens showed an increased growth in the experiments with added olivine. There were also a close relationship between the mobilized Ni and the growth of the methanogen. Ni is an element that previously has been neglected in the study of fossilized microorganisms and their interaction with mineral substrates and, thus, there are no records or published data of Ni in association with microfossils. However, we have detected enrichments of Ni in fossilized microorganisms and ichno-fossils, respectively, from three separate locations. Ni is not present in the host rock in any of the samples. Thus, Ni is present in association with fossilized microorganisms from environments and more extensive analysis is required to understand the magnitude, uptake, preservation and fractionation of Ni in microfossils. In order to analyze Ni isotope fractionation from microbe-mineral interaction, we plan to use a high-resolution Laser-Ablation Time-of-Flight Mass Spectrometer (LMS)3. In situ profile ablation will provide detailed and localized data on fractionation patterns between microfossils and their host rock. Also, this technique will allow us to identify the change in Ni isotopic fractionation in rock samples caused by abiotic and biogenic processes in a faster and easier way and with less risk for contamination compared to the wet chemistry analyses of Ni isotopes. 1. Cameron, V., Vance, D., Archer, C. & House, C. H. A biomarker based on the stable isotopes of nickel. Proceedings of the National Academy of Sciences 106, 10944-10948 (2009). 2. Schn

  13. Effective PEGylation of gold nanorods

    NASA Astrophysics Data System (ADS)

    Schulz, F.; Friedrich, W.; Hoppe, K.; Vossmeyer, T.; Weller, H.; Lange, H.

    2016-03-01

    Standard procedures to coat gold nanorods (AuNR) with poly(ethylene glycol) (PEG)-based ligands are not reliable and high PEG-grafting densities are not achieved. In this work, the ligand exchange of AuNR with PEGMUA, a tailored PEG-ligand bearing a C10 alkylene spacer, is studied. PEGMUA provides AuNR with very high stability against oxidative etching with cyanide. This etching reaction is utilized to study the ligand exchange in detail. Ligand exchange is faster, less ligand consuming and more reproducible with assisting chloroform extraction. Compared to PEG ligands commonly used, PEGMUA provides much higher colloidal and chemical stability. Further analyses based on NMR-, IR- and UV/Vis-spectroscopy reveal that significantly higher PEG-grafting densities, up to ~3 nm-2, are obtained with PEGMUA. This demonstrates how the molecular structure of the PEG ligand can be used to dramatically improve the ligand exchange and to synthesize PEGylated AuNR with high chemical and colloidal stability and high PEG grafting densities. Such AuNR are especially interesting for applications in nanomedicine.Standard procedures to coat gold nanorods (AuNR) with poly(ethylene glycol) (PEG)-based ligands are not reliable and high PEG-grafting densities are not achieved. In this work, the ligand exchange of AuNR with PEGMUA, a tailored PEG-ligand bearing a C10 alkylene spacer, is studied. PEGMUA provides AuNR with very high stability against oxidative etching with cyanide. This etching reaction is utilized to study the ligand exchange in detail. Ligand exchange is faster, less ligand consuming and more reproducible with assisting chloroform extraction. Compared to PEG ligands commonly used, PEGMUA provides much higher colloidal and chemical stability. Further analyses based on NMR-, IR- and UV/Vis-spectroscopy reveal that significantly higher PEG-grafting densities, up to ~3 nm-2, are obtained with PEGMUA. This demonstrates how the molecular structure of the PEG ligand can be used to

  14. Metal enhanced fluorescence with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Mattingly, Shaina LaRissa Strating

    A novel hybrid nanocomposite of Au nanoparticle-modified silicon nanowire was developed for surface enhanced fluorescence applications. The designed nanocomposite contained a silicon nanowire, gold nanoparticles and a silica layer doped with dye molecules. The hybrid nanomaterial was characterized using scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), fluorescence measurements, Fourier transform infrared (FT-IR) spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). The results showed that the gold nanoparticles were uniformly adhered on the silicon nanowires and covered by a thin silica layer. The nanostructure exhibited strong capacity for surface enhanced fluorescence. Different enhancement factors were obtained by changing synthetic conditions. The second goal of the project was to determine if the shape of gold nanoparticles affects the extent of its fluorescence enhancement under constant external factors. Two shapes of gold nanoparticles were synthesized and characterized by SEM, STEM, zeta potential and absorbance measurements. Then they were coated with fluorescent dye-doped silica and the fluorescence intensity was measured and compared to the pure fluorescent dye. Gold nanorods enhanced fluorescence more than gold nanostars and that the fluorescent dye Alexafluor 700 showed a greater fluorescence intensity change in the presence of nanoparticles than methylene blue.

  15. Molecular dynamics simulations of gold nanomaterials

    NASA Astrophysics Data System (ADS)

    Wang, Yanting

    We have carried out Molecular Dynamics simulations to study the thermal stability and melting behavior of gold nanoclusters and gold nanorods. The surface is found to play a very important role in both gold nanomaterials. Upon cooling from the liquid, we find that gold nanoclusters with 600-3000 atoms crystallize into a Mackay icosahedron. Upon heating, the {111} facets on the surface of the Mackay icosahedral gold nanoclusters soften but do not premelt below the bulk melting temperature. We attribute this surface softening to the increasing mobility of vertex and edge atoms with temperature, which leads to inter-layer and intra-layer diffusion, and a shrinkage of the average facet size. Upon heating, our simulated gold nanorods undergo a shape transformation preceding the melting transition. The shape transformation is induced by a minimization of the surface free energy, and is accompanied by a complete reconstruction of the internal structure driven by the surface change. During the transformation, the atoms on the end caps of the rod move to the sides of the rods, leading the rods to be shorter and wider. After the transformation, the surface of the stable intermediate state rod is mostly covered by the more stable {111} facets, other than the less stable {110} and {100} facets covering the sides of the initial constructed rod.

  16. The gold rush 1925-35.

    PubMed Central

    Keers, R Y

    1980-01-01

    Although from the time of Koch onwards there had been desultory experiments with a variety of gold preparations in the management of pulmonary tuberculosis, gold as a recognised and accepted treatment did not emerge until 1925. In that year Holger Mollgaard of Copenhagen introduced sanocrysin, a double thiosulphate of gold and sodium, with which he had conducted an extensive series of animal experiments. The results of these were considered to justify its use in clinical practice and two physicians, Secher and Faber, undeterred by its toxicity, reported enthusiastically in its favour. Other Danish physicians followed but, alarmed by violent reactions, modified the dosage, an example followed by British workers. Encouraging results continued to be reported although each series contained a significant proportion of failures, and toxicity remained high. The first properly planned and fully controlled clinical trial took place in the United States and produced a report which was wholly adverse and which sounded the death knell of gold therapy throughout America. Until 1934-35 gold was used extensively in Europe but thereafter there was a sudden and largely universal cessation of interest and within a few years gold, introduced with such éclat and carrying so many high hopes, had vanished from the therapy of tuberculosis even though, at that point, no better alternative was available. PMID:6791290

  17. DNA-templated gold nanoparticles formation.

    PubMed

    Sun, Lanlan; Song, Yonghai; Wang, Li; Sun, Yujing; Guo, Cunlan; Liu, Zhelin; Li, Zhuang

    2008-09-01

    The interaction between HAuCl4 and DNA has enabled creation of DNA-templated gold nanoparticles without formation of large nanoparticles. It was found that spheral DNA-HAuCl4 hybrid of 8.7 nm in diameter, flower-like DNA-HAuCl4 hybrid, nanoparticles chains and nanoparticles network of DNA-HAuCl4 hybrid could be obtained by varying the reaction conditions, including DNA concentration and reaction temperature. The intermediate product was investigated by shortening the reaction time of DNA and HAuCl4, and the obtained nanoparticles preserved a small DNA segment, which indicated that the reaction between DNA and HAuCl4 had a process. The addition of reduction reagent resulted in DNA-templated gold nanoparticles and nanoflowers, respectively. UV-vis absorption spectra were used to characterize the DNA-HAuCl4 hybrid and the gold nanostructures templated on DNA, and XPS spectra were used to compare the composition of DNA-Au(III) complex and gold nanoparticles. AFM and TEM results revealed that the spheral gold nanoparticles of about 11 nm in size and flower-like gold nanoparticles were formed after the addition of NaBH4.

  18. A thermally stable gold(III) hydride: synthesis, reactivity, and reductive condensation as a route to gold(II) complexes.

    PubMed

    Roşca, Dragoş-Adrian; Smith, Dan A; Hughes, David L; Bochmann, Manfred

    2012-10-15

    Going for gold: The first thermally stable gold(III) hydride [(C N C)*AuH] is presented. It undergoes regioselective insertions with allenes to give gold(III) vinyl complexes, and reductive condensation with [(C N C)*AuOH] to the air-stable Au(II) product, [(C N C)*(2)Au(2)], with a short nonbridged gold-gold bond.

  19. Isotopic anomalies in extraterrestrial grains.

    PubMed

    Ireland, T R

    1996-03-01

    Isotopic compositions are referred to as anomalous if the isotopic ratios measured cannot be related to the terrestrial (solar) composition of a given element. While small effects close to the resolution of mass spectrometric techniques can have ambiguous origins, the discovery of large isotopic anomalies in inclusions and grains from primitive meteorites suggests that material from distinct sites of stellar nucleosynthesis has been preserved. Refractory inclusions, which are predominantly composed of the refractory oxides of Al, Ca, Ti, and Mg, in chondritic meteorites commonly have excesses in the heaviest isotopes of Ca, Ti, and Cr which are inferred to have been produced in a supernova. Refractory inclusions also contain excess 26Mg from short lived 26Al decay. However, despite the isotopic anomalies indicating the preservation of distinct nucleosynthetic sites, refractory inclusions have been processed in the solar system and are not interstellar grains. Carbon (graphite and diamond) and silicon carbide grains from the same meteorites also have large isotopic anomalies but these phases are not stable in the oxidized solar nebula which suggests that they are presolar and formed in the circumstellar atmospheres of carbon-rich stars. Diamond has a characteristic signature enriched in the lightest and heaviest isotopes of Xe, and graphite shows a wide range in C isotopic compositions. SiC commonly has C and N isotopic signatures which are characteristic of H-burning in the C-N-O cycle in low-mass stars. Heavier elements such as Si, Ti, Xe, Ba, and Nd, carry an isotopic signature of the s-process. A minor population of SiC (known as Grains X, ca. 1%) are distinct in having decay products of short lived isotopes 26Al (now 26Mg), 44Ti (now 44Ca), and 49V (now 49Ti), as well as 28Si excesses which are characteristic of supernova nucleosynthesis. The preservation of these isotopic anomalies allows the examination of detailed nucleosynthetic pathways in stars. PMID

  20. Isotopic anomalies in extraterrestrial grains.

    PubMed

    Ireland, T R

    1996-03-01

    Isotopic compositions are referred to as anomalous if the isotopic ratios measured cannot be related to the terrestrial (solar) composition of a given element. While small effects close to the resolution of mass spectrometric techniques can have ambiguous origins, the discovery of large isotopic anomalies in inclusions and grains from primitive meteorites suggests that material from distinct sites of stellar nucleosynthesis has been preserved. Refractory inclusions, which are predominantly composed of the refractory oxides of Al, Ca, Ti, and Mg, in chondritic meteorites commonly have excesses in the heaviest isotopes of Ca, Ti, and Cr which are inferred to have been produced in a supernova. Refractory inclusions also contain excess 26Mg from short lived 26Al decay. However, despite the isotopic anomalies indicating the preservation of distinct nucleosynthetic sites, refractory inclusions have been processed in the solar system and are not interstellar grains. Carbon (graphite and diamond) and silicon carbide grains from the same meteorites also have large isotopic anomalies but these phases are not stable in the oxidized solar nebula which suggests that they are presolar and formed in the circumstellar atmospheres of carbon-rich stars. Diamond has a characteristic signature enriched in the lightest and heaviest isotopes of Xe, and graphite shows a wide range in C isotopic compositions. SiC commonly has C and N isotopic signatures which are characteristic of H-burning in the C-N-O cycle in low-mass stars. Heavier elements such as Si, Ti, Xe, Ba, and Nd, carry an isotopic signature of the s-process. A minor population of SiC (known as Grains X, ca. 1%) are distinct in having decay products of short lived isotopes 26Al (now 26Mg), 44Ti (now 44Ca), and 49V (now 49Ti), as well as 28Si excesses which are characteristic of supernova nucleosynthesis. The preservation of these isotopic anomalies allows the examination of detailed nucleosynthetic pathways in stars.

  1. Curcumin: the Indian solid gold.

    PubMed

    Aggarwal, Bharat B; Sundaram, Chitra; Malani, Nikita; Ichikawa, Haruyo

    2007-01-01

    Turmeric, derived from the plant Curcuma longa, is a gold-colored spice commonly used in the Indian subcontinent, not only for health care but also for the preservation of food and as a yellow dye for textiles. Curcumin, which gives the yellow color to turmeric, was first isolated almost two centuries ago, and its structure as diferuloylmethane was determined in 1910. Since the time of Ayurveda (1900 Bc) numerous therapeutic activities have been assigned to turmeric for a wide variety of diseases and conditions, including those of the skin, pulmonary, and gastrointestinal systems, aches, pains, wounds, sprains, and liver disorders. Extensive research within the last half century has proven that most of these activities, once associated with turmeric, are due to curcumin. Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer activities and thus has a potential against various malignant diseases, diabetes, allergies, arthritis, Alzheimer's disease, and other chronic illnesses. These effects are mediated through the regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other enzymes. Curcumin exhibits activities similar to recently discovered tumor necrosis factor blockers (e.g., HUMIRA, REMICADE, and ENBREL), a vascular endothelial cell growth factor blocker (e.g., AVASTIN), human epidermal growth factor receptor blockers (e.g., ERBITUX, ERLOTINIB, and GEFTINIB), and a HER2 blocker (e.g., HERCEPTIN). Considering the recent scientific bandwagon that multitargeted therapy is better than monotargeted therapy for most diseases, curcumin can be considered an ideal "Spice for Life". PMID:17569205

  2. Curcumin: the Indian solid gold.

    PubMed

    Aggarwal, Bharat B; Sundaram, Chitra; Malani, Nikita; Ichikawa, Haruyo

    2007-01-01

    Turmeric, derived from the plant Curcuma longa, is a gold-colored spice commonly used in the Indian subcontinent, not only for health care but also for the preservation of food and as a yellow dye for textiles. Curcumin, which gives the yellow color to turmeric, was first isolated almost two centuries ago, and its structure as diferuloylmethane was determined in 1910. Since the time of Ayurveda (1900 Bc) numerous therapeutic activities have been assigned to turmeric for a wide variety of diseases and conditions, including those of the skin, pulmonary, and gastrointestinal systems, aches, pains, wounds, sprains, and liver disorders. Extensive research within the last half century has proven that most of these activities, once associated with turmeric, are due to curcumin. Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer activities and thus has a potential against various malignant diseases, diabetes, allergies, arthritis, Alzheimer's disease, and other chronic illnesses. These effects are mediated through the regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other enzymes. Curcumin exhibits activities similar to recently discovered tumor necrosis factor blockers (e.g., HUMIRA, REMICADE, and ENBREL), a vascular endothelial cell growth factor blocker (e.g., AVASTIN), human epidermal growth factor receptor blockers (e.g., ERBITUX, ERLOTINIB, and GEFTINIB), and a HER2 blocker (e.g., HERCEPTIN). Considering the recent scientific bandwagon that multitargeted therapy is better than monotargeted therapy for most diseases, curcumin can be considered an ideal "Spice for Life".

  3. Hydrous pyrolysis of crude oil in gold-plated reactors

    USGS Publications Warehouse

    Curiale, J.A.; Lundegard, P.D.; Kharaka, Y.K.

    1992-01-01

    Crude oils from Iraq and California have been pyrolyzed under hydrous conditions at 200 and 300??C for time periods up to 210 days, in gold-plated reactors. Elemental (vanadium, nickel), stable isotopic (carbon), and molecular (n-alkanes, acyclic isoprenoids, steranes, terpanes and aromatic steroid hydrocarbons) analyses were made on the original and pyrolyzed oils. Various conventional crude oil maturity parameters, including 20S/(20S + 20R)-24-ethylcholestane ratios and the side-chain-length distribution of aliphatic and aromatic steroidal hydrocarbons, were measured in an effort to assess the modification of molecular maturity parameters in clay-free settings, similar to those encountered in "clean" reservoirs. Concentrations of vanadium and nickel in the Iraq oil decrease significantly and the V/(V + Ni) ratio decreases slightly, with increasing pyrolysis time/temperature. Whole oil carbon isotope ratios remain fairly constant during pyrolysis, as do hopane/sterane ratios and carbon number distribution of 5??(H),14??(H),17??(H),20R steranes. These latter three parameters are considered maturity-invariant. The ratios of short side-chain components to long side-chain components of the regular steranes [C21/(C21 + C29R)] and the triaromatic steroid hydrocarbons [C21/(C21 + C28)] vary systematically with increasing pyrolysis time, indicating that these parameters may be useful as molecular maturity parameters for crude oils in clay-free reservoir rocks. In addition, decreases in bisnorhopane/hopane ratio with increasing pyrolysis time, in a clay-free and kerogen-free environment, suggest that the distribution of these compounds is controlled by either differential thermal stabilities or preferential release from a higher-molecular weight portion of the oil. ?? 1992.

  4. Igneous geology of the Carlin trend, Nevada: The importance of Eocene magmatism in gold mineralization

    NASA Astrophysics Data System (ADS)

    Ressel, Michael Walter, Jr.

    Igneous rocks of five ages are present in the Carlin trend, Nevada, and include: (1) Paleozoic basalt of the Roberts Mountains allochthon, (2) the Jurassic (˜158 Ma) Goldstrike intrusive complex, which includes the Goldstrike diorite laccolith and abundant dikes and sills, (3) a Cretaceous (112 Ma) granite stock, (4) lavas and intrusions of the Emigrant Pass volcanic field and widespread epizonal plugs and dikes of Eocene (˜40-36 Ma) age that range from rhyolite through basalt, and (5) Miocene (15 Ma) rhyolite lava and tuff. Jurassic and Eocene igneous rocks are by far the most important volumetrically and are spatially associated with nearly all ore deposits of the Carlin trend. This study focuses on the field relations, isotopic dating, and geochemistry of Eocene dikes that intrude sedimentary rocks in many deposits of the Carlin trend, because they are the youngest pre-mineral rocks and have simpler alteration histories than other host rocks. In the Beast, Genesis, Deep Star, Betze-Post, Rodeo-Goldbug, Meikle-Griffin, and Dee-Storm deposits, Eocene dikes are altered, commonly mineralized, and locally constitute ore. Gold-bearing dikes and sedimentary rocks have similar ore mineralogy, including arsenian pyrite, marcasite, and arsenopyrite, with late barite and stibnite. At Beast, as much as half the ore is hosted in a 37.3 Ma rhyolite dike. Post-gold alunite is ˜18.6 Ma. At Meikle and Griffin, porphyritic dacite dikes yield concordant U/Pb zircon and 40Ar/39Ar biotite emplacement ages of ˜39.2 Ma, and illite from the same QSP-altered dacite, with as much 9 ppm Au, yields similar, although imprecise 40Ar/39Ar ages. Thus, gold mineralization at these deposits closely followed emplacement of Eocene dikes. Carlin-type gold deposits in northeastern Nevada have been variously interpreted as partly syngenetic with Paleozoic carbonate rocks, products of Mesozoic contraction and metamorphism with or without significant magmatism, and of Tertiary age and related or

  5. Metal Stable Isotopes in Paleoceanography

    NASA Astrophysics Data System (ADS)

    Anbar, Ariel D.; Rouxel, Olivier

    2007-05-01

    Considered esoteric only a few years ago, research into the stable isotope geochemistry of transition metals is moving into the geoscience mainstream. Although initial attention focused on the potential use of some of these nontraditional isotope systems as biosignatures, they are now emerging as powerful paleoceanographic proxies. In particular, the Fe and Mo isotope systems are providing information about changes in oxygenation and metal cycling in ancient oceans. Zn, Cu, Tl, and a number of other metals and metalloids also show promise. Here we review the basis of stable isotope fractionation as it applies to these elements, analytical considerations, and the current status and future prospects of this rapidly developing research area.

  6. Photonuclear Production of Medical Isotopes

    NASA Astrophysics Data System (ADS)

    Weinandt, Nick

    2011-10-01

    Every year, more than 20 million people in the United States receive a nuclear medicine procedure. Many of the isotopes needed for these procedures are under-produced. Suppliers of the isotopes are usually located outside the United States, which presents a problem when the desired isotopes have short half-lives. Linear accelerators were investigated as a possible method of meeting isotope demand. Linear accelerators are cheaper, safer, and have lower decommissioning costs compared to nuclear reactors. By using (γ,p) reactions, the desired isotope can be separated from the target material due to the different chemical nature of each isotope. Isotopes investigated were Cu-67, In-111, and Lu-111. Using the results the photon flux Monte Carlo simulations, the expected activity of isotopes can be calculated. After samples were irradiated, a high purity germanium detector and signal processing apparatus were used to count the samples. The activity at the time of irradiation stop was then calculated. The uses of medical isotopes will also be presented. Thanks to Idaho State University, the Idaho Accelerator Center, and the National Science Foundation for supporting the research.

  7. Geology, distribution, and classification of gold deposits in the western Qinling belt, central China

    USGS Publications Warehouse

    Mao, J.; Qiu, Y.; Goldfarb, R.J.; Zhang, Z.; Garwin, S.; Fengshou, R.

    2002-01-01

    Gold deposits of the western Qinling belt occur within the western part of the Qinling-Dabie-Sulu orogen, which is located between the Precambrian North China and Yangtze cratons and east of the Songpan-Ganzi basin. The early Paleozoic to early Mesozoic orogen can be divided into northern, central, and southern zones, separated by the Shangdan and Lixian-Shanyang thrust fault systems. The northern zone consists of an early Paleozoic arc accreted to the North China craton by ca. 450 Ma. The central zone, which contains numerous orogenic gold deposits, is dominated by clastic rocks formed in a late Paleozoic basin between the converging cratonic blocks. The southern zone is characterized by the easternmost exposure of Triassic sedimentary rocks of the Songpan-Ganzi basin. These Early to Late Triassic turbidities, in part calcareous, of the immense Songpan-Ganzi basin also border the western Qinling belt to the west. Carlinlike gold deposits are abundant (1) along a westward extension of the southern zone defined by a window of early Paleozoic clastic rocks extending into the basin, and (2) within the easternmost margin of the basinal rocks to the south of the extension, and in adjacent cover rocks of the Yangtze craton. Triassic and Early Jurassic synkinematic granitoids are widespread across the western Qinling belt, as well as in the Songpan-Ganzi basin. Orogenic lode gold deposits along brittle-ductile shear zones occur within greenschist-facies, highly deformed, Devonian and younger clastic rocks of the central zone. Mainly coarse-grained gold, along with pyrite, pyrrhotite, arsenopyrite, and minor base metal sulfides, occur in networks of quartz veinlets, brecciated wall rock, and are dissminated in altered wall rock. Isotopic dates suggest that the deposits formed during the Late Triassic to Middle Jurassic as the leading edge of the Yangtze craton was thrust beneath rocks of the western Qinling belt. Many gold-bearing placers are distributed along the river

  8. The late cretaceous Donlin Creek gold deposit, Southwestern Alaska: Controls on epizonal ore formation

    USGS Publications Warehouse

    Goldfarb, R.J.; Ayuso, R.; Miller, M.L.; Ebert, S.W.; Marsh, E.E.; Petsel, S.A.; Miller, L.D.; Bradley, D.; Johnson, Chad; McClelland, W.

    2004-01-01

    -10 per mil, with the sulfur derived from diagenetic pyrite and organic matter within ihe flysch basin. A smaller group of ??34S measurements, which shows values as depleted as -27 per mil, suggests a different local sulfur reservoir in the basin for the later hydrothermal episode dominated by stibnite. Initial ENd of -8.7 to -3.1 and 87Sr/86Sr measurements of 0.706 to 0.709 for the ore-hosting dikes also indicate a crustal reservoir for some of the Late Cretaceous magmatism. Overlapping lead isotope data for these intrusive rocks and for sulfide minerals suggest a crustal contribution for the lead in both. Copper- and gold-bearing stockwork veinlets in hornfels occur at Dome, a prospect located at the northern end of the Donlin Creek deposit. These stockworks are cut by the younger auriferous gold veins that define the main Donlin Creek gold mineralization. Highly saline, gas-rich, heterogeneously trapped fluids deposited the stockworks at temperatures approximately 100??C hotter than those of the main gold-forming event at Donlin Creek. The genetic relationship of the Dome prospect to the main Donlin Creek gold resource is equivocal. The epizonal Donlin Creek deposit shows affinities to the gold systems interpreted by various workers as orogenic or intrusion related; it shows important differences from typical epithermal and Carlin-like deposits. The ore-forming fluids were derived by either broad-scale metamorphic devolatilization above rising mantle melts or exsolution from a magma that was dominated by a significant flysch melt component. ??2004 by Economic Geology.

  9. Insights into the mechanism for gold catalysis: behaviour of gold(I) amide complexes in solution.

    PubMed

    Bobin, Mariusz; Day, Iain J; Roe, Stephen M; Viseux, Eddy M E

    2013-05-14

    We report the synthesis and activity of new mononuclear and dinuclear gold amide complexes 1-7. The dinuclear complexes 6b and 7 were characterised by single crystal X-ray analysis. We also report solution NMR and freezing point depression experiments to rationalise their behaviour in solution and question the de-ligation process invoked in gold catalysis. PMID:23478402

  10. Tectonic setting of Late Cenozoic gold mineralization in the gold belt of Costa Rica

    SciTech Connect

    Deruyter, V.D.

    1985-01-01

    The Gold Belt of Costa Rica is a northwest-elongated zone 15 km wide by 120 km long containing numerous auriferous quartz veins and pyritic silicified patterns upon which abundant small mines are developed. Gold veins are related principally to northeast-southwest and north-south striking, steeply dipping faults. Higher grade ore and thicker veins invariably occur at intersections of these fracture orientations, indicating simultaneous opening at the time of gold introduction. Restriction of gold veins to the northwest-trending arc of Miocene Aguacate Group andesite volcanic rocks, a product of Cocos Plate subduction, suggested approximately coeval formation, but recognition by the writer of the important role played by 2-5 m.y. old altered, gold mineralized rhyolite dikes intruded along north-south gold vein structures and intimately involved with high grade ores at the Esperanza Mine and Rio Chiquito prospect, for example, suggest a much younger period of fracturing and gold introduction. The rhyolite intrusions are more brittle and stockwork mineralized than andesite host rocks and form bulk tonnage gold targets. Initiation of right-lateral movement along the north-south Panama Fracture Zone at 5 m.y.a. within the pattern of northeastward Cocos Plate subduction may have tapped rhyolites from subvolcanic magma chambers into new faults.

  11. Linking gold nanoparticles with conductive 1,4-phenylene diisocyanide-gold oligomers.

    PubMed

    Kestell, John; Abuflaha, Rasha; Boscoboinik, J Anibal; Bai, Yun; Bennett, Dennis W; Tysoe, Wilfred T

    2013-02-18

    It is demonstrated that 1,4-phenylene diisocyanide (PDI)-gold oligomers can spontaneously bridge between gold nanoparticles on mica, thereby providing a strategy for electrically interconnecting nanoelectrodes. The barrier height of the bridging oligomer is 0.10 ± 0.02 eV, within the range of previous single-molecule measurements of PDI.

  12. Control of gold surface diffusion on si nanowires.

    PubMed

    den Hertog, Martien I; Rouviere, Jean-Luc; Dhalluin, Florian; Desré, Pierre J; Gentile, Pascal; Ferret, Pierre; Oehler, Fabrice; Baron, Thiery

    2008-05-01

    Silicon nanowires (NW) were grown by the vapor-liquid-solid mechanism using gold as the catalyst and silane as the precursor. Gold from the catalyst particle can diffuse over the wire sidewalls, resulting in gold clusters decorating the wire sidewalls. The presence or absence of gold clusters was observed either by high angle annular darkfield scanning transmission electron microscopy images or by scanning electron microscopy. We find that the gold surface diffusion can be controlled by two growth parameters, the silane partial pressure and the growth temperature, and that the wire diameter also affects gold diffusion. Gold clusters are not present on the NW side walls for high silane partial pressure, low temperature, and small NW diameters. The absence or presence of gold on the NW sidewall has an effect on the sidewall morphology. Different models are qualitatively discussed. The main physical effect governing gold diffusion seems to be the adsorption of silane on the NW sidewalls. PMID:18422363

  13. Advanced isotope separation

    SciTech Connect

    Not Available

    1982-05-04

    The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems.

  14. Quantitative Determination of Isotope Ratios from Experimental Isotopic Distributions

    PubMed Central

    Kaur, Parminder; O’Connor, Peter B.

    2008-01-01

    Isotope variability due to natural processes provides important information for studying a variety of complex natural phenomena from the origins of a particular sample to the traces of biochemical reaction mechanisms. These measurements require high-precision determination of isotope ratios of a particular element involved. Isotope Ratio Mass Spectrometers (IRMS) are widely employed tools for such a high-precision analysis, which have some limitations. This work aims at overcoming the limitations inherent to IRMS by estimating the elemental isotopic abundance from the experimental isotopic distribution. In particular, a computational method has been derived which allows the calculation of 13C/12C ratios from the whole isotopic distributions, given certain caveats, and these calculations are applied to several cases to demonstrate their utility. The limitations of the method in terms of the required number of ions and S/N ratio are discussed. For high-precision estimates of the isotope ratios, this method requires very precise measurement of the experimental isotopic distribution abundances, free from any artifacts introduced by noise, sample heterogeneity, or other experimental sources. PMID:17263354

  15. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  16. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  17. ISOTOPE FRACTIONATION PROCESS

    DOEpatents

    Clewett, G.H.; Lee, DeW.A.

    1958-05-20

    A new method is described for isotopic enrichment of uranium. It has been found that when an aqueous acidic solution of ionic tetravalent uraniunn is contacted with chelate complexed tetravalent uranium, the U/sup 238/ preferentially concentrates in the complexed phase while U/sup 235/ concentrates in the ionic phase. The effect is enhanced when the chelate compound is water insoluble and is dissolved in a water-immiscible organic solvent. Cupferron is one of a number of sultable complexing agents, and chloroform is a suitable organic solvent.

  18. A porphyrin complex of Gold(I): (Phosphine)gold(I) azides as cation precursors

    PubMed Central

    Partyka, David V.; Robilotto, Thomas J.; Zeller, Matthias; Hunter, Allen D.; Gray, Thomas G.

    2008-01-01

    A silver- and Brönsted acid-free protocol for generating the (tricyclohexylphosphine)gold(I) cation from the corresponding azide complexes is disclosed. The gold(I) cations so liberated are trapped by complexation with octaethylporphyrin. The first structurally authenticated gold(I) porphyrin complex crystallizes with formula C72H112Au2F12N4P2Sb2, space group C2/c, a = 21.388 (4), b = 19.679 (4), c = 19.231 (3) Å; β = 111.030 (3)°. Solution spectroscopic studies indicate that the di-gold complex fragments on dissolution in organic solvents. Approximate density-functional theory calculations find an electrostatic origin for the binding of two gold(I) centers to the unprotonated nitrogen atoms, despite greater orbital density on the porphyrin meso carbons. PMID:18780788

  19. East asian gold: Deciphering the anomaly of phanerozoic gold in precambrian cratons

    USGS Publications Warehouse

    Goldfarb, R.J.; Hart, C.; Davis, G.; Groves, D.

    2007-01-01

    Early Cretaceous orogenic gold deposits in eastern Asia are globally unique in that large Phanerozoic lode gold deposits occur in Archean-Paleoproterozoic cratons. In the northern Pacific region, ca. 125 Ma orogenic gold deposits in the North China, Yangzte, and Siberian craton margins, as well as in young terranes in California, may ultimately relate to the giant Cretaceous mantle plume in the southern Pacific basin and the relatively rapid tectonic consequences along both continental margins from resulting Pacific plate reconfigurations. In eastern Asia, such consequences include reactivation of and fluid flow along major fault systems, with fluid focusing into simultaneously forming, isolated core complexes of uncertain genesis. Deposition of gold ores in previously devolatilized high-grade Precambrian metamorphic rocks requires an exotic source of ore fluid, most likely subducted Mesozoic oceanic crust and/or overlying sediment. An implication is that Phanerozoic metamorphic core complexes in other destabilized craton margins could host large gold resources. ?? 2007 by Economic Geology.

  20. Mass-independent isotope effects.

    PubMed

    Buchachenko, Anatoly L

    2013-02-28

    Three fundamental properties of atomic nuclei-mass, spin (and related magnetic moment), and volume-are the source of isotope effects. The mostly deserved and popular, with almost hundred-year history, is the mass-dependent isotope effect. The first mass-independent isotope effect which chemically discriminates isotopes by their nuclear spins and nuclear magnetic moments rather than by their masses was detected in 1976. It was named as the magnetic isotope effect because it is controlled by magnetic interaction, i.e., electron-nuclear hyperfine coupling in the paramagnetic species, the reaction intermediates. The effect follows from the universal physical property of chemical reactions to conserve angular momentum (spin) of electrons and nuclei. It is now detected for oxygen, silicon, sulfur, germanium, tin, mercury, magnesium, calcium, zinc, and uranium in a great variety of chemical and biochemical reactions including those of medical and ecological importance. Another mass-independent isotope effect was detected in 1983 as a deviation of isotopic distribution in reaction products from that which would be expected from the mass-dependent isotope effect. On the physical basis, it is in fact a mass-dependent effect, but it surprisingly results in isotope fractionation which is incompatible with that predicted by traditional mass-dependent effects. It is supposed to be a function of dynamic parameters of reaction and energy relaxation in excited states of products. The third, nuclear volume mass-independent isotope effect is detected in the high-resolution atomic and molecular spectra and in the extraction processes, but there are no unambiguous indications of its importance as an isotope fractionation factor in chemical reactions.

  1. Zr Isotope Systematics of Allende CAIs

    NASA Astrophysics Data System (ADS)

    Mane, P.; Romaniello, S. J.; Brennecka, G. A.; Williams, C. D.; Wadhwa, M.

    2014-09-01

    We report high precision Zr isotopic measurements of CAIs from Allende CV3 meteorite. Our results indicate a uniform Zr isotopic composition in the CAI forming region, with enrichment in r-process isotope 96Zr.

  2. ENVIRONMENTAL ISOTOPES FOR RESOLUTION OF HYDROLOGY PROBLEMS

    EPA Science Inventory

    The use of environmental isotopes as tracers in the hydrosphere is increasing as analytical instrumentation improves and more applications are discovered. There exists still misconceptions on the role of isotopes in resolving hydrology problems. Naturally occurring isotopes in th...

  3. Fluorinated colloidal gold immunolabels for imaging select proteins in parallel with lipids using high-resolution secondary ion mass spectrometry

    PubMed Central

    Wilson, Robert L.; Frisz, Jessica F.; Hanafin, William P.; Carpenter, Kevin J.; Hutcheon, Ian D.; Weber, Peter K.; Kraft, Mary L.

    2014-01-01

    The local abundance of specific lipid species near a membrane protein is hypothesized to influence the protein’s activity. The ability to simultaneously image the distributions of specific protein and lipid species in the cell membrane would facilitate testing these hypotheses. Recent advances in imaging the distribution of cell membrane lipids with mass spectrometry have created the desire for membrane protein probes that can be simultaneously imaged with isotope labeled lipids. Such probes would enable conclusive tests of whether specific proteins co-localize with particular lipid species. Here, we describe the development of fluorine-functionalized colloidal gold immunolabels that facilitate the detection and imaging of specific proteins in parallel with lipids in the plasma membrane using high-resolution SIMS performed with a NanoSIMS. First, we developed a method to functionalize colloidal gold nanoparticles with a partially fluorinated mixed monolayer that permitted NanoSIMS detection and rendered the functionalized nanoparticles dispersible in aqueous buffer. Then, to allow for selective protein labeling, we attached the fluorinated colloidal gold nanoparticles to the nonbinding portion of antibodies. By combining these functionalized immunolabels with metabolic incorporation of stable isotopes, we demonstrate that influenza hemagglutinin and cellular lipids can be imaged in parallel using NanoSIMS. These labels enable a general approach to simultaneously imaging specific proteins and lipids with high sensitivity and lateral resolution, which may be used to evaluate predictions of protein co-localization with specific lipid species. PMID:22284327

  4. Nonlinear scattering in gold nanospheres

    NASA Astrophysics Data System (ADS)

    Shen, Po-Ting; Lin, Cheng-Wei; Liu, Hsiang-Lin; Chu, Shi-Wei

    2016-03-01

    Nonlinearity enhanced by noble metallic nanoparticles provide novel light manipulation capabilities and innovative applications. Recently, we discovered a new nonlinear phenomenon on the scattering of metallic nanoparticles by continuous-wave (CW) lasers at the intensity around MW/cm2 and applied to super-resolution microscopy that allowed spatial resolution of plasmonic nanostructures down to λ/8. However, its mechanism is still unknown. In this work, we elaborate the mechanism behind the nonlinear scattering of gold nanospheres. There are four possible candidates: intraband transition, interband transition, hot electron, and hot lattice. Each of them has a corresponding nonlinear refractive index (n2), which is related to temporal dependence of its light-matter interaction. We first measure the intensity dependence of nonlinear scattering to extract the effective n2 value. We find out it has the closest n2 value to hot lattice, which causes either the shift or weakening of the surface plasmon resonance (SPR). To further verify the mechanism, the nanospheres are heated up with both a hot plate and a CW laser, and the variation of single-particle SPR scattering spectra are measured. In both cases, more than 50% reduction of scattering is observed, when temperature rises a few tens of degrees or when illumination intensity reaches the order of 1MW/cm2. Thus, we conclude the spectra variation by the two different heating source, as well as the nonlinear scattering are all due to hot lattice, and subsequent permittivity change with temperature. The innovative concept of hot lattice plasmonics not only opens up a new dimension for nonlinear plasmonics, but also predicts the potential of similar nonlinearity in other materials as long as their permittivity changes with temperature.

  5. Phonon coherence in isotopic silicon superlattices

    SciTech Connect

    Frieling, R.; Radek, M.; Eon, S.; Bracht, H.; Wolf, D. E.

    2014-09-29

    Recent experimental and theoretical investigations have confirmed that a reduction in thermal conductivity of silicon is achieved by isotopic silicon superlattices. In the present study, non-equilibrium molecular dynamics simulations are performed to identify the isotope doping and isotope layer ordering with minimum thermal conductivity. Furthermore, the impact of isotopic intermixing at the superlattice interfaces on phonon transport is investigated. Our results reveal that the coherence of phonons in isotopic Si superlattices is prevented if interfacial mixing of isotopes is considered.

  6. Precipitation of lamellar gold nanocrystals in molten polymers

    NASA Astrophysics Data System (ADS)

    Palomba, M.; Carotenuto, G.

    2016-05-01

    Non-aggregated lamellar gold crystals with regular shape (triangles, squares, pentagons, etc.) have been produced by thermal decomposition of gold chloride (AuCl) molecules in molten amorphous polymers (polystyrene and poly(methyl methacrylate)). Such covalent inorganic gold salt is high soluble into non-polar polymers and it thermally decomposes at temperatures compatible with the polymer thermal stability, producing gold atoms and chlorine radicals. At the end of the gold precipitation process, the polymer matrix resulted chemically modified because of the partial cross-linking process due to the gold atom formation reaction.

  7. Si Isotopes of Brownleeite

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Messenger, Scott R.; Ito, M.; Keller, L. P.; Clemett, S. J.; Jones, J. H.; Tatsuoka, H.; Zolensky, M. E.; Tatsuoka, H.

    2010-01-01

    Brownleeite is a manganese silicide, ideally stoichiometric MnSi, not previously observed in nature until its discovery within an interplanetary dust particle (IDP) that likely originated from a comet [1]. Three discrete brownleeite grains in the IDP L2055 I3 (4 microns in size, hereafter IDP I3) were identified with maximum dimensions of 100, 250 and 600 nm and fully analyzed using scanning-transmission electron microscopy (STEM) [1]. One of the grains (100 nm in size) was poikilitically enclosed by low-Fe, Mn-enriched (LIME) olivine. LIME olivine is epitaxial to the brownleeite with the brownleeite (200) parallel to the olivine c* [1]. LIME olivine is an enigmatic phase first reported from chondritic porous IDPs and some unequilibrated ordinary chondrites [ 2], that is commonly observed in chondritic-porous IDPs. Recently, LIME olivine has been also found in comet Wild-2 (Stardust) samples [3], indicating that LIME olivine is a common mineral component of comets. LIME olivine has been proposed to form as a high temperature condensate in the protosolar nebula [2]. Brownleeite grains also likely formed as high-temperature condensates either in the early Solar System or in the outflow of an evolved star or supernova explosion [1]. The isotopic composition of the brownleeite grains may strongly constrain their ultimate source. To test this hypothesis, we performed isotopic analyses of the brownleeite and the associated LIME olivine, using the NASA/JSC NanoSIMS 50L ion microprobe.

  8. Method of separating boron isotopes

    DOEpatents

    Jensen, R.J.; Thorne, J.M.; Cluff, C.L.

    1981-01-23

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)-dichloroborane as the feed material. The photolysis can readily by achieved with CO/sub 2/ laser radiation and using fluences significantly below those required to dissociate BCl/sub 3/.

  9. Method of separating boron isotopes

    DOEpatents

    Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.

    1984-01-01

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  10. Aleutian terranes from Nd isotopes

    NASA Technical Reports Server (NTRS)

    Kay, R. W.; Kay, S. M.; Rubenstone, J. L.

    1986-01-01

    Nd isotope ratios substantiate the identification of oceanic crustal terranes within the continental crustal basement of the Aleutian island arc. The oceanic terranes are exposed in the westernmost Aleutians, but to the east, they are completely buried by isotopically distinct arc-volcanic rocks. Analogous oceanic terranes may be important components of the terrane collages that comprise the continents.

  11. The straight dope on isotopes

    NASA Astrophysics Data System (ADS)

    Thornton, Brett F.; Burdette, Shawn C.

    2013-12-01

    A century ago this month, Frederick Soddy described and named isotopes in the pages of Nature. Brett F. Thornton and Shawn C. Burdette discuss how chemists have viewed and used isotopes since then -- either as chemically identical or chemically distinct species as the need required and technology allowed.

  12. Method for separating krypton isotopes

    SciTech Connect

    Porter, J.T.

    1980-10-28

    Methods and apparatus for separating krypton isotopes utilizing low temperature selective infrared excitation of 85krypton difluoride in an isotopic compound mixture. Multiphoton ir excitation and uv excitation techniques are used, as well as cryogenic matrix isolation and inert buffer gas isolation techniques.

  13. Calcium isotopes in wine

    NASA Astrophysics Data System (ADS)

    Holmden, C. E.

    2011-12-01

    The δ 44/40Ca values of bottled wine vary between -0.76% to -1.55% on the seawater scale and correlate weakly with inverse Ca concentration and Mg/Ca ratio, such that the lowest δ 44/40Ca values have the highest Ca concentrations and lowest Mg/Ca ratios. The correlation is notable in the sense that the measured wines include both whites and reds sampled from different wine growing regions of the world, and cover a wide range of quality. Trends among the data yield clues regarding the cause of the observed isotopic fractionation. White wines, and wines generally perceived to be of lower quality, have lower δ 44/40Ca values compared to red wines and wines of generally perceived higher quality. Quality was assessed qualitatively through sensory evaluation, price, and scores assigned by critics. The relationship between δ 44/40Ca and wine quality was most apparent when comparing wines of one varietal from one producer from the same growing region. In the vineyard, wine quality is related to factors such as the tonnage of the crop and the ripeness of the grapes at the time of harvesting, the thickness of the skins for reds, the age of the vines, as well as the place where the grapes were grown (terroir). Quality is also influenced by winemaking practices such as fermentation temperature, duration of skin contact, and barrel ageing. Accordingly, the relationship between δ 44/40Ca and wine quality may originate during grape ripening in the vineyard or during winemaking in the cellar. We tested the grape ripening hypothesis using Merlot grapes sampled from a vineyard in the Okanagan, British Columbia, using sugar content (degrees Brix) as an indicator of ripeness. The grapes were separated into pulp, skin, and pip fractions and were analyzed separately. Thus far, there is no clear evidence for a systematic change in δ 44/40Ca values associated with progressive ripening of grapes in the vineyard. On the day of harvesting, the δ 44/40Ca value of juice squeezed from

  14. Engineered Gold Nanoparticles and Plant Adaptation Potential.

    PubMed

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-12-01

    Use of metal nanoparticles in biological system has recently been recognised although little is known about their possible effects on plant growth and development. Nanoparticles accumulation, translocation, growth response and stress modulation in plant system is not well understood. Plants exposed to gold and gold nanoparticles have been demonstrated to exhibit both positive and negative effects. Their growth and yield vary from species to species. Cytoxicity of engineered gold nanoparticles depends on the concentration, particle size and shape. They exhibit increase in vegetative growth and yield of fruit/seed at lower concentration and decrease them at higher concentration. Studies have shown that the gold nanoparticles exposure has improved free radical scavenging potential and antioxidant enzymatic activities and alter micro RNAs expression that regulate different morphological, physiological and metabolic processes in plants. These modulations lead to improved plant growth and yields. Prior to the use of gold nanoparticles, it has been suggested that its cost may be calculated to see if it is economically feasible. PMID:27637892

  15. Therapeutic gold, silver, and platinum nanoparticles.

    PubMed

    Yamada, Miko; Foote, Matthew; Prow, Tarl W

    2015-01-01

    There are an abundance of nanoparticle technologies being developed for use as part of therapeutic strategies. This review focuses on a narrow class of metal nanoparticles that have therapeutic potential that is a consequence of elemental composition and size. The most widely known of these are gold nanoshells that have been developed over the last two decades for photothermal ablation in superficial cancers. The therapeutic effect is the outcome of the thickness and diameter of the gold shell that enables fine tuning of the plasmon resonance. When these metal nanoparticles are exposed to the relevant wavelength of light, their temperature rapidly increases. This in turn induces a localized photothermal ablation that kills the surrounding tumor tissue. Similarly, gold nanoparticles have been developed to enhance radiotherapy. The high-Z nature of gold dramatically increases the photoelectric cross-section. Thus, the photoelectric effects are significantly increased. The outcome of these interactions is enhanced tumor killing with lower doses of radiation, all while sparing tissue without gold nanoparticles. Silver nanoparticles have been used for their wound healing properties in addition to enhancing the tumor-killing effects of anticancer drugs. Finally, platinum nanoparticles are thought to serve as a reservoir for platinum ions that can induce DNA damage in cancer cells. The future is bright with the path to clinical trials is largely cleared for some of the less complex therapeutic metal nanoparticle systems.

  16. Simple fabrication of gold nanobelts and patterns.

    PubMed

    Zhang, Renyun; Hummelgård, Magnus; Olin, Håkan

    2012-01-01

    Gold nanobelts are of interest in several areas; however, there are only few methods available to produce these belts. We report here on a simple evaporation induced self-assembly (EISA) method to produce porous gold nanobelts with dimensions that scale across nanometer (thickness ∼80 nm) and micrometer (width ∼20 µm), to decimeter (length ∼0.15 m). The gold nanobelts are well packed on the beaker wall and can be easily made to float on the surface of the solution for depositing onto other substrates. Microscopy showed that gold nanobelts had a different structure on the two sides of the belt; the density of gold nanowires on one side was greater than on the other side. Electrical measurements showed that these nanobelts were sensitive to compressive or tensile forces, indicating a potential use as a strain sensor. The patterned nanobelts were further used as a template to grow ZnO nanowires for potential use in applications such as piezo-electronics.

  17. Engineered Gold Nanoparticles and Plant Adaptation Potential

    NASA Astrophysics Data System (ADS)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-09-01

    Use of metal nanoparticles in biological system has recently been recognised although little is known about their possible effects on plant growth and development. Nanoparticles accumulation, translocation, growth response and stress modulation in plant system is not well understood. Plants exposed to gold and gold nanoparticles have been demonstrated to exhibit both positive and negative effects. Their growth and yield vary from species to species. Cytoxicity of engineered gold nanoparticles depends on the concentration, particle size and shape. They exhibit increase in vegetative growth and yield of fruit/seed at lower concentration and decrease them at higher concentration. Studies have shown that the gold nanoparticles exposure has improved free radical scavenging potential and antioxidant enzymatic activities and alter micro RNAs expression that regulate different morphological, physiological and metabolic processes in plants. These modulations lead to improved plant growth and yields. Prior to the use of gold nanoparticles, it has been suggested that its cost may be calculated to see if it is economically feasible.

  18. Gold Nanoparticle Labels Amplify Ellipsometric Signals

    NASA Technical Reports Server (NTRS)

    Venkatasubbarao, Srivatsa

    2008-01-01

    The ellipsometric method reported in the immediately preceding article was developed in conjunction with a method of using gold nanoparticles as labels on biomolecules that one seeks to detect. The purpose of the labeling is to exploit the optical properties of the gold nanoparticles in order to amplify the measurable ellipsometric effects and thereby to enable ultrasensitive detection of the labeled biomolecules without need to develop more-complex ellipsometric instrumentation. The colorimetric, polarization, light-scattering, and other optical properties of nanoparticles depend on their sizes and shapes. In the present method, these size-and-shape-dependent properties are used to magnify the polarization of scattered light and the diattenuation and retardance of signals derived from ellipsometry. The size-and-shape-dependent optical properties of the nanoparticles make it possible to interrogate the nanoparticles by use of light of various wavelengths, as appropriate, to optimally detect particles of a specific type at high sensitivity. Hence, by incorporating gold nanoparticles bound to biomolecules as primary or secondary labels, the performance of ellipsometry as a means of detecting the biomolecules can be improved. The use of gold nanoparticles as labels in ellipsometry has been found to afford sensitivity that equals or exceeds the sensitivity achieved by use of fluorescence-based methods. Potential applications for ellipsometric detection of gold nanoparticle-labeled biomolecules include monitoring molecules of interest in biological samples, in-vitro diagnostics, process monitoring, general environmental monitoring, and detection of biohazards.

  19. Controlling Gold Nanoclusters by Diphospine Ligands

    SciTech Connect

    Chen, Jing; Zhang, Qianfan; Bonaccorso, Timary A.; Williard, Paul G.; Wang, Lai S.

    2014-01-08

    We report the synthesis and structure determination of a new Au22 nanocluster coordinated by six bidentate diphosphine ligands: 1,8-bis(diphenylphosphino) octane (L8 for short). Single crystal x-ray crystallography and electrospray ionization mass spectrometry show that the cluster assembly is neutral and can be formulated as Au22(L8)6. The Au22 core consists of two Au11 units clipped together by four L8 ligands, while the additional two ligands coordinate to each Au11 unit in a bidentate fashion. Eight gold atoms at the interface of the two Au11 units are not coordinated by any ligands. Four short gold-gold distances (2.64?2.65 Å) are observed at the interface of the two Au11 clusters as a result of the clamping force of the four clipping ligands and strong electronic interactions. The eight uncoordinated surface gold atoms in the Au22(L8)6 nanocluster are unprecedented in atom-precise gold nanoparticles and can be considered as potential in-situ active sites for catalysis.

  20. Radiofrequency Heating Pathways for Gold Nanoparticles

    PubMed Central

    Collins, C. B.; McCoy, R. S.; Ackerson, B. J.; Collins, G. J.

    2015-01-01

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry and physics, including the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell may all strongly influence to what extent a nanoparticle heats in an RF field. Aspects of RF include: power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields, and also influence the extent to which a gold nanoparticle heats in RF. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments. PMID:24962620

  1. Therapeutic gold, silver, and platinum nanoparticles.

    PubMed

    Yamada, Miko; Foote, Matthew; Prow, Tarl W

    2015-01-01

    There are an abundance of nanoparticle technologies being developed for use as part of therapeutic strategies. This review focuses on a narrow class of metal nanoparticles that have therapeutic potential that is a consequence of elemental composition and size. The most widely known of these are gold nanoshells that have been developed over the last two decades for photothermal ablation in superficial cancers. The therapeutic effect is the outcome of the thickness and diameter of the gold shell that enables fine tuning of the plasmon resonance. When these metal nanoparticles are exposed to the relevant wavelength of light, their temperature rapidly increases. This in turn induces a localized photothermal ablation that kills the surrounding tumor tissue. Similarly, gold nanoparticles have been developed to enhance radiotherapy. The high-Z nature of gold dramatically increases the photoelectric cross-section. Thus, the photoelectric effects are significantly increased. The outcome of these interactions is enhanced tumor killing with lower doses of radiation, all while sparing tissue without gold nanoparticles. Silver nanoparticles have been used for their wound healing properties in addition to enhancing the tumor-killing effects of anticancer drugs. Finally, platinum nanoparticles are thought to serve as a reservoir for platinum ions that can induce DNA damage in cancer cells. The future is bright with the path to clinical trials is largely cleared for some of the less complex therapeutic metal nanoparticle systems. PMID:25521618

  2. Quantum sized, thiolate-protected gold nanoclusters.

    PubMed

    Jin, Rongchao

    2010-03-01

    The scientific study of gold nanoparticles (typically 1-100 nm) has spanned more than 150 years since Faraday's time and will apparently last longer. This review will focus on a special type of ultrasmall (<2 nm) yet robust gold nanoparticles that are protected by thiolates, so-called gold thiolate nanoclusters, denoted as Au(n)(SR)(m) (where, n and m represent the number of gold atoms and thiolate ligands, respectively). Despite the past fifteen years' intense work on Au(n)(SR)(m) nanoclusters, there is still a tremendous amount of science that is not yet understood, which is mainly hampered by the unavailability of atomically precise Au(n)(SR)(m) clusters and by their unknown structures. Nonetheless, recent research advances have opened an avenue to achieving the precise control of Au(n)(SR)(m) nanoclusters at the ultimate atomic level. The successful structural determination of Au(102)(SPhCOOH)(44) and [Au(25)(SCH(2)CH(2)Ph)(18)](q) (q = -1, 0) by X-ray crystallography has shed some light on the unique atomic packing structure adopted in these gold thiolate nanoclusters, and has also permitted a precise correlation of their structure with properties, including electronic, optical and magnetic properties. Some exciting research is anticipated to take place in the next few years and may stimulate a long-lasting and wider scientific and technological interest in this special type of Au nanoparticles. PMID:20644816

  3. Molybdenum Isotopes and Soil Processes

    NASA Astrophysics Data System (ADS)

    Siebert, C.; Pett-Ridge, J. C.; Halliday, A. N.; Burton, K. W.

    2011-12-01

    The oxygenation state of Earth's oceans is a driver of evolution and extinction events as well as climate change. In recent years stable isotope fractionation of redox sensitive elements such as molybdenum (Mo) have been used as quantitative tracers of past redox-conditions in a number of marine environments. However, little is known about the processes controlling the Mo isotope compositions of the riverine inputs to the oceans and their short- and long-term variations. Several recent studies [Archer & Vance, 2008; Pearce et al., 2010] have shown that many river waters have heavy Mo isotope compositions. In some terrestrial weathering environments dissolved Mo isotope compositions in rivers are controlled by the catchment lithology [Neubert et al., 2011]. However, many rivers show fractionation of Mo isotopes relative to their catchment lithology. Possible mechanisms causing this fractionation are chemical weathering and pedogenic processes. This study has investigated the behavior of Mo isotopes during weathering of basalt under different conditions. Results from oxic to reducing soil profiles in Hawaii show that redox conditions during soil formation can control Mo isotope compositions in soils. Reducing soil profiles have light isotope compositions whereas oxidizing profiles are heavy. This general isotope behavior is confirmed by results from soil profiles from Iceland. Here reducing layers within the profiles show marked negative isotope excursions. In oxic profiles a surprisingly strong interaction of Mo with organic matter can be observed producing significant Mo isotope fractionation. This behavior might explain long term retention of Mo in soils besides its high mobility in molybdate form. Mo associated with organic matter is bioavailable and essential for processes like nitrogen fixation. In addition, we observe that fractionation relative to the source rock is dependent on the degree of weathering, i.e. relatively un-weathered profiles do not show

  4. Gold grade variation and particle microchemistry in exploration pits of the Batouri gold district, SE Cameroon

    NASA Astrophysics Data System (ADS)

    Vishiti, A.; Suh, C. E.; Lehmann, B.; Egbe, J. A.; Shemang, E. M.

    2015-11-01

    The Batouri area hosts lode-gold mineralization under several-m-thick lateritic cover. Pitting to bed rock on a geochemical Au anomaly defined from previous reconnaissance soil sampling identified five horizons ranging from saprock at the base to laterite at the top. Analysis of bulk samples from each horizon by fire assay shows that most of the horizons are barren although 119 ppb and 48 ppb Au values were obtained from one laterite horizon and one saprolite horizon, respectively, from two separate pits. All the horizons were panned and particulate gold was also recovered only from these two horizons. The gold grains from both horizons are morphologically and compositionally indistinguishable with rare quartz, pyrite and galena inclusions. The grains have irregular, sub-rounded, bean to elongated shapes and they show a remarkable core-rim zonation. Electron microprobe analysis of the grains recorded high gold content in the rims (86.3-100 wt%) and along fissures within the grains (95.1-100 wt%). The cores are relatively Ag rich (11.8-14 wt% Ag) while the rims (0.63-13.7 wt% Ag, most of the values fall within the lower limit of this range) and fissures (0.03-5.02 wt% Ag) are poor in Ag. The low Ag concentration in the rims and along fissures is attributed to preferential leaching of Ag; a process recognized in gold grains and platiniferous alloys from alluvia. The core composition of the grains is similar to that of primary gold composition in the bedrock. These results show that gold in the soil is relic particulate gold derived from the primary source with no evidence of secondary gold precipitation in the weathering cycle. In all the pits no horizon was systematically enriched in gold suggesting there has been no chemical remobilization of gold in this environment. Rather the dispersion of gold here is in the particulate form. Therefore combining particulate gold features with assay data is relevant to exploration in such tropical environments.

  5. Isotope separation by laser means

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1982-06-15

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  6. Correlated optical and isotopic nanoscopy

    PubMed Central

    Saka, Sinem K.; Vogts, Angela; Kröhnert, Katharina; Hillion, François; Rizzoli, Silvio O; Wessels, Johannes T.

    2014-01-01

    The isotopic composition of different materials can be imaged by secondary ion mass spectrometry. In biology, this method is mainly used to study cellular metabolism and turnover, by pulsing the cells with marker molecules such as amino acids labelled with stable isotopes (15N, 13C). The incorporation of the markers is then imaged with a lateral resolution that can surpass 100 nm. However, secondary ion mass spectrometry cannot identify specific subcellular structures like organelles, and needs to be correlated with a second technique, such as fluorescence imaging. Here, we present a method based on stimulated emission depletion microscopy that provides correlated optical and isotopic nanoscopy (COIN) images. We use this approach to study the protein turnover in different organelles from cultured hippocampal neurons. Correlated optical and isotopic nanoscopy can be applied to a variety of biological samples, and should therefore enable the investigation of the isotopic composition of many organelles and subcellular structures. PMID:24718107

  7. Molecular mechanisms and proposed targets for selected anticancer gold compounds.

    PubMed

    Casini, Angela; Messori, Luigi

    2011-01-01

    Nowadays, gold compounds constitute a family of very promising experimental agents for cancer treatment. Indeed, several gold(I) and gold(III) compounds were shown to manifest outstanding antiproliferative properties in vitro against selected human tumor cell lines and some of them performed remarkably well even in tumor models in vivo. Notably, the peculiar chemical properties of the gold centre impart innovative pharmacological profiles to gold-based metallodrugs most likely in relation to novel molecular mechanisms. The precise mechanisms through which cytotoxic gold compounds produce their biological effects are still largely unknown. Within this frame, the major aim of this review is to define the possible modes of action and the most probable biomolecular targets for a few representative gold compounds on which extensive biochemical and cellular data have been gathered. In particular, we will focus on auranofin and analogues, on gold(III) porphyrins and gold(III) dithiocarbamates. For these three families markedly distinct molecular mechanisms were recently invoked: a direct mitochondrial mechanism involving thioredoxin reductase inhibition in the case of the gold(I) complexes, the influence on some apoptotic proteins--i.e. MAPKs and Bcl-2--for gold(III) porphyrins, and the proteasome inhibition for gold(III) dithiocarbamates. In a few cases the distinct mechanisms may overlap. The general perspectives for the development of new gold compounds as effective anticancer agents with innovative modes of action are critically discussed. PMID:22039866

  8. Mineralogy, mineral chemistry, and paragenesis of gold, silver, and base-metal ores of the North Amethyst vein system, San Juan Mountains, Mineral County, Colorado

    USGS Publications Warehouse

    Foley, Nora K.; Caddey, Stanton W.; Byington, Craig B.; Vardiman, David M.

    1993-01-01

    Mineralogic, lead-isotopic, and fluid-inclusion characteristics of the younger association are similar to those of ores of the southern and central parts of the Creede mining district. In contrast, the gold and manganese-silicate assemblages of the older association are rare to absent in the southern and central parts of the district. The local and early occurrence of the manganese and gold assemblages may indicate that they formed in a small hydrothermal cell that predated the extensive hydrothermal system from which ores of the central and southern parts of the Creede district are proposed to have been deposited (Bethke, 1988). If similar early-stage cells were present in the southern and central parts of the district, they may have been replaced or overprinted by later assemblages, and they may remain to be discovered. In the latter case, mineral assemblages that formed at early stages in the paragenesis hold the most promise for gold exploration.

  9. Gold nanocrystals with DNA-directed morphologies

    PubMed Central

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P.; Kwon, Young Jik; Sim, Sang Jun

    2016-01-01

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology. PMID:27633935

  10. Light splitting in nanoporous gold and silver.

    PubMed

    Bosman, Michel; Anstis, Geoffrey R; Keast, Vicki J; Clarke, Jackson D; Cortie, Michael B

    2012-01-24

    Nanoporous gold and silver exhibit strong, omnidirectional broad-band absorption in the far-field. Even though they consist entirely of gold or silver atoms, these materials appear black and dull, in great contrast with the familiar luster of continuous gold and silver. The nature of these anomalous optical characteristics is revealed here by combining nanoscale electron energy loss spectroscopy with discrete dipole and boundary element simulations. It is established that the strong broad-band absorption finds its origin in nanoscale splitting of light, with great local variations in the absorbed color. This nanoscale polychromaticity results from the excitation of localized surface plasmon resonances, which are imaged and analyzed here with deep sub-wavelength, nanometer spatial resolution. We demonstrate that, with this insight, it is possible to customize the absorbance and reflectance wavelength bands of thin nanoporous films by only tuning their morphology.

  11. Gold nanocrystals with DNA-directed morphologies.

    PubMed

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P; Kwon, Young Jik; Sim, Sang Jun

    2016-01-01

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.

  12. Gold nanocrystals with DNA-directed morphologies

    NASA Astrophysics Data System (ADS)

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P.; Kwon, Young Jik; Sim, Sang Jun

    2016-09-01

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.

  13. Quantum Yield of Gold-Cathode Photomultipliers

    NASA Technical Reports Server (NTRS)

    Childs, Charles B.

    1961-01-01

    Two gold-cathode EMI 6255G tubes have been investigated for their quantum yield between 3100 and 1900 A. The tubes had cathodes of different appearances. One of these, numbered 3012, had a slight bluish tinge and was very transparent to visible light; the other, numbered 3021, had a definite gold coloration. The relative quantum yield of each tube was determined with the aid of a Cary model 14 recording spectrophotometer used as a monochromator. The monochromator relative-energy output was determined from the current output of a sodium-salicylate-coated RCA 1P21 photomultiplier. Each gold-cathode tube was then operated at 3000 v, and the central 1.8 cm cube of the cathode was exposed to the monochromator output.

  14. Gold nanocrystals with DNA-directed morphologies.

    PubMed

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P; Kwon, Young Jik; Sim, Sang Jun

    2016-01-01

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology. PMID:27633935

  15. Gold Veins near Great Falls, Maryland

    USGS Publications Warehouse

    Reed, John Calvin, Jr.; Reed, John C.

    1969-01-01

    Small deposits of native gold are present along an anastomosing system of quartz veins and shear zones just east of Great Falls, Montgomery County, Md. The deposits were discovered in 1861 and were worked sporadically until 1951, yielding more than 5,000 ounces of gold. The vein system and the principal veins within it strike a few degrees west of north, at an appreciable angle to foliation and fold axial planes in enclosing rocks of the Wissahickon Formation of late Precambrian (?) age. The veins cut granitic rocks of Devonian or pre-Devonian age and may be as young as Triassic. Further development of the deposits is unlikely under present economic conditions because of their generally low gold content and because much of the vein system lies on park property, but study of the Great Falls vein system may be useful in the search for similar deposits elsewhere in the Appalachian Piedmont.

  16. Catalysis by unsupported skeletal gold catalysts.

    PubMed

    Wittstock, Arne; Bäumer, Marcus

    2014-03-18

    Catalysis is one of the key technologies for the 21st century for achieving the required sustainability of chemical processes. Critical improvements are based on the development of new catalysts and catalytic concepts. In this context, gold holds great promise because it is more active and selective than other precious metal catalysts at low temperatures. However, gold becomes only chemically and catalytically active when it is nanostructured. Since the 1970s and 1980s, the first type of gold catalysts that chemists studied were small nanoparticles on oxidic supports. With the later onset of nanotechnology, a variety of nanostructured materials not requiring a support or organic stabilizers became available within about the last 10 years. Among these are gold nanofoams generated by combustion of gold compounds, nanotube membranes prepared by electroless deposition of gold inside a template, and corrosion-derived nanoporous gold. Even though these materials are macroscopic in their geometric dimensions (e.g., disks, cubes, and membranes with dimensions of millimeters), they are comprised of gold nanostructures, for example, in the form of ligaments as small as 15 nm in diameter (nanoporous gold, npAu). The nanostructure brings about a high surface to volume ratio and a large fraction of low coordinated surface atoms. In this Account, we discuss how unsupported materials are active catalysts for aerobic oxidation reaction in gas phase (oxidation of CO and primary alcohols), as well as liquid phase oxidation and reduction reactions. It turns out that the bonding and activation of molecular oxygen for gas phase oxidations strongly profits from trace amounts of an ad-metal residue such as silver. It is noteworthy that these catalysts still exhibit the special gold type chemistry, characterized by activity at very low temperatures and high selectivity for partial oxidations. For example, we can oxidize CO over these unsupported catalysts (npAu, nanotubes, and powder) at

  17. Direct formation of gold nanorods on surfaces using polymer-immobilised gold seeds.

    PubMed

    Abyaneh, Majid K; Parisse, Pietro; Casalis, Loredana

    2016-01-01

    Herein, we present the formation of gold nanorods (GNRs) on novel gold-poly(methyl methacrylate) (Au-PMMA) nanocomposite substrates with unprecedented growth control through the polymer molecular weight (M w) and gold-salt-to-polymer weight ratio. For the first time, GNRs have been produced by seed-mediated direct growth on surfaces that were pre-coated with polymer-immobilised gold seeds. A Au-PMMA nanocomposite formed by UV photoreduction has been used as the gold seed. The influence of polymer M w and gold concentration on the formation of GNRs has been investigated and discussed. The polymer nanocomposite formed with a lower M w PMMA and 20 wt % gold salt provides a suitable medium for growing well-dispersed GNRs. In this sample, the average dimension of produced GNRs is 200 nm in length with aspect ratios up to 10 and a distribution of GNRs to nanoparticles of nearly 22%. Suitable characterization techniques such as AFM and SEM have been used to support concept of the proposed growth method. PMID:27547597

  18. Double quantum light emission from gold nanowires and interacting gold nanospheres

    NASA Astrophysics Data System (ADS)

    Abid, M.; Abid, Mohamed; Brasselet, S.

    2013-09-01

    Second harmonic generation microscopy is used for the investigation of the nonlinear optical response of single gold nanowires and aggregates of quasi-spherical gold nanomaterials. Angular and spectral resolved approaches are performed to study the origin of the second harmonic emission (SH) from isolated gold nanowire, nanosphere and interacting nanospheres in aggregates. It is observed that the Second harmonic efficiency is enhanced when the excitation wavelength is resonant with the surface plasmon mode (SP) of the metallic nanomaterials. The angular resolved second harmonic analysis study demonstrated the presence of different origins (dipolar, quadrupolar and octupolar modes) involved in the nonlinear optical emission from gold nanowires and nanospheres. Our investigation demonstrates the important role of electric dipole arising from the breaking of the centrosymmetry at the surface of the nanowire and imperfect spherical shape of the gold nanospheres, and in the size regime below 50 nm. The increase of the aggregate and nanowire size induces the presence of interferences between higher orders (quadrupole) and dipole sources. For size higher than 50 nm, the analysis of the angular resolved emission pattern demonstrates the presence of retardation effects and the deviation from the dipolar emission picture. The results are in good agreement with the actual reported results in terms of character of emission. Finally, the SH emission of gold nanowire was spectrally analyzed for single gold nanowire and variable aggregates size. A clear SH emission is observed at 2ω for each excitation frequency ω with the presence of 2 photons visible photoluminescence emission (2PL).

  19. OCT imaging enhancement of ovarian cancer using gold and gold/silver nanorods

    NASA Astrophysics Data System (ADS)

    Shi, Yiwen; Fan, Shanhui; Chen, Shuohui; Jiang, Xia; Zhao, Qingliang; Ren, Qiushi; Cui, Daxiang; Zhou, Chuanqing

    2014-11-01

    For OCT imaging, enhancing contrast efficiency will lead to significant improvements in the detection limits in cancer. Recently, noble metal nanoparticles are considered to be better contrast agents than traditional ones, especially for gold and silver. Silver nanoparticles have more attractive optical properties than gold nanoparticles. But they are employed far less because of its poor chemical stability. In this paper, we introduced our recent progress on a new application of using gold/silver alloy nanoparticles as OCT contrast agents in the detection of ovarian cancer. The scattering properties and sensitivity of silver were investigated. By means of tuning LSPR wavelengths of the nanoparticles, they were able to match the central wavelength of light used in OCT. Before carrying out animal experiments, we evaluated the different performances of alloy nanoparticles and gold nanorods in vitro. It has been sufficiently demonstrated that the alloy nanoparticles revealed stronger OCT signals than gold nanorods because of the better scattering properties. Then in vivo study, we compared the contrast enhancement of gold/silver alloy nanoparticles and gold nanorods on the ovarian cancer model mice. This study contributes a new kind of contrast agent in OCT imaging, which has a profound effect on drug delivery and further therapeutic action.

  20. Luminescent gold nanoparticles for bioimaging

    NASA Astrophysics Data System (ADS)

    Zhou, Chen

    Inorganic nanoparticles (NPs) with tunable and diverse material properties hold great potential as contrast agents for better disease management. Over the past decades, luminescent gold nanoparticles (AuNPs) with intrinsic emissions ranging from the visible to the near infrared have been synthesized and emerge as a new class of fluorophores for bioimaging. This dissertation aims to fundamentally understand the structure-property relationships in luminescent AuNPs and apply them as contrast agents to address some critical challenges in bioimaging at both the in vitro and in vivo level. In Chapter 2, we described the synthesized ~20 nm polycrystalline AuNPs (pAuNPs), which successfully integrated and enhanced plasmonic and fluorescence properties into a single AuNP through the grain size effect. The combination of these properties in one NP enabled AuNPs to serve as a multimodal contrast agent for in vitro optical microscopic imaging, making it possible to develop correlative microscopic imaging techniques. In Chapters 3-5, we proposed a feasible approach to optimize the in vivo kinetics and clearance profile of nanoprobes for multimodality in vivo bioimaging applications by using straightforward surface chemistry with luminescent AuNPs as a model. Luminescent glutathione-coated AuNPs of ~2 nm were synthesized. Investigation of the biodistribution showed that these glutathione-coated AuNPs (GS-AuNPs) exhibit stealthiness to the reticuloendothelial system (RES) organs and efficient renal clearance, with only 3.7+/-1.9% and 0.3+/-0.1% accumulating in the liver and spleen, and over 65% of the injection dose cleared out via the urine within the first 72 hours. In addition, ~2.5 nm NIR-emitting radioactive glutathione-coated [198Au]AuNPs (GS-[198Au]AuNPs) were synthesized for further evaluation of the pharmacokinetic profile of GS-AuNPs and potential multimodal imaging. The results showed that the GS-[198Au]AuNPs behave like small-molecule contrast agents in

  1. Genesis of sediment-hosted disseminated-gold deposits by fluid mixing and sulfidization: chemical-reaction-path modeling of ore- depositional processes documented in the Jerritt Canyon district, Nevada

    USGS Publications Warehouse

    Hofstra, A.H.

    1991-01-01

    Integrated geologic, geochemical, fluid-inclusion, and stable-isotope studies of the gold deposits in the Jerritt Canyon district, Nevada, provide evidence that gold deposition was a consequence of both fluid mixing and sulfidization of host-rock iron. Chemical-reaction-path models of these ore-depositional processes confirm that the combination of fluid mixing, including simultaneous cooling, dilution, and oxidation of the ore fluid, and wall-rock reaction, with sulfidization of reactive iron in the host rock, explains the disseminated nature and small size of the gold and the alteration zonation, mineralogy, and geochemistry observed at Jerritt Canyon and at many other sediment-hosted disseminated gold deposits. -Authors

  2. The need for new isotope reference materials.

    PubMed

    Vogl, Jochen; Rosner, Martin; Pritzkow, Wolfgang

    2013-03-01

    Isotope reference materials are needed to calibrate and validate analytical procedures used for the determination of isotope amount ratios, procedurally defined isotope ratios or so-called δ values. In contrast to the huge analytical progress in isotope ratio analytics, the production of isotope reference materials has not kept pace with the increasing needs of isotope analysts. Three representative isotope systems are used to explain the technical and non-technical difficulties and drawbacks, on one hand, and to demonstrate what can be achieved at its best, on the other hand. A clear statement is given that new isotope reference materials are needed to obtain traceable and thus comparable data, which is essential for all kinds of isotope research. The range of available isotope reference materials and δ reference materials should be increased and matrix reference materials certified for isotope compositions or δ values, which do not exist yet, should be provided.

  3. Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer

    SciTech Connect

    Shukla, R.; Chanda, N.; Zambre, A.; Upendran, A.; Katti, K.; Kulkarni, R. R.; Nune, S. K.; Casteel, S. W.; Smith, C. J.; Vimal, J.; Boote, E.; Robertson, J. D.; Kan, P.; Engelbrecht, H.; Watkinson, L. D.; Carmack, T. L.; Lever, J. R.; Cutler, C. S.; Caldwell, C.; Kannan, R.; Katti, K. V.

    2012-07-16

    Systemic delivery of therapeutic agents to solid tumors is hindered by vascular and interstitial barriers. We hypothesized that prostate tumor specific epigallocatechingallate( EGCg) functionalized radioactive gold nanoparticles, when delivered intratumorally (IT), will circumvent transport barriers, resulting in targeted delivery of therapeutic payloads. The results described herein provide unequivocal validation of our hypothesis. We report the development of inherently therapeutic gold nanoparticles derived from Au-198 isotope; the range of 198Au β-particle ( ~ 11 mm in tissue or ~1100 cell diameters) is sufficiently long to provide cross-fire effects of radiation dose delivered to cells within the prostate gland and short enough to minimize radiation dose to critical tissues near the periphery of the capsule. The formulation of biocompatible 198AuNPs utilizes the redox chemistry of prostate tumor specific phytochemical EGCg as it converts gold salt into gold nanoparticles and also selectively binds with excellent affinity to Laminin67R receptors which are over expressed in prostate tumor cells. Pharmacokinetic studies in PC-3 xenograft SCID mice showed ~72% retention of 198AuNP-EGCg in tumors 24 h after intratumoral administration. Therapeutic studies showed 80% reduction of tumor volumes after 28 days demonstrating significant inhibition of tumor growth compared to controls. This innovative “green nanotechnological“approach serves as a basis for designing target specific antineoplastic agents. This novel intratumorally injectable 198AuNP-EGCg nanotherapeutic agent may provide significant advances in oncology for use as an effective treatment for prostate and other solid tumors.

  4. Major brazilian gold deposits - 1982 to 1999

    USGS Publications Warehouse

    Thorman, C.H.; Dewitt, E.; Maron, M.A.; Ladeira, E.A.

    2001-01-01

    Brazil has been a major but intermittent producer of gold since its discovery in 1500. Brazil led the world in gold production during the 18th and early 19th centuries. From the late 19th century to the late 20th century, total mining company and garimpeiro production was small and relatively constant at about 5 to 8 t/year. The discovery of alluvial deposits in the Amazon by garimpeiros in the 1970s and the opening of eight mines by mining companies from 1983 to 1990 fueled a major boom in Brazil's gold production, exceeding 100 t/year in 1988 and 1989. However, garimpeiro alluvial production decreased 'rapidly in the 1990s, to about 10 t/year by 1999. Company production increased about tenfold from about 4 t/year in 1982 to 40 t in 1992. Production from 1992 to the present remained relatively stable, even though several mines were closed or were in the process of closing and no new major mines were put into production during that period. Based on their production history from 1982-1999, 17 gold mines are ranked as major (> 20 t) and minor (3-8 t) mines. From 1982-1999, deposits hosted in Archean rocks produced 66% of the gold in Brazil, whereas deposits in Paleoproterozoic and Neoproterozoic rocks accounted for 19% and 15%, respectively. Deposits in metamorphosed sedimentary rocks, especially carbonate-rich rocks and carbonate iron-formation, yielded the great bulk of the gold. Deposits in igneous rocks were of much less importance. The Archean and Paleoproterozoic terranes of Brazil largely lack base-metal-rich volcanogenic massive sulfide deposits, porphyry deposits, and polymetallic veins and sedimentary exhalative deposits. An exception to this is in the Caraja??s Mineral Province.

  5. Major Brazilian gold deposits - 1982 to 1999

    NASA Astrophysics Data System (ADS)

    Thorman, Charles H.; DeWitt, Ed; Maron, Marcos A.; Ladeira, Eduardo A.

    2001-07-01

    Brazil has been a major but intermittent producer of gold since its discovery in 1500. Brazil led the world in gold production during the 18th and early 19th centuries. From the late 19th century to the late 20th century, total mining company and garimpeiro production was small and relatively constant at about 5 to 8 t/year. The discovery of alluvial deposits in the Amazon by garimpeiros in the 1970s and the opening of eight mines by mining companies from 1983 to 1990 fueled a major boom in Brazil's gold production, exceeding 100 t/year in 1988 and 1989. However, garimpeiro alluvial production decreased rapidly in the 1990s, to about 10 t/year by 1999. Company production increased about tenfold from about 4 t/year in 1982 to 40 t in 1992. Production from 1992 to the present remained relatively stable, even though several mines were closed or were in the process of closing and no new major mines were put into production during that period. Based on their production history from 1982-1999, 17 gold mines are ranked as major (>20 t) and minor (3-8 t) mines. From 1982-1999, deposits hosted in Archean rocks produced 66% of the gold in Brazil, whereas deposits in Paleoproterozoic and Neoproterozoic rocks accounted for 19% and 15%, respectively. Deposits in metamorphosed sedimentary rocks, especially carbonate-rich rocks and carbonate iron-formation, yielded the great bulk of the gold. Deposits in igneous rocks were of much less importance. The Archean and Paleoproterozoic terranes of Brazil largely lack base-metal-rich volcanogenic massive sulfide deposits, porphyry deposits, and polymetallic veins and sedimentary exhalative deposits. An exception to this is in the Carajás Mineral Province.

  6. Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures.

    PubMed

    Ye, Jian; Van Dorpe, Pol; Van Roy, Willem; Borghs, Gustaaf; Maes, Guido

    2009-02-01

    We report on a versatile method to fabricate hollow gold nanobowls and complex gold nanobowls (with a core) based on an ion milling and a vapor HF etching technique. Two different sized hollow gold nanobowls are fabricated by milling and etching submonolayers of gold nanoshells deposited on a substrate, and their sizes and morphologies are characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Optical properties of hollow gold nanobowls with different sizes are investigated experimentally and theoretically, showing highly tunable plasmon resonance ranging from the visible to the near-infrared region. Additionally, finite difference time domain (FDTD) calculations show an enhanced localized electromagnetic field around hollow gold nanobowl structures, which indicates a potential application in surface-enhanced Raman scattering (SERS) spectroscopy for biomolecular detection. Finally, we demonstrate the fabrication of complex gold nanobowls with a gold nanoparticle core which offers the capability to create plasmon hybridized nanostructures. PMID:19125593

  7. OVERVIEW OF GOLD HILL MILL, ROAD, AND WARM SPRINGS CAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF GOLD HILL MILL, ROAD, AND WARM SPRINGS CAMP BUILDINGS, LOOKING SOUTH SOUTHEAST. THE FUNCTION OF THE FLAT AREA AT CENTER RIGHT IS UNKNOWN. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  8. 14. BALD MOUNTAIN MILL, INTERIOR SHOWING GOLD TANKS FROM WEST, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. BALD MOUNTAIN MILL, INTERIOR SHOWING GOLD TANKS FROM WEST, c. 1937. DATE BASED ON USE IN PUBLICATION. CREDIT WR. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  9. Turkevich method for gold nanoparticle synthesis revisited.

    PubMed

    Kimling, J; Maier, M; Okenve, B; Kotaidis, V; Ballot, H; Plech, A

    2006-08-17

    The growth of gold nanoparticles by reduction by citrate and ascorbic acid has been examined in detail to explore the parameter space of reaction conditions. It is found that gold particles can be produced in a wide range of sizes, from 9 to 120 nm, with defined size distribution, following the earlier work of Turkevich and Frens. The reaction is initiated thermally or in comparison by UV irradiation, which results in similar final products. The kinetics of the extinction spectra show the multiple steps of primary and secondary clustering leading to polycrystallites.

  10. Anisotropic Gold Nanocrystals:. Synthesis and Characterization

    NASA Astrophysics Data System (ADS)

    Stiufiuc, R.; Toderas, F.; Iosin, M.; Stiufiuc, G.

    In this letter we report on successful preparation and characterization of anisotropic gold nanocrystals bio-synthesized by reduction of aqueous chloroaurate ions in pelargonium plant extract. The nanocrystals have been characterized by means of Transmission Electron Microscopy (TEM), UV-VIS absorption spectroscopy and tapping mode atomic force microscopy (TM-AFM). Using these investigation techniques, the successful formation of anisotropic single nanocrystals with the preferential growth direction along the gold (111) plane has been confirmed. The high detail phase images could give us an explanation concerning the growth mechanism of the nanocrystals.

  11. Plasmonics of Gold Nanorods. Considerations for Biosensing

    NASA Astrophysics Data System (ADS)

    Liz-Marzán, Luis M.; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel

    In this chapter, we explore the sensitivity of gold nanorods toward changes in the dielectric constant of the surrounding medium. Experimental data for pure and silica-coated nanorods with varying shell thickness are compared to calculations based on the boundary element method (BEM). They indicate that anisotropy and sharp tips make nanoparticles more environmentally sensitive. We also find that sensitivity decreases as silica shell thickness increases, as expected from a dielectric screening effect. Even when coated with thin shells, gold nanorods are found to be excellent candidates for biosensing applications.

  12. Crack injection in silver gold alloys

    NASA Astrophysics Data System (ADS)

    Chen, Xiying

    Stress corrosion cracking (SCC) is a materials degradation phenomena resulting from a combination of stress and a corrosive environment. Among the alphabet soup of proposed mechanism of SCC the most important are film-rupture, film-induced cleavage and hydrogen embrittlement. This work examines various aspects of film-induced cleavage in gold alloys for which the operation of hydrogen embrittlement processes can be strictly ruled out on thermodynamic grounds. This is so because in such alloys SCC occurs under electrochemical conditions within which water is stable to hydrogen gas evolution. The alloy system examined in this work is AgAu since the corrosion processes in this system occur by a dealloying mechanism that results in the formation of nanoporous gold. The physics behind the dealloying process as well as the resulting formation of nanoporous gold is today well understood. Two important aspects of the film-induced cleavage mechanism are examined in this work: dynamic fracture in monolithic nanoporous gold and crack injection. In crack injection there is a finite thickness dealloyed layer formed on a AgAu alloy sample and the question of whether or not a crack that nucleates within this layer can travel for some finite distance into the un-corroded parent phase alloy is addressed. Dynamic fracture tests were performed on single edge-notched monolithic nanoporous gold samples as well as "infinite strip" sample configurations for which the stress intensity remains constant over a significant portion of the crack length. High-speed photography was used to measure the crack velocity. In the dynamic fracture experiments cracks were observed to travel at speeds as large as 270 m/s corresponding to about 68% of the Raleigh wave velocity. Crack injection experiments were performed on single crystal Ag77Au23, polycrystalline Ag72Au28 and pure gold, all of which had thin nanoporous gold layers on the surface of samples. Through-thickness fracture was seen in both the

  13. Aneurysm, arachnoiditis and intrathecal Au (gold)

    SciTech Connect

    Pence, D.M.; Kim, T.H.; Levitt, S.H. )

    1990-05-01

    This report is a 20-year follow-up of 14 patients treated with external beam craniospinal irradiation and intrathecal gold (10-45 mCi) for medulloblastoma. Six of the patients died within 2 years of treatment from persistent disease. No patients are alive without complications. Six of eight surviving patients developed arachnoiditis and cauda equina syndrome within 5 to 10 years of treatment. Seven of eight survivors developed aneurysms and/or cerebrovascular accidents 9 to 20 years after treatment. Four of the cerebrovascular events were fatal. Intrathecal gold pools in the basal cisterns and cauda equina delivering an extremely inhomogeneous dose throughout the neuroaxis. Its use is discouraged.

  14. Cometary Isotopic Measurements

    NASA Astrophysics Data System (ADS)

    Bockelée-Morvan, Dominique; Calmonte, Ursina; Charnley, Steven; Duprat, Jean; Engrand, Cécile; Gicquel, Adeline; Hässig, Myrtha; Jehin, Emmanuël; Kawakita, Hideyo; Marty, Bernard; Milam, Stefanie; Morse, Andrew; Rousselot, Philippe; Sheridan, Simon; Wirström, Eva

    2015-12-01

    Isotopic ratios in comets provide keys for the understanding of the origin of cometary material, and the physical and chemical conditions in the early Solar Nebula. We review here measurements acquired on the D/H, 14N/15N, 16O/18O, 12C/13C, and 32S/34S ratios in cometary grains and gases, and discuss their cosmogonic implications. The review includes analyses of potential cometary material available in collections on Earth, recent measurements achieved with the Herschel Space Observatory, large optical telescopes, and Rosetta, as well as recent results obtained from models of chemical-dynamical deuterium fractionation in the early solar nebula. Prospects for future measurements are presented.

  15. Container for hydrogen isotopes

    DOEpatents

    Solomon, David E.

    1977-01-01

    A container for the storage, shipping and dispensing of hydrogen isotopes such as hydrogen, deuterium, tritium, or mixtures of the same which has compactness, which is safe against fracture or accident, and which is reusable. The container consists of an outer housing with suitable inlet and outlet openings and electrical feed elements, the housing containing an activated sorber material in the form, for example, of titanium sponge or an activated zirconium aluminate cartridge. The gas to be stored is introduced into the chamber under conditions of heat and vacuum and will be retained in the sorber material. Subsequently, it may be released by heating the unit to drive off the stored gas at desired rates.

  16. New, heavy transuranium isotopes

    SciTech Connect

    Hulet, E.K.

    1990-10-22

    In this report, we offer our most recent results concerning the decay properties for five new isotopes of Md, No, Lr, and for {sup 258m}Md. In additions to these successful experiments, we have also conducted searches for {sup 263}(105), {sup 264}(105), {sup 272}(109), and superheavy elements from bombardments of {sup 254}Es with heavy ions. {sup 2} An exciting finding in the course of this work is a new fission phenomenon, which we have termed bidmodal fission''. This is described in a subsequent section. The final part summarizes our conclusions based on the unexpectedly long half-lives and surprising fission properties of the heaviest nuclei. 27 refs., 19 figs.

  17. Fractionation of gold in a differentiated tholeiitic dolerite

    USGS Publications Warehouse

    Rowe, J.J.

    1969-01-01

    Gold content was determined, by neutron-activation analysis, in samples from a drill core through the Great Lake sheet, Tasmania, a differentiated tholeiitic dolerite. The gold content of parts of the core seems to be related to the mafic index. The variation of gold content with depth and mafic index is similar to that of copper, indicating that gold and copper may have been concomitantly crystallized from the magma. ?? 1969.

  18. Systematic Analysis of Uranium Isotopes

    SciTech Connect

    Young, Phillip G.; Chadwick, Mark B.; MacFarlane, Robert E.; Madland, David G.; Moeller, Peter; Wilson, William B.; Talou, Patrick; Kawano, Toshihiko

    2005-05-24

    We describe recent nuclear model calculations and evaluations of neutron reactions on the uranium isotopes 232-241U in the keV to 30-MeV energy range. This work makes use of extensive sets of measurements for fission, elastic, inelastic (n,xn) and capture, as well as fission probability data. The 235U(n.f) standard cross section was revised, and the fission cross sections of the uranium isotopes, as well as 237Np and 239Pu, were updated using the revised standard. Nuclear reaction model calculations were performed for the whole suite of uranium isotopes to allow us to take advantage of the systematical properties from isotope-to-isotope, which is especially useful for nuclides where few measurements exist. In addition to improving the neutron cross sections and energy-angle distributions, new prompt fission neutron spectra and prompt/delayed neutron multiplicity evaluations are included for several isotopes. These evaluations are among the pre-ENDF/B-VII evaluations that are currently being considered for the new ENDF file. A companion paper in this Conference by MacFarlane describes critical-assembly integral data testing results for U isotopes.

  19. Systematic Analysis of Uranium Isotopes

    NASA Astrophysics Data System (ADS)

    Young, Phillip G.; Chadwick, Mark B.; MacFarlane, Robert E.; Madland, David G.; Möller, Peter; Wilson, William B.; Talou, Patrick; Kawano, Toshihiko

    2005-05-01

    We describe recent nuclear model calculations and evaluations of neutron reactions on the uranium isotopes 232-241U in the keV to 30-MeV energy range. This work makes use of extensive sets of measurements for fission, elastic, inelastic, (n,xn) and capture, as well as fission probability data. The 235U(n.f) standard cross section was revised, and the fission cross sections of the uranium isotopes, as well as 237Np and 239Pu, were updated using the revised standard. Nuclear reaction model calculations were performed for the whole suite of uranium isotopes to allow us to take advantage of the systematical properties from isotope-to-isotope, which is especially useful for nuclides where few measurements exist. In addition to improving the neutron cross sections and energy-angle distributions, new prompt fission neutron spectra and prompt/delayed neutron multiplicity evaluations are included for several isotopes. These evaluations are among the pre-ENDF/B-VII evaluations that are currently being considered for the new ENDF file. A companion paper in this Conference by MacFarlane describes critical-assembly integral data testing results for U isotopes.

  20. Microbes: Agents of Isotopic Change

    NASA Astrophysics Data System (ADS)

    Fogel, M. L.

    2012-12-01

    Microbes drive many of the important oxidation and reduction reactions on Earth; digest almost all forms of organic matter; and can serve as both primary and secondary producers. Because of their versatile biochemistry and physiology, they impart unique isotopic signatures to organic and inorganic materials, which have proven to be key measurements for understanding elemental cycling now and throughout Earth's history. Understanding microbial isotope fractionations in laboratory experiments has been important for interpreting isotopic patterns measured in natural settings. In fact, the pairing of simple experiment with natural observation has been the pathway for interpreting the fingerprint of microbial processes in ancient sediments and rocks. Examples of how key experiments have explained stable isotope fractionations by microbes and advanced the field of microbial ecology will be presented. Learning the isotopic signatures of Earth's microbes is a valuable exercise for predicting what isotopic signatures could be displayed by possible extant or extinct extraterrestrial life. Given the potential for discovery on Mars, Enceladus, and other solar system bodies, new methods and techniques for pinpointing what is unique about microbial isotope signatures is particularly relevant.

  1. Isotope effects in ESR spectroscopy.

    PubMed

    Stößer, Reinhard; Herrmann, Werner

    2013-06-07

    In order to present the relationship between ESR spectroscopy and isotope effects three levels are considered: (i) ESR spectroscopy is described on a general level up to the models for interpretation of the experimental spectra, which go beyond the usually used time and mass independent spin-Hamilton operator, (ii) the main characteristics of the generalized isotope effects are worked out, and finally (iii) the basic, mainly quantum mechanical effects are used to describe the coupling of electron spins with the degrees of freedom, which are accessible under the selected conditions, of the respective paramagnetic object under investigation. The ESR parameters and the respective models are formalized so far, that they include the time and mass depending influences and reflect the specific isotope effects. Relations will be established between the effects in ESR spectra to spin relaxation, to spin exchange, to the magnetic isotope effect, to the Jahn-Teller effects, as well as to the influence of zero-point vibrations. Examples will be presented which demonstrate the influence of isotopes as well as the kind of accessible information. It will be differentiated with respect to isotope effects in paramagnetic centres itself and in the respective matrices up to the technique of ESR imaging. It is shown that the use of isotope effects is indispensable in ESR spectroscopy.

  2. Gold in meteorites and in the earth's crust

    USGS Publications Warehouse

    Jones, Robert Sprague

    1968-01-01

    The reported gold contents of meteorites range from 0.0003 to 8.74 parts per million. Gold is siderophilic, and the greatest amounts in meteorites are in the iron phases. Estimates ,of the gold content of the earth's crust are in the range of 0.001 to 0.006 parts per million.

  3. 21 CFR 872.3580 - Preformed gold denture tooth.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Preformed gold denture tooth. 872.3580 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3580 Preformed gold denture tooth. (a) Identification. A preformed gold denture tooth is a device composed of austenitic alloys or alloys containing...

  4. 50 CFR 665.270 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gold coral harvest moratorium. 665.270 Section 665.270 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.270 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in...

  5. 50 CFR 665.169 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Gold coral harvest moratorium. 665.169 Section 665.169 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.169 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in...

  6. Gold-coated nanoparticles for use in biotechnology applications

    DOEpatents

    Berning, Douglas E.; Kraus, Jr., Robert H.; Atcher, Robert W.; Schmidt, Jurgen G.

    2007-06-05

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  7. 50 CFR 665.169 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Gold coral harvest moratorium. 665.169 Section 665.169 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.169 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in...

  8. Gold-coated nanoparticles for use in biotechnology applications

    DOEpatents

    Berning, Douglas E.; Kraus, Jr., Robert H.; Atcher, Robert W.; Schmidt, Jurgen G.

    2009-07-07

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  9. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  10. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  11. 21 CFR 872.3580 - Preformed gold denture tooth.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Preformed gold denture tooth. 872.3580 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3580 Preformed gold denture tooth. (a) Identification. A preformed gold denture tooth is a device composed of austenitic alloys or alloys containing...

  12. 50 CFR 665.169 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gold coral harvest moratorium. 665.169 Section 665.169 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.169 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in...

  13. 50 CFR 665.270 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Gold coral harvest moratorium. 665.270 Section 665.270 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.270 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in...

  14. 21 CFR 872.3580 - Preformed gold denture tooth.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Preformed gold denture tooth. 872.3580 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3580 Preformed gold denture tooth. (a) Identification. A preformed gold denture tooth is a device composed of austenitic alloys or alloys containing...

  15. 50 CFR 665.270 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Gold coral harvest moratorium. 665.270 Section 665.270 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.270 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in...

  16. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  17. 50 CFR 665.270 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Gold coral harvest moratorium. 665.270 Section 665.270 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.270 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in...

  18. 21 CFR 872.3580 - Preformed gold denture tooth.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Preformed gold denture tooth. 872.3580 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3580 Preformed gold denture tooth. (a) Identification. A preformed gold denture tooth is a device composed of austenitic alloys or alloys containing...

  19. 50 CFR 665.270 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Gold coral harvest moratorium. 665.270 Section 665.270 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.270 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in...

  20. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  1. 50 CFR 665.169 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Gold coral harvest moratorium. 665.169 Section 665.169 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.169 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in...

  2. 50 CFR 665.169 - Gold coral harvest moratorium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Gold coral harvest moratorium. 665.169 Section 665.169 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.169 Gold coral harvest moratorium. Fishing for, taking, or retaining any gold coral in...

  3. Stable isotopes in obesity research.

    PubMed

    Dolnikowski, Gregory G; Marsh, Julian B; Das, Sai Krupa; Welty, Francine K

    2005-01-01

    Obesity is recognized as a major public health problem. Obesity is a multifactorial disease and is often associated with a wide range of comorbidities including hypertension, non-insulin dependent (Type II) diabetes mellitus, and cardiovascular disease, all of which contribute to morbidity and mortality. This review deals with stable isotope mass spectrometric methods and the application of stable isotopes to metabolic studies of obesity. Body composition and total energy expenditure (TEE) can be measured by mass spectrometry using stable isotope labeled water, and the metabolism of protein, lipid, and carbohydrate can be measured using appropriate labeled tracer molecules.

  4. Neodymium isotopic variations in seawater

    NASA Technical Reports Server (NTRS)

    Piepgras, D. J.; Wasserburg, G. J.

    1980-01-01

    Direct measurement of the isotopic composition of Nd in the Atlantic agree with the Nd content in ferromanganese sediments and differ from the observed amounts in the Pacific samples. These data indicate the existence of distinctive differences in the isotopic composition of Nd in the waters of major oceans; the average values determined from seawater and ferromanganese sediments are considerably lower than in sources with oceanic mantle affinities showing that the REE in the oceans is dominated by continental sources. The Nd isotopic variations in seawater are applied to relate the residence time of Nd and mixing rates between the oceans.

  5. Carbon isotope geochemistry and geobiology

    NASA Technical Reports Server (NTRS)

    Desmarais, D.

    1985-01-01

    Carbon isotope fractionation values were used to understand the history of the biosphere. For example, plankton analyses confirmed that marine extinctions at the end of the Cretaceous period were indeed severe (see Hsu's article in Sundquist and Broeker, 1984). Variations in the isotopic compositions of carbonates and evaporitic sulfates during the Paleozoic reflect the relative abundances of euxinic (anoxic) marine environments and organic deposits from terrestrial flora. The carbon isotopic composition of Precambrian sediments suggest that the enzyme ribulose bisphosphate carboxylase has existed for perhaps 3.5 billion years.

  6. Compelling Research Opportunities using Isotopes

    SciTech Connect

    2009-04-23

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine

  7. Isotope-edited infrared spectroscopy.

    PubMed

    Buchner, Ginka S; Kubelka, Jan

    2012-01-01

    Isotope-edited infrared (IR) spectroscopy is a powerful tool for studying structural and dynamical properties of peptides and proteins with site-specific resolution. Labeling of selected amide carbonyls with (13)C results in detectable sidebands of amide I' vibrations, which provide information about local conformation and/or solvent exposure without structural perturbation to the protein. Incorporation of isotopically labeled amino acids at specific positions is achieved by the chemical synthesis of the studied proteins. We describe the basic procedures for synthesis of (13)C isotopically edited protein samples, experimental IR spectroscopic measurements, and analysis of the site-specific structural changes from the thermal unfolding IR data.

  8. Isotope Exchange in Oxide Catalyst

    NASA Technical Reports Server (NTRS)

    Hess, Robert V.; Miller, Irvin M.; Schryer, David R.; Sidney, Barry D.; Wood, George M., Jr.; Hoyt, Ronald F.; Upchurch, Billy T.; Brown, Kenneth G.

    1987-01-01

    Replacement technique maintains level of CO2/18 in closed-cycle CO2 lasers. High-energy, pulsed CO2 lasers using rare chemical isotopes must be operated in closed cycles to conserve gas. Rare isotopes operated in closed cycles to conserve gas. Rare isotopes as CO2/18 used for improved transmission of laser beam in atmosphere. To maintain laser power, CO2 must be regenerated, and O2 concentration kept below few tenths of percent. Conditions achieved by recombining CO and O2.

  9. Isotope separation using metallic vapor lasers

    NASA Technical Reports Server (NTRS)

    Russell, G. R.; Chen, C. J.; Harstad, K. G. (Inventor)

    1977-01-01

    The isotope U235 is separated from a gasified isotope mixture of U235 and U238 by selectively exciting the former from the ground state utilizing resonant absorption of radiation from precisely tuned lasers. The excited isotope is then selectively ionized by electron bombardment. It then is separated from the remaining isotope mixture by electromagnetic separation.

  10. Apparatus and process for separating hydrogen isotopes

    DOEpatents

    Heung, Leung K; Sessions, Henry T; Xiao, Xin

    2013-06-25

    The apparatus and process for separating hydrogen isotopes is provided using dual columns, each column having an opposite hydrogen isotopic effect such that when a hydrogen isotope mixture feedstock is cycled between the two respective columns, two different hydrogen isotopes are separated from the feedstock.

  11. Method for laser induced isotope enrichment

    SciTech Connect

    Pronko, Peter P.; Vanrompay, Paul A.; Zhang, Zhiyu

    2004-09-07

    Methods for separating isotopes or chemical species of an element and causing enrichment of a desired isotope or chemical species of an element utilizing laser ablation plasmas to modify or fabricate a material containing such isotopes or chemical species are provided. This invention may be used for a wide variety of materials which contain elements having different isotopes or chemical species.

  12. Comparison of photoluminescence quantum yield of single gold nanobipyramids and gold nanorods.

    PubMed

    Rao, Wenye; Li, Qiang; Wang, Yuanzhao; Li, Tao; Wu, Lijun

    2015-03-24

    Fluorescent gold nanoparticles with high quantum yield are highly desirable for optical imaging in the fields of biology and materials science. We investigate the one-photon photoluminescence (PL) properties of individual gold nanobipyramids (GNBs) and find they are analogous to those of the extensively studied gold nanorods (GNRs). By combining PL and atomic force microscopy (AFM) measurements with discrete dipole approximation (DDA) simulations, we obtain the PL quantum yield of single GNRs and GNBs. Compared to GNRs in the similar surface plasmon resonance range, the PL quantum yield of GNBs is found to be doubled. The stronger field intensity around GNBs can explain their higher PL quantum yields. Our research would provide deeper understanding of the mechanism of PL from gold nanoparticles as well as be beneficial for finding out optical imaging labels with high contrast.

  13. Gold-Catalyzed Reactions via Cyclopropyl Gold Carbene-like Intermediates

    PubMed Central

    2015-01-01

    Cycloisomerizations of 1,n-enynes catalyzed by gold(I) proceed via electrophilic species with a highly distorted cyclopropyl gold(I) carbene-like structure, which can react with different nucleophiles to form a wide variety of products by attack at the cyclopropane or the carbene carbons. Particularly important are reactions in which the gold(I) carbene reacts with alkenes to form cyclopropanes either intra- or intermolecularly. In the absence of nucleophiles, 1,n-enynes lead to a variety of cycloisomerized products including those resulting from skeletal rearrangements. Reactions proceeding through cyclopropyl gold(I) carbene-like intermediates are ideally suited for the bioinspired synthesis of terpenoid natural products by the selective activation of the alkyne in highly functionalized enynes or polyenynes. PMID:26061916

  14. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    DOEpatents

    Harney, Robert C.; Bloom, Stewart D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances.

  15. Stellar neutron capture cross sections of the Lu isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.

    2006-01-15

    The neutron capture cross sections of {sup 175}Lu and {sup 176}Lu have been measured in the energy range 3-225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator. Neutrons were produced via the {sup 7}Li(p,n){sup 7}Be reaction by bombarding metallic Li targets with a pulsed proton beam, and capture events were registered with the Karlsruhe 4{pi} barium fluoride detector. The cross sections were determined relative to the gold standard using isotopically enriched as well as natural lutetium oxide samples. Overall uncertainties of {approx}1% could be achieved in the final cross section ratios to the gold standard, about a factor of 5 smaller than in previous works. Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT = 8 and 100 keV. These values are systematically larger by {approx}7% than those reported in recent evaluations. These results are of crucial importance for the assessment of the s-process branchings at A 175/176.

  16. Plasmonic biocompatible silver-gold alloyed nanoparticles.

    PubMed

    Sotiriou, Georgios A; Etterlin, Gion Diego; Spyrogianni, Anastasia; Krumeich, Frank; Leroux, Jean-Christophe; Pratsinis, Sotiris E

    2014-11-14

    The addition of Au during scalable synthesis of nanosilver drastically minimizes its surface oxidation and leaching of toxic Ag(+) ions. These biocompatible and inexpensive silver-gold nanoalloyed particles exhibit superior plasmonic performance than commonly used pure Au nanoparticles, and as such these nanoalloys have great potential in theranostic applications.

  17. Radiofrequency heating pathways for gold nanoparticles.

    PubMed

    Collins, C B; McCoy, R S; Ackerson, B J; Collins, G J; Ackerson, C J

    2014-08-01

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry which may affect thermal dissipation include the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell. Aspects of RF which may affect thermal dissipation include power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments.

  18. WILLIAM GOLDING'S NOVEL--THE BACKWARD LOOK.

    ERIC Educational Resources Information Center

    PECK, CAROL FAULKNER

    THE "SURPRISE ENDINGS" IN EACH OF WILLIAM GOLDING'S FIRST FOUR NOVELS OCCUR WHEN THE POINT OF VIEW SHIFTS FROM THE LIMITED WORLD OF THE NOVEL TO THE UNLIMITED WORLD OF REALITY. THE BOYS' RESCUE BY THE UNCOMPREHENDING OFFICER IN "LORD OF THE FLIES," REFOCUSES AND REINFORCES ALL THAT PRECEDES IT, AND THE FABLE, SUPERIMPOSED UPON REAL LIFE, BECOMES…

  19. Hydroquinone Based Synthesis of Gold Nanorods.

    PubMed

    Picciolini, Silvia; Mehn, Dora; Ojea-Jiménez, Isaac; Gramatica, Furio; Morasso, Carlo

    2016-08-10

    Gold nanorods are an important kind of nanoparticles characterized by peculiar plasmonic properties. Despite their widespread use in nanotechnology, the synthetic methods for the preparation of gold nanorods are still not fully optimized. In this paper we describe a new, highly efficient, two-step protocol based on the use of hydroquinone as a mild reducing agent. Our approach allows the preparation of nanorods with a good control of size and aspect ratio (AR) simply by varying the amount of hexadecyl trimethylammonium bromide (CTAB) and silver ions (Ag(+)) present in the "growth solution". By using this method, it is possible to markedly reduce the amount of CTAB, an expensive and cytotoxic reagent, necessary to obtain the elongated shape. Gold nanorods with an aspect ratio of about 3 can be obtained in the presence of just 50 mM of CTAB (versus 100 mM used in the standard protocol based on the use of ascorbic acid), while shorter gold nanorods are obtained using a concentration as low as 10 mM.

  20. Gold(III)-Catalyzed Hydration of Phenylacetylene

    ERIC Educational Resources Information Center

    Leslie, J. Michelle; Tzeel, Benjamin A.

    2016-01-01

    A guided inquiry-based experiment exploring the regioselectivity of the hydration of phenylacetylene is described. The experiment uses an acidic gold(III) catalyst in a benign methanol/water solvent system to introduce students to alkyne chemistry and key principles of green chemistry. The experiment can be easily completed in approximately 2 h,…

  1. X-ray laser driven gold targets

    SciTech Connect

    Petrova, Tz. B. Whitney, K. G.; Davis, J.

    2014-03-15

    The femtosecond population dynamics of gold irradiated by a coherent high-intensity (>10{sup 17} W/cm{sup 2}) x-ray laser pulse is investigated theoretically. There are two aspects to the assembled model. One is the construction of a detailed model of platinum-like gold inclusive of all inner-shell states that are created by photoionization of atomic gold and decay either by radiative or Auger processes. Second is the computation of the population dynamics that ensues when an x-ray pulse is absorbed in gold. The hole state generation depends on the intensity and wavelength of the driving x-ray pulse. The excited state populations reached during a few femtosecond timescales are high enough to generate population inversions, whose gain coefficients are calculated. These amplified lines in the emitted x-ray spectrum provide important diagnostics of the radiation dynamics and also suggest a nonlinear way to increase the frequency of the coherent output x-ray pulses relative to the frequency of the driver input x-ray pulse.

  2. Acute renal failure due to gold.

    PubMed Central

    Robbins, G.; McIllmurray, M. B.

    1980-01-01

    A patient with rheumatoid arthritis is described who developed acute renal failure whilst receiving gold. This occurred despite the normal precautions of patient monitoring before each dose was given. The clinical picture suggests this was a hypersensitivity reaction to chrysotherapy. PMID:6777766

  3. Applications of gold nanoparticles in cancer nanotechnology

    PubMed Central

    Cai, Weibo; Gao, Ting; Hong, Hao; Sun, Jiangtao

    2013-01-01

    It has been almost 4 decades since the “war on cancer” was declared. It is now generally believed that personalized medicine is the future for cancer patient management. Possessing unprecedented potential for early detection, accurate diagnosis, and personalized treatment of cancer, nanoparticles have been extensively studied over the last decade. In this review, we will summarize the current state-of-the-art of gold nanoparticles in biomedical applications targeting cancer. Gold nanospheres, nanorods, nanoshells, nanocages, and surface enhanced Raman scattering nanoparticles will be discussed in detail regarding their uses in in vitro assays, ex vivo and in vivo imaging, cancer therapy, and drug delivery. Multifunctionality is the key feature of nanoparticle-based agents. Targeting ligands, imaging labels, therapeutic drugs, and other functionalities can all be integrated to allow for targeted molecular imaging and molecular therapy of cancer. Big strides have been made and many proof-of-principle studies have been successfully performed. The future looks brighter than ever yet many hurdles remain to be conquered. A multifunctional platform based on gold nanoparticles, with multiple receptor targeting, multimodality imaging, and multiple therapeutic entities, holds the promise for a “magic gold bullet” against cancer. PMID:24163578

  4. Applications of gold nanoparticles in cancer nanotechnology

    PubMed Central

    Cai, Weibo; Gao, Ting; Hong, Hao; Sun, Jiangtao

    2008-01-01

    It has been almost 4 decades since the “war on cancer” was declared. It is now generally believed that personalized medicine is the future for cancer patient management. Possessing unprecedented potential for early detection, accurate diagnosis, and personalized treatment of cancer, nanoparticles have been extensively studied over the last decade. In this review, we will summarize the current state-of-the-art of gold nanoparticles in biomedical applications targeting cancer. Gold nanospheres, nanorods, nanoshells, nanocages, and surface enhanced Raman scattering nanoparticles will be discussed in detail regarding their uses in in vitro assays, ex vivo and in vivo imaging, cancer therapy, and drug delivery. Multifunctionality is the key feature of nanoparticle-based agents. Targeting ligands, imaging labels, therapeutic drugs, and other functionalities can all be integrated to allow for targeted molecular imaging and molecular therapy of cancer. Big strides have been made and many proof-of-principle studies have been successfully performed. The future looks brighter than ever yet many hurdles remain to be conquered. A multifunctional platform based on gold nanoparticles, with multiple receptor targeting, multimodality imaging, and multiple therapeutic entities, holds the promise for a “magic gold bullet” against cancer. PMID:24198458

  5. Atmospheric Turbulence Statistics from GOLD Experiments

    NASA Technical Reports Server (NTRS)

    Jeganathan, Muthu; Wilson, Keith; Lesh, Jim

    1996-01-01

    Ground-Orbiter Lasercomm Demonstration (GOLD) includes the following: (1) Optical communication experiments between Table Mountain Observatory (TMF) and Japanese Engineering Test Satellite (ETS-VI); (2) International cooperative effort between NASA, NASDA, CRL and JPL; and (3) Phase 1 transmissions from October 1995 to January 1996 and Phase 2 transmissions from March 1996 to May 1996.

  6. Gold(I)-catalyzed enantioselective cycloaddition reactions.

    PubMed

    López, Fernando; Mascareñas, José L

    2013-10-30

    In recent years there have been extraordinary developments of gold(I)-catalyzed enantioselective processes. This includes progress in the area of cycloaddition reactions, which are of particular interest due to their potential for the rapid construction of optically active cyclic products. In this article we will summarize some of the most remarkable examples, emphasizing reaction mechanisms and key intermediates involved in the processes.

  7. Gold Creek: Preserving an Environmental Studies Center.

    ERIC Educational Resources Information Center

    Brooks, Suzanne

    In response to a Board of Trustees request for information and recommendations concerning the future use of the Gold Creek property owned by the Los Angeles Community College District, this report emphasizes that the use of this site for instructional field experiences enhances the quality of environmental education for the district's diverse…

  8. Leaving Students with More than Fools Gold.

    ERIC Educational Resources Information Center

    Gritzner, Charles F.

    1987-01-01

    Far too much time is spent in most elementary grades learning "What is where?" Far too little time is spent on learning "Why? and What of it?" Conceptual understanding is essential, and without it, isolated facts are only "fools gold." Provides a list of instructional questions based on 40 key geographic concepts which will aid students'…

  9. Functionalized gold nanorods for molecular optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Eghtedari, Mohammad; Oraevsky, Alexander; Conjusteau, Andre; Copland, John A.; Kotov, Nicholas A.; Motamedi, Massoud

    2007-02-01

    The development of gold nanoparticles for molecular optoacoustic imaging is a very promising area of research and development. Enhancement of optoacoustic imaging for molecular detection of tumors requires the engineering of nanoparticles with geometrical and molecular features that can enhance selective targeting of malignant cells while optimizing the sensitivity of optoacoustic detection. In this article, cylindrical gold nanoparticles (i.e. gold nanorods) were fabricated with a plasmon resonance frequency in the near infra-red region of the spectrum, where deep irradiation of tissue is possible using an Alexandrite laser. Gold nanorods (Au-NRs) were functionalized by covalent attachment of Poly(ethylene glycol) to enhance their biocompatibility. These particles were further functionalized with the aim of targeting breast cancer cells using monoclonal antibodies that binds to Her2/neu receptors, which are over expressed on the surface of breast cancer cells. A custom Laser Optoacoustic Imaging System (LOIS) was designed and employed to image nanoparticle-targeted cancer cells in a phantom and PEGylated Au-NRs that were injected subcutaneously into a nude mouse. The results of our experiments show that functionalized Au-NRs with a plasmon resonance frequency at near infra-red region of the spectrum can be detected and imaged in vivo using laser optoacoustic imaging system.

  10. Gold Creek: An Environmental Studies Center.

    ERIC Educational Resources Information Center

    Woodley, Laurel

    A description is provided of the Gold Creek Ecological Reserve, 240 acres of undisturbed land in Northeast Los Angeles County, which serves the Los Angeles Community College District (LACCD) as an outdoor laboratory for students and faculty in numerous disciplines. Section I provides introductory information on the reserve and its features, which…

  11. Radiofrequency heating pathways for gold nanoparticles.

    PubMed

    Collins, C B; McCoy, R S; Ackerson, B J; Collins, G J; Ackerson, C J

    2014-08-01

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry which may affect thermal dissipation include the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell. Aspects of RF which may affect thermal dissipation include power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments. PMID:24962620

  12. Hydroquinone Based Synthesis of Gold Nanorods.

    PubMed

    Picciolini, Silvia; Mehn, Dora; Ojea-Jiménez, Isaac; Gramatica, Furio; Morasso, Carlo

    2016-01-01

    Gold nanorods are an important kind of nanoparticles characterized by peculiar plasmonic properties. Despite their widespread use in nanotechnology, the synthetic methods for the preparation of gold nanorods are still not fully optimized. In this paper we describe a new, highly efficient, two-step protocol based on the use of hydroquinone as a mild reducing agent. Our approach allows the preparation of nanorods with a good control of size and aspect ratio (AR) simply by varying the amount of hexadecyl trimethylammonium bromide (CTAB) and silver ions (Ag(+)) present in the "growth solution". By using this method, it is possible to markedly reduce the amount of CTAB, an expensive and cytotoxic reagent, necessary to obtain the elongated shape. Gold nanorods with an aspect ratio of about 3 can be obtained in the presence of just 50 mM of CTAB (versus 100 mM used in the standard protocol based on the use of ascorbic acid), while shorter gold nanorods are obtained using a concentration as low as 10 mM. PMID:27585238

  13. Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)-thiosulfate complex

    NASA Astrophysics Data System (ADS)

    Lengke, Maggy; Southam, Gordon

    2006-07-01

    A sulfate-reducing bacterial (SRB) enrichment, from the Driefontein Consolidated Gold Mine, Witwatersrand Basin, Republic of South Africa, was able to destabilize gold(I)-thiosulfate complex (Au(SO)23-) and precipitate elemental gold. The precipitation of gold was observed in the presence of active (live) SRB due to the formation and release of hydrogen sulfide as an end-product of metabolism, and occurred by three possible mechanisms involving iron sulfide, localized reducing conditions, and metabolism. The presence of biogenic iron sulfide caused significant removal of gold from solutions by adsorption and reduction processes on the iron sulfide surfaces. The presence of gold nanoparticles within and immediately surrounding the bacterial cell envelope highlights the presence of localized reducing conditions produced by the bacterial electron transport chain via energy generating reactions within the cell. Specifically, the decrease in redox conditions caused by the release of hydrogen sulfide from the bacterial cells destabilized the Au(SO)23- solutions. The presence of gold as nanoparticles (<10 nm) inside a sub-population of SRB suggests that the reduction of gold was a part of metabolic process. In late stationary phase or death phase, gold nanoparticles that were initially precipitated inside the bacterial cells, were released from the cells and deposited in the bulk solution as addition of gold nanoparticles that already precipitated in the solution. Ultimately, the formation of micrometer-scale sub-octahedral and octahedral gold and spherical aggregates containing octahedral gold was observed.

  14. Internal crystallography and thermal history of natural gold alloys

    NASA Astrophysics Data System (ADS)

    Hough, R.; Cleverley, J. S.

    2011-12-01

    New studies of gold are revealing how metallography is a key component of our understanding of the deposition of precious alloys in primary ore systems. Alluvial gold nuggets once thought to be secondary in origin have now been shown to be the erosional residue of hypogene systems, i.e. primary. This has been achieved through analysis of the internal crystallography using electron back scattered diffraction of large area ion beam polished gold samples. Comparisons of the microstructure are also being made with experiments on gold alloys with the same Ag contents where real time heating and in-situ microstructure mapping reveal the structures are of high temperature origin. A new frontier in gold analysis in both hypogene and supergene systems is the nano domain. In hypogene settings gold at all scales can be metallic and particulate as has been directly observed in refractory ores, or the so called "invisible gold" in pyrite and arsenopyrite. Such nanoparticulate and colloidal transport of gold is a viable mechanism of dispersing the gold during weathering of ore deposits. These gold nanoparticles, long known about in materials sciences and manufacturing have now been seen in these natural environments. Such colloids are also likely to play an important role in gold transport in hydrothermal deposits. The regularly heterogeneous distribution, trace concentration and nanoparticulate grain size of metallic gold in all ore systems has made it difficult for direct observation. Yet, it is critical to be able to establish a broad view of the microstructural/microchemical residence of the actual gold in a given sample. New generation element mapping tools now allow us to 'see' this invisible gold component for the first time and to probe its chemistry and controls on deposition. These studies have the potential to provide a new approach and view of the formation, deposition and provenance history of the metal in all gold deposits.

  15. Arkachan: A new gold-bismuth-siderite-sulfide type of deposits in the West Verkhoyansky tin district, Yakutia

    NASA Astrophysics Data System (ADS)

    Gamyanin, G. N.; Vikent'eva, O. V.; Prokof'ev, V. Yu.; Bortnikov, N. S.

    2015-11-01

    The formation sequence of orebodies, chemical composition of gangue and ore minerals, fluid inclusions, REE patterns, 40Ar/39Ar isotopic age, and relationships of stable isotopes (C, O, S) in minerals of the Arkachan gold-bismuth-siderite-sulfide deposit have been studied. The deposit has been localized in the Kuranakh Anticlinorium of the Verkhoyansky Fold-Nappe Belt at the intersection of the near-meridional Kygyltas and the NE-trending North Tirekhtyakh faults. The orebodies are extended (>2 km) and steeply dipping zones of veins and veinlets are hosted in Carbonaceous and Permian sandstones and siltstones deformed in anticlines and cut through by dikes pertaining to diorite-granodiorite-granite association. The deposit was formed during hydrothermal-metamorphic, productive main gold, silver-polymetallic, and silver-antimony stages. The orebodies are largely composed of quartz and siderite; arsenopyrite, pyrite, and pyrrhotite are widespread; bismuthinite, chalcopyrite, sphalerite, galena, and bismuth sulfosalts (gustavite, cosalite, matildite) are less abundant. The REE patterns of carbonates and quartz are characterized by a negative Eu anomaly. Three types of fluid inclusions (FI) in quartz and carbonates are distinguished: (I) liquid H2O + CO2 ± CH4 + NaCl, (II) gaseous CO2 ± CH4, and (III) aqueous salt solutions. The homogenization temperature and salinity of FI I vary from 385 to 280°C and 18.8 to 26.2 wt % NaCl equiv, respectively, whereas in FI III these parameters vary from 261 to 324°C and 3.7 to 9.5 wt % NaCl equiv. The pressure is estimated at 1830 to 1060 bar. The δ18O of quartz II associated with siderite I, native gold, and sulfosalts changes from +13.6 to 16.3‰(SMOW); δ18O and δ13C of siderite I related to gold-ore stage vary from +13.6 to +17.7‰ (SMOW) and from-6.0 to-3.0 (PDB). A wide range of δ34S from-5.7 to 16.0‰ (CDT) has been obtained for sulfides. The isotopic 40Ar/39Ar age of muscovite is 101.9 ± 1.4 Ma. The isotopic

  16. Prospects of gold mineralization in the Gilgit-Baltistan Province of Pakistan

    NASA Astrophysics Data System (ADS)

    Shah, M. T.; Khan, S. D.; Tahirkheli, T.; Ahmad, L.; Miandad, S.; Rehman, A. U.; Ali, L.

    2012-12-01

    mainly pyrite and chalcopyrite with subordinate amount of bornite and tetrahedrite. Surface leaching of these phases to malachite, azurite and limonite is common. Quartz veining, silicification, carbonization and at places brecciation are the common features of these alteration zones. The concentrations of gold were found in the range of 3ppb to 112ppb, <5- 95ppb, 1ppb to 545ppb, 1ppb to 385 and 1ppb to 318ppb in the alteration zones of Golo Das, Bagrot valley, Shigri Bala, Machulu and Ranthak areas respectively. The barren rock samples have generally <5ppb gold. This is indicative of the multi-times enrichment of gold in the alteration zones. The sulfide mineralization along with gold in the alteration zones could be attributed to the hydrothermal/epithermal activity involving meteoric, igneous and or metamorphic fluid individually or mixture of these. The occurrence of dioritic intrusions (igneous fluid source) and the transitional dilated zones (metamorphic fluid source) on the major reactivated thrust fault (i.e., NSZ) in the vicinity of these alteration zones strengthen these observations. However, isotopic studies are underway to solve this problem. This study suggests that the alteration zones in the studied areas have the potential to be explored in detail for possible economical gold mineralization.

  17. Physics with isotopically controlled semiconductors

    SciTech Connect

    Haller, E. E.

    2010-07-15

    This paper is based on a tutorial presentation at the International Conference on Defects in Semiconductors (ICDS-25) held in Saint Petersburg, Russia in July 2009. The tutorial focused on a review of recent research involving isotopically controlled semiconductors. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, is the most prominent effect for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples.

  18. Isotopic Analysis and Evolved Gases

    NASA Technical Reports Server (NTRS)

    Swindle, Timothy D.; Boynton, William V.; Chutjian, Ara; Hoffman, John H.; Jordan, Jim L.; Kargel, Jeffrey S.; McEntire, Richard W.; Nyquist, Larry

    1996-01-01

    Precise measurements of the chemical, elemental, and isotopic composition of planetary surface material and gases, and observed variations in these compositions, can contribute significantly to our knowledge of the source(s), ages, and evolution of solar system materials. The analyses discussed in this paper are mostly made by mass spectrometers or some other type of mass analyzer, and address three broad areas of interest: (1) atmospheric composition - isotopic, elemental, and molecular, (2) gases evolved from solids, and (3) solids. Current isotopic data on nine elements, mostly from in situ analysis, but also from meteorites and telescopic observations are summarized. Potential instruments for isotopic analysis of lunar, Martian, Venusian, Mercury, and Pluto surfaces, along with asteroid, cometary and icy satellites, surfaces are discussed.

  19. Isotopic Changes During Digestion: Protein

    NASA Astrophysics Data System (ADS)

    Tuross, N.

    2013-12-01

    Nutrient and hydrological inputs traverse a complicated route of pH, enzymatic and cellular processes in digestion in higher animals. The end products of digestion are the starting products for biosynthesis that are often used to interpret past life-ways. Using an artificial gut system, the isotopic changes (dD, d18O, d13C and d15N) of protein are documented. Three separate protein sources are subjected to the conditions, chemical and enzymatic, found in the stomach and upper small intestine with only a small shift in the oxygen isotopic composition of the proteins observed. Middle to lower small intestine parameters produced both greater isotopic effects and significantly lower molecular weight products. The role of the gastric enterocyte and the likely involvement of the internal milieu of this cell in the isotopic composition of amino acids that are transported to the liver are reported.

  20. Selective photoionisation of lutetium isotopes

    SciTech Connect

    D'yachkov, Aleksei B; Kovalevich, S K; Labozin, Valerii P; Mironov, Sergei M; Panchenko, Vladislav Ya; Firsov, Valerii A; Tsvetkov, G O; Shatalova, G G

    2012-10-31

    A three-stage laser photoionisation scheme intended for enriching the {sup 176}Lu isotope from natural lutetium was considered. An investigation was made of the hyperfine structure of the second excited state 5d6s7s {yields} {sup 4}D{sub 3/2} with an energy of 37194 cm{sup -1} and the autoionisation state with an energy of 53375 cm{sup -1} of the {sup 176}Lu and {sup 175}Lu isotopes. The total electron momentum of the autoionisation level and the constant A of hyperfine magnetic interaction were determined. Due to a small value of the isotopic shift between {sup 176}Lu and {sup 175}Lu, appreciable selectivity of their separation may be achieved with individual hyperfine structure components. The first tentative enrichment of the 176Lu isotope was performed to a concentration of 60 % - 70 %. (laser applications and other topics in quantum electronics)

  1. Occurrences of dendritic gold at the McLaughlin Mine hot-spring gold deposit

    NASA Astrophysics Data System (ADS)

    Sherlock, R. L.; Lehrman, N. J.

    1995-06-01

    Two styles of gold dendrites are variably developed at the McLaughlin Mine. The most abundant occurrence is hosted by amber-coloured hydrocarbon-rich opal. Silica likely precipitated from a boiling hydrothermal fluid and complexed with immiscible hydrocarbons forming an amorphous hydrocarbon-silica phase. This phase likely scavenged particulate gold by electrostatic attraction to the hydrocarbon-silica phase. The dendritic nature of the gold is secondary and is the result of dewatering of the amorphous hydrocarbon-silica phase and crystallization of gold into syneresis fractures. The second style of dendritic gold is hosted within vein swarms that focused large volumes of fluid flow. The dendrites occur along with hydrocarbon-rich silica at the upper contact of the vein margins which isolated the dendrites allowing sufficient time for them to grow. In a manner similar to the amber-coloured opal, the dendrites may have formed by scavenging particulate gold by electrostatic attraction to the hydrocarbon-silica phase.

  2. Detailed energy distributions in laser-produced plasmas of solid gold and foam gold planar targets

    SciTech Connect

    Dong, Yunsong; Zhang, Lu; Yang, Jiamin; Shang, Wanli

    2013-12-15

    Foam gold was proposed to increase the laser to x-ray conversion efficiency due to its important applications. To understand the mechanism of x-ray enhancement, the detailed energy distributions and plasma profiles for laser-irradiated solid gold and foam gold targets were studied comparatively by hydrodynamic simulations using the code Multi-1D. It is confirmed that the radiation heat wave is subsonic for the normal solid gold target, while supersonic for the foam gold target. The shock wave, which is behind the supersonic radiation heat wave for the foam gold target, generates a plasma temperature gradient with high temperature near the shock wave front to produce an additional net outward radiation for enhancement of the x-ray emission. Much larger inward plasma velocity is also driven by the shock wave as an initial plasma velocity for the laser deposition and electron thermal conduct zone, which decreases the expanding plasma kinetic energy loss and helps to increase the x-ray radiation.

  3. Direct formation of gold nanorods on surfaces using polymer-immobilised gold seeds

    PubMed Central

    Parisse, Pietro; Casalis, Loredana

    2016-01-01

    Summary Herein, we present the formation of gold nanorods (GNRs) on novel gold–poly(methyl methacrylate) (Au–PMMA) nanocomposite substrates with unprecedented growth control through the polymer molecular weight (M w) and gold-salt-to-polymer weight ratio. For the first time, GNRs have been produced by seed-mediated direct growth on surfaces that were pre-coated with polymer-immobilised gold seeds. A Au–PMMA nanocomposite formed by UV photoreduction has been used as the gold seed. The influence of polymer M w and gold concentration on the formation of GNRs has been investigated and discussed. The polymer nanocomposite formed with a lower M w PMMA and 20 wt % gold salt provides a suitable medium for growing well-dispersed GNRs. In this sample, the average dimension of produced GNRs is 200 nm in length with aspect ratios up to 10 and a distribution of GNRs to nanoparticles of nearly 22%. Suitable characterization techniques such as AFM and SEM have been used to support concept of the proposed growth method. PMID:27547597

  4. Greenstone-hosted lode-gold mineralization at Dungash mine, Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Zoheir, Basem; Weihed, Pär

    2014-11-01

    The auriferous quartz ± carbonate veins at Dungash mine, central Eastern Desert of Egypt, are confined to ∼E-trending dilation zones within variably foliated/sheared metavolcanic/volcaniclastic rocks. The vein morphology and internal structures demonstrate formation concurrent with a dextral shear system. The latter is attributed to flexural displacement of folded, heterogeneous rock blocks through transpression increment, late in the Neoproterozoic deformation history of the area. Geochemistry of the host metavolcanic/metavolcaniclastic rocks from the mine area suggests derivation from a low-K, calc-alkaline magma in a subduction-related, volcanic arc setting. In addition, chemistry of disseminated Cr-spinels further constrain on the back-arc basin setting and low-grade metamorphism, typical of gold-hosting greenstone belts elsewhere. Mineralogy of the mineralized veins includes an early assemblage of arsenopyrite-As-pyrite-gersdorffite ± pyrrhotite, a transitional pyrite-Sb-arsenopyrite ± gersdorffite assemblage, and a late tetrahedrite-chalcopyrite-sphalerite-galena-gold assemblage. Based on arsenopyrite and chlorite geothermometers, formation of gold-sulfide mineralization occurred between ∼365 and 280 °C. LA-ICP-MS measurements indicate the presence of refractory Au in arsenian pyrite (up to 53 ppm) and Sb-bearing arsenopyrite (up to 974 ppm). Abundant free-milling gold associated with the late sulfide assemblage may have been mobilized and re-distributed by circulating, lower temperature ore fluids in the waning stages of the hydrothermal system. Based on the isotopic values of vein quartz and carbonate, the calculated average δ18OH2O values of the ore fluids are 5.0 ± 1.4‰ SMOW for quartz, and 3.3 ± 1.4‰ for vein carbonate. The measured carbonate δ13C values correspond to ore fluids with δ13CCO2 = -6.7 ± 0.7‰ PDB. These results suggest a mainly metamorphic source for ore fluids, in good agreement with the vein morphology, textures and

  5. Stable Chlorine Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Sharp, Z.

    2006-12-01

    Chlorine isotope partitioning between different phases is not well understood. Pore fluids can have δ37Cl values as low as -8‰, with neoform sediments having strongly positive values. Most strikingly, volcanic gases have δ37Cl values that cover a range in excess of 14‰ (Barnes et al., this meeting). The large range is difficult to explain in terms of equilibrium fractionation, which, although calculated to be very large for Cl in different oxidation states, should be less than 2‰ between chloride species (Schauble et al., 2003, GCA). To address the discrepancy between Nature and theory, we have measured Cl isotope fractionation for selected equilibrium and disequilibrium experiments in order to identify mechanisms that might lead to large fractionations. 1) NaCl (s,l) NaCl (v): NaCl was sealed in an evacuated silica tube and heated at one end, causing vaporization and reprecipitation of NaCl (v) at the cool end of the tube. The fractionation is 0.2‰ at 700°C (halite-vapor) and 0.7‰ at 800°C (liquid-vapor), respectively. The larger fractionation at higher temperature may be related to equilibrium fractionation between liquid and gas vs. `stripping' of the solid in the lower T experiments. 2) Sodalite NaCl(l): Nepheline and excess NaCl were sealed in a Pt crucible at 825°C for 48 hrs producing sodalite. The measured newly-formed sodalite-NaCl fractionation is -0.2‰. 3) Volatilization of HCl: Dry inert gas was bubbled through HCl solutions and the vapor was collected in a downstream water trap. There was no fractionation for 12.4M HCl (HCl fuming) vapor at 25°C. For a 1 M boiling HCl solution, the HCl-vapor fractionation was ~9‰. The difference is probably related to the degree of dissociation in the acid, with HCl dissolved in water for the highly acidic solutions, and dissociated H3O+ and Cl- for lower concentrations. The HCl volatilization experiments are in contrast to earlier vapor-liquid experiments in NaCl-H2O system, where fractionation was

  6. Novel hybrid isotope separation scheme and apparatus

    DOEpatents

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means.

  7. Novel hybrid isotope separation scheme and apparatus

    DOEpatents

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means. 3 figures.

  8. Enzyme-gold affinity labelling of cellulose.

    PubMed

    Berg, R H; Erdos, G W; Gritzali, M; Brown, R D

    1988-04-01

    The enzyme-linked colloidal gold affinity labelling technique was tested as a method to localize cellulose on thin sections of plant cell walls and slime mold spores. Commercially available cellulase from cultures of Trichoderma reesei, the main components being cellobiohydrolase I and II (CBH I, CBH II) and endoglucanase (EG), was linked to colloidal gold by using standard techniques and applied as a dilute, buffered suspension to thin sections. After brief exposure, e.g., 15-30 minutes, cellulose exposed on the surface of sections was labelled with the enzyme-gold complex. Poststaining did not appear to have a deleterious effect on the labelled sections. The specificity of labelling was demonstrated by its complete inhibition when carboxymethylcellulose was incorporated in the labelling mixture, by lack of labelling of 1,4-beta-mannans or 1,3-beta-xylans in noncellulosic walls of marine algae, by lack of labelling of 1,4-beta-glucans in chitin, by much lower labelling density when done at 4 degrees C, and by lack of labelling when sections were predigested with cellulase. Labelling with the crude commercial cellulase was compared to labelling with purified CBH I-, CBH II-, and EG-linked colloidal gold, and the labelling pattern was similar. This method was found useful on conventionally fixed material and required no special preparation other than the use of inert (Ni or Au) grids and 0.5% gelatin to reduce nonspecific binding of the gold complex. Labelling was similar in the several embedding resins tested: LR White, Lowicryl K4M, Epon 812, and Spurr's.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Synthesis of fluorescent phenylethanethiolated gold nanoclusters via pseudo-AGR method

    NASA Astrophysics Data System (ADS)

    Yao, Chuanhao; Tian, Shubo; Liao, Lingwen; Liu, Xinfeng; Xia, Nan; Yan, Nan; Gan, Zibao; Wu, Zhikun

    2015-10-01

    It is well known that the fluorescence of metal nanoclusters is strongly dependent of the protecting ligand and reports of phenylethanethiolated metal nanoclusters with distinct fluorescence are rare. Herein, a fluorescent phenylethanethiolated gold nanocluster is synthesized using an unexpected pseudo-AGR method (AGR: anti-galvanic reduction). The cluster is precisely determined to be Au24(SC2H4Ph)20 by isotope-resolved mass spectroscopy in tandem with thermogravimetric analysis (TGA). The fluorescence comparison between Au24(SC2H4Ph)20, Au25(SC2H4Ph)18, Au38(SC2H4Ph)24 and Au144(SC2H4Ph)60 is also presented. The finding of the fluorescent phenylethanethiolated gold nanocluster in this work has important implication for future study on the fluorescence of metal nanoclusters.It is well known that the fluorescence of metal nanoclusters is strongly dependent of the protecting ligand and reports of phenylethanethiolated metal nanoclusters with distinct fluorescence are rare. Herein, a fluorescent phenylethanethiolated gold nanocluster is synthesized using an unexpected pseudo-AGR method (AGR: anti-galvanic reduction). The cluster is precisely determined to be Au24(SC2H4Ph)20 by isotope-resolved mass spectroscopy in tandem with thermogravimetric analysis (TGA). The fluorescence comparison between Au24(SC2H4Ph)20, Au25(SC2H4Ph)18, Au38(SC2H4Ph)24 and Au144(SC2H4Ph)60 is also presented. The finding of the fluorescent phenylethanethiolated gold nanocluster in this work has important implication for future study on the fluorescence of metal nanoclusters. Electronic supplementary information (ESI) available: TEM monitoring of the reaction process, digital photos of Au24 and Au25 under visible and UV light, MALDI-MS spectra of Au25, intermediate product, and Au24, fluorescence decay profiles of Au24, Au25, Au38 and Au144 and photobleaching curve of Au24(SC2H4Ph)20. See DOI: 10.1039/c5nr04760a

  10. Isotope-Identifying neutron reflectometry

    SciTech Connect

    Nikitenko, Yu. V. Petrenko, A. V.; Gundorin, N. A.; Gledenov, Yu. M.; Aksenov, V. L.

    2015-07-15

    The possibilities of an isotope-indentifying study of layered structures in different regimes of a neutron wave field are considered. The detection of specularly reflected neutrons and secondary radiation (caused by neutron capture) in the form of charged particles, γ quanta, and nuclear fission fragments, as well as neutrons spin-flipped in a noncollinear magnetic field and on nuclei of elements with spin, makes it possible to implement isotope-indentifying neutron reflectometry.

  11. Clumped isotope thermometry and catagenesis

    NASA Astrophysics Data System (ADS)

    Eiler, J. M.; Clog, M. D.; Dallas, B.; Douglas, P. M.; Piasecki, A.; Sessions, A. L.; Stolper, D. A.

    2014-12-01

    Clumped- and site-specific isotopic compositions of organic compounds can constrain their formation temperatures, sources, and chemical reaction histories. The large number of isotopologues of organic molecules may allow for the isotopic composition of a single compound to illuminate many processes. For example, it is possible that clumping or site specific effects in different parts of the same molecule will differ in blocking temperature, such that a molecule's full isotopic structure could simultaneously constrain conditions of biosynthesis, catagenic 'cracking', and storage in the crust. Recent innovations in high-resolution mass spectrometry and methods of IR and NMR spectroscopy make it possible to explore these questions. Methane is the first organic molecule to have its clumped isotope geochemistry analyzed in a variety of natural environments and controlled experiments. Methane generated through catagenic cracking of kerogen and other organic matter forms in equilibrium with respect to isotopic clumping, and preserves that state through later storage or migration, up to temperatures of ~250 ˚C. This kinetic behavior permits a variety of useful geological applications. But it is unexpected because the bulk stable isotope composition of thermogenic methane is thought to reflect kinetic isotope effects on irreversible reactions. Our observations imply a new interpretation of the chemical physics of catagenic methane formation. Additional instrument and methods developments are currently extending the measurement of isotopic clumping and position specific effects to larger alkanes, other hydrocarbon compounds, and amino acids. These measurements will ultimately expand our capacity to understand the formational conditions and fates of organic molecules in high- and low-temperature environments through geological time.

  12. Synthesis, capping and binding of colloidal gold nanoparticles to proteins

    NASA Astrophysics Data System (ADS)

    Nghiem, Thi Ha Lien; Huyen La, Thi; Hoa Vu, Xuan; Chu, Viet Ha; Hai Nguyen, Thanh; Huan Le, Quang; Fort, Emmanuel; Hoa Do, Quang; Nhung Tran, Hong

    2010-06-01

    Bovine serum albumin (BSA) was used as a stabilizing agent and biofunctionalized layer for water-dispersed gold nanoparticles (NPs) synthesized from metal precursor HAuCl4. The BSA binding to gold NPs was characterized qualitatively and quantitatively by transmission electron microscopy, UV-VIS and FTIR spectrophotometers. HER2 (human epidermal growth factor receptor 2) specific phage antibodies were attached to BSA stabilized gold NPs to form a gold-antibody complex. An ELISA (enzyme-linked immunosorbent assay) test was done to confirm the bioactivity of antibodies attached to gold NPs.

  13. Radicals Are Required for Thiol Etching of Gold Particles.

    PubMed

    Dreier, Timothy A; Ackerson, Christopher J

    2015-08-01

    Etching of gold with an excess of thiol ligand is used in both synthesis and analysis of gold particles. Mechanistically, the process of etching gold with excess thiol is unclear. Previous studies have obliquely considered the role of oxygen in thiolate etching of gold. Herein, we show that oxygen or a radical initiator is a necessary component for efficient etching of gold by thiolates. Attenuation of the etching process by radical scavengers in the presence of oxygen, and the restoration of activity by radical initiators under inert atmosphere, strongly implicate the oxygen radical. These data led us to propose an atomistic mechanism in which the oxygen radical initiates the etching process.

  14. Radicals are required for thiol etching of gold particles

    PubMed Central

    Dreier, Timothy A.

    2016-01-01

    Etching of gold with excess thiol ligand is used in both synthesis and analysis of gold particles. Mechanistically, the process of etching gold with excess thiol is opaque. Previous studies have obliquely considered the role of oxygen in thiolate etching of gold. Herein, we show that oxygen or a radical initator is a necessary component for efficient etching of gold by thiolates. Attenuation of the etching process by radical scavengers in the presence of oxygen, and the restoration of activity by radical initiators under inert atmosphere, strongly implicate the oxygen radical. These data led us to propose an atomistic mechanism in which the oxygen radical initiates the etching process. PMID:26089294

  15. Formation of gold mineralization in ultramafic alkalic magmatic complexes

    NASA Astrophysics Data System (ADS)

    Ryabchikov, I. D.; Kogarko, L. N.; Sazonov, A. M.; Kononkova, N. N.

    2016-06-01

    Study of mineral inclusions within alluvial gold particles of the Guli Complex (East Siberia) and findings of lode gold in rocks of the same intrusion have demonstrated that gold mineralization occurs in interstitions of both early high-magnesium rocks (dunite) and later alkalic and carbonatite rocks. In dunite the native gold occurs in association with Fe-Ni sulfides (monosulfide solid solution, pentlandite, and heazlewoodite). Formation of the gold-bearing alloys took place under a low oxygen potential over a broad range of temperatures: from those close to 600°C down to below 400°C.

  16. Carbon isotope evidence for a magmatic origin for Archaean gold-quartz vein ore deposits

    NASA Technical Reports Server (NTRS)

    Burrows, D. R.; Wood, P. C.; Spooner, E. T. C.

    1986-01-01

    Sediments from three sites in the Santa Barbara Basin were examined with a 160X power light microscope and TEM equipment to characterize the magnetostatic bacteria (MB) in the samples. Both the free magnetite and the crystals in the MB in the samples had lengths from 40-60 nm in length and increased in size from one end to the next. An intact magnetosome was also observed. Scanning the sediments with saturation isothermal remanent magnetization (SIRM) and altering field demagnetization techniques using a SQUID magnetometer yielded coercivity spectra which showed that the primary remanence carrier in the sediments was single domain magnetite. Although it is expected that the predominance of the bacterial magnetite component will decrease with depth in the open ocean basin, single-domain bacteria as old as 50 Myr have been observed in oceanic sediments.

  17. Isotope separation apparatus and method

    DOEpatents

    Feldman, Barry J.

    1985-01-01

    The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  18. Development of Novel Supported Gold Catalysts: A Materials Perspective

    SciTech Connect

    Dai, Sheng; Ma, Zhen

    2011-01-01

    Since Haruta et al. discovered that small gold nanoparticles finely dispersed on certain metal oxide supports can exhibit surprisingly high activity in CO oxidation below room temperature, heterogeneous catalysis by supported gold nanoparticles has attracted tremendous attention. The majority of publications deal with the preparation and characterization of conventional gold catalysts (e.g., Au/TiO{sub 2}), the use of gold catalysts in various catalytic reactions, as well as elucidation of the nature of the active sites and reaction mechanisms. In this overview, we highlight the development of novel supported gold catalysts from a materials perspective. Examples, mostly from those reported by our group, are given concerning the development of simple gold catalysts with single metal-support interfaces and heterostructured gold catalysts with complicated interfacial structures. Catalysts in the first category include active Au/SiO{sub 2} and Au/metal phosphate catalysts, and those in the second category include catalysts prepared by pre-modification of supports before loading gold, by post-modification of supported gold catalysts, or by simultaneous dispersion of gold and an inorganic component onto a support. CO oxidation has generally been employed as a probe reaction to screen the activities of these catalysts. These novel gold catalysts not only provide possibilities for applied catalysis, but also furnish grounds for fundamental research.

  19. Selected scientific topics of the 11th International Isotope Symposium on the Synthesis and Applications of Isotopes and Isotopically Labeled Compounds.

    PubMed

    Atzrodt, Jens; Derdau, Volker

    2013-01-01

    This micro-review describes hot topics and new trends in isotope science discussed at the 11th International Isotope Symposium on the Synthesis and Applications of Isotopes and Isotopically Labeled Compounds from a personal perspective.

  20. Paleoproxies: Heavy Stable Isotope Perspectives

    NASA Astrophysics Data System (ADS)

    Nagler, T. F.; Hippler, D.; Siebert, C.; Kramers, J. D.

    2002-12-01

    Recent advances in isotope ratio mass spectrometry, namely multiple collector ICP-MS and refined TIMS techniques, will significantly enhance the ability to measure heavy stable isotope fractionation, which will lead to the development of a wide array of process-identifying (bio)-geochemical tools. Thus far research in this area is not easily assessable to scientists outside the isotope field. This is due to the fact that analyzing heavy stable isotopes does not provide routine numbers which are per se true (the preciser the truer) but is still a highly experimental field. On the other hand resolving earth science problems requires specialists familiar with the environment being studied. So what is in there for paleoceanographers? In a first order approach, relating isotope variations to physical processes is straightforward. A prominent example are oxygen isotope variations with temperature. The total geological signal is of course far more complicated. At low temperatures, heavy stable isotopes variations have been reported for e.g. Ca, Cr, Fe, Cu, Zn, Mo and Tl. Fractionation mechanisms and physical parameters responsible for the observed variations are not yet resolved for most elements. Significant equilibrium isotope fractionation is expected from redox reactions of transition metals. However a difference in coordination number between two coexisting speciations of an element in the same oxidation state can also cause fractionation. Protonation of dissolved Mo is one case currently discussed. For paleoceanography studies, a principal distinction between transition metals essential for life (V to Zn plus Mo) or not will be helpful. In case of the former group, distinction between biogenic and abiogenic isotope fractionation will remain an important issue. For example, abiotic Fe redox reactions result in isotope fractionations indistinguishable in direction and magnitude from microbial effects. Only a combination of different stable isotope systems bears the

  1. The gold-sulfur interface at the nanoscale.

    PubMed

    Häkkinen, Hannu

    2012-06-01

    Thiolate-protected gold surfaces and interfaces, relevant for self-assembled monolayers of organic molecules on gold, for passivated gold nanoclusters and for molecule-gold junctions, are archetypal systems in various fields of current nanoscience research, materials science, inorganic chemistry and surface science. Understanding this interface at the nanometre scale is essential for a wide range of potential applications for site-specific bioconjugate labelling and sensing, drug delivery and medical therapy, functionalization of gold surfaces for sensing, molecular recognition and molecular electronics, and gold nanoparticle catalysis. During the past five years, considerable experimental and theoretical advances have furthered our understanding of the molecular structure of the gold-sulfur interface in these systems. This Review discusses the recent progress from the viewpoint of theory and computations, with connections to relevant experiments. PMID:22614378

  2. In vitro cytotoxicity of gold nanorods in A549 cells.

    PubMed

    Tang, Ying; Shen, Yafeng; Huang, Libin; Lv, Gaojian; Lei, Changhai; Fan, Xiaoyan; Lin, Fangxing; Zhang, Yuxia; Wu, Lihui; Yang, Yongji

    2015-03-01

    Gold nanoparticles, which have unique physicochemical characteristics, are being used for an increasingly wide range of applications in biomedical research. In this study, gold nanorods (width of 25 nm, length of 52 nm) were found to be internalized by A549 cells and were primarily localized in the lysosomes and membranous vesicles. The integrity of the membranes of A549 cells exposed to gold nanorods for 4h was damaged, as indicated by laser scanning confocal microscopy (LSCM). Increased lactate dehydrogenase (LDH) leakage and decreased cell viability further indicated the concentration-dependent cytotoxicity of the gold nanorods to the A549 cells. Reactive oxygen species (ROS) production was induced in the A549 cells by the gold nanorods, and this effect was positively correlated with the concentration of the gold nanorods. The results of this study indicated that exposure to gold nanorods caused dose-dependent cytotoxicity in A549 cells and that oxidative stress may be the main factor causing cytotoxicity.

  3. Chirality in thiolate-protected gold clusters.

    PubMed

    Knoppe, Stefan; Bürgi, Thomas

    2014-04-15

    Over recent years, research on thiolate-protected gold clusters Au(m)(SR)n has gained significant interest. Milestones were the successful determination of a series of crystal structures (Au102(SR)44, Au25(SR)18, Au38(SR)24, Au36(SR)24, and Au28(SR)20). For Au102(SR)44, Au38(SR)24, and Au28(SR)20, intrinsic chirality was found. Strong Cotton effects (circular dichroism, CD) of gold clusters protected by chiral ligands have been reported a long time ago, indicating the transfer of chiral information from the ligand into the cluster core. Our lab has done extensive studies on chiral thiolate-protected gold clusters, including those protected with chiral ligands. We demonstrated that vibrational circular dichroism can serve as a useful tool for the determination of conformation of the ligand on the surface of the cluster. The first reports on crystal structures of Au102(SR)44 and Au38(SR)24 revealed the intrinsic chirality of these clusters. Their chirality mainly arises from the arrangement of the ligands on the surface of the cluster cores. As achiral ligands are used to stabilize the clusters, racemic mixtures are obtained. However, the separation of the enantiomers by HPLC was demonstrated which enabled the measurement of their CD spectra. Thermally induced inversion allows determination of the activation parameters for their racemization. The inversion demonstrates that the gold-thiolate interface is anything but fixed; in contrast, it is rather flexible. This result is of fundamental interest and needs to be considered in future applications. A second line of our research is the selective introduction of chiral, bidentate ligands into the ligand layer of intrinsically chiral gold clusters. The ligand exchange reaction is highly diastereoselective. The bidentate ligand connects two of the protecting units on the cluster surface and thus effectively stabilizes the cluster against thermally induced inversion. A minor (but significant) influence of chiral ligands to

  4. Antifungal activity of gold nanoparticles prepared by solvothermal method

    SciTech Connect

    Ahmad, Tokeer; Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna; Manzoor, Nikhat; Ahmad, Aijaz; Ahmed, Jahangeer; Al-Shihri, Ayed S.

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.

  5. Results of deep exploratory drilling between long and Newark Valleys, White Pine County, Nevada - implications for oil migration in the nearby Yankee gold mine paleohydrothermal system

    SciTech Connect

    Pinnell, M.L. ); Hulen, J.B. ); Cox, J.W. )

    1993-08-01

    In mid-1992, a consortium headed by Pioneer Oil and Gas (Midvale, Utah) drilled a deep (6700 ft) exploratory well in the southern Ruby Mountains-Buck Mountain are near the Alligator Ridge mining district in White Pine County, Nevada. The test well is located 1.5 mi southwest of USMX, Inc.'s, Yankee gold mine, an open-pit operation centered on a Carlin-type, sediment-hosted gold orebody noteworthy for containing abundant, fracture-controlled live oil. The Pioneer well as dry, but intersected much of the same stratigraphic section hosting gold at Yankee, thereby providing valuable clues to mechanisms of oil migration at this unusual, oil-bearing precious-metal deposit. Most of the gold at Yankee is hosted by the Devonian Pilot Shale, with a basal argillaceous limestone containing the bulk of the deposit's live oil. The equivalent section in the Pioneer wildcat well is a silty calcareous dolomite. Whereas the basal Pilot limestone at Yankee is rich in thick, locally gold- and arsenic-anomalous calcite veins and modules hosting abundant oil-bearing fluid inclusion, the basal Pilot dolomite in the Pioneer well contains only a few thin calcite-pyrite veinlets devoid of fluid inclusions. Moreover, the Yankee calcite veins have the same light-stable-isotope signatures as hydrothermal carbonate veins near or elsewhere in the Alligator Ridge district. These relationships imply that oil at Yankee migrated in the same hydrothermal system responsible for gold mineralization. Such systems elsewhere in the eastern Basin and Range, given favorable source rocks, traps, seals, and migratory pathways, might well have formed not only gold deposits, but also rich, spatially coincident oil reservoirs.

  6. Isotopic Compositions of Evaporative Fluxes

    NASA Astrophysics Data System (ADS)

    Feng, X.; Lauder, A. M.; Kopec, B. G.; Dade, W. B.; Virginia, R. A.; Posmentier, E. S.

    2013-12-01

    The isotopic fluxes of evaporation from a water surface are typically computed using a one-dimensional model, originally conceptualized by Craig and Gordon (1965) and further developed and adapted to different natural settings (such as transpiration, open surface evaporation, etc.) by various investigators. These models have two distinguishing characteristics. First, there exists a laminar layer where molecular diffusion away from the water-air interface causes kinetic isotopic fractionation. The magnitude of this fractionation is controlled by the diffusion/transport coefficient of each vapor isotopologue in air and their concentration gradients, the latter being controlled by relative humidity, isotopic ratios of ambient air, and turbulent conditions (such as wind and surface roughness). Second, the horizontal variations are ignored. In particular, the effect of horizontal advection on isotopic variations in the ambient air is not considered. The research reported here addresses the effects of relinquishing the simplifying assumptions in both of these areas. We developed a model, in which the simplification of a purely laminar layer is dropped. Instead, we express the vertical transport coefficient as the sum of the molecular diffusivity, that differs for each water isotopologue, and the turbulent diffusivity that increases linearly with height but does not vary among water isotopologues. With this model, the kinetic isotopic effect reduces with height in the vicinity of the water surface, and the net isotopic fractionation through the boundary layer can be integrated. The advantage of this conceptualization is that the magnitude of kinetic isotopic fractionation can be assessed directly with changing environmental conditions, such as humidity and wind speed, rather than approximated by discontinuous empirical functions of the environmental conditions, as in the conventional models mentioned above. To address the effect of lateral heterogeneity, we expanded the

  7. Applications of nuclear and isotopic techniques in Indonesia

    SciTech Connect

    Hilmy, N.; Hendranto, K.

    1994-12-31

    Applications of Nuclear and Isotopic Techniques have been developed by the National Atomic Energy Agency (BATAN) since early 1970 in Indonesia. The scope of these applications covers various fields such as agriculture, hydrology, sedimentology and industry. Some applications of tracer techniques in industry which have been done such as measurement of homogeneity of mixing process in fertiliser and paper factory, residence time distribution in gold processing plant, mercury inventory in caustic soda plant, enhanced oil recovery in oil production wells, leakage investigation in dust chamber of fertiliser plant and blockage of pipeline, are presented in this paper. In the field of NDT by radiographic technique, BATAN regularly conducts training courses and also issues licences for Level I and II. Some applications of nuclear techniques in agriculture such as mutation breeding, animal production and animal health have shown the potential of radiation in creating variability as a basis for varietal improvements in several food crop species, the potential of using isotopes as tracers in the studies on metabolism, particularly in relation to the efficiency of rumen fermentative digestion and biological evaluation of locally available feedstuffs from agricultural and agro-industrial byproducts. So far, four varieties of nice, two varieties of soybean, and one variety of mungbean have been officially approved for release, and one formulation of feed supplement utilizing locally available agricultural and agro-industrial byproducts has been established and used for cattle and goats. In animal health, a radiovaccine against coccidiosis in poultry has been produced and used routinely.

  8. Ore-microscopic and geochemical characteristics of gold-tellurides-sulfide mineralization in the Macassa Gold Mine, Abitibi Belt, Canada

    NASA Astrophysics Data System (ADS)

    Tesfaye, G.

    1992-01-01

    The Macassa Gold Mine is the only operational mine (Lac-Minerals Ltd., Macassa Division) of seven original gold producers in the Kirkland Lake camp of northern Ontario, Canada. The gold deposit is in Archaean volcanic and sedimentary rocks which have been intruded by a composite syenite stock. The mineralization has taken place in two stages. The first stage is not gold bearing but involves pyritization and concomitant development of titanium phase minerals (leucoxene, rutile) and hematite. It is mainly associated with carbonatization, silicification and hematitization marked by Ba, Sr and Rb enrichment. In contrast to this, the quartz vein-type mineralization is associated mainly with later silicification and enrichment with tellurium, lead, silver, gold and copper. It is relatively depleted in Sr, Ba and Rb. The ore mineralogical assemblages in the second stage include pyrite, chalcopyrite, petzite, altaite and native gold. Geochemical and petrographic evidence indicate that the reddened wall rocks (hematitized) and reddened fragments are neither related with nor contain any gold. Therefore, hematitization and the presence of barium, in this case in K-feldspars, could not be considered as the sole evidence to suggest a magmatic oxidizing fluid model for the genesis of Macassa gold deposit. Regarding the metals transport, tellurides and thiocomplexes are considered as the important carriers of gold and silver. Hence, fugacity of tellurium and sulphur controlled the precipitation of gold in the Macassa gold deposit.

  9. Facile solvothermal preparation of monodisperse gold nanoparticles and their engineered assembly of ferritin-gold nanoclusters.

    PubMed

    Choi, Jonghoon; Park, Sungwook; Stojanović, Zoran; Han, Hyung-Seop; Lee, Jongwook; Seok, Hyun Kwang; Uskoković, Dragan; Lee, Kwan Hyi

    2013-12-17

    Herein, we report a quick and simple synthesis of water-soluble gold nanoparticles using a HAuCl4 and oleylamine mixture. Oleylamine serves as a reduction agent as well as a stabilizer for nanoparticle surfaces. The particle sizes can be adjusted by modulating reaction temperature and time. Solvothermal reduction of HAuCl4 with oleylamine can be confirmed by measuring the product in Fourier transform infrared (FTIR) spectroscopy. The plasmon band shifting from yellow to red confirms a nanosized particle formation. Amide bonds on the surface of the nanoparticles formed hydrogen bonds with one another, resulting in a hydrophobic monolayer. Particles dispersed well in nonpolar organic solvents, such as in hexane or toluene, by brief sonication. Next, we demonstrated the transfer of gold nanoparticles into water by lipid capsulation using 1-myristoyl-2-hydroxy-sn-glycero-3-phosphocholine (MHPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(methoxy polyethylene glycol)-2000 (DPPE-PEG2k), and 1,2-dioleoyl-sn-glycero-3-N-{5-amino-1-carboxypentyl}iminodiacetic acid succinyl nickel salt [DGS-NTA(Ni)]. The particle concentration can be obtained using an absorbance in ultraviolet-visible (UV-vis) spectra (at 420 nm). Instrumental analyses using transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) analysis, dynamic light scattering (DLS), and FTIR confirmed successful production of gold nanoparticles and fair solubility in water. Prepared gold particles were selectively clustered via engineered ferritin nanocages that provide multiple conjugation moieties. A total of 5-6 gold nanoparticles were clustered on a single ferritin nanocage confirmed in TEM. Reported solvothermal synthesis and preparation of gold nanoclusters may serve as an efficient, alternate way of preparing water-soluble gold nanoparticles, which can be used in a wide variety of biomedical applications. PMID:24283573

  10. Petrogenesis and emplacement of the TTG and K-rich granites at the Buzwagi gold mine, northern Tanzania: Implications for the timing of gold mineralization

    NASA Astrophysics Data System (ADS)

    Manya, Shukrani

    2016-07-01

    The Buzwagi gold mine, found in the Neoarchaean Nzega greenstone belt of northern Tanzania, is underlain by Neoarchaean mafic volcanic rocks which are intruded by a massive body of ultramafic rocks that are cross-cut by grey colored TTG and pink microcline K-rich granites. Geochemical alteration studies for the sheared and hydrothermally altered K-granites show that the LFSE and REE were significantly mobilized during the shearing and subsequent injection of hydrothermal fluid events whereas the HFSE remained virtually unchanged. The Buzwagi mine TTG exhibit geochemical characteristics of other worldwide known TTG (Al2O3 ~ 15.0 wt.%; Na2O/K2O ratios of 1.19-5.16, low concentration of heavy REE with Y contents of 3-7 ppm and Yb = 0.3-0.5 ppm leading to high Sr/Y ratios (61-152) and La/Yb = 32-140) which are comparable to those of Phanerozoic adakites. The Buzwagi mine TTG are characterized by strongly fractionated REE patterns (La/YbCN = 23-100) with slightly negative to no Eu anomalies (Eu/Eu* = 0.77-1.05), negative anomalies of Nb, Ta and Ti, and εNd (2713) values of + 1.19 to + 1.77. These geochemical and isotopic characteristics are interpreted as formation of the TTG by partial melting of the hydrous basaltic crust at pressures and depths where garnet and amphibole were stable phases in the late Archaean subduction zone. The Buzwagi mine K-rich granites differ from their TTG counterparts in having elevated concentrations of incompatible elements like K, Zr, Th, Hf, and REE. They however share similar Nd-isotopic compositions (εNd (2674 Ma) = + 1.19 to + 1.22), and some geochemical features including fractionated REE patterns (La/YbCN = 13-204) with slightly negative to no Eu anomalies (Eu/Eu* = 0.78-0.89) and negative anomalies of Nb, Ta and Ti. These geochemical features and isotopic signatures have been interpreted as formation of the K-granites by anhydrous partial melting of the TTG (and greenstones). The Buzwagi mine K-granites were emplaced at 2674

  11. SERS of C60/C70 on gold-coated filter paper or filter film influenced by the gold thickness.

    PubMed

    Luo, Zhixun; Fang, Yan

    2005-03-15

    SERS of C(60)/C(70) adsorbed on gold nanoparticles coated on filter paper or filter film was studied. As a new SERS substrate, dried gold-coated filter paper or filter film has a high SERS activity, whose enhancement factor can be up to about 10(5), because it avoided the influence of solvents in C(60)/C(70) solution and water in gold hydrosols. The influence of the gold thickness coated on filter paper or filter film to SERS of C(60)/C(70) adsorbed on gold nanoparticles was mainly discussed. It is indicated that the SERS effect of C(60)/C(70) was very sensitive to the distribution and aggregated characteristics of gold nanoparticles, and the SERS intensity of each mode increased at its own proportion, but it integrally tended to saturation when the thickness of colloidal gold coatings increased.

  12. CHANGES IN GRADE, VOLUME AND CONTAINED GOLD DURING THE MINING LIFE-CYCLE OF GOLD PLACER DEPOSITS.

    USGS Publications Warehouse

    Bliss, J.D.; Orris, G.J.; Menzie, W.D.

    1987-01-01

    Analysis of gold placer data throughout the world suggests that gold grades and volumes cannot be used to distinguish between most types of gold placers. Only the alluvial plain and fan placers are significantly different among the types of gold placers considered. Gold grades and volumes change when working placers go from small-volume methods to large-volume methods. The odds that a placer will be dominantly worked using small-volume methods at the surface are about 5:3. Once small-volume mining has occurred, the odds against subsequent large-volume mining are about 4:1. If a deposit is suitable for large-volume mining and the amount of gold produced from small-volume mining was reported, an estimate of the remaining gold (log//1//0kg) can be made using an equation.

  13. Isotopic fractionation by diffusion in groundwater

    NASA Astrophysics Data System (ADS)

    Labolle, Eric M.; Fogg, Graham E.; Eweis, Juana B.; Gravner, Janko; Leaist, Derek G.

    2008-07-01

    During the last decade, isotopic fractionation has gained acceptance as an indicator of microbiological and chemical transformations of contaminants in groundwater. These transformation processes typically favor isotopically light, compared to isotopically heavy, contaminants, resulting in enrichment of the latter in the residual aqueous phase. In these isotope applications, it has been generally presumed that physical transport processes in groundwater have a negligible effect on isotopic enrichment. It is well known, however, that aqueous phase diffusion generally proceeds faster for isotopically light, compared to isotopically heavy, solute molecules, often resulting in isotopic fractionation in groundwater. This paper considers the potential for isotopic fractionation during transport in groundwater resulting from minute isotopic effects on aqueous diffusion coefficients. Analyses of transport in heterogeneous systems delimit the viable range of isotopic fractionation by diffusion in groundwater. Results show that diffusion can result in similar degrees of depletion and enrichment of isotopically heavy solutes during transport in heterogeneous systems with significant diffusion rate-limited mass transfer between fast- and slow-flow zones. Additional analyses and examples explore conditions that attenuate the development of significant fractionation. Examples are presented for 13C methyl tertiary butyl ether and deuterated and nondeuterated isopropanol and tertiary butyl alcohol using aqueous diffusion coefficients measured by the Taylor dispersion method with refractive index profiling as a part of this study. Examples elucidate the potential for diffusive fractionation as a confounder in isotope applications and emphasize the importance of hydrogeologic analysis for assessing the role of diffusive fractionation in isotope applications at contaminant field sites.

  14. Photodisintegration of Lithium Isotopes

    NASA Astrophysics Data System (ADS)

    Wurtz, Ward Andrew

    We have performed a measurement of the photodisintegration of the lithium isotopes, 6Li and 7Li, using a monochromatic, polarised photon beam and a segmented neutron detector array which covers approximately ¼ of 4pi srad. Using time-of-flight and scintillator light-output spectra we separate the data into individual reaction channels. This work is motivated by the need to compare with recent theoretical predictions and to provide data for future theoretical work. For the photodisintegration of 6Li we took data at 12 photon energies between 8 and 35 MeV. We describe the data using a model consisting of two-body reaction channels and obtain angular distributions and absolute cross sections for many of these reaction channels. We compare our results with a recent Lorentz integral transform calculation (Bacca et al. Phys. Rev. C 69, 057001 (2004)). Our results are in reasonable agreement with the calculation, in contradiction with previous experimental results. For the photodisintegration of 7Li, we took data at 9 photon energies between 10 and 35 MeV. We obtain cross sections for the reaction channel 7Li + gamma → n + 6 Li(g.s.) at all photon energies with angular distributions at all but the highest energy. We obtain angular distributions and total cross sections for reaction channels involving excited states of the daughter nucleus, 6Li, at select energies. We hope that these measurements will provide incentive for new theoretical calculations. We observe neutrons that can only be described by the reaction channel 7Li + gamma → n + 6Li(10.0) which necessitates an excited state of 6Li with excitation energy Ex = 10.0 +/- 0.5 MeV that is not in the standard tables of excited states. ii

  15. Isotope shifts in francium isotopes Fr-213206 and 221Fr

    NASA Astrophysics Data System (ADS)

    Collister, R.; Gwinner, G.; Tandecki, M.; Behr, J. A.; Pearson, M. R.; Zhang, J.; Orozco, L. A.; Aubin, S.; Gomez, E.; FrPNC Collaboration

    2014-11-01

    We present the isotope shifts of the 7 s1 /2 to 7 p1 /2 transition for francium isotopes 206 -213Fr with reference to 221Fr collected from two experimental periods. The shifts are measured on a sample of atoms prepared within a magneto-optical trap by a fast sweep of radio-frequency sidebands applied to a carrier laser. King plot analysis, which includes literature values for 7 s1 /2 to 7 p3 /2 isotope shifts, provides a field shift constant ratio of 1.0520(10) and a difference between the specific mass shift constants of 170(100) GHz amu between the D1 and D2 transitions, of sufficient precision to differentiate between ab initio calculations.

  16. Protein Cages as Containers for Gold Nanoparticles.

    PubMed

    Liu, Aijie; Verwegen, Martijn; de Ruiter, Mark V; Maassen, Stan J; Traulsen, Christoph H-H; Cornelissen, Jeroen J L M

    2016-07-01

    Abundant and highly diverse, viruses offer new scaffolds in nanotechnology for the encapsulation, organization, or even synthesis of novel materials. In this work the coat protein of the cowpea chlorotic mottle virus (CCMV) is used to encapsulate gold nanoparticles with different sizes and stabilizing ligands yielding stable particles in buffered solutions at neutral pH. The sizes of the virus-like particles correspond to T = 1, 2, and 3 Caspar-Klug icosahedral triangulation numbers. We developed a simple one-step process enabling the encapsulation of commercially available gold nanoparticles without prior modification with up to 97% efficiency. The encapsulation efficiency is further increased using bis-p-(sufonatophenyl)phenyl phosphine surfactants up to 99%. Our work provides a simplified procedure for the preparation of metallic particles stabilized in CCMV protein cages. The presented results are expected to enable the preparation of a variety of similar virus-based colloids for current focus areas. PMID:27135176

  17. Gold nanodisk array surface plasmon resonance sensor

    NASA Astrophysics Data System (ADS)

    Tian, Xueli

    Surface plasmon resonances in periodic metal nanostructures have been investigated for sensing applications over the last decade. The resonance wavelengths of the nanostructures are usually measured in the transmission or reflection spectrum for chemical and biological sensing. In this thesis, I introduce a nanoscale gap mediated surface plasmon resonance nanodisk array for displacement sensing and a super-period gold nanodisk grating enabled surface plasmon resonance spectrometer sensor. The super-period gold nanodisk grating has a small subwavelength period and a large diffraction grating period. Surface plasmon resonance spectra are measured in the first order diffraction spatial profiles captured by a charge-coupled device (CCD). A surface plasmon resonance sensor for the bovine serum albumin (BSA) protein nanolayer bonding is demonstrated by measuring the surface plasmon resonance shift in the first order diffraction spatial intensity profiles captured by the CCD.

  18. Topological states on the gold surface

    PubMed Central

    Yan, Binghai; Stadtmüller, Benjamin; Haag, Norman; Jakobs, Sebastian; Seidel, Johannes; Jungkenn, Dominik; Mathias, Stefan; Cinchetti, Mirko; Aeschlimann, Martin; Felser, Claudia

    2015-01-01

    Gold surfaces host special electronic states that have been understood as a prototype of Shockley surface states. These surface states are commonly employed to benchmark the capability of angle-resolved photoemission spectroscopy (ARPES) and scanning tunnelling spectroscopy. Here we show that these Shockley surface states can be reinterpreted as topologically derived surface states (TDSSs) of a topological insulator (TI), a recently discovered quantum state. Based on band structure calculations, the Z2-type invariants of gold can be well-defined to characterize a TI. Further, our ARPES measurement validates TDSSs by detecting the dispersion of unoccupied surface states. The same TDSSs are also recognized on surfaces of other well-known noble metals (for example, silver, copper, platinum and palladium), which shines a new light on these long-known surface states. PMID:26658826

  19. Prospecting for gold in the United States

    USGS Publications Warehouse

    ,

    1967-01-01

    Prospecting for gold is something that probably everyone dreams of trying at least once. To the person who is mainly concerned with this activity as a vacation diversion, prospecting offers a special excitement. There is a constant hope that the next pan of sediment may be "pay dirt," and no other thrill can compare with that experienced when one sees even a few tiny flecks of gold glittering in the black sand at the bottom of his pan. The search itself is its own reward for the efforts expended by the vacation prospector. The would-be prospector hoping for financial gain, however, should carefully consider all the facts of the situation before deciding to set out on a prospecting expedition.

  20. Atomic Diffusion within Individual Gold Nanocrystal

    PubMed Central

    Xiong, Gang; Clark, Jesse N.; Nicklin, Chris; Rawle, Jonathan; Robinson, Ian K.

    2014-01-01

    Due to their excess surface free energy and structural instabilities, nanoparticles exhibit interesting physical and chemical properties. There has been an ever-growing interest in investigating these properties, driven by the desire to further miniaturize electronic devices, develop new functional materials and catalysts. Here, the intriguing question of how diffusion evolves in a single nanoparticle is investigated by measuring the spatial and temporal variations of the diffracted coherent X-ray intensity during copper diffusion into a gold nanocrystal. Dislocation loops formed from the insertion of single layer of extra atoms between neighbouring gold host lattice planes are detected. Au-Cu alloy channels are found to penetrate the nanocrystal due to the differential diffusion rate along different directions. With the advent of higher brilliance sources and free-electron-lasers, Bragg Coherent X-ray Diffraction Imaging can play an important role in unveiling atomic behaviours in three dimensions for nanomaterials during various fundamental processes. PMID:25341377