Science.gov

Sample records for gold sulfide monolayer

  1. Sulphur adsorption on gold monolayer

    NASA Astrophysics Data System (ADS)

    Kaur, Damanpreet; Kaur, Sumandeep; Srivastava, Sunita

    2017-05-01

    We use Density Functional Theory to study the electronic and magnetic properties of two dimensional gold monolayer and investigate the effect of adsorption of sulphur atom on it. Of all the possible adsorption sites, hollow site was found to be the most favorable one for adsorption. On-top and bridge adsorption sites are found to exhibit net magnetic moment of adsorbed gold monolayer. This feature of small but non zero magnetic moment could find applications in building small molecular magnetic devices.

  2. Monolayer coated gold nanoparticles for delivery applications

    PubMed Central

    Rana, Subinoy; Bajaj, Avinash; Mout, Rubul; Rotello, Vincent M.

    2011-01-01

    Gold nanoparticles (AuNPs) provide attractive vehicles for delivery of drugs, genetic materials, proteins, and small molecules. AuNPs feature low core toxicity coupled with the ability to parametrically control particle size and surface properties. In this review, we focus on engineering of the AuNP surface monolayer, highlighting recent advances in tuning monolayer structures for efficient delivery of drugs and biomolecules. This review covers two broad categories of particle functionalization, organic monolayers and biomolecule coatings, and discusses their applications in drug, DNA/RNA, protein and small molecule delivery. PMID:21925556

  3. Large excitonic effects in group-IV sulfide monolayers

    NASA Astrophysics Data System (ADS)

    Tuttle, Blair R.; Alhassan, Saeed M.; Pantelides, Sokrates T.

    2015-12-01

    Large exciton binding energies are a distinguishing feature of two-dimensional semiconductors because of reduced screening, potentially leading to unique optoelectronic applications. Here we use electronic structure methods to calculate the properties of a two-dimensional material class: group-IV monosulfides including SiS, GeS, and SnS. Bulk SiS is predicted to be a metastable layered material. Quasiparticle excitations are calculated with the G0W0 method and the Bethe-Salpeter equation is are used to include electron-hole interactions. For monolayers, strongly bound excitons are found below the quasiparticle absorption edge. The predicted excitonic binding energies are as high as 0.7 eV. Due to large excitonic effects, these group-IV sulfide monolayers have great potential for nanoscale optoelectronic applications.

  4. An array of layers in silicon sulfides: Chainlike and monolayer

    NASA Astrophysics Data System (ADS)

    Alonso-Lanza, T.; Ayuela, A.; Aguilera-Granja, F.

    2016-12-01

    While much is known about isoelectronic materials related to carbon nanostructures, such as boron-nitride layers and nanotubes, rather less is known about equivalent silicon-based materials. Following the recent discovery of phosphorene, here we discuss isoelectronic silicon-monosulfide monolayers. We describe a set of anisotropic structures that clearly have a high stability with respect to previously reported silicon-monosulfide monolayers. The source of the layer anisotropy is related to the presence of Si-S double chains linked by some Si-Si covalent bonds together with a remarkable spd hybridization on Si. The increased stability is related to silicon forming four bonds, including an additional double-bond-like Si-Si bond. The involvement of d orbitals brings more variety to silicon-sulfide-based nanostructures that are isoelectronic to phosphorene, which could be relevant for future applications, adding extra degrees of freedom.

  5. Biomimetic monolayer-protected gold nanoparticles for immunorecognition

    PubMed Central

    Harkness, Kellen M.; Turner, Brian N.; Agrawal, Amanda C.; Zhang, Yibin; McLean, John A.; Cliffel, David E.

    2012-01-01

    Gold nanoparticles (AuNPs) protected by self-assembled monolayers (SAMs) are capable of presenting precisely engineered surfaces at the nanoscale, allowing the mimicry of biomacromolecules on an artificial platform. Here we review the generation, characterization, and applications of monolayer-protected AuNPs that have been designed for immunorecognition by the integration of an oligopeptide epitope into the protecting monolayer. The resulting peptide-AuNP conjugate is an effective platform for biomimesis, as demonstrated by multiple studies. Recent work is presented and future directions for this field of research are discussed. PMID:22641221

  6. Conjugated Gold-Porphyrin Monolayers Assembled on Inorganic Surfaces.

    PubMed

    Gulino, Antonino; Contino, Annalinda; Giuseppe Maccarrone, Giuseppe Maccarrone; Fragalà, Maria Elena; Spitaleri, Luca

    2017-08-24

    Gold nanoparticles show important properties owing to their electronic structures. A limitation of some gold nanoparticles is that they either show surface plasmon or luminescence. In fact the increase in size of the gold nanoparticles and the appearing of the surface plasmon may result in the disappearance of luminescence. The aim of our study was the nanoscale assembly of Au nanoparticles on a monolayer of porphyrin molecules previously anchored to functionalized inorganic surfaces. This functional architecture not only exhibits a strong surface plasmon due to the gold nanoparticles but also a strong luminescence signal from porphyrin molecules. Finally we observed a long range order in the Au nanoparticles conjugated to the porphyrin monolayer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Kinetics of alkanethiol monolayer desorption from gold in air.

    PubMed

    Shadnam, Mohammad Reza; Amirfazli, A

    2005-10-14

    Thermal desorption of an alkanethiol monolayer from a gold substrate into a gaseous medium under ambient pressure was investigated using XPS and it was found that there exist 2 consecutive 1st order kinetics mechanisms with activation energies of 29.9 and 32.7 kcal mol(-1), respectively, i.e. on average approximately 15% higher than reports for liquid media desorption.

  8. Gold sulfide replacements of cyanide solutions

    SciTech Connect

    Worobey, W.; Norwood, D.; Rieger, D.

    1991-01-01

    At Sandia National Laboratories we have introduced a non-cyanide gold electroplating solution in the Solid State Circuit Processing Lab. This commercially available solution is based on gold sulfite salts. An evaluation of the plating bath and the deposited gold for use in microelectronic circuit fabrication was conducted. The tests included selective plating compatability, wire bonding, soldering, gold resistivity, adherence, and step coverage. The results were all favorable. Precision gold patterns with line widths as small as 2{mu}m and gold thickness over 4{mu}m were selectively plated using a positive photoresist as a plating mask. Also the gold sulfite solution was used to fabricate gold air bridge crossovers for GaAs circuits. The introduction of the non-hazardous sulfite solution for plating high purity gold films will lead to manufacturing processes which are safer to work with and less damaging to the environment.

  9. Pinholes and Defects in Octadecylmercaptan Monolayers on Gold.

    NASA Astrophysics Data System (ADS)

    Snider, Daniel Aaron

    Alkylmercaptan monolayers on gold electrodes have been actively studied since they have potential use as modified electrodes. The amazing thing about these electrodes, is that they survive the electrochemical experiment and are extremely blocking to redox couples in solution. Early attempts to model blocked electrode behavior in terms of electron tunnelling failed. The approximate shape of a Tafel plot at low overpotentials should obey Butler-Volmer kinetics with a slope of 1 order of magnitude current per 120 mV of overpotential. Typical alkylmercaptan-coated electrodes result in Tafel plots with depressed slopes. This phenomena was interpreted in terms of imperfections in the monolayer which allow redox couples to approach the gold surface closer than the full length of the monolayer would allow. We assess imperfections in octadecylmercaptan -coated (OM) gold electrodes by passivating and blocking the pinholes. We passivate pinholes to an inner-sphere redox couple with an adsorbed layer of iodine. We block pinholes with the self-passivating polymer polyphenylene oxide to an outer sphere redox couple. To determine the size and distribution of pinholes in the OM monlayer we study the system with oxide stripping, liner scan voltammetry and AC Impedance Spectroscopy. We have determined that imperfections can be classified as pinholes and defects. Pinholes are areas where a redox couple has direct access to the gold surface. Defects are areas where a redox couple can come closer than the full length of the monolayer but not in direct contact with the monolayer. Both, pinholes and defects result in larger faradaic currents and more non-ideal Tafel plots than would be seen with electron tunnelling. We have determined that pinholes, typically, have radii that are micron size with pinhole separation tens of microns. Additionally, Oxide Stripping experiments are the most damaging way to assess pinhole coverage, with AC impedance spectroscopy providing the most useful

  10. Protein recognition by a self-assembled deep cavitand monolayer on a gold substrate.

    PubMed

    Liu, Ying; Taira, Toshiaki; Young, Michael C; Ajami, Dariush; Rebek, Julius; Cheng, Quan; Hooley, Richard J

    2012-01-17

    This paper details the first use of a self-folding deep cavitand on a gold surface. A sulfide-footed deep, self-folding cavitand has been synthesized, and its attachment to a cleaned gold surface studied by electrochemical and SPR methods. Complete monolayer formation is possible if the cavitand folding is templated by noncovalent binding of choline or by addition of space-filling thiols to cover any gaps in the cavitand adsorption layer. The cavitand is capable of binding trimethylammonium-tagged guests from an aqueous medium and can be deposited in 2 × 2 microarrays on the surface for characterization by SPR imaging techniques. When biotin-labeled guests are used, the cavitand:guest construct can recognize and immobilize streptavidin proteins from aqueous solution, acting as an effective supramolecular biosensor for monitoring protein recognition.

  11. Fluorescent monolayer protected gold nanoparticles - Preparation and structure elucidation

    NASA Astrophysics Data System (ADS)

    Angelova, P.; Kuchukova, N.; Dobrikov, G. M.; Timtcheva, I.; Kostova, K.; Petkova, I.; Vauthey, E.

    2011-05-01

    A novel N-substituted 4-methoxy-1,8-naphthalimide (NAFTA 8) especially designed for fluorescent labeling of gold nanoparticles has been synthesized. NAFTA 8 bears a long methylene chain at the imide N atom and has a terminal SH group, which enables its chemical binding to gold nanostructures. The longest wavelength absorption maximum of NAFTA 8 in chloroform is at 370 nm, the fluorescent maximum is at 430 nm and the fluorescent quantum yield is 0.95. The newly synthesized fluorophore is applied for functionalization of gold nanoparticles with diameter 1.5 ± 0.5 nm prepared through chemical reduction. The obtained Monolayer Protected Clusters are characterized by elemental analysis, TEM, XPS, FT-IR, absorption and fluorescence spectroscopy. The performed investigations provide evidence for the formation of chemical bond between the thiol ligand and the gold surface. They also show that the obtained metal/dielectric 3D structures are highly fluorescent.

  12. Plasmonic photo-current in freestanding monolayered gold nanoparticle membranes.

    PubMed

    Gauvin, M; Alnasser, T; Terver, E; Abid, I; Mlayah, A; Xie, S; Brugger, J; Viallet, B; Ressier, L; Grisolia, J

    2016-09-15

    We report on photo-current generation in freestanding monolayered gold nanoparticle membranes excited by using a focused laser beam. The absence of a substrate leads to a 50% increase of the photo-current at the surface plasmon resonance. This current is attributed to a combination of trap state dynamics and bolometric effects in a nanocomposite medium yielding a temperature rise of 40 K.

  13. Tuning the structure of thermosensitive gold nanoparticle monolayers.

    PubMed

    Rezende, Camila A; Shan, Jun; Lee, Lay-Theng; Zalczer, Gilbert; Tenhu, Heikki

    2009-07-23

    Gold nanoparticles grafted with poly(N-isopropylacrylamide) (PNIPAM) are rendered amphiphilic and thermosensitive. When spread on the surface of water, they form stable Langmuir monolayers that exhibit surface plasmon resonance. Using Langmuir balance and contrast-matched neutron reflectivity, the detailed structural properties of these nanocomposite monolayers are revealed. At low surface coverage, the gold nanoparticles are anchored to the interface by an adsorbed PNIPAM layer that forms a thin and compact pancake structure. Upon isothermal compression (T=20 degrees C), the adsorbed layer thickens with partial desorption of polymer chains to form brush structures. Two distinct polymer conformations thus coexist: an adsorbed conformation that assures stability of the monolayer, and brush structures that dangle in the subphase. An increase in temperature to 30 degrees C results in contractions of both adsorbed and brush layers with a concomitant decrease in interparticle distance, indicating vertical as well as lateral contractions of the graft polymer layer. The reversibility of this thermal response is also shown by the contraction-expansion of the polymer layers in heating-cooling cycles. The structure of the monolayer can thus be tuned by compression and reversibly by temperature. These compression and thermally induced conformational changes are discussed in relation to optical properties.

  14. Structure and function evolution of thiolate monolayers on gold

    SciTech Connect

    Edwards, Grant Alvin

    2006-01-01

    The use of n-alkanethiolate self-assembled monolayers on gold has blossomed in the past few years. These systems have functioned as models for common interfaces. Thiolate monolayers are ideal because they are easily modified before or after deposition. The works contained within this dissertation include interfacial characterization (infrared reflection absorption spectroscopy, ellipsometry, contact angle, scanning probe microscopy, and heterogeneous electron-transfer kinetics) and various modeling scenarios. The results of these characterizations present ground-breaking insights into the structure, function, and reproducible preparation of these monolayers. Surprisingly, three interfacial properties (electron-transfer, contact angle, and ellipsometry) were discovered to depend directly on the odd-even character of the monolayer components. Molecular modeling was utilized to investigate adlayer orientation, and suggests that these effects are adlayer structure specific. Finally, the electric force microscopy and theoretical modeling investigations of monolayer samples are presented, which show that the film dielectric constant, thickness, and dipole moment directly affect image contrast. In addition, the prospects for utilization of this emerging technique are outlined.

  15. Structure and Function Evolution of Thiolate Monolayers on Gold

    SciTech Connect

    Edwards, Grant Alvin

    2006-01-01

    The use of n-alkanethiolate self-assembled monolayers on gold has blossomed in the past few years. These systems have functioned as models for common interfaces. Thiolate monolayers are ideal because they are easily modified before or after deposition. The works contained within this dissertation include interfacial characterization (inbred reflection absorption spectroscopy, ellipsometry, contact angle, scanning probe microscopy, and heterogeneous electron-transfer kinetics) and various modeling scenarios. The results of these characterizations present ground-breaking insights into the structure, function, and reproducible preparation of these monolayers. Surprisingly, three interfacial properties (electron-transfer, contact angle, and ellipsometry) were discovered to depend directly on the odd-even character of the monolayer components. Molecular modeling was utilized to investigate adlayer orientation, and suggests that these effects are adlayer structure specific. Finally, the electric force microscopy and theoretical modeling investigations of monolayer samples are presented, which show that the film dielectric constant, thickness, and dipole moment directly affect image contrast. In addition, the prospects for utilization of this emerging technique are outlined.

  16. Mixed carboranethiol self-assembled monolayers on gold surfaces

    NASA Astrophysics Data System (ADS)

    Yavuz, Adem; Sohrabnia, Nima; Yilmaz, Ayşen; Danışman, M. Fatih

    2017-08-01

    Carboranethiol self-assembled monolayers on metal surfaces have been shown to be very convenient systems for surface engineering. Here we have studied pure and mixed self-assembled monolayers (SAMs) of three different carboranethiol (CT) isomers on gold surfaces. The isomers were chosen with dipole moments pointing parallel to (m-1-carboranethiol, M1), out of (m-9-carboranethiol, M9) and into (o-1-carboranethiol, O1) the surface plane, in order to investigate the effect of dipole moment orientation on the film properties. In addition, influence of the substrate surface morphology on the film properties was also studied by using flame annealed (FA) and template stripped (TS) gold surfaces. Contact angle measurements indicate that in M1/M9 and M1/O1 mixed SAMs, M1 is the dominant species on the surface even for low M1 ratio in the growth solution. Whereas for O1/M9 mixed SAMs no clear evidence could be observed indicating dominance of one of the species over the other one. Though contact angle values were lower and hysteresis values were higher for SAMs grown on TS gold surfaces, the trends in the behavior of the contact angles with changing mixing ratio were identical for SAMs grown on both substrates. Atomic force microscopy images of the SAMs on TS gold surfaces indicate that the films have similar morphological properties regardless of mixing ratio.

  17. Gold nanoparticles with patterned surface monolayers for nanomedicine: current perspectives.

    PubMed

    Pengo, Paolo; Şologan, Maria; Pasquato, Lucia; Guida, Filomena; Pacor, Sabrina; Tossi, Alessandro; Stellacci, Francesco; Marson, Domenico; Boccardo, Silvia; Pricl, Sabrina; Posocco, Paola

    2017-09-01

    Molecular self-assembly is a topic attracting intense scientific interest. Various strategies have been developed for construction of molecular aggregates with rationally designed properties, geometries, and dimensions that promise to provide solutions to both theoretical and practical problems in areas such as drug delivery, medical diagnostics, and biosensors, to name but a few. In this respect, gold nanoparticles covered with self-assembled monolayers presenting nanoscale surface patterns-typically patched, striped or Janus-like domains-represent an emerging field. These systems are particularly intriguing for use in bio-nanotechnology applications, as presence of such monolayers with three-dimensional (3D) morphology provides nanoparticles with surface-dependent properties that, in turn, affect their biological behavior. Comprehensive understanding of the physicochemical interactions occurring at the interface between these versatile nanomaterials and biological systems is therefore crucial to fully exploit their potential. This review aims to explore the current state of development of such patterned, self-assembled monolayer-protected gold nanoparticles, through step-by-step analysis of their conceptual design, synthetic procedures, predicted and determined surface characteristics, interactions with and performance in biological environments, and experimental and computational methods currently employed for their investigation.

  18. On the characteristics of mixed Langmuir monolayer templates containing dipalmitoyl phosphatidylcholine for gold nanoparticle formation.

    PubMed

    Hsiao, Fang-Wei; Lee, Yuh-Lang; Chang, Chien-Hsiang

    2009-10-01

    Mixed Langmuir monolayers containing dipalmitoyl phosphatidylcholine (DPPC) were applied as two-dimensional templates to incorporate with gold precursor AuCl4- in the subphases. The organic monolayer templates were then transferred onto solid substrates to form ultra-thin films by the Langmuir-Blodgett (LB) deposition technique. With an UV irradiation approach, gold nanoparticles were thus fabricated in the LB films of monolayer templates. Characteristics of the monolayer templates were studied by the surface pressure-area isotherm measurements and Brewster angle microscopy (BAM) observation. The factors affecting the formation of gold nanoparticle structures in the LB films of organic monolayer templates were elucidated by the atomic force microscopy (AFM). The monolayer isotherms and BAM images suggested that by changing the gold precursor concentration in the subphase, one could control the adsorption behavior of the gold precursor onto the monolayer templates. It was found that the association of the gold precursor with a pure DPPC monolayer template resulted in an unstable Langmuir monolayer, which was inappropriate for the following LB deposition. With the presence of n-hexadecanol in a DPPC monolayer, the monolayer template stability and corresponding LB deposition quality could be tremendously improved. Moreover, the distribution of DPPC molecules in the monolayer templates was possible to be regulated by the addition of n-hexadecanol, and the association behavior of the gold precursor with the monolayer templates was thus controlled. The AFM analysis then indicated that the number and size of gold nanoparticles fabricated in the LB films of the mixed DPPC/n-hexadecanol monolayer templates by a photoreduction reaction could be manipulated by the mole fraction of n-hexadecanol and UV irradiation time.

  19. Dendritic functionalization of monolayer-protected gold nanoparticles

    SciTech Connect

    Cutler, Erin C.; Lundin, Erik; Garabato, B. Davis; Choi, Daeock; Shon, Young-Seok . E-mail: young.shon@wku.edu

    2007-06-05

    This paper describes the facile synthesis of nanoparticle-cored dendrimers (NCDs) and nanoparticle megamers from monolayer-protected gold clusters using either single or multi-step reactions. First, 11-mercaptoundecanoic acid/hexanethiolate-protected gold clusters were synthesized using the Schiffrin reaction followed by the ligand place-exchange reaction. A convergent approach for the synthesis of nanoparticle-cored dendrimers uses a single step reaction that is an ester coupling reaction of hydroxy-functionalized dendrons with carboxylic acid-functionalized gold clusters. A divergent approach, which is based on multi-step reactions, employs the repetition of an amide coupling reaction and a Michael addition reaction to build polyamidoamine dendritic architectures around a nanoparticle core. Nanoparticle megamers, which are large dendrimer-induced nanoparticle aggregates with an average diameter of more than 300 nm, were prepared by the amide coupling reaction between polyamiodoamine [G-2] dendrimers and carboxylic acid-functionalized gold clusters. {sup 1}H NMR spectroscopy, FT-IR spectroscopy, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) were used for the characterization of these hybrid nanoparticles.

  20. Assembly of citrate gold nanoparticles on hydrophilic monolayers

    NASA Astrophysics Data System (ADS)

    Vikholm-Lundin, Inger; Rosqvist, Emil; Ihalainen, Petri; Munter, Tony; Honkimaa, Anni; Marjomäki, Varpu; Albers, Willem M.; Peltonen, Jouko

    2016-08-01

    Self-assembled monolayers (SAMs) as model surfaces were linked onto planar gold films thorough lipoic acid or disulfide groups. The molecules used were polyethylene glycol (EG-S-S), N-[tris-(hydroxymethyl)methyl]acrylamide polymers with and without lipoic acid (Lipa-pTHMMAA and pTHMMAA) and a lipoic acid triazine derivative (Lipa-MF). All the layers, but Lipa-MF with a primary amino group were hydroxyl terminated. The layers were characterized by contact angle measurements and atomic force microscopy, AFM. Citrate stabilized nanoparticles, AuNPs in water and phosphate buffer were allowed to assemble on the layers for 10 min and the binding was followed in real-time with surface plasmon resonance, SPR. The SPR resonance curves were observed to shift to higher angles and become increasingly damped, while also the peaks strongly broaden when large nanoparticles assembled on the surface. Both the angular shift and the damping of the curve was largest for nanoparticles assembling on the EG-S-S monolayer. High amounts of particles were also assembled on the pTHMMAA layer without the lipoic acid group, but the damping of the curve was considerably lower with a more even distribution of the particles. Topographical images confirmed that the highest number of particles were assembled on the polyethylene glycol monolayer. By increasing the interaction time more particles could be assembled on the surface.

  1. Formation of positively charged gold nanoparticle monolayers on silica sensors.

    PubMed

    Oćwieja, Magdalena; Maciejewska-Prończuk, Julia; Adamczyk, Zbigniew; Roman, Maciej

    2017-09-01

    Formation of positively charged gold nanoparticle monolayers on the Si/SiO2 was studied under in situ conditions using quartz microbalance (QCM). The gold nanoparticles were synthesized in a chemical reduction method using sodium borohydride as reducing agent. Cysteamine hydrochloride was applied to generate a positive surface charge of nanoparticles. The micrographs obtained from transmission electron microscopy (TEM) revealed that the average size of nanoparticles was equal to 12±3nm. The stability of nanoparticle suspensions under controlled pH and ionic strength was determined by dynamic light scattering (DLS). The electrophoretic mobility measurements showed that the zeta potential of nanoparticles was positive, decreasing with ionic strength and pH from 56mV at pH 4.2 and I=10(-4)M to 22mV at pH 8.3 and I=3×10(-3)M. The surface enhanced Raman spectroscopy (SERS) confirmed chemisorption of cysteamine on nanoparticles and the contribution of amine moieties in the generation of nanoparticle charge. The influence of suspension concentration, ionic strength and flow rate on the kinetics of nanoparticle deposition on the sensors was quantitatively determined. It was confirmed that the deposition for the low coverage regime is governed by the bulk mass transfer that results in a linear increase of the coverage with time. The significant increase in the maximum coverage of gold monolayers with ionic strength was interpreted as due to the decreasing range of the electrostatic interactions among deposited particles. Moreover, the hydratation of formed monolayers, their structure and the stability were determined by the comparison of the QCM results with those obtained by AFM and SEM. The experimental data were adequately interpreted in terms of the extended random sequential adsorption (eRSA) model that considers the bulk and surface transfer steps in a rigorous way. The obtained results are useful for a facile fabrication of gold nanoparticle-based biosensors

  2. Influences of the adsorption of different elements on the electronic structures of a tin sulfide monolayer.

    PubMed

    Li, Yang; Xia, Congxin; Du, Juan; Xiong, Wenqi; Li, Xueping; Wei, Shuyi

    2017-02-15

    Based on first-principles calculations, we investigated the adsorption energy, structural parameters, and electronic and magnetic properties for the adsorption of different atoms, including light metals, hydrogen, oxygen, and 3D transition metals (TM) adatoms, on a tin sulfide (SnS) monolayer. The results showed that Li- and Al-atom adsorption can effectively induce n-type carriers, whereas O atom adsorption can produce p-type doping in the SnS monolayer. In addition, except for Ni atoms, the other adatoms can induce magnetism in the SnS monolayer. Moreover, for Fe- and Co-atom adsorption, the occupied and unoccupied states belong to the same spin-channel. These results indicate that surface adsorption is an effective method to tune the electronic structures of the SnS monolayer.

  3. Molecular Beam Optical Study of Gold Sulfide and Gold Oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Ruohan; Yu, Yuanqin; Steimle, Timothy

    2016-06-01

    Gold-sulfur and gold-oxygen bonds are key components to numerous established and emerging technologies that have applications as far ranging as medical imaging, catalysis, electronics, and material science. A major theoretical challenge for describing this bonding is correctly accounting for the large relativistic and electron correlation effects. Such effects are best studied in diatomic, AuX, molecules. Recently, the observed AuS electronic state energy ordering was measured and compared to a simple molecular orbital diagram prediction. Here we more thoroughly investigate the nature of the electronic states of both AuS and AuO from the analysis of high-resolution (FWHM\\cong35MHz) optical Zeeman spectroscopy of the (0,0){B}2Σ--{X}2Π3/2 bands. The determined fine and hyperfine parameters for the {B}2Σ- state of AuO differ from those extracted from the analysis of a hot, Doppler-limited, spectrum. It is demonstrated that the nature of the {B}2Σ- states of AuO and AuS are radically different. The magnetic tuning of AuO and AuS indicates that the {B}2Σ- states are heavily contaminated. Supported by the National Science Foundation under Grant No.1265885. D. L. Kokkin, R. Zhang, T. C. Steimle, I. A. Wyse, B. W. Pearlman and T. D. Varberg, J. Phys. Chem. A., 119(48), 4412, 2015. L. C. O'Brien, B. A. Borchert, A. Farquhar, S. Shaji, J. J. O'Brien and R. W. Field, J. Mol. Spectrosc., 252(2), 136, 2008

  4. The gold content of volcanogenic massive sulfide deposits

    NASA Astrophysics Data System (ADS)

    Mercier-Langevin, Patrick; Hannington, Mark D.; Dubé, Benoît; Bécu, Valérie

    2011-07-01

    Volcanogenic massive sulfide deposits contain variable amounts of gold, both in terms of average grade and total gold content, with some VMS deposits hosting world-class gold mines with more than 100 t Au. Previous studies have identified gold-rich VMS as having an average gold grade, expressed in g/t, exceeding the total abundance of base metals, expressed in wt.%. However, statistically meaningful criteria for the identification of truly anomalous deposits have not been established. This paper presents a more extensive analysis of gold grades and tonnages of 513 VMS deposits worldwide, revealing a number of important features in the distribution of the data. A large proportion of deposits are characterized by a relatively low gold grade (<2 g/t), with a gradual decrease in frequency towards maximum gold grades, defining a log-normal distribution. In the analysis presented in this paper, the geometric mean and geometric standard deviation appear to be the simplest metric for identifying subclasses of VMS deposits based on gold grade, especially when comparing deposits within individual belts and districts. The geometric mean gold grade of 513 VMS deposits worldwide is 0.76 g/t; the geometric standard deviation is +2.70 g/t Au. In this analysis, deposits with more than 3.46 g/t Au (geometric mean plus one geometric standard deviation) are considered auriferous. The geometric mean gold content is 4.7 t Au, with a geometric standard deviation of +26.3 t Au. Deposits containing 31 t Au or more (geometric mean plus one geometric standard deviation) are also considered to be anomalous in terms of gold content, irrespective of the gold grade. Deposits with more than 3.46 g/t Au and 31 t Au are considered gold-rich VMS. A large proportion of the total gold hosted in VMS worldwide is found in a relatively small number of such deposits. The identification of these truly anomalous systems helps shed light on the geological parameters that control unusual enrichment of gold

  5. Vibrational properties of an adamantane monolayer on a gold surface

    NASA Astrophysics Data System (ADS)

    Sakai, Yuki; Nguyen, Giang D.; Capaz, Rodrigo B.; Coh, Sinisa; Pechenezhskiy, Ivan V.; Hong, Xiaoping; Crommie, Michael F.; Wang, Feng; Saito, Susumu; Louie, Steven G.; Cohen, Marvin L.

    2014-03-01

    We study the vibrational properties of an adamantane monolayer on a Au(111) surface. The IR spectrum of a self-assembled monolayer of adamantane on Au(111) is measured by a newly developed infrared scanning tunneling microscopy (IRSTM) technique. We analyze the IR spectrum of this system by a density functional theory and find that the IR spectrum is severely modified by both adamantane-gold and adamantane-adamantane interactions. One of three gas-phase C-H bond stretching modes is significantly red-shifted due to the molecule-substrate interactions. The intermolecular interactions cause a suppression of the IR intensity of another gas-phase IR peak. The techniques used in this work can be applied for an independent estimate of molecule-substrate and intermolecular interactions in related diamondoid/metal-substrate systems. This work was supported by NSF grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231.

  6. Near Infrared Resonant Gold / Gold Sulfide Nanoparticles as a Photothermal Cancer Therapeutic Agent

    PubMed Central

    Gobin, André M.; Watkins, Emily M.; Quevedo, Elizabeth; Colvin, Vicki L.; West, Jennifer L.

    2010-01-01

    The development and optimization of near-infrared (nIR) absorbing nanoparticles for use as photothermal cancer therapeutic agents has been ongoing. We have previously reported on larger layered gold / silica nanoshells (~140 nm) for combined therapy and imaging applications. This work exploits the properties of smaller gold / gold sulfide (GGS) nIR absorbing nanoparticles (~35–55 nm) that provide higher absorption (98% absorption & 2% scattering for GGS versus 70% absorption & 30% scattering for gold/silica nanoshells) as well as potentially better tumor penetration. In this work we demonstrate ability to ablate tumor cells in vitro, and efficacy for photothermal cancer therapy, where in an in vivo model we show significantly increased long-term, tumor-free survival. Further, enhanced circulation and bio-distribution is observed in vivo. This class of nIR absorbing nanoparticles has potential to improve upon photothermal tumor ablation for cancer therapy. PMID:20183810

  7. Infrared light-absorbing gold/gold sulfide nanoparticles induce cell death in esophageal adenocarcinoma

    PubMed Central

    Li, Yan; Gobin, Andre M; Dryden, Gerald W; Kang, Xinqin; Xiao, Deyi; Li, Su Ping; Zhang, Guandong; Martin, Robert CG

    2013-01-01

    Gold nanoparticles and near infrared-absorbing light are each innocuous to tissue but when combined can destroy malignant tissue while leaving healthy tissue unharmed. This study investigated the feasibility of photothermal ablation therapy for esophageal adenocarcinoma using chitosan-coated gold/gold sulfide (CS-GGS) nanoparticles. A rat esophagoduodenal anastomosis model was used for the in vivo ablation study, and three human esophageal cell lines were used to study the response of cancer cells and benign cells to near infrared light after treatment with CS-GGS. The results indicate that both cancerous tissue and cancer cells took up more gold nanoparticles and were completely ablated after exposure to near infrared light. The benign tissue and noncancerous cells showed less uptake of these nanoparticles, and remained viable after exposure to near infrared light. CS-GGS nanoparticles could provide an optimal endoluminal therapeutic option for near infrared light ablation of esophageal cancer. PMID:23818775

  8. Novel monolayer and bilayer shell aggregate gold nanostructures

    NASA Astrophysics Data System (ADS)

    Angelidou, Myria; Pitris, Costas

    2011-03-01

    Various gold nanostructures are being investigated for medical and biological uses. For many medical applications, it would be beneficial to use near infrared (NIR) excitation as well as small gold nanospheres which can easily reach the cytoplasm and cell nucleus. For that purpose, we propose a novel nanostructure, the "shell aggregate," which consists of small nanospheres aggregated around a core such as an intracellular organelle. The extinction efficiency of such monolayfer and bilayer shell aggregates is thoroughly investigated with appropriate simulations using the Descrete Dipole Approximation (DDA) method. This technique can deal with any arbitrary size, shape, synthesis and external environment. The effect of parameters such as the overall radius of the nanostructure, the small nanosphere radius, and the distance between the nanospheres, on the extinction efficiency factor of the nanostructures was examined. The results indicate that the extinction spectra appear to depend heavily on the distance between the small nanospheres. Finally, the monolayer shell aggregate could be a suitable candidate for use in various biological, intracellular, applications since it provides a reasonably tunable plasmon resonance wavelength while the small size of its components can be exploited for intracellular distribution.

  9. Electron-Impurity Interactions in the Relaxation of Hot Electrons in Gold-Gold Sulfide Nanoshells

    NASA Astrophysics Data System (ADS)

    Westcott, Sarah; Wolfgang, John; Nordlander, Peter; Halas, Naomi

    2000-10-01

    Hot electron dynamics can be modified in metallic nanostructures compared to bulk metals. In this experiment, ultrafast pump-probe spectroscopy permits observation of the effects of the local environment on hot electron relaxation in gold nanoshell particles. These nanoparticles consist of spherical (40 nm diameter) gold sulfide cores surrounded by ultrathin (5 nm) gold shells and possess a structure-dependent plasmon resonance.^1 Following excitation by a pump pulse at the plasmon resonance, the relaxation of the hot electrons in the nanoparticle's shell layer was observed. When molecules were adsorbed onto the nanoshell surface, increased electronic relaxation rates were observed for those molecular species with the greatest induced dipole moments near the nanoparticle surface. The effect of impurity adsorbates on the nanoparticle's electron dynamics is attributed to a perturbation in the electronic potential in the metal by the presence of the nearby impurities. ^1 R. D. Averitt, D. Sarkar, and N. J. Halas, Phys. Rev. Lett. 78, 4217 (1997).

  10. Electrodeposition of gold templated by patterned thiol monolayers

    NASA Astrophysics Data System (ADS)

    She, Zhe; Di Falco, Andrea; Hähner, Georg; Buck, Manfred

    2016-06-01

    The electrochemical deposition of Au onto Au substrates modified by self-assembled monolayers (SAMs) was studied by linear sweep voltammetry (LSV), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Patterned SAMs exhibiting electrochemical contrast were prepared by two different methods. One used microcontact printing (μCP) to generate a binary SAM of ω-(4‧-methyl-biphenyl-4-yl)-propane thiol (CH3-C6H4-C6H4-(CH2)3-SH, MBP3) and octadecane thiol (CH3(CH2)17SH, ODT). Templated by the SAM, a gold microelectrode structure was electrodeposited featuring a line 15 μm wide and 3 mm long. After transfer to an epoxy substrate the structure proved to be electrically conductive across the full length. The other patterning method applied electron beam lithography (EBL) where electrochemical contrast was achieved by crosslinking molecules in a single component SAM of MBP3. An electron dose above 250 mC/cm2 results in a high deposition contrast. The choice of parameters for the deposition/lift-off process is found to be more critical for Au compared to Cu studied previously. The origin of the differences and implications for nanoscale patterning are discussed.

  11. Self-assembled monolayers of phosphorylcholine alkylthiols on gold

    NASA Astrophysics Data System (ADS)

    Tegoulia, Vassiliki; Rao, Weisun; Cooper, Stuart

    2000-03-01

    One of the most intriguing developments in biomaterials science in the past decade has been the observation that membrane-mimetic systems based on the phosphorylcholine head group limit the adsorption of proteins and cells on surfaces. This phenomenon may be related to the zwitterionic nature of the phosphorylcholine moiety and the tendency for a large amount of bound water to be associated with this structure. In this work, we have prepared and studied single and mixed self-assembled monolayers (SAMs) of phoshorylcholine (PC) and hydroxyl (OH) or methyl (CH3) terminated thiols on gold-coated substrates in order to create surfaces that resist protein adsorption and cell adhesion. The direct organization of monomolecular assemblies on solid surfaces provided a convenient method for fabricating substrates with well-defined compositions and structures. The surfaces have been characterized by means of contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy and grazing angle-FTIR. The resulting surfaces exhibited good resistance to the adsorption of a variety of proteins such as fibrinogen, fibronectin and albumin. Results evaluating bacterial and leukocyte adhesion under flow on these surfaces will be discussed.

  12. Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution.

    PubMed

    Kye, Joohong; Shin, Muncheol; Lim, Bora; Jang, Jae-Won; Oh, Ilwhan; Hwang, Seongpil

    2013-07-23

    Pt monolayer decorated gold nanostructured film on planar p-type silicon is utilized for photoelectrochemical H2 generation in this work. First, gold nanostructured film on silicon was spontaneously produced by galvanic displacement of the reduction of gold ion and the oxidation of silicon in the presence of fluoride anion. Second, underpotential deposition (UPD) of copper under illumination produced Cu monolayer on gold nanostructured film followed by galvanic exchange of less-noble Cu monolayer with more-noble PtCl6(2-). Pt(shell)/Au(core) on p-type silicon showed the similar activity with platinum nanoparticle on silicon for photoelectrochemical hydrogen evolution reaction in spite of low platinum loading. From Tafel analysis, Pt(shell)/Au(core) electrocatalyst shows the higher area-specific activity than platinum nanoparticle on silicon demonstrating the significant role of underlying gold for charge transfer reaction from silicon to H(+) through platinum catalyst.

  13. Electronic and optical properties of beryllium sulfide monolayer: Under stress and strain conditions

    NASA Astrophysics Data System (ADS)

    Jalilian, Jaafar; Safari, Mandana

    2016-10-01

    Electronic and optical properties of two-dimensional graphene-like structure of beryllium sulfide (BeS) have been studied in the framework of the density functional theory. Different values of stress and strain are exerted for tuning electronic and optical parameters. The electronic results show that both biaxial stress and strain effects cause band gap reduction with different rates. Also, we have red and blue shifts in the optical absorption spectrum peaks by applying strain and stress, respectively. Our results express that BeS monolayer can be the promising candidate for the future nano-devices.

  14. Femtosecond transient absorption dynamics of close-packed gold nanocrystal monolayer arrays.

    SciTech Connect

    Eah, S.-K.; Jaeger, H. M.; Scherer, N. F.; Lin, X.-M.; Weiderrecht, G. P.; Univ. of Chicago

    2004-03-11

    Femtosecond transient absorption spectroscopy is used to investigate hot electron dynamics of close-packed 6 nm gold nanocrystal monolayers. Morphology changes of the monolayer caused by the laser pump pulse are monitored by transmission electron microscopy. At low pump power, the monolayer maintains its structural integrity. Hot electrons induced by the pump pulse decay through electron-phonon (e-ph) coupling inside the nanocrystals with a decay constant that is similar to the value for bulk films. At high pump power, irreversible particle aggregation and sintering occur in the nanocrystal monolayer, which cause damping and peak shifting of the transient bleach signal.

  15. Characterization of organosulfur monolayer formation at gold electrodes

    SciTech Connect

    Woods, Nina Tani

    1996-08-01

    Among the many types of organic films, covalently-attached organosulfur monolayers have attracted a great deal of attention. The authors have focused their interest on the fundamental characterization of spontaneously adsorbed organosulfur monolayers. An introductory chapter presents general aspects of monolayer preparation and characterization, followed by a few examples that illustrate the range of applications of these films. This thesis contains two papers. In the first paper, three analogous monolayer precursors are studied to determine their similarities and differences in the monolayer structure. A GC-MS analysis of products form the chemisorption process and open circuit potential measurements are used to derive possible mechanisms behind monolayer formation. The second paper focuses on monolayers formed from thioctic acid, including its characterization and application to cytochrome c electrochemistry. Although thiols and disulfides have been extensively studied as monolayer precursors, thioctic acid is particularly interesting because the disulfide functionality of this asymmetric molecule is contained in a strained five-membered ring. Given the ring strain, steric bulk and asymmetry of the molecule, the study of these monolayers lend insight into the factors important for the formation of organosulfur monolayers. This thesis concludes with a general summary and directions for future studies. 40 refs.

  16. Organo-Soluble Porphyrin Mixed Monolayer-Protected Gold Nanorods with Intercalated Fullerenes

    DTIC Science & Technology

    2012-03-16

    Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods . J. Phys. Chem. B 1999, 103, 8410- 8426. (7) Yu, C.; Irudayaraj, J...Mixed Monolayer- Protected Gold Nanorods with Intercalated Fullerenes Chenming Xue, Yongqian Xu, Yi Pang, Dingshan Yu, Liming Dai, Min Gao, Augustine...Protected Gold Nanorods with Intercalated Fullerenes 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  17. Electrochemical and scanning probe microscopic characterization of spontaneously adsorbed organothiolate monolayers at gold

    SciTech Connect

    Wong, Sze-Shun Season

    1999-12-10

    This dissertation presented several results which add to the general knowledge base regarding organothiolates monolayer spontaneously adsorbed at gold films. Common to the body of this work is the use of voltammetric reductive resorption and variants of scanning probe microscopy to gain insight into the nature of the monolayer formation process as well as the resulting interface. The most significant result from this work is the success of using friction force microscopy to discriminate the end group orientation of monolayer chemisorbed at smooth gold surfaces with micrometer resolution (Chapter 4). The ability to detect the differences in the orientational disposition is demonstrated by the use PDMS polymer stamp to microcontact print an adlayer of n-alkanethiolate of length n in a predefine pattern onto a gold surface, followed by the solution deposition of a n-alkanethiol of n ± 1 to fill in the areas on the gold surface intentionally not coated by the stamping process. These two-component monolayers can be discriminated by using friction force microscopy which detects differences in friction contributed by the differences in the orientation of the terminal groups at surfaces. This success has recently led to the detection of the orientation differences at nanometer scale. Although the substrates examined in this work consisted entirely of smooth gold films, the same test can be performed on other smooth substrates and monolayer materials.

  18. Two-laser mass spectrometry of thiolate, disulfide, and sulfide self-assembled monolayers.

    SciTech Connect

    Trevor, J. L.; Lykke, K. R.; Chemistry; Univ. of Illinois at Chicago

    1998-03-31

    Self-assembled monolayers (SAMs) of thiolates, disulfides (RSSR+), and sulfides were studied on Au by N2 laser desorption followed by vacuum ultraviolet (VUV) (118-nm) photoionization of secondary neutrals in a time-of-flight mass spectrometer. Dimers (RSSR+) dominated the photoionization mass spectrum from all chain lengths of alkanethiolates and disulfides studied. Nonmethyl-terminated alkanethiolates with X = (OH and COOH) were detected as dimers without loss of the terminal group. Phenyl-SAMs with X = (H, OH, OCH3, Cl, and NO2) were detected as both monomers and dimers. Thiocholesterol SAMs were detected solely as monomers. The data suggest that dimerization occurs as a result of the recombination of surface thiolates during desorption. The alkane sulfides were detected intact, but with additional monomer and dimer species present in the spectra. The appearance of dimers is not a strong function of adsorbate structure or ordering and therefore cannot be taken as evidence for or against the recently proposed model of thiolate dimers on Au surfaces. Two receptor adsorbates, resorcin[4]arene tetrasulfide and {beta}-cyclodextrin sulfide were examined by two-laser mass spectrometry (L2MS), but only the former gave identifiable high mass peaks. Mixed thiolate and disulfide monolayers generated both pure and mixed dimers, providing information on nearest neighbor interactions. The mixed disulfide results indicate there is a common adsorption state for thiolates and disulfides. The laser desorption and VUV photoionization cross sections for these various organosulfur SAMs were found to be similar. L2MS with VUV photoionization was nonselective in its detection of these organosulfur species and produced mass spectra with little fragmentation.

  19. Molecular structure of cysteamine monolayers on silver and gold substrates. Comparative studies by surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Michota, Agnieszka; Kudelski, Andrzej; Bukowska, Jolanta

    2002-04-01

    Monolayers of cysteamine (2-aminoethanethiol) frequently work as linkage layers for adsorption of other molecules on metal surfaces. We compared the structure of cysteamine monolayers formed on gold and silver and the influence of various electrolytes on the structure of monolayers formed on both substrates. The monolayers formed on silver contain significantly higher portion of a trans conformer than monolayers on gold. Probably monolayers on silver are self-assembled in such a way that higher portion of the amino groups is unbonded to the surface, thus being available for attaching other molecules. The structure of cysteamine monolayers formed on gold is considerably more stable and resistive to the influence of electrolytes as compared to the silver substrate. The greater stability of the monolayers on Au surface was ascribed to the strong affinity of the amine groups toward this metal.

  20. Synthesis and characterization of mixed monolayer protected gold nanorods and their Raman activities

    SciTech Connect

    Mlambo, Mbuso; Mdluli, Phumlani S.; Shumbula, Poslet; Mpelane, Siyasanga; Moloto, Nosipho; Skepu, Amanda; Tshikhudo, Robert

    2013-10-15

    Graphical abstract: Gold nanorods surface functionalization. - Highlights: • Mixed monolayer protected gold nanorods. • Surface enhanced Raman spectroscopy. • HS-(CH{sub 2}){sub 11}-NHCO-coumarin as a Raman active compound. - Abstract: The cetyltrimethylammonium bromide (CTAB) gold nanorods (AuNRs) were prepared by seed-mediated route followed by the addition of a Raman active compound (HS-(CH{sub 2}){sub 11}-NHCO-coumarin) on the gold nanorods surfaces. Different stoichiometric mixtures of HS-(CH{sub 2}){sub 11}-NHCO-coumarin and HS-PEG-(CH{sub 2}){sub 11}COOH were evaluated for their Raman activities. The lowest stoichiometric ratio HS-(CH{sub 2}){sub 11}-NHCO-coumarin adsorbed on gold nanorods surface was detected and enhanced by Raman spectroscopy. The produced mixed monolayer protected gold nanorods were characterized by UV-vis spectrometer for optical properties, transmission electron microscope (TEM) for structural properties (shape and aspect ratio) and their zeta potentials (charges) were obtained from ZetaSizer to determine the stability of the produced mixed monolayer protected gold nanorods. The Raman results showed a surface enhanced Raman scattering (SERS) enhancement at the lowest stoichiometric ratio of 1% HS-(CH{sub 2}){sub 11}-NHCO-coumarin compared to high ratio of 50% HS-(CH{sub 2}){sub 11}-NHCO-coumarin on the surface of gold nanorods.

  1. [Biooxidation of a Double-Refractory Gold-Bearing Sulfide Ore Concentrate].

    PubMed

    Bulaev, A G; Kanaeva, Z K; Kanaev, A T; Kondrat'eva, T F

    2015-01-01

    The efficiency of biooxidation for treatment of a double-refractory gold-bearing sulfide ore concentrate from the Bakyrchik deposit (East Kazakhstan) was defined. The experiments were conducted in two different modes, i.e., with the standard liquid medium and the medium imitating the chemical composition of the Bakyrchik deposit groundwater and containing high concentrations of sodium, magnesium, and chloride. The concentrate contained 17.5% of organic carbon, 6% of pyrite and 13% arsenopyrite. Gold content was 57.5 g t@-1@. Direct gold recovery by cyanidation was very low (2.8%). While biooxidation was efficient in both cases (approximately 90% of sulfide sulfur was oxidized), the efficiency of cyanidation was low (39 and 32%, respectively). This fact suggests high efficiency of biooxidation is insufficient for efficient treatment of double-refractory gold-bearing sulfide ore concentrates.

  2. Gold-Gold Sulfide nanoparticles intensify thermal effects of radio frequency electromagnetic field.

    PubMed

    Sadeghi, Hamid Reza; Toosi, Mohammad Hossein Bahreyni; Soudmand, Samaneh; Sadoughi, Hamid Reza; Sazgarnia, Ameneh

    2014-01-01

    This study aimed to determine the efficacy of thermotherapy resulting from the presence of gold-gold sulfide nanoshells (GGS) in radio frequency electromagnetic field (13.56 MHz) onthe survival of CT26 colon carcinoma cells. GGS was synthesized and after characterizing and determining the features, the RF-radiation effects on aquatic environments were determined by recording temperature changes. To investigate the biological effects, cell survival rate due to GGS usage at five different concentrations, each one with applying three different exposure times of RF field, at CT26 cells were evaluated by MTT assay. In the presence of 100 mg/L GGS and 5 min RF exposure, increasing in temperature was recorded more than 60°C. A significant difference in cell survival rate was observed, when both GGS and RF field were applied with each other or separately (p<0.001). The GGS concentration of 25mg/L with a 4 min exposure causes cell death with the efficiency of 80 percent more than using them separately. The GGS as an available nanostructure (i.e. it's not expensive and can be synthesized simply) is an environmental friendly material which has the ability to cause damage to malignant cell effectively, by absorbing the non-invasive and deeply penetrating energy of RF field.

  3. Targeted cancer therapy by immunoconjugated gold-gold sulfide nanoparticles using Protein G as a cofactor.

    PubMed

    Sun, Xinghua; Zhang, Guandong; Patel, Dhruvinkumar; Stephens, Dennis; Gobin, Andre M

    2012-10-01

    Gold-gold sulfide nanoparticles (GGS-NPs) fabricated from chloroauric acid and sodium thiosulfate show unique near infrared (NIR) absorption that renders them as a promising candidate for photothermal cancer therapy. To improve targeting efficiency, we developed a versatile method to allow ordered immunoconjugation of antibodies on the surfaces of these nanoparticles via a PEGylated recombinant Protein G (ProG). The PEGylated ProG was prepared with orthopyridyldisulfide-polyethylene glycol-succinimidyl valerate, average MW 2000 (OPSS-PEG-SVA), to first allow the self-assembly of ProG on the nanoparticles, subsequently antibodies were added to this construct to enable active targeting. The bioconjugated GGS-NPs were characterized by TEM, NIR-spectra, dynamic light scattering and modified immunoassay. In in vitro studies, the ProG-conjugated GGS-NPs with bound mouse anti c-erbB-2 (HER-2) immunoglobulin G (IgG) successfully targeted the HER-2 overexpressing breast cancer cell, SK-BR-3. Extensive cell death was observed for the targeted SK-BR-3 line at a low laser power of 540 J (3 W cm(-2) for 3 min) while the control breast cancer cell (low expressing HER-2), HTB-22 survived. Using PEGylated ProG as a cofactor for immobilization of antibodies offers a promising strategy to functionalize various IgGs on nanoparticles for engineering their biomedical applications in cancer therapeutics.

  4. Solvent-mediated conductance increase of dodecanethiol-stabilized gold nanoparticle monolayers.

    PubMed

    Reissner, Patrick A; Tisserant, Jean-Nicolas; Sánchez-Ferrer, Antoni; Mezzenga, Raffaele; Stemmer, Andreas

    2016-01-01

    Gold nanoparticle monolayers provide convenient templates to study charge transport in organic molecules beyond single junction techniques. Conductance is reported to increase by several orders of magnitude following immersion of alkanethiol-stabilized gold nanoparticle monolayers in a solution containing conjugated thiol-functionalized molecules. Typically, this observation is attributed to molecular exchange. Less attention has been paid to the role of the solvent alone. Here, we report on an increase in conductance of dodecanethiol-stabilized gold nanoparticle monolayers on Si/SiO2 by an average factor of 36 and 22 after immersion in pure ethanol (EtOH) and tetrahydrofuran (THF), respectively. Analysis by scanning electron microscopy (SEM) and small-angle X-ray scattering (SAXS) reveals a solvent-induced decrease in lattice constant of close-packed monolayers. We compare the conductance of the monolayer after molecular exchange with two different oligophenylenes to shed light on the respective contribution of the solvent-induced structural change and the molecular exchange itself on the conductance increase.

  5. Solvent-mediated conductance increase of dodecanethiol-stabilized gold nanoparticle monolayers

    PubMed Central

    Tisserant, Jean-Nicolas; Sánchez-Ferrer, Antoni; Mezzenga, Raffaele

    2016-01-01

    Gold nanoparticle monolayers provide convenient templates to study charge transport in organic molecules beyond single junction techniques. Conductance is reported to increase by several orders of magnitude following immersion of alkanethiol-stabilized gold nanoparticle monolayers in a solution containing conjugated thiol-functionalized molecules. Typically, this observation is attributed to molecular exchange. Less attention has been paid to the role of the solvent alone. Here, we report on an increase in conductance of dodecanethiol-stabilized gold nanoparticle monolayers on Si/SiO2 by an average factor of 36 and 22 after immersion in pure ethanol (EtOH) and tetrahydrofuran (THF), respectively. Analysis by scanning electron microscopy (SEM) and small-angle X-ray scattering (SAXS) reveals a solvent-induced decrease in lattice constant of close-packed monolayers. We compare the conductance of the monolayer after molecular exchange with two different oligophenylenes to shed light on the respective contribution of the solvent-induced structural change and the molecular exchange itself on the conductance increase. PMID:28144553

  6. Comparison of Self-Assembled Monolayers on Gold: Coadsorption of Thiols and Disulfides

    DTIC Science & Technology

    1989-02-15

    self-assembled monolayers of thiols and disulfides. Previous studies by Dubois et alt t of the adsorption of dimethyl disulfide and methanethiol on...with an activation energy of desorption of 28 kcal/mol of disulfide, but the methanethiol was only physisorbed on the gold surface and desorbed intact

  7. Ordering and defects in self-assembled monolayers on nanoporous gold

    NASA Astrophysics Data System (ADS)

    Patel, Dipna A.; Weller, Andrew M.; Chevalier, Robert B.; Karos, Constantine A.; Landis, Elizabeth C.

    2016-11-01

    Self-assembled monolayers are commonly used to tailor nanoporous structures for applications, and they also provide a model system for determining the effects of nanoscale structure on self-assembly. We have investigated the ordering and defects in alkanethiol self-assembled monolayers on nanoporous gold, a high surface area mesoporous material. Infrared reflection absorption spectroscopy was used to characterize the effects of alkyl chain length and nanoporous gold pore size on molecular layer ordering. Cyclic voltammetry was used to characterize the monolayer density and ordering, with ferrocenylalkylthiolates used to quantify and characterize defect sites. We find that dense and well-ordered molecular layers form quickly with low defect levels. However, we do not observe differences in molecular layer ordering or defects with changes in pore size.

  8. Mechanism for femtosecond laser pulse patterning of self-assembled monolayers on gold-coated substrates

    NASA Astrophysics Data System (ADS)

    Kirkwood, S. E.; Shadnam, M. R.; Amirfazli, A.; Fedosejevs, R.

    2007-04-01

    Self-assembled monolayer (SAM) patterning on gold thin films was performed using 800 nm, 118 fs laser pulses. SAM removal was ablative and was observed at fluences near the multishot ablation threshold for the thin gold film. Line widths six times smaller than the 2 e-folding intensity beam diameter were observed demonstrating sub-diffraction limited patterning with femtosecond lasers. Similar experimental results in air and N2 indicated that the removal process does not involve oxidation of the gold-sulfur bond as was claimed in the literature.

  9. Chiral ionic liquid monolayer-stabilized gold nanoparticles: synthesis, self-assembly, and application to SERS.

    PubMed

    Bai, Xiangtao; Li, Xinwei; Zheng, Liqiang

    2010-07-20

    Chiral ionic liquid monolayer-stabilized gold nanoparticles were synthesized in a two-phase liquid-liquid system and found to self-assemble into ringlike structures at the air/water interface. Control experiments with long-chain ILs revealed that the molecular structure of the CIL significantly affects the formation of the gold nanoparticle ring structures. A possible mechanism based on Marangoni-Bénard convection in evaporating droplets was proposed. These gold nanoparticle structures were shown to yield a large SERS enhancement for Rhodamine 6G.

  10. Amperometric inhibitive biosensor based on horseradish peroxidase-nanoporous gold for sulfide determination

    NASA Astrophysics Data System (ADS)

    Sun, Huihui; Liu, Zhuang; Wu, Chao; Xu, Ping; Wang, Xia

    2016-08-01

    As a well-known toxic pollutant, sulfide is harmful to human health. In this study, a simple and sensitive amperometric inhibitive biosensor was developed for the determination of sulfide in the environment. By immobilizing nanoporous gold (NPG) on glassy carbon electrode (GCE), and encapsulating horseradish peroxidase (HRP) onto NPG, a HRP/NPG/GCE bioelectrode for sulfide detection was successfully constructed based on the inhibition of sulfide on HRP activity with o-Phenylenediamine (OPD) as a substrate. The resulted HRP/NPG/GCE bioelectrode achieved a wide linear range of 0.1–40 μM in sulfide detection with a high sensitivity of 1720 μA mM‑1 cm‑2 and a low detection limit of 0.027 μM. Additionally, the inhibition of sulfide on HRP is competitive inhibition with OPD as a substrate by Michaelis-Menten analysis. Notably, the recovery of HRP activity was quickly achieved by washing the HRP/NPG/GCE bioelectrode using differential pulse voltammetry (DPV) technique in deaerated PBS (50 mM, pH 7.0) for only 60 s. Furthermore, the real sample analysis of sulfide by the HRP/NPG/GCE bioelectrode was achieved. Based on above results, the HRP/NPG/GCE bioelectrode could be a better choice for the real determination of sulfide compared to inhibitive biosensors previously reported.

  11. Self-Assembled Monolayers of Dithiophosphinic Acids on Gold

    NASA Astrophysics Data System (ADS)

    San Juan, Ronan Roca

    This dissertation reports the synthesis of derivatives of dithiophosphinic acids (R1R2DTPAs), and the formation and characterization of DTPA SAMs on gold to build a knowledge base on their nature of binding, organization of the alkyl chains and electrochemical barrier properties. The binding of DTPA molecules on gold depends on the morphology of the gold film: They bind in a mixed monodentate and bidentate modes on standard as-deposited (As-Dep) gold, while they fully chelate on smoother template-stripped (TS) gold. Chapter 2 focuses on van der Waals interactions of various alkyl chain lengths of symmetrical R2DTPA SAMs, which increase with increasing chain lengths similar to those of the analogous n-alkanethiol SAMs, but with alkyl chains that are generally less dense than those of n-alkanethiol SAMs. Chapter 3 addresses why the DTPA compounds do not chelate on the standard As-Dep gold by comparing (C16)2DTPA SAM to (C16 )2DDP SAM. Here, side chain crystallinity stabilizes DTPA SAM structure at the expense of chelation of the DTPA molecules, which leads to a mixture of bidentate and monodentate DTPA molecules, whereas the increased flexibility of the chains in DDP due to the oxygen atoms retains chelation of the DDP molecules. Chapter 4 focuses on the SAMs formed from RlongRshort DTPAs, which shows that the length of the short chain spacer affects SAM packing density and thickness. The SAMs of these molecules also show homogeneous mixing of Rlong and Rshort chains. Chapter 5 investigates PhRDTPA SAMs in preparation for molecular junction studies. The chelation of PhRDTPA molecules on TS gold allows the PhRDTPAs to act as molecular alligator clips. The length of the alkyl chains controls the density of the phenyl group and they fill in the voids between adsorbates to prevent electrical shorting. Finally, Chapter 6 incorporates OH tail group(s) to control the wettability of DTPA SAMs. The presence of OH groups in DTPAs forms hydrophilic SAMs. The symmetrical OH

  12. On a role of liquid intermediates in nucleation of gold sulfide nanoparticles in aqueous media.

    PubMed

    Likhatski, Maxim; Karacharov, Anton; Kondrasenko, Alexander; Mikhlin, Yuri

    2015-01-01

    Previously, we found a series of fluid nanoscale intermediates preceding nucleation of gold sulfide in the reaction between aqueous HAuCl4 and sodium sulfide. Here, the effects of temperature, addition of an inert electrolyte and some other factors on characteristics of the "dense liquid" intermediates and the formation of solid nuclei were studied using UV-vis absorption spectroscopy, DLS, zeta-potential measurements, and SAXS. It was revealed, in particular, that the negatively-charged interfaces of the dense liquid species critically impede their fusion into large enough dense droplets in which nucleation can take place. The nucleation and following coagulation of poorly crystalline gold sulfide proceed not instantly but progressively as the dense liquid droplets arise, with the process being sharply accelerated by the injection of NaCl or temperature increase.

  13. Reactive Capture of Gold Nanoparticles by Strongly Physisorbed Monolayers on Graphite

    SciTech Connect

    Wei, Xiaoliang; Tong, Wenjun; Fidler, Vlastimil; Zimmt, Matthew B.

    2012-12-01

    Anthracene Diels Alder adducts (DAa) bearing two long side chains (H-(CH2)22O(CH2)6OCH2-) at the 1- and 5-positions form self-assembled monolayers (SAMs) at the phenyloctane - highly oriented pyrolytic graphite (HOPG) interface. The long DAa side chains promote strong physisorption of the monolayer to HOPG and maintain the monolayer morphology upon rinsing or incubation in ethanol and air-drying of the substrate. Incorporating a carboxylic acid group on the DAa core enables capture of 1 - 4 nm diameter gold nanoparticles (AuNP) provided (i) the monolayer containing DAa-carboxylic acids is treated with Cu2+ ions and (ii) the organic coating on the AuNP contains carboxylic acids (11-mercaptoundecanoic acid, MUA-AuNP). AuNP capture by the monolayer proceeds with formation of Cu2+ - carboxylate coordination complexes. The captured AuNP appear as mono- and multi-layered clusters at high coverage on HOPG. The surface density of the captured AuNPs can be adjusted from AuNP multi-layers to isolated AuNPs by varying incubation times, MUA-AuNP concentration, the number density of carboxylic acids in the monolayer, the number of MUA per AuNP, and the post-incubation treatments.

  14. Electrochemical and vibrational spectroscopic studies of coadsorption: Formation of mixed monolayers of methylene blue and long-chain dithioethers at sulfur-modified polycrystalline gold surfaces

    SciTech Connect

    Barner, B.J.; Corn, R.M. )

    1990-05-01

    Molecular conformation and order within mixed monolayers of methylene blue, sulfide, and the long-chain dithioether C{sub 14}H{sub 29}SC{sub 2}H{sub 4}SC{sub 14}H{sub 29} adsorbed onto polycrystalline evaporated gold films are studied by using electrochemical methods and ex situ vibrational spectroscopy. The methylene blue dye molecules directly chemisorb onto the sulfur-modified gold surface and do not significantly partition into the alkyl portions of the monolayer. However, upon reduction to leucomethylene blue, the dye molecules do partition into the alkyl subphase. Repeated electrochemical reduction and oxidation of the chemisorbed methylene blue result in an ordering of the adsorbed alkyl chains from a liquid-like structure to a close-packed configuration. The presence of a partial dithioether monolayer also leads to the formation of a stabilized leucomethylene blue film. The variations of the molecular structure observed in these mixed systems arise from the competing processes of chemisorption, aggregation, and hydrophobic solubilization occurring within the thin film.

  15. Near-Infrared Light Absorption and Scattering Based on a Mono-Layer of Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Soltanmoradi, R.; Wang, Q.; Qiu, M.; Popov, S.; Yan, M.

    2015-06-01

    We report fabrication and characterization of large-area ultrathin near-infrared light absorbers and scatterers based on a mono-layer of gold nanoparticles laying on top of a dielectric spacer and an aluminum reflector. The nanoparticles are formed through thermal annealing of an evaporated continuous gold film. Through optimization of initial gold-film thickness, spacer thickness, as well as annealing temperature we obtained samples that exhibit very low (~2%) broadband specular reflectance at near-infrared (NIR) wavelength range. By considering also diffuse reflection, we identify that the low specular reflectance can be due to either relatively high light absorption (~70%) or high light scattering (over 60%), with the latter achieved for samples having relatively sparse gold nanoparticles. Both strong absorption and scattering of NIR light are not inherent properties of the bulk materials used for fabricating the samples. Such composite optical surfaces can potentially be integrated to solar-energy harvesting and LED devices.

  16. Formation of gold and gold sulfide nanoparticles and mesoscale intermediate structures in the reactions of aqueous HAuCl4 with sulfide and citrate ions.

    PubMed

    Mikhlin, Yuri; Likhatski, Maxim; Karacharov, Anton; Zaikovski, Vladimir; Krylov, Alexander

    2009-07-14

    The effects of the molar ratio of sodium sulfide to chloroauric acid in the range of 0.5 to 5 and the time factor on the formation of the nanoparticles (NPs) of metallic Au, Au(2)S or their mixtures have been studied applying in situ and ex situ techniques (UV-Vis absorption spectroscopy, potentiometry, TEM, SPM, SERS, XPS). The products and intermediates have been compared with those for the reduction of chloroaurate with citrate ions and combinations of citrate and sulfide ions. An increase in the concentration of sulfide ions accelerates the reduction of Au(iii) complexes but hinders the nucleation and growth of Au NPs, resulting in a prolonged period before the appearance of plasmon peaks. The electrochemical potential is not directly associated with the plasmon intensities, although the potential sharply decreases simultaneously with a blue shift of the near-IR peak emerging with the Na(2)S/HAuCl(4) ratios of 0.5 to 1.5. It was concluded that the peak is due to longitudinal plasmon resonance of gold nanoplates. Au(2)S NPs, the nucleation of which is effectively inhibited, and probably some structures and fragments visible in TEM and AFM, including 2-5 nm Au NPs, crystallize in part outside the solutions. The evidence of partially liquid mesoscale structures comprising intermediate gold species as precursors of nanoparticles is presented, and their origin, ex situ transformation and role in the reaction mechanisms are discussed.

  17. Heterogeneous electron-transfer kinetics for PQQ covalently attached to aminoalkanethiol monolayers on gold.

    PubMed

    Park, Wonchoul; Ahmed, Jalal; Kim, Sunghyun

    2009-01-01

    Pyrroloquinoline quinone (PQQ) was covalently attached to a gold electrode surface via the self-assembled monolayers of aminoalkanethiols (NH2)(CH2)nSH) with different alkyl chain lengths (n=2, 6, 8, and 11). The voltammetric behaviors of PQQ-SAMs both at full and at partial monolayers were examined. It was found that the redox response of PQQ became more reversible with increasing dilution by alkanethiols owing to the less lateral interaction between PQQ heads. Voltammograms were transformed from quasi-reversibility to irreversibility as the alkyl chain spacer became longer. The electron tunneling barrier constant (beta) and distance dependence of the long range electron-transfer parameters have been studied in acidic solution using cyclic voltammetry. A logarithmic dependence of the heterogeneous electron-transfer rate constant on the alkyl chain length was found for full and partial PQQ monolayers. The beta value was close to 1.0 per CH2 unit regardless of dilution effect.

  18. Omega-Terminated Alkanethiolate Monolayers on Surfaces of Copper, Silver and Gold Have Similar Wettabilities

    DTIC Science & Technology

    1991-12-01

    metal cxides and form oriented, oleophobic monolayers,25 0-hydroxy- and W-amino-alkanoic acids adsorb and form poorly organized films that are not wet...gold. Experinental Materials . 1l-Bromo-undecyl t-butyldimethylsilyl ether and most alkanethiols were available from pcrevious studies;6, 2 1, 4 8 ctn...er materials were obtained from Aldrich and used as received unless Specified. Octadecanethiol was distilled under reduced pressure prior to use

  19. Preparing metal-complex surfaces based on self-assembled monolayers of thiols and disulfides on gold

    NASA Astrophysics Data System (ADS)

    Dolzhikova, V. D.; Bogdanova, Yu. G.; Majouga, A. G.; Beloglazkina, E. K.; Kudrinsky, A. A.

    2017-02-01

    The complexation of monolayers of sulfur-containing ligands self-assembled on surface of gold with Co(II) and Cu(II) ions is studied using quartz crystal microbalance (QCM) and wetting measurements. The optimum conditions for obtaining metal-complex surfaces and the compositions of the resulting monolayers are determined.

  20. Significance of the amide functionality on DOPA-based monolayers on gold.

    PubMed

    Rībena, Dina; Alekseev, Alexander; van Asselen, Otto; Mannie, Gilbère J A; Hendrix, Marco M R M; van der Ven, Leendert G J; Sommerdijk, Nico A J M; de With, Gijsbertus

    2012-12-11

    The adhesive proteins secreted by marine mussels contain an unusual amino acid, 3,4-dihydroxyphenylalanine (DOPA), that is responsible for the cohesive and adhesive strength of this natural glue and gives mussels the ability to attach themselves to rocks, metals, and plastics. Here we report a detailed structural and spectroscopic investigation of the interface between N-stearoyldopamine and a single-crystalline Au(111) model surface and an amide-absent molecule, 4-stearylcatechol, also on Au(111), with the aim of understanding the role of the amide functionality in the packing, orientation, and fundamental interaction between the substrate and the monolayer formed from an aqueous environment by the Langmuir-Blodgett technique. The organization of monolayers on gold was observed directly and studied in detail by X-ray photoelectron spectroscopy (XPS), contact angle measurements (CA), surface-enhanced Raman spectroscopy (SERS), infrared reflection-absorption spectroscopy (IRRAS), and atomic force microscopy (AFM). Our study shows that within the monolayer the catecholic oxygen atoms are coordinated to the gold surface, having a more perpendicular orientation with respect to the aromatic ring and the apparently tilted alkyl chains, whereas the amide functionality stabilizes the monolayer that is formed.

  1. Coadsorption of ferrocene-terminated and unsubstituted alkanethiols on gold: Electroactive self-assembled monolayers

    SciTech Connect

    Chidsey, C.E.D.; Bertozzi, C.R.; Putvinski, T.M.; Mujsce, A.M. )

    1990-05-23

    Self-assembled monolayers provide an ideal system for disentangling the fundamental events in interfacial electron transfer. Coadsorption of ferrocene-terminated alkanethiols with unsubstituted n-alkanethiols on evaporated gold films yields stable, electroactive self-assembled monolayers. Monolayers containing low concentrations of alkanethiols linked to ferrocene by a polar ester group (FcCO{sub 2}(CH{sub 2}){sub n}SH, Fc = ({eta}{sup 5}-C{sub 5}H{sub 5})Fe({eta}{sup 5}-C{sub 5}H{sub 4})) show thermodynamically ideal surface electrochemistry in 1 M HClO{sub 4}, indicating the ferrocene groups to be homogeneous and noninteracting. Higher surface concentrations or use of alkanethiols linked directly to the nonpolar ferrocene group (Fc(CH{sub 2}){sub n}SH) lead to broadened electrochemical features, indicating interactions among ferrocene groups or inhomogeneous sites. Longer chain lengths and lower ferrocene surface concentrations result in slower electron-transfer kinetics with the ferrocene groups. A fraction of the thiols in a monolayer exchange with thiols in an ethanol solution, but much of the monolayer remains unequilibrated after 10 days.

  2. Removal of self-assembled monolayers of alkanethiolates on gold by plasma cleaning

    NASA Astrophysics Data System (ADS)

    Raiber, Kevin; Terfort, Andreas; Benndorf, Carsten; Krings, Norman; Strehblow, Hans-Henning

    2005-12-01

    Plasmas of hydrogen or oxygen were used to remove self-assembled monolayers (SAMs) of alkanethiolates from gold surfaces. X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), ellipsometry, and contact angle measurements were used to compare the efficiency of the different plasmas and to explore their respective influence on the surface topology. Both plasmas were able to remove the SAM from the gold surface within less than 60 s. While the hydrogen plasma produces a de facto sulfur-free surface, oxygen plasma cleaning leads to an Au 2O 3 surface contaminated with oxidized sulfur species (probably sulfonates and sulfate). Nevertheless, the plasmas alter the roughness of the gold surfaces only marginally, as demonstrated by STM.

  3. Inkjet printed electrode arrays for potential modulation of DNA self-assembled monolayers on gold.

    PubMed

    Li, Yunchao; Li, Paul C H; Parameswaran, M Ash; Yu, Hua-Zhong

    2008-11-15

    In this paper, we report a novel and cost-effective fabrication technique to produce electrode arrays that can be used for monitoring and electrical manipulation of the molecular orientation of DNA self-assembled monolayers (SAMs) on gold. The electrode arrays were prepared from gold coated glass sides or compact discs (CD-Rs) by using standard office inkjet printers without any hardware or software modifications. In this method, electrode arrays of varied shape and size (from submillimeter to centimeter) can be rapidly fabricated and are suitable for standard electrochemical measurements. We were able to use a dual-channel potentiostat to control the electrodes individually and a fluorescence (FL) scanner to image the electrode array simultaneously. With such an integrated modulation setup, the structural switching behavior (from "lying" to "standing" position) and the enhanced hybridization reactivity of thiolate DNA SAMs on gold under potential control have been successfully demonstrated.

  4. Alkylthiol self-assembled monolayers on Au(111) with tailored tail groups for attaching gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kutsenko, V. Y.; Lopatina, Y. Y.; Bossard-Giannesini, L.; Marchenko, O. A.; Pluchery, O.; Snegir, S. V.

    2017-06-01

    Self-assembled monolayers (SAMs) on Au(111) are able to control the functionality of a gold surface. We use scanning tunnelling microscopy (STM) in air and contact angle measurements to compare the morphology and the chemistry of three alkylthiol SAMs differing by their tail groups: 1,9-nonanedithiol (NDT), 1,4-butanedithiol (BDT) and 11-mercaptoundecanol (MUOH). STM reveals very different morphologies: a hexagonal lattice for MUOH and parallel rows for NDT and BDT. In the case of NDT, we find that the thiol tail groups may form disulfide bridges with long immersion times. The availability of the -SH group for chemical reactions is demonstrated by attaching gold nanoparticles (AuNPs). When the thiol tail group is available, AuNPs readily attach as shown with atomic force microscopy (AFM). When disulfide bridges are formed, the gold surface is not able to bind nanoparticles.

  5. Fluorinated and Charged Hydrogenated Alkanethiolates Grafted on Gold: Expanding the Diversity of Mixed-Monolayer Nanoparticles for Biological Applications.

    PubMed

    Bidoggia, Silvia; Milocco, Francesca; Polizzi, Stefano; Canton, Patrizia; Saccani, Alessandra; Sanavio, Barbara; Krol, Silke; Stellacci, Francesco; Pengo, Paolo; Pasquato, Lucia

    2017-01-18

    Low intrinsic toxicity, high solubility, and stability are important and necessary features of gold nanoparticles to be used in the biomedical field. In this context, charged nanoparticles proved to be very versatile, and among them charged mixed-monolayer gold nanoparticles, displaying monolayers with well-defined morphologies, represent a paradigm. By using mixtures of hydrogenated and fluorinated thiols, the formation of monolayer domains may be brought to an extreme because of the immiscibility of fluorinated and hydrogenated chains. Following this rationale, mixed monolayer gold nanoparticles featuring ammonium, sulfonate, or carboxylic groups on their surface were prepared by using amphiphilic hydrogenated thiols and 1H,1H,2H,2H-perfluoro-alkanethiols. The toxicity of these systems was assessed in HeLa cells and was found to be, in general, low even for the cationic nanoparticles which usually show a high cytotoxicity and is comparable to that of homoligand gold nanoparticles displaying amphiphilic-charge neutral-hydrogenated or fluorinated thiolates in their monolayer. These properties make the mixed ligand monolayer gold nanoparticles an interesting new candidate for medical application.

  6. Kinetic investigation of sulfidizing annealing of scorodite in processing of refractory oxidized gold-containing ores

    NASA Astrophysics Data System (ADS)

    Boboev, I. R.; Strizhko, L. S.; Bobozoda, Sh.; Gorbunov, E. P.

    2016-03-01

    The results of kinetic studies on the removal of arsenic from scorodite using sulfidizing annealing are presented. The reaction order with respect to the reactant and the activation energy are established from the experimental data. The rate-determining step of the sulfidizing annealing process is determined. The main reactions that occur during the sulfidizing of arsenic in scorodite are proposed on the basis of the obtained results and confirmed by thermodynamic calculations and chemical analyses. The major results of testing this technology, as applied to the refractory oxidized ores in which arsenic is mainly concentrated in scorodite, are presented. Arsenic removal from this ore is confirmed by chemical and quantitative X-ray diffraction analyses and by qualitative phase analysis. Industrial use of this technology provides safe and efficient processing of refractory gold-containing ores, where arsenic is mainly concentrated in scorodite.

  7. Disassembly mediated fluorescence recovery of gold nanodots for selective sulfide sensing

    NASA Astrophysics Data System (ADS)

    Yuan, Zhiqin; Peng, Meihua; Shi, Lei; Du, Yi; Cai, Na; He, Yan; Chang, Huan-Tsung; Yeung, Edward S.

    2013-05-01

    We report a one-pot, two-step strategy to synthesize fluorescent gold nanodots (AuNDs) co-modified with 1-(10-mercaptodecyl)-5-methylpyrimidine-2,4-dione (TSH) and 11-mercaptoundecanoic acid (MUA) through a ligand exchange reaction and demonstrate their capability of selective sulfide sensing in aqueous media on the basis of fluorescence recovery.We report a one-pot, two-step strategy to synthesize fluorescent gold nanodots (AuNDs) co-modified with 1-(10-mercaptodecyl)-5-methylpyrimidine-2,4-dione (TSH) and 11-mercaptoundecanoic acid (MUA) through a ligand exchange reaction and demonstrate their capability of selective sulfide sensing in aqueous media on the basis of fluorescence recovery. Electronic supplementary information (ESI) available: Experimental details, more characterization and other supporting data. See DOI: 10.1039/c2nr33202g

  8. Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle.

    PubMed

    Wang, Yifeng; Neyman, Alevtina; Arkhangelsky, Elizabeth; Gitis, Vitaly; Meshi, Louisa; Weinstock, Ira A

    2009-12-02

    Cryogenic "trapping" was used to obtain the first TEM images of self-assembled monolayers of inorganic anions on a gold nanoparticle. This unique structural information makes it possible to study the formation of a protecting-ligand shell at an unprecedented level of detail. The protecting ligands are polyoxometalates (POMs; alpha-X(n+)W(12)O(40)((8-n)-), X(n+) = Al(3+) and "2H(+)", and alpha-X(n+)W(11)O(39)((12-n)-), X(n+) = P(5+), Si(4+), and Al(3+)) with large negative charges for association with the gold surface and W atoms (Z = 74) for TEM imaging. The POM-anion shells were obtained by ligand exchange from citrate-protected 13.8 nm gold nanoparticles. Replacement of the organic (citrate) by inorganic (tungsten-oxide) ligand shells results in substantial changes in the surface plasmon resonance (SPR). By correlating cryo-TEM images with changes in the SPR, degrees of surface coverage were reliably quantified by UV-visible spectroscopy. Then, the kinetics and thermodynamics of ligand-shell formation were investigated by systematically varying POM structure and charge. Rates of POM association with the gold surface ("nucleation") are inhibited by the electric-potential barrier of the citrate-stabilized particles, while binding affinities increase linearly with the charges (from 5- to 9-) of structurally different POM anions, suggesting that no single orientation ("lattice matching") is required for monolayer self-assembly. Time-dependent cryo-TEM images reveal that monolayer growth occurs via "islands", a mechanism that points to cation-mediated attraction between bound POMs. Complete ligand shells comprised of 330 molecules of alpha-AlW(11)O(39)(9-) (1) possess small net charges (29e from zeta-potential measurements) and short Debye lengths (kappa(-1) = 1.0 nm), which indicate that approximately 99% of the 2970 K(+) counter cations lie within ca. 1.5 nm (approximately 3 hydrated K(+) ion diameters) from the outer surface of the POM shell. Energetic analysis of

  9. Detection of saccharides with a fluorescent sensing device based on a gold film modified with 4-mercaptophenylboronic acid monolayer

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Jen; Chang, Jui-Feng; Cheng, Nai-Jen; Yih, Jeng-Nan; Chiu, Kuo-Chi

    2013-09-01

    An extremely sensitive fluorescent sensor based on a phenylboronic acid monolayer was developed for detecting saccharide molecules. The fluorescent sensor was prepared by assembling a monolayer of 4-mercaptophenylboronic acid (4-MPBA) onto a gold-coated compact disk. The change in the fluorescence of the 4-MPBA monolayer was extremely obvious in basic methanolic buffer containing monosaccharides down to the picomolar level. The fluorescence spectra demonstrated that the 4-MPBA monolayer was sensitive to monosaccharides and disaccharides, and the affinity of the monolayer toward saccharides was in the order of glucose < fructose < mannose < galactose < maltose > lactose > sucrose. Additionally, the fluorescence intensity of 4-MPBA monolayer was restorable after cleaning with weak acid, indicating that the reported fluorescent sensor with the detection limit of glucose down to the picomolar level is reusable for sensing saccharides.

  10. Superlattice of resonators on monolayer graphene created by intercalated gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Cranney, M.; Vonau, F.; Pillai, P. B.; Denys, E.; Aubel, D.; De Souza, M. M.; Bena, C.; Simon, L.

    2010-09-01

    Here we report on a "new" type of ordering which allows to modify the electronic structure of a graphene monolayer (ML). We have intercalated small gold clusters between the top monolayer graphene and the buffer layer of epitaxial graphene. We show that these clusters perturb the quasiparticles on the ML graphene, acting as quantum dots creating a superlattice of resonators on the graphene ML, as revealed by a strong pattern of standing waves. A detailed analysis of the standing-wave pattern using Fourier Transform Scanning Tunneling Spectroscopy strongly indicates that this phenomenon can arise from a strong modification of the band structure of graphene and (or) from Charge Density Waves (CDW) where a large extension of Van Hove singularities is involved.

  11. Molecular simulations of mixed self-assembled monolayer coated gold nanoparticles in water.

    PubMed

    J, Meena Devi

    2015-06-01

    Molecular dynamics simulations have been employed to study the hydration of a series of nanoparticles, each of which was coated with a mixed self-assembled monolayer (SAM) comprising methyl- and hydroxy-terminated alkane thiol chains. The mixing ratio of those chains are different for each nanoparticle. The simulations focused on the wetting behavior of the SAM-coated gold nanoparticles and the distribution and structure of their interfacial water molecules. The interactions of the mixed SAM-coated gold nanoparticles with water were analyzed by evaluating the radial distribution function, hydrogen bonds, the dipole orientations of the water molecules, and the water residence time in the interfacial region. The wettability of the mixed SAM-coated gold nanoparticles improved as the concentration of terminal hydroxy moieties was increased. The distribution and dynamics of the interfacial water molecules were found to be influenced by the mixing ratio of the terminal moieties of the SAM chains. The results of our simulations suggest that the surface interactions of the mixed SAM-coated gold nanoparticles with the aqueous medium can be modulated by systematically altering the mixing ratio of the terminal methyl and hydroxy moieties. This work may lead to new biological and technological applications and inspire the development of novel biomimetic materials. Graphical Abstract Mixed SAM-coated gold nanoparticles.

  12. Direct patterning of self-assembled monolayers on gold using a laser beam.

    PubMed

    Shadnam, Mohammad R; Kirkwood, Sean E; Fedosejevs, Robert; Amirfazli, A

    2004-03-30

    The development of a methodology to manipulate surface properties of a self-assembled monolayer (SAM) of alkanethiol on a gold film using direct laser patterning is the objective of this paper. The present study demonstrates proof of the concept for the feasibility of laser patterning monolayers and outlines theoretical modeling of the process to predict the resulting feature size. This approach is unique in that it eliminates the need for photolithography, is noncontact, and can be extended to other systems such as SAMs on silicon wafers or potentially polymeric substrates. A homogeneous SAM made of 1-hexadecanethiol is formed on a 300-A sputtered film of gold (supported by a soda lime glass substrate). Localized regions are then desorbed by scanning the focal spot of a 488-nm continuous-wave argon ion laser beam under a nitrogen atmosphere. The desorption occurs as a result of a high substrate temperature produced by the moving laser beam with a Gaussian spatial profile at a constant speed of 200 microm/s. After completing the scans, the sample is dipped into a dilute solution of 16-mercaptohexadecanoic acid and a hydrophilic monolayer self-assembles along the previously irradiated regions. The resultant lines are viewed, and line widths are measured using both wetting with tridecane under a light microscope and scanning electron microscopy. Using the direct laser patterning method, we have produced straight line patterns with widths of 28-170 microm. A thermal model was constructed to predict the line width of the desorbed monolayer. The effect of the laser power, beam waist, and temperature dependence of the substrate conductivity on the theoretical predictions is considered. It is shown that the theoretical predictions are in good agreement with the experimental results, and, thus, the model can effectively be used to predict experimental results.

  13. A low voltage programmable unipolar inverter with a gold nanoparticle monolayer on plastic.

    PubMed

    Zhou, Ye; Han, Su-Ting; Huang, Long-Biao; Huang, Jing; Yan, Yan; Zhou, Li; Roy, V A L

    2013-05-24

    A programmable low voltage unipolar inverter with saturated-load configuration has been demonstrated on a plastic substrate. A self-assembled monolayer of gold (Au) nanoparticles was inserted into the dielectric layer acting as a charge trapping layer. The inverter operated well with supply voltages of < - 5 V and the switching voltage was tuned in a wide range under low program/erase bias. The retention and endurance test at ambient conditions confirmed the reliability of the inverter. Furthermore, the programmable behavior was maintained well at various bending states, demonstrating the adequate flexibility of our devices.

  14. Molecular Dynamics Study of Alkanethiolate Self-Assembled Monolayer Coated Gold Nanoparticle

    DTIC Science & Technology

    2007-06-01

    component of function results for the uncoated gold nanoparticle to the the Irving -Kirkwood (IK) pressure tensor. [321 The normal results for an...pp. 24-34, 1983. Studies." Langmuir , 4, pp. 546-558, 1988. 23. Shevade, A. V., J. Zhou, M. T. Zin, and S. Jiang. Phase 8. Rosenbaum, A.W, M.A. Freedman...Au(l 11): A Configurational-Bias Monte Carlo Assembled Monolayers of Varying Chain Length." Journal of Simulation Study. Langmuir 17, pp. 7566-7572

  15. Colorimetric detection of biological hydrogen sulfide using fluorosurfactant functionalized gold nanorods.

    PubMed

    Zhang, Xuan; Zhou, Wenjuan; Yuan, Zhiqin; Lu, Chao

    2015-11-07

    As a well-known environmental pollutant but also an important gaseous transmitter, the specific detection of hydrogen sulfide (H2S) is significant in biological systems. In this study, fluorosurfactant functionalized gold nanorods (FSN-AuNRs) have been proposed to act as selective colorimetric nanoprobes for H2S. With the combination of strong gold-S interactions and small FSN bilayer interstices, FSN-AuNRs demonstrate favorable selectivity and sensitivity toward H2S over other anions and small biological molecules. The practical application of the present method in biological H2S detection was validated with human and mouse serum samples. Moreover, the proposed nanoprobe can also be used for evaluating the activity of H2S synthetase.

  16. Monolayer-precision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction.

    PubMed

    Seo, Bora; Jung, Gwan Yeong; Sa, Young Jin; Jeong, Hu Young; Cheon, Jae Yeong; Lee, Jeong Hyeon; Kim, Ho Young; Kim, Jin Chul; Shin, Hyeon Suk; Kwak, Sang Kyu; Joo, Sang Hoon

    2015-04-28

    Metal sulfide-based nanostructured materials have emerged as promising catalysts for hydrogen evolution reaction (HER), and significant progress has been achieved in enhancing their activity and durability for the HER. The understanding of nanoscale size-dependent catalytic activities can suggest critical information regarding catalytic reactivity, providing the scientific basis for the design of advanced catalysts. However, nanoscale size effects in metal sulfide-based HER catalysts have not yet been established fully, due to the synthetic difficulty in precisely size-controlled metal sulfide nanoparticles. Here we report the preparation of molybdenum sulfide (MoS2) nanoparticles with monolayer precision from one to four layers with the nearly constant basal plane size of 5 nm, and their size-dependent catalytic activity in the HER. Using density functional theory (DFT) calculations, we identified the most favorable single-, double-, and triple-layer MoS2 model structures for the HER, and calculated elementary step energetics of the HER over these three model structures. Combining HER activity measurements and the DFT calculation results, we establish that the turnover frequency of MoS2 nanoparticles in the HER increases in a quasi-linear manner with decreased layer numbers. Cobalt-promoted MoS2 nanoparticles also exhibited similar HER activity trend. We attribute the higher HER activity of smaller metal sulfide nanoparticles to the higher degree of oxidation, higher Mo-S coordination number, formation of the 1T phase, and lower activation energy required to overcome transition state. This insight into the nanoscale size-dependent HER activity trend will facilitate the design of advanced HER catalysts as well as other hydrotreating catalysts.

  17. Electrical resistivity of nanoporous gold modified with thiol self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Hakamada, Masataka; Kato, Naoki; Mabuchi, Mamoru

    2016-11-01

    The electrical resistivity of nanoporous gold (NPG) modified with thiol self-assembled monolayers (SAMs) has been measured at 298 K using a four-probe method. We found that the adsorption of thiol SAMs increases the electrical resistivity of NPG by up to 22.2%. Dependence of the electrical resistivity on the atmosphere (air or water) was also observed in SAMs-modified NPG, suggesting that the electronic states of the tail groups affect the electrons of the binding sulfur and adjacent surface gold atoms. The present results suggest that adsorption of thiol molecules can influence the behavior of the conducting electrons in NPG and that modification of NPG with SAMs may be useful for environmental sensing.

  18. Rapid Degradation of Alkanethiol-Based Self-Assembled Monolayers on Gold in Ambient Laboratory Conditions

    SciTech Connect

    Willey, T M; Vance, A L; van Buuren, T; Bostedt, C; Terminello, L J; Fadley, C S

    2004-07-21

    Self-assembled monolayers (SAMs) consisting of alkanethiols and similar sulfur-containing molecules on noble metal substrates are extensively used and explored for various chemical and biological surface-functionalization in the scientific community. SAMs consisting of thiol- or disulfide-containing molecules adsorbed on gold are commonly used due to their ease of preparation and stability. However, the gold-thiolate bond is easily and rapidly oxidized under ambient conditions, adversely affecting SAM quality and structure. Here, the oxidation of dodecanethiol on gold is explored for various 12-hour exposures to ambient laboratory air and light. SAM samples are freshly prepared, air-exposed, and stored in small, capped vials. X-ray photoelectron spectroscopy (XPS) reveals nearly complete oxidation of the thiolate in air-exposed samples, and a decrease in carbon signal on the surface. Near-edge X-ray absorption fine structure spectroscopy (NEXAFS) at the Carbon K-edge shows a loss of upright orientational order upon air-exposure. Alternatively, the oxidation of the thiolate is minor when SAMs are stored in limited-air-containing small 15 ml vials. Thus, care must be taken to avoid SAM degradation by ensuring alkanethiolates on gold have sufficient durability for each intended environment and application.

  19. Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold

    NASA Astrophysics Data System (ADS)

    Crudden, Cathleen M.; Horton, J. Hugh; Ebralidze, Iraklii I.; Zenkina, Olena V.; McLean, Alastair B.; Drevniok, Benedict; She, Zhe; Kraatz, Heinz-Bernhard; Mosey, Nicholas J.; Seki, Tomohiro; Keske, Eric C.; Leake, Joanna D.; Rousina-Webb, Alexander; Wu, Gang

    2014-05-01

    Since the first report of thiol-based self-assembled monolayers (SAMs) 30 years ago, these structures have been examined in a huge variety of applications. The oxidative and thermal instabilities of these systems are widely known, however, and are an impediment to their widespread commercial use. Here, we describe the generation of N-heterocyclic carbene (NHC)-based SAMs on gold that demonstrate considerably greater resistance to heat and chemical reagents than the thiol-based counterparts. This increased stability is related to the increased strength of the gold-carbon bond relative to that of a gold-sulfur bond, and to a different mode of bonding in the case of the carbene ligand. Once bound to gold, NHCs are not displaced by thiols or thioethers, and are stable to high temperatures, boiling water, organic solvents, pH extremes, electrochemical cycling above 0 V and 1% hydrogen peroxide. In particular, benzimidazole-derived carbenes provide films with the highest stabilities and evidence of short-range molecular ordering. Chemical derivatization can be employed to adjust the surface properties of NHC-based SAMs.

  20. Surface Coverage and Structure of Mixed DNA/Alkylthiol Monolayers on Gold: Characterization by XPS, NEXAFS, and Fluorescence Intensity Measurements

    PubMed Central

    Lee, Chi-Ying; Gong, Ping; Harbers, Gregory M.; Grainger, David W.; Castner, David G.; Gamble, Lara J.

    2006-01-01

    Self-assembly of thiol-terminated single-stranded DNA (HS-ssDNA) on gold has served as an important model system for DNA immobilization at surfaces. Here, we report a detailed study of the surface composition and structure of mixed self-assembled DNA monolayers containing a short alkylthiol surface diluent [11-mercapto-1-undecanol (MCU)] on gold supports. These mixed DNA monolayers were studied with X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and fluorescence intensity measurements. XPS results on sequentially adsorbed DNA/MCU monolayers on gold indicated that adsorbed MCU molecules first incorporate into the HS-ssDNA monolayer and, upon longer MCU exposures, displace adsorbed HS-ssDNA molecules from the surface. Thus, HS-ssDNA surface coverage steadily decreased with MCU exposure time. Polarization-dependent NEXAFS and fluorescence results both show changes in signals consistent with changes in DNA orientation after only 30 min of MCU exposure. NEXAFS polarization dependence (followed by monitoring the N 1s → π* transition) of the mixed DNA monolayers indicated that the DNA nucleotide base ring structures are oriented more parallel to the gold surface compared to DNA bases in pure HS-ssDNA monolayers. This indicates that HS-ssDNA oligomers reorient toward a more-upright position upon MCU incorporation. Fluorescence intensity results using end-labeled DNA probes on gold show little observable fluorescence on pure HS-ssDNA monolayers, likely due to substrate quenching effects between the fluorophore and the gold. MCU diluent incorporation into HS-ssDNA monolayers initially increases DNA fluorescence signal by densifying the chemisorbed monolayer, prompting an upright orientation of the DNA, and moving the terminal fluorophore away from the substrate. Immobilized DNA probe density and DNA target hybridization in these mixed DNA monolayers, as well as effects of MCU diluent on DNA hybridization in complex

  1. Surface Coverage and Structure of Mixed DNA/Alkylthiol Monolayers on Gold: Characterization by XPS, NEXAFS, and Fluorescence Intensity Measurements

    SciTech Connect

    Lee,C.; Gong, P.; Harbers, G.; Grainger, D.; Castner, D.; Gamble, L.

    2006-01-01

    Self-assembly of thiol-terminated single-stranded DNA (HS-ssDNA) on gold has served as an important model system for DNA immobilization at surfaces. Here, we report a detailed study of the surface composition and structure of mixed self-assembled DNA monolayers containing a short alkylthiol surface diluent [11-mercapto-1-undecanol (MCU)] on gold supports. These mixed DNA monolayers were studied with X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and fluorescence intensity measurements. XPS results on sequentially adsorbed DNA/MCU monolayers on gold indicated that adsorbed MCU molecules first incorporate into the HS-ssDNA monolayer and, upon longer MCU exposures, displace adsorbed HS-ssDNA molecules from the surface. Thus, HS-ssDNA surface coverage steadily decreased with MCU exposure time. Polarization-dependent NEXAFS and fluorescence results both show changes in signals consistent with changes in DNA orientation after only 30 min of MCU exposure. NEXAFS polarization dependence (followed by monitoring the N 1s{yields}{pi}* transition) of the mixed DNA monolayers indicated that the DNA nucleotide base ring structures are oriented more parallel to the gold surface compared to DNA bases in pure HS-ssDNA monolayers. This indicates that HS-ssDNA oligomers reorient toward a more-upright position upon MCU incorporation. Fluorescence intensity results using end-labeled DNA probes on gold show little observable fluorescence on pure HS-ssDNA monolayers, likely due to substrate quenching effects between the fluorophore and the gold. MCU diluent incorporation into HS-ssDNA monolayers initially increases DNA fluorescence signal by densifying the chemisorbed monolayer, prompting an upright orientation of the DNA, and moving the terminal fluorophore away from the substrate. Immobilized DNA probe density and DNA target hybridization in these mixed DNA monolayers, as well as effects of MCU diluent on DNA hybridization in

  2. Gold Nanoparticle Monolayers from Sequential Interfacial Ligand Exchange and Migration in a Three-Phase System

    PubMed Central

    Yang, Guang; Hallinan, Daniel T.

    2016-01-01

    Using a three-phase system, centimeter-scale monolayer gold nanoparticle (Au NP) films have been prepared that have long-range order and hydrophobic ligands. The system contains an interface between an aqueous phase containing Au NPs and an oil phase containing one of various types of amine ligands, and a water/air interface. As the Au NPs diffuse to the water/oil interface, ligand exchange takes place which temporarily traps them at the water/oil interface. The ligand-exchanged particles then spontaneously migrate to the air/water interface, where they self-assemble, forming a monolayer under certain conditions. The spontaneous formation of the NP film at the air/water interface was due to the minimization of the system Helmholtz free energy. However, the extent of surface functionalization was dictated by kinetics. This decouples interfacial ligand exchange from interfacial self-assembly, while maintaining the simplicity of a single system. The interparticle center-to-center distance was dictated by the amine ligand length. The Au NP monolayers exhibit tunable surface plasma resonance and excellent spatial homogeneity, which is useful for surface-enhanced Raman scattering. The “air/water/oil” self-assembly method developed here not only benefits the fundamental understanding of NP ligand conformations, but is also applicable to the manufacture of plasmonic nanoparticle devices with precisely designed optical properties. PMID:27762394

  3. Gold Nanoparticle Monolayers from Sequential Interfacial Ligand Exchange and Migration in a Three-Phase System

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Hallinan, Daniel T.

    2016-10-01

    Using a three-phase system, centimeter-scale monolayer gold nanoparticle (Au NP) films have been prepared that have long-range order and hydrophobic ligands. The system contains an interface between an aqueous phase containing Au NPs and an oil phase containing one of various types of amine ligands, and a water/air interface. As the Au NPs diffuse to the water/oil interface, ligand exchange takes place which temporarily traps them at the water/oil interface. The ligand-exchanged particles then spontaneously migrate to the air/water interface, where they self-assemble, forming a monolayer under certain conditions. The spontaneous formation of the NP film at the air/water interface was due to the minimization of the system Helmholtz free energy. However, the extent of surface functionalization was dictated by kinetics. This decouples interfacial ligand exchange from interfacial self-assembly, while maintaining the simplicity of a single system. The interparticle center-to-center distance was dictated by the amine ligand length. The Au NP monolayers exhibit tunable surface plasma resonance and excellent spatial homogeneity, which is useful for surface-enhanced Raman scattering. The “air/water/oil” self-assembly method developed here not only benefits the fundamental understanding of NP ligand conformations, but is also applicable to the manufacture of plasmonic nanoparticle devices with precisely designed optical properties.

  4. Study of dithiol monolayer as the interface for controlled deposition of gold nanoparticles

    SciTech Connect

    Cichomski, M.; Tomaszewska, E.; Kosla, K.; Kozlowski, W.; Grobelny, J.

    2011-03-15

    Self-assembled monolayer of dithiol molecules, deposited on polycrystalline Au (111), prepared at room atmosphere, was studied using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Dithiols were used as interface, which chemically bonds to the deposited gold nanoparticles through strong covalent bonds. The size and size distribution of the deposited nanoparticles were measured using dynamic light scattering (DLS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The AFM results showed that nanoparticles are immobilized and stable during scanning procedure and do not contaminate the AFM tip. The size of monodisperse nanoparticles obtained from the DLS measurements is slightly higher than that obtained from the AFM and SEM measurements. This is due to the fact that the DLS measures the hydrodynamic radius, dependent on the protective chemical layer on nanoparticles. - Research Highlights: {yields} Dithiols molecules create chemically bounded layers on a Au (111) surface. {yields} Gold nanoparticles can be chemically bounded to a self-assembled monolayer. {yields} Nanoparticles are stable during AFM probe interactions.

  5. Plasmon resonances of novel monolayer and bilayer shell aggregate gold nanostructures

    NASA Astrophysics Data System (ADS)

    Angelidou, Myria; Pitris, Costas

    2011-07-01

    Various gold nanostructures have being investigated for medical and biological uses, such as surface enhanced-Raman spectroscopy (SERS) and photoacoustic imaging (PAI), each having its advantages and limitations depending on the specific application. For many imaging and spectroscopic applications, it would be beneficial to use near infrared (NIR) excitation as well as small gold nanospheres which can easily reach the cytoplasm and cell nucleus. For that purpose, we propose a novel nanostructure, the "shell aggregate," which consists of small nanospheres aggregated (mono/bi-layer) around a core such as an intracellular organelle. The extinction efficiency of such monolayer and bilayer shell aggregates is thoroughly investigated with appropriate simulations using the Discrete Dipole Approximation (DDA) method. The effect of parameters such as the overall radius of the nanostructure, the small nanosphere radius, and the distance between the nanospheres, on the extinction efficiency factor of the nanostructures was examined. The results indicate that the extinction spectra appear to depend heavily on the distance between the small nanospheres. Two distinct absorption peak wavelengths are observed for a specific nanostructure. The monolayer shell aggregate provides a reasonably tunable plasmon resonance wavelength while the small size of its components can be exploited for intracellular distribution.

  6. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    SciTech Connect

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  7. Tribology of monolayer films: comparison between n-alkanethiols on gold and n-alkyl trichlorosilanes on silicon.

    PubMed

    Booth, Brandon D; Vilt, Steven G; McCabe, Clare; Jennings, G Kane

    2009-09-01

    This Article presents a quantitative comparison of the frictional performance for monolayers derived from n-alkanethiolates on gold and n-alkyl trichlorosilanes on silicon. Monolayers were characterized by pin-on-disk tribometry, contact angle analysis, ellipsometry, and electrochemical impedance spectroscopy (EIS). Pin-on-disk microtribometry provided frictional analysis at applied normal loads from 10 to 1000 mN at a speed of 0.1 mm/s. At low loads (10 mN), methyl-terminated n-alkanethiolate self-assembled monolayers (SAMs) exhibited a 3-fold improvement in coefficient of friction over SAMs with hydroxyl- or carboxylic-acid-terminated surfaces. For monolayers prepared from both n-alkanethiols on gold and n-alkyl trichlorosilanes on silicon, a critical chain length of at least eight carbons is required for beneficial tribological performance at an applied load of 9.8 mN. Evidence for disruption of chemisorbed alkanethiolate SAMs with chain lengths n monolayers shows that monolayers prepared from n-octadecyl dimethylchlorosilane and n-octadecyl trichlorosilane withstood normal loads at least 30 times larger than those that damaged octadecanethiolate SAMs. Collectively, our results show that the tribological properties of monolayer films are dependent on their internal stabilities, which are influenced by cohesive chain interactions (van der Waals) and the adsorbate-substrate bond.

  8. Monolayer-Protected Gold Nanoparticles as a Stationary Phase for Open Tubular Gas Chromatography

    SciTech Connect

    Gross, Gwen M.; Nelson, David A.; Grate, Jay W.; Synovec, Robert E.

    2003-09-01

    The use of a thin film of monolayer protected gold nanoparticles (MPNs) as a stationary phase for gas chromatography (GC) is reported. Dodecanethiol-protected gold nanoparticles were prepared and characterized. Deposition of a MPN film was successfully completed within a 2 m, 530 {micro}m (i.d.) deactivated silica capillary using gravity to force a plug of solution containing the MPN material through the capillary for deposition. The presence of a thin MPN film on the GC capillary inside wall was confirmed with SEM analysis with an average film thickness of 60.7 nm measured. The retention behavior of the dodecanethiol MPN stationary phase was studied using four different classes of compounds (alkanes, alcohols, aromatics and ketones) and their retention orders were compared to a commercially available column (AT-1, 100 nm phase thickness). The separation of an eight-component mixture was performed using both isothermal and temperature programming separation methods with the novel dodecanethiol MPN phase. The isothermal separation was then objectively compared to the commercial AT-1 stationary phase column using the same experimental parameters. The commercial column had an efficiency, N, of 6200 (k{prime} = 0.33) while the dodecanethiol MPN stationary phase had an efficiency, N, of 5700 (k{prime} = 0.21) for the same analyte, octane. The reduced plate height, h, for this same analyte was found to be less than 1 at the optimum linear flow velocity. Based upon the efficiencies and reduced plate height studies as a function of linear flow velocity, we conclude that the MPN stationary phase operated at nearly the optimum possible performance level. The robustness of the MPN phase is also discussed with consistent performance observed over several months. Overall, the use of monolayer protected gold nanoparticles as gas chromatographic stationary phase materials appears promising.

  9. Properties of the gold-sulphur interface: from self-assembled monolayers to clusters

    NASA Astrophysics Data System (ADS)

    Bürgi, Thomas

    2015-09-01

    The gold-sulphur interface of self-assembled monolayers (SAMs) was extensively studied some time ago. More recently tremendous progress has been made in the preparation and characterization of thiolate-protected gold clusters. In this feature article we address different properties of the two systems such as their structure, the mobility of the thiolates on the surface and other dynamical aspects, the chirality of the structures and characteristics related to it and their vibrational properties. SAMs and clusters are in the focus of different communities that typically use different experimental approaches to study the respective systems. However, it seems that the nature of the Au-S interfaces in the two cases is quite similar. Recent single crystal X-ray structures of thiolate-protected gold clusters reveal staple motifs characterized by gold ad-atoms sandwiched between two sulphur atoms. This finding contradicts older work on SAMs. However, newer studies on SAMs also reveal ad-atoms. Whether this finding can be generalized remains to be shown. In any case, more and more studies highlight the dynamic nature of the Au-S interface, both on flat surfaces and in clusters. At temperatures slightly above ambient thiolates migrate on the gold surface and on clusters. Evidence for desorption of thiolates at room temperature, at least under certain conditions, has been demonstrated for both systems. The adsorbed thiolate can lead to chirality at different lengths scales, which has been shown both on surfaces and for clusters. Chirality emerges from the organization of the thiolates as well as locally at the molecular level. Chirality can also be transferred from a chiral surface to an adsorbate, as evidenced by vibrational spectroscopy.

  10. Properties of the gold-sulphur interface: from self-assembled monolayers to clusters.

    PubMed

    Bürgi, Thomas

    2015-10-14

    The gold-sulphur interface of self-assembled monolayers (SAMs) was extensively studied some time ago. More recently tremendous progress has been made in the preparation and characterization of thiolate-protected gold clusters. In this feature article we address different properties of the two systems such as their structure, the mobility of the thiolates on the surface and other dynamical aspects, the chirality of the structures and characteristics related to it and their vibrational properties. SAMs and clusters are in the focus of different communities that typically use different experimental approaches to study the respective systems. However, it seems that the nature of the Au-S interfaces in the two cases is quite similar. Recent single crystal X-ray structures of thiolate-protected gold clusters reveal staple motifs characterized by gold ad-atoms sandwiched between two sulphur atoms. This finding contradicts older work on SAMs. However, newer studies on SAMs also reveal ad-atoms. Whether this finding can be generalized remains to be shown. In any case, more and more studies highlight the dynamic nature of the Au-S interface, both on flat surfaces and in clusters. At temperatures slightly above ambient thiolates migrate on the gold surface and on clusters. Evidence for desorption of thiolates at room temperature, at least under certain conditions, has been demonstrated for both systems. The adsorbed thiolate can lead to chirality at different lengths scales, which has been shown both on surfaces and for clusters. Chirality emerges from the organization of the thiolates as well as locally at the molecular level. Chirality can also be transferred from a chiral surface to an adsorbate, as evidenced by vibrational spectroscopy.

  11. The development of volcanic hosted massive sulfide and barite gold orebodies on Wetar Island, Indonesia

    NASA Astrophysics Data System (ADS)

    Scotney, Philip M.; Roberts, Stephen; Herrington, Richard J.; Boyce, Adrian J.; Burgess, Ray

    2005-07-01

    Wetar Island is composed of Neogene volcanic rocks and minor oceanic sediments and forms part of the Inner Banda Arc. The island preserves precious metal-rich volcanogenic massive sulfide and barite deposits, which produced approximately 17 metric tonnes of gold. The polymetallic massive sulfides are dominantly pyrite (locally arsenian), with minor chalcopyrite which are cut by late fractures infilled with covellite, chalcocite, tennantite tetrahedrite, enargite, bornite and Fe-poor sphalerite. Barite orebodies are developed on the flanks and locally overly the massive sulfides. These orebodies comprise friable barite and minor sulfides, cemented by a series of complex arsenates, oxides, hydroxides and sulfate, with gold present as <10 μm free grains. Linear and pipe-like structures comprising barite and iron-oxides beneath the barite deposits are interpreted as feeder structures to the barite mineralization. Hydrothermal alteration around the orebodies is zoned and dominated by illite kaolinite smectite assemblages; however, local alunite and pyrophyllite are indicative of late acidic, oxidizing hydrothermal fluids proximal to mineralization. Altered footwall volcanic rocks give an illite K Ar age of 4.7±0.16 Ma and a 40Ar/39Ar age of 4.93±0.21 Ma. Fluid inclusion data suggest that hydrothermal fluid temperatures were around 250 270°C, showed no evidence of boiling, with a mean salinity of 3.2 wt% equivalent NaCl. The δ34S composition of sulfides ranges between +3.3‰ and +11.7‰ and suggests a significant contribution of sulfur from the underlying volcanic edifice. The δ34S barite data vary between +22.4‰ and +31.0‰, close to Miocene seawater sulfate. Whole rock 87Sr/86Sr analyses of unaltered volcanic rocks (0.70748 0.71106) reflect contributions from subducted continental material in their source region. The 87Sr/86Sr barite data (0.7076 0.7088) indicate a dominant Miocene seawater component to the hydrothermal system. The mineral deposits formed on

  12. Shape and size selective separation of gold nanoclusters by competitive complexation with octadecylamine monolayers at the air-water interface.

    PubMed

    Pasricha, Renu; Singh, Amit; Sastry, Murali

    2009-05-01

    The paper presents a time-dependent study of shape-dependent preferential complexation of gold nanoparticles to the octadecyl amine (ODA) monolayers at the air-water interface. Room temperature reduction of chloroaurate ions using lemon grass leaf extract yields a mixture of spherical and triangular nanoparticles, which were used for this study. These nanoparticles have a net negative charge on their surface due to the presence of biomolecules from plant extract and thus a strong attractive electrostatic interaction with the positively charged ODA monolayers drives the complexation process. The extent of preferential complexation of the gold nanoparticles to the ODA monolayers is a function of the charge on the particles and the relative mobility of the nanoclusters in the medium. The complexation process has been followed in real time by a host of techniques such as surface pressure-area (pi-A) isotherms, UV-vis-NIR spectroscopy and Brewster angle microscopy. The charge and mobility of the gold nanoparticles was confirmed by measurement of their electrophoretic mobility. Langmuir-Blodgett films of the nanogold-ODA composites have been characterized by UV-vis-NIR spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. These measurements clearly indicate that the cluster mobility and complexation increase with decreasing cluster size. In the competitive complexation process of large and small gold particles, it was observed that some bigger gold particles were also incorporated into the amine matrix even though the cluster mobility is higher for smaller gold particles.

  13. Self-assembly of hydrophobic gold nanoparticles and adhesion property of their assembled monolayer films.

    PubMed

    Lin, Guanhua; Lu, Wensheng

    2017-09-01

    Monodispersed gold nanoparticles had been successfully fabricated and they could form highly ordered two-dimensional (2D) film beyond a critical surface pressure by using Langmuir-Blodgett (LB) technology. To study adhesion property of these AuNPs films, atomic force microscope (AFM) has been used in measuring the interaction force between AFM tip and the gold nanoparticle films deposited on the silicon wafer, and defined the force at the breaking point as the adhesive force between nanoparticle films and the substrate. It has been found that the adhesive force was an exponential function of the packing density of the AuNPs in the film. When the packing density is near to the saturated value, the adhesive force of gold nanoparticle monolayer could reach 675nN which is approximately 30-fold of that for the nanoparticles on the substrate at low surface pressure (5mN/m). It shows that the adhesive force of assembled nanoparticle films is quantitative sensitive with their packing density and our method could be used to detect defact of assembled nanoparticle films, which presents great potential application. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. m-Terphenyl thiols: rigid and bulky molecules for the formation of bioactive self-assembled monolayers on gold.

    PubMed

    Dickie, Diane A; Chan, Andy Y C; Jalali, Hanifa; Jenkins, Hilary A; Yu, Hua-Zhong; Clyburne, Jason A C

    2004-11-07

    The m-terphenyl 4-mercaptomethyl-2,6-diphenylbenzoic acid (3), was prepared and shown to form omega-carboxyl terminated self-assembled monolayers (SAMs) on gold with high surface pKa(10.1 +/- 0.2) and low density favourable for the binding of biological macromolecules.

  15. Gold Electrodes Modified with Self-Assembled Monolayers for Measuring L-Ascorbic Acid: An Undergraduate Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Ito, Takashi; Perera, D. M. Neluni T.; Nagasaka, Shinobu

    2008-01-01

    This article describes an undergraduate electrochemistry laboratory experiment in which the students measure the L-ascorbic acid content of a real sample. Gold electrodes modified with self-assembled monolayers (SAMs) of thioctic acid and cysteamine are prepared to study the effects of surface modification on the electrode reaction of L-ascorbic…

  16. Gold Electrodes Modified with Self-Assembled Monolayers for Measuring L-Ascorbic Acid: An Undergraduate Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Ito, Takashi; Perera, D. M. Neluni T.; Nagasaka, Shinobu

    2008-01-01

    This article describes an undergraduate electrochemistry laboratory experiment in which the students measure the L-ascorbic acid content of a real sample. Gold electrodes modified with self-assembled monolayers (SAMs) of thioctic acid and cysteamine are prepared to study the effects of surface modification on the electrode reaction of L-ascorbic…

  17. The Suzdal gold-sulfide deposit in the black shale of Eastern Kazakhstan

    NASA Astrophysics Data System (ADS)

    Kovalev, K. R.; Kalinin, Yu. A.; Polynov, V. I.; Kydyrbekov, E. L.; Borisenko, A. S.; Naumov, E. A.; Netesov, M. I.; Klimenko, A. G.; Kolesnikova, M. K.

    2012-07-01

    The Suzdal gold-sulfide deposit is situated in the northwestern part of the West Kalba gold belt in Eastern Kazakhstan and belongs to the genetic type of stringer-disseminated mineralized zones hosted in the Lower Carboniferous black-shale volcanic-carbonate-terrigenous sequences. Mineralization is controlled by the NE-trending Suzdal Fault. In the north, the deposit borders on the Early Triassic Semeytau volcanic-plutonic structure. Mineralization is superposed on the Late Paleozoic complex of metadolerite and quartz porphyry dikes. Ore deposition was a long-term process comprising four stages. The first stage was related to deposition of slightly auriferous pyrite syngenetic to host rocks. The second stage is characterized by formation of the first productive (with invisible gold) fine-acicular arsenopyrite mineralization accompanied by sericitization and localized in the tectonic zone. The stockwork ore with pocket-disseminated base-metal mineralization and free microscopic gold of the third stage is hosted in silicified rocks. The ore formation has been completed by quartz-stibnite veins superposed on all preceding types of mineralization. According to Ar/Ar dating of sericite, a chronological gap between the second and the third stages is estimated at 33 Ma. The deposit is an example of polygenetic and multistage mineralization.

  18. Highly sensitive hydrogen sulfide (H2 S) gas sensors from viral-templated nanocrystalline gold nanowires

    NASA Astrophysics Data System (ADS)

    Moon, Chung Hee; Zhang, Miluo; Myung, Nosang V.; Haberer, Elaine D.

    2014-04-01

    A facile, site-specific viral-templated assembly method was used to fabricate sensitive hydrogen sulfide (H2S) gas sensors at room temperature. A gold-binding M13 bacteriophage served to organize gold nanoparticles into linear arrays which were used as seeds for subsequent nanowire formation through electroless deposition. Nanowire widths and densities within the sensors were modified by electroless deposition time and phage concentration, respectively, to tune device resistance. Chemiresistive H2S gas sensors with superior room temperature sensing performance were produced with sensitivity of 654%/ppmv, theoretical lowest detection limit of 2 ppbv, and 70% recovery within 9 min for 0.025 ppmv. The role of the viral template and associated gold-binding peptide was elucidated by removing organics using a short O2 plasma treatment followed by an ethanol dip. The template and gold-binding peptide were crucial to electrical and sensor performance. Without surface organics, the resistance fell by several orders of magnitude, the sensitivity dropped by more than a factor of 100 to 6%/ppmv, the lower limit of detection increased, and no recovery was detected with dry air flow. Viral templates provide a novel, alternative fabrication route for highly sensitive, nanostructured H2S gas sensors.

  19. Infrared spectroelectrochemical characterization of ferrocene-terminated alkanethiolate monolayers at gold

    SciTech Connect

    Popenoe, D.D.; Deinhammer, R.S.; Porter, M.D. Iowa State Univ., Ames, IA )

    1992-10-01

    Cyclic voltammetry and in situ infrared reflection-absorption spectroscopy with electrochemical modulation were applied to the study of monolayers self-assembled from 11-mercaptoundecyl ferrocene-carboxylate (FcCOOC[sub 11]SH) at gold. Voltammetry was used to assess both the reactivity and stability of the surface film in various aqueous electrolytes. The results of these studies indicated that the ferrocenyl monolayers are relatively unstable at pH > 2, except when perchlorate is the dominant anion present. A large change in double-layer capacitance observed upon oxidation of the ferrocenyl end group was attributed to the creation of cationic sites in the diffuse layer. Compositional and structural correlations between the monolayer and the redox chemistry of the ferrocenyl end group were probed using the in situ spectroscopic technique. The features observed in the differential spectra of the oxidized form of the film were ascribed to changes in the bond strengths of the adsorbate as a result of generation of a ferricinium ion. No detectable changes in orientation of the polymethylene chains as a function of applied voltage were observed. The spectral data also suggest that the redox chemistry leads to a reorientation of the water molecules in the region near the ferrocenyl end group. Vibrational mode assignments for FcCOOC[sub 11]SH, based on studies of several analogs with different alkoxy groups, are presented along with infrared spectra and band assignments for several isotopically labeled ferrocenyl esters (i.e., ethyl ferrocenecarboxylate, ethyl-d[sub 5] ferrocenecarboxylate, and 2-(dimethylamino)ethyl ferrocenecarboxylate). 55 refs., 7 figs., 2 tabs.

  20. Understanding the Phase Diagram of Self-Assembled Monolayers of Alkanethiolates on Gold

    PubMed Central

    2016-01-01

    Alkanethiolate monolayers on gold are important both for applications in nanoscience as well as fundamental studies of adsorption and self-assembly at metal surfaces. While considerable experimental effort has been put into understanding the phase diagram of these systems, theoretical work based on density functional theory (DFT) has long been hampered by the inability of conventional exchange-correlation functionals to describe dispersive interactions. In this work, we combine dispersion-corrected DFT calculations using the new vdW-DF-CX functional with the ab initio thermodynamics method to study the stability of dense standing-up and low-coverage lying-down phases on Au(111). We demonstrate that the lying-down phase has a thermodynamic region of stability starting from thiolates with alkyl chains consisting of n ≈ 3 methylene units. This phase emerges as a consequence of a competition between dispersive chain–chain and chain–substrate interactions, where the strength of the latter varies more strongly with n. A phase diagram is derived under ultrahigh-vacuum conditions, detailing the phase transition temperatures of the system as a function of the chain length. The present work illustrates that accurate ab initio modeling of dispersive interactions is both feasible and essential for describing self-assembled monolayers. PMID:27313813

  1. Fabrication of a Polyaniline Ultramicroelectrode via a Self Assembled Monolayer Modified Gold Electrode

    PubMed Central

    Bolat, Gulcin; Kuralay, Filiz; Eroglu, Gunes; Abaci, Serdar

    2013-01-01

    Herein, we report a simple and inexpensive way for the fabrication of an ultramicroelectrode and present its characterization by electrochemical techniques. The fabrication of polyaniline UME involves only two steps: modification of a gold (Au) electrode by self assembled monolayers (SAM) and then electrodeposition of polyaniline film on this thiol-coated Au electrode by using cyclic voltammetry and constant potential electrolysis methods. Two types of self-assembled monolayers (4-mercapto-1-butanol, MB, and 11-mercaptoundecanoic acid, MUA) were used, respectively, to see the effect of chain length on microelectrode formation. Microelectrode fabrication and utility of the surface was investigated by cyclic voltammetric measurements in a redox probe. The thus prepared polyaniline microelectrode was then used for DNA immobilization. Discrimination between double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) was obtained with enhanced electrochemical signals compared to a polyaniline-coated Au electrode. Different modifications on the electrode surfaces were examined using scanning electron microscopy (SEM). PMID:23797740

  2. Mechanism of lipid bilayer penetration by mixed monolayer-protected gold nanoparticles

    NASA Astrophysics Data System (ADS)

    van Lehn, Reid; Atukorale, Prabhani; Carney, Randy; Stellacci, Francesco; Irvine, Darrell; Alexander-Katz, Alfredo

    2013-03-01

    Recently, gold nanoparticles (AuNPs) protected by a binary mixture of hydrophobic and hydrophilic alkanethiol ligands were observed to spontaneously penetrate cellular membranes via a non-specific mechanism. Penetration was observed even at low temperatures and in the presence of endocytotic inhibitors, implying that AuNPs crossed the membrane by a non-endocytotic process. Furthermore, penetration was shown to depend on the amphiphilicity and nanoscale morphology of the protecting monolayer. In this work, we use a variety of simulation techniques to elucidate the mechanism of lipid bilayer penetration and compare our results to experiments with lipid vesicles. We show that these AuNPs can stably embed within lipid bilayers by ``snorkeling'' charges out of the bilayer core; the stability of such a state is a function of particle size, the composition of the protecting monolayer, and other environmental conditions. We use detailed simulations to analyze structural changes in the surrounding lipids and show that the energy barrier for embedding is considerably reduced in the presence of bilayer defects. We expect that these results will enable the design of novel drug delivery carriers and biosensors.

  3. Formation of self-assembled monolayer of curcuminoid molecules on gold surfaces

    NASA Astrophysics Data System (ADS)

    Berlanga, Isadora; Etcheverry-Berríos, Álvaro; Mella, Andy; Jullian, Domingo; Gómez, Victoria Alejandra; Aliaga-Alcalde, Núria; Fuenzalida, Victor; Flores, Marcos; Soler, Monica

    2017-01-01

    We investigated the formation of self-assembled monolayers of two thiophene curcuminoid molecules, 2-thphCCM (1) and 3-thphCCM (2), on polycrystalline gold substrates prepared by immersion of the surfaces in a solution of the molecules during 24 h. The functionalized surfaces were studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Despite the fact that both molecules have the same composition and almost the same structure, these molecules exhibit different behavior on the gold surface, which can be explained by the different positions of the sulfur atoms in the terminal aromatic rings. In the case of molecule 1, the complete formation of a SAM can be observed after 24 h of immersion. In the case of molecule 2, the transition from flat-lying to upright configuration on the surface is still in process after 24 h of immersion. This is attributed to the fact that molecule 2 have the sulfur atoms more exposed than molecule 1.

  4. Self-Assembled Monolayers of Perfluoroanthracenylaminoalkane Thiolates on Gold as Potential Electron Injection Layers.

    PubMed

    Zhang, Zibin; Wächter, Tobias; Kind, Martin; Schuster, Swen; Bats, Jan W; Nefedov, Alexei; Zharnikov, Michael; Terfort, Andreas

    2016-03-23

    As a material with relatively small band gap and low lying valence orbitals, perfluoroanthracene (PFA) is of interest for the modification of electrode surfaces, for example, as charge injection layers for n-type organic semiconductors. To covalently attach PFA in the form of self-assembled monolayers (SAMs), we developed a synthesis of derivatives with a sulfur termination, linked to the 2-position of the PFA moieties by an -NH- group and a short alkane chain with two and three methylene groups, respectively. Spectroscopic characterization of the SAMs reveals that the molecules adopt an almost upright orientation on the gold surface, with the packing density mostly determined by the steric demands of the PFA units. The number of the methylene groups in the -NH-alkyl linker has only a minor impact on the SAM structure because of the nonsymmetric attachment of the PFA units, which permits the compensation of the orientational constraints imposed by the bending potential. The investigated SAMs alter the work function of gold by +(0.59-0.64) eV, suggesting comparably strong depolarization effects, affecting the extent of the work function modification.

  5. Comparative study of decyl thiocyanate and decanethiol self-assembled monolayers on gold substrates

    NASA Astrophysics Data System (ADS)

    Dreesen, L.; Volcke, C.; Sartenaer, Y.; Peremans, A.; Thiry, P. A.; Humbert, C.; Grugier, J.; Marchand-Brynaert, J.

    2006-09-01

    In a recent paper Ciszek et al. [J.W. Ciszek, M.P. Stewart, J.M. Tour, J. Am. Chem. Soc. 126 (2004) 13172] showed that organic thiocyanates may be an interesting alternative to the use of thiols for thiolate assemblies. We use scanning tunnelling microscopy (STM), infrared reflection absorption and sum-frequency generation spectroscopies (IRRAS and SFG) in order to study the adsorption properties of decyl thiocyanates (DTCN) and compare them to the decanethiol (DT) ones. Firstly, IRRAS measurements show that DTCN molecules form self-assembled monolayers (SAMs) on gold via a thiolate link with the metallic substrate. Secondly, the DTCN SAM on gold is less ordered than the DT one as highlighted by SFG spectroscopy. Indeed, the intensities of the methyl vibration modes vanish while the methylene ones increase when DTCN molecules are adsorbed on the substrate instead of DT. We explain the differences in SAMs quality on the basis of STM measurements which reveal differences in molecular order and packing.

  6. In situ growth of monolayer porous gold nanoparticles film as high-performance SERS substrates

    NASA Astrophysics Data System (ADS)

    Song, Chunyuan; Wei, Yuhan; Da, Bingtao; Zhang, Haiting; Cong, Xing; Yang, Boyue; Yang, Yanjun; Wang, Lianhui

    2016-07-01

    Surface-enhanced Raman scattering (SERS) has recently received considerable attention as an ultrasensitive analytic technique. However, its wide application is limited by lack of excellent SERS-active substrates. In this work a SERS substrate with arrayed monolayer films of porous gold nanoparticles is prepared on a solid substrate by a facile, in situ and one-step growth approach. Specifically, the solid substrate was coated with a layer of dense positive charges first by layer-by-layer assembly, followed by patterned a PDMS film with arrayed wells on the substrate. Then the growth solution including chlorauric acid, cetyltrimethylammonium chloride, and ascorbic acid in a certain proportion was transferred into the wells for in situ and one-step growth of porous gold nanoparticles on the substrate. The growth time, feed ratio of the reagents, and repeat times of the in situ growth were studied systematically to obtain optimal parameters for preparing an optimal SERS substrate. The as-prepared optimal SERS substrate not only has good SERS performance with the enhancement factor up to ∼1.10 × 106, but also shows good uniformity and stability. The SERS substrate was further utilized to be ultrasensitive SERS-based chemical sensors for ppb-level detection of highly toxic dyfonate. The preliminary result indicates that the as-prepared SERS substrate has good SERS performance and shows a number of great potential applications in SERS-based sensors.

  7. Gold in the volcanogenic mercury-rich sulfide deposit Långsele, Skellefte ore district, northern Sweden

    NASA Astrophysics Data System (ADS)

    Nysten, Per

    1986-04-01

    The mineralogy of gold from a volcanogenic sulfide deposit in northern Sweden (Långsele) was studied. The enrichment of gold and silver in massive ore occurs associated with an intrusive metadolerite vein which can be traced across the ore. The emplacement of this vein mobilized the precious metals together with galena and Pb-Sb sulfosalts into fractures and low pressure zones. A high mercury content at L»ngsele (average 250 ppm) has influenced the gold mineralogy. Thus, gold occurs as Au-Ag amalgam, native gold and rarely as aurostibite (AuSb2). The results of microprobe analyses of amalgam cluster around Au0.45Ag0.45Hg0.10. The composition of ternary amalgam is discussed in connection with the synthetic Au-Ag-Hg system. Furthermore, native gold was found myrmekitically integrown with stibnite which has been interpreted as a breakdown product of aurostibite at low temperature.

  8. Free-standing gold-nanoparticle monolayer film fabricated by protein self-assembly of α-synuclein.

    PubMed

    Lee, Junghee; Bhak, Ghibom; Lee, Ji-Hye; Park, Woohyun; Lee, Minwoo; Lee, Daekyun; Jeon, Noo Li; Jeong, Dae H; Char, Kookheon; Paik, Seung R

    2015-04-07

    Free-standing nanoparticle films are of great importance for developing future nano-electronic devices. We introduce a protein-based fabrication strategy of free-standing nanoparticle monolayer films. α-Synuclein, an amyloidogenic protein, was utilized to yield a tightly packed gold-nanoparticle monolayer film interconnected by protein β-sheet interactions. Owing to the stable protein-protein interaction, the film was successfully expanded to a 4-inch diameter sheet, which has not been achieved with any other free-standing nanoparticle monolayers. The film was flexible in solution, so it formed a conformal contact, surrounding even microspheres. Additionally, the monolayer film was readily patterned at micrometer-scale and thus unprecedented double-component nanoparticle films were fabricated. Therefore, the free-floating gold-nanoparticle monolayer sheets with these properties could make the film useful for the development of bio-integrated nano-devices and high-performance sensors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Positioning of CNTs over the gold substrate via self-assembled monolayer functionalization using dip-pen nanowriting

    NASA Astrophysics Data System (ADS)

    Agarwal, Pankaj B.; Sahu, Smriti; Kapse, Pooja; Gupta, Sanjeev K.

    2012-10-01

    The most important aspect of fabrication of Carbon Nanotubes (CNTs) based devices/sensors is the selective and controlled positioning of CNTs, which is a challenging issue for the researchers now a days. Here, we have presented a simple and efficient methodology for positioning of CNTs using 16-MHA self-assembled monolayers (SAMs), written over the gold substrate using Dip-pen Nanowriting (DPN). The analysis of the obtained AFM images clearly shows significant height increment of nanopatterns, which corresponds to the attachment of carbonaceous material over the written nanopatterns. Carbon Nanotubes (CNTs), Dip-pen Nanowriting (DPN), 16-MHA, 1-ODT and Self-assembled Monolayer (SAM).

  10. Electrochemical sensor for immunoassay of carcinoembryonic antigen based on thionine monolayer modified gold electrode.

    PubMed

    Dai, Zong; Chen, Jin; Yan, Feng; Ju, Huangxian

    2005-01-01

    A sensor based on thionine monolayer modified gold electrode for determination of carcinoembryonic antigen (CEA) in human serum is proposed. The sensor is prepared by covalently binding thionine to a cysteamine self-assembled monolayer with p-phthaloyl chloride as a linkage, which gives a surface coverage of 8.97+/-3.28 x 10(-12)mol/cm(2) for thionine. The electrochemistry of the immobilized thionine displays a surface-controlled electrode process with an average electron transfer rate constant of 1.47+/-0.84 s(-1). Based on an electrochemical enzyme-linked immunoassay by using the immobilized thionine as an electron transfer mediator between the electrode and the horseradish peroxidase (HRP) labeled anti-CEA antibody, a calibration curve with two linear ranges from 0.6 to 17 and 17 to 200 ng/mL and a detection limit of 0.2 ng/mL for CEA determination is obtained in pH 4.2 PBS containing 2.0 mmol/L H(2)O(2) and 0.5 mol/L NaCl. The sensor shows a good accuracy. The precision and reproducibility are acceptable with the intra-assay CV of 4.9% and 5.9% at 10 and 100 ng/mL CEA concentrations, respectively, and the inter-assays CV of 7.8% at 100 ng/mL CEA. The response of thionine modified electrode shows only 1.6% decrease after 100 replicate measurements and the storage stability is acceptable in a pH 7.0 PBS at 4 degrees C for 1 week. The method avoids the addition of electron transfer mediator to the solution, thus is much simpler. The proposed method would be valuable for the diagnosis and monitoring of carcinoma and its metastasis.

  11. Gold enrichment and the Bi-Au association in pyrrhotite-rich massive sulfide deposits, Escanaba trough, Southern Gorda Ridge

    USGS Publications Warehouse

    Tormanen, T.O.; Koski, R.A.

    2005-01-01

    High gold contents (to 10.1 ppm, avg 1.4 ppm, n = 34) occur in pyrrhotite-rich massive sulfide samples from the sediment-covered floor of the Escanaba trough, the slow-spreading, southernmost segment of Gorda Ridge. These concentrations reflect the presence of primary gold, formed during high-temperature hydrothermal activity in mounds and chimneys, and secondary gold deposited during sea-floor weathering of massive sulfide. Primary gold occurs as fine-grained (2 ??m) secondary gold grains have a porous, flaky morphology and occur in samples in which pyrrhotite is oxidized and replaced by Fe oxyhydroxides, Fe sulfate, and sulfur. Mounds and chimneys dominated by pyrrhotite and containing lesser amounts of isocubanite, chalcopyrite, and Fe-rich sphalerite were formed by high-temperature (estimated range 325??-275??C), reduced, low-sulfur vent fluids. The mineral and fluid compositions during this main stage of hydrothermal venting reflect subsurface interaction between circulating hydrothermal fluids and turbiditic sediment containing as much as 1.1 percent organic carbon. As the deposition of pyrrhotite, Cu-Fe sulfides, and sphalerite waned, a volumetrically minor suite of sulfarsenide, arsenide, Bi, and Au minerals was deposited from highly reduced, late main-stage fluids diffusing through mounds and chimneys. The low solubility of Au as a bisulfide complex and the absence of fluid mixing during this stage of hydrothermal activity apparently inhibited the precipitation of gold directly from solution. Instead, gold precipitation is thought to be linked to elevated concentrations of Bi in the late main-stage fluids. The textural relationships of Au and Bi minerals in pyrrhotite-rich samples, low melting point of native bismuth (271.4??C), and recent experimental results on Au and Bi in hydrothermal fluids contribute to the hypothesis that gold was effectively scavenged from the Escanaba trough vent fluids by coexisting droplets of liquid bismuth. Additional phase

  12. Excitons in a mirror: Formation of “optical bilayers” using MoS{sub 2} monolayers on gold substrates

    SciTech Connect

    Mertens, Jan; Baumberg, Jeremy J.; Shi, Yumeng; Yang, Hui Ying; Molina-Sánchez, Alejandro; Wirtz, Ludger

    2014-05-12

    We report coupling of excitons in monolayers of molybdenum disulphide to their mirror image in an underlying gold substrate. Excitons at the direct band gap are little affected by the substrate whereas strongly bound C-excitons associated with a van-Hove singularity change drastically. On quartz substrates only one C-exciton is visible (in the blue) but on gold substrates a strong red-shifted extra resonance in the green is seen. Exciton coupling to its image leads to formation of a “mirror biexciton” with enhanced binding energy. Estimates of this energy shift in an emitter-gold system match experiments well. The absorption spectrum of MoS{sub 2} on gold thus resembles a bilayer of MoS{sub 2} which has been created by optical coupling. Additional top-mirrors produce an “optical bulk.”.

  13. Simultaneous optimization of monolayer formation factors, including temperature, to significantly improve nucleic acid hybridization efficiency on gold substrates.

    PubMed

    Pris, Andrew D; Ostrowski, Sara G; Garaas, Sarah D

    2010-04-20

    Past literature investigations have optimized various single factors used in the formation of thiolated, single stranded DNA (ss-DNA) monolayers on gold. In this study a more comprehensive approach is taken, where a design of experiment (DOE) is employed to simultaneously optimize all of the factors involved in construction of the capture monolayer used in a fluorescence-based hybridization assay. Statistical analysis of the fluorescent intensities resulting from the DOE provides empirical evidence for the importance and the optimal levels of traditional and novel factors included in this investigation. We report on the statistical importance of a novel factor, temperature of the system during monolayer formation of the capture molecule and lateral spacer molecule, and how proper usage of this temperature factor increased the hybridization signal 50%. An initial theory of how the physical factor of heat is mechanistically supplementing the function of the lateral spacer molecule is provided.

  14. EQCM Measurements: Redox-Induced Changes in Solvent and Ion Content in Anchored Redox Monolayers of Organosulfur Compounds and Their Electrocatalysis on Gold Electrodes

    DTIC Science & Technology

    1990-08-01

    EQCM Mwasurements: Redox-Induced Changes in Solvent and M0 Content in Anchored Redox Monolayers of Organosulfur CD Compounds and their Electrocatalysis ...REDOX-INDUCED CHANGES IN SOLVENT AND ION CONTENT IN ANCHORED REDOX MONOLAYERS OF ORGANOSULFUR COMPOUNDS AND THEIR ELECTROCATALYSIS ON GOLD...Measurements: Redox-Induced Changes in Solvent and Ion Content in Anchored Redox Monolayers of Organosulfur Compounds and their Electrocatalysis on

  15. Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof

    DOEpatents

    Adzic, Radoslav; Mo, Yibo; Vukmirovic, Miomir; Zhang, Junliang

    2010-12-21

    The invention relates to platinum-coated particles useful as fuel cell electrocatalysts. The particles are composed of a noble metal or metal alloy core at least partially encapsulated by an atomically thin surface layer of platinum atoms. The invention particularly relates to such particles having a palladium, palladium alloy, gold alloy, or rhenium alloy core encapsulated by an atomic monolayer of platinum. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  16. Orientated binding of photosynthetic reaction centers on gold using Ni-NTA self-assembled monolayers.

    PubMed

    Trammell, Scott A; Wang, Leyu; Zullo, Joseph M; Shashidhar, Ranganathan; Lebedev, Nikolai

    2004-07-15

    Coupling of photosynthetic reaction centers (RCs) with inorganic surfaces is attractive for the identification of the mechanisms of interprotein electron transfer (ET) and for possible applications in construction of photo- and chemosensors. Here we show that RCs from Rhodobacter sphaeroides can be immobilized on gold surfaces with the RC primary donor looking towards the substrate by using a genetically engineered poly-histidine tag (His(7)) at the C-terminal end of the M-subunit and a Ni-NTA terminated self-assembled monolayer (SAM). In the presence of an electron acceptor, ubiquinone-10, illumination of this RC electrode generates a cathodic photocurrent. The action spectrum of the photocurrent coincides with the absorption spectrum of RC and the photocurrent decreases in response to the herbicide, atrazine, confirming that the RC is the primary source of the photoresponse. Disruption of the Ni-NTA-RC bond by imidazole leads to about 80% reduction of the photocurrent indicating that most of the photoactive protein is specifically bound to the electrode through the linker.

  17. One-pot reaction for the preparation of biofunctionalized self-assembled monolayers on gold surfaces

    NASA Astrophysics Data System (ADS)

    Raigoza, Annette F.; Fies, Whitney; Lim, Amber; Onyirioha, Kristeen; Webb, Lauren J.

    2017-02-01

    The Huisgen cycloaddition reaction ("click" chemistry) has been used extensively to functionalize surfaces with macromolecules in a straightforward manner. We have previously developed a procedure using the copper(I)-catalyzed click reaction to tether synthetic α-helical peptides carrying two alkyne groups to a well-ordered azide-terminated alkanethiol self-assembled monolayer (SAM) on a Au(111) surface. While convenient, click-based strategies potentially pose significant problems from reagents, solvents, and reaction temperatures that may irreversibly damage some molecules or substrates. Tuning click chemistry conditions would allow individual optimization of reaction conditions for a wide variety of biomolecules and substrate materials. Here, we explore the utility of simultaneous SAM formation and peptide-attachment chemistry in a one-pot reaction. We demonstrate that a formerly multistep reaction can be successfully carried out concurrently by mixing azide-terminated alkanethiols, CuCl, and a propargylglycine-containing peptide over a bare gold surface in ethanol and reacting at 70 °C. X-ray photoelectron spectroscopy (XPS), surface infrared spectroscopy, surface circular dichroic (CD) spectroscopy, and scanning tunneling microscopy (STM) were used to determine that this one-pot reaction strategy resulted in a high density of surface-bound α-helices without aggregation. This work demonstrates the simplicity and versatility of a SAM-plus-click chemistry strategy for functionalizing Au surfaces with structured biomolecules.

  18. Copper(II) nanosensor based on a gold cysteamine self-assembled monolayer functionalized with salicylaldehyde.

    PubMed

    Shervedani, Reza Karimi; Mozaffari, Seyed Ahmad

    2006-07-15

    Fabrication and electrochemical characterization of a novel nanosensor for determination of Cu2+ in subnanomolar concentrations is described. The sensor is based on gold cysteamine self-assembled monolayer functionalized with salicylaldehyde by means of Schiff's base formation. Cyclic voltammetry, Electrochemical impedance spectroscopy (EIS), and electrochemical quartz crystal microbalance were used to probe the fabrication and characterization of the modified electrode. The sensor was used for quantitative determination of Cu2+ by the EIS in the presence of parabenzoquinone in comparison with stripping Osteryoung square wave voltammetry (OSWV). The attractive ability of the sensor to efficiently preconcentrate trace amounts of Cu2+ allowed a simple and reproducible method for copper determination. A wide range linear calibration curve was observed, 5.0 x 10(-11)-5.0 x 10(-6) and 5.0 x 10(-10)-5.0 x 10(-6) M Cu2+, by using the EIS and OSWV, respectively. Moreover, the sensor presented excellent stability with lower than 10% change in the response, as tested for more than three months daily experiments, and a high repeatability with relative standard deviations of 6.1 and 4.6% obtained for a series of eight successive measurements in 5.0 x 10(-7) M Cu2+ solution, by the EIS and OSWV, respectively.

  19. A detrital model for the origin of gold and sulfides in the Witwatersrand basin based on Re-Os isotopes

    NASA Astrophysics Data System (ADS)

    Kirk, Jason; Ruiz, Joaquin; Chesley, John; Titley, Spencer; Walshe, John

    2001-07-01

    The Re-Os systematics of gold and sulfides from the Witwatersrand basin were utilized to determine whether the gold is detrital or was introduced by hydrothermal solutions from outside the basin. Gold from a gravity concentrate from the Western Areas Gold Plant and gold from the Vaal Reef have very high Os concentrations of approximately 73 to 10000 ppb and 3 to 32 ppb Re, resulting in 187Re/ 188Os ratios of 0.010 to 0.185. The gold has subchondritic 187Os/ 188Os ratios between 0.1056 to 0.1099 and an average value of 0.1067. Rhenium depletion ages (T RD) range from 3.5 Ga to 2.9 Ga, with a median age of 3.3 Ga. Pyrite from the Vaal Reef have Os concentrations ranging from 0.26 to 0.68 ppb, Re concentrations of 1.7 to 2.8 ppb and 187Re/ 188Os ratios of approximately 14 to 87. The pyrite samples have measured 187Os/ 188Os ratios of 0.84 to 4.7 and define an isochron with an age of 2.99 ± 0.11 Ga (MSWD = 0.77). The Os isotopic data from the direct measurement of gold preclude introduction of gold to the Witwatersrand basin from crustally derived metamorphic or hydrothermal fluids between 2.7 to 2.0 Ga. The unradiogenic 187Os/ 188Os ratios, old T RD ages of the Western Areas and Vaal Reef gold samples, as well as the contemporaneously old age of the Vaal Reef pyrite are consistent with detrital deposition of gold during the formation of the Witswatersrand basin. The Os data will allow for minor hydrothermal remobilization and/or overprinting of hydrothermal gold on preexisting detrital gold grains but does not support the introduction of gold solely by hydrothermal fluids.

  20. OPTIMIZATION OF VOLTAMMETRIC METHODS FOR AN IN SITU DETERMINATION OF TOTAL SULFIDE IN ANOXIC POREWATER USING A MERCURY PLATED GOLD ELECTRODE

    EPA Science Inventory

    Voltammetric methods for determination of total sulfide concentrations in anoxic sediments utilizing a previously described [1] gold-based mercury amalgam microelectrode were optimized. Systematic studies in NaCl (supporting electrolyte) and porewater indicate variations in ionic...

  1. OPTIMIZATION OF VOLTAMMETRIC METHODS FOR AN IN SITU DETERMINATION OF TOTAL SULFIDE IN ANOXIC POREWATER USING A MERCURY PLATED GOLD ELECTRODE

    EPA Science Inventory

    Voltammetric methods for determination of total sulfide concentrations in anoxic sediments utilizing a previously described [1] gold-based mercury amalgam microelectrode were optimized. Systematic studies in NaCl (supporting electrolyte) and porewater indicate variations in ionic...

  2. Kinetics of electron transfer through ferrocene-terminated alkanethiol monolayers on gold

    SciTech Connect

    Smalley, J.F.; Feldberg, S.W.; Newton, M.D.; Liu, Y.P.; Chidsey, C.E.D.; Linford, M.R.

    1995-08-31

    The kinetics of electron transfer between a substrate gold electrode and a self-assembled monolayer formed from CH{sub 3}(CH{sub 2}){sub n-1}SH and ({eta}{sup 5} C{sub 5}H{sub 5})Fe ({eta}{sup 5}-C{sub 5}H{sub 4})CO{sub 2}(CH{sub 2}){sub n}SH were studied as a function of n, the number of methylenes in the alkyl chain tethering the ferrocene moiety to the electrode, using the indirect laser-induced temperature jump method (ILIT). For 5 {<=} n {<=} 9 the standard electron-transfer rate constants vary according to {kappa}{sub {tau}a,n=0} exp[-{beta}{sub n}n] where {kappa}{sub {tau}a,n=0} is the (extrapolated) rate constant for the electron transfer at n = 0. At {Tau} = 25{degree}C, {kappa}{sub {tau}a,n} 0 {approx_equal} 6 x 10{sup 8} s{sup -1} and {beta}{sub n} = 1.21 x 0.05. The ILIT method allows rates to be measured that are too fast to be measured by conventional chronoamperometry at a macroelectrode, which is limited to rate constants of {<=} 10{sup 4} s{sup -1}. Using a Marcus formalism, the reorganization energy, {lambda}, for the electron-transfer process at a given n was determined from the slope of an Arrhenius plot over the temperature range 15-55{degree}C. Values of {lambda} determined from Arrhenius slopes for n = 8 and 9 using ILIT are in reasonable agreement with the value of {lambda} previously deduced from the potential dependence of the rate constant for n = 16. 39 refs., 13 figs., 3 tabs.

  3. Absolute timing of sulfide and gold mineralization: A comparison of Re-Os molybdenite and Ar-Ar mica methods from the Tintina Gold Belt, Alaska

    USGS Publications Warehouse

    Selby, D.; Creaser, R.A.; Hart, C.J.R.; Rombach, C.S.; Thompson, J.F.H.; Smith, M.T.; Bakke, A.A.; Goldfarb, R.J.

    2002-01-01

    New Re-Os molybdenite dates from two lode gold deposits of the Tintina Gold Belt, Alaska, provide direct timing constraints for sulfide and gold mineralization. At Fort Knox, the Re-Os molybdenite date is identical to the U-Pb zircon age for the host intrusion, supporting an intrusive-related origin for the deposit. However, 40Ar/39Ar dates from hydrothermal and igneous mica are considerably younger. At the Pogo deposit, Re-Os molybdenite dates are also much older than 40Ar/39Ar dates from hydrothermal mica, but dissimilar to the age of local granites. These age relationships indicate that the Re-Os molybdenite method records the timing of sulfide and gold mineralization, whereas much younger 40Ar/39Ar dates are affected by post-ore thermal events, slow cooling, and/or systemic analytical effects. The results of this study complement a growing body of evidence to indicate that the Re-Os chronometer in molybdenite can be an accurate and robust tool for establishing timing relations in ore systems.

  4. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Chemical controls on alteration and mineralization

    USGS Publications Warehouse

    Henley, R.W.; Berger, B.R.

    2011-01-01

    Large bulk-tonnage high-sulfidation gold deposits, such as Yanacocha, Peru, are the surface expression of structurally-controlled lode gold deposits, such as El Indio, Chile. Both formed in active andesite-dacite volcanic terranes. Fluid inclusion, stable isotope and geologic data show that lode deposits formed within 1500. m of the paleo-surface as a consequence of the expansion of low-salinity, low-density magmatic vapor with very limited, if any, groundwater mixing. They are characterized by an initial 'Sulfate' Stage of advanced argillic wallrock alteration ?? alunite commonly with intense silicification followed by a 'Sulfide' Stage - a succession of discrete sulfide-sulfosalt veins that may be ore grade in gold and silver. Fluid inclusions in quartz formed during wallrock alteration have homogenization temperatures between 100 and over 500 ??C and preserve a record of a vapor-rich environment. Recent data for El Indio and similar deposits show that at the commencement of the Sulfide Stage, 'condensation' of Cu-As-S sulfosalt melts with trace concentrations of Sb, Te, Bi, Ag and Au occurred at > 600 ??C following pyrite deposition. Euhedral quartz crystals were simultaneously deposited from the vapor phase during crystallization of the vapor-saturated melt occurs to Fe-tennantite with progressive non-equilibrium fractionation of heavy metals between melt-vapor and solid. Vugs containing a range of sulfides, sulfosalts and gold record the changing composition of the vapor. Published fluid inclusion and mineralogical data are reviewed in the context of geological relationships to establish boundary conditions through which to trace the expansion of magmatic vapor from source to surface and consequent alteration and mineralization. Initially heat loss from the vapor is high resulting in the formation of acid condensate permeating through the wallrock. This Sulfate Stage alteration effectively isolates the expansion of magmatic vapor in subsurface fracture arrays

  5. Comprehensive recovery of gold and base-metal sulfide minerals from a low-grade refractory ore

    NASA Astrophysics Data System (ADS)

    Li, Wen-juan; Liu, Shuang; Song, Yong-sheng; Wen, Jian-kang; Zhou, Gui-ying; Chen, Yong

    2016-12-01

    The comprehensive recovery of small amounts of valuable minerals such as gold and base-metal sulfide minerals from a low-grade refractory ore was investigated. The following treatment strategy was applied to a sample of this ore: gold flotation-gold concentrate leaching-lead and zinc flotation from the gold concentrate leaching residue. Closed-circuit trials of gold flotation yielded a gold concentrate that assayed at 40.23 g·t-1 Au with a recovery of 86.25%. The gold concentrate leaching rate was 98.76%. Two variants of lead-zinc flotation from the residue—preferential flotation of lead and zinc and bulk flotation of lead and zinc—were tested using the middling processing method. Foam from the reflotation was returned to the lead rougher flotation or lead-zinc bulk flotation, whereas middlings from reflotation were discarded. Sulfur concentrate was a byproduct. The combined strategy of flotation, leaching, and flotation is recommended for the treatment of this kind of ore.

  6. The Chahnaly low sulfidation epithermal gold deposit, western Makran volcanic arc, southeastern Iran

    USGS Publications Warehouse

    Sholeh, Ali; Rastad, Ebrahim; Huston, David L.; Gemmell, J. Bruce; Taylor, Ryan D.

    2016-01-01

    The Chahnaly Au deposit formed during the early stages of magmatism. LA-ICP-MS zircon U-Pb geochronology of host andesite and 40Ar/39Ar dating of two samples of gold-associated adularia show that the ore-stage adularia (19.83 ± 0.10 and 19.2 ± 0.5 Ma) is younger, by as much as 1.5 million years, than the volcanic host rock (20.32 ± 0.4 Ma). Therefore, either hydrothermal activity continued well after volcanism or a second magmatic event rejuvenated hydrothermal activity. This second magmatic event may be related to eruption of porphyritic andesite at ~20.32 ± 0.40 Ma, which is within error of ~19.83 ± 0.10 Ma adularia. The new LA-ICP-MS zircon U-Pb host rock and vein adularia 40Ar/39Ar ages suggest that early Miocene magmatism and mineralization in the Bazman area is of a similar age to that of the Saindak porphyry and Tanjeel porphyry center of the giant Reko Diq deposit. This confirms the existence of early Miocene arc magmatism and mineralization along the Iranian part of the Makran volcanic arc. Ore, alteration mineralogy, and alteration patterns indicate that the Chahnaly deposit is a typical low-sulfidation epithermal Au deposit, located in a poorly explored part of the Makran volcanic arc in Iran.                   

  7. Potential driven deposition of poly(diallyldimethylammonium chloride) onto the surface of 3-mercaptopropionic acid monolayers assembled on gold.

    PubMed

    Sanders, Wesley; Anderson, Mark R

    2008-11-18

    Electrochemical impedance spectroscopy (EIS) and quartz crystal microbalance (QCM) measurements are used to examine the ability of applied potential to drive the ionic self-assembly of poly(diallyldimethylammonium) chloride (PDDA) onto a substrate modified with a monolayer of 3-mercaptopropionic acid (3-MPA). The potential of zero charge (PZC) of the gold electrode modified with a monolayer of 3-MPA was found by differential capacitance measurements to be -0.12 (+/-0.01) V versus Ag-AgCl. Changing the substrate potential to values positive (-0.01 V vs Ag-AgCl) of the PZC induces interfacial conditions that are favorable for the electrostatic deposition of cationic polymers onto the surface of 3-MPA monolayers. This result is also consistent with experimental observations obtained when the 3-MPA-modified substrate is exposed to 0.10 mol L (-1) NaOH solutions. When potentials equal or negative to the PZC are applied to the substrate, no significant accumulation of the PDDA is found by either QCM or EIS measurement. This result is consistent with results obtained when the 3-MPA modified substrate is exposed to 0.10 mol L (-1) HCl solutions where no PDDA adsorption is expected because the monolayer is neutral under these conditions. Changes in the impedance and quartz crystal frequency obtained after potential is applied to the substrate are interpreted in terms of the applied potential creating interfacial conditions that are favorable for the deprotonation of the terminal carboxylic acid groups and the subsequent electrostatic assembly of the polycation onto the negatively charged monolayer.

  8. Patterning Self-Assembled Monolayers on Gold: Green Materials Chemistry in the Teaching Laboratory

    ERIC Educational Resources Information Center

    McFarland, Adam D.; Huffman, Lauren M.; Parent, Kathryn, E.; Hutchison, James E.; Thompson, John E.

    2004-01-01

    An experiment demonstrating self-assembled monolayer (SAM) chemistry, organic thin-film patterning and the use of molecular functionality to control macroscopic properties is described. Several important green chemistry principles are introduced.

  9. Patterning Self-Assembled Monolayers on Gold: Green Materials Chemistry in the Teaching Laboratory

    ERIC Educational Resources Information Center

    McFarland, Adam D.; Huffman, Lauren M.; Parent, Kathryn, E.; Hutchison, James E.; Thompson, John E.

    2004-01-01

    An experiment demonstrating self-assembled monolayer (SAM) chemistry, organic thin-film patterning and the use of molecular functionality to control macroscopic properties is described. Several important green chemistry principles are introduced.

  10. Formation of Monolayer Films by the Spontaneous Assembly of Organic Thiols from Solution onto Gold

    DTIC Science & Technology

    1988-09-01

    structure of the terminal group, X, widely and thus permit the introduction of a great range of functional groups into a surface. Studies of wettability of...permit the introduction of a great range of functional groups into a surface. Studies of wettability of these monolayers, and of their composition using...relationships between the microscopic structure of organic surfaces and their macroscopic properties (especially wettability ). Studies of organic monolayer films

  11. Size dependent gold nanoparticle interaction at nano-micro interface using both monolayer and multilayer (tissue-like) cell models

    NASA Astrophysics Data System (ADS)

    Yohan, Darren; Yang, Celina; Lu, Xiaofeng; Chithrani, Devika B.

    2016-03-01

    Gold nanoparticles (GNPs) can be used as a model NP system to improve the interface between nanotechnology and medicine since their size and surface properties can be tailored easily. GNPs are being used as radiation dose enhancers and as drug carriers in cancer research. Hence, it is important to know the optimum NP size for uptake not only at monolayer level but also at tissue level. Once GNPs leave tumor vasculature, they enter the tumor tissue. Success of any therapeutic technique using NPs depends on how well NPs penetrate the tumor tissue and reach individual tumor cells. In this work, multicellular layers (MCLs) were grown to model the post-vascular tumor environment. GNPs of 20 nm and 50 nm diameters were used to elucidate the effects of size on the GNP penetration and distribution dynamics. Larger NPs (50 nm) were better at monolayer level, but smaller NPs (20 nm) were at tissue level. The MCLs exhibited a much more extensive extracellular matrix (ECM) than monolayer cell cultures. This increased ECM created a barrier for NP transport and ECM was also dependent on the tumor cell lines. Smaller NPs penetrated better compared to larger NPs. Transport of NPs was better in MDA-MB231 vs MCF-7. This MCL model tissue structures are better tools to optimize NP transport through tissue before using them in animal models. Based on our study, we believe that smaller NPs are better for improved outcome in future cancer therapeutics.

  12. Scanning probe microscopies for the creation and characterization of interfacial architectures: Studies of alkyl thiolate monolayers at gold

    SciTech Connect

    Green, John -Bruce

    1997-01-10

    Scanning probe microscopy (SPM) offers access to the structural and material properties of interfaces, and when combined with macroscopic characterization techniques results in a powerful interfacial development tool. However, the relative infancy of SPM techniques has dictated that initial investigations concentrate on model interfacial systems as benchmarks for testing the control and characterization capabilities of SPM. One such family of model interfacial systems results from the spontaneous adsorption of alkyl thiols to gold. This dissertation examines the application of SPM to the investigation of the interfacial properties of these alkyl thiolate monolayers. Structural investigations result in a proposed explanation for counterintuitive correlations between substrate roughness and heterogeneous electron transfer barrier properties. Frictional measurements are used for characterization of the surface free energy of a series of end-group functionalized monolayers, as well as for the material properties of monolayers composed of varying chain length alkyl thiols. Additional investigations used these characterization techniques to monitor the real-time evolution of chemical and electrochemical surface reactions. The results of these investigations demonstrates the value of SPM technology to the compositional mapping of surfaces, elucidation of interfacial defects, creation of molecularly sized chemically heterogeneous architectures, as well as to the monitoring of surface reactions. However, it is the future which will demonstrate the usefulness of SPM technology to the advancement of science and technology.

  13. Plasmonic Gold Nanorods Coverage Influence on Enhancement of the Photoluminescence of Two-Dimensional MoS2 Monolayer

    PubMed Central

    Lee, Kevin C. J.; Chen, Yi-Huan; Lin, Hsiang-Yu; Cheng, Chia-Chin; Chen, Pei-Ying; Wu, Ting-Yi; Shih, Min-Hsiung; Wei, Kung-Hwa; Li, Lain-Jong; Chang, Chien-Wen

    2015-01-01

    The 2-D transition metal dichalcogenide (TMD) semiconductors, has received great attention due to its excellent optical and electronic properties and potential applications in field-effect transistors, light emitting and sensing devices. Recently surface plasmon enhanced photoluminescence (PL) of the weak 2-D TMD atomic layers was developed to realize the potential optoelectronic devices. However, we noticed that the enhancement would not increase monotonically with increasing of metal plasmonic objects and the emission drop after the certain coverage. This study presents the optimized PL enhancement of a monolayer MoS2 in the presence of gold (Au) nanorods. A localized surface plasmon wave of Au nanorods that generated around the monolayer MoS2 can provide resonance wavelength overlapping with that of the MoS2 gain spectrum. These spatial and spectral overlapping between the localized surface plasmon polariton waves and that from MoS2 emission drastically enhanced the light emission from the MoS2 monolayer. We gave a simple model and physical interpretations to explain the phenomena. The plasmonic Au nanostructures approach provides a valuable avenue to enhancing the emitting efficiency of the 2-D nano-materials and their devices for the future optoelectronic devices and systems. PMID:26576041

  14. Chemical transformation of chiral monolayer-protected gold clusters: observation of ligand size effects on optical and chiroptical responses

    NASA Astrophysics Data System (ADS)

    Yao, Hiroshi; Kitaoka, Noriyuki; Sasaki, Akito

    2012-01-01

    Versatile functionalization of metal clusters is a key step in understanding the reactivity of protective monolayers. We here demonstrate that reaction of the outermost amino groups on (S)-/(R)-penicillamine-protected gold clusters with ethyl isocyanate readily modifies the chiral surface structure through carbamoylation. Interestingly, the clusters are electrophoretically separated by the size of the surface ligand, not by the size of the gold core, which is revealed by UV-vis, IR, and energy dispersive X-ray (EDX) spectroscopy as well as SAXS measurements. The ligand size (or length) is extended through additional reactions of the carbamoylated amino groups with isocyanate, while the chemical similarity in ligand structures is realized by their IR spectral similarity. Optical and chiroptical responses of the separated cluster compounds are thus overall similar to each other, but a close inspection reveals that the ligand size has a small but distinct influence on the chiroptical response of the gold clusters.Versatile functionalization of metal clusters is a key step in understanding the reactivity of protective monolayers. We here demonstrate that reaction of the outermost amino groups on (S)-/(R)-penicillamine-protected gold clusters with ethyl isocyanate readily modifies the chiral surface structure through carbamoylation. Interestingly, the clusters are electrophoretically separated by the size of the surface ligand, not by the size of the gold core, which is revealed by UV-vis, IR, and energy dispersive X-ray (EDX) spectroscopy as well as SAXS measurements. The ligand size (or length) is extended through additional reactions of the carbamoylated amino groups with isocyanate, while the chemical similarity in ligand structures is realized by their IR spectral similarity. Optical and chiroptical responses of the separated cluster compounds are thus overall similar to each other, but a close inspection reveals that the ligand size has a small but distinct

  15. Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang

    2010-04-27

    The invention relates to gold-coated particles useful as fuel cell electrocatalysts. The particles are composed of an electrocatalytically active core at least partially encapsulated by an outer shell of gold or gold alloy. The invention more particularly relates to such particles having a noble metal-containing core, and more particularly, a platinum or platinum alloy core. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  16. Characterization and reactivity of organic monolayers on gold and platinum surfaces

    SciTech Connect

    Wu, Chien-Ching

    1995-12-06

    Purpose is to understand how the mobilization, dielectric, orientation, composition, coverage, and structure of self-assembled organic monolayers on metal surfaces affects the surface reactivities and properties of these films in order to facilitate the construction of desired films. Two model systems were used: tiols at Au and aromatic acids at Pt. Surface analysis methods, including contact angle, electrochemistry, ellipsometry, infrared reflection absorption spectroscopy (IRRAS), and x-ray photospectroscopy, were used to study the self-assembled organic monolayers on Au and Pt. IRRAS, contact angle, and electrochemistry were used to determine the surface pKa of phenylcarboxylic acids and pyridylcarboxylic acids monolayers on Pt. These techniques were also used to determine the orientation of polymethylene chain axis and the carboxylic follow the structural evolution of the chains and end group of the thiolate monolayers during formation. IRRAS was also used to assess the carboxylic acid group in terms of its possible existence as the non-hydrogen-bonded species, the hydrogen-bonded dimeric group, and the hydrogen-bonded polymeric group. These different forms of the end group were also followed vs coverage, as well as the reactivity vs solution pH. IRRAS and contact angle were used to calculate the rate constant of the esterification of carboxylic acid-terminated monolayers on Au.

  17. Ion transport and electron transfer at self-assembled alkylthiol/gold monolayers

    NASA Astrophysics Data System (ADS)

    Boubour, Emmanuelle

    The electrical and electrochemical properties of self-assembled n-alkylthiol monolayers (SAMs) on gold are important if SAMs are to be used as molecular building blocks in biomimetic membranes and in micro- or nano-electronics. Ion transport and electron transfer at SAM/electrolyte interfaces are two important processes which have been characterized by cyclic voltammetry and a.c. impedance spectroscopy. Ion transport from an aqueous phase to the hydrophobic SAM region has been addressed by investigating the insulating properties of a wide variety of X(CH2)nS/Au SAMs (X = CH3, OH, CO2H and CF 3, and n = 7, 9, 11, 15). It was established that when the phase angle at a frequency characteristic of ion diffusion processes ( i.e. 1 Hz) is ≥88°, the SAM is defect-free and obeys the Helmholtz ideal capacitor model. However, when ϕ1HZ < 88°, the SAM is no longer an ionic insulator and ion/water penetration from the electrolyte into the SAM hydrophobic region is observed. The behavior of the phase angle with frequency was used to characterize the permeability of SAMs to electrolyte ions (K+, H2PO4 -, and HPO42-) as a function of the applied d.c. potential. A critical potential, Vc, was identified for each type of SAM corresponding to a transition from an insulating state to a more permeable state. When X = CH3, V c becomes more cathodic with increasing chainlength, i.e. Vc = -0.15 V (vs. Ag/AgCl) for n = 7, -0.25 V for n = 9, 11, and -0.35 V for n = 15. The SAM ionic permeability can also be modulated by maintaining n constant (15) and by varying the terminal group X. Vc is considerably more anodic for hydrophilic SAM/electrolyte interfaces (+0.25 V vs . Ag/AgCl for X = OH and + 0.15 V for X = CO2H) than for hydrophobic interfaces (-0.35 V for X = CH3). The kinetics of electron transfer at CH3(CH2)15CH3 SAMs have been investigated by a.c. impedance spectroscopy at various d.c. overpotentials with three redox couples, Ru(NH3)63+/2+, Fe(CN)63-/4-, and Co(bpy)3 3+/2+. Fits

  18. First-principles study of the contractive reconstruction of gold and silver monolayers on gold, silver and aluminum

    SciTech Connect

    Takeuchi, Noboru.

    1990-11-16

    Using first-principles calculations in conjunction with modeling techniques, the author has investigated the structures of Au and Ag monolayers on a number of metal surfaces. Au(100) has a c(26 {times} 68) surface unit cell and the reconstruction has been interpreted as the top layer transforming to a contracted hexagonal-close-packed layer, superimposed on the square lattice of the underlying substrate atoms. Similar reconstructions have been observed on the 5d fcc metals Ir and Pt, but not in the 4d Rh, Pd, and Ag. The author studied the energetics of a monolayer of Au and Ag using first-principles calculations. The author found that it is energetically favorable for both Au and Ag to transform from a square to hexagonal arrangement and to contract to a higher surface density, but Au gains substantially more energy than Ag. This is true both for a monolayer in isolation as well as on top of a jellium surface. The author also calculated the mismatch energy (energy loss when the top layer loses registry with the substrate) for Au and Ag, and found that Ag has a slightly higher mismatch energy. The first-principles results thus offer a strong indication that Au(100) can reconstruct but Ag will not. The reconstruction is further studied with a 2 dimensional Frenkel-Kontorowa model, with parameters extracted from the total energy calculations. The author found that it is indeed energetically favorable for the top layer of Au(100), but not for Ag, to transform to a hexagonal-close-packed structure and contract. 85 refs., 34 figs., 8 tabs.

  19. Microwave-Accelerated Surface Modification of Plasmonic Gold Thin Films with Self-Assembled Monolayers of Alkanethiols

    PubMed Central

    Grell, Tsehai A.J.; Alabanza, Anginelle M.; Gaskell, Karen; Aslan, Kadir

    2013-01-01

    A rapid surface modification technique for the formation of self-assembled monolayers (SAMs) of alkanethiols on gold thin films using microwave heating in less than 10 min is reported. In this regard, SAMs of two model alkanethiols, 11-mercaptoundecanoic acid (11-MUDA, to generate a hydrophilic surface) and undecanethiol (UDET, a hydrophobic surface), were successfully formed on gold thin films using selective microwave heating in 1) a semi-continuous and 2) a continuous fashion and at room temperature (24 hours, control experiment, no microwave heating). The formation of SAMs of 11-MUDA and UDET were confirmed by contact angle measurements, Fourier–transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The contact angles for water on SAMs formed by the selective microwave heating and conventional room temperature incubation technique (24 hours) were measured to be similar for 11-MUDA and UDET. FT-IR spectroscopy results confirmed that the internal structure of SAMs prepared using both microwave heating and at room temperature were similar. XPS results revealed that the organic and sulfate contaminants found on bare gold thin films were replaced by SAMs after the surface modification process was carried out using both microwave heating and at room temperature. PMID:24083414

  20. Plasmon-enhanced photocurrent generation from self-assembled monolayers of phthalocyanine by using gold nanoparticle films.

    PubMed

    Sugawa, Kosuke; Akiyama, Tsuyoshi; Kawazumi, Hirofumi; Yamada, Sunao

    2009-04-09

    The effect of localized electric fields on the photocurrent responses of phthalocyanine that was self-assembled on a gold nanoparticle film was investigated by comparing the conventional and the total internal reflection (TIR) experimental systems. In the case of photocurrent measurements, self-assembled monolayers (SAMs) of a thiol derivative of palladium phthalocyanine (PdPc) were prepared on the surface of gold-nanoparticle film that was fixed on the surface of indium-tin-oxide (ITO) substrate via a polyion (PdPc/AuP/polyion/ITO) or on the ITO surface (PdPc/ITO). Photocurrent action spectra from the two samples were compared by using the conventional spectrometer, and were found that PdPc/AuP/polyion/ITO gave considerably larger photocurrent signals than PdPc/ITO under the identical concentration of PdPc. In the case of the TIR experiments for the PdPc/AuP/polyion/ITO and the PdPc/AuP/Glass systems, incident-angle profiles of photocurrent and emission signals were correlated with each other, and they were different from that of the PdPc/ITO system. Accordingly, it was demonstrated that the photocurrent signals were certainly enhanced by the localized electric fields of the gold-nanoparticle film.

  1. Microwave-accelerated surface modification of plasmonic gold thin films with self-assembled monolayers of alkanethiols.

    PubMed

    Grell, Tsehai A J; Alabanza, Anginelle M; Gaskell, Karen; Aslan, Kadir

    2013-10-29

    A rapid surface modification technique for the formation of self-assembled monolayers (SAMs) of alkanethiols on gold thin films using microwave heating in <10 min is reported. In this regard, SAMs of two model alkanethiols, 11-mercaptoundecanoic acid (11-MUDA, to generate a hydrophilic surface) and undecanethiol (UDET, a hydrophobic surface), were successfully formed on gold thin films using selective microwave heating in (1) a semicontinuous fashion and (2) a continuous fashion at room temperature (24 h, control experiment, no microwave heating). The formation of SAMs of 11-MUDA and UDET was confirmed by contact angle measurements, Fourier transform infrared (FT-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The contact angles for water on SAMs formed by the selective microwave heating and conventional room temperature incubation technique (24 h) were measured to be similar for 11-MUDA and UDET. FT-IR spectroscopy results confirmed that the internal structures of SAMs prepared using both microwave heating and room temperature were similar. XPS results revealed that the organic and sulfate contaminants found on bare gold thin films were replaced by SAMs after the surface modification process had been conducted using both microwave heating and room temperature.

  2. Self-assembled monolayer films of C[sub 60]/on cysteamine-modified gold

    SciTech Connect

    Caldwell, W.B.; Chen, K.; Mirkin, C.A.; Babinec, S.J. Dow Chemical Company, Midland, MI )

    1993-08-01

    Self-assembled monolayer films (SAMs) of C[sub 60] on cysteamine-modified and cysteamine/ethanethiol-modified Au are reported. The monolayers were characterized via contact angle measurements, X-ray photoelectron spectroscopy, electrochemistry, and quartz crystal microbalance (QCM) measurements. C[sub 60] surface coverage (2.0 [times] 10[sup [minus]10] mol/cm[sup 2]) for a film formed on pure cysteamine was determined by QCM measurements and compares remarkably well with monolayer coverage (1.9 [times] 10[sup [minus]10] mol/cm[sup 2]) predicted by a model based on crystallographic data for C[sub 60]. These experiments demonstrate the utility of the QCM in characterizing and monitoring the growth of fullerene SAMs. C[sub 60] SAMs formed on pure cysteamine yield strikingly different electrochemical responses than those formed on prelayers consisting of varying ratios of ethanethiol and cysteamine and previously reported monolayers of C[sub 60] on (aminopropyl)silanized oxide surfaces. Although the C[sub 60] SAMs are stable under ambient conditions, the fullerenes may be desorbed from the surface through electrochemical reduction of the films for extended periods of time (> 10 min). 11 refs., 2 figs.

  3. Mixed monolayer protected gold atom-oxide cluster synthesis and characterization.

    PubMed

    Nambiar, Sindhu R; Aneesh, Padamadathil K; Sukumar, Chinthu; Rao, Talasila P

    2012-07-21

    Small atomic gold clusters in solution, Au(n), stabilized by cetyl trimethylammonium bromide (CTAB) and cysteine, have been synthesized potentiodynamically in quiescent aqueous solutions. The electrodissolution of gold to gold ions during an anodic scan and subsequent cluster formation during a cathodic scan in underpotential (UPDD) and overpotential dissolution-deposition (OPDD) regions were studied. The experimental potentiodynamic I-E profiles and chronoamperometric i-t transients are fit into reported theoretical models of adsorption and electrocrystallization. The plausible application of clusters/cluster film to cysteine sensing based on fluorescence quenching and square wave stripping voltammetry is demonstrated.

  4. Building a Low-Cost, Six-Electrode Instrument to Measure Electrical Properties of Self-Assembled Monolayers of Gold Nanoparticles

    ERIC Educational Resources Information Center

    Gerber, Ralph W.; Oliver-Hoyo, Maria

    2007-01-01

    The development of a new low-cost, six-electrode instrument for measuring the electrical properties of the self-assembled monolayers of gold particles is being described. The system can also be used to measure conductive liquids, except for those that contain aqua region.

  5. IMPACT OF POLYCYCLIC AROMATIC HYDROCARBONS OF THE ELECTROCHEMICAL RESPONSES OF A FERRICYNIDE PROBE AT TEMPLATE-MODIFIED SELF ASSEMBLED MONOLAYERS ON GOLD ELECTRODES

    EPA Science Inventory

    The impact of pyrene on the electrochemical response of the ferricyanide probe using Self Assembled Monolayer (SAM)-modified gold electrodes was investigated using Cyclic Voltammetry (CV) and Square Wave Voltammetry (SWV). These results suggest the feasibility of using SAMs, par...

  6. IMPACT OF POLYCYCLIC AROMATIC HYDROCARBONS OF THE ELECTROCHEMICAL RESPONSES OF A FERRICYNIDE PROBE AT TEMPLATE-MODIFIED SELF ASSEMBLED MONOLAYERS ON GOLD ELECTRODES

    EPA Science Inventory

    The impact of pyrene on the electrochemical response of the ferricyanide probe using Self Assembled Monolayer (SAM)-modified gold electrodes was investigated using Cyclic Voltammetry (CV) and Square Wave Voltammetry (SWV). These results suggest the feasibility of using SAMs, par...

  7. Building a Low-Cost, Six-Electrode Instrument to Measure Electrical Properties of Self-Assembled Monolayers of Gold Nanoparticles

    ERIC Educational Resources Information Center

    Gerber, Ralph W.; Oliver-Hoyo, Maria

    2007-01-01

    The development of a new low-cost, six-electrode instrument for measuring the electrical properties of the self-assembled monolayers of gold particles is being described. The system can also be used to measure conductive liquids, except for those that contain aqua region.

  8. Unraveling the dynamics and structure of functionalized self-assembled monolayers on gold using 2D IR spectroscopy and MD simulations

    PubMed Central

    Yan, Chang; Yuan, Rongfeng; Pfalzgraff, William C.; Nishida, Jun; Wang, Lu; Markland, Thomas E.; Fayer, Michael D.

    2016-01-01

    Functionalized self-assembled monolayers (SAMs) are the focus of ongoing investigations because they can be chemically tuned to control their structure and dynamics for a wide variety of applications, including electrochemistry, catalysis, and as models of biological interfaces. Here we combine reflection 2D infrared vibrational echo spectroscopy (R-2D IR) and molecular dynamics simulations to determine the relationship between the structures of functionalized alkanethiol SAMs on gold surfaces and their underlying molecular motions on timescales of tens to hundreds of picoseconds. We find that at higher head group density, the monolayers have more disorder in the alkyl chain packing and faster dynamics. The dynamics of alkanethiol SAMs on gold are much slower than the dynamics of alkylsiloxane SAMs on silica. Using the simulations, we assess how the different molecular motions of the alkyl chain monolayers give rise to the dynamics observed in the experiments. PMID:27044113

  9. Determination of low levels of cadmium ions by the under potential deposition on a self-assembled monolayer on gold electrode.

    PubMed

    Noyhouzer, Tomer; Mandler, Daniel

    2011-01-17

    The electrochemical determination of low levels of Cd using a self-assembled monolayer (SAM) modified Au electrode is reported. Determination was based on the stripping of Cd, which was deposited by under potential deposition (UPD). A series of short alkanethiol SAMs bearing different end groups, i.e., sulfonate, carboxylate and ammonium, were examined. Lowest level of detection (ca. 50 ngL(-1)) was achieved with a 3-mercaptopropionic acid (MPA) monolayer using subtractive anodic square wave voltammetry (SASV). Additional surface methods, namely, reductive desorption and X-ray photoelectron spectroscopy, were applied to determine the interfacial structure of the electrodeposited Cd on the modified electrodes. We conclude that the deposited Cd forms a monoatomic layer, which bridges between the gold surface and the alkanethiol monolayer associating with both the gold and the sulfur atoms.

  10. Mixed monolayer protected gold atom-oxide cluster synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Nambiar, Sindhu R.; Aneesh, Padamadathil K.; Sukumar, Chinthu; Rao, Talasila P.

    2012-06-01

    Small atomic gold clusters in solution, Aun, stabilized by cetyl trimethylammonium bromide (CTAB) and cysteine, have been synthesized potentiodynamically in quiescent aqueous solutions. The electrodissolution of gold to gold ions during an anodic scan and subsequent cluster formation during a cathodic scan in underpotential (UPDD) and overpotential dissolution-deposition (OPDD) regions were studied. The experimental potentiodynamic I-E profiles and chronoamperometric i-t transients are fit into reported theoretical models of adsorption and electrocrystallization. The plausible application of clusters/cluster film to cysteine sensing based on fluorescence quenching and square wave stripping voltammetry is demonstrated.Small atomic gold clusters in solution, Aun, stabilized by cetyl trimethylammonium bromide (CTAB) and cysteine, have been synthesized potentiodynamically in quiescent aqueous solutions. The electrodissolution of gold to gold ions during an anodic scan and subsequent cluster formation during a cathodic scan in underpotential (UPDD) and overpotential dissolution-deposition (OPDD) regions were studied. The experimental potentiodynamic I-E profiles and chronoamperometric i-t transients are fit into reported theoretical models of adsorption and electrocrystallization. The plausible application of clusters/cluster film to cysteine sensing based on fluorescence quenching and square wave stripping voltammetry is demonstrated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30446e

  11. Dithienylcyclopentene-functionalised subphthalocyaninatoboron complexes: photochromism, fluorescence modulation and formation of self-assembled monolayers on gold

    PubMed Central

    Weidner, Tobias; Baio, Joe E.; Seibel, Johannes

    2012-01-01

    Subphthalocyaninatoboron (SubPc) complexes bearing six peripheral n-dodecylthio substituents and an apical photochromic dithienylperfluorocyclopentene unit were prepared. The photoinduced isomerisation of the apical substitutent from the open to the ring-closed form significantly influences the photoluminescence of the covalently attached SubPc unit, which is more efficiently quenched by the ring-closed form. Films on gold were fabricated from these multifunctional conjugates and characterised by near-edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS). The results are in accord with the formation of self-assembled monolayers based on dome-shaped SubPc-based anchor groups. Their chemisorption is primarily due to the peripheral n-dodecylthio substituents, giving rise to covalently attached thiolate as well as coordinatively bound thioether units, whose alkyl chains are in an almost parallel orientation to the surface. PMID:22138955

  12. Inkjet deposition of alkanethiolate monolayers and DNA oligonucleotides on gold: evaluation of spot uniformity by wet etching.

    PubMed

    Bietsch, Alexander; Hegner, Martin; Lang, Hans Peter; Gerber, Christoph

    2004-06-08

    Inkjet printing allows localized, contact-free deposition of liquids onto arbitrary substrates. In this article we demonstrate the fast formation of high-quality self-assembled monolayers (SAMs) on gold surfaces. Using a selective etch process, we verify the uniformity of the deposited spots. A direct comparison with microcontact-printed SAMs on Au revealed similar resist quality as inkjet-deposited alkanethiolate SAMs. Likewise, inkjet printing of thiol-functionalized and non-thiolated single-stranded DNA oligomers formed molecular layers protecting Au from etchants. For all compounds used, we achieved etched patterns that were homogeneous and free of defects. These results indicate that an inkjet is a convenient tool for surface functionalization and the direct writing of molecular films and resists.

  13. Optimized modification of gold nanoparticles with a self-assembled monolayer for suppression of nonspecific binding in DNA assays

    NASA Astrophysics Data System (ADS)

    Esashika, Keiko; Saiki, Toshiharu

    2016-10-01

    Homogeneous DNA assays using gold nanoparticles (AuNPs) require the reduction of nonspecific binding between AuNPs to improve sensitivity in detecting the target molecule. In this study, we employed alkanethiol self-assembled monolayers (SAMs) for modifying the AuNP surface to attain both good dispersability and high hybridization efficiency. The alkanethiol SAMs enhance the repulsive interaction between AuNPs, reducing nonspecific binding and promoting the extension of surface-immobilized ssDNA into the solvent, thus enhancing the hybridization process. Introduction of oligoethylene glycol into the alkanethiol prevented nonspecific binding caused by the entanglement of alkane chains. Finally, the conditions were optimized by controlling the surface charge density through the introduction of a COOH group at the alkanethiol terminus, resulting in the complete blocking of nonspecific binding and the maintenance of high hybridization efficiency.

  14. Characteristic differences in the X-ray photoelectron spectrum between B-DNA and M-DNA monolayers on gold.

    PubMed

    Dinsmore, Michael J; Lee, Jeremy S

    2008-08-01

    Duplex DNA monolayers were self-assembled on gold through a disulfide linkage and both B- and M-DNA conformations were studied using X-ray photoelectron spectroscopy (XPS). The film thickness, density, elemental composition and ratios for samples were analyzed and compared. The DNA surface coverage, calculated from both XPS and electrochemical measurements, was approximately 1.2 x 10(13)molecules/cm(2) for B-DNA. All samples showed distinct peaks for C 1s, O 1s, N 1s, P 2p and S 2p as expected for a thiol-linked DNA. On addition of Zn(2+) to form M-DNA the C 1s, P 2p and S 2p showed only small changes while both the N 1s and O 1s spectra changed considerably. This result is consistent with Zn(2+) interacting with oxygen on the phosphate backbone as well as replacing the imino protons of thymine (T) and guanine (G) in M-DNA. Analysis of the Zn 2p spectra also demonstrated that the concentration of Zn(2+) present under M-DNA conditions is consistent with Zn(2+) binding to both the phosphate backbone as well as replacing the imino protons of T or G in each base pair. After the M-DNA monolayer is washed with a buffer containing only Na(+) the Zn(2+) bound to the phosphate backbone is removed while the Zn(2+) bound internally still remains.

  15. The work function of sub-monolayer cesium-covered gold: A photoelectronspectroscopy study

    SciTech Connect

    LaRue, J.L.; White, J.D.; Nahler, N.H.; Liu, Z.; Sun, Y.; Pianetta, P.A.; Auerbach, D.J.; Wodtke, A.M.; /SLAC, SSRL /UC, Santa Barbara, Chem. Dept.

    2008-06-13

    Using visible and X-ray photoelectron spectroscopy we measured the work function of a Au(111) surface at a well-defined sub-monolayer coverage of Cs. For a Cs coverage producing a photoemission maximum with a He-Ne laser, the work function is 1.61 {+-} 0.08 eV consistent with previous assumptions used to analyze vibrationally promoted electron emission. A discussion of possible Cs layer structures is also presented.

  16. The stability of self-organized 1-nonanethiol-capped gold nanoparticle monolayer

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Xie, Si-shen; Yao, Jian-nian; Pang, Shi-jin; Gao, Hong-jun

    2001-08-01

    1-Nonanethiol-protected gold nanoparticles with the size of about 2 nm have been prepared by a wet chemical method through choosing a suitable ratio of Au:S (2.5:1). Size selective precipitation of nanoparticles has been used to narrow their size distribution, which facilitates the formation of an ordered nanoparticle close-packed structure. A Fourier transform infrared investigation provides the evidence of the encapsulation of Au nanoparticles by 1-nonanethiol while an ultraviolet-visible spectrum shows a broad absorption around 520 nm, corresponding to surface plasmon band of Au nanoparticles. X-ray photoelectron spectroscopy of the samples demonstrates the metallic state of the gold (Au0) and the existence of sulfur (S). The data from x-ray powder diffraction measurements confirm that the gold nanoparticles have the same face-centred cubic crystalline structure as the bulk gold phase. Finally, transmission electron microscopy (TEM) characterization indicates that the size of the monodisperse colloidal gold nanoparticles is about 2 nm and they can self-organize to form a two-dimensional hexagonal close-packed structure after evaporating a concentrated drop of nanoparticles-toluene solution on a carbon-coated TEM copper grid.

  17. Hydrophilic Cucurbit[7]uril-Pseudorotaxane-Anchored-Monolayer-Protected Gold Nanorods

    DTIC Science & Technology

    2013-03-20

    n]uril-based rotaxane or pseudorotaxane devices connected to gold electrode surfaces and spherical gold nanoparticles have previously been developed...PAL (blue), PAL@CB[7] (black), and RGNRs (red) recorded from a thin film coated onto glassy carbon electrodes in an electrolyte solution of Bu4NPF6...0.10 m) in acetonitrile with an Ag/AgCl (0.10 m) reference electrode . Scan rate: 0.05 V/s. Conclusions GNRs protected by a hydrophilic CB[7]-based-pseudo

  18. Sample Preconcentration Utilizing Nanofractures Generated by Junction Gap Breakdown Assisted by Self-Assembled Monolayer of Gold Nanoparticles

    PubMed Central

    Jen, Chun-Ping; Amstislavskaya, Tamara G.; Chen, Kuan-Fu; Chen, Yu-Hung

    2015-01-01

    The preconcentration of proteins with low concentrations can be used to increase the sensitivity and accuracy of detection. A nonlinear electrokinetic flow is induced in a nanofluidic channel due to the overlap of electrical double layers, resulting in the fast accumulation of proteins, referred to as the exclusion-enrichment effect. The proposed chip for protein preconcentration was fabricated using simple standard soft lithography with a polydimethylsiloxane replica. This study extends our previous paper, in which gold nanoparticles were manually deposited onto the surface of a protein preconcentrator. In the present work, nanofractures were formed by utilizing the self-assembly of gold-nanoparticle-assisted electric breakdown. This reliable method for nanofracture formation, involving self-assembled monolayers of nanoparticles at the junction gap between microchannels, also decreases the required electric breakdown voltage. The experimental results reveal that a high concentration factor of 1.5×104 for a protein sample with an extremely low concentration of 1 nM was achieved in 30 min by using the proposed chip, which is faster than our previously proposed chip at the same conditions. Moreover, an immunoassay of bovine serum albumin (BSA) and anti-BSA was carried out to demonstrate the applicability of the proposed chip. PMID:25970592

  19. Facile Attachment of TAT Peptide on Gold Monolayer Protected Clusters: Synthesis and Characterization

    PubMed Central

    Sosibo, Ndabenhle M.; Keter, Frankline K.; Skepu, Amanda; Tshikhudo, Robert T.; Revaprasadu, Neerish

    2015-01-01

    High affinity thiolate-based polymeric capping ligands are known to impart stability onto nanosized gold nanoparticles. Due to the stable gold-sulfur bond, the ligand forms a protective layer around the gold core and subsequently controls the physicochemical properties of the resultant nanogold mononuclear protected clusters (AuMPCs). The choice of ligands to use as surfactants for AuMPCs largely depends on the desired degree of hydrophilicity and biocompatibility of the MPCs, normally dictated by the intended application. Subsequent surface modification of AuMPCs allows further conjugation of additional biomolecules yielding bilayer or multilayered clusters suitable for bioanalytical applications ranging from targeted drug delivery to diagnostics. In this study, we discuss our recent laboratory findings on a simple route for the introduction of Trans-Activator of Transcription (TAT) peptide onto the surface of biotin-derivatised gold MPCs via the biotin-strepavidin interaction. By changing the surface loading of biotin, controlled amounts of TAT could be attached. This bioconjugate system is very attractive as a carrier in intercellular delivery of various delivery cargoes such as antibodies, proteins and oligonucleotides.

  20. A micro GC detector array based on chemiresistors employing various surface functionalized monolayer-protected gold nanoparticles.

    PubMed

    Jian, Rih-Sheng; Huang, Rui-Xuan; Lu, Chia-Jung

    2012-01-15

    Aspects of the design, fabrication, and characterization of a chemiresistor type of microdetector for use in conjunction with gas chromatograph are described. The detector was manufactured on silicon chips using microelectromechanical systems (MEMS) technology. Detection was based on measuring changes in resistance across a film comprised of monolayer-protected gold nanoclusters (MPCs). When chromatographic separated molecules entered the detector cell, the MPC film absorbed vapor and undergoes swelling, then the resistance changes accordingly. Thiolates were used as ligand shells to encapsulate the nano-gold core and to manipulate the selectivity of the detector array. The dimensions of the μ-detector array were 14(L)×3.9(W)×1.2(H)mm. Mixtures of eight volatile organic compounds with different functional groups and volatility were tested to characterize the selectivity of the μ-detector array. The detector responses were rapid, reversible, and linear for all of the tested compounds. The detection limits ranged from 2 to 111ng, and were related to both the compound volatility and the selectivity of the surface ligands on the gold nanoparticles. Design and operation parameters such as flow rate, detector temperature, and width of the micro-fluidic channel were investigated. Reduction of the detector temperature resulted in improved sensitivity due to increased absorption. When a wider flow channel was used, the signal-to-noise ratio was improved due to the larger sensing area. The extremely low power consumption and small size makes this μ-detector array potentially useful for the development of integrated μ-GC. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Arkachan: A new gold-bismuth-siderite-sulfide type of deposits in the West Verkhoyansky tin district, Yakutia

    NASA Astrophysics Data System (ADS)

    Gamyanin, G. N.; Vikent'eva, O. V.; Prokof'ev, V. Yu.; Bortnikov, N. S.

    2015-11-01

    The formation sequence of orebodies, chemical composition of gangue and ore minerals, fluid inclusions, REE patterns, 40Ar/39Ar isotopic age, and relationships of stable isotopes (C, O, S) in minerals of the Arkachan gold-bismuth-siderite-sulfide deposit have been studied. The deposit has been localized in the Kuranakh Anticlinorium of the Verkhoyansky Fold-Nappe Belt at the intersection of the near-meridional Kygyltas and the NE-trending North Tirekhtyakh faults. The orebodies are extended (>2 km) and steeply dipping zones of veins and veinlets are hosted in Carbonaceous and Permian sandstones and siltstones deformed in anticlines and cut through by dikes pertaining to diorite-granodiorite-granite association. The deposit was formed during hydrothermal-metamorphic, productive main gold, silver-polymetallic, and silver-antimony stages. The orebodies are largely composed of quartz and siderite; arsenopyrite, pyrite, and pyrrhotite are widespread; bismuthinite, chalcopyrite, sphalerite, galena, and bismuth sulfosalts (gustavite, cosalite, matildite) are less abundant. The REE patterns of carbonates and quartz are characterized by a negative Eu anomaly. Three types of fluid inclusions (FI) in quartz and carbonates are distinguished: (I) liquid H2O + CO2 ± CH4 + NaCl, (II) gaseous CO2 ± CH4, and (III) aqueous salt solutions. The homogenization temperature and salinity of FI I vary from 385 to 280°C and 18.8 to 26.2 wt % NaCl equiv, respectively, whereas in FI III these parameters vary from 261 to 324°C and 3.7 to 9.5 wt % NaCl equiv. The pressure is estimated at 1830 to 1060 bar. The δ18O of quartz II associated with siderite I, native gold, and sulfosalts changes from +13.6 to 16.3‰(SMOW); δ18O and δ13C of siderite I related to gold-ore stage vary from +13.6 to +17.7‰ (SMOW) and from-6.0 to-3.0 (PDB). A wide range of δ34S from-5.7 to 16.0‰ (CDT) has been obtained for sulfides. The isotopic 40Ar/39Ar age of muscovite is 101.9 ± 1.4 Ma. The isotopic

  2. Molecular Simulations of Gold Nanoparticles Coated With Self-Assembled Alkanethiolate Monolayers

    DTIC Science & Technology

    2006-11-01

    computed us- ing the Irving -Kirkwood pressure tensor [26]. The Irving - Kirkwood pressure tensor, equation 8, has contributions from two terms, namely the...surface tension. 6 S1 ri rj rA rB rij A B O Figure 8. Illustration of forces and posi- tion vectors used to calculate configurational term in Irving ...1000 K Surface Pressure Figure 9. Radial distribution of the normal component of the Irving -Kirkwood pressure tensor for bare 5nm gold nanoparticles at

  3. Determination of monolayer-protected gold nanoparticle ligand–shell morphology using NMR

    PubMed Central

    Liu, Xiang; Yu, Miao; Kim, Hyewon; Mameli, Marta; Stellacci, Francesco

    2012-01-01

    It is accepted that the ligand shell morphology of nanoparticles coated with a monolayer of molecules can be partly responsible for important properties such as cell membrane penetration and wetting. When binary mixtures of molecules coat a nanoparticle, they can arrange randomly or separate into domains, for example, forming Janus, patchy or striped particles. To date, there is no straightforward method for the determination of such structures. Here we show that a combination of one-dimensional and two-dimensional NMR can be used to determine the ligand shell structure of a series of particles covered with aliphatic and aromatic ligands of varying composition. This approach is a powerful way to determine the ligand shell structure of patchy particles; it has the limitation of needing a whole series of compositions and ligands' combinations with NMR peaks well separated and whose shifts due to the surrounding environment can be large enough. PMID:23149727

  4. Atom and Amine Adsorption on Flat and Stepped Gold Surfaces & Structure, Stability and Spin Ordering in Manganese Sulfide Clusters

    NASA Astrophysics Data System (ADS)

    Lewoczko, April D.

    In part I, we investigate gold catalysis in the chemistry of organonitrogen compounds. We examine the adsorption of oxygen, nitrogen and sulfur atoms on the gold (111), (100) and (211) surfaces using density functional theory (DFT). Sulfur atoms bind most strongly, followed by oxygen and nitrogen atoms with stronger adsorption for greater coordination to the surface. We see a trend of stronger adsorption to undercoordinated gold, but find it is non-universal with the adsorption strength trend: (111) > (211) > (100). We consider the diffusion of oxygen, nitrogen and sulfur adatoms and find facile long-range diffusion of oxygen atoms on the (100) surface. Lastly, we compare the adsorption of methylamine on gold to that of a selection of alkylamines, methanol and methanethiol. In each case, the ontop site is preferred with stronger adsorption at low coordinated gold. At oxygen atom coverages of 0.125 -- 0.25 ML on Au (111), we find cooperative adsorption of methylamine and oxygen atoms. Energetic costs for adsorbate tilt from the surface normal and rotation about the gold-nitrogen bond are calculated. While methylamine rotation is barrierless on the (111) and (211) surfaces, it has a low energetic barrier for the 0.125 ML and 0.25 ML O atom pre-covered Au (111) surfaces. In part II, we interpret the experimental mass spectrum of small gas phase manganese sulfide clusters using DFT and elucidate the role of ionicity and spin ordering in sizes with special stability, i.e. magic clusters. We first consider nine low lying minima (MnS)6 structures and reveal antiferromagnetic (AFM) spin ordering with a ˜0.1 eV/pair AFM energy benefit and a ˜0.1 A shrinkage of average Mn-Mn distances over clusters with ferromagnetic (FM) spin ordering. We calculate energetic barriers for interconversion between the two lowest lying (MnS)6 isomers and predict an elevated cluster melting temperature due to increased configurational entropy in a pre-melted state. Second, we demonstrate the

  5. The electric dipole moments in the ground states of gold oxide, AuO, and gold sulfide, AuS

    NASA Astrophysics Data System (ADS)

    Zhang, Ruohan; Yu, Yuanqin; Steimle, Timothy C.; Cheng, Lan

    2017-02-01

    The B2Σ- - X2Π3/2(0,0) bands of a cold molecular beam sample of gold monoxide, AuO, and gold monosulfide, AuS, have been recorded at high resolution both field free and in the presence of a static electric field. The observed electric field induced splittings and shifts were analyzed to produce permanent electric dipole moments, μ→ e l, of 2.94±0.06 D and 2.22±0.05 D for the X2Π3/2(v = 0) states of AuO and AuS, respectively. A molecular orbital correlation diagram is used to rationalize the trend in ground state μ→ e l values for AuX (X = F, Cl, O, and S) molecules. The experimentally determined μ→ e l are compared to those computed at the coupled-cluster singles and doubles (CCSD) level augmented with a perturbative inclusion of triple excitations (CCSD(T)) level of theory.

  6. Simulation and Modeling of Self-Assembled Monolayers of Carboxylic Acid Thiols on Flat and Nanoparticle Gold Surfaces

    SciTech Connect

    Techane, Sirnegeda D.; Baer, Donald R.; Castner, David G.

    2011-09-01

    Quantitative analysis of the 16-mercaptohexadecanoic acid self-assembled monolayer (C16 COOH-SAM) layer thickness on gold nanoparticles (AuNPs) was performed using simulation of electron spectra for surface analysis (SESSA) and x-ray photoelectron spectroscopy (XPS). XPS measurements of C16 COOH SAMs on flat gold surfaces were made at 9 different photoelectron take-off angles (5o to 85o in 5o increments), corrected using geometric weighting factors and then summed together to approximate spherical AuNPs. The SAM thickness and relative surface roughness (RSA) in SESSA were optimized to determine the best agreement between simulated and experimental surface composition. Based on the glancing angle results, it was found that inclusion of a hydrocarbon contamination layer on top the C16 COOH-SAM was necessary to improve the agreement between the SESSA and XPS results. For the 16 COOH-SAMs on flat Au surfaces, using a SAM thickness of 1.1Å/CH2 group, an RSA of 1.05 and a 1.5Å CH2-contamination overlayer (total film thickness = 21.5Å) for the SESSA calculations provided the best agreement with the experimental XPS data. After applying the appropriate geometric corrections and summing the SESSA flat surface compositions, the best fit results for the 16 COOH-SAM thickness and surface roughness on the AuNPs were determined to be 0.9Å/CH2 group and 1.06 RSA with a 1.5Å CH2-contamination overlayer (total film thickness = 18.5Å). The three angstrom difference in SAM thickness between the flat Au and AuNP surfaces suggests the alkyl chains of the SAM are slightly more tilted or disordered on the AuNP surfaces.

  7. Simulation and modeling of self-assembled monolayers of carboxylic acid thiols on flat and nanoparticle gold surfaces.

    PubMed

    Techane, Sirnegeda; Baer, Donald R; Castner, David G

    2011-09-01

    Quantitative analysis of the 16-mercaptohexadecanoic acid self-assembled monolayer (C16 COOH-SAM) layer thickness on gold nanoparticles (AuNPs) was performed using simulation of electron spectra for surface analysis (SESSA) software and X-ray photoelectron spectroscopy (XPS) experimental measurements. XPS measurements of C16 COOH-SAMs on flat gold surfaces were made at nine different photoelectron emission angles (5-85° in 10° increments), corrected using geometric weighting factors and then summed together to approximate spherical AuNPs. The SAM thickness and relative surface roughness (RSA) in SESSA were optimized to determine the best agreement between simulated and experimental surface composition. On the basis of the glancing-angle results, it was found that inclusion of a hydrocarbon-contamination layer on top the C16 COOH-SAM was necessary to improve the agreement between the SESSA and XPS results. For the 16 COOH-SAMs on flat Au surfaces, using a SAM thickness of 1.1 Å/CH(2) group, an RSA of 1.05, and a 1.5 Å CH(2)-contamination overlayer (total film thickness = 21.5 Å) for the SESSA calculations provided the best agreement with the experimental XPS data. After applying the appropriate geometric corrections and summing the SESSA flat-surface compositions, the best fit results for the 16 COOH-SAM thickness and surface roughness on the AuNPs indicated a slightly thinner overlayer with parameters of 0.9 Å/CH(2) group in the SAM, an RSA of 1.06 RSA, and a 1.5 Å CH(2)-contamination overlayer (total film thickness = 18.5 Å). The 3 Å difference in SAM thickness between the flat Au and AuNP surfaces suggests that the alkyl chains of the SAM are slightly more tilted or disordered on the AuNP surfaces.

  8. Electron Transfer Mechanism in Gold Surface Modified with Self-Assembly Monolayers from First Principles

    NASA Astrophysics Data System (ADS)

    Lima, Filipe C. D. A.; Iost, Rodrigo M.; Crespilho, Frank N.; Caldas, Marília J.; Calzolari, Arrigo; Petrilli, Helena M.

    2013-03-01

    We report the investigation of electron tunneling mechanism of peptide ferrocenyl-glycylcystamine self-assembled monolayers (SAMs) onto Au (111) electrode surfaces. Recent experimental investigations showed that electron transfer in peptides can occur across long distances by separating the donor from the acceptor. This mechanism can be further fostered by the presence of electron donor terminations of Fc terminal units on SAMs but the charge transfer mechanism is still not clear. We study the interaction of the peptide ferrocenyl-glycylcystamine on the Au (111) from first principles calculations to evaluate the electron transfer mechanism. For this purpose, we used the Kohn Sham (KS) scheme for the Density Functional Theory (DFT) as implemented in the Quantum-ESPRESSO suit of codes, using Vandebilt ultrasoft pseudopotentials and GGA-PBE exchange correlation functional to evaluate the ground-state atomic and electronic structure of the system. The analysis of KS orbital at the Fermi Energy showed high electronic density localized in Fc molecules and the observation of a minor contribution from the solvent and counter ion. Based on the results, we infer evidences of electron tunneling mechanism from the molecule to the Au(111). We acknowledge FAPESP for grant support. Also, LCCA/USP, RICE and CENAPAD for computational resources.

  9. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film.

    PubMed

    Chang, Chun-Chao; Yang, Kuang-Hsuan; Liu, Yu-Chuan; Yu, Chung-Chin; Wu, Yi-Hao

    2012-11-07

    As shown in the literature, electrochemical underpotential deposition (UPD) offers the ability to deposit up to a monolayer of one metal onto a more noble metal with a flat surface. In this work, we develop an electrochemical pathway to prepare more surface-enhanced Raman scattering (SERS)-active substrates with Ag UPD-modified Au nanoparticles (NPs) by using sonoelectrochemical deposition-dissolution cycles (SEDDCs). Encouragingly, the SERS of Rhodamine 6G (R6G) adsorbed on these Ag UPD-modified Au NPs exhibits a higher intensity by ca. 12-fold magnitude, as compared with that of R6G adsorbed on unmodified Au NPs. The prepared SERS-active substrate demonstrates a large Raman scattering enhancement for R6G with a detection limit of 2 × 10(-14) M and an enhancement factor of 5.0 × 10(8). Also, the strategy proposed in this work to improve the SERS effects by using UPD Ag based on SEDDCs has an effect on the smaller probe molecules of 2,2'-bipyridine (BPy).

  10. Inflammatory responses and cell adhesion to self-assembled monolayers of alkanethiolates on gold.

    PubMed

    Barbosa, Judite N; Barbosa, Mário A; Aguas, Artur P

    2004-06-01

    The acute inflammatory response and the adhesion of cells to self-assembled monolayers (SAMs) of well-defined surface chemistry was studied in vivo using a rodent air-pouch model of inflammation. SAMs with three different terminal functional groups (OH, COOH and CH3) were implanted in subcutaneous air pouches induced in BALB/c mice. After 24 h, inflammatory cells were recovered from the air pouches and the implants were removed and prepared for observation by scanning electron microscopy (SEM). The implants coated with OH and CH3, were found to cause the highest recruitment of inflammatory cells into the subcutaneous pouches. Polymorphonuclear neutrophils (PMNs) leukocytes predominated over mononuclear cells in inflammatory exudates of SAMs-coated implants, the opposite being found in uncoated implants (controls). CH3-coated implants induced the highest number of inflammatory cells and also the largest percentage of PMNs seen in the subcutaneous pouches. Control and OH-covered implants presented the higher densities of attached inflammatory cells detected by SEM. In contrast, the CH3-coated implants showed a very low density of cells adherent to the implant surface. We conclude that the chemical nature and the degree of hydrophobicity of the surface of implants modulate both the local acute inflammatory reaction and the adhesion of leukocytes.

  11. Self-assembled monolayers of ferrocene-substituted biphenyl ethynyl thiols on gold.

    PubMed

    Shaporenko, Andrey; Rössler, Katrin; Lang, Heinrich; Zharnikov, Michael

    2006-12-07

    Homogeneous and mixed [with biphenylthiol (BPT)] self-assembled monolayers (SAMs) of ferrocene-substituted biphenyl ethynyl thiols (Fc) were prepared on Au(111) substrates and characterized by several complementary spectroscopic techniques. The mixed films were fabricated either by subsequent immersion of the substrates into the BPT and Fc solutions or by immersion of the substrate into a mixed solution of BPT and Fc. The first procedure resulted in the preparation of high-quality mixed SAMs, in which the Fc molecules were stochastically distributed in the BPT matrix and well-separated from each other. The portion of these molecules in such films could be precisely varied from ca. 7 to 42% by selection of the immersion time in the BPT solution. The films prepared from the mixed solution exhibited a phase separation between the Fc and BPT constituents. These films contained mostly the Fc molecules ( approximately 80-90%), showing, thus, a significant deviation from the relative content of the target molecules in the primary solution (a 1:1 ratio). This finding shows that the Fc molecules, when competing with BPT, preferably adsorb onto Au(111) substrate, suggesting a significant impact of the ferrocene groups onto the structure-building interactions responsible for molecular self-assembly.

  12. Square Wave Voltammetry of TNT at Gold Electrodes Modified with Self-Assembled Monolayers Containing Aromatic Structures

    PubMed Central

    Trammell, Scott A.; Zabetakis, Dan; Moore, Martin; Verbarg, Jasenka; Stenger, David A.

    2014-01-01

    Square wave voltammetry for the reduction of 2,4,6-trinitrotoluene (TNT) was measured in 100 mM potassium phosphate buffer (pH 8) at gold electrodes modified with self-assembled monolayers (SAMs) containing either an alkane thiol or aromatic ring thiol structures. At 15 Hz, the electrochemical sensitivity (µA/ppm) was similar for all SAMs tested. However, at 60 Hz, the SAMs containing aromatic structures had a greater sensitivity than the alkane thiol SAM. In fact, the alkane thiol SAM had a decrease in sensitivity at the higher frequency. When comparing the electrochemical response between simulations and experimental data, a general trend was observed in which most of the SAMs had similar heterogeneous rate constants within experimental error for the reduction of TNT. This most likely describes a rate limiting step for the reduction of TNT. However, in the case of the alkane SAM at higher frequency, the decrease in sensitivity suggests that the rate limiting step in this case may be electron tunneling through the SAM. Our results show that SAMs containing aromatic rings increased the sensitivity for the reduction of TNT when higher frequencies were employed and at the same time suppressed the electrochemical reduction of dissolved oxygen. PMID:25549081

  13. Ordered Monolayer Gold Nano-urchin Structures and Their Size Induced Control for High Gas Sensing Performance

    NASA Astrophysics Data System (ADS)

    Sabri, Ylias M.; Kandjani, Ahmad Esmaielzadeh; Ippolito, Samuel J.; Bhargava, Suresh K.

    2016-04-01

    The synthesis of ordered monolayers of gold nano-urchin (Au-NU) nanostructures with controlled size, directly on thin films using a simple electrochemical method is reported in this study. In order to demonstrate one of the vast potential applications, the developed Au-NUs were formed on the electrodes of transducers (QCM) to selectively detect low concentrations of elemental mercury (Hg0) vapor. It was found that the sensitivity and selectivity of the sensor device is enhanced by increasing the size of the nanospikes on the Au-NUs. The Au-NU-12 min QCM (Au-NUs with nanospikes grown on it for a period of 12 min) had the best performance in terms of transducer based Hg0 vapor detection. The sensor had 98% accuracy, 92% recovery, 96% precision (repeatability) and significantly, showed the highest sensitivity reported to date, resulting in a limit of detection (LoD) of only 32 μg/m3 at 75 °C. When compared to the control counterpart, the accuracy and sensitivity of the Au-NU-12 min was enhanced by ~2 and ~5 times, respectively. The results demonstrate the excellent activity of the developed materials which can be applied to a range of applications due to their long range order, tunable size and ability to form directly on thin-films.

  14. Ordered Monolayer Gold Nano-urchin Structures and Their Size Induced Control for High Gas Sensing Performance

    PubMed Central

    Sabri, Ylias M.; Kandjani, Ahmad Esmaielzadeh; Ippolito, Samuel J.; Bhargava, Suresh K.

    2016-01-01

    The synthesis of ordered monolayers of gold nano-urchin (Au-NU) nanostructures with controlled size, directly on thin films using a simple electrochemical method is reported in this study. In order to demonstrate one of the vast potential applications, the developed Au-NUs were formed on the electrodes of transducers (QCM) to selectively detect low concentrations of elemental mercury (Hg0) vapor. It was found that the sensitivity and selectivity of the sensor device is enhanced by increasing the size of the nanospikes on the Au-NUs. The Au-NU-12 min QCM (Au-NUs with nanospikes grown on it for a period of 12 min) had the best performance in terms of transducer based Hg0 vapor detection. The sensor had 98% accuracy, 92% recovery, 96% precision (repeatability) and significantly, showed the highest sensitivity reported to date, resulting in a limit of detection (LoD) of only 32 μg/m3 at 75 °C. When compared to the control counterpart, the accuracy and sensitivity of the Au-NU-12 min was enhanced by ~2 and ~5 times, respectively. The results demonstrate the excellent activity of the developed materials which can be applied to a range of applications due to their long range order, tunable size and ability to form directly on thin-films. PMID:27090570

  15. Sub-monolayer silver loss from large gold nanospheres detected by surface plasmon resonance in the sigmoidal region.

    PubMed

    Lien, Jennifer; Peck, Kristin A; Su, Mengqi; Guo, Ting

    2016-10-01

    Nanosilver becomes labile upon entering the human body or the environment. This lability creates silver species with antimicrobial properties that make nanosilver attractive as active components in many consumer products, wound dressings, and agricultural applications. Because lability depends strongly on morphology, it is imperative to use a material with constant lability throughout kinetic studies so that accurate lability data can be acquired with efficient detection. Here 2.5nm thick silver was coated onto 90-nm diameter gold nanosphere cores and this surface silver layer was gradually removed by either chemical or X-ray radiation etching. The most sensitive region of a sigmoidal surface plasmon resonance (SPR) response as a function of silver thickness was found for the first time between 0.9- and 1.6-nm thick silver, revealing a new nanosilver standard for lability studies. The SPR peak position detection sensitivity is 8nm (SPR peak shift)/nm (silver thickness change) within this steepest region of the plasmon response curve whereas outside, sensitivity drops to 1nm/nm. Since the centroid of SPR profiles can be discerned with 0.25nm precision, the 8-nm/nm sensitivity means it is possible to detect a 0.3-angstrom or sub-monolayer change in silver thickness. The SPR response simulated by discrete dipole approximation (DDA) was an identical sigmoidal function between 0 and 2nm of silver coating. These findings were supported by several other analytical measurements, which confirmed no silver recoating during these etching processes.

  16. Thermo-kinetics study of laser-induced desorption of self-assembled monolayers from gold: case of laser micropatterning.

    PubMed

    Shadnam, Mohammad R; Kirkwood, Sean E; Fedosejevs, Robert; Amirfazli, A

    2005-06-23

    Laser-induced desorption of self-assembled monolayers (SAMs) from gold surfaces within context of the direct laser patterning methodology was investigated through combining results of a heat diffusion thermal model with desorption kinetics of alkanethiol SAMs. It was found that contrast plots of experimental scanning electron microscopy (SEM) images, which are correlated to surface coverage of SAMs desorbed after laser irradiation, agreed with the theoretically predicted surface composition of SAMs. The surface composition of SAM was then interpreted in terms of the wetting property of the resulting surface. The effect of incident laser beam power and size on the final spatial coverage of SAMs on the surface and feature sizes was investigated both experimentally and by modeling. Theoretical modeling and experimental evidence showed that the resulting feature sizes are wider when the surface is heated by a laser of higher power. Increasing the laser beam size results in broadening of feature sizes. Considering the correlation of the theoretical and experimental results, we concluded that the feature sizes are controllable in a predictable way (using the presented thermal-kinetics model) through varying laser beam power and beam size.

  17. Colloidal stability of self-assembled monolayer-coated gold nanoparticles: the effects of surface compositional and structural heterogeneity.

    PubMed

    Huang, Rixiang; Carney, Randy P; Stellacci, Francesco; Lau, Boris L T

    2013-09-17

    Surface heterogeneity plays an important role in controlling colloidal phenomena. This study investigated the self-aggregation and bacterial adsorption of self-assembled monolayer coated gold nanoparticles (AuNPs) with different surface compositional and structural heterogeneity. Evaluation was performed on AuNPs coated with (1) one ligand with charged terminals (MUS), (2) two homogeneously distributed ligands with respectively charged and nonpolar terminals (brOT) and (3) two ligands with respectively charged and nonpolar terminals with stripe-like distribution (OT). The brOT particles have less negative electrophoretic mobility (EPM) values, smaller critical coagulation concentration (CCC) and larger adsorption rate on Escherichia coli than that of AuNPs with homogeneously charged groups, in good agreement with DLVO predictions. Although the ligand composition on the surface of AuNPs is the same, OT particles have less negative EPM values and faster rate of bacterial adsorption, but much larger CCC compared to brOT. The deviation of OT particles from brOT and MUS in their self-aggregation behavior reflects the effects of surface heterogeneity on electrical double layer structures at the interface. Results from the present study demonstrated that, besides chemical composition, organization of ligands on particle surface is important in determining their colloidal stability.

  18. Inkjet-printed thiol self-assembled monolayer structures on gold: quality control and microarray electrode fabrication.

    PubMed

    Rianasari, Ina; Walder, Lorenz; Burchardt, Malte; Zawisza, Izabella; Wittstock, Gunther

    2008-08-19

    Laterally structured, self-assembled monolayers (SAMs) of different thiols (HS-R-X, R = (CH 2) 3-16, X = -CH 3, -COOH, -NH 2) on gold have been prepared by inkjet printing. The printer is a modified, low-cost desktop printer (Epson Stylus Photo R200), the ink is a 1 mM solution of the thiol in ethanol/glycerol (6:1). The quality of inkjet-printed large area SAMs obtained in this study is between that of a layer self-assembled from a thiol solution and that obtained by soft lithography, according to cyclic voltammetry, electrochemical impedance spectroscopy, scanning electrochemical microscopy (SECM), and polarization-modulated Fourier transform infrared reflection-absorption spectroscopy (PM IRRAS). For the first time, simultaneous printing of two different thiols in a single print job as an alternative to sequential printing and backfilling is demonstrated. The smallest structures consisting of conductive disks of 40 microm diameter were analyzed as single spots by SECM and as random array electrodes with different average disk-disk distance. Conductive band electrodes with variable bandwidth (300 microm to 1 cm) are presented, as well as a pH switchable band structure. As compared to stamping, inkjet printing allows for simultaneous multiple thiol printing in a single print job with the resolution limited only by the droplet size and the precision of the translation stage.

  19. Sensitive detection of clozapine using a gold electrode modified with 16-mercaptohexadecanoic acid self-assembled monolayer.

    PubMed

    Huang, Fei; Qu, Song; Zhang, Song; Liu, Baohong; Kong, Jilie

    2007-04-30

    Clozapine, an effective antipsychotic drug, was found generating a pair of redox peaks at about 0.33-0.4V (versus SCE) at 16-mercaptohexadecanoic acid (i.e. MHA) self-assembled monolayer (SAM) modified gold electrode (i.e. MHA/Au) in 0.05molL(-1) Tris-HCl (pH 8.1) buffer solution. Sensitive and quantitative measurement of clozapine based on anodic peak was established under optimum conditions. The anodic peak current was linear to clozapine concentration in the range from 1x10(-6) to 5x10(-5)molL(-1) with the detection limit of 7x10(-9)molL(-1). This method was successfully applied to the detection of clozapine in drug tablets and proved to be reliable compared with ultraviolet spectrophotometry (UV). The MHA SAM was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), contact angle goniometry, electrochemical impedance spectroscopy (EIS) and electrochemical probe.

  20. Model of vapor-induced resistivity changes in gold-thiolate monolayer-protected nanoparticle sensor films.

    PubMed

    Steinecker, William H; Rowe, Michael P; Zellers, Edward T

    2007-07-01

    An investigation of the modulation of charge transport through thin films of n-octanethiolate monolayer-protected gold nanoparticles (MPN) induced by the sorption of organic vapors is presented. A model is derived that allows predictions of MPN-coated chemiresistor (CR) responses from vapor-film partition coefficients, and analyte densities and dielectric constants. Calibrations with vapors of 28 compounds collected from an array of CRs and a parallel thickness-shear-mode resonator are used to verify assumptions inherent in the model and to assess its performance. Results afford insights into the nature of the vapor-MPN interactions, including systematic variations in apparent film swelling efficiencies, and show that the model can predict CR responses typically to within 24%. Using CRs of different dimensions, vapor sensitivities are found to be virtually independent of the MPN film volume over a range of 104 (device-area x MPN layer thickness). Sensitivities vary inversely with analyte vapor pressure similarly for the two sensor types, but the CR sensor affords significantly greater signal-to-noise ratios, yielding calculated detection limits in the low-part-per-billion concentration range for several of the analytes tested. The implications of these results for implementing MPN-coated CR arrays as detectors in microanalytical systems are considered.

  1. High-resolution sizing of monolayer-protected gold clusters by differential centrifugal sedimentation.

    PubMed

    Krpetić, Zeljka; Davidson, Adam M; Volk, Martin; Lévy, Raphaël; Brust, Mathias; Cooper, David L

    2013-10-22

    Differential centrifugal sedimentation (DCS) has been applied to accurately size ligand-protected gold hydrosols in the 10 to 50 nm range. A simple protocol is presented to correct for particle density variations due to the presence of the ligand shell, which is formed here by either polyethylene glycol-substituted alkane thiols (PEG-alkane thiols) of different chain length or oligopeptides. The method gives reliable data for all particle sizes investigated and lends itself to rapid routine sizing of nanoparticles. Unlike TEM, DCS is highly sensitive to small changes in the thickness of the organic ligand shell and can be applied to monitor shell thickness variations of as little as 0.1 nm on particles of a given core size.

  2. Stabilization of gold nanoparticles by 6-mercaptopurine monolayers. Effects of the solvent properties.

    PubMed

    Viudez, Alfonso J; Madueño, Rafael; Pineda, Teresa; Blázquez, Manuel

    2006-09-14

    6-Mercaptopurine-coated gold nanoparticles (6MP-AuNPs) have been prepared by modification of the nanoparticle surface with 6MP upon displacement of the protective layer of citrate anions. The modification has been studied by UV-vis and FTIR spectroscopies. A study of the stability of these 6MP-AuNPs in aqueous solutions as a function of ionic strength and pH has shown the importance of the charges on the stabilization. The protonation of N9 of the 6MP molecules brings about a sudden flocculation phenomenon. However, the flocculation is reversible upon changing the pH to values where the molecules become newly charged. Evidence of the competence between the interaction of capping solvent molecules and the attractive forces between particles is also shown in this paper.

  3. Optical Properties of Self-Ensemble Monolayers of Gold Metallic Nanostructures

    NASA Astrophysics Data System (ADS)

    Macuil, R. Delgado; Gayou, V. López; López, M. Rojas; Contreras, R. Molina; Servin, J. L. Garcí; Ramírez, J. F. Sánchez

    2008-04-01

    This work analyzes the optical properties of nanostructures metallic surfaces of gold, at different sizes, in glass silanized substrates. Silanized substrates were immersed in the colloid solution for one and half hour at room temperature and dried at room temperature for four hours. The optical properties were analyzed by three spectroscopy techniques and by TEM microscopy. UV/VIS was used to observe changes in absorption due to the aminopropiltrimethoxysilane added to the glass substrate and due to the colloid added to silanized substrate. Infrared vibrational spectroscopy in ATR mode was used to observe the new generation peaks due to substrate silanization and SEIRA effect due to the colloid added to silanized substrate. And finally Z-Scan technique was used to observe the nonlinear properties of these funtionalization metallic nanostructures in function of nanostructures size. TEM images confirm the sizes observed in the UV/VIS spectra.

  4. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Structural controls on hydrothermal alteration and ore mineralization

    USGS Publications Warehouse

    Berger, B.R.; Henley, R.W.

    2011-01-01

    High-sulfidation copper-gold lode deposits such as Chinkuashih, Taiwan, Lepanto, Philippines, and Goldfield, Nevada, formed within 1500. m of the paleosurface in volcanic terranes. All underwent an early stage of extensive advanced argillic silica-alunite alteration followed by an abrupt change to spatially much more restricted stages of fracture-controlled sulfide-sulfosalt mineral assemblages and gold-silver mineralization. The alteration as well as ore mineralization stages of these deposits were controlled by the dynamics and history of syn-hydrothermal faulting. At the Sulfate Stage, aggressive advanced argillic alteration and silicification were consequent on the in situ formation of acidic condensate from magmatic vapor as it expanded through secondary fracture networks alongside active faults. The reduction of permeability at this stage due to alteration decreased fluid flow to the surface, and progressively developed a barrier between magmatic-vapor expansion constrained by the active faults and peripheral hydrothermal activity dominated by hot-water flow. In conjunction with the increased rock strength resulting from alteration, subsequent fault-slip inversion in response to an increase in compressional stress generated new, highly permeable fractures localized by the embrittled, altered rock. The new fractures focused magmatic-vapor expansion with much lower heat loss so that condensation occurred. Sulfide Stage sulfosalt, sulfide, and gold-silver deposition then resulted from destabilization of vapor phase metal species due to vapor decompression through the new fracture array. The switch from sulfate to sulfide assemblages is, therefore, a logical consequence of changes in structural permeability due to the coupling of alteration and fracture dynamics rather than to changes in the chemistry of the fluid phase at its magmatic source. ?? 2010.

  5. Two dimensional dipolar coupling in monolayers of silver and gold nanoparticles on a dielectric substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Begin-Colin, Sylvie; Pichon, Benoît P.; Leuvrey, Cedric; Ihiawakrim, Dris; Rastei, Mircea; Schmerber, Guy; Vomir, Mircea; Bigot, Jean Yves

    2014-09-01

    The dimensionality of assembled nanoparticles plays an important role in their optical and magnetic properties, via dipolar effects and the interaction with their environment. In this work we develop a methodology for distinguishing between two (2D) and three (3D) dimensional collective interactions on the surface plasmon resonance of assembled metal nanoparticles. Towards that goal, we elaborate different sets of Au and Ag nanoparticles as suspensions, random 3D arrangements and well organized 2D arrays. Then we model their scattering cross-section using effective field methods in dimension n, including interparticle as well as particle-substrate dipolar interactions. For this modelling, two effective field medium approaches are employed, taking into account the filling factors of the assemblies. Our results are important for realizing photonic amplifier devices.The dimensionality of assembled nanoparticles plays an important role in their optical and magnetic properties, via dipolar effects and the interaction with their environment. In this work we develop a methodology for distinguishing between two (2D) and three (3D) dimensional collective interactions on the surface plasmon resonance of assembled metal nanoparticles. Towards that goal, we elaborate different sets of Au and Ag nanoparticles as suspensions, random 3D arrangements and well organized 2D arrays. Then we model their scattering cross-section using effective field methods in dimension n, including interparticle as well as particle-substrate dipolar interactions. For this modelling, two effective field medium approaches are employed, taking into account the filling factors of the assemblies. Our results are important for realizing photonic amplifier devices. Electronic supplementary information (ESI) available: Section 1: synthesis and characterization of silver and gold nanoparticles and Section 2: modeling of the 2D and 3D nanoparticles' optical response. See DOI: 10.1039/c4nr03292f

  6. Thermodynamic profiles at the solvated inorganic-organic interface: the case of gold-thiolate monolayers.

    PubMed

    Ravi, Venkataramanan; Binz, Jason M; Rioux, Robert M

    2013-09-11

    The thermodynamic adsorption profile at a solvated organic-inorganic interface is probed by following the binding and organization of carboxylic acid-terminated alkanethiols of varying chain lengths (C2, C3, and C6) to the surface of gold nanoparticles (NPs) (5.4 ± 0.7, 9.5 ± 0.6, and 19.4 ± 1.1 nm diameter) using isothermal titration calorimetry (ITC). We discuss the effect of alkyl chain length, temperature, and Au NP size on the energetics at an organic-inorganic interface. ITC allows for the quantification of the adsorption constant, enthalpy of adsorption, entropy of adsorption, and the binding stoichiometry in a single experiment. The thermodynamic parameters support a mechanism of stepwise adsorption of thiols to the surface of Au NPs and secondary ordering of the thiols at the organic-inorganic interface. The adsorption enthalpies are chain-length dependent; enthalpy becomes more exothermic as longer chains are confined, compensating for greater decreases in entropy with increasing chain length. We observe an apparent compensation effect: the negative ΔH is compensated by a negative ΔS as the thiols self-assemble on the Au NP surface. A comparison of the thermodynamic parameters indicates thiol-Au NP association is enthalpy-driven because of the large, exothermic enthalpies accompanied by an unfavorable entropic contribution associated with confinement of alkyl chains, reduced trans-gauche interconversion, and the apparent ordering of solvent molecules around the hydrophobic organic thiols (hydrophobic effect). Understanding the thermodynamics of adsorption at NP surfaces will provide critical insight into the role of ligands in directing size and shape during NP synthesis since thiols are a common ligand choice (i.e., Brust method). The ITC technique is applicable to a larger number of structure-directing ligands and solvent combinations and therefore should become an important tool for understanding reaction mechanisms in nanostructure synthesis.

  7. Mineralogical characterization of steel industry hazardous waste and refractory sulfide ores for zinc and gold recovery processing

    SciTech Connect

    Hagni, A.M.; Hagni, R.D. . Geology Geophysics Dept.)

    1994-04-01

    The steel industry generates dust as a waste product from high temperature electric arc furnaces (EAF), which is a major step in processing scrap metal into steel. The Environmental Protection Agency (EPA) has classified EAF dust as KO61 hazardous waste, due to its lead, cadmium, and chromium content. The dust also contains valuable zinc, averaging 19%. Detailed mineralogical characterization show the zinc is present as crystals of franklinite-magnetite-jacobsite solid solutions in calcium-iron-silicate glass spheres and as zincite mostly as very small individual spheres. Much of the chromium is present in an insoluble form in solid solution in the iron spinels. This microscopic research is a valuable tool in determining treatment processes for the 600,000 tons of dust generated annually in the US. Refractory gold ores, pyrite and arsenopyrite, have been studied to determine additional, cost-effective methods of processing. One technique under investigation involves roasting sulfide mineral particles to hematite to create porosity through which a leach can permeate to recover the gold. Portlandite, Ca(OH)[sub 2], is added to the roast for retention of hazardous sulfur and arsenic. Modern microscopic and spectroscopic techniques, such electron spectroscopy for chemical analysis, cathodoluminescence microscopy, and electron microprobe, have been applied, as well as reflected light and dark field microscopy, and scanning electron microscopy to determine the mineralogy of the sulfur, arsenic, and iron phases, and the extent of porosity, permeability, and oxidation state of the ore particles at various roasting temperatures. It is concluded that mineralogical techniques can be effectively applied to the solution of environmental problems.

  8. Electrochemical determination of calf thymus DNA on Zr(IV) immobilized on gold-mercaptopropionic-acid self-assembled monolayer.

    PubMed

    Shervedani, Reza Karimi; Pourbeyram, Sima

    2010-02-01

    An electrochemical biosensor, constructed by immobilization of Zr(IV) on the topside of gold-mercaptopropionic acid self-assembled monolayer (Au-MPA-Zr SAM), is developed for the sensitive quantification of calf thymus DNA (ct-DNA). The sensor is based on ionic adsorption of ct-DNA from its phosphate backbone onto the Au-MPA-Zr(IV) SAM electrode. Preparation, characterization, and application of the sensor for determination of ct-DNA are described by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Osteryoung square wave voltammetry (OSWV) in the presence of an appropriate redox reaction probe. Parameters influencing the method have been tested. A linear range calibration curve from 1.0x10(-4) to 5.0x10(-7) g mL(-1) ct-DNA with a detection limit of 9.5x10(-8) g mL(-1) and mean of relative standard deviations (R.S.D) of 2.5% for n=4 at each point was observed in the best conditions by EIS. Regeneration of the surface was carried out successfully by 5 min sonication in 0.1 M KOH solution and then 1 min incubation in 1.0x10(-3) M Zr(IV) with a good reproducibility, R.S.D=1.5% for n=4 as detected by EIS. The long-term storage stability of the electrode was also studied. 2009 Elsevier B.V. All rights reserved.

  9. Thiol-ene immobilisation of carbohydrates onto glass slides as a simple alternative to gold-thiol monolayers, amines or lipid binding.

    PubMed

    Biggs, Caroline I; Edmondson, Steve; Gibson, Matthew I

    2015-01-01

    Carbohydrate arrays are a vital tool in studying infection, probing the mechanisms of bacterial, viral and toxin adhesion and the development of new treatments, by mimicking the structure of the glycocalyx. Current methods rely on the formation of monolayers of carbohydrates that have been chemically modified with a linker to enable interaction with a functionalised surface. This includes amines, biotin, lipids or thiols. Thiol-addition to gold to form self-assembled monolayers is perhaps the simplest method for immobilisation as thiolated glycans are readily accessible from reducing carbohydrates in a single step, but are limited to gold surfaces. Here we have developed a quick and versatile methodology which enables the use of thiolated carbohydrates to be immobilised as monolayers directly onto acrylate-functional glass slides via a 'thiol-ene'/Michael-type reaction. By combining the ease of thiol chemistry with glass slides, which are compatible with microarray scanners this offers a cost effective, but also useful method to assemble arrays.

  10. Formation of Uniform and High-Coverage Monolayer Colloidal Films of Midnanometer-Sized Gold Particles over the Entire Surfaces of 1.5-in. Substrates.

    PubMed

    Yanagida, Sayaka; Nishiyama, Satoko; Sakamoto, Kenji; Fudouzi, Hiroshi; Miki, Kazushi

    2017-09-26

    We report a simple and facile method for fabricating monolayer colloidal films of alkanethiol-capped gold nanoparticles (AuNPs) on glass substrates. The new method consists of two sequential sonication processes. The first sonication is performed to obtain a well-dispersed state of alkanethiol-capped AuNPs in hexane/acetone in the presence of a substrate. After additional static immersion in the colloidal solution for 5 min, the substrate is subjected to sonication in hexane. By using this method, we succeeded in forming uniform and stable assemblies of midnanometer-sized AuNPs (14, 34, and 67 nm in diameter) over the entire surface of 10-mm square glass substrates in a short processing time of less than 10 min. It was also demonstrated that this method can be applied to a 1.5-in. octagonal glass substrate. The mechanism of monolayer colloidal film formation was discussed based on scanning electron microscopy observations at each preparation step. We found that the second sonication was the key process for uniform and high-surface-coverage colloidal film formation of midnanometer-sized AuNPs. The second sonication promotes the migration of AuNPs on top of the monolayer in contact with the substrate surface, decreasing both the multilayer region and the bare surface area. Eventually, a nearly perfect monolayer colloidal film is formed.

  11. DNA biosensor for detection of Salmonella typhi from blood sample of typhoid fever patient using gold electrode modified by self-assembled monolayers of thiols

    NASA Astrophysics Data System (ADS)

    Suryapratiwi, Windha Novita; Paat, Vlagia Indira; Gaffar, Shabarni; Hartati, Yeni Wahyuni

    2017-05-01

    Electrochemical biosensors are currently being developed in order to handle various clinical problems in diagnosing infectious diseases caused by pathogenic bacteria, or viruses. On this research, voltammetric DNA biosensor using gold electrode modified by thiols with self-assembled monolayers had been developed to detect a certain sequence of Salmonella typhi DNA from blood sample of typhoid fever patient. Thiol groups of cysteamines (Cys) and aldehyde groups from glutaraldehydes (Glu) were used as a link to increase the performance of gold electrode in detecting guanine oxidation signal of hybridized S. typhi DNA and ssDNA probe. Standard calibration method was used to determine analytical parameters from the measurements. The result shown that, the detection of S. typhi DNA from blood sample of typhoid fever patient can be carried out by voltammetry using gold electrode modified by self-assembled monolayers of thiols. A characteristic oxidation potential of guanine using Au/Cys/Gluwas obtained at +0.17 until +0.20 V. Limit of detection and limit of quantification from this measurements were 1.91μg mL-1 and 6.35 μg mL-1. The concentration of complement DNA from sample was 6.96 μg mL-1.

  12. X-ray photoelectron spectroscopy- and surface plasmon resonance-detected photo release of photolabile protecting groups from nucleoside self-assembled monolayers on gold surfaces.

    PubMed

    Drexler, Katja; Smirnova, Julia; Galetskaya, Marina; Voss, Sönke; Fonin, Mikhail; Boneberg, Johannes; Rüdiger, Ulrich; Leiderer, Paul; Steiner, Ulrich E

    2009-09-15

    The formation of self-assembled monolayers (SAMs) on gold by 2-(5-iodo-2-nitrophenyl) propoxycarbonyl (I-NPPOC)-protected thymidine with an attached mercaptohexyl succinate linker and the kinetics of photochemical release of the I-NPPOC group were monitored using X-ray photoelectron spectroscopy (XPS) and surface plasmon resonance (SPR) detection. In the XPS spectra, the iodine peaks allowed for specific and accurate monitoring of the presence and loss of I-NPPOC groups on the surface. In the SPR experiment, the overall signal change on photoillumination is in accord with a theoretical estimation of the density of I-NPPOC groups in a dense monolayer. The kinetics roughly follow a biexponential time dependence with two very different time constants, corresponding to photochemical quantum yields of 0.22 and 0.0032, respectively.

  13. Immobilization of Monolayers Incorporating Cu Funnel Complexes onto Gold Electrodes. Application to the Selective Electrochemical Recognition of Primary Alkylamines in Water.

    PubMed

    De Leener, Gaël; Evoung-Evoung, Ferdinand; Lascaux, Angélique; Mertens, Jeremy; Porras-Gutierrez, Ana Gabriela; Le Poul, Nicolas; Lagrost, Corinne; Over, Diana; Leroux, Yann R; Reniers, François; Hapiot, Philippe; Le Mest, Yves; Jabin, Ivan; Reinaud, Olivia

    2016-10-05

    The immobilization of a copper calix[6]azacryptand funnel complex on gold-modified electrodes is reported. Two different methodologies are described. One is based on alkyne-terminated thiol self-assembled monolayers. The other relies on the electrografting of a calix[4]arene platform bearing diazonium functionalities at its large rim and carboxylic functions at its small rim, which is post-functionalized with alkyne moieties. In both cases, the CuAAC electroclick methodology proved to be the method of choice for grafting the calix[6]azacryptand onto the monolayers. The surface-immobilized complex was fully characterized by surface spectroscopies and electrochemistry in organic and aqueous solvents. The Cu complex displays a well-defined quasi-reversible system in cyclic voltammetry associated with the Cu(II)/Cu(I) redox process. Remarkably, this redox process triggers a powerful selective detection of primary alkylamines in water at a micromolar level, based on a cavitary recognition process.

  14. An XPS study of gold deposition at low temperatures on sulfide minerals: Reducing agents

    SciTech Connect

    Hyland, M.M.; Bancroft, G.M. )

    1989-02-01

    The reduction of KAuCl{sub 4} to metallic gold by pyrite, high iron content sphalerite and galena was studied using surface analytical and solution techniques, including X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (A.A.). High resolution XPS of the reacted mineral showed that the mineral surface is the Au reducing agent. On galena and high iron sphalerite, a corroded layer forms rapidly as S{sup 2 minus} is oxidized to polysulfides, S{sup 2{minus}}{sub x}, and the metals are leached from the surface. Although Au is also reduced on pyrite, the formation of surface polysulfide is not concurrent with Au reduction. Solution analysis for the pyrite and high iron sphalerite reactions shows, however, that considerable sulfate is produced due to the oxidation of S{sup 2{minus}}, S{sup 2{minus}}{sub 2} or the intermediate polysulphide.

  15. A comparative study of hollow copper sulfide nanoparticles and hollow gold nanospheres on degradability and toxicity.

    PubMed

    Guo, Liangran; Panderi, Irene; Yan, Daisy D; Szulak, Kevin; Li, Yajuan; Chen, Yi-Tzai; Ma, Hang; Niesen, Daniel B; Seeram, Navindra; Ahmed, Aftab; Yan, Bingfang; Pantazatos, Dionysios; Lu, Wei

    2013-10-22

    Gold and copper nanoparticles have been widely investigated for photothermal therapy of cancer. However, degradability and toxicity of these nanoparticles remain concerns. Here, we compare hollow CuS nanoparticles (HCuSNPs) with hollow gold nanospheres (HAuNS) in similar particle sizes and morphology following intravenous administration to mice. The injected pegylated HCuSNPs (PEG-HCuSNPs) are eliminated through both hepatobiliary (67 percentage of injected dose, %ID) and renal (23 %ID) excretion within one month postinjection. By contrast, 3.98 %ID of Au is excreted from liver and kidney within one month after iv injection of pegylated HAuNS (PEG-HAuNS). Comparatively, PEG-HAuNS are almost nonmetabolizable, while PEG-HCuSNPs are considered biodegradable nanoparticles. PEG-HCuSNPs do not show significant toxicity by histological or blood chemistry analysis. Principal component analysis and 2-D peak distribution plots of data from matrix-assisted laser desorption ionization-time-of-flight imaging mass spectrometry (MALDI-TOF IMS) of liver tissues demonstrated a reversible change in the proteomic profile in mice receiving PEG-HCuSNPs. This is attributed to slow dissociation of Cu ion from CuS nanoparticles along with effective Cu elimination for maintaining homeostasis. Nonetheless, an irreversible change in the proteomic profile is observed in the liver from mice receiving PEG-HAuNS by analysis of MALDI-TOF IMS data, probably due to the nonmetabolizability of Au. This finding correlates with the elevated serum lactate dehydrogenase at 3 months after PEG-HAuNS injection, indicating potential long-term toxicity. The comparative results between the two types of nanoparticles will advance the development of HCuSNPs as a new class of biodegradable inorganic nanomaterials for photothermal therapy.

  16. Rapid and Label-Free Detection of Interferon Gamma via an Electrochemical Aptasensor Comprising a Ternary Surface Monolayer on a Gold Interdigitated Electrode Array.

    PubMed

    Ding, Shaowei; Mosher, Curtis; Lee, Xian Y; Das, Suprem R; Cargill, Allison A; Tang, Xiaohui; Chen, Bolin; McLamore, Eric S; Gomes, Carmen; Hostetter, Jesse M; Claussen, Jonathan C

    2017-02-24

    A label-free electrochemical impedance spectroscopy (EIS) aptasensor for rapid detection (<35 min) of interferon-gamma (IFN-γ) was fabricated by immobilizing a RNA aptamer capture probe (ACP), selective to IFN-γ, on a gold interdigitated electrode array (Au IDE). The ACP was modified with a thiol group at the 5' terminal end and subsequently co-immobilized with 1,6-hexanedithiol (HDT) and 6-mercapto-1-hexanolphosphate (MCH) to the gold surface through thiol-gold interactions. This ACP/HDT-MCH ternary surface monolayer facilitates efficient hybridization with IFN-γ and displays high resistance to nonspecific adsorption of nontarget proteins [i.e., fetal bovine serum (FBS) and bovine serum albumin (BSA)]. The Au IDE functionalized with ACP/HDT-MCH was able to measure IFN-γ in actual FBS solution with a linear sensing range from 22.22 pM to 0.11 nM (1-5 ng/mL) and a detection limit of 11.56 pM. The ability to rapidly sense IFN-γ within this sensing range makes the developed electrochemical platform conducive toward in-field disease detection of a variety of diseases including paratuberculosis (i.e., Johne's Disease). Furthermore, experimental results were numerically validated with an equivalent circuit model that elucidated the effects of the sensing process and the influence of the immobilized ternary monolayer on signal output. This is the first time that ternary surface monolayers have been used to selectively capture/detect IFN-γ on Au IDEs.

  17. Selective surface activation of a functional monolayer for the fabrication of nanometer scale thiol patterns and directed self-assembly of gold nanoparticles.

    PubMed

    Fresco, Zachary M; Fréchet, Jean M J

    2005-06-15

    Application of a voltage bias between the tip of an atomic force microscope (AFM) and a silicon substrate causes the localized modification of a specially designed self-assembled monolayer (SAM), transforming a surface-bound thiocarbonate into a surface-bound thiol. The resulting surface-bound thiols are used to direct the patternwise self-assembly of gold nanoparticles (AuNPs). This methodology is applied to deposit individual AuNPs onto a surface with nanometer precision and to produce 10 nm lines of closely spaced AuNPs that are a single nanoparticle in width.

  18. Platinum-group element, Gold, Silver and Base Metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Noril'sk, Russia

    USGS Publications Warehouse

    Barnes, S.-J.; Cox, R.A.; Zientek, M.L.

    2006-01-01

    Concentrations of Ag, Au, Cd, Co, Re, Zn and Platinum-group elements (PGE) have been determined in sulfide minerals from zoned sulfide droplets of the Noril'sk 1 Medvezky Creek Mine. The aims of the study were; to establish whether these elements are located in the major sulfide minerals (pentlandite, pyrrhotite, chalcopyrite and cubanite), to establish whether the elements show a preference for a particular sulfide mineral and to investigate the model, which suggests that the zonation in the droplets is caused by the crystal fractionation of monosulfide solid solution (mss). Nickel, Cu, Ag, Re, Os, Ir, Ru, Rh and Pd, were found to be largely located in the major sulfide minerals. In contrast, less than 25% of the Au, Cd, Pt and Zn in the rock was found to be present in these sulfides. Osmium, Ir, Ru, Rh and Re were found to be concentrated in pyrrhotite and pentlandite. Palladium and Co was found to be concentrated in pentlandite. Silver, Cd and Zn concentrations are highest in chalcopyrite and cubanite. Gold and platinum showed no preference for any of the major sulfide minerals. The enrichment of Os, Ir, Ru, Rh and Re in pyrrhotite and pentlandite (exsolution products of mss) and the low levels of these elements in the cubanite and chalcopyrite (exsolution products of intermediate solid solution, iss) support the mss crystal fractionation model, because Os, Ir, Ru, Rh and Re are compatible with mss. The enrichment of Ag, Cd and Zn in chalcopyrite and cubanite also supports the mss fractionation model these minerals are derived from the fractionated liquid and these elements are incompatible with mss and thus should be enriched in the fractionated liquid. Gold and Pt do not partition into either iss or mss and become sufficiently enriched in the final fractionated liquid to crystallize among the iss and mss grains as tellurides, bismithides and alloys. During pentlandite exsolution Pd appears to have diffused from the Cu-rich portion of the droplet into

  19. Geologic setting and genesis of the Mule Canyon low-sulfidation epithermal gold-silver deposit, north-central Nevada

    USGS Publications Warehouse

    John, D.A.; Hofstra, A.H.; Fleck, R.J.; Brummer, J.E.; Saderholm, E.C.

    2003-01-01

    /or marcasite veins. Ore minerals consist mostly of electrum and Ag sulfide and selenide minerals, with minor to major amounts of pyrite, marcasite, and arsenopyrite, and local stibnite. Both types of ores have similar geochemical signatures, characterized by high Au, Ag, As, Sb, and Se contents, locally high Hg, Mo, Tl, and W contents, and low Cu, Pb, and Zn contents. Stable isotope data indicate that ore fluids consisted dominantly of meteoric water that evolved by deep circulation through Paleozoic sedimentary rocks at low water/rock ratios (about 1) and high temperatures (>200??C). Calculated isotopic compositions of ore fluids are ??18OH2O = -3 to -7 per mil, ??DH2O = -107 to -124 per mil, ??13CCO2 = 0 to -6 per mil, and ??34SH2S = -3 to +8 per mil. The ore fluids obtained much of their H2S and CO2 and probably scavenged ore metals and trace elements from the Paleozoic sedimentary rocks. Some H2S and CO2 may have been derived from degassing Miocene magmas. Mule Canyon formed at shallow depths, probably about 100 m below the paleosurface. Ore fluids were dilute, nearly neutral in pH, reduced, H2S-rich, and CO2-bearing. Peak temperatures in ore zones reached 230?? to 265??C at nearly lithostatic pressures when some crystalline quartz ?? adularia precipitated, but most ore formed at temperatures <200??C at near hydrostatic pressures and was accompanied by precipitation of opaline and chalcedonic silica ?? adularia ?? calcite and dolomite. Deposition of gold in As-rich overgrowths on pyrite and/or marcasite in disseminated ores occurred owing to decreasing H2S in the ore fluids resulting from sulfidation reactions. Later electrum and Ag selenide precipitation in open spaces occurred owing to boiling, loss of H2S to the vapor phase, and cooling. Mule Canyon is similar to most other low-sulfidation Au-Ag deposits associated with Miocene tholeiitic bimodal basalt-rhyolite magmatism in the Great Basin, such as Sleeper, Midas, and Buckhorn. Major differences at Mule Canyon are

  20. The characterization of organic monolayers at gold surfaces using scanning tunneling microscopy and atomic force microscopy correlation with macrostructural properties

    SciTech Connect

    Alves, C.A.

    1992-09-09

    Monolayer films formed by self-assembly of organothiols at epitaxially grown Au(111) films at mica were examined in air using scanning tunneling (STM) and atomic force microscopies (AFM). n-Alkanethiolate monolayers exhibit a hexagonal packing arrangement with nearest-neighbor and next-nearest-neighbor spacings of 0.50 and 0.87 nm. This arrangement is consistent with the ({radical}3 {times} {radical}3)R30{degrees} adlayer structure at Au(111). STM reveals the structure of the Au-bound sulfur, while AFM details the structure at the monolayer/air interface, revealing that the order at the Au-S interface is retained up to the monolayer/air interface. The investigation of the self-assembled CF{sub 3}(CF{sub 2})7(CH{sub 2}){sub 2}SH monolayer at Au(lll) by AFM reveals a (2 {times} 2) adlayer structure, with nearest-neighbor and next-nearest-neighbor spacings of 0.58 {plus_minus} 0.02 nm and 1.0 {plus_minus} 0.02 nm, respectively. This is consistent with the larger van der Waals diameter of the fluorinated chain. Coverage of this fluorinated thiolate monolayer is (6.3{plus_minus}0.8) {times} 10{sup {minus}10} mol/cm{sup 2}, consistent with the expected 0.25 monolayer coverage of the (2 {times} 2) adlayer structure at Au(l11). Infrared reflection spectroscopy also confirm this. Upon prolonged exposure to air, the thiolate species is oxidized to elemental sulfur in the forms of cyclooctasulfur (cyclo-S{sub 8}) and other allotropes. STM reveals square structures on aged thiolate monolayers. Dimensions of these squares (0.40--0.50 rum per side) are close to those of cyclo-S{sub 8}. Electrochemical reductive desorption experiments also reveal a change in the surface species with time, with a second desorption wave.

  1. The characterization of organic monolayers at gold surfaces using scanning tunneling microscopy and atomic force microscopy correlation with macrostructural properties

    NASA Astrophysics Data System (ADS)

    Alves, C. A.

    1992-09-01

    Monolayer films formed by self-assembly of organothiols at epitaxially grown Au(111) films at mica were examined in air using scanning tunneling (STM) and atomic force microscopies (AFM). n-Alkanethiolate monolayers exhibit a hexagonal packing arrangement with nearest-neighbor and next-nearest-neighbor spacings of 0.50 and 0.87 nm. This arrangement is consistent with (the square root of 3 x the square root of 3)R30 deg adlayer structure at Au(111). STM reveals the structure of the Au-bound sulfur, while AFM details the structure at the monolayer/air interface, revealing that the order at the Au-S interface is retained up to the monolayer/air interface. The investigation of the self-assembled (CF3CF2)7(CH2)2SH monolayer at Au(111) by AFM reveals a (2 x 2) adlayer structure, with nearest-neighbor and next-nearest-neighbor spacings of 0.58 plus or minus 0.02 nm and 1.0 plus or minus 0.02 nm, respectively. This is consistent with the larger van der Waals diameter of the fluorinated chain. Coverage of this fluorinated thiolate monolayer is (6.3 plus or minus 0.8) x 10(exp -10) mol/cm(sup 2), consistent with the expected 0.25 monolayer coverage of the (2 x 2) adlayer structure at Au(111). Infrared reflection spectroscopy also confirmed this. Upon prolonged exposure to air, the thiolate species is oxidized to elemental sulfur in the forms of cyclooctasulfur (cyclo-S8) and other allotropes. STM reveals square structures on aged thiolate monolayers. Dimensions of these squares (0.40-0.50 nm per side) are close to those of cyclo-S8. Electrochemical reductive desorption experiments also reveal a change in the surface species with time, with a second desorption wave.

  2. The characterization of organic monolayers at gold surfaces using scanning tunneling microscopy and atomic force microscopy correlation with macrostructural properties

    SciTech Connect

    Alves, C.A.

    1992-09-09

    Monolayer films formed by self-assembly of organothiols at epitaxially grown Au(111) films at mica were examined in air using scanning tunneling (STM) and atomic force microscopies (AFM). n-Alkanethiolate monolayers exhibit a hexagonal packing arrangement with nearest-neighbor and next-nearest-neighbor spacings of 0.50 and 0.87 nm. This arrangement is consistent with the ([radical]3 [times] [radical]3)R30[degrees] adlayer structure at Au(111). STM reveals the structure of the Au-bound sulfur, while AFM details the structure at the monolayer/air interface, revealing that the order at the Au-S interface is retained up to the monolayer/air interface. The investigation of the self-assembled CF[sub 3](CF[sub 2])7(CH[sub 2])[sub 2]SH monolayer at Au(lll) by AFM reveals a (2 [times] 2) adlayer structure, with nearest-neighbor and next-nearest-neighbor spacings of 0.58 [plus minus] 0.02 nm and 1.0 [plus minus] 0.02 nm, respectively. This is consistent with the larger van der Waals diameter of the fluorinated chain. Coverage of this fluorinated thiolate monolayer is (6.3[plus minus]0.8) [times] 10[sup [minus]10] mol/cm[sup 2], consistent with the expected 0.25 monolayer coverage of the (2 [times] 2) adlayer structure at Au(l11). Infrared reflection spectroscopy also confirm this. Upon prolonged exposure to air, the thiolate species is oxidized to elemental sulfur in the forms of cyclooctasulfur (cyclo-S[sub 8]) and other allotropes. STM reveals square structures on aged thiolate monolayers. Dimensions of these squares (0.40--0.50 rum per side) are close to those of cyclo-S[sub 8]. Electrochemical reductive desorption experiments also reveal a change in the surface species with time, with a second desorption wave.

  3. Gold in the Brunswick No. 12 volcanogenic massive sulfide deposit, Bathurst Mining Camp, Canada: Evidence from bulk ore analysis and laser ablation ICP-MS data on sulfide phases

    NASA Astrophysics Data System (ADS)

    McClenaghan, Sean H.; Lentz, David R.; Martin, Jillian; Diegor, Wilfredo G.

    2009-07-01

    pyrite ( n = 97) from the north end of the Main Zone average 2.6 ppm Au and range from the detection limit (0.015 ppm) to 21 ppm. Overall, these analyses reveal a distinct Au-Sb-As-Ag-Hg-Mn association within pyrite grains. Gold is strongly enriched in large pseudo-primary masses of pyrite that exhibit relict banding and fine-grained cores; smaller euhedral pyrite porphyroblasts, and euhedral rims of metamorphic origin surrounding the pyrite masses, contain much less Au, Sb, Ag, As, and Sn. Arsenopyrite, occurring chiefly as late porphyroblasts, contains less Au, averaging 1.0 ppm and ranging from the detection limit (0.027 ppm) to 6.9 ppm. Depth profiles for single-spot laser ablation ICP-MS analyses of pyrite and arsenopyrite display uniform values of Au and an absence of discrete microscopic inclusions of Au-bearing minerals, which is consistent with chemically bonded Au in the sulfide structure. The pervasive correlation of Au with Sn in the Zn-Pb-rich banded sulfide facies suggests similar hydrothermal behavior during the waxing stages of deposition on the seafloor. Under high temperature (>350ºC) and moderate- to low-pH conditions, Au and Sn in hydrothermal fluids would be transported as chlorocomplexes. An abrupt decrease in temperature and aH2S, accompanied by an increase in fO2 and pH during mixing with seawater, would lead to the simultaneous destabilization of both Au and Sn chlorocomplexes. The enrichment of Au in fine-grained laminated sulfides on the periphery of the deposit, accompanied by sporadic occurrences of barite and Fe-poor sphalerite, supports lower hydrothermal fluid temperatures analogous to white smoker activity on the flanks of a large volcanogenic massive sulfide system. In lower temperature (<350ºC) and mildly acidic hydrothermal fluids, Au would be transported by thiocomplexes, which exhibit multifunctional (retrograde-prograde) solubility and a capacity to mobilize Au to the outer parts of the sulfide mound. The sluggish nature of this

  4. Gold

    USGS Publications Warehouse

    Kirkemo, Harold; Newman, William L.; Ashley, Roger P.

    1998-01-01

    Through the ages, men and women have cherished gold, and many have had a compelling desire to amass great quantities of it -- so compelling a desire, in fact, that the frantic need to seek and hoard gold has been aptly named "gold fever." Gold was among the first metals to be mined because it commonly occurs in its native form -- that is, not combined with other elements -- because it is beautiful and imperishable, and because exquisite objects can be made from it.

  5. Electrochemical immunosensor modified with self-assembled monolayer of 11-mercaptoundecanoic acid on gold electrodes for detection of benzo[a]pyrene in water.

    PubMed

    Ahmad, Azrilawani; Moore, Eric

    2012-12-21

    Well-oriented bio-conjugates on gold electrode surfaces will indirectly influence the molecular recognition of antigens to surface bound antibodies thus improving the detection performance of electrochemical immunosensors. This paper describes the modification of self-assembled monolayers (SAMs) on gold electrode surface with 11-mercaptoundecanoic acid (11-MUA). Activation of carboxylic acid terminal was performed by reaction of a mixture of water soluble carbodiimide and N-hydrosuccinimide (NHS) on the electrode surfaces. Characterisation of the SAM formation on the gold electrode was performed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and contact angle measurements. An amperometric immunosensor was developed for the screening of polycyclic aromatic hydrocarbons (PAHs) in water. The system consists of gold as the working electrode, platinum as the counter electrode and a Ag/AgCl reference electrode. This three electrode system is integrated on a single chip. The measurement employs the enzyme-linked immunosorbent assay (ELISA) principle. Benzo[a]pyrene (BaP) was detected using an immunological reaction by measuring the alkaline phosphatase (AP) enzymatic reaction towards the substrate para-amino phenyl phosphate (pAPP). A competitive assay was performed within the electrode using AP as the labelled-enzyme. A lower limit of detection (5.6 ng ml(-1)) of BaP was achieved after the activation of the mixture of carbodiimide and succinimide with the alkanethiol SAM on the gold electrode in comparison to that obtained for the unmodified electrode (14.2 ng ml(-1)). The developed surface functionalised sensor demonstrated acceptable reproducibility and good stability, with a wide linear response to BaP (4-140 ng ml(-1)).

  6. Laboratory partitioning of platinum-group elements (PGE) and gold with application to magmatic sulfide PGE deposits

    NASA Astrophysics Data System (ADS)

    Fleet, M. E.; Crocket, J. H.; Liu, Menghua; Stone, W. E.

    1999-06-01

    Apparent diversity in laboratory partitioning of platinum-group elements (PGE)-Au between (Fe,Ni)-sulfide liquid and S-saturated basaltic melt is resolved by recognizing the marked control exerted by variation in metal/S ratio of the sulfide liquid. Partition coefficients ( D) increase markedly for Os, Ir and Pd and somewhat for Pt with increase in S content. In addition, the partitioning is markedly dependent on concentration of PGE-Au in the sulfide fraction, for all precious metals in metal-rich sulfide, and for Ru, Pt and Pd in relatively S-rich sulfide. Reversal of partitioning of PGE-Au is presently demonstrated for experiments with metal-rich sulfide liquids. Erratic partitioning behaviour, with anomalously high D(PGE-Au) values, is minimised by degassing starting materials. Summary D(PGE-Au) values for metal-rich sulfide liquids and near-natural PGE-Au abundances are: Os(2.2), Ir(1.8), Ru(2.4), Pt(1.4), Pd(2.9), Au(0.9) (×10 3) for the CCO oxygen buffer and molar Ni/(Fe+Ni)=0.02, and Os(3.7), Ir(3.2), Ru(4.4), Pt(4.6), Pd(5.0), Au(3.0) (×10 3) for the IQF buffer and Ni/(Fe+Ni)=0.12. Thus, PGE-Au would not be extensively fractionated for equilibrium between sulfide and deep mantle melts. For more S-rich sulfide liquids (WM oxygen buffer) and 100-1000 ppm in the sulfide, D(PGE-Au) values are: Os(30), Ir(26), Ru(6.4), Pt(10), Pd(17) (×10 3) at Ni/(Fe+Ni)=0.36, and Os(10), Ir(51), Ru(3.5), Pt(13), Pd(25), Au (1.2) (×10 3) at Ni/(Fe+Ni)=0.66. The laboratory partitioning is notably differential within the PGE-Au group, with relatively high Ds for Ir and Pd and low Ds for Ru and Au. Although separation of an early-magmatic sulfide liquid would result in significant concentration of some PGE (e.g., Ir and Pd), sulfide liquid immiscibility alone would not account for the high abundance of PGE-Au in the reef deposits of the Bushveld and Stillwater Complexes.

  7. Colloidal origin of colloform-banded textures in the Paleogene low-sulfidation Khan Krum gold deposit, SE Bulgaria

    NASA Astrophysics Data System (ADS)

    Marinova, Irina; Ganev, Valentin; Titorenkova, Rositsa

    2014-01-01

    -banding is enriched (in descending order) in Bi, Te, Cu, Fe, Pb, Au, As, U, Ba, Zn, Mg, Cr, Al, Tl, Na, K, and Th, and is slightly depleted in Si, Ti, Se, Ag, and Sb in comparison with the electrum-poor macro-bands. Ca displayed equal abundances in both macro- and micro-bands. The highest grades of electrum correspond to the highest abundances of Fe, As, Cu, Pb, Zn, Bi, and Te, which have deposited as sulfides and tellurides, thus revealing the voluminous electrum deposition in response to a significant decrease of sulfur and tellurium activities, and transport of gold and silver in the paleofluids in the form of sulfuric and telluric complexes. The epithermal Khan Krum deposit is Au dominant, Bi and Te rich, thus indicating its relationship to an igneous source.

  8. Redistribution of elements between wastes and organic-bearing material in the dispersion train of gold-bearing sulfide tailings: Part I. Geochemistry and mineralogy.

    PubMed

    Saryg-Ool, B Yu; Myagkaya, I N; Kirichenko, I S; Gustaytis, M A; Shuvaeva, O V; Zhmodik, S M; Lazareva, E V

    2017-03-01

    Migration and redistribution of elements during prolonged interaction of cyanide wastes with the underlying natural organic-bearing material have been studied in two ~40cm deep cores that sample primary ores and their weathering profile (wastes I and II, respectively) in the dispersion train of gold-bearing sulfide tailings in Siberia. Analytical results of SR-XRF, whole-rock XRF, AAS, CHNS, and SEM measurements of core samples show high K, Sr, Ti, and Fe enrichments and correlation of P2O5 and Mn with LOI and Corg. Organic material interlayered or mixed with the wastes accumulates Cu, Zn, Se, Cd, Ag, Au, and Hg. The peat that contacts wastes II bears up to 3wt.% Zn, 1000g/t Se, 100g/t Cd, and 8000g/t Hg. New phases of Zn and Hg sulfides and Hg selenides occur as abundant sheaths over bacterial cells suggesting microbial mediation in sorption of elements. Organic-bearing material in the cores contains 10-30g/t Au in 2-5cm thick intervals, both within and outside the intervals rich in sulfides and selenides. Most of gold is invisible but reaches 345g/t and forms 50nm to 1.5μm Au(0) particles in a thin 2-3cm interval of organic remnants mixed with wastes I. Vertical and lateral infiltration of AMD waters in peat and oxidative dissolution of wastes within the dispersion train of the Ursk tailings lead to redistribution of elements and their accumulation by combined physical (material's permeability, direction AMD), chemical (complexing, sorption by organic matter and Fe(III) hydroxides) and biochemical (metabolism of sulfate-reducing bacteria) processes. The accumulated elements form secondary sulfates, and Hg and Zn selenides. The results provide insights into accumulation of elements in the early history of coal and black shale deposits and have implications for remediation of polluted areas and for secondary enrichment technologies.

  9. Genesis of sediment-hosted disseminated-gold deposits by fluid mixing and sulfidization: chemical-reaction-path modeling of ore- depositional processes documented in the Jerritt Canyon district, Nevada

    USGS Publications Warehouse

    Hofstra, A.H.

    1991-01-01

    Integrated geologic, geochemical, fluid-inclusion, and stable-isotope studies of the gold deposits in the Jerritt Canyon district, Nevada, provide evidence that gold deposition was a consequence of both fluid mixing and sulfidization of host-rock iron. Chemical-reaction-path models of these ore-depositional processes confirm that the combination of fluid mixing, including simultaneous cooling, dilution, and oxidation of the ore fluid, and wall-rock reaction, with sulfidization of reactive iron in the host rock, explains the disseminated nature and small size of the gold and the alteration zonation, mineralogy, and geochemistry observed at Jerritt Canyon and at many other sediment-hosted disseminated gold deposits. -Authors

  10. Mixed self-assembled monolayers of alkanethiolates on ultrasmooth gold do not exhibit contact-angle hysteresis.

    PubMed

    Gupta, Pooja; Ulman, Abraham; Fanfan, Stephanie; Korniakov, Alexander; Loos, Katja

    2005-01-12

    We present the first study of mixed alkanethiolate SAMs on ultrasmooth gold surfaces. By eliminating surface roughness, it became possible, for the first time, to investigate wetting properties as a function of surface chemical composition. In three different surface compositions, it was found that contact-angle hysteresis apparently vanished. This suggests that surface chemical heterogeneity does not contribute to contact-angle hysteresis in mixed SAMs on ultrasmooth gold surfaces.

  11. Fast, simple, combinatorial routes to the fabrication of reusable, plasmonically active gold nanostructures by interferometric lithography of self-assembled monolayers.

    PubMed

    Tsargorodska, Anna; El Zubir, Osama; Darroch, Brice; Cartron, Michaël L; Basova, Tamara; Hunter, C Neil; Nabok, Alexei V; Leggett, Graham J

    2014-08-26

    We describe a fast, simple method for the fabrication of reusable, robust gold nanostructures over macroscopic (cm(2)) areas. A wide range of nanostructure morphologies is accessible in a combinatorial fashion. Self-assembled monolayers of alkylthiolates on chromium-primed polycrystalline gold films are patterned using a Lloyd's mirror interferometer and etched using mercaptoethylamine in ethanol in a rapid process that does not require access to clean-room facilities. The use of a Cr adhesion layer facilitates the cleaning of specimens by immersion in piranha solution, enabling their repeated reuse without significant change in their absorbance spectra over two years. A library of 200 different nanostructures was prepared and found to exhibit a range of optical behavior. Annealing yielded structures with a uniformly high degree of crystallinity that exhibited strong plasmon bands. Using a combinatorial approach, correlations were established between the preannealing morphologies (determined by the fabrication conditions) and the postannealing optical properties that enabled specimens to be prepared "to order" with a selected localized surface plasmon resonance. The refractive index sensitivity of gold nanostructures formed in this way was found to correlate closely with measurements reported for structures fabricated by other methods. Strong enhancements were observed in the Raman spectra of tetra-tert-butyl-substituted phthalocyanine. The shift in the position of the plasmon band after site-specific attachment of histidine-tagged green fluorescent protein (His-GFP) and bacteriochlorophyll a was measured for a range of nanostructured films, enabling the rapid identification of the one that yielded the largest shift. This approach offers a simple route to the production of durable, reusable, macroscopic arrays of gold nanostructures with precisely controllable morphologies.

  12. Electron and ion transfer through multilayers of gold nanoclusters covered by self-assembled monolayers of alkylthiols with various functional groups.

    PubMed

    Uosaki, Kohei; Kondo, Toshihiro; Okamura, Masayuki; Song, Wenbo

    2002-01-01

    The electrochemical characteristics of various kinds of multilayers of gold nanoclusters (GNCs) were investigated. Two types of gold nanoclusters, one covered by self-assembled monolayers (SAMs) of mercaptoundecanoic acid (MUA), hexanethiol (C6SH), and ferrocenylhexanethiol (FcC6SH), MHF-GNC, and the other with MUA and C6SH, MH-GNC, were used. The multilayers were constructed on a Au(111) surface based on a carboxylate/metal cation (Cu++)/carboxylate or carboxylate/cationic polymer (poly(allylamine hydrochloride):PAH)/carboxylate electrostatic interaction. While the multilayers constructed by the former method were stable only in nonaqueous solutions, those constructed by the latter method were stable even in aqueous solutions. Electrochemical measurements of the multilayers of MHF-GNCs showed a pair of waves corresponding to the redox of the ferrocene group around 350-480 mV and the charge of these peaks, i.e., the amount of adsorbed GNC, increased linearly with the construction cycle up to 6 cycles in the former and to 18 cycles in the latter. A rather reversible redox response of the ferrocene moiety was observed even at the gold electrodes with five GNC layers of two different sequences in which MHF-GNC exists as the layer closest to the gold electrode, ie., the first layer, or as the outermost layer with MH-GNC in the other layers. These results show the facile transfer of electrons and ions through the multilayers of the SAM-covered GNCs and electron transfer between the ferrocene moiety and the Au(111) electrode takes place through the GNC cores by hopping.

  13. Study on the reversible changes of the surface properties of an L-cysteine self-assembled monolayer on gold as a function of pH.

    PubMed

    Filimon, Andrei-Daniel; Jacob, Peter; Hergenröder, Roland; Jürgensen, Astrid

    2012-06-12

    A stimuli-response biological surface of L-cysteine was prepared on a polycrystalline gold surface from aqueous solution. The effect of the pH value of the rinsing solution on the surface composition was studied with X-ray photoelectron spectroscopy (XPS). Qualitative and quantitative analysis of the amino, carboxyl, and thiol functional groups of these self-assembled monolayers indicate that L-cysteine molecules exist in the neutral and zwitterionic forms and that they are sensitive to the pH of the rinsing solution. In addition, the wetting properties of the functionalized surface were studied by contact angle (CA) analysis: they were also dependent on the pH of the rinsing solution. Furthermore, it was shown that this functionalization process was reversible.

  14. Ultrafast growth of large-area monolayer MoS2 film via gold foil assistant CVD for a highly sensitive photodetector

    NASA Astrophysics Data System (ADS)

    Nie, Changbin; Yu, Leyong; Wei, Xingzhan; Shen, Jun; Lu, Wenqiang; Chen, Weimin; Feng, Shuanglong; Shi, Haofei

    2017-07-01

    Two-dimensional molybdenum disulfide (MoS2) is a promising material for ultrasensitive photodetectors owing to its tunable band gap and high absorption coefficient. However, controlled synthesis of high-quality, large-area monolayer molybdenum disulfide (MoS2) is still a challenge in practical application. In this work, we report a gold foil assistant chemical vapor deposition method for the synthesis of large-size (>400 μm) single-crystal MoS2 film on a silicon dioxide (SiO2) substrate. The influence of Au foil in enlarging the size of single-crystal MoS2 is investigated systemically using thermal simulation in Ansys workbench 16.0, including thermal conductivity, temperature difference and thermal relaxation time of the interface of SiO2 substrate and Au foil, which indicate that Au foil can increase the temperature of the SiO2 substrate rapidly and decrease the temperature difference between the oven and substrate. Finally, the properties of the monolayer MoS2 film are further confirmed using back-gated field-effect transistors: a high photoresponse of 15.6 A W-1 and a fast photoresponse time of 100 ms. The growth techniques described in this study could be beneficial for the development of other atomically thin two-dimensional transition metal dichalcogenide materials.

  15. EXAFS in total reflection (reflEXAFS) for the study of organometallic Pd(II) thiol complexes based self-assembled monolayers on gold

    NASA Astrophysics Data System (ADS)

    Battocchio, C.; Fratoddi, I.; Venditti, I.; Yarzhemsky, V. G.; Norov, Yu. V.; Russo, M. V.; Polzonetti, G.

    2011-01-01

    The molecular structure and organization of self-assembled monolayers (SAMs) and multilayer films grafted onto Au/Si(1 1 1) surfaces of mononuclear transition metal dialkynyl bridged Pd(II) complexes trans-[HS-Pd(PBu 3) 2-SH] ( 1), trans-[HS-Pd(PBu 3) 2(-C tbnd C-C 6H 5)] ( 2) and of the binuclear complex trans, trans-[HS-Pd(PBu 3) 2(-C tbnd C-C 6H 4-C 6H 4-C tbnd C-Pd(PBu 3) 2-SH] ( 3), have been investigated by extended X-ray absorption fine structure spectroscopy in total reflection conditions (reflEXAFS). ReflEXAFS analysis of the data lead to determine the local structure around Pd atoms, assessing the square-planar geometry around the transition metal in the multilayers case, preserved in the monolayer regime. The investigation on the SAMs also provided the assessment of the S-Au bond length and Pd-S-Au bond angle and on the molecular orientation on the gold substrate of the complexes, confirmed by quantum chemical calculations.

  16. Highly Sensitive Aluminium(III) Ion Sensor Based on a Self-assembled Monolayer on a Gold Nanoparticles Modified Screen-printed Carbon Electrode.

    PubMed

    See, Wong Pooi; Heng, Lee Yook; Nathan, Sheila

    2015-01-01

    A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.

  17. Preparation and optimization of a bienzymic biosensor based on self-assembled monolayer modified gold electrode for alcohol and glucose detection.

    PubMed

    Asav, Engin; Akyilmaz, Erol

    2010-01-15

    The aim of this project was to develop a bienzymic biosensor, which was based on co-immobilization of alcohol oxidase and glucose oxidase on the same electrode by formation of self-assembled monolayer (SAM) for selective determination of ethanol and glucose. In the biosensor construction the enzymes and the mediator, tetrathiafulvalene (TTF), were immobilized with cross-linking agents glutaraldehyde and cysteamine by forming a self-assembled monolayer (SAM) on a gold disc electrode. Amounts of ethanol and glucose were amperometrically detected by monitoring current values at reduction potential of TTF(+), 0.1V. Decreases in biosensor responses were linearly related to glucose concentrations between 0.1 and 1.0 mM and ethanol concentrations between 1.0 and 10 mM. Limits of detection of the biosensor for ethanol and glucose were calculated to be 0.75 and 0.03 mM, respectively. In the optimization studies of the biosensor some parameters such as optimum pH, optimum temperature, enzyme amount, effect of TTF concentration and duration of SAM formation were investigated. Copyright 2009 Elsevier B.V. All rights reserved.

  18. Quantitative imaging of 2 nm monolayer-protected gold nanoparticle distributions in tissues using laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Elci, S Gokhan; Yan, Bo; Kim, Sung Tae; Saha, Krishnendu; Jiang, Ying; Klemmer, Gunnar A; Moyano, Daniel F; Tonga, Gulen Yesilbag; Rotello, Vincent M; Vachet, Richard W

    2016-04-21

    Functionalized gold nanoparticles (AuNPs) have unique properties that make them important biomedical materials. Optimal use of these materials, though, requires an understanding of their fate in vivo. Here we describe the use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to image the biodistributions of AuNPs in tissues from mice intravenously injected with AuNPs. We demonstrate for the first time that the distributions of very small (∼2 nm core) monolayer-protected AuNPs can be imaged in animal tissues at concentrations in the low parts-per-billion range. Moreover, the LA-ICP-MS images reveal that the monolayer coatings on the injected AuNPs influence their distributions, suggesting that the AuNPs remain intact in vivo and their surface chemistry influences how they interact with different organs. We also demonstrate that quantitative images of the AuNPs can be generated when the appropriate tissue homogenates are chosen for matrix matching. Overall, these results demonstrate the utility of LA-ICP-MS for tracking the fate of biomedically-relevant AuNPs in vivo, facilitating the design of improved AuNP-based therapeutics.

  19. Successive coordination of palladium(II)-ions and terpyridine-ligands to a pyridyl-terminated self-assembled monolayer on gold

    NASA Astrophysics Data System (ADS)

    Poppenberg, Johannes; Richter, Sebastian; Darlatt, Erik; Traulsen, Christoph H.-H.; Min, Hyegeun; Unger, Wolfgang E. S.; Schalley, Christoph A.

    2012-02-01

    The deposition of palladium on a novel, reversibly protonatable, pyridyl-terminated self-assembled monolayer on gold substrates has been studied by X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS spectroscopy) and time of flight-secondary ion mass spectrometry (ToF-SIMS). For this purpose, 12-(pyridin-4-yl)dodecane-1-thiol, consisting of a surface-active head group, an unfunctionalized hydrocarbon backbone and a terminal pyridyl group, has been synthesized and deposited on gold surfaces. Coordination of Pd(II) ions to the pyridyl group was examined. Furthermore, a reversible protonation/deprotonation cycle has been applied, and the relation between protonation and the amount of complexed palladium was studied. Investigation of the SAM by angle-resolved NEXAFS spectroscopy revealed the aliphatic backbone to be preferentially upright oriented with the aromatic head group being not preferentially oriented. The palladium layer was further coordinated with a CF3-labeled terpyridine ligand in order to prove the accessibility of the Pd(II) ions to further complexation and the platform useful for deposition of further layers toward a multi-layered system.

  20. Gold atomic clusters extracting the valence electrons to shield the carbon monoxide passivation on near-monolayer core-shell nanocatalysts in methanol oxidation reactions.

    PubMed

    Chen, Tsan-Yao; Li, Hong Dao; Lee, Guo-Wei; Huang, Po-Chun; Yang, Po-Wei; Liu, Yu-Ting; Liao, Yen-Fa; Jeng, Horng-Tay; Lin, Deng-Sung; Lin, Tsang-Lang

    2015-06-21

    Atomic-scale gold clusters were intercalated at the inter-facet corner sites of Pt-shell Ru-core nanocatalysts with near-monolayer shell thickness. We demonstrated that these unique clusters could serve as a drain of valence electrons in the kink region of the core-shell heterojunction. As jointly revealed by density functional theory calculations and valence band spectra, these Au clusters extract core-level electrons to the valence band. They prevent corrosion due to protonation and enhance the tolerance of CO by increasing the electronegativity at the outermost surface of the NCs during the methanol oxidation reaction (MOR). In these circumstances, the retained current density of Pt-shell Ru-core NCs is doubled in a long-term (2 hours) MOR at a fixed voltage (0.5 V vs. SCE) by intercalating these sub-nanometer gold clusters. Such novel structural confinement provides a possible strategy for developing direct-methanol fuel cell (DMFC) modules with high power and stability.

  1. A novel sensor of cysteine self-assembled monolayers over gold nanoparticles for the selective determination of epinephrine in presence of sodium dodecyl sulfate.

    PubMed

    Atta, Nada F; Galal, Ahmed; El-Ads, Ekram H

    2012-06-07

    A novel sensor of cysteine self-assembled monolayers over gold nanoparticles modified gold electrode has been constructed for the determination of epinephrine in presence of sodium dodecyl sulfate (Au/Au(nano)-CysSDS). Electrochemical investigation and characterization of the modified electrode are achieved using cyclic voltammetry, linear sweep voltammetry, and scanning electron microscopy. The Au/Au(nano)-CysSDS electrode current signal is remarkably stable via repeated cycles and long term stability, due to the strong Au-S bond, compared to the Au/Au(nano) electrode. The catalytic oxidation peak currents obtained from linear sweep voltammetry (LSV) increased linearly with increasing epinephrine concentrations in the range of 2 to 30 μmol L(-1) and 35 to 200 μmol L(-1) with correlation coefficients of 0.9981 and 0.9999 and a limit of detection of 0.294 nmol L(-1) and 1.49 nmol L(-1), respectively. The results showed that Au/Au(nano)-CysSDS can selectively determine epinephrine in the coexistence of a large amount of uric acid and glucose. In addition, a highly selective and simultaneous determination of tertiary mixture of ascorbic acid, epinephrine, and acetaminophen is explored at this modified electrode. Excellent recovery results were obtained for determination of epinephrine in spiked urine samples at the modified electrode. Au/Au(nano)-CysSDS can be used as a sensor with excellent reproducibility, sensitivity, and long term stability.

  2. Poly(glycidyl ether)-Based Monolayers on Gold Surfaces: Control of Grafting Density and Chain Conformation by Grafting Procedure, Surface Anchor, and Molecular Weight.

    PubMed

    Heinen, Silke; Weinhart, Marie

    2017-03-07

    For a meaningful correlation of surface coatings with their respective biological response reproducible coating procedures, well-defined surface coatings, and thorough surface characterization with respect to layer thickness and grafting density are indispensable. The same applies to polymeric monolayer coatings which are intended to be used for, e.g., fundamental studies on the volume phase transition of surface end-tethered thermoresponsive polymer chains. Planar gold surfaces are frequently used as model substrates, since they allow a variety of straightforward surface characterization methods. Herein we present reproducible grafting-to procedures performed with thermoresponsive poly(glycidyl ether) copolymers composed of glycidyl methyl ether (GME) and ethyl glycidyl ether (EGE). The copolymers feature different molecular weights (2 kDa, 9 kDa, 24 kDa) and are equipped with varying sulfur-containing anchor groups in order to achieve adjustable grafting densities on gold surfaces and hence control the tethered polymers' chain conformation. We determined "wet" and "dry" thicknesses of these coatings by QCM-D and ellipsometry measurements and deduced anchor distances and degrees of chain overlap of the polymer chains assembled on gold. Grafting under cloud point conditions allowed for higher degrees of chain overlap compared to grafting from a good solvent like ethanol, independent of the used sulfur-containing anchor group for polymers with low (2 kDa) and medium (9 kDa) molecular weights. By contrast, the achieved grafting densities and thus chain overlaps of surface-tethered polymers with high (24 kDa) molecular weights were identical for both grafting methods. Monolayers prepared from an ethanolic solution of poly(glycidyl ether)s equipped with sterically demanding disulfide-containing anchors revealed the lowest degrees of chain overlap. The ratio of the radius of gyration to the anchor distance (2 Rg/l) of the latter coating was found to be lower than 1

  3. Controlled hierarchical assembly of gold nanoparticles in macroscopic films: from densely packed monolayers to networks of micropores and nanobundles.

    PubMed

    Gravelsins, Steven; Hasham, Minhal; Lin, Yi; Yu, Kevin; Tie, Monique; Goh, Cynthia; Dhirani, Al-Amin

    2017-03-29

    The present study demonstrates the ability of excess, weakly amphiphilic n-alkanethiols (n = 4, 12, 18) and solvent composition to tune through a wide range of large-scale, macroscopic architectures formed by alkanethiol-capped Au nanoparticles (NPs). Both the alkanethiols and NPs are significantly hydrophobic species and compete for surface area at an air-water interface. When solutions of the two species are spread on a large (50 cm(2)) water surface in a Teflon well, a thin film forms and exhibits co-existing macroscopic regions with various distinct NP self-assembled architectures, namely a close packed monolayer, a network phase characterized by micron-sized pores (micropores) surrounded by quasi-linear bundles of nanoparticles, and finally aggregates. We hypothesize that the co-existence of various NP architectures results from fast, non-uniform evaporation across the large water surface. When solutions are instead deposited on a smaller (5 cm(2)) water surface contained within a Teflon ring to control the water surface curvature and the evaporation rate is slowed, we show for the first time that NPs form macroscopically uniform self-assemblies whose architectures can be tuned from monolayersmonolayers with micropores → extended micropore/NP bundle networks by varying excess alkanethiol concentration and solvent composition. We propose that competition between NPs and excess alkanethiols for water surface area, and alkanethiol self-assembly as well as solvent dewetting play important roles in the formation of the network phase, and discuss a potential mechanism for its formation.

  4. Electrochemical biosensor based on self-assembled monolayers modified with gold nanoparticles for detection of HER-3.

    PubMed

    Canbaz, Mehmet Çetin; Simşek, Ciğdem Sayıklı; Sezgintürk, Mustafa Kemal

    2014-03-03

    We have developed a new immunological biosensor for ultrasensitive quantification of human epidermal growth factor receptor-3(HER-3). In order to construct the biosensor, the gold electrode surface was layered with, hexanedithiol, gold nanoparticles, and cysteamine, respectively. Anti-HER-3 antibody was covalently attached to cysteamine by glutaraldehyde and used as a bioreceptor in a biosensor system for the first time by this study. Surface characterization was obtained by means of electrochemical impedance spectroscopy and voltammetry. The proposed biosensor showed a good analytical performance for the detection of HER-3 ranging from 0.2 to 1.4 pg mL(-1). Kramers-Kronig transform was performed on the experimental impedance data. Moreover, in an immunosensor system, the single frequency impedance technique was firstly used for characterization of interaction between HER-3 and anti-HER-3. Finally the presented biosensor was applied to artificial serum samples spiked with HER-3.

  5. Self-induced "electroclick" immobilization of a copper complex onto self-assembled monolayers on a gold electrode.

    PubMed

    Gomila, Antoine; Le Poul, Nicolas; Cosquer, Nathalie; Kerbaol, Jean-Michel; Noël, Jean-Marc; Reddy, Madhusudana T; Jabin, Ivan; Reinaud, Olivia; Conan, Francoise; Le Mest, Yves

    2010-12-28

    We report the self-induced "electroclick" immobilization of the [Cu(II)(6-ethynyl-TMPA)(H(2)O)](2+) complex, by its simple electro-reduction, onto a mixed azidoundodecane-/decane-thiol modified gold electrode. The redox response of the grafted [Cu(II/I)(TMPA)] at the modified electrode is fully reversible indicating no Cu coordination change and a fast electron transfer.

  6. Grazing Incidence X-Ray Diffraction of Lead Monolayers at a Silver (111) and Gold (111) Electrode/Electrolyte Interface.

    DTIC Science & Technology

    1987-05-12

    and electronic properties of underpotentially deposited (UPD) layers on single crystal electrodes have been explored by a number of investigators...of the reversible Nernst potential at which bulk deposition occurs. This first stage of deposition has been termed underpotential deposition (UPD...potentials (150 mV for lead on silver and 400 mV for gold) between the potential at which the " underpotential deposition " occurs and the potential for

  7. Electrochemical Properties of a Thiol Monolayers Coated Gold Electrode Modified with Osmium Gel Membrane as Enzyme Sensor

    NASA Astrophysics Data System (ADS)

    Yabutani, Tomoki; Okada, Nobuyuki; Maruyama, Kenichi; Motonaka, Junko

    The electrochemical behavior of an enzyme sensor for glucose using a gold electrode modified with thiol self-assembled membrane and osmium complex gel as an electron transferring mediator has further been investigated by electrochemical analysis. The gold electrode was initially coated with aminomethanethiol self assembling mono layer membrane(thiol-SAM) and then immobilized with glucose oxidase using poly(vinylpyridine-co-allylamine) (PVP-co-AA), gel coordinated with osmium bipyridine complexes (GOD/Os-PVP-co-AA gel). The cleaning condition of the surface of the Au electrode prior to coating thiol SAM was optimized for reduction of interference caused by concomitant compounds. It was found that interfering influence was most efficiently reduced in the case of use of the Au electrode immersed into nitric acid. The current ratio with a thiol coated gold electrode modified with Os-PVP-co-AA gel in glucose solution in the presence to absence of ascorbic acid, acetaminophen, and uric acid (ID+I/II) was 1.006, 1.014, and 1.018, respectively. The peak current response of glucose in the electrode modified with thiol SAM was dropped to 60 98% as compared with that without thiol SAM.

  8. Paleoproterozoic high-sulfidation mineralization in the Tapajós gold province, Amazonian Craton, Brazil: geology, mineralogy, alunite argon age, and stable-isotope constraints

    USGS Publications Warehouse

    Juliani, Caetano; Rye, Robert O.; Nunes, Carmen M.D.; Snee, Lawrence W.; Correa, Rafael H.; Monteiro, Lena V.S.; Bettencourt, Jorge S.; Neumann, Rainer; Neto, Arnaldo A.

    2005-01-01

    The Brazilian Tapajós gold province contains the first evidence of high-sulfidation gold mineralization in the Amazonian Craton. The mineralization appears to be in large nested calderas. The Tapajós–Parima (or Ventuari–Tapajós) geological province consists of a metamorphic, igneous, and sedimentary sequence formed during a 2.10 to 1.87 Ga ocean−continent orogeny. The high-sulfidation mineralization with magmatic-hydrothermal alunite is related to hydrothermal breccias hosted in a rhyolitic volcanic ring complex that contains granitic stocks ranging in age from 1.89 to 1.87 Ga. Cone-shaped hydrothermal breccias, which flare upward, contain vuggy silica and have an overlying brecciated cap of massive silica; the deposits are located in the uppermost part of a ring-structure volcanic cone. Drill cores of one of the hydrothermal breccias contain alunite, natroalunite, pyrophyllite, andalusite, quartz, rutile, diaspore, woodhouseite–svanbergite, kaolinite, and pyrite along with inclusions of enargite–luzonite, chalcopyrite, bornite, and covellite. The siliceous core of this alteration center is surrounded by advanced argillic and argillic alteration zones that grade outward into large areas of propylitically altered rocks with sericitic alteration assemblages at depth. Several occurrences and generations of alunite are observed. Alunite is disseminated in the advanced argillic haloes that envelop massive and vuggy silica or that underlie the brecciated silica cap. Coarse-grained alunite also occurs in branching veins and locally is partly replaced by a later generation of fine-grained alunite. Silicified hydrothermal breccias associated with the alunite contain an estimated reserve of 30 tonnes of gold in rock that grades up to 4.5 g t−1 Au. Seven alunite samples gave 40Ar/39Ar ages of 1.869 to 1.846 Ga, with various degrees of apparent minor Ar loss. Stable isotopic data require a magmatic-hydrothermal origin for the alunite, typical for high-sulfidation

  9. "Mixed-charge self-assembled monolayers" as a facile method to design pH-induced aggregation of large gold nanoparticles for near-infrared photothermal cancer therapy.

    PubMed

    Li, Huan; Liu, Xiangsheng; Huang, Nan; Ren, Kefeng; Jin, Qiao; Ji, Jian

    2014-01-01

    The acidic microenvironment of tumor tissues has proven to be one of the major differences from other normal tissues. The near-infrared (NIR) light irradiation of aggregated gold nanoparticles in a tumor acidic pH-induced manner could then provide an effect approach to treat solid tumors with the advantage of minimizing the undesired damage to normal tissues. Although it is well-known the aggregation of larger nanoparticles will result in a better NIR photothermal effect, the preparation of pH-sensitive gold nanoparticles in large sizes remains a big challenge because of their worse dispersive stability. In this paper, we introduce a facile way to endow large gold nanoparticles with tunable pH-aggregation behaviors by modifying the nanoparticle surface with mixed-charge self-assembly monolayers compromising positively and negatively charged thiol ligands. Four different size nanoparticles were used to study the general principle of tailoring the pH-induced aggregation behaviors of mixed-charge gold nanoparticles (MC-GNPs) by adjusting the surface ligand composition. With proper surface ligand composition, the MC-GNPs in four different sizes that all exhibited aggregation at tumor acidic pH were obtained. The biggest MC-GNPs showed the most encouraging aggregation-enhanced photothermal efficacy in vitro when they formed aggregates. The mixed-charge self-assembled monolayers were then proved as a facile method to design pH-induced aggregation of large gold nanoparticles for better NIR photothermal cancer therapy.

  10. Exploring the atomic structure of 1.8nm monolayer-protected gold clusters with aberration-corrected STEM.

    PubMed

    Liu, Jian; Jian, Nan; Ornelas, Isabel; Pattison, Alexander J; Lahtinen, Tanja; Salorinne, Kirsi; Häkkinen, Hannu; Palmer, Richard E

    2017-05-01

    Monolayer-protected (MP) Au clusters present attractive quantum systems with a range of potential applications e.g. in catalysis. Knowledge of the atomic structure is needed to obtain a full understanding of their intriguing physical and chemical properties. Here we employed aberration-corrected scanning transmission electron microscopy (ac-STEM), combined with multislice simulations, to make a round-robin investigation of the atomic structure of chemically synthesised clusters with nominal composition Au144(SCH2CH2Ph)60 provided by two different research groups. The MP Au clusters were "weighed" by the atom counting method, based on their integrated intensities in the high angle annular dark field (HAADF) regime and calibrated exponent of the Z dependence. For atomic structure analysis, we compared experimental images of hundreds of clusters, with atomic resolution, against a variety of structural models. Across the size range 123-151 atoms, only 3% of clusters matched the theoretically predicted Au144(SR)60 structure, while a large proportion of the clusters were amorphous (i.e. did not match any model structure). However, a distinct ring-dot feature, characteristic of local icosahedral symmetry, was observed in about 20% of the clusters. Copyright © 2017. Published by Elsevier B.V.

  11. Substrate effects in poly(ethylene glycol) self-assembled monolayers on granular and flame-annealed gold.

    PubMed

    Rundqvist, Jonas; Hoh, Jan H; Haviland, David B

    2006-09-01

    Poly(ethylene glycol) (PEG) self-assembled monolayers (SAMs) are surface coatings that efficiently prevent nonspecific adhesion of biomolecules to surfaces. Here, we report on SAM formation of the PEG thiol CH3O(CH2CH2O)17NHCO(CH2)2SH (PEG(17)) on three types of Au films: thermally evaporated granular Au and two types of Au films from hydrogen flame annealing of granular Au, Au(111), and Au silicide. The different Au surfaces clearly affects the morphology and mechanical properties of the PEG(17) SAM, which is shown by AFM topographs and force distance curves. The two types of SAMs found on flame-annealed Au were denoted "soft" and "hard" due to their difference in stiffness and resistance to scratching by the AFM probe. With the aim of nanometer scale patterning of the PEG(17), the SAMs were exposed by low energy (1 kV) electron beam lithography (EBL). Two distinctly different types of behaviour were observed on the different types of SAM; the soft PEG(17) SAM was destroyed in a self-developing process while material deposition was dominant for the hard PEG(17) SAM.

  12. The role of the crystalline face in the ordering of 6-mercaptopurine self-assembled monolayers on gold.

    PubMed

    Lobo Maza, Flavia; Grumelli, Doris; Carro, Pilar; Vericat, Carolina; Kern, Klaus; Salvarezza, Roberto C

    2016-10-06

    Well-ordered molecular films play an important role in nanotechnology, from device fabrication to surface patterning. Self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) on the Au(100)-(1 × 1) and Au(111)-(1 × 1) have been used to understand the interplay of molecule-substrate interactions for heterocyclic thiols capable of binding to the surface by two anchors, which spontaneously form a highly disordered film on Au(111). Our results reveal that for the same surface coverage the simple change of the substrate from Au(111)-(1 × 1) to Au(100)-(1 × 1) eliminates molecular disorder and yields well-ordered SAMs. We discuss these findings in terms of differences in the surface mobility of 6MP species on these surfaces, the energetics of the adsorption sites, and the number of degrees of freedom of these substrates for a molecule with reduced surface mobility resulting from its two surface anchors. These results reveal the presence of subtle molecule-substrate interactions involving the heteroatom that drastically alter SAM properties and therefore strongly impact on our ability to control physical properties and to build devices at the nanoscale.

  13. Asymmetric catalysis at the mesoscale: gold nanoclusters embedded in chiral self-assembled monolayer as heterogeneous catalyst for asymmetric reactions.

    PubMed

    Gross, Elad; Liu, Jack H; Alayoglu, Selim; Marcus, Matthew A; Fakra, Sirine C; Toste, F Dean; Somorjai, Gabor A

    2013-03-13

    Research to develop highly versatile, chiral, heterogeneous catalysts for asymmetric organic transformations, without quenching the catalytic reactivity, has met with limited success. While chiral supramolecular structures, connected by weak bonds, are highly active for homogeneous asymmetric catalysis, their application in heterogeneous catalysis is rare. In this work, asymmetric catalyst was prepared by encapsulating metallic nanoclusters in chiral self-assembled monolayer (SAM), immobilized on mesoporous SiO2 support. Using olefin cyclopropanation as an example, it was demonstrated that by controlling the SAM properties, asymmetric reactions can be catalyzed by Au clusters embedded in chiral SAM. Up to 50% enantioselectivity with high diastereoselectivity were obtained while employing Au nanoclusters coated with SAM peptides as heterogeneous catalyst for the formation of cyclopropane-containing products. Spectroscopic measurements correlated the improved enantioselectivity with the formation of a hydrogen-bonding network in the chiral SAM. These results demonstrate the synergetic effect of the catalytically active metallic sites and the surrounding chiral SAM for the formation of a mesoscale enantioselective catalyst.

  14. Investigation of the mechanism of electroless deposition of copper on functionalized alkanethiolate self-assembled monolayers adsorbed on gold.

    PubMed

    Lu, Peng; Walker, Amy V

    2007-12-04

    We have investigated the reaction pathways involved in the unseeded electroless deposition of copper on self-assembled monolayers (SAMs) adsorbed on Au, using time-of-flight secondary ion mass spectrometry, optical microscopy, and scanning electron microscopy. At 22 degrees C copper deposits on both -CH3 and -COOH terminated SAMs. No copper deposition is observed on -OH terminated SAMs because the hydroxyl terminal groups react with formaldehyde in the plating solution, forming an acetal which prevents Cu deposition. At higher deposition temperatures (45 degrees C), no Cu is observed to deposit on -CH3 terminated SAMs because Cu2+ ions are not stabilized on the SAM surface. Copper complexes are still able to form with the -COOH terminal group at 45 degrees C, and so copper continues to be deposited on -COOH terminated SAMs. Copper also penetrates through -CH3 and -COOH terminated SAMs to the Au/S interface, suggesting that soft deposition techniques do not prevent the penetration of low-to-moderate reactivity metals through organic films.

  15. Sub-monolayer assemblies of octanethiol and octadecylthiol at gold electrodes for the direct analysis of 4,4'-oxydianiline in wastewaters and shoe-dyeing samples.

    PubMed

    Domínguez, C S H; Quintana, C; Vicente, J; Hernández, P; Hernández, L

    2008-01-15

    Self-assembled monolayers (SAMs) of di-n-octadecyldisulphide (C(18)) and n-octanethiol (C(8)) were prepared on gold electrodes. From the studies carried out by cyclic voltammetry and square wave voltammetry, it was observed that the electrochemical behaviour of 4,4'-oxydianiline on these electrodes is affected by the length chain of the alkanethiol. After the optimization of all the variables involved in the electrochemical response of 4,4'-oxydianiline by square wave voltammetry employing the modified electrodes, it is possible the determination of 4,4'-oxydianiline with a detection limit of 0.04microg/mL (C(18)) and 0.06microg/mL (C(8)) and determination limits of 0.12 and 0.22microg/mL, respectively. The calculated Er (%)(n=10) and R.S.D.(%)(n=10) values were minor than 2.2% and 3.7%. The proposed methods were successfully applied to the analysis of oxydianiline in wastewater and shoe-dyeing samples.

  16. Quartz crystal microbalance study of bovine serum albumin adsorption onto self-assembled monolayer-functionalized gold with subsequent ligand binding.

    PubMed

    Thourson, Scott B; Marsh, Caitlin A; Doyle, Brian J; Timpe, Shannon J

    2013-11-01

    Adsorption characteristics of the model protein bovine serum albumin (BSA) onto gold surfaces were examined using a 5 MHz quartz crystal microbalance. Protein immobilization was executed in the presence and absence of a homogenous self-assembled monolayer (SAM) of NHS-terminated alkanethiols. BSA concentrations in the range of 3.2 × 10(-6) to 1.0 × 10(-3)mol/L were found to saturate both SAM-functionalized and non-functionalized surfaces with similar densities of 450 ± 26 ng/cm(2). The lack of functionalization dependence is attributed to the large protein size relative to the density of available binding sites in either surface condition. The BSA ligand 8-anilino-1-naphthalenesulfonic acid (ANS) was subsequently introduced to the immobilized BSA to determine any effects of the protein immobilization conditions on ligand binding. The rate of ANS binding to BSA was found to increase with increasing BSA concentration used in the immobilization step. This suggests that protein concentration affects morphology and ligand binding affinity without significantly altering adsorption quantity.

  17. Structural Order in Ultrathin Films of the Monolayer Protected Clusters Based Upon 4-nm Gold Nanocrystals: An Experimental and Theoretical Study

    PubMed Central

    Bhattarai, Nabraj; Khanal, Subarna; Bahena, Daniel; Olmos-Asar, Jimena A.; Ponce, Arturo; Whetten, Robert L.; Mariscal, Marcelo M.; Jose-Yacaman, Miguel

    2014-01-01

    The structural order in ultrathin films of monolayer protected clusters (MPCs) is important in a number of application areas but can be difficult to demonstrate by conventional methods, particularly when the metallic core dimension, d, is in the intermediate size-range, 1.5 < d < 5.0 nm. Here, improved techniques for the synthesis of monodisperse thiolate-protected gold nanoparticles have made possible the production of dodecane-thiolate saturated ~ 4 ± 0.5 nm Au clusters with single-crystal core structure and morphology. An ultrathin ordered film or superlattice of these nanocrystal-core MPCs is prepared and investigated using aberration corrected scanning/transmission electron microscopy (STEM) which allowed imaging of long-range hexagonally ordered superlattices of the nanocrystals, separated by the thiolate groups. The lattice constants determined by direct imaging are in good agreement with those determined by small-angle electron diffraction. The STEM image revealed the characteristic grain boundary (GB) with sigma (Σ) 13 in the interface between two crystals. The formation and structures found are interpreted on the basis of theoretical calculations employing molecular dynamics (MD) simulations and coarse-grained (CG) approach. PMID:24875295

  18. Revealing and Resolving the Restrained Enzymatic Cleavage of DNA Self-Assembled Monolayers on Gold: Electrochemical Quantitation and ESI-MS Confirmation.

    PubMed

    Gao, Xiaoyi; Geng, Mingxi; Li, Yunchao; Wang, Xinglin; Yu, Hua-Zhong

    2017-02-21

    Herein, we report a combined electrochemical and ESI-MS study of the enzymatic hydrolysis efficiency of DNA self-assembled monolayers (SAMs) on gold, platform systems for understanding nucleic acid surface chemistry, and for constructing DNA-based biosensors. Our electrochemical approach is based on the comparison of the amounts of surface-tethered DNA nucleotides before and after exonuclease I (Exo I) incubation using electrostatically bound [Ru(NH3)6](3+) as redox indicators. It is surprising to reveal that the hydrolysis efficiency of ssDNA SAMs does not depend on the packing density and base sequence, and that the cleavage ends with surface-bound shorter strands (9-13 mers). The ex-situ ESI-MS observations confirmed that the hydrolysis products for ssDNA SAMs (from 24 to 56 mers) are dominated with 10-15 mer fragments, in contrast to the complete digestion in solution. Such surface-restrained hydrolysis behavior is due to the steric hindrance of the underneath electrode to the Exo I/DNA binding, which is essential for the occurrence of Exo I-catalyzed processive cleavage. More importantly, we have shown that the hydrolysis efficiency of ssDNA SAMs can be remarkably improved by adopting long alkyl linkers (locating DNA strands further away from the substrates).

  19. An Electrochemical Immunosensor for Detection of Staphylococcus aureus Bacteria Based on Immobilization of Antibodies on Self-Assembled Monolayers-Functionalized Gold Electrode

    PubMed Central

    Braiek, Mohamed; Rokbani, Karima Bekir; Chrouda, Amani; Mrabet, Béchir; Bakhrouf, Amina; Maaref, Abderrazak; Jaffrezic-Renault, Nicole

    2012-01-01

    The detection of pathogenic bacteria remains a challenge for the struggle against biological weapons, nosocomial diseases, and for food safety. In this research, our aim was to develop an easy-to-use electrochemical immunosensor for the detection of pathogenic Staphylococcus aureus ATCC25923. The biosensor was elaborated by the immobilization of anti-S. aureus antibodies using a self-assembled monolayer (SAMs) of 3-Mercaptopropionic acid (MPA). These molecular assemblies were spontaneously formed by the immersion of the substrate in an organic solvent containing the SAMs that can covalently bond to the gold surface. The functionalization of the immunosensor was characterized using two electrochemical techniques: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Here, the analysis was performed in phosphate buffer with ferro/ferricyanide as the redox probe. The EIS technique was used for affinity assays: antibody-cell binding. A linear relationship between the increment in the electron transfer resistance (RCT) and the logarithmic value of S. aureus concentration was observed between 10 and 106 CFU/mL. The limit of detection (LOD) was observed at 10 CFU/mL, and the reproducibility was calculated to 8%. Finally, a good selectivity versus E. coli and S. epidermidis was obtained for our developed immunosensor demonstrating its specificity towards only S. aureus. PMID:25586032

  20. Simple direct formation of self-assembled N-heterocyclic carbene monolayers on gold and their application in biosensing

    PubMed Central

    Crudden, Cathleen M.; Horton, J. Hugh; Narouz, Mina R.; Li, Zhijun; Smith, Christene A.; Munro, Kim; Baddeley, Christopher J.; Larrea, Christian R.; Drevniok, Benedict; Thanabalasingam, Bheeshmon; McLean, Alastair B.; Zenkina, Olena V.; Ebralidze, Iraklii I.; She, Zhe; Kraatz, Heinz-Bernhard; Mosey, Nicholas J.; Saunders, Lisa N.; Yagi, Akiko

    2016-01-01

    The formation of organic films on gold employing N-heterocyclic carbenes (NHCs) has been previously shown to be a useful strategy for generating stable organic films. However, NHCs or NHC precursors typically require inert atmosphere and harsh conditions for their generation and use. Herein we describe the use of benzimidazolium hydrogen carbonates as bench stable solid precursors for the preparation of NHC films in solution or by vapour-phase deposition from the solid state. The ability to prepare these films by vapour-phase deposition permitted the analysis of the films by a variety of surface science techniques, resulting in the first measurement of NHC desorption energy (158±10 kJ mol−1) and confirmation that the NHC sits upright on the surface. The use of these films in surface plasmon resonance-type biosensing is described, where they provide specific advantages versus traditional thiol-based films. PMID:27585494

  1. Switching on/off the chemisorption of thioctic-based self-assembled monolayers on gold by applying a moderate cathodic/anodic potential.

    PubMed

    Sahli, Rihab; Fave, Claire; Raouafi, Noureddine; Boujlel, Khaled; Schöllhorn, Bernd; Limoges, Benoît

    2013-04-30

    An in situ and real-time electrochemical method has been devised for quantitatively monitoring the self-assembly of a ferrocene-labeled cyclic disulfide derivative (i.e., a thioctic acid derivative) on a polycrystalline gold electrode under electrode polarization. Taking advantage of the high sensitivity, specificity, accuracy, and temporal resolution of this method, we were able to demonstrate an unexpectedly facilitated formation of the redox-active SAM when the electrode was held at a moderate cathodic potential (-0.4 V vs SCE in CH3CN), affording a saturated monolayer from only micromolar solutions in less than 10 min, and a totally impeded SAM growth when the electrode was polarized at a slightly anodic potential (+0.5 V vs SCE in CH3CN). This method literally allows for switching on/off the formation of SAMs under "soft" conditions. Moreover the cyclic disulfide-based SAM was completely desorbed at this potential contrary to the facilitated deposition of a ferrocene-labeled alkanethiol. Such a strikingly contrasting behavior could be explained by an energetically favored release of the thioctic-based SAM through homolytic cleavage of the Au-S bond followed by intramolecular cyclization of the generated thiyl diradicals. Moreover, the absence of a discernible transient faradaic current response during the potential-assisted adsorption/desorption of the redox-labeled cyclic disulfide led us to conclude in a potential-dependent reversible surface reaction where no electron is released or consumed. These results provide new insights into the formation of disulfide-based SAMs on gold but also raise some fundamental questions about the intimate mechanism involved in the facilitated adsorption/desorption of SAMs under electrode polarization. Finally, the possibility to easily and selectively address the formation/removal of thioctic-based SAMs on gold by applying a moderate cathodic/anodic potential offers another degree of freedom in tailoring their properties and

  2. Oriented Attachment of Cytochrome P450 2C9 to a Self-Assembled Monolayer on a Gold Electrode as a Biosensor Design

    NASA Astrophysics Data System (ADS)

    Schneider, Elizabeth Ann

    Cytochrome P450s (CYPs) are a family of enzymes implicated in the metabolism of drugs in the body. Consequently, P450 reactions are of high interest to the pharmaceutical industry, where lead compounds in drug development are screened as potential substrates of CYPs. The P450 reaction involves electron transfer to an iron heme via NADPH and the electron transfer partner enzyme P450 reductase (CPR). By immobilizing CYPs on an electrode however, NADPH and CPR are potentially no longer needed and the immobilized CYP can act as a biosensor by accepting electrons directly from the electrode. Such a biosensor could be used as an initial screening tool for CYP reactivity of pharmaceuticals in development. In this study, the drug-metabolizing enzyme CYP 2C9 was immobilized to a self-assembled monolayer (SAM) on a gold electrode in three different orientations to investigate the effect that orientation has on the direct electrochemistry of CYP and to evaluate oriented attachment of CYP to an electrode as a biosensor design. Three attachment methods were investigated: random attachment via amine coupling to a carboxy-terminated SAM, oriented attachment via C-terminal His-tag coupling to a Ni-NTA-functionalized SAM, and oriented attachment via maleimide/thiol coupling to a maleimide-functionalized SAM. Three 2C9 mutants (R125C, R132C, and K432C) were developed with a single cysteine mutation at the binding site for CPR on the side of the enzyme closest to the heme; attachment of these mutants to a gold electrode via maleimide/thiol coupling would orient the enzyme such that electron transfer occurs on the electrode in the same orientation that it does in vivo with CPR. Therefore, we expected oriented attachment via maleimide/thiol coupling to produce the most electroactive CYP biosensor. Electrochemical analysis and surface characterization of the SAMs on gold electrodes confirmed that electron transfer occurs through the SAMs, and activity assays of the 2C9 electrodes

  3. Lead-Sulfide-Selenide Quantum Dots and Gold-Copper Alloy Nanoparticles Augment the Light-Harvesting Ability of Solar Cells.

    PubMed

    Das, Aparajita; Deepa, Melepurath; Ghosal, Partha

    2017-01-10

    Lead-sulfide-selenide (PbSSe) quantum dots (QDs) and gold-copper (AuCu) alloy nanoparticles (NPs) were incorporated into a cadmium sulfide (CdS)/titanium oxide (TiO2 ) photoanode for the first time to achieve enhanced conversion of solar energy into electricity. PbSSe QDs with a band gap of 1.02 eV extend the light-harvesting range of the photoanode from the visible region to the near-infrared region. The conduction band (CB) edge of the PbSSe QDs is wedged between the CBs of TiO2 and CdS; this additional level coupled with the good electrical conductivity of the dots facilitate charge transport and collection, and a high power conversion efficiency (PCE) of 4.44 % is achieved for the champion cell with the TiO2 /PbSSe/CdS electrode. Upon including AuCu alloy NPs in the QD-sensitized electrodes, light absorption is enhance by plasmonic and light-scattering effects and also by the injection of hot electrons to the CBs of the QDs. Comparison of the incident photon-to-current conversion efficiency enhancement factors in addition to fluorescence decay and impedance studies reveal that the PbSSe QDs and AuCu alloy NPs promote charge injection to the current collector and increase the photogenerated charges produced, which thus enables the TiO2 /PbSSe/CdS/AuCu cell to deliver the highest PCE of 5.26 % among all the various photoanode compositions used.

  4. Facile preparation of surface-exchangeable core@shell iron oxide@gold nanoparticles for magnetic solid-phase extraction: use of gold shell as the intermediate platform for versatile adsorbents with varying self-assembled monolayers.

    PubMed

    Li, Yaping; Qi, Li; Shen, Ying; Ma, Huimin

    2014-02-06

    The core@shell Fe3O4@Au nanoparticles (NPs) functionalized with exchangeable self-assembled monolayers have been developed for mode switching magnetic solid-phase extraction (MSPE) using high performance liquid chromatography with ultraviolet detection. The adsorbents were synthesized by chemical coprecipitation to prepare magnetic cores followed by sonolysis to produce gold shells. Functionalization of Fe3O4@Au NPs surface was realized through self-assembly of commercially available low molecular weight thiol-containing ligands using gold shells as intermediate platform and the dynamic nature of Au-S chemistry allowed substituent of one thiol-containing ligand with another simply by thiol exchange process. The resultant adsorbents were characterized by transmission electronic microscopy, Fourier transform infrared spectroscopy, elemental analysis, contact angle measurement, and vibrating sample magnetometry. To evaluate the versatile performance of the developed MSPE adsorbents, they were applied for normal-phase SPE followed by reversed-phase SPE. A few kinds of diphenols and polycyclic aromatic hydrocarbons (PAHs) were employed as model analytes, respectively. The predominant parameters affecting extraction efficiency were investigated and optimized. Under the optimum experimental conditions, wide dynamic linear range (6.25-1600 μg L(-1) for diphenols and 1.56-100 μg L(-1) for PAHs) with good linearity (r(2)≥0.989) and low detection limits (0.34-16.67 μg L(-1) for diphenols and 0.26-0.52 μg L(-1) for PAHs) were achieved. The advantage of the developed method is that the Fe3O4@Au NPs could be reutilized for preconcentrating diverse target analytes in different SPE modes sequentially simply through treatment with desired thiol-containing ligands. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Method of making gold thiolate and photochemically functionalized microcantilevers

    DOEpatents

    Boiadjiev, Vassil I [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Bonnesen, Peter V [Knoxville, TN; Goretzki, Gudrun [Nottingham, GB

    2009-08-25

    Highly sensitive sensor platforms for the detection of specific reagents, such as chromate, gasoline and biological species, using microcantilevers and other microelectromechanical systems (MEMS) whose surfaces have been modified with photochemically attached organic monolayers, such as self-assembled monolayers (SAM), or gold-thiol surface linkage are taught. The microcantilever sensors use photochemical hydrosilylation to modify silicon surfaces and gold-thiol chemistry to modify metallic surfaces thereby enabling individual microcantilevers in multicantilever array chips to be modified separately. Terminal vinyl substituted hydrocarbons with a variety of molecular recognition sites can be attached to the surface of silicon via the photochemical hydrosilylation process. By focusing the activating UV light sequentially on selected silicon or silicon nitride hydrogen terminated surfaces and soaking or spotting selected metallic surfaces with organic thiols, sulfides, or disulfides, the microcantilevers are functionalized. The device and photochemical method are intended to be integrated into systems for detecting specific agents including chromate groundwater contamination, gasoline, and biological species.

  6. Associations between sulfides, carbonaceous material, gold and other trace elements in polyframboids: Implications for the source of orogenic gold deposits, Otago Schist, New Zealand

    NASA Astrophysics Data System (ADS)

    Hu, Si-Yu; Evans, Katy; Fisher, Louise; Rempel, Kirsten; Craw, Dave; Evans, Noreen J.; Cumberland, Susan; Robert, Aileen; Grice, Kliti

    2016-05-01

    Intimately intergrown micron-scale framboidal pyrite, carbonaceous material (CM), chalcopyrite, sphalerite and cobaltite form polyframboids in prehnite-pumpellyite facies rocks of the Otago Schist, New Zealand. This study quantifies the metal contents of these polyframboids using synchrotron X-ray fluorescence (SXRF) and laser ablation inductively coupled plasma spectrometry (LA-ICP-MS). Trace elements Au, Zn, As, Mo, Co, Ni, Cu, Ag and Pb are significantly enriched in the polyframboids. The distribution of Zn most closely follows that of CM, and was probably absorbed into the structure of the polyframboids during biogenic processes. The concentrations of Au and Ag are positively corrected with the Zn concentration in the polyframboids (R2 of Au-Zn and Ag-Zn are 0.81 and 0.89, respectively.). The concentration of other trace elements, such as As, Co and Cu, which occur adjacent to Zn on elemental maps, show a weak relationship with Zn and may have been incorporated into the polyframboids during later processes. These polyframboids are a probable source for gold and other elements in the orogenic gold mineralization system of the Otago Schist. Metamorphic transformation of the polyframboids may have released the metallic elements into the mineralizing fluid during prograde metamorphism of the schist belt.

  7. A Structural Mass Spectrometry Strategy for the Relative Quantitation of Ligands on Mixed Monolayer-Protected Gold Nanoparticles

    PubMed Central

    Harkness, Kellen M.; Hixson, Brian C.; Fenn, Larissa S.; Turner, Brian N.; Rape, Amanda C.; Simpson, Carrie A.; Huffman, Brian J.; Okoli, Tracy C.; McLean, John A.; Cliffel, David E.

    2010-01-01

    It is becoming increasingly common to use gold nanoparticles (AuNPs) protected by a heterogeneous mixture of thiolate ligands, but many ligand mixtures on AuNPs cannot be properly characterized due to the inherent limitations of commonly used spectroscopic techniques. Using ion mobility-mass spectrometry (IM-MS), we have developed a strategy which allows measurement of the relative quantity of ligands on AuNP surfaces. This strategy is used for the characterization of three samples of mixed-ligand AuNPs: tiopronin:glutathione (avg. diam. 2.5 nm), octanethiol:decanethiol (avg. diam. 3.6 nm), and tiopronin:11-mercaptoundecyl(poly ethylene glycol) (avg. diam. 2.5 nm). For validation purposes, the results obtained for tiopronin:glutathione AuNPs were compared to parallel measurements using nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) without ion mobility separation. Relative quantitation measurements for NMR and IM-MS were in excellent agreement, with an average difference of less than 1% relative abundance. IM-MS and MS without ion mobility separation were not comparable, due to a lack of ion signals for MS. The other two mixed-ligand AuNPs provide examples of measurements which cannot be performed using NMR spectroscopy. PMID:20968282

  8. Dissecting colloidal stabilization factors in crowded polymer solutions by forming self-assembled monolayers on gold nanoparticles.

    PubMed

    Lang, Nathan J; Liu, Biwu; Zhang, Xu; Liu, Juewen

    2013-05-21

    An ideal colloidal system should be highly stable in a diverse range of buffer conditions while still retaining its surface accessibility. We recently reported that dispersing citrate-capped gold nanoparticles (AuNPs) in polymers, such as polyethylene glycol (PEG), can achieve such a goal because of contributions from depletion stabilization. Because AuNPs can weakly adsorb PEG to exert steric stabilization and the remaining citrate can impart charge stabilization, the extent of the contribution of depletion stabilization is unclear. In this work, we aim to dissect the contribution of each stabilizing factor. This is achieved by coating AuNPs with a layer of thiolated compound, which inhibits the adsorption of PEG and also allows for the control of surface charge. We found that depletion stabilization alone was insufficient to stabilize AuNPs at room temperature. However, when working together with other stabilization mechanisms, ultrahigh stability can be achieved. The size of both AuNPs and PEG was systematically varied, and the trends were compared to theoretical calculations. Finally, we report the importance of the surface chemistry of commercial AuNPs.

  9. Application of disorganized monolayer films on gold electrodes to the prevention of surfactant inhibition of the voltammetric detection of trace metals via anodic stripping of underpotential deposits: detection of copper.

    PubMed

    Herzog, Grégoire; Arrigan, Damien W M

    2003-01-15

    Development of an approach to prevention of electrode surface fouling by surfactants in samples is demonstrated. Spontaneously adsorbed monolayer systems employing short alkyl chains and bulky end groups are used to form porous disorganized monolayers on gold electrodes. Detection of copper by stripping of underpotential deposits formed at electrodes modified with disorganized films of mercaptoethanesulfonate (MES), mercaptopropanesulfonate, mercaptoacetic acid, and mercaptopropanoic acid was possible, and to a much lesser extent at aminoethanethiol and L-cysteine films. Use of short deposition times in conjunction with linear sweep anodic stripping voltammetry allowed detection of Cu2+ ions down to 1 x 10(-6) M in sulfuric acid solution, using underpotential deposition as the deposition step of the procedure. Calibration graphs were linear in the concentration range (1-80) x 10(-6) M Cu2+ using 15-s deposition at 0.00 V versus Ag/AgCl. The surfactants Tween 20, Tween 80, and Triton X-100 were found to have no affect on detection of Cu2+ ions in the calibration curve concentration range using MES-modified gold electrodes, whereas at unmodified gold electrodes very severe attenuation of the detection capability was manifested. The average slope for all calibration curves at the MES-modified electrode in the absence and presence of the surfactants at two different concentration levels was 0.0710 +/- 0.0024 microA microM(-1); in contrast, the slope of the calibration line at uncoated gold electrodes in the presence of surfactant was 0.0268 microA microM(-1). These results indicate the excellent ability of a disorganized, porous monolayer for prevention of fouling of the electrode surface by the surfactants.

  10. Ligand-modulated interactions between charged monolayer-protected Au144(SR)60 gold nanoparticles in physiological saline.

    PubMed

    Villarreal, Oscar D; Chen, Liao Y; Whetten, Robert L; Yacaman, Miguel J

    2015-02-07

    In order to determine how functionalized gold nanoparticles (AuNPs) interact in a near-physiological environment, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates selected from one of these five (5) types: 11-mercapto-1-undecanesulfonate -SC11H22(SO3(-)), 5-mercapto-1-pentanesulfonate -SC5H10(SO3(-)), 5-mercapto-1-pentaneamine -SC5H10(NH3(+)), 4-mercapto-benzoate -SPh(COO(-)), or 4-mercapto-benzamide -SPh(CONH3(+)). These thiolates were selected to elucidate how the aggregation behavior of AuNPs depends on ligand parameters, including the charge of the terminal group (anionic vs. cationic), and its length and conformational flexibility. For this purpose, each functionalized AuNP was paired with a copy of itself, placed in an aqueous cell, neutralized by 120 Na(+)/Cl(-) counter-ions and salinated with a 150 mM concentration of NaCl, to form five (5) systems of like-charged AuNPs pairs in a saline. We computed the potential of mean force (the reversible work of separation) as a function of the intra-pair distance and, based on which, the aggregation affinities. We found that the AuNPs coated with negatively charged, short ligands have very high affinities. Structurally, a significant number of Na(+) counter-ions reside on a plane between the AuNPs, mediating the interaction. Each such ion forms a "salt bridge" (or "ionic bonds") to both of the AuNPs when they are separated by its diameter plus 0.2-0.3 nm. The positively charged AuNPs have much weaker affinities, as Cl(-) counter-ions form fewer and weaker salt bridges between the AuNPs. In the case of Au144(SC11H22(SO3(-)))60 pair, the flexible ligands fluctuate much more than the other four cases. The large fluctuations disfavor the forming of salt bridges between two AuNPs, but enable hydrophobic contact between the exposed hydrocarbon chains of the two AuNPs, which are subject to an effective attraction at a separation

  11. Ligand-modulated interactions between charged monolayer-protected Au144(SR)60 gold nanoparticles in physiological saline†

    PubMed Central

    Villarreal, Oscar D; Chen, Liao Y; Whetten, Robert L; Yacaman, Miguel J

    2015-01-01

    In order to determine how functionalized gold nanoparticles (AuNPs) interact in a near-physiological environment, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates selected from one of these five (5) types: 11-mercapto-1-undecanesulfonate −SC11H22−(SO3−), 5-mercapto-1-pentanesulfonate −SC5H10(SO3−), 5-mercapto-1-pentaneamine −S+10H(NH3+), 4-mercapto-benzoate −SPh(COO−), or 4-mercapto-benzamide −SPh(CONH3+3). These thiolates were selected to elucidate how the aggregation behavior of AuNPs depends on ligand parameters, including the charge of the terminal group (anionic vs. cationic), and its length and conformational flexibility. For this purpose, each functionalized AuNP was paired with a copy of itself, placed in an aqueous cell, neutralized by 120 Na+/Cl− counter-ions and salinated with a 150 mM concentration of NaCl, to form five (5) systems of like-charged AuNPs pairs in a saline. We computed the potential of mean force (the reversible work of separation) as a function of the intra-pair distance and, based on which, the aggregation affinities. We found that the AuNPs coated with negatively charged, short ligands have very high affinities. Structurally, a significant number of Na+ counter-ions reside on a plane between the AuNPs, mediating the interaction. Each such ion forms a “salt bridge” (or “ionic bonds”) to both of the AuNPs when they are separated by its diameter plus 0.2~0.3 nm. The positively charged AuNPs have much weaker affinities, as Cl− counter-ions form fewer and weaker salt bridges between the AuNPs. In the case of Au144(SC11H22(SO3−))60 pair, the flexible ligands fluctuate much more than the other four cases. The large fluctuations disfavor the forming of salt bridges between two AuNPs, but enable hydrophobic contact between the exposed hydrocarbon chains of the two AuNPs, which are subject to an effective attraction at a

  12. AFM Study of Surface Nanobubbles on Binary Self-Assembled Monolayers on Ultraflat Gold with Identical Macroscopic Static Water Contact Angles and Different Terminal Functional Groups.

    PubMed

    Song, Bo; Chen, Kun; Schmittel, Michael; Schönherr, Holger

    2016-11-01

    All experimental findings related to surface nanobubbles, such as their pronounced stability and the striking differences of macroscopic and apparent nanoscopic contact angles, need to be addressed in any theory or model of surface nanobubbles. In this work we critically test a recent explanation of surface nanobubble stability and their consequences and contrast this with previously proposed models. In particular, we elucidated the effect of surface chemical composition of well-controlled solid-aqueous interfaces of identical roughness and defect density on the apparent nanoscopic contact angles. Expanding on a previous atomic force microscopy (AFM) study on the systematic variation of the macroscopic wettability using binary self-assembled monolayers (SAMs) on ultraflat template stripped gold (TSG), we assessed here the effect of different surface chemical composition for macroscopically identical static water contact angles. SAMs on TSG with a constant macroscopic water contact angle of 81 ± 2° were obtained by coadsorption of a methyl-terminated thiol and a second thiol with different terminal functional groups, including hydroxy, amino, and carboxylic acid groups. In addition, surface nanobubbles formed by entrainment of air on SAMs of a bromoisobutyrate-terminated thiol were analyzed by AFM. Despite the widely differing surface potentials and different functionality, such as hydrogen bond acceptor or donor, and different dipole moments and polarizability, the nanoscopic contact angles (measured through the condensed phase and corrected for AFM tip broadening effects) were found to be 145 ± 10° for all surfaces. Hence, different chemical functionalities at identical macroscopic static water contact angle do not noticeably influence the apparent nanoscopic contact angle of surface nanobubbles. This universal contact angle is in agreement with recent models that rely on contact line pinning and the equilibrium of gas outflux due to the Laplace pressure and

  13. Zirconium immobilized on gold-mercaptopropionic acid self-assembled monolayer for trace determination of phosphate in blood serum by using CV, EIS, and OSWV.

    PubMed

    Shervedani, Reza Karimi; Pourbeyram, Sima

    2009-03-15

    Preparation, characterization, and application of a new sensor for the determination of phosphate in blood serum is described by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and osteryoung square wave voltammetry (OSWV) in the presence of an appropriate redox reaction probe. The sensor was based on ionic adsorption of phosphate on Zr(IV) immobilized on gold-mercaptopropionic acid self-assembled monolayer (Au-MPA-Zr(IV) SAM) electrode. Parameters influencing the method were optimized. A linear range calibration curve from 1.0 x 10(-7) to 1.0 x 10(-6)M PO(4)(3-) with a detection limit of 5.30 x 10(-8)M and mean of relative standard deviations (R.S.D.) of 2.75% for n=4 was observed in the best conditions by OSWV. Possible interferences from the coexisting ions were also investigated. The results demonstrated that sensor could be used for the determination of phosphate in the presence of various ions. Regeneration of the surface was carried out successfully by 5-min sonication in 0.1M KOH solution and then 1-min incubation in 1.0x10(-3)M Zr(IV) with a good reproducibility, R.S.D.=1.47% for n=4 by OSWV. The validity of the method and applicability of the sensor were successfully tested by detection of phosphate in blood serum after deproteinization of sample without interference from sample matrix. The long-term storage stability of the electrode was studied. The experimental data is presented and discussed from which the new sensor is characterized.

  14. Effects of intrusions on grades and contents of gold and other metals in volcanogenic massive sulfide deposits

    USGS Publications Warehouse

    Singer, Donald A.; Berger, Vladimir; Mosier, Dan L.

    2011-01-01

    The reason some VMS deposits contain more gold or other metals than others might be due to the influence of intrusions. A new approach examining this possibility is based on examining the information about many VMS deposits to test statistically if those with associated intrusions have significantly different grades or amounts of metals. A set of 632 VMS deposits with reported grades, tonnages, and information about the observed presence or absence of subvolcanic or plutonic intrusive bodies emplaced at or after VMS mineralization is statistically analyzed.Deposits with syn-mineralization or post-mineralization intrusions nearby have higher tonnages than deposits without reported intrusions, but the differences are not statistically significant. When both kinds of intrusions are reported, VMS deposit sizes are significantly higher than in the deposits without any intrusions. Gold, silver, zinc, lead, and copper average grades are not significantly different in the VMS deposits with nearby intrusions compared to deposits without regardless of relative age of intrusive. Only zinc and copper contents are significantly higher in VMS deposits with both kinds of intrusive reported. These differences in overall metal content are due to significantly larger deposit sizes of VMS deposits where both intrusive kinds are observed and reported, rather than any difference in metal grades.

  15. Polymer-assisted self-assembly of gold nanoparticle monolayers and their dynamical switching† †Electronic supplementary information (ESI) available: Reflection spectra of AuNP monolayer at the LLI, and repeatability; reflection spectra of different packing densities; scheme showing how the AuNPs actuate on the Si substrate. See DOI: 10.1039/c6nr05199e. The dataset of the figures in this paper can be found at http://dx.doi.org/10.17863/CAM.1194 Click here for additional data file.

    PubMed Central

    Rudrum, Adam W.; Herrmann, Lars O.; Turek, Vladimir

    2016-01-01

    Dynamic switching of plasmonic monolayers built of gold nanoparticles (AuNPs) is achieved using nano-coatings of poly(isopropyl acrylamide) (PNIPAM). The distance between AuNPs can be dynamically tuned through the repeatable expansion and contraction of the PNIPAM shells at different temperatures, which results in rapid switching of the optical properties of the AuNP monolayer. PMID:27546585

  16. Photoinduced electron transfer through peptide-based self-assembled monolayers chemisorbed on gold electrodes: directing the flow-in and flow-out of electrons through peptide helices.

    PubMed

    Venanzi, Mariano; Gatto, Emanuela; Caruso, Mario; Porchetta, Alessandro; Formaggio, Fernando; Toniolo, Claudio

    2014-08-21

    Photoinduced electron transfer (PET) experiments have been carried out on peptide self-assembled monolayers (SAM) chemisorbed on a gold substrate. The oligopeptide building block was exclusively formed by C(α)-tetrasubstituted α-aminoisobutyric residues to attain a helical conformation despite the shortness of the peptide chain. Furthermore, it was functionalized at the C-terminus by a pyrene choromophore to enhance the UV photon capture cross-section of the compound and by a lipoic group at the N-terminus for linking to gold substrates. Electron transfer across the peptide SAM has been studied by photocurrent generation experiments in an electrochemical cell employing a gold substrate modified by chemisorption of a peptide SAM as a working electrode and by steady-state and time-resolved fluorescence experiments in solution and on a gold-coated glass. The results show that the electronic flow through the peptide bridge is strongly asymmetric; i.e., PET from the C-terminus to gold is highly favored with respect to PET in the opposite direction. This effect arises from the polarity of the Au-S linkage (Au(δ+)-S(δ-), junction effect) and from the electrostatic field generated by the peptide helix.

  17. MICROPATTERNING OF GOLD SUBSTRATES BASED ON POLY(PROPYLENE SULFIDE-BL-ETHYLENE GLYCOL), (PPS-PEG) BACKGROUND PASSIVATION AND THE MOLECULAR-ASSEMBLY PATTERNING BY LIFT-OFF (MAPL) TECHNIQUE.

    PubMed

    Feller, L; Bearinger, J P; Wu, L; Hubbell, J A; Textor, M; Tosatti, S

    2008-07-01

    Poly(propylene sulfide-bl-ethylene glycol (PPS-PEG) is an amphiphilic block copolymer that spontaneously adsorbs onto gold from solution. This results in the formation of a stable polymeric layer that renders the surface protein resistant when an appropriate architecture is chosen. The established molecular assembly patterning by lift-off (MAPL) technique can convert a prestructured resist film into a pattern of biointeractive chemistry and a noninteractive background. Employing the MAPL technique, we produced a micron-scale PPS-PEG pattern on a gold substrate, and then characterized the patterned structure with Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and Atomic Force Microscopy (AFM). Subsequent exposure of the PPS-PEG/gold pattern to protein adsorption (full human serum) was monitored in situ; SPR-imaging (i-SPR) shows a selective adsorption of proteins on gold, but not on PPS-PEG areas. Analysis shows a reduction of serum adsorption up to 93% on the PPS-PEG areas as compared to gold, in good agreement with previous analysis of homogenously adsorbed PPS-PEG on gold. MAPL patterning of PPS-PEG block copolymers is straightforward, versatile and reproducible, and may be incorporated into biosensor-based surface analysis methods.

  18. MICROPATTERNING OF GOLD SUBSTRATES BASED ON POLY(PROPYLENE SULFIDE-BL-ETHYLENE GLYCOL), (PPS-PEG) BACKGROUND PASSIVATION AND THE MOLECULAR-ASSEMBLY PATTERNING BY LIFT-OFF (MAPL) TECHNIQUE

    SciTech Connect

    Feller, L; Bearinger, J P; Wu, L; Hubbell, J A; Textor, M; Tosatti, S

    2007-11-13

    Poly(propylene sulfide-bl-ethylene glycol) (PPS-PEG) is an amphiphilic block copolymer that spontaneously adsorbs onto gold from solution. This results in the formation of a stable polymeric layer that renders the surface protein resistant when an appropriate architecture is chosen. The established molecular assembly patterning by lift-off (MAPL) technique can convert a prestructured resist film into a pattern of biointeractive chemistry and a noninteractive background. Employing the MAPL technique, we produced a micron-scale PPS-PEG pattern on a gold substrate, and then characterized the patterned structure with Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and Atomic Force Microscopy (AFM). Subsequent exposure of the PPS-PEG/gold pattern to protein adsorption (full human serum) was monitored in situ; SPR-imaging shows a selective adsorption of proteins on gold, but not on PPS-PEG areas. Analysis shows a reduction of serum adsorption up to 93% on the PPS-PEG areas as compared to gold, in good agreement with previous analysis on homogeneously adsorbed PPS-PEG on gold. MAPL patterning of PPS-PEG block copolymers fast, versatile and reproducible, and allows for subsequent use of biosensor-based surface analysis methods.

  19. Identifying Predictors of Arsenic Bioavailability in Low-Sulfide, Quartz-Hosted Gold Deposits: Case Study at the Empire Mine State Historic Park, CA, USA

    NASA Astrophysics Data System (ADS)

    Foster, A. L.; Alpers, C. N.; Burlak Regnier, T.; Blum, A.; Petersen, E. U.; Basta, N. T.; Whitacre, S.; Casteel, S. W.; Kim, C. S.

    2016-12-01

    Introduction: This study addressed a need to identify geochemical and mineralogical parameters that are significantly correlated with arsenic bioavailability at historically-mined, low-sulfide, quartz-hosted ("lode") gold deposits. The study location was the Empire Mine State Historic Park (EMSHP), a site that is typical of many lode deposits in California in that arsenic is a primary contaminant of concern. Methods: A total of 25 large-volume sediment/mine waste samples were collected from sites in the EMSHP, homogenized, and dry sieved (< 250 micron). The following datasets were collected from the 25 samples (or a subset thereof as indicated): (1) in vivo relative As bioavailability (juvenile swine; n = 12); (2) in vitro relative As bioaccessibility (n = 25); (3) solid-phase chemistry (XRF; n = 25); (4) quantitative mineralogy (n =25); (5) Bulk As- and iron (Fe) speciation (synchrotron X-ray absorption spectroscopy, XAS, n =19); (6) point-based micron-scale composition (electron microprobe, n =12); and (7) micron-scale mineralogical and compositional mapping (QEMSCAN, n = 12). The matrix of bivariate correlations among these datasets was evaluated using a cutoff criterion for significance of p < 0.05. Results:Arsenic bioavailability was positively and significantly correlated with the abundance of Fe (hydr)oxide, the relative abundance of As-bearing hydroxide and As concentration in Fe hydroxide (datasets 4, 5, and 6, respectively). The relative abundance of As associated with Al-bearing secondary minerals (determined by As-XAS) was also positively and significantly correlated with datasets (1) and (2), but the correlation quality was lower. The relative abundance of other arsenic-bearing secondary minerals (e.g., jarosite, calcium arsenate, arseniosiderite) as determined by As XAS had positive correlations with bioaccessibility and/or bioavailability, but the correlations were not statistically significant. We ascribe this result to the fact that these phases

  20. A ground electromagnetic survey used to map sulfides and acid sulfate ground waters at the abandoned Cabin Branch Mine, Prince William Forest Park, northern Virginia gold-pyrite belt

    USGS Publications Warehouse

    Wynn, Jeffrey C.

    2000-01-01

    INTRODUCTION AND BACKGROUND: Prince William Forest Park is situated at the northeastern end of the Virginia Gold-Pyrite belt northwest of the town of Dumfries, VA. The U. S. Marine Corps Reservation at Quantico borders the park on the west and south, and occupies part of the same watershed. Two abandoned mines are found within the park: the Cabin Branch pyrite mine, a historic source of acid mine drainage, and the Greenwood gold mine, a source of mercury contamination. Both are within the watershed of Quantico Creek (Fig.1). The Cabin Branch mine (also known as the Dumfries mine) lies about 2.4 km northwest of the town of Dumfries. It exploited a 300 meter-long, lens-shaped body of massive sulfide ore hosted by metamorphosed volcanic rocks; during its history over 200,000 tons of ore were extracted and processed locally. The site became part of the National Capitol Region of the National Park Service in 1940 and is currently managed by the National Park Service. In 1995 the National Park Service, in cooperation with the Virginia Department of Mines, Minerals, and Energy reclaimed the Cabin Branch site. The Virginia Gold-Pyrite belt, also known as the central Virginia volcanic-plutonic belt, is host to numerous abandoned metal mines (Pavlides and others, 1982), including the Cabin Branch deposit. The belt itself extends from its northern terminus near Cabin Branch, about 50 km south of Washington, D.C., approximately 175 km to the southwest into central Virginia. It is underlain by metamorphosed volcanic and clastic (non-carbonate) sedimentary rocks, originally deposited approximately 460 million years ago during the Ordovician Period (Horton and others, 1998). Three kinds of deposits are found in the belt: volcanic-associated massive sulfide deposits, low-sulfide quartz-gold vein deposits, and gold placer deposits. The massive sulfide deposits such as Cabin Branch were historically mined for their sulfur, copper, zinc, and lead contents, but also yielded byproduct

  1. Tracking the Mineralogical Fate of Arsenic in Weathered Sulfides from the Empire Mine Gold-Quartz Vein Deposit by using Microbeam Analytical Techniques

    NASA Astrophysics Data System (ADS)

    Burlak, T.; Alpers, C. N.; Foster, A. L.; Brown, A.; Hammersley, L. C.; Petersen, E.

    2010-12-01

    Several complementary microbeam analytical techniques are being employed to determine the mineralogical fate of arsenic (As) released by weathering of primary sulfide minerals from waste rock at a California gold mine. Because of the known association of As with Fe-oxides, special attention was paid to the fate of Fe during weathering of arsenian pyrite [Fe(S,As)2], arsenopyrite (FeAsS), and ferroan dolomite [Ca(Mg,Fe)(CO3)2]. Samples were collected from waste rock dumps at the Empire Mine State Historic Park in Grass Valley, California, and polished thick (60-μm) sections were prepared for analysis. Micro-X-ray fluorescence (µXRF) investigations at the Stanford Synchrotron Radiation Lightsource (SSRL) involved mapping element distribution at the 100-μm pixel scale (beamline 10-2) and 2-µm pixel size (beamline 2-3) at four energies spanning the range of As valence states (11,867-11,890 eV). The maps provide spatial data on several elements (As, Ca, Fe, K, Mn, Ni, S, and Zn), but without standardization this information remains qualitative. Good correspondence was found between the results of principal component analysis of the maps and the distribution of the two main As valence states, As(III) and As(V). X-ray absorption fine structure (XAFS) spectra collected on beamline 2-3 at the As and Fe K-edges show reduced and oxidized species of both elements and no evidence for secondary arsenate phases such as scorodite (FeAsO4 ● 2H2O). Spectra of As(III) were rare, and not often mixed with As(V). The same thick sections were also analyzed by electron microbeam methods. Chemical and element analysis using a Cameca SX-100 microprobe quantified mineral compositions at selected spots in the sections by comparison to well-characterized reference materials. Concentrations of As in pyrite ranged from less than 0.01% to 3.1 wt. % and pyrite and was heterogeneous at the sub-µm scale. Arsenopyrite and ferroan dolomite were also found to be heterogeneous in composition

  2. Improved DET communication between cellobiose dehydrogenase and a gold electrode modified with a rigid self-assembled monolayer and green metal nanoparticles: The role of an ordered nanostructuration.

    PubMed

    Bollella, P; Mazzei, F; Favero, G; Fusco, G; Ludwig, R; Gorton, L; Antiochia, R

    2017-02-15

    Efficient direct electron transfer (DET) between cellobiose dehydrogenase from Corynascus thermophilus (CtCDH) and a novel gold electrode platform, obtained by covalent linking of green AuNPs and AgNPs modified with a dithiol self-assembled monolayer, consisting of biphenyl-4,4'-dithiol (BPDT), was presented. The green AuNPs and AgNPs were synthesized using quercetin as reducing agent at room temperature. TEM experiments showed that the AuNPs and AgNPs were circular in shape with an average diameter of 5 and 8nm, respectively. Cyclic voltammetry of CtCDH immobilized onto the AuNPs/BPDT/AuE and the AgNPs/BPDT/AuE electrode platforms were carried out and compared with naked AuE, BPDT/AuE, AuNPs/AuE, and AgNPs/AuE. A pair of well-defined redox waves in neutral pH solution due to efficient DET of CtCDH was present with both MNPs/BPDT/AuE platforms. No DET communication was found with platforms without MNPs linked to BPDT. The apparent heterogeneous electron transfer rate constants (kS) of CtCDH were calculated to be 21.5±0.8s(-1) and 10.3±0.7s(-1), for the AuNPs/BPDT/AuE and the AgNPs/BPDT/AuE platforms, respectively. The modified electrodes were successively used to develop an eco-friendly biosensor for lactose detection. The CtCDH/AuNPs/BPDT/AuE based biosensor showed the best analytical performances with an excellent stability, a detection limit of 3µM, a linear range between 5 and 400µM and a sensitivity of 27.5±2.5µAcm(-2)mM(-1). Such performances were favorably compared with other lactose biosensors reported in literature. The biosensor was successively tested to quantify lactose content in real milk and cream samples. No significant interference present in the sample matrices was observed.

  3. Self-assembled monolayers of flavin and cyclodextrin derivatives

    NASA Astrophysics Data System (ADS)

    Andrauskas, Donna Marie

    The development of surfaces capable of molecular recognition and catalysis is technologically important for uses such as chemical sensing. Self-assembled monolayers (SAMs) on gold and silver surfaces were explored. SAMs of synthetic derivatives of flavin were studied, as flavins are well-known natural coenzymes. SAMs of cyclodextrin derivatives were studied, as they may be useful as the active surfaces of chemical sensors. The electrochemical behavior of SAMs of the synthetic flavin 10-(3 '-methylthiopropyl)- isoalloxazinyl-7-carboxylic acid was examined. Quasi- reversible redox behavior was found. Electron transfer rates of 340 s-1 and 536 s-1 were estimated for the cathodic and anodic processes, respectively, at pH 7. The reduction potential shifted regularly with pH. SAMs were characterized by X-ray photoelectron spectroscopy (XPS) and low voltage field emission secondary electron microscopy (LVFESEM). Angle-resolved XPS indicated that the carboxyl groups tended to orient towards the film surface. The molecules packed in domains that did not follow the topology of the gold grains of the substrate, and approximately 10-15% of the gold surface was uncovered. The possible oxidation of the coenzyme NADH by the SAMs was examined, it was found that the Au(111) substrate catalyzed this reaction. SAMs of three other synthetic flavins were also studied. SAMs of β-cyclodextrin with methyl sulfides on the primary sites and anthraquinone on a secondary site were studied. The surface coverage obtained by electrochemistry was consistent with that previously reported for nonelectroactive derivatives. Electron transfer rate constants varied markedly with pH, increasing rapidly between pH 7 and pH 9 to values of approximately 700-900 s -1. The formation of SAMs of sulfide derivatives of cyclodextrins onto silver and gold-coated prisms was followed using the method of surface-plasmon resonance (SPR) in a flow-cell. It was found that a SAM of somewhat greater than monolayer

  4. Gold in minerals and the composition of native gold

    USGS Publications Warehouse

    Jones, Robert Sprague; Fleischer, Michael

    1969-01-01

    Gold occurs in nature mainly as the metal and as various alloys. It forms complete series of solid solutions with silver, copper, nickel, palladium, and platinum. In association with the platinum metals, gold occurs as free gold as well as in solid solution. The native elements contain the most gold, followed by the sulfide minerals. Several gold tellurides are known, but no gold selenides have been reported, and only one sulfide, the telluride-sulfide mineral nagyagite, is known. The nonmetallic minerals carry the least gold, and the light-colored minerals generally contain less gold than the dark minerals. Some conclusions in the literature are conflicting in regard to the relation of fineness of native gold to its position laterally and vertically within a lode, the nature of the country rocks, and the location and size of nuggets in a streambed, as well as to the variation of fineness within an individual nugget.

  5. Formation of Monolayers by the Coadsorption of Thiols on Gold: Variation in the Length of the Head Group, Tail Group, and Solvent

    DTIC Science & Technology

    1989-05-01

    oleophobic monolayer) and the other by a polar or polarizable group (yielding a hydrophilic or oleophilic monolayer). In these systems the contact...particular mechanism, and we prefer not to speculate further. Experimental Section Materials . Ethanol (U.S. Industrials Co.) was deoxygenated with nitrogen...8217 solution reacts violently with most organic materials and must be handled with extreme care. Adsorption solutions containing two thiols were prepared in

  6. Trace element distribution, with a focus on gold, in copper-rich and zinc-rich sulfide chimneys from Brothers submarine volcano, Kermadec arc

    NASA Astrophysics Data System (ADS)

    Berkenbosch, H. A.; de Ronde, C. E.; McNeill, A.; Goemann, K.; Gemmell, J. B.

    2012-12-01

    Brothers volcano is a dacitic volcano located along the Kermadec arc, New Zealand, and hosts the NW Caldera hydrothermal vent field perched on part of the steep caldera walls. The field strikes for ~600 m between depths of 1550 and 1700 m and includes numerous, active, high-temperature (max 302°C) chimneys and even more dead, sulfide-rich spires. Chimney samples collected from Brothers show distinct mineralogical zonation reflecting gradients in oxidation state, temperature, and pH from the inner walls in contact with hydrothermal fluids through to the outer walls in contact with seawater. Minerals deposited from hotter fluids (e.g., chalcopyrite) are located in the interior of the chimneys and are surrounded by an external zone of minerals deposited by cooler fluids (e.g., sulfates, sphalerite). Four chimneys types are identified at Brothers volcano based on the relative proportions of chalcopyrite and sulfate layers, and the presence or absence of anhydrite. Two are Cu-rich, i.e., chalcopyrite-rich and chalcopyrite-bornite-rich chimneys, and two are Zn-rich, i.e., sphalerite-rich and sphalerite-chalcopyrite-rich. Barite and anhydrite are common to both Cu-rich chimney types whereas Zn-rich chimneys contain barite only. The main mineral phases in all the chimneys are anhydrite, barite, chalcopyrite, pyrite/marcasite, and sphalerite. Trace minerals include galena, covellite, tennantite, realgar, chalcocite, bornite, hematite, goethite, Pb-As sulfosalts, and Bi- or Au-tellurides. The vast majority of tellurides are <5 μm in size and they commonly form in bands, cluster in patches, or occur along internal grain boundaries within chalcopyrite. In sulfate layers adjacent to the chalcopyrite zones tellurides can occur as inclusions in anhydrite, barite or pyrite and/or occupy void space within the chimney. The occurrence of specular hematite and Bi- or Au-tellurides associated with chalcopyrite are consistent with magmatic contributions to the NW Caldera vent site

  7. Monolayer Films Prepared by the Spontaneous Self-Assembly of Symmetrical and Unsymmetrical Dialkyl Sulfides from Solution Onto Gold Substrates: Structure, Properties, and Reactivity of Constituent Functional Groups.

    DTIC Science & Technology

    1987-10-01

    sodium phosphate; pH 13, 0.1 N NaOH. Silica gel (70-230 mesh ASTM) for Chromatographic adsorption/purification and TLC plates ( silica gel 60 F254 pre...a column containing silica gel using a solution of acetone-hexane (1/10). Removal of the eluent by rotoevaporation afforded a white solid. 73 11...column containing silica gel with a solution of acetone-hexane (1/5), collecting 50- mL fractions. Recrystallization of the product from hexanes afforded a

  8. Selenium Sulfide

    MedlinePlus

    Selenium sulfide, an anti-infective agent, relieves itching and flaking of the scalp and removes the dry, ... Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium ...

  9. N-Heterocyclic Carbene Self-assembled Monolayers on Copper and Gold: Dramatic Effect of Wingtip Groups on Binding, Orientation and Assembly.

    PubMed

    Larrea, Christian R; Baddeley, Christopher J; Narouz, Mina R; Mosey, Nicholas J; Horton, J Hugh; Crudden, Cathleen M

    2017-09-27

    The first example of self-assembled monolayers of N-heterocyclic carbenes (NHCs) on copper is reported. The monolayer structure is highly dependent on the N,N-substituents on the NHC. On both Cu(111) and Au(111), bulky isopropyl-substituents force the NHC to bind perpendicular to the metal surface while methyl- or ethyl- substituted NHCs lie flat. Temperature programmed desorption studies show that the NHC binds to Cu(111) with a desorption energy of Edes = 152 ± 10 kJmol-1. NHCs that bind upright desorb cleanly, while flat-lying NHCs decompose leaving adsorbed organic residues. Scanning tunneling microscopy of methylated NHCs reveals arrays of covalently linked dimers which transform into adsorbed (NHC)2Cu species by extraction of a copper atom from the surface after annealing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Equilibrating Nanoparticle Monolayers Using Wetting Films

    SciTech Connect

    Pontoni, D.; Alvine, K; Checco, A; Gang, O; Ocko, B; Pershan, P

    2009-01-01

    Monolayers of bimodal gold nanoparticles on silicon are investigated by a combination of microscopy (dry monolayers) and x-ray diffraction (dry and wet monolayers). In the presence of an excess of small particles, the nanoscale packing structure closely resembles the small-particle-rich scenario of the structural crossover transition that has been predicted and also observed with micron-scale hard-sphere colloids. Structural morphology is monitored in situ during monolayer dissolution and reassembly within the thin liquid wetting film. This approach allows investigation of size and solvent effects on nanoparticles in quasi-two-dimensional confinement.

  11. Improved protein crystallization by vapor diffusion from drops in contact with transparent, self-assembled monolayers on gold-coated glass coverslips

    NASA Astrophysics Data System (ADS)

    Ji, David; Arnold, Christine M.; Graupe, Michael; Beadle, Eric; Dunn, Robert V.; Phan, My N.; Villazana, Ramon J.; Benson, Ronald; Colorado, Ramon, Jr.; Randall Lee, T.; Friedman, Jonathan M.

    2000-09-01

    The surfaces of glass coverslips of the type typically used for protein crystallization were modified with four types of transparent, chemically distinct self-assembled monolayers (SAMs). The SAM-functionalized surfaces exhibit a much higher degree of order and chemical uniformity than silanized glass, as judged by contact angle measurements. These characteristics lead to a marked increase in the range of solution conditions under which large crystals of lysozyme, α-lactalbumin, ribonuclease, hemoglobin, thaumatin, and catalase are observed to form. The results are rationalized in terms of a marked reduction in the rate of non-productive nucleation relative to the rate of crystal growth.

  12. Hybrid nanostructures of well-organized arrays of colloidal quantum dots and a self-assembled monolayer of gold nanoparticles for enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.

    2016-07-01

    Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.

  13. Structural analysis of HS(CD(2))(12)(O-CH(2)-CH(2))(6)OCH(3) monolayers on gold by means of polarization modulation infrared reflection absorption spectroscopy. progress of the reaction with bromine.

    PubMed

    Brand, Izabella; Nullmeier, Martina; Klüner, Thorsten; Jogireddy, Rajamalleswaramma; Christoffers, Jens; Wittstock, Gunther

    2010-01-05

    A self-assembled monolayer (SAM) on gold was formed with specifically perdeuterated hexaethylene glycol-terminated alkanethiol HS(CD(2))(12)(O-CH(2)-CH(2))(6)OCH(3) (D-OEG). The structure of the d-alkane and the oligoethylene glycol (OEG) parts of the molecule in a SAM was studied by means of polarization modulation infrared reflection absorption spectroscopy. The D-OEG monolayers are highly ordered and exist in a crystalline phase. The d-alkane chain adopts an all-trans conformation. Both, the d-alkane chain and long axis of the OEG part make an angle of 26.0 degrees +/- 1.5 degrees with respect to the surface normal, a value characteristic for the tilt of solid n-alkane thiols in the SAMs on Au. The positions of nu(as)(COC) and CH(2) wagging and rocking modes indicate a helical arrangement of the OEG chains. The D-OEG SAMs were exposed to 25 muM Br(2) in two ways: (i) by immersion into the Br(2) solution and (ii) in the galvanic cell Au|D-OEG SAM|25 muM Br(2) + 0.1 M Na(2)SO(4)|| 50 muM KBr + 0.1 M Na(2)SO(4)|Au. In the galvanic cell, the oxidant (Br(2)) is scavenged by a heterogeneous electron transfer reaction, slowing the reaction of D-OEG with Br(2). The slow progress of the reaction with Br(2) allowed us to draw conclusions about molecular rearrangements taking place during this reaction. The reaction with Br(2) starts on boundaries and/or defects present in the SAM. First, at the defect place, the alpha-C atom of the OEG chain reacts with Br(2) and the OEG part of the molecule is removed from the monolayer. In consequence an increase in disorder in the OEG part of the SAM is observed. The same mechanism of the reaction with Br(2) is applied for the d-dodecane alkanethiol part of the molecule. This reaction is slow, thus the order and the tilt of the hydrocarbon chain changes only a little during the reaction time.

  14. Perforated monolayers

    SciTech Connect

    Regen, S.L.

    1992-01-01

    Our research over this past grant period has focused on (1) developing methods for making in situ permeation measurements at the air-water interface, (2) defining the structural and conformational behavior of selected calix(4)arenes, (3) defining the metal complexation properties of certain upper-rim functionalized calix(4)arenes, and (4) synthesizing a broad series of polymerizable calixarenes, to be used for constructing perforated monolayers and multilayers.

  15. Kinetic evaluation of highly active supported gold catalysts prepared from monolayer-protected clusters: an experimental Michaelis-Menten approach for determining the oxygen binding constant during CO oxidation catalysis.

    PubMed

    Long, Cormac G; Gilbertson, John D; Vijayaraghavan, Ganesh; Stevenson, Keith J; Pursell, Christopher J; Chandler, Bert D

    2008-08-06

    Thiol monolayer-protected Au clusters (MPCs) were prepared using dendrimer templates, deposited onto a high-surface-area titania, and then the thiol stabilizers were removed under H2/N2. The resulting Au catalysts were characterized with transmission electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy of adsorbed CO. The Au catalysts prepared via this route displayed minimal particle agglomeration during the deposition and activation steps. Structural data obtained from the physical characterization of the Au catalysts were comparable to features exhibited from a traditionally prepared standard Au catalyst obtained from the World Gold Council (WGC). A differential kinetic study of CO oxidation catalysis by the MPC-prepared Au and the standard WGC catalyst showed that these two catalyst systems have essentially the same reaction order and Arrhenius apparent activation energies (28 kJ/mol). However, the MPC-prepared Au catalyst shows 50% greater activity for CO oxidation. Using a Michaelis-Menten approach, the oxygen binding constants for the two catalyst systems were determined and found to be essentially the same within experimental error. To our knowledge, this kinetic evaluation is the first experimental determination of oxygen binding by supported Au nanoparticle catalysts under working conditions. The values for the oxygen binding equilibrium constant obtained from the Michaelis-Menten treatment (ca. 29-39) are consistent with ultra-high-vacuum measurements on model catalyst systems and support density functional theory calculations for oxygen binding at corner or edge atoms on Au nanoparticles and clusters.

  16. Monolayer-Protected Gold Nanoparticles as an Efficient Stationary Phase for Open Tubular Gas Chromatography using a Square Capillary Model for Chip-Based Gas Chromatography in Square Cornered Microfabricated Channels

    SciTech Connect

    Gross, Gwen M.; Grate, Jay W. ); Synovec, Robert E.

    2004-03-12

    The application of a dodecanethiol monolayer protected gold nanoparticle (MPN) stationary phase within a microchannel environment was explored using a square capillary column as a model for a high-speed, microfabricated gas chromatography (?GC). Successful deposition and evaluation of a dodecanethiol MPN phase within a 1.3 m long, 100?m by 100?m square capillary is reported. Depth of the MPN phase was evaluated using SEM analysis. An average thickness of 15 nm along the capillary walls was determined. While the film depth along the walls was very uniform, the corner depths were greater with the largest observed depth being 430 nm. Overall, an efficient chromatographic system was obtained with a minimum reduced plate height, hmin, of 1.2 for octane (k= 0.22). Characterization of the MPN column was completed using four compound classes (alkanes, alcohols, ketones, and aromatics) that were used to form a 7 component mixture with a 2 second separation. A mixture consisting of a nerve agent simulator in a sample containing analytes that may commonly interfere with detection was also separated in 2 seconds, much faster than a similar separation previously reported using a?GC system in 50 seconds. Application of the square capillary MPN column for a high-speed separation as the second column of a comprehensive two-dimensional gas chromatography system (GC x GC) was also explored. Comparison of the MPN stationary phase was compared to phases employed in previously reported?GC systems.

  17. Determination of self-exchange rate of alkanethiolates in self-assembled monolayers on gold using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Kang, Hyunook; Kim, Yongbin; Choi, Inseong; Chang, Rakwoo; Yeo, Woon-Seok

    2014-09-16

    In this paper, we describe a new method for determining the exchange rates of alkanethiolates in self-assembled monolayers (SAMs) on gold using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze the compositions of the alkanethiolate in SAMs rapidly and directly. In particular, to investigate the self-exchange of alkanethiols, we prepared a deuterated alkanethiol that has the same molecular properties as the non-deuterated alkanethiol but a different molecular weight. SAMs consisting of deuterated alkanethiolates were immersed in a solution of the non-deuterated alkanethiol, and the influences of the immersion time, temperature, concentration, and solvent on the self-exchange rates were investigated. Furthermore, we assessed the exchange rates among alkanethiols with different carbon chain lengths and different size of ethylene glycol units. In addition, we performed molecular dynamics simulations using a model SAM system in order to understand the molecular mechanism of the exchange process. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Electrochemical Deposition Of Thiolate Monolayers On Metals

    NASA Technical Reports Server (NTRS)

    Porter, Marc D.; Weissharr, Duane E.

    1995-01-01

    Electrochemical method devised for coating metal (usually, gold) surfaces with adherent thiolate monolayers. Affords greater control over location and amount of material deposited and makes it easier to control chemical composition of deposits. One important potential use for this method lies in fabrication of chemically selective thin-film resonators for microwave oscillators used to detect pollutants: monolayer formulated to bind selectively pollutant chemical species of interest, causing increase in mass of monolayer and corresponding decrease in frequency of resonance. Another important potential use lies in selective chemical derivatization for purposes of improving adhesion, lubrication, protection against corrosion, electrocatalysis, and electroanalysis.

  19. Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer.

    PubMed

    Zhang, Yue; Barnes, George L; Yan, Tianying; Hase, William L

    2010-05-07

    Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott, Science, 2007, 317, 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface, and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly, much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM, perpendicular to the interface, results in nearly identical temperatures for the CH(2) and CH(3) groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate, the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM, there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.

  20. Electrochemistry, surface plasmon resonance, and quartz crystal microbalance: an associative study on cytochrome c adsorption on pyridine tail-group monolayers on gold.

    PubMed

    Paulo, Tércio de F; de Sousa, Ticyano P; de Abreu, Dieric S; Felício, Nathalie H; Bernhardt, Paul V; Lopes, Luiz G de F; Sousa, Eduardo H S; Diógenes, Izaura C N

    2013-07-25

    Quartz crystal microbalance (QCM), surface plasmon resonance (SPR), and electrochemistry techniques were used to study the electron-transfer (ET) reaction of cytochrome c (Cyt c) on gold surfaces modified with thionicotinamide, thioisonicotinamide, 4-mercaptopyridine, 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol, 5-phenyl-1,3,4-oxadiazole-2-thiol, 4,4'-bipyridine, and 4,4'-dithiopyridine. The electrochemical results showed that the ET process is complex, being chiefly diffusional with steps depending on the orientation of the pyridine or phenyl tail group of the modifiers. The correlation between the electrochemical results and those acquired by SPR and QCM indicated the presence of an adlayer of Cyt c adsorbed on the thiolate SAMs. This adlayer, although being not electroactive, is essential to assess the ET reaction of Cyt c in solution. The results presented in this work are consistent with the statement (Feng, Z. Q.; Imabayashi, S.; Kakiuchi, T.; Niki, K. J. Electroanal. Chem. 1995, 394, 149-154) that the ET reaction of Cyt c can be explained in terms of the through-bond tunneling mechanism.

  1. Scanning tunneling microscopy studies of growth medium & temperature dependent structural phases of alkanethiol self-assembled monolayers, reactive self-assembled monolayers, & flat gold nanoparticle/indium tin oxide substrates and a scanning surface photovoltage microscopy study for local mechanical stress characterization in complementary metal oxide semiconductor devices

    NASA Astrophysics Data System (ADS)

    Dahanayaka, Dahanayaka Liyanage Daminda Hemal

    Self-assembled monolayers (SAMs) of alkanethiolates on Au(111) represent promising platforms to study the molecular surfaces and interfaces for applications ranging from molecular electronics, nanophotonics to biology. Understanding the effect of growth conditions on SAMs particularly on their structural features is important from both fundamental and applied points of view. Knowledge of SAM structural features and structural phase transitions provides important insights into molecular packing for the control of the molecular self-assembly. We compared SAMs grown from different media, from 1 mM C10 solution in decalin, hexadecane and triethylene glycol and from C10 vapor. We present a molecularly-resolved scanning tunneling microscopy study showing the dependence of the SAM structure on the growth conditions. We have established conditions for making samples almost vacancy islands (VI) free with very large SAM domains of (2✓3 x 3)rect. superstructure and (✓3 x 4✓3)R30° striped-phase and investigated the orientation of low-index step edges of Au(111) for normal and striped-phase SAMs. We showed that the striped phase is stable to converting to (2✓3 x 3)rect. below 40°C. We demonstrate that flat gold nanoparticles (FGNPs) supported on indium tin oxide glass (ITO) are excellent substrates for molecularly-resolved STM imaging of alkanethiol SAMs. Nanoparticles were characterized using STM, TEM, and SEM techniques. Surface treatment techniques, Ar/O2 and H 2 plasma treatments, dry thermal annealing and exposures to UV/O 3, were used to prepare the surfaces of FGNPs supported on ITO and Au/mica substrates for high-resolution STM imaging of alkanethiol SAMs. We developed a convergent approach to functionalize SAM surfaces. Ordered mixed monolayers comprised of alkanethiols and azidoalkanethiols islands are formed and subsequent IMesCuIBr catalyzed [3+2] "click" cycloaddition reaction with substituted alkyne introduced dilute substituent onto the ordered surface

  2. Dynamic in-plane potential gradients for actively controlling electrochemical reactions: Part I. Characterization of 1- and 2-component alkanethiol monolayer gradients on thin gold films. Part II. Applications of in-plane potential gradients

    NASA Astrophysics Data System (ADS)

    Balss, Karin Maria

    The research contained in this thesis is focused on the formation and characterization of surface composition gradients on thin gold films that are formed by applications of in-plane potential gradients. Injecting milliamp currents into thin Au films yields significant in-plane voltage drops so that, rather than assuming a single value of potential, an in-plane potential gradient is imposed on the film which depends on the resistivity of the film, the cross sectional area and the magnitude of the potential drop. Furthermore, the in-plane electric potential gradient means that, relative to a solution reference couple, electrochemical reactions occurs at defined spatial positions corresponding to the local potential, V(x) ˜ E0. The spatial gradient in electrochemical potential can then produce spatially dependent electrochemistry. Surface-chemical potential gradients can be prepared by arranging the spread of potentials to span an electrochemical wave mediating redox-associated adsorption or desorption. Examples of reactions that can be spatially patterned include the electrosorption of alkanethiols and over-potential metal deposition. The unique advantage of this method for patterning spatial compositions is the control of surface coverage in both space and time. The thesis is organized into two parts. In Part I, formation and characterization of 1- and 2-component alkanethiol monolayer gradients is investigated. Numerous surface science tools are employed to examine the distribution in coverage obtained by application of in-plane potential gradients. Macroscopic characterization was obtained by sessile water drop contact angle measurements and surface plasmon resonance imaging. Gradients were also imaged on micron length scales with pulsed-force mode atomic force microscopy. Direct chemical evidence of surface compositions in aromatic thiol surface coverage was obtained by surface-enhanced Raman spectroscopy. In Part II, the applications of in-plane potential

  3. Selenium sulfide

    Integrated Risk Information System (IRIS)

    Selenium sulfide ; CASRN 7446 - 34 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  4. Carbonyl sulfide

    Integrated Risk Information System (IRIS)

    Carbonyl sulfide ; CASRN 463 - 58 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  5. Hydrogen sulfide

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 03 / 005 www.epa.gov / iris TOXICOLOGICAL REVIEW OF HYDROGEN SULFIDE ( CAS No . 7783 - 06 - 4 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) June 2003 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been

  6. Perforated monolayers

    SciTech Connect

    Regen, S.L.

    1992-12-01

    Goal of this research program is to create ultrathin organic membranes that possess uniform and adjustable pores ( < 7[angstrom] diameter). Such membranes are expected to possess high permeation selectivity (permselectivity) and high permeability, and to provide the basis for energy-efficient methods of molecular separation. Work carried out has demonstrated feasibility of using perforated monolayer''-based composites as molecular sieve membranes. Specifically, composite membranes derived from Langmuir-Blodgett multilayers of the calix[6]arene-based surfactant shown below plus poly[l-(trimethylsilyl)-l-propyne] (PTMSP) were found to exhibit sieving behavior towards He, N[sub 2] and SF[sub 6]. Results of derivative studies that have also been completed are also described in this report.

  7. Determination of the platinum - Group elements (PGE) and gold (Au) in manganese nodule reference samples by nickel sulfide fire-assay and Te coprecipitation with ICP-MS

    USGS Publications Warehouse

    Balaram, V.; Mathur, R.; Banakar, V.K.; Hein, J.R.; Rao, C.R.M.; Gnaneswara, Rao T.; Dasaram, B.

    2006-01-01

    Platinum group elements (PGE) and Au data in polymetallic oceanic ferromanganese nodule reference samples and crust samples obtained by inductively coupled plasma mass spectrometry (ICP-MS), after separation and pre-concentration by nickel sulfide fire-assay and Te coprecipitation, are presented. By optimizing several critical parameters such as flux composition, matrix matching calibration, etc., best experimental conditions were established to develop a method suitable for routine analysis of manganese nodule samples for PGE and Au. Calibrations were performed using international PGE reference materials, WMG-1 and WMS-1. This improved procedure offers extremely low detection limits in the range of 0.004 to 0.016 ng/g. The results obtained in this study for the reference materials compare well with previously published data wherever available. New PGE data arc also provided on some international manganese nodule reference materials. The analytical methodology described here can be used for the routine analysis of manganese nodule and crust samples in marine geochemical studies.

  8. Electrodeposition of gold nanoparticles onto an etched stainless steel wire followed by a self-assembled monolayer of octanedithiol as a fiber coating for selective solid-phase microextraction.

    PubMed

    Yang, Yaoxia; Li, Yi; Liu, Haixia; Wang, Xuemei; Du, Xinzhen

    2014-11-03

    In the present study, a novel approach for rapid electrodeposition on an etched stainless steel (SS) wire followed by self-assembled monolayer (SAM) was proposed for the fabrication of solid-phase microextraction (SPME) fiber. The etched SS wire offers a rough surface structure for subsequent electrochemical deposition of gold nanoparticles (AuNPs). As a result, uniform AuNPs coating was tightly attached to the etched SS wire substrate. After SAM of 1,8-octanedithiol onto AuNPs coating via Au-S bonding, a unique floccular structure with extremely large surface area was obtained for the fabricated fiber. The mercaptooctyl groups modified AuNPs coated etched SS fiber (C8-S-AuNPs/SS) was then assessed for SPME of phthalate esters (PAEs), polychlorinated biphenyls (PCBs), chlorophenols (CPs), ultraviolet (UV) filters, polycyclic aromatic hydrocarbons (PAHs) and substituted anilines coupled to high-performance liquid chromatography with UV detection. This fiber exhibits higher extraction capability and better selectivity for some PCBs, CPs, UV filters and PAHs. Extraction conditions were investigated and optimized for SPME performance of UV filters. Under the optimized conditions, the developed method showed good linearity between 0.10 and 400μgL(-1) with corresponding coefficients in the range of 0.9989-0.9998. The limits of detection ranged from 0.025 to 0.056μgL(-1). The relative standard deviation for fiber-to-fiber reproducibility of five fabricated fibers was less than 9.4%. The developed method was successfully applied to the preconcentration and determination of trace UV filters from environmental water samples. Furthermore the fabrication of the C8-S-AuNPs/SS fiber can be performed in a highly reproducible manner. This fabricated fiber exhibits good stability and long lifetime, and could be a potential alternative for the conventional fused silica fiber. Copyright © 2014. Published by Elsevier B.V.

  9. Mimicking protein-protein electron transfer: voltammetry of Pseudomonas aeruginosa azurin and the Thermus thermophilus Cu(A) domain at omega-derivatized self-assembled-monolayer gold electrodes.

    PubMed

    Fujita, Kyoko; Nakamura, Nobufumi; Ohno, Hiroyuki; Leigh, Brian S; Niki, Katsumi; Gray, Harry B; Richards, John H

    2004-11-03

    Well-defined voltammetric responses of redox proteins with acidic-to-neutral pI values have been obtained on pure alkanethiol as well as on mixed self-assembled-monolayer (SAM) omega-derivatized alkanethiol/gold bead electrodes. Both azurin (P. aeruginosa) (pI = 5.6) and subunit II (Cu(A) domain) of ba(3)-type cytochrome c oxidase (T. thermophilus) (pI = 6.0) exhibit optimal voltammetric responses on 1:1 mixtures of [H(3)C(CH(2))(n)()SH + HO(CH(2))(n)()SH] SAMs. The electron transfer (ET) rate vs distance behavior of azurin and Cu(A) is independent of the omega-derivatized alkanethiol SAM headgroups. Strikingly, only wild-type azurin and mutants containing Trp48 give voltammetric responses: based on modeling, we suggest that electronic coupling with the SAM headgroup (H(3)C- and/or HO-) occurs at the Asn47 side chain carbonyl oxygen and that an Asn47-Cys112 hydrogen bond promotes intramolecular ET to the copper. Inspection of models also indicates that the Cu(A) domain of ba(3)-type cytochrome c oxidase is coupled to the SAM headgroup (H(3)C- and/or HO-) near the main chain carbonyl oxygen of Cys153 and that Phe88 (analogous to Trp143 in subunit II of cytochrome c oxidase from R. sphaeroides) is not involved in the dominant tunneling pathway. Our work suggests that hydrogen bonds from hydroxyl or other proton-donor groups to carbonyl oxygens potentially can facilitate intermolecular ET between physiological redox partners.

  10. Nanocomposite polymer structures for optical sensors of hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Sergeev, A. A.; Mironenko, A. Yu.; Nazirov, A. E.; Leonov, A. A.; Voznesenskii, S. S.

    2017-08-01

    Composite coatings based on gold and silver nanoparticles reduced in situ in the film of chitosan polysaccharide are studied. In the presence of hydrogen sulfide, the maximum of plasmon resonance of the nanoparticles that is proportional to the analyte concentration decreases. The detection limits for hydrogen sulfide are 0.1 and 5 ppm for the chitosan/silver and chitosan/gold nanocomposites, respectively.

  11. Multifunctional self-assembled monolayers

    SciTech Connect

    Zawodzinski, T.; Bar, G.; Rubin, S.; Uribe, F.; Ferrais, J.

    1996-06-01

    This is the final report of at three year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The specific goals of this research project were threefold: to develop multifunctional self-assembled monolayers, to understand the role of monolayer structure on the functioning of such systems, and to apply this knowledge to the development of electrochemical enzyme sensors. An array of molecules that can be used to attach electrochemically active biomolecules to gold surfaces has been synthesized. Several members of a class of electroactive compounds have been characterized and the factors controlling surface modification are beginning to be characterized. Enzymes have been attached to self-assembled molecules arranged on the gold surface, a critical step toward the ultimate goal of this project. Several alternative enzyme attachment strategies to achieve robust enzyme- modified surfaces have been explored. Several means of juxtaposing enzymes and mediators, electroactive compounds through which the enzyme can exchange electrons with the electrode surface, have also been investigated. Finally, the development of sensitive biosensors based on films loaded with nanoscale-supported gold particles that have surface modified with the self-assembled enzyme and mediator have been explored.

  12. Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)-thiosulfate complex

    NASA Astrophysics Data System (ADS)

    Lengke, Maggy; Southam, Gordon

    2006-07-01

    A sulfate-reducing bacterial (SRB) enrichment, from the Driefontein Consolidated Gold Mine, Witwatersrand Basin, Republic of South Africa, was able to destabilize gold(I)-thiosulfate complex (Au(SO)23-) and precipitate elemental gold. The precipitation of gold was observed in the presence of active (live) SRB due to the formation and release of hydrogen sulfide as an end-product of metabolism, and occurred by three possible mechanisms involving iron sulfide, localized reducing conditions, and metabolism. The presence of biogenic iron sulfide caused significant removal of gold from solutions by adsorption and reduction processes on the iron sulfide surfaces. The presence of gold nanoparticles within and immediately surrounding the bacterial cell envelope highlights the presence of localized reducing conditions produced by the bacterial electron transport chain via energy generating reactions within the cell. Specifically, the decrease in redox conditions caused by the release of hydrogen sulfide from the bacterial cells destabilized the Au(SO)23- solutions. The presence of gold as nanoparticles (<10 nm) inside a sub-population of SRB suggests that the reduction of gold was a part of metabolic process. In late stationary phase or death phase, gold nanoparticles that were initially precipitated inside the bacterial cells, were released from the cells and deposited in the bulk solution as addition of gold nanoparticles that already precipitated in the solution. Ultimately, the formation of micrometer-scale sub-octahedral and octahedral gold and spherical aggregates containing octahedral gold was observed.

  13. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1985-11-26

    A method is described for chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  14. Sulfide chemiluminescence detection

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1985-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction.

  15. Fullerene monolayer formation by spray coating.

    PubMed

    Cervenka, J; Flipse, C F J

    2010-02-10

    Many large molecular complexes are limited in thin film applications by their insufficient thermal stability, which excludes deposition via commonly used vapour phase deposition methods. Here we demonstrate an alternative way of monolayer formation of large molecules by a simple spray coating method under ambient conditions. This technique has been successfully applied on C(60) dissolved in toluene and carbon disulfide. Monolayer thick C(60) films have been formed on graphite and gold surfaces at particular deposition parameters, as confirmed by atomic force and scanning tunnelling microscopies. Structural and electronic properties of spray coated C(60) films on Au(111) have been found comparable to thermally evaporated C(60). We attribute the monolayer formation in spray coating to a crystallization process mediated by an ultrathin solution film on a sample surface.

  16. STM observation of thia[1 1]heterohelicene on gold( 1 1 1 ) and gold(1 1 0) surface

    NASA Astrophysics Data System (ADS)

    Taniguchi, Masahiro; Nakagawa, Hiroko; Yamagishi, Akihiko; Yamada, Kohichi

    2002-06-01

    Monolayers of helically shaped aromatic compound, hexathia[1 1]heterohelicene ([1 1]TH), which consists of five benzene rings and six thiophene rings were prepared on gold(1 1 1) and gold(1 1 0) surface under UHV condition. LEED and STM were used for the structural study focused on the molecular chirality. [1 1]TH monolayer on gold(1 1 1) substrate showed the same structure as on (1 1 1) analogue of polycrystalline surface. [1 1]TH evaporated on gold(1 1 0) showed loosely packed molecular chains. The results were compared with the results on gold polycrystalline surface and the bulk structural analysis.

  17. Native gold in Hawaiian alkalic magma

    USGS Publications Warehouse

    Sisson, T.W.

    2003-01-01

    Native gold found in fresh basanite glass from the early submarine phase of Kilauea volcano, Hawaii, may be the first documented case of the transport of gold as a distinct precious metal phase in a mantle-derived magma. The gold-bearing glass is a grain in bedded volcanic glass sandstone (Japan Marine Science and Technology Center (JAMSTEC) sample S508-R3) collected by the submersible Shinkai 6500 at 3879 m depth off Kilauea's south flank. Extensive outcrops there expose debris-flow breccias and sandstones containing submarine-erupted alkalic rock fragments and glasses from early Kilauea. Precipitation of an immiscible gold liquid resulted from resorption of magmatic sulfides during crystallization-differentiation, with consequent liberation of sulfide-hosted gold. Elevated whole-rock gold concentrations (to 36 ppb) for fresh lavas and clasts from early Kilauea further show that some magmas erupted at the beginning stages of Hawaiian shield volcanoes were distinctly gold rich, most likely owing to limited residual sulfide in their mantle source. Alkalic magmas at other ocean islands may also be gold rich, and oceanic hot-spot provinces may contain underappreciated gold resources.

  18. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1992-07-07

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  19. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  20. SULFIDE MINERALS IN SEDIMENTS

    EPA Science Inventory

    The formation processes of metal sulfides in sediments, especially iron sulfides, have been the subjects of intense scientific research because of linkages to the global biogeochemical cycles of iron, sulfur, carbon, and oxygen. Transition metal sulfides (e.g., NiS, CuS, ZnS, Cd...

  1. SULFIDE MINERALS IN SEDIMENTS

    EPA Science Inventory

    The formation processes of metal sulfides in sediments, especially iron sulfides, have been the subjects of intense scientific research because of linkages to the global biogeochemical cycles of iron, sulfur, carbon, and oxygen. Transition metal sulfides (e.g., NiS, CuS, ZnS, Cd...

  2. Integrated thin film cadmium sulfide solar cell module

    NASA Technical Reports Server (NTRS)

    Mickelsen, R. A.; Abbott, D. D.

    1971-01-01

    The design, development, fabrication and tests of flexible integrated thin-film cadmium sulfide solar cells and modules are discussed. The development of low cost and high production rate methods for interconnecting cells into large solar arrays is described. Chromium thin films were applied extensively in the deposited cell structures as a means to: (1) achieve high adherence between the cadmium sulfide films and the vacuum-metallized copper substrates, (2) obtain an ohmic contact to the cadmium sulfide films, and (3) improve the adherence of gold films as grids or contact areas.

  3. A facile electrochemical route to the preparation of uniform and monoatomic copper shells for gold nanoparticles.

    PubMed

    Gründer, Y; Ramasse, Q M; Dryfe, R A W

    2015-02-28

    Copper on gold forms a monolayer deposit via underpotential deposition. For gold particles adsorbed at a liquid-liquid interface this results in a uniform one monolayer thick shell. This approach offers a new route for the uniform functionalisation of nanoparticles and presents a way to probe fundamental processes that underlie nanoparticle synthesis.

  4. Assembly of designed protein scaffolds into monolayers for nanoparticle patterning.

    PubMed

    Mejias, Sara H; Couleaud, Pierre; Casado, Santiago; Granados, Daniel; Garcia, Miguel Angel; Abad, Jose M; Cortajarena, Aitziber L

    2016-05-01

    The controlled assembly of building blocks to achieve new nanostructured materials with defined properties at different length scales through rational design is the basis and future of bottom-up nanofabrication. This work describes the assembly of the idealized protein building block, the consensus tetratricopeptide repeat (CTPR), into monolayers by oriented immobilization of the blocks. The selectivity of thiol-gold interaction for an oriented immobilization has been verified by comparing a non-thiolated protein building block. The physical properties of the CTPR protein thin biomolecular films including topography, thickness, and viscoelasticity, are characterized. Finally, the ability of these scaffolds to act as templates for inorganic nanostructures has been demonstrated by the formation of well-packed gold nanoparticles (GNPs) monolayer patterned by the CTPR monolayer. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Gold Rush!

    ERIC Educational Resources Information Center

    Brahier, Daniel J.

    1997-01-01

    Describes a mathematical investigation of gold--how it is weighed, stored, used, and valued. For grades 3-4, children estimate the value of treasure chests filled with gold coins and explore the size and weight of gold bars. Children in grades 5-6 explore how gold is mined and used, and how the value of gold changes over time. (PVD)

  6. Methods of making monolayers

    DOEpatents

    Alford, Kentin L [Pasco, WA; Simmons, Kevin L [Kennewick, WA; Samuels, William D [Richland, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [Albuquerque, NM; Shin, Yongsoon [Richland, WA; Fryxell, Glen E [Kennewick, WA

    2009-12-08

    The invention pertains to methods of forming monolayers on various surfaces. The surfaces can be selected from a wide array of materials, including, for example, aluminum dioxide, silicon dioxide, carbon and SiC. The substrates can be planar or porous. The monolayer is formed under enhanced pressure conditions. The monolayer contains functionalized molecules, and accordingly functionalizes a surface of the substrate. The properties of the functionalized substrate can enhance the substrate's applicability for numerous purposes including, for example, utilization in extracting contaminants, or incorporation into a polymeric matrix.

  7. Methods of making monolayers

    DOEpatents

    Alford, Kentin L [Pasco, WA; Simmons, Kevin L [Kennewick, WA; Samuels, William D [Richland, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [Albuquerque, NM; Shin, Yongsoon [Richland, WA; Fryxell, Glen E [Kennewick, WA

    2009-09-15

    The invention pertains to methods of forming monolayers on various surfaces. The surfaces can be selected from a wide array of materials, including, for example, aluminum dioxide, silicon dioxide, carbon and SiC. The substrates can be planar or porous. The monolayer is formed under enhanced pressure conditions. The monolayer contains functionalized molecules, and accordingly functionalizes a surface of the substrate. The properties of the functionalized substrate can enhance the substrate's applicability for numerous purposes including, for example, utilization in extracting contaminants, or incorporation into a polymeric matrix.

  8. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli; Fabbri, Jason D.; Melosh, Nicholas A.; Hussain, Zahid; Shen, Zhi-Xun

    2013-10-29

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  9. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli [El Cerrito, CA; Fabbri, Jason D [San Francisco, CA; Melosh, Nicholas A [Menlo Park, CA; Hussain, Zahid [Orinda, CA; Shen, Zhi-Xun [Stanford, CA

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  10. Enhancement of gold recovery using bioleaching from gold concentrate

    NASA Astrophysics Data System (ADS)

    Choi, S. H.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    The gold in refractory ores is encapsulated as fine particles (sometimes at a molecular level) in the crystal structure of the sulfide (typically pyrite with or without arsenopyrite) matrix. This makes it impossible to extract a significant amount of refractory gold by cyanidation since the cyanide solution cannot penetrate the pyrite/arsenopyrite crystals and dissolve gold particles, even after fine grinding. To effectively extract gold from these ores, an oxidative pretreatment is necessary to break down the sulfide matrix. The most popular methods of pretreatment include nitric acid oxidation, roasting, pressure oxidation and biological oxidation by microorganisms. This study investigated the bioleaching efficiency of Au concentrate under batch experimental conditions (adaptation cycles and chemical composition adaptation) using the indigenous acidophilic bacteria collected from gold mine leachate in Sunsin gold mine, Korea. We conducted the batch experiments at two different chemical composition (CuSO4 and ZnSO4), two different adaptation cycles 1'st (3 weeks) and 2'nd (6 weeks). The results showed that the pH in the bacteria inoculating sample decreased than initial condition and Eh increased. In the chemical composition adaptation case, the leached accumulation content of Fe and Pb was exhibited in CuSO4 adaptation bacteria sample more than in ZnSO4 adaptation bacteria samples, possibly due to pre-adaptation effect on chalcopyrite (CuFeS2) in gold concentrate. And after 21 days on the CuSO4 adaptation cycles case, content of Fe and Pb was appeared at 1'st adaptation bacteria sample(Fe - 1.82 and Pb - 25.81 times per control sample) lower than at 2'nd adaptation bacteria sample(Fe - 2.87 and Pb - 62.05 times per control sample). This study indicates that adaptation chemical composition and adaptation cycles can play an important role in bioleaching of gold concentrate in eco-/economic metallurgy process.

  11. Sulfide Mineralogy and Geochemistry

    NASA Astrophysics Data System (ADS)

    Dilles, John

    2007-02-01

    Reviews in Mineralogy and Geochemistry Series, Volume 61 David J. Vaughan, Editor Geochemical Society and Mineralogical Society of America; ISBN 0-939950-73-1 xiii + 714 pp.; 2006; $40. Sulfide minerals as a class represent important minor rock-forming minerals, but they are generally known as the chief sources of many economic metallic ores. In the past two decades, sulfide research has been extended to include important roles in environmental geology of sulfide weathering and resultant acid mine drainage, as well as in geomicrobiology in which bacteria make use of sulfides for metabolic energy sources. In the latter respect, sulfides played an important role in early evolution of life on Earth and in geochemical cycling of elements in the Earth's crust and hydrosphere.

  12. Friction of mixed and single-component aromatic monolayers in contacts of different adhesive strength.

    PubMed

    Ruths, M

    2006-02-09

    Friction force microscopy has been used to study single-component and mixed self-assembled monolayers of aminothiophenol and thiophenol on gold. The friction forces and transition pressures of mixed monolayers were intermediate to the ones of single-component monolayers, and varied systematically with composition. The strength of the adhesion was altered by working in dry N2 gas or in ethanol. In all systems studied, low adhesion (in ethanol) resulted in a linear dependence of the friction on load already at low loads, whereas high adhesion (in dry N2) gave an apparent area-dependence. However, for a given monolayer composition, similar transition pressures were observed in dry N2 and in ethanol, suggesting that the overall monolayer structure was not strongly altered by the presence of ethanol. Similar observations were made for very close-packed monolayers of octadecanethiol.

  13. Nano-scale characterization of binary self-assembled monolayers under an ambient condition with STM and TERS.

    PubMed

    Horimoto, Noriko N; Tomizawa, Shigeru; Fujita, Yasuhiko; Kajimoto, Shinji; Fukumura, Hiroshi

    2014-09-07

    Gold surfaces were modified by benzyl-mercaptan (BM) and then partly replaced with benzenethiol (BT), which formed binary self-assembled monolayers (SAM). Initially BT randomly replaced BM in the monolayer, but at long exchange times >15 nm radius domains were observed with specific relative composition of BT and BM.

  14. Characterization of Conventional One-Step Sodium Thiosulfate Facilitated Gold Nanoparticle Synthesis

    NASA Astrophysics Data System (ADS)

    Saverot, Scott-Eugene; Reese, Laura M.; Cimini, Daniela; Vikesland, Peter J.; Bickford, Lissett Ramirez

    2015-05-01

    Gold-gold sulfide nanoparticles are of interest for drug delivery, biomedical imaging, and photothermal therapy applications due to a facile synthesis method resulting in small particles with high near-infrared (NIR) absorption efficiency. Previous studies suggest that the NIR sensitivity of these nanoparticles was due to hexagonally shaped metal-coated dielectric nanoparticles that consist of a gold sulfide core and gold shell. Here, we illustrate that the conventional synthesis procedure results in the formation of polydisperse samples of icosahedral gold particles, gold nanoplates, and small gold spheres. Importantly, through compositional analysis, via UV/vis absorption spectrophotometry, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDS), we show that all of the nanoparticles exhibit identical face center cubic (FCC) gold crystalline structures, thus suggesting that sulfide is not present in the final fabricated nanoparticles. We show that icosahedrally shaped nanoparticles result in a blue-shifted absorbance, with a peak in the visible range. Alternatively, the nanoplate nanoparticles result in the characteristic NIR absorbance peak. Thus, we report that the NIR-contributing species in conventional gold-gold sulfide formulations are nanoplates that are comprised entirely of gold. Furthermore, polydisperse gold nanoparticle samples produced by the traditional one-step reduction of HAuCl4 by sodium thiosulfate show increased in vitro toxicity, compared to isolated and more homogeneous constituent samples. This result exemplifies the importance of developing monodisperse nanoparticle formulations that are well characterized in order to expedite the development of clinically beneficial nanomaterials.

  15. Using self-assembled monolayers to model the extracellular matrix.

    PubMed

    Mrksich, Milan

    2009-03-01

    The extracellular matrix is an insoluble aggregate of large proteins and glycosoaminoglycans that comprises the microenvironment of cells in tissue. The matrix displays a host of ligands that interact with cell-surface receptors to mediate the attachment and spreading of cells and regulate signaling processes. Studies of cell-matrix interactions and downstream signaling processes commonly employ substrates having an adsorbed layer of protein and are challenged by the difficulty in controlling the structure and activity of the immobilized protein. Significant effort has been directed towards the development of model substrates that present adhesion ligands in defined densities, orientations and environments. Among these approaches, self-assembled monolayers of alkanethiolates on gold offer a high level of control over the molecular structure of the surface and are well-suited to studies of cell adhesion. This review describes the design and use of monolayers for applications in cell biology, including the use of monolayers to evaluate the roles of peptide and protein ligands in cell-matrix interactions, the development of methods to pattern ligands on monolayers and applications to cell biology, the development of dynamic monolayers that can switch the activities of ligands presented to an adherent cell, and the rewiring of interactions between a cell and its substrate. These examples illustrate the flexibility inherent to monolayers for applications in cell biology.

  16. Constraints of mineralogical characterization of gold ore: Implication for genesis, controls and evolution of gold from Kundarkocha gold deposit, eastern India

    NASA Astrophysics Data System (ADS)

    Sahoo, P. R.; Venkatesh, A. S.

    2015-01-01

    Gold mineralization in Kundarkocha gold deposit occurs in the eastern Indian Craton that is hosted by sheared quartz-carbonate-sulfide veins emplaced within the graphitic schist, carbonaceous phyllite and talc-chlorite-serpentine schist belongs to Gorumahisani-Badampahar schist belt of Iron Ore Group. Gold mineralization exhibits both lithological and structural controls in the study area, albeit the stratigraphic control is more ubiquitously observed. Detailed mineralogical characterization coupled with electron probe microanalysis of the sulfide phases reveal the occurrences of gold in three distinct forms (i) as lattice-bound form within sulfides especially enriched in arsenopyrite, loellingite, pyrite, pyrrhotite and chalcopyrite in decreasing order of abundance; (ii) as micro inclusions or nano-scale gold inclusions within pyrite and arsenopyrite especially along the growth zones and micro-fractures as substrates and (iii) as free milling nugget gold grains either along the grain boundaries of sulfides or within the host rocks. Three generations of pyrite (Py-I, Py-II and Py-III) and arsenopyrite (Asp-I, Asp-II, Asp-III) have been identified based on textural, morphological characteristics and mineral chemistry. The lattice-bound gold content in pyrite and arsenopyrite varies from 600 to 2700 ppm and 900 to 3600 ppm respectively and increase in concentration of such refractory gold is seen in the order of chalcopyrite > pyrrhotite > pyrite > loellingite/arsenopyrite. The evolutionary stages of different forms of gold include remobilization of the lattice-bound grains in pyrite and arsenopyrite (Py-I and Asp-I) and re-concentration along the zoned-pyrite and arsenopyrite (Py-II and Asp-II) and ultimately as native gold/nuggets surrounding the sulfides as well as within the main mineralized zone. Lattice-bound gold distribution could have resulted due to metamorphic devolatilization reactions which are further aided by the influx of hydrothermal fluids. These

  17. Formation of gold mineralization in ultramafic alkalic magmatic complexes

    NASA Astrophysics Data System (ADS)

    Ryabchikov, I. D.; Kogarko, L. N.; Sazonov, A. M.; Kononkova, N. N.

    2016-06-01

    Study of mineral inclusions within alluvial gold particles of the Guli Complex (East Siberia) and findings of lode gold in rocks of the same intrusion have demonstrated that gold mineralization occurs in interstitions of both early high-magnesium rocks (dunite) and later alkalic and carbonatite rocks. In dunite the native gold occurs in association with Fe-Ni sulfides (monosulfide solid solution, pentlandite, and heazlewoodite). Formation of the gold-bearing alloys took place under a low oxygen potential over a broad range of temperatures: from those close to 600°C down to below 400°C.

  18. Interstellar hydrogen sulfide.

    NASA Technical Reports Server (NTRS)

    Thaddeus, P.; Kutner, M. L.; Penzias, A. A.; Wilson, R. W.; Jefferts, K. B.

    1972-01-01

    Hydrogen sulfide has been detected in seven Galactic sources by observation of a single line corresponding to the rotational transition from the 1(sub 10) to the 1(sub 01) levels at 168.7 GHz. The observations show that hydrogen sulfide is only a moderately common interstellar molecule comparable in abundance to H2CO and CS, but somewhat less abundant than HCN and much less abundant than CO.

  19. Interstellar hydrogen sulfide.

    NASA Technical Reports Server (NTRS)

    Thaddeus, P.; Kutner, M. L.; Penzias, A. A.; Wilson, R. W.; Jefferts, K. B.

    1972-01-01

    Hydrogen sulfide has been detected in seven Galactic sources by observation of a single line corresponding to the rotational transition from the 1(sub 10) to the 1(sub 01) levels at 168.7 GHz. The observations show that hydrogen sulfide is only a moderately common interstellar molecule comparable in abundance to H2CO and CS, but somewhat less abundant than HCN and much less abundant than CO.

  20. Controlled electrodeposition of Au monolayer film on ionic liquid

    NASA Astrophysics Data System (ADS)

    Ma, Qiang; Pang, Liuqing; Li, Man; Zhang, Yunxia; Ren, Xianpei; Liu, Shengzhong Frank

    2016-05-01

    Gold (Au) nanoparticles have been attractive for centuries for their vibrant appearance enhanced by their interaction with sunlight. Nowadays, there have been tremendous research efforts to develop them for high-tech applications including therapeutic agents, sensors, organic photovoltaics, medical applications, electronics and catalysis. However, there remains to be a challenge to fabricate a monolayer Au coating with complete coverage in controlled fashion. Here we present a facile method to deposit a uniform Au monolayer (ML) film on the [BMIM][PF6] ionic liquid substrate using an electrochemical deposition process. It demonstrates that it is feasible to prepare a solid phase coating on the liquid-based substrate. Moreover, the thickness of the monolayer coating can be controlled to a layer-by-layer accuracy.

  1. Precipitation of gold by the reaction of aqueous gold(III)-chloride with cyanobacteria at 25-80{degrees}C, studied by x-ray absorption spectroscopy.

    SciTech Connect

    Lengke, M. F.; Ravel, B.; Fleet, M. E.; Wanger, G.; Gordon, R. A.; Southam, G.; Univ. of Western Ontario; Simon Fraser Univ.

    2007-10-01

    The mechanisms of gold precipitation by the interaction of cyanobacteria (Plectonema boryanum UTEX 485) and gold(III) chloride aqueous solutions (7.6 mmol/L final gold) have been studied at 25, 60, and 80 C, using both laboratory and real-time synchrotron radiation absorption spectroscopy experiments. Addition of aqueous gold(III) chloride to the cyanobacterial culture initially promoted the precipitation of amorphous gold(I) sulfide at the cell walls and finally caused the formation of octahedral (111) platelets (<1 to 6 {micro}m) of gold metal near cell surfaces and in solutions. X-ray absorption spectroscopy results confirmed that the reduction mechanism of gold(III) chloride to elemental gold by cyanobacteria involves the formation of an intermediate Au(I) species, gold(I) sulfide, with sulfur originating from cyanobacterial proteins, presumably cysteine or methionine. Although the bioreduction of gold(III) chloride to gold(I) sulfide was relatively rapid at all temperatures, the reaction rate increased with the increase in temperature. At the completion of the experiments, elemental gold was the major species present at all temperatures.

  2. Gold in the mantle: The role of pyroxenites

    NASA Astrophysics Data System (ADS)

    Saunders, J. Edward; Pearson, Norman J.; O'Reilly, Suzanne Y.; Griffin, William L.

    2016-02-01

    Mantle pyroxenites are the crystallised products of mafic silicate melts, which are commonly invoked as metasomatic agents in the upper mantle. This study has analysed the trace elements of sulfides, with a specific focus on gold, hosted in a suite of mantle pyroxenite xenoliths from Qilin in the Cathaysia Block, southeast China. These are compared with sulfides hosted in peridotite xenoliths from the same locality to assess the difference in the abundances of Au, and a suite of siderophile and chalcophile elements between the sulfides hosted in mobile melts in the upper mantle and their host "wall" rocks. Both the peridotite- and pyroxenite-hosted sulfides show a wide spectrum of trace element contents. The pyroxenite-hosted sulfides typically have PGE and Au concentrations that are an order of magnitude or more below those measured in the peridotite-hosted sulfides (lherzolite-hosted sulfides: total PGE = 95 ± 118 ppm, Au = 1.4 ± 2.6 ppm; pyroxenite-hosted sulfides: total PGE = 0.25 ± 0.70 ppm, Au = 0.14 ± 0.39 ppm). Furthermore, the Ir group PGE (Ir, Os and Ru) are present in lower concentrations than the Pd-group PGE (Pd, Pt and Rh). This may lead to a distinct signature if the melts from which these sulfides crystallise interact with lherzolitic sulfides. The overall low abundances of these elements within the pyroxenites suggests that the parent melts are an inefficient medium for enriching any of these elements in the upper mantle.

  3. Effect of gold oxide in measurements of colloidal force.

    PubMed

    Tabor, Rico F; Morfa, Anthony J; Grieser, Franz; Chan, Derek Y C; Dagastine, Raymond R

    2011-05-17

    Atomic force microscopy, contact-angle, and spectroscopic ellipsometry measurements were employed to investigate the presence and properties of gold oxide on the surface of gold metal. It was found that, in agreement with available literature, unoxidized gold surfaces were hydrophobic, whereas oxidation rendered the surface highly hydrophilic. The oxide could be removed with ethanol or base but appeared to be stable over long periods in water or salt solutions between pH 3 and 7. After oxidation, the oxide layer thickness, determined using ellipsometry, was consistent with an approximate monolayer of Au-O bonds at the gold surface. The presence of gold oxide was found to alter significantly the electrical double-layer characteristics of the gold surface below pH 6 and may explain the apparent inconsistencies in observed force behavior where gold is employed as well as aiding in design of future microfluidic systems which incorporate gold as a coating.

  4. High surface coverage of a self-assembled monolayer by in situ synthesis of palladium nanodeposits.

    PubMed

    Herrer, Lucía; Sebastian, Victor; Martín, Santiago; González-Orive, Alejandro; Pérez-Murano, Francesc; Low, Paul J; Serrano, José Luis; Santamaría, Jesús; Cea, Pilar

    2017-09-14

    Nascent metal|monolayer|metal devices have been fabricated by depositing palladium, produced through a CO-confined growth method, onto a self-assembled monolayer of an amine-terminated oligo(phenylene ethynylene) derivative on a gold bottom electrode. The high surface area coverage (85%) of the organic monolayer by densely packed palladium particles was confirmed by X-ray photoemission spectroscopy (XPS) and atomic force microscopy (AFM). The electrical properties of these nascent Au|monolayer|Pd assemblies were determined from the I-V curves recorded with a conductive-AFM using the Peak Force Tunneling AFM (PF-TUNA™) mode. The I-V curves together with the electrochemical experiments performed rule out the formation of short-circuits due to palladium penetration through the monolayer, suggesting that the palladium deposition strategy is an effective method for the fabrication of molecular junctions without damaging the organic layer.

  5. Biointerfaces on indium-tin oxide prepared from organophosphonic acid self-assembled monolayers.

    PubMed

    Chockalingam, Muthukumar; Magenau, Astrid; Parker, Stephen G; Parviz, Maryam; Vivekchand, S R C; Gaus, Katharina; Gooding, J Justin

    2014-07-22

    Herein we show the development of biointerfaces on indium-tin oxide (ITO) surfaces prepared from organophosphonate self-assembled monolayers. The interfaces were prepared in a stepwise fabrication procedure containing a base monolayer modified with oligo(ethylene oxide) species to which biological recognition ligands were attached. The density of ligands was controlled by varying the ratio of two oligo(ethylene oxide) species such that only one is compatible with further coupling. The final biointerface on ITO was assessed using cell adhesion studies, which showed that the biointerfaces prepared on ITO performed similarly to equivalent monolayers on gold or silicon.

  6. Multi-dimensional modeling of atmospheric copper-sulfidation corrosion on non-planar substrates.

    SciTech Connect

    Chen, Ken Shuang

    2004-11-01

    This report documents the author's efforts in the deterministic modeling of copper-sulfidation corrosion on non-planar substrates such as diodes and electrical connectors. A new framework based on Goma was developed for multi-dimensional modeling of atmospheric copper-sulfidation corrosion on non-planar substrates. In this framework, the moving sulfidation front is explicitly tracked by treating the finite-element mesh as a pseudo solid with an arbitrary Lagrangian-Eulerian formulation and repeatedly performing re-meshing using CUBIT and re-mapping using MAPVAR. Three one-dimensional studies were performed for verifying the framework in asymptotic regimes. Limited model validation was also carried out by comparing computed copper-sulfide thickness with experimental data. The framework was first demonstrated in modeling one-dimensional copper sulfidation with charge separation. It was found that both the thickness of the space-charge layers and the electrical potential at the sulfidation surface decrease rapidly as the Cu{sub 2}S layer thickens initially but eventually reach equilibrium values as Cu{sub 2}S layer becomes sufficiently thick; it was also found that electroneutrality is a reasonable approximation and that the electro-migration flux may be estimated by using the equilibrium potential difference between the sulfidation and annihilation surfaces when the Cu{sub 2}S layer is sufficiently thick. The framework was then employed to model copper sulfidation in the solid-state-diffusion controlled regime (i.e. stage II sulfidation) on a prototypical diode until a continuous Cu{sub 2}S film was formed on the diode surface. The framework was also applied to model copper sulfidation on an intermittent electrical contact between a gold-plated copper pin and gold-plated copper pad; the presence of Cu{sub 2}S was found to raise the effective electrical resistance drastically. Lastly, future research needs in modeling atmospheric copper sulfidation are discussed.

  7. Scanning tunneling microscopy studies of mixed self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Raigoza, Annette Fernandez

    This thesis examines the formation of multicomponent self-assembled mono-layers (SAMs) on the Au(111) surface using scanning tunneling microscopy. Two methods, sequential adsorption and coadsorption, are used to create these mixed SAMs. In the sequential adsorption experiments, a clean Au(111)-on-mica sub-strate is exposed to the first molecular species and then this adsorbate-covered sample is exposed to the second molecular species. Alternately, in the coadsorption experiments, a gold surface is exposed to both adsorbates simultaneously. Exposing a coronene- or dithiocarbamate-covered surface to excess thiol in the vapor phase results in a drastic restructuring of the initial surface. This is primarily driven by the kinetics of the octanethiol monolayer formation process, but the extent to which this happens is dependent on the molecule-molecule and molecule-surface interactions of the adsorbate due to the initial coverage and order of the monolayer. An octanethiolate monolayer is also substantially modified when immersed in a solution containing dithiocarbamate (DTC). Defects in the octanethiol monolayer are prime sites for molecular exchange. A surplus of DTC in the solution drives substitution that can lead to the complete removal of thiol from the surface. When a Au(111) surface is exposed to solutions containing both octanethiol and dithiocarbamate (DTC), both molecular species compete for available ad- sorption sites. At equal octanethiol-to-DTC ratios, molecular exchange hinders octanethiol monolayer formation. Higher octanethiol concentration in solution results in the incorporation of thiol into the resulting monolayer, with a strong dependence on the chain length of the DTC molecules.

  8. Functional monolayers for direct electrical biosensing

    NASA Astrophysics Data System (ADS)

    Clare, Tami Lasseter

    Frequency-dependent electrochemical impedance spectroscopy has been used to characterize changes in electrical response that accompany specific binding of a protein to its substrate, using the biotin-avidin system as a model. This thesis work shows that avidin, at concentrations in the nanomolar range, can be detected electrically in a completely label-free manner under conditions of zero average current flow and without the use of any auxiliary redox agents. Electrical circuit modeling of the interface was used to relate the frequency-dependent electrical response to the physical picture of the interface before and after avidin binding. The interaction of proteins with semiconductors such as silicon and diamond is of great interest for applications such as electronic biosensing. Investigations into the use of covalently bound oligo(ethylene glycol), EG, monolayers on diamond and silicon to minimize nonspecific protein adsorption were conducted. Protein adsorption was monitored by fluorescence scanning as a function the length of the ethylene glycol chain (EG3 through EG6) and the terminal functional group (methyl- versus hydroxyl-terminated EG3 monolayer). More quantitative measurements were made by eluting adsorbed avidin from the surface and measuring the intensity of fluorescence in the solution. This thesis work shows that high quality EG monolayers are formed on silicon and diamond and that these EG3 monolayers are as effective as EG3 self-assembled monolayers on gold at resisting nonspecific avidin adsorption. These results show promise for use of silicon and diamond materials in many potential applications such as biosensing and medical implants. Substrate roughness is shown to play a role in nonspecific protein adsorption, where carbon-based surfaces having features less than approximately 5 nm, are highly resistant to protein adsorption. Functionalization of the surfaces with hexaethylene glycol confers additional resistance to protein adsorption. These

  9. Sulfidation of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Levard, C.; Michel, F. M.; Brown, G. E.

    2010-12-01

    Rapid development of nanotechnologies that exploit the properties of silver nanoparticles (Ag-NPs) raises questions concerning the impact of Ag on the environment. Ag-NPs are currently among the most widely used in the nanotechnology industry and the amount released into the environment is expected to increase along with production (1). When present in geochemical systems, Ag-NPs may undergo a variety of changes due to varying redox, pH, and chemical conditions. Expected changes range from surface modification (e.g., oxidation, sulfidation, chloridation etc.) to complete dissolution and re-precipitation. In this context, the focus of our work is on understanding the behavior of synthetic Ag-NPs with different particle sizes under varying conditions relevant to the environment. Sulfidation of Ag-NPs is of particular interest since it among the processes most likely to occur in aqueous systems, in particular under reducing conditions. Three sizes of Ag-NPs coated with polyvinyl pyrrolidone were produced using the polyol process (2) (7 ±1; 20 ±4, and 40 ±9 nm). Batch solutions containing the different Ag-NPs were subsequently reacted with Na2S solutions of different concentrations. The sulfidation process was followed step-wise for 24 hours and the corrosion products formed were characterized by electron microscopy (TEM/SEM), diffraction (XRD), and photo-electron spectroscopy (XPS). Surface charge (pHPZC) of the products formed during this process was also measured, as were changes in solubility and reactivity. Based on experimental observations we infer that the sulfidation process is the result of dissolution-precipitation and find that: (i) acanthite (Ag2S) is formed as a corrosion product; (ii) Ag-NPs aggregation increased with sulfidation rate; (iii) pHPZC increases with the rate of sulfidation; and (iv) the solubility of the corrosion products formed from sulfidation appears lower than that of non-sulfidated Ag-NPs. We observe size-dependent differences in

  10. SULFIDE METHOD PLUTONIUM SEPARATION

    DOEpatents

    Duffield, R.B.

    1958-08-12

    A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.

  11. Titration of gold nanoparticles in phase extraction.

    PubMed

    Cheng, Han-Wen; Schadt, Mark J; Zhong, Chuan-Jian

    2015-12-07

    In the organic-aqueous phase transfer process of gold nanoparticles, there are two types of distinctive interfaces involving hydrophilic and hydrophobic ligands, the understanding of which is important for the design of functional nanomaterials for analytical/bioanalytical applications and the control over the nanoparticles' nanoactivity and nanotoxicity in different phases. This report describes new findings of an investigation of the quantitative aspect of ligand ion pairing at the capping monolayer structure that drives the phase extraction of gold nanoparticles. Alkanethiolate-capped gold nanoparticles of 8 nm diameter with high size monodispersity (RSD ∼ 5%) were first derivatized by a ligand place exchange reaction with 11-mercaptoundecanoic acid to form a mixed monolayer shell consisting of both hydrophobic (-CH3) and hydrophilic (-COOH) groups. It was followed by quantitative titration of the resulting nanoparticles with a cationic species (-NR4(+)) in a toluene phase, yielding ion pairing of -NR4(+) and -COO(-) on part of the capping monolayer. Analysis of the phase extraction allowed a quantitative determination of the percentage of ion pairing and structural changes in the capping monolayer on the nanoparticles. The results, along with morphological characterization, are discussed in terms of the interfacial structural changes and their implications on the rational design of surface-functionalized nanoparticles and fine tuning of the interfacial reactivity.

  12. Self-assembly of 4-ferrocene thiophenol capped electroactive gold nanoparticles onto gold electrode

    NASA Astrophysics Data System (ADS)

    Li, Di; Li, Jinghong

    2003-01-01

    Gold nanoparticles capped by 4-ferrocene thiophenol with an average core size of 2.5 nm and surface plasmon absorbance at 522 nm were place-exchanged with 1,8-octanedithiol, and then self-assembled onto the gold electrode via tail SH group. The self-assembly was characterized by X-ray photoelectron spectroscopy. Cyclic voltammograms examined the coverage fraction of the self-assembled monolayers of the electroactive gold nanoparticles and the formal potential of the indicated SAMs. Further experiments exhibited that the electrode process was controlled by surface confined faradic reactions.

  13. A kuroko-type polymetallic sulfide deposit in a submarine silicic caldera

    PubMed

    Iizasa; Fiske; Ishizuka; Yuasa; Hashimoto; Ishibashi; Naka; Horii; Fujiwara; Imai; Koyama

    1999-02-12

    Manned submersible studies have delineated a large and actively growing Kuroko-type volcanogenic massive sulfide deposit 400 kilometers south of Tokyo in Myojin Knoll submarine caldera. The sulfide body is located on the caldera floor at a depth of 1210 to 1360 meters, has an area of 400 by 400 by 30 meters, and is notably rich in gold and silver. The discovery of a large Kuroko-type polymetallic sulfide deposit in this arc-front caldera raises the possibility that the numerous unexplored submarine silicic calderas elsewhere might have similar deposits.

  14. Sulfidation kinetics of silver nanoparticles reacted with metal sulfides.

    PubMed

    Thalmann, Basilius; Voegelin, Andreas; Sinnet, Brian; Morgenroth, Eberhard; Kaegi, Ralf

    2014-05-06

    Recent studies have documented that the sulfidation of silver nanoparticles (Ag-NP), possibly released to the environment from consumer products, occurs in anoxic zones of urban wastewater systems and that sulfidized Ag-NP exhibit dramatically reduced toxic effects. However, whether Ag-NP sulfidation also occurs under oxic conditions in the absence of bisulfide has not been addressed, yet. In this study we, therefore, investigated whether metal sulfides that are more resistant toward oxidation than free sulfide, could enable the sulfidation of Ag-NP under oxic conditions. We reacted citrate-stabilized Ag-NP of different sizes (10-100 nm) with freshly precipitated and crystalline CuS and ZnS in oxygenated aqueous suspensions at pH 7.5. The extent of Ag-NP sulfidation was derived from the increase in dissolved Cu(2+) or Zn(2+) over time and linked with results from X-ray absorption spectroscopy (XAS) analysis of selected samples. The sulfidation of Ag-NP followed pseudo first-order kinetics, with rate coefficients increasing with decreasing Ag-NP diameter and increasing metal sulfide concentration and depending on the type (CuS and ZnS) and crystallinity of the reacting metal sulfide. Results from analytical electron microscopy revealed the formation of complex sulfidation patterns that seemed to follow preexisting subgrain boundaries in the pristine Ag-NP. The kinetics of Ag-NP sulfidation observed in this study in combination with reported ZnS and CuS concentrations and predicted Ag-NP concentrations in wastewater and urban surface waters indicate that even under oxic conditions and in the absence of free sulfide, Ag-NP can be transformed into Ag2S within a few hours to days by reaction with metal sulfides.

  15. Zinc sulfide liquefaction catalyst

    DOEpatents

    Garg, Diwakar

    1984-01-01

    A process for the liquefaction of carbonaceous material, such as coal, is set forth wherein coal is liquefied in a catalytic solvent refining reaction wherein an activated zinc sulfide catalyst is utilized which is activated by hydrogenation in a coal derived process solvent in the absence of coal.

  16. Nanoindentation of gold nanoparticles functionalized with proteins.

    PubMed

    Wampler, Heeyeon P; Ivanisevic, Albena

    2009-06-01

    The hardness and Young's modulus of 10 and 20 nm gold nanoparticles (Au NPs) modified with bovine serum albumin and streptavidin were measured using a nanoindenter. The Au NPs were immobilized on a semiconductor surface through organic self-assembled monolayers. Changes in mechanical properties occurred when the Au NPs were immobilized on the surface. The hardness and Young's modulus were dependent on the size of the NPs, and the proteins on the particles showed highly plastic and elastic behavior compared to flat surfaces modified with self-assembled monolayers.

  17. The gold-sulfur interface at the nanoscale

    NASA Astrophysics Data System (ADS)

    Häkkinen, Hannu

    2012-06-01

    Thiolate-protected gold surfaces and interfaces, relevant for self-assembled monolayers of organic molecules on gold, for passivated gold nanoclusters and for molecule-gold junctions, are archetypal systems in various fields of current nanoscience research, materials science, inorganic chemistry and surface science. Understanding this interface at the nanometre scale is essential for a wide range of potential applications for site-specific bioconjugate labelling and sensing, drug delivery and medical therapy, functionalization of gold surfaces for sensing, molecular recognition and molecular electronics, and gold nanoparticle catalysis. During the past five years, considerable experimental and theoretical advances have furthered our understanding of the molecular structure of the gold-sulfur interface in these systems. This Review discusses the recent progress from the viewpoint of theory and computations, with connections to relevant experiments.

  18. The gold-sulfur interface at the nanoscale.

    PubMed

    Häkkinen, Hannu

    2012-05-22

    Thiolate-protected gold surfaces and interfaces, relevant for self-assembled monolayers of organic molecules on gold, for passivated gold nanoclusters and for molecule-gold junctions, are archetypal systems in various fields of current nanoscience research, materials science, inorganic chemistry and surface science. Understanding this interface at the nanometre scale is essential for a wide range of potential applications for site-specific bioconjugate labelling and sensing, drug delivery and medical therapy, functionalization of gold surfaces for sensing, molecular recognition and molecular electronics, and gold nanoparticle catalysis. During the past five years, considerable experimental and theoretical advances have furthered our understanding of the molecular structure of the gold-sulfur interface in these systems. This Review discusses the recent progress from the viewpoint of theory and computations, with connections to relevant experiments.

  19. Electronic-Magnetic Properties of Monolayers of Chiral Bio-organic Molecules

    NASA Astrophysics Data System (ADS)

    Carmeli, Itai; Skakalova, Viera; Naaman, Ron; Vager, Zeev

    2002-10-01

    Measurements of the spin-correlated transmission of electrons through organized monolayers of polypeptide helices, absorbed on gold substrate, show high spin selectivity. The direction of the magnetic moment of the layer depends on the handedness of the helix molecule and on the direction of their dipole moment with respect to the metal substrate.

  20. Electrochemical behavior of silver sulfide

    SciTech Connect

    Drouven, B.U.E.

    1982-01-01

    The electrochemical behavior of silver sulfide in sulfuric acid as well as in nitric acid was studied using electrodes made from synthetic silver sulfide. The primary techniques used were potentiostatic, potentiodynamic, galvanostatic and corrosion cell experiments. The cathodic reaction of silver sulfide produces silver and hydrogen sulfide. This reaction mechanism is a sequential two step charge transfer involving a single electron in each step. Silver ions are produced from silver sulfide upon applying an anodic potential. The dissolution rate of silver sulfide can be so high that the formation of silver sulfate occurs which partially covers the silver sulfide surface and inhibits a further rate increase. The sulfur from the silver sulfide will be oxidized at low overpotentials to elemental sulfur; at high overpotentials, the oxidation to sulfate or bisulfate is observed. The results suggest that the catalysis of chalcopyrite by the addition of silver ions is caused by the formation and subsequent dissolution of silver sulfide leaving a porous layer behind. The understanding of the reaction mechanism of silver sulfide dissolution and its optimization will significantly improve the economic evaluation of industrial processes using the catalyzed leaching of chalcopyrite. The present knowledge of the catalysis indicates that other ions may be substituted for silver ions which would increase the feasibility of hydrometallurgical processes.

  1. Sulfide detoxification in plant mitochondria.

    PubMed

    Birke, Hannah; Hildebrandt, Tatjana M; Wirtz, Markus; Hell, Rüdiger

    2015-01-01

    In contrast to animals, which release the signal molecule sulfide in small amounts from cysteine and its derivates, phototrophic eukaryotes generate sulfide as an essential intermediate of the sulfur assimilation pathway. Additionally, iron-sulfur cluster turnover and cyanide detoxification might contribute to the release of sulfide in mitochondria. However, sulfide is a potent inhibitor of cytochrome c oxidase in mitochondria. Thus, efficient sulfide detoxification mechanisms are required in mitochondria to ensure adequate energy production and consequently survival of the plant cell. Two enzymes have been recently described to catalyze sulfide detoxification in mitochondria of Arabidopsis thaliana, O-acetylserine(thiol)lyase C (OAS-TL C), and the sulfur dioxygenase (SDO) ethylmalonic encephalopathy protein 1 (ETHE1). Biochemical characterization of sulfide producing and consuming enzymes in mitochondria of plants is fundamental to understand the regulatory network that enables mitochondrial sulfide homeostasis under nonstressed and stressed conditions. In this chapter, we provide established protocols to determine the activity of the sulfide releasing enzyme β-cyanoalanine synthase as well as sulfide-consuming enzymes OAS-TL and SDO. Additionally, we describe a reliable and efficient method to purify OAS-TL proteins from plant material. © 2015 Elsevier Inc. All rights reserved.

  2. Monolayer patterning using ketone dipoles.

    PubMed

    Kim, Min Kyoung; Xue, Yi; Pašková, Tereza; Zimmt, Matthew B

    2013-08-14

    The self-assembly of multi-component monolayers with designed patterns requires molecular recognition among components. Dipolar interactions have been found to influence morphologies of self-assembled monolayers and can affect molecular recognition functions. Ketone groups have large dipole moments (2.6 D) and are easily incorporated into molecules. The potential of ketone groups for dipolar patterning has been evaluated through synthesis of two 1,5-disubstituted anthracenes bearing mono-ketone side chains, STM characterization of monolayers self-assembled from their single and two component solutions and molecular mechanics simulations to determine their self-assembly energetics. The results reveal that (i) anthracenes bearing self-repulsive mono-ketone side chains assemble in an atypical monolayer morphology that establishes dipolar attraction, instead of repulsion, between ketones in adjacent side chains; (ii) pairs of anthracene molecules whose self-repulsive ketone side chains are dipolar complementary spontaneously assemble compositionally patterned monolayers, in which the two components segregate into neighboring, single component columns, driven by side chain dipolar interactions; (iii) compositionally patterned monolayers also assemble from dipolar complementary anthracene pairs that employ different dipolar groups (ketones or CF2 groups) in their side chains; (iv) the ketone group, with its larger dipole moment and size, provides comparable driving force for patterned monolayer formation to that of the smaller dipole, and smaller size, CF2 group.

  3. Luminescent Organic Semiconducting Langmuir Monolayers.

    PubMed

    Agina, Elena V; Mannanov, Artur A; Sizov, Alexey S; Vechter, Olga; Borshchev, Oleg V; Bakirov, Artem V; Shcherbina, Maxim A; Chvalun, Sergei N; Konstantinov, Vladislav G; Bruevich, Vladimir V; Kozlov, Oleg V; Pshenichnikov, Maxim S; Paraschuk, Dmitry Yu; Ponomarenko, Sergei A

    2017-05-31

    In recent years, monolayer organic field-effect devices such as transistors and sensors have demonstrated their high potential. In contrast, monolayer electroluminescent organic field-effect devices are still in their infancy. One of the key challenges here is to create an organic material that self-organizes in a monolayer and combines efficient charge transport with luminescence. Herein, we report a novel organosilicon derivative of oligothiophene-phenylene dimer D2-Und-PTTP-TMS (D2, tetramethyldisiloxane; Und, undecylenic spacer; P, 1,4-phenylene; T, 2,5-thiophene; TMS, trimethylsilyl) that meets these requirements. The self-assembled Langmuir monolayers of the dimer were investigated by steady-state and time-resolved photoluminescence spectroscopy, atomic force microscopy, X-ray reflectometry, and grazing-incidence X-ray diffraction, and their semiconducting properties were evaluated in organic field-effect transistors. We found that the best uniform, fully covered, highly ordered monolayers were semiconducting. Thus, the ordered two-dimensional (2D) packing of conjugated organic molecules in the semiconducting Langmuir monolayer is compatible with its high-yield luminescence, so that 2D molecular aggregation per se does not preclude highly luminescent properties. Our findings pave the way to the rational design of functional materials for monolayer organic light-emitting transistors and other optoelectronic devices.

  4. Geothermal hydrogen sulfide removal

    SciTech Connect

    Urban, P.

    1981-04-01

    UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

  5. Biotreatment of refinery spent sulfidic caustics

    SciTech Connect

    Sublette, K.L.; Rajganesh, B.; Woolsey, M.; Plato, A.

    1995-12-31

    Caustics are used in petroleum refinering to remove hydrogen sulfide from various hydrocarbon streams. Spent sulfidic caustics from two Conoco refineries have been successfully biotreated on bench and pilot scale, resulting in neutralization and removal of active sulfides. Sulfides were completely oxidized to sulfate by Thiobacillus denitrificans. Microbial oxidation of sulfide produced acid, which at least partially neutralized the caustic.

  6. Self-Assembled Monolayers: a Molecular Resolution STM Study

    NASA Astrophysics Data System (ADS)

    Dhirani, Al-Amin

    Building on studies of self-assembled monolayers (SAMs) based on the (CH_3(CH _2)_{rm n{-}1}SH) + Au(111) prototype, we have designed and constructed a high impedance STM to consider the formation and properties of new SAM systems with molecular resolution. On Au-, Ag-, and Pt-(111), the monolayer structures of n-decanethiol were found to be (1) ordered on gold and silver but not platinum (2) strongly correlated with the structures formed by simpler sulfur components. In addition the potential formation and properties of new molecular classes of ordered SAMs were considered by studying monolayers of H(C _6H_4Cequiv C)_{rm n}C _6H_4SH (n = 0 - 2) (1a - c) on Au(111). An increase in order with chain length as well as the formation of an ordered SAM by 1c were observed. Finally, current-voltage (I-V) measurements of 1 monolayers displayed an increasing nonlinearity with chain length and an asymmetry for 1c. The electrical behavior is consistent with a model based on a semi-classical tunneling formalism using the barrier height and molecular polarizability of 1.

  7. Suicide with hydrogen sulfide.

    PubMed

    Sams, Ralph Newton; Carver, H Wayne; Catanese, Charles; Gilson, Thomas

    2013-06-01

    This presentation will address the recent rise of suicide deaths resulting from the asphyxiation by hydrogen sulfide (H2S) gas.Hydrogen sulfide poisoning has been an infrequently encountered cause of death in medical examiner practice. Most H2S deaths that have been reported occurred in association with industrial exposure.More recently, H2S has been seen in the commission of suicide, particularly in Japan. Scattered reports of this phenomenon have also appeared in the United States.We have recently observed 2 intentional asphyxial deaths in association with H2S. In both cases, the decedents committed suicide in their automobiles. They generated H2S by combining a sulfide-containing tree spray with toilet bowl cleaner (with an active ingredient of hydrogen chloride acid). Both death scenes prompted hazardous materials team responses because of notes attached to the victims' car windows indicating the presence of toxic gas. Autopsy findings included discoloration of lividity and an accentuation of the gray matter of the brain. Toxicology testing confirmed H2S exposure with the demonstration of high levels of thiosulfate in blood.In summary, suicide with H2S appears to be increasing in the United States.

  8. Nanosecond laser ablation of gold nanoparticle films

    SciTech Connect

    Ko, Seung H.; Choi, Yeonho; Hwang, David J.; Grigoropoulos, Costas P.; Chung, Jaewon; Poulikakos, Dimos

    2006-10-02

    Ablation of self-assembled monolayer protected gold nanoparticle films on polyimide was explored using a nanosecond laser. When the nanoparticle film was ablated and subsequently thermally sintered to a continuous film, the elevated rim structure by the expulsion of molten pool could be avoided and the ablation threshold fluence was reduced to a value at least ten times lower than the reported threshold for the gold film. This could be explained by the unusual properties of nanoparticle film such as low melting temperature, weak bonding between nanoparticles, efficient laser energy deposition, and reduced heat loss. Finally, submicron lines were demonstrated.

  9. High-density monolayers of metal complexes: preparation and catalysis.

    PubMed

    Hara, Kenji; Sawamura, Masaya; Fukuoka, Atsushi

    2014-10-01

    Catalysts are one of the key materials for realizing a sustainable society. However, we may encounter problematic cases where conventional catalyst systems cannot provide effective solutions. We thus believe that the establishment of novel methods of catalyst preparation is currently necessary. Utilization of high-density monolayers of molecular metal complexes is our strategy, and we expect that this methodology will enable facile and systematic screening of unique and efficient catalysts. This Personal Account describes our challenges to establish such an immature method in catalyst preparation as well as the related background and perspective. Preparation and catalysis by high-density monolayers of Rh complexes with N-heterocyclic carbene, structurally compact phosphine and diisocyanide ligands on gold surfaces are presented. The catalytic application of a high-density Pd-bisoxazoline complex prepared on a single-crystal silicon surface is also shown. Uniquely high catalyst turnover numbers and high chemoselectivities were observed with these catalyst systems.

  10. [Effect of acidic treatment of the chemical composition and bacterial oxidation of arsenic-bearing gold concentrate].

    PubMed

    Fomchenko, N V; Pivovarova, T A; Kondrat'eva, T F

    2008-01-01

    Effect of acidic pretreatment of arsenic-bearing gold concentrate, a promising gold source, on its chemical composition and efficiency of its bacterial oxidation (BO) was studied. The titer of sulfobacilli during BO of the concentrate after high-temperature acidic treatment was 9.0 x 10(7) cells/ml, the degree of arsenic sulfide oxidation being 71.1%, and in the control, 6.5 x 10(7) cells/ml with the oxidation degree as low as 48.7%. Deeper oxidation of the main gold-containing mineral, arsenic sulfide, would allow more efficient gold recovery from the concentrate.

  11. Tailoring nanoparticle surface monolayers for biomolecular recognition and delivery applications

    NASA Astrophysics Data System (ADS)

    Agasti, Sarit S.

    Engineering the interfaces between biomolecules and nanomaterials is central to the creation of materials for diverse areas of biomedical applications, including therapy, sensing and imaging. The goal of this research has been oriented toward the tailoring of the interfaces through the atomic level control provided by the organic synthesis. By employing a synergistic approach in the research, combining colloids, surface science, organic synthesis and biology, gold nanoparticles with tailored monolayers have been developed for bio-applications. This thesis illustrates the design and synthesis of these surface functionalized gold nanoparticles and their use in protein surface recognition and delivery systems for therapeutic applications. For protein surface recognition, we have fabricated gold nanoparticles bearing a diversity of amino acids termini and studied their interactions with proteins to elucidate the parameters affecting their interactions and catalytic behavior. In therapeutic applications, we have demonstrated the use of organically tailored nanoparticles for the creation of delivery systems featuring tunable stability and regulated drug release. Additionally, gold nanoparticles functionalized with molecular recognition motif have been used to demonstrate host-guest chemistry inside the living cells for the activation of therapeutic gold nanoparticles.

  12. Method of epitaxially depositing cadmium sulfide

    NASA Technical Reports Server (NTRS)

    Hawrylo, Frank Z. (Inventor)

    1980-01-01

    A single crystal layer of either cadmium sulfide or an alloy of cadmium sulfide and indium phosphide is epitaxially deposited on a substrate of cadmium sulfide by liquid phase epitaxy using indium as the solvent.

  13. Phenomenological Modeling for Langmuir Monolayers

    NASA Astrophysics Data System (ADS)

    Baptiste, Dimitri; Kelly, David; Safford, Twymun; Prayaga, Chandra; Varney, Christopher N.; Wade, Aaron

    Experimentally, Langmuir monolayers have applications in molecular optical, electronic, and sensor devices. Traditionally, Langmuir monolayers are described by a rigid rod model where the rods interact via a Leonard-Jones potential. Here, we propose effective phenomenological models and utilize Monte Carlo simulations to analyze the phase behavior and compare with experimental isotherms. Research reported in this abstract was supported by UWF NIH MARC U-STAR 1T34GM110517-01.

  14. Improving the Dielectric Properties of Ethylene-Glycol Alkanethiol Self-Assembled Monolayers

    PubMed Central

    2014-01-01

    Self-assembled monolayers (SAMs) can be formed at the interface between solids and fluids, and are often used to modify the surface properties of the solid. One of the most widely employed SAM systems is exploiting thiol-gold chemistry, which, together with alkane-chain-based molecules, provides a reliable way of SAM formation to modify the surface properties of electrodes. Oligo ethylene-glycol (OEG) terminated alkanethiol monolayers have shown excellent antifouling properties and have been used extensively for the coating of biosensor electrodes to minimize nonspecific binding. Here, we report the investigation of the dielectric properties of COOH-capped OEG monolayers and demonstrate a strategy to improve the dielectric properties significantly by mixing the OEG SAM with small concentrations of 11-mercaptoundecanol (MUD). The monolayer properties and composition were characterized by means of impedance spectroscopy, water contact angle, ellipsometry and X-ray photoelectron spectroscopy. An equivalent circuit model is proposed to interpret the EIS data and to determine the conductivity of the monolayer. We find that for increasing MUD concentrations up to about 5% the resistivity of the SAM steadily increases, which together with a considerable decrease of the phase of the impedance, demonstrates significantly improved dielectric properties of the monolayer. Such monolayers will find widespread use in applications which depend critically on good dielectric properties such as capacitive biosensor. PMID:24447311

  15. Reflectivity and microhardness of sulfide minerals as genetic information source (case study: pyrite and arsenopyrite)

    NASA Astrophysics Data System (ADS)

    Sinkina, E. A.; Korovkin, M. V.; Savinova, O. V.; Makarova, A. A.

    2016-03-01

    Reflectivity and microhardness of pyrite and arsenopyrite of black shale gold-ore deposits in Chertovo Koryto (Patom upland) were studied. It was found that sulfides of different generations are characterized by different values of above-mentioned parameters which is associated mechanical and isomorphic impurities.

  16. Interactions of doxorubicin with self-assembled monolayer-modified electrodes: electrochemical, surface plasmon resonance (SPR), and gravimetric studies.

    PubMed

    Nieciecka, Dorota; Krysinski, Pawel

    2011-02-01

    We present the results on the partitioning of doxorubicin (DOX), a potent anticancer drug, through the model membrane system, self-assembled monolayers (SAMs) on gold electrodes. The monolayers were formed from alkanethiols of comparable length with different ω-terminal groups facing the aqueous electrolyte: the hydrophobic -CH(3) groups for the case of dodecanethiol SAMs or hydrophilic -OH groups of mercaptoundecanol SAMs. The electrochemical experiments combined with the surface plasmon resonance (SPR) and gravimetric studies show that doxorubicin is likely adsorbed onto the surface of hydrophilic monolayer, while for the case of the hydrophobic one the drug mostly penetrates the monolayer moiety. The adsorption of the drug hinders further penetration of doxorubicin into the monolayer moiety.

  17. Mineralogical and geochemical features of promising types of gold mineralization in the western Altai-Sayany folded region (Russia)

    NASA Astrophysics Data System (ADS)

    Chernykh, Alexandr

    2013-04-01

    The western Altai-Sayany folded region is one of the oldest mining regions of Russia. Typical gold deposits are quartz-viens and skarns, which formation is associated with intrusion of island-arc and collision granitoids. Due to the fact that the traditional gold ore base of the region has already been largely worked out, the necessity of prospecting for new gold deposits has arisen. On the basis of available data, one may state that the outlook for the development of gold-mining industry of the Altai-Sayany region is concerned with gold mineralization in weathering crusts, epithermal gold-silver, gold-porhyry and gold-sulfide formations. The total gold resource potential of these object types is estimated by us at the level of 2000 t. The gold mineralization of epithermal gold-silver formation is confined to Early-Middle Devonian volcanic-plutonic belt. Here, gold-bearing zones of beresitization, argillization, sulfidization and silicification are discovered among volcanites. Maximum contents of noble metals are found in quartz-sulfide veins among sulfidized (arsenic pyrite, pyrite, galenite, sphalerite and fahlore, etc.) and silicified volcanic and subvolcanic rocks. Ore zones are marked by anomalously high content of Au, Ag, Pb, Zn, As, Sb, Hg not only in bedrocks, but also in haloes of dispersion in loose deposits. Gold-sulfide mineralization in terrigenous carbonaceous strata is confined to Late Riphean, Early Cambrian and Devonian metamorphosed complexes. This rocks were formed in the marginal sea basins. Metamorphism and repeated tectono-magmatic activation in the region resulted in redistribution and accumulation of gold. Gold-ore zones are marked by intensive silicification and sulfidization and are characterized mostly by occurrences of multiple generations of pyrite and arsenic pyrite. Gold occurs both in free state and in sulphides. Geochemistry of gold-ore zones can be characterized by associated elevated content of As, Ag, Sb, Cu, Hg. Gold-sulfide

  18. Gold, base-metal, and related deposits of North Carolina

    USGS Publications Warehouse

    Luttrell, Gwendolyn Werth

    1978-01-01

    Gold, silver, copper, lead, zinc, pyrite, tin, cobalt, molybdenum, tungsten, barite, and rare-earths have been mined in North Carolina. Gold, with by-product silver, occurs in veins and mineralized shear zones in metamorphic rocks of the Piedmont province and in placers derived from these deposits. Copper occurs with complex sulfide ores in quartz veins in the metamorphic rocks of the Piedmont province and in massive pyrrhotite-pyrite deposits in crystalline rocks west of the Blue Ridge. Lead and zinc occur in complex ores of gold, copper, lead, zinc, and silver in veins and replacements in metamorphic rocks. Pyrite occurs in crystalline metamorphic rocks. Tin occurs in pegmatite and placer deposits in crystalline rocks near Kings Mountain. Cobalt minerals with ores of iron or gold have been reported in a few areas in the Piedmont. Molybdenum occurs along the borders of a granite body in Halifax County. Tungsten minerals occur with copper sulfide ores in Cabarrus and Vance Counties. Barite occurs in quartz veins and associated with sulfide minerals in Orange, Madison, Cleveland, and Gaston Counties. Ore-earths occur with sulfides in vein deposits in Cabarrus County.

  19. Sulfide bonded atomic radii

    NASA Astrophysics Data System (ADS)

    Gibbs, G. V.; Ross, N. L.; Cox, D. F.

    2017-03-01

    The bonded radius, r b(S), of the S atom, calculated for first- and second-row non-transition metal sulfide crystals and third-row transition metal sulfide molecules and crystals indicates that the radius of the sulfur atom is not fixed as traditionally assumed, but that it decreases systematically along the bond paths of the bonded atoms with decreasing bond length as observed in an earlier study of the bonded radius of the oxygen atom. When bonded to non-transition metal atoms, r b(S) decreases systematically with decreasing bond length from 1.68 Å when the S atom is bonded to the electropositive VINa atom to 1.25 Å when bonded to the more electronegative IVP atom. In the case of transition metal atoms, rb(S) likewise decreases with decreasing bond length from 1.82 Å when bonded to Cu and to 1.12 Å when bonded to Fe. As r b(S) is not fixed at a given value but varies substantially depending on the bond length and the field strength of the bonded atoms, it is apparent that sets of crystal and atomic sulfide atomic radii based on an assumed fixed radius for the sulfur atom are satisfactory in that they reproduce bond lengths, on the one hand, whereas on the other, they are unsatisfactory in that they fail to define the actual sizes of the bonded atoms determined in terms of the minima in the electron density between the atoms. As such, we urge that the crystal chemistry and the properties of sulfides be studied in terms of the bond lengths determined by adding the radii of either the atomic and crystal radii of the atoms but not in terms of existing sets of crystal and atomic radii. After all, the bond lengths were used to determine the radii that were experimentally determined, whereas the individual radii were determined on the basis of an assumed radius for the sulfur atom.

  20. Sulfide bonded atomic radii

    NASA Astrophysics Data System (ADS)

    Gibbs, G. V.; Ross, N. L.; Cox, D. F.

    2017-09-01

    The bonded radius, r b(S), of the S atom, calculated for first- and second-row non-transition metal sulfide crystals and third-row transition metal sulfide molecules and crystals indicates that the radius of the sulfur atom is not fixed as traditionally assumed, but that it decreases systematically along the bond paths of the bonded atoms with decreasing bond length as observed in an earlier study of the bonded radius of the oxygen atom. When bonded to non-transition metal atoms, r b(S) decreases systematically with decreasing bond length from 1.68 Å when the S atom is bonded to the electropositive VINa atom to 1.25 Å when bonded to the more electronegative IVP atom. In the case of transition metal atoms, rb(S) likewise decreases with decreasing bond length from 1.82 Å when bonded to Cu and to 1.12 Å when bonded to Fe. As r b(S) is not fixed at a given value but varies substantially depending on the bond length and the field strength of the bonded atoms, it is apparent that sets of crystal and atomic sulfide atomic radii based on an assumed fixed radius for the sulfur atom are satisfactory in that they reproduce bond lengths, on the one hand, whereas on the other, they are unsatisfactory in that they fail to define the actual sizes of the bonded atoms determined in terms of the minima in the electron density between the atoms. As such, we urge that the crystal chemistry and the properties of sulfides be studied in terms of the bond lengths determined by adding the radii of either the atomic and crystal radii of the atoms but not in terms of existing sets of crystal and atomic radii. After all, the bond lengths were used to determine the radii that were experimentally determined, whereas the individual radii were determined on the basis of an assumed radius for the sulfur atom.

  1. Synergistic extraction of gold from the refractory gold ore via ultrasound and chlorination-oxidation.

    PubMed

    Fu, Likang; Zhang, Libo; Wang, Shixing; Cui, Wei; Peng, Jinhui

    2017-07-01

    A synergistic extraction method for gold from the refractory gold ores via ultrasound and chlorination-oxidation was developed. The effects of solid-liquid ratio, extraction time, ultrasound power, NaClO concentration and NaOH concentration on the extraction rate of gold from the refractory gold ore were investigated. The optimum conditions were as follows: NaClO concentration of 1.5mol/L, NaOH concentration of 1.5mol/L, solid-liquid ratio of 5, ultrasound power of 200W and ultrasound time of 2h. Under the optimal conditions, 68.55% of gold was extracted. However, only 45.8% of gold was extracted after 6h without the ultrasound-assisted extraction. XRD and SEM were used to analyze the influence of ultrasound on the mineral properties and strengthening mechanism. The results showed that the interface layer was peeled, new surface was exposed, reaction resistance was reduced, the liquid-solid reaction was promoted and reaction speed was greatly improved under ultrasound. According to the results of range and variance analysis, the optimum leaching experiment with orthogonal design was almost identical with the optimum experiment of single factor. Among them, the ultrasound power was the most significant factors affecting leaching rate of gold. Compared with other extraction method, the synergistic extraction process decomposed completely sulfide and improved significantly the extraction rate of gold. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Gold Coating

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Epner Technology Inc. responded to a need from Goddard Space Flight Center for the ultimate in electroplated reflectivity needed for the Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA). Made of beryllium, the MOLA mirror was coated by Epner Technology Laser Gold process, specially improved for the project. Improved Laser Gold- coated reflectors have found use in an epitaxial reactor built for a large semiconductor manufacturer as well as the waveguide in Braun-Thermoscan tympanic thermometer and lasing cavities in various surgical instruments.

  3. Field method for sulfide determination

    SciTech Connect

    Wilson, B L; Schwarser, R R; Chukwuenye, C O

    1982-01-01

    A simple and rapid method was developed for determining the total sulfide concentration in water in the field. Direct measurements were made using a silver/sulfide ion selective electrode in conjunction with a double junction reference electrode connected to an Orion Model 407A/F Specific Ion Meter. The method also made use of a sulfide anti-oxidant buffer (SAOB II) which consists of ascorbic acid, sodium hydroxide, and disodium EDTA. Preweighed sodium sulfide crystals were sealed in air tight plastic volumetric flasks which were used in standardization process in the field. Field standards were prepared by adding SAOB II to the flask containing the sulfide crystals and diluting it to the mark with deionized deaerated water. Serial dilutions of the standards were used to prepare standards of lower concentrations. Concentrations as low as 6 ppB were obtained on lake samples with a reproducibility better than +- 10%.

  4. Nanoscale Phase Segregation of Mixed Thiolates on Gold Nanoparticles

    PubMed Central

    Harkness, Kellen M.; Balinski, Andrzej

    2012-01-01

    Phase segregation and domain formation is observed within the protecting monolayer of gold nanoparticles (AuNPs) using ion mobility-mass spectrometry, a two-dimensional gas-phase separation technique. Experimental data is compared to a theoretical model that represents a randomly distributed ligand mixture. Deviations from this model provide evidence for nanophase separation resulting in anisotropic AuNPs. PMID:21882306

  5. Magnetism induced by the organization of self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Carmeli, I.; Leitus, G.; Naaman, R.; Reich, S.; Vager, Z.

    2003-06-01

    Unique occurrence of magnetism is shown, in which magnetism appears ex nihilo, when organic molecules are self-assembled as monolayers on gold substrate. The molecules as well as the substrate, when they stand alone, are diamagnetic. Using a superconducting quantum interference device type magnetometer we obtained direct evidence that close-packed organized thio-organic films adsorbed on gold substrates possess magnetic properties at room temperature. The films studied show very high specific magnetization, up to many tens Bohr magnetons per adsorbed molecule, with a very small hysteresis. It is highly anisotropic and shows almost no temperature dependence. The magnetism observed is related to charge transfer between the organic layer and the metal substrate. Yet, the uniqueness here is that many spins are polarized per adsorbed molecules. The magnetic effect is related to the two dimensional organization of the organic molecules on the metal substrate which might explain the high anisotropy.

  6. Single-monolayer in situ modulus measurements using a SAW device: Photocrosslinking of a diacetylenic thiol-based monolayer

    SciTech Connect

    Ricco, A.J.; Staton, A.W.; Crooks, R.M.; Kim, Taisun

    1997-10-01

    We report direct measurement of the modulus change that accompanies the crosslinking of a single molecular monolayer. We measured a change in elastic modulus of 5 x 10{sup 10} dyn/cm{sup 2} as a result of ultraviolet-induced photocrosslinking of a single surface-confined monolayer of the conjugated diacetylenic thiol HS(CH{sub 2}){sub 10}C{triple_bond}CC{triple_bond}C(CH{sub 2}){sub 10}COOH, designated {open_quotes}DAT{close_quotes} hereafter. The modulus measurement was made on a monolayer of DAT chemisorbed upon a gold film on the surface of a 97-MHz ST-quartz surface acoustic wave delay line. The ratio of the changes recorded in SAW velocity and attenuation, approximately 4:1, suggests that the measured effect is mainly a change in the elastic (real) component of the complex shear modulus, viscous changes playing a lesser role. In relation to typical polymer modulus values, the change of 5 x 10{sup 10} dyn/cm{sup 2} is consistent with a change from a rubbery material (G{prime} {approximately} 10{sup 7} - 10{sup 8} dyn/cm{sup 2}) to a fairly rigid, glassy material (G{prime} {approximately} 10{sup 10} dyn/cm{sup 2}), reasonable for comparison of the monolayer in its as-adsorbed and crosslinked forms. This report of the direct SAW-based measurement of the modulus change associated with the crosslinking of a single molecular monolayer is complementary to and consistent with previous in-situ measurements of this process using thickness-shear mode resonators.

  7. Enantiomeric interactions between liquid crystals and organized monolayers of tyrosine-containing dipeptides.

    PubMed

    Bai, Yiqun; Abbott, Nicholas L

    2012-01-11

    We have examined the orientational ordering of nematic liquid crystals (LCs) supported on organized monolayers of dipeptides with the goal of understanding how peptide-based interfaces encode intermolecular interactions that are amplified into supramolecular ordering. By characterizing the orientations of nematic LCs (4-cyano-4'-pentylbiphenyl and TL205 (a mixture of mesogens containing cyclohexane-fluorinated biphenyls and fluorinated terphenyls)) on monolayers of l-cysteine-l-tyrosine, l-cysteine-l-phenylalanine, or l-cysteine-l-phosphotyrosine formed on crystallographically textured films of gold, we conclude that patterns of hydrogen bonds generated by the organized monolayers of dipeptides are transduced via macroscopic orientational ordering of the LCs. This conclusion is supported by the observation that the ordering exhibited by the achiral LCs is specific to the enantiomers used to form the dipeptide-based monolayers. The dominant role of the -OH group of tyrosine in dictating the patterns of hydrogen bonds that orient the LCs was also evidenced by the effects of phosphorylation of the tyrosine on the ordering of the LCs. Overall, these results reveal that crystallographic texturing of gold films can direct the formation of monolayers of dipeptides with long-range order, thus unmasking the influence of hydrogen bonding, chirality, and phosphorylation on the macroscopic orientational ordering of LCs supported on these surfaces. These results suggest new approaches based on supramolecular assembly for reporting the chemical functionality and stereochemistry of synthetic and biological peptide-based molecules displayed at surfaces.

  8. Monolayer coated aerogels and method of making

    DOEpatents

    Zemanian, Thomas Samuel; Fryxell, Glen; Ustyugov, Oleksiy A.

    2006-03-28

    Aerogels having a monolayer coating are described. The aerogel and a monolayer forming precursor are provided in a supercritical fluid, whereupon the aerogel and the monolayer forming precursor are reacted in said supercritical fluid to form a covalent bond between the aerogel and the monolayer forming precursor. Suitable aerogels are ceramic oxides such as silica, alumina, aluminosilicate, and combinations thereof. Suitable monolayer forming precursors include alkyl silanes, chlorosilanes, boranes, chloroboranes, germanes, and combinations thereof. The method may also include providing a surface preparation agent such as water, or hydroetching an aerogel to enhance the coating of the monolayer.

  9. Gold Nanoantennas

    SciTech Connect

    2012-01-01

    An array of gold nanoantennas laced into an artificial membrane enhances the fluorescence intensity of three different molecules when they pass through plasmonic hot spots in the array. Watch for the blue, green and red flashes. The photobleaching at the end of each fluorescence event (white flashes) is indicative of single molecule observations.

  10. A unique ore-placer cluster with high-Hg gold mineralization in the Amur region (Russia)

    NASA Astrophysics Data System (ADS)

    Stepanov, V. A.; Moyseenko, V. G.; Melnikov, A. V.

    2017-02-01

    This work presents the geological structure and a description of gold-ore manifestations and gold placers in the Un'ya-Bom ore-placer cluster of the Amur gold-bearing province. The host rocks are Late Paleozoic and Mesozoic black-shale formations. Intrusive formations are rare. The sublatitudinal Un'ya thrust fault, along which Paleozoic sandstones overlap Mesozoic flyschoid deposits, is regarded as an orecontrolling structure. Gold-quartz and low-sulfide ores are confined to quartz-vein zones. Ore minerals are arsenopyrite, scheelite, ferberite, galena, and native gold. Gold-ore manifestations and placers contain high-Hg native gold. The high Hg content in native gold is explained by the occurrence of the eroded frontal part of the gold-ore pipe in the ore cluster, a source of native gold.

  11. Geology and mineralization at the Ishmas Kabir gold prospect, Ishmas gold district, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Walker, B.M.; Ben Talib, Majed; El Komi, Mohamed; Hussain, M.A.; Christian, R.P.

    1990-01-01

    Quartz veins intersected by drill holes are surrounded by mylonite schist. Quartz and carbonate veins less than 5 mm thick are boudined, whereas thick quartz veins (£ 1.2 m) have disrupted and brecciated margins; mylonitized country rock envelops quartz-vein fragments. Sulfide mineralization associated with vein formation predates this rock-deformation event. Contemporaneous brittle and ductile deformation of quartz veins and country rocks occurred during the Nabitah orogeny. Supergene gold enrichment took place much later.

  12. Ferrocene-based monolayers: Self-assembly via rigid bidentate anchor groups

    NASA Astrophysics Data System (ADS)

    Weidner, Tobias; Krohn, Bianca; Trojtza, Marta; Bruhn, Clemens; Rother, Dag; Siemeling, Ulrich; Träger, Frank

    2006-02-01

    Self-assembled monolayers of the bidentate ferrocene containing ligands diisocyanoferrocene (1), bis(diphenylphosphanyl) ferrocene (2), and diisothiocyanatoferrocene (3) have been prepared and their adsorption kinetics on gold films were characterized with optical second-harmonic generation and ellipsometry. As opposed to ferrocenylfunctionalized ligands used in earlier studies, the redox-active moieties discussed here carry two anchor groups to "pin" them to the substrate in a well-defined orientation and distance to the surface. 1 and 3 show monolayer film formation that follows first order, while film assembly of 2 is best described by a second order Langmuir kinetics.

  13. Sulfide Mineral Surfaces

    SciTech Connect

    Rosso, Kevin M.; Vaughan, David J.

    2006-08-01

    The past twenty years or so have seen dramatic development of the experimental and theoretical tools available to study the surfaces of solids at the molecular (?atomic resolution?) scale. On the experimental side, two areas of development well illustrate these advances. The first concerns the high intensity photon sources associated with synchrotron radiation; these have both greatly improved the surface sensitivity and spatial resolution of already established surface spectroscopic and diffraction methods, and enabled the development of new methods for studying surfaces. The second centers on the scanning probe microscopy (SPM) techniques initially developed in the 1980's with the first scanning tunneling microscope (STM) and atomic force microscope (AFM) experiments. The direct 'observation' of individual atoms at surfaces made possible with these methods has truly revolutionized surface science. On the theoretical side, the availability of high performance computers coupled with advances in computational modeling has provided powerful new tools to complement the advances in experiment. Particularly important have been the quantum mechanics based computational approaches such as density functional theory (DFT), which can now be easily used to calculate the equilibrium crystal structures of solids and surfaces from first principles, and to provide insights into their electronic structure. In this chapter, we review current knowledge of sulfide mineral surfaces, beginning with an overview of the principles relevant to the study of the surfaces of all crystalline solids. This includes the thermodynamics of surfaces, the atomic structure of surfaces (surface crystallography and structural stability, adjustments of atoms at the surface through relaxation or reconstruction, surface defects) and the electronic structure of surfaces. We then discuss examples where specific crystal surfaces have been studied, with the main sulfide minerals organized by structure type

  14. Characterizing the mechanics of cultured cell monolayers

    PubMed Central

    Peter, Loic; Bellis, Julien; Baum, Buzz; Kabla, Alexandre J.; Charras, Guillaume T.

    2012-01-01

    One-cell-thick monolayers are the simplest tissues in multicellular organisms, yet they fulfill critical roles in development and normal physiology. In early development, embryonic morphogenesis results largely from monolayer rearrangement and deformation due to internally generated forces. Later, monolayers act as physical barriers separating the internal environment from the exterior and must withstand externally applied forces. Though resisting and generating mechanical forces is an essential part of monolayer function, simple experimental methods to characterize monolayer mechanical properties are lacking. Here, we describe a system for tensile testing of freely suspended cultured monolayers that enables the examination of their mechanical behavior at multi-, uni-, and subcellular scales. Using this system, we provide measurements of monolayer elasticity and show that this is two orders of magnitude larger than the elasticity of their isolated cellular components. Monolayers could withstand more than a doubling in length before failing through rupture of intercellular junctions. Measurement of stress at fracture enabled a first estimation of the average force needed to separate cells within truly mature monolayers, approximately ninefold larger than measured in pairs of isolated cells. As in single cells, monolayer mechanical properties were strongly dependent on the integrity of the actin cytoskeleton, myosin, and intercellular adhesions interfacing adjacent cells. High magnification imaging revealed that keratin filaments became progressively stretched during extension, suggesting they participate in monolayer mechanics. This multiscale study of monolayer response to deformation enabled by our device provides the first quantitative investigation of the link between monolayer biology and mechanics. PMID:22991459

  15. Volcanogenic Massive Sulfide Deposit Density

    USGS Publications Warehouse

    Mosier, Dan L.; Singer, Donald A.; Berger, Vladimir I.

    2007-01-01

    A mineral-deposit density model for volcanogenic massive sulfide deposits was constructed from 38 well-explored control areas from around the world. Control areas contain at least one exposed volcanogenic massive sulfide deposit. The control areas used in this study contain 150 kuroko, 14 Urals, and 25 Cyprus massive sulfide subtypes of volcanogenic massive sulfide deposits. For each control area, extent of permissive rock, number of exposed volcanogenic massive sulfide deposits, map scale, deposit age, and deposit density were determined. The frequency distribution of deposit densities in these 38 control areas provides probabilistic estimates of the number of deposits for tracts that are permissive for volcanogenic massive sulfide deposits-90 percent of the control areas have densities of 100 or more deposits per 100,000 square kilometers, 50 percent of the control areas have densities of 700 or more deposits per 100,000 square kilometers, and 10 percent of the control areas have densities of 3,700 or more deposits per 100,000 square kilometers. Both map scale and the size of the control area are shown to be predictors of deposit density. Probabilistic estimates of the number of volcanogenic massive sulfide deposits can be made by conditioning the estimates on sizes of permissive area. The model constructed for this study provides a powerful tool for estimating the number of undiscovered volcanogenic massive sulfide deposits when conducting resource assessments. The value of these deposit densities is due to the consistency of these models with the grade and tonnage and the descriptive models. Mineral-deposit density models combined with grade and tonnage models allow reasonable estimates of the number, size, and grades of volcanogenic massive sulfide deposits to be made.

  16. Gold deposits of the Carolina Slate Belt, southeastern United States--Age and origin of the major gold producers

    USGS Publications Warehouse

    Foley, Nora K.; Ayuso, Robert A.

    2012-01-01

    Gold- and iron sulfide-bearing deposits of the southeastern United States have distinctive mineralogical and geochemical features that provide a basis for constructing models of ore genesis for exploration and assessment of gold resources. The largest (historic) deposits, in approximate million ounces of gold (Moz Au), include those in the Haile (~ 4.2 Moz Au), Ridgeway (~1.5 Moz Au), Brewer (~0.25 Moz Au), and Barite Hill (0.6 Moz Au) mines. Host rocks are Late Proterozoic to early Paleozoic (~553 million years old) metaigneous and metasedimentary rocks of the Carolina Slate Belt that share a geologic affinity with the classic Avalonian tectonic zone. The inferred syngenetic and epithermal-subvolcanic quartz-porphyry settings occur stratigraphically between sequences of metavolcanic rocks of the Persimmon Fork and Uwharrie Formations and overlying volcanic and epiclastic rocks of the Tillery and Richtex Formations (and regional equivalents). The Carolina Slate Belt is highly prospective for many types of gold ore hosted within quartz-sericite-pyrite altered volcanic rocks, juvenile metasedimentary rocks, and in associated shear zones. For example, sheared and deformed auriferous volcanogenic massive sulfide deposits at Barite Hill, South Carolina, and in the Gold Hill trend, North Carolina, are hosted primarily by laminated mudstone and felsic volcanic to volcaniclastic rocks. The high-sulfidation epithermal style of gold mineralization at Brewer and low-sulfidation gold ores of the Champion pit at Haile occur in breccias associated with subvolcanic quartz porphyry and within crystal-rich tuffs, ash flows, and subvolcanic rhyolite. The Ridgeway and Haile deposits are primarily epithermal replacements and feeder zones within (now) metamorphosed crystal-rich tuffs, volcaniclastic sediments, and siltstones originally deposited in a marine volcanic-arc basinal setting. Recent discoveries in the region include (1) extensions of known deposits, such as at Haile where

  17. Electromelting of confined monolayer ice.

    PubMed

    Qiu, Hu; Guo, Wanlin

    2013-05-10

    In sharp contrast to the prevailing view that electric fields promote water freezing, here we show by molecular dynamics simulations that monolayer ice confined between two parallel plates can melt into liquid water under a perpendicularly applied electric field. The melting temperature of the monolayer ice decreases with the increasing strength of the external field due to the field-induced disruption of the water-wall interaction induced well-ordered network of the hydrogen bond. This electromelting process should add an important new ingredient to the physics of water.

  18. Sulfides and oxides in comets

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1988-01-01

    Metal abundances associated with Sun-grazing P/comet Ikeya-Seki 1965f, the mineralogy of chrondritic interplanetary dust particles and cosmochemical affinities of Co, V, Cr, and Ni in extraterrestrial materials and probable vaporization data for nonsilicate minerals are used to evaluate the putative dearth of nonsilicates in short-period comets. It is concluded that sulfides and oxides are common, albeit minor, constituents of these comets. Sulfides and oxides can form in situ during perihelion passage in the nucleus of active short-period comets by sulfidation of Mg, Fe-silicates.

  19. Sulfides and oxides in comets

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1988-01-01

    Metal abundances associated with Sun-grazing P/comet Ikeya-Seki 1965f, the mineralogy of chrondritic interplanetary dust particles and cosmochemical affinities of Co, V, Cr, and Ni in extraterrestrial materials and probable vaporization data for nonsilicate minerals are used to evaluate the putative dearth of nonsilicates in short-period comets. It is concluded that sulfides and oxides are common, albeit minor, constituents of these comets. Sulfides and oxides can form in situ during perihelion passage in the nucleus of active short-period comets by sulfidation of Mg, Fe-silicates.

  20. Structure and electrocompression of electrodeposited iodine monolayers on Au(111)

    SciTech Connect

    Ocko, B.M.; Watson, G.M.; Wang, J. )

    1994-01-20

    The structure of electrodeposited iodine - from a potassium iodide (KI) electrolyte - at the Au(111) surface has been investigated using surface X-ray scattering (SXS) techniques. Two distinct incommensurate iodine monolayer phases are observed. In both of these phases the structures compress with increasing potential (electrocompression). In the lower potential phase a (px[radical]3) centered-rectangular iodine monolayer is observed in which the coverage ([theta]) increases from 36.6% to 40.9% (relative to the gold layer density) with increasing potential. At more positive potentials a rotated-hexagonal phase is formed, and [theta] increases from 41.5% to 44.5%. At the highest coverages, in both phases, the iodine-iodine nearest-neighbor spacing equals the van der Waals diameter of 4.3 [angstrom]. Analysis of the specular reflectivity gives an iodine-gold interlayer spacing of 2.35 [angstrom] and iodine coverages which are in good agreement with the in-plane diffraction results. 35 refs., 10 refs.

  1. Apparatus for use in sulfide chemiluminescence detection

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1987-01-06

    A method is described for chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  2. Apparatus for use in sulfide chemiluminescence detection

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1987-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction and a specifically designed chemiluminescence detection cell for the reaction.

  3. Synthesis of Triptycene-Based Molecular Rotors for Langmuir-Blodgett Monolayers.

    PubMed

    Kaleta, Jiří; Kaletová, Eva; Císařová, Ivana; Teat, Simon J; Michl, Josef

    2015-10-16

    We describe syntheses of six triptycene-containing molecular rotors with several single-crystal X-ray diffraction analyses. These rod-shaped molecules carrying an axial rotator are designed to interleave on an aqueous surface into Langmuir-Blodgett (LB) monolayers containing a two-dimensional trigonal array of dipoles rotatable about an axis normal to the surface. Monolayer formation was verified with the simplest of the rotor structures. On an aqueous subphase containing divalent cations (Mg(2+), Ca(2+), Zn(2+), Sr(2+), or Cd(2+)), the LB isotherm yielded an area of 53 ± 3 Å(2)/molecule (monolayer of type A), compatible with the anticipated triangular packing of axes normal to the surface. On pure water, the area is 30 ± 3 Å(2)/molecule, and it is proposed that in this monolayer (type B), the molecular axes are tilted by 40-45° to a structure similar to those observed in single crystals of related triptycenes. After transfer to a gold surface, ellipsometry and PM IRRAS yield tilt angles of 29 ± 4° (monolayers of type A) and 38 ± 4° (type B). A full-scale examination of monolayers from all the rotors on a subphase and after transfer is underway and will be reported separately.

  4. Anti-fouling chemistry of chiral monolayers: enhancing biofilm resistance on racemic surface.

    PubMed

    Bandyopadhyay, Debjyoti; Prashar, Deepali; Luk, Yan-Yeung

    2011-05-17

    This work reports the resistance to protein adsorption and bacterial biofilm formation by chiral monolayers of polyol-terminated alkanethiols surrounding micrometer-sized patterns of methyl-terminated alkanethiols on gold films. We discover that patterned surfaces surrounded by chiral polyol monolayers can distinguish different stages of biofilm formation. After inoculation on the surfaces, bacteria first reversibly attached on the chiral polyol monolayers. Over time, the bacteria detached from the polyol surfaces, and attached on the hydrophobic micropatterns to form biofilms. Interestingly, while both enantiomers of gulitol- and mannonamide-terminated monolayer resisted adsorption of proteins (bovine serum albumin, lysozyme, and fibrinogen) and confined biofilms formed on the micropatterns, the monolayers formed by the racemic mixture of either pair of enantiomers exhibited stronger antifouling chemistry against both protein adsorption and biofilm formation than monolayers formed by one enantiomer alone. These results reveal the different chemistries that separate the different stages of biofilm formation, and the stereochemical influence on resisting biofoulings at a molecular-level.

  5. Characterization of charge transfer processes inself-assembled monolayers by high-pressure electrochemical techniques

    SciTech Connect

    Cruanes, M.T.; Drickamer, H.G.; Faulkner, L.R.

    1995-10-01

    Here we report the first high-pressure investigation of redox processes in surface-confined monolayers. We have explored the electrochemical behavior of ferrocene-terminated self-assembled monolayers (SAMs) on gold electrodes immersed in aqueous solutions containing 1M NaClO{sub 4}. Electron-transfer reaction for ferrocene in the monolayer is restricted with the application of pressure, whereas the same reaction for ferrocene in solution is not. The dependence of the cyclic voltammetric peak redox potentials on pressure reveals that the oxidation of the ferrocene within the monolayer becomes thermodynamically and kinetically more difficult at high pressures. At pressures above 1-2 kbar, positive volumes of reaction are associated with the oxidation process, indicating that the oxidation step involves an increase in volume. Different monolayer samples, exhibiting different voltammetric responses, appear to impose different volume constraints on the charge transfer reaction and, therefore, present different pressure responses within a general common trend. These results point out the importance of structural and environmental effects, via steric constraints, on electron transfer processes in surface-confined monolayer assemblies. 36 refs., 7 figs., 6 tabs.

  6. Prevention of sulfide oxidation in sulfide-rich waste rock

    NASA Astrophysics Data System (ADS)

    Nyström, Elsa; Alakangas, Lena

    2015-04-01

    The ability to reduce sulfide oxidation in waste rock after mine closure is a widely researched area, but to reduce and/or inhibit the oxidation during operation is less common. Sulfide-rich (ca 30 % sulfur) waste rock, partially oxidized, was leached during unsaturated laboratory condition. Trace elements such as As and Sb were relatively high in the waste rock while other sulfide-associated elements such as Cu, Pb and Zn were low compared to common sulfide-rich waste rock. Leaching of unsaturated waste rock lowered the pH, from around six down to two, resulting in continuously increasing element concentrations during the leaching period of 272 days. The concentrations of As (65 mg/L), Cu (6.9 mg/L), Sb (1.2 mg/L), Zn (149 mg/L) and S (43 g/L) were strongly elevated at the end of the leaching period. Different alkaline industrial residues such as slag, lime kiln dust and cement kiln dust were added as solid or as liquid to the waste rock in an attempt to inhibit sulfide oxidation through neo-formed phases on sulfide surfaces in order to decrease the mobility of metals and metalloids over longer time scale. This will result in a lower cost and efforts of measures after mine closure. Results from the experiments will be presented.

  7. Biomineralization of gold: biofilms on bacterioform gold.

    PubMed

    Reith, Frank; Rogers, Stephen L; McPhail, D C; Webb, Daryl

    2006-07-14

    Bacterial biofilms are associated with secondary gold grains from two sites in Australia. 16S ribosomal DNA clones of the genus Ralstonia that bear 99% similarity to the bacterium Ralstonia metallidurans-shown to precipitate gold from aqueous gold(III) tetrachloride-were present on all DNA-positive gold grains but were not detected in the surrounding soils. These results provide evidence for the bacterial contribution to the authigenic formation of secondary bacterioform gold grains and nuggets.

  8. Determination of the concentration and the average number of gold atoms in a gold nanoparticle by osmotic pressure.

    PubMed

    Lu, Yan; Wang, Lixia; Chen, Dejun; Wang, Gongke

    2012-06-26

    For an ideal solution, an analytical expression for the macromolecule concentration, electrolyte concentration, and solution osmotic pressure is obtained on the basis of the van't Hoff equation and the Donnan equilibrium. The expression was further applied to a colloid solution of about 3 nm glutathione-stabilized gold nanoparticles. The concentration of the colloid solution and the average net ion charge number for each gold nanoparticle were determined with the measured osmotic pressure data. Meanwhile, the gold contents of the solutions were analyzed by means of atomic absorption spectrophotometry, and the results were combined with the determined concentration of gold nanoparticle colloids to determine that the average number of gold atoms per 3 nm gold nanoparticle is 479, which is 1/1.7 times the number of atoms in bulk metallic gold of the same size. The same proportion also occurred in the 2 nm 4-mercaptobenzoic acid monolayer-protected gold nanoparticles prepared by Ackerson et al., who utilized the quantitative high-angle annular dark-field scanning transmission electron microscope to determine the average number of gold atoms per nanoparticle (Ackerson, C. J.; Jadzinsky, P. D.; Sexton J. Z.; Bushnell, D. A.; Kornberg, R. D. Synthesis and Bioconjugation of 2 and 3 nm-Diameter Gold Nanoparticles. Bioconjugate Chem. 2010, 21, 214-218).

  9. Platinum metals magmatic sulfide ores.

    PubMed

    Naldrett, A J; Duke, J M

    1980-06-27

    Platinum-group elements (PGE) are mined predominantly from deposits that have formed by the segregation of molten iron-nickel-copper sulfides from silicate magmas. The absolute concentrations of PGE in sulfides from different deposits vary over a range of five orders of magnitude, whereas those of other chalcophile elements vary by factors of only 2 to 100. However, the relative proportions of the different PGE in a given deposit are systematically related to the nature of the parent magma. The absolute and relative concentrations of PGE in magmatic sulfides are explained in terms of the degree of partial melting of mantle peridotite required to produce the parent magma and the processes of batch equilibration and fractional segregation of sulfides. The Republic of South Africa and the U.S.S.R. together possess more than 97 percent of the world PGE reserves, but significant undeveloped resources occur in North America. The Stillwater complex in Montana is perhaps the most important example.

  10. Hydrogen sulfide in signaling pathways.

    PubMed

    Olas, Beata

    2015-01-15

    For a long time hydrogen sulfide (H₂S) was considered a toxic compound, but recently H₂S (at low concentrations) has been found to play an important function in physiological processes. Hydrogen sulfide, like other well-known compounds - nitric oxide (NO) and carbon monoxide (CO) is a gaseous intracellular signal transducer. It regulates the cell cycle, apoptosis and the oxidative stress. Moreover, its functions include neuromodulation, regulation of cardiovascular system and inflammation. In this review, I focus on the metabolism of hydrogen sulfide (including enzymatic pathways of H₂S synthesis from l- and d-cysteine) and its signaling pathways in the cardiovascular system and the nervous system. I also describe how hydrogen sulfide may be used as therapeutic agent, i.e. in the cardiovascular diseases.

  11. Thermoelectric Properties of Lanthanum Sulfide

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, R.; Parker, J. B.; Zoltan, A.; Zoltan, L. D.; Danielson, L.; Raag, V.

    1987-01-01

    Report describes measurement of Seebeck coefficient, electrical resistivity, thermal conductivity, and Hall effect in gamma-phase lanthanum sulfide with composition of La3-x S4. Results of study, part of search for high-temperature thermoelectric energy-conversion materials, indicate this sulfide behaves like extrinsic semiconductor over temperature range of 300 to 1,400 K, with degenerate carrier concentration controlled by stoichiometric ratio of La to S.

  12. Thermoelectric Properties of Lanthanum Sulfide

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, R.; Parker, J. B.; Zoltan, A.; Zoltan, L. D.; Danielson, L.; Raag, V.

    1987-01-01

    Report describes measurement of Seebeck coefficient, electrical resistivity, thermal conductivity, and Hall effect in gamma-phase lanthanum sulfide with composition of La3-x S4. Results of study, part of search for high-temperature thermoelectric energy-conversion materials, indicate this sulfide behaves like extrinsic semiconductor over temperature range of 300 to 1,400 K, with degenerate carrier concentration controlled by stoichiometric ratio of La to S.

  13. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite

    SciTech Connect

    Simon, G.; Huang, H.; Penner-Hahn, J.E.; Kesler, S.E.; Kao, L.S.

    1999-07-01

    XANES measurements on gold-bearing arsenian pyrite from the Twin Creeks Carlin-type gold deposits show that gold is present as both Au{sup 0} and Au{sup 1+} and arsenic is present as As{sup 1{minus}}. Au{sup 0} is attributed to sub-micrometer size inclusions of free gold, whereas Au{sup 1+} is attributed to gold in the lattice of the arsenian pyrite. STEM observations suggest that As{sup 1{minus}} is probably concentrated in angstrom-scale, randomly distributed layers with a marcasite or arsenopyrite structure. Ionic gold (Au{sup 1+}) could be concentrated in these layers as well, and is present in both twofold- and fourfold-coordinated forms, with fourfold-coordinated Au{sup 1+} more abundant. Twofold-coordinated Au{sup 1+} is similar to gold in Au{sub 2}S in which it is linearly coordinated to two sulfur atoms. The nature of fourfold-coordinated Au{sup 1+} is not well understood, although it might be present as an Au-As-S compound where gold is bonded in fourfold coordination to sulfur and arsenic atoms, or in vacancy positions on a cation site in the arsenian pyrite. Au{sup 1+} was probably incorporated into arsenian pyrite by adsorption onto pyrite surfaces during crystal growth. The most likely compound in the case of twofold-coordinated Au{sup 1+} was probably a tri-atomic surface complex such as S{sub pyrite}-Au{sup 1+}-S{sub bi-sulfide}H or Au{sup 1+}-S-Au{sup 1+}. The correlation between gold and arsenic might be related to the role of arsenic in enhancing the adsorption of gold complexes of this type on pyrite surfaces, possibly through semiconductor effects.

  14. Protein-based nanobiosensor for direct detection of hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Omidi, Meisam; Amoabediny, Ghasem; Yazdian, Fatemeh; Habibi-Rezaei, M.

    2015-01-01

    The chemically modified cytochrome c from equine heart, EC (232-700-9), was immobilized onto gold nanoparticles in order to develop a specific biosensing system for monitoring hydrogen sulfide down to the micromolar level, by means of a localized surface plasmon resonance spectroscopy. The sensing mechanism is based on the cytochrome-c conformational changes in the presence of H2S which alter the dielectric properties of the gold nanoparticles and the surface plasmon resonance peak undergoes a redshift. According to the experiments, it is revealed that H2S can be detected at a concentration of 4.0 μ \\text{M} (1.3 \\text{ppb}) by the fabricated biosensor. This simple, quantitative and sensitive sensing platform provides a rapid and convenient detection for H2S at concentrations far below the hazardous limit.

  15. Mechanical and Electrical Properties of Palladium-Coated Copper Wires with Flash Gold

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Yun; Hung, Fei-Yi; Lui, Truan-Sheng

    2017-03-01

    Palladium-coated copper wire with flash gold (PCA) is a fine wire with an oxidation resistance layer. A new sulfidation test has been assessed in this work, confirming that PCA wires show better sulfidation corrosion resistance than either palladium-coated or bare copper wires. The sulfided surface of PCA was analyzed, along with its bonding strength and electrical properties. The metallurgic mechanism for formation of free air balls during the electric flame-off (EFO) process was identified. The flash gold layer of PCA wires can improve certain shortcomings, including: (1) efficiently promoting sulfidation corrosion resistance, (2) solving the problem of palladium segregation during the EFO process, (3) reducing the starting voltage, and (4) stabilizing the electrical resistivity of the bonding interface.

  16. Mechanical and Electrical Properties of Palladium-Coated Copper Wires with Flash Gold

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Yun; Hung, Fei-Yi; Lui, Truan-Sheng

    2017-07-01

    Palladium-coated copper wire with flash gold (PCA) is a fine wire with an oxidation resistance layer. A new sulfidation test has been assessed in this work, confirming that PCA wires show better sulfidation corrosion resistance than either palladium-coated or bare copper wires. The sulfided surface of PCA was analyzed, along with its bonding strength and electrical properties. The metallurgic mechanism for formation of free air balls during the electric flame-off (EFO) process was identified. The flash gold layer of PCA wires can improve certain shortcomings, including: (1) efficiently promoting sulfidation corrosion resistance, (2) solving the problem of palladium segregation during the EFO process, (3) reducing the starting voltage, and (4) stabilizing the electrical resistivity of the bonding interface.

  17. Is It Real Gold?

    ERIC Educational Resources Information Center

    Harris, Harold H.

    1999-01-01

    Features acid tests for determining whether jewelry is "real" gold or simply gold-plated. Describes the carat system of denoting gold content and explains how alloys are used to create various shades of gold jewelry. Addresses the question of whether gold jewelry can turn a wearer's skin green by considering various oxidation reactions.…

  18. Is It Real Gold?

    ERIC Educational Resources Information Center

    Harris, Harold H.

    1999-01-01

    Features acid tests for determining whether jewelry is "real" gold or simply gold-plated. Describes the carat system of denoting gold content and explains how alloys are used to create various shades of gold jewelry. Addresses the question of whether gold jewelry can turn a wearer's skin green by considering various oxidation reactions.…

  19. Donor/Acceptor Mixed Self-Assembled Monolayers for Realising a Multi-Redox-State Surface.

    PubMed

    Casado-Montenegro, Javier; Marchante, Elena; Crivillers, Núria; Rovira, Concepció; Mas-Torrent, Marta

    2016-06-17

    Mixed molecular self-assembled monolayers (SAMs) on gold, based on two types of electroactive molecules, that is, electron-donor (ferrocene) and electron-acceptor (anthraquinone) molecules, are prepared as an approach to realise surfaces exhibiting multiple accessible redox states. The SAMs are investigated in different electrolyte media. The nature of these media has a strong impact on the types of redox processes that take place and on the redox potentials. Under optimised conditions, surfaces with three redox states are achieved. Such states are accessible in a relatively narrow potential window in which the SAMs on gold are stable. This communication elucidates the key challenges in fabricating bicomponent SAMs as electrochemical switches.

  20. Nanopattern formation in self-assembled monolayers of thiol-capped Au nanocrystals

    NASA Astrophysics Data System (ADS)

    Banerjee, R.; Hazra, S.; Banerjee, S.; Sanyal, M. K.

    2009-11-01

    The structure and the stability of the transferred monolayers of gold-thiol nanoparticles, formed at air-water interface at different surface pressure, on to silicon surface have been studied using two complementary techniques, x-ray reflectivity and atomic force microscopy (AFM). Networklike nanopatterns, observed through AFM, of the in-plane aggregated nanoparticles can be attributed to the late stage drying of the liquid trapped in the islands formed by nanoparticles. During drying process the trapped liquid leaves pinholes in the islands which by the process of nucleation and growth carry the mobile nanoparticles on their advancing fronts such that the nanoparticles are trapped at the boundaries of similar adjacent holes. This process continues bringing about in-plane as well as out-of-plane restructuring in the monolayer until the liquid evaporates completely rendering a patterned structure to the islands and instability in the monolayer is then stabilized.

  1. Pit Formation during the Self-Assembly of Dithiol Monolayers on Au(111)

    NASA Astrophysics Data System (ADS)

    Macdairmid, A. R.; Cappello, M. L.; Keeler, W. J.; Banks, J. T.; Gallagher, M. C.

    2000-03-01

    The formation of pits one gold atom deep during the growth of alkanethiol monolayers on Au(111), has been observed previously by others. Explanations for pit formation include etching of the substrate, or mass transport of gold atom + thiol molecule on the surface, due to changes in surface energy^1. We have investigated the structure of dithiothreitol (DTT) SAMs on Au(111). Ex situ STM measurements indicate similar pitting occurs during formation of the dithiol monolayer. The degree of pitting depends on exposure time, sample temperature during formation, and subsequent annealing of the sample. Pitting is enhanced considerasbly when DTT is coordinated with Ti, in fact DTT/Ti films exhibit considerable pit motion during STM imaging. ^1 F. Teran et al. Electrochimica Acta 44, 1053 (1998).

  2. Unexpected effect of copper ions on electrochemical impedance behaviour of self-assembled alkylaminethiol monolayer.

    PubMed

    Fabre, Paul-Louis; Latapie, Laure; Launay, Jérôme; Reynes, Olivier; Temple-Boyer, Pierre

    2013-01-01

    Effect of copper ions on the electrochemical behaviour of an alkylaminethiol monolayer has been studied by electrochemical impedance spectrosocpy. RAMAN experiment shows the effective adsorption of receptor onto the gold surfaces. The study of Nyquist plot shows that the gold/monolayer/electrolyte interface can be described by a serial combination of two R, CPE electrical circuits. In the presence of increasing amounts of copper, the Nyquist plots at low frequencies were modified showing an increase of the resistance of the second R, CPE electrical circuit. Moreover, this increase of resistance varies linearly with the amounts of copper ions added in solution from 10(-8) mol·L(-1) to 10(-5) mol·L(-1). Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Electrochemical and chemical microfluidic gold etching to generate patterned and gradient substrates for cell adhesion and cell migration.

    PubMed

    Westcott, Nathan P; Lamb, Brian M; Yousaf, Muhammad N

    2009-05-01

    To generate patterned substrates of self-assembled monolayers (SAMs) for cell adhesion and migration studies, a variety of gold/glass hybrid substrates were fabricated from gold evaporated on glass. A variety of surfaces were generated including gradients of gold height, completely etched gold/glass hybrids, and partially etched gold surfaces for pattern visualization. Etch rates were controlled by the alkanethiol present on the surface. Gradients of gold height were created using an electrochemical etch with control over the position and slope of the gold height gradient. Cells were seeded to these surfaces, and their adhesion to the gold was controlled by the surface chemistry present in the channel regions. In the future, the etched gold surfaces will be used to simulate the varying nanotopology experienced by the migrating cell in vivo.

  4. Surface Attachment of Gold Nanoparticles Guided by Block Copolymer Micellar Films and Its Application in Silicon Etching

    PubMed Central

    Wei, Mingjie; Wang, Yong

    2015-01-01

    Patterning metallic nanoparticles on substrate surfaces is important in a number of applications. However, it remains challenging to fabricate such patterned nanoparticles with easily controlled structural parameters, including particle sizes and densities, from simple methods. We report on a new route to directly pattern pre-formed gold nanoparticles with different diameters on block copolymer micellar monolayers coated on silicon substrates. Due to the synergetic effect of complexation and electrostatic interactions between the micellar cores and the gold particles, incubating the copolymer-coated silicon in a gold nanoparticles suspension leads to a monolayer of gold particles attached on the coated silicon. The intermediate micellar film was then removed using oxygen plasma treatment, allowing the direct contact of the gold particles with the Si substrate. We further demonstrate that the gold nanoparticles can serve as catalysts for the localized etching of the silicon substrate, resulting in nanoporous Si with a top layer of straight pores. PMID:28793407

  5. Recognition tunneling measurement of the conductance of DNA bases embedded in self-assembled monolayers.

    PubMed

    Huang, Shuo; Chang, Shuai; He, Jin; Zhang, Peiming; Liang, Feng; Tuchband, Michael; Li, Shengqing; Lindsay, Stuart

    2010-12-09

    The DNA bases interact strongly with gold electrodes, complicating efforts to measure the tunneling conductance through hydrogen-bonded Watson Crick base pairs. When bases are embedded in a self-assembled alkane-thiol monolayer to minimize these interactions, new features appear in the tunneling data. These new features track the predictions of density-functional calculations quite well, suggesting that they reflect tunnel conductance through hydrogen-bonded base pairs.

  6. Self-assembled monolayers improve protein distribution on holey carbon cryo-EM supports

    PubMed Central

    Meyerson, Joel R.; Rao, Prashant; Kumar, Janesh; Chittori, Sagar; Banerjee, Soojay; Pierson, Jason; Mayer, Mark L.; Subramaniam, Sriram

    2014-01-01

    Poor partitioning of macromolecules into the holes of holey carbon support grids frequently limits structural determination by single particle cryo-electron microscopy (cryo-EM). Here, we present a method to deposit, on gold-coated carbon grids, a self-assembled monolayer whose surface properties can be controlled by chemical modification. We demonstrate the utility of this approach to drive partitioning of ionotropic glutamate receptors into the holes, thereby enabling 3D structural analysis using cryo-EM methods. PMID:25403871

  7. Enhancement in sensitivity of copper sulfide thin film ammonia gas sensor: Effect of swift heavy ion irradiation

    SciTech Connect

    Sagade, Abhay Abhimanyu; Sharma, Ramphal; Sulaniya, Indra

    2009-02-15

    The studies are carried out on the effect of swift heavy ion (SHI) irradiation on surface morphology and electrical properties of copper sulfide (Cu{sub x}S) thin films with three different chemical compositions (x values). The irradiation experiments have been carried out on Cu{sub x}S films with x=1.4, 1.8, and 2 by 100 MeV gold heavy ions at room temperature. These as-deposited and irradiated thin films have been used to detect ammonia gas at room temperature (300 K). The SHI irradiation treatment on x=1.4 and 1.8 copper sulfide films enhances the sensitivity of the gas sensor. The results are discussed considering high electronic energy deposition by 100 MeV gold heavy ions in a matrix of copper sulfide.

  8. A Reaction Involving Oxygen and Metal Sulfides.

    ERIC Educational Resources Information Center

    Hill, William D. Jr.

    1986-01-01

    Describes a procedure for oxygen generation by thermal decomposition of potassium chlorate in presence of manganese dioxide, reacted with various sulfides. Provides a table of sample product yields for various sulfides. (JM)

  9. A Reaction Involving Oxygen and Metal Sulfides.

    ERIC Educational Resources Information Center

    Hill, William D. Jr.

    1986-01-01

    Describes a procedure for oxygen generation by thermal decomposition of potassium chlorate in presence of manganese dioxide, reacted with various sulfides. Provides a table of sample product yields for various sulfides. (JM)

  10. Sulfide Stability of Planetary Basalts

    NASA Technical Reports Server (NTRS)

    Caiazza, C. M.; Righter, K.; Gibson, E. K., Jr.; Chesley, J. T.; Ruiz, J.

    2004-01-01

    The isotopic system, 187Re 187Os, can be used to determine the role of crust and mantle in magma genesis. In order to apply the system to natural samples, we must understand variations in Re/Os concentrations. It is thought that low [Os] and [Re] in basalts can be attributed to sulfide (FeS) saturation, as Re behaves incompatibly to high degrees of evolution until sulfide saturation occurs [1]. Previous work has shown that lunar basalts are sulfide under-saturated, and mid-ocean ridge, ocean-island and Martian (shergottites) basalts are saturated [2,3]. However, little is known about arc basalts. In this study, basaltic rocks were analyzed across the Trans-Mexican Volcanic Belt.

  11. Functionalized fullerenes in self-assembled monolayers.

    PubMed

    Gimenez-Lopez, Maria del Carmen; Räisänen, Minna T; Chamberlain, Thomas W; Weber, Uli; Lebedeva, Maria; Rance, Graham A; Briggs, G Andrew D; Pettifor, David; Burlakov, Victor; Buck, Manfred; Khlobystov, Andrei N

    2011-09-06

    Anisotropy of intermolecular and molecule-substrate interactions holds the key to controlling the arrangement of fullerenes into 2D self-assembled monolayers (SAMs). The chemical reactivity of fullerenes allows functionalization of the carbon cages with sulfur-containing groups, thiols and thioethers, which facilitates the reliable adsorption of these molecules on gold substrates. A series of structurally related molecules, eight of which are new fullerene compounds, allows systematic investigation of the structural and functional parameters defining the geometry of fullerene SAMs. Scanning tunnelling microscopy (STM) measurements reveal that the chemical nature of the anchoring group appears to be crucial for the long-range order in fullerenes: the assembly of thiol-functionalized fullerenes is governed by strong molecule-surface interactions, which prohibit formation of ordered molecular arrays, while thioether-functionalized fullerenes, which have a weaker interaction with the surface than the thiols, form a variety of ordered 2D molecular arrays owing to noncovalent intermolecular interactions. A linear row of fullerene molecules is a recurring structural feature of the ordered SAMs, but the relative alignment and the spacing between the fullerene rows is strongly dependent on the size and shape of the spacer group linking the fullerene cage and the anchoring group. Careful control of the chemical functionality on the carbon cages enables positioning of fullerenes into at least four different packing arrangements, none of which have been observed before. Our new strategy for the controlled arrangement of fullerenes on surfaces at the molecular level will advance the development of practical applications for these nanomaterials. © 2011 American Chemical Society

  12. Metal Nanoparticles Protected with Monolayers: Applications for Chemical Vapor Sensing and Gas Chromatography

    SciTech Connect

    Grate, Jay W.; Nelson, David A.; Skaggs, Rhonda L.; Synovec, Robert E.; Gross, Gwen M.

    2004-03-31

    Nanoparticles and nanoparticle-based materials are of considerable interest for their unique properties and their potential for use in a variety of applications. Metal nanoparticles, in which each particle’s surface is coated with a protective organic monolayer, are of particular interest because the surface monolayer stabilizes them relative to aggregation and they can be taken up into solutions.(1-4) As a result they can be processed into thin films for device applications. We will refer to these materials as monolayer-protected nanoparticles, or MPNs. Typically the metal is gold, the organic layer is a self-assembled thiol layer, and this composition will be assumed throughout the remainder of this chapter. A diversity of materials and properties is readily accessible by straightforward synthetic procedures, either by the structures of the monolayer-forming thiols used in the synthesis or by post-synthetic modifications of the monolayers. A particularly promising application for these materials is as selective layers on chemical vapor sensors. In this role, the thin film of MPNs on the device surface serves to collect and concentrate gas molecules at the sensor’s surface. Their sorptive properties also lend them to use as new nanostructured gas chromatographic stationary phases. This chapter will focus on the sorptive properties of MPNs as they relate to chemical sensors and gas chromatography.

  13. Effect of initial sulfide concentration on sulfide and phenol oxidation under denitrifying conditions.

    PubMed

    Beristain-Cardoso, Ricardo; Texier, Anne-Claire; Sierra-Alvarez, Reyes; Razo-Flores, Elías; Field, Jim A; Gómez, J

    2009-01-01

    The objective of this work was to evaluate the effect of the initial sulfide concentration on the kinetics and metabolism of phenol and sulfide in batch bioassays using nitrate as electron acceptor. Complete oxidation of sulfide (20 mg L(-1) of S(2-)) and phenol (19.6 mg L(-1)) was linked to nitrate reduction when nitrate was supplemented at stoichiometric concentrations. At 32 mg L(-1) of sulfide, oxidation of sulfide and phenol by the organo-lithoautotrophic microbial culture was sequential; first sulfide was rapidly oxidized to elemental sulfur and afterwards to sulfate; phenol oxidation started once sulfate production reached a maximum. When the initial sulfide concentration was increased from 20 to 26 and finally to 32 mg L(-1), sulfide oxidation was inhibited. In contrast phenol consumption by the denitrifying culture was not affected. These results indicated that sulfide affected strongly the sulfide oxidation rate and nitrate reduction.

  14. An experimental and theoretical method for determination of standard electrode potential for the redox couple diphenyl sulfone/diphenyl sulfide

    NASA Astrophysics Data System (ADS)

    Song, Y. Z.; Wei, K. X.; Lv, J. S.

    2013-12-01

    DFT calculations were performed for diphenyl sulfide and diphenyl sulfone. The electrochemistry of diphenyl sulfide on the gold electrode was investigated by cyclic voltammety and the results show that standard electrode potential for redox couple diphenyl sulfone/diphenyl sulfide is 1.058 V, which is consistent with that of 1.057 calculated at B3LYP/6-31++G( d, p)-IEFPCM level. The front orbit theory and Mulliken charges of molecular explain well on the oxidation of diphenyl sulfide in oxidative desulfurization. According to equilibrium theory the experimental equilibrium constant in the oxidative desulfurization of H2O2, is 1.17 × 1048, which is consistent with the theoretical equilibrium constant is 2.18 × 1048 at B3LYP/6-31++G( d, p)-IEFPCM level.

  15. Modeling Stimuli-Responsive Nanoparticle Monolayer

    NASA Astrophysics Data System (ADS)

    Yong, Xin

    2015-03-01

    Using dissipative particle dynamics (DPD), we model a monolayer formed at the water-oil interface, which comprises stimuli-responsive nanoparticles. The solid core of the nanoparticle encompasses beads arranged in an fcc lattice structure and its surface is uniformly grafted with stimuli-responsive polymer chains. The surface-active nanoparticles adsorb to the interface from the suspension to minimize total energy of the system and create a monolayer covering the interface. We investigate the monolayer formation by characterizing the detailed adsorption kinetics. We explore the microstructure of the monolayer at different surface coverage, including the particle crowding and ordering, and elucidate the response of monolayer to external stimuli. The collective behavior of the particles within the monolayer is demonstrated quantitatively by vector-vector autocorrelation functions. This study provides a fundamental understanding of the interfacial behavior of stimuli-responsive nanoparticles.

  16. Selected rare earth sulfides in thermoelectric applications

    SciTech Connect

    Raag, V.; Borodovsky, Y.

    1981-01-01

    This paper discusses preliminary results on the preparation and the measurement of thermoelectric properties of various rare earth sulfides of the stoichiometry R/sub 2/S/sub 3/. A preparation method that enables the rapid and predictable preparation of the sulfides has been discussed, along with some preliminary results on the measurement of thermoelectric properties of these sulfides.

  17. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Hydrogen sulfide. 250.808 Section 250.808... Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown, as defined in § 250.490 of this...

  18. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.504 Section 250.504... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or...

  19. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.604 Section 250.604... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or...

  20. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.808 Section 250.808... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of...

  1. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in...

  2. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in...

  3. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in...

  4. Nanostructured metal sulfides for energy storage

    NASA Astrophysics Data System (ADS)

    Rui, Xianhong; Tan, Huiteng; Yan, Qingyu

    2014-08-01

    Advanced electrodes with a high energy density at high power are urgently needed for high-performance energy storage devices, including lithium-ion batteries (LIBs) and supercapacitors (SCs), to fulfil the requirements of future electrochemical power sources for applications such as in hybrid electric/plug-in-hybrid (HEV/PHEV) vehicles. Metal sulfides with unique physical and chemical properties, as well as high specific capacity/capacitance, which are typically multiple times higher than that of the carbon/graphite-based materials, are currently studied as promising electrode materials. However, the implementation of these sulfide electrodes in practical applications is hindered by their inferior rate performance and cycling stability. Nanostructures offering the advantages of high surface-to-volume ratios, favourable transport properties, and high freedom for the volume change upon ion insertion/extraction and other reactions, present an opportunity to build next-generation LIBs and SCs. Thus, the development of novel concepts in material research to achieve new nanostructures paves the way for improved electrochemical performance. Herein, we summarize recent advances in nanostructured metal sulfides, such as iron sulfides, copper sulfides, cobalt sulfides, nickel sulfides, manganese sulfides, molybdenum sulfides, tin sulfides, with zero-, one-, two-, and three-dimensional morphologies for LIB and SC applications. In addition, the recently emerged concept of incorporating conductive matrices, especially graphene, with metal sulfide nanomaterials will also be highlighted. Finally, some remarks are made on the challenges and perspectives for the future development of metal sulfide-based LIB and SC devices.

  5. Nanostructured metal sulfides for energy storage.

    PubMed

    Rui, Xianhong; Tan, Huiteng; Yan, Qingyu

    2014-09-07

    Advanced electrodes with a high energy density at high power are urgently needed for high-performance energy storage devices, including lithium-ion batteries (LIBs) and supercapacitors (SCs), to fulfil the requirements of future electrochemical power sources for applications such as in hybrid electric/plug-in-hybrid (HEV/PHEV) vehicles. Metal sulfides with unique physical and chemical properties, as well as high specific capacity/capacitance, which are typically multiple times higher than that of the carbon/graphite-based materials, are currently studied as promising electrode materials. However, the implementation of these sulfide electrodes in practical applications is hindered by their inferior rate performance and cycling stability. Nanostructures offering the advantages of high surface-to-volume ratios, favourable transport properties, and high freedom for the volume change upon ion insertion/extraction and other reactions, present an opportunity to build next-generation LIBs and SCs. Thus, the development of novel concepts in material research to achieve new nanostructures paves the way for improved electrochemical performance. Herein, we summarize recent advances in nanostructured metal sulfides, such as iron sulfides, copper sulfides, cobalt sulfides, nickel sulfides, manganese sulfides, molybdenum sulfides, tin sulfides, with zero-, one-, two-, and three-dimensional morphologies for LIB and SC applications. In addition, the recently emerged concept of incorporating conductive matrices, especially graphene, with metal sulfide nanomaterials will also be highlighted. Finally, some remarks are made on the challenges and perspectives for the future development of metal sulfide-based LIB and SC devices.

  6. Nano-gold as artificial enzymes: hidden talents.

    PubMed

    Lin, Youhui; Ren, Jinsong; Qu, Xiaogang

    2014-07-02

    Creating artificial enzymes that mimic the complexity and function of natural systems has been a great challenge for the past two decades. In this Progress Report, the focus is on recently discovered "hidden talents" of gold nanomaterials in artificial enzymes, including mimicking of nuclease, esterase, silicatein, glucose oxidase, peroxidase, catalase, and superoxide dismutase. These unexpected enzyme-like activities can be ascribed to nano-gold itself or the functional groups present on surrounding monolayer. Along with introducing the mechanisms of the various enzyme-like activities, the design and development of gold-based biomimetic catalysts, the search for efficient modulators, and their potential applications in bionics, biosensing, and biomedical sciences are highlighted. Eventually, it is expected that the rapidly growing interest in gold-based nanozymes will certainly fuel the excitement and stimulate research in this highly active field. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Electron transfer through a self-assembled monolayer of a double-helix peptide with linking the terminals by ferrocene.

    PubMed

    Okamoto, Shinpei; Morita, Tomoyuki; Kimura, Shunsaku

    2009-03-03

    A unique molecular structure, a double-helix peptide, was self-assembled on gold, and the electron transfer through the monolayer was studied. The double-helix peptide consists of two 9mer 3(10)-helical peptide chains having a disulfide group at each N terminal and being linked by a ferrocene dicarboxylic acid between the C terminals. Each helical peptide chain has three naphthyl groups in a linear arrangement along the helix. The monolayer properties and the electron transfer from the ferrocene unit to gold were studied with reference peptides with a similar double helix but without naphthyl groups, a single helix with a dicarboxylic ferrocene unit, and a single helix with a monocarboxylic ferrocene unit. It was demonstrated that the naphthyl groups on the side chains had no effect on electron transfer, and the electron-transfer rate in the double-helix monolayer was not promoted, despite the two electron pathways in the molecule. We propose that in the double-helix monolayer, molecular motions are suppressed, possibly by its rigid structure tethered by the two linkers on gold to cancel out acceleration effects of the 2-fold electron pathways and the ferrocene substitution number. The factors that affect the electron-transfer reaction across the helical peptide SAMs are discussed in depth.

  8. Geology, sulfide geochemistry and supercritical venting at the Beebe Hydrothermal Vent Field, Cayman Trough

    NASA Astrophysics Data System (ADS)

    Webber, Alexander P.; Roberts, Stephen; Murton, Bramley J.; Hodgkinson, Matthew R. S.

    2015-09-01

    The Beebe Vent Field (BVF) is the world's deepest known hydrothermal system, at 4960 m below sea level. Located on the Mid-Cayman Spreading Centre, Caribbean, the BVF hosts high temperature (˜401°C) "black smoker" vents that build Cu, Zn and Au-rich sulfide mounds and chimneys. The BVF is highly gold-rich, with Au values up to 93 ppm and an average Au:Ag ratio of 0.15. Gold precipitation is directly associated with diffuse flow through "beehive" chimneys. Significant mass-wasting of sulfide material at the BVF, accompanied by changes in metal content, results in metaliferous talus and sediment deposits. Situated on very thin (2-3 km thick) oceanic crust, at an ultraslow spreading centre, the hydrothermal system circulates fluids to a depth of ˜1.8 km in a basement that is likely to include a mixture of both mafic and ultramafic lithologies. We suggest hydrothermal interaction with chalcophile-bearing sulfides in the mantle rocks, together with precipitation of Au in beehive chimney structures, has resulted in the formation of a Au-rich volcanogenic massive sulfide (VMS) deposit. With its spatial distribution of deposit materials and metal contents, the BVF represents a modern day analogue for basalt hosted, Au-rich VMS systems.

  9. Speciation of surface gold in pressure oxidized carbonaceous gold ores by TOF-SIMS and TOF-LIMS

    NASA Astrophysics Data System (ADS)

    Dimov, S. S.; Chryssoulis, S. L.; Sodhi, R. N.

    2003-01-01

    To the best of our knowledge, this is the first attempt ever to speciate gold preg-robbed by carbonaceous matter using a surface sensitive microbeam technique. This approach enables the direct determination of gold species sorbed on carbonaceous particulates thus providing a new tool in understanding the chemistry of gold sorption on carbon. The reasoning behind this effort was to study the detrimental effect chloride ions have on gold recovery by pressure oxidation of carbonaceous sulfide ores, a technology largely used by the mining industry. The characterization of the sorbed gold species involved three surface sensitive microbeam analytical techniques (TOF-SIMS, TOF-LIMS and XPS) providing confirmatory results for better accuracy. Optimum conditions for detection of gold compounds with minimum fragmentation by TOF-SIMS and TOF-LIMS mass spectrometers have been determined. A reference library of 16 major gold complexes with halogen, thiosulfate, cyanide and thiocyanate groups relevant to the gold recovery processes has been established. The most suitable of the microbeam techniques tested was found to be negative (-ve) ion TOF-LIMS, offering best sensitivity and a small analytical spot size.

  10. Hematite nanoparticle monolayers on mica electrokinetic characteristics.

    PubMed

    Morga, Maria; Adamczyk, Zbigniew; Oćwieja, Magdalena

    2012-11-15

    Electrokinetic properties of α-Fe(2)O(3) (hematite) nanoparticle monolayers on mica were thoroughly characterized using the streaming potential method. Hematite suspensions were obtained by acidic hydrolysis of ferric chloride. The average size of particles (hydrodynamic diameter), determined by dynamic light scattering (DLS) and AFM, was 22 nm (pH=5.5, I=10(-2)M). The hematite monolayers on mica were produced under diffusion-controlled transport from the suspensions of various bulk concentration. The monolayer coverage, quantitatively determined by AFM and SEM, was regulated within broad limits by adjusting the nanoparticle deposition time. This allowed one to uniquely express zeta potential of hematite monolayers, determined by the streaming potential measurements, in terms of the particle coverage. Such dependencies, obtained for various pH, were successfully interpreted in terms of the three-dimensional electrokinetic model. A universal calibrating graph was produced enabling one to determine hematite monolayer coverage from the measured value of the streaming potential. The influence of the ionic strength, varied between 10(-4) and 10(-2)M, on the zeta potential of hematite monolayers was also studied. Additionally, the stability of monolayers (desorption kinetics) was determined under in situ conditions using the streaming potential method. Our experimental data prove that it is feasible to produce uniform and stable hematite particle monolayers of well-controlled coverage. Such monolayers may find practical applications as universal substrates for protein immobilization (biosensors) and in electrocatalytic applications. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Structure and shear response of lipid monolayers

    SciTech Connect

    Dutta, P.; Ketterson, J.B.

    1990-02-01

    Organic monolayers and multilayers are both scientifically fascinating and technologically promising; they are, however, both complex systems and relatively inaccessible to experimental probes. In this Progress Report, we describe our X-ray diffraction studies, which have given us substantial new information about the structures and phase transitions in monolayers on the surface of water; our use of these monolayers as a unique probe of the dynamics of wetting and spreading; and our studies of monolayer mechanical properties using a simple but effective technique available to anyone using the Wilhelmy method to measure surface tension.

  12. Sulfur radical species form gold deposits on Earth

    PubMed Central

    Pokrovski, Gleb S.; Kokh, Maria A.; Guillaume, Damien; Borisova, Anastassia Y.; Gisquet, Pascal; Hazemann, Jean-Louis; Lahera, Eric; Del Net, William; Proux, Olivier; Testemale, Denis; Haigis, Volker; Jonchière, Romain; Seitsonen, Ari P.; Ferlat, Guillaume; Vuilleumier, Rodolphe; Saitta, Antonino Marco; Boiron, Marie-Christine; Dubessy, Jean

    2015-01-01

    Current models of the formation and distribution of gold deposits on Earth are based on the long-standing paradigm that hydrogen sulfide and chloride are the ligands responsible for gold mobilization and precipitation by fluids across the lithosphere. Here we challenge this view by demonstrating, using in situ X-ray absorption spectroscopy and solubility measurements, coupled with molecular dynamics and thermodynamic simulations, that sulfur radical species, such as the trisulfur ion S3−, form very stable and soluble complexes with Au+ in aqueous solution at elevated temperatures (>250 °C) and pressures (>100 bar). These species enable extraction, transport, and focused precipitation of gold by sulfur-rich fluids 10–100 times more efficiently than sulfide and chloride only. As a result, S3− exerts an important control on the source, concentration, and distribution of gold in its major economic deposits from magmatic, hydrothermal, and metamorphic settings. The growth and decay of S3− during the fluid generation and evolution is one of the key factors that determine the fate of gold in the lithosphere. PMID:26460040

  13. Sulfur radical species form gold deposits on Earth.

    PubMed

    Pokrovski, Gleb S; Kokh, Maria A; Guillaume, Damien; Borisova, Anastassia Y; Gisquet, Pascal; Hazemann, Jean-Louis; Lahera, Eric; Del Net, William; Proux, Olivier; Testemale, Denis; Haigis, Volker; Jonchière, Romain; Seitsonen, Ari P; Ferlat, Guillaume; Vuilleumier, Rodolphe; Saitta, Antonino Marco; Boiron, Marie-Christine; Dubessy, Jean

    2015-11-03

    Current models of the formation and distribution of gold deposits on Earth are based on the long-standing paradigm that hydrogen sulfide and chloride are the ligands responsible for gold mobilization and precipitation by fluids across the lithosphere. Here we challenge this view by demonstrating, using in situ X-ray absorption spectroscopy and solubility measurements, coupled with molecular dynamics and thermodynamic simulations, that sulfur radical species, such as the trisulfur ion S3(-), form very stable and soluble complexes with Au(+) in aqueous solution at elevated temperatures (>250 °C) and pressures (>100 bar). These species enable extraction, transport, and focused precipitation of gold by sulfur-rich fluids 10-100 times more efficiently than sulfide and chloride only. As a result, S3(-) exerts an important control on the source, concentration, and distribution of gold in its major economic deposits from magmatic, hydrothermal, and metamorphic settings. The growth and decay of S3(-) during the fluid generation and evolution is one of the key factors that determine the fate of gold in the lithosphere.

  14. Identification of Dewetting Stages and Preparation of Single Chain Gold Nanoparticle Rings by Colloidal Lithography.

    PubMed

    Nagy, Norbert; Zámbó, Dániel; Pothorszky, Szilárd; Gergely-Fülöp, Eszter; Deák, András

    2016-02-02

    Massively parallel nanoparticle assembly was carried out by means of colloidal lithographic experiments over a silicon substrate supported (sub)microparticle Langmuir-Blodgett monolayer, using high purity aqueous solution of PEGylated gold nanoparticles. The size of the polystyrene template particles in the monolayer was varied between 608 nm and 2.48 μm, while gold nanoparticles with diameters between 18 and 65 nm were used. Thanks to the PEGylation of the gold nanoparticles, they could be used as tracer objects to follow the drying process. In this way, different dewetting stages could be identified in the confined space between and underneath the template polystyrene spheres. Depending on the concentration of the nanoparticles, the presented approach allows the preparation of single-particle width necklace structures composed of gold particles. At the same time, the high purity of the substrate as well as of the evolved particle rings is preserved and unwanted particle deposition on the substrate surface is minimized.

  15. Solvent-dependent assembly of terphenyl- and quaterphenyldithiol on gold and gallium arsenide.

    PubMed

    Krapchetov, Dmitry A; Ma, Hong; Jen, Alex K Y; Fischer, Daniel A; Loo, Yueh-Lin

    2005-06-21

    The assembly of terphenyldithiol (TPDT) and quaterphenyldithiol (QPDT) on gold and gallium arsenide from ethanol (EtOH), tetrahydrofuran (THF), and solutions consisting of both solvents has been characterized by near-edge X-ray absorption fine structure spectroscopy. The surface coverage and the average orientation of both TPDT and QPDT on gold are solvent-independent. These molecules readily form monolayers on gold with an ensemble-average backbone tilt of 30 degrees +/- 3 degrees from the substrate normal. In sharp contrast, the assembly of TPDT and QPDT on gallium arsenide is extremely solvent-sensitive. At high ethanol fractions, both molecules form monolayers with an ensemble-average orientation that is indistinguishable from those on gold substrates. At low ethanol fractions and in pure THF, however, these molecules are disordered on gallium arsenide and the surface coverage is poor.

  16. Dewetting of a solid monolayer.

    PubMed

    Pierre-Louis, O; Chame, Anna; Saito, Yukio

    2007-09-28

    We report on the dewetting of a monolayer on a solid substrate, where mass transport occurs via surface diffusion. For a wide range of parameters, a labyrinthine pattern of bilayer islands is formed. An irreversible regime and a thermodynamic regime are identified. In both regimes, the velocity of a dewetting front, the wavelength of the bilayer island pattern, and the rate of nucleation of dewetted zones are obtained. We also point out the existence of a scaling behavior, which is analyzed by means of a geometrical model.

  17. Plasmon–phonon coupling in monolayer WS{sub 2}

    SciTech Connect

    Zhao, Weiwei; Li, Mei; Zhang, Yan; Bi, Kedong; Chen, Yunfei E-mail: zhni@seu.edu.cn; Wu, Qisheng; Hao, Qi; Wang, Jinlan; Ni, Zhenhua E-mail: zhni@seu.edu.cn

    2016-03-28

    The excitation of plasmon in metallic nanostructures produces intense and strongly localized near fields that enhance light-matter interaction. Here, we report plasmon–phonon coupling in monolayer WS{sub 2} deposited with gold and silver nanoparticles. The Raman spectra reveal phonon modes arising from the coupling between plasmon and WS{sub 2}. The localized surface plasmon resonance mediated excitation activates the Raman process without requiring defect for momentum conservation. Our results also reveal that the momentum induced by localized surface plasmon resonances losses to WS{sub 2} and the metal atoms adsorption modulated spin–orbit split are the two essential elements for the observed plasmon–phonon coupling. This work will open up exciting prospects for plasmon–phonon coupling in two dimensional systems.

  18. Crossbar nanoarchitectonics of the crosslinked self-assembled monolayer

    NASA Astrophysics Data System (ADS)

    Hamoudi, Hicham

    2014-06-01

    A bottom-up approach was devised to build a crossbar device using the crosslinked SAM of the 5,5'-bis (mercaptomethyl)-2,2'-bipyridine-Ni2+ (BPD- Ni2+) on a gold surface. To avoid metal diffusion through the organic film, the author used (i) nanoscale bottom electrodes to reduce the probability of defects on the bottom electrodes and (ii) molecular crosslinked technology to avoid metal diffusion through the SAMs. The properties of the crosslinked self-assembled monolayer were determined by XPS. I-V characteristics of the device show thermally activated hopping transport. The implementation of this type of architecture will open up new vistas for a new class of devices for transport, storage, and computing.

  19. Crossbar nanoarchitectonics of the crosslinked self-assembled monolayer

    PubMed Central

    2014-01-01

    A bottom-up approach was devised to build a crossbar device using the crosslinked SAM of the 5,5′-bis (mercaptomethyl)-2,2′-bipyridine-Ni2+ (BPD- Ni2+) on a gold surface. To avoid metal diffusion through the organic film, the author used (i) nanoscale bottom electrodes to reduce the probability of defects on the bottom electrodes and (ii) molecular crosslinked technology to avoid metal diffusion through the SAMs. The properties of the crosslinked self-assembled monolayer were determined by XPS. I-V characteristics of the device show thermally activated hopping transport. The implementation of this type of architecture will open up new vistas for a new class of devices for transport, storage, and computing. PMID:24994952

  20. The Growth of Monolayer Thin Films on a Ruthenium Surface

    NASA Astrophysics Data System (ADS)

    Bingham, Chris; Jones, Joshua; Karsten, Pohl

    2004-03-01

    Scanning Tunneling Microscopes (STMs) are able to acquire images of conductive surfaces with atomic resolution. At such a small scale even tiny impurities can affect the surface image making it necessary to perform STM experiments in an ultrahigh vacuum (10-11 Torr). An effective method for the cleaning of a Ruthenium sample will be developed through the use of a previously constructed sample holder, which contains a filament and a thermocouple to heat and measure sample temperature. Ruthenium samples will be flashed to a very high temperature (1700 K) very quickly in a low-pressure oxygen environment (10-8 Torr). Surface cleanliness will be measured by Auger Electron Spectroscopy (AES). Upon completion of a consistent method for surface cleaning, we deposit monolayer thick metal film such as copper, silver and gold by physical vapor deposition from tungsten baskets. Thickness, purity and atomic structure of the film will be measured using AES and STM.

  1. A self assembled monolayer based microfluidic sensor for urea detection

    NASA Astrophysics Data System (ADS)

    Srivastava, Saurabh; Solanki, Pratima R.; Kaushik, Ajeet; Ali, Md. Azahar; Srivastava, Anchal; Malhotra, B. D.

    2011-07-01

    Urease (Urs) and glutamate dehydrogenase (GLDH) have been covalently co-immobilized onto a self-assembled monolayer (SAM) comprising of 10-carboxy-1-decanthiol (CDT) via EDC-NHS chemistry deposited onto one of the two patterned gold (Au) electrodes for estimation of urea using poly(dimethylsiloxane) based microfluidic channels (2 cm × 200 μm × 200 μm). The CDT/Au and Urs-GLDH/CDT/Au electrodes have been characterized using Fourier transform infrared (FTIR) spectroscopy, contact angle (CA), atomic force microscopy (AFM) and electrochemical cyclic voltammetry (CV) techniques. The electrochemical response measurement of a Urs-GLDH/CDT/Au bioelectrode obtained as a function of urea concentration using CV yield linearity as 10 to 100 mg dl-1, detection limit as 9 mg dl-1 and high sensitivity as 7.5 μA mM-1 cm-2.

  2. Effects of irradiated biodegradable polymer in endothelial cell monolayer formation

    NASA Astrophysics Data System (ADS)

    Arbeitman, Claudia R.; del Grosso, Mariela F.; Behar, Moni; García Bermúdez, Gerardo

    2013-11-01

    In this work we study cell adhesion, proliferation and cell morphology of endothelial cell cultured on poly-L-lactide acid (PLLA) modified by heavy ion irradiation. Thin films of PLLA samples were irradiated with sulfur (S) at energies of 75 MeV and gold (Au) at 18 MeV ion-beams. Ion beams were provided by the Tandar (Buenos Aires, Argentina) and Tandetron (Porto Alegre, Brazil) accelerators, respectively. The growth of a monolayer of bovine aortic endothelial cells (BAEC) onto unirradiated and irradiated surfaces has been studied by in vitro techniques in static culture. Cell viability and proliferation increased on modified substrates. But the results on unirradiated samples, indicate cell death (necrosis/apoptosis) with the consequent decrease in proliferation. We analyzed the correlation between irradiation parameters and cell metabolism and morphology.

  3. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  4. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, Victor A.; Iton, Lennox E.; Pasterczyk, James W.; Winterer, Markus; Krause, Theodore R.

    1994-01-01

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  5. Allyl sulfides modify cell growth.

    PubMed

    Knowles, L M; Milner, J A

    2000-01-01

    Extensive evidence points to the ability of allyl sulfides from garlic to suppress tumor proliferation both in vitro and in vivo. This antineoplastic effect is generally greater for lipid-soluble than water-soluble allyl sulfides. Both concentration and duration of exposure can increase the antiproliferative effects of lipid- and water-soluble allyl sulfides. Part of their antiproliferative effects may relate to an increase in membrane fluidity and a suppression of integrin glycoprotein IIb-IIIa mediated adhesion. Alterations in cholesterol, arachidonic acid, phospholipids and/or thiols may account for these changes in membrane function. Allyl sulfides are also recognized for their ability to suppress cellular proliferation by blocking cells in the G2/M phase and by the induction of apoptosis. This increase in the G2/M and apoptotic cell populations correlates with depressed p34cdc2 kinase activity, increased histone acetylation, increased intracellular calcium and elevated cellular peroxide production. While impressive pre-clinical data exist about the antineoplastic effects of allyl sulfur compounds, considerably more attention needs to be given to their effects in humans. The composition of the entire diet and a host of genetic/epigenetic factors will likely determine the true benefits that might arise from allyl sulfur compounds from garlic and other Allium foods.

  6. p-Chlorophenyl methyl sulfide

    Integrated Risk Information System (IRIS)

    p - Chlorophenyl methyl sulfide ; CASRN 123 - 09 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for N

  7. The Niassa Gold Belt, northern Mozambique - A segment of a continental-scale Pan-African gold-bearing structure?

    NASA Astrophysics Data System (ADS)

    Bjerkgard, T.; Stein, H. J.; Bingen, B.; Henderson, I. H. C.; Sandstad, J. S.; Moniz, A.

    2009-01-01

    The Niassa Gold Belt, in northernmost Mozambique, is hosted in the Txitonga Group, a Neoproterozoic rift sequence overlying Paleoproterozoic crust of the Congo-Tanzania Craton and deformed during the Pan-African Orogeny. The Txitonga Group is made up of greenschist-facies greywacke and schist and is characterized by bimodal, mainly mafic, magmatism. A zircon U-Pb age for a felsic volcanite dates deposition of the sequence at 714 ± 17 Ma. Gold is mined artisanally from alluvial deposits and primary chalcopyrite-pyrite-bearing quartz veins containing up to 19 ppm Au have been analyzed. In the Cagurué and M'Papa gold fields, dominantly N-S trending quartz veins, hosted in metagabbro and schist, are regarded as tension gashes related to regional strike-slip NE-SW-trending Pan-African shear zones. These gold deposits have been classified as mesozonal and metamorphic in origin. Re-Os isotopic data on sulfides suggest two periods of gold deposition for the Cagurué Gold Field. A coarse-crystalline pyrite-chalcopyrite assemblage yields an imprecise Pan-African age of 483 ± 72 Ma, dating deposition of the quartz veins. Remobilization of early-formed sulfides, particularly chalcopyrite, took place at 112 ± 14 Ma, during Lower Cretaceous Gondwana dispersal. The ˜483 Ma assemblage yields a chondritic initial 187Os/ 188Os ratio of 0.123 ± 0.058. This implies a juvenile source for the ore fluids, possibly involving the hosting Neoproterozoic metagabbro. The Niassa Gold Belt is situated at the eastern end of a SW-NE trending continental-scale lineament defined by the Mwembeshi Shear Zone and the southern end of a NW-SE trending lineament defined by the Rukwa Shear Zone. We offer a review of gold deposits in Zambia and Tanzania associated with these polyphase lineaments and speculate on their interrelation.

  8. Electron energy loss spectroscopy of gold nanoparticles on graphene

    SciTech Connect

    DeJarnette, Drew; Roper, D. Keith

    2014-08-07

    Plasmon excitation decay by absorption, scattering, and hot electron transfer has been distinguished from effects induced by incident photons for gold nanoparticles on graphene monolayer using electron energy loss spectroscopy (EELS). Gold nano-ellipses were evaporated onto lithographed graphene, which was transferred onto a silicon nitride transmission electron microscopy grid. Plasmon decay from lithographed nanoparticles measured with EELS was compared in the absence and presence of the graphene monolayer. Measured decay values compared favorably with estimated radiative and non-radiative contributions to decay in the absence of graphene. Graphene significantly enhanced low-energy plasmon decay, increasing mode width 38%, but did not affect higher energy plasmon or dark mode decay. This decay beyond expected radiative and non-radiative mechanisms was attributed to hot electron transfer, and had quantum efficiency of 20%, consistent with previous reports.

  9. Homogeneously Mixed Monolayers: Emergence of Compositionally Conflicted Interfaces.

    PubMed

    Marquez, Maria D; Zenasni, Oussama; Jamison, Andrew C; Lee, T Randall

    2017-06-13

    The ability to manipulate interfaces at the nanoscale via a variety of thin-film technologies offers a plethora of avenues for advancing surface applications. These include surfaces with remarkable antibiofouling properties as well as those with tunable physical and electronic properties. Molecular self-assembly is one notably attractive method used to decorate and modify surfaces. Of particular interest to surface scientists has been the thiolate-gold system, which serves as a reliable method for generating model thin-film monolayers that transform the interfacial properties of gold surfaces. Despite widespread interest, efforts to tune the interfacial properties using mixed adsorbate systems have frequently led to phase-separated domains of molecules on the surface with random sizes and shapes depending on the structure and chemical composition of the adsorbates. This feature article highlights newly emerging methods for generating mixed thin-film interfaces, not only to enhance the aforementioned properties of organic thin films, but also to give rise to interfacial compositions never before observed in nature. An example would be the development of monolayers formed from bidentate adsorbates and other unique headgroup architectures that provide the surface bonding stability necessary to allow the assembly of interfaces that expose mixtures of chains that are fundamentally different in character (i.e., either phase-incompatible or structurally dissimilar), producing compositionally "conflicted" interfaces. By also exploring the prior efforts to produce such homogeneously blended interfaces, this feature article seeks to convey the relationships between the methods of film formation and the overall properties of the resulting interfaces.

  10. Exciton-plasmon coupling in monolayer molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Ziegler, Jed; Newaz, A. K. M.; Bolotin, Kirill; Haglund, Richard

    2013-03-01

    Two-dimensional materials such as monolayer molybdenum disulfide (MoS2) represent a unique platform for investigating the dynamics of exciton-plasmon coupling. We report on the generation and modulation of coherent and incoherent coupled states between excitons in monolayer MoS2 and plasmons in an array of gold nanoparticle deposited onto the surface of MoS2. We study the behavior of these coherent states, termed plexcitons using a combination of photoluminescence, extinction and ultrafast spectroscopies. The close proximity of the two characteristic exciton bands of MoS2 presents multiple coherent coupling configurations, including A-or-B exciton-plasmon, and A-and-B exciton-plasmon interactions. These configurations of plexciton formation that are shown to modulate both the extinction and photoluminescence spectra of the hybrid system. This includes broadband photoluminescence and Fano-type resonances. This behavior is distinct from the spectral response of the MoS2 and plasmonic components of the system. Incoherent exciton-plasmon coupling, achieved by detuning from the plasmon extinction peaks, enhances the interaction of MoS2 with light by focusing the plasmon energy. Depending on which coupling configuration is chosen, our results show that the MoS2/plasmon hybrid systems can act as high efficiency light harvesters, broadband emitters and as tunable visible and NIR photodetectors. Support by Defense Threat Reduction Agency (HDTRA1-1-10-1-0047) and NSF DMR-1056859

  11. Scanning Electrochemical Microscopy of DNA Monolayers Modified with Nile Blue

    PubMed Central

    Gorodetsky, Alon A.; Hammond, William J.; Hill, Michael G.; Slowinski, Krzysztof; Barton, Jacqueline K.

    2009-01-01

    Scanning electrochemical microscopy (SECM) is used to probe long-range charge transport (CT) through DNA monolayers containing the redox-active Nile Blue (NB) intercalator covalently affixed at a specific location in the DNA film. At substrate potentials negative of the formal potential of covalently attached NB, the electrocatalytic reduction of Fe(CN)63− generated at the SECM tip is observed only when NB is located at the DNA/solution interface; for DNA films containing NB in close proximity to the DNA/electrode interface, the electrocatalytic effect is absent. This behavior is consistent with both rapid DNA-mediated CT between the NB intercalator and the gold electrode as well as a rate-limiting electron transfer between NB and the solution phase Fe(CN)63−. The DNA-mediated nature of the catalytic cycle is confirmed through sequence-specific and localized detection of attomoles of TATA-binding protein, a transcription factor that severely distorts DNA upon binding. Importantly, the strategy outlined here is general and allows for the local investigation of the surface characteristics of DNA monolayers both in the absence and in the presence of DNA binding proteins. These experiments highlight the utility of DNA-modified electrodes as versatile platforms for SECM detection schemes that take advantage of CT mediated by the DNA base pair stack. PMID:19053641

  12. Immobilization of molecular tubes on self-assembled monolayers of β-cyclodextrin and dodecanethiol inclusion complexes

    NASA Astrophysics Data System (ADS)

    Samitsu, Sadaki; Shimomura, Takeshi; Ito, Kohzo; Hara, Masahiko

    2004-10-01

    A molecular tube (MT) is a tubular macromolecule formed by the one-dimensional linkage of α-cyclodextrins and exhibits molecular recognition for selecting the diameter of a polymer chain. In this letter, we immobilized MTs on a self-assembled monolayers (SAM) of inclusion complexes (DDT-CD) between dodecanethiol (DDT) and β-cyclodextrin (β-CD). The DDT-CD inclusion complexes formed uniform self-assembled monolayers on gold. We confirmed that the MTs were immobilized on the DDT-CD SAM using dynamic contact angle measurements, surface-plasmon resonance (SPR), and scanning probe microscopy (SPM).

  13. Influence of buried hydrogen-bonding groups within monolayer films on gas-surface energy exchange and accommodation.

    PubMed

    Ferguson, M K; Lohr, J R; Day, B S; Morris, J R

    2004-02-20

    Self-assembled monolayers (SAMs) of carbonyl-containing alkanethiols on gold are employed to explore the influence of hydrogen-bonding interactions on gas-surface energy exchange and accommodation. H-bonding, COOH-terminated SAMs are found to produce more impulsive scattering and less thermal accommodation than non-H-bonding, COOCH3-terminated monolayers. For carbamate-functionalized SAMs of the form Au/S(CH2)16OCONH(CH2)(n-1)CH3, impulsive scattering decreases and accommodation increases as the H-bonding group is positioned farther below the terminal CH3.

  14. Controlled adsorption of cytochrome c to nanostructured gold surfaces

    NASA Astrophysics Data System (ADS)

    Gomes, Inês; Feio, Maria J.; Santos, Nuno C.; Eaton, Peter; Serro, Ana Paula; Saramago, Benilde; Pereira, Eulália; Franco, Ricardo

    2012-12-01

    Controlled electrostatic physisorption of horse heart cytochrome c (Cyt c) onto nanostructured gold surfaces was investigated using Quartz-Crystal Microbalance measurements in planar gold surfaces with or without functionalization using a self-assembled monolayer (SAM) of the alkanethiol mercaptoundecanoic acid (MUA). MUA is a useful functionalization ligand for gold surfaces, shedding adsorbed biomolecules from the excessive electron density of the metal. A parallel analysis was conducted in the corresponding curved surfaces of 15 nm gold nanoparticles (AuNPs), using zeta-potential and UV- visible spectroscopy. Atomic Force Microscopy of both types of functionalized gold surfaces with a MUA SAM, allowed for visualization of Cyt c deposits on the nanostructured gold surface. The amount of Cyt c adsorbed onto the gold surface could be controlled by the solution pH. For the assays conducted at pH 4.5, when MUA SAM- functionalized planar gold surfaces are positive or neutral, and Cyt c has a positive net charge, only 13 % of the planar gold surface area was coated with protein. In contrast, at pH 7.4, when MUA SAM-functionalized planar gold surfaces and Cyt c have opposite charges, a protein coverage of 28 % could be observed implying an adsorption process strongly governed by electrostatic forces. Cyt c adsorption on planar and curved gold surfaces are found to be greatly favored by the presence of a MUA-capping layer. In particular, on the AuNPs, the binding constant is three times larger than the binding constant obtained for the original citrate-capped AuNPs.

  15. Geochemical studies of rare earth elements in the Portuguese pyrite belt, and geologic and geochemical controls on gold distribution

    USGS Publications Warehouse

    Grimes, David J.; Earhart, Robert L.; de Carvalho, Delfim; Oliveira, Vitor; Oliveira, Jose T.; Castro, Paulo

    1998-01-01

    This report describes geochemical and geological studies which were conducted by the U.S. Geological Survey (USGS) and the Servicos Geologicos de Portugal (SPG) in the Portuguese pyrite belt (PPB) in southern Portugal. The studies included rare earth element (REE) distributions and geological and geochemical controls on the distribution of gold. Rare earth element distributions were determined in representative samples of the volcanic rocks from five west-trending sub-belts of the PPB in order to test the usefulness of REE as a tool for the correlation of volcanic events, and to determine their mobility and application as hydrothermal tracers. REE distributions in felsic volcanic rocks show increases in the relative abundances of heavy REE and a decrease in La/Yb ratios from north to south in the Portuguese pyrite belt. Anomalous amounts of gold are distributed in and near massive and disseminated sulfide deposits in the PPB. Gold is closely associated with copper in the middle and lower parts of the deposits. Weakly anomalous concentrations of gold were noted in exhalative sedimentary rocks that are stratigraphically above massive sulfide deposits in a distal manganiferous facies, whereas anomalously low concentrations were detected in the barite-rich, proximal-facies exhalites. Altered and pyritic felsic volcanic rocks locally contain highly anomalous concentrations of gold, suggesting that disseminated sulfide deposits and the non-ore parts of massive sulfide deposits should be evaluated for their gold potential.

  16. Domain Relaxation in Polymer Monolayers

    NASA Astrophysics Data System (ADS)

    Bernoff, Andrew J.; Alexander, James C.; Mann, J. R.; Mann, Elizabeth K.

    2004-11-01

    We report on an experimental and theoretical study of a polymer monolayer on the surface of a subfluid. When stretched (by a transient applied flow), the monolayer takes the form of a bola consisting of two roughly circular reservoirs connected by a thin tether. This shape relaxes to the minimum energy configuration of a circular domain. The tether is never observed to rupture, even when it is more than a hundred times as long as it is thin. We model these experiments by taking previous descriptions of the hydrodynamics (primarily those of Stone & McConnell and Lubensky & Goldstein ), identifying the dominant effects, and reducing the system to a more tractable form. The result is a free boundary problem where motion is driven by the line tension of the domain and damped by the viscosity of the subfluid. Using this model we derive relaxation rates for perturbations of a uniform strip and a circular patch. Lubrication theory for the tether evolution yields the thin film equation HT = -(H^2H_XXX)_X. This evolution equation appears not to manifest rupture, in agreement with the experiments. Finally, we speculate on which physical properties of the system (such as line tension) can be deduced by comparison of theory to experiment.

  17. Biogeochemistry of dissolved hydrogen sulfide species and carbonyl sulfide in the western North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Radford-Knȩry, Joël; Cutter, Gregory A.

    1994-12-01

    The biogeochemistry of total sulfide dissolved in the open ocean is a poorly understood component of the global sulfur cycle. Here, the cycling of total sulfide was examined in the western North Atlantic Ocean using specially developed sampling and analytical methods. Total sulfide (particulate + dissolved sulfide) concentrations ranged from <2-550 pmol/L; concentrations were highest in the mixed layer and decreased with depth. Significant levels (up to 19 pmol/L) of free sulfide (uncomplexed sulfide) were determined in the top 50 m of the water column. Sources of total sulfide were examined. In particular, the rate of carbonyl sulfide (OCS) hydrolysis was redetermined under oceanographic conditions, and the depth distribution of OCS was examined. The patterns of near-surface enrichment (up to 150 pmol/L) and depletion at depth observed in OCS depth profiles suggest in situ production of OCS. To quantify the sources and sinks of total sulfide in the mixed layer of the Sargasso Sea, a budget was constructed. The rate of total sulfide production was 5.5 pmol L-1 h-1 (OCS hydrolysis + atmospheric input), and total sulfide removal rate was 115 pmol L -1 h-1 (oxidation + particulate sinking). The significant difference between the known sources and sinks indicates that other processes are important for the cycling of sulfide. Similarities in the depth distribution of total sulfide and chlorophyll a, and results from recent laboratory experiments argue strongly in favor of biological involvement in the production of total sulfide in the open ocean.

  18. Engineering the Edges of MoS2 (WS2) Crystals for Direct Exfoliation into Monolayers in Polar Micromolecular Solvents.

    PubMed

    Hai, Xiao; Chang, Kun; Pang, Hong; Li, Mu; Li, Peng; Liu, Huimin; Shi, Li; Ye, Jinhua

    2016-11-16

    Synthesizing transition metal dichalcogenide (TMDC) monolayers through the liquid exfoliation of bulk crystals in low boiling point polar micromolecular solvents, such as water, is paramount for their practical application. However, the resulting hydrodynamic forces only appear on the crystal edges due to the mismatch in surface tension between the polar micromolecular solvents and the bulk crystals and are insufficient to overcome the strong van der Waals attraction between adjacent microscale layers. Herein, we present the novel strategy of engineering the lateral size of TMDC (MoS2 and WS2) crystals in the nanoscale to increase the fraction of edges, leading to their direct and ready exfoliation in polar micromolecular solvents, even in pure water, to produce monolayer MoS2 and WS2 nanosheets in high yield. To examine one of their important applications, their catalytic hydrogen evolution activities were evaluated when used as cocatalysts with a photoharvester semiconductor (cadmium sulfide, CdS) in a reaction driven by solar energy. These exfoliated MoS2 (WS2) monolayers exhibited superior cocatalytic performance in the photocatalytic hydrogen evolution reaction (HER). Notably, the cocatalytic performance of monolayer WS2 nanosheets is even higher than that of platinum (Pt), which is a state-of-the-art catalyst for catalytic hydrogen evolution. This work elucidates the importance of decreasing the lateral size of layered crystals to significantly enhance their exfoliability, providing a new strategy for the large-scale preparation of nanoscale TMDC monolayers by liquid exfoliation.

  19. Major brazilian gold deposits - 1982 to 1999

    USGS Publications Warehouse

    Thorman, C.H.; Dewitt, E.; Maron, M.A.; Ladeira, E.A.

    2001-01-01

    Brazil has been a major but intermittent producer of gold since its discovery in 1500. Brazil led the world in gold production during the 18th and early 19th centuries. From the late 19th century to the late 20th century, total mining company and garimpeiro production was small and relatively constant at about 5 to 8 t/year. The discovery of alluvial deposits in the Amazon by garimpeiros in the 1970s and the opening of eight mines by mining companies from 1983 to 1990 fueled a major boom in Brazil's gold production, exceeding 100 t/year in 1988 and 1989. However, garimpeiro alluvial production decreased 'rapidly in the 1990s, to about 10 t/year by 1999. Company production increased about tenfold from about 4 t/year in 1982 to 40 t in 1992. Production from 1992 to the present remained relatively stable, even though several mines were closed or were in the process of closing and no new major mines were put into production during that period. Based on their production history from 1982-1999, 17 gold mines are ranked as major (> 20 t) and minor (3-8 t) mines. From 1982-1999, deposits hosted in Archean rocks produced 66% of the gold in Brazil, whereas deposits in Paleoproterozoic and Neoproterozoic rocks accounted for 19% and 15%, respectively. Deposits in metamorphosed sedimentary rocks, especially carbonate-rich rocks and carbonate iron-formation, yielded the great bulk of the gold. Deposits in igneous rocks were of much less importance. The Archean and Paleoproterozoic terranes of Brazil largely lack base-metal-rich volcanogenic massive sulfide deposits, porphyry deposits, and polymetallic veins and sedimentary exhalative deposits. An exception to this is in the Caraja??s Mineral Province.

  20. The geomicrobiology of gold.

    PubMed

    Reith, Frank; Lengke, Maggy F; Falconer, Donna; Craw, David; Southam, Gordon

    2007-11-01

    Microorganisms capable of actively solubilizing and precipitating gold appear to play a larger role in the biogeochemical cycling of gold than previously believed. Recent research suggests that bacteria and archaea are involved in every step of the biogeochemical cycle of gold, from the formation of primary mineralization in hydrothermal and deep subsurface systems to its solubilization, dispersion and re-concentration as secondary gold under surface conditions. Enzymatically catalysed precipitation of gold has been observed in thermophilic and hyperthermophilic bacteria and archaea (for example, Thermotoga maritime, Pyrobaculum islandicum), and their activity led to the formation of gold- and silver-bearing sinters in New Zealand's hot spring systems. Sulphate-reducing bacteria (SRB), for example, Desulfovibrio sp., may be involved in the formation of gold-bearing sulphide minerals in deep subsurface environments; over geological timescales this may contribute to the formation of economic deposits. Iron- and sulphur-oxidizing bacteria (for example, Acidothiobacillus ferrooxidans, A. thiooxidans) are known to breakdown gold-hosting sulphide minerals in zones of primary mineralization, and release associated gold in the process. These and other bacteria (for example, actinobacteria) produce thiosulphate, which is known to oxidize gold and form stable, transportable complexes. Other microbial processes, for example, excretion of amino acids and cyanide, may control gold solubilization in auriferous top- and rhizosphere soils. A number of bacteria and archaea are capable of actively catalysing the precipitation of toxic gold(I/III) complexes. Reductive precipitation of these complexes may improve survival rates of bacterial populations that are capable of (1) detoxifying the immediate cell environment by detecting, excreting and reducing gold complexes, possibly using P-type ATPase efflux pumps as well as membrane vesicles (for example, Salmonella enterica

  1. A novel 'Gold on Gold' biosensing scheme for an on-fiber immunoassay

    NASA Astrophysics Data System (ADS)

    Punjabi, N.; Satija, J.; Mukherji, S.

    2015-05-01

    In this paper, we propose a novel „gold on gold‟ biosensing scheme for absorbance based fiber-optic biosensor. First, a self-assembled monolayer of gold nanoparticles is formed at the sensing region of the fiber-optic probe by incubating an amino-silanized probe in a colloidal gold solution. Thereafter, the receptor moieties, i.e. Human immunoglobulin G (HIgG) were immobilized by using standard alkanethiol and classic carbodiimide coupling chemistry. Finally, biosensing experiments were performed with different concentrations of gold nanoparticle-tagged analyte, i.e. Goat anti- Human immunoglobulin G (Nanogold-GaHIgG). The sensor response was observed to be more than five-fold compared to the control bioassay, in which the sensor matrix was devoid of gold nanoparticle film. Also, the response was found to be ~10 times higher compared to the FITC-tagged scheme and ~14.5 times better compared to untagged scheme. This novel scheme also demonstrated the potential in improving the limit of detection for the fiber-optic biosensors.

  2. Stilling Waves with Ordered Molecular Monolayers

    ERIC Educational Resources Information Center

    Vitz, Ed

    2008-01-01

    A demonstration of the damping effect of an oil monolayer on water waves is described. The history of this remarkable demonstration--with a 2000 (or more) year span--and a brief explanation in terms of the properties of water and the monolayer are presented. If a layer of olive oil, one molecule thick (about one-ten millionth of a centimeter), is…

  3. Stilling Waves with Ordered Molecular Monolayers

    ERIC Educational Resources Information Center

    Vitz, Ed

    2008-01-01

    A demonstration of the damping effect of an oil monolayer on water waves is described. The history of this remarkable demonstration--with a 2000 (or more) year span--and a brief explanation in terms of the properties of water and the monolayer are presented. If a layer of olive oil, one molecule thick (about one-ten millionth of a centimeter), is…

  4. Charge Retention by Monodisperse Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions

    NASA Astrophysics Data System (ADS)

    Johnson, Grant; Priest, Thomas; Laskin, Julia

    2012-02-01

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Gold clusters were synthesized in methanol solution by reduction of a gold precursor with a weak reducing agent in the presence of a diphosphine capping ligand. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (SIMS) it is demonstrated that the cluster retains its 3+ charge state when soft landed onto the surface of a fluorinated self assembled monolayer on gold. In contrast, when deposited onto carboxylic acid terminated and conventional alkyl thiol surfaces on gold the clusters exhibit larger relative abundances of the 2+ and 1+ charge states, respectively. The kinetics of charge reduction on the surface have been investigated using in-situ Fourier Transform Ion Cyclotron Resonance SIMS. It is shown that an extremely slow interfacial charge reduction occurs on the fluorinated monolayer surface while an almost instantaneous neutralization takes place on the surface of the alkyl thiol monolayer. Our results demonstrate that the size and charge state of small gold clusters on surfaces, both of which exert a dramatic influence on their chemical and physical properties, may be tuned through soft landing of mass-selected ions onto selected substrates.

  5. Nonlinear light scattering by a dipole monolayer

    NASA Astrophysics Data System (ADS)

    Averbukh, B. B.; Averbukh, I. B.

    2013-08-01

    Scattering of a strong p-polarized monochromatic field by a dipole monolayer is considered. It is shown that a triplet should be observed at incident angles (between the wave vector of the incident wave and the normal to the monolayer surface) not too close to π/2 in the spectrum of the scattered radiation. For grazing incidence of a strong field on the monolayer, waves with frequencies of the strong field and the high-frequency component of the triplet scatter forward and backward. In this case, radiation with frequency of the low-frequency component of the triplet propagates in the form of two inhomogeneous waves along the monolayer on both sides of it, exponentially decaying with distance from the monolayer.

  6. Self-assembly of large-scale crack-free gold nanoparticle films using a 'drain-to-deposit' strategy.

    PubMed

    Yang, Guang; Hallinan, Daniel T

    2016-06-03

    Gold nanoparticles are widely studied due to the ease of controlled synthesis, facile surface modification, and interesting physical properties. However, a technique for depositing large-area, crack-free monolayers on solid substrates is lacking. Herein is presented a method for accomplishing this. Spherical gold nanoparticles were synthesized as an aqueous dispersion. Assembly into monolayers and ligand exchange occurred simultaneously at an organic/aqueous interface. Then the monolayer film was deposited onto arbitrary solid substrates by slowly pumping out the lower, aqueous phase. This allowed the monolayer film (and liquid-liquid interface) to descend without significant disturbance, eventually reaching substrates contained in the aqueous phase. The resulting macroscopic quality of the films was found to be superior to films transferred by Langmuir techniques. The surface plasmon resonance and Raman enhancement of the films were evaluated and found to be uniform across the surface of each film.

  7. Early Yellowstone hotspot magmatism and gold metallogeny

    NASA Astrophysics Data System (ADS)

    Hames, Willis; Unger, Derick; Saunders, James; Kamenov, George

    2009-11-01

    High-grade epithermal gold deposits in the Northern Great Basin have long been associated with regional Miocene basaltic to rhyolitic volcanism. Previous models for the low-sulfidation epithermal gold ores in this region have generally portrayed the bimodal magmas as a source of heat to drive large-scale convection of meteoritic water that leached gold from crustal sources and deposited it in hydrothermal vein systems, or required that the gold evolve from fractionated silicic magmas. New data of the present study indicate a more direct genetic link to the plume-related basaltic magmas of the region. Laser 40Ar/ 39Ar incremental heating plateau ages for single crystals of adularia from several of these low-sulfidation epithermal gold deposits range from 16.6 Ma to 15.5 Ma. Adularia from the Jumbo deposit yields three concordant plateau ages with a combined statistical result of 16.54 ± 0.04 Ma (95% confidence level, MSWD = 0.23). Plateau ages for adularia from other deposits in the region, and from gold-bearing veins in the Owyhee Mountains of southwestern Idaho, yield similar ages up to ~16.5 Ma, however some veins are as young as ca. 15.5 Ma and the grain-to-grain ages for a given sample can vary by up to ca. 0.5 Ma. Observed variations in age among the adularia crystals of a given rock sample indicate varying amounts of extraneous argon, and also loss of radiogenic 40Ar, among the population of grains for a particular sample. The single-crystal results are interpreted to indicate a 16.5-15.5 Ma interval for formation of gold-bearing adularia veins in the region. The initiation and duration of this gold-forming event appears contemporaneous (within uncertainties) with the basaltic volcanism at the Steens Mountain section and an ensuing one-million-year episode of basaltic volcanism from multiple centers in the region ( Brueseke et al., 2007). Trace amounts of lead are alloyed with gold in the deposits studied. The isotopic compositions of this lead are not

  8. The nanoparticulate nature of invisible gold in arsenopyrite from Pezinok (Slovakia)

    SciTech Connect

    Majzlan, Juraj; Chovan, Martin; Andráš, Peter; Newville, Matthew; Wiedenbeck, Michael

    2010-04-09

    Arsenopyrite is the most common sulfide host of invisible gold. Yet, despite many studies, the position of such gold in the structure of arsenopyrite has not been resolved conclusively. Here we report a multitechnique study of arsenopyrite samples from the Pezinok deposits (Slovakia) with moderate gold concentrations of 7-10 {micro}g/g. Secondary ion mass spectrometry showed that the invisible gold occurs as either (1) almost uniform, low-concentration of 'dispersed' gold, or as (2) hot spots along fractures. X-ray absorption spectra at the Au L{sub III} edge were collected from such hot spots. The spectra document metallic character of gold although no discrete gold particles were seen even after careful re-examining in back-scattered electron images. We conclude that such occurrences are most readily explained by the presence of gold nanoparticles. We suggest that the dispersed gold is the chemically-bound gold previously detected in these deposits by 197Au Moessbauer spectroscopy. The concentration of the dispersed gold is too low for X-ray absorption spectroscopy.

  9. Rhenium(IV) sulfide nanotubes.

    PubMed

    Brorson, Michael; Hansen, Thomas W; Jacobsen, Claus J H

    2002-10-02

    Rhenium(IV) sulfide, ReS(2), has been prepared with nanotubular morphology by carbon nanotube templating. A multiwall carbon nanotube material was impregnated with solutions of NH(4)ReO(4) or ReCl(5), followed by drying and sulfidation with H(2)S at 1000 degrees C. The composite material synthesized was characterized by high-resolution transmission electron microscopy and X-ray powder diffraction. Like previously described MS(2) nanotube compounds, ReS(2) has a layered structure consisting of S-M-S layers. Re atoms in ordinary ReS(2) are octahedrally coordinated with S, and tetranuclear metal clusters are present as a consequence of metal-metal bonds.

  10. Inhibition of Sulfide Mineral Oxidation by Surface Coating Agents: Batch

    NASA Astrophysics Data System (ADS)

    Choi, J.; Ji, M. K.; Yun, H. S.; Park, Y. T.; Gee, E. D.; Lee, W. R.; Jeon, B.-H.

    2012-04-01

    Mining activities and mineral industries have impacted on rapid oxidation of sulfide minerals such as pyrite (FeS2) which leads to Acid Mine Drainage (AMD) formation. Some of the abandoned mines discharge polluted water without proper environmental remediation treatments, largely because of financial constraints in treating AMD. Magnitude of the problem is considerable, especially in countries with a long history of mining. As metal sulfides become oxidized during mining activities, the aqueous environment becomes acid and rich in many metals, including iron, lead, mercury, arsenic and many others. The toxic heavy metals are responsible for the environmental deterioration of stream, groundwater and soils. Several strategies to remediate AMD contaminated sites have been proposed. Among the source inhibition and prevention technologies, microencapsulation (coating) has been considered as a promising technology. The encapsulation is based on inhibition of O2 diffusion by surface coating agent and is expected to control the oxidation of pyrite for a long time. Potential of several surface coating agents for preventing oxidation of metal sulfide minerals from both Young-Dong coal mine and Il-Gwang gold mine were examined by conducting batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH2PO4, MgO and KMnO4 as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H2O2 or NaClO). Batch experiments with Young-Dong coal mine samples showed least SO42- production in presence of KMnO4 (16% sulfate production compared to no surface coating agents) or cement (4%) within 8 days. In the case of Il-Gwang mine samples, least SO42- production was observed in presence of KH2PO4 (8%) or cement (2%) within 8 days. Field-scale pilot tests at Il-Gwang site also showed that addition of KH2PO4 decreased sulfate production from 200 to

  11. Coulomb excitations of monolayer germanene

    NASA Astrophysics Data System (ADS)

    Shih, Po-Hsin; Chiu, Yu-Huang; Wu, Jhao-Ying; Shyu, Feng-Lin; Lin, Ming-Fa

    2017-01-01

    The feature-rich electronic excitations of monolayer germanene lie in the significant spin-orbit coupling and the buckled structure. The collective and single-particle excitations are diversified by the magnitude and direction of transferred momentum, the Fermi energy and the gate voltage. There are four kinds of plasmon modes, according to the unique frequency- and momentum-dependent phase diagrams. They behave as two-dimensional acoustic modes at long wavelength. However, for the larger momenta, they might change into another kind of undamped plasmons, become the seriously suppressed modes in the heavy intraband e–h excitations, keep the same undamped plasmons, or decline and then vanish in the strong interband e–h excitations. Germanene, silicene and graphene are quite different from one another in the main features of the diverse plasmon modes.

  12. Thermoelectric transport in monolayer phosphorene

    NASA Astrophysics Data System (ADS)

    Zare, Moslem; Rameshti, Babak Zare; Ghamsari, Farnood G.; Asgari, Reza

    2017-01-01

    We apply the generalized Boltzmann theory to describe thermoelectric transport properties of monolayer phosphorene in the presence of short- and long-range charged impurity interactions. First, we propose a low-energy Hamiltonian to explore the accurate electronic band structure of phosphorene in comparison with those results obtained by density-functional simulations. We explain the effect of the coupling between the conduction and valence bands on the thermoelectric properties. We show that the electric conductivity of phosphorene is highly anisotropic, while the Seebeck coefficient and figure of merit, without being influenced via either the presence or absence of the coupling term, are nearly isotropic. Furthermore, we demonstrate that the conductivity for the n type of doping is more influenced by the coupling term than that of the p type. Along with thermopower sign change, profound thermoelectric effects can be achieved.

  13. Coulomb excitations of monolayer germanene

    PubMed Central

    Shih, Po-Hsin; Chiu, Yu-Huang; Wu, Jhao-Ying; Shyu, Feng-Lin; Lin, Ming-Fa

    2017-01-01

    The feature-rich electronic excitations of monolayer germanene lie in the significant spin-orbit coupling and the buckled structure. The collective and single-particle excitations are diversified by the magnitude and direction of transferred momentum, the Fermi energy and the gate voltage. There are four kinds of plasmon modes, according to the unique frequency- and momentum-dependent phase diagrams. They behave as two-dimensional acoustic modes at long wavelength. However, for the larger momenta, they might change into another kind of undamped plasmons, become the seriously suppressed modes in the heavy intraband e–h excitations, keep the same undamped plasmons, or decline and then vanish in the strong interband e–h excitations. Germanene, silicene and graphene are quite different from one another in the main features of the diverse plasmon modes. PMID:28091555

  14. Glycosylated Self-Assembled Monolayers for Arrays and Surface Analysis

    PubMed Central

    Cheng, Fang; Ratner, Daniel M.

    2013-01-01

    Over the past few decades, carbohydrates (glycans) have received growing attention for their many roles in biological systems, including pathogenesis, receptor-ligand interactions, and cell signaling. To unravel the biology of this important category of biomolecules, a host of new tools have been developed for glycomics investigation. At the forefront is the carbohydrate microarray, developed to immobilize functional glycans on a solid substrate to rapidly screen a variety of potential binding partners (carbohydrates, proteins, nucleic acids, cells, and viruses). The essential role played by surface modification on glycan microarray performance requires new methods to rigorously characterize glycan surface chemistries. Due to their highly reproducible nature and well-studied properties, self-assembled monolayers (SAMs) on gold are powerful models for presenting glycans on a solid substrate, engineering biomimetic microenvironments and exploring the bioactivity of immobilized carbohydrates via surface plasmon resonance (SPR). However, it can be challenging to prepare high quality glycosylated SAMs (glyco-SAMs) that retain their biological function following surface immobilization. Herein, a selection of versatile methods for the preparation of glyco-SAMs using natural and chemically modified glycans is described. This chapter will highlight the following three immobilization techniques: (1) direct self assembly using thiolated glycosides onto gold, (2) tethering aminated glycosides onto amine-reactive SAMs, and (3) conjugating natural glycan onto divinyl sulfone-activated SAMs. PMID:22057519

  15. First principles study of metal contacts to monolayer black phosphorous

    SciTech Connect

    Chanana, Anuja; Mahapatra, Santanu

    2014-11-28

    Atomically thin layered black phosphorous (BP) has recently appeared as an alternative to the transitional metal dichalcogenides for future channel material in a metal-oxide-semiconductor transistor due to its lower carrier effective mass. Investigation of the electronic property of source/drain contact involving metal and two-dimensional material is essential as it impacts the transistor performance. In this paper, we perform a systematic and rigorous study to evaluate the Ohmic nature of the side-contact formed by the monolayer BP (mBP) and metals (gold, titanium, and palladium), which are commonly used in experiments. Employing the Density Functional Theory, we analyse the potential barrier, charge transfer and atomic orbital overlap at the metal-mBP interface in an optimized structure to understand how efficiently carriers could be injected from metal contact to the mBP channel. Our analysis shows that gold forms a Schottky contact with a higher tunnel barrier at the interface in comparison to the titanium and palladium. mBP contact with palladium is found to be purely Ohmic, where as titanium contact demonstrates an intermediate behaviour.

  16. Water oxidation using a cobalt monolayer prepared by underpotential deposition.

    PubMed

    Marsh, David A; Yan, Wenbo; Liu, Yu; Hemminger, John C; Penner, Reginald M; Borovik, A S

    2013-11-26

    Development of electrocatalysts for the conversion of water to dioxygen is important in a variety of chemical applications. Despite much research in this field, there are still several fundamental issues about the electrocatalysts that need to be resolved. Two such problems are that the catalyst mass loading on the electrode is subject to large uncertainties and the wetted surface area of the catalyst is often unknown and difficult to determine. To address these topics, a cobalt monolayer was prepared on a gold electrode by underpotential deposition and used to probe its efficiency for the oxidation of water. This electrocatalyst was characterized by atomic force microscopy, grazing-incidence X-ray diffraction, and X-ray photoelectron spectroscopy at various potentials to determine if changes occur on the surface during catalysis. An enhancement of current was observed upon addition of PO4(3-) ions, suggesting an effect from surface-bound ligands on the efficiency of water oxidation. At 500 mV overpotential, current densities of 0.20, 0.74, and 2.4 mA/cm(2) for gold, cobalt, and cobalt in PO4(3-) were observed. This approach thus provided electrocatalysts whose surface areas and activity can be accurately determined.

  17. Ultralow effective work function surfaces using diamondoid monolayers

    NASA Astrophysics Data System (ADS)

    Narasimha, Karthik Thimmavajjula; Ge, Chenhao; Fabbri, Jason D.; Clay, William; Tkachenko, Boryslav A.; Fokin, Andrey A.; Schreiner, Peter R.; Dahl, Jeremy E.; Carlson, Robert M. K.; Shen, Z. X.; Melosh, Nicholas A.

    2016-03-01

    Electron emission is critical for a host of modern fabrication and analysis applications including mass spectrometry, electron imaging and nanopatterning. Here, we report that monolayers of diamondoids effectively confer dramatically enhanced field emission properties to metal surfaces. We attribute the improved emission to a significant reduction of the work function rather than a geometric enhancement. This effect depends on the particular diamondoid isomer, with [121]tetramantane-2-thiol reducing gold's work function from ∼5.1 eV to 1.60 ± 0.3 eV, corresponding to an increase in current by a factor of over 13,000. This reduction in work function is the largest reported for any organic species and also the largest for any air-stable compound. This effect was not observed for sp3-hybridized alkanes, nor for smaller diamondoid molecules. The magnitude of the enhancement, molecule specificity and elimination of gold metal rearrangement precludes geometric factors as the dominant contribution. Instead, we attribute this effect to the stable radical cation of diamondoids. Our computed enhancement due to a positively charged radical cation was in agreement with the measured work functions to within ±0.3 eV, suggesting a new paradigm for low-work-function coatings based on the design of nanoparticles with stable radical cations.

  18. Marine diagenesis of hydrothermal sulfide

    SciTech Connect

    Moammar, M.O.

    1985-01-01

    An attempt is made to discuss the artificial and natural oxidation and hydrolysis of hydrothermal sulfide upon interaction with normal seawater. Synthetic and natural ferrosphalerite particles used in kinetic oxidation and hydrolysis studies in seawater develop dense, crystalline coatings consisting of ordered and ferrimagnetic delta-(Fe, Zn)OOH. Due to the formation of this reactive diffusion barrier, the release of Zn into solution decreases rapidly, and sulfide oxidation is reduced to a low rate determined by the diffusion of oxygen through the oxyhydroxide film. This also acts as an efficient solvent for ions such as Zn/sup 2 +/, Ca/sup 2 +/, and possibly Cd/sup 2 +/, which contribute to the stabilization of the delta-FeOOH structure. The oxidation of sulfide occurs in many seafloor spreading areas, such as 21/sup 0/N on the East Pacific Ridge. In these areas the old surface of the sulfide chimneys are found to be covered by an orange stain, and sediment near the base of nonactive vents is also found to consist of what has been referred to as amorphous iron oxide and hydroxide. This thesis also discusses the exceedingly low solubility of zinc in seawater, from delta-(Fe, Zn)OOH and the analogous phase (zinc-ferrihydroxide) and the zinc exchange minerals, 10-A manganate and montmorillonite. The concentrations of all four are of the same magnitude (16, 36.4, and 12 nM, respectively) as the zinc concentration in deep ocean water (approx. 10 nM), which suggests that manganates and montmorillonite with iron oxyhydroxides control zinc concentration in the deep ocean.

  19. Target-induced nanocatalyst deactivation facilitated by core@shell nanostructures for signal-amplified headspace-colorimetric assay of dissolved hydrogen sulfide.

    PubMed

    Gao, Zhuangqiang; Tang, Dianyong; Tang, Dianping; Niessner, Reinhard; Knopp, Dietmar

    2015-10-06

    Colorimetric assay platforms for dissolved hydrogen sulfide (H2S) have been developed for more than 100 years, but most still suffer from relatively low sensitivity. One promising route out of this predicament relies on the design of efficient signal amplification methods. Herein, we rationally designed an unprecedented H2S-induced deactivation of (gold core)@(ultrathin platinum shell) nanocatalysts (Au@TPt-NCs) as a highly efficient signal amplification method for ultrasensitive headspace-colorimetric assay of dissolved H2S. Upon target introduction, Au@TPt-NCs were deactivated to different degrees dependent on H2S levels, and the degrees could be indicated by using a Au@TPt-NCs-triggered catalytic system as a signal amplifier, thus paving a way for H2S sensing. The combination of experimental studies and density functional theory (DFT) studies revealed that the Au@TPt-NCs with only 2-monolayer equivalents of Pt (θPt = 2) were superior for H2S-induced nanocatalyst deactivation owing to their enhanced peroxidase-like catalytic activity and deactivation efficiency stemmed from the unique synergistic structural/electronic effects between Au nanocores and ultrathin Pt nanoshells. Importantly, our analytical results showed that the designed method was indeed highly sensitive for sensing H2S with a wide linear range of 10-100 nM, a slope of 0.013 in the regression equation, and a low detection limit of 7.5 nM. Also the selectivity, reproducibility, and precision were excellent. Furthermore, the method was validated for the analysis of H2S-spiked real samples, and the recovery in all cases was 91.6-106.7%. With the merits of high sensitivity and selectivity, simplification, low cost, and visual readout with the naked eye, the colorimetric method has the potential to be utilized as an effective detection kit for point-of-care testing.

  20. Characterization of self-assembled monolayers (SAMs) on silicon substrate comparative with polymer substrate for Escherichia coli O157:H7 detection

    NASA Astrophysics Data System (ADS)

    Moldovan, Carmen; Mihailescu, Carmen; Stan, Dana; Ruta, Lavinia; Iosub, Rodica; Gavrila, Raluca; Purica, Munizer; Vasilica, Schiopu

    2009-08-01

    This article presents the characterization of two substrates, silicon and polymer coated with gold, that are functionalized by mixed self-assembled monolayers (SAMs) in order to efficiently immobilize the anti- Escherichia coli O157:H7 polyclonal purified antibody. A biosurface functionalized by SAMs (self-assembled monolayers) technique has been developed. Immobilization of goat anti- E. coli O157:H7 antibody was performed by covalently bonding of thiolate mixed self-assembled monolayers (SAMs) realized on two substrates: polymer coated with gold and silicon coated with gold. The F(ab') 2 fragments of the antibodies have been used for eliminating nonspecific bindings between the Fc portions of antibodies and the Fc receptor on cells. The properties of the monolayers and the biofilm formatted with attached antibody molecules were analyzed at each step using infrared spectroscopy (FTIR-ATR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and cyclic voltammetry (CV). In our study the gold-coated silicon substrates approach yielded the best results. These experimental results revealed the necessity to investigate each stage of the immobilization process taking into account in the same time the factors that influence the chemistry of the surface and the further interactions as well and also provide a solid basis for further studies aiming at elaborating sensitive and specific immunosensor or a microarray for the detection of E. coli O157:H7.

  1. Metal sulfide for battery applications

    NASA Astrophysics Data System (ADS)

    Guidotti, Ronald A.

    1988-08-01

    A number of metal sulfides can be used in batteries as a cathode (reducible) material as part of an electrochemical couple to provide energy. There are a number of physical and chemical characteristics that can be evaluated for screening potential candidates for use in batteries. These include: cell potential vs. Li, thermal and chemical stability, electrical conductivity, allotropic form (phase), reaction kinetics during discharge, type of discharge mechanism, and material rechargeability. These are reviewed in general, with emphasis on sulfides of copper, iron, and molybdenum which are currently being used as cathodes in Li and Li-alloy batteries. The presence of impurities can adversely impact performance when naturally occurring sulfide minerals are used for battery applications. Sandia National Laboratories uses natural pyrite (FeS2) for its high-temperature, thermally activated Li(Si)/FeS2 batteries. The purification and processing procedures for the FeS2 involves both chemical and physical methods. Flotation was found to yield comparable results as HF leaching for removal of silica, but without the negative health and environmental concerns associated with this technique.

  2. Sulfide-driven microbial electrosynthesis.

    PubMed

    Gong, Yanming; Ebrahim, Ali; Feist, Adam M; Embree, Mallory; Zhang, Tian; Lovley, Derek; Zengler, Karsten

    2013-01-02

    Microbial electrosynthesis, the conversion of carbon dioxide to organic molecules using electricity, has recently been demonstrated for acetogenic microorganisms, such as Sporomusa ovata. The energy for reduction of carbon dioxide originates from the hydrolysis of water on the anode, requiring a sufficiently low potential. Here we evaluate the use of sulfide as an electron source for microbial electrosynthesis. Abiotically oxidation of sulfide on the anode yields two electrons. The oxidation product, elemental sulfur, can be further oxidized to sulfate by Desulfobulbus propionicus, generating six additional electrons in the process. The eight electrons generated from the combined abiotic and biotic steps were used to reduce carbon dioxide to acetate on a graphite cathode by Sporomusa ovata at a rate of 24.8 mmol/day · m(2). Using a strain of Desulfuromonas as biocatalyst on the anode resulted in an acetate production rate of 49.9 mmol/day · m(2), with a Coulombic efficiency of over 90%. These results demonstrate that sulfide can serve effectively as an alternative electron donor for microbial electrosynthesis.

  3. Sulfide-Driven Microbial Electrosynthesis

    SciTech Connect

    Gong, YM; Ebrahim, A; Feist, AM; Embree, M; Zhang, T; Lovley, D; Zengler, K

    2013-01-01

    Microbial electrosynthesis, the conversion of carbon dioxide to organic molecules using electricity, has recently been demonstrated for acetogenic microorganisms, such as Sporomusa ovata. The energy for reduction of carbon dioxide originates from the hydrolysis of water on the anode, requiring a sufficiently low potential. Here we evaluate the use of sulfide as an electron source for microbial electrosynthesis. Abiotically oxidation of sulfide on the anode yields two electrons. The oxidation product, elemental sulfur, can be further oxidized to sulfate by Desulfobulbus propionicus, generating six additional electrons in the process. The eight electrons generated from the combined abiotic and biotic steps were used to reduce carbon dioxide to acetate on a graphite cathode by Sporomusa ovata at a rate of 24.8 mmol/day.m(2). Using a strain of Desulfuromonas as biocatalyst on the anode resulted in an acetate production rate of 49.9 mmol/day.m(2), with a Coulombic efficiency of over 90%. These results demonstrate that sulfide can serve effectively as an alternative electron donor for microbial electrosynthesis.

  4. Packing density and structure effects on energy-transfer dynamics in argon collisions with organic monolayers

    NASA Astrophysics Data System (ADS)

    Day, B. Scott; Morris, John R.

    2005-06-01

    A combined experimental and molecular-dynamics simulation study has been used to investigate energy-transfer dynamics of argon atoms when they collide with n-alkanethiols adsorbed to gold and silver substrates. These surfaces provide the opportunity to explore how surface structure and packing density of alkane chains affect energy transfer in gas-surface collisions while maintaining the chemical nature of the surface. The chains pack standing up with 12° and 30° tilt angles relative to the surface normal and number densities of 18.9 and 21.5Å2/molecule on the silver and gold substrates, respectively. For 7-kJ/mol argon scattering, the two surfaces behave equivalently, fully thermalizing all impinging argon atoms. In contrast, these self-assembled monolayers (SAMs) are not equally efficient at absorbing the excess translational energy from high-energy, 35 and 80kJ/mol, argon collisions. When high-energy argon atoms are scattered from a SAM on silver, the fraction of atoms that reach thermal equilibrium with the surface and the average energy transferred to the surface are lower than for analogous SAMs on gold. In the case of argon atoms with 80kJ/mol of translational energy scattering from long-chain SAMs, 60% and 45% of the atoms detected have reached thermal equilibrium with the monolayers on gold and silver surfaces, respectively. The differences in the scattering characteristics are attributed to excitation efficiencies of different types of surface modes. The high packing density of alkyl chains on silver restricts certain low-energy degrees of freedom from absorbing energy as efficiently as the lower-density monolayers. In addition, molecular-dynamics simulations reveal that the extent to which argon penetrates into the monolayer is related to packing density. For argon atoms with 80-kJ/mol incident energy, we find 16% and 7% of the atoms penetrate below the terminal methyl groups of C10 SAMs on gold and silver, respectively.

  5. Highly doped silicon nanowires by monolayer doping.

    PubMed

    Veerbeek, Janneke; Ye, Liang; Vijselaar, Wouter; Kudernac, Tibor; van der Wiel, Wilfred G; Huskens, Jurriaan

    2017-02-23

    Controlling the doping concentration of silicon nanostructures is challenging. Here, we investigated three different monolayer doping techniques to obtain silicon nanowires with a high doping dose. These routes were based on conventional monolayer doping, starting from covalently bound dopant-containing molecules, or on monolayer contact doping, in which a source substrate coated with a monolayer of a carborane silane was the dopant source. As a third route, both techniques were combined to retain the benefits of conformal monolayer formation and the use of an external capping layer. These routes were used for doping fragile porous nanowires fabricated by metal-assisted chemical etching. Differences in porosity were used to tune the total doping dose inside the nanowires, as measured by X-ray photoelectron spectroscopy and secondary ion mass spectrometry measurements. The higher the porosity, the higher was the surface available for dopant-containing molecules, which in turn led to a higher doping dose. Slightly porous nanowires could be doped via all three routes, which resulted in highly doped nanowires with (projected areal) doping doses of 10(14)-10(15) boron atoms per cm(2) compared to 10(12) atoms per cm(2) for a non-porous planar sample. Highly porous nanowires were not compatible with the conventional monolayer doping technique, but monolayer contact doping and the combined route resulted for these highly porous nanowires in tremendously high doping doses up to 10(17) boron atoms per cm(2).

  6. The Triboluminescence of Zinc Cadmium Sulfide

    DTIC Science & Technology

    1978-11-01

    W£rA0fe4 5^5 /KD-AtW Sis TECHNICAL REPORT ARBRL-TR-02124 THE TRIBOLUMINESCENCE OF ZINC CADMIUM SULFIDE Carmen M. Cialella TECHNICAL James...THE TRIBOLUMINESCENCE OF ZINC CADMIUM SULFIDE READ INSTRUCTIONS BEFORE COMPLETING FORM 3. RECIPIENT’S CATALOG NUMBER 5. TYPE OF REPORT & PERIOD...and tested. This report presents subsequent efforts to determine the light output of the TL phosphor. Zinc Cadmium Sulfide (ZnCdS] as a function of

  7. Electroactive self-assembled monolayers of unique geometric structures by using rigid norbornylogous bridges.

    PubMed

    Darwish, Nadim; Eggers, Paul K; Da Silva, Paulo; Zhang, Yi; Tong, Yujin; Ye, Shen; Gooding, J Justin; Paddon-Row, Michael N

    2012-01-02

    Herein, we describe the synthesis of straight (S) and L-shaped (L) norbornylogous bridges (NBs) with an anthraquinone moiety at the distal end as the redox-active head group and two thiol feet at the proximal end, by which the molecules assemble on gold surfaces. The NB molecules were shown to form self-assembled monolayers (SAMs) with a well-behaved surface redox process. The SAMs were characterized by using in situ IR spectroscopy, cyclic voltammetry, scanning tunnelling microscopy and electrochemical impedance spectroscopy. The surface selection rules associated with the IR band intensities allowed the estimation of the position of the anthraquinone moiety with respect to the surface and the tilt of the bridge with respect to the surface normal, both in pure and diluted monolayers. It is shown that the S- and L-NBs hold the plane of the anthraquinone moiety close to the surface normal or the surface tangent, respectively. Neither NB molecule changes its orientation if spaced by diluents on the surface. The difference in the structure of the S- and L-NB SAMs provides a suitable framework for the investigation of factors that govern electron transfer of anthraquinone moieties across self-assembled monolayers with limited structural ambiguity, as compared with the commonly used structurally flexible alkanethiol monolayers.

  8. Thioaromatic DNA monolayers for target-amplification-free electrochemical sensing of environmental pathogenic bacteria.

    PubMed

    Miranda-Castro, Rebeca; Sánchez-Salcedo, Raquel; Suárez-Álvarez, Beatriz; de-Los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J; Jesús Lobo-Castañón, María

    2017-06-15

    Genosensing technology has mostly based on mixed self-assembled monolayers (SAMs) of thiol-modified oligonucleotides and alkanethiols on gold surfaces. However, the typical backfilling approach, which incorporates the alkanethiol in a second step, gives rise to a heterogeneous distribution of oligonucleotide probes on the surface, negatively affecting to both hybridization efficiency and surface stability. Despite aromatic thiols present a remarkably different behavior from alkanethiols, with higher rigidity and stronger intermolecular interactions, they have been scarcely explored for the fabrication of DNA sensing platforms. We have investigated different approaches involving SAMs of aromatic thiols, namely p-mercaptobenzoic acid (p-MBA) and p-aminothiophenol (p-ATP), to yield DNA sensing layers for sequence-specific detection of target oligonucleotides. The studied monolayers were evaluated by DNA surface coverage and further information was obtained by determining their functionality in a sandwich hybridization assay with enzymatic amplification of the electrochemical read-out. The insertion of thiol-oligonucleotides into p-ATP monolayers previously oxidized, and the covalent binding of amino-oligonucleotides to pure p-MBA monolayers give rise to increased storage stability and better analytical performance. The quantification of RNA from Legionella pneumophila cellular lysates was successfully performed, illustrating the usefulness of these sensing architectures for detecting pathogenic bacteria.

  9. Monolayer contact doping of silicon surfaces and nanowires using organophosphorus compounds.

    PubMed

    Hazut, Ori; Agarwala, Arunava; Subramani, Thangavel; Waichman, Sharon; Yerushalmi, Roie

    2013-12-02

    Monolayer Contact Doping (MLCD) is a simple method for doping of surfaces and nanostructures(1). MLCD results in the formation of highly controlled, ultra shallow and sharp doping profiles at the nanometer scale. In MLCD process the dopant source is a monolayer containing dopant atoms. In this article a detailed procedure for surface doping of silicon substrate as well as silicon nanowires is demonstrated. Phosphorus dopant source was formed using tetraethyl methylenediphosphonate monolayer on a silicon substrate. This monolayer containing substrate was brought to contact with a pristine intrinsic silicon target substrate and annealed while in contact. Sheet resistance of the target substrate was measured using 4 point probe. Intrinsic silicon nanowires were synthesized by chemical vapor deposition (CVD) process using a vapor-liquid-solid (VLS) mechanism; gold nanoparticles were used as catalyst for nanowire growth. The nanowires were suspended in ethanol by mild sonication. This suspension was used to dropcast the nanowires on silicon substrate with a silicon nitride dielectric top layer. These nanowires were doped with phosphorus in similar manner as used for the intrinsic silicon wafer. Standard photolithography process was used to fabricate metal electrodes for the formation of nanowire based field effect transistor (NW-FET). The electrical properties of a representative nanowire device were measured by a semiconductor device analyzer and a probe station.

  10. Monolayer Contact Doping of Silicon Surfaces and Nanowires Using Organophosphorus Compounds

    PubMed Central

    Hazut, Ori; Agarwala, Arunava; Subramani, Thangavel; Waichman, Sharon; Yerushalmi, Roie

    2013-01-01

    Monolayer Contact Doping (MLCD) is a simple method for doping of surfaces and nanostructures1. MLCD results in the formation of highly controlled, ultra shallow and sharp doping profiles at the nanometer scale. In MLCD process the dopant source is a monolayer containing dopant atoms. In this article a detailed procedure for surface doping of silicon substrate as well as silicon nanowires is demonstrated. Phosphorus dopant source was formed using tetraethyl methylenediphosphonate monolayer on a silicon substrate. This monolayer containing substrate was brought to contact with a pristine intrinsic silicon target substrate and annealed while in contact. Sheet resistance of the target substrate was measured using 4 point probe. Intrinsic silicon nanowires were synthesized by chemical vapor deposition (CVD) process using a vapor-liquid-solid (VLS) mechanism; gold nanoparticles were used as catalyst for nanowire growth. The nanowires were suspended in ethanol by mild sonication. This suspension was used to dropcast the nanowires on silicon substrate with a silicon nitride dielectric top layer. These nanowires were doped with phosphorus in similar manner as used for the intrinsic silicon wafer. Standard photolithography process was used to fabricate metal electrodes for the formation of nanowire based field effect transistor (NW-FET). The electrical properties of a representative nanowire device were measured by a semiconductor device analyzer and a probe station. PMID:24326774

  11. Discrete quantum dot like emitters in monolayer MoSe{sub 2}: Spatial mapping, magneto-optics, and charge tuning

    SciTech Connect

    Branny, Artur; Kumar, Santosh; Gerardot, Brian D.; Wang, Gang; Robert, Cedric; Lassagne, Benjamin; Marie, Xavier; Urbaszek, Bernhard

    2016-04-04

    Transition metal dichalcogenide monolayers such as MoSe{sub 2}, MoS{sub 2}, and WSe{sub 2} are direct bandgap semiconductors with original optoelectronic and spin-valley properties. Here we report on spectrally sharp, spatially localized emission in monolayer MoSe{sub 2}. We find this quantum dot-like emission in samples exfoliated onto gold substrates and also suspended flakes. Spatial mapping shows a correlation between the location of emitters and the existence of wrinkles (strained regions) in the flake. We tune the emission properties in magnetic and electric fields applied perpendicular to the monolayer plane. We extract an exciton g-factor of the discrete emitters close to −4, as for 2D excitons in this material. In a charge tunable sample, we record discrete jumps on the meV scale as charges are added to the emitter when changing the applied voltage.

  12. Discrete quantum dot like emitters in monolayer MoSe2: Spatial mapping, magneto-optics, and charge tuning

    NASA Astrophysics Data System (ADS)

    Branny, Artur; Wang, Gang; Kumar, Santosh; Robert, Cedric; Lassagne, Benjamin; Marie, Xavier; Gerardot, Brian D.; Urbaszek, Bernhard

    2016-04-01

    Transition metal dichalcogenide monolayers such as MoSe2, MoS2, and WSe2 are direct bandgap semiconductors with original optoelectronic and spin-valley properties. Here we report on spectrally sharp, spatially localized emission in monolayer MoSe2. We find this quantum dot-like emission in samples exfoliated onto gold substrates and also suspended flakes. Spatial mapping shows a correlation between the location of emitters and the existence of wrinkles (strained regions) in the flake. We tune the emission properties in magnetic and electric fields applied perpendicular to the monolayer plane. We extract an exciton g-factor of the discrete emitters close to -4, as for 2D excitons in this material. In a charge tunable sample, we record discrete jumps on the meV scale as charges are added to the emitter when changing the applied voltage.

  13. Geology of the Barite Hill gold-silver deposit in the southern Carolina slate belt

    USGS Publications Warehouse

    Clark, S.H.B.; Gray, K.J.; Back, J.M.

    1999-01-01

    Barite Hill is a stratiform gold-silver deposit associated with base metal sulfides and barite in greenschist facies rocks. The deposit, southernmost of four recently mined gold deposits in the Carolina slate belt, is located in the Lincolnton-McCormick district of Georgia and South Carolina, which includes several known gold-silver and base metal deposits in a Kuroko-type geological setting along with deposits of kyanite and manganese. Approximately 1,835,000 g of gold was produced mainly from oxidized ores in the Main and Rainsford pits from 1990 until their closing in 1994. Ore is hosted by sericitically altered felsic metavolcanic and metasedimentary rocks of the Late Proterozoic Persimmon Fork Formation. The deposit is stratigraphically below an overturned contact between upper and lower pyroclastic units, which overlie the Lincolnton metarhyolite, an intrusive unit. Gold-silver-rich zones in the Main pit are partly coincident with lenses of siliceous barite rock, but not confined to them, and occur more commonly in pyrite-quartz-altered fragmental rock. The Main pit ore is stratigraphically overlain by a zone of base metal and barite enrichment, which is, in turn, overlain by a talc-tremolite alteration zone locally. Siliceous barite zones are absent in the Rainsford pit, and gold-silver minerals are associated with silicified rocks and chert. The Barite Hill deposit is interpreted to be the result of Kuroko-type, volcanogenic, base metal sulfide mineralization, followed by gold-silver mineralization under epithermal conditions with the following stages of evolution: (1) massive sulfides, barite, and fine-grained siliceous exhalites were deposited during Late Proterozoic to Cambrian submarine volcanism, which was related to plate convergence and subduction in a microcontinental or island-arc setting distant from the North American continental plate; (2) Au-Ag-Te and base and precious metal Te-Se-Bi minerals were deposited either during waning stages of

  14. Sensitized photooxidation of dissolved sulfides in water

    SciTech Connect

    Brewer, T.F.; Curtis, J.G.; Marchand, E.A.; Adams, V.D.; Middlebrooks, E.J.

    1994-12-31

    A byproduct of the enhanced recovery of petroleum is flood water that is often contaminated with soluble sulfides. The ability of methylene blue (MB) and riboflavin (RF) to sensitize dissolved sulfides for photooxidation was investigated. Both MB and RF were found to be effective sensitizers for the oxidation of sulfide in water. MB-dosed batch reactors consistently reduced initial sulfide concentrations of 100 mg/l to less than 10--15 mg/l in less than one hour under artificial lighting (91% sunlight corrected fluorescent tubes) at a pH = 10 and MB = 1mg/l. Preliminary experiments have shown approximately 80--85% of the removed sulfide is accounted for as accumulated sulfate. RF is also effective at enhancing the removal of sulfide, but experiments similar to those conducted for NM revealed that RF-dosed reactors required approximately 2--3 times longer to achieve sulfide removal comparable to MB (1mg/l), even with an RF concentration of 20 mg/l. The primary product in RF-sensitized photooxidation of dissolved sulfides is also sulfate, with approximately 75-80% of removed sulfide recovered as sulfate. First order plots of experimental data yield reaction rate constants of k = 0.0097 min{sup {minus}1} for RF, and k = 0.0273 min{sup {minus}1} for MB.

  15. Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility.

    PubMed

    Ma, Rui; Levard, Clément; Michel, F Marc; Brown, Gordon E; Lowry, Gregory V

    2013-03-19

    Environmental transformations of nanoparticles (NPs) affect their properties and toxicity potential. Sulfidation is an important transformation process affecting the fate of NPs containing metal cations with an affinity for sulfide. Here, the extent and mechanism of sulfidation of ZnO NPs were investigated, and the properties of resulting products were carefully characterized. Synchrotron X-ray absorption spectroscopy and X-ray diffraction analysis reveal that transformation of ZnO to ZnS occurs readily at ambient temperature in the presence of inorganic sulfide. The extent of sulfidation depends on sulfide concentration, and close to 100% conversion can be obtained in 5 days given sufficient addition of sulfide. X-ray diffraction and transmission electron microscopy showed formation of primarily ZnS NPs smaller than 5 nm, indicating that sulfidation of ZnO NPs occurs by a dissolution and reprecipitation mechanism. The solubility of partially sulfidized ZnO NPs is controlled by the remaining ZnO core and not quenched by a ZnS shell formed as was observed for partially sulfidized Ag NPs. Sulfidation also led to NP aggregation and a decrease of surface charge. These changes suggest that sulfidation of ZnO NPs alters the behavior, fate, and toxicity of ZnO NPs in the environment. The reactivity and fate of the resulting <5 nm ZnS particles remains to be determined.

  16. Electronic transport in arrays of gold nanocrystals

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    We examine electronic transport through two-dimensional arrays of gold nanocrystals. Recently developed techniques of particle synthesis and array self-assembly provide ordered (and disordered) monolayers of six-nanometer diameter gold nanocrystals on substrates with in-plane electrodes. These well-characterized superlattices allow investigation of basic questions about electronic conduction in metal quantum dot assemblies, answers to which have previously remained elusive. We first address the relation between current and voltage. Central to transport is the Coulomb blockade, the energetic cost of adding a single electron to a nanocrystal. Theoretical studies suggest power-law scaling of current beyond a threshold voltage in Coulomb blockade dominated systems. In ordered arrays, our data follow a power-law form, but with a scaling exponent significantly higher than the theoretical prediction. In disordered arrays, power-law scaling is violated; we explain that disorder disturbs the branching of current-carrying paths responsible for power-law conduction. Second, we examine the effect of temperature on transport. We find a large low-temperature regime (up to about 100 K) in which thermal energy acts only to linearly suppress the threshold voltage, leaving the current scale unaffected. We provide a simple, analytic model of thermally assisted tunneling which quantitatively describes the data. Third, we develop a simple and novel technique to tune the interparticle electronic couplings of the arrays---deposition of small amounts of germanium on the monolayers. The germanium dopant lowers the voltage threshold, and also increases conductivity. It also increases the temperature dependence of transport, suggesting the introduction of trapped states between the gold nanocrystal cores.

  17. Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity.

    PubMed

    Li, Shuangming; Wan, Ying; Fan, Chunhai; Su, Yan

    2017-03-22

    Love wave sensors have been widely used for sensing applications. In this work, we introduce the theoretical analysis of the monolayer and double-layer waveguide Love wave sensors. The velocity, particle displacement and energy distribution of Love waves were analyzed. Using the variations of the energy repartition, the sensitivity coefficients of Love wave sensors were calculated. To achieve a higher sensitivity coefficient, a thin gold layer was added as the second waveguide on top of the silicon dioxide (SiO₂) waveguide-based, 36 degree-rotated, Y-cut, X-propagating lithium tantalate (36° YX LiTaO₃) Love wave sensor. The Love wave velocity was significantly reduced by the added gold layer, and the flow of wave energy into the waveguide layer from the substrate was enhanced. By using the double-layer structure, almost a 72-fold enhancement in the sensitivity coefficient was achieved compared to the monolayer structure. Additionally, the thickness of the SiO₂ layer was also reduced with the application of the gold layer, resulting in easier device fabrication. This study allows for the possibility of designing and realizing robust Love wave sensors with high sensitivity and a low limit of detection.

  18. Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity

    PubMed Central

    Li, Shuangming; Wan, Ying; Fan, Chunhai; Su, Yan

    2017-01-01

    Love wave sensors have been widely used for sensing applications. In this work, we introduce the theoretical analysis of the monolayer and double-layer waveguide Love wave sensors. The velocity, particle displacement and energy distribution of Love waves were analyzed. Using the variations of the energy repartition, the sensitivity coefficients of Love wave sensors were calculated. To achieve a higher sensitivity coefficient, a thin gold layer was added as the second waveguide on top of the silicon dioxide (SiO2) waveguide–based, 36 degree–rotated, Y-cut, X-propagating lithium tantalate (36° YX LiTaO3) Love wave sensor. The Love wave velocity was significantly reduced by the added gold layer, and the flow of wave energy into the waveguide layer from the substrate was enhanced. By using the double-layer structure, almost a 72-fold enhancement in the sensitivity coefficient was achieved compared to the monolayer structure. Additionally, the thickness of the SiO2 layer was also reduced with the application of the gold layer, resulting in easier device fabrication. This study allows for the possibility of designing and realizing robust Love wave sensors with high sensitivity and a low limit of detection. PMID:28327504

  19. Gold-Silver mineralization in porphyry-epithermal systems of the Baimka trend, western Chukchi Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Nikolaev, Yu. N.; Baksheev, I. A.; Prokofiev, V. Yu.; Nagornaya, E. V.; Marushchenko, L. I.; Sidorina, Yu. N.; Chitalin, A. F.; Kal'ko, I. A.

    2016-07-01

    Mineralogical, fluid inclusion, and geochemical studies of precious metal mineralization within the Baimka trend in the western Chukchi Peninsula have been preformed. Porphyry copper-molybdenum-gold deposits and prospects of the Baimka trend are spatially related to monzonitic rocks of the Early Cretaceous Egdygkych Complex. Four types of precious metal-bearing assemblages have been identified: (1) chalcopyrite + bornite + quartz with high-fineness native gold enclosed in bornite, (2) low-Mn dolomite + quartz + sulfide (chalcopyrite, sphalerite, galena, tennantite-tetrahedrite) ± tourmaline with low-fineness native gold and hessite, (3) rhodochrosite + high-Mn dolomite + quartz + sulfide (chalcopyrite, sphalerite, galena, tennantite- tetrahedrite) with low-fineness native gold, electrum, acanthite, Ag and Au-Ag tellurides, and Ag sulfosalts, and (4) calcite + quartz + sulfide (chalcopyrite, sphalerite, galena) with low-fineness native gold, Ag sulfides and selenides, and Ag-bearing sulfosalts. Study of fluid inclusions from quartz, sphalerite, and fluorite have revealed that hydrothermal ores within the Baimka trend precipitated from fluids with strongly variable salinity at temperatures and pressures ranging from 594 to 104°C and from 1200 to 170 bar, respectively. An indicator of vertical AgPbZn/CuBiMo geochemical zoning is proposed. The value range of this indicator makes it possible to estimate the erosion level of the porphyry-epithermal system. The erosion level of the Baimka deposits and prospects deepens in the following order: Vesenny deposit → Pryamoi prospect → Nakhodka prospect → Peschanka deposit → III Vesenny prospect.

  20. Highly oriented, self-assembled alkanephosphate monolayers on tantalum(V) oxide surfaces

    SciTech Connect

    Brovelli, D.; Haehner, G.; Ruiz, L.

    1999-06-22

    Octadecyl phosphoric acid ester has been found to produce oriented, well-ordered monolayers on a flat tantalum(V) oxide surface, via self-assembly from a heptane/propan-2-ol solution. By means of contact angle, optical waveguide lightmode spectroscopy (OWLS), near-edge X-ray absorption fine structure spectroscopy (NEXASFS), and X-ray photoelectron spectroscopy (XPS) measurements, it has been shown that these layers closely resemble those formed by the corresponding thiol-gold system, with respect to packing density, inclination, and order. The system shows promise as an approach to functionalizing oxide surfaces with well-ordered organic monolayers, with potential applications in the fields of biochemical analysis and sensors.