Science.gov

Sample records for golgi retrograde trafficking

  1. A role of Rab29 in the integrity of the trans-Golgi network and retrograde trafficking of mannose-6-phosphate receptor.

    PubMed

    Wang, Shicong; Ma, Zexu; Xu, Xiaohui; Wang, Zhen; Sun, Lixiang; Zhou, Yunhe; Lin, Xiaosi; Hong, Wanjin; Wang, Tuanlao

    2014-01-01

    Rab29 (also referred as Rab7L1) is a novel Rab protein, and is recently demonstrated to regulate phagocytosis and traffic from the Golgi to the lysosome. However, its roles in membrane trafficking have not been investigated extensively. Our results in this study revealed that Rab29 is associated with the trans-Golgi network (TGN), and is essential for maintaining the integrity of the TGN, because inhibition of the activity of Rab29 or depletion of Rab29 resulted in fragmentation of the TGN marked by TGN46. Expression of the dominant negative form Rab29T21N or shRNA-Rab29 also altered the distribution of mannose-6-phosphate receptor (M6PR), and interrupted the retrograde trafficking of M6PR through monitoring the endocytosis of CD8-tagged calcium dependent M6PR (cdM6PR) or calcium independent M6PR (ciM6PR), but without significant effects on the anterograde trafficking of vesicular stomatitis virus G protein (VSV-G). Our results suggest that Rab29 is essential for the integrity of the TGN and participates in the retrograde trafficking of M6PRs.

  2. Physiology and pathology of endosome-to-Golgi retrograde sorting.

    PubMed

    Burd, Christopher G

    2011-08-01

    Bidirectional traffic between the Golgi apparatus and the endosomal system sustains the functions of the trans-Golgi network (TGN) in secretion and organelle biogenesis. Export of cargo from the TGN via anterograde trafficking pathways depletes the organelle of sorting receptors, processing proteases, SNARE molecules, and other factors, and these are subsequently retrieved from endosomes via the retrograde pathway. Recent studies indicate that retrograde trafficking is vital to early metazoan development, nutrient homeostasis, and for processes that protect against Alzheimer's and other neurological diseases.

  3. PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde Golgi trafficking

    SciTech Connect

    Wood, Christopher S.; Schmitz, Karl R.; Bessman, Nicholas J.; Setty, Thanuja Gangi; Ferguson, Kathryn M.; Burd, Christopher G.

    2010-02-11

    Targeting and retention of resident integral membrane proteins of the Golgi apparatus underly the function of the Golgi in glycoprotein and glycolipid processing and sorting. In yeast, steady-state Golgi localization of multiple mannosyltransferases requires recognition of their cytosolic domains by the peripheral Golgi membrane protein Vps74, an orthologue of human GOLPH3/GPP34/GMx33/MIDAS (mitochondrial DNA absence sensitive factor). We show that targeting of Vps74 and GOLPH3 to the Golgi apparatus requires ongoing synthesis of phosphatidylinositol (PtdIns) 4-phosphate (PtdIns4P) by the Pik1 PtdIns 4-kinase and that modulation of the levels and cellular location of PtdIns4P leads to mislocalization of these proteins. Vps74 and GOLPH3 bind specifically to PtdIns4P, and a sulfate ion in a crystal structure of GOLPH3 indicates a possible phosphoinositide-binding site that is conserved in Vps74. Alterations in this site abolish phosphoinositide binding in vitro and Vps74 function in vivo. These results implicate Pik1 signaling in retention of Golgi-resident proteins via Vps74 and show that GOLPH3 family proteins are effectors of Golgi PtdIns 4-kinases.

  4. The yeast Batten disease orthologue Btn1 controls endosome–Golgi retrograde transport via SNARE assembly

    PubMed Central

    Kama, Rachel; Kanneganti, Vydehi; Ungermann, Christian

    2011-01-01

    The human Batten disease gene CLN3 and yeast orthologue BTN1 encode proteins of unclear function. We show that the loss of BTN1 phenocopies that of BTN2, which encodes a retromer accessory protein involved in the retrieval of specific cargo from late endosomes (LEs) to the Golgi. However, Btn1 localizes to Golgi and regulates soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor (SNARE) function to control retrograde transport. Specifically, BTN1 overexpression and deletion have opposing effects on phosphorylation of the Sed5 target membrane SNARE, on Golgi SNARE assembly, and on Golgi integrity. Although Btn1 does not interact physically with SNAREs, it regulates Sed5 phosphorylation by modulating Yck3, a palmitoylated endosomal kinase. This may involve modification of the Yck3 lipid anchor, as substitution with a transmembrane domain suppresses the deletion of BTN1 and restores trafficking. Correspondingly, deletion of YCK3 mimics that of BTN1 or BTN2 with respect to LE–Golgi retrieval. Thus, Btn1 controls retrograde sorting by regulating SNARE phosphorylation and assembly, a process that may be adversely affected in Batten Disease patients. PMID:21987636

  5. Defects in the COG complex and COG-related trafficking regulators affect neuronal Golgi function

    PubMed Central

    Climer, Leslie K.; Dobretsov, Maxim; Lupashin, Vladimir

    2015-01-01

    The Conserved Oligomeric Golgi (COG) complex is an evolutionarily conserved hetero-octameric protein complex that has been proposed to organize vesicle tethering at the Golgi apparatus. Defects in seven of the eight COG subunits are linked to Congenital Disorders of Glycosylation (CDG)-type II, a family of rare diseases involving misregulation of protein glycosylation, alterations in Golgi structure, variations in retrograde trafficking through the Golgi and system-wide clinical pathologies. A troublesome aspect of these diseases are the neurological pathologies such as low IQ, microcephaly, and cerebellar atrophy. The essential function of the COG complex is dependent upon interactions with other components of trafficking machinery, such as Rab-GTPases and SNAREs. COG-interacting Rabs and SNAREs have been implicated in neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. Defects in Golgi maintenance disrupts trafficking and processing of essential proteins, frequently associated with and contributing to compromised neuron function and human disease. Despite the recent advances in molecular neuroscience, the subcellular bases for most neurodegenerative diseases are poorly understood. This article gives an overview of the potential contributions of the COG complex and its Rab and SNARE partners in the pathogenesis of different neurodegenerative disorders. PMID:26578865

  6. Characterization of the human GARP (Golgi associated retrograde protein) complex

    SciTech Connect

    Liewen, Heike; Meinhold-Heerlein, Ivo; Oliveira, Vasco; Schwarzenbacher, Robert; Luo Guorong; Wadle, Andreas; Jung, Martin; Pfreundschuh, Michael; Stenner-Liewen, Frank . E-mail: stenlie@t-online.de

    2005-05-15

    The Golgi associated retrograde protein complex (GARP) or Vps fifty-three (VFT) complex is part of cellular inter-compartmental transport systems. Here we report the identification of the VFT tethering factor complex and its interactions in mammalian cells. Subcellular fractionation shows that human Vps proteins are found in the smooth membrane/Golgi fraction but not in the cytosol. Immunostaining of human Vps proteins displays a vesicular distribution most concentrated at the perinuclear envelope. Co-staining experiments with endosomal markers imply an endosomal origin of these vesicles. Significant accumulation of VFT complex positive endosomes is found in the vicinity of the Trans Golgi Network area. This is in accordance with a putative role in Golgi associated transport processes. In Saccharomyces cerevisiae, GARP is the main effector of the small GTPase Ypt6p and interacts with the SNARE Tlg1p to facilitate membrane fusion. Accordingly, the human homologue of Ypt6p, Rab6, specifically binds hVps52. In human cells, the 'orphan' SNARE Syntaxin 10 is the genuine binding partner of GARP mediated by hVps52. This reveals a previously unknown function of human Syntaxin 10 in membrane docking and fusion events at the Golgi. Taken together, GARP shows significant conservation between various species but diversification and specialization result in important differences in human cells.

  7. Syntaxin 5-Dependent Retrograde Transport to the trans-Golgi Network Is Required for Adeno-Associated Virus Transduction

    PubMed Central

    Nonnenmacher, Mathieu E.; Cintrat, Jean-Christophe; Gillet, Daniel

    2014-01-01

    ABSTRACT Intracellular transport of recombinant adeno-associated virus (AAV) is still incompletely understood. In particular, the trafficking steps preceding the release of incoming AAV particles from the endosomal system into the cytoplasm, allowing subsequent nuclear import and the initiation of gene expression, remain to be elucidated fully. Others and we previously showed that a significant proportion of viral particles are transported to the Golgi apparatus and that Golgi apparatus disruption caused by the drug brefeldin A efficiently blocks AAV serotype 2 (AAV2) transduction. However, because brefeldin A is known to exert pleiotropic effects on the entire endosomal system, the functional relevance of transport to the Golgi apparatus for AAV transduction remains to be established definitively. Here, we show that AAV2 trafficking toward the trans-Golgi network (TGN) and the Golgi apparatus correlates with transduction efficiency and relies on a nonclassical retrograde transport pathway that is independent of the retromer complex, late endosomes, and recycling endosomes. AAV2 transduction is unaffected by the knockdown of syntaxins 6 and 16, which are two major effectors in the retrograde transport of both exogenous and endogenous cargo. On the other hand, inhibition of syntaxin 5 function by small interfering RNA silencing or treatment with cyclized Retro-2 strongly decreases AAV2 transduction and transport to the Golgi apparatus. This inhibition of transduction is observed with several AAV serotypes and a number of primary and immortalized cells. Together, our data strongly suggest that syntaxin 5-mediated retrograde transport to the Golgi apparatus is a broadly conserved feature of AAV trafficking that appears to be independent of the identity of the receptors used for viral attachment. IMPORTANCE Gene therapy constitutes a promising approach for the treatment of life-threatening conditions refractory to any other form of remedy. Adeno-associated virus (AAV

  8. Retrograde Transport from Early Endosomes to the trans-Golgi Network Enables Membrane Wrapping and Egress of Vaccinia Virus Virions

    PubMed Central

    Sivan, Gilad; Weisberg, Andrea S.; Americo, Jeffrey L.

    2016-01-01

    ABSTRACT The anterograde pathway, from the endoplasmic reticulum through the trans-Golgi network to the cell surface, is utilized by trans-membrane and secretory proteins. The retrograde pathway, which directs traffic in the opposite direction, is used following endocytosis of exogenous molecules and recycling of membrane proteins. Microbes exploit both routes: viruses typically use the anterograde pathway for envelope formation prior to exiting the cell, whereas ricin and Shiga-like toxins and some nonenveloped viruses use the retrograde pathway for cell entry. Mining a human genome-wide RNA interference (RNAi) screen revealed a need for multiple retrograde pathway components for cell-to-cell spread of vaccinia virus. We confirmed and extended these results while discovering that retrograde trafficking was required for virus egress rather than entry. Retro-2, a specific retrograde trafficking inhibitor of protein toxins, potently prevented spread of vaccinia virus as well as monkeypox virus, a human pathogen. Electron and confocal microscopy studies revealed that Retro-2 prevented wrapping of virions with an additional double-membrane envelope that enables microtubular transport, exocytosis, and actin polymerization. The viral B5 and F13 protein components of this membrane, which are required for wrapping, normally colocalize in the trans-Golgi network. However, only B5 traffics through the secretory pathway, suggesting that F13 uses another route to the trans-Golgi network. The retrograde route was demonstrated by finding that F13 was largely confined to early endosomes and failed to colocalize with B5 in the presence of Retro-2. Thus, vaccinia virus makes novel use of the retrograde transport system for formation of the viral wrapping membrane. IMPORTANCE Efficient cell-to-cell spread of vaccinia virus and other orthopoxviruses depends on the wrapping of infectious particles with a double membrane that enables microtubular transport, exocytosis, and actin

  9. A Conserved Structural Motif Mediates Retrograde Trafficking of Shiga Toxin Types 1 and 2.

    PubMed

    Selyunin, Andrey S; Mukhopadhyay, Somshuvra

    2015-12-01

    Shiga toxin-producing Escherichia coli (STEC) produce two types of Shiga toxin (STx): STx1 and STx2. The toxin A-subunits block protein synthesis, while the B-subunits mediate retrograde trafficking. STEC infections do not have definitive treatments, and there is growing interest in generating toxin transport inhibitors for therapy. However, a comprehensive understanding of the mechanisms of toxin trafficking is essential for drug development. While STx2 is more toxic in vivo, prior studies focused on STx1 B-subunit (STx1B) trafficking. Here, we show that, compared with STx1B, trafficking of the B-subunit of STx2 (STx2B) to the Golgi occurs with slower kinetics. Despite this difference, similar to STx1B, endosome-to-Golgi transport of STx2B does not involve transit through degradative late endosomes and is dependent on dynamin II, epsinR, retromer and syntaxin5. Importantly, additional experiments show that a surface-exposed loop in STx2B (β4-β5 loop) is required for its endosome-to-Golgi trafficking. We previously demonstrated that residues in the corresponding β4-β5 loop of STx1B are required for interaction with GPP130, the STx1B-specific endosomal receptor, and for endosome-to-Golgi transport. Overall, STx1B and STx2B share a common pathway and use a similar structural motif to traffic to the Golgi, suggesting that the underlying mechanisms of endosomal sorting may be evolutionarily conserved.

  10. Regulation of Golgi signaling and trafficking by the KDEL receptor.

    PubMed

    Cancino, Jorge; Jung, Juan E; Luini, Alberto

    2013-10-01

    Intracellular membrane transport involves the well-coordinated engagement of a series of organelles and molecular machineries that ensure that proteins are delivered to their correct cellular locations according to their function. To maintain the homeostasis of the secretory system, the fluxes of membranes and protein across the transport compartments must be precisely balanced. This control should rely on a mechanism that senses the movement of the traffic and generates the required homeostatic response. Due to its central position in the secretory pathway and to the large amounts of signaling molecules associated with it, the Golgi complex represents the ideal candidate for this regulation. The generation of autonomous signaling by the Golgi complex in response to the arrival of cargo from the endoplasmic reticulum (ER) has been experimentally addressed only in recent years. These studies have revealed that cargo moving from the ER to the Golgi activates a series of signaling pathways, the functional significance of which appears to be to maintain the homeostasis of the Golgi complex and to activate Golgi trafficking according to internal demand. We have termed this regulatory mechanism the Golgi control system. A key player in this Golgi control system is the KDEL receptor, which has previously been shown to retrieve chaperones back to the endoplasmic reticulum and more recently to behave as a signaling receptor. Here, we discuss the particular role of KDEL receptor signaling in the regulation of important pathways involved in the maintenance of the homeostasis of the transport apparatus, and in particular, of the Golgi complex.

  11. A novel imaging method for quantitative Golgi localization reveals differential intra-Golgi trafficking of secretory cargoes

    PubMed Central

    Tie, Hieng Chiong; Mahajan, Divyanshu; Chen, Bing; Cheng, Li; VanDongen, Antonius M. J.; Lu, Lei

    2016-01-01

    Cellular functions of the Golgi are determined by the unique distribution of its resident proteins. Currently, electron microscopy is required for the localization of a Golgi protein at the sub-Golgi level. We developed a quantitative sub-Golgi localization method based on centers of fluorescence masses of nocodazole-induced Golgi ministacks under conventional optical microscopy. Our method is rapid, convenient, and quantitative, and it yields a practical localization resolution of ∼30 nm. The method was validated by the previous electron microscopy data. We quantitatively studied the intra-Golgi trafficking of synchronized secretory membrane cargoes and directly demonstrated the cisternal progression of cargoes from the cis- to the trans-Golgi. Our data suggest that the constitutive efflux of secretory cargoes could be restricted at the Golgi stack, and the entry of the trans-Golgi network in secretory pathway could be signal dependent. PMID:26764092

  12. δ-COP modulates Aβ peptide formation via retrograde trafficking of APP.

    PubMed

    Bettayeb, Karima; Chang, Jerry C; Luo, Wenjie; Aryal, Suvekshya; Varotsis, Dante; Randolph, Lisa; Netzer, William J; Greengard, Paul; Flajolet, Marc

    2016-05-10

    The components involved in cellular trafficking and protein recycling machinery that have been associated with increased Alzheimer's disease (AD) risk belong to the late secretory compartments for the most part. Here, we hypothesize that these late unavoidable events might be the consequence of earlier complications occurring while amyloid precursor protein (APP) is trafficking through the early secretory pathway. We investigated the relevance to AD of coat protein complex I (COPI)-dependent trafficking, an early step in Golgi-to-endoplasmic reticulum (ER) retrograde transport and one of the very first trafficking steps. Using a complex set of imaging technologies, including inverse fluorescence recovery after photobleaching (iFRAP) and photoactivatable probes, coupled to biochemical experiments, we show that COPI subunit δ (δ-COP) affects the biology of APP, including its subcellular localization and cell surface expression, its trafficking, and its metabolism. These findings demonstrate the crucial role of δ-COP in APP metabolism and, consequently, the generation of amyloid-β (Aβ) peptide, providing previously nondescribed mechanistic explanations of the underlying events.

  13. Role of Retrograde Trafficking in Stress Response, Host Cell Interactions, and Virulence of Candida albicans

    PubMed Central

    Liu, Yaoping; Solis, Norma V.; Heilmann, Clemens J.; Phan, Quynh T.; Mitchell, Aaron P.; Klis, Frans M.

    2014-01-01

    In Saccharomyces cerevisiae, the vacuolar protein sorting complexes Vps51/52/53/54 and Vps15/30/34/38 are essential for efficient endosome-to-Golgi complex retrograde transport. Here we investigated the function of Vps15 and Vps51, representative members of these complexes, in the stress resistance, host cell interactions, and virulence of Candida albicans. We found that C. albicans vps15Δ/Δ and vps51Δ/Δ mutants had abnormal vacuolar morphology, impaired retrograde protein trafficking, and dramatically increased susceptibility to a variety of stressors. These mutants also had reduced capacity to invade and damage oral epithelial cells in vitro and attenuated virulence in the mouse model of oropharyngeal candidiasis. Proteomic analysis of the cell wall of the vps51Δ/Δ mutant revealed increased levels of the Crh11 and Utr2 transglycosylases, which are targets of the calcineurin signaling pathway. The transcript levels of the calcineurin pathway members CHR11, UTR2, CRZ1, CNA1, and CNA2 were elevated in the vps15Δ/Δ and vps51Δ/Δ mutants. Furthermore, these strains were highly sensitive to the calcineurin-specific inhibitor FK506. Also, deletion of CHR11 and UTR2 further increased the stress susceptibility of these mutants. In contrast, overexpression of CRH11 and UTR2 partially rescued their defects in stress resistance, but not host cell interactions. Therefore, intact retrograde trafficking in C. albicans is essential for stress resistance, host cell interactions, and virulence. Aberrant retrograde trafficking stimulates the calcineurin signaling pathway, leading to the increased expression of Chr11 and Utr2, which enables C. albicans to withstand environmental stress. PMID:24363364

  14. Multiple ER–Golgi SNARE transmembrane domains are dispensable for trafficking but required for SNARE recycling

    PubMed Central

    Chen, Li; Lau, Martin S. Y.; Banfield, David K.

    2016-01-01

    The formation of soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes between opposing membranes is an essential prerequisite for fusion between vesicles and their target compartments. The composition and length of a SNARE’s transmembrane domain (TMD) is also an indicator for their steady-state distribution in cells. The evolutionary conservation of the SNARE TMD, together with the strict requirement of this feature for membrane fusion in biochemical studies, implies that the TMD represents an essential protein module. Paradoxically, we find that for several essential ER- and Golgi-localized SNAREs, a TMD is unnecessary. Moreover, in the absence of a covalent membrane tether, such SNAREs can still support ER–Golgi vesicle transport and recapitulate established genetic interactions. Transport anomalies appear to be restricted to retrograde trafficking, but these defects are overcome by the attachment of a C-terminal lipid anchor to the SNARE. We conclude that the TMD functions principally to support the recycling of Qb-, Qc-, and R-SNAREs and, in so doing, retrograde transport. PMID:27385338

  15. Low cytoplasmic pH reduces ER-Golgi trafficking and induces disassembly of the Golgi apparatus

    SciTech Connect

    Soonthornsit, Jeerawat; Yamaguchi, Yoko; Tamura, Daisuke; Ishida, Ryuichi; Nakakoji, Yoko; Osako, Shiho; Yamamoto, Akitsugu; Nakamura, Nobuhiro

    2014-11-01

    The Golgi apparatus was dramatically disassembled when cells were incubated in a low pH medium. The cis-Golgi disassembled quickly, extended tubules and spread to the periphery of cells within 30 min. In contrast, medial- and trans-Golgi were fragmented in significantly larger structures of smaller numbers at a slower rate and remained largely in structures distinct from the cis-Golgi. Electron microscopy revealed the complete disassembly of the Golgi stack in low pH treated cells. The effect of low pH was reversible; the Golgi apparatus reassembled to form a normal ribbon-like structure within 1–2 h after the addition of a control medium. The anterograde ER to Golgi transport and retrograde Golgi to ER transport were both reduced under low pH. Phospholipase A{sub 2} inhibitors (ONO, BEL) effectively suppressed the Golgi disassembly, suggesting that the phospholipase A{sub 2} was involved in the Golgi disassembly. Over-expression of Rab1, 2, 30, 33 and 41 also suppressed the Golgi disassembly under low pH, suggesting that they have protective role against Golgi disassembly. Low pH treatment reduced cytoplasmic pH, but not the luminal pH of the Golgi apparatus, strongly suggesting that reduction of the cytoplasmic pH triggered the Golgi disassembly. Because a lower cytoplasmic pH is induced in physiological or pathological conditions, disassembly of the Golgi apparatus and reduction of vesicular transport through the Golgi apparatus may play important roles in cell physiology and pathology. Furthermore, our findings indicated that low pH treatment can serve as an important tool to analyze the molecular mechanisms that support the structure and function of the Golgi apparatus. - Highlights: • The Golgi apparatus reversibly disassembles by low pH treatment. • The cis-Golgi disassembles quickly generating tubular structures. • Both anterograde and retrograde transport between the ER and the Golgi apparatus are reduced. • Phospholipase A{sub 2} inhibitors (ONO

  16. Low cytoplasmic pH reduces ER-Golgi trafficking and induces disassembly of the Golgi apparatus.

    PubMed

    Soonthornsit, Jeerawat; Yamaguchi, Yoko; Tamura, Daisuke; Ishida, Ryuichi; Nakakoji, Yoko; Osako, Shiho; Yamamoto, Akitsugu; Nakamura, Nobuhiro

    2014-11-01

    The Golgi apparatus was dramatically disassembled when cells were incubated in a low pH medium. The cis-Golgi disassembled quickly, extended tubules and spread to the periphery of cells within 30 min. In contrast, medial- and trans-Golgi were fragmented in significantly larger structures of smaller numbers at a slower rate and remained largely in structures distinct from the cis-Golgi. Electron microscopy revealed the complete disassembly of the Golgi stack in low pH treated cells. The effect of low pH was reversible; the Golgi apparatus reassembled to form a normal ribbon-like structure within 1-2h after the addition of a control medium. The anterograde ER to Golgi transport and retrograde Golgi to ER transport were both reduced under low pH. Phospholipase A2 inhibitors (ONO, BEL) effectively suppressed the Golgi disassembly, suggesting that the phospholipase A2 was involved in the Golgi disassembly. Over-expression of Rab1, 2, 30, 33 and 41 also suppressed the Golgi disassembly under low pH, suggesting that they have protective role against Golgi disassembly. Low pH treatment reduced cytoplasmic pH, but not the luminal pH of the Golgi apparatus, strongly suggesting that reduction of the cytoplasmic pH triggered the Golgi disassembly. Because a lower cytoplasmic pH is induced in physiological or pathological conditions, disassembly of the Golgi apparatus and reduction of vesicular transport through the Golgi apparatus may play important roles in cell physiology and pathology. Furthermore, our findings indicated that low pH treatment can serve as an important tool to analyze the molecular mechanisms that support the structure and function of the Golgi apparatus.

  17. A non-muscle myosin II motor links NR1 to retrograde trafficking and proteasomal degradation in PC12 cells.

    PubMed

    Vazhappilly, Rema; Wee, Karen Siaw-Ling; Sucher, Nikolaus J; Low, Chian-Ming

    2010-03-01

    Rat pheochromocytoma (PC12) cells have been shown to lack functional NMDA receptors; yet, these cells express NR1 subunits of the NMDA receptor. The reason for the lack of functional receptors has been attributed to the absence of significant levels of NR2 subunits to co-assemble with NR1. It is known that PC12 expresses very low levels of NR2C, with complete absence of other types of NR2 subunits. The purpose of the present study is to describe the molecular mechanism of trafficking and degradation of unassembled NR1 subunits in PC12 cells. The localization of NR1 subunits in PC12 cells were evaluated by immunofluorescence and co-immunoprecipitation, which showed that NR1 was present in the endoplasmic reticulum and cis-middle compartments of the Golgi apparatus. Upon treatment with a proteasome inhibitor, MG132, the ubiquitinylated species of NR1 subunit were detected, suggesting that NR1 is being targeted for endoplasmic reticulum-associated proteasomal degradation. Our previous studies suggest that NR1 subunits from the Golgi do not proceed to trans-Golgi, hence they will require re-routing to the endoplasmic reticulum for degradation. Further investigations on the factors involved in the trafficking of NR1 from Golgi to endoplasmic reticulum were performed using co-immunoprecipitation and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. These revealed the co-association of NR1 with non-muscle myosin heavy chain II isoforms A and B. We also demonstrate the functional significance of this interaction through the use of a myosin inhibitor, blebbistatin, to disrupt brefeldin A-induced Golgi-to-endoplasmic reticulum trafficking of NR1. In conclusion, our results suggest that non-muscle myosin II is involved in the retrograde trafficking of NR1 subunits from the cis/middle-Golgi to the endoplasmic reticulum for proteasomal degradation in PC12.

  18. Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport.

    PubMed

    Hirata, Tetsuya; Fujita, Morihisa; Nakamura, Shota; Gotoh, Kazuyoshi; Motooka, Daisuke; Murakami, Yoshiko; Maeda, Yusuke; Kinoshita, Taroh

    2015-09-01

    The importance of endosome-to-trans-Golgi network (TGN) retrograde transport in the anterograde transport of proteins is unclear. In this study, genome-wide screening of the factors necessary for efficient anterograde protein transport in human haploid cells identified subunits of the Golgi-associated retrograde protein (GARP) complex, a tethering factor involved in endosome-to-TGN transport. Knockout (KO) of each of the four GARP subunits, VPS51-VPS54, in HEK293 cells caused severely defective anterograde transport of both glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins from the TGN. Overexpression of VAMP4, v-SNARE, in VPS54-KO cells partially restored not only endosome-to-TGN retrograde transport, but also anterograde transport of both GPI-anchored and transmembrane proteins. Further screening for genes whose overexpression normalized the VPS54-KO phenotype identified TMEM87A, encoding an uncharacterized Golgi-resident membrane protein. Overexpression of TMEM87A or its close homologue TMEM87B in VPS54-KO cells partially restored endosome-to-TGN retrograde transport and anterograde transport. Therefore GARP- and VAMP4-dependent endosome-to-TGN retrograde transport is required for recycling of molecules critical for efficient post-Golgi anterograde transport of cell-surface integral membrane proteins. In addition, TMEM87A and TMEM87B are involved in endosome-to-TGN retrograde transport.

  19. Mutant Huntingtin Impairs Post-Golgi Trafficking to Lysosomes by Delocalizing Optineurin/Rab8 Complex from the Golgi Apparatus

    PubMed Central

    del Toro, Daniel; Alberch, Jordi; Lázaro-Diéguez, Francisco; Martín-Ibáñez, Raquel; Xifró, Xavier; Egea, Gustavo

    2009-01-01

    Huntingtin regulates post-Golgi trafficking of secreted proteins. Here, we studied the mechanism by which mutant huntingtin impairs this process. Colocalization studies and Western blot analysis of isolated Golgi membranes showed a reduction of huntingtin in the Golgi apparatus of cells expressing mutant huntingtin. These findings correlated with a decrease in the levels of optineurin and Rab8 in the Golgi apparatus that can be reverted by overexpression of full-length wild-type huntingtin. In addition, immunoprecipitation studies showed reduced interaction between mutant huntingtin and optineurin/Rab8. Cells expressing mutant huntingtin produced both an accumulation of clathrin adaptor complex 1 at the Golgi and an increase of clathrin-coated vesicles in the vicinity of Golgi cisternae as revealed by electron microscopy. Furthermore, inverse fluorescence recovery after photobleaching analysis for lysosomal-associated membrane protein-1 and mannose-6-phosphate receptor showed that the optineurin/Rab8-dependent post-Golgi trafficking to lysosomes was impaired in cells expressing mutant huntingtin or reducing huntingtin levels by small interfering RNA. Accordingly, these cells showed a lower content of cathepsin D in lysosomes, which led to an overall reduction of lysosomal activity. Together, our results indicate that mutant huntingtin perturbs post-Golgi trafficking to lysosomal compartments by delocalizing the optineurin/Rab8 complex, which, in turn, affects the lysosomal function. PMID:19144827

  20. Transport according to GARP: receiving retrograde cargo at the trans-Golgi network.

    PubMed

    Bonifacino, Juan S; Hierro, Aitor

    2011-03-01

    Tethering factors are large protein complexes that capture transport vesicles and enable their fusion with acceptor organelles at different stages of the endomembrane system. Recent studies have shed new light on the structure and function of a heterotetrameric tethering factor named Golgi-associated retrograde protein (GARP), which promotes fusion of endosome-derived, retrograde transport carriers to the trans-Golgi network (TGN). X-ray crystallography of the Vps53 and Vps54 subunits of GARP has revealed that this complex is structurally related to other tethering factors such as the exocyst, the conserved oligomeric Golgi (COG) and Dsl1 (dependence on SLY1-20) complexes, indicating that they all might work by a similar mechanism. Loss of GARP function compromises the growth, fertility and/or viability of the defective organisms, emphasizing the essential nature of GARP-mediated retrograde transport.

  1. Arabidopsis COG Complex Subunits COG3 and COG8 Modulate Golgi Morphology, Vesicle Trafficking Homeostasis and Are Essential for Pollen Tube Growth

    PubMed Central

    Li, Yingxin; Li, Pengxiang; Gao, Caiji; Ding, Yu; Lan, Zhiyi; Shi, Zhixuan; Rui, Qingchen; Feng, Yihong; Liu, Yulong; Zhao, Yanxue; Wu, Chengyun; Zhang, Qian; Li, Yan; Jiang, Liwen

    2016-01-01

    Spatially and temporally regulated membrane trafficking events incorporate membrane and cell wall materials into the pollen tube apex and are believed to underlie the rapid pollen tube growth. In plants, the molecular mechanisms and physiological functions of intra-Golgi transport and Golgi integrity maintenance remain largely unclear. The conserved oligomeric Golgi (COG) complex has been implicated in tethering of retrograde intra-Golgi vesicles in yeast and mammalian cells. Using genetic and cytologic approaches, we demonstrate that T-DNA insertions in Arabidopsis COG complex subunits, COG3 and COG8, cause an absolute, male-specific transmission defect that can be complemented by expression of COG3 and COG8 from the LAT52 pollen promoter, respectively. No obvious abnormalities in the microgametogenesis of the two mutants are observed, but in vitro and in vivo pollen tube growth are defective. COG3 or COG8 proteins fused to green fluorescent protein (GFP) label the Golgi apparatus. In pollen of both mutants, Golgi bodies exhibit altered morphology. Moreover, γ-COP and EMP12 proteins lose their tight association with the Golgi. These defects lead to the incorrect deposition of cell wall components and proteins during pollen tube growth. COG3 and COG8 interact directly with each other, and a structural model of the Arabidopsis COG complex is proposed. We believe that the COG complex helps to modulate Golgi morphology and vesicle trafficking homeostasis during pollen tube tip growth. PMID:27448097

  2. Orientia tsutsugamushi Ank9 is a multifunctional effector that utilizes a novel GRIP-like Golgi localization domain for Golgi-to-endoplasmic reticulum trafficking and interacts with host COPB2.

    PubMed

    Beyer, Andrea R; Rodino, Kyle G; VieBrock, Lauren; Green, Ryan S; Tegels, Brittney K; Oliver, Lee D; Marconi, Richard T; Carlyon, Jason A

    2017-01-19

    Orientia tsutsugamushi causes scrub typhus, a potentially fatal infection that afflicts 1 million people annually. This obligate intracellular bacterium boasts one of the largest microbial arsenals of ankyrin repeat-containing protein (Ank) effectors, most of which target the endoplasmic reticulum (ER) by undefined mechanisms. Ank9 is the only one proven to function during infection. Here, we demonstrate that Ank9 bears a motif that mimics the GRIP domain of eukaryotic golgins and is necessary and sufficient for its Golgi localization. Ank9 reaches the ER exclusively by retrograde trafficking from the Golgi. Consistent with this observation, it binds COPB2, a host protein that mediates Golgi-to-ER transport. Ank9 destabilizes the Golgi and ER in a Golgi localization domain-dependent manner and induces the activating transcription factor 4-dependent unfolded protein response. The Golgi is also destabilized in cells infected with O. tsutsugamushi or treated with COPB2 small interfering RNA. COPB2 reduction and/or the cellular events that it invokes, such as Golgi destabilization, benefit Orientia replication. Thus, Ank9 or bacterial negative modulation of COPB2 might contribute to the bacterium's intracellular replication. This report identifies a novel microbial Golgi localization domain, links Ank9 to the ability of O. tsutsugamushi to perturb Golgi structure, and describes the first mechanism by which any Orientia effector targets the secretory pathway.

  3. Golgi apparatus and protein trafficking in Alzheimer's disease.

    PubMed

    Baloyannis, Stavros J

    2014-01-01

    Alzheimer's disease (AD) is a progressive degeneration of the brain, inducing memory decline, inability in learning, and behavioral alterations, resulting progressively in a marked deterioration of all mental activities and eventually a vegetative state. The main causative factor, however, is still unclear. The implication of amyloid-β, AβPP, tau protein, the selective loss of neurons, the alteration of the synapses, the cytoskeletal changes, and the morphological alterations of the brain capillaries contribute substantially to the pathogenetic profile of the disease, without sufficiently enlightening the initial steps of the pathological procedures. The ultrastructure of the neuronal organelles as well as histochemical studies revealed substantial alterations, primarily concerning mitochondria. In this study, the morphological and morphometric alterations of the Golgi apparatus (GA) are described in the Purkinje cells of the cerebellum in twenty AD brains, studied with electron microscopy. As it is well established, GA has a very important role to play in many procedures such as glycosylation, sulfation, and proteolysis of protein systems, which are synthesized in the endoplasmic reticulum of nerve cells and glia. GA may also play a crucial role in protein trafficking and in misfolding of protein aggregates. In addition, the hyperphosphorylation of tau protein is closely related with the pathology of GA. In AD cases, described in this study, an obvious fragmentation of the cisternae of GA was observed in the Purkinje cells of the vermis and the cerebellar hemispheres. This alteration of GA may be associated with alterations of microtubules, impaired protein trafficking, and dendritic, spinal, and synaptic pathology, since protein trafficking plays an essential role in the three dimensional organization of the dendritic arbor and in the integrity of the synaptic components.

  4. Transport According to GARP: Receiving Retrograde Cargo at the Trans-Golgi Network

    PubMed Central

    Bonifacino, Juan S.; Hierro, Aitor

    2010-01-01

    Tethering factors are large protein complexes that capture transport vesicles and enable their fusion with acceptor organelles at different stages of the endomembrane system. Recent studies have shed new light on the structure and function of a heterotetrameric tethering factor named Golgi-associated retrograde protein (GARP), which promotes fusion of endosome-derived, retrograde transport carriers to the trans-Golgi network (TGN). X-ray crystallography of the Vps53 and Vps54 subunits of GARP has revealed that this complex is structurally related to other tethering factors such as the exocyst, COG and Dsl1, indicating that they all might work by a similar mechanism. Loss of GARP function compromises the growth, fertility and/or viability of the defective organisms, underscoring the essential nature of GARP-mediated retrograde transport. PMID:21183348

  5. HIV-1 Nef Binds a Subpopulation of MHC-I throughout Its Trafficking Itinerary and Down-regulates MHC-I by Perturbing Both Anterograde and Retrograde Trafficking*

    PubMed Central

    Yi, Ling; Rosales, Tilman; Rose, Jeremy J.; Chaudhury, Bhabhadeb; Knutson, Jay R.; Venkatesan, Sundararajan

    2010-01-01

    The HIV protein Nef is thought to mediate immune evasion and promote viral persistence in part by down-regulating major histocompatibility complex class I protein (MHC-I or HLA-I) from the cell surface. Two different models have been proposed to explain this phenomenon as follows: 1) stimulation of MHC-I retrograde trafficking from and aberrant recycling to the plasma membrane, and 2) inhibition of anterograde trafficking of newly synthesized HLA-I from the endoplasmic reticulum to the plasma membrane. We show here that Nef simultaneously uses both mechanisms to down-regulate HLA-I in peripheral blood mononuclear cells or HeLa cells. Consistent with this, we found by using fluorescence correlation spectroscopy that a third of diffusing HLA-I at the endoplasmic reticulum, Golgi/trans-Golgi network, and the plasma membrane (PM) was associated with Nef. The binding of Nef was similarly avid for native HLA-I and recombinant HLA-I A2 at the PM. Nef binding to HLA-I at the PM was sensitive to specific inhibition of endocytosis. It was also attenuated by cyclodextrin disruption of PM lipid micro-domain architecture, a change that also retarded lateral diffusion and induced large clusters of HLA-I. In all, our data support a model for Nef down-regulation of HLA-I that involves both major trafficking itineraries and persistent protein-protein interactions throughout the cell. PMID:20622010

  6. GOLGI IN COPPER HOMEOSTASIS: A VIEW FROM THE MEMBRANE TRAFFICKING FIELD

    PubMed Central

    Polishchuk, Roman; Lutsenko, Svetlana

    2013-01-01

    Copper is essential for a variety of important biological processes as a cofactor and regulator of many enzymes. Incorporation of copper into the secreted and plasma membrane-targeted cuproenzymes takes place in Golgi, a compartment central for normal copper homeostasis. The Golgi complex harbors copper-transporting ATPases, ATP7A and ATP7B, that transfer copper from the cytosol into Golgi lumen for incorporation into copper-dependent enzymes. The Golgi complex also sends these ATPases to appropriate post-Golgi destinations to ensure correct Cu fluxes in the body and to avoid potentially toxic copper accumulation. Mutations in ATP7A or ATP7B or in the proteins that regulate their trafficking affect their exit from Golgi or subsequent retrieval to this organelle. This, in turn, disrupts the homeostatic Cu balance, resulting in copper deficiency (Menkes disease) or copper overload (Wilson disease). Research over the last decade has yielded significant insights into the enzymatic properties and cell biology of the copper-ATPases. However, the mechanisms through which the Golgi regulates trafficking of ATP7A/7B and, therefore, maintain Cu homeostasis remain unclear. This review summarizes current data on the role of the Golgi in Cu metabolism and outlines questions and challenges that should be addressed to understand ATP7A and ATP7B trafficking mechanisms in health and disease. PMID:23846821

  7. Live cell assays to identify regulators of ER to Golgi trafficking

    PubMed Central

    Lisauskas, Tautvydas; Matula, Petr; Claas, Christoph; Reusing, Susanne; Wiemann, Stefan; Erfle, Holger; Lehmann, Lars; Fischer, Peter; Eils, Roland; Rohr, Karl; Storrie, Brian; Starkuviene, Vytaute

    2013-01-01

    We applied fluorescence microscopy based quantitative assays to living cells to identify regulators of ER to Golgi trafficking and/or Golgi complex maintenance. We first validated an automated procedure to identify factors, which influence Golgi to ER re-localization of GalT-CFP after brefeldin A (BFA) addition and/or wash-out. We then tested 14 proteins that localize to the ER and/or Golgi complex when over-expressed for a role in ER to Golgi trafficking. Nine of them interfered with the rate of BFA induced redistribution of GalT-CFP from the Golgi complex to the ER, 6 of them interfered with GalT-CFP redistribution from the ER to a juxtanuclear region (i.e., Golgi complex) after BFA wash-out, and 6 of them were positive effectors in both assays. Notably, our live cell approach captures regulator function in ER to Golgi trafficking, that were missed in previous fixed cell assays; as well as assigns putative roles for other less characterized proteins. Moreover, we show that our assays can be extended to RNAi and chemical screens. PMID:22132776

  8. GOLPH3 drives cell migration by promoting Golgi reorientation and directional trafficking to the leading edge

    PubMed Central

    Xing, Mengke; Peterman, Marshall C.; Davis, Robert L.; Oegema, Karen; Shiau, Andrew K.; Field, Seth J.

    2016-01-01

    The mechanism of directional cell migration remains an important problem, with relevance to cancer invasion and metastasis. GOLPH3 is a common oncogenic driver of human cancers, and is the first oncogene that functions at the Golgi in trafficking to the plasma membrane. Overexpression of GOLPH3 is reported to drive enhanced cell migration. Here we show that the phosphatidylinositol-4-phosphate/GOLPH3/myosin 18A/F-actin pathway that is critical for Golgi–to–plasma membrane trafficking is necessary and limiting for directional cell migration. By linking the Golgi to the actin cytoskeleton, GOLPH3 promotes reorientation of the Golgi toward the leading edge. GOLPH3 also promotes reorientation of lysosomes (but not other organelles) toward the leading edge. However, lysosome function is dispensable for migration and the GOLPH3 dependence of lysosome movement is indirect, via GOLPH3’s effect on the Golgi. By driving reorientation of the Golgi to the leading edge and driving forward trafficking, particularly to the leading edge, overexpression of GOLPH3 drives trafficking to the leading edge of the cell, which is functionally important for directional cell migration. Our identification of a novel pathway for Golgi reorientation controlled by GOLPH3 provides new insight into the mechanism of directional cell migration with important implications for understanding GOLPH3’s role in cancer. PMID:27708138

  9. Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis

    PubMed Central

    Zhang, Yi; Nikolovski, Nino; Sorieul, Mathias; Vellosillo, Tamara; McFarlane, Heather E.; Dupree, Ray; Kesten, Christopher; Schneider, René; Driemeier, Carlos; Lathe, Rahul; Lampugnani, Edwin; Yu, Xiaolan; Ivakov, Alexander; Doblin, Monika S.; Mortimer, Jenny C.; Brown, Steven P.; Persson, Staffan; Dupree, Paul

    2016-01-01

    As the most abundant biopolymer on Earth, cellulose is a key structural component of the plant cell wall. Cellulose is produced at the plasma membrane by cellulose synthase (CesA) complexes (CSCs), which are assembled in the endomembrane system and trafficked to the plasma membrane. While several proteins that affect CesA activity have been identified, components that regulate CSC assembly and trafficking remain unknown. Here we show that STELLO1 and 2 are Golgi-localized proteins that can interact with CesAs and control cellulose quantity. In the absence of STELLO function, the spatial distribution within the Golgi, secretion and activity of the CSCs are impaired indicating a central role of the STELLO proteins in CSC assembly. Point mutations in the predicted catalytic domains of the STELLO proteins indicate that they are glycosyltransferases facing the Golgi lumen. Hence, we have uncovered proteins that regulate CSC assembly in the plant Golgi apparatus. PMID:27277162

  10. Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis.

    PubMed

    Zhang, Yi; Nikolovski, Nino; Sorieul, Mathias; Vellosillo, Tamara; McFarlane, Heather E; Dupree, Ray; Kesten, Christopher; Schneider, René; Driemeier, Carlos; Lathe, Rahul; Lampugnani, Edwin; Yu, Xiaolan; Ivakov, Alexander; Doblin, Monika S; Mortimer, Jenny C; Brown, Steven P; Persson, Staffan; Dupree, Paul

    2016-06-09

    As the most abundant biopolymer on Earth, cellulose is a key structural component of the plant cell wall. Cellulose is produced at the plasma membrane by cellulose synthase (CesA) complexes (CSCs), which are assembled in the endomembrane system and trafficked to the plasma membrane. While several proteins that affect CesA activity have been identified, components that regulate CSC assembly and trafficking remain unknown. Here we show that STELLO1 and 2 are Golgi-localized proteins that can interact with CesAs and control cellulose quantity. In the absence of STELLO function, the spatial distribution within the Golgi, secretion and activity of the CSCs are impaired indicating a central role of the STELLO proteins in CSC assembly. Point mutations in the predicted catalytic domains of the STELLO proteins indicate that they are glycosyltransferases facing the Golgi lumen. Hence, we have uncovered proteins that regulate CSC assembly in the plant Golgi apparatus.

  11. ECHIDNA-mediated post-Golgi trafficking of auxin carriers for differential cell elongation.

    PubMed

    Boutté, Yohann; Jonsson, Kristoffer; McFarlane, Heather E; Johnson, Errin; Gendre, Delphine; Swarup, Ranjan; Friml, Jirí; Samuels, Lacey; Robert, Stéphanie; Bhalerao, Rishikesh P

    2013-10-01

    The plant hormone indole-acetic acid (auxin) is essential for many aspects of plant development. Auxin-mediated growth regulation typically involves the establishment of an auxin concentration gradient mediated by polarly localized auxin transporters. The localization of auxin carriers and their amount at the plasma membrane are controlled by membrane trafficking processes such as secretion, endocytosis, and recycling. In contrast to endocytosis or recycling, how the secretory pathway mediates the localization of auxin carriers is not well understood. In this study we have used the differential cell elongation process during apical hook development to elucidate the mechanisms underlying the post-Golgi trafficking of auxin carriers in Arabidopsis. We show that differential cell elongation during apical hook development is defective in Arabidopsis mutant echidna (ech). ECH protein is required for the trans-Golgi network (TGN)-mediated trafficking of the auxin influx carrier AUX1 to the plasma membrane. In contrast, ech mutation only marginally perturbs the trafficking of the highly related auxin influx carrier LIKE-AUX1-3 or the auxin efflux carrier PIN-FORMED-3, both also involved in hook development. Electron tomography reveals that the trafficking defects in ech mutant are associated with the perturbation of secretory vesicle genesis from the TGN. Our results identify differential mechanisms for the post-Golgi trafficking of de novo-synthesized auxin carriers to plasma membrane from the TGN and reveal how trafficking of auxin influx carriers mediates the control of differential cell elongation in apical hook development.

  12. Distinct complexes of yeast Snx4 family SNX-BARs mediate retrograde trafficking of Snc1 and Atg27.

    PubMed

    Ma, Mengxiao; Burd, Christopher G; Chi, Richard J

    2017-02-01

    The yeast SNX4 sub-family of sorting nexin containing a Bin-Amphiphysin-Rvs domain (SNX-BAR) proteins, Snx4/Atg24, Snx41 and Atg20/Snx42, are required for endocytic recycling and selective autophagy. Here, we show that Snx4 forms 2 functionally distinct heterodimers: Snx4-Atg20 and Snx4-Snx41. Each heterodimer coats an endosome-derived tubule that mediates retrograde sorting of distinct cargo; the v-SNARE, Snc1, is a cargo of the Snx4-Atg20 pathway, and Snx4-Snx41 mediates retrograde sorting of Atg27, an integral membrane protein implicated in selective autophagy. Live cell imaging of individual endosomes shows that Snx4 and the Vps5-Vps17 retromer SNX-BAR heterodimer operate concurrently on a maturing endosome. Consistent with this, the yeast dynamin family protein, Vps1, which was previously shown to promote fission of retromer-coated tubules, promotes fission of Snx4-Atg20 coated tubules. The results indicate that the yeast SNX-BAR proteins coat 3 distinct types of endosome-derived carriers that mediate endosome-to-Golgi retrograde trafficking.

  13. PKCδ and ε regulate the morphological integrity of the ER-Golgi intermediate compartment (ERGIC) but not the anterograde and retrograde transports via the Golgi apparatus.

    PubMed

    Sugawara, Taichi; Nakatsu, Daiki; Kii, Hiroaki; Maiya, Nobuhiko; Adachi, Atsuhiro; Yamamoto, Akitsugu; Kano, Fumi; Murata, Masayuki

    2012-04-01

    The ER-Golgi intermediate compartment (ERGIC) is an organelle through which cargo proteins pass and are being transferred by either anterograde or retrograde transport between the endoplasmic reticulum (ER) and the Golgi apparatus. We examined the effect of 80 different kinase inhibitors on ERGIC morphology and found that rottlerin, a PKCδ inhibitor, induced the dispersion of the perinuclear ERGIC into punctate structures. Rottlerin also delayed anterograde transport of vesicular stomatitis virus G protein (VSVG) from the ER to the Golgi and retrograde transport of cholera toxin from cell surface to the ER via the Golgi. RNA interference revealed that knockdown of PKCδ or ε resulted in the dispersion of the ERGIC, but unexpectedly did not inhibit VSVG and cholera toxin transport. We also found that rottlerin depolarized the mitochondrial membrane potential, as does carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP), an uncoupler, and demonstrated that a decrease in the intracellular adenosine triphosphate (ATP) levels by rottlerin might underlie the block in transports. These results suggest that PKCδ and ε specifically regulate the morphology of the ERGIC and that the maintenance of ERGIC structure is not necessarily required for anterograde and retrograde transports.

  14. Syntaxin 6-mediated Golgi translocation plays an important role in nuclear functions of EGFR through microtubule-dependent trafficking

    PubMed Central

    Du, Y; Shen, J; Hsu, JL; Han, Z; Hsu, M-C; Yang, C-C; Kuo, H-P; Wang, Y-N; Yamaguchi, H; Miller, SA; Hung, M-C

    2013-01-01

    Receptor tyrosine kinases (RTKs) are cell surface receptors that initiate signal cascades in response to ligand stimulation. Abnormal expression and dysregulated intracellular trafficking of RTKs have been shown to be involved in tumorigenesis. Recent evidence shows that these cell surface receptors translocate from cell surface to different cellular compartments, including the Golgi, mitochondria, endoplasmic reticulum (ER) and the nucleus, to regulate physiological and pathological functions. Although some trafficking mechanisms have been resolved, the mechanism of intracellular trafficking from cell surface to the Golgi is not yet completely understood. Here we report a mechanism of Golgi translocation of epidermal growth factor receptor (EGFR) in which EGF-induced EGFR travels to the Golgi via microtubule-dependent movement by interacting with dynein and fuses with the Golgi through syntaxin 6-mediated membrane fusion. We also demonstrate that the microtubule- and syntaxin 6-mediated Golgi translocation of EGFR is necessary for its consequent nuclear translocation and nuclear functions. Thus, together with previous studies, the microtubule- and syntaxin 6-mediated trafficking pathway from cell surface to the Golgi, ER and the nucleus defines a comprehensive trafficking route for EGFR to travel from cell surface to the Golgi and the nucleus. PMID:23376851

  15. Syntaxin 6-mediated Golgi translocation plays an important role in nuclear functions of EGFR through microtubule-dependent trafficking.

    PubMed

    Du, Y; Shen, J; Hsu, J L; Han, Z; Hsu, M-C; Yang, C-C; Kuo, H-P; Wang, Y-N; Yamaguchi, H; Miller, S A; Hung, M-C

    2014-02-06

    Receptor tyrosine kinases (RTKs) are cell surface receptors that initiate signal cascades in response to ligand stimulation. Abnormal expression and dysregulated intracellular trafficking of RTKs have been shown to be involved in tumorigenesis. Recent evidence shows that these cell surface receptors translocate from cell surface to different cellular compartments, including the Golgi, mitochondria, endoplasmic reticulum (ER) and the nucleus, to regulate physiological and pathological functions. Although some trafficking mechanisms have been resolved, the mechanism of intracellular trafficking from cell surface to the Golgi is not yet completely understood. Here we report a mechanism of Golgi translocation of epidermal growth factor receptor (EGFR) in which EGF-induced EGFR travels to the Golgi via microtubule-dependent movement by interacting with dynein and fuses with the Golgi through syntaxin 6-mediated membrane fusion. We also demonstrate that the microtubule- and syntaxin 6-mediated Golgi translocation of EGFR is necessary for its consequent nuclear translocation and nuclear functions. Thus, together with previous studies, the microtubule- and syntaxin 6-mediated trafficking pathway from cell surface to the Golgi, ER and the nucleus defines a comprehensive trafficking route for EGFR to travel from cell surface to the Golgi and the nucleus.

  16. KIF13B regulates angiogenesis through Golgi to plasma membrane trafficking of VEGFR2.

    PubMed

    Yamada, Kaori H; Nakajima, Yuki; Geyer, Melissa; Wary, Kishore K; Ushio-Fukai, Masuko; Komarova, Yulia; Malik, Asrar B

    2014-10-15

    Although the trafficking of newly synthesized VEGFR2 to the plasma membrane is a key determinant of angiogenesis, the molecular mechanisms of Golgi to plasma membrane trafficking are unknown. Here, we have identified a key role of the kinesin family plus-end molecular motor KIF13B in delivering VEGFR2 cargo from the Golgi to the endothelial cell surface. KIF13B is shown to interact directly with VEGFR2 on microtubules. We also observed that overexpression of truncated versions of KIF13B containing the binding domains that interact with VEGFR2 inhibited VEGF-induced capillary tube formation. KIF13B depletion prevented VEGF-mediated endothelial migration, capillary tube formation and neo-vascularization in mice. Impairment in trafficking induced by knockdown of KIF13B shunted VEGFR2 towards the lysosomal degradation pathway. Thus, KIF13B is an essential molecular motor required for the trafficking of VEGFR2 from the Golgi, and its delivery to the endothelial cell surface mediates angiogenesis.

  17. Regulation of post-Golgi LH3 trafficking is essential for collagen homeostasis

    PubMed Central

    Banushi, Blerida; Forneris, Federico; Straatman-Iwanowska, Anna; Strange, Adam; Lyne, Anne-Marie; Rogerson, Clare; Burden, Jemima J.; Heywood, Wendy E.; Hanley, Joanna; Doykov, Ivan; Straatman, Kornelis R.; Smith, Holly; Bem, Danai; Kriston-Vizi, Janos; Ariceta, Gema; Risteli, Maija; Wang, Chunguang; Ardill, Rosalyn E.; Zaniew, Marcin; Latka-Grot, Julita; Waddington, Simon N.; Howe, S. J.; Ferraro, Francesco; Gjinovci, Asllan; Lawrence, Scott; Marsh, Mark; Girolami, Mark; Bozec, Laurent; Mills, Kevin; Gissen, Paul

    2016-01-01

    Post-translational modifications are necessary for collagen precursor molecules (procollagens) to acquire final shape and function. However, the mechanism and contribution of collagen modifications that occur outside the endoplasmic reticulum and Golgi are not understood. We discovered that VIPAR, with its partner proteins, regulate sorting of lysyl hydroxylase 3 (LH3, also known as PLOD3) into newly identified post-Golgi collagen IV carriers and that VIPAR-dependent sorting is essential for modification of lysines in multiple collagen types. Identification of structural and functional collagen abnormalities in cells and tissues from patients and murine models of the autosomal recessive multisystem disorder Arthrogryposis, Renal dysfunction and Cholestasis syndrome caused by VIPAR and VPS33B deficiencies confirmed our findings. Thus, regulation of post-Golgi LH3 trafficking is essential for collagen homeostasis and for the development and function of multiple organs and tissues. PMID:27435297

  18. Mammalian vesicle trafficking proteins of the endoplasmic reticulum and Golgi apparatus.

    PubMed

    Hay, J C; Hirling, H; Scheller, R H

    1996-03-08

    Vesicle traffic propagates and maintains distinct subcellular compartments and routes secretory products from their site of synthesis to their final destinations. As a basis for the specificity of vesicular transport reactions, each step in the secretory pathway appears to be handled by a distinct set of evolutionarily conserved proteins. Mammalian proteins responsible for vesicle trafficking at early steps in the secretory pathway are not well understood. In this report, we describe rat sec22 (rsec22) and rat bet1 (rbet1), mammalian sequence homologs of yeast proteins identified as mediators of endoplasmic reticulum-to-Golgi protein transport. rsec22 and rbet1 were expressed widely in mammalian tissues, as anticipated for proteins involved in fundamental membrane trafficking reactions. Recombinant rsec22 and rbet1 proteins behaved as integral membrane components of 28 and 18 kDa, respectively, consistent with their primary structures, which contain a predicted transmembrane domain at or near the carboxyl terminus. Recombinant rsec22 and rbet1 had distinct subcellular localizations, with rsec22 residing on endoplasmic reticulum membranes and rbet1 found on Golgi membranes. Studies with brefeldin A and nocodazole indicated that rbet1 function might involve interaction with or retention in the intermediate compartment. The distinct localizations of rsec22 and rbet1 may reflect their participation in opposite directions of membrane flow between the endoplasmic reticulum and Golgi apparatus.

  19. SAP97-mediated ADAM10 trafficking from Golgi outposts depends on PKC phosphorylation

    PubMed Central

    Saraceno, C; Marcello, E; Di Marino, D; Borroni, B; Claeysen, S; Perroy, J; Padovani, A; Tramontano, A; Gardoni, F; Di Luca, M

    2014-01-01

    A disintegrin and metalloproteinase 10 (ADAM10) is the major α-secretase that catalyzes the amyloid precursor protein (APP) ectodomain shedding in the brain and prevents amyloid formation. Its activity depends on correct intracellular trafficking and on synaptic membrane insertion. Here, we describe that in hippocampal neurons the synapse-associated protein-97 (SAP97), an excitatory synapse scaffolding element, governs ADAM10 trafficking from dendritic Golgi outposts to synaptic membranes. This process is mediated by a previously uncharacterized protein kinase C phosphosite in SAP97 SRC homology 3 domain that modulates SAP97 association with ADAM10. Such mechanism is essential for ADAM10 trafficking from the Golgi outposts to the synapse, but does not affect ADAM10 transport from the endoplasmic reticulum. Notably, this process is altered in Alzheimer's disease brains. These results help in understanding the mechanism responsible for the modulation of ADAM10 intracellular path, and can constitute an innovative therapeutic strategy to finely tune ADAM10 shedding activity towards APP. PMID:25429624

  20. Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation.

    PubMed

    Gendre, Delphine; Oh, Jaesung; Boutté, Yohann; Best, Jacob G; Samuels, Lacey; Nilsson, Robert; Uemura, Tomohiro; Marchant, Alan; Bennett, Malcolm J; Grebe, Markus; Bhalerao, Rishikesh P

    2011-05-10

    Multiple steps of plant growth and development rely on rapid cell elongation during which secretory and endocytic trafficking via the trans-Golgi network (TGN) plays a central role. Here, we identify the ECHIDNA (ECH) protein from Arabidopsis thaliana as a TGN-localized component crucial for TGN function. ECH partially complements loss of budding yeast TVP23 function and a Populus ECH complements the Arabidopsis ech mutant, suggesting functional conservation of the genes. Compared with wild-type, the Arabidopsis ech mutant exhibits severely perturbed cell elongation as well as defects in TGN structure and function, manifested by the reduced association between Golgi bodies and TGN as well as mislocalization of several TGN-localized proteins including vacuolar H(+)-ATPase subunit a1 (VHA-a1). Strikingly, ech is defective in secretory trafficking, whereas endocytosis appears unaffected in the mutant. Some aspects of the ech mutant phenotype can be phenocopied by treatment with a specific inhibitor of vacuolar H(+)-ATPases, concanamycin A, indicating that mislocalization of VHA-a1 may account for part of the defects in ech. Hence, ECH is an evolutionarily conserved component of the TGN with a central role in TGN structure and function.

  1. FIP1/RCP binding to Golgin-97 regulates retrograde transport from recycling endosomes to the trans-Golgi network.

    PubMed

    Jing, Jian; Junutula, Jagath R; Wu, Christine; Burden, Jemima; Matern, Hugo; Peden, Andrew A; Prekeris, Rytis

    2010-09-01

    Many proteins are retrieved to the trans-Golgi Network (TGN) from the endosomal system through several retrograde transport pathways to maintain the composition and function of the TGN. However, the molecular mechanisms involved in these distinct retrograde pathways remain to be fully understood. Here we have used fluorescence and electron microscopy as well as various functional transport assays to show that Rab11a/b and its binding protein FIP1/RCP are both required for the retrograde delivery of TGN38 and Shiga toxin from early/recycling endosomes to the TGN, but not for the retrieval of mannose-6-phosphate receptor from late endosomes. Furthermore, by proteomic analysis we identified Golgin-97 as a FIP1/RCP-binding protein. The FIP1/RCP-binding domain maps to the C-terminus of Golgin-97, adjacent to its GRIP domain. Binding of FIP1/RCP to Golgin-97 does not affect Golgin-97 recruitment to the TGN, but appears to regulate the targeting of retrograde transport vesicles to the TGN. Thus, we propose that FIP1/RCP binding to Golgin-97 is required for tethering and fusion of recycling endosome-derived retrograde transport vesicles to the TGN.

  2. Dysfunction of Wntless triggers the retrograde Golgi-to-ER transport of Wingless and induces ER stress.

    PubMed

    Zhang, Peng; Zhou, Lujun; Pei, Chunli; Lin, Xinhua; Yuan, Zengqiang

    2016-02-18

    Secreted Wnts play diverse roles in a non-cell-autonomous fashion. However, the cell-autonomous effect of unsecreted Wnts remains unknown. Endoplasmic reticulum (ER) stress is observed in specialized secretory cells and participates in pathophysiological processes. The correlation between Wnt secretion and ER stress remains poorly understood. Here, we demonstrated that Drosophila miR-307a initiates ER stress specifically in wingless (wg)-expressing cells through targeting wntless (wls/evi). This phenotype could be mimicked by retromer loss-of-function or porcupine (porc) depletion, and rescued by wg knockdown, arguing that unsecreted Wg triggers ER stress. Consistently, we found that disrupting the secretion of human Wnt5a also induced ER stress in mammalian cells. Furthermore, we showed that a C-terminal KKVY-motif of Wg is required for its retrograde Golgi-to-ER transport, thus inducing ER stress. Next, we investigated if COPI, the regulator of retrograde transport, is responsible for unsecreted Wg to induce ER stress. To our surprise, we found that COPI acts as a novel regulator of Wg secretion. Taken together, this study reveals a previously unknown Golgi-to-ER retrograde route of Wg, and elucidates a correlation between Wnt secretion and ER stress during development.

  3. Dysfunction of Wntless triggers the retrograde Golgi-to-ER transport of Wingless and induces ER stress

    PubMed Central

    Zhang, Peng; Zhou, Lujun; Pei, Chunli; Lin, Xinhua; Yuan, Zengqiang

    2016-01-01

    Secreted Wnts play diverse roles in a non-cell-autonomous fashion. However, the cell-autonomous effect of unsecreted Wnts remains unknown. Endoplasmic reticulum (ER) stress is observed in specialized secretory cells and participates in pathophysiological processes. The correlation between Wnt secretion and ER stress remains poorly understood. Here, we demonstrated that Drosophila miR-307a initiates ER stress specifically in wingless (wg)-expressing cells through targeting wntless (wls/evi). This phenotype could be mimicked by retromer loss-of-function or porcupine (porc) depletion, and rescued by wg knockdown, arguing that unsecreted Wg triggers ER stress. Consistently, we found that disrupting the secretion of human Wnt5a also induced ER stress in mammalian cells. Furthermore, we showed that a C-terminal KKVY-motif of Wg is required for its retrograde Golgi-to-ER transport, thus inducing ER stress. Next, we investigated if COPI, the regulator of retrograde transport, is responsible for unsecreted Wg to induce ER stress. To our surprise, we found that COPI acts as a novel regulator of Wg secretion. Taken together, this study reveals a previously unknown Golgi-to-ER retrograde route of Wg, and elucidates a correlation between Wnt secretion and ER stress during development. PMID:26887613

  4. Retrograde transport on the COG railway.

    PubMed

    Ungar, Daniel; Oka, Toshihiko; Krieger, Monty; Hughson, Frederick M

    2006-02-01

    The conserved oligomeric Golgi (COG) complex is essential for establishing and/or maintaining the structure and function of the Golgi apparatus. The Golgi apparatus, in turn, has a central role in protein sorting and glycosylation within the eukaryotic secretory pathway. As a consequence, COG mutations can give rise to human genetic diseases known as congenital disorders of glycosylation. We review recent results from studies of yeast, worm, fly and mammalian COG that provide evidence that COG might function in retrograde vesicular trafficking within the Golgi apparatus. This hypothesis explains the impact of COG mutations by postulating that they impair the retrograde flow of resident Golgi proteins needed to maintain normal Golgi structure and function.

  5. Structural basis for the interaction of the Golgi-Associated Retrograde Protein Complex with the t-SNARE Syntaxin 6.

    PubMed

    Abascal-Palacios, Guillermo; Schindler, Christina; Rojas, Adriana L; Bonifacino, Juan S; Hierro, Aitor

    2013-09-03

    The Golgi-Associated Retrograde Protein (GARP) complex is a tethering factor involved in the fusion of endosome-derived transport vesicles to the trans-Golgi network through interaction with components of the Syntaxin 6/Syntaxin 16/Vti1a/VAMP4 SNARE complex. The mechanisms by which GARP and other tethering factors engage the SNARE fusion machinery are poorly understood. Herein, we report the structural basis for the interaction of the human Ang2 subunit of GARP with the Syntaxin 6 and the closely related Syntaxin 10. The crystal structure of the Syntaxin 6 Habc domain in complex with a peptide from the N terminus of Ang2 shows a binding mode in which a dityrosine motif of Ang2 interacts with a highly conserved groove in Syntaxin 6. Structure-based mutational analyses validate the crystal structure and support the phylogenetic conservation of this interaction.

  6. Golgi Export of the Kir2.1 Channel is Driven by a Trafficking Signal Located within Tertiary Structure

    PubMed Central

    Ma, Donghui; Taneja, Tarvinder Kaur; Hagen, Brian M.; Kim, Bo-Young; Ortega, Bernardo; Lederer, W. Jonathan; Welling, Paul A.

    2011-01-01

    Mechanisms responsible for sorting newly synthesized proteins for traffic to the cell surface from the Golgi are poorly understood. Here we show that the potassium channel Kir2.1, mutations in which are associated with Andersen-Tawil Syndrome, is selected as cargo into Golgi export carriers in an unusual signal-dependent manner. Unlike conventional trafficking signals, which are typically comprised of short linear peptide sequences, Golgi exit of Kir2.1 is dictated by residues embedded within the confluence of two separate domains. This signal patch forms a recognition site for interaction with the AP1 adaptor complex, thereby marking Kir2.1 for incorporation into clathrin-coated vesicles at the trans-Golgi. The identification of a trafficking signal in the tertiary structure of Kir2.1 reveals a quality control step that couples protein conformation to Golgi export and provides molecular insight into how mutations in Kir2.1 arrest the channels at the Golgi. PMID:21703452

  7. Localization and trafficking of an isoform of the AtPRA1 family to the Golgi apparatus depend on both N- and C-terminal sequence motifs.

    PubMed

    Jung, Chan Jin; Lee, Myoung Hui; Min, Myung Ki; Hwang, Inhwan

    2011-02-01

    Prenylated Rab acceptors (PRAs) bind to prenylated Rab proteins and possibly aid in targeting Rabs to their respective compartments. In Arabidopsis, 19 isoforms of PRA1 have been identified and, depending upon the isoforms, they localize to the endoplasmic reticulum (ER), Golgi apparatus and endosomes. Here, we investigated the localization and trafficking of AtPRA1.B6, an isoform of the Arabidopsis PRA1 family. In colocalization experiments with various organellar markers, AtPRA1.B6 tagged with hemagglutinin (HA) at the N-terminus localized to the Golgi apparatus in protoplasts and transgenic plants. The valine residue at the C-terminal end and an EEE motif in the C-terminal cytoplasmic domain were critical for anterograde trafficking from the ER to the Golgi apparatus. The N-terminal region contained a sequence motif for retention of AtPRA1.B6 at the Golgi apparatus. In addition, anterograde trafficking of AtPRA1.B6 from the ER to the Golgi apparatus was highly sensitive to the HA:AtPRA1.B6 level. The region that contains the sequence motif for Golgi retention also conferred the abundance-dependent trafficking inhibition. On the basis of these results, we propose that AtPRA1.B6 localizes to the Golgi apparatus and its ER-to-Golgi trafficking and localization to the Golgi apparatus are regulated by multiple sequence motifs in both the C- and N-terminal cytoplasmic domains.

  8. IntraGolgi distribution of the Conserved Oligomeric Golgi (COG) complex

    SciTech Connect

    Vasile, Eliza; Oka, Toshihiko; Ericsson, Maria; Nakamura, Nobuhiro; Krieger, Monty . E-mail: krieger@mit.edu

    2006-10-01

    The Conserved Oligomeric Golgi (COG) complex is an eight-subunit (Cog1-8) peripheral Golgi protein involved in membrane trafficking and glycoconjugate synthesis. COG appears to participate in retrograde vesicular transport and is required to maintain normal Golgi structure and function. COG mutations interfere with normal transport, distribution, and/or stability of Golgi proteins associated with glycoconjugate synthesis and trafficking, and lead to failure of spermatogenesis in Drosophila melanogaster, misdirected migration of gonadal distal tip cells in Caenorhabditis elegans, and type II congenital disorders of glycosylation in humans. The mechanism by which COG influences Golgi structure and function is unclear. Immunogold electron microscopy was used to visualize the intraGolgi distribution of a functional, hemagglutinin epitope-labeled COG subunit, Cog1-HA, that complements the Cog1-deficiency in Cog1-null Chinese hamster ovary cells. COG was found to be localized primarily on or in close proximity to the tips and rims of the Golgi's cisternae and their associated vesicles and on vesicles and vesiculo-tubular structures seen on both the cis and trans-Golgi Network faces of the cisternal stacks, in some cases on COPI containing vesicles. These findings support the proposal that COG is directly involved in controlling vesicular retrograde transport of Golgi resident proteins throughout the Golgi apparatus.

  9. A novel tribasic Golgi export signal directs cargo protein interaction with activated Rab11 and AP-1-dependent Golgi-plasma membrane trafficking.

    PubMed

    Parmar, Hirendrasinh B; Duncan, Roy

    2016-04-15

    The reovirus fusion-associated small transmembrane (FAST) proteins comprise a unique family of viral membrane fusion proteins dedicated to inducing cell-cell fusion. We recently reported that a polybasic motif (PBM) in the cytosolic tail of reptilian reovirus p14 FAST protein functions as a novel tribasic Golgi export signal. Using coimmunoprecipitation and fluorescence resonance energy transfer (FRET) assays, we now show the PBM directs interaction of p14 with GTP-Rab11. Overexpression of dominant-negative Rab11 and RNA interference knockdown of endogenous Rab11 inhibited p14 plasma membrane trafficking and resulted in p14 accumulation in the Golgi complex. This is the first example of Golgi export to the plasma membrane that is dependent on the interaction of membrane protein cargo with activated Rab11. RNA interference and immunofluorescence microscopy further revealed that p14 Golgi export is dependent on AP-1 (but not AP-3 or AP-4) and that Rab11 and AP-1 both colocalize with p14 at the TGN. Together these results imply the PBM mediates interactions of p14 with activated Rab11 at the TGN, resulting in p14 sorting into AP1-coated vesicles for anterograde TGN-plasma membrane transport.

  10. WLS retrograde transport to the endoplasmic reticulum during Wnt secretion.

    PubMed

    Yu, Jia; Chia, Joanne; Canning, Claire Ann; Jones, C Michael; Bard, Frédéric A; Virshup, David M

    2014-05-12

    Wnts are transported to the cell surface by the integral membrane protein WLS (also known as Wntless, Evi, and GPR177). Previous studies of WLS trafficking have emphasized WLS movement from the Golgi to the plasma membrane (PM) and then back to the Golgi via retromer-mediated endocytic recycling. We find that endogenous WLS binds Wnts in the endoplasmic reticulum (ER), cycles to the PM, and then returns to the ER through the Golgi. We identify an ER-targeting sequence at the carboxyl terminus of native WLS that is critical for ER retrograde recycling and contributes to Wnt secretory function. Golgi-to-ER recycling of WLS requires the COPI regulator ARF as well as ERGIC2, an ER-Golgi intermediate compartment protein that is also required for the retrograde trafficking of the KDEL receptor and certain toxins. ERGIC2 is required for efficient Wnt secretion. ER retrieval is an integral part of the WLS transport cycle.

  11. TVP23 interacts genetically with the yeast SNARE VTI1 and functions in retrograde transport from the early endosome to the late Golgi.

    PubMed

    Stein, Ivar S; Gottfried, Anna; Zimmermann, Jana; Fischer von Mollard, Gabriele

    2009-04-01

    SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) proteins contribute to specific recognition between transport vesicles and target membranes and are required for fusion of membranes. The SNARE Vti1p is required for several transport steps between late Golgi, endosomes and the vacuole in the yeast Saccharomyces cerevisiae. Here, we identified the late Golgi membrane protein TVP23 as a multicopy suppressor of the growth defect in vti1-2 cells. By contrast, the growth defect in vti1-11 cells was not suppressed by TVP23 overexpression. Deletion of TVP23 aggravated the growth defect in vti1-2 cells. Genetic interactions between TVP23 and vti1-2 were not found in transport from the late Golgi via the late endosome to the vacuole or in transport from the Golgi directly to the vacuole. These results suggest that Tvp23p is not involved in forward transport from the late Golgi. Therefore retrograde traffic to the late Golgi was analysed. vti1-2 cells accumulated GFP (green fluorescent protein)-Snc1p within the cell, indicating that retrograde transport from the early endosome to the late Golgi was defective in these cells. Deletion of TVP23 in vti1-2 cells resulted in a synthetic defect in GFP-Snc1p recycling, whereas tvp23Delta cells had a slight defect. These results indicate that Tvp23p performs a partially redundant function in retrograde transport from the early endosome to the late Golgi. This transport step was unaffected in vti1-11 cells, providing an explanation for the allele-specific multicopy suppression by TVP23.

  12. Direct interactions of adaptor protein complexes 1 and 2 with the copper transporter ATP7A mediate its anterograde and retrograde trafficking

    PubMed Central

    Yi, Ling; Kaler, Stephen G.

    2015-01-01

    ATP7A is a P-type ATPase in which diverse mutations lead to X-linked recessive Menkes disease or occipital horn syndrome. Recently, two previously unknown ATP7A missense mutations, T994I and P1386S, were shown to cause an isolated distal motor neuropathy without clinical or biochemical features of other ATP7A disorders. These mutant alleles cause subtle defects in ATP7A intracellular trafficking, resulting in preferential plasma membrane localization compared with wild-type ATP7A. We reported previously that ATP7AP1386S causes unstable insertion of the eighth and final transmembrane segment, preventing proper position of the carboxyl-terminal tail in a proportion of mutant molecules. Here, we utilize this and other naturally occurring and engineered mutant ATP7A alleles to identify mechanisms of normal ATP7A trafficking. We show that adaptor protein (AP) complexes 1 and 2 physically interact with ATP7A and that binding is mediated in part by a carboxyl-terminal di-leucine motif. In contrast to other ATP7A missense mutations, ATP7AP1386S partially disturbs interactions with both APs, leading to abnormal axonal localization in transfected NSC-34 motor neurons and altered calcium-signaling following glutamate stimulation. Our results imply that AP-1 normally tethers ATP7A at the trans-Golgi network in the somatodendritic segments of motor neurons and that alterations affecting the ATP7A carboxyl-terminal tail induce release of the copper transporter to the axons or axonal membranes. The latter effects are intensified by diminished interaction with AP-2, impeding ATP7A retrograde trafficking. Taken together, these findings further illuminate the normal molecular mechanisms of ATP7A trafficking and suggest a pathophysiological basis for ATP7A-related distal motor neuropathy. PMID:25574028

  13. Phosphatidylinositol- and phosphatidylcholine-transfer activity of PITPβ is essential for COPI-mediated retrograde transport from the Golgi to the endoplasmic reticulum

    PubMed Central

    Carvou, Nicolas; Holic, Roman; Li, Michelle; Futter, Clare; Skippen, Alison; Cockcroft, Shamshad

    2010-01-01

    Vesicles formed by the COPI complex function in retrograde transport from the Golgi to the endoplasmic reticulum (ER). Phosphatidylinositol transfer protein β (PITPβ), an essential protein that possesses phosphatidylinositol (PtdIns) and phosphatidylcholine (PtdCho) lipid transfer activity is known to localise to the Golgi and ER but its role in these membrane systems is not clear. To examine the function of PITPβ at the Golgi-ER interface, RNA interference (RNAi) was used to knockdown PITPβ protein expression in HeLa cells. Depletion of PITPβ leads to a decrease in PtdIns(4)P levels, compaction of the Golgi complex and protection from brefeldin-A-mediated dispersal to the ER. Using specific transport assays, we show that anterograde traffic is unaffected but that KDEL-receptor-dependent retrograde traffic is inhibited. This phenotype can be rescued by expression of wild-type PITPβ but not by mutants defective in docking, PtdIns transfer and PtdCho transfer. These data demonstrate that the PtdIns and PtdCho exchange activity of PITPβ is essential for COPI-mediated retrograde transport from the Golgi to the ER. PMID:20332109

  14. Phosphatidylinositol- and phosphatidylcholine-transfer activity of PITPbeta is essential for COPI-mediated retrograde transport from the Golgi to the endoplasmic reticulum.

    PubMed

    Carvou, Nicolas; Holic, Roman; Li, Michelle; Futter, Clare; Skippen, Alison; Cockcroft, Shamshad

    2010-04-15

    Vesicles formed by the COPI complex function in retrograde transport from the Golgi to the endoplasmic reticulum (ER). Phosphatidylinositol transfer protein beta (PITPbeta), an essential protein that possesses phosphatidylinositol (PtdIns) and phosphatidylcholine (PtdCho) lipid transfer activity is known to localise to the Golgi and ER but its role in these membrane systems is not clear. To examine the function of PITPbeta at the Golgi-ER interface, RNA interference (RNAi) was used to knockdown PITPbeta protein expression in HeLa cells. Depletion of PITPbeta leads to a decrease in PtdIns(4)P levels, compaction of the Golgi complex and protection from brefeldin-A-mediated dispersal to the ER. Using specific transport assays, we show that anterograde traffic is unaffected but that KDEL-receptor-dependent retrograde traffic is inhibited. This phenotype can be rescued by expression of wild-type PITPbeta but not by mutants defective in docking, PtdIns transfer and PtdCho transfer. These data demonstrate that the PtdIns and PtdCho exchange activity of PITPbeta is essential for COPI-mediated retrograde transport from the Golgi to the ER.

  15. Limited trafficking of a neurotropic virus through inefficient retrograde axonal transport and the type I interferon response.

    PubMed

    Lancaster, Karen Z; Pfeiffer, Julie K

    2010-03-05

    Poliovirus is an enteric virus that rarely invades the human central nervous system (CNS). To identify barriers limiting poliovirus spread from the periphery to CNS, we monitored trafficking of 10 marked viruses. After oral inoculation of susceptible mice, poliovirus was present in peripheral neurons, including vagus and sciatic nerves. To model viral trafficking in peripheral neurons, we intramuscularly injected mice with poliovirus, which follows a muscle-sciatic nerve-spinal cord-brain route. Only 20% of the poliovirus population successfully moved from muscle to brain, and three barriers limiting viral trafficking were identified. First, using light-sensitive viruses, we found limited viral replication in peripheral neurons. Second, retrograde axonal transport of poliovirus in peripheral neurons was inefficient; however, the efficiency was increased upon muscle damage, which also increased the transport efficiency of a non-viral neural tracer, wheat germ agglutinin. Third, using susceptible interferon (IFN) alpha/beta receptor knockout mice, we demonstrated that the IFN response limited viral movement from the periphery to the brain. Surprisingly, the retrograde axonal transport barrier was equivalent in strength to the IFN barrier. Illustrating the importance of barriers created by the IFN response and inefficient axonal transport, IFN alpha/beta receptor knockout mice with muscle damage permitted 80% of the viral population to access the brain, and succumbed to disease three times faster than mice with intact barriers. These results suggest that multiple separate barriers limit poliovirus trafficking from peripheral neurons to the CNS, possibly explaining the rare incidence of paralytic poliomyelitis. This study identifies inefficient axonal transport as a substantial barrier to poliovirus trafficking in peripheral neurons, which may limit CNS access for other viruses.

  16. VAMP4 is required to maintain the ribbon structure of the Golgi apparatus.

    PubMed

    Shitara, Akiko; Shibui, Toru; Okayama, Miki; Arakawa, Toshiya; Mizoguchi, Itaru; Sakakura, Yasunori; Shakakura, Yasunori; Takuma, Taishin

    2013-08-01

    The Golgi apparatus forms a twisted ribbon-like network in the juxtanuclear region of vertebrate cells. Vesicle-associated membrane protein 4 (VAMP4), a v-SNARE protein expressed exclusively in the vertebrate trans-Golgi network (TGN), plays a role in retrograde trafficking from the early endosome to the TGN, although its precise function within the Golgi apparatus remains unclear. To determine whether VAMP4 plays a functional role in maintaining the structure of the Golgi apparatus, we depleted VAMP4 gene expression using RNA interference technology. Depletion of VAMP4 from HeLa cells led to fragmentation of the Golgi ribbon. These fragments were not uniformly distributed throughout the cytoplasm, but remained in the juxtanuclear area. Electron microscopy and immunohistochemistry showed that in the absence of VAMP4, the length of the Golgi stack was shortened, but Golgi stacking was normal. Anterograde trafficking was not impaired in VAMP4-depleted cells, which contained intact microtubule arrays. Depletion of the cognate SNARE partners of VAMP4, syntaxin 6, syntaxin 16, and Vti1a also disrupted the Golgi ribbon structure. Our findings suggested that the maintenance of Golgi ribbon structure requires normal retrograde trafficking from the early endosome to the TGN, which is likely to be mediated by the formation of VAMP4-containing SNARE complexes.

  17. Dynamic measurement of the pH of the Golgi complex in living cells using retrograde transport of the verotoxin receptor.

    PubMed

    Kim, J H; Lingwood, C A; Williams, D B; Furuya, W; Manolson, M F; Grinstein, S

    1996-09-01

    The B subunit of verotoxin (VT1B) from enterohemorrhagic Escherichia coli is responsible for the attachment of the holotoxin to the cell surface, by binding to the glycolipid, globotriaosyl ceramide. After receptor-mediated endocytosis, the toxin is targeted to the Golgi complex by a process of retrograde transport. We took advantage of this unique property of VT1B to measure the pH of the Golgi complex in intact live cells. Purified recombinant VT1B was labeled with either rhodamine or fluorescein for subcellular localization by confocal microscopy. After 1 h at 37 degrees C, VT1B accumulated in a juxtanuclear structure that colocalized with several Golgi markers, including alpha-mannosidase II, beta-COP, and NBD-ceramide. Moreover, colchicine and brefeldin A induced dispersal of the juxtanuclear staining, consistent with accumulation of VT1B in the Golgi complex. Imaging of the emission of fluorescein-labeled VT1B was used to measure intra-Golgi pH (pHG), which was calibrated in situ with ionophores. In intact Vero cells, pHG averaged 6.45 +/- 0.03 (standard error). The acidity of the Golgi lumen dissipated rapidly upon addition of bafilomycin A1, a blocker of vacuolar-type ATPases, pHG remained constant despite acidification of the cytosol by reversal of the plasmalemmal Na+/H+ antiport. Similarly, pHG was unaffected by acute changes in cytosolic calcium. Furthermore, pHG recovered quickly toward the basal level after departures imposed with weak bases. These findings suggest that pHG is actively regulated, despite the presence of a sizable H+ "leak" pathway. The ability of VT1B to target the Golgi complex should facilitate not only studies of acid-base regulation, but also analysis of other ionic species.

  18. Uni-directional ciliary membrane protein trafficking by a cytoplasmic retrograde IFT motor and ciliary ectosome shedding

    PubMed Central

    Cao, Muqing; Ning, Jue; Hernandez-Lara, Carmen I; Belzile, Olivier; Wang, Qian; Dutcher, Susan K; Liu, Yanjie; Snell, William J

    2015-01-01

    The role of the primary cilium in key signaling pathways depends on dynamic regulation of ciliary membrane protein composition, yet we know little about the motors or membrane events that regulate ciliary membrane protein trafficking in existing organelles. Recently, we showed that cilium-generated signaling in Chlamydomonas induced rapid, anterograde IFT-independent, cytoplasmic microtubule-dependent redistribution of the membrane polypeptide, SAG1-C65, from the plasma membrane to the periciliary region and the ciliary membrane. Here, we report that the retrograde IFT motor, cytoplasmic dynein 1b, is required in the cytoplasm for this rapid redistribution. Furthermore, signaling-induced trafficking of SAG1-C65 into cilia is unidirectional and the entire complement of cellular SAG1-C65 is shed during signaling and can be recovered in the form of ciliary ectosomes that retain signal-inducing activity. Thus, during signaling, cells regulate ciliary membrane protein composition through cytoplasmic action of the retrograde IFT motor and shedding of ciliary ectosomes. DOI: http://dx.doi.org/10.7554/eLife.05242.001 PMID:25688564

  19. Structural optimization of a retrograde trafficking inhibitor that protects cells from infections by human polyoma- and papillomaviruses.

    PubMed

    Carney, Daniel W; Nelson, Christian D S; Ferris, Bennett D; Stevens, Julia P; Lipovsky, Alex; Kazakov, Teymur; DiMaio, Daniel; Atwood, Walter J; Sello, Jason K

    2014-09-01

    Human polyoma- and papillomaviruses are non-enveloped DNA viruses that cause severe pathologies and mortalities. Under circumstances of immunosuppression, JC polyomavirus causes a fatal demyelinating disease called progressive multifocal leukoencephalopathy (PML) and the BK polyomavirus is the etiological agent of polyomavirus-induced nephropathy and hemorrhagic cystitis. Human papillomavirus type 16, another non-enveloped DNA virus, is associated with the development of cancers in tissues like the uterine cervix and oropharynx. Currently, there are no approved drugs or vaccines to treat or prevent polyomavirus infections. We recently discovered that the small molecule Retro-2(cycl), an inhibitor of host retrograde trafficking, blocked infection by several human and monkey polyomaviruses. Here, we report diversity-oriented syntheses of Retro-2(cycl) and evaluation of the resulting analogs using an assay of human cell infections by JC polyomavirus. We defined structure-activity relationships and also discovered analogs with significantly improved potency as suppressors of human polyoma- and papillomavirus infection in vitro. Our findings represent an advance in the development of drug candidates that can broadly protect humans from non-enveloped DNA viruses and toxins that exploit retrograde trafficking as a means for cell entry.

  20. Uni-directional ciliary membrane protein trafficking by a cytoplasmic retrograde IFT motor and ciliary ectosome shedding.

    PubMed

    Cao, Muqing; Ning, Jue; Hernandez-Lara, Carmen I; Belzile, Olivier; Wang, Qian; Dutcher, Susan K; Liu, Yanjie; Snell, William J

    2015-02-17

    The role of the primary cilium in key signaling pathways depends on dynamic regulation of ciliary membrane protein composition, yet we know little about the motors or membrane events that regulate ciliary membrane protein trafficking in existing organelles. Recently, we showed that cilium-generated signaling in Chlamydomonas induced rapid, anterograde IFT-independent, cytoplasmic microtubule-dependent redistribution of the membrane polypeptide, SAG1-C65, from the plasma membrane to the periciliary region and the ciliary membrane. Here, we report that the retrograde IFT motor, cytoplasmic dynein 1b, is required in the cytoplasm for this rapid redistribution. Furthermore, signaling-induced trafficking of SAG1-C65 into cilia is unidirectional and the entire complement of cellular SAG1-C65 is shed during signaling and can be recovered in the form of ciliary ectosomes that retain signal-inducing activity. Thus, during signaling, cells regulate ciliary membrane protein composition through cytoplasmic action of the retrograde IFT motor and shedding of ciliary ectosomes.

  1. Structural Optimization of a Retrograde Trafficking Inhibitor that Protects Cells from Infections by Human Polyoma- and Papillomaviruses

    PubMed Central

    Carney, Daniel W.; Nelson, Christian D. S.; Ferris, Bennett D.; Stevens, Julia P.; Lipovsky, Alex; Kazakov, Temur; DiMaio, Daniel C.; Atwood, Walter J.; Sello, Jason K.

    2015-01-01

    Human polyoma- and papillomaviruses are non-enveloped DNA viruses that cause severe pathologies and mortalities. Under circumstances of immunosuppression, JC polyomavirus causes a fatal demyelinating disease called progressive multifocal leukoencephalopathy (PML) and the BK polyomavirus is the etiological agent of polyomavirus-induced nephropathy and hemorrhagic cystitis. Human papillomavirus type 16, another non-enveloped DNA virus, is associated with the development of cancers in tissues like the uterine cervix and oropharynx. Currently, there are no approved drugs or vaccines to treat or prevent polyomavirus infections. We recently discovered that the small molecule Retro-2cycl, an inhibitor of host retrograde trafficking, blocked infection by several human and monkey polyomaviruses. Here, we report diversity-oriented syntheses of Retro-2cycl and evaluation of the resulting analogs using an assay of human cell infections by JC polyomavirus. We defined structure-activity relationships and also discovered analogs with significantly improved potency as suppressors of human polyoma- and papillomavirus infection in vitro. Our findings represent an advance in the development of drug candidates that can broadly protect humans from non-enveloped DNA viruses and toxins that exploit retrograde trafficking as a means for cell entry. PMID:25087050

  2. Sequential depletion and acquisition of proteins during Golgi stack disassembly and reformation.

    PubMed

    Schoberer, Jennifer; Runions, John; Steinkellner, Herta; Strasser, Richard; Hawes, Chris; Osterrieder, Anne

    2010-11-01

    Herein, we report the stepwise transport of multiple plant Golgi membrane markers during disassembly of the Golgi apparatus in tobacco leaf epidermal cells in response to the induced expression of the GTP-locked Sar1p or Brefeldin A (BFA), and reassembly on BFA washout. The distribution of fluorescent Golgi-resident N-glycan processing enzymes and matrix proteins (golgins) with specific cis-trans-Golgi sub-locations was followed by confocal microscopy during disassembly and reassembly. The first event during Golgi disassembly was the loss of trans-Golgi enzymes and golgins from Golgi membranes, followed by a sequential redistribution of medial and cis-Golgi enzymes into the endoplasmic reticulum (ER), whilst golgins were relocated to the ER or cytoplasm. This event was confirmed by fractionation and immuno-blotting. The sequential redistribution of Golgi components in a trans-cis sequence may highlight a novel retrograde trafficking pathway between the trans-Golgi and the ER in plants. Release of Golgi markers from the ER upon BFA washout occurred in the opposite sequence, with cis-matrix proteins labelling Golgi-like structures before cis/medial enzymes. Trans-enzyme location was preceded by trans-matrix proteins being recruited back to Golgi membranes. Our results show that Golgi disassembly and reassembly occur in a highly ordered fashion in plants.

  3. Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking.

    PubMed

    Petris, M J; Mercer, J F; Culvenor, J G; Lockhart, P; Gleeson, P A; Camakaris, J

    1996-11-15

    The Menkes P-type ATPase (MNK), encoded by the Menkes gene (MNK; ATP7A), is a transmembrane copper-translocating pump which is defective in the human disorder of copper metabolism, Menkes disease. Recent evidence that the MNK P-type ATPase has a role in copper efflux has come from studies using copper-resistant variants of cultured Chinese hamster ovary (CHO) cells. These variants have MNK gene amplification and consequently overexpress MNK, the extents of which correlate with the degree of elevated copper efflux. Here, we report on the localization of MNK in these copper-resistant CHO cells when cultured in different levels of copper. Immunofluorescence studies demonstrated that MNK is predominantly localized to the Golgi apparatus of cells in basal medium. In elevated copper conditions there was a rapid trafficking of MNK from the Golgi to the plasma membrane. This shift in steady-state distribution of MNK was reversible and not dependent on new protein synthesis. In media containing basal copper, MNK accumulated in cytoplasmic vesicles after treatment of cells with a variety of agents that inhibit endosomal recycling. We suggest that MNK continuously recycles between the Golgi and the plasma membrane and elevated copper shifts the steady-state distribution from the Golgi to the plasma membrane. These data reveal a novel system of regulated protein trafficking which ultimately leads to the efflux of an essential yet potentially toxic ligand, where the ligand itself appears directly and specifically to stimulate the trafficking of its own transporter.

  4. Inhibition of retrograde transport protects mice from lethal ricin challenge.

    PubMed

    Stechmann, Bahne; Bai, Siau-Kun; Gobbo, Emilie; Lopez, Roman; Merer, Goulven; Pinchard, Suzy; Panigai, Laetitia; Tenza, Danièle; Raposo, Graça; Beaumelle, Bruno; Sauvaire, Didier; Gillet, Daniel; Johannes, Ludger; Barbier, Julien

    2010-04-16

    Bacterial Shiga-like toxins are virulence factors that constitute a significant public health threat worldwide, and the plant toxin ricin is a potential bioterror weapon. To gain access to their cytosolic target, ribosomal RNA, these toxins follow the retrograde transport route from the plasma membrane to the endoplasmic reticulum, via endosomes and the Golgi apparatus. Here, we used high-throughput screening to identify small molecule inhibitors that protect cells from ricin and Shiga-like toxins. We identified two compounds that selectively block retrograde toxin trafficking at the early endosome-TGN interface, without affecting compartment morphology, endogenous retrograde cargos, or other trafficking steps, demonstrating an unexpected degree of selectivity and lack of toxicity. In mice, one compound clearly protects from lethal nasal exposure to ricin. Our work discovers the first small molecule that shows efficacy against ricin in animal experiments and identifies the retrograde route as a potential therapeutic target.

  5. Golgi Glycosylation

    PubMed Central

    Stanley, Pamela

    2011-01-01

    Glycosylation is a very common modification of protein and lipid, and most glycosylation reactions occur in the Golgi. Although the transfer of initial sugar(s) to glycoproteins or glycolipids occurs in the ER or on the ER membrane, the subsequent addition of the many different sugars that make up a mature glycan is accomplished in the Golgi. Golgi membranes are studded with glycosyltransferases, glycosidases, and nucleotide sugar transporters arrayed in a generally ordered manner from the cis-Golgi to the trans-Golgi network (TGN), such that each activity is able to act on specific substrate(s) generated earlier in the pathway. The spectrum of glycosyltransferases and other activities that effect glycosylation may vary with cell type, and thus the final complement of glycans on glycoconjugates is variable. In addition, glycan synthesis is affected by Golgi pH, the integrity of Golgi peripheral membrane proteins, growth factor signaling, Golgi membrane dynamics, and cellular stress. Knowledge of Golgi glycosylation has fostered the development of assays to identify mechanisms of intracellular vesicular trafficking and facilitated glycosylation engineering of recombinant glycoproteins. PMID:21441588

  6. A Retrograde Trafficking Inhibitor of Ricin and Shiga-Like Toxins Inhibits Infection of Cells by Human and Monkey Polyomaviruses

    PubMed Central

    Nelson, Christian D. S.; Carney, Dan W.; Derdowski, Aaron; Lipovsky, Alex; Gee, Gretchen V.; O’Hara, Bethany; Williard, Paul; DiMaio, Daniel; Sello, Jason K.; Atwood, Walter J.

    2013-01-01

    ABSTRACT Polyomaviruses are ubiquitous pathogens that cause severe disease in immunocompromised individuals. JC polyomavirus (JCPyV) is the causative agent of the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML), whereas BK polyomavirus (BKPyV) causes polyomavirus-induced nephropathy and hemorrhagic cystitis. Vaccines or antiviral therapies targeting these viruses do not exist, and treatments focus on reducing the underlying causes of immunosuppression. We demonstrate that retro-2cycl, an inhibitor of ricin and Shiga-like toxins (SLTs), inhibits infection by JCPyV, BKPyV, and simian virus 40. Retro-2cycl inhibits retrograde transport of polyomaviruses to the endoplasmic reticulum, a step necessary for productive infection. Retro-2cycl likely inhibits polyomaviruses in a way similar to its ricin and SLT inhibition, suggesting an overlap in the cellular host factors used by bacterial toxins and polyomaviruses. This work establishes retro-2cycl as a potential antiviral therapy that broadly inhibits polyomaviruses and possibly other pathogens that use retrograde trafficking. PMID:24222489

  7. Inhibitors of retrograde trafficking active against ricin and Shiga toxins also protect cells from several viruses, Leishmania and Chlamydiales.

    PubMed

    Gupta, Neetu; Noël, Romain; Goudet, Amélie; Hinsinger, Karen; Michau, Aurélien; Pons, Valérie; Abdelkafi, Hajer; Secher, Thomas; Shima, Ayaka; Shtanko, Olena; Sakurai, Yasuteru; Cojean, Sandrine; Pomel, Sébastien; Liévin-Le Moal, Vanessa; Leignel, Véronique; Herweg, Jo-Ana; Fischer, Annette; Johannes, Ludger; Harrison, Kate; Beard, Philippa M; Clayette, Pascal; Le Grand, Roger; Rayner, Jonathan O; Rudel, Thomas; Vacus, Joël; Loiseau, Philippe M; Davey, Robert A; Oswald, Eric; Cintrat, Jean-Christophe; Barbier, Julien; Gillet, Daniel

    2017-04-01

    Medical countermeasures to treat biothreat agent infections require broad-spectrum therapeutics that do not induce agent resistance. A cell-based high-throughput screen (HTS) against ricin toxin combined with hit optimization allowed selection of a family of compounds that meet these requirements. The hit compound Retro-2 and its derivatives have been demonstrated to be safe in vivo in mice even at high doses. Moreover, Retro-2 is an inhibitor of retrograde transport that affects syntaxin-5-dependent toxins and pathogens. As a consequence, it has a broad-spectrum activity that has been demonstrated both in vitro and in vivo against ricin, Shiga toxin-producing O104:H4 entero-hemorrhagic E. coli and Leishmania sp. and in vitro against Ebola, Marburg and poxviruses and Chlamydiales. An effect is anticipated on other toxins or pathogens that use retrograde trafficking and syntaxin-5. Since Retro-2 targets cell components of the host and not directly the pathogen, no selection of resistant pathogens is expected. These lead compounds need now to be developed as drugs for human use.

  8. Trafficking of Lyn through the Golgi caveolin involves the charged residues on αE and αI helices in the kinase domain

    PubMed Central

    Kasahara, Kousuke; Nakayama, Yuji; Ikeda, Kikuko; Fukushima, Yuka; Matsuda, Daisuke; Horimoto, Shinya; Yamaguchi, Naoto

    2004-01-01

    Src-family kinases, known to participate in signaling pathways of a variety of surface receptors, are localized to the cytoplasmic side of the plasma membrane through lipid modification. We show here that Lyn, a member of the Src-family kinases, is biosynthetically transported to the plasma membrane via the Golgi pool of caveolin along the secretory pathway. The trafficking of Lyn from the Golgi apparatus to the plasma membrane is inhibited by deletion of the kinase domain or Csk-induced “closed conformation” but not by kinase inactivation. Four residues (Asp346 and Glu353 on αE helix, and Asp498 and Asp499 on αI helix) present in the C-lobe of the kinase domain, which can be exposed to the molecular surface through an “open conformation,” are identified as being involved in export of Lyn from the Golgi apparatus toward the plasma membrane but not targeting to the Golgi apparatus. Thus, the kinase domain of Lyn plays a role in Lyn trafficking besides catalysis of substrate phosphorylation. PMID:15173188

  9. Reconstitution of the targeting of Rab6A to the Golgi apparatus in semi-intact HeLa cells: A role of BICD2 in stabilizing Rab6A on Golgi membranes and a concerted role of Rab6A/BICD2 interactions in Golgi-to-ER retrograde transport.

    PubMed

    Matsuto, Mariko; Kano, Fumi; Murata, Masayuki

    2015-10-01

    Rab is a small GTP-binding protein family that regulates various pathways of vesicular transport. Although more than 60 Rab proteins are targeted to specific organelles in mammalian cells, the mechanisms underlying the specificity of Rab proteins for the respective organelles remain unknown. In this study, we reconstituted the Golgi targeting of Rab6A in streptolysin O (SLO)-permeabilized HeLa cells in a cytosol-dependent manner and investigated the biochemical requirements of targeting. Golgi-targeting assays identified Bicaudal-D (BICD)2, which is reportedly involved in the dynein-mediated transport of mRNAs during oogenesis and embryogenesis in Drosophila, as a cytosolic factor for the Golgi targeting of Rab6A in SLO-permeabilized HeLa cells. Subsequent immunofluorescence analyses indicated decreased amounts of the GTP-bound active form of Rab6 in BICD2-knockdown cells. In addition, fluorescence recovery after photobleaching (FRAP) analyses revealed that overexpression of the C-terminal region of BICD2 decreased the exchange rate of GFP-Rab6A between the Golgi membrane and the cytosol. Collectively, these results indicated that BICD2 facilitates the binding of Rab6A to the Golgi by stabilizing its GTP-bound form. Moreover, several analyses of vesicular transport demonstrated that Rab6A and BICD2 play crucial roles in Golgi tubule fusion with the endoplasmic reticulum (ER) in brefeldin A (BFA)-treated cells, indicating that BICD2 is involved in coat protein I (COPI)-independent Golgi-to-ER retrograde vesicular transport.

  10. Mammalian Mon2/Ysl2 regulates endosome-to-Golgi trafficking but possesses no guanine nucleotide exchange activity toward Arl1 GTPase

    NASA Astrophysics Data System (ADS)

    Mahajan, Divyanshu; Boh, Boon Kim; Zhou, Yan; Chen, Li; Cornvik, Tobias Carl; Hong, Wanjin; Lu, Lei

    2013-11-01

    Arl1 is a member of Arf family small GTPases that is essential for the organization and function of Golgi complex. Mon2/Ysl2, which shares significant homology with Sec7 family Arf guanine nucleotide exchange factors, was poorly characterized in mammalian cells. Here, we report the first in depth characterization of mammalian Mon2. We found that Mon2 localized to trans-Golgi network which was dependent on both its N and C termini. The depletion of Mon2 did not affect the Golgi localized or cellular active form of Arl1. Furthermore, our in vitro assay demonstrated that recombinant Mon2 did not promote guanine nucleotide exchange of Arl1. Therefore, our results suggest that Mon2 could be neither necessary nor sufficient for the guanine nucleotide exchange of Arl1. We demonstrated that Mon2 was involved in endosome-to-Golgi trafficking as its depletion accelerated the delivery of furin and CI-M6PR to Golgi after endocytosis.

  11. Structural Basis for the Interaction of the Golgi-Associated Retrograde Protein (GARP) Complex with the t-SNARE Syntaxin 6

    PubMed Central

    Abascal-Palacios, Guillermo; Schindler, Christina; Rojas, Adriana L; Bonifacino, Juan S.; Hierro, Aitor

    2016-01-01

    Summary The Golgi-Associated Retrograde Protein (GARP) is a tethering complex involved in the fusion of endosome-derived transport vesicles to the trans-Golgi network through interaction with components of the Syntaxin 6/Syntaxin 16/Vti1a/VAMP4 SNARE complex. The mechanisms by which GARP and other tethering factors engage the SNARE fusion machinery are poorly understood. Herein we report the structural basis for the interaction of the human Ang2 subunit of GARP with Syntaxin 6 and the closely related Syntaxin 10. The crystal structure of Syntaxin 6 Habc domain in complex with a peptide from the N terminus of Ang2 shows a novel binding mode in which a di-tyrosine motif of Ang2 interacts with a highly conserved groove in Syntaxin 6. Structure-based mutational analyses validate the crystal structure and support the phylogenetic conservation of this interaction. The same binding determinants are found in other tethering proteins and syntaxins, suggesting a general interaction mechanism. PMID:23932592

  12. The golgin GMAP-210 is required for efficient membrane trafficking in the early secretory pathway

    PubMed Central

    Roboti, Peristera; Sato, Keisuke; Lowe, Martin

    2015-01-01

    Golgins are coiled-coil proteins that participate in membrane-tethering events at the Golgi complex. Golgin-mediated tethering is thought to be important for vesicular trafficking and Golgi organization. However, the degree to which individual golgins contribute to these processes is poorly defined, and it has been proposed that golgins act in a largely redundant manner. Previous studies on the golgin GMAP-210 (also known as TRIP11), which is mutated in the rare skeletal disorder achondrogenesis type 1A, have yielded conflicting results regarding its involvement in trafficking. Here, we re-investigated the trafficking role of GMAP-210, and found that it is indeed required for efficient trafficking in the secretory pathway. GMAP-210 acts at both the endoplasmic reticulum (ER)-to-Golgi intermediate compartment (ERGIC) and Golgi complex during anterograde trafficking, and is also required for retrograde trafficking to the ER. Using co-depletion experiments, we also found that GMAP-210 acts in a partially redundant manner with the golgin GM130 to ensure efficient anterograde cargo delivery to the cis-Golgi. In summary, our results indicate a role for GMAP-210 in several trafficking steps at the ER–Golgi interface, some of which are partially redundant with another golgin, namely GM130 (also known as GOLGA2). PMID:25717001

  13. Small molecule schweinfurthins selectively inhibit cancer cell proliferation and mTOR/AKT signaling by interfering with trans-Golgi-network trafficking

    PubMed Central

    Bao, Xingfeng; Zheng, Wanjun; Sugi, Naoko Hata; Agarwala, Kishan L; Xu, Qunli; Wang, Zichun; Tendyke, Karen; Lee, Winnie; Parent, Lana; Li, Wei; Cheng, Hongsheng; Shen, Yongchun; Taylor, Noel; Dezso, Zoltan; Du, Hong; Kotake, Yoshihiko; Zhao, Nanding; Wang, John; Postema, Maarten; Woodall-Jappe, Mary; Takase, Yasutaka; Uenaka, Toshimitsu; Kingston, David G I; Nomoto, Kenichi

    2015-01-01

    Natural compound schweinfurthins are of considerable interest for novel therapy development because of their selective anti-proliferative activity against human cancer cells. We previously reported the isolation of highly active schweinfurthins E-H, and in the present study, mechanisms of the potent and selective anti-proliferation were investigated. We found that schweinfurthins preferentially inhibited the proliferation of PTEN deficient cancer cells by indirect inhibition of AKT phosphorylation. Mechanistically, schweinfurthins and their analogs arrested trans-Golgi-network trafficking, an intracellular vesicular trafficking system, resulting in the induction of endoplasmic reticulum stress and the suppression of both lipid raft-mediated PI3K activation and mTOR/RheB complex formation, which collectively led to an effective inhibition of mTOR/AKT signaling. The trans-Golgi-network traffic arresting effect of schweinfurthins was associated with their in vitro binding activity to oxysterol-binding proteins that are known to regulate intracellular vesicular trafficking. Moreover, schweinfurthins were found to be highly toxic toward PTEN-deficient B cell lymphoma cells, and displayed 2 orders of magnitude lower activity toward normal human peripheral blood mononuclear cells and primary fibroblasts in vitro. These results revealed a previously unrecognized role of schweinfurthins in regulating trans-Golgi-network trafficking, and linked mechanistically this cellular effect with mTOR/AKT signaling and with cancer cell survival and growth. Our findings suggest the schweinfurthin class of compounds as a novel approach to modulate oncogenic mTOR/AKT signaling for cancer treatment. PMID:25729885

  14. Golgi fragmentation in Alzheimer's disease

    PubMed Central

    Joshi, Gunjan; Bekier, Michael E.; Wang, Yanzhuang

    2015-01-01

    The Golgi apparatus is an essential cellular organelle for post-translational modifications, sorting, and trafficking of membrane and secretory proteins. Proper functionality of the Golgi requires the formation of its unique cisternal-stacking morphology. The Golgi structure is disrupted in a variety of neurodegenerative diseases, suggesting a common mechanism and contribution of Golgi defects in neurodegenerative disorders. A recent study on Alzheimer's disease (AD) revealed that phosphorylation of the Golgi stacking protein GRASP65 disrupts its function in Golgi structure formation, resulting in Golgi fragmentation. Inhibiting GRASP65 phosphorylation restores the Golgi morphology from Aβ-induced fragmentation and reduces Aβ production. Perturbing Golgi structure and function in neurons may directly impact trafficking, processing, and sorting of a variety of proteins essential for synaptic and dendritic integrity. Therefore, Golgi defects may ultimately promote the development of AD. In the current review, we focus on the cellular impact of impaired Golgi morphology and its potential relationship to AD disease development. PMID:26441511

  15. Soluble Glucan Is Internalized and Trafficked to the Golgi Apparatus in Macrophages via a Clathrin-Mediated, Lipid Raft-Regulated Mechanism

    PubMed Central

    Goldman, Matthew P.; Kalbfleisch, John H.; Williams, David L.

    2012-01-01

    Glucans are natural product carbohydrates that stimulate immunity. Glucans are internalized by the pattern recognition receptor, Dectin-1. Glucans were thought to be trafficked to phagolysosomes, but this is unproven. We examined the internalization and trafficking of soluble glucans in macrophages. Incubation of macrophages with glucan resulted in internalization of Dectin-1 and glucan. Inhibition of clathrin blocked internalization of the Dectin-1/glucan complex. Lipid raft depletion resulted in decreased Dectin levels and glucan uptake. Once internalized, glucans colocalized with early endosomes at 0 to 15 min, with the Golgi apparatus at 15 min to 24 h, and with Dectin-1 immediately (0 h) and again later (15 min-24 h). Glucans did not colocalize with lysosomes at any time interval examined. We conclude that the internalization of Dectin-1/glucan complexes in macrophages is mediated by clathrin and negatively regulated by lipid rafts and/or caveolin-1. Upon internalization, soluble glucans are trafficked via endosomes to the Golgi apparatus, not lysosomes. PMID:22700434

  16. Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis.

    PubMed

    Naramoto, Satoshi; Otegui, Marisa S; Kutsuna, Natsumaro; de Rycke, Riet; Dainobu, Tomoko; Karampelias, Michael; Fujimoto, Masaru; Feraru, Elena; Miki, Daisuke; Fukuda, Hiroo; Nakano, Akihiko; Friml, Jiří

    2014-07-01

    GNOM is one of the most characterized membrane trafficking regulators in plants, with crucial roles in development. GNOM encodes an ARF-guanine nucleotide exchange factor (ARF-GEF) that activates small GTPases of the ARF (ADP ribosylation factor) class to mediate vesicle budding at endomembranes. The crucial role of GNOM in recycling of PIN auxin transporters and other proteins to the plasma membrane was identified in studies using the ARF-GEF inhibitor brefeldin A (BFA). GNOM, the most prominent regulator of recycling in plants, has been proposed to act and localize at so far elusive recycling endosomes. Here, we report the GNOM localization in context of its cellular function in Arabidopsis thaliana. State-of-the-art imaging, pharmacological interference, and ultrastructure analysis show that GNOM predominantly localizes to Golgi apparatus. Super-resolution confocal live imaging microscopy identified GNOM and its closest homolog GNOM-like 1 at distinct subdomains on Golgi cisternae. Short-term BFA treatment stabilizes GNOM at the Golgi apparatus, whereas prolonged exposures results in GNOM translocation to trans-Golgi network (TGN)/early endosomes (EEs). Malformed TGN/EE in gnom mutants suggests a role for GNOM in maintaining TGN/EE function. Our results redefine the subcellular action of GNOM and reevaluate the identity and function of recycling endosomes in plants.

  17. β-Amyloid (Aβ) Oligomers Impair Brain-derived Neurotrophic Factor Retrograde Trafficking by Down-regulating Ubiquitin C-terminal Hydrolase, UCH-L1*

    PubMed Central

    Poon, Wayne W.; Carlos, Anthony J.; Aguilar, Brittany L.; Berchtold, Nicole C.; Kawano, Crystal K.; Zograbyan, Vahe; Yaopruke, Tim; Shelanski, Michael; Cotman, Carl W.

    2013-01-01

    We previously found that BDNF-dependent retrograde trafficking is impaired in AD transgenic mouse neurons. Utilizing a novel microfluidic culture chamber, we demonstrate that Aβ oligomers compromise BDNF-mediated retrograde transport by impairing endosomal vesicle velocities, resulting in impaired downstream signaling driven by BDNF/TrkB, including ERK5 activation, and CREB-dependent gene regulation. Our data suggest that a key mechanism mediating the deficit involves ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that functions to regulate cellular ubiquitin. Aβ-induced deficits in BDNF trafficking and signaling are mimicked by LDN (an inhibitor of UCH-L1) and can be reversed by increasing cellular UCH-L1 levels, demonstrated here using a transducible TAT-UCH-L1 strategy. Finally, our data reveal that UCH-L1 mRNA levels are decreased in the hippocampi of AD brains. Taken together, our data implicate that UCH-L1 is important for regulating neurotrophin receptor sorting to signaling endosomes and supporting retrograde transport. Further, our results support the idea that in AD, Aβ may down-regulate UCH-L1 in the AD brain, which in turn impairs BDNF/TrkB-mediated retrograde signaling, compromising synaptic plasticity and neuronal survival. PMID:23599427

  18. β-Amyloid (Aβ) oligomers impair brain-derived neurotrophic factor retrograde trafficking by down-regulating ubiquitin C-terminal hydrolase, UCH-L1.

    PubMed

    Poon, Wayne W; Carlos, Anthony J; Aguilar, Brittany L; Berchtold, Nicole C; Kawano, Crystal K; Zograbyan, Vahe; Yaopruke, Tim; Shelanski, Michael; Cotman, Carl W

    2013-06-07

    We previously found that BDNF-dependent retrograde trafficking is impaired in AD transgenic mouse neurons. Utilizing a novel microfluidic culture chamber, we demonstrate that Aβ oligomers compromise BDNF-mediated retrograde transport by impairing endosomal vesicle velocities, resulting in impaired downstream signaling driven by BDNF/TrkB, including ERK5 activation, and CREB-dependent gene regulation. Our data suggest that a key mechanism mediating the deficit involves ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that functions to regulate cellular ubiquitin. Aβ-induced deficits in BDNF trafficking and signaling are mimicked by LDN (an inhibitor of UCH-L1) and can be reversed by increasing cellular UCH-L1 levels, demonstrated here using a transducible TAT-UCH-L1 strategy. Finally, our data reveal that UCH-L1 mRNA levels are decreased in the hippocampi of AD brains. Taken together, our data implicate that UCH-L1 is important for regulating neurotrophin receptor sorting to signaling endosomes and supporting retrograde transport. Further, our results support the idea that in AD, Aβ may down-regulate UCH-L1 in the AD brain, which in turn impairs BDNF/TrkB-mediated retrograde signaling, compromising synaptic plasticity and neuronal survival.

  19. Common Pharmacophore of Structurally Distinct Small-Molecule Inhibitors of Intracellular Retrograde Trafficking of Ribosome Inactivating Proteins

    NASA Astrophysics Data System (ADS)

    Yu, Shichao; Park, Jewn Giew; Kahn, Jennifer Nielsen; Tumer, Nilgun E.; Pang, Yuan-Ping

    2013-12-01

    We reported previously (+/-)-2-(5-methylthiophen-2-yl)-3-phenyl-2,3-dihydroquinazolin-4(1H)-one [(+/-)-Retro-2cycl] as the chemical structure of Retro-2 that showed mouse protection against ricin, a notorious ribosome inactivating protein (RIP). Herein we report our chemical resolution of (+/-)-Retro-2cycl, analog synthesis, and cell-based evaluation showing that the two optically pure enantiomers and their achiral analog have nearly the same degree of cell protection against ricin as (+/-)-Retro-2cycl. We also report our computational studies explaining the lack of stereo preference and revealing a common pharmacophore of structurally distinct inhibitors of intracellular retrograde trafficking of RIPs. This pharmacophore comprises a central aromatic ring o-substituted by an aromatic ring and a moiety bearing an O or S atom attached to sp2 C atom(s). These results offer new insights into lead identification and optimization for RIP antidote development to minimize the global health threat caused by ribosome-inactivating proteins.

  20. Retromer-Mediated Trafficking of Transmembrane Receptors and Transporters

    PubMed Central

    Klinger, Stine C.; Siupka, Piotr; Nielsen, Morten S.

    2015-01-01

    Transport between the endoplasmatic reticulum, the Golgi-network, the endo-lysosomal system and the cell surface can be categorized as anterograde or retrograde, describing traffic that goes forward or backward, respectively. Traffic going from the plasma membrane to endosomes and lysosomes or the trans-Golgi network (TGN) constitutes the major retrograde transport routes. Several transmembrane proteins undergo retrograde transport as part of a recycling mechanism that contributes to reutilization and maintenance of a steady-state protein localization. In addition, some receptors are hijacked by exotoxins and used for entry and intracellular transport. The physiological relevance of retrograde transport cannot be overstated. Retrograde trafficking of the amyloid precursor protein determines the distribution between organelles, and hence the possibility of cleavage by γ-secretase. Right balancing of the pathways is critical for protection against Alzheimer’s disease. During embryonic development, retrograde transport of Wntless to the TGN is essential for the following release of Wnt from the plasma membrane. Furthermore, overexpression of Wntless has been linked to oncogenesis. Here, we review relevant aspects of the retrograde trafficking of mammalian transmembrane receptors and transporters, with focus on the retromer-mediated transport between endosomes and the TGN. PMID:26154780

  1. Epithelial-to-mesenchymal transition drives a pro-metastatic Golgi compaction process through scaffolding protein PAQR11

    PubMed Central

    Tan, Xiaochao; Banerjee, Priyam; Guo, Hou-Fu; Ireland, Stephen; Pankova, Daniela; Ahn, Young-ho; Nikolaidis, Irodotos Michail; Liu, Xin; Zhao, Yanbin; Burns, Alan R.; Gibbons, Don L.; Zal, Tomasz; Creighton, Chad J.; Wang, Yanzhuang; Kurie, Jonathan M.

    2016-01-01

    Tumor cells gain metastatic capacity through a Golgi phosphoprotein 3–dependent (GOLPH3-dependent) Golgi membrane dispersal process that drives the budding and transport of secretory vesicles. Whether Golgi dispersal underlies the pro-metastatic vesicular trafficking that is associated with epithelial-to-mesenchymal transition (EMT) remains unclear. Here, we have shown that, rather than causing Golgi dispersal, EMT led to the formation of compact Golgi organelles with improved ribbon linking and cisternal stacking. Ectopic expression of the EMT-activating transcription factor ZEB1 stimulated Golgi compaction and relieved microRNA-mediated repression of the Golgi scaffolding protein PAQR11. Depletion of PAQR11 dispersed Golgi organelles and impaired anterograde vesicle transport to the plasma membrane as well as retrograde vesicle tethering to the Golgi. The N-terminal scaffolding domain of PAQR11 was associated with key regulators of Golgi compaction and vesicle transport in pull-down assays and was required to reconstitute Golgi compaction in PAQR11-deficient tumor cells. Finally, high PAQR11 levels were correlated with EMT and shorter survival in human cancers, and PAQR11 was found to be essential for tumor cell migration and metastasis in EMT-driven lung adenocarcinoma models. We conclude that EMT initiates a PAQR11-mediated Golgi compaction process that drives metastasis. PMID:27869652

  2. Human Ubc9 Is Involved in Intracellular HIV-1 Env Stability after Trafficking out of the Trans-Golgi Network in a Gag Dependent Manner

    PubMed Central

    Bohl, Christopher R.; Abrahamyan, Levon G.; Wood, Charles

    2013-01-01

    The cellular E2 Sumo conjugase, Ubc9 interacts with HIV-1 Gag, and is important for the assembly of infectious HIV-1 virions. In the previous study we demonstrated that in the absence of Ubc9, a defect in virion assembly was associated with decreased levels of mature intracellular Envelope (Env) that affected Env incorporation into virions and virion infectivity. We have further characterized the effect of Ubc9 knockdown on HIV Env processing and assembly. We found that gp160 stability in the endoplasmic reticulum (ER) and its trafficking to the trans-Golgi network (TGN) were unaffected, indicating that the decreased intracellular mature Env levels in Ubc9-depleted cells were due to a selective degradation of mature Env gp120 after cleavage from gp160 and trafficked out of the TGN. Decreased levels of Gag and mature Env were found to be associated with the plasma membrane and lipid rafts, which suggest that these viral proteins were not trafficked correctly to the assembly site. Intracellular gp120 were partially rescued when treated with a combination of lysosome inhibitors. Taken together our results suggest that in the absence of Ubc9, gp120 is preferentially degraded in the lysosomes likely before trafficking to assembly sites leading to the production of defective virions. This study provides further insight in the processing and packaging of the HIV-1 gp120 into mature HIV-1 virions. PMID:23861967

  3. Golgi fragmentation precedes neuromuscular denervation and is associated with endosome abnormalities in SOD1-ALS mouse motor neurons

    PubMed Central

    2014-01-01

    Background Fragmentation of stacked cisterns of the Golgi apparatus into dispersed smaller elements is a feature associated with degeneration of neurons in amyotrophic lateral sclerosis (ALS) and some other neurodegenerative disorders. However, the role of Golgi fragmentation in motor neuron degeneration is not well understood. Results Here we use a SOD1-ALS mouse model (low-copy Gurney G93A-SOD1 mouse) to show that motor neurons with Golgi fragmentation are retrogradely labeled by intramuscularly injected CTB (beta subunit of cholera toxin), indicating that Golgi fragmentation precedes neuromuscular denervation and axon retraction. We further show that Golgi fragmentation may occur in the absence of and precede two other pathological markers, i.e. somatodendritic SOD1 inclusions, and the induction of ATF3 expression. In addition, we show that Golgi fragmentation is associated with an altered dendritic organization of the Golgi apparatus, does not depend on intact apoptotic machinery, and is facilitated in transgenic mice with impaired retrograde dynein-dependent transport (BICD2-N mice). A connection to altered dynein-dependent transport also is suggested by reduced expression of endosomal markers in neurons with Golgi fragmentation, which also occurs in neurons with impaired dynein function. Conclusions Together the data indicate that Golgi fragmentation is a very early event in the pathological cascade in ALS that is associated with altered organization of intracellular trafficking. PMID:24708899

  4. The yeast Golgi apparatus.

    PubMed

    Suda, Yasuyuki; Nakano, Akihiko

    2012-04-01

    The Golgi apparatus is an organelle that has been extensively studied in the model eukaryote, yeast. Its morphology varies among yeast species; the Golgi exists as a system of dispersed cisternae in the case of the budding yeast Saccharomyces cerevisiae, whereas the Golgi cisternae in Pichia pastoris and Schizosaccharomyces pombe are organized into stacks. In spite of the different organization, the mechanism of trafficking through the Golgi apparatus is believed to be similar, involving cisternal maturation, in which the resident Golgi proteins are transported backwards while secretory cargo proteins can stay in the cisternae. Questions remain regarding the organization of the yeast Golgi, the regulatory mechanisms that underlie cisternal maturation of the Golgi and transport machinery of cargo proteins through this organelle. Studies using different yeast species have provided hints to these mechanisms.

  5. Subcellular localizations of Arabidopsis myotubularins MTM1 and MTM2 suggest possible functions in vesicular trafficking between ER and cis-Golgi.

    PubMed

    Nagpal, Akanksha; Ndamukong, Ivan; Hassan, Ammar; Avramova, Zoya; Baluška, František

    2016-08-01

    The two Arabidopsis genes AtMTM1 and AtMTM2 encode highly similar phosphoinositide 3-phosphatases from the myotubularin family. Despite the high-level conservation of structure and biochemical activities, their physiological roles have significantly diverged. The nature of a membrane and the concentrations of their membrane-anchored substrates (PtdIns3P or PtdIns3,5P2) and/or products (PtdIns5P and PtdIns) are considered critical for determining the functional specificity of myotubularins. We have performed comprehensive analyses of the subcellular localization of AtMTM1 and AtMTM2 using a variety of specific constructs transiently expressed in Nicotiana benthamiana leaf epidermal cells under the control of 35S promoter. AtMTM1 co-localized preferentially with cis-Golgi membranes, while AtMTM2 associated predominantly with ER membranes. In a stark contrast with animal/human MTMs, neither AtMTM1 nor AtMTM2 co-localizes with early or late endosomes or with TGN/EE compartments, making them unlikely participants in the endosomal trafficking system. Localization of the AtMTM2 is sensitive to cold and osmotic stress challenges. In contrast to animal myotubularins, Arabidopsis myotubularins do not associate with endosomes. Our results suggest that Arabidopsis myotubularins play a role in the vesicular trafficking between ER exit sites and cis-Golgi elements. The significance of these results is discussed also in the context of stress biology and plant autophagy.

  6. gamma-Secretase activity requires the presenilin-dependent trafficking of nicastrin through the Golgi apparatus but not its complex glycosylation.

    PubMed

    Herreman, An; Van Gassen, Geert; Bentahir, Mustapha; Nyabi, Omar; Craessaerts, Katleen; Mueller, Ulrike; Annaert, Wim; De Strooper, Bart

    2003-03-15

    Nicastrin and presenilin are two major components of the gamma-secretase complex, which executes the intramembrane proteolysis of type I integral membrane proteins such as the amyloid precursor protein (APP) and Notch. Nicastrin is synthesized in fibroblasts and neurons as an endoglycosidase-H-sensitive glycosylated precursor protein (immature nicastrin) and is then modified by complex glycosylation in the Golgi apparatus and by sialylation in the trans-Golgi network (mature nicastrin). These modifications are not observed with exogenously overexpressed nicastrin. Under normal cell culture conditions, only mature nicastrin is expressed at the cell surface and binds to the presenilin heterodimers. Mature nicastrin has a half-life of more than 24 hours. In the absence of presenilin 1 and 2, nicastrin remains entirely endoglycosidase H sensitive, is retained in the endoplasmic reticulum and is slowly degraded. Single presenilin 1 or presenilin 2 deficiency affects glycosylation of nicastrin to a lesser extent than the combined presenilin deficiencies, suggesting a correlation between either the transport of nicastrin out of the endoplasmic reticulum or the concomitant complex glycosylation of nicastrin, and gamma-secretase activity. However, when complex glycosylation of nicastrin was inhibited using mannosidase I inhibitors, gamma-secretase cleavage of APP or Notch was not inhibited and the immature nicastrin still associates with presenilin and appears at the cell surface. Complex glycosylation of nicastrin is therefore not needed for gamma-secretase activity. Because the trafficking of nicastrin to the Golgi apparatus is dependent on presenilins, our data point to a central role of presenilin in nicastrin maturation/localization, which could help to partially resolve the 'spatial paradox'.

  7. Vesicular Trafficking of Incoming Human Papillomavirus 16 to the Golgi Apparatus and Endoplasmic Reticulum Requires γ-Secretase Activity

    PubMed Central

    Zhang, Wei; Kazakov, Teymur; Popa, Andreea

    2014-01-01

    ABSTRACT The route taken by papillomaviruses from the cell surface to the nucleus during infection is incompletely understood. Here, we developed a novel human papillomavirus 16 (HPV16) pseudovirus in which the carboxy terminus of the minor capsid protein L2 is exposed on the exterior of the intact capsid prior to cell binding. With this pseudovirus, we used the proximity ligation assay immune detection technique to demonstrate that during entry HPV16 L2 traffics into and out of the early endosome prior to Golgi localization, and we demonstrated that L2 enters the endoplasmic reticulum during entry. The cellular membrane-associated protease, γ-secretase, is required for infection by HPV16 pseudovirus and authentic HPV16. We also showed that inhibition of γ-secretase does not interfere substantively with virus internalization, initiation of capsid disassembly, entry into the early endosome, or exit from this compartment, but γ-secretase is required for localization of L2 and viral DNA to the Golgi apparatus and the endoplasmic reticulum. These results show that incoming HPV16 traffics sequentially from the cell surface to the endosome and then to the Golgi apparatus and the endoplasmic reticulum prior to nuclear entry. PMID:25227470

  8. ECHIDNA protein impacts on male fertility in Arabidopsis by mediating trans-Golgi network secretory trafficking during anther and pollen development.

    PubMed

    Fan, Xinping; Yang, Caiyun; Klisch, Doris; Ferguson, Alison; Bhaellero, Rishi P; Niu, Xiwu; Wilson, Zoe A

    2014-03-01

    The trans-Golgi network (TGN) plays a central role in cellular secretion and has been implicated in sorting cargo destined for the plasma membrane. Previously, the Arabidopsis (Arabidopsis thaliana) echidna (ech) mutant was shown to exhibit a dwarf phenotype due to impaired cell expansion. However, ech also has a previously uncharacterized phenotype of reduced male fertility. This semisterility is due to decreased anther size and reduced amounts of pollen but also to decreased pollen viability, impaired anther opening, and pollen tube growth. An ECH translational fusion (ECHPro:ECH-yellow fluorescent protein) revealed developmentally regulated tissue-specific expression, with expression in the tapetum during early anther development and microspore release and subsequent expression in the pollen, pollen tube, and stylar tissues. Pollen viability and production, along with germination and pollen tube growth, were all impaired. The ech anther endothecium secondary wall thickening also appeared reduced and disorganized, resulting in incomplete anther opening. This did not appear to be due to anther secondary thickening regulatory genes but perhaps to altered secretion of wall materials through the TGN as a consequence of the absence of the ECH protein. ECH expression is critical for a variety of aspects of male reproduction, including the production of functional pollen grains, their effective release, germination, and tube formation. These stages of pollen development are fundamentally influenced by TGN trafficking of hormones and wall components. Overall, this suggests that the fertility defect is multifaceted, with the TGN trafficking playing a significant role in the process of both pollen formation and subsequent fertilization.

  9. Atlastin GTPases are required for Golgi apparatus and ER morphogenesis.

    PubMed

    Rismanchi, Neggy; Soderblom, Cynthia; Stadler, Julia; Zhu, Peng-Peng; Blackstone, Craig

    2008-06-01

    The hereditary spastic paraplegias (SPG1-33) comprise a cluster of inherited neurological disorders characterized principally by lower extremity spasticity and weakness due to a length-dependent, retrograde axonopathy of corticospinal motor neurons. Mutations in the gene encoding the large oligomeric GTPase atlastin-1 are responsible for SPG3A, a common autosomal dominant hereditary spastic paraplegia. Here we describe a family of human GTPases, atlastin-2 and -3 that are closely related to atlastin-1. Interestingly, while atlastin-1 is predominantly localized to vesicular tubular complexes and cis-Golgi cisternae, mostly in brain, atlastin-2 and -3 are localized to the endoplasmic reticulum (ER) and are most enriched in other tissues. Knockdown of atlastin-2 and -3 levels in HeLa cells using siRNA (small interfering RNA) causes disruption of Golgi morphology, and these Golgi structures remain sensitive to brefeldin A treatment. Interestingly, expression of SPG3A mutant or dominant-negative atlastin proteins lacking GTPase activity causes prominent inhibition of ER reticularization, suggesting a role for atlastin GTPases in the formation of three-way junctions in the ER. However, secretory pathway trafficking as assessed using vesicular stomatitis virus G protein fused to green fluorescent protein (VSVG-GFP) as a reporter was essentially normal in both knockdown and dominant-negative overexpression conditions for all atlastins. Thus, the atlastin family of GTPases functions prominently in both ER and Golgi morphogenesis, but they do not appear to be required generally for anterograde ER-to-Golgi trafficking. Abnormal morphogenesis of the ER and Golgi resulting from mutations in atlastin-1 may ultimately underlie SPG3A by interfering with proper membrane distribution or polarity of the long corticospinal motor neurons.

  10. Manganese Blocks Intracellular Trafficking of Shiga Toxin and Protects Against Shiga Toxicosis

    PubMed Central

    Mukhopadhyay, Somshuvra; Linstedt, Adam D.

    2017-01-01

    Infections with Shiga toxin (STx)–producing bacteria cause more than a million deaths each year and have no definitive treatment. To exert its cytotoxic effect, STx invades cells through retrograde membrane trafficking, escaping the lysosomal degradative pathway. We found that the widely available metal manganese (Mn2+) blocked endosome-to-Golgi trafficking of STx and caused its degradation in lysosomes. Mn2+ targeted the cycling Golgi protein GPP130, which STx bound in control cells during sorting into Golgi-directed endosomal tubules that bypass lysosomes. In tissue culture cells, treatment with Mn2+ yielded a protection factor of 3800 against STx-induced cell death. Furthermore, mice injected with nontoxic doses of Mn2+ were completely resistant to a lethal STx challenge. Thus, Mn2+ may represent a low-cost therapeutic agent for the treatment of STx infections. PMID:22267811

  11. Aberrant trafficking of human melanocortin 1 receptor variants associated with red hair and skin cancer: Steady-state retention of mutant forms in the proximal golgi.

    PubMed

    Sánchez-Laorden, Berta L; Herraiz, Cecilia; Valencia, Julio C; Hearing, Vincent J; Jiménez-Cervantes, Celia; García-Borrón, José C

    2009-09-01

    The melanocortin 1 receptor (MC1R), a Gs protein-coupled receptor (GPCR) expressed in melanocytes, is a major determinant of skin pigmentation and phototype. MC1R activation stimulates melanogenesis and increases the ratio of black, strongly photoprotective eumelanins to reddish, poorly photoprotective pheomelanins. Several MC1R alleles are associated with red hair, fair skin, increased sensitivity to ultraviolet radiation (the RHC phenotype) and increased skin cancer risk. Three highly penetrant RHC variants, R151C, R160W, and D294H are loss-of-function MC1R mutants with altered cell surface expression. In this study, we show that forward trafficking was normal for D294H. Conversely, export traffic was impaired for R151C, which accumulated in the endoplasmic reticulum (ER), and for R160W, which was enriched in the cis-Golgi. This is the first report of steady-state retention in a post-ER secretory compartment of a GPCR mutant found in the human population. Residues R151 and R160 are located in the MC1R second intracellular loop (il2). Two other mutations in il2, T157A preventing T157 phosphorylation and R162P disrupting a (160)RARR(163) motif, also caused intracellular retention. Moreover, T157 was phosphorylated in wild-type MC1R and a T157D mutation mimicking constitutive phosphorylation allowed normal traffic, and rescued the retention phenotype of R160W and R162P. Therefore, MC1R export is likely regulated by T157 phosphorylation and the (160)RARR(163) arginine-based motif functions as an ER retrieval signal. These elements are conserved in mammalian MC1Rs and in all five types of human melanocortin receptors. Thus, members of this GPCR subfamily might share common mechanisms for regulation of plasma membrane expression.

  12. A cyclooxygenase-2-dependent prostaglandin E2 biosynthetic system in the Golgi apparatus.

    PubMed

    Yuan, Chong; Smith, William L

    2015-02-27

    Cyclooxygenases (COXs) catalyze the committed step in prostaglandin (PG) biosynthesis. COX-1 is constitutively expressed and stable, whereas COX-2 is inducible and short lived. COX-2 is degraded via endoplasmic reticulum (ER)-associated degradation (ERAD) following post-translational glycosylation of Asn-594. COX-1 and COX-2 are found in abundance on the luminal surfaces of the ER and inner membrane of the nuclear envelope. Using confocal immunocytofluorescence, we detected both COX-2 and microsomal PGE synthase-1 (mPGES-1) but not COX-1 in the Golgi apparatus. Inhibition of trafficking between the ER and Golgi retarded COX-2 ERAD. COX-2 has a C-terminal STEL sequence, which is an inefficient ER retention signal. Substituting this sequence with KDEL, a robust ER retention signal, concentrated COX-2 in the ER where it was stable and slowly glycosylated on Asn-594. Native COX-2 and a recombinant COX-2 having a Golgi targeting signal but not native COX-1 exhibited efficient catalytic coupling to mPGES-1. We conclude that N-glycosylation of Asn-594 of COX-2 occurs in the ER, leading to anterograde movement of COX-2 to the Golgi where the Asn-594-linked glycan is trimmed prior to retrograde COX-2 transport to the ER for ERAD. Having an inefficient ER retention signal leads to sluggish Golgi to ER transit of COX-2. This permits significant Golgi residence time during which COX-2 can function catalytically. Cytosolic phospholipase A2α, which mobilizes arachidonic acid for PG synthesis, preferentially translocates to the Golgi in response to physiologic Ca(2+) mobilization. We propose that cytosolic phospholipase A2α, COX-2, and mPGES-1 in the Golgi comprise a dedicated system for COX-2-dependent PGE2 biosynthesis.

  13. Proteomics characterization of abundant Golgi membrane proteins.

    PubMed

    Bell, A W; Ward, M A; Blackstock, W P; Freeman, H N; Choudhary, J S; Lewis, A P; Chotai, D; Fazel, A; Gushue, J N; Paiement, J; Palcy, S; Chevet, E; Lafrenière-Roula, M; Solari, R; Thomas, D Y; Rowley, A; Bergeron, J J

    2001-02-16

    A mass spectrometric analysis of proteins partitioning into Triton X-114 from purified hepatic Golgi apparatus (84% purity by morphometry, 122-fold enrichment over the homogenate for the Golgi marker galactosyl transferase) led to the unambiguous identification of 81 proteins including a novel Golgi-associated protein of 34 kDa (GPP34). The membrane protein complement was resolved by SDS-polyacrylamide gel electrophoresis and subjected to a hierarchical approach using delayed extraction matrix-assisted laser desorption ionization mass spectrometry characterization by peptide mass fingerprinting, tandem mass spectrometry to generate sequence tags, and Edman sequencing of proteins. Major membrane proteins corresponded to known Golgi residents, a Golgi lectin, anterograde cargo, and an abundance of trafficking proteins including KDEL receptors, p24 family members, SNAREs, Rabs, a single ARF-guanine nucleotide exchange factor, and two SCAMPs. Analytical fractionation and gold immunolabeling of proteins in the purified Golgi fraction were used to assess the intra-Golgi and total cellular distribution of GPP34, two SNAREs, SCAMPs, and the trafficking proteins GBF1, BAP31, and alpha(2)P24 identified by the proteomics approach as well as the endoplasmic reticulum contaminant calnexin. Although GPP34 has never previously been identified as a protein, the localization of GPP34 to the Golgi complex, the conservation of GPP34 from yeast to humans, and the cytosolically exposed location of GPP34 predict a role for a novel coat protein in Golgi trafficking.

  14. ARF1 and SAR1 GTPases in endomembrane trafficking in plants.

    PubMed

    Cevher-Keskin, Birsen

    2013-09-05

    Small GTPases largely control membrane traffic, which is essential for the survival of all eukaryotes. Among the small GTP-binding proteins, ARF1 (ADP-ribosylation factor 1) and SAR1 (Secretion-Associated RAS super family 1) are commonly conserved among all eukaryotes with respect to both their functional and sequential characteristics. The ARF1 and SAR1 GTP-binding proteins are involved in the formation and budding of vesicles throughout plant endomembrane systems. ARF1 has been shown to play a critical role in COPI (Coat Protein Complex I)-mediated retrograde trafficking in eukaryotic systems, whereas SAR1 GTPases are involved in intracellular COPII-mediated protein trafficking from the ER to the Golgi apparatus. This review offers a summary of vesicular trafficking with an emphasis on the ARF1 and SAR1 expression patterns at early growth stages and in the de-etiolation process.

  15. Analysis of articulation between clathrin and retromer in retrograde sorting on early endosomes.

    PubMed

    Popoff, Vincent; Mardones, Gonzalo A; Bai, Siau-Kun; Chambon, Valérie; Tenza, Danièle; Burgos, Patricia V; Shi, Anbing; Benaroch, Philippe; Urbé, Sylvie; Lamaze, Christophe; Grant, Barth D; Raposo, Graça; Johannes, Ludger

    2009-12-01

    Clathrin and retromer have key functions for retrograde trafficking between early endosomes and the trans-Golgi network (TGN). Previous studies on Shiga toxin suggested that these two coat complexes operate in a sequential manner. Here, we show that the curvature recognition subunit component sorting nexin 1 (SNX1) of retromer interacts with receptor-mediated endocytosis-8 (RME-8) protein, and that RME-8 and SNX1 colocalize on early endosomes together with a model cargo of the retrograde route, the receptor-binding B-subunit of Shiga toxin (STxB). RME-8 has previously been found to bind to the clathrin uncoating adenosine triphosphatase (ATPase) Hsc70, and we now report that depletion of RME-8 or Hsc70 affects retrograde trafficking at the early endosomes-TGN interface of STxB and the cation-independent mannose 6-phosphate receptor, an endogenous retrograde cargo protein. We also provide evidence that retromer interacts with the clathrin-binding protein hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) not only via SNX1, as previously published (Chin Raynor MC, Wei X, Chen HQ, Li L. Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor. J Biol Chem 2001;276:7069-7078), but also via the core complex component Vps35. Hrs codistributes at the ultrastructural level with STxB on early endosomes, and interfering with Hrs function using antibodies or mild overexpression inhibits retrograde transport. Our combined data suggest a model according to which the functions in retrograde sorting on early endosomes of SNX1/retromer and clathrin are articulated by RME-8, and possibly also by Hrs.

  16. Ganglioside GM1-mediated transcytosis of cholera toxin bypasses the retrograde pathway and depends on the structure of the ceramide domain.

    PubMed

    Saslowsky, David E; te Welscher, Yvonne M; Chinnapen, Daniel J-F; Wagner, Jessica S; Wan, Joy; Kern, Eli; Lencer, Wayne I

    2013-09-06

    Cholera toxin causes diarrheal disease by binding ganglioside GM1 on the apical membrane of polarized intestinal epithelial cells and trafficking retrograde through sorting endosomes, the trans-Golgi network (TGN), and into the endoplasmic reticulum. A fraction of toxin also moves from endosomes across the cell to the basolateral plasma membrane by transcytosis, thus breeching the intestinal barrier. Here we find that sorting of cholera toxin into this transcytotic pathway bypasses retrograde transport to the TGN. We also find that GM1 sphingolipids can traffic from apical to basolateral membranes by transcytosis in the absence of toxin binding but only if the GM1 species contain cis-unsaturated or short acyl chains in the ceramide domain. We found previously that the same GM1 species are needed to efficiently traffic retrograde into the TGN and endoplasmic reticulum and into the recycling endosome, implicating a shared mechanism of action for sorting by lipid shape among these pathways.

  17. GRASPs in Golgi Structure and Function

    PubMed Central

    Zhang, Xiaoyan; Wang, Yanzhuang

    2016-01-01

    The Golgi apparatus is a central intracellular membrane organelle for trafficking and modification of proteins and lipids. Its basic structure is a stack of tightly aligned flat cisternae. In mammalian cells, dozens of stacks are concentrated in the pericentriolar region and laterally connected to form a ribbon. Despite extensive research in the last decades, how this unique structure is formed and why its formation is important for proper Golgi functioning remain largely unknown. The Golgi ReAssembly Stacking Proteins, GRASP65, and GRASP55, are so far the only proteins shown to function in Golgi stacking. They are peripheral membrane proteins on the cytoplasmic face of the Golgi cisternae that form trans-oligomers through their N-terminal GRASP domain, and thereby function as the “glue” to stick adjacent cisternae together into a stack and to link Golgi stacks into a ribbon. Depletion of GRASPs in cells disrupts the Golgi structure and results in accelerated protein trafficking and defective glycosylation. In this minireview we summarize our current knowledge on how GRASPs function in Golgi structure formation and discuss why Golgi structure formation is important for its function. PMID:26779480

  18. AGAP2 regulates retrograde transport between early endosomes and the TGN

    PubMed Central

    Shiba, Yoko; Römer, Winfried; Mardones, Gonzalo A.; Burgos, Patricia V.; Lamaze, Christophe; Johannes, Ludger

    2010-01-01

    The retrograde transport route links early endosomes and the TGN. Several endogenous and exogenous cargo proteins use this pathway, one of which is the well-explored bacterial Shiga toxin. ADP-ribosylation factors (Arfs) are ~20 kDa GTP-binding proteins that are required for protein traffic at the level of the Golgi complex and early endosomes. In this study, we expressed mutants and protein fragments that bind to Arf-GTP to show that Arf1, but not Arf6 is required for transport of Shiga toxin from early endosomes to the TGN. We depleted six Arf1-specific ARF-GTPase-activating proteins and identified AGAP2 as a crucial regulator of retrograde transport for Shiga toxin, cholera toxin and the endogenous proteins TGN46 and mannose 6-phosphate receptor. In AGAP2-depleted cells, Shiga toxin accumulates in transferrin-receptor-positive early endosomes, suggesting that AGAP2 functions in the very early steps of retrograde sorting. A number of other intracellular trafficking pathways are not affected under these conditions. These results establish that Arf1 and AGAP2 have key trafficking functions at the interface between early endosomes and the TGN. PMID:20551179

  19. An Essential Subfamily of Drs2p-related P-Type ATPases Is Required for Protein Trafficking between Golgi Complex and Endosomal/Vacuolar System

    PubMed Central

    Hua, Zhaolin; Fatheddin, Parvin; Graham, Todd R.

    2002-01-01

    The Saccharomyces cerevisiae genome contains five genes encoding P-type ATPases that are potential aminophospholipid translocases (APTs): DRS2, NEO1, and three uncharacterized open reading frames that we have named DNF1, DNF2, and DNF3 for DRS2/NEO1 family. NEO1 is the only essential gene in APT family and seems to be functionally distinct from the DRS2/DNF genes. The drs2Δ dnf1Δ dnf2Δ dnf3Δ quadruple mutant is inviable, although any one member of this group can maintain viability, indicating that there is a substantial functional overlap between the encoded proteins. We have previously implicated Drs2p in clathrin function at the trans-Golgi network. In this study, we constructed strains carrying all possible viable combinations of null alleles from this group and analyzed them for defects in protein transport. The drs2Δ dnf1Δ mutant grows slowly, massively accumulates intracellular membranes, and exhibits a substantial defect in the transport of alkaline phosphatase to the vacuole. Transport of carboxypeptidase Y to the vacuole is also perturbed, but to a lesser extent. In addition, the dnf1Δ dnf2Δ dnf3Δ mutant exhibits a defect in recycling of GFP-Snc1p in the early endocytic-late secretory pathways. Drs2p and Dnf3p colocalize with the trans-Golgi network marker Kex2p, whereas Dnf1p and Dnf2p seem to localize to the plasma membrane and late exocytic or early endocytic membranes. We propose that eukaryotes express multiple APT subfamily members to facilitate protein transport in multiple pathways. PMID:12221123

  20. A new role for RINT-1 in SNARE complex assembly at the trans-Golgi network in coordination with the COG complex

    PubMed Central

    Arasaki, Kohei; Takagi, Daichi; Furuno, Akiko; Sohda, Miwa; Misumi, Yoshio; Wakana, Yuichi; Inoue, Hiroki; Tagaya, Mitsuo

    2013-01-01

    Docking and fusion of transport vesicles/carriers with the target membrane involve a tethering factor–mediated initial contact followed by soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE)–catalyzed membrane fusion. The multisubunit tethering CATCHR family complexes (Dsl1, COG, exocyst, and GARP complexes) share very low sequence homology among subunits despite likely evolving from a common ancestor and participate in fundamentally different membrane trafficking pathways. Yeast Tip20, as a subunit of the Dsl1 complex, has been implicated in retrograde transport from the Golgi apparatus to the endoplasmic reticulum. Our previous study showed that RINT-1, the mammalian counterpart of yeast Tip20, mediates the association of ZW10 (mammalian Dsl1) with endoplasmic reticulum–localized SNARE proteins. In the present study, we show that RINT-1 is also required for endosome-to–trans-Golgi network trafficking. RINT-1 uncomplexed with ZW10 interacts with the COG complex, another member of the CATCHR family complex, and regulates SNARE complex assembly at the trans-Golgi network. This additional role for RINT-1 may in part reflect adaptation to the demand for more diverse transport routes from endosomes to the trans-Golgi network in mammals compared with those in a unicellular organism, yeast. The present findings highlight a new role of RINT-1 in coordination with the COG complex. PMID:23885118

  1. Soi3p/Rav1p functions at the early endosome to regulate endocytic trafficking to the vacuole and localization of trans-Golgi network transmembrane proteins.

    PubMed

    Sipos, György; Brickner, Jason H; Brace, E J; Chen, Linyi; Rambourg, Alain; Kepes, Francois; Fuller, Robert S

    2004-07-01

    SOI3 was identified by a mutation, soi3-1, that suppressed a mutant trans-Golgi network (TGN) localization signal in the Kex2p cytosolic tail. SOI3, identical to RAV1, encodes a protein important for regulated assembly of vacuolar ATPase. Here, we show that Soi3/Rav1p is required for transport between the early endosome and the late endosome/prevacuolar compartment (PVC). By electron microscopy, soi3-1 mutants massively accumulated structures that resembled early endosomes. soi3Delta mutants exhibited a kinetic delay in transfer of the endocytic tracer dye FM4-64, from the 14 degrees C endocytic intermediate to the vacuole. The soi3Delta mutation delayed vacuolar degradation but not internalization of the a-factor receptor Ste3p. By density gradient fractionation, Soi3/Rav1p associated as a peripheral protein with membranes of a density characteristic of early endosomes. The soi3 null mutation markedly reduced the rate of Kex2p transport from the TGN to the PVC but had no effect on vacuolar protein sorting or cycling of Vps10p. These results suggest that assembly of vacuolar ATPase at the early endosome is required for transport of both Ste3p and Kex2p from the early endosome to the PVC and support a model in which cycling through the early endosome is part of the normal itinerary of Kex2p and other TGN-resident proteins.

  2. Formation and maintenance of the Golgi apparatus in plant cells.

    PubMed

    Ito, Yoko; Uemura, Tomohiro; Nakano, Akihiko

    2014-01-01

    The Golgi apparatus plays essential roles in intracellular trafficking, protein and lipid modification, and polysaccharide synthesis in eukaryotic cells. It is well known for its unique stacked structure, which is conserved among most eukaryotes. However, the mechanisms of biogenesis and maintenance of the structure, which are deeply related to ER-Golgi and intra-Golgi transport systems, have long been mysterious. Now having extremely powerful microscopic technologies developed for live-cell imaging, the plant Golgi apparatus provides an ideal system to resolve the question. The plant Golgi apparatus has unique features that are not conserved in other kingdoms, which will also give new insights into the Golgi functions in plant life. In this review, we will summarize the features of the plant Golgi apparatus and transport mechanisms around it, with a focus on recent advances in Golgi biogenesis by live imaging of plants cells.

  3. Two independent targeting signals in the cytoplasmic domain determine trans-Golgi network localization and endosomal trafficking of the proprotein convertase furin.

    PubMed Central

    Schäfer, W; Stroh, A; Berghöfer, S; Seiler, J; Vey, M; Kruse, M L; Kern, H F; Klenk, H D; Garten, W

    1995-01-01

    Furin, a subtilisin-like eukaryotic endoprotease, is responsible for proteolytic cleavage of cellular and viral proteins transported via the constitutive secretory pathway. Cleavage occurs at the C-terminus of basic amino acid sequences, such as R-X-K/R-R and R-X-X-R. Furin was found predominantly in the trans-Golgi network (TGN), but also in clathrin-coated vesicles dispatched from the TGN, on the plasma membrane as an integral membrane protein and in the medium as an anchorless enzyme. When furin was vectorially expressed in normal rat kidney (NRK) cells it accumulated in the TGN similarly to the endogenous glycoprotein TGN38, often used as a TGN marker protein. The signals determining TGN targeting of furin were investigated by mutational analysis of the cytoplasmic tail of furin and by using the hemagglutinin (HA) of fowl plague virus, a protein with cell surface destination, as a reporter molecule, in which membrane anchor and cytoplasmic tail were replaced by the respective domains of furin. The membrane-spanning domain of furin grafted to HA does not localize the chimeric molecule to the TGN, whereas the cytoplasmic domain does. Results obtained on furin mutants with substitutions and deletions of amino acids in the cytoplasmic tail indicate that wild-type furin is concentrated in the TGN by a mechanism involving two independent targeting signals, which consist of the acidic peptide CPSDSEEDEG783 and the tetrapeptide YKGL765. The acidic signal in the cytoplasmic domain of a HA-furin chimera is necessary and sufficient to localize the reporter molecule to the TGN, whereas YKGL is a determinant for targeting to the endosomes. The data support the concept that the acidic signal, which is the dominant one, retains furin in the TGN, whereas the YKGL motif acts as a retrieval signal for furin that has escaped to the cell surface. Images PMID:7781597

  4. Cellular Endocytosis and Trafficking of Cholera Toxin B-Modified Mesoporous Silica Nanoparticles

    PubMed Central

    Walker, William A.; Tarannum, Mubin; Vivero-Escoto, Juan L.

    2016-01-01

    In this study, mesoporous silica nanoparticles (MSNs) were functionalized with Cholera toxin subunit B (CTxB) protein to influence their intracellular trafficking pathways. The CTxB-MSN carrier was synthesized, and its chemical and structural properties were characterized. Endocytic pathway inhibition assays showed that the uptake of CTxB-MSNs in human cervical cancer (HeLa) cells was partially facilitated by both chlatrin- and caveolae-mediated endocytosis mechanisms. Laser scanning confocal microscopy (LSCM) experiments demonstrated that CTxB-MSNs were taken up by the cells and partially trafficked through the trans-Golgi network into to the endoplasmic reticulum in a retrograde fashion. The delivery abilities of CTxB-MSNs were evaluated using propidium iodide, an impermeable cell membrane dye. LSCM images depicted the release of propidium iodide in the endoplasmic reticulum and cell nucleus of HeLa cells. PMID:27134749

  5. Recognition and tethering of transport vesicles at the Golgi apparatus.

    PubMed

    Witkos, Tomasz M; Lowe, Martin

    2017-02-23

    The Golgi apparatus occupies a central position within the secretory pathway where it is a hub for vesicle trafficking. Distinct classes of transport vesicles traffic diverse cargoes into and out of this organelle, as well as between the different Golgi subcompartments. A key feature of Golgi trafficking is the specific recognition of transport vesicles at the different regions of the Golgi apparatus, required for the correct cargo delivery. Specificity is ensured by coiled-coil golgins and multi-subunit tethering complexes (MTCs), which act together to capture vesicles and promote their subsequent fusion with the Golgi membrane. In this review we discuss our current understanding of how golgins and MTCs function together to mediate the specific recognition of vesicles at the Golgi apparatus.

  6. Components of Golgi-to-vacuole trafficking are required for nitrogen- and TORC1-responsive regulation of the yeast GATA factors

    PubMed Central

    Fayyadkazan, Mohammad; Tate, Jennifer J; Vierendeels, Fabienne; Cooper, Terrance G; Dubois, Evelyne; Georis, Isabelle

    2014-01-01

    Nitrogen catabolite repression (NCR) is the regulatory pathway through which Saccharomyces cerevisiae responds to the available nitrogen status and selectively utilizes rich nitrogen sources in preference to poor ones. Expression of NCR-sensitive genes is mediated by two transcription activators, Gln3 and Gat1, in response to provision of a poorly used nitrogen source or following treatment with the TORC1 inhibitor, rapamycin. During nitrogen excess, the transcription activators are sequestered in the cytoplasm in a Ure2-dependent fashion. Here, we show that Vps components are required for Gln3 localization and function in response to rapamycin treatment when cells are grown in defined yeast nitrogen base but not in complex yeast peptone dextrose medium. On the other hand, Gat1 function was altered in vps mutants in all conditions tested. A significant fraction of Gat1, like Gln3, is associated with light intracellular membranes. Further, our results are consistent with the possibility that Ure2 might function downstream of the Vps components during the control of GATA factor-mediated gene expression. These observations demonstrate distinct media-dependent requirements of vesicular trafficking components for wild-type responses of GATA factor localization and function. As a result, the current model describing participation of Vps system components in events associated with translocation of Gln3 into the nucleus following rapamycin treatment or growth in nitrogen-poor medium requires modification. PMID:24644271

  7. Identification of a role for the trans-Golgi network in human papillomavirus 16 pseudovirus infection.

    PubMed

    Day, Patricia M; Thompson, Cynthia D; Schowalter, Rachel M; Lowy, Douglas R; Schiller, John T

    2013-04-01

    Human papillomavirus 16 (HPV16) enters its host cells by a process that most closely resembles macropinocytosis. Uncoating occurs during passage through the endosomal compartment, and the low pH encountered in this environment is essential for infection. Furin cleavage of the minor capsid protein, L2, and cyclophilin B-mediated separation of L2 and the viral genome from the major capsid protein, L1, are necessary for escape from the late endosome (LE). Following this exodus, L2 and the genome are found colocalized at the ND10 nuclear subdomain, which is essential for efficient pseudogenome expression. However, the route by which L2 and the genome traverse the intervening cytoplasm between these two subcellular compartments has not been determined. This study extends our understanding of this phase in PV entry in demonstrating the involvement of the Golgi complex. With confocal microscopic analyses involving 5-ethynyl-2'-deoxyuridine (EdU)-labeled pseudogenomes and antibodies to virion and cellular proteins, we found that the viral pseudogenome and L2 travel to the trans-Golgi network (TGN) following exit from the LE, while L1 is retained. This transit is dependent upon furin cleavage of L2 and can be prevented pharmacologically with either brefeldin A or golgicide A, inhibitors of anterograde and retrograde Golgi trafficking. Additionally, Rab9a and Rab7b were determined to be mediators of this transit, as expression of dominant negative versions of these proteins, but not Rab7a, significantly inhibited HPV16 pseudovirus infection.

  8. Overexpression of Rab22a hampers the transport between endosomes and the Golgi apparatus

    SciTech Connect

    Mesa, Rosana; Magadan, Javier; Barbieri, Alejandro; Lopez, Cecilia; Stahl, Philip D.; Mayorga, Luis S. . E-mail: lmayorga@fcm.uncu.edu.ar

    2005-04-01

    The transport and sorting of soluble and membrane-associated macromolecules arriving at endosomal compartments require a complex set of Rab proteins. Rab22a has been localized to the endocytic compartment; however, very little is known about the function of Rab22a and inconsistent results have been reported in studies performed in different cell lines. To characterize the function of Rab22a in endocytic transport, the wild-type protein (Rab22a WT), a hydrolysis-deficient mutant (Rab22a Q64L), and a mutant with reduced affinity for GTP (Rab22a S19N) were expressed in CHO cells. None of the three Rab22a constructs affected the transport of rhodamine-dextran to lysosomes, the digestion of internalized proteins, or the lysosomal localization of cathepsin D. In contrast with the mild effect of Rab22a on the endosome-lysosome route, cells expressing Rab22a WT and Rab22a Q64L presented a strong delay in the retrograde transport of cholera toxin from endosomes to the Golgi apparatus. Moreover, these cells accumulated the cation independent mannose 6-phosphate receptor in endosomes. These observations indicate that Rab22a can affect the trafficking from endosomes to the Golgi apparatus probably by promoting fusion among endosomes and impairing the proper segregation of membrane domains required for targeting to the trans-Golgi network (TGN)

  9. Membrane-bound trafficking regulates nuclear transport of integral epidermal growth factor receptor (EGFR) and ErbB-2.

    PubMed

    Wang, Ying-Nai; Lee, Heng-Huan; Lee, Hong-Jen; Du, Yi; Yamaguchi, Hirohito; Hung, Mien-Chie

    2012-05-11

    Nuclear localization of multiple receptor-tyrosine kinases (RTKs), such as EGF receptor (EGFR), ErbB-2, FGF receptor (FGFR), and many others, has been reported by several groups. We previously showed that cell surface EGFR is trafficked to the nucleus through a retrograde pathway from the Golgi to the endoplasmic reticulum (ER) and that EGFR is then translocated to the inner nuclear membrane (INM) through the INTERNET (integral trafficking from the ER to the nuclear envelope transport) pathway. However, the nuclear trafficking mechanisms of other membrane RTKs, apart from EGFR, remain unclear. The purpose of this study was to compare the nuclear transport of EGFR family proteins with that of FGFR-1. Interestingly, we found that digitonin permeabilization, which selectively releases soluble nuclear transporters from the cytoplasm and has been shown to inhibit nuclear transport of FGFR-1, had no effects on EGFR nuclear transport, raising the possibility that EGFR and FGFR-1 use different pathways to be translocated into the nucleus. Using the subnuclear fractionation assay, we further demonstrated that biotinylated cell surface ErbB-2, but not FGFR-1, is targeted to the INM, associating with Sec61β in the INM, similar to the nuclear trafficking of EGFR. Thus, ErbB-2, but not FGFR-1, shows a similar trafficking pathway to EGFR for translocation to the nucleus, indicating that at least two different pathways of nuclear transport exist for cell surface receptors. This finding provides a new direction for investigating the trafficking mechanisms of various nuclear RTKs.

  10. A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling.

    PubMed

    Bai, Zhiyong; Grant, Barth D

    2015-03-24

    Endosome-to-Golgi transport is required for the function of many key membrane proteins and lipids, including signaling receptors, small-molecule transporters, and adhesion proteins. The retromer complex is well-known for its role in cargo sorting and vesicle budding from early endosomes, in most cases leading to cargo fusion with the trans-Golgi network (TGN). Transport from recycling endosomes to the TGN has also been reported, but much less is understood about the molecules that mediate this transport step. Here we provide evidence that the F-BAR domain proteins TOCA-1 and TOCA-2 (Transducer of Cdc42 dependent actin assembly), the small GTPase CDC-42 (Cell division control protein 42), associated polarity proteins PAR-6 (Partitioning defective 6) and PKC-3/atypical protein kinase C, and the WAVE actin nucleation complex mediate the transport of MIG-14/Wls and TGN-38/TGN38 cargo proteins from the recycling endosome to the TGN in Caenorhabditis elegans. Our results indicate that CDC-42, the TOCA proteins, and the WAVE component WVE-1 are enriched on RME-1-positive recycling endosomes in the intestine, unlike retromer components that act on early endosomes. Furthermore, we find that retrograde cargo TGN-38 is trapped in early endosomes after depletion of SNX-3 (a retromer component) but is mainly trapped in recycling endosomes after depletion of CDC-42, indicating that the CDC-42-associated complex functions after retromer in a distinct organelle. Thus, we identify a group of interacting proteins that mediate retrograde recycling, and link these proteins to a poorly understood trafficking step, recycling endosome-to-Golgi transport. We also provide evidence for the physiological importance of this pathway in WNT signaling.

  11. Ca(2+) signalling in the Golgi apparatus.

    PubMed

    Pizzo, Paola; Lissandron, Valentina; Capitanio, Paola; Pozzan, Tullio

    2011-08-01

    The Golgi apparatus plays a central role in lipid and protein post-translational modification and sorting. Morphologically the organelle is heterogeneous and it is possible to distinguish stacks of flat cysternae (cis- and medial Golgi), tubular-reticular networks and vesicles (trans-Golgi). These morphological differences parallel a distinct functionality with a selective distribution and complementary roles of the enzymes found in the different compartments. The Golgi apparatus has been also shown to be involved in Ca(2+) signalling: it is indeed endowed with Ca(2+) pumps, Ca(2+) release channels and Ca(2+) binding proteins and is thought to participate in determining the spatio-temporal complexity of the Ca(2+) signal within the cell, though this role is still poorly understood. Recently, it has been demonstrated that the organelle is heterogeneous in terms of Ca(2+) handling and selective reduction of Ca(2+) concentration, both in vitro and in a genetic human disease, within one of its sub-compartment results in alterations of protein trafficking within the secretory pathway and of the entire Golgi morphology. In this paper we review the available information on the Ca(2+) toolkit within the Golgi, its heterogeneous distribution in the organelle sub-compartments and discuss the implications of these characteristics for the physiopathology of the Golgi apparatus.

  12. Retrograde ejaculation

    MedlinePlus

    ... problem. Alternative Names Ejaculation retrograde; Dry climax Images Male reproductive system References Bhasin S, Basson R. Sexual dysfunction in men and women. In: Kronenberg HM, Melmed S, Polonsky KS, Larsen PR, eds. Williams ... management of male infertility. In: Wein AJ, ed. Campbell-Walsh Urology . ...

  13. Regulation of protein glycosylation and sorting by the Golgi matrix proteins GRASP55/65

    PubMed Central

    Xiang, Yi; Zhang, Xiaoyan; Nix, David B.; Katoh, Toshihiko; Aoki, Kazuhiro; Tiemeyer, Michael; Wang, Yanzhuang

    2013-01-01

    The Golgi receives the entire output of newly synthesized cargo from the endoplasmic reticulum (ER), processes it in the stack largely through modification of bound oligosaccharides, and sorts it in the trans-Golgi network (TGN). GRASP65 and GRASP55, two proteins localized to the Golgi stack and early secretory pathway, mediate processes including Golgi stacking, Golgi ribbon linking, and unconventional secretion. Previously we have shown that GRASP depletion in cells disrupts Golgi stack formation. Here we report that knockdown of the GRASP proteins, alone or combined, accelerates protein trafficking through the Golgi membranes but also has striking negative effects on protein glycosylation and sorting. These effects are not caused by Golgi ribbon unlinking, unconventional secretion, or ER stress. We propose that GRASP55/65 are negative regulators of exocytic transport and that this slowdown helps to ensure more complete protein glycosylation in the Golgi stack and proper sorting at the TGN. PMID:23552074

  14. Arf6-Dependent Intracellular Trafficking of Pasteurella multocida Toxin and pH-Dependent Translocation from Late Endosomes

    PubMed Central

    Repella, Tana L.; Ho, Mengfei; Chong, Tracy P. M.; Bannai, Yuka; Wilson, Brenda A.

    2011-01-01

    The potent mitogenic toxin from Pasteurella multocida (PMT) is the major virulence factor associated with a number of epizootic and zoonotic diseases caused by infection with this respiratory pathogen. PMT is a glutamine-specific protein deamidase that acts on its intracellular G-protein targets to increase intracellular calcium, cytoskeletal, and mitogenic signaling. PMT enters cells through receptor-mediated endocytosis and then translocates into the cytosol through a pH-dependent process that is inhibited by NH4Cl or bafilomycin A1. However, the detailed mechanisms that govern cellular entry, trafficking, and translocation of PMT remain unclear. Co-localization studies described herein revealed that while PMT shares an initial entry pathway with transferrin (Tfn) and cholera toxin (CT), the trafficking pathways of Tfn, CT, and PMT subsequently diverge, as Tfn is trafficked to recycling endosomes, CT is trafficked retrograde to the ER, and PMT is trafficked to late endosomes. Our studies implicate the small regulatory GTPase Arf6 in the endocytic trafficking of PMT. Translocation of PMT from the endocytic vesicle occurs through a pH-dependent process that is also dependent on both microtubule and actin dynamics, as evidenced by inhibition of PMT activity in our SRE-based reporter assay, with nocodazole and cytochalasin D, respectively, suggesting that membrane translocation and cytotoxicity of PMT is dependent on its transfer to late endosomal compartments. In contrast, disruption of Golgi-ER trafficking with brefeldin A increased PMT activity, suggesting that inhibiting PMT trafficking to non-productive compartments that do not lead to translocation, while promoting formation of an acidic tubulovesicle system more conducive to translocation, enhances PMT translocation and activity. PMID:22053287

  15. Arf6-dependent intracellular trafficking of Pasteurella multocida toxin and pH-dependent translocation from late endosomes.

    PubMed

    Repella, Tana L; Ho, Mengfei; Chong, Tracy P M; Bannai, Yuka; Wilson, Brenda A

    2011-03-01

    The potent mitogenic toxin from Pasteurella multocida (PMT) is the major virulence factor associated with a number of epizootic and zoonotic diseases caused by infection with this respiratory pathogen. PMT is a glutamine-specific protein deamidase that acts on its intracellular G-protein targets to increase intracellular calcium, cytoskeletal, and mitogenic signaling. PMT enters cells through receptor-mediated endocytosis and then translocates into the cytosol through a pH-dependent process that is inhibited by NH(4)Cl or bafilomycin A1. However, the detailed mechanisms that govern cellular entry, trafficking, and translocation of PMT remain unclear. Co-localization studies described herein revealed that while PMT shares an initial entry pathway with transferrin (Tfn) and cholera toxin (CT), the trafficking pathways of Tfn, CT, and PMT subsequently diverge, as Tfn is trafficked to recycling endosomes, CT is trafficked retrograde to the ER, and PMT is trafficked to late endosomes. Our studies implicate the small regulatory GTPase Arf6 in the endocytic trafficking of PMT. Translocation of PMT from the endocytic vesicle occurs through a pH-dependent process that is also dependent on both microtubule and actin dynamics, as evidenced by inhibition of PMT activity in our SRE-based reporter assay, with nocodazole and cytochalasin D, respectively, suggesting that membrane translocation and cytotoxicity of PMT is dependent on its transfer to late endosomal compartments. In contrast, disruption of Golgi-ER trafficking with brefeldin A increased PMT activity, suggesting that inhibiting PMT trafficking to non-productive compartments that do not lead to translocation, while promoting formation of an acidic tubulovesicle system more conducive to translocation, enhances PMT translocation and activity.

  16. Regulation of the Golgi Complex by Phospholipid Remodeling Enzymes

    PubMed Central

    Ha, Kevin D.; Clarke, Benjamin A.; Brown, William J.

    2012-01-01

    The mammalian Golgi complex is a highly dynamic organelle consisting of stacks of flattened cisternae with associated coated vesicles and membrane tubules that contribute to cargo import and export, intra-cisternal trafficking, and overall Golgi architecture. At the morphological level, all of these structures are continuously remodeled to carry out these trafficking functions. Recent advances have shown that continual phospholipid remodeling by phospholipase A (PLA) and lysophospholipid acyltransferase (LPAT) enzymes, which deacylate and reacylate Golgi phospholipids, respectively, contributes to this morphological remodeling. Here we review the identification and characterization of four cytoplasmic PLA enzymes and one integral membrane LPAT that participate in the dynamic functional organization of the Golgi complex, and how some of these enzymes are integrated to determine the relative abundance of COPI vesicle and membrane tubule formation. PMID:22562055

  17. BPIFB6 Regulates Secretory Pathway Trafficking and Enterovirus Replication

    PubMed Central

    Morosky, Stefanie; Lennemann, Nicholas J.

    2016-01-01

    ABSTRACT Bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 3 (BPIFB3) is an endoplasmic reticulum (ER)-localized host factor that negatively regulates coxsackievirus B (CVB) replication through its control of the autophagic pathway. Here, we show that another member of the BPIFB family, BPIFB6, functions as a positive regulator of CVB, and other enterovirus, replication by controlling secretory pathway trafficking and Golgi complex morphology. We show that similar to BPIFB3, BPIFB6 localizes exclusively to the ER, where it associates with other members of the BPIFB family. However, in contrast to our findings that RNA interference (RNAi)-mediated silencing of BPIFB3 greatly enhances CVB replication, we show that silencing of BPIFB6 expression dramatically suppresses enterovirus replication in a pan-viral manner. Mechanistically, we show that loss of BPIFB6 expression induces pronounced alterations in retrograde and anterograde trafficking, which correlate with dramatic fragmentation of the Golgi complex. Taken together, these data implicate BPIFB6 as a key regulator of secretory pathway trafficking and viral replication and suggest that members of the BPIFB family participate in diverse host cell functions to regulate virus infections. IMPORTANCE Enterovirus infections are associated with a number of severe pathologies, such as aseptic meningitis, dilated cardiomyopathy, type I diabetes, paralysis, and even death. These viruses, which include coxsackievirus B (CVB), poliovirus (PV), and enterovirus 71 (EV71), co-opt the host cell secretory pathway, which controls the transport of proteins from the endoplasmic reticulum to the Golgi complex, to facilitate their replication. Here we report on the identification of a novel regulator of the secretory pathway, bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 6 (BPIFB6), whose expression is required for enterovirus replication. We show that loss of

  18. A PLA1-2 Punch Regulates the Golgi Complex

    PubMed Central

    Bechler, Marie E.; de Figueiredo, Paul; Brown, William J.

    2011-01-01

    The mammalian Golgi complex, trans Golgi network (TGN) and ER-Golgi-Intermediate Compartment (ERGIC) are comprised of membrane cisternae, coated vesicles and membrane tubules, all of which contribute to membrane trafficking and maintenance of their unique architectures. Recently, a new cast of players was discovered to regulate the Golgi and ERGIC: four unrelated cytoplasmic phospholipase A (PLA) enzymes, cPLA2α (GIVA cPLA2), PAFAH Ib (GVIII PLA2), iPLA2-β (GVIA-2 iPLA2), and iPLA1γ. These ubiquitously expressed enzymes regulate membrane trafficking from specific Golgi subcompartments, although there is evidence for some functional redundancy between PAFAH Ib and cPLA2α. Three of these enzymes, PAFAH Ib, cPLA2α, and iPLA2-β, exert effects on Golgi structure and function by inducing the formation of membrane tubules. Here, we review our current understanding of how PLA enzymes regulate Golgi and ERGIC morphology and function. PMID:22130221

  19. Mutations in proteins of the Conserved Oligomeric Golgi Complex affect polarity, cell wall structure, and glycosylation in the filamentous fungus Aspergillus nidulans.

    PubMed

    Gremillion, S K; Harris, S D; Jackson-Hayes, L; Kaminskyj, S G W; Loprete, D M; Gauthier, A C; Mercer, S; Ravita, A J; Hill, T W

    2014-12-01

    We have described two Aspergillus nidulans gene mutations, designated podB1 (polarity defective) and swoP1 (swollen cell), which cause temperature-sensitive defects during polarization. Mutant strains also displayed unevenness and abnormal thickness of cell walls. Un-polarized or poorly-polarized mutant cells were capable of establishing normal polarity after a shift to a permissive temperature, and mutant hyphae shifted from permissive to restrictive temperature show wall and polarity abnormalities in subsequent growth. The mutated genes (podB=AN8226.3; swoP=AN7462.3) were identified as homologues of COG2 and COG4, respectively, each predicted to encode a subunit of the multi-protein COG (Conserved Oligomeric Golgi) Complex involved in retrograde vesicle trafficking in the Golgi apparatus. Down-regulation of COG2 or COG4 resulted in abnormal polarization and cell wall staining. The GFP-tagged COG2 and COG4 homologues displayed punctate, Golgi-like localization. Lectin-blotting indicated that protein glycosylation was altered in the mutant strains compared to the wild type. A multicopy expression experiment showed evidence for functional interactions between the homologues COG2 and COG4 as well as between COG2 and COG3. To date, this work is the first regarding a functional role of the COG proteins in the development of a filamentous fungus.

  20. Recruitment of Arf1-GDP to Golgi by Glo3p-type ArfGAPs is crucial for golgi maintenance and plant growth.

    PubMed

    Min, Myung Ki; Jang, Mihue; Lee, Myounghui; Lee, Junho; Song, Kyungyoung; Lee, Yongjik; Choi, Kwan Yong; Robinson, David G; Hwang, Inhwan

    2013-02-01

    ADP-ribosylation factor1 (Arf1), a member of the small GTP-binding proteins, plays a pivotal role in protein trafficking to multiple organelles. In its GDP-bound form, Arf1 is recruited from the cytosol to organelle membranes, where it functions in vesicle-mediated protein trafficking. However, the mechanism of Arf1-GDP recruitment remains unknown. Here, we provide evidence that two Glo3p-type Arf GTPase-activating proteins (ArfGAPs), ArfGAP domain8 (AGD8) and AGD9, are involved in the recruitment of Arf1-GDP to the Golgi apparatus in Arabidopsis (Arabidopsis thaliana). RNA interference plants expressing low levels of AGD8 and AGD9 exhibited abnormal Golgi morphology, inhibition of protein trafficking, and arrest of plant growth and development. In RNA interference plants, Arf1 was poorly recruited to the Golgi apparatus. Conversely, high levels of AGD8 and AGD9 induced Arf1 accumulation at the Golgi and suppressed Golgi disruption and inhibition of vacuolar trafficking that was caused by overexpression of AGD7. Based on these results, we propose that the Glo3p-type ArfGAPs AGD8 and AGD9 recruit Arf1-GDP from the cytosol to the Golgi for Arf1-mediated protein trafficking, which is essential for plant development and growth.

  1. Camillo Golgi's scientific biography.

    PubMed

    Mazzarello, P

    1999-08-01

    Born in Corteno, a tiny village in the province of Brescia, Camillo Golgi studied at the University of Pavia where he graduated in medicine in 1865 under the guidance of the psychiatrist Cesare Lombroso who sparked his vocation to study the brain. Golgi then began to learn histological techniques under the direction of the pathologist Giulio Bizzozero. In 1872 he moved to Abbiategrasso as chief of a hospital for chronic diseases. In a rudimentary laboratory he developed the silver-bichromate staining technique, the 'black reaction', which was a breakthrough for nervous tissue structure research. While in Abbiategrasso Golgi demonstrated the branching of the axons, and observed striatal and cortical lesions in a case of chorea. He returned to Pavia as Professor of Histology and General Pathology, and made a series of important discoveries that still bear his name: the Golgi tendon organ, the Golgi-Mazzoni corpuscles, another Golgi method to stain nerve cells based on the use of potassium dichromate and mercuric chloride, the canaliculi of the parietal cells of the gastric glands (Muller-Golgi tubules), the Golgi-Rezzonico myelin's annular apparatus (or Golgi-Rezzonico horny funnels), the cycle of malarian parasites (Golgi cycle), the relationship between recurrent malarian fever bouts and the multiplication of the Plasmodium in the blood (Golgi law), the relationship between the vascular pole of the Malpighian glomerulus and the distal tubule, the Golgi's pericellular nets and finally, and most importantly, the cytoplasmic 'internal reticular apparatus' (Golgi apparatus). In 1906 Golgi was awarded the Nobel prize for Medicine or Physiology. He died in Pavia on 21 January 1921.

  2. Role of phospholipase A(2) in retrograde transport of ricin.

    PubMed

    Klokk, Tove Irene; Lingelem, Anne Berit Dyve; Myrann, Anne-Grethe; Sandvig, Kirsten

    2011-09-01

    Ricin is a protein toxin classified as a bioterror agent, for which there are no known treatment options available after intoxication. It is composed of an enzymatically active A-chain connected by a disulfide bond to a cell binding B-chain. After internalization by endocytosis, ricin is transported retrogradely to the Golgi and ER, from where the ricin A-chain is translocated to the cytosol where it inhibits protein synthesis and thus induces cell death. We have identified cytoplasmic phospholipase A(2) (PLA(2)) as an important factor in ricin retrograde transport. Inhibition of PLA(2) protects against ricin challenge, however the toxin can still be endocytosed and transported to the Golgi. Interestingly, ricin transport from the Golgi to the ER is strongly impaired in response to PLA(2) inhibition. Confocal microscopy analysis shows that ricin is still colocalized with the trans-Golgi marker TGN46 in the presence of PLA(2) inhibitor, but less is colocalized with the cis-Golgi marker GM130. We propose that PLA(2) inhibition results in impaired ricin transport through the Golgi stack, thus preventing it from reaching the ER. Consequently, ricin cannot be translocated to the cytosol to exert its toxic action.

  3. Mobile ER-to-Golgi but not post-Golgi membrane transport carriers disappear during the terminal myogenic differentiation.

    PubMed

    Nevalainen, Mika; Kaisto, Tuula; Metsikkö, Kalervo

    2010-10-01

    The organelles of the exocytic pathway undergo a profound reorganization during the myogenic differentiation. Here, we have investigated the dynamics of the membrane trafficking at various stages of the differentiation process by using the green fluorescent protein-tagged, temperature-sensitive vesicular stomatitis virus G protein (tsG-GFP) as a marker. At the restrictive temperature of 39°C, the tsG-GFP located to the endoplasmic reticulum (ER) at each stage of differentiation. Mobile membrane containers moving from the ER to the Golgi elements were seen in myoblasts and myotubes upon shifting the temperature to 20°C. In adult myofibers, in contrast, such containers were not seen although the tsG-GFP rapidly shifted from the ER to the Golgi elements. The mobility of tsG-GFP in the myofiber ER was restricted, suggesting localization in an ER sub-compartment. Contrasting with the ER-to-Golgi trafficking, transport from the Golgi elements to the plasma membrane involved mobile transport containers in all differentiation stages. These findings indicate that ER-to-Golgi trafficking in adult skeletal myofibers does not involve long-distance moving membrane carriers as occurs in other mammalian cell types.

  4. Stacking the odds for Golgi cisternal maturation

    PubMed Central

    Mani, Somya; Thattai, Mukund

    2016-01-01

    What is the minimal set of cell-biological ingredients needed to generate a Golgi apparatus? The compositions of eukaryotic organelles arise through a process of molecular exchange via vesicle traffic. Here we statistically sample tens of thousands of homeostatic vesicle traffic networks generated by realistic molecular rules governing vesicle budding and fusion. Remarkably, the plurality of these networks contain chains of compartments that undergo creation, compositional maturation, and dissipation, coupled by molecular recycling along retrograde vesicles. This motif precisely matches the cisternal maturation model of the Golgi, which was developed to explain many observed aspects of the eukaryotic secretory pathway. In our analysis cisternal maturation is a robust consequence of vesicle traffic homeostasis, independent of the underlying details of molecular interactions or spatial stacking. This architecture may have been exapted rather than selected for its role in the secretion of large cargo. DOI: http://dx.doi.org/10.7554/eLife.16231.001 PMID:27542195

  5. Expression, sorting, and segregation of Golgi proteins during germ cell differentiation in the testis

    PubMed Central

    Au, Catherine E.; Hermo, Louis; Byrne, Elliot; Smirle, Jeffrey; Fazel, Ali; Simon, Paul H. G.; Kearney, Robert E.; Cameron, Pamela H.; Smith, Charles E.; Vali, Hojatollah; Fernandez-Rodriguez, Julia; Ma, Kewei; Nilsson, Tommy; Bergeron, John J. M.

    2015-01-01

    The molecular basis of changes in structure, cellular location, and function of the Golgi apparatus during male germ cell differentiation is unknown. To deduce cognate Golgi proteins, we isolated germ cell Golgi fractions, and 1318 proteins were characterized, with 20 localized in situ. The most abundant protein, GL54D of unknown function, is characterized as a germ cell–specific Golgi-localized type II integral membrane glycoprotein. TM9SF3, also of unknown function, was revealed to be a universal Golgi marker for both somatic and germ cells. During acrosome formation, several Golgi proteins (GBF1, GPP34, GRASP55) localize to both the acrosome and Golgi, while GL54D, TM9SF3, and the Golgi trafficking protein TMED7/p27 are segregated from the acrosome. After acrosome formation, GL54D, TM9SF3, TMED4/p25, and TMED7/p27 continue to mark Golgi identity as it migrates away from the acrosome, while the others (GBF1, GPP34, GRASP55) remain in the acrosome and are progressively lost in later steps of differentiation. Cytoplasmic HSP70.2 and the endoplasmic reticulum luminal protein-folding enzyme PDILT are also Golgi recruited but only during acrosome formation. This resource identifies abundant Golgi proteins that are expressed differentially during mitosis, meiosis, and postacrosome Golgi migration, including the last step of differentiation. PMID:25808494

  6. [From endoplasmic reticulum to Golgi apparatus: a secretory pathway controlled by signal molecules].

    PubMed

    Wang, Jiasheng; Luo, Jianhong; Zhang, Xiaomin

    2013-07-01

    Protein transport from endoplasmic reticulum (ER) to Golgi apparatus has long been known to be a central process for protein quality control and sorting. Recent studies have revealed that a large number of signal molecules are involved in regulation of membrane trafficking through ER, ER-Golgi intermediate compartment and Golgi apparatus. These molecules can significantly change the transport rate of proteins by regulating vesicle budding and fusion. Protein transport from ER to Golgi apparatus is not only controlled by signal pathways triggered from outside the cell, it is also regulated by feedback signals from the transport pathway.

  7. Study of GOLPH3: a potential stress-inducible protein from Golgi apparatus.

    PubMed

    Li, Ting; You, Hong; Zhang, Jie; Mo, Xiaoye; He, Wenfang; Chen, Yang; Tang, Xiangqi; Jiang, Zheng; Tu, Ranran; Zeng, Liuwang; Lu, Wei; Hu, Zhiping

    2014-06-01

    Although the Golgi apparatus has been studied extensively for over 100 years, the complex structure-function relationships have yet to be elucidated. It is well known that the Golgi complex plays an important role in the transport, processing, sorting, and targeting of numerous proteins and lipids destined for secretion, plasma membrane, and lysosomes. Increasing evidence suggests that the Golgi apparatus is a sensor and common downstream effector of stress signals in cell death pathways. It undergoes disassembly and fragmentation in several neurological disorders. Recent studies indicate that Golgi phosphoprotein 3 (GOLPH3 also known as GPP34/GMx33/MIDAS), a peripheral membrane protein of trans-Golgi network, represents an exciting new class of oncoproteins involved in cell signal transduction and is potentially mobilized by stress. In this review, we focus on the importance of GOLPH3 in vesicular trafficking, Golgi architecture maintenance, receptor sorting, protein glycosylation, and further discuss its potential in signal sensing in stress response.

  8. COPA mutations impair ER-Golgi transport causing hereditary autoimmune-mediated lung disease and arthritis

    PubMed Central

    Watkin, Levi B.; Jessen, Birthe; Wiszniewski, Wojciech; Vece, Timothy; Jan, Max; Sha, Youbao; Thamsen, Maike; Santos-Cortez, Regie L. P.; Lee, Kwanghyuk; Gambin, Tomasz; Forbes, Lisa; Law, Christopher S.; Stray-Petersen, Asbjørg; Cheng, Mickie H.; Mace, Emily M.; Anderson, Mark S.; Liu, Dongfang; Tang, Ling Fung; Nicholas, Sarah K.; Nahmod, Karen; Makedonas, George; Canter, Debra; Kwok, Pui-Yan; Hicks, John; Jones, Kirk D.; Penney, Samantha; Jhangiani, Shalini N.; Rosenblum, Michael D.; Dell, Sharon D.; Waterfield, Michael R.; Papa, Feroz R.; Muzny, Donna M.; Zaitlen, Noah; Leal, Suzanne M.; Gonzaga-Jauregui, Claudia; Boerwinkle, Eric; Eissa, N. Tony; Gibbs, Richard A.; Lupski, James R.; Orange, Jordan S.; Shum, Anthony K.

    2015-01-01

    Advances in genomics have allowed unbiased genetic studies of human disease with unexpected insights into the molecular mechanisms of cellular immunity and autoimmunity1. We performed whole exome sequencing (WES) and targeted sequencing in patients with an apparent Mendelian syndrome of autoimmune disease characterized by high-titer autoantibodies, inflammatory arthritis and interstitial lung disease (ILD). In five families, we identified four unique deleterious variants in the Coatomer subunit alpha (COPA) gene all located within the same functional domain. We hypothesized that mutant COPA leads to a defect in intracellular transport mediated by coat protein complex I (COPI)2–4. We show that COPA variants impair binding of proteins targeted for retrograde Golgi to ER transport and demonstrate that expression of mutant COPA leads to ER stress and the upregulation of Th17 priming cytokines. Consistent with this pattern of cytokine expression, patients demonstrated a significant skewing of CD4+ T cells toward a T helper 17 (Th17) phenotype, an effector T cell population implicated in autoimmunity5,6. Our findings uncover an unexpected molecular link between a vesicular transport protein and a syndrome of autoimmunity manifested by lung and joint disease. These findings provide a unique opportunity to understand how alterations in cellular homeostasis caused by a defect in the intracellular trafficking pathway leads to the generation of human autoimmune disease. PMID:25894502

  9. Antibody-mediated inhibition of ricin toxin retrograde transport.

    PubMed

    Yermakova, Anastasiya; Klokk, Tove Irene; Cole, Richard; Sandvig, Kirsten; Mantis, Nicholas J

    2014-04-08

    Ricin is a member of the ubiquitous family of plant and bacterial AB toxins that gain entry into the cytosol of host cells through receptor-mediated endocytosis and retrograde traffic through the trans-Golgi network (TGN) and endoplasmic reticulum (ER). While a few ricin toxin-specific neutralizing monoclonal antibodies (MAbs) have been identified, the mechanisms by which these antibodies prevent toxin-induced cell death are largely unknown. Using immunofluorescence confocal microscopy and a TGN-specific sulfation assay, we demonstrate that 24B11, a MAb against ricin's binding subunit (RTB), associates with ricin in solution or when prebound to cell surfaces and then markedly enhances toxin uptake into host cells. Following endocytosis, however, toxin-antibody complexes failed to reach the TGN; instead, they were shunted to Rab7-positive late endosomes and LAMP-1-positive lysosomes. Monovalent 24B11 Fab fragments also interfered with toxin retrograde transport, indicating that neither cross-linking of membrane glycoproteins/glycolipids nor the recently identified intracellular Fc receptor is required to derail ricin en route to the TGN. Identification of the mechanism(s) by which antibodies like 24B11 neutralize ricin will advance our fundamental understanding of protein trafficking in mammalian cells and may lead to the discovery of new classes of toxin inhibitors and therapeutics for biodefense and emerging infectious diseases. IMPORTANCE Ricin is the prototypic member of the AB family of medically important plant and bacterial toxins that includes cholera and Shiga toxins. Ricin is also a category B biothreat agent. Despite ongoing efforts to develop vaccines and antibody-based therapeutics against ricin, very little is known about the mechanisms by which antibodies neutralize this toxin. In general, it is thought that antibodies simply prevent toxins from attaching to cell surface receptors or promote their clearance through Fc receptor (FcR)-mediated uptake

  10. Actin dynamics at the Golgi complex in mammalian cells.

    PubMed

    Egea, Gustavo; Lázaro-Diéguez, Francisco; Vilella, Montserrat

    2006-04-01

    Secretion and endocytosis are highly dynamic processes that are sensitive to external stimuli. Thus, in multicellular organisms, different cell types utilize specialised pathways of intracellular membrane traffic to facilitate specific physiological functions. In addition to the complex internal molecular factors that govern sorting functions and fission or fusion of transport carriers, the actin cytoskeleton plays an important role in both the endocytic and secretory pathways. The interaction between the actin cytoskeleton and membrane trafficking is not restricted to transport processes: it also appears to be directly involved in the biogenesis of Golgi-derived transport carriers (budding and fission processes) and in the maintenance of the unique flat shape of Golgi cisternae.

  11. Human Trafficking

    ERIC Educational Resources Information Center

    Wilson, David McKay

    2011-01-01

    The shadowy, criminal nature of human trafficking makes evaluating its nature and scope difficult. The U.S. State Department and anti-trafficking groups estimate that worldwide some 27 million people are caught in a form of forced servitude today. Public awareness of modern-day slavery is gaining momentum thanks to new abolitionist efforts. Among…

  12. COPI-mediated membrane trafficking is required for cytokinesis in Drosophila male meiotic divisions.

    PubMed

    Kitazawa, Daishi; Yamaguchi, Masamitsu; Mori, Hajime; Inoue, Yoshihiro H

    2012-08-01

    The coatomer protein complex, COPI, mediates retrograde vesicle transport from the Golgi apparatus to the ER. Here, we investigated the meiotic phenotype of Drosophila melanogaster spermatocytes expressing dsRNA of 52 genes encoding membrane-trafficking-related factors. We identified COPI as an essential factor for male meiosis. In Drosophila male meiotic divisions, COPI is localized in the ER-Golgi intermediate compartment of tER-Golgi units scattered throughout the spermatocyte cytoplasm. Prior to chromosome segregation, the vesicles assemble at the spindle pole periphery through a poleward movement, mediated by minus-end motor dynein along astral microtubules. At the end of each meiotic division, COPI-containing vesicles are equally partitioned between two daughter cells. Our present data strongly suggest that spermatocytes possess a regulatory mechanism for equal inheritance of several types of membrane vesicles. Using testis-specific knockdown of COPI subunits or the small GTPase Arf or mutations of the γCOP gene, we examined the role of COPI in male meiosis. COPI depletion resulted in the failure of cytokinesis, through disrupted accumulation of essential proteins and lipid components at the cleavage furrow region. Furthermore, it caused a reduction in the number of overlapping central spindle microtubules, which are essential for cytokinesis. Drosophila spermatocytes construct ER-based intracellular structures associated with astral and spindle microtubules. COPI depletion resulted in severe disruption of these ER-based structures. Thus, we propose that COPI plays an important role in Drosophila male meiosis, not only through vesicle transport to the cleavage furrow region, but also through the formation of ER-based structures.

  13. PAFAH Ib Phospholipase A2 Subunits Have Distinct Roles in Maintaining Golgi Structure and Function

    PubMed Central

    Bechler, Marie E.; Brown, William J.

    2013-01-01

    Recent studies showed that the phospholipase subunits of Platelet Activating Factor Acetylhydrolase (PAFAH) Ib, α1 and α2, partially localize to the Golgi complex and regulate its structure and function. Using siRNA knockdown of individual subunits, we find that α1 and α2 perform overlapping and unique roles in regulating Golgi morphology, assembly, and secretory cargo trafficking. Knockdown of either α1 or α2 reduced secretion of soluble proteins, but neither single knockdown reduced secretion to the same degree as knockdown of both. Knockdown of α1 or α2 inhibited reassembly of an intact Golgi complex to the same extent as knockdown of both. Transport of VSV-G was slowed but at different steps in the secretory pathway: reduction of α1 slowed trans Golgi network to plasma membrane transport, whereas α2 loss reduced endoplasmic reticulum to Golgi trafficking. Similarly, knockdown of either subunit alone disrupted the Golgi complex but with markedly different morphologies. Finally, knockdown of α1, or double knockdown of α1 and α2, resulted in a significant redistribution of kinase dead protein kinase D from the Golgi to the plasma membrane, whereas loss of α2 alone had no such effect. These studies reveal an unexpected complexity in the regulation of Golgi structure and function by PAFAH Ib. PMID:23262398

  14. Anterograde trafficking of KCa3.1 in polarized epithelia is Rab1- and Rab8-dependent and recycling endosome-independent.

    PubMed

    Bertuccio, Claudia A; Lee, Shih-Liang; Wu, Guangyu; Butterworth, Michael B; Hamilton, Kirk L; Devor, Daniel C

    2014-01-01

    The intermediate conductance, Ca2+-activated K+ channel (KCa3.1) targets to the basolateral (BL) membrane in polarized epithelia where it plays a key role in transepithelial ion transport. However, there are no studies defining the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia. Herein, we utilize Biotin Ligase Acceptor Peptide (BLAP)-tagged KCa3.1 to address these trafficking steps in polarized epithelia, using MDCK, Caco-2 and FRT cells. We demonstrate that KCa3.1 is exclusively targeted to the BL membrane in these cells when grown on filter supports. Following endocytosis, KCa3.1 degradation is prevented by inhibition of lysosomal/proteosomal pathways. Further, the ubiquitylation of KCa3.1 is increased following endocytosis from the BL membrane and PR-619, a deubiquitylase inhibitor, prevents degradation, indicating KCa3.1 is targeted for degradation by ubiquitylation. We demonstrate that KCa3.1 is targeted to the BL membrane in polarized LLC-PK1 cells which lack the μ1B subunit of the AP-1 complex, indicating BL targeting of KCa3.1 is independent of μ1B. As Rabs 1, 2, 6 and 8 play roles in ER/Golgi exit and trafficking of proteins to the BL membrane, we evaluated the role of these Rabs in the trafficking of KCa3.1. In the presence of dominant negative Rab1 or Rab8, KCa3.1 cell surface expression was significantly reduced, whereas Rabs 2 and 6 had no effect. We also co-immunoprecipitated KCa3.1 with both Rab1 and Rab8. These results suggest these Rabs are necessary for the anterograde trafficking of KCa3.1. Finally, we determined whether KCa3.1 traffics directly to the BL membrane or through recycling endosomes in MDCK cells. For these studies, we used either recycling endosome ablation or dominant negative RME-1 constructs and determined that KCa3.1 is trafficked directly to the BL membrane rather than via recycling endosomes. These results are the first to describe the anterograde and retrograde trafficking of KCa3.1 in polarized

  15. Crosstalk of small GTPases at the Golgi apparatus.

    PubMed

    Baschieri, Francesco; Farhan, Hesso

    2012-01-01

    Small GTPases regulate a wide range of homeostatic processes such as cytoskeletal dynamics, organelle homeostasis, cell migration and vesicle trafficking, as well as in pathologic conditions such as carcinogenesis and metastatic spreading. Therefore, it is important to understand the regulation of small GTPase signaling, but this is complicated by the fact that crosstalk exists between different GTPase families and that we have to understand how they signal in time and space. The Golgi apparatus represents a hub for several signaling molecules and its importance in this field is constantly increasing. In this review we will discuss small GTPases signaling at the Golgi apparatus. Then, we will highlight recent work that contributed to a better understanding of crosstalk between different small GTPase families, with a special emphasis on their crosstalk at the Golgi apparatus. Finally, we will give a brief overview of available methods and tools to investigate spatio-temporal small GTPase crosstalk.

  16. Retrograde gastroesophageal intussusception.

    PubMed

    David, S; Barkin, J S

    1992-01-01

    This is an initial report of spontaneous retrograde gastroesophageal intussusception in an adult. The patient is a 72-yr-old women with a history of ovarian cancer and hiatal hernia, who presented with symptoms of upper gastrointestinal obstruction. Retrograde intussusception was diagnosed endoscopically and confirmed radiographically with an upper gastrointestinal series. Heightened awareness of this entity may lead to its more frequent diagnosis.

  17. Functional (dissociative) retrograde amnesia.

    PubMed

    Markowitsch, H J; Staniloiu, A

    2017-01-01

    Retrograde amnesia is described as condition which can occur after direct brain damage, but which occurs more frequently as a result of a psychiatric illness. In order to understand the amnesic condition, content-based divisions of memory are defined. The measurement of retrograde memory is discussed and the dichotomy between "organic" and "psychogenic" retrograde amnesia is questioned. Briefly, brain damage-related etiologies of retrograde amnesia are mentioned. The major portion of the review is devoted to dissociative amnesia (also named psychogenic or functional amnesia) and to the discussion of an overlap between psychogenic and "brain organic" forms of amnesia. The "inability of access hypothesis" is proposed to account for most of both the organic and psychogenic (dissociative) patients with primarily retrograde amnesia. Questions such as why recovery from retrograde amnesia can occur in retrograde (dissociative) amnesia, and why long-term new learning of episodic-autobiographic episodes is possible, are addressed. It is concluded that research on retrograde amnesia research is still in its infancy, as the neural correlates of memory storage are still unknown. It is argued that the recollection of episodic-autobiographic episodes most likely involves frontotemporal regions of the right hemisphere, a region which appears to be hypometabolic in patients with dissociative amnesia.

  18. Diacylglycerol kinases in membrane trafficking

    PubMed Central

    Xie, Shuwei; Naslavsky, Naava; Caplan, Steve

    2015-01-01

    Diacylglycerol kinases (DGKs) belong to a family of cytosolic kinases that regulate the phosphorylation of diacylglycerol (DAG), converting it into phosphatidic acid (PA). There are 10 known mammalian DGK isoforms, each with a different tissue distribution and substrate specificity. These differences allow regulation of cellular responses by fine-tuning the delicate balance of cellular DAG and PA. DGK isoforms are best characterized as mediators of signal transduction and immune function. However, since recent studies reveal that DAG and PA are also involved in the regulation of endocytic trafficking, it is therefore anticipated that DGKs also plays an important role in membrane trafficking. In this review, we summarize the literature discussing the role of DGK isoforms at different stages of endocytic trafficking, including endocytosis, exocytosis, endocytic recycling, and transport from/to the Golgi apparatus. Overall, these studies contribute to our understanding of the involvement of PA and DAG in endocytic trafficking, an area of research that is drawing increasing attention in recent years. PMID:27057419

  19. The Arf GAP Asap promotes Arf1 function at the Golgi for cleavage furrow biosynthesis in Drosophila

    PubMed Central

    Rodrigues, Francisco F.; Shao, Wei; Harris, Tony J. C.

    2016-01-01

    Biosynthetic traffic from the Golgi drives plasma membrane growth. For Drosophila embryo cleavage, this growth is rapid but regulated for cycles of furrow ingression and regression. The highly conserved small G protein Arf1 organizes Golgi trafficking. Arf1 is activated by guanine nucleotide exchange factors, but essential roles for Arf1 GTPase-activating proteins (GAPs) are less clear. We report that the conserved Arf GAP Asap is required for cleavage furrow ingression in the early embryo. Because Asap can affect multiple subcellular processes, we used genetic approaches to dissect its primary effect. Our data argue against cytoskeletal or endocytic involvement and reveal a common role for Asap and Arf1 in Golgi organization. Although Asap lacked Golgi enrichment, it was necessary and sufficient for Arf1 accumulation at the Golgi, and a conserved Arf1-Asap binding site was required for Golgi organization and output. Of note, Asap relocalized to the nuclear region at metaphase, a shift that coincided with subtle Golgi reorganization preceding cleavage furrow regression. We conclude that Asap is essential for Arf1 to function at the Golgi for cleavage furrow biosynthesis. Asap may recycle Arf1 to the Golgi from post-Golgi membranes, providing optimal Golgi output for specific stages of the cell cycle. PMID:27535433

  20. A Bispecific Antibody Promotes Aggregation of Ricin Toxin on Cell Surfaces and Alters Dynamics of Toxin Internalization and Trafficking

    PubMed Central

    Herrera, Cristina; Klokk, Tove Irene; Cole, Richard; Sandvig, Kirsten

    2016-01-01

    JJX12 is an engineered bispecific antibody against ricin, a member of the medically important A-B family of toxins that exploits retrograde transport as means to gain entry into the cytosol of target cells. JJX12 consists of RTA-D10, a camelid single variable domain (VHH) antibody directed against an epitope on ricin’s enzymatic subunit (RTA), linked via a 15-mer peptide to RTB-B7, a VHH against ricin’s bivalent galactose binding subunit (RTB). We previously reported that JJX12, but not an equimolar mixture of RTA-D10 and RTB-B7 monomers, was able to passively protect mice against a lethal dose ricin challenge, demonstrating that physically linking RTB-B7 and RTA-D10 is critical for toxin-neutralizing activity in vivo. We also reported that JJX12 promotes aggregation of ricin in solution, presumably through the formation of intermolecular crosslinking. In the current study, we now present evidence that JJX12 affects the dynamics of ricin uptake and trafficking in human epithelial cells. Confocal microscopy, as well as live cell imaging coupled with endocytosis pathway-specific inhibitors, revealed that JJX12-toxin complexes are formed on the surfaces of mammalian cells and internalized via a pathway sensitive to amiloride, a known inhibitor of macropinocytosis. Moreover, in the presence of JJX12, retrograde transport of ricin to the trans-Golgi network was significantly reduced, while accumulation of the toxin in late endosomes was significantly enhanced. In summary, we propose that JJX12, by virtue of its ability to crosslink ricin toxin, alters the route of toxin uptake and trafficking within cells. PMID:27300140

  1. Evidence for Golgi bodies in proposed 'Golgi-lacking' lineages.

    PubMed Central

    Dacks, Joel B; Davis, Lesley A M; Sjögren, Asa M; Andersson, Jan O; Roger, Andrew J; Doolittle, W Ford

    2003-01-01

    Golgi bodies are nearly ubiquitous in eukaryotic cells. The apparent lack of such structures in certain eukaryotic lineages might be taken to mean that these protists evolved prior to the acquisition of the Golgi, and it raises questions of how these organisms function in the absence of this crucial organelle. Here, we report gene sequences from five proposed 'Golgi-lacking' organisms (Giardia intestinalis, Spironucleus barkhanus, Entamoeba histolytica, Naegleria gruberi and Mastigamoeba balamuthi). BLAST and phylogenetic analyses show these genes to be homologous to those encoding components of the retromer, coatomer and adaptin complexes, all of which have Golgi-related functions in mammals and yeast. This is, to our knowledge, the first molecular evidence for Golgi bodies in two major eukaryotic lineages (the pelobionts and heteroloboseids). This substantiates the suggestion that there are no extant primitively 'Golgi-lacking' lineages, and that this apparatus was present in the last common eukaryotic ancestor, but has been altered beyond recognition several times. PMID:14667372

  2. Rab6a/a’ Are Important Golgi Regulators of Pro-Inflammatory TNF Secretion in Macrophages

    PubMed Central

    Micaroni, Massimo; Stanley, Amanda C.; Khromykh, Tatiana; Venturato, Juliana; Wong, Colin X. F.; Lim, Jet P.; Marsh, Brad J.; Storrie, Brian; Gleeson, Paul A.; Stow, Jennifer L.

    2013-01-01

    Lipopolysaccharide (LPS)-activated macrophages secrete pro-inflammatory cytokines, including tumor necrosis factor (TNF) to elicit innate immune responses. Secretion of these cytokines is also a major contributing factor in chronic inflammatory disease. In previous studies we have begun to elucidate the pathways and molecules that mediate the intracellular trafficking and secretion of TNF. Rab6a and Rab6a' (collectively Rab6) are trans-Golgi-localized GTPases known for roles in maintaining Golgi structure and Golgi-associated trafficking. We found that induction of TNF secretion by LPS promoted the selective increase of Rab6 expression. Depletion of Rab6 (via siRNA and shRNA) resulted in reorganization of the Golgi ribbon into more compact structures that at the resolution of electron microcopy consisted of elongated Golgi stacks that likely arose from fusion of smaller Golgi elements. Concomitantly, the delivery of TNF to the cell surface and subsequent release into the media was reduced. Dominant negative mutants of Rab6 had similar effects in disrupting TNF secretion. In live cells, Rab6–GFP were localized on trans-Golgi network (TGN)-derived tubular carriers demarked by the golgin p230. Rab6 depletion and inactive mutants altered carrier egress and partially reduced p230 membrane association. Our results show that Rab6 acts on TNF trafficking at the level of TGN exit in tubular carriers and our findings suggest Rab6 may stabilize p230 on the tubules to facilitate TNF transport. Both Rab6 isoforms are needed in macrophages for Golgi stack organization and for the efficient post-Golgi transport of TNF. This work provides new insights into Rab6 function and into the role of the Golgi complex in cytokine secretion in inflammatory macrophages. PMID:23437303

  3. Rab6a/a' are important Golgi regulators of pro-inflammatory TNF secretion in macrophages.

    PubMed

    Micaroni, Massimo; Stanley, Amanda C; Khromykh, Tatiana; Venturato, Juliana; Wong, Colin X F; Lim, Jet P; Marsh, Brad J; Storrie, Brian; Gleeson, Paul A; Stow, Jennifer L

    2013-01-01

    Lipopolysaccharide (LPS)-activated macrophages secrete pro-inflammatory cytokines, including tumor necrosis factor (TNF) to elicit innate immune responses. Secretion of these cytokines is also a major contributing factor in chronic inflammatory disease. In previous studies we have begun to elucidate the pathways and molecules that mediate the intracellular trafficking and secretion of TNF. Rab6a and Rab6a' (collectively Rab6) are trans-Golgi-localized GTPases known for roles in maintaining Golgi structure and Golgi-associated trafficking. We found that induction of TNF secretion by LPS promoted the selective increase of Rab6 expression. Depletion of Rab6 (via siRNA and shRNA) resulted in reorganization of the Golgi ribbon into more compact structures that at the resolution of electron microcopy consisted of elongated Golgi stacks that likely arose from fusion of smaller Golgi elements. Concomitantly, the delivery of TNF to the cell surface and subsequent release into the media was reduced. Dominant negative mutants of Rab6 had similar effects in disrupting TNF secretion. In live cells, Rab6-GFP were localized on trans-Golgi network (TGN)-derived tubular carriers demarked by the golgin p230. Rab6 depletion and inactive mutants altered carrier egress and partially reduced p230 membrane association. Our results show that Rab6 acts on TNF trafficking at the level of TGN exit in tubular carriers and our findings suggest Rab6 may stabilize p230 on the tubules to facilitate TNF transport. Both Rab6 isoforms are needed in macrophages for Golgi stack organization and for the efficient post-Golgi transport of TNF. This work provides new insights into Rab6 function and into the role of the Golgi complex in cytokine secretion in inflammatory macrophages.

  4. Transport of the cholera toxin B-subunit from recycling endosomes to the Golgi requires clathrin and AP-1.

    PubMed

    Matsudaira, Tatsuyuki; Niki, Takahiro; Taguchi, Tomohiko; Arai, Hiroyuki

    2015-08-15

    The retrograde pathway is defined by the transport of proteins and lipids from the plasma membrane through endosomes to the Golgi complex, and is essential for a variety of cellular activities. Recycling endosomes are important sorting stations for some retrograde cargo. SMAP2, a GTPase-activating protein (GAP) for Arf1 with a putative clathrin-binding domain, has previously been shown to participate in the retrograde transport of the cholera toxin B-subunit (CTxB) from recycling endosomes. Here, we found that clathrin, a vesicle coat protein, and clathrin adaptor protein complex 1 (AP-1) were present at recycling endosomes and were needed for the retrograde transport of CTxB from recycling endosomes to the Golgi, but not from the plasma membrane to recycling endosomes. SMAP2 immunoprecipitated clathrin and AP-1 through a putative clathrin-binding domain and a CALM-binding domain, and SMAP2 mutants that did not interact with clathrin or AP-1 could not localize to recycling endosomes. Moreover, knockdown of Arf1 suppressed the retrograde transport of CTxB from recycling endosomes to the Golgi. These findings suggest that retrograde transport is mediated by clathrin-coated vesicles from recycling endosomes and that the role of the coat proteins is in the recruitment of Arf GAP to transport vesicles.

  5. Loss of the golgin GM130 causes Golgi disruption, Purkinje neuron loss, and ataxia in mice

    PubMed Central

    Liu, Chunyi; Mei, Mei; Li, Qiuling; Pang, Qianqian; Ying, Zhengzhou; Gao, Fei; Lowe, Martin; Bao, Shilai

    2017-01-01

    The Golgi apparatus lies at the heart of the secretory pathway where it is required for secretory trafficking and cargo modification. Disruption of Golgi architecture and function has been widely observed in neurodegenerative disease, but whether Golgi dysfunction is causal with regard to the neurodegenerative process, or is simply a manifestation of neuronal death, remains unclear. Here we report that targeted loss of the golgin GM130 leads to a profound neurological phenotype in mice. Global KO of mouse GM130 results in developmental delay, severe ataxia, and postnatal death. We further show that selective deletion of GM130 in neurons causes fragmentation and defective positioning of the Golgi apparatus, impaired secretory trafficking, and dendritic atrophy in Purkinje cells. These cellular defects manifest as reduced cerebellar size and Purkinje cell number, leading to ataxia. Purkinje cell loss and ataxia first appear during postnatal development but progressively worsen with age. Our data therefore indicate that targeted disruption of the mammalian Golgi apparatus and secretory traffic results in neuronal degeneration in vivo, supporting the view that Golgi dysfunction can play a causative role in neurodegeneration. PMID:28028212

  6. The Golgi apparatus is a functionally distinct Ca2+ store regulated by the PKA and Epac branches of the β1-adrenergic signaling pathway.

    PubMed

    Yang, Zhaokang; Kirton, Hannah M; MacDougall, David A; Boyle, John P; Deuchars, James; Frater, Brenda; Ponnambalam, Sreenivasan; Hardy, Matthew E; White, Edward; Calaghan, Sarah C; Peers, Chris; Steele, Derek S

    2015-10-13

    Ca(2+) release from the Golgi apparatus regulates key functions of the organelle, including vesicle trafficking. We found that the Golgi apparatus was the source of prolonged Ca(2+) release events that originated near the nuclei of primary cardiomyocytes. Golgi Ca(2+) release was unaffected by depletion of sarcoplasmic reticulum Ca(2+), and disruption of the Golgi apparatus abolished Golgi Ca(2+) release without affecting sarcoplasmic reticulum function, suggesting functional and spatial independence of Golgi and sarcoplasmic reticulum Ca(2+) stores. β1-Adrenoceptor stimulation triggers the production of the second messenger cAMP, which activates the Epac family of Rap guanine nucleotide exchange factors and the kinase PKA (protein kinase A). Phosphodiesterases (PDEs), including those in the PDE3 and PDE4 families, degrade cAMP. Activation of β1-adrenoceptors stimulated Golgi Ca(2+) release, an effect that required activation of Epac, PKA, and the kinase CaMKII. Inhibition of PDE3s or PDE4s potentiated β1-adrenergic-induced Golgi Ca(2+) release, which is consistent with compartmentalization of cAMP signaling near the Golgi apparatus. Interventions that stimulated Golgi Ca(2+) release appeared to increase the trafficking of vascular endothelial growth factor receptor-1 (VEGFR-1) from the Golgi apparatus to the surface membrane of cardiomyocytes. In cardiomyocytes from rats with heart failure, decreases in the abundance of PDE3s and PDE4s were associated with increased Golgi Ca(2+) release events. These data suggest that the Golgi apparatus is a focal point for β1-adrenergic-stimulated Ca(2+) signaling and that the Golgi Ca(2+) store functions independently from the sarcoplasmic reticulum and the global Ca(2+) transients that trigger contraction in cardiomyocytes.

  7. The Golgi apparatus is a functionally distinct Ca2+ store regulated by PKA and Epac branches of the β1-adrenergic signaling pathway

    PubMed Central

    Yang, Zhaokang.; Kirton, Hannah M.; MacDougall, David A.; Boyle, John P.; Deuchars, James; Frater, Brenda; Ponnambalam, Sreenivasan; Hardy, Matthew E.; White, Edward; Calaghan, Sarah C.; Peers, Chris; Steele, Derek S.

    2016-01-01

    Ca2+ release from the Golgi apparatus regulates key functions of the organelle, including vesicle trafficking. However, the signaling pathways that control this form of Ca2+ release are poorly understood and evidence of discrete Golgi Ca2+ release events is lacking. Here, we identified the Golgi apparatus as the source of prolonged Ca2+ release events that originate from the nuclear ‘poles’ of primary cardiac cells. Once initiated, Golgi Ca2+ release was unaffected by global depletion of sarcoplasmic reticulum Ca2+, and disruption of the Golgi apparatus abolished Golgi Ca2+ release without affecting sarcoplasmic reticulum function, suggesting functional and anatomical independence of Golgi and sarcoplasmic reticulum Ca2+ stores. Maximal activation of β1-adrenoceptors had only a small stimulating effect on Golgi Ca2+ release. However, inhibition of phosphodiesterase (PDE) 3 or 4, or downregulation of PDE 3 and 4 in heart failure markedly potentiated β1-adrenergic stimulation of Golgi Ca2+ release, consistent with compartmentalization of cAMP signaling within the Golgi apparatus microenvironment. β1-adrenergic stimulation of Golgi Ca2+ release involved activation of both Epac and PKA signaling pathways and CaMKII. Interventions that stimulated Golgi Ca2+ release induced trafficking of vascular growth factor receptor-1 (VEGFR-1) from the Golgi apparatus to the surface membrane. These data establish the Golgi apparatus as a juxtanuclear focal point for Ca2+ and β1-adrenergic signaling, which functions independently from the sarcoplasmic reticulum and the global Ca2+ transients that underlie the primary contractile function of the cell. PMID:26462734

  8. The endoplasmic reticulum-resident chaperone heat shock protein 47 protects the Golgi apparatus from the effects of O-glycosylation inhibition.

    PubMed

    Miyata, Shingo; Mizuno, Tatsunori; Koyama, Yoshihisa; Katayama, Taiichi; Tohyama, Masaya

    2013-01-01

    The Golgi apparatus is important for the transport of secretory cargo. Glycosylation is a major post-translational event. Recognition of O-glycans on proteins is necessary for glycoprotein trafficking. In this study, specific inhibition of O-glycosylation (Golgi stress) induced the expression of endoplasmic reticulum (ER)-resident heat shock protein (HSP) 47 in NIH3T3 cells, although cell death was not induced by Golgi stress alone. When HSP47 expression was downregulated by siRNA, inhibition of O-glycosylation caused cell death. Three days after the induction of Golgi stress, the Golgi apparatus was disassembled, many vacuoles appeared near the Golgi apparatus and extended into the cytoplasm, the nuclei had split, and cell death assay-positive cells appeared. Six hours after the induction of Golgi stress, HSP47-knockdown cells exhibited increased cleavage of Golgi-resident caspase-2. Furthermore, activation of mitochondrial caspase-9 and ER-resident unfolded protein response (UPR)-related molecules and efflux of cytochrome c from the mitochondria to the cytoplasm was observed in HSP47-knockdown cells 24 h after the induction of Golgi stress. These findings indicate that (i) the ER-resident chaperon HSP47 protected cells from Golgi stress, and (ii) Golgi stress-induced cell death caused by the inhibition of HSP47 expression resulted from caspase-2 activation in the Golgi apparatus, extending to the ER and mitochondria.

  9. Golgi enzymes do not cycle through the endoplasmic reticulum during protein secretion or mitosis.

    PubMed

    Villeneuve, Julien; Duran, Juan; Scarpa, Margherita; Bassaganyas, Laia; Van Galen, Josse; Malhotra, Vivek

    2017-01-01

    Golgi-specific sialyltransferase (ST) expressed as a chimera with the rapamycin-binding domain of mTOR, FRB, relocates to the endoplasmic reticulum (ER) in cells exposed to rapamycin that also express invariant chain (Ii)-FKBP in the ER. This result has been taken to indicate that Golgi-resident enzymes cycle to the ER constitutively. We show that ST-FRB is trapped in the ER even without Ii-FKBP upon rapamycin addition. This is because ER-Golgi-cycling FKBP proteins contain a C-terminal KDEL-like sequence, bind ST-FRB in the Golgi, and are transported together back to the ER by KDEL receptor-mediated retrograde transport. Moreover, depletion of KDEL receptor prevents trapping of ST-FRB in the ER by rapamycin. Thus ST-FRB cycles artificially by binding to FKBP domain-containing proteins. In addition, Golgi-specific O-linked glycosylation of a resident ER protein occurs only upon artificial fusion of Golgi membranes with ER. Together these findings support the consensus view that there is no appreciable mixing of Golgi-resident enzymes with ER under normal conditions.

  10. Distinct Sets of Rab6 Effectors Contribute to ZW10- and COG-Dependent Golgi Homeostasis

    PubMed Central

    Majeed, Waqar; Liu, Shijie; Storrie, Brian

    2014-01-01

    The organization of the Golgi apparatus is determined in part by the interaction of Rab proteins and their diverse array of effectors. Here, we used multiple approaches to identify and characterize a small subset of effectors that mimicked the effects of Rab6 on Golgi ribbon organization. In a visual-based, candidate-protein screen, we found that the individual depletion of any of three Rab6 effectors, myosin IIA (MyoIIA), Kif20A, and Bicaudal D (BicD), was sufficient to suppress Golgi ribbon fragmentation/dispersal coupled to retrograde tether proteins in a manner paralleling Rab6. MyoIIA and Kif20A depletion were pathway selective and suppressed ZW10-dependent Golgi ribbon fragmentation/dispersal only while BicD depletion, like Rab6, suppressed both ZW10- and COG-dependent Golgi ribbon fragmentation. The MyoIIA effects could be produced in short term assays by the reversible myosin inhibitor, blebbistatin. At the electron microscope level, the effects of BicD-depletion mimicked many of those of Rab6-depletion: longer and more continuous Golgi cisternae and a pronounced accumulation of coated vesicles. Functionally, BicD-depleted cells were inhibited in transport of newly synthesized VSV-G protein to the cell surface. In sum, our results indicate small, partially overlapping subsets of Rab6 effectors are differentially important to two tether-dependent pathways essential to Golgi organization and function. PMID:24575842

  11. Yeast Reporter Assay to Identify Cellular Components of Ricin Toxin A Chain Trafficking

    PubMed Central

    Becker, Björn; Schnöder, Tina; Schmitt, Manfred J.

    2016-01-01

    RTA, the catalytic A-subunit of the ribosome inactivating A/B toxin ricin, inhibits eukaryotic protein biosynthesis by depurination of 28S rRNA. Although cell surface binding of ricin holotoxin is mainly mediated through its B-subunit (RTB), sole application of RTA is also toxic, albeit to a significantly lower extent, suggesting alternative pathways for toxin uptake and transport. Since ricin toxin trafficking in mammalian cells is still not fully understood, we developed a GFP-based reporter assay in yeast that allows rapid identification of cellular components required for RTA uptake and subsequent transport through a target cell. We hereby show that Ypt6p, Sft2p and GARP-complex components play an important role in RTA transport, while neither the retromer complex nor COPIB vesicles are part of the transport machinery. Analyses of yeast knock-out mutants with chromosomal deletion in genes whose products regulate ADP-ribosylation factor GTPases (Arf-GTPases) and/or retrograde Golgi-to-ER (endoplasmic reticulum) transport identified Sso1p, Snc1p, Rer1p, Sec22p, Erv46p, Gea1p and Glo3p as novel components in RTA transport, suggesting the developed reporter assay as a powerful tool to dissect the multistep processes of host cell intoxication in yeast. PMID:27929418

  12. Rab7b at the intersection of intracellular trafficking and cell migration

    PubMed Central

    Distefano, Marita Borg; Kjos, Ingrid; Bakke, Oddmund; Progida, Cinzia

    2015-01-01

    Abstract Rab proteins are small GTPases essential for controlling and coordinating intracellular traffic. The small GTPase Rab7b regulates the retrograde transport from late endosomes toward the Trans-Golgi Network (TGN), and is important for the proper trafficking of several receptors such as Toll-like receptors (TLRs) and sorting receptors. We recently identified the actin motor protein myosin II as a new interaction partner for Rab7b, and found that Rab7b transport is dependent on myosin II. Interestingly, we also discovered that Rab7b influences the phosphorylation state of myosin II by controlling the activation status of the small GTPase RhoA. Consequently, Rab7b is important for the remodeling of actin filaments in processes such as stress fiber formation, cell adhesion, polarization and cell migration. Our finding that Rab7b can control actomyosin reorganization reveals yet another important role for Rab proteins, in addition to their already established role as master regulators of intracellular transport. Here we discuss our findings and speculate how they can explain the importance of Rab7b in dendritic cells (DCs). PMID:27066171

  13. Rab7b at the intersection of intracellular trafficking and cell migration.

    PubMed

    Distefano, Marita Borg; Kjos, Ingrid; Bakke, Oddmund; Progida, Cinzia

    2015-01-01

    Rab proteins are small GTPases essential for controlling and coordinating intracellular traffic. The small GTPase Rab7b regulates the retrograde transport from late endosomes toward the Trans-Golgi Network (TGN), and is important for the proper trafficking of several receptors such as Toll-like receptors (TLRs) and sorting receptors. We recently identified the actin motor protein myosin II as a new interaction partner for Rab7b, and found that Rab7b transport is dependent on myosin II. Interestingly, we also discovered that Rab7b influences the phosphorylation state of myosin II by controlling the activation status of the small GTPase RhoA. Consequently, Rab7b is important for the remodeling of actin filaments in processes such as stress fiber formation, cell adhesion, polarization and cell migration. Our finding that Rab7b can control actomyosin reorganization reveals yet another important role for Rab proteins, in addition to their already established role as master regulators of intracellular transport. Here we discuss our findings and speculate how they can explain the importance of Rab7b in dendritic cells (DCs).

  14. Golgi Feels Its Own Wound

    PubMed Central

    Darido, Charbel; Jane, Stephen M.

    2013-01-01

    Significance The Golgi apparatus is essential for protein processing, sorting, and transport. Processing includes carbohydrate modifications and proteolytic cleavage, and transport can involve secretion from the cell or relocation to a specific cellular compartment. Rapid and synchronized reorientation of the Golgi in migrating cells is thought to facilitate polarized secretion, providing membrane and secreted products to the proximal plasma membrane. This function is a fundamental process in cell motility. Whether the Golgi structure and positioning is functionally required for directed secretion and polarity in cell migration responses, such as wound healing, is yet to be elucidated. Recent Advances : Exciting recent analysis examined the effects of perturbed Golgi positioning without disruption of microtubular or actin cytoskeleton assembly or protein secretion, in the context of cellular polarity and directional migration in wound repair. This was achieved by Yadav et al. (2009) through depletion of Golgin-160 or GMAP210 (Golgi microtubule associated protein of 210 kDa), which resulted in fragmentation and dispersal of Golgi without altering secretion kinetics. As a consequence, the direction of secretion, cell polarization, and cell migration in response to wounding were severely impaired. Thus, in response to a scratch wound, cell polarity requires peri-centrosomal positioning of the Golgi apparatus, implying that after initiation by a polarity cue there is a dependence on the Golgi's directed secretion to maintain the polarized state that facilitates cell migration. Critical Issues Golgi peri-centrosomal positioning can now be included among the growing list of cellular processes and signaling pathways that are critical for establishment of cellular polarity in response to external stimuli—a key feature of wound repair. Future Directions A complete understanding of the function of Golgi components in motility merits attractive avenues for future

  15. Transport of soluble proteins through the Golgi occurs by diffusion via continuities across cisternae

    PubMed Central

    Beznoussenko, Galina V; Parashuraman, Seetharaman; Rizzo, Riccardo; Polishchuk, Roman; Martella, Oliviano; Di Giandomenico, Daniele; Fusella, Aurora; Spaar, Alexander; Sallese, Michele; Capestrano, Maria Grazia; Pavelka, Margit; Vos, Matthijn R; Rikers, Yuri GM; Helms, Volkhard; Mironov, Alexandre A; Luini, Alberto

    2014-01-01

    The mechanism of transport through the Golgi complex is not completely understood, insofar as no single transport mechanism appears to account for all of the observations. Here, we compare the transport of soluble secretory proteins (albumin and α1-antitrypsin) with that of supramolecular cargoes (e.g., procollagen) that are proposed to traverse the Golgi by compartment progression–maturation. We show that these soluble proteins traverse the Golgi much faster than procollagen while moving through the same stack. Moreover, we present kinetic and morphological observations that indicate that albumin transport occurs by diffusion via intercisternal continuities. These data provide evidence for a transport mechanism that applies to a major class of secretory proteins and indicate the co-existence of multiple intra-Golgi trafficking modes. DOI: http://dx.doi.org/10.7554/eLife.02009.001 PMID:24867214

  16. Transport of soluble proteins through the Golgi occurs by diffusion via continuities across cisternae.

    PubMed

    Beznoussenko, Galina V; Parashuraman, Seetharaman; Rizzo, Riccardo; Polishchuk, Roman; Martella, Oliviano; Di Giandomenico, Daniele; Fusella, Aurora; Spaar, Alexander; Sallese, Michele; Capestrano, Maria Grazia; Pavelka, Margit; Vos, Matthijn R; Rikers, Yuri G M; Helms, Volkhard; Mironov, Alexandre A; Luini, Alberto

    2014-05-27

    The mechanism of transport through the Golgi complex is not completely understood, insofar as no single transport mechanism appears to account for all of the observations. Here, we compare the transport of soluble secretory proteins (albumin and α1-antitrypsin) with that of supramolecular cargoes (e.g., procollagen) that are proposed to traverse the Golgi by compartment progression-maturation. We show that these soluble proteins traverse the Golgi much faster than procollagen while moving through the same stack. Moreover, we present kinetic and morphological observations that indicate that albumin transport occurs by diffusion via intercisternal continuities. These data provide evidence for a transport mechanism that applies to a major class of secretory proteins and indicate the co-existence of multiple intra-Golgi trafficking modes.

  17. Geldanamycin Enhances Retrograde Transport of Shiga Toxin in HEp-2 Cells.

    PubMed

    Dyve Lingelem, Anne Berit; Hjelseth, Ieva Ailte; Simm, Roger; Torgersen, Maria Lyngaas; Sandvig, Kirsten

    2015-01-01

    The heat shock protein 90 (Hsp90) inhibitor geldanamycin (GA) has been shown to alter endosomal sorting, diverting cargo destined for the recycling pathway into the lysosomal pathway. Here we investigated whether GA also affects the sorting of cargo into the retrograde pathway from endosomes to the Golgi apparatus. As a model cargo we used the bacterial toxin Shiga toxin, which exploits the retrograde pathway as an entry route to the cytosol. Indeed, GA treatment of HEp-2 cells strongly increased the Shiga toxin transport to the Golgi apparatus. The enhanced Golgi transport was not due to increased endocytic uptake of the toxin or perturbed recycling, suggesting that GA selectively enhances endosomal sorting into the retrograde pathway. Moreover, GA activated p38 and both inhibitors of p38 or its substrate MK2 partially counteracted the GA-induced increase in Shiga toxin transport. Thus, our data suggest that GA-induced p38 and MK2 activation participate in the increased Shiga toxin transport to the Golgi apparatus.

  18. Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport

    PubMed Central

    Schwab, ME; Suda, K; Thoenen, H

    1979-01-01

    The fate of tetanus toxin (mol wt 150,000) subsequent to its retrograde axonal transport in peripheral sympathetic neurons of the rat was studied by both electron microscope autoradiography and cytochemistry using toxin-horseradish peroxidase (HRP) coupling products, and compared to that of nerve growth factor (NGF), cholera toxin, and the lectins wheat germ agglutinin (WGA), phytohaemagglutinin (PHA), and ricin. All these macromolecules are taken up by adrenergic nerve terminals and transported retrogradely in a selective, highly efficient manner. This selective uptake and transport is a consequence of the binding of these macromolecules to specific receptive sites on the nerve terminal membrane. All these ligands are transported in the axons within smooth vesicles, cisternae, and tubules. In the cell bodies these membrane compartments fuse and most of the transported macromolecules are finally incorporated into lysosomes. The cell nuclei, the parallel golgi cisternae, and the extracellular space always remain unlabeled. In case the tetanus toxin, however, a substantial fraction of the labeled material appears in presynaptic cholinergic nerve terminals which innervate the labeled ganglion cells. In these terminals tetanus toxin-HRP is localized in 500-1,000 A diam vesicles. In contrast, such a retrograde transsynaptic transfer is not at all or only very rarely detectable after retrograde transport of cholera toxin, NGF, WGA, PHA, or ricin. An atoxic fragment of the tetanus toxin, which contains the ganglioside-binding site, behaves like intact toxin. With all these macromolecules, the extracellular space and the glial cells in the ganglion remain unlabeled. We conclude that the selectivity of this transsynaptic transfer of tetanus toxin is due to a selective release of the toxin from the postsynaptic dendrites. This release is immediately followed by an uptake into the presynaptic terminals. PMID:92475

  19. Irradiation-induced protein inactivation reveals Golgi enzyme cycling to cell periphery

    PubMed Central

    Jarvela, Timothy; Linstedt, Adam D.

    2012-01-01

    Acute inhibition is a powerful technique to test proteins for direct roles and order their activities in a pathway, but as a general gene-based strategy, it is mostly unavailable in mammalian systems. As a consequence, the precise roles of proteins in membrane trafficking have been difficult to assess in vivo. Here we used a strategy based on a genetically encoded fluorescent protein that generates highly localized and damaging reactive oxygen species to rapidly inactivate exit from the endoplasmic reticulum (ER) during live-cell imaging and address the long-standing question of whether the integrity of the Golgi complex depends on constant input from the ER. Light-induced blockade of ER exit immediately perturbed Golgi membranes, and surprisingly, revealed that cis-Golgi-resident proteins continuously cycle to peripheral ER-Golgi intermediate compartment (ERGIC) membranes and depend on ER exit for their return to the Golgi. These experiments demonstrate that ER exit and extensive cycling of cis-Golgi components to the cell periphery sustain the mammalian Golgi complex. PMID:22421362

  20. Mutant SOD1 inhibits ER-Golgi transport in amyotrophic lateral sclerosis.

    PubMed

    Atkin, Julie D; Farg, Manal A; Soo, Kai Ying; Walker, Adam K; Halloran, Mark; Turner, Bradley J; Nagley, Phillip; Horne, Malcolm K

    2014-04-01

    Cu/Zn-superoxide dismutase is misfolded in familial and sporadic amyotrophic lateral sclerosis, but it is not clear how this triggers endoplasmic reticulum (ER) stress or other pathogenic processes. Here, we demonstrate that mutant SOD1 (mSOD1) is predominantly found in the cytoplasm in neuronal cells. Furthermore, we show that mSOD1 inhibits secretory protein transport from the ER to Golgi apparatus. ER-Golgi transport is linked to ER stress, Golgi fragmentation and axonal transport and we also show that inhibition of ER-Golgi trafficking preceded ER stress, Golgi fragmentation, protein aggregation and apoptosis in cells expressing mSOD1. Restoration of ER-Golgi transport by over-expression of coatomer coat protein II subunit Sar1 protected against inclusion formation and apoptosis, thus linking dysfunction in ER-Golgi transport to cellular pathology. These findings thus link several cellular events in amyotrophic lateral sclerosis into a single mechanism occurring early in mSOD1 expressing cells.

  1. Retrograde transport of KDEL-bearing B-fragment of Shiga toxin.

    PubMed

    Johannes, L; Tenza, D; Antony, C; Goud, B

    1997-08-01

    To investigate retrograde transport along the biosynthetic/secretory pathway, we have constructed a recombinant Shiga toxin B-fragment carrying an N-glycosylation site and a KDEL retrieval motif at its carboxyl terminus (B-Glyc-KDEL). After incubation with HeLa cells, B-Glyc-KDEL was progressively glycosylated in the endoplasmic reticulum (ER) and remained stably associated with this compartment. B-fragment with a nonfunctional KDEL sequence (B-Glyc-KDELGL) was glycosylated with about the same kinetics as B-Glyc-KDEL but localized at steady state to the Golgi apparatus. Morphological studies showed that B-Glyc-KDEL was delivered from the plasma membrane, via endosomes and the cisternae of the Golgi apparatus, to the ER. Moreover, the addition of a sulfation site allowed us to show that B-Glyc-KDEL on transit to the ER entered the Golgi apparatus through the trans-Golgi network. Transport of B-Glyc-KDEL to the ER was slowed down by nocodazole, indicating that microtubules are important for the retrograde pathway. Our results document the existence of a continuous pathway from the plasma membrane to the endoplasmic reticulum via the Golgi apparatus and show that a fully folded exogenous protein arriving in the endoplasmic reticulum via this pathway can undergo N-glycosylation.

  2. Economics of human trafficking.

    PubMed

    Wheaton, Elizabeth M; Schauer, Edward J; Galli, Thomas V

    2010-01-01

    Because freedom of choice and economic gain are at the heart of productivity, human trafficking impedes national and international economic growth. Within the next 10 years, crime experts expect human trafficking to surpass drug and arms trafficking in its incidence, cost to human well-being, and profitability to criminals (Schauer and Wheaton, 2006: 164-165). The loss of agency from human trafficking as well as from modern slavery is the result of human vulnerability (Bales, 2000: 15). As people become vulnerable to exploitation and businesses continually seek the lowest-cost labour sources, trafficking human beings generates profit and a market for human trafficking is created. This paper presents an economic model of human trafficking that encompasses all known economic factors that affect human trafficking both across and within national borders. We envision human trafficking as a monopolistically competitive industry in which traffickers act as intermediaries between vulnerable individuals and employers by supplying differentiated products to employers. In the human trafficking market, the consumers are employers of trafficked labour and the products are human beings. Using a rational-choice framework of human trafficking we explain the social situations that shape relocation and working decisions of vulnerable populations leading to human trafficking, the impetus for being a trafficker, and the decisions by employers of trafficked individuals. The goal of this paper is to provide a common ground upon which policymakers and researchers can collaborate to decrease the incidence of trafficking in humans.

  3. Diacylglycerol Is Required for the Formation of COPI Vesicles in the Golgi-to-ER Transport Pathway

    PubMed Central

    Fernández-Ulibarri, Inés; Vilella, Montserrat; Lázaro-Diéguez, Francisco; Sarri, Elisabet; Martínez, Susana E.; Jiménez, Nuria; Claro, Enrique; Mérida, Isabel; Burger, Koert N.J.

    2007-01-01

    Diacylglycerol is necessary for trans-Golgi network (TGN) to cell surface transport, but its functional relevance in the early secretory pathway is unclear. Although depletion of diacylglycerol did not affect ER-to-Golgi transport, it led to a redistribution of the KDEL receptor to the Golgi, indicating that Golgi-to-ER transport was perturbed. Electron microscopy revealed an accumulation of COPI-coated membrane profiles close to the Golgi cisternae. Electron tomography showed that the majority of these membrane profiles originate from coated buds, indicating a block in membrane fission. Under these conditions the Golgi-associated pool of ARFGAP1 was reduced, but there was no effect on the binding of coatomer or the membrane fission protein CtBP3/BARS to the Golgi. The addition of 1,2-dioctanoyl-sn-glycerol or the diacylglycerol analogue phorbol 12,13-dibutyrate reversed the effects of endogenous diacylglycerol depletion. Our findings implicate diacylglycerol in the retrograde transport of proteins from Golgi to the ER and suggest that it plays a critical role at a late stage of COPI vesicle formation. PMID:17567948

  4. New components of the Golgi matrix

    PubMed Central

    Xiang, Yi; Wang, Yanzhuang

    2012-01-01

    The eukaryotic Golgi apparatus is characterized by a stack of flattened cisternae that are surrounded by transport vesicles. The organization and function of the Golgi require Golgi matrix proteins, including GRASPs and golgins, which exist primarily as fiber-like bridges between Golgi cisternae or between cisternae and vesicles. In this review, we highlight recent findings on Golgi matrix proteins, including their roles in maintaining the Golgi structure, vesicle tethering, and novel, unexpected functions. These new discoveries further our understanding of the molecular mechanisms that maintain the structure and the function of the Golgi, as well as its relationship with other cellular organelles such as the centrosome. PMID:21494806

  5. Yif1B Is Involved in the Anterograde Traffic Pathway and the Golgi Architecture.

    PubMed

    Alterio, Jeanine; Masson, Justine; Diaz, Jorge; Chachlaki, Konstantina; Salman, Haysam; Areias, Julie; Al Awabdh, Sana; Emerit, Michel Boris; Darmon, Michèle

    2015-09-01

    Yif1B is an intracellular membrane-bound protein belonging to the Yip family, shown previously to control serotonin 5-HT1A receptor targeting to dendrites. Because some Yip proteins are involved in the intracellular traffic between the ER and the Golgi, here we investigated the precise localization of Yif1B in HeLa cells. We found that Yif1B is not resident into the Golgi, but rather belongs to the IC compartment. After analyzing the role of Yif1B in protein transport, we showed that the traffic of the VSVG protein marker was accelerated in Yif1B depleted HeLa cells, as well as in hippocampal neurons from Yif1B KO mice. Conversely, Yif1B depletion in HeLa cells did not change the retrograde traffic of ShTx. Interestingly, in long term depletion of Yif1B as in Yif1B KO mice, we observed a disorganized Golgi architecture in CA1 pyramidal hippocampal neurons, which was confirmed by electron microscopy. However, because short term depletion of Yif1B did not change Golgi structure, it is likely that the implication of Yif1B in anterograde traffic does not rely on its role in structural organization of the Golgi apparatus, but rather on its shuttling between the ER, the IC and the Golgi compartments.

  6. The retromer complex and clathrin define an early endosomal retrograde exit site.

    PubMed

    Popoff, Vincent; Mardones, Gonzalo A; Tenza, Danièle; Rojas, Raúl; Lamaze, Christophe; Bonifacino, Juan S; Raposo, Graça; Johannes, Ludger

    2007-06-15

    Previous studies have indicated a role for clathrin, the clathrin adaptors AP1 and epsinR, and the retromer complex in retrograde sorting from early/recycling endosomes to the trans Golgi network (TGN). However, it has remained unclear whether these protein machineries function on the same or parallel pathways. We show here that clathrin and the retromer subunit Vps26 colocalize at the ultrastructural level on early/recycling endosomes containing Shiga toxin B-subunit, a well-studied retrograde transport cargo. As previously described for clathrin, we find that interfering with Vps26 expression inhibits retrograde transport of the Shiga toxin B-subunit to the TGN. Under these conditions, endosomal tubules that take the Shiga toxin B-subunit out of transferrin-containing early/recycling endosomes appear to be stabilized. This situation differs from that previously described for low-temperature incubation and clathrin-depletion conditions under which Shiga toxin B-subunit labeling was found to overlap with that of the transferrin receptor. In addition, we find that the Shiga toxin B-subunit and the transferrin receptor accumulate close to multivesicular endosomes in clathrin-depleted cells, suggesting that clathrin initiates retrograde sorting on vacuolar early endosomes, and that retromer is then required to process retrograde tubules. Our findings thus establish a role for the retromer complex in retrograde transport of the B-subunit of Shiga toxin, and strongly suggest that clathrin and retromer function in consecutive retrograde sorting steps on early endosomes.

  7. Impaired motoneuronal retrograde transport in two models of SBMA implicates two sites of androgen action.

    PubMed

    Kemp, Michael Q; Poort, Jessica L; Baqri, Rehan M; Lieberman, Andrew P; Breedlove, S Marc; Miller, Kyle E; Jordan, Cynthia L

    2011-11-15

    Spinal and bulbar muscular atrophy (SBMA) impairs motor function in men and is linked to a CAG repeat mutation in the androgen receptor (AR) gene. Defects in motoneuronal retrograde axonal transport may critically mediate motor dysfunction in SBMA, but the site(s) where AR disrupts transport is unknown. We find deficits in retrograde labeling of spinal motoneurons in both a knock-in (KI) and a myogenic transgenic (TG) mouse model of SBMA. Likewise, live imaging of endosomal trafficking in sciatic nerve axons reveals disease-induced deficits in the flux and run length of retrogradely transported endosomes in both KI and TG males, demonstrating that disease triggered in muscle can impair retrograde transport of cargo in motoneuron axons, possibly via defective retrograde signaling. Supporting the idea of impaired retrograde signaling, we find that vascular endothelial growth factor treatment of diseased muscles reverses the transport/trafficking deficit. Transport velocity is also affected in KI males, suggesting a neurogenic component. These results demonstrate that androgens could act via both cell autonomous and non-cell autonomous mechanisms to disrupt axonal transport in motoneurons affected by SBMA.

  8. Cisterna-specific localization of glycosylation-related proteins to the Golgi apparatus.

    PubMed

    Yamamoto-Hino, Miki; Abe, Masato; Shibano, Takako; Setoguchi, Yuka; Awano, Wakae; Ueda, Ryu; Okano, Hideyuki; Goto, Satoshi

    2012-01-01

    The Golgi apparatus is an intracellular organelle playing central roles in post-translational modification and in the secretion of membrane and secretory proteins. These proteins are synthesized in the endoplasmic reticulum (ER) and transported to the cis-, medial-and trans-cisternae of the Golgi. While trafficking through the Golgi, proteins are sequentially modified with glycan moieties by different glycosyltransferases. Therefore, it is important to analyze the glycosylation function of the Golgi at the level of cisternae. Markers widely used for cis-, medial- and trans-cisternae/trans Golgi network (TGN) in Drosophila are GM130, 120 kDa and Syntaxin16 (Syx16); however the anti-120 kDa antibody is no longer available. In the present study, Drosophila Golgi complex-localized glycoprotein-1 (dGLG1) was identified as an antigen recognized by the anti-120 kDa antibody. A monoclonal anti-dGLG1 antibody suitable for immunohistochemistry was raised in rat. Using these markers, the localization of glycosyltransferases and nucleotide-sugar transporters (NSTs) was studied at the cisternal level. Results showed that glycosyltransferases and NSTs involved in the same sugar modification are localized to the same cisternae. Furthermore, valuable functional information was obtained on the localization of novel NSTs with as yet incompletely characterized biochemical properties.

  9. Lipids: architects and regulators of membrane dynamics and trafficking.

    PubMed

    Moreau, Patrick

    2007-05-01

    We have recently shown that an inhibition of sterol synthesis by fenpropimorph leads to an accumulation of sterol precursors, hydroxypalmitic acid-containing glucosylceramides and detergent resistant membranes in the Golgi bodies instead of the plasma membrane, suggesting that the individual molecules or the microdomains were blocked in the Golgi. These results and others from several eukaryotic models link lipid metabolism with membrane morphodynamics that are involved in membrane trafficking. Focus has been expanded to other lipid families, and numerous evidences are given showing lipids and lipid-modifying enzymes as key regulators of membrane homeostasis which can strongly regulate membrane morphodynamics and therefore trafficking. Beside protein-based machineries, lipid-based machineries are also shown as crucial regulatory forces involved in protein transport and sorting.

  10. Drosophila Golgi membrane protein Ema promotes autophagosomal growth and function.

    PubMed

    Kim, Sungsu; Naylor, Sarah A; DiAntonio, Aaron

    2012-05-01

    Autophagy is a self-degradative process in which cellular material is enclosed within autophagosomes and trafficked to lysosomes for degradation. Autophagosomal biogenesis is well described; however mechanisms controlling the growth and ultimate size of autophagosomes are unclear. Here we demonstrate that the Drosophila membrane protein Ema is required for the growth of autophagosomes. In an ema mutant, autophagosomes form in response to starvation and developmental cues, and these autophagosomes can mature into autolysosomes; however the autophagosomes are very small, and autophagy is impaired. In fat body cells, Ema localizes to the Golgi complex and is recruited to the membrane of autophagosomes in response to starvation. The Drosophila Golgi protein Lva also is recruited to the periphery of autophagosomes in response to starvation, and this recruitment requires ema. Therefore, we propose that Golgi is a membrane source for autophagosomal growth and that Ema facilitates this process. Clec16A, the human ortholog of Ema, is a candidate autoimmune susceptibility locus. Expression of Clec16A can rescue the autophagosome size defect in the ema mutant, suggesting that regulation of autophagosome morphogenesis may be a fundamental function of this gene family.

  11. Harnessing membrane trafficking to promote cancer spreading and invasion: The case of RAB2A.

    PubMed

    Kajiho, Hiroaki; Kajiho, Yuko; Scita, Giorgio

    2017-01-06

    How cancer disseminates and metastasizes remains an outstanding open question. Emerging evidence indicates that membrane trafficking is frequently harnessed by tumors of epithelial origin to acquire a mesenchymal program of invasiveness. However, the critical molecular hubs used by cancer cells this context have only began to be elucidated. Here, we discussed the results of a recent phenotypic screening that led to the identification of the small GTPase RAB2A, not previously involved in cancer dissemination, as pivotal for the acquisition of pericellular proteolysis, cell dissemination and distant metastatic spreading of human breast cancer. At the cellular levels, RAB2A controls both canonical polarized Golgi-to-Plasma membrane trafficking of the junctional protein E-cadherin, and post-endocytic trafficking of the membrane-bound metalloprotease, MT1-MMP. This finding reveals an unexpected plasticity in the control of diverse trafficking routes exerted by RAB2A through canonical (Golgi stacking) and non-canonical (late endosome recycling) functional interactions, contributing to break established membrane trafficking dogma on the rigorous molecular distinction between polarized Golgi and post endocytic routes. Finally, they suggest that epithelial cancers may specifically select for those molecules that enable them to control multiple trafficking routes, in turn essential for the regulation of activities necessary for acquisition of mesenchymal traits.

  12. Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network

    PubMed Central

    Klemm, Robin W.; Ejsing, Christer S.; Surma, Michal A.; Kaiser, Hermann-Josef; Gerl, Mathias J.; Sampaio, Julio L.; de Robillard, Quentin; Ferguson, Charles; Proszynski, Tomasz J.; Shevchenko, Andrej

    2009-01-01

    The trans-Golgi network (TGN) is the major sorting station in the secretory pathway of all eukaryotic cells. How the TGN sorts proteins and lipids to generate the enrichment of sphingolipids and sterols at the plasma membrane is poorly understood. To address this fundamental question in membrane trafficking, we devised an immunoisolation procedure for specific recovery of post-Golgi secretory vesicles transporting a transmembrane raft protein from the TGN to the cell surface in the yeast Saccharomyces cerevisiae. Using a novel quantitative shotgun lipidomics approach, we could demonstrate that TGN sorting selectively enriched ergosterol and sphingolipid species in the immunoisolated secretory vesicles. This finding, for the first time, indicates that the TGN exhibits the capacity to sort membrane lipids. Furthermore, the observation that the immunoisolated vesicles exhibited a higher membrane order than the late Golgi membrane, as measured by C-Laurdan spectrophotometry, strongly suggests that lipid rafts play a role in the TGN-sorting machinery. PMID:19433450

  13. Imaging and Quantitation Techniques for Tracking Cargo along Endosome-to-Golgi Transport Pathways

    PubMed Central

    Chia, Pei Zhi Cheryl; Gleeson, Paul A.

    2013-01-01

    Recent improvements in the resolution of light microscopy, coupled with the development of a range of fluorescent-based probes, have provided new approaches to dissecting membrane domains and the regulation of membrane trafficking. Here, we review these advances, as well as highlight developments in quantitative image analysis and novel unbiased analytical approaches to quantitate protein localization. The application of these approaches to endosomal sorting and endosome-to-Golgi transport is discussed. PMID:24709647

  14. RAB-6.1 and RAB-6.2 Promote Retrograde Transport in C. elegans.

    PubMed

    Zhang, Donglei; Dubey, Jyoti; Koushika, Sandhya P; Rongo, Christopher

    2016-01-01

    Retrograde transport is a critical mechanism for recycling certain membrane cargo. Following endocytosis from the plasma membrane, retrograde cargo is moved from early endosomes to Golgi followed by transport (recycling) back to the plasma membrane. The complete molecular and cellular mechanisms of retrograde transport remain unclear. The small GTPase RAB-6.2 mediates the retrograde recycling of the AMPA-type glutamate receptor (AMPAR) subunit GLR-1 in C. elegans neurons. Here we show that RAB-6.2 and a close paralog, RAB-6.1, together regulate retrograde transport in both neurons and non-neuronal tissue. Mutants for rab-6.1 or rab-6.2 fail to recycle GLR-1 receptors, resulting in GLR-1 turnover and behavioral defects indicative of diminished GLR-1 function. Loss of both rab-6.1 and rab-6.2 results in an additive effect on GLR-1 retrograde recycling, indicating that these two C. elegans Rab6 isoforms have overlapping functions. MIG-14 (Wntless) protein, which undergoes retrograde recycling, undergoes a similar degradation in intestinal epithelia in both rab-6.1 and rab-6.2 mutants, suggesting a broader role for these proteins in retrograde transport. Surprisingly, MIG-14 is localized to separate, spatially segregated endosomal compartments in rab-6.1 mutants compared to rab-6.2 mutants. Our results indicate that RAB-6.1 and RAB-6.2 have partially redundant functions in overall retrograde transport, but also have their own unique cellular- and subcellular functions.

  15. RAB-6.1 and RAB-6.2 Promote Retrograde Transport in C. elegans

    PubMed Central

    Zhang, Donglei; Dubey, Jyoti; Koushika, Sandhya P.; Rongo, Christopher

    2016-01-01

    Retrograde transport is a critical mechanism for recycling certain membrane cargo. Following endocytosis from the plasma membrane, retrograde cargo is moved from early endosomes to Golgi followed by transport (recycling) back to the plasma membrane. The complete molecular and cellular mechanisms of retrograde transport remain unclear. The small GTPase RAB-6.2 mediates the retrograde recycling of the AMPA-type glutamate receptor (AMPAR) subunit GLR-1 in C. elegans neurons. Here we show that RAB-6.2 and a close paralog, RAB-6.1, together regulate retrograde transport in both neurons and non-neuronal tissue. Mutants for rab-6.1 or rab-6.2 fail to recycle GLR-1 receptors, resulting in GLR-1 turnover and behavioral defects indicative of diminished GLR-1 function. Loss of both rab-6.1 and rab-6.2 results in an additive effect on GLR-1 retrograde recycling, indicating that these two C. elegans Rab6 isoforms have overlapping functions. MIG-14 (Wntless) protein, which undergoes retrograde recycling, undergoes a similar degradation in intestinal epithelia in both rab-6.1 and rab-6.2 mutants, suggesting a broader role for these proteins in retrograde transport. Surprisingly, MIG-14 is localized to separate, spatially segregated endosomal compartments in rab-6.1 mutants compared to rab-6.2 mutants. Our results indicate that RAB-6.1 and RAB-6.2 have partially redundant functions in overall retrograde transport, but also have their own unique cellular- and subcellular functions. PMID:26891225

  16. Targeting of Shiga Toxin B-Subunit to Retrograde Transport Route in Association with Detergent-resistant Membranes

    PubMed Central

    Falguières, Thomas; Mallard, Frédéric; Baron, Carole; Hanau, Daniel; Lingwood, Clifford; Goud, Bruno; Salamero, Jean; Johannes, Ludger

    2001-01-01

    In HeLa cells, Shiga toxin B-subunit is transported from the plasma membrane to the endoplasmic reticulum, via early endosomes and the Golgi apparatus, circumventing the late endocytic pathway. We describe here that in cells derived from human monocytes, i.e., macrophages and dendritic cells, the B-subunit was internalized in a receptor-dependent manner, but retrograde transport to the biosynthetic/secretory pathway did not occur and part of the internalized protein was degraded in lysosomes. These differences correlated with the observation that the B-subunit associated with Triton X-100-resistant membranes in HeLa cells, but not in monocyte-derived cells, suggesting that retrograde targeting to the biosynthetic/secretory pathway required association with specialized microdomains of biological membranes. In agreement with this hypothesis we found that in HeLa cells, the B-subunit resisted extraction by Triton X-100 until its arrival in the target compartments of the retrograde pathway, i.e., the Golgi apparatus and the endoplasmic reticulum. Furthermore, destabilization of Triton X-100-resistant membranes by cholesterol extraction potently inhibited B-subunit transport from early endosomes to the trans-Golgi network, whereas under the same conditions, recycling of transferrin was not affected. Our data thus provide first evidence for a role of lipid asymmetry in membrane sorting at the interface between early endosomes and the trans-Golgi network. PMID:11514628

  17. Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes.

    PubMed

    Saint-Pol, Agnès; Yélamos, Belén; Amessou, Mohamed; Mills, Ian G; Dugast, Marc; Tenza, Danièle; Schu, Peter; Antony, Claude; McMahon, Harvey T; Lamaze, Christophe; Johannes, Ludger

    2004-04-01

    Retrograde transport links early/recycling endosomes to the trans-Golgi network (TGN), thereby connecting the endocytic and the biosynthetic/secretory pathways. To determine how internalized molecules are targeted to the retrograde route, we have interfered with the function of clathrin and that of two proteins that interact with it, AP1 and epsinR. We found that the glycosphingolipid binding bacterial Shiga toxin entered cells efficiently when clathrin expression was inhibited. However, retrograde transport of Shiga toxin to the TGN was strongly inhibited. This allowed us to show that for Shiga toxin, retrograde sorting on early/recycling endosomes depends on clathrin and epsinR, but not AP1. EpsinR was also involved in retrograde transport of two endogenous proteins, TGN38/46 and mannose 6-phosphate receptor. In conclusion, our work reveals the existence of clathrin-independent and -dependent transport steps in the retrograde route, and establishes a function for clathrin and epsinR at the endosome-TGN interface.

  18. The Lyn kinase C-lobe mediates Golgi export of Lyn through conformation-dependent ACSL3 association.

    PubMed

    Obata, Yuuki; Fukumoto, Yasunori; Nakayama, Yuji; Kuga, Takahisa; Dohmae, Naoshi; Yamaguchi, Naoto

    2010-08-01

    The Src-family tyrosine kinase Lyn has a role in signal transduction at the cytoplasmic face of the plasma membrane upon extracellular ligand stimulation. After synthesis in the cytoplasm, Lyn accumulates on the Golgi and is subsequently transported to the plasma membrane. However, the mechanism of Lyn trafficking remains elusive. We show here that the C-lobe of the Lyn kinase domain is associated with long-chain acyl-CoA synthetase 3 (ACSL3) on the Golgi in a manner that is dependent on Lyn conformation but is independent of its kinase activity. Formation of a closed conformation by CSK prevents Lyn from associating with ACSL3, resulting in blockade of Lyn export from the Golgi. Overexpression and knockdown of ACSL3 accelerates and blocks Golgi export of Lyn, respectively. The post-Golgi route of Lyn, triggered by ACSL3, is distinct from that of vesicular stomatitis virus glycoprotein (VSV-G) and of caveolin. Moreover, an ACSL3 mutant lacking the LR2 domain, which is required for the catalytic activity, retains the ability to associate with Lyn and accelerate Golgi export of Lyn. These results suggest that initiation of Golgi export of Lyn involves association of ACSL3 with the Lyn C-lobe, which is exposed to the molecular surface in an open conformation.

  19. GOLPH3 Bridges Phosphatidylinositol-4- Phosphate and Actomyosin to Stretch and Shape the Golgi to Promote Budding

    PubMed Central

    Dippold, Holly C.; Ng, Michelle M.; Farber-Katz, Suzette E.; Lee, Sun-Kyung; Kerr, Monica L.; Peterman, Marshall C.; Sim, Ronald; Wiharto, Patricia A.; Galbraith, Kenneth A.; Madhavarapu, Swetha; Fuchs, Greg J.; Meerloo, Timo; Farquhar, Marilyn G.; Zhou, Huilin; Field, Seth J.

    2009-01-01

    SUMMARY Golgi membranes, from yeast to humans, are uniquely enriched in phosphatidylinositol-4-phosphate (PtdIns(4)P), although the role of this lipid remains poorly understood. Using a proteomic lipid binding screen, we identify the Golgi protein GOLPH3 (also called GPP34, GMx33, MIDAS, or yeast Vps74p) as a PtdIns(4)P-binding protein that depends upon PtdIns(4)P for its Golgi localization. We further show that GOLPH3 binds the unconventional myosin MYO18A, thus connecting the Golgi to F-actin. We demonstrate that this linkage is necessary for normal Golgi trafficking and morphology. The evidence suggests that GOLPH3 binds to PtdIns(4)P-rich trans-Golgi membranes and MYO18A conveying a tensile force required for efficient tubule and vesicle formation. Consequently, this tensile force stretches the Golgi into the extended ribbon observed by fluorescence microscopy and the familiar flattened form observed by electron microscopy. PMID:19837035

  20. Golgi Disruption and Early Embryonic Lethality in Mice Lacking USO1

    PubMed Central

    Kim, Susie; Hill, Adele; Warman, Matthew L.; Smits, Patrick

    2012-01-01

    Golgins are a family of long rod-like proteins characterized by the presence of central coiled-coil domains. Members of the golgin family have important roles in membrane trafficking, where they function as tethering factors that capture transport vesicles and facilitate membrane fusion. Golgin family members also have essential roles in maintaining the organization of the Golgi apparatus. Knockdown of individual golgins in cultured cells resulted in the disruption of the Golgi structure and the dispersal of Golgi marker proteins throughout the cytoplasm. However, these cellular phenotypes have not always been recapitulated in vivo. For example, embryonic development proceeds much further than expected and Golgi disruption was observed in only a subset of cell types in mice lacking the ubiquitously expressed golgin GMAP-210. Cell-type specific functional compensation among golgins may explain the absence of global cell lethality when a ubiquitously expressed golgin is missing. In this study we show that functional compensation does not occur for the golgin USO1. Mice lacking this ubiquitously expressed protein exhibit disruption of Golgi structure and early embryonic lethality, indicating that USO1 is indispensable for early embryonic development. PMID:23185636

  1. Atypical protein kinase C regulates primary dendrite specification of cerebellar Purkinje cells by localizing Golgi apparatus.

    PubMed

    Tanabe, Koji; Kani, Shuichi; Shimizu, Takashi; Bae, Young-Ki; Abe, Takaya; Hibi, Masahiko

    2010-12-15

    Neurons have highly polarized structures that determine what parts of the soma elaborate the axon and dendrites. However, little is known about the mechanisms that establish neuronal polarity in vivo. Cerebellar Purkinje cells extend a single primary dendrite from the soma that ramifies into a highly branched dendritic arbor. We used the zebrafish cerebellum to investigate the mechanisms by which Purkinje cells acquire these characteristics. To examine dendritic morphogenesis in individual Purkinje cells, we marked the cell membrane using a Purkinje cell-specific promoter to drive membrane-targeted fluorescent proteins. We found that zebrafish Purkinje cells initially extend multiple neurites from the soma and subsequently retract all but one, which becomes the primary dendrite. In addition, the Golgi apparatus specifically locates to the root of the primary dendrite, and its localization is already established in immature Purkinje cells that have multiple neurites. Inhibiting secretory trafficking through the Golgi apparatus reduces dendritic growth, suggesting that the Golgi apparatus is involved in the dendritic morphogenesis. We also demonstrated that in a mutant of an atypical protein kinase C (aPKC), Prkci, Purkinje cells retain multiple primary dendrites and show disrupted localization of the Golgi apparatus. Furthermore, a mosaic inhibition of Prkci in Purkinje cells recapitulates the aPKC mutant phenotype. These results suggest that the aPKC cell autonomously controls the Golgi localization and thereby regulates the specification of the primary dendrite of Purkinje cells.

  2. Protein trafficking to the complex chloroplasts of Euglena.

    PubMed

    Vacula, Rostislav; Sláviková, Silvia; Schwartzbach, Steven D

    2007-01-01

    Proteins are delivered to Euglena chloroplasts using the secretory pathway. We describe analytical methods to study the intracellular trafficking of Euglena chloroplast proteins and a method to isolate preparative amounts of intact import competent chloroplasts for biochemical studies. Cells are pulse labeled with 35S-sulfate and chased with unlabeled sulfate allowing the trafficking and posttranslational processing of the labeled protein to be followed. Sucrose gradients are used to separate a 35S-labeled cell lysate into cytoplasmic, endoplasmic reticuum (ER), Golgi apparatus, chloroplast and mitochondrial fractions. Immunoprecipitation of each gradient fraction allows identification of the intracellular compartment containing a specific 35S-labeled protein at different times after synthesis delineating the trafficking pathway. Because sucrose gradients cannot be used to isolate preparative amounts of highly purified chloroplasts for biochemical characterization, a preparative high-yield procedure using Percoll gradients to isolate highly purified import competent chloroplasts is also presented.

  3. Chloroplast signaling: retrograde regulation revelations.

    PubMed

    Beale, Samuel I

    2011-05-24

    Developing chloroplasts are able to communicate their status to the nucleus and regulate expression of genes whose products are needed for photosynthesis. Heme is revealed to be a signaling molecule for this retrograde communication.

  4. Rab1 interacts with GOLPH3 and controls Golgi structure and contractile ring constriction during cytokinesis in Drosophila melanogaster

    PubMed Central

    Sechi, Stefano; Frappaolo, Anna; Fraschini, Roberta; Capalbo, Luisa; Gottardo, Marco; Belloni, Giorgio; Glover, David M.

    2017-01-01

    Cytokinesis requires a tight coordination between actomyosin ring constriction and new membrane addition along the ingressing cleavage furrow. However, the molecular mechanisms underlying vesicle trafficking to the equatorial site and how this process is coupled with the dynamics of the contractile apparatus are poorly defined. Here we provide evidence for the requirement of Rab1 during cleavage furrow ingression in cytokinesis. We demonstrate that the gene omelette (omt) encodes the Drosophila orthologue of human Rab1 and is required for successful cytokinesis in both mitotic and meiotic dividing cells of Drosophila melanogaster. We show that Rab1 protein colocalizes with the conserved oligomeric Golgi (COG) complex Cog7 subunit and the phosphatidylinositol 4-phosphate effector GOLPH3 at the Golgi stacks. Analysis by transmission electron microscopy and 3D-SIM super-resolution microscopy reveals loss of normal Golgi architecture in omt mutant spermatocytes indicating a role for Rab1 in Golgi formation. In dividing cells, Rab1 enables stabilization and contraction of actomyosin rings. We further demonstrate that GTP-bound Rab1 directly interacts with GOLPH3 and controls its localization at the Golgi and at the cleavage site. We propose that Rab1, by associating with GOLPH3, controls membrane trafficking and contractile ring constriction during cytokinesis. PMID:28100664

  5. The KDEL receptor couples to Gαq/11 to activate Src kinases and regulate transport through the Golgi

    PubMed Central

    Giannotta, Monica; Ruggiero, Carmen; Grossi, Mauro; Cancino, Jorge; Capitani, Mirco; Pulvirenti, Teodoro; Consoli, Grazia Maria Letizia; Geraci, Corrada; Fanelli, Francesca; Luini, Alberto; Sallese, Michele

    2012-01-01

    Membrane trafficking involves large fluxes of cargo and membrane across separate compartments. These fluxes must be regulated by control systems to maintain homoeostasis. While control systems for other key functions such as protein folding or the cell cycle are well known, the mechanisms that control secretory transport are poorly understood. We have previously described a signalling circuit operating at the Golgi complex that regulates intra-Golgi trafficking and is initiated by the KDEL receptor (KDEL-R), a protein previously known to mediate protein recycling from the Golgi to the endoplasmic reticulum (ER). Here, we investigated the KDEL-R signalling mechanism. We show that the KDEL-R is predicted to fold like a G-protein-coupled receptor (GPCR), and that it binds and activates the heterotrimeric signalling G-protein Gαq/11 which, in turn, regulates transport through the Golgi complex. These findings reveal an unexpected GPCR-like mode of action of the KDEL-R and shed light on a core molecular control mechanism of intra-Golgi traffic. PMID:22580821

  6. Chlamydia trachomatis Intercepts Golgi-Derived Sphingolipids through a Rab14-Mediated Transport Required for Bacterial Development and Replication

    PubMed Central

    Capmany, Anahí; Damiani, María Teresa

    2010-01-01

    Chlamydia trachomatis are obligate intracellular bacteria that survive and replicate in a bacterial-modified phagosome called inclusion. As other intracellular parasites, these bacteria subvert the phagocytic pathway to avoid degradation in phagolysosomes and exploit trafficking pathways to acquire both energy and nutrients essential for their survival. Rabs are host proteins that control intracellular vesicular trafficking. Rab14, a Golgi-related Rab, controls Golgi to endosomes transport. Since Chlamydia establish a close relationship with the Golgi apparatus, the recruitment and participation of Rab14 on inclusion development and bacteria growth were analyzed. Time course analysis revealed that Rab14 associated with inclusions by 10 h post infection and was maintained throughout the entire developmental cycle. The recruitment was bacterial protein synthesis-dependent but independent of microtubules and Golgi integrity. Overexpression of Rab14 dominant negative mutants delayed inclusion enlargement, and impaired bacteria replication as determined by IFU. Silencing of Rab14 by siRNA also decreased bacteria multiplication and infectivity. By electron microscopy, aberrant bacteria were observed in cells overexpressing the cytosolic negative Rab14 mutant. Our results showed that Rab14 facilitates the delivery of sphingolipids required for bacterial development and replication from the Golgi to chlamydial inclusions. Novel anti-chlamydial therapies could be developed based on the knowledge of how bacteria subvert host vesicular transport events through Rabs manipulation. PMID:21124879

  7. Ubiquitination and dynactin regulate TMEPAI lysosomal trafficking

    PubMed Central

    Luo, Shenheng; Jing, Lei; Zhao, Tian; Li, Yuyin; Liu, Zhenxing; Diao, Aipo

    2017-01-01

    The transmembrane prostate androgen-induced protein (TMEPAI) has been reported to be elevated in various tumor cells, is localized to the lysosome and promotes lysosome stability. The molecular mechanism of TMEPAI trafficking however to the lysosome is unknown. Here we report that clathrin and CI-M6PR mediate TMEPAI transport from the Golgi directly into the endo-lysosomal pathway. TMEPAI is ubiquitinated at its C-terminal region and ubiquitination modification of TMEPAI is a signal for its lysosomal trafficking. Moreover, TMEPAI binds the ubiquitin binding proteins Hrs and STAM which is required for its lysosomal transport. In addition, TMEPAI interacts with the dynactin pointed-end complex subunits dynactin 5 and dynactin 6. The aa 132–155 domain is essential for specific TMEPAI binding and deletion of this binding site leads to mis-trafficking of TMEPAI to the plasma membrane. These results reveal the pathway and mechanism regulating transport of TMEPAI to the lysosome, which helps to further understand the role of TMEPAI in tumorigenesis. PMID:28218281

  8. Regulation of α2B-Adrenerigc Receptor Export Trafficking by Specific Motifs.

    PubMed

    Wu, Guangyu; Davis, Jason E; Zhang, Maoxiang

    2015-01-01

    Intracellular trafficking and precise targeting to specific locations of G protein-coupled receptors (GPCRs) control the physiological functions of the receptors. Compared to the extensive efforts dedicated to understanding the events involved in the endocytic and recycling pathways, the molecular mechanisms underlying the transport of the GPCR superfamily from the endoplasmic reticulum (ER) through the Golgi to the plasma membrane are relatively less well defined. Over the past years, we have used α(2B)-adrenergic receptor (α(2B)-AR) as a model to define the factors that control GPCR export trafficking. In this chapter, we will review specific motifs identified to mediate the export of nascent α(2B)-AR from the ER and the Golgi and discuss the possible underlying mechanisms. As these motifs are highly conserved among GPCRs, they may provide common mechanisms for export trafficking of these receptors.

  9. New insights into plant salt acclimation: the roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system.

    PubMed

    Garcia de la Garma, Jesus; Fernandez-Garcia, Nieves; Bardisi, Enas; Pallol, Beatriz; Asensio-Rubio, Jose Salvador; Bru, Roque; Olmos, Enrique

    2015-01-01

    In this study, we investigated the cellular and molecular mechanisms that regulate salt acclimation. The main objective was to obtain new insights into the molecular mechanisms that control salt acclimation. Therefore, we carried out a multidisciplinary study using proteomic, transcriptomic, subcellular and physiological techniques. We obtained a Nicotiana tabacum BY-2 cell line acclimated to be grown at 258 mM NaCl as a model for this study. The proteomic and transcriptomic data indicate that the molecular response to stress (chaperones, defence proteins, etc.) is highly induced in these salt-acclimated cells. The subcellular results show that salt induces sodium compartmentalization in the cell vacuoles and seems to be mediated by vesicle trafficking in tobacco salt-acclimated cells. Our results demonstrate that abscisic acid (ABA) and proline metabolism are crucial in the cellular signalling of salt acclimation, probably regulating reactive oxygen species (ROS) production in the mitochondria. ROS may act as a retrograde signal, regulating the cell response. The network of endoplasmic reticulum and Golgi apparatus is highly altered in salt-acclimated cells. The molecular and subcellular analysis suggests that the unfolded protein response is induced in salt-acclimated cells. Finally, we propose that this mechanism may mediate cell death in salt-acclimated cells.

  10. Golgi: Interactive Online Brain Mapping

    PubMed Central

    Brown, Ramsay A.; Swanson, Larry W.

    2015-01-01

    Golgi (http://www.usegolgi.com) is a prototype interactive brain map of the rat brain that helps researchers intuitively interact with neuroanatomy, connectomics, and cellular and chemical architecture. The flood of “-omic” data urges new ways to help researchers connect discrete findings to the larger context of the nervous system. Here we explore Golgi’s underlying reasoning and techniques and how our design decisions balance the constraints of building both a scientifically useful and usable tool. We demonstrate how Golgi can enhance connectomic literature searches with a case study investigating a thalamocortical circuit involving the Nucleus Accumbens and we explore Golgi’s potential and future directions for growth in systems neuroscience and connectomics. PMID:26635596

  11. Cerebral ganglioglioma. A Golgi study.

    PubMed

    Ferrer, I; Ribalta, T; Digon, E; Acebes, J

    1983-01-01

    The morphological characteristics of neurons revealed by Golgi's method are reported in a case of cerebral ganglioglioma. Spindle-shaped (leptodendritic) neurons and radiated type I neurons form the bulk of this tumour. According to Ramon-Moliner (1968) isodendritic neurons (both leptodendritic and radiate type I) are philogenetically primitive cells and differ greatly from those observed in most of the deep cerebral nuclei of the mammalian's brain.

  12. Novel class of potential therapeutics that target ricin retrograde translocation.

    PubMed

    Redmann, Veronika; Gardner, Thomas; Lau, Zerlina; Morohashi, Keita; Felsenfeld, Dan; Tortorella, Domenico

    2013-12-23

    Ricin toxin, an A-B toxin from Ricinus communis, induces cell death through the inhibition of protein synthesis. The toxin binds to the cell surface via its B chain (RTB) followed by its retrograde trafficking through intracellular compartments to the ER where the A chain (RTA) is transported across the membrane and into the cytosol. Ricin A chain is transported across the ER membrane utilizing cellular proteins involved in the disposal of aberrant ER proteins by a process referred to as retrograde translocation. Given the current lack of therapeutics against ricin intoxication, we developed a high-content screen using an enzymatically attenuated RTA chimera engineered with a carboxy-terminal enhanced green fluorescent protein (RTA(E177Q)egfp) to identify compounds that target RTA retrograde translocation. Stabilizing RTA(E177Q)egfp through the inclusion of proteasome inhibitor produced fluorescent peri-nuclear granules. Quantitative analysis of the fluorescent granules provided the basis to discover compounds from a small chemical library (2080 compounds) with known bioactive properties. Strikingly, the screen found compounds that stabilized RTA molecules within the cell and several compounds limited the ability of wild type RTA to suppress protein synthesis. Collectively, a robust high-content screen was developed to discover novel compounds that stabilize intracellular ricin and limit ricin intoxication.

  13. A mutation in VPS15 (PIK3R4) causes a ciliopathy and affects IFT20 release from the cis-Golgi

    PubMed Central

    Stoetzel, Corinne; Bär, Séverine; De Craene, Johan-Owen; Scheidecker, Sophie; Etard, Christelle; Chicher, Johana; Reck, Jennifer R.; Perrault, Isabelle; Geoffroy, Véronique; Chennen, Kirsley; Strähle, Uwe; Hammann, Philippe; Friant, Sylvie; Dollfus, Hélène

    2016-01-01

    Ciliopathies are a group of diseases that affect kidney and retina among other organs. Here, we identify a missense mutation in PIK3R4 (phosphoinositide 3-kinase regulatory subunit 4, named VPS15) in a family with a ciliopathy phenotype. Besides being required for trafficking and autophagy, we show that VPS15 regulates primary cilium length in human fibroblasts, as well as ciliary processes in zebrafish. Furthermore, we demonstrate its interaction with the golgin GM130 and its localization to the Golgi. The VPS15-R998Q patient mutation impairs Golgi trafficking functions in humanized yeast cells. Moreover, in VPS15-R998Q patient fibroblasts, the intraflagellar transport protein IFT20 is not localized to vesicles trafficking to the cilium but is restricted to the Golgi. Our findings suggest that at the Golgi, VPS15 and GM130 form a protein complex devoid of VPS34 to ensure the IFT20-dependent sorting and transport of membrane proteins from the cis-Golgi to the primary cilium. PMID:27882921

  14. Genetics Home Reference: CLN3 disease

    MedlinePlus

    ... role in regulating anterograde and retrograde post-Golgi trafficking. Clin Lipidol. 2012 Feb;7(1):79-91. ... D, Hermey G. Revisiting the neuronal localization and trafficking of CLN3 in juvenile neuronal ceroid lipofuscinosis. J ...

  15. Synchronous intra-Golgi transport induces the release of Ca2+ from the Golgi apparatus.

    PubMed

    Micaroni, Massimo; Perinetti, Giuseppe; Di Giandomenico, Daniele; Bianchi, Katiuscia; Spaar, Alexander; Mironov, Alexander A

    2010-08-01

    The mechanisms of secretory transport through the Golgi apparatus remain an issue of debate. The precise functional importance of calcium ions (Ca(2+)) for intra-Golgi transport has also been poorly studied. Here, using different approaches to measure free Ca(2+) concentrations in the cell cytosol ([Ca(2+)](cyt)) and inside the lumen of the Golgi apparatus ([Ca(2+)](GA)), we have revealed transient increases in [Ca(2+)](cyt) during the late phase of intra-Golgi transport that are concomitant with a decline in the maximal [Ca(2+)](GA) restoration ability. Thus, this redistribution of Ca(2+) from the Golgi apparatus into the cytosol during the movement of cargo through the Golgi apparatus appears to have a role in intra-Golgi transport, and mainly in the late Ca(2+)-dependent phase of SNARE-regulated fusion of Golgi compartments.

  16. Disturbed vesicular trafficking of membrane proteins in prion disease.

    PubMed

    Uchiyama, Keiji; Miyata, Hironori; Sakaguchi, Suehiro

    2013-01-01

    The pathogenic mechanism of prion diseases remains unknown. We recently reported that prion infection disturbs post-Golgi trafficking of certain types of membrane proteins to the cell surface, resulting in reduced surface expression of membrane proteins and abrogating the signal from the proteins. The surface expression of the membrane proteins was reduced in the brains of mice inoculated with prions, well before abnormal symptoms became evident. Prions or pathogenic prion proteins were mainly detected in endosomal compartments, being particularly abundant in recycling endosomes. Some newly synthesized membrane proteins are delivered to the surface from the Golgi apparatus through recycling endosomes, and some endocytosed membrane proteins are delivered back to the surface through recycling endosomes. These results suggest that prions might cause neuronal dysfunctions and cell loss by disturbing post-Golgi trafficking of membrane proteins via accumulation in recycling endosomes. Interestingly, it was recently shown that delivery of a calcium channel protein to the cell surface was impaired and its function was abrogated in a mouse model of hereditary prion disease. Taken together, these results suggest that impaired delivery of membrane proteins to the cell surface is a common pathogenic event in acquired and hereditary prion diseases.

  17. The Qb-SNARE Memb11 interacts specifically with Arf1 in the Golgi apparatus of Arabidopsis thaliana.

    PubMed

    Marais, Claireline; Wattelet-Boyer, Valérie; Bouyssou, Guillaume; Hocquellet, Agnès; Dupuy, Jean-William; Batailler, Brigitte; Brocard, Lysiane; Boutté, Yohann; Maneta-Peyret, Lilly; Moreau, Patrick

    2015-11-01

    The SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins are critical for the function of the secretory pathway. The SNARE Memb11 is involved in membrane trafficking at the ER-Golgi interface. The aim of the work was to decipher molecular mechanisms acting in Memb11-mediated ER-Golgi traffic. In mammalian cells, the orthologue of Memb11 (membrin) is potentially involved in the recruitment of the GTPase Arf1 at the Golgi membrane. However molecular mechanisms associated to Memb11 remain unknown in plants. Memb11 was detected mainly at the cis-Golgi and co-immunoprecipitated with Arf1, suggesting that Arf1 may interact with Memb11. This interaction of Memb11 with Arf1 at the Golgi was confirmed by in vivo BiFC (Bimolecular Fluorescence Complementation) experiments. This interaction was found to be specific to Memb11 as compared to either Memb12 or Sec22. Using a structural bioinformatic approach, several sequences in the N-ter part of Memb11 were hypothesized to be critical for this interaction and were tested by BiFC on corresponding mutants. Finally, by using both in vitro and in vivo approaches, we determined that only the GDP-bound form of Arf1 interacts with Memb11. Together, our results indicate that Memb11 interacts with the GDP-bound form of Arf1 in the Golgi apparatus.

  18. Disruption of Kv1.3 Channel Forward Vesicular Trafficking by Hypoxia in Human T Lymphocytes*

    PubMed Central

    Chimote, Ameet A.; Kuras, Zerrin; Conforti, Laura

    2012-01-01

    Hypoxia in solid tumors contributes to decreased immunosurveillance via down-regulation of Kv1.3 channels in T lymphocytes and associated T cell function inhibition. However, the mechanisms responsible for Kv1.3 down-regulation are not understood. We hypothesized that chronic hypoxia reduces Kv1.3 surface expression via alterations in membrane trafficking. Chronic hypoxia decreased Kv1.3 surface expression and current density in Jurkat T cells. Inhibition of either protein synthesis or degradation and endocytosis did not prevent this effect. Instead, blockade of clathrin-coated vesicle formation and forward trafficking prevented the Kv1.3 surface expression decrease in hypoxia. Confocal microscopy revealed an increased retention of Kv1.3 in the trans-Golgi during hypoxia. Expression of adaptor protein-1 (AP1), responsible for clathrin-coated vesicle formation at the trans-Golgi, was selectively down-regulated by hypoxia. Furthermore, AP1 down-regulation increased Kv1.3 retention in the trans-Golgi and reduced Kv1.3 currents. Our results indicate that hypoxia disrupts AP1/clathrin-mediated forward trafficking of Kv1.3 from the trans-Golgi to the plasma membrane thus contributing to decreased Kv1.3 surface expression in T lymphocytes. PMID:22134923

  19. Membrane Trafficking in the Yeast Saccharomyces cerevisiae Model

    PubMed Central

    Feyder, Serge; De Craene, Johan-Owen; Bär, Séverine; Bertazzi, Dimitri L.; Friant, Sylvie

    2015-01-01

    The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secretory pathway was the first trafficking pathway clearly understood mainly thanks to the work done in the laboratory of Randy Schekman in the 1980s. They have isolated yeast sec mutants unable to secrete an extracellular enzyme and these SEC genes were identified as encoding key effectors of the secretory machinery. For this work, the 2013 Nobel Prize in Physiology and Medicine has been awarded to Randy Schekman; the prize is shared with James Rothman and Thomas Südhof. Here, we present the different trafficking pathways of yeast S. cerevisiae. At the Golgi apparatus newly synthesized proteins are sorted between those transported to the plasma membrane (PM), or the external medium, via the exocytosis or secretory pathway (SEC), and those targeted to the vacuole either through endosomes (vacuolar protein sorting or VPS pathway) or directly (alkaline phosphatase or ALP pathway). Plasma membrane proteins can be internalized by endocytosis (END) and transported to endosomes where they are sorted between those targeted for vacuolar degradation and those redirected to the Golgi (recycling or RCY pathway). Studies in yeast S. cerevisiae allowed the identification of most of the known effectors, protein complexes, and trafficking pathways in eukaryotic cells, and most of them are conserved among eukaryotes. PMID:25584613

  20. Membrane trafficking in the yeast Saccharomyces cerevisiae model.

    PubMed

    Feyder, Serge; De Craene, Johan-Owen; Bär, Séverine; Bertazzi, Dimitri L; Friant, Sylvie

    2015-01-09

    The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secretory pathway was the first trafficking pathway clearly understood mainly thanks to the work done in the laboratory of Randy Schekman in the 1980s. They have isolated yeast sec mutants unable to secrete an extracellular enzyme and these SEC genes were identified as encoding key effectors of the secretory machinery. For this work, the 2013 Nobel Prize in Physiology and Medicine has been awarded to Randy Schekman; the prize is shared with James Rothman and Thomas Südhof. Here, we present the different trafficking pathways of yeast S. cerevisiae. At the Golgi apparatus newly synthesized proteins are sorted between those transported to the plasma membrane (PM), or the external medium, via the exocytosis or secretory pathway (SEC), and those targeted to the vacuole either through endosomes (vacuolar protein sorting or VPS pathway) or directly (alkaline phosphatase or ALP pathway). Plasma membrane proteins can be internalized by endocytosis (END) and transported to endosomes where they are sorted between those targeted for vacuolar degradation and those redirected to the Golgi (recycling or RCY pathway). Studies in yeast S. cerevisiae allowed the identification of most of the known effectors, protein complexes, and trafficking pathways in eukaryotic cells, and most of them are conserved among eukaryotes.

  1. Cis-Golgi cisternal assembly and biosynthetic activation occur sequentially in plants and algae.

    PubMed

    Donohoe, Bryon S; Kang, Byung-Ho; Gerl, Mathias J; Gergely, Zachary R; McMichael, Colleen M; Bednarek, Sebastian Y; Staehelin, L Andrew

    2013-05-01

    The cisternal progression/maturation model of Golgi trafficking predicts that cis-Golgi cisternae are formed de novo on the cis-side of the Golgi. Here we describe structural and functional intermediates of the cis cisterna assembly process in high-pressure frozen algae (Scherffelia dubia, Chlamydomonas reinhardtii) and plants (Arabidopsis thaliana, Dionaea muscipula; Venus flytrap) as determined by electron microscopy, electron tomography and immuno-electron microscopy techniques. Our findings are as follows: (i) The cis-most (C1) Golgi cisternae are generated de novo from cisterna initiators produced by the fusion of 3-5 COPII vesicles in contact with a C2 cis cisterna. (ii) COPII vesicles fuel the growth of the initiators, which then merge into a coherent C1 cisterna. (iii) When a C1 cisterna nucleates its first cisterna initiator it becomes a C2 cisterna. (iv) C2-Cn cis cisternae grow through COPII vesicle fusion. (v) ER-resident proteins are recycled from cis cisternae to the ER via COPIa-type vesicles. (vi) In S. dubia the C2 cisternae are capable of mediating the self-assembly of scale protein complexes. (vii) In plants, ∼90% of native α-mannosidase I localizes to medial Golgi cisternae. (viii) Biochemical activation of cis cisternae appears to coincide with their conversion to medial cisternae via recycling of medial cisterna enzymes. We propose how the different cis cisterna assembly intermediates of plants and algae may actually be related to those present in the ERGIC and in the pre-cis Golgi cisterna layer in mammalian cells.

  2. Cis-Golgi cisternal assembly and biosynthetic activation occur sequentially in plants and algae

    PubMed Central

    Donohoe, Bryon S.; Kang, Byung-Ho; Gerl, Mathias J.; Gergely, Zachary R.; McMichael, Colleen M.; Bednarek, Sebastian Y.; Staehelin, L. Andrew

    2013-01-01

    The cisternal progression/maturation model of Golgi trafficking predicts that cis-Golgi cisternae are formed de novo on the cis-side of the Golgi. Here we describe structural and functional intermediates of the cis cisterna assembly process in high-pressure frozen algae (Scherffelia dubia, Chlamydomonas reinhardtii) and plants (Arabidopsis thaliana, Dionaea muscipula; Venus Flytrap) as determined by electron microscopy, electron tomography and immuno-electron microscopy techniques. Our findings are as follows: (1) The cis-most (C1) Golgi cisternae are generated de novo from cisterna initiators produced by the fusion of 3–5 COPII vesicles in contact with a C2 cis cisterna. (2) COPII vesicles fuel the growth of the initiators, which then merge into a coherent C1 cisterna. (3) When a C1 cisterna nucleates its first cisterna initiator it becomes a C2 cisterna. (4) C2-Cn cis cisternae grow through COPII vesicle fusion. (5) ER-resident proteins are recycled from cis cisternae to the ER via COPIa-type vesicles. (6) In S. dubia the C2 cisternae are capable of mediating the self-assembly of scale protein complexes. (7) In plants, ~90% of native α-mannosidase I localizes to medial Golgi cisternae. (8) Biochemical activation of cis cisternae appears to coincide with their conversion to medial cisternae via recycling of medial cisterna enzymes. We propose how the different cis cisterna assembly intermediates of plants and algae may actually be related to those present in the ERGIC and in the pre-cis Golgi cisterna layer in mammalian cells. PMID:23369235

  3. Enrichment of hydroxylated C24- and C26-acyl-chain sphingolipids mediates PIN2 apical sorting at trans-Golgi network subdomains

    PubMed Central

    Wattelet-Boyer, Valérie; Brocard, Lysiane; Jonsson, Kristoffer; Esnay, Nicolas; Joubès, Jérôme; Domergue, Frédéric; Mongrand, Sébastien; Raikhel, Natasha; Bhalerao, Rishikesh P.; Moreau, Patrick; Boutté, Yohann

    2016-01-01

    The post-Golgi compartment trans-Golgi Network (TGN) is a central hub divided into multiple subdomains hosting distinct trafficking pathways, including polar delivery to apical membrane. Lipids such as sphingolipids and sterols have been implicated in polar trafficking from the TGN but the underlying mechanisms linking lipid composition to functional polar sorting at TGN subdomains remain unknown. Here we demonstrate that sphingolipids with α-hydroxylated acyl-chains of at least 24 carbon atoms are enriched in secretory vesicle subdomains of the TGN and are critical for de novo polar secretory sorting of the auxin carrier PIN2 to apical membrane of Arabidopsis root epithelial cells. We show that sphingolipid acyl-chain length influences the morphology and interconnections of TGN-associated secretory vesicles. Our results uncover that the sphingolipids acyl-chain length links lipid composition of TGN subdomains with polar secretory trafficking of PIN2 to apical membrane of polarized epithelial cells. PMID:27681606

  4. Vesicular Trafficking Systems Impact TORC1-Controlled Transcriptional Programs in Saccharomyces cerevisiae.

    PubMed

    Kingsbury, Joanne M; Cardenas, Maria E

    2016-01-06

    The Target of Rapamycin Complex I (TORC1) orchestrates global reprogramming of transcriptional programs in response to myriad environmental conditions, yet, despite the commonality of the TORC1 complex components, different TORC1-inhibitory conditions do not elicit a uniform transcriptional response. In Saccharomyces cerevisiae, TORC1 regulates the expression of nitrogen catabolite repressed (NCR) genes by controlling the nuclear translocation of the NCR transactivator Gln3. Moreover, Golgi-to-endosome trafficking was shown to be required for nuclear translocation of Gln3 upon a shift from rich medium to the poor nitrogen source proline, but not upon rapamycin treatment. Here, we employed microarray profiling to survey the full impact of the vesicular trafficking system on yeast TORC1-orchestrated transcriptional programs. In addition to the NCR genes, we found that ribosomal protein, ribosome biogenesis, phosphate-responsive, and sulfur-containing amino acid metabolism genes are perturbed by disruption of Golgi-to-endosome trafficking following a nutritional shift from rich to poor nitrogen source medium, but not upon rapamycin treatment. Similar to Gln3, defects in Golgi-to-endosome trafficking significantly delayed cytoplasmic-nuclear translocation of Sfp1, but did not detectably affect the cytoplasmic-nuclear or nuclear-cytoplasmic translocation of Met4, which are the transactivators of these genes. Thus, Golgi-to-endosome trafficking defects perturb TORC1 transcriptional programs via multiple mechanisms. Our findings further delineate the downstream transcriptional responses of TORC1 inhibition by rapamycin compared with a nitrogen quality downshift. Given the conservation of both TORC1 and endomembrane networks throughout eukaryotes, our findings may also have implications for TORC1-mediated responses to nutritional cues in mammals and other eukaryotes.

  5. Golgi inheritance: shaken but not stirred.

    PubMed

    Barr, Francis A

    2004-03-29

    Our view of what happens to the Golgi and ER during mitosis in mammalian cells has been shaken once more. Rather than the Golgi contents being recycled through, or mixed with the ER, two recent studies taking complementary approaches, find that the contents of these organelles remain separate throughout mitosis.

  6. The Golgi apparatus: insights from filamentous fungi.

    PubMed

    Pantazopoulou, Areti

    2016-01-01

    Cargo passage through the Golgi, albeit an undoubtedly essential cellular function, is a mechanistically unresolved and much debated process. Although the main molecular players are conserved, diversification of the Golgi among different eukaryotic lineages is providing us with tools to resolve standing controversies. During the past decade the Golgi apparatus of model filamentous fungi, mainly Aspergillus nidulans, has been intensively studied. Here an overview of the most important findings in the field is provided. Golgi architecture and dynamics, as well as the novel cell biology tools that were developed in filamentous fungi in these studies, are addressed. An emphasis is placed on the central role the Golgi has as a crossroads in the endocytic and secretory-traffic pathways in hyphae. Finally the major advances that the A. nidulans Golgi biology has yielded so far regarding our understanding of key Golgi regulators, such as the Rab GTPases RabC(Rab6) and RabE(Rab11), the oligomeric transport protein particle, TRAPPII, and the Golgi guanine nucleotide exchange factors of Arf1, GeaA(GBF1/Gea1) and HypB(BIG/Sec7), are highlighted.

  7. Discovery and rediscoveries of Golgi cells

    PubMed Central

    Galliano, Elisa; Mazzarello, Paolo; D’Angelo, Egidio

    2010-01-01

    When Camillo Golgi invented the black reaction in 1873 and first described the fine anatomical structure of the nervous system, he described a ‘big nerve cell’ that later took his name, the Golgi cell of cerebellum (‘Golgi'schen Zellen’, Gustaf Retzius, 1892). The Golgi cell was then proposed as the prototype of type-II interneurons, which form complex connections and exert their actions exclusively within the local network. Santiago Ramón y Cajal (who received the Nobel Prize with Golgi in 1906) proceeded to a detailed description of Golgi cell morphological characteristics, but functional insight remained very limited for many years. The first rediscovery happened in the 1960s, when neurophysiological analysis in vivo revealed that Golgi cells are inhibitory interneurons. This finding promoted the development of two major cerebellar theories, the ‘beam theory’ of John Eccles and the ‘motor learning theory’ of David Marr, in which the Golgi cells regulate the spatial organisation and the gain of input signals to be processed and learned by the cerebellar circuit. However, the matter was not set and a series of pioneering observations using single unit recordings and electron microscopy raised new issues that could not be fully explored until the 1990s. Then, the advent of new electrophysiological and imaging techniques in vitro and in vivo demonstrated the cellular and network activities of these neurons. Now we know that Golgi cells, through complex systems of chemical and electrical synapses, effectively control the spatio-temporal organisation of cerebellar responses. The Golgi cells regulate the timing and number of spikes emitted by granule cells and coordinate their coherent activity. Moreover, the Golgi cells regulate the induction of long-term synaptic plasticity along the mossy fibre pathway. Eventually, the Golgi cells transform the granular layer of cerebellum into an adaptable spatio-temporal filter capable of performing several kinds

  8. The Gos28 SNARE Protein Mediates Intra-Golgi Transport of Rhodopsin and Is Required for Photoreceptor Survival*

    PubMed Central

    Rosenbaum, Erica E.; Vasiljevic, Eva; Cleland, Spencer C.; Flores, Carlos; Colley, Nansi Jo

    2014-01-01

    SNARE proteins play indispensable roles in membrane fusion events in many cellular processes, including synaptic transmission and protein trafficking. Here, we characterize the Golgi SNARE protein, Gos28, and its role in rhodopsin (Rh1) transport through Drosophila photoreceptors. Mutations in gos28 lead to defective Rh1 trafficking and retinal degeneration. We have pinpointed a role for Gos28 in the intra-Golgi transport of Rh1, downstream from α-mannosidase-II in the medial- Golgi. We have confirmed the necessity of key residues in Gos28's SNARE motif and demonstrate that its transmembrane domain is not required for vesicle fusion, consistent with Gos28 functioning as a t-SNARE for Rh1 transport. Finally, we show that human Gos28 rescues both the Rh1 trafficking defects and retinal degeneration in Drosophila gos28 mutants, demonstrating the functional conservation of these proteins. Our results identify Gos28 as an essential SNARE protein in Drosophila photoreceptors and provide mechanistic insights into the role of SNAREs in neurodegenerative disease. PMID:25261468

  9. The Gos28 SNARE protein mediates intra-Golgi transport of rhodopsin and is required for photoreceptor survival.

    PubMed

    Rosenbaum, Erica E; Vasiljevic, Eva; Cleland, Spencer C; Flores, Carlos; Colley, Nansi Jo

    2014-11-21

    SNARE proteins play indispensable roles in membrane fusion events in many cellular processes, including synaptic transmission and protein trafficking. Here, we characterize the Golgi SNARE protein, Gos28, and its role in rhodopsin (Rh1) transport through Drosophila photoreceptors. Mutations in gos28 lead to defective Rh1 trafficking and retinal degeneration. We have pinpointed a role for Gos28 in the intra-Golgi transport of Rh1, downstream from α-mannosidase-II in the medial- Golgi. We have confirmed the necessity of key residues in Gos28's SNARE motif and demonstrate that its transmembrane domain is not required for vesicle fusion, consistent with Gos28 functioning as a t-SNARE for Rh1 transport. Finally, we show that human Gos28 rescues both the Rh1 trafficking defects and retinal degeneration in Drosophila gos28 mutants, demonstrating the functional conservation of these proteins. Our results identify Gos28 as an essential SNARE protein in Drosophila photoreceptors and provide mechanistic insights into the role of SNAREs in neurodegenerative disease.

  10. Plasma Membrane Targeting of Protocadherin 15 Is Regulated by the Golgi-Associated Chaperone Protein PIST.

    PubMed

    Nie, Hongyun; Liu, Yueyue; Yin, Xiaolei; Cao, Huiren; Wang, Yanfei; Xiong, Wei; Lin, Yushuang; Xu, Zhigang

    2016-01-01

    Protocadherin 15 (PCDH15) is a core component of hair cell tip-links and crucial for proper function of inner ear hair cells. Mutations of PCDH15 gene cause syndromic and nonsyndromic hearing loss. At present, the regulatory mechanisms responsible for the intracellular transportation of PCDH15 largely remain unknown. Here we show that PIST, a Golgi-associated, PDZ domain-containing protein, interacts with PCDH15. The interaction is mediated by the PDZ domain of PIST and the C-terminal PDZ domain-binding interface (PBI) of PCDH15. Through this interaction, PIST retains PCDH15 in the trans-Golgi network (TGN) and reduces the membrane expression of PCDH15. We have previously showed that PIST regulates the membrane expression of another tip-link component, cadherin 23 (CDH23). Taken together, our finding suggests that PIST regulates the intracellular trafficking and membrane targeting of the tip-link proteins CDH23 and PCDH15.

  11. The postsynaptic t-SNARE Syntaxin 4 controls traffic of Neuroligin 1 and Synaptotagmin 4 to regulate retrograde signaling

    PubMed Central

    Harris, Kathryn P; Zhang, Yao V; Piccioli, Zachary D; Perrimon, Norbert; Littleton, J Troy

    2016-01-01

    Postsynaptic cells can induce synaptic plasticity through the release of activity-dependent retrograde signals. We previously described a Ca2+-dependent retrograde signaling pathway mediated by postsynaptic Synaptotagmin 4 (Syt4). To identify proteins involved in postsynaptic exocytosis, we conducted a screen for candidates that disrupted trafficking of a pHluorin-tagged Syt4 at Drosophila neuromuscular junctions (NMJs). Here we characterize one candidate, the postsynaptic t-SNARE Syntaxin 4 (Syx4). Analysis of Syx4 mutants reveals that Syx4 mediates retrograde signaling, modulating the membrane levels of Syt4 and the transsynaptic adhesion protein Neuroligin 1 (Nlg1). Syx4-dependent trafficking regulates synaptic development, including controlling synaptic bouton number and the ability to bud new varicosities in response to acute neuronal stimulation. Genetic interaction experiments demonstrate Syx4, Syt4, and Nlg1 regulate synaptic growth and plasticity through both shared and parallel signaling pathways. Our findings suggest a conserved postsynaptic SNARE machinery controls multiple aspects of retrograde signaling and cargo trafficking within the postsynaptic compartment. DOI: http://dx.doi.org/10.7554/eLife.13881.001 PMID:27223326

  12. Intracellular mannose binding lectin mediates subcellular trafficking of HIV-1 gp120 in neurons.

    PubMed

    Teodorof, C; Divakar, S; Soontornniyomkij, B; Achim, C L; Kaul, M; Singh, K K

    2014-09-01

    Human immunodeficiency virus-1 (HIV-1) enters the brain early during infection and leads to severe neuronal damage and central nervous system impairment. HIV-1 envelope glycoprotein 120 (gp120), a neurotoxin, undergoes intracellular trafficking and transport across neurons; however mechanisms of gp120 trafficking in neurons are unclear. Our results show that mannose binding lectin (MBL) that binds to the N-linked mannose residues on gp120, participates in intravesicular packaging of gp120 in neuronal subcellular organelles and also in subcellular trafficking of these vesicles in neuronal cells. Perinuclear MBL:gp120 vesicular complexes were observed and MBL facilitated the subcellular trafficking of gp120 via the endoplasmic reticulum (ER) and Golgi vesicles. The functional carbohydrate recognition domain of MBL was required for perinuclear organization, distribution and subcellular trafficking of MBL:gp120 vesicular complexes. Nocodazole, an agent that depolymerizes the microtubule network, abolished the trafficking of MBL:gp120 vesicles, suggesting that these vesicular complexes were transported along the microtubule network. Live cell imaging confirmed the association of the MBL:gp120 complexes with dynamic subcellular vesicles that underwent trafficking in neuronal soma and along the neurites. Thus, our findings suggest that intracellular MBL mediates subcellular trafficking and transport of viral glycoproteins in a microtubule-dependent mechanism in the neurons.

  13. Intracellular Mannose Binding Lectin Mediates Subcellular Trafficking of HIV-1 gp120 in Neurons

    PubMed Central

    Teodorof, C; Divakar, S; Soontornniyomkij, B; Achim, CL; Kaul, M; Singh, KK

    2014-01-01

    Human immunodeficiency virus -1 (HIV-1) enters the brain early during infection and leads to severe neuronal damage and central nervous system impairment. HIV-1 envelope glycoprotein 120 (gp120), a neurotoxin, undergoes intracellular trafficking and transport across neurons; however mechanisms of gp120 trafficking in neurons are unclear. Our results show that mannose binding lectin (MBL) that binds to the N-linked mannose residues on gp120, participates in intravesicular packaging of gp120 in neuronal subcellular organelles and also in subcellular trafficking of these vesicles in neuronal cells. Perinuclear MBL:gp120 vesicular complexes were observed and MBL facilitated the subcellular trafficking of gp120 via the endoplasmic reticulum (ER) and Golgi vesicles. The functional carbohydrate recognition domain of MBL was required for perinuclear organization, distribution and subcellular trafficking of MBL:gp120 vesicular complexes. Nocodazole, an agent that depolymerizes the microtubule network, abolished the trafficking of MBL:gp120 vesicles, suggesting that these vesicular complexes were transported along the microtubule network. Live cell imaging confirmed the association of the MBL:gp120 complexes with dynamic subcellular vesicles that underwent trafficking in neuronal soma and along the neurites. Thus, our findings suggest that intracellular MBL mediates subcellular trafficking and transport of viral glycoproteins in a microtubule-dependent mechanism in the neurons. PMID:24825317

  14. Dependence of Golgi apparatus integrity on nitric oxide in vascular cells: implications in pulmonary arterial hypertension

    PubMed Central

    Lee, Jason E.; Patel, Kirit; Almodóvar, Sharilyn; Tuder, Rubin M.; Flores, Sonia C.

    2011-01-01

    Although reduced bioavailability of nitric oxide (NO) has been implicated in the pathogenesis of pulmonary arterial hypertension (PAH), its consequences on organellar structure and function within vascular cells is largely unexplored. We investigated the effect of reduced NO on the structure of the Golgi apparatus as assayed by giantin or GM130 immunofluorescence in human pulmonary arterial endothelial (HPAECs) and smooth muscle (HPASMCs) cells, bovine PAECs, and human EA.hy926 endothelial cells. Golgi structure was also investigated in cells in tissue sections of pulmonary vascular lesions in idiopathic PAH (IPAH) and in macaques infected with a chimeric simian immunodeficiency virus containing the human immunodeficiency virus (HIV)-nef gene (SHIV-nef) with subcellular three-dimensional (3D) immunoimaging. Compounds with NO scavenging activity including 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), methylene blue, N-acetylcysteine, and hemoglobin markedly fragmented the Golgi in all cell types evaluated as did monocrotaline pyrrole, while LY-83583, sildenafil, fasudil, Y-27632, Tiron, Tempol, or H2O2 did not. Golgi fragmentation by NO scavengers was inhibited by diethylamine NONOate, was evident in HPAECs after selective knockdown of endothelial nitric oxide synthase using small interfering RNA (siRNA), was independent of microtubule organization, required the GTPase dynamin 2, and was accompanied by depletion of α-soluble N-ethylmaleimide-sensitive factor (NSF) acceptor protein (α-SNAP) from Golgi membranes and codispersal of the SNAP receptor (SNARE) Vti1a with giantin. Golgi fragmentation was confirmed in endothelial and smooth muscle cells in pulmonary arterial lesions in IPAH and the SHIV-nef-infected macaque with subcellular 3D immunoimaging. In SHIV-nef-infected macaques Golgi fragmentation was observed in cells containing HIV-nef-bearing endosomes. The observed Golgi fragmentation suggests that NO plays a significant role in

  15. Sphingolipid trafficking and purification in Chlamydia trachomatis-infected cells

    PubMed Central

    2012-01-01

    Chlamydia trachomatis is an obligate intracellular human pathogen, which lacks a system that allows genetic manipulation. Therefore, chlamydial researchers must manipulate the host cell to better understand chlamydial biology. Host-derived lipid acquisition is critical for chlamydial survival within the host. Hence, the ability to track and purify sphingolipids in/from chlamydial infected cells has become an integral part of pivotal studies in chlamydial biology. This Unit outlines protocols that provide details about labeling eukaryotic cells with exogenous lipids to examine Golgi-derived lipid trafficking to the chlamydial inclusion and then performing imaging studies or lipid extractions for quantification. Details are provided to allow these protocols to be applied to subconfluent, polarized or siRNA knockdown cells. In addition, one will find important experimental design considerations and techniques. These methods are powerful tools to aid in the understanding of mechanisms which allow C. trachomatis to manipulate and usurp host cell trafficking pathways. PMID:23184593

  16. Intercellular trafficking and protein delivery by a herpesvirus structural protein.

    PubMed

    Elliott, G; O'Hare, P

    1997-01-24

    We show that the HSV-1 structural protein VP22 has the remarkable property of intercellular transport, which is so efficient that following expression in a subpopulation the protein spreads to every cell in a monolayer, where it concentrates in the nucleus and binds chromatin. VP22 movement was observed both after delivery of DNA by transfection or microinjection and during virus infection. Moreover, we demonstrate that VP22 trafficking occurs via a nonclassical Golgi-independent mechanism. Sensitivity to cytochalasin D treatment suggests that VP22 utilizes a novel trafficking pathway that involves the actin cytoskeleton. In addition, we demonstrate intercellular transport of a VP22 fusion protein after endogenous synthesis or exogenous application, indicating that VP22 may have potential in the field of protein delivery.

  17. Sec14 Like PITPs Couple Lipid Metabolism with Phosphoinositide Synthesis to Regulate Golgi Functionality

    PubMed Central

    Davison, James M.; Bankaitis, Vytas A.

    2017-01-01

    An interface coordinating lipid metabolism with proteins that regulate membrane trafficking is necessary to regulate Golgi morphology and dynamics. Such an interface facilitates the membrane deformations required for vesicularization, forms platforms for protein recruitment and assembly on appropriate sites on a membrane surface and provides lipid co-factors for optimal protein activity in the proper spatio-temporally regulated manner. Importantly, Sec14 and Sec14-like proteins are a unique superfamily of proteins that sense specific aspects of lipid metabolism, employing this information to potentiate phosphoinositide production. Therefore, Sec14 and Sec14 like proteins form central conduits to integrate multiple aspects of lipid metabolism with productive phosphoinositide signaling. PMID:22374094

  18. Effects of HIV-1 Nef on retrograde transport from the plasma membrane to the endoplasmic reticulum.

    PubMed

    Johannes, Ludger; Pezo, Valérie; Mallard, Frédéric; Tenza, Danièle; Wiltz, Aimée; Saint-Pol, Agnès; Helft, Julie; Antony, Claude; Benaroch, Philippe

    2003-05-01

    HIV-1 Nef protein down-regulates several important immunoreceptors through interactions with components of the intracellular sorting machinery. Nef expression is also known to induce modifications of the endocytic pathway. Here, we analyzed the effects of Nef on retrograde transport, from the plasma membrane to the endoplasmic reticulum using Shiga toxin B-subunit (STxB). Nef expression inhibited access of STxB to the endoplasmic reticulum, but did not modify the surface expression level of STxB receptor, Gb3, nor its internalization rate as measured with a newly developed assay. Mutation of the myristoylation site or of a di-leucine motif of Nef involved in the interaction with the clathrin adaptor complexes AP1 and AP2 abolished the inhibition of retrograde transport. In contrast, mutations of Nef motifs known to interact with PACS-1, beta COP or a subunit of the v-ATPase did not modify the inhibitory activity of Nef on retrograde transport. Ultrastructural analysis revealed that Nef was present in clusters located on endosomal or Golgi membranes together with internalized STxB. Furthermore, in strongly Nef-expressing cells, STxB accumulated in endosomal structures that labeled with AP1. Our observations show that Nef perturbs retrograde transport between the early endosome and the endoplasmic reticulum. The potential transport steps targeted by Nef are discussed.

  19. The Golgi-localization of yeast Emp47p depends on its di-lysine motif but is not affected by the ret1-1 mutation in alpha-COP

    PubMed Central

    1995-01-01

    The Saccharomyces cerevisiae EMP47 gene encodes a nonessential type-I transmembrane protein with sequence homology to a class of intracellular lectins defined by ERGIC-53 and VIP36. The 12-amino acid COOH-terminal cytoplasmic tail of Emp47p ends in the sequence KTKLL, which conforms with the consensus for di-lysine-based ER-localization signals. Despite the presence of this motif, Emp47p was shown to be a Golgi protein at steady-state. The di-lysine motif of Emp47p was functional when transplanted onto Ste2p, a plasma membrane protein, conferring ER localization. Nevertheless, the di-lysine motif was required for Golgi-localization of Emp47p and showed the same charge- independent, position-dependent characteristics of other di-lysine motifs. Alpha-COP has been shown to be required for ER localization of di-lysine-tagged proteins. Consistent with this finding, the Ste2p- Emp47p hybrid protein was mislocalized to the cell surface in the alpha- COP mutant, ret1-1. Surprisingly, the Golgi-localization of Emp47p was unaffected by the ret1-1 mutation. To investigate whether Emp47p undergoes retrograde transport from the Golgi to the ER like other di- lysine-tagged proteins we developed an assay to measure this step after block of forward transport in a sec12 mutant. Under these conditions retrograde transport led to a specific redistribution of Emp47p from the Golgi to the ER. This recycling occurred from a Golgi subcompartment containing alpha 1,3 mannose-modified oligosaccharides suggesting that it originated from a medial-or later Golgi compartment. Thus Emp47p cycles between the Golgi apparatus and the ER and requires a di-lysine motif for its alpha-COP-independent, steady state localization in the Golgi. PMID:7490292

  20. N-Glycomic and Microscopic Subcellular Localization Analyses of NPP1, 2 and 6 Strongly Indicate that trans-Golgi Compartments Participate in the Golgi to Plastid Traffic of Nucleotide Pyrophosphatase/Phosphodiesterases in Rice

    PubMed Central

    Kaneko, Kentaro; Takamatsu, Takeshi; Inomata, Takuya; Oikawa, Kazusato; Itoh, Kimiko; Hirose, Kazuko; Amano, Maho; Nishimura, Shin-Ichiro; Toyooka, Kiminori; Matsuoka, Ken; Pozueta-Romero, Javier; Mitsui, Toshiaki

    2016-01-01

    Nucleotide pyrophosphatase/phosphodiesterases (NPPs) are widely distributed N-glycosylated enzymes that catalyze the hydrolytic breakdown of numerous nucleotides and nucleotide sugars. In many plant species, NPPs are encoded by a small multigene family, which in rice are referred to NPP1–NPP6. Although recent investigations showed that N-glycosylated NPP1 is transported from the endoplasmic reticulum (ER)–Golgi system to the chloroplast through the secretory pathway in rice cells, information on N-glycan composition and subcellular localization of other NPPs is still lacking. Computer-assisted analyses of the amino acid sequences deduced from different Oryza sativa NPP-encoding cDNAs predicted all NPPs to be secretory glycoproteins. Confocal fluorescence microscopy observation of cells expressing NPP2 and NPP6 fused with green fluorescent protein (GFP) revealed that NPP2 and NPP6 are plastidial proteins. Plastid targeting of NPP2–GFP and NPP6–GFP was prevented by brefeldin A and by the expression of ARF1(Q71L), a dominant negative mutant of ADP-ribosylation factor 1 that arrests the ER to Golgi traffic, indicating that NPP2 and NPP6 are transported from the ER–Golgi to the plastidial compartment. Confocal laser scanning microscopy and high-pressure frozen/freeze-substituted electron microscopy analyses of transgenic rice cells ectopically expressing the trans-Golgi marker sialyltransferase fused with GFP showed the occurrence of contact of Golgi-derived membrane vesicles with cargo and subsequent absorption into plastids. Sensitive and high-throughput glycoblotting/mass spectrometric analyses showed that complex-type and paucimannosidic-type glycans with fucose and xylose residues occupy approximately 80% of total glycans of NPP1, NPP2 and NPP6. The overall data strongly indicate that the trans-Golgi compartments participate in the Golgi to plastid trafficking and targeting mechanism of NPPs. PMID:27335351

  1. Characterization of SNAREs determines the absence of a typical Golgi apparatus in the ancient eukaryote Giardia lamblia.

    PubMed

    Elias, Eliana V; Quiroga, Rodrigo; Gottig, Natalia; Nakanishi, Hideki; Nash, Theodore E; Neiman, Aaron; Lujan, Hugo D

    2008-12-19

    Giardia is a eukaryotic protozoal parasite with unusual characteristics, such as the absence of a morphologically evident Golgi apparatus. Although both constitutive and regulated pathways for protein secretion are evident in Giardia, little is known about the mechanisms involved in vesicular docking and fusion. In higher eukaryotes, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) of the vesicle-associated membrane protein and syntaxin families play essential roles in these processes. In this work we identified and characterized genes for 17 SNAREs in Giardia to define the minimal set of subcellular organelles present during growth and encystation, in particular the presence or not of a Golgi apparatus. Expression and localization of all Giardia SNAREs demonstrate their presence in distinct subcellular compartments, which may represent the extent of the endomembrane system in eukaryotes. Remarkably, Giardia SNAREs, homologous to Golgi SNAREs from other organisms, do not allow the detection of a typical Golgi apparatus in either proliferating or differentiating trophozoites. However, some features of the Golgi, such as the packaging and sorting function, seem to be performed by the endoplasmic reticulum and/or the nuclear envelope. Moreover, depletion of individual genes demonstrated that several SNAREs are essential for viability, whereas others are dispensable. Thus, Giardia requires a smaller number of SNAREs compared with other eukaryotes to accomplish all of the vesicle trafficking events that are critical for the growth and differentiation of this important human pathogen.

  2. Trafficking of an endogenous potassium channel in adult ventricular myocytes

    PubMed Central

    Wang, Tiantian; Cheng, Yvonne; Dou, Ying; Goonesekara, Charitha; David, Jens-Peter; Steele, David F.; Huang, Chen

    2012-01-01

    The roles of several small GTPases in the expression of an endogenous potassium current, Ito,f, in adult rat ventricular myocytes have been investigated. The results indicate that forward trafficking of newly synthesized Kv4.2, which underlies Ito,f in these cells, requires both Rab1 and Sar1 function. Expression of a Rab1 dominant negative (DN) reduced Ito,f current density by roughly one-half relative to control, mCherry-transfected myocytes. Similarly, expression of a Sar1DN nearly halved Ito,f current density. Rab11 is not essential to trafficking of Kv4.2, as expression of a Rab11DN had no effect on Ito,f over the time frames investigated here. In a process dependent on intact endoplasmic reticulum (ER)-to-Golgi transport, however, overexpression of wild-type Rab11 resulted in a doubling of Ito,f density; block of ER-to-Golgi traffic by Brefeldin A completely abrogated the effect. Also implicated in the trafficking of Kv4.2 are Rab5 and Rab4. Rab5DN expression increased endogenous Ito,f by two- to threefold, nonadditively with inhibition of dynamin-dependent endocytosis. And, in a phenomenon similar to that previously reported for myoblast-expressed Kv1.5, Rab4DN expression roughly doubled endogenous peak transient currents. Colocalization experiments confirmed the involvement of Rab4 in postinternalization trafficking of Kv4.2. There was little role evident for the lysosome in the degradation of internalized Kv4.2, as overexpression of neither wild-type nor DN isoforms of Rab7 had any effect on Ito,f. Instead, degradation may depend largely on the proteasome; the proteasome inhibitor MG132 significantly increased Ito,f density. PMID:22914645

  3. Dynamin-like protein 1 at the Golgi complex: A novel component of the sorting/targeting machinery en route to the plasma membrane

    SciTech Connect

    Bonekamp, Nina A.; Vormund, Kerstin; Jacob, Ralf; Schrader, Michael

    2010-12-10

    The final step in the liberation of secretory vesicles from the trans-Golgi network (TGN) involves the mechanical action of the large GTPase dynamin as well as conserved dynamin-independent fission mechanisms, e.g. mediated by Brefeldin A-dependent ADP-ribosylated substrate (BARS). Another member of the dynamin family is the mammalian dynamin-like protein 1 (DLP1/Drp1) that is known to constrict and tubulate membranes, and to divide mitochondria and peroxisomes. Here, we examined a potential role for DLP1 at the Golgi complex. DLP1 localized to the Golgi complex in some but not all cell lines tested, thus explaining controversial reports on its cellular distribution. After silencing of DLP1, an accumulation of the apical reporter protein YFP-GL-GPI, but not the basolateral reporter VSVG-SP-GFP at the Golgi complex was observed. A reduction in the transport of YFP-GL-GPI to the plasma membrane was confirmed by surface immunoprecipitation and TGN-exit assays. In contrast, YFP-GL-GPI trafficking was not disturbed in cells silenced for BARS, which is involved in basolateral sorting and trafficking of VSVG-SP-GFP in COS-7 cells. Our data indicate a new role for DLP1 at the Golgi complex and thus a role for DLP1 as a novel component of the apical sorting machinery at the TGN is discussed.

  4. Dynamin-like protein 1 at the Golgi complex: a novel component of the sorting/targeting machinery en route to the plasma membrane.

    PubMed

    Bonekamp, Nina A; Vormund, Kerstin; Jacob, Ralf; Schrader, Michael

    2010-12-10

    The final step in the liberation of secretory vesicles from the trans-Golgi network (TGN) involves the mechanical action of the large GTPase dynamin as well as conserved dynamin-independent fission mechanisms, e.g. mediated by Brefeldin A-dependent ADP-ribosylated substrate (BARS). Another member of the dynamin family is the mammalian dynamin-like protein 1 (DLP1/Drp1) that is known to constrict and tubulate membranes, and to divide mitochondria and peroxisomes. Here, we examined a potential role for DLP1 at the Golgi complex. DLP1 localized to the Golgi complex in some but not all cell lines tested, thus explaining controversial reports on its cellular distribution. After silencing of DLP1, an accumulation of the apical reporter protein YFP-GL-GPI, but not the basolateral reporter VSVG-SP-GFP at the Golgi complex was observed. A reduction in the transport of YFP-GL-GPI to the plasma membrane was confirmed by surface immunoprecipitation and TGN-exit assays. In contrast, YFP-GL-GPI trafficking was not disturbed in cells silenced for BARS, which is involved in basolateral sorting and trafficking of VSVG-SP-GFP in COS-7 cells. Our data indicate a new role for DLP1 at the Golgi complex and thus a role for DLP1 as a novel component of the apical sorting machinery at the TGN is discussed.

  5. Protein trafficking dysfunctions: Role in the pathogenesis of pulmonary arterial hypertension

    PubMed Central

    Sehgal, Pravin B.; Lee, Jason E.

    2011-01-01

    Earlier electron microscopic data had shown that a hallmark of the vascular remodeling in pulmonary arterial hypertension (PAH) in man and experimental models includes enlarged vacuolated endothelial and smooth muscle cells with increased endoplasmic reticulum and Golgi stacks in pulmonary arterial lesions. In cell culture and in vivo experiments in the monocrotaline model, we observed disruption of Golgi function and intracellular trafficking with trapping of diverse vesicle tethers, SNAREs and SNAPs in the Golgi membranes of enlarged pulmonary arterial endothelial cells (PAECs) and pulmonary arterial smooth muscle cells (PASMCs). Consequences included the loss of cell surface caveolin-1, hyperactivation of STAT3, mislocalization of eNOS with reduced cell surface/caveolar NO and hypo-S-nitrosylation of trafficking-relevant proteins. Similar Golgi tether, SNARE and SNAP dysfunctions were also observed in hypoxic PAECs in culture and in PAECs subjected to NO scavenging. Strikingly, a hypo-NO state promoted PAEC mitosis and cell proliferation. Golgi dysfunction was also observed in pulmonary vascular cells in idiopathic PAH (IPAH) in terms of a marked cytoplasmic dispersal and increased cellular content of the Golgi tethers, giantin and p115, in cells in the proliferative, obliterative and plexiform lesions in IPAH. The question of whether there might be a causal relationship between trafficking dysfunction and vasculopathies of PAH was approached by genetic means using HIV-nef, a protein that disrupts endocytic and trans-Golgi trafficking. Macaques infected with a chimeric simian immunodeficiency virus (SIV) containing the HIV-nef gene (SHIV-nef), but not the non-chimeric SIV virus containing the endogenous SIV-nef gene, displayed pulmonary arterial vasculopathies similar to those in human IPAH. Only macaques infected with chimeric SHIV-nef showed pulmonary vascular lesions containing cells with dramatic cytoplasmic dispersal and increase in giantin and p115

  6. Selective control of SNARE recycling by Golgi retention.

    PubMed

    Fukasawa, Masayoshi; Cornea, Anda; Varlamov, Oleg

    2013-08-02

    Two distinct sets of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) catalyze membrane fusion in the cis-Golgi and trans-Golgi. The mechanism that controls Golgi localization of SNAREs remains largely unknown. Here we tested three potential mechanisms, including vesicle recycling between the Golgi and the endoplasmic reticulum, partitioning in Golgi lipid microdomains, and selective intra-Golgi retention. Recycling rates showed a linear relationship with intra-Golgi mobility of SNAREs. The cis-Golgi SNAREs had higher mobility than intra-Golgi SNAREs, whereas vesicle SNAREs had higher mobility than target membrane SNAREs. The differences in SNARE mobility were not due to preferential partitioning into detergent-resistant membrane microdomains. We propose that intra-Golgi retention precludes entropy-driven redistribution of SNAREs to the endoplasmic reticulum and endocytic compartments.

  7. Control of Autophagosome Axonal Retrograde Flux by Presynaptic Activity Unveiled Using Botulinum Neurotoxin Type A

    PubMed Central

    Wang, Tong; Martin, Sally; Papadopulos, Andreas; Harper, Callista B.; Mavlyutov, Timur A.; Niranjan, Dhevahi; Glass, Nick R.; Cooper-White, Justin J.; Sibarita, Jean-Baptiste; Choquet, Daniel; Davletov, Bazbek; Meunier, Frédéric A.

    2015-01-01

    Botulinum neurotoxin type A (BoNT/A) is a highly potent neurotoxin that elicits flaccid paralysis by enzymatic cleavage of the exocytic machinery component SNAP25 in motor nerve terminals. However, recent evidence suggests that the neurotoxic activity of BoNT/A is not restricted to the periphery, but also reaches the CNS after retrograde axonal transport. Because BoNT/A is internalized in recycling synaptic vesicles, it is unclear which compartment facilitates this transport. Using live-cell confocal and single-molecule imaging of rat hippocampal neurons cultured in microfluidic devices, we show that the activity-dependent uptake of the binding domain of the BoNT/A heavy chain (BoNT/A-Hc) is followed by a delayed increase in retrograde axonal transport of BoNT/A-Hc carriers. Consistent with a role of presynaptic activity in initiating transport of the active toxin, activity-dependent uptake of BoNT/A in the terminal led to a significant increase in SNAP25 cleavage detected in the soma chamber compared with nonstimulated neurons. Surprisingly, most endocytosed BoNT/A-Hc was incorporated into LC3-positive autophagosomes generated in the nerve terminals, which then underwent retrograde transport to the cell soma, where they fused with lysosomes both in vitro and in vivo. Blocking autophagosome formation or acidification with wortmannin or bafilomycin A1, respectively, inhibited the activity-dependent retrograde trafficking of BoNT/A-Hc. Our data demonstrate that both the presynaptic formation of autophagosomes and the initiation of their retrograde trafficking are tightly regulated by presynaptic activity. PMID:25878289

  8. CCDC115 Deficiency Causes a Disorder of Golgi Homeostasis with Abnormal Protein Glycosylation

    PubMed Central

    Jansen, Jos C.; Cirak, Sebahattin; van Scherpenzeel, Monique; Timal, Sharita; Reunert, Janine; Rust, Stephan; Pérez, Belén; Vicogne, Dorothée; Krawitz, Peter; Wada, Yoshinao; Ashikov, Angel; Pérez-Cerdá, Celia; Medrano, Celia; Arnoldy, Andrea; Hoischen, Alexander; Huijben, Karin; Steenbergen, Gerry; Quelhas, Dulce; Diogo, Luisa; Rymen, Daisy; Jaeken, Jaak; Guffon, Nathalie; Cheillan, David; van den Heuvel, Lambertus P.; Maeda, Yusuke; Kaiser, Olaf; Schara, Ulrike; Gerner, Patrick; van den Boogert, Marjolein A.W.; Holleboom, Adriaan G.; Nassogne, Marie-Cécile; Sokal, Etienne; Salomon, Jody; van den Bogaart, Geert; Drenth, Joost P.H.; Huynen, Martijn A.; Veltman, Joris A.; Wevers, Ron A.; Morava, Eva; Matthijs, Gert; Foulquier, François; Marquardt, Thorsten; Lefeber, Dirk J.

    2016-01-01

    Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are challenging. Exome sequencing in a family with three siblings affected by abnormal Golgi glycosylation revealed a homozygous missense mutation, c.92T>C (p.Leu31Ser), in coiled-coil domain containing 115 (CCDC115), the function of which is unknown. The same mutation was identified in three unrelated families, and in one family it was compound heterozygous in combination with a heterozygous deletion of CCDC115. An additional homozygous missense mutation, c.31G>T (p.Asp11Tyr), was found in a family with two affected siblings. All individuals displayed a storage-disease-like phenotype involving hepatosplenomegaly, which regressed with age, highly elevated bone-derived alkaline phosphatase, elevated aminotransferases, and elevated cholesterol, in combination with abnormal copper metabolism and neurological symptoms. Two individuals died of liver failure, and one individual was successfully treated by liver transplantation. Abnormal N- and mucin type O-glycosylation was found on serum proteins, and reduced metabolic labeling of sialic acids was found in fibroblasts, which was restored after complementation with wild-type CCDC115. PSI-BLAST homology detection revealed reciprocal homology with Vma22p, the yeast V-ATPase assembly factor located in the endoplasmic reticulum (ER). Human CCDC115 mainly localized to the ERGIC and to COPI vesicles, but not to the ER. These data, in combination with the phenotypic spectrum, which is distinct from that associated with defects in V-ATPase core subunits, suggest a more general role for CCDC115 in Golgi trafficking. Our study reveals CCDC115 deficiency as a disorder of Golgi homeostasis that can be readily identified via screening for abnormal

  9. Regulation of intracellular heme trafficking revealed by subcellular reporters

    PubMed Central

    Yuan, Xiaojing; Rietzschel, Nicole; Walter Nuno, Ana Beatriz; Hanna, David A.; Phillips, John D.; Raven, Emma L.; Reddi, Amit R.; Hamza, Iqbal

    2016-01-01

    Heme is an essential prosthetic group in proteins that reside in virtually every subcellular compartment performing diverse biological functions. Irrespective of whether heme is synthesized in the mitochondria or imported from the environment, this hydrophobic and potentially toxic metalloporphyrin has to be trafficked across membrane barriers, a concept heretofore poorly understood. Here we show, using subcellular-targeted, genetically encoded hemoprotein peroxidase reporters, that both extracellular and endogenous heme contribute to cellular labile heme and that extracellular heme can be transported and used in toto by hemoproteins in all six subcellular compartments examined. The reporters are robust, show large signal-to-background ratio, and provide sufficient range to detect changes in intracellular labile heme. Restoration of reporter activity by heme is organelle-specific, with the Golgi and endoplasmic reticulum being important sites for both exogenous and endogenous heme trafficking. Expression of peroxidase reporters in Caenorhabditis elegans shows that environmental heme influences labile heme in a tissue-dependent manner; reporter activity in the intestine shows a linear increase compared with muscle or hypodermis, with the lowest heme threshold in neurons. Our results demonstrate that the trafficking pathways for exogenous and endogenous heme are distinct, with intrinsic preference for specific subcellular compartments. We anticipate our results will serve as a heuristic paradigm for more sophisticated studies on heme trafficking in cellular and whole-animal models. PMID:27528661

  10. Trafficking of Neuronal Two Pore Domain Potassium Channels

    PubMed Central

    Mathie, Alistair; Rees, Kathryn A; El Hachmane, Mickael F; Veale, Emma L

    2010-01-01

    The activity of two pore domain potassium (K2P) channels regulates neuronal excitability and cell firing. Post-translational regulation of K2P channel trafficking to the membrane controls the number of functional channels at the neuronal membrane affecting the functional properties of neurons. In this review, we describe the general features of K channel trafficking from the endoplasmic reticulum (ER) to the plasma membrane via the Golgi apparatus then focus on established regulatory mechanisms for K2P channel trafficking. We describe the regulation of trafficking of TASK channels from the ER or their retention within the ER and consider the competing hypotheses for the roles of the chaperone proteins 14-3-3, COP1 and p11 in these processes and where these proteins bind to TASK channels. We also describe the localisation of TREK channels to particular regions of the neuronal membrane and the involvement of the TREK channel binding partners AKAP150 and Mtap2 in this localisation. We describe the roles of other K2P channel binding partners including Arf6, EFA6 and SUMO for TWIK1 channels and Vpu for TASK1 channels. Finally, we consider the potential importance of K2P channel trafficking in a number of disease states such as neuropathic pain and cancer and the protection of neurons from ischemic damage. We suggest that a better understanding of the mechanisms and regulations that underpin the trafficking of K2P channels to the plasma membrane and to localised regions therein may considerably enhance the probability of future therapeutic advances in these areas. PMID:21358977

  11. Host cell interactions of outer membrane vesicle-associated virulence factors of enterohemorrhagic Escherichia coli O157: Intracellular delivery, trafficking and mechanisms of cell injury

    PubMed Central

    Greune, Lilo; Jarosch, Kevin-André; Steil, Daniel; Zhang, Wenlan; He, Xiaohua; Lloubes, Roland; Fruth, Angelika; Kim, Kwang Sik; Schmidt, M. Alexander; Dobrindt, Ulrich; Mellmann, Alexander; Karch, Helge

    2017-01-01

    Outer membrane vesicles (OMVs) are important tools in bacterial virulence but their role in the pathogenesis of infections caused by enterohemorrhagic Escherichia coli (EHEC) O157, the leading cause of life-threatening hemolytic uremic syndrome, is poorly understood. Using proteomics, electron and confocal laser scanning microscopy, immunoblotting, and bioassays, we investigated OMVs secreted by EHEC O157 clinical isolates for virulence factors cargoes, interactions with pathogenetically relevant human cells, and mechanisms of cell injury. We demonstrate that O157 OMVs carry a cocktail of key virulence factors of EHEC O157 including Shiga toxin 2a (Stx2a), cytolethal distending toxin V (CdtV), EHEC hemolysin, and flagellin. The toxins are internalized by cells via dynamin-dependent endocytosis of OMVs and differentially separate from vesicles during intracellular trafficking. Stx2a and CdtV-B, the DNase-like CdtV subunit, separate from OMVs in early endosomes. Stx2a is trafficked, in association with its receptor globotriaosylceramide within detergent-resistant membranes, to the Golgi complex and the endoplasmic reticulum from where the catalytic Stx2a A1 fragment is translocated to the cytosol. CdtV-B is, after its retrograde transport to the endoplasmic reticulum, translocated to the nucleus to reach DNA. CdtV-A and CdtV-C subunits remain OMV-associated and are sorted with OMVs to lysosomes. EHEC hemolysin separates from OMVs in lysosomes and targets mitochondria. The OMV-delivered CdtV-B causes cellular DNA damage, which activates DNA damage responses leading to G2 cell cycle arrest. The arrested cells ultimately die of apoptosis induced by Stx2a and CdtV via caspase-9 activation. By demonstrating that naturally secreted EHEC O157 OMVs carry and deliver into cells a cocktail of biologically active virulence factors, thereby causing cell death, and by performing first comprehensive analysis of intracellular trafficking of OMVs and OMV-delivered virulence factors

  12. Systematic and quantitative analysis of G protein-coupled receptor trafficking motifs.

    PubMed

    Hurt, Carl M; Ho, Vincent K; Angelotti, Timothy

    2013-01-01

    Plasma membrane expression of G protein-coupled receptors (GPCRs) is a dynamic process balancing anterograde and retrograde trafficking. Multiple interrelated cellular processes determine the final level of cell surface expression, including endoplasmic reticulum (ER) export/retention, receptor internalization, recycling, and degradation. These processes are highly regulated to achieve specific localization to subcellular domains (e.g., dendrites or basolateral membranes) and to affect receptor signaling. Analysis of potential ER trafficking motifs within GPCRs requires careful consideration of intracellular dynamics, such as protein folding, ER export and retention, and glycosylation. This chapter presents an approach and methods for qualitative and quantitative assessment of these processes to aid in accurate identification of GPCR trafficking motifs, utilizing the analysis of a hydrophobic extracellular trafficking motif in α2C adrenergic receptors as a model system.

  13. Golgi-Cox Staining Step by Step

    PubMed Central

    Zaqout, Sami; Kaindl, Angela M.

    2016-01-01

    Golgi staining remains a key method to study neuronal morphology in vivo. Since most protocols delineating modifications of the original staining method lack details on critical steps, establishing this method in a laboratory can be time-consuming and frustrating. Here, we describe the Golgi-Cox staining in such detail that should turn the staining into an easily feasible method for all scientists working in the neuroscience field. PMID:27065817

  14. Rab1A over-expression prevents Golgi apparatus fragmentation and partially corrects motor deficits in an alpha-synuclein based rat model of Parkinson's disease.

    PubMed

    Coune, P G; Bensadoun, J C; Aebischer, P; Schneider, B L

    2011-01-01

    Although the overabundance of human alpha-synuclein in nigral dopaminergic neurons is considered to play a pathogenic role in Parkinson's disease (PD), it remains unclear how alpha-synuclein leads to neuronal degeneration and motor symptoms. Here, we explored the effect of human alpha-synuclein in the rat substantia nigra following AAV-mediated gene delivery inducing a moderate loss of dopaminergic neurons together with motor impairments. A significant fraction of the surviving nigral neurons were found to express human αSyn and displayed a pathological fragmentation of the Golgi apparatus. This observation prompted further investigation on the role of the secretory pathway, in particular at the ER/Golgi level, in alpha-synuclein toxicity. To address this question, we co-expressed human alpha-synuclein with Rab1A, a regulator of ER-to-Golgi vesicular trafficking, and found a significant reduction of Golgi fragmentation. Rab1A did not protect the dopaminergic neurons from the alpha-synuclein-induced degeneration that occurred within several months following vector injection. However, we observed in animals co-expressing Rab1A an improvement of motor behavior that correlates with the rescue of normal Golgi morphology in alpha-synuclein-expressing dopaminergic neurons. The non-prenylable mutant Rab1A-DeltaCC did not produce any of the effects observed with the wild-type form of Rab1A, linking the protective role of Rab1A with its activity in ER-to-Golgi vesicular trafficking. In conclusion, Rab1A can rescue the Golgi fragmentation caused by the overabundance of alpha-synuclein in nigral dopaminergic neurons, improving the ability of the surviving neurons to control motor function in hemiparkinsonian animals.

  15. Giantin is the major Golgi autoantigen in human anti-Golgi complex sera

    PubMed Central

    Nozawa, Kazuhisa; Fritzler, Marvin J; von Mühlen, Carlos A; Chan, Edward KL

    2004-01-01

    Anti-Golgi complex antibodies (AGAs) are primarily associated with systemic lupus erythematosus and Sjögren's syndrome. Here we report on the immunoreactivity of AGAs against five Golgi autoantigens (giantin, golgin-245, golgin-160, golgin-95/GM130, and golgin-97) and provide data from epitope mapping on the most common Golgi autoantigen, namely giantin. A total of 80 human sera containing AGAs, as defined by indirect immunofluorescence on HEp-2 cells, were analyzed by ELISA using recombinant autoantigens and immunoprecipitation. The proportion of AGA sera that reacted with the five Golgi autoantigens was correlated with the molecular mass of the Golgi antigens. Autoantibodies to giantin, the largest Golgi autoantigen, were the predominant AGAs, being found in 50% of the AGA sera. Epitope mapping of giantin was performed using six recombinant fragments spanning the entire protein. Antigiantin-positive sera with low titer autoantibodies recognized epitopes in the carboxyl-terminal fragments that are proximal to the Golgi membrane, whereas higher titer sera exhibited strong reactivity to amino-terminal and central domains that are likely to extend from the Golgi membrane into the cytoplasm. Our working hypothesis is that aberrantly expressed Golgi complex autoantigens may be released into the immune system when cells undergo lysis. By virtue of a carboxyl-terminal transmembrane domain, giantin is likely to be more stably associated with the cytoplasmic face of the Golgi complex than are other golgins, which are peripheral proteins. The stable association of giantin with the putative released Golgi complex may contribute to its preferential autoantigenicity. PMID:15059272

  16. Sex Trafficking of Minors.

    PubMed

    Moore, Jessica L; Kaplan, Dana M; Barron, Christine E

    2017-04-01

    Sex trafficking is an increasingly recognized global health crisis affecting every country and region in the world. Domestic minor sex trafficking is a subset of commercial sexual exploitation of children, defined as engagement of minors (<18 years of age) in sexual acts for items of value (eg, food, shelter, drugs, money) involving children victimized within US borders. These involved youth are at risk for serious immediate and long-term physical and mental health consequences. Continued efforts are needed to improve preventive efforts, identification, screening, appropriate interventions, and subsequent resource provision for victimized and high-risk youth.

  17. Growth of the Mammalian Golgi Apparatus during Interphase.

    PubMed

    Sin, Alex T-W; Harrison, Rene E

    2016-09-15

    During the cell cycle, genetic materials and organelles are duplicated to ensure that there is sufficient cellular content for daughter cells. While Golgi growth in interphase has been observed in lower eukaryotes, the elaborate ribbon structure of the mammalian Golgi apparatus has made it challenging to monitor. Here we demonstrate the growth of the mammalian Golgi apparatus in its protein content and volume during interphase. Through ultrastructural analyses, physical growth of the Golgi apparatus was revealed to occur by cisternal elongation of the individual Golgi stacks. By examining the timing and regulation of Golgi growth, we established that Golgi growth starts after passage through the cell growth checkpoint at late G1 phase and continues in a manner highly correlated with cell size growth. Finally, by identifying S6 kinase 1 as a major player in Golgi growth, we revealed the coordination between cell size and Golgi growth via activation of the protein synthesis machinery in early interphase.

  18. Phosphorylation of Golgi Peripheral Membrane Protein Grasp65 Is an Integral Step in the Formation of the Human Cytomegalovirus Cytoplasmic Assembly Compartment.

    PubMed

    Rebmann, G Michael; Grabski, Robert; Sanchez, Veronica; Britt, William J

    2016-10-04

    Human cytomegalovirus (HCMV) is the largest member of the Herpesviridae and represents a significant cause of disease. During virus replication, HCMV alters cellular functions to facilitate its replication, including significant reorganization of the secretory and endocytic pathways of the infected cell. A defining morphologic change of the infected cell is the formation of a membranous structure in the cytoplasm that is designated the virion assembly compartment (AC), which consists of virion structural proteins surrounded by cellular membranes. The loss of normal Golgi compartment morphology and its relocalization from a juxtanuclear ribbonlike structure to a series of concentric rings on the periphery of the AC represents a readily recognized reorganization of cellular membranes in the HCMV-infected cell. Although trafficking of viral proteins to this compartment is required for the assembly of infectious virions, the functional significance of the reorganization of intracellular membranes like the Golgi membranes into the AC in the assembly of infectious virus remains understudied. In this study, we determined that Golgi membrane ribbon fragmentation increased during the early cytoplasmic phase of virion assembly and that Golgi membrane fragmentation in infected cells was dependent on the phosphorylation of an integral cis-Golgi protein, Grasp65. Inhibition of Golgi membrane fragmentation and of its reorganization into the AC resulted in decreased production of infectious particles and alteration of the incorporation of an essential protein into the envelope of the mature virion. These results demonstrated the complexity of the virus-host cell interactions required for efficient assembly of this large DNA virus.

  19. Sphingomyelin is sorted at the trans Golgi network into a distinct class of secretory vesicle

    PubMed Central

    Deng, Yongqiang; Rivera-Molina, Felix E.; Toomre, Derek K.; Burd, Christopher G.

    2016-01-01

    One of the principal functions of the trans Golgi network (TGN) is the sorting of proteins into distinct vesicular transport carriers that mediate secretion and interorganelle trafficking. Are lipids also sorted into distinct TGN-derived carriers? The Golgi is the principal site of the synthesis of sphingomyelin (SM), an abundant sphingolipid that is transported. To address the specificity of SM transport to the plasma membrane, we engineered a natural SM-binding pore-forming toxin, equinatoxin II (Eqt), into a nontoxic reporter termed Eqt-SM and used it to monitor intracellular trafficking of SM. Using quantitative live cell imaging, we found that Eqt-SM is enriched in a subset of TGN-derived secretory vesicles that are also enriched in a glycophosphatidylinositol-anchored protein. In contrast, an integral membrane secretory protein (CD8α) is not enriched in these carriers. Our results demonstrate the sorting of native SM at the TGN and its transport to the plasma membrane by specific carriers. PMID:27247384

  20. Vaccinia Virus Uses Retromer-Independent Cellular Retrograde Transport Pathways To Facilitate the Wrapping of Intracellular Mature Virions during Virus Morphogenesis

    PubMed Central

    Harrison, Kate; Haga, Ismar R.; Pechenick Jowers, Tali; Jasim, Seema; Cintrat, Jean-Christophe; Gillet, Daniel; Schmitt-John, Thomas; Digard, Paul

    2016-01-01

    ABSTRACT Poxviruses, such as vaccinia virus (VACV), undertake a complex cytoplasmic replication cycle which involves morphogenesis through four distinct virion forms and includes a crucial wrapping step whereby intracellular mature virions (IMVs) are wrapped in two additional membranes to form intracellular enveloped virions (IEVs). To determine if cellular retrograde transport pathways are required for this wrapping step, we examined VACV morphogenesis in cells with reduced expression of the tetrameric tethering factor known as the GARP (Golgi-associated retrograde pathway), a central component of retrograde transport. VACV multistep replication was significantly impaired in cells transfected with small interfering RNA targeting the GARP complex and in cells with a mutated GARP complex. Detailed analysis revealed that depletion of the GARP complex resulted in a reduction in the number of IEVs, thereby linking retrograde transport with the wrapping of IMVs. In addition, foci of viral wrapping membrane proteins without an associated internal core accumulated in cells with a mutated GARP complex, suggesting that impaired retrograde transport uncouples nascent IMVs from the IEV membranes at the site of wrapping. Finally, small-molecule inhibitors of retrograde transport strongly suppressed VACV multistep growth in vitro and reduced weight loss and clinical signs in an in vivo murine model of systemic poxviral disease. This work links cellular retrograde transport pathways with the morphogenesis of poxviruses and identifies a panel of novel inhibitors of poxvirus replication. IMPORTANCE Cellular retrograde transport pathways traffic cargo from endosomes to the trans-Golgi network and are a key part of the intracellular membrane network. This work reveals that the prototypic poxvirus vaccinia virus (VACV) exploits cellular retrograde transport pathways to facilitate the wrapping of intracellular mature virions and therefore promote the production of extracellular virus

  1. α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models.

    PubMed

    Mazzulli, Joseph R; Zunke, Friederike; Isacson, Ole; Studer, Lorenz; Krainc, Dimitri

    2016-02-16

    Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by the accumulation of protein aggregates comprised of α-synuclein (α-syn). A major barrier in treatment discovery for PD is the lack of identifiable therapeutic pathways capable of reducing aggregates in human neuronal model systems. Mutations in key components of protein trafficking and cellular degradation machinery represent important risk factors for PD; however, their precise role in disease progression and interaction with α-syn remains unclear. Here, we find that α-syn accumulation reduced lysosomal degradation capacity in human midbrain dopamine models of synucleinopathies through disrupting hydrolase trafficking. Accumulation of α-syn at the cell body resulted in aberrant association with cis-Golgi-tethering factor GM130 and disrupted the endoplasmic reticulum-Golgi localization of rab1a, a key mediator of vesicular transport. Overexpression of rab1a restored Golgi structure, improved hydrolase trafficking and activity, and reduced pathological α-syn in patient neurons. Our work suggests that enhancement of lysosomal hydrolase trafficking may prove beneficial in synucleinopathies and indicates that human midbrain disease models may be useful for identifying critical therapeutic pathways in PD and related disorders.

  2. Functional genomics of monensin sensitivity in yeast: implications for post-Golgi traffic and vacuolar H+-ATPase function.

    PubMed

    Gustavsson, Marie; Barmark, Gunilla; Larsson, Jimmy; Murén, Eva; Ronne, Hans

    2008-09-01

    We have screened a complete collection of yeast knockout mutants for sensitivity to monensin, an ionophore that interferes with intracellular transport. A total of 63 sensitive strains were found. Most of the strains were deleted for genes involved in post-Golgi traffic, with an emphasis on vacuolar biogenesis. A high correlation was thus seen with VPS and VAM genes, but there were also significant differences between the three sets of genes. A weaker correlation was seen with sensitivity to NaCl, in particular rate of growth effects. Interestingly, all 14 genes encoding subunits of the vacuolar H(+)-ATPase (V-ATPase) were absent in our screen, even though they appeared in the VPS or VAM screens. All monensin-sensitive mutants that could be tested interact synthetically with a deletion of the A subunit of the V-ATPase, Vma1. Synthetic lethality was limited to mutations affecting endocytosis or retrograde transport to Golgi. In addition, vma1 was epistatic over the monensin sensitivity of vacuolar transport mutants, but not endocytosis mutants. Deletions of the two isoforms of the V-ATPase a subunit, Vph1 and Stv1 had opposite effects on the monensin sensitivity of a ypt7 mutant. These findings are consistent with a model where monensin inhibits growth by interfering with the maintenance of an acidic pH in the late secretory pathway. The synthetic lethality of vma1 with mutations affecting retrograde transport to the Golgi further suggests that it is in the late Golgi that a low pH must be maintained.

  3. The centrosome–Golgi apparatus nexus

    PubMed Central

    Rios, Rosa M.

    2014-01-01

    A shared feature among all microtubule (MT)-dependent processes is the requirement for MTs to be organized in arrays of defined geometry. At a fundamental level, this is achieved by precisely controlling the timing and localization of the nucleation events that give rise to new MTs. To this end, MT nucleation is restricted to specific subcellular sites called MT-organizing centres. The primary MT-organizing centre in proliferating animal cells is the centrosome. However, the discovery of MT nucleation capacity of the Golgi apparatus (GA) has substantially changed our understanding of MT network organization in interphase cells. Interestingly, MT nucleation at the Golgi apparently relies on multiprotein complexes, similar to those present at the centrosome, that assemble at the cis-face of the organelle. In this process, AKAP450 plays a central role, acting as a scaffold to recruit other centrosomal proteins important for MT generation. MT arrays derived from either the centrosome or the GA differ in their geometry, probably reflecting their different, yet complementary, functions. Here, I review our current understanding of the molecular mechanisms involved in MT nucleation at the GA and how Golgi- and centrosome-based MT arrays work in concert to ensure the formation of a pericentrosomal polarized continuous Golgi ribbon structure, a critical feature for cell polarity in mammalian cells. In addition, I comment on the important role of the Golgi-nucleated MTs in organizing specialized MT arrays that serve specific functions in terminally differentiated cells. PMID:25047616

  4. The centrosome-Golgi apparatus nexus.

    PubMed

    Rios, Rosa M

    2014-09-05

    A shared feature among all microtubule (MT)-dependent processes is the requirement for MTs to be organized in arrays of defined geometry. At a fundamental level, this is achieved by precisely controlling the timing and localization of the nucleation events that give rise to new MTs. To this end, MT nucleation is restricted to specific subcellular sites called MT-organizing centres. The primary MT-organizing centre in proliferating animal cells is the centrosome. However, the discovery of MT nucleation capacity of the Golgi apparatus (GA) has substantially changed our understanding of MT network organization in interphase cells. Interestingly, MT nucleation at the Golgi apparently relies on multiprotein complexes, similar to those present at the centrosome, that assemble at the cis-face of the organelle. In this process, AKAP450 plays a central role, acting as a scaffold to recruit other centrosomal proteins important for MT generation. MT arrays derived from either the centrosome or the GA differ in their geometry, probably reflecting their different, yet complementary, functions. Here, I review our current understanding of the molecular mechanisms involved in MT nucleation at the GA and how Golgi- and centrosome-based MT arrays work in concert to ensure the formation of a pericentrosomal polarized continuous Golgi ribbon structure, a critical feature for cell polarity in mammalian cells. In addition, I comment on the important role of the Golgi-nucleated MTs in organizing specialized MT arrays that serve specific functions in terminally differentiated cells.

  5. Analysis of SCAP N-glycosylation and Trafficking in Human Cells.

    PubMed

    Cheng, Chunming; Guo, Jeffrey Yunhua; Geng, Feng; Wu, Xiaoning; Cheng, Xiang; Li, Qiyue; Guo, Deliang

    2016-11-08

    Elevated lipogenesis is a common characteristic of cancer and metabolic diseases. Sterol regulatory element-binding proteins (SREBPs), a family of membrane-bound transcription factors controlling the expression of genes important for the synthesis of cholesterol, fatty acids and phospholipids, are frequently upregulated in these diseases. In the process of SREBP nuclear translocation, SREBP-cleavage activating protein (SCAP) plays a central role in the trafficking of SREBP from the endoplasmic reticulum (ER) to the Golgi and in subsequent proteolysis activation. Recently, we uncovered that glucose-mediated N-glycosylation of SCAP is a prerequisite condition for the exit of SCAP/SREBP from the ER and movement to the Golgi. N-glycosylation stabilizes SCAP and directs SCAP/SREBP trafficking. Here, we describe a protocol for the isolation of membrane fractions in human cells and for the preparation of the samples for the detection of SCAP N-glycosylation and total protein by using western blot. We further provide a method to monitor SCAP trafficking by using confocal microscopy. This protocol is appropriate for the investigation of SCAP N-glycosylation and trafficking in mammalian cells.

  6. OSBP-related protein 11 (ORP11) dimerizes with ORP9 and localizes at the Golgi-late endosome interface

    SciTech Connect

    Zhou, You; Maeyraenpaeae, Mikko I.; Zhong, Wenbin; Baeck, Nils; Olkkonen, Vesa M.

    2010-11-15

    We characterize here ORP11, a member of the oxysterol-binding protein family. ORP11 is present at highest levels in human ovary, testis, kidney, liver, stomach, brain, and adipose tissue. Immunohistochemistry demonstrates abundant ORP11 in the epithelial cells of kidney tubules, testicular tubules, caecum, and skin. ORP11 in HEK293 cells resides on Golgi complex and LE, co-localizing with GFP-Rab9, TGN46, GFP-Rab7, and a fluorescent medial-trans-Golgi marker. Under electron microscopic observation, cells overexpressing ORP11 displayed lamellar lipid bodies associated with vacuolar structures or the Golgi complex, indicating a disturbance of lipid trafficking. N-terminal fragment of ORP11 (aa 1-292) localized partially to Golgi, but displayed enhanced localization on Rab7- and Rab9-positive LE, while the C-terminal ligand-binding domain (aa 273-747) was cytosolic, demonstrating that the membrane targeting determinants are N-terminal. Yeast two-hybrid screen revealed interaction of ORP11 with the related ORP9. The interacting region was delineated within aa 98-372 of ORP9 and aa 154-292 of ORP11. Overexpressed ORP9 was able to recruit EGFP-ORP11 to membranes, and ORP9 silencing inhibited ORP11 Golgi association. The results identify ORP11 as an OSBP homologue distributing at the Golgi-LE interface and define the ORP9-ORP11 dimer as a functional unit that may act as an intracellular lipid sensor or transporter.

  7. Intracellular trafficking pathway of BK virus in human renal proximal tubular epithelial cells

    PubMed Central

    Moriyama, Takahito; Sorokin, Andrey

    2009-01-01

    Intracellular trafficking of BK Virus (BKV) in human renal proximal tubular epithelial cells (HRPTEC) is critical for BKV nephritis. However, the major trafficking components utilized by BKV remain unknown. Co-incubation of HRPTEC with BKV and microtubule disrupting agents prevented BKV infection as detected by immunofluorescence and western blot analysis with antibodies which recognize BKV large T antigen. However, inhibition of a dynein, cellular motor protein, did not interfere with BKV infection in HRPTEC. A colocalization study of BKV with the markers of the endoplasmic reticulum (ER) and the Golgi apparatus (GA), indicated that BKV reached the ER from 6 to 10 hours, while bypassing the GA or passing through the GA too transiently to be detected. This study contributes to the understanding of mechanisms of intracellular trafficking used by BKV in the infection of HRPTEC. PMID:17976677

  8. Golgi Glycosylation and Human Inherited Diseases

    PubMed Central

    Freeze, Hudson H.; Ng, Bobby G.

    2011-01-01

    The Golgi factory receives custom glycosylates and dispatches its cargo to the correct cellular locations. The process requires importing donor substrates, moving the cargo, and recycling machinery. Correctly glycosylated cargo reflects the Golgi's quality and efficiency. Genetic disorders in the specific equipment (enzymes), donors (nucleotide sugar transporters), or equipment recycling/reorganization components (COG, SEC, golgins) can all affect glycosylation. Dozens of human glycosylation disorders fit these categories. Many other genes, with or without familiar names, well-annotated pedigrees, or likely homologies will join the ranks of glycosylation disorders. Their broad and unpredictable case-by-case phenotypes cross the traditional medical specialty boundaries. The gene functions in patients may be elusive, but their common feature may include altered glycosylation that provide clues to Golgi function. This article focuses on a group of human disorders that affect protein or lipid glycosylation. Readers may find it useful to generalize some of these patient-based, translational observations to their own research. PMID:21709180

  9. Chloroplast retrograde signal regulates flowering

    PubMed Central

    Feng, Peiqiang; Guo, Hailong; Chi, Wei; Chai, Xin; Sun, Xuwu; Xu, Xiumei; Ma, Jinfang; Rochaix, Jean-David; Leister, Dario; Wang, Haiyang; Lu, Congming; Zhang, Lixin

    2016-01-01

    Light is a major environmental factor regulating flowering time, thus ensuring reproductive success of higher plants. In contrast to our detailed understanding of light quality and photoperiod mechanisms involved, the molecular basis underlying high light-promoted flowering remains elusive. Here we show that, in Arabidopsis, a chloroplast-derived signal is critical for high light-regulated flowering mediated by the FLOWERING LOCUS C (FLC). We also demonstrate that PTM, a PHD transcription factor involved in chloroplast retrograde signaling, perceives such a signal and mediates transcriptional repression of FLC through recruitment of FVE, a component of the histone deacetylase complex. Thus, our data suggest that chloroplasts function as essential sensors of high light to regulate flowering and adaptive responses by triggering nuclear transcriptional changes at the chromatin level. PMID:27601637

  10. COPI selectively drives maturation of the early Golgi

    DOE PAGES

    Papanikou, Effrosyni; Day, Kasey J.; Austin, Jotham; ...

    2015-12-28

    COPI coated vesicles carry material between Golgi compartments, but the role of COPI in the secretory pathway has been ambiguous. Previous studies of thermosensitive yeast COPI mutants yielded the surprising conclusion that COPI was dispensable both for the secretion of certain proteins and for Golgi cisternal maturation. To revisit these issues, we optimized the anchor-away method, which allows peripheral membrane proteins such as COPI to be sequestered rapidly by adding rapamycin. Video fluorescence microscopy revealed that COPI inactivation causes an early Golgi protein to remain in place while late Golgi proteins undergo cycles of arrival and departure. These dynamics generatemore » partially functional hybrid Golgi structures that contain both early and late Golgi proteins, explaining how secretion can persist when COPI has been inactivated. Our findings suggest that cisternal maturation involves a COPI-dependent pathway that recycles early Golgi proteins, followed by multiple COPI-independent pathways that recycle late Golgi proteins.« less

  11. Implications of the Golgi apparatus in prostate cancer.

    PubMed

    Migita, Toshiro; Inoue, Satoshi

    2012-11-01

    The classical view of the Golgi apparatus is of a small membranous organelle involved in protein transport and secretion. Recent descriptions of the molecular network connecting the Golgi to other organelles demonstrate the essential roles of the Golgi in cellular activities as a stress sensor, apoptosis trigger, lipid/protein modifier, mitotic checkpoint, and a mediator of malignant transformation. Thus, the Golgi function should have a fundamental impact on cancer cell survival. Prostate cancer is initially responsive to androgenic hormones; however, it almost invariably progresses to a castration-refractory or hormone-insensitive state. Nevertheless, androgen signaling remains active at this stage and is important as a therapeutic target. Certain Golgi-associated molecules have recently been demonstrated to be regulated by androgen action, and the Golgi is emerging as a new therapeutic target in prostate cancer. The key Golgi-associated molecules essential for prostate cancer development and the potential therapeutic options targeting the Golgi apparatus are discussed.

  12. The Lec4A CHO glycosylation mutant arises from miscompartmentalization of a Golgi glycosyltransferase

    PubMed Central

    1989-01-01

    Two CHO glycosylation mutants that were previously shown to lack N- linked carbohydrates with GlcNAc beta 1,6Man alpha 1,6 branches, and to belong to the same genetic complementation group, are shown here to differ in the activity of N-acetylglucosaminyltransferase V (GlcNAc-TV) (UDP-GlcNA: alpha 1,6mannose beta-N-acetylglucosaminyltransferase V). One mutant, Lec4, has no detectable GlcNAc-TV activity whereas the other, now termed Lec4A, has activity equivalent to that of parental CHO in detergent cell extracts. However, Lec4A GlcNAc-TV can be distinguished from CHO GlcNAc-TV on the basis of its increased sensitivity to heat inactivation and its altered subcellular compartmentalization. Sucrose density gradient fractionation shows that the major portion of GlcNAc-TV from Lec4A cells cofractionates with membranes of the ER instead of Golgi membranes where GlcNAc-TV is localized in parental CHO cells. Other experiments show that Lec4A GlcNAc-TV is not concentrated in lysosomes, or in a post-Golgi compartment, or at the cell surface. The altered localization in Lec4A cells is specific for GlcNAc-TV because two other Lec4A Golgi transferases cofractionate at the density of Golgi membranes. The combined data suggest that both lec4 and lec4A mutations affect the structural gene for GlcNAc-TV, causing either the loss of GlcNAc-TV activity (lec4) or its miscompartmentalization (lec4A). The identification of the Lec4A defect indicates that appropriate screening of different glycosylation-defective mutants should enable the isolation of other mammalian cell trafficking mutants. PMID:2530238

  13. Nongenomic STAT5-dependent effects on Golgi apparatus and endoplasmic reticulum structure and function.

    PubMed

    Lee, Jason E; Yang, Yang-Ming; Liang, Feng-Xia; Gough, Daniel J; Levy, David E; Sehgal, Pravin B

    2012-03-01

    We report unexpected nongenomic functions of signal transducer and activator of transcription (STAT) 5 species in the cytoplasm aimed at preserving the structure and function of the Golgi apparatus and rough endoplasmic reticulum (ER) in vascular cells. Immunoimaging and green fluorescent protein-tagged-STAT5a protein localization studies showed the constitutive association of nonphosphorylated STAT5a, and to a lesser extent STAT5b, with the Golgi apparatus and of STAT5a with centrosomes in human pulmonary arterial endothelial and smooth muscle cells. Acute knockdown of STAT5a/b species using small interfering RNAs (siRNAs), including in the presence of an mRNA synthesis inhibitor (5,6-dichloro-1-β-d-ribofuranosylbenzimidazole), produced a dramatic phenotype within 1 day, consisting of dilatation and fragmentation of Golgi cisternae, a marked tubule-to-cyst change in the ER, increased accumulation of reticulon-4 (RTN4)/Nogo-B and atlastin-3 (ATL3) at cyst-zone boundaries, cystic separation of the outer and inner nuclear membranes, accompanied by scalloped/lunate distortion of the nucleus, with accumulation of RTN4 on convex sides of distorted nuclei. These cells showed inhibition of vesicular stomatitis virus G protein glycoprotein trafficking, mitochondrial fragmentation, and reduced mitochondrial function. STAT5a/b(-/-) mouse embryo fibroblasts also showed altered ER/Golgi dynamics. RTN4 knockdown using siRNA did not affect development of the cystic phenotype; ATL3 siRNA led to effacement of cyst-zone boundaries. In magnetic-bead cross-immunopanning assays, ATL3 bound both STAT5a and STAT5b. Remarkably, this novel cystic ER/lunate nucleus phenotype was characteristic of vascular cells in arterial lesions of idiopathic pulmonary hypertension, an unrelentingly fatal human disease. These data provide evidence of a STAT-family protein regulating the structure of a cytoplasmic organelle and implicate this mechanism in the pathogenesis of a human disease.

  14. Syntabulin regulates the trafficking of PICK1-containing vesicles in neurons

    PubMed Central

    Xu, Junyu; Wang, Na; Luo, Jian-hong; Xia, Jun

    2016-01-01

    PICK1 (protein interacting with C-kinase 1) is a peripheral membrane protein that interacts with diverse membrane proteins. PICK1 has been shown to regulate the clustering and membrane localization of synaptic receptors such as AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors, metabotropic glutamate receptor 7, and ASICs (acid-sensing ion channels). Moreover, recent evidence suggests that PICK1 can mediate the trafficking of various vesicles out from the Golgi complex in several cell systems, including neurons. However, how PICK1 affects vesicle-trafficking dynamics remains unexplored. Here, we show that PICK1 mediates vesicle trafficking by interacting with syntabulin, a kinesin-binding protein that mediates the trafficking of both synaptic vesicles and mitochondria in axons. Syntabulin recruits PICK1 onto microtubule structures and mediates the trafficking of PICK1-containing vesicles along microtubules. In neurons, syntabulin alters PICK1 expression by recruiting PICK1 into axons and regulates the trafficking dynamics of PICK1-containing vesicles. Furthermore, we show that syntabulin forms a complex with PICK1 and ASICs, regulates ASIC protein expression in neurons, and participates in ASIC-induced acidotoxicity. PMID:26868290

  15. LKB1/AMPK and PKA control ABCB11 trafficking and polarization in hepatocytes.

    PubMed

    Homolya, László; Fu, Dong; Sengupta, Prabuddha; Jarnik, Michal; Gillet, Jean-Pierre; Vitale-Cross, Lynn; Gutkind, J Silvio; Lippincott-Schwartz, Jennifer; Arias, Irwin M

    2014-01-01

    Polarization of hepatocytes is manifested by bile canalicular network formation and activation of LKB1 and AMPK, which control cellular energy metabolism. The bile acid, taurocholate, also regulates development of the canalicular network through activation of AMPK. In the present study, we used collagen sandwich hepatocyte cultures from control and liver-specific LKB1 knockout mice to examine the role of LKB1 in trafficking of ABCB11, the canalicular bile acid transporter. In polarized hepatocytes, ABCB11 traffics from Golgi to the apical plasma membrane and endogenously cycles through the rab 11a-myosin Vb recycling endosomal system. LKB1 knockout mice were jaundiced, lost weight and manifested impaired bile canalicular formation and intracellular trafficking of ABCB11, and died within three weeks. Using live cell imaging, fluorescence recovery after photobleaching (FRAP), particle tracking, and biochemistry, we found that LKB1 activity is required for microtubule-dependent trafficking of ABCB11 to the canalicular membrane. In control hepatocytes, ABCB11 trafficking was accelerated by taurocholate and cAMP; however, in LKB1 knockout hepatocytes, ABCB11 trafficking to the apical membrane was greatly reduced and restored only by cAMP, but not taurocholate. cAMP acted through a PKA-mediated pathway which did not activate AMPK. Our studies establish a regulatory role for LKB1 in ABCB11 trafficking to the canalicular membrane, hepatocyte polarization, and canalicular network formation.

  16. Syntabulin regulates the trafficking of PICK1-containing vesicles in neurons.

    PubMed

    Xu, Junyu; Wang, Na; Luo, Jian-Hong; Xia, Jun

    2016-02-12

    PICK1 (protein interacting with C-kinase 1) is a peripheral membrane protein that interacts with diverse membrane proteins. PICK1 has been shown to regulate the clustering and membrane localization of synaptic receptors such as AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors, metabotropic glutamate receptor 7, and ASICs (acid-sensing ion channels). Moreover, recent evidence suggests that PICK1 can mediate the trafficking of various vesicles out from the Golgi complex in several cell systems, including neurons. However, how PICK1 affects vesicle-trafficking dynamics remains unexplored. Here, we show that PICK1 mediates vesicle trafficking by interacting with syntabulin, a kinesin-binding protein that mediates the trafficking of both synaptic vesicles and mitochondria in axons. Syntabulin recruits PICK1 onto microtubule structures and mediates the trafficking of PICK1-containing vesicles along microtubules. In neurons, syntabulin alters PICK1 expression by recruiting PICK1 into axons and regulates the trafficking dynamics of PICK1-containing vesicles. Furthermore, we show that syntabulin forms a complex with PICK1 and ASICs, regulates ASIC protein expression in neurons, and participates in ASIC-induced acidotoxicity.

  17. Identification and characterization of a novel group of legume-specific, Golgi apparatus-localized WRKY and Exo70 proteins from soybean.

    PubMed

    Chi, Yingjun; Yang, Yan; Li, Guiping; Wang, Fei; Fan, Baofang; Chen, Zhixiang

    2015-06-01

    Many plant genes belong to families that arise from extensive proliferation and diversification allowing the evolution of functionally new proteins. Here we report the characterization of a group of proteins evolved from WRKY and exocyst complex subunit Exo70 proteins through fusion with a novel transmembrane (TM) domain in soybean (Glycine max). From the soybean genome, we identified a novel WRKY-related protein (GmWRP1) that contains a WRKY domain with no binding activity for W-box sequences. GFP fusion revealed that GmWRP1 was targeted to the Golgi apparatus through its N-terminal TM domain. Similar Golgi-targeting TM domains were also identified in members of a new subfamily of Exo70J proteins involved in vesicle trafficking. The novel TM domains are structurally most similar to the endosomal cytochrome b561 from birds and close homologues of GmWRP1 and GmEx070J proteins with the novel TM domain have only been identified in legumes. Transient expression of some GmExo70J proteins or the Golgi-targeting TM domain in tobacco altered the subcellular structures labelled by a fluorescent Golgi marker. GmWRP1 transcripts were detected at high levels in roots, flowers, pods, and seeds, and the expression levels of GmWRP1 and GmExo70J genes were elevated with increased age in leaves. The legume-specific, Golgi apparatus-localized GmWRP1 and GmExo70J proteins are probably involved in Golgi-mediated vesicle trafficking of biological molecules that are uniquely important to legumes.

  18. Protein Kinase D and Gβγ Subunits Mediate Agonist-evoked Translocation of Protease-activated Receptor-2 from the Golgi Apparatus to the Plasma Membrane.

    PubMed

    Jensen, Dane D; Zhao, Peishen; Jimenez-Vargas, Nestor N; Lieu, TinaMarie; Gerges, Marina; Yeatman, Holly R; Canals, Meritxell; Vanner, Stephen J; Poole, Daniel P; Bunnett, Nigel W

    2016-05-20

    Agonist-evoked endocytosis of G protein-coupled receptors has been extensively studied. The mechanisms by which agonists stimulate mobilization and plasma membrane translocation of G protein-coupled receptors from intracellular stores are unexplored. Protease-activated receptor-2 (PAR2) traffics to lysosomes, and sustained protease signaling requires mobilization and plasma membrane trafficking of PAR2 from Golgi stores. We evaluated the contribution of protein kinase D (PKD) and Gβγ to this process. In HEK293 and KNRK cells, the PAR2 agonists trypsin and 2-furoyl-LIGRLO-NH2 activated PKD in the Golgi apparatus, where PKD regulates protein trafficking. PAR2 activation induced translocation of Gβγ, a PKD activator, to the Golgi apparatus, determined by bioluminescence resonance energy transfer between Gγ-Venus and giantin-Rluc8. Inhibitors of PKD (CRT0066101) and Gβγ (gallein) prevented PAR2-stimulated activation of PKD. CRT0066101, PKD1 siRNA, and gallein all inhibited recovery of PAR2-evoked Ca(2+) signaling. PAR2 with a photoconvertible Kaede tag was expressed in KNRK cells to examine receptor translocation from the Golgi apparatus to the plasma membrane. Irradiation of the Golgi region (405 nm) induced green-red photo-conversion of PAR2-Kaede. Trypsin depleted PAR2-Kaede from the Golgi apparatus and repleted PAR2-Kaede at the plasma membrane. CRT0066101 inhibited PAR2-Kaede translocation to the plasma membrane. CRT0066101 also inhibited sustained protease signaling to colonocytes and nociceptive neurons that naturally express PAR2 and mediate protease-evoked inflammation and nociception. Our results reveal a major role for PKD and Gβγ in agonist-evoked mobilization of intracellular PAR2 stores that is required for sustained signaling by extracellular proteases.

  19. Protein kinase C alpha-dependent phosphorylation of Golgi proteins.

    PubMed

    Radau, B; Otto, A; Müller, E C; Westermann, P

    2000-07-01

    Golgi-enriched membranes were phosphorylated in order to understand the mechanism for protein kinase C (PKC) regulation of exocytic vesicle formation at the trans-Golgi network. Two of the main PKC substrates were identified as MARCKS and Mac-MARCKS by two-dimensional electrophoresis (2-DE) and mass spectrometric sequencing. Annexin IV and profilin I, two other Golgi-associated proteins--although known as in vitro PKC substrates--were not phosphorylated in the Golgi-bound state.

  20. Arms Trafficking and Colombia

    DTIC Science & Technology

    2003-01-01

    September 20, 2000. 8Bedoya Lima , Jineth, “La Autopista De Las Farc En Plena Selva," El Espectador, April 27, 2001. Although the authors could not...are simply augmenting the normal “trickle” pattern as their operations, and therefore their demand, grow. For example, Lima La Republica reported that...Trafficking,” Lima La Republica, September 21, 2000. 11See the appendix. Interestingly, some reports claim that the criminal working with the AUC then

  1. Trafficking in Persons Report

    DTIC Science & Technology

    2009-06-01

    causes retardation, blindness, kidney damage, and tremors. To a lesser extent, child mine laborers are also exposed to cyanide and sulfur. A 2006 Harvard...Medical School study found that children in gold mining communities in Ecuador showed neurological abnormalities resulting from mercury and cyanide ...trafficked for the purposes of commercial sexual exploitation and forced labor, including domestic servitude and forced labor in the tobacco , cotton

  2. Small-Molecule Screening Identifies Modulators of Aquaporin-2 Trafficking

    PubMed Central

    Bogum, Jana; Faust, Dörte; Zühlke, Kerstin; Eichhorst, Jenny; Moutty, Marie C.; Furkert, Jens; Eldahshan, Adeeb; Neuenschwander, Martin; von Kries, Jens Peter; Wiesner, Burkhard; Trimpert, Christiane; Deen, Peter M.T.; Valenti, Giovanna; Rosenthal, Walter

    2013-01-01

    In the principal cells of the renal collecting duct, arginine vasopressin (AVP) stimulates the synthesis of cAMP, leading to signaling events that culminate in the phosphorylation of aquaporin-2 water channels and their redistribution from intracellular domains to the plasma membrane via vesicular trafficking. The molecular mechanisms that control aquaporin-2 trafficking and the consequent water reabsorption, however, are not completely understood. Here, we used a cell-based assay and automated immunofluorescence microscopy to screen 17,700 small molecules for inhibitors of the cAMP-dependent redistribution of aquaporin-2. This approach identified 17 inhibitors, including 4-acetyldiphyllin, a selective blocker of vacuolar H+-ATPase that increases the pH of intracellular vesicles and causes accumulation of aquaporin-2 in the Golgi compartment. Although 4-acetyldiphyllin did not inhibit forskolin-induced increases in cAMP formation and downstream activation of protein kinase A (PKA), it did prevent cAMP/PKA-dependent phosphorylation at serine 256 of aquaporin-2, which triggers the redistribution to the plasma membrane. It did not, however, prevent cAMP-induced changes to the phosphorylation status at serines 261 or 269. Last, we identified the fungicide fluconazole as an inhibitor of cAMP-mediated redistribution of aquaporin-2, but its target in this pathway remains unknown. In conclusion, our screening approach provides a method to begin dissecting molecular mechanisms underlying AVP-mediated water reabsorption, evidenced by our identification of 4-acetyldiphyllin as a modulator of aquaporin-2 trafficking. PMID:23559583

  3. Ceapins inhibit ATF6α signaling by selectively preventing transport of ATF6α to the Golgi apparatus during ER stress

    PubMed Central

    Gallagher, Ciara M; Walter, Peter

    2016-01-01

    The membrane-bound transcription factor ATF6α is activated by proteolysis during endoplasmic reticulum (ER) stress. ATF6α target genes encode foldases, chaperones, and lipid biosynthesis enzymes that increase protein-folding capacity in response to demand. The off-state of ATF6α is maintained by its spatial separation in the ER from Golgi-resident proteases that activate it. ER stress induces trafficking of ATF6α. We discovered Ceapins, a class of pyrazole amides, as selective inhibitors of ATF6α signaling that do not inhibit the Golgi proteases or other UPR branches. We show that Ceapins block ATF6α signaling by trapping it in ER-resident foci that are excluded from ER exit sites. Removing the requirement for trafficking by pharmacological elimination of the spatial separation of the ER and Golgi apparatus restored cleavage of ATF6α in the presence of Ceapins. Washout of Ceapins resensitized ATF6α to ER stress. These results suggest that trafficking of ATF6α is regulated by its oligomeric state. DOI: http://dx.doi.org/10.7554/eLife.11880.001 PMID:27435962

  4. Gravitropism and Lateral Root Emergence are Dependent on the Trans-Golgi Network Protein TNO1

    PubMed Central

    Roy, Rahul; Bassham, Diane C.

    2015-01-01

    The trans-Golgi network (TGN) is a dynamic organelle that functions as a relay station for receiving endocytosed cargo, directing secretory cargo, and trafficking to the vacuole. TGN-localized SYP41-interacting protein (TNO1) is a large, TGN-localized, coiled-coil protein that associates with the membrane fusion protein SYP41, a target SNARE, and is required for efficient protein trafficking to the vacuole. Here, we show that a tno1 mutant has auxin transport-related defects. Mutant roots have delayed lateral root emergence, decreased gravitropic bending of plant organs and increased sensitivity to the auxin analog 2,4-dichlorophenoxyacetic acid and the natural auxin 3-indoleacetic acid. Auxin asymmetry at the tips of elongating stage II lateral roots was reduced in the tno1 mutant, suggesting a role for TNO1 in cellular auxin transport during lateral root emergence. During gravistimulation, tno1 roots exhibited delayed auxin transport from the columella to the basal epidermal cells. Endocytosis to the TGN was unaffected in the mutant, indicating that bulk endocytic defects are not responsible for the observed phenotypes. Together these studies demonstrate a role for TNO1 in mediating auxin responses during root development and gravistimulation, potentially through trafficking of auxin transport proteins. PMID:26617617

  5. Lipid transfer proteins and the tuning of compartmental identity in the Golgi apparatus.

    PubMed

    McDermott, Mark I; Mousley, Carl J

    2016-10-01

    The Golgi complex constitutes a central way station of the eukaryotic endomembrane system, an intricate network of organelles engaged in control of membrane trafficking and the processing of various cellular components. Previous ideas of compartmental stability within this network are gradually being reshaped by concepts describing a biochemical continuum of hybrid organelles whose constitution is regulated by compartmental maturation. Membrane lipid composition and lipid signaling processes make fundamental contributions to compartmentalization strategies that are themselves critical for organizing cellular architecture and biochemical activities. Phosphatidylinositol transfer proteins (PITPs) are increasingly recognized as key regulators of membrane trafficking through the secretory pathway. They do so by coordinating lipid metabolism with lipid signaling, translating this information to core protein components of the membrane trafficking machinery. In this capacity, PITPs can be viewed as regulators of an essential lipid-protein interface of cisternal maturation. It is also now becoming appreciated, for the first time, that such an interface plays important roles in larger systems processes that link secretory pathway function with cell proliferation.

  6. Health implications of human trafficking.

    PubMed

    Richards, Tiffany A

    2014-01-01

    Freedom is arguably the most cherished right in the United States. But each year, approximately 14,500 to 17,500 women, men and children are trafficked into the United States for the purposes of forced labor or sexual exploitation. Human trafficking has significant effects on both physical and mental health. This article describes the features of human trafficking, its physical and mental health effects and the vital role nurses can play in providing care to this vulnerable population.

  7. Xylosylated-proteoglycan-induced Golgi alterations.

    PubMed Central

    Kanwar, Y S; Rosenzweig, L J; Jakubowski, M L

    1986-01-01

    The effect of p-nitrophenyl beta-D-xylopyranoside on the Golgi apparatus and proteoglycans (PG) of the renal glomerulus was investigated in an isolated kidney organ perfusion system and monitored by utilizing [35S]sulfate as the PG precursor. By electron microscopy, a selective intracytoplasmic vesiculization of Golgi apparatus of visceral epithelium was observed in the beta-xyloside-treated kidneys. Electron microscopic autoradiography revealed most grains localized to the intracytoplasmic Golgi-derived vesicles, while very few grains were associated with the extracellular matrix membranes. Biochemically, a 2.3-fold increase in cellular matrix and a reduction by a factor of 1.7 in extracellular matrix of [35S]sulfate incorporation was observed. Besides a larger macromolecular form (Kavg = 0.25; Mr = 130,000), lower molecular weight PGs were recovered in the cellular (Kavg = 0.46, Mr = 30,000) and matrical (Kavg = 0.42, Mr = 45,000) compartments after xyloside treatment. The xyloside treatment increased the incorporated radioactivity, mostly included in free glycosaminoglycans and small PGs, in the media fraction by 3.8-fold. These data indicate that xyloside induces a dramatic imbalance in the de novo-synthesized PGs of cellular and extracellular compartments and that cellular accumulation of xylosylated (sulfated) PGs selectively alters the Golgi apparatus of the glomerular epithelial cell, the cell that actively synthesizes PGs. Images PMID:3462708

  8. The Compartmental Organization of the Golgi Apparatus.

    ERIC Educational Resources Information Center

    Rothman, James E.

    1985-01-01

    Relations between structure and function of the Golgi apparatus are emerging from recent laboratory work on this cellular organelle which modifies proteins, sorts them, and packages them for delivery. The structure's three specialized compartments are explained through discussions of the glycosylation pathway, density-gradient experiments,…

  9. Formation of Tubulovesicular Carriers from Endosomes and Their Fusion to the trans-Golgi Network.

    PubMed

    Hierro, Aitor; Gershlick, David C; Rojas, Adriana L; Bonifacino, Juan S

    2015-01-01

    Endosomes undergo extensive spatiotemporal rearrangements as proteins and lipids flux through them in a series of fusion and fission events. These controlled changes enable the concentration of cargo for eventual degradation while ensuring the proper recycling of other components. A growing body of studies has now defined multiple recycling pathways from endosomes to the trans-Golgi network (TGN) which differ in their molecular machineries. The recycling process requires specific sets of lipids, coats, adaptors, and accessory proteins that coordinate cargo selection with membrane deformation and its association with the cytoskeleton. Specific tethering factors and SNARE (SNAP (Soluble NSF Attachment Protein) Receptor) complexes are then required for the docking and fusion with the acceptor membrane. Herein, we summarize some of the current knowledge of the machineries that govern the retrograde transport from endosomes to the TGN.

  10. Reconstitution of the Golgi apparatus after microinjection of rat liver Golgi fragments into Xenopus oocytes

    SciTech Connect

    Paiement, J.; Jolicoeur, M.; Fazel, A.; Bergeron, J.J.

    1989-04-01

    We have studied the reconstitution of the Golgi apparatus in vivo using an heterologous membrane transplant system. Endogenous glycopeptides of rat hepatic Golgi fragments were radiolabeled in vitro with (3H)sialic acid using detergent-free conditions. The Golgi fragments consisting of dispersed vesicles and tubules with intraluminal lipoprotein-like particles were then microinjected into Xenopus oocytes and their fate studied by light (LM) and electron microscope (EM) radioautography. 3 h after microinjection, radiolabel was observed by LM radioautography over yolk platelet-free cytoplasmic regions near the injection site. EM radioautography revealed label over Golgi stacked saccules containing the hepatic marker of intraluminal lipoprotein-like particles. At 14 h after injection, LM radioautographs revealed label in the superficial cortex of the oocytes between the yolk platelets and at the oocyte surface. EM radioautography identified the labeled structures as the stacked saccules of the Golgi apparatus, the oocyte cortical granules, and the plasmalemma, indicating that a proportion of microinjected material was transferred to the surface via the secretion pathway of the oocyte. The efficiency of transport was low, however, as biochemical studies failed to show extensive secretion of radiolabel into the extracellular medium by 14 h with approximately half the microinjected radiolabeled constituents degraded. Vinblastine (50 microM) administered to oocytes led to the formation of tubulin paracrystals. Although microinjected Golgi fragments were able to effect the formation of stacked saccules in vinblastine-treated oocytes, negligible transfer of heterologous material to the oocyte surface could be detected by radioautography.

  11. Box C/D Small Nucleolar RNA (snoRNA) U60 Regulates Intracellular Cholesterol Trafficking*

    PubMed Central

    Brandis, Katrina A.; Gale, Sarah; Jinn, Sarah; Langmade, Stephen J.; Dudley-Rucker, Nicole; Jiang, Hui; Sidhu, Rohini; Ren, Aileen; Goldberg, Anna; Schaffer, Jean E.; Ory, Daniel S.

    2013-01-01

    Mobilization of plasma membrane (PM) cholesterol to the endoplasmic reticulum is essential for cellular cholesterol homeostasis. The mechanisms regulating this retrograde, intermembrane cholesterol transfer are not well understood. Because mutant cells with defects in PM to endoplasmic reticulum cholesterol trafficking can be isolated on the basis of resistance to amphotericin B, we conducted an amphotericin B loss-of-function screen in Chinese hamster ovary (CHO) cells using insertional mutagenesis to identify genes that regulate this trafficking mechanism. Mutant line A1 displayed reduced cholesteryl ester formation from PM-derived cholesterol and increased de novo cholesterol synthesis, indicating a deficiency in retrograde cholesterol transport. Genotypic analysis revealed that the A1 cell line contained one disrupted allele of the U60 small nucleolar RNA (snoRNA) host gene, resulting in haploinsufficiency of the box C/D snoRNA U60. Complementation and mutational studies revealed the U60 snoRNA to be the essential feature from this locus that affects cholesterol trafficking. Lack of alteration in predicted U60-mediated site-directed methylation of 28 S rRNA in the A1 mutant suggests that the U60 snoRNA modulates cholesterol trafficking by a mechanism that is independent of this canonical function. Our study adds to a growing body of evidence for participation of small noncoding RNAs in cholesterol homeostasis and is the first to implicate a snoRNA in this cellular function. PMID:24174535

  12. Box C/D small nucleolar RNA (snoRNA) U60 regulates intracellular cholesterol trafficking.

    PubMed

    Brandis, Katrina A; Gale, Sarah; Jinn, Sarah; Langmade, Stephen J; Dudley-Rucker, Nicole; Jiang, Hui; Sidhu, Rohini; Ren, Aileen; Goldberg, Anna; Schaffer, Jean E; Ory, Daniel S

    2013-12-13

    Mobilization of plasma membrane (PM) cholesterol to the endoplasmic reticulum is essential for cellular cholesterol homeostasis. The mechanisms regulating this retrograde, intermembrane cholesterol transfer are not well understood. Because mutant cells with defects in PM to endoplasmic reticulum cholesterol trafficking can be isolated on the basis of resistance to amphotericin B, we conducted an amphotericin B loss-of-function screen in Chinese hamster ovary (CHO) cells using insertional mutagenesis to identify genes that regulate this trafficking mechanism. Mutant line A1 displayed reduced cholesteryl ester formation from PM-derived cholesterol and increased de novo cholesterol synthesis, indicating a deficiency in retrograde cholesterol transport. Genotypic analysis revealed that the A1 cell line contained one disrupted allele of the U60 small nucleolar RNA (snoRNA) host gene, resulting in haploinsufficiency of the box C/D snoRNA U60. Complementation and mutational studies revealed the U60 snoRNA to be the essential feature from this locus that affects cholesterol trafficking. Lack of alteration in predicted U60-mediated site-directed methylation of 28 S rRNA in the A1 mutant suggests that the U60 snoRNA modulates cholesterol trafficking by a mechanism that is independent of this canonical function. Our study adds to a growing body of evidence for participation of small noncoding RNAs in cholesterol homeostasis and is the first to implicate a snoRNA in this cellular function.

  13. Does Perceptual Learning Suffer from Retrograde Interference?

    PubMed Central

    Aberg, Kristoffer C.; Herzog, Michael H.

    2010-01-01

    In motor learning, training a task B can disrupt improvements of performance of a previously learned task A, indicating that learning needs consolidation. An influential study suggested that this is the case also for visual perceptual learning [1]. Using the same paradigm, we failed to reproduce these results. Further experiments with bisection stimuli also showed no retrograde disruption from task B on task A. Hence, for the tasks tested here, perceptual learning does not suffer from retrograde interference. PMID:21151868

  14. Onco-Golgi: Is Fragmentation a Gate to Cancer Progression?

    PubMed Central

    Petrosyan, Armen

    2015-01-01

    The Golgi apparatus-complex is a highly dynamic organelle which is considered the “heart” of intracellular transportation. Since its discovery by Camillo Golgi in 1873, who described it as the “black reaction,” and despite the enormous volume of publications about Golgi, this apparatus remains one of the most enigmatic of the cytoplasmic organelles. A typical mammalian Golgi consists of a parallel series of flattened, disk-shaped cisternae which align into stacks. The tremendous volume of Golgi-related incoming and outgoing traffic is mediated by different motor proteins, including members of the dynein, kinesin, and myosin families. Yet in spite of the strenuous work it performs, Golgi contrives to maintain its monolithic morphology and orchestration of matrix and residential proteins. However, in response to stress, alcohol, and treatment with many pharmacological drugs over time, Golgi undergoes a kind of disorganization which ranges from mild enlargement to critical scattering. While fragmentation of the Golgi was confirmed in cancer by electron microscopy almost fifty years ago, it is only in recent years that we have begun to understand the significance of Golgi fragmentation in the biology of tumors. Below author would like to focus on how Golgi fragmentation opens the doors for cascades of fatal pathways which may facilitate cancer progression and metastasis. Among the issues addressed will be the most important cancer-specific hallmarks of Golgi fragmentation, including aberrant glycosylation, abnormal expression of the Ras GTPases, dysregulation of kinases, and hyperactivity of myosin motor proteins. PMID:27064441

  15. Characterization of trans-neuronal trafficking of Cbln1.

    PubMed

    Wei, Peng; Rong, Yongqi; Li, Leyi; Bao, Dashi; Morgan, James I

    2009-06-01

    Cbln1, a glycoprotein secreted from granule cells and GluRdelta2 in the postsynaptic densities of Purkinje cells are components of an incompletely understood pathway essential for integrity and plasticity of parallel fiber-Purkinje cell synapses. We show that Cbln1 undergoes anterograde transport from granule cells to Purkinje cells and Bergmann glia, and enters the endolysosomal trafficking system, raising the possibility that Cbln1 exerts its activity on or within Purkinje cells and Bergmann glia. Cbln1 is absent in Purkinje cells and Bergmann glia of GluRdelta2-null mice, suggesting a mechanistic convergence on Cbln1 trafficking. Ectopic expression of Cbln1 in Purkinje cells of L7-cbln1 transgenic mice reveals Cbln1 undergoes anterograde and retrograde trans-neuronal trafficking even across synapses that lack GluRDelta2, indicating that it is not universally essential for Cbln1 transport. The L7-cbln1 transgene also ameliorates the locomotor deficits of cbln1-null mice, indicating that the presence and/or release of Cbln1 from the postsynaptic neuron has functional consequences.

  16. Functions of kinesin superfamily proteins in neuroreceptor trafficking.

    PubMed

    Wang, Na; Xu, Junyu

    2015-01-01

    Synaptic plasticity is widely regarded as the cellular basis of learning and memory. Understanding the molecular mechanism of synaptic plasticity has been one of center pieces of neuroscience research for more than three decades. It has been well known that the trafficking of α-amino-3-hydroxy-5-methylisoxazoloe-4-propionic acid- (AMPA-) type, N-methyl-D-aspartate- (NMDA-) type glutamate receptors to and from synapses is a key molecular event underlying many forms of synaptic plasticity. Kainate receptors are another type of glutamate receptors playing important roles in synaptic transmission. In addition, GABA receptors also play important roles in modulating the synaptic plasticity. Kinesin superfamily proteins (also known as KIFs) transport various cargos in both anterograde and retrograde directions through the interaction with different adaptor proteins. Recent studies indicate that KIFs regulate the trafficking of NMDA receptors, AMPA receptors, kainate receptors, and GABA receptors and thus play important roles in neuronal activity. Here we review the essential functions of KIFs in the trafficking of neuroreceptor and synaptic plasticity.

  17. Manganese induces oligomerization to promote down-regulation of the intracellular trafficking receptor used by Shiga toxin

    PubMed Central

    Tewari, Ritika; Jarvela, Timothy; Linstedt, Adam D.

    2014-01-01

    Manganese (Mn) protects cells against lethal doses of purified Shiga toxin by causing the degradation of the cycling transmembrane protein GPP130, which the toxin uses as a trafficking receptor. Mn-induced GPP130 down-regulation, in addition to being a potential therapeutic approach against Shiga toxicosis, is a model for the study of metal-regulated protein sorting. Significantly, however, the mechanism by which Mn regulates GPP130 trafficking is unknown. Here we show that a transferable trafficking determinant within GPP130 bound Mn and that Mn binding induced GPP130 oligomerization in the Golgi. Alanine substitutions blocking Mn binding abrogated both oligomerization of GPP130 and GPP130 sorting from the Golgi to lysosomes. Further, oligomerization was sufficient because forced aggregation, using a drug-controlled polymerization domain, redirected GPP130 to lysosomes in the absence of Mn. These experiments reveal metal-induced oligomerization as a Golgi sorting mechanism for a medically relevant receptor for Shiga toxin. PMID:25079690

  18. Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II

    PubMed Central

    Foulquier, François; Vasile, Eliza; Schollen, Els; Callewaert, Nico; Raemaekers, Tim; Quelhas, Dulce; Jaeken, Jaak; Mills, Philippa; Winchester, Bryan; Krieger, Monty; Annaert, Wim; Matthijs, Gert

    2006-01-01

    The conserved oligomeric Golgi (COG) complex is a heterooctameric complex that regulates intraGolgi trafficking and the integrity of the Golgi compartment in eukaryotic cells. Here, we describe a patient with a mild form of congenital disorder of glycosylation type II (CDG-II) that is caused by a deficiency in the Cog1 subunit of the complex. This patient has a defect in both N- and O-glycosylation. Mass spectrometric analysis of the structures of the N-linked glycans released from glycoproteins from the patient's serum revealed a reduction in sialic acid and galactose residues. Peanut agglutinin (PNA) lectin staining revealed a decrease in sialic acids on core 1 mucin type O-glycans, indicating a combined defect in N- and O-glycosylation. Sequence analysis of the COG1 cDNA and gene identified a homozygous insertion of a single nucleotide (2659–2660insC), which is predicted to lead to a premature translation stop and truncation of the C terminus of the Cog1 protein by 80 amino acids. This mutation destabilizes several other COG subunits and alters their subcellular localization and hence the overall integrity of the COG complex. This results in reduced levels and/or altered Golgi localization of α-mannosidase II and β-1,4 galactosyltransferase I, which links it to the glycosylation deficiency. Transfection of primary fibroblasts of this patient with the full length hemagglutinin-tagged Cog1 indeed restored β-1,4 galactosyltransferase Golgi localization. We propose naming this disorder CDG-II/Cog1, or CDG-II caused by Cog1 deficiency. PMID:16537452

  19. A Novel Pulse-Chase Paradigm to Visualize the Trafficking of Transport Vesicles in Neurons

    NASA Astrophysics Data System (ADS)

    Al-Bassam, Sarmad

    In neurons transmembrane proteins are targeted to dendrites in vesicles that traffic solely within the somatodendritic compartment. How these vesicles are retained within the somatodendritic domain is unknown. Here we adapt a novel pulse chase system that allows synchronous release of exogenous transmembrane proteins from the endoplasmic reticulum using FKBP12 and Rapamycin. We demonstrate proof-of-concept and establish protein trafficking controls in incremental steps. We demonstrate the utility of this approach in studying protein trafficking and establish parameters for analysis of time-lapse images. We implement this novel pulse-chase strategy to track the movements of post-Golgi transport vesicles. Surprisingly, we found that post-Golgi vesicles carrying dendritic proteins were equally likely to enter axons and dendrites. However, once such vesicles entered the axon they very rarely moved beyond the axon initial segment, but instead either halted or reversed direction in an actin and Myosin Va-dependent manner. In contrast, vesicles carrying either an axonal or a nonspecifically localized protein only rarely halted or reversed and instead generally proceeded to the distal axon. Thus, our results are consistent with the axon initial segment behaving as a vesicle filter that mediates the differential trafficking of transport vesicles.

  20. Retrogradation enthalpy does not always reflect the retrogradation behavior of gelatinized starch.

    PubMed

    Wang, Shujun; Li, Caili; Zhang, Xiu; Copeland, Les; Wang, Shuo

    2016-02-10

    Starch retrogradation is a term used to define the process in which gelatinized starch undergoes a disorder-to-order transition. A thorough understanding of starch retrogradation behavior plays an important role in maintaining the quality of starchy foods during storage. By means of DSC, we have demonstrated for the first time that at low water contents, the enthalpy change of retrograded starch is higher than that of native starch. In terms of FTIR and Raman spectroscopic results, we showed that the molecular order of reheated retrograded starch samples is lower than that of DSC gelatinized starch. These findings have led us to conclude that enthalpy change of retrograded starch at low water contents involves the melting of recrystallized starch during storage and residual starch crystallites after DSC gelatinization, and that the endothermic transition of retrograded starch gels at low water contents does not fully represent the retrogradation behavior of starch. Very low or high water contents do not favor the occurrence of starch retrogradation.

  1. Retrogradation enthalpy does not always reflect the retrogradation behavior of gelatinized starch

    PubMed Central

    Wang, Shujun; Li, Caili; Zhang, Xiu; Copeland, Les; Wang, Shuo

    2016-01-01

    Starch retrogradation is a term used to define the process in which gelatinized starch undergoes a disorder-to-order transition. A thorough understanding of starch retrogradation behavior plays an important role in maintaining the quality of starchy foods during storage. By means of DSC, we have demonstrated for the first time that at low water contents, the enthalpy change of retrograded starch is higher than that of native starch. In terms of FTIR and Raman spectroscopic results, we showed that the molecular order of reheated retrograded starch samples is lower than that of DSC gelatinized starch. These findings have led us to conclude that enthalpy change of retrograded starch at low water contents involves the melting of recrystallized starch during storage and residual starch crystallites after DSC gelatinization, and that the endothermic transition of retrograded starch gels at low water contents does not fully represent the retrogradation behavior of starch. Very low or high water contents do not favor the occurrence of starch retrogradation. PMID:26860788

  2. Lack of CD2AP disrupts Glut4 trafficking and attenuates glucose uptake in podocytes.

    PubMed

    Tolvanen, Tuomas A; Dash, Surjya Narayan; Polianskyte-Prause, Zydrune; Dumont, Vincent; Lehtonen, Sanna

    2015-12-15

    The adapter protein CD2-associated protein (CD2AP) functions in various signaling and vesicle trafficking pathways, including endosomal sorting and/or trafficking and degradation pathways. Here, we investigated the role of CD2AP in insulin-dependent glucose transporter 4 (Glut4, also known as SLC2A4) trafficking and glucose uptake. Glucose uptake was attenuated in CD2AP(-/-) podocytes compared with wild-type podocytes in the basal state, and CD2AP(-/-) podocytes failed to increase glucose uptake in response to insulin. Live-cell imaging revealed dynamic trafficking of HA-Glut4-GFP in wild-type podocytes, whereas in CD2AP(-/-) podocytes, HA-Glut4-GFP clustered perinuclearly. In subcellular membrane fractionations, CD2AP co-fractionated with Glut4, IRAP (also known as LNPEP) and sortilin, constituents of Glut4 storage vesicles (GSVs). We further found that CD2AP forms a complex with GGA2, a clathrin adaptor, which sorts Glut4 to GSVs, suggesting a role for CD2AP in this process. We also found that CD2AP forms a complex with clathrin and connects clathrin to actin in the perinuclear region. Furthermore, clathrin recycling back to trans-Golgi membranes from the vesicular fraction containing GSVs was defective in the absence of CD2AP. This leads to reduced insulin-stimulated trafficking of GSVs and attenuated glucose uptake into CD2AP(-/-) podocytes.

  3. Rabies virus envelope glycoprotein targets lentiviral vectors to the axonal retrograde pathway in motor neurons.

    PubMed

    Hislop, James N; Islam, Tarin A; Eleftheriadou, Ioanna; Carpentier, David C J; Trabalza, Antonio; Parkinson, Michael; Schiavo, Giampietro; Mazarakis, Nicholas D

    2014-06-06

    Rabies pseudotyped lentiviral vectors have great potential in gene therapy, not least because of their ability to transduce neurons following their distal axonal application. However, very little is known about the molecular processes that underlie their retrograde transport and cell transduction. Using multiple labeling techniques and confocal microscopy, we demonstrated that pseudotyping with rabies virus envelope glycoprotein (RV-G) enabled the axonal retrograde transport of two distinct subtypes of lentiviral vector in motor neuron cultures. Analysis of this process revealed that these vectors trafficked through Rab5-positive endosomes and accumulated within a non-acidic Rab7 compartment. RV-G pseudotyped vectors were co-transported with both the tetanus neurotoxin-binding fragment and the membrane proteins thought to mediate rabies virus endocytosis (neural cell adhesion molecule, nicotinic acetylcholine receptor, and p75 neurotrophin receptor), thus demonstrating that pseudotyping with RV-G targets lentiviral vectors for transport along the same pathway exploited by several toxins and viruses. Using motor neurons cultured in compartmentalized chambers, we demonstrated that axonal retrograde transport of these vectors was rapid and efficient; however, it was not able to transduce the targeted neurons efficiently, suggesting that impairment in processes occurring after arrival of the viral vector in the soma is responsible for the low transduction efficiency seen in vivo, which suggests a novel area for improvement of gene therapy vectors.

  4. WD60/FAP163 is a dynein intermediate chain required for retrograde intraflagellar transport in cilia

    PubMed Central

    Patel-King, Ramila S.; Gilberti, Renée M.; Hom, Erik F. Y.; King, Stephen M.

    2013-01-01

    Retrograde intraflagellar transport (IFT) is required for assembly of cilia. We identify a Chlamydomonas flagellar protein (flagellar-associated protein 163 [FAP163]) as being closely related to the D1bIC(FAP133) intermediate chain (IC) of the dynein that powers this movement. Biochemical analysis revealed that FAP163 is present in the flagellar matrix and is actively trafficked by IFT. Furthermore, FAP163 copurified with D1bIC(FAP133) and the LC8 dynein light chain, indicating that it is an integral component of the retrograde IFT dynein. To assess the functional role of FAP163, we generated an RNA interference knockdown of the orthologous protein (WD60) in planaria. The Smed-wd60(RNAi) animals had a severe ciliary assembly defect that dramatically compromised whole-organism motility. Most cilia were present as short stubs that had accumulated large quantities of IFT particle–like material between the doublet microtubules and the membrane. The few remaining approximately full-length cilia had a chaotic beat with a frequency reduced from 24 to ∼10 Hz. Thus WD60/FAP163 is a dynein IC that is absolutely required for retrograde IFT and ciliary assembly. PMID:23864713

  5. WD60/FAP163 is a dynein intermediate chain required for retrograde intraflagellar transport in cilia.

    PubMed

    Patel-King, Ramila S; Gilberti, Renée M; Hom, Erik F Y; King, Stephen M

    2013-09-01

    Retrograde intraflagellar transport (IFT) is required for assembly of cilia. We identify a Chlamydomonas flagellar protein (flagellar-associated protein 163 [FAP163]) as being closely related to the D1bIC(FAP133) intermediate chain (IC) of the dynein that powers this movement. Biochemical analysis revealed that FAP163 is present in the flagellar matrix and is actively trafficked by IFT. Furthermore, FAP163 copurified with D1bIC(FAP133) and the LC8 dynein light chain, indicating that it is an integral component of the retrograde IFT dynein. To assess the functional role of FAP163, we generated an RNA interference knockdown of the orthologous protein (WD60) in planaria. The Smed-wd60(RNAi) animals had a severe ciliary assembly defect that dramatically compromised whole-organism motility. Most cilia were present as short stubs that had accumulated large quantities of IFT particle-like material between the doublet microtubules and the membrane. The few remaining approximately full-length cilia had a chaotic beat with a frequency reduced from 24 to ∼10 Hz. Thus WD60/FAP163 is a dynein IC that is absolutely required for retrograde IFT and ciliary assembly.

  6. Active Trafficking of Alpha 1 Antitrypsin across the Lung Endothelium

    PubMed Central

    Lockett, Angelia D.; Brown, Mary Beth; Santos-Falcon, Nieves; Rush, Natalia I.; Oueini, Houssam; Oberle, Amber J.; Bolanis, Esther; Fragoso, Miryam A.; Petrusca, Daniela N.; Serban, Karina A.; Schweitzer, Kelly S.; Presson Jr., Robert G.

    2014-01-01

    The homeostatic lung protective effects of alpha-1 antitrypsin (A1AT) may require the transport of circulating proteinase inhibitor across an intact lung endothelial barrier. We hypothesized that uninjured pulmonary endothelial cells transport A1AT to lung epithelial cells. Purified human A1AT was rapidly taken up by confluent primary rat pulmonary endothelial cell monolayers, was secreted extracellularly, both apically and basolaterally, and was taken up by adjacent rat lung epithelial cells co-cultured on polarized transwells. Similarly, polarized primary human lung epithelial cells took up basolaterally-, but not apically-supplied A1AT, followed by apical secretion. Evidence of A1AT transcytosis across lung microcirculation was confirmed in vivo by two-photon intravital microscopy in mice. Time-lapse confocal microscopy indicated that A1AT co-localized with Golgi in the endothelium whilst inhibition of the classical secretory pathway with tunicamycin significantly increased intracellular retention of A1AT. However, inhibition of Golgi secretion promoted non-classical A1AT secretion, associated with microparticle release. Polymerized A1AT or A1AT supplied to endothelial cells exposed to soluble cigarette smoke extract had decreased transcytosis. These results suggest previously unappreciated pathways of A1AT bidirectional uptake and secretion from lung endothelial cells towards the alveolar epithelium and airspaces. A1AT trafficking may determine its functional bioavailablity in the lung, which could be impaired in individuals exposed to smoking or in those with A1AT deficiency. PMID:24743137

  7. Ornithine decarboxylase antizyme inhibitor 2 regulates intracellular vesicle trafficking

    SciTech Connect

    Kanerva, Kristiina; Maekitie, Laura T.; Baeck, Nils; Andersson, Leif C.

    2010-07-01

    Antizyme inhibitor 1 (AZIN1) and 2 (AZIN2) are proteins that activate ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis. Both AZINs release ODC from its inactive complex with antizyme (AZ), leading to formation of the catalytically active ODC. The ubiquitously expressed AZIN1 is involved in cell proliferation and transformation whereas the role of the recently found AZIN2 in cellular functions is unknown. Here we report the intracellular localization of AZIN2 and present novel evidence indicating that it acts as a regulator of vesicle trafficking. We used immunostaining to demonstrate that both endogenous and FLAG-tagged AZIN2 localize to post-Golgi vesicles of the secretory pathway. Immuno-electron microscopy revealed that the vesicles associate mainly with the trans-Golgi network (TGN). RNAi-mediated knockdown of AZIN2 or depletion of cellular polyamines caused selective fragmentation of the TGN and retarded the exocytotic release of vesicular stomatitis virus glycoprotein. Exogenous addition of polyamines normalized the morphological changes and reversed the inhibition of protein secretion. Our findings demonstrate that AZIN2 regulates the transport of secretory vesicles by locally activating ODC and polyamine biosynthesis.

  8. Regulation of G protein-coupled receptor export trafficking

    PubMed Central

    Dong, Chunmin; Filipeanu, Catalin M.; Duvernay, Matthew T.; Wu, Guangyu

    2007-01-01

    G protein-coupled receptors (GPCRs) constitute a superfamily of cell-surface receptors which share a common topology of seven transmembrane domains and modulate a variety of cell functions through coupling to heterotrimeric G proteins by responding to a vast array of stimuli. The magnitude of cellular response elicited by a given signal is dictated by the level of GPCR expression at the plasma membrane, which is the balance of elaborately regulated endocytic and exocytic trafficking. This review will cover recent advances in understanding the molecular mechanism underlying anterograde transport of the newly synthesized GPCRs from the endoplasmic reticulum (ER) through the Golgi to the plasma membrane. We will focus on recently identified motifs involved in GPCR exit from the ER and the Golgi, GPCR folding in the ER and the rescue of misfolded receptors from within, GPCR-interacting proteins that modulate receptor cell-surface targeting, pathways that mediate GPCR traffic, and the functional role of export in controlling GPCR signaling. PMID:17074298

  9. Nonequilibrium description of de novo biogenesis and transport through Golgi-like cisternae

    PubMed Central

    Sachdeva, Himani; Barma, Mustansir; Rao, Madan

    2016-01-01

    A central issue in cell biology is the physico-chemical basis of organelle biogenesis in intracellular trafficking pathways, its most impressive manifestation being the biogenesis of Golgi cisternae. At a basic level, such morphologically and chemically distinct compartments should arise from an interplay between the molecular transport and chemical maturation. Here, we formulate analytically tractable, minimalist models, that incorporate this interplay between transport and chemical progression in physical space, and explore the conditions for de novo biogenesis of distinct cisternae. We propose new quantitative measures that can discriminate between the various models of transport in a qualitative manner–this includes measures of the dynamics in steady state and the dynamical response to perturbations of the kind amenable to live-cell imaging. PMID:27991496

  10. Nonequilibrium description of de novo biogenesis and transport through Golgi-like cisternae.

    PubMed

    Sachdeva, Himani; Barma, Mustansir; Rao, Madan

    2016-12-19

    A central issue in cell biology is the physico-chemical basis of organelle biogenesis in intracellular trafficking pathways, its most impressive manifestation being the biogenesis of Golgi cisternae. At a basic level, such morphologically and chemically distinct compartments should arise from an interplay between the molecular transport and chemical maturation. Here, we formulate analytically tractable, minimalist models, that incorporate this interplay between transport and chemical progression in physical space, and explore the conditions for de novo biogenesis of distinct cisternae. We propose new quantitative measures that can discriminate between the various models of transport in a qualitative manner-this includes measures of the dynamics in steady state and the dynamical response to perturbations of the kind amenable to live-cell imaging.

  11. Nonequilibrium description of de novo biogenesis and transport through Golgi-like cisternae

    NASA Astrophysics Data System (ADS)

    Sachdeva, Himani; Barma, Mustansir; Rao, Madan

    2016-12-01

    A central issue in cell biology is the physico-chemical basis of organelle biogenesis in intracellular trafficking pathways, its most impressive manifestation being the biogenesis of Golgi cisternae. At a basic level, such morphologically and chemically distinct compartments should arise from an interplay between the molecular transport and chemical maturation. Here, we formulate analytically tractable, minimalist models, that incorporate this interplay between transport and chemical progression in physical space, and explore the conditions for de novo biogenesis of distinct cisternae. We propose new quantitative measures that can discriminate between the various models of transport in a qualitative manner–this includes measures of the dynamics in steady state and the dynamical response to perturbations of the kind amenable to live-cell imaging.

  12. Imp2, the PSTPIP homolog in fission yeast, affects sensitivity to the immunosuppressant FK506 and membrane trafficking in fission yeast

    SciTech Connect

    Kita, Ayako; Higa, Mari; Doi, Akira; Satoh, Ryosuke; Sugiura, Reiko

    2015-02-13

    Cytokinesis is a highly ordered process that divides one cell into two cells, which is functionally linked to the dynamic remodeling of the plasma membrane coordinately with various events such as membrane trafficking. Calcineurin is a highly conserved serine/threonine protein phosphatase, which regulates multiple biological functions, such as membrane trafficking and cytokinesis. Here, we isolated imp2-c3, a mutant allele of the imp2{sup +} gene, encoding a homolog of the mouse PSTPIP1 (proline-serine-threonine phosphatase interacting protein 1), using a genetic screen for mutations that are synthetically lethal with calcineurin deletion in fission yeast. The imp2-c3 mutants showed a defect in cytokinesis with multi-septated phenotypes, which was further enhanced upon treatment with the calcineurin inhibitor FK506. Notably, electron micrographs revealed that the imp2-c3 mutant cells accumulated aberrant multi-lamella Golgi structures and putative post-Golgi secretory vesicles, and exhibited fragmented vacuoles in addition to thickened septa. Consistently, imp2-c3 mutants showed a reduced secretion of acid phosphatase and defects in vacuole fusion. The imp2-c3 mutant cells exhibited a weakened cell wall, similar to the membrane trafficking mutants identified in the same genetic screen such as ypt3-i5. These findings implicate the PSTPIP1 homolog Imp2 in Golgi/vacuole function, thereby affecting various cellular processes, including cytokinesis and cell integrity. - Highlights: • We isolated imp2-c3, in a synthetic lethal screen with calcineurin in fission yeast. • The imp2{sup +} gene encodes a component of the actin contractile ring similar to Cdc15. • The imp2-c3 mutants showed defects in cytokinesis, which were exacerbated by FK506. • The imp2-c3 mutants were defective in membrane trafficking and cell wall integrity. • Our study revealed a novel role for Imp2 in the Golgi/vacuolar membrane trafficking.

  13. Vesicles versus Tubes: Is Endoplasmic Reticulum-Golgi Transport in Plants Fundamentally Different from Other Eukaryotes?1

    PubMed Central

    Robinson, David G.; Brandizzi, Federica; Nakano, Akihiko

    2015-01-01

    The endoplasmic reticulum (ER) is the gateway to the secretory pathway in all eukaryotic cells. Its products subsequently pass through the Golgi apparatus on the way to the cell surface (true secretion) or to the lytic compartment of the cell (vacuolar protein transport). In animal cells, the Golgi apparatus is present as a stationary larger order complex near the nucleus, and transport between the cortical ER and the Golgi complex occurs via an intermediate compartment which is transported on microtubules. By contrast, higher plant cells have discrete mobile Golgi stacks that move along the cortical ER, and the intermediate compartment is absent. Although many of the major molecular players involved in ER-Golgi trafficking in mammalian and yeast (Saccharomyces cerevisiae) cells have homologs in higher plants, the narrow interface (less than 500 nm) between the Golgi and the ER, together with the motility factor, makes the identification of the transport vectors responsible for bidirectional traffic between these two organelles much more difficult. Over the years, a controversy has arisen over the two major possibilities by which transfer can occur: through vesicles or direct tubular connections. In this article, four leading plant cell biologists attempted to resolve this issue. Unfortunately, their opinions are so divergent and often opposing that it was not possible to reach a consensus. Thus, we decided to let each tell his or her version individually. The review begins with an article by Federica Brandizzi that provides the necessary molecular background on coat protein complexes in relation to the so-called secretory units model for ER-Golgi transport in highly vacuolated plant cells. The second article, written by Chris Hawes, presents the evidence in favor of tubules. It is followed by an article from David Robinson defending the classical notion that transport occurs via vesicles. The last article, by Akihiko Nakano, introduces the reader to possible

  14. Nitric oxide scavenging causes remodeling of the endoplasmic reticulum, Golgi apparatus and mitochondria in pulmonary arterial endothelial cells.

    PubMed

    Lee, Jason E; Yuan, Huijuan; Liang, Feng-Xia; Sehgal, Pravin B

    2013-09-01

    The dependence of the structure and function of cytoplasmic organelles in endothelial cells on constitutively produced intracellular nitric oxide (NO) remains largely unexplored. We previously reported fragmentation of the Golgi apparatus in cells exposed to NO scavengers or after siRNA-mediated knockdown of eNOS. Others have reported increased mitochondrial fission in response to an NO donor. Functionally, we previously reported that bovine pulmonary arterial endothelial cells (PAECs) exposed to the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) developed a prosecretory phenotype characterized by prolonged secretion of soluble proteins. In the present study, we investigated whether NO scavenging led to remodeling of the endoplasmic reticulum (ER). Live-cell DAF-2DA imaging confirmed the presence of intracellular NO in association with the BODIPY C5-ceramide-labeled Golgi apparatus. Untreated human PAECs displayed a pattern of peripheral tubulo-reticular ER with a juxtanuclear accumulation of ER sheets. Cells exposed to c-PTIO showed a dramatic increase in ER sheets as assayed using immunofluorescence for the ER structural protein reticulon-4b/Nogo-B and the ER-resident GTPase atlastin-3, live-cell fluorescence assays using RTN4-GFP and KDEL-mCherry, and electron microscopy methods. These ER changes were inhibited by the NO donor diethylamine NONOate, and also produced by L-NAME, but not D-NAME or 8-br-cGMP. This ER remodeling was accompanied by Golgi fragmentation and increased fibrillarity and function of mitochondria (uptake of tetramethyl-rhodamine, TMRE). Despite Golgi fragmentation the functional ER/Golgi trafficking unit was preserved as seen by the accumulation of Sec31A ER exit sites adjacent to the dispersed Golgi elements and a 1.8-fold increase in secretion of soluble cargo. Western blotting and immunopanning data showed that RTN4b was increasingly ubiquitinated following c-PTIO exposure, especially in the

  15. Nitric oxide scavenging causes remodeling of the endoplasmic reticulum, Golgi apparatus and mitochondria in pulmonary arterial endothelial cells

    PubMed Central

    Lee, Jason E.; Yuan, Huijuan; Liang, Feng-Xia; Sehgal, Pravin B.

    2013-01-01

    The dependence of the structure and function of cytoplasmic organelles in endothelial cells on constitutively produced intracellular nitric oxide (NO) remains largely unexplored. We previously reported fragmentation of the Golgi apparatus in cells exposed to NO scavengers or after siRNA-mediated knockdown of eNOS. Others have reported increased mitochondrial fission in response to an NO donor. Functionally, we previously reported that bovine pulmonary arterial endothelial cells (PAECs) exposed to the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5- tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) developed a prosecretory phenotype characterized by prolonged secretion of soluble proteins. In the present study, we investigated whether NO scavenging led to remodeling of the endoplasmic reticulum (ER). Live-cell DAF-2DA imaging confirmed the presence of intracellular NO in association with the BODIPY C5- ceramide-labelled Golgi apparatus. Untreated human PAECs displayed a pattern of peripheral tubulo-reticular ER with a juxtanuclear accumulation of ER sheets. Cells exposed to c-PTIO showed a dramatic increase in ER sheets as assayed using immunofluoresence for the ER structural protein reticulon-4b/Nogo-B and the ER-resident GTPase atlastin-3, live-cell fluorescence assays using RTN4-GFP and KDEL-mCherry, and electron microscopy methods. These ER changes were inhibited by the NO donor diethylamine NONOate, and also produced by L-NAME, but not D-NAME or 8-br-cGMP. This ER remodeling was accompanied by Golgi fragmentation and increased fibrillarity and function of mitochondria (uptake of tetramethyl- rhodamine, TMRE). Despite Golgi fragmentation the functional ER/Golgi trafficking unit was preserved as seen by the accumulation of Sec31A ER exit sites adjacent to the dispersed Golgi elements and a 1.8-fold increase in secretion of soluble cargo. Western blotting and immunopanning data showed that RTN4b was increasingly ubiquitinated following c-PTIO exposure, especially in the

  16. α-Synuclein–induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models

    PubMed Central

    Mazzulli, Joseph R.; Zunke, Friederike; Isacson, Ole; Studer, Lorenz; Krainc, Dimitri

    2016-01-01

    Parkinson’s disease (PD) is an age-related neurodegenerative disorder characterized by the accumulation of protein aggregates comprised of α-synuclein (α-syn). A major barrier in treatment discovery for PD is the lack of identifiable therapeutic pathways capable of reducing aggregates in human neuronal model systems. Mutations in key components of protein trafficking and cellular degradation machinery represent important risk factors for PD; however, their precise role in disease progression and interaction with α-syn remains unclear. Here, we find that α-syn accumulation reduced lysosomal degradation capacity in human midbrain dopamine models of synucleinopathies through disrupting hydrolase trafficking. Accumulation of α-syn at the cell body resulted in aberrant association with cis-Golgi–tethering factor GM130 and disrupted the endoplasmic reticulum-Golgi localization of rab1a, a key mediator of vesicular transport. Overexpression of rab1a restored Golgi structure, improved hydrolase trafficking and activity, and reduced pathological α-syn in patient neurons. Our work suggests that enhancement of lysosomal hydrolase trafficking may prove beneficial in synucleinopathies and indicates that human midbrain disease models may be useful for identifying critical therapeutic pathways in PD and related disorders. PMID:26839413

  17. Role of the Conserved Oligomeric Golgi Complex in the Abnormalities of Glycoprotein Processing in Breast Cancer Cells

    DTIC Science & Technology

    2005-05-01

    CCD vesicles ’ 0(Fig. 8 C, inset). 0 Detailed analysis of >200 VSVG-GFP-positive cells re- vealed some minor trafficking defects and/or kinetic delays...Duden, Royal Holloway Univer- the microscope stage in a chamber at RT in DME /F 12 withoul phenol red sity of London, Egham, Surrey), rabbit pAb and...retrograde transport Cy3-Shiga toxin B subunit (STB- Monolayer HeLa cells were cultured in DME /F-12 media supplemented Cy3; Mallard et al., 1998) was used

  18. 31 CFR 536.311 - Narcotics trafficking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Narcotics trafficking. 536.311 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NARCOTICS TRAFFICKING SANCTIONS REGULATIONS General Definitions § 536.311 Narcotics trafficking. The term narcotics trafficking means any activity...

  19. 31 CFR 536.311 - Narcotics trafficking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Narcotics trafficking. 536.311... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NARCOTICS TRAFFICKING SANCTIONS REGULATIONS General Definitions § 536.311 Narcotics trafficking. The term narcotics trafficking means any...

  20. 31 CFR 536.311 - Narcotics trafficking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Narcotics trafficking. 536.311 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NARCOTICS TRAFFICKING SANCTIONS REGULATIONS General Definitions § 536.311 Narcotics trafficking. The term narcotics trafficking means any activity...

  1. 31 CFR 536.311 - Narcotics trafficking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Narcotics trafficking. 536.311 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NARCOTICS TRAFFICKING SANCTIONS REGULATIONS General Definitions § 536.311 Narcotics trafficking. The term narcotics trafficking means any activity...

  2. 31 CFR 536.311 - Narcotics trafficking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Narcotics trafficking. 536.311 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NARCOTICS TRAFFICKING SANCTIONS REGULATIONS General Definitions § 536.311 Narcotics trafficking. The term narcotics trafficking means any activity...

  3. Above and beyond C5a Receptor Targeting by Staphylococcal Leucotoxins: Retrograde Transport of Panton–Valentine Leucocidin and γ-Hemolysin

    PubMed Central

    Zimmermann-Meisse, Gaëlle; Prévost, Gilles; Jover, Emmanuel

    2017-01-01

    Various membrane receptors associated with the innate immune response have recently been identified as mediators of the cellular action of Staphylococcus aureus leucotoxins. Two of these, the Panton–Valentine leucotoxin LukS-PV/LukF-PV and the γ-hemolysin HlgC/HlgB, bind the C5a complement-derived peptide receptor. These leucotoxins utilize the receptor to induce intracellular Ca2+ release from internal stores, other than those activated by C5a. The two leucotoxins are internalized with the phosphorylated receptor, but it is unknown whether they divert retrograde transport of the receptor or follow another pathway. Immunolabeling and confocal microscopic techniques were used to analyze the presence of leucotoxins in endosomes, lysosomes, endoplasmic reticulum, and Golgi. The two leucotoxins apparently followed retrograde transport similar to that of the C5a peptide-activated receptor. However, HlgC/HlgB reached the Golgi network very early, whereas LukS-PV/LukF-PV followed slower kinetics. The HlgC/HlgB leucotoxin remained in neutrophils 6 h after a 10-min incubation of the cells in the presence of the toxin with no signs of apoptosis, whereas apoptosis was observed 3 h after neutrophils were incubated with LukS-PV/LukF-PV. Such retrograde transport of leucotoxins provides a novel understanding of the cellular effects initiated by sublytic concentrations of these toxins. PMID:28117704

  4. Identification and localization of ERD2 in the malaria parasite Plasmodium falciparum: separation from sites of sphingomyelin synthesis and implications for organization of the Golgi.

    PubMed Central

    Elmendorf, H G; Haldar, K

    1993-01-01

    The ERD2 gene product in mammalian cells and yeast is a receptor required for protein retention in the endoplasmic reticulum (ER); immunolocalization studies indicate that the protein is concentrated in the cis Golgi. We have identified a homologue of ERD2 in the malaria parasite, Plasmodium falciparum (PfERD2). The deduced protein sequence is 42% identical to mammalian and yeast homologues and bears striking homology in its proposed tertiary structure. PfERD2 is tightly confined to a single focus of staining in the perinuclear region as seen by indirect immunofluorescence. This is redistributed by brefeldin A (BFA) to a diffuse pattern similar to that of parasite BiP, a marker for the ER; removal of the drug results in recovery of the single focus, consistent with the localization of PfERD2 to the parasite Golgi and its participation in a retrograde transport pathway to the ER. Sphingomyelin synthesis is a second resident activity of the cis Golgi whose organization is sensitive to BFA in mammalian cells. Within the parasite it again localizes to a perinuclear region but does not reorganize upon BFA treatment. The results strongly suggest that these two activities are in distinct compartments of the Golgi in the malaria parasite. Images PMID:8223485

  5. Process for forming retrograde profiles in silicon

    DOEpatents

    Weiner, K.H.; Sigmon, T.W.

    1996-10-15

    A process is disclosed for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

  6. Process for forming retrograde profiles in silicon

    DOEpatents

    Weiner, Kurt H.; Sigmon, Thomas W.

    1996-01-01

    A process for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary from 1-1e4 are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

  7. Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction.

    PubMed

    Heuer, Dagmar; Rejman Lipinski, Anette; Machuy, Nikolaus; Karlas, Alexander; Wehrens, Andrea; Siedler, Frank; Brinkmann, Volker; Meyer, Thomas F

    2009-02-05

    The obligate intracellular bacterium Chlamydia trachomatis survives and replicates within a membrane-bound vacuole, termed the inclusion, which intercepts host exocytic pathways to obtain nutrients. Like many other intracellular pathogens, C. trachomatis has a marked requirement for host cell lipids, such as sphingolipids and cholesterol, produced in the endoplasmic reticulum and the Golgi apparatus. However, the mechanisms by which intracellular pathogens acquire host cell lipids are not well understood. In particular, no host cell protein responsible for transporting Golgi-derived lipids to the chlamydial inclusions has yet been identified. Here we show that Chlamydia infection in human epithelial cells induces Golgi fragmentation to generate Golgi ministacks surrounding the bacterial inclusion. Ministack formation is triggered by the proteolytic cleavage of the Golgi matrix protein golgin-84. Inhibition of golgin-84 truncation prevents Golgi fragmentation, causing a block in lipid acquisition and maturation of C. trachomatis. Golgi fragmentation by means of RNA-interference-mediated knockdown of distinct Golgi matrix proteins before infection enhances bacterial maturation. Our data functionally connect bacteria-induced golgin-84 cleavage, Golgi ministack formation, lipid acquisition and intracellular pathogen growth. We show that C. trachomatis subverts the structure and function of an entire host cell organelle for its own advantage.

  8. Specific organization of Golgi apparatus in plant cells.

    PubMed

    Vildanova, M S; Wang, W; Smirnova, E A

    2014-09-01

    Microtubules, actin filaments, and Golgi apparatus are connected both directly and indirectly, but it is manifested differently depending on the cell organization and specialization, and these connections are considered in many original studies and reviews. In this review we would like to discuss what underlies differences in the structural organization of the Golgi apparatus in animal and plant cells: specific features of the microtubule cytoskeleton organization, the use of different cytoskeleton components for Golgi apparatus movement and maintenance of its integrity, or specific features of synthetic and secretory processes. We suppose that a dispersed state of the Golgi apparatus in higher plant cells cannot be explained only by specific features of the microtubule system organization and by the absence of centrosome as an active center of their organization because the Golgi apparatus is organized similarly in the cells of other organisms that possess the centrosome and centrosomal microtubules. One of the key factors determining the Golgi apparatus state in plant cells is the functional uniformity or functional specialization of stacks. The functional specialization does not suggest the joining of the stacks to form a ribbon; therefore, the disperse state of the Golgi apparatus needs to be supported, but it also can exist "by default". We believe that the dispersed state of the Golgi apparatus in plants is supported, on one hand, by dynamic connections of the Golgi apparatus stacks with the actin filament system and, on the other hand, with the endoplasmic reticulum exit sites distributed throughout the endoplasmic reticulum.

  9. New insights on the Golgi complex of Tritrichomonas foetus.

    PubMed

    De Andrade Rosa, Ivone; Caruso, Marjolly Brigido; Rodrigues, Silas Pessini; Geraldo, Reinaldo Barros; Kist, Luiza Wilges; Bogo, Mauricio Reis; Gonzaga, Luiz; DE Vasconcelos, Ana Tereza R; Morgado-Díaz, Jose Andres; Zingali, Russolina Benedeta; Benchimol, Marlene

    2014-02-01

    Tritrichomonas foetus is a protist that causes bovine trichomoniasis and presents a well-developed Golgi. There are very few studies concerning the Golgi in trichomonads. In this work, monoclonal antibodies were raised against Golgi of T. foetus and used as a tool on morphologic and biochemical studies of this organelle. Among the antibodies produced, one was named mAb anti-Golgi 20.3, which recognized specifically the Golgi complex by fluorescence and electron microscopy. By immunoblotting this antibody recognized two proteins with 60 and 66 kDa that were identified as putative beta-tubulin and adenosine triphosphatase, respectively. The mAb 20.3 also recognized the Golgi complex of the Trichomonas vaginalis, a human parasite. In addition, the nucleotide coding sequences of these proteins were identified and included in the T. foetus database, and the 3D structure of the proteins was predicted. In conclusion, this study indicated: (1) adenosine triphosphatase is present in the Golgi, (2) ATPase is conserved between T. foetus and T. vaginalis, (3) there is new information concerning the nucleic acid sequences and protein structures of adenosine triphosphatase and beta-tubulin from T. foetus and (4) the mAb anti-Golgi 20.3 is a good Golgi marker and can be used in future studies.

  10. Kinesin-5/Eg5 is important for transport of CARTS from the trans-Golgi network to the cell surface

    PubMed Central

    Villeneuve, Julien; van Galen, Josse; Cruz-Garcia, David; Tagaya, Mitsuo

    2013-01-01

    Here we report that the kinesin-5 motor Klp61F, which is known for its role in bipolar spindle formation in mitosis, is required for protein transport from the Golgi complex to the cell surface in Drosophila S2 cells. Disrupting the function of its mammalian orthologue, Eg5, in HeLa cells inhibited secretion of a protein called pancreatic adenocarcinoma up-regulated factor (PAUF) but, surprisingly, not the trafficking of vesicular stomatitis virus G protein (VSV-G) to the cell surface. We have previously reported that PAUF is transported from the trans-Golgi network (TGN) to the cell surface in specific carriers called CARTS that exclude VSV-G. Inhibition of Eg5 function did not affect the biogenesis of CARTS; however, their migration was delayed and they accumulated near the Golgi complex. Altogether, our findings reveal a surprising new role of Eg5 in nonmitotic cells in the facilitation of the transport of specific carriers, CARTS, from the TGN to the cell surface. PMID:23857769

  11. Identification of Rab41/6d Effectors Provides an Explanation for the Differential Effects of Rab41/6d and Rab6a/a' on Golgi Organization

    PubMed Central

    Liu, Shijie; Majeed, Waqar; Kudlyk, Tetyana; Lupashin, Vladimir; Storrie, Brian

    2016-01-01

    Unexpectedly, members of the Rab VI subfamily exhibit considerable variation in their effects on Golgi organization and trafficking. By fluorescence microscopy, neither depletion nor overexpression of the GDP-locked form of Rab6a/a', the first trans Golgi-associated Rab protein discovered, affects Golgi ribbon organization while, on the other hand, both Rab41/6d depletion and overexpression of GDP-locked form cause Golgi fragmentation into a cluster of punctate elements, suggesting that Rab41/6d has an active role in maintenance of Golgi ribbon organization. To establish a molecular basis for these differences, we screened for Rab41/6d interacting proteins by yeast two-hybrid assay. 155 non-repetitive hits were isolated and sequenced, and after searching in NCBI database, 102 different proteins and protein fragments were identified. None of these hits overlapped with any published Rab6a/a' effector. Eight putative Rab41 interactors involved in membrane trafficking were found. Significantly, these exhibited a preferential interaction with GTP- vs. GDP-locked Rab41/6d. Of the 8 hits, the dynactin 6, syntaxin 8, and Kif18A plasmids were the only ones expressing the full-length protein. Hence, these 3 proteins were selected for further study. We found that depletion of dynactin 6 or syntaxin 8, but not Kif18A, resulted in a fragmented Golgi apparatus that displayed a Rab41/6d knockdown phenotype, i.e., the Golgi apparatus was disrupted into a cluster of punctate Golgi elements. Co-immunoprecipation experiments verified that the interaction of dynactin 6 and syntaxin 8 with GTP-locked Rab41/6d was stronger than that with wild type Rab41/6d and least with the GDP-locked form. In contrast, co-immunoprecipitation interaction with Rab6a was greatest with the GDP-locked Rab6a, suggestive of a non-physiological interaction. In conclusion, we suggest that dynactin 6, a subunit of dynactin complex, the minus-end-directed, dynein motor, provides a sufficient molecular basis to

  12. Identification of Rab41/6d Effectors Provides an Explanation for the Differential Effects of Rab41/6d and Rab6a/a' on Golgi Organization.

    PubMed

    Liu, Shijie; Majeed, Waqar; Kudlyk, Tetyana; Lupashin, Vladimir; Storrie, Brian

    2016-01-01

    Unexpectedly, members of the Rab VI subfamily exhibit considerable variation in their effects on Golgi organization and trafficking. By fluorescence microscopy, neither depletion nor overexpression of the GDP-locked form of Rab6a/a', the first trans Golgi-associated Rab protein discovered, affects Golgi ribbon organization while, on the other hand, both Rab41/6d depletion and overexpression of GDP-locked form cause Golgi fragmentation into a cluster of punctate elements, suggesting that Rab41/6d has an active role in maintenance of Golgi ribbon organization. To establish a molecular basis for these differences, we screened for Rab41/6d interacting proteins by yeast two-hybrid assay. 155 non-repetitive hits were isolated and sequenced, and after searching in NCBI database, 102 different proteins and protein fragments were identified. None of these hits overlapped with any published Rab6a/a' effector. Eight putative Rab41 interactors involved in membrane trafficking were found. Significantly, these exhibited a preferential interaction with GTP- vs. GDP-locked Rab41/6d. Of the 8 hits, the dynactin 6, syntaxin 8, and Kif18A plasmids were the only ones expressing the full-length protein. Hence, these 3 proteins were selected for further study. We found that depletion of dynactin 6 or syntaxin 8, but not Kif18A, resulted in a fragmented Golgi apparatus that displayed a Rab41/6d knockdown phenotype, i.e., the Golgi apparatus was disrupted into a cluster of punctate Golgi elements. Co-immunoprecipation experiments verified that the interaction of dynactin 6 and syntaxin 8 with GTP-locked Rab41/6d was stronger than that with wild type Rab41/6d and least with the GDP-locked form. In contrast, co-immunoprecipitation interaction with Rab6a was greatest with the GDP-locked Rab6a, suggestive of a non-physiological interaction. In conclusion, we suggest that dynactin 6, a subunit of dynactin complex, the minus-end-directed, dynein motor, provides a sufficient molecular basis to

  13. Illicit Trafficking of Natural Radionuclides

    NASA Astrophysics Data System (ADS)

    Friedrich, Steinhäusler; Lyudmila, Zaitseva

    2008-08-01

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  14. Illicit Trafficking of Natural Radionuclides

    SciTech Connect

    Friedrich, Steinhaeusler; Lyudmila, Zaitseva

    2008-08-07

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  15. Sex trafficking in South Asia.

    PubMed

    Huda, S

    2006-09-01

    Economic and social inequalities and political conflicts have led to the movement of persons within each country and across the borders in South Asia. Globalization has encouraged free mobility of capital, technology, experts and sex tourism. Illiteracy, dependency, violence, social stigma, cultural stereotypes, gender disparity and endemic poverty, among other factors, place women and children in powerless, non-negotiable situations that have contributed to the emergence and breeding of the cavernous problem of sex trafficking in the entire region. This alarming spread of sex trafficking has fuelled the spread of HIV infection in South Asia, posing a unique and serious threat to community health, poverty alleviation and other crucial aspects of human development. Although the SAARC (South Asian Association for Regional Cooperation) Convention on Trafficking in Women and Children has been an important breakthrough, most of the countries in the region do not have anti-trafficking legislation or means to protect the victims. Countries of the region should make a concerted effort to treat trafficking victims as "victims" of human rights violations in all anti-trafficking strategies and actions.

  16. Distinct Biochemical Pools of Golgi Phosphoprotein 3 in the Human Breast Cancer Cell Lines MCF7 and MDA-MB-231

    PubMed Central

    Luchsinger, Charlotte; Rivera-Dictter, Andrés; Arriagada, Cecilia; Acuña, Diego; Aguilar, Marcelo; Cavieres, Viviana; Burgos, Patricia V.; Ehrenfeld, Pamela; Mardones, Gonzalo A.

    2016-01-01

    Golgi phosphoprotein 3 (GOLPH3) has been implicated in the development of carcinomas in many human tissues, and is currently considered a bona fide oncoprotein. Importantly, several tumor types show overexpression of GOLPH3, which is associated with tumor progress and poor prognosis. However, the underlying molecular mechanisms that connect GOLPH3 function with tumorigenicity are poorly understood. Experimental evidence shows that depletion of GOLPH3 abolishes transformation and proliferation of tumor cells in GOLPH3-overexpressing cell lines. Conversely, GOLPH3 overexpression drives transformation of primary cell lines and enhances mouse xenograft tumor growth in vivo. This evidence suggests that overexpression of GOLPH3 could result in distinct features of GOLPH3 in tumor cells compared to that of non-tumorigenic cells. GOLPH3 is a peripheral membrane protein mostly localized at the trans-Golgi network, and its association with Golgi membranes depends on binding to phosphatidylinositol-4-phosphate. GOLPH3 is also contained in a large cytosolic pool that rapidly exchanges with Golgi-associated pools. GOLPH3 has also been observed associated with vesicles and tubules arising from the Golgi, as well as other cellular compartments, and hence it has been implicated in several membrane trafficking events. Whether these and other features are typical to all different types of cells is unknown. Moreover, it remains undetermined how GOLPH3 acts as an oncoprotein at the Golgi. Therefore, to better understand the roles of GOLPH3 in cancer cells, we sought to compare some of its biochemical and cellular properties in the human breast cancer cell lines MCF7 and MDA-MB-231 with that of the non-tumorigenic breast human cell line MCF 10A. We found unexpected differences that support the notion that in different cancer cells, overexpression of GOLPH3 functions in diverse fashions, which may influence specific tumorigenic phenotypes. PMID:27123979

  17. Phosphorylation of Golgi Peripheral Membrane Protein Grasp65 Is an Integral Step in the Formation of the Human Cytomegalovirus Cytoplasmic Assembly Compartment

    PubMed Central

    Rebmann, G. Michael; Grabski, Robert; Sanchez, Veronica

    2016-01-01

    ABSTRACT Human cytomegalovirus (HCMV) is the largest member of the Herpesviridae and represents a significant cause of disease. During virus replication, HCMV alters cellular functions to facilitate its replication, including significant reorganization of the secretory and endocytic pathways of the infected cell. A defining morphologic change of the infected cell is the formation of a membranous structure in the cytoplasm that is designated the virion assembly compartment (AC), which consists of virion structural proteins surrounded by cellular membranes. The loss of normal Golgi compartment morphology and its relocalization from a juxtanuclear ribbonlike structure to a series of concentric rings on the periphery of the AC represents a readily recognized reorganization of cellular membranes in the HCMV-infected cell. Although trafficking of viral proteins to this compartment is required for the assembly of infectious virions, the functional significance of the reorganization of intracellular membranes like the Golgi membranes into the AC in the assembly of infectious virus remains understudied. In this study, we determined that Golgi membrane ribbon fragmentation increased during the early cytoplasmic phase of virion assembly and that Golgi membrane fragmentation in infected cells was dependent on the phosphorylation of an integral cis-Golgi protein, Grasp65. Inhibition of Golgi membrane fragmentation and of its reorganization into the AC resulted in decreased production of infectious particles and alteration of the incorporation of an essential protein into the envelope of the mature virion. These results demonstrated the complexity of the virus-host cell interactions required for efficient assembly of this large DNA virus. PMID:27703074

  18. HDLs protect pancreatic β-cells against ER stress by restoring protein folding and trafficking.

    PubMed

    Pétremand, Jannick; Puyal, Julien; Chatton, Jean-Yves; Duprez, Jessica; Allagnat, Florent; Frias, Miguel; James, Richard W; Waeber, Gérard; Jonas, Jean-Christophe; Widmann, Christian

    2012-05-01

    Endoplasmic reticulum (ER) homeostasis alteration contributes to pancreatic β-cell dysfunction and death and favors the development of diabetes. In this study, we demonstrate that HDLs protect β-cells against ER stress induced by thapsigargin, cyclopiazonic acid, palmitate, insulin overexpression, and high glucose concentrations. ER stress marker induction and ER morphology disruption mediated by these stimuli were inhibited by HDLs. Using a temperature-sensitive viral glycoprotein folding mutant, we show that HDLs correct impaired protein trafficking and folding induced by thapsigargin and palmitate. The ability of HDLs to protect β-cells against ER stress was inhibited by brefeldin A, an ER to Golgi trafficking blocker. These results indicate that HDLs restore ER homeostasis in response to ER stress, which is required for their ability to promote β-cell survival. This study identifies a cellular mechanism mediating the beneficial effect of HDLs on β-cells against ER stress-inducing factors.

  19. HDLs Protect Pancreatic β-Cells Against ER Stress by Restoring Protein Folding and Trafficking

    PubMed Central

    Pétremand, Jannick; Puyal, Julien; Chatton, Jean-Yves; Duprez, Jessica; Allagnat, Florent; Frias, Miguel; James, Richard W.; Waeber, Gérard; Jonas, Jean-Christophe; Widmann, Christian

    2012-01-01

    Endoplasmic reticulum (ER) homeostasis alteration contributes to pancreatic β-cell dysfunction and death and favors the development of diabetes. In this study, we demonstrate that HDLs protect β-cells against ER stress induced by thapsigargin, cyclopiazonic acid, palmitate, insulin overexpression, and high glucose concentrations. ER stress marker induction and ER morphology disruption mediated by these stimuli were inhibited by HDLs. Using a temperature-sensitive viral glycoprotein folding mutant, we show that HDLs correct impaired protein trafficking and folding induced by thapsigargin and palmitate. The ability of HDLs to protect β-cells against ER stress was inhibited by brefeldin A, an ER to Golgi trafficking blocker. These results indicate that HDLs restore ER homeostasis in response to ER stress, which is required for their ability to promote β-cell survival. This study identifies a cellular mechanism mediating the beneficial effect of HDLs on β-cells against ER stress-inducing factors. PMID:22399686

  20. Clathrin and AP1B: Key roles in basolateral trafficking through trans-endosomal routes

    PubMed Central

    Gonzalez, Alfonso; Rodriguez-Boulan, Enrique

    2013-01-01

    Research following introduction of the MDCK model system to study epithelial polarity (1978) led to an initial paradigm that posited independent roles of the trans Golgi network (TGN) and recycling endosomes (RE) in the generation of, respectively, biosynthetic and recycling routes of plasma membrane (PM) proteins to apical and basolateral PM domains. This model dominated the field for 20 years. However, studies over the past decade and the discovery of the involvement of clathrin and clathrin adaptors in protein trafficking to the basolateral PM has led to a new paradigm. TGN and RE are now believed to cooperate closely in both biosynthetic and recycling trafficking routes. Here, we critically review these recent advances and the questions that remain unanswered. PMID:19854182

  1. To discuss illicit nuclear trafficking

    SciTech Connect

    Balatsky, Galya I; Severe, William R; Wallace, Richard K

    2010-01-01

    The Illicit nuclear trafficking panel was conducted at the 4th Annual INMM workshop on Reducing the Risk from Radioactive and Nuclear Materials on February 2-3, 2010 in Washington DC. While the workshop occurred prior to the Nuclear Security Summit, April 12-13 2010 in Washington DC, some of the summit issues were raised during the workshop. The Communique of the Washington Nuclear Security Summit stated that 'Nuclear terrorism is one of the most challenging threats to international security, and strong nuclear security measures are the most effective means to prevent terrorists, criminals, or other unauthorized actors from acquiring nuclear materials.' The Illicit Trafficking panel is one means to strengthen nuclear security and cooperation at bilateral, regional and multilateral levels. Such a panel promotes nuclear security culture through technology development, human resources development, education and training. It is a tool which stresses the importance of international cooperation and coordination of assistance to improve efforts to prevent and respond to incidents of illicit nuclear trafficking. Illicit trafficking panel included representatives from US government, an international organization (IAEA), private industry and a non-governmental organization to discuss illicit nuclear trafficking issues. The focus of discussions was on best practices and challenges for addressing illicit nuclear trafficking. Terrorism connection. Workshop discussions pointed out the identification of terrorist connections with several trafficking incidents. Several trafficking cases involved real buyers (as opposed to undercover law enforcement agents) and there have been reports identifying individuals associated with terrorist organizations as prospective plutonium buyers. Some specific groups have been identified that consistently search for materials to buy on the black market, but no criminal groups were identified that specialize in nuclear materials or isotope smuggling

  2. Human Liver Cell Trafficking Mutants: Characterization and Whole Exome Sequencing

    PubMed Central

    Yuan, Fei; Snapp, Erik L.; Novikoff, Phyllis M.; Suadicani, Sylvia O.; Spray, David C.; Potvin, Barry; Wolkoff, Allan W.; Stanley, Pamela

    2014-01-01

    The HuH7 liver cell mutant Trf1 is defective in membrane trafficking and is complemented by the casein kinase 2α subunit CK2α’’. Here we identify characteristic morphologies, trafficking and mutational changes in six additional HuH7 mutants Trf2-Trf7. Trf1 cells were previously shown to be severely defective in gap junction functions. Using a Lucifer yellow transfer assay, remarkable attenuation of gap junction communication was revealed in each of the mutants Trf2-Trf7. Electron microscopy and light microscopy of thiamine pyrophosphatase showed that several mutants exhibited fragmented Golgi apparatus cisternae compared to parental HuH7 cells. Intracellular trafficking was investigated using assays of transferrin endocytosis and recycling and VSV G secretion. Surface binding of transferrin was reduced in all six Trf2-Trf7 mutants, which generally correlated with the degree of reduced expression of the transferrin receptor at the cell surface. The mutants displayed the same transferrin influx rates as HuH7, and for efflux rate, only Trf6 differed, having a slower transferrin efflux rate than HuH7. The kinetics of VSV G transport along the exocytic pathway were altered in Trf2 and Trf5 mutants. Genetic changes unique to particular Trf mutants were identified by exome sequencing, and one was investigated in depth. The novel mutation Ile34Phe in the GTPase RAB22A was identified in Trf4. RNA interference knockdown of RAB22A or overexpression of RAB22AI34F in HuH7 cells caused phenotypic changes characteristic of the Trf4 mutant. In addition, the Ile34Phe mutation reduced both guanine nucleotide binding and hydrolysis activities of RAB22A. Thus, the RAB22A Ile34Phe mutation appears to contribute to the Trf4 mutant phenotype. PMID:24466322

  3. Structural disorder provides increased adaptability for vesicle trafficking pathways.

    PubMed

    Pietrosemoli, Natalia; Pancsa, Rita; Tompa, Peter

    2013-01-01

    Vesicle trafficking systems play essential roles in the communication between the organelles of eukaryotic cells and also between cells and their environment. Endocytosis and the late secretory route are mediated by clathrin-coated vesicles, while the COat Protein I and II (COPI and COPII) routes stand for the bidirectional traffic between the ER and the Golgi apparatus. Despite similar fundamental organizations, the molecular machinery, functions, and evolutionary characteristics of the three systems are very different. In this work, we compiled the basic functional protein groups of the three main routes for human and yeast and analyzed them from the structural disorder perspective. We found similar overall disorder content in yeast and human proteins, confirming the well-conserved nature of these systems. Most functional groups contain highly disordered proteins, supporting the general importance of structural disorder in these routes, although some of them seem to heavily rely on disorder, while others do not. Interestingly, the clathrin system is significantly more disordered (~23%) than the other two, COPI (~9%) and COPII (~8%). We show that this structural phenomenon enhances the inherent plasticity and increased evolutionary adaptability of the clathrin system, which distinguishes it from the other two routes. Since multi-functionality (moonlighting) is indicative of both plasticity and adaptability, we studied its prevalence in vesicle trafficking proteins and correlated it with structural disorder. Clathrin adaptors have the highest capability for moonlighting while also comprising the most highly disordered members. The ability to acquire tissue specific functions was also used to approach adaptability: clathrin route genes have the most tissue specific exons encoding for protein segments enriched in structural disorder and interaction sites. Overall, our results confirm the general importance of structural disorder in vesicle trafficking and suggest

  4. Human liver cell trafficking mutants: characterization and whole exome sequencing.

    PubMed

    Yuan, Fei; Snapp, Erik L; Novikoff, Phyllis M; Suadicani, Sylvia O; Spray, David C; Potvin, Barry; Wolkoff, Allan W; Stanley, Pamela

    2014-01-01

    The HuH7 liver cell mutant Trf1 is defective in membrane trafficking and is complemented by the casein kinase 2α subunit CK2α''. Here we identify characteristic morphologies, trafficking and mutational changes in six additional HuH7 mutants Trf2-Trf7. Trf1 cells were previously shown to be severely defective in gap junction functions. Using a Lucifer yellow transfer assay, remarkable attenuation of gap junction communication was revealed in each of the mutants Trf2-Trf7. Electron microscopy and light microscopy of thiamine pyrophosphatase showed that several mutants exhibited fragmented Golgi apparatus cisternae compared to parental HuH7 cells. Intracellular trafficking was investigated using assays of transferrin endocytosis and recycling and VSV G secretion. Surface binding of transferrin was reduced in all six Trf2-Trf7 mutants, which generally correlated with the degree of reduced expression of the transferrin receptor at the cell surface. The mutants displayed the same transferrin influx rates as HuH7, and for efflux rate, only Trf6 differed, having a slower transferrin efflux rate than HuH7. The kinetics of VSV G transport along the exocytic pathway were altered in Trf2 and Trf5 mutants. Genetic changes unique to particular Trf mutants were identified by exome sequencing, and one was investigated in depth. The novel mutation Ile34Phe in the GTPase RAB22A was identified in Trf4. RNA interference knockdown of RAB22A or overexpression of RAB22AI34F in HuH7 cells caused phenotypic changes characteristic of the Trf4 mutant. In addition, the Ile34Phe mutation reduced both guanine nucleotide binding and hydrolysis activities of RAB22A. Thus, the RAB22A Ile34Phe mutation appears to contribute to the Trf4 mutant phenotype.

  5. Studies of retrograde memory: A long-term view

    PubMed Central

    Warrington, Elizabeth K.

    1996-01-01

    Studies of retrograde amnesia are reviewed. First, the issues of temporal gradients of retrograde amnesia are discussed. Second, the question of the anatomical substrates of this syndrome are considered. Finally, some evidence for fractionation of different classes of memoranda within the retrograde time period are presented. PMID:8942966

  6. Botulinum Neurotoxins A and E Undergo Retrograde Axonal Transport in Primary Motor Neurons

    PubMed Central

    Manich, Maria; Bercsenyi, Kinga; Menendez, Guillermo; Rossetto, Ornella; Caleo, Matteo; Schiavo, Giampietro

    2012-01-01

    The striking differences between the clinical symptoms of tetanus and botulism have been ascribed to the different fate of the parental neurotoxins once internalised in motor neurons. Tetanus toxin (TeNT) is known to undergo transcytosis into inhibitory interneurons and block the release of inhibitory neurotransmitters in the spinal cord, causing a spastic paralysis. In contrast, botulinum neurotoxins (BoNTs) block acetylcholine release at the neuromuscular junction, therefore inducing a flaccid paralysis. Whilst overt experimental evidence supports the sorting of TeNT to the axonal retrograde transport pathway, recent findings challenge the established view that BoNT trafficking is restricted to the neuromuscular junction by highlighting central effects caused by these neurotoxins. These results suggest a more complex scenario whereby BoNTs also engage long-range trafficking mechanisms. However, the intracellular pathways underlying this process remain unclear. We sought to fill this gap by using primary motor neurons either in mass culture or differentiated in microfluidic devices to directly monitor the endocytosis and axonal transport of full length BoNT/A and BoNT/E and their recombinant binding fragments. We show that BoNT/A and BoNT/E are internalised by spinal cord motor neurons and undergo fast axonal retrograde transport. BoNT/A and BoNT/E are internalised in non-acidic axonal carriers that partially overlap with those containing TeNT, following a process that is largely independent of stimulated synaptic vesicle endo-exocytosis. Following intramuscular injection in vivo, BoNT/A and TeNT displayed central effects with a similar time course. Central actions paralleled the peripheral spastic paralysis for TeNT, but lagged behind the onset of flaccid paralysis for BoNT/A. These results suggest that the fast axonal retrograde transport compartment is composed of multifunctional trafficking organelles orchestrating the simultaneous transfer of diverse cargoes

  7. Mutations in BCAP31 Cause a Severe X-Linked Phenotype with Deafness, Dystonia, and Central Hypomyelination and Disorganize the Golgi Apparatus

    PubMed Central

    Cacciagli, Pierre; Sutera-Sardo, Julie; Borges-Correia, Ana; Roux, Jean-Christophe; Dorboz, Imen; Desvignes, Jean-Pierre; Badens, Catherine; Delepine, Marc; Lathrop, Mark; Cau, Pierre; Lévy, Nicolas; Girard, Nadine; Sarda, Pierre; Boespflug-Tanguy, Odile; Villard, Laurent

    2013-01-01

    BAP31 is one of the most abundant endoplasmic reticulum (ER) membrane proteins. It is a chaperone protein involved in several pathways, including ER-associated degradation, export of ER proteins to the Golgi apparatus, and programmed cell death. BAP31 is encoded by BCAP31, located in human Xq28 and highly expressed in neurons. We identified loss-of-function mutations in BCAP31 in seven individuals from three families. These persons suffered from motor and intellectual disabilities, dystonia, sensorineural deafness, and white-matter changes, which together define an X-linked syndrome. In the primary fibroblasts of affected individuals, we found that BCAP31 deficiency altered ER morphology and caused a disorganization of the Golgi apparatus in a significant proportion of cells. Contrary to what has been described with transient-RNA-interference experiments, we demonstrate that constitutive BCAP31 deficiency does not activate the unfolded protein response or cell-death effectors. Rather, our data demonstrate that the lack of BAP31 disturbs ER metabolism and impacts the Golgi apparatus, highlighting an important role for BAP31 in ER-to-Golgi crosstalk. These findings provide a molecular basis for a Mendelian syndrome and link intracellular protein trafficking to severe congenital brain dysfunction and deafness. PMID:24011989

  8. Mutations in BCAP31 cause a severe X-linked phenotype with deafness, dystonia, and central hypomyelination and disorganize the Golgi apparatus.

    PubMed

    Cacciagli, Pierre; Sutera-Sardo, Julie; Borges-Correia, Ana; Roux, Jean-Christophe; Dorboz, Imen; Desvignes, Jean-Pierre; Badens, Catherine; Delepine, Marc; Lathrop, Mark; Cau, Pierre; Lévy, Nicolas; Girard, Nadine; Sarda, Pierre; Boespflug-Tanguy, Odile; Villard, Laurent

    2013-09-05

    BAP31 is one of the most abundant endoplasmic reticulum (ER) membrane proteins. It is a chaperone protein involved in several pathways, including ER-associated degradation, export of ER proteins to the Golgi apparatus, and programmed cell death. BAP31 is encoded by BCAP31, located in human Xq28 and highly expressed in neurons. We identified loss-of-function mutations in BCAP31 in seven individuals from three families. These persons suffered from motor and intellectual disabilities, dystonia, sensorineural deafness, and white-matter changes, which together define an X-linked syndrome. In the primary fibroblasts of affected individuals, we found that BCAP31 deficiency altered ER morphology and caused a disorganization of the Golgi apparatus in a significant proportion of cells. Contrary to what has been described with transient-RNA-interference experiments, we demonstrate that constitutive BCAP31 deficiency does not activate the unfolded protein response or cell-death effectors. Rather, our data demonstrate that the lack of BAP31 disturbs ER metabolism and impacts the Golgi apparatus, highlighting an important role for BAP31 in ER-to-Golgi crosstalk. These findings provide a molecular basis for a Mendelian syndrome and link intracellular protein trafficking to severe congenital brain dysfunction and deafness.

  9. COPI selectively drives maturation of the early Golgi

    PubMed Central

    Papanikou, Effrosyni; Day, Kasey J; Austin, Jotham; Glick, Benjamin S

    2015-01-01

    COPI coated vesicles carry material between Golgi compartments, but the role of COPI in the secretory pathway has been ambiguous. Previous studies of thermosensitive yeast COPI mutants yielded the surprising conclusion that COPI was dispensable both for the secretion of certain proteins and for Golgi cisternal maturation. To revisit these issues, we optimized the anchor-away method, which allows peripheral membrane proteins such as COPI to be sequestered rapidly by adding rapamycin. Video fluorescence microscopy revealed that COPI inactivation causes an early Golgi protein to remain in place while late Golgi proteins undergo cycles of arrival and departure. These dynamics generate partially functional hybrid Golgi structures that contain both early and late Golgi proteins, explaining how secretion can persist when COPI has been inactivated. Our findings suggest that cisternal maturation involves a COPI-dependent pathway that recycles early Golgi proteins, followed by multiple COPI-independent pathways that recycle late Golgi proteins. DOI: http://dx.doi.org/10.7554/eLife.13232.001 PMID:26709839

  10. Golgi localization of glycosyltransferases requires a Vps74p oligomer

    PubMed Central

    Schmitz, Karl R.; Liu, Jingxuan; Li, Shiqing; Setty, Thanuja Gangi; Wood, Christopher S.; Burd, Christopher G.; Ferguson, Kathryn M.

    2009-01-01

    SUMMARY The mechanism of glycosyltransferase localization to the Golgi apparatus is a longstanding question in secretory cell biology. All Golgi glycosyltransferases are type II membrane proteins with small cytosolic domains that contribute to Golgi localization. To date, no protein has been identified that recognizes the cytosolic domains of Golgi enzymes and contributes to their localization. Here we report that yeast Vps74p directly binds to the cytosolic domains of cis and medial Golgi mannosyltransferases and that loss of this interaction correlates with loss of Golgi localization of these enzymes. We have solved the X-ray crystal structure of Vps74p and find that it forms a tetramer, which we also observe in solution. Deletion of a critical structural motif disrupts tetramer formation, and results in loss of Vps74p localization and function. Vps74p is highly homologous to the human GMx33 Golgi matrix proteins, suggesting a conserved function for these proteins in the Golgi enzyme localization machinery. PMID:18410729

  11. The Cirque du Soleil of Golgi membrane dynamics

    PubMed Central

    2009-01-01

    The role of lipid metabolic enzymes in Golgi membrane remodeling is a subject of intense interest. Now, in this issue, Schmidt and Brown (2009. J. Cell Biol. doi:10.1083/jcb.200904147) report that lysophosphatidic acid–specific acyltransferase, LPAAT3, contributes to Golgi membrane dynamics by suppressing tubule formation. PMID:19635838

  12. The Cirque du Soleil of Golgi membrane dynamics.

    PubMed

    Bankaitis, Vytas A

    2009-07-27

    The role of lipid metabolic enzymes in Golgi membrane remodeling is a subject of intense interest. Now, in this issue, Schmidt and Brown (2009. J. Cell Biol. doi:10.1083/jcb.200904147) report that lysophosphatidic acid-specific acyltransferase, LPAAT3, contributes to Golgi membrane dynamics by suppressing tubule formation.

  13. Golgi linked protein glycosylation and associated diseases.

    PubMed

    Ungar, Daniel

    2009-09-01

    One of the Golgi's main functions is the glycosylation of secreted proteins. A large variety of glycan chains can be synthesized in the Golgi, and it is increasingly clear that these are critical in basic cellular functions as well as the development of multicellular organisms. The structurally best-documented glycans are N-glycans, yet these are also the most enigmatic in their function. In contrast, O-glycan function is far better understood, but here the structures and biosynthetic pathways are very incomplete. The critical importance of glycans is highlighted by the broad spectrum of diseases they are associated with, such as a number of inherited diseases, but also cancers or diabetes. The molecular clues to these, however, are only just being elucidated. Although some glycan structures are known to be involved in signaling or adhesion to the extracellular matrix, for most the functions are not yet known. This review aims at summarizing current knowledge as much as to point out critical areas key for future progress.

  14. Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases.

    PubMed

    Chen, Mei-Kuang; Hung, Mien-Chie

    2015-10-01

    Intracellular localization has been reported for over three-quarters of receptor tyrosine kinase (RTK) families in response to environmental stimuli. Internalized RTK may bind to non-canonical substrates and affect various cellular processes. Many of the intracellular RTKs exist as fragmented forms that are generated by γ-secretase cleavage of the full-length receptor, shedding, alternative splicing, or alternative translation initiation. Soluble RTK fragments are stabilized and intracellularly transported into subcellular compartments, such as the nucleus, by binding to chaperone or transcription factors, while membrane-bound RTKs (full-length or truncated) are transported from the plasma membrane to the ER through the well-established Rab- or clathrin adaptor protein-coated vesicle retrograde trafficking pathways. Subsequent nuclear transport of membrane-bound RTK may occur via two pathways, INFS or INTERNET, with the former characterized by release of receptors from the ER into the cytosol and the latter characterized by release of membrane-bound receptor from the ER into the nucleoplasm through the inner nuclear membrane. Although most non-canonical intracellular RTK signaling is related to transcriptional regulation, there may be other functions that have yet to be discovered. In this review, we summarize the proteolytic processing, intracellular trafficking and nuclear functions of RTKs, and discuss how they promote cancer progression, and their clinical implications.

  15. LDLC encodes a brefeldin A-sensitive, peripheral Golgi protein required for normal Golgi function

    PubMed Central

    1994-01-01

    Two genetically distinct classes of low density lipoprotein (LDL) receptor-deficient Chinese hamster ovary cell mutants, ldlB and ldlC, exhibit nearly identical pleiotropic defects in multiple medial and trans Golgi-associated processes (Kingsley, D., K. F. Kozarsky, M. Segal, and M. Krieger. 1986. J. Cell Biol. 102:1576-1585). In these mutants, the synthesis of virtually all N- and O-linked glycoproteins and of the major lipid-linked oligosaccharides is abnormal. The abnormal glycosylation of LDL receptors in ldlB and ldlC cells results in their dramatically reduced stability and thus very low LDL receptor activity. We have cloned and sequenced a human cDNA (LDLC) which corrects the mutant phenotypes of ldlC, but not ldlB, cells. Unlike wild-type CHO or ldlB cells, ldlC cells had virtually no detectable endogenous LDLC mRNA, indicating that LDLC is likely to be the normal human homologue of the defective gene in ldlC cells. The predicted sequence of the human LDLC protein (ldlCp, approximately 83 kD) is not similar to that of any known proteins, and contains no major common structural motifs such as transmembrane domains or an ER translocation signal sequence. We have also determined the sequence of the Caenorhabditis elegans ldlCp by cDNA cloning and sequencing. Its similarity to that of human ldlCp suggests that ldlCp mediates a well- conserved cellular function. Immunofluorescence studies with anti-ldlCp antibodies in mammalian cells established that ldlCp is a peripheral Golgi protein whose association with the Golgi is brefeldin A sensitive. In ldlB cells, ldlCp was expressed at normal levels; however, it was not associated with the Golgi. Thus, a combination of somatic cell and molecular genetics has identified a previously unrecognized protein, ldlCp, which is required for multiple Golgi functions and whose peripheral association with the Golgi is both LDLB dependent and brefeldin A sensitive. PMID:7962052

  16. Manganese Redistribution by Calcium-stimulated Vesicle Trafficking Bypasses the Need for P-type ATPase Function*

    PubMed Central

    García-Rodríguez, Néstor; Manzano-López, Javier; Muñoz-Bravo, Miguel; Fernández-García, Elisabet; Muñiz, Manuel; Wellinger, Ralf Erik

    2015-01-01

    Regulation of intracellular ion homeostasis is essential for eukaryotic cell physiology. An example is provided by loss of ATP2C1 function, which leads to skin ulceration, improper keratinocyte adhesion, and cancer formation in Hailey-Hailey patients. The yeast ATP2C1 orthologue PMR1 codes for a Mn2+/Ca2+ transporter that is crucial for cis-Golgi manganese supply. Here, we present evidence that calcium overcomes the lack of Pmr1 through vesicle trafficking-stimulated manganese delivery and requires the endoplasmic reticulum Mn2+ transporter Spf1 and the late endosome/trans-Golgi Nramp metal transporter Smf2. Smf2 co-localizes with the putative Mn2+ transporter Atx2, and ATX2 overexpression counteracts the beneficial impact of calcium treatment. Our findings suggest that vesicle trafficking promotes organelle-specific ion interchange and cytoplasmic metal detoxification independent of calcineurin signaling or metal transporter re-localization. Our study identifies an alternative mode for cis-Golgi manganese supply in yeast and provides new perspectives for Hailey-Hailey disease treatment. PMID:25713143

  17. Differential trafficking of Src, Lyn, Yes and Fyn is specified by the state of palmitoylation in the SH4 domain.

    PubMed

    Sato, Izumi; Obata, Yuuki; Kasahara, Kousuke; Nakayama, Yuji; Fukumoto, Yasunori; Yamasaki, Takahito; Yokoyama, Kazunari K; Saito, Takashi; Yamaguchi, Naoto

    2009-04-01

    Src-family tyrosine kinases (SFKs), which participate in a variety of signal transduction events, are known to localize to the cytoplasmic face of the plasma membrane through lipid modification. Recently, we showed that Lyn, an SFK member, is exocytosed to the plasma membrane via the Golgi region along the secretory pathway. We show here that SFK trafficking is specified by the palmitoylation state. Yes is also a monopalmitoylated SFK and is biosynthetically transported from the Golgi pool of caveolin to the plasma membrane. This pathway can be inhibited in the trans-Golgi network (TGN)-to-cell surface delivery by temperature block at 19 degrees C or dominant-negative Rab11 GTPase. A large fraction of Fyn, a dually palmitoylated SFK, is directly targeted to the plasma membrane irrespective of temperature block of TGN exit. Fyn(C6S), which lacks the second palmitoylation site, is able to traffic in the same way as Lyn and Yes. Moreover, construction of Yes(S6C) and chimeric Lyn or Yes with the Fyn N-terminus further substantiates the importance of the dual palmitoylation site for plasma membrane targeting. Taken together with our recent finding that Src, a nonpalmitoylated SFK, is rapidly exchanged between the plasma membrane and late endosomes/lysosomes, these results suggest that SFK trafficking is specified by the palmitoylation state in the SH4 domain.

  18. Doppler-guided retrograde catheterization system

    NASA Astrophysics Data System (ADS)

    Frazin, Leon J.; Vonesh, Michael J.; Chandran, Krishnan B.; Khasho, Fouad; Lanza, George M.; Talano, James V.; McPherson, David D.

    1991-05-01

    The purpose of this study was to investigate a Doppler guided catheterization system as an adjunctive or alternative methodology to overcome the disadvantages of left heart catheterization and angiography. These disadvantages include the biological effects of radiation and the toxic and volume effects of iodine contrast. Doppler retrograde guidance uses a 20 MHz circular pulsed Doppler crystal incorporated into the tip of a triple lumen multipurpose catheter and is advanced retrogradely using the directional flow information provided by the Doppler waveform. The velocity detection limits are either 1 m/second or 4 m/second depending upon the instrumentation. In a physiologic flow model of the human aortic arch, multiple data points revealed a positive wave form when flow was traveling toward the catheter tip indicating proper alignment for retrograde advancement. There was a negative wave form when flow was traveling away from the catheter tip if the catheter was in a branch or bent upon itself indicating improper catheter tip position for retrograde advancement. In a series of six dogs, the catheter was able to be accurately advanced from the femoral artery to the left ventricular chamber under Doppler signal guidance without the use of x-ray. The potential applications of a Doppler guided retrograde catheterization system include decreasing time requirements and allowing safer catheter guidance in patients with atherosclerotic vascular disease and suspected aortic dissection. The Doppler system may allow left ventricular pressure monitoring in the intensive care unit without the need for x-ray and it may allow left sided contrast echocardiography. With pulse velocity detection limits of 4 m/second, this system may allow catheter direction and passage into the aortic root and left ventricle in patients with aortic stenosis. A modification of the Doppler catheter may include transponder technology which would allow precise catheter tip localization once the

  19. Oligomeric State Regulated Trafficking of Human Platelet-Activating Factor Acetylhydrolase Type-II

    PubMed Central

    Monillas, Elizabeth S.; Caplan, Jeffrey L.; Thévenin, Anastasia F.; Bahnson, Brian J.

    2015-01-01

    The intracellular enzyme platelet-activating factor acetylhydrolase type-II (PAFAH-II) hydrolyzes platelet-activating factor and oxidatively fragmented phospholipids. PAFAH-II in its resting state is mainly cytoplasmic, and it responds to oxidative stress by becoming increasingly bound to endoplasmic reticulum and Golgi membranes. Numerous studies have indicated that this enzyme is essential for protecting cells from oxidative stress induced apoptosis. However, the regulatory mechanism of the oxidative stress response by PAFAH-II has not been fully resolved. Here, changes to the oligomeric state of human PAFAH-II were investigated as a potential regulatory mechanism toward enzyme trafficking. Native PAGE analysis in vitro and photon counting histogram within live cells showed that PAFAH-II is both monomeric and dimeric. A Gly-2-Ala site-directed mutation of PAFAH-II demonstrated that the N-terminal myristoyl group is required for homodimerization. Additionally, the distribution of oligomeric PAFAH-II is distinct within the cell; homodimers of PAFAH-II were localized to the cytoplasm while monomers were associated to the membranes of the endoplasmic reticulum and Golgi. We propose that the oligomeric state of PAFAH-II drives functional protein trafficking. PAFAH-II localization to the membrane is critical for substrate acquisition and effective oxidative stress protection. It is hypothesized that the balance between monomer and dimer serves as a regulatory mechanism of a PAFAH-II oxidative stress response. PMID:25707358

  20. Oligomeric state regulated trafficking of human platelet-activating factor acetylhydrolase type-II.

    PubMed

    Monillas, Elizabeth S; Caplan, Jeffrey L; Thévenin, Anastasia F; Bahnson, Brian J

    2015-05-01

    The intracellular enzyme platelet-activating factor acetylhydrolase type-II (PAFAH-II) hydrolyzes platelet-activating factor and oxidatively fragmented phospholipids. PAFAH-II in its resting state is mainly cytoplasmic, and it responds to oxidative stress by becoming increasingly bound to endoplasmic reticulum and Golgi membranes. Numerous studies have indicated that this enzyme is essential for protecting cells from oxidative stress induced apoptosis. However, the regulatory mechanism of the oxidative stress response by PAFAH-II has not been fully resolved. Here, changes to the oligomeric state of human PAFAH-II were investigated as a potential regulatory mechanism toward enzyme trafficking. Native PAGE analysis in vitro and photon counting histogram within live cells showed that PAFAH-II is both monomeric and dimeric. A Gly-2-Ala site-directed mutation of PAFAH-II demonstrated that the N-terminal myristoyl group is required for homodimerization. Additionally, the distribution of oligomeric PAFAH-II is distinct within the cell; homodimers of PAFAH-II were localized to the cytoplasm while monomers were associated to the membranes of the endoplasmic reticulum and Golgi. We propose that the oligomeric state of PAFAH-II drives functional protein trafficking. PAFAH-II localization to the membrane is critical for substrate acquisition and effective oxidative stress protection. It is hypothesized that the balance between monomer and dimer serves as a regulatory mechanism of a PAFAH-II oxidative stress response.

  1. Understanding human trafficking in the United States.

    PubMed

    Logan, T K; Walker, Robert; Hunt, Gretchen

    2009-01-01

    The topic of modern-day slavery or human trafficking has received increased media and national attention. However, to date there has been limited research on the nature and scope of human trafficking in the United States. This article describes and synthesizes nine reports that assess the U.S. service organizations' legal representative knowledge of, and experience with, human trafficking cases, as well as information from actual cases and media reports. This article has five main goals: (a) to define what human trafficking is, and is not; (b) to describe factors identified as contributing to vulnerability to being trafficked and keeping a person entrapped in the situation; (c) to examine how the crime of human trafficking differs from other kinds of crimes in the United States; (d) to explore how human trafficking victims are identified; and, (e) to provide recommendations to better address human trafficking in the United States.

  2. The effects of the carboxyl-terminus amino acids of the Shiga toxin B-subunit on retrograde transport.

    PubMed

    Liu, Dan; Fan, Yuying; Li, Jie; Gao, Xiaoge; Hao, Miao; Xue, Huiting; Tai, Guihua

    2012-07-01

    The Shiga toxin B-subunit (STxB), from the enteric pathogen, Shigella dysenteriae, is responsible for the attachment of its receptor, globotriaosylceramide (Gb3), and navigates the retrograde pathway from the plasma membrane to the endoplasmic reticulum (ER). In this study, in order to demonstrate the role of carboxyl-terminus (C-terminus/al) amino acids of the B-fragment on the retrograde transport speed and the retrograde transport pathway, STxB was modified by site-directed mutagenesis and by the addition of an amino acid tail. The results showed that when the C-terminal amino acid, arginine [Arg (R)], was mutated to serine [Ser (S)], the speed of the B-fragment transportation into the ER at 37 ˚C was slower. When an acidic amino acid tail 'glutamine (Glu)-Ser' (ES) was added to the C-terminal amino acid 'R', the B-fragment transporting speed slowed down and remained in the Golgi apparatus. Further experiments showed that the effects induced by mutations of the amino acid tail resulted in STxB-EEEES ≥-EEES>-EES>-ES, demonstrating that the retardation effect on the tail was increased and the length of the acidic amino acid was augmented. The effect was possibly produced by an acidic amino acid tail, not only by the amino acid 'E'. The significant inhibitory effect on the speed of B-fragment retrograde transport was observed only when the mutations of the acidic amino acid tail were linked near to the C-terminus. These results may provide important insights for the study of transport mechanisms and for the development of STxB serial proteins as vectors for drug delivery.

  3. Alteration of Golgi Structure by Stress: A Link to Neurodegeneration?

    PubMed Central

    Alvarez-Miranda, Eduardo A.; Sinnl, Markus; Farhan, Hesso

    2015-01-01

    The Golgi apparatus is well-known for its role as a sorting station in the secretory pathway as well as for its role in regulating post-translational protein modification. Another role for the Golgi is the regulation of cellular signaling by spatially regulating kinases, phosphatases, and GTPases. All these roles make it clear that the Golgi is a central regulator of cellular homeostasis. The response to stress and the initiation of adaptive responses to cope with it are fundamental abilities of all living cells. It was shown previously that the Golgi undergoes structural rearrangements under various stress conditions such as oxidative or osmotic stress. Neurodegenerative diseases are also frequently associated with alterations of Golgi morphology and many stress factors have been described to play an etiopathological role in neurodegeneration. It is however unclear whether the stress-Golgi connection plays a role in neurodegenerative diseases. Using a combination of bioinformatics modeling and literature mining, we will investigate evidence for such a tripartite link and we ask whether stress-induced Golgi arrangements are cause or consequence in neurodegeneration. PMID:26617486

  4. 31 CFR 598.310 - Narcotics trafficking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Narcotics trafficking. 598.310 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY FOREIGN NARCOTICS KINGPIN SANCTIONS REGULATIONS General Definitions § 598.310 Narcotics trafficking. The term narcotics trafficking means any illicit activity...

  5. 31 CFR 598.310 - Narcotics trafficking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Narcotics trafficking. 598.310 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY FOREIGN NARCOTICS KINGPIN SANCTIONS REGULATIONS General Definitions § 598.310 Narcotics trafficking. The term narcotics trafficking means any illicit activity...

  6. 31 CFR 598.310 - Narcotics trafficking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Narcotics trafficking. 598.310 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY FOREIGN NARCOTICS KINGPIN SANCTIONS REGULATIONS General Definitions § 598.310 Narcotics trafficking. The term narcotics trafficking means any illicit activity...

  7. 31 CFR 598.310 - Narcotics trafficking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Narcotics trafficking. 598.310 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY FOREIGN NARCOTICS KINGPIN SANCTIONS REGULATIONS General Definitions § 598.310 Narcotics trafficking. The term narcotics trafficking means any illicit activity...

  8. 31 CFR 598.310 - Narcotics trafficking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Narcotics trafficking. 598.310... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY FOREIGN NARCOTICS KINGPIN SANCTIONS REGULATIONS General Definitions § 598.310 Narcotics trafficking. The term narcotics trafficking means any...

  9. Barriers to Combating Human Trafficking in Colombia

    DTIC Science & Technology

    2015-03-01

    EFFORTS ..............25 A. THE COLOMBIAN LEGAL FRAMEWORK AGAINST HUMAN TRAFFICKING...severe forms of trafficking in persons.”20 The second and third standards deal exclusively with the legal status of human trafficking in, requiring...problems involving definitions and victim identification; quantifying the problem; victimization factors; the legal system; and demand, corruption, and

  10. Brain Region-Specific Trafficking of the Dopamine Transporter

    PubMed Central

    Block, Ethan R.; Nuttle, Jacob; Balcita-Pedicino, Judith Joyce; Caltagarone, John; Watkins, Simon C.

    2015-01-01

    The dopamine (DA) transporter (DAT) controls dopaminergic neurotransmission by removing extracellular DA. Although DA reuptake is proposed to be regulated by DAT traffic to and from the cell surface, the membrane trafficking system involved in the endocytic cycling of DAT in the intact mammalian brain has not been characterized. Hence, we performed immunolabeling and quantitative analysis of the subcellular and regional distribution of DAT using the transgenic knock-in mouse expressing hemagglutinin (HA) epitope-tagged DAT (HA-DAT) and by using a combination of electron microscopy and a novel method for immunofluorescence labeling of HA-DAT in acute sagittal brain slices. Both approaches demonstrated that, in midbrain somatodendritic regions, HA-DAT was present in the plasma membrane, endoplasmic reticulum, and Golgi complex, with a small fraction in early and recycling endosomes and an even smaller fraction in late endosomes and lysosomes. In the striatum and in axonal tracts between the midbrain and striatum, HA-DAT was detected predominantly in the plasma membrane, and quantitative analysis revealed increased DAT density in striatal compared with midbrain plasma membranes. Endosomes were strikingly rare and lysosomes were absent in striatal axons, in which there was little intracellular HA-DAT. Acute administration of amphetamine in vivo (60 min) or to slices ex vivo (10–60 min) did not result in detectable changes in DAT distribution. Altogether, these data provide evidence for regional differences in DAT plasma membrane targeting and retention and suggest a surprisingly low level of endocytic trafficking of DAT in the striatum along with limited DAT endocytic activity in somatodendritic areas. SIGNIFICANCE STATEMENT The dopamine transporter (DAT) is the key regulator of the dopamine neurotransmission in the CNS. In the present study, we developed a new approach for studying DAT localization and dynamics in intact neurons in acute sagittal brain slices from

  11. GM130 is required for compartmental organization of dendritic Golgi outposts

    PubMed Central

    Zhou, Wei; Chang, Jin; Wang, Xin; Savelieff, Masha G.; Zhao, Yinyin; Ke, Shanshan; Ye, Bing

    2014-01-01

    SUMMARY Golgi complexes (Golgi) play important roles in the development and function of neurons [1–3]. Not only are Golgi present in the neuronal soma (somal Golgi) but they also exist in the dendrites as Golgi outposts [4–7]. Previous studies have shown that Golgi outposts serve as local microtubule organizing centers [8] and secretory stations in dendrites [6, 9]. It is unknown whether the structure and function of Golgi outposts differ from those of somal Golgi. Here we show in Drosophila that, unlike somal Golgi, the biochemically distinct cis, medial, and trans compartments of Golgi are often disconnected in dendrites in vivo. The Golgi structural protein GM130 is responsible for connecting distinct Golgi compartments in soma and dendritic branch points, and specific distribution of GM130 determines the compartmental organization of dendritic Golgi in dendritic shafts. We further show that compartmental organization regulates the role of Golgi in acentrosomal microtubule growth in dendrites and in dendritic branching. Our study provides insights into the structure and function of dendritic Golgi outposts as well as the regulation of compartmental organization of Golgi in general. PMID:24835455

  12. Regulation of Breast Cancer Cell Motility by Golgi-Mediated Signaling

    DTIC Science & Technology

    2011-09-01

    localized to the Golgi apparatus (Figure 4A) where it interfered with Dbs function, and limited Cdc42 activation. Next we determined whether this was...in the Golgi apparatus is required to support directed migration, but not overall cell movement, per se. Since Golgi reorientation is thought to be...Motility by Golgi -Mediated Signaling PRINCIPAL INVESTIGATOR: Ian Paul Whitehead, Ph.D

  13. Composition, Assembly, and Trafficking of a Wheat Xylan Synthase Complex1[OPEN

    PubMed Central

    Jiang, Nan; Wiemels, Richard E.; Soya, Aaron; Whitley, Rebekah; Held, Michael; Faik, Ahmed

    2016-01-01

    Xylans play an important role in plant cell wall integrity and have many industrial applications. Characterization of xylan synthase (XS) complexes responsible for the synthesis of these polymers is currently lacking. We recently purified XS activity from etiolated wheat (Triticum aestivum) seedlings. To further characterize this purified activity, we analyzed its protein composition and assembly. Proteomic analysis identified six main proteins: two glycosyltransferases (GTs) TaGT43-4 and TaGT47-13; two putative mutases (TaGT75-3 and TaGT75-4) and two non-GTs; a germin-like protein (TaGLP); and a vernalization related protein (TaVER2). Coexpression of TaGT43-4, TaGT47-13, TaGT75-3, and TaGT75-4 in Pichia pastoris confirmed that these proteins form a complex. Confocal microscopy showed that all these proteins interact in the endoplasmic reticulum (ER) but the complexes accumulate in Golgi, and TaGT43-4 acts as a scaffold protein that holds the other proteins. Furthermore, ER export of the complexes is dependent of the interaction between TaGT43-4 and TaGT47-13. Immunogold electron microscopy data support the conclusion that complex assembly occurs at specific areas of the ER before export to the Golgi. A di-Arg motif and a long sequence motif within the transmembrane domains were found conserved at the NH2-terminal ends of TaGT43-4 and homologous proteins from diverse taxa. These conserved motifs may control the forward trafficking of the complexes and their accumulation in the Golgi. Our findings indicate that xylan synthesis in grasses may involve a new regulatory mechanism linking complex assembly with forward trafficking and provide new insights that advance our understanding of xylan biosynthesis and regulation in plants. PMID:26917684

  14. Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function

    PubMed Central

    Ungar, Daniel; Oka, Toshihiko; Brittle, Elizabeth E.; Vasile, Eliza; Lupashin, Vladimir V.; Chatterton, Jon E.; Heuser, John E.; Krieger, Monty; Waters, M. Gerard

    2002-01-01

    Multiprotein complexes are key determinants of Golgi apparatus structure and its capacity for intracellular transport and glycoprotein modification. Three complexes that have previously been partially characterized include (a) the Golgi transport complex (GTC), identified in an in vitro membrane transport assay, (b) the ldlCp complex, identified in analyses of CHO cell mutants with defects in Golgi-associated glycosylation reactions, and (c) the mammalian Sec34 complex, identified by homology to yeast Sec34p, implicated in vesicular transport. We show that these three complexes are identical and rename them the conserved oligomeric Golgi (COG) complex. The COG complex comprises four previously characterized proteins (Cog1/ldlBp, Cog2/ldlCp, Cog3/Sec34, and Cog5/GTC-90), three homologues of yeast Sec34/35 complex subunits (Cog4, -6, and -8), and a previously unidentified Golgi-associated protein (Cog7). EM of ldlB and ldlC mutants established that COG is required for normal Golgi morphology. “Deep etch” EM of purified COG revealed an ∼37-nm-long structure comprised of two similarly sized globular domains connected by smaller extensions. Consideration of biochemical and genetic data for mammalian COG and its yeast homologue suggests a model for the subunit distribution within this complex, which plays critical roles in Golgi structure and function. PMID:11980916

  15. Alternative Splicing in CaV2.2 Regulates Neuronal Trafficking via Adaptor Protein Complex-1 Adaptor Protein Motifs

    PubMed Central

    Macabuag, Natsuko

    2015-01-01

    N-type voltage-gated calcium (CaV2.2) channels are expressed in neurons and targeted to the plasma membrane of presynaptic terminals, facilitating neurotransmitter release. Here, we find that the adaptor protein complex-1 (AP-1) mediates trafficking of CaV2.2 from the trans-Golgi network to the cell surface. Examination of splice variants of CaV2.2, containing either exon 37a (selectively expressed in nociceptors) or 37b in the proximal C terminus, reveal that canonical AP-1 binding motifs, YxxΦ and [DE]xxxL[LI], present only in exon 37a, enhance intracellular trafficking of exon 37a-containing CaV2.2 to the axons and plasma membrane of rat DRG neurons. Finally, we identify differential effects of dopamine-2 receptor (D2R) and its agonist-induced activation on trafficking of CaV2.2 isoforms. D2R slowed the endocytosis of CaV2.2 containing exon 37b, but not exon 37a, and activation by the agonist quinpirole reversed the effect of the D2R. Our work thus reveals key mechanisms involved in the trafficking of N-type calcium channels. SIGNIFICANCE STATEMENT CaV2.2 channels are important for neurotransmitter release, but how they are trafficked is still poorly understood. Here, we describe a novel mechanism for trafficking of CaV2.2 from the trans-Golgi network to the cell surface which is mediated by the adaptor protein AP-1. Alternative splicing of exon 37 produces CaV2.2-exon 37a, selectively expressed in nociceptors, or CaV2.2-exon 37b, which is the major splice isoform. Our study reveals that canonical AP-1 binding motifs (YxxΦ and [DE]xxxL[LI]), present in exon 37a, but not 37b, enhance intracellular trafficking of exon 37a-containing CaV2.2 to axons and plasma membrane of DRG neurons. Interaction of APs with CaV2.2 channels may also be key underlying mechanisms for differential effects of the dopamine D2 receptor on trafficking of CaV2.2 splice variants. PMID:26511252

  16. A role for the Golgi matrix protein giantin in ciliogenesis through control of the localization of dynein-2

    PubMed Central

    Asante, David; MacCarthy-Morrogh, Lucy; Townley, Anna K.; Weiss, Matthew A.; Katayama, Kentaro; Palmer, Krysten J.; Suzuki, Hiroetsu; Westlake, Chris J.; Stephens, David J.

    2013-01-01

    Summary The correct formation of primary cilia is central to the development and function of nearly all cells and tissues. Cilia grow from the mother centriole by extension of a microtubule core, the axoneme, which is then surrounded with a specialized ciliary membrane that is continuous with the plasma membrane. Intraflagellar transport moves particles along the length of the axoneme to direct assembly of the cilium and is also required for proper cilia function. The microtubule motor, cytoplasmic dynein-2 mediates retrograde transport along the axoneme from the tip to the base; dynein-2 is also required for some aspects of cilia formation. In most cells, the Golgi lies adjacent to the centrioles and key components of the cilia machinery localize to this organelle. Golgi-localized proteins have also been implicated in ciliogenesis and in intraflagellar transport. Here, we show that the transmembrane Golgi matrix protein giantin (GOLGB1) is required for ciliogenesis. We show that giantin is not required for the Rab11–Rabin8–Rab8 pathway that has been implicated in the early stages of ciliary membrane formation. Instead we find that suppression of giantin results in mis-localization of WDR34, the intermediate chain of dynein-2. Highly effective depletion of giantin or WDR34 leads to an inability of cells to form primary cilia. Partial depletion of giantin or of WDR34 leads to an increase in cilia length consistent with the concept that giantin acts through dynein-2. Our data implicate giantin in ciliogenesis through control of dynein-2 localization. PMID:24046448

  17. Methods to study signaling at the Golgi apparatus.

    PubMed

    Reitere, Veronika; Baschieri, Francesco; Millarte, Valentina; Farhan, Hesso

    2013-01-01

    Research on the secretory pathway in the past three decades accounts for our known knowledge about the composition and architecture of organelles and about the machinery that regulates membrane transport. An emerging topic in the past few years was the discovery that the secretory pathway is regulated by signaling, and in this regard, the Golgi apparatus received major attention. In the current chapter, we will highlight various techniques that are used by us and others to study signaling at the Golgi. We describe methods to study lipid and protein phosphorylation at the Golgi and various techniques for studying spatial activation of GTPases at this organelle. We also discuss how combining these techniques and improving their limitations is important for gaining a better understanding of how the Golgi intersects with various signal transduction pathways.

  18. Human trafficking and the healthcare professional.

    PubMed

    Barrows, Jeffrey; Finger, Reginald

    2008-05-01

    Despite the legislation passed in the 19th century outlawing human slavery, it is more widespread today than at the conclusion of the civil war. Modern human slavery, termed human trafficking, comes in several forms. The most common type of human trafficking is sex trafficking, the sale of women and children into prostitution. Labor trafficking is the sale of men, women, and children into hard labor for which they receive little or no compensation. Other forms of trafficking include child soldiering, war brides, and organ removal. Healthcare professionals play a critical role in both finding victims of human trafficking while they are still in captivity, as well as caring for their mental and physical needs upon release. Those working in the healthcare profession need to be educated regarding how a trafficking victim may present, as well as their unique healthcare needs.

  19. A Dual Role for the Nonreceptor Tyrosine Kinase Pyk2 during the Intracellular Trafficking of Human Papillomavirus 16

    PubMed Central

    Gottschalk, Elinor Y.

    2015-01-01

    ABSTRACT The infectious process of human papillomaviruses (HPVs) has been studied considerably, and many cellular components required for viral entry and trafficking continue to be revealed. In this study, we investigated the role of the nonreceptor tyrosine kinase Pyk2 during HPV16 pseudovirion infection of human keratinocytes. We found that Pyk2 is necessary for infection and appears to be involved in the intracellular trafficking of the virus. Small interfering RNA-mediated reduction of Pyk2 resulted in a significant decrease in infection but did not prevent viral entry at the plasma membrane. Pyk2 depletion resulted in altered endolysosomal trafficking of HPV16 and accelerated unfolding of the viral capsid. Furthermore, we observed retention of the HPV16 pseudogenome in the trans-Golgi network (TGN) in Pyk2-depleted cells, suggesting that the kinase could be required for the viral DNA to exit the TGN. While Pyk2 has previously been shown to function during the entry of enveloped viruses at the plasma membrane, the kinase has not yet been implicated in the intracellular trafficking of a nonenveloped virus such as HPV. Additionally, these data enrich the current literature on Pyk2's function in human keratinocytes. IMPORTANCE In this study, we investigated the role of the nonreceptor tyrosine kinase Pyk2 during human papillomavirus (HPV) infection of human skin cells. Infections with high-risk types of HPV such as HPV16 are the leading cause of cervical cancer and a major cause of genital and oropharyngeal cancer. As a nonenveloped virus, HPV enters cells by interacting with cellular receptors and established cellular trafficking routes to ensure that the viral DNA reaches the nucleus for productive infection. This study identified Pyk2 as a cellular component required for the intracellular trafficking of HPV16 during infection. Understanding the infectious pathways of HPVs is critical for developing additional preventive therapies. Furthermore, this study

  20. Phosphatidylinositol 3-kinase and 4-kinase have distinct roles in intracellular trafficking of cellulose synthase complexes in Arabidopsis thaliana.

    PubMed

    Fujimoto, Masaru; Suda, Yasuyuki; Vernhettes, Samantha; Nakano, Akihiko; Ueda, Takashi

    2015-02-01

    The oriented deposition of cellulose microfibrils in the plant cell wall plays a crucial role in various plant functions such as cell growth, organ formation and defense responses. Cellulose is synthesized by cellulose synthase complexes (CSCs) embedded in the plasma membrane (PM), which comprise the cellulose synthases (CESAs). The abundance and localization of CSCs at the PM should be strictly controlled for precise regulation of cellulose deposition, which strongly depends on the membrane trafficking system. However, the mechanism of the intracellular transport of CSCs is still poorly understood. In this study, we explored requirements for phosphoinositides (PIs) in CESA trafficking by analyzing the effects of inhibitors of PI synthesis in Arabidopsis thaliana expressing green fluorescent protein-tagged CESA3 (GFP-CESA3). We found that a shift to a sucrose-free condition accelerated re-localization of PM-localized GFP-CESA3 into the periphery of the Golgi apparatus via the clathrin-enriched trans-Golgi network (TGN). Treatment with wortmannin (Wm), an inhibitor of phosphatidylinositol 3- (PI3K) and 4- (PI4K) kinases, and phenylarsine oxide (PAO), a more specific inhibitor for PI4K, inhibited internalization of GFP-CESA3 from the PM. In contrast, treatment with LY294002, which impairs the PI3K activity, did not exert such an inhibitory effect on the sequestration of GFP-CESA3, but caused a predominant accumulation of GFP-CESA3 at the ring-shaped periphery of the Golgi apparatus, resulting in the removal of GFP-CESA3 from the PM. These results indicate that PIs are essential elements for localization and intracellular transport of CESA3 and that PI4K and PI3K are required for distinct steps in secretory and/or endocytic trafficking of CESA3.

  1. MORPHOLOGICAL AND CYTOCHEMICAL IDENTIFICATION OF THE GOLGI APPARATUS

    PubMed Central

    Chu, C. H. U.; Swinyard, C. A.

    1956-01-01

    1. A modification of Elftman's direct silver method reveals both the lipochondria of Baker and the network of Golgi in the same cell. For purpose of distinction, it is proposed to call Baker's lipochondria the nucleopetal fraction, the Golgi network the nucleofugal fraction of the Golgi apparatus. 2. The nucleopetal fraction is located closer to the nucleus. It is spherical in shape and appears black in color. The nucleofugal fraction is located farther away from the nucleus. It is reticular in form and appears brown in color after silver impregnation by the modified Elftman's method. 3. These two fractions are separate entities. The network of Golgi is not due to deposition of silver on lipochondria. Lipochondria do not represent Golgi apparatus in living cells. 4. Aldehydes facilitate the demonstration of the nucleofugal fraction. Based on the circumstantial evidence presented, it appears that aldehyde dehydrogenase composed of a specific protein bound to a prosthetic group of flavin-adenine dinucleotide may be concentrated in this fraction. 5. Aldehyde dehydrogenase also functions as xanthine oxidase. It is suggested as a working hypothesis that under physiological condition, one of the functions of the nucleofugal fraction (Golgi network) is concerned with purine metabolism of nucleoproteins. PMID:13331959

  2. Retrograde ejaculation, painful ejaculation and hematospermia

    PubMed Central

    Parnham, Arie

    2016-01-01

    Although there has been an increased interest on premature ejaculation in the recent years, our understanding regarding the disorders of retrograde ejaculation, painful ejaculation and hematospermia remain limited. All three of these conditions require a keen clinical acumen and willingness to engage in thinking outside of the standard established treatment paradigm. The development of novel investigational techniques and treatments has led to progress in the management of these conditions symptoms; however, the literature almost uniformly is limited to small series and rare randomised trials. Further investigation and randomised controlled trials are needed for progress in these often challenging cases. PMID:27652230

  3. Retrograde ejaculation, painful ejaculation and hematospermia.

    PubMed

    Parnham, Arie; Serefoglu, Ege Can

    2016-08-01

    Although there has been an increased interest on premature ejaculation in the recent years, our understanding regarding the disorders of retrograde ejaculation, painful ejaculation and hematospermia remain limited. All three of these conditions require a keen clinical acumen and willingness to engage in thinking outside of the standard established treatment paradigm. The development of novel investigational techniques and treatments has led to progress in the management of these conditions symptoms; however, the literature almost uniformly is limited to small series and rare randomised trials. Further investigation and randomised controlled trials are needed for progress in these often challenging cases.

  4. The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2.

    PubMed

    Colanzi, Antonino; Hidalgo Carcedo, Cristina; Persico, Angela; Cericola, Claudia; Turacchio, Gabriele; Bonazzi, Matteo; Luini, Alberto; Corda, Daniela

    2007-05-16

    The Golgi ribbon is a complex structure of many stacks interconnected by tubules that undergo fragmentation during mitosis through a multistage process that allows correct Golgi inheritance. The fissioning protein CtBP1-S/BARS (BARS) is essential for this, and is itself required for mitotic entry: a block in Golgi fragmentation results in cell-cycle arrest in G2, defining the 'Golgi mitotic checkpoint'. Here, we clarify the precise stage of Golgi fragmentation required for mitotic entry and the role of BARS in this process. Thus, during G2, the Golgi ribbon is converted into isolated stacks by fission of interstack connecting tubules. This requires BARS and is sufficient for G2/M transition. Cells without a Golgi ribbon are independent of BARS for Golgi fragmentation and mitotic entrance. Remarkably, fibroblasts from BARS-knockout embryos have their Golgi complex divided into isolated stacks at all cell-cycle stages, bypassing the need for BARS for Golgi fragmentation. This identifies the precise stage of Golgi fragmentation and the role of BARS in the Golgi mitotic checkpoint, setting the stage for molecular analysis of this process.

  5. Sorting competition with membrane-permeable peptides in intact epithelial cells revealed discrimination of transmembrane proteins not only at the trans-Golgi network but also at pre-Golgi stages.

    PubMed

    Soza, Andrea; Norambuena, Andrés; Cancino, Jorge; de la Fuente, Erwin; Henklein, Peter; González, Alfonso

    2004-04-23

    Transmembrane proteins destined to the basolateral cell surface of epithelial cells contain in their cytosolic domain at least two classes of sorting signals: one class promotes exit from the endoplasmic reticulum (ER) and transport to the Golgi complex, and the other class operates at the trans-Golgi network (TGN) specifying segregation into basolateral exocytic pathways. Both kinds of addressing motifs are quite diverse among different proteins. It is unclear to what extent this feature reflects alternative decoding mechanisms or variations in motifs recognized by the same sorting factor. Here we applied a novel strategy based on permeable peptide technology and temperature-sensitive model proteins to study competition between cytosolic sorting motifs in the context of mammalian living cells. We used the transduction domain of HIV-1 Tat protein to make a membrane-permeable peptide of the cytosolic tail of GtsO45, which contains a well characterized ER exit di-acidic (DIE) motif and a tyrosine-based basolateral sorting signal (YTDI). This peptide added to the media inhibited transport of GtsO45 from both ER-to-Golgi and TGN-to-basolateral cell surface in transfected Madin-Darby canine kidney cells. Instead, it did not affect the exocytic trafficking of a GtsO45-derived chimeric protein bearing 30 juxtamembrane residues from the cytosolic domain of the epidermal growth factor receptor that contains a variant ER exit motif (ERE) and an unconventional proline-based basolateral sorting signal. These results not only proved the feasibility of competing for sorting events in intact cells but also showed that distinct plasma membrane proteins can be discriminated at pre-TGN stages, and that basolateral sorting involves different recognition elements for tyrosine-based motifs and an unconventional basolateral motif.

  6. Biopolitical management, economic calculation and "trafficked women".

    PubMed

    Berman, Jacqueline

    2010-01-01

    Narratives surrounding human trafficking, especially trafficking in women for sex work, employ gendered and racialized tropes that have among their effects, a shrouding of women's economic decision-making and state collusion in benefiting from their labour. This paper explores the operation of these narratives in order to understand the ways in which they mask the economics of trafficking by sensationalizing the sexual and criminal aspects of it, which in turn allows the state to pursue political projects under the guise of a benevolent concern for trafficked women and/or protection of its own citizens. This paper will explore one national example: Article 18 of Italian Law 40 (1998). I argue that its passage has led to an increase in cooperation with criminal prosecution of traffickers largely because it approaches trafficked women as capable of making decisions about how and what they themselves want to do. This paper will also consider a more global approach to trafficking embedded in the concept of "migration management", an International Organization for Migration (IOM) framework that is now shaping EU, US and other national immigration laws and policies that impact trafficking. It will also examine the inherent limitations of both the national and global approach as an occasion to unpack how Article 18 and Migration Management function as forms of biopolitical management that participate in the production of "trafficking victims" into a massified population to be managed, rather than engender a more engaged discussion of what constitutes trafficking and how to redress it.

  7. Traffic through the Golgi apparatus as studied by radioautography.

    PubMed

    Bennett, G; Wild, G

    1991-02-01

    The ability to radiolabel biological molecules, in conjunction with radioautographic or cell fractionation techniques, has brought about a revolution in our knowledge of dynamic cellular processes. This has been particularly true since the 1940's, when isotopes such as 35S and 14C became available, since these isotopes could be incorporated into a great variety of biologically important compounds. The first dynamic evidence for Golgi apparatus involvement in biosynthesis came from light microscope radioautographic studies by Jennings and Florey in the 1950's, in which label was localized to the supranuclear Golgi region of goblet cells soon after injection of 35S-sulfate. When the low energy isotope tritium became available, and when radioautography could be extended to the electron microscope level, a great improvement in spatial resolution was achieved. Studies using 3H-amino acids revealed that proteins were synthesized in the rough endoplasmic reticulum, migrated to the Golgi apparatus, and thence to secretion granules, lysosomes, or the plasma membrane. The work of Neutra and Leblond in the 1960's using 3H-glucose provided dramatic evidence that the Golgi apparatus was involved in glycosylation. Work with 3H-mannose (a core sugar in N-linked side chains), showed that this sugar was incorporated into glycoproteins in the rough endoplasmic reticulum, providing the first radioautographic evidence that glycosylation of proteins did not occur solely in the Golgi apparatus. Studies with the tritiated precursors of fucose, galactose, and sialic acid, on the other hand, showed that these terminal sugars are mainly added in the Golgi apparatus. With its limited spatial resolution, radioautography cannot discriminate between label in adjacent Golgi saccules. Nonetheless, in some cell types, radioautographic evidence (along with cytochemical and cell fractionation data) has indicated that the Golgi is subcompartmentalized in terms of glycosylation, with galactose and

  8. Subtrochanteric fractures after retrograde femoral nailing

    PubMed Central

    Mounasamy, Varatharaj; Mallu, Sathya; Khanna, Vishesh; Sambandam, Senthil

    2015-01-01

    Secondary fractures around femoral nails placed for the management of hip fractures are well known. We report, two cases of a fracture of the femur at the interlocking screw site in the subtrochanteric area after retrograde femoral nailing of a femoral shaft fracture. Only a few reports in the existing literature have described these fractures. Two young men after sustaining a fall presented to us with pain, swelling and deformity in the upper thigh region. On enquiring, examining and radiographing them, peri-implant fractures of subtrochanteric nature through the distal interlocking screws were revealed in both patients who also had histories of previous falls for which retrograde intramedullary nailing was performed for their respective femora. Both patients were managed with similar surgical routines including removal of the existing hardware, open reduction and ace cephallomedullary antegrade nailing. The second case did show evidence of delayed healing and was additionally stabilized with cerclage wires. Both patients had uneventful postoperative outcomes and union was evident at the end of 6 mo postoperatively with a good range of motion at the hip and knee. Our report suggests that though seldom reported, peri-implant fractures around the subtrochanteric region can occur and pose a challenge to the treating orthopaedic surgeon. We suggest these be managed, after initial stabilization and resuscitation, by implant removal, open reduction and interlocking intramedullary antegrade nailing. Good results and progression to union can be expected in these patients by adhering to basic principles of osteosynthesis. PMID:26495251

  9. Terminal retrograde turn of rolling rings

    NASA Astrophysics Data System (ADS)

    Jalali, Mir Abbas; Sarebangholi, Milad S.; Alam, Mohammad-Reza

    2015-09-01

    We report an unexpected reverse spiral turn in the final stage of the motion of rolling rings. It is well known that spinning disks rotate in the same direction of their initial spin until they stop. While a spinning ring starts its motion with a kinematics similar to disks, i.e., moving along a cycloidal path prograde with the direction of its rigid body rotation, the mean trajectory of its center of mass later develops an inflection point so that the ring makes a spiral turn and revolves in a retrograde direction around a new center. Using high speed imaging and numerical simulations of models featuring a rolling rigid body, we show that the hollow geometry of a ring tunes the rotational air drag resistance so that the frictional force at the contact point with the ground changes its direction at the inflection point and puts the ring on a retrograde spiral trajectory. Our findings have potential applications in designing topologically new surface-effect flying objects capable of performing complex reorientation and translational maneuvers.

  10. The giardial ENTH protein participates in lysosomal protein trafficking and endocytosis.

    PubMed

    Feliziani, Constanza; Zamponi, Nahuel; Gottig, Natalia; Rópolo, Andrea S; Lanfredi-Rangel, Adriana; Touz, Maria C

    2015-03-01

    In the protozoa parasite Giardia lamblia, endocytosis and lysosomal protein trafficking are vital parasite-specific processes that involve the action of the adaptor complexes AP-1 and AP-2 and clathrin. In this work, we have identified a single gene in Giardia encoding a protein containing an ENTH domain that defines monomeric adaptor proteins of the epsin family. This domain is present in the epsin or epsin-related (epsinR) adaptor proteins, which are implicated in endocytosis and Golgi-to-endosome protein trafficking, respectively, in other eukaryotic cells. We found that GlENTHp (for G. lamblia ENTH protein) localized in the cytosol, strongly interacted with PI3,4,5P3, was associated with the alpha subunit of AP-2, clathrin and ubiquitin and was involved in receptor-mediated endocytosis. It also bonded PI4P, the gamma subunit of AP-1 and was implicated in ER-to-PV trafficking. Alteration of the GlENTHp function severely affected trophozoite growth showing an unusual accumulation of dense material in the lysosome-like peripheral vacuoles (PVs), indicating that GlENTHp might be implicated in the maintenance of PV homeostasis. In this study, we showed evidence suggesting that GlENTHp might function as a monomeric adaptor protein supporting the findings of other group indicating that GlENTHp might be placed at the beginning of the ENTH family.

  11. Regulation of caveolin-1 membrane trafficking by the Na/K-ATPase

    PubMed Central

    Cai, Ting; Wang, Haojie; Chen, Yiliang; Liu, Lijun; Gunning, William T; Quintas, Luis Eduardo M.; Xie, Zi-Jian

    2008-01-01

    Here, we show that the Na/K-ATPase interacts with caveolin-1 (Cav1) and regulates Cav1 trafficking. Graded knockdown of Na/K-ATPase decreases the plasma membrane pool of Cav1, which results in a significant reduction in the number of caveolae on the cell surface. These effects are independent of the pumping function of Na/K-ATPase, and instead depend on interaction between Na/K-ATPase and Cav1 mediated by an N-terminal caveolin-binding motif within the ATPase α1 subunit. Moreover, knockdown of the Na/K-ATPase increases basal levels of active Src and stimulates endocytosis of Cav1 from the plasma membrane. Microtubule-dependent long-range directional trafficking in Na/K-ATPase–depleted cells results in perinuclear accumulation of Cav1-positive vesicles. Finally, Na/K-ATPase knockdown has no effect on processing or exit of Cav1 from the Golgi. Thus, the Na/K-ATPase regulates Cav1 endocytic trafficking and stabilizes the Cav1 plasma membrane pool. PMID:18794328

  12. HAPLESS13-Mediated Trafficking of STRUBBELIG Is Critical for Ovule Development in Arabidopsis

    PubMed Central

    Wang, Jia-Gang; Feng, Chong; Liu, Hai-Hong; Ge, Fu-Rong; Li, Sha; Zhang, Yan

    2016-01-01

    Planar morphogenesis, a distinct feature of multicellular organisms, is crucial for the development of ovule, progenitor of seeds. Both receptor-like kinases (RLKs) such as STRUBBELIG (SUB) and auxin gradient mediated by PIN-FORMED1 (PIN1) play instructive roles in this process. Fine-tuned intercellular communications between different cell layers during ovule development demands dynamic membrane distribution of these cell-surface proteins, presumably through vesicle-mediated sorting. However, the way it’s achieved and the trafficking routes involved are obscure. We report that HAPLESS13 (HAP13)-mediated trafficking of SUB is critical for ovule development. HAP13 encodes the μ subunit of adaptor protein 1 (AP1) that mediates protein sorting at the trans-Golgi network/early endosome (TGN/EE). The HAP13 mutant, hap13-1, is defective in outer integument growth, resulting in exposed nucellus accompanied with impaired pollen tube guidance and reception. SUB is mis-targeted in hap13-1. However, unlike that of PIN2, the distribution of PIN1 is independent of HAP13. Genetic interference of exocytic trafficking at the TGN/EE by specifically downregulating HAP13 phenocopied the defects of hap13-1 in SUB targeting and ovule development, supporting a key role of sporophytically expressed SUB in instructing female gametogenesis. PMID:27541731

  13. Modulation of membrane mechanical properties by Sar1, a vesicle trafficking protein.

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2009-03-01

    The trafficking of cargo in cells involves dramatic changes in membrane shape and topology. Though trafficking is widely studied and the identities and interactions of the responsible proteins are well mapped, remarkably little is known about the mechanics involved. We focus on Sar1, the key regulator of the coat protein complex II (COPII) family that ferries newly synthesized proteins from the ER to the Golgi. Sar1 is the only member of the COPII coat that interacts directly with the ER lipid bilayer membrane. It has an amphipathic N-terminal helix; when Sar1 is GTP-bound, the helix is exposed and the hydrophobic hemi-cylinder can insert into the bilayer. To investigate whether Sar1 has a role beyond merely localizing the other COPII proteins, we directly measure the force involved in membrane deformation as a function of its presence or absence, using optically trapped microspheres to pull tethers from lipid membranes whose composition and large surface area mimic the composition and geometry of the ER. Tether measurements allow extraction of the membrane bending modulus, the parameter that governs the energetics of deformation. We find that the bending modulus measured in the presence of Sar1 with a non-hydrolyzable GTP analogue is half that measured without Sar1 or with Sar1-GDP. These results reveal a paradigm-altering insight into COPII trafficking: Sar1 actively alters the material properties of the membranes it binds to, lowering the energetic cost of curvature generation.

  14. P120-Catenin Regulates Early Trafficking Stages of the N-Cadherin Precursor Complex

    PubMed Central

    Wehrendt, Diana P.; Carmona, Fernando; González Wusener, Ana E.; González, Ángela; Martínez, Juan M. Lázaro; Arregui, Carlos O.

    2016-01-01

    It is well established that binding of p120 catenin to the cytoplasmic domain of surface cadherin prevents cadherin endocytosis and degradation, contributing to cell-cell adhesion. In the present work we show that p120 catenin bound to the N-cadherin precursor, contributes to its anterograde movement from the endoplasmic reticulum (ER) to the Golgi complex. In HeLa cells, depletion of p120 expression, or blocking its binding to N-cadherin, increased the accumulation of the precursor in the ER, while it decreased the localization of mature N-cadherin at intercellular junctions. Reconstitution experiments in p120-deficient SW48 cells with all three major isoforms of p120 (1, 3 and 4) had similar capacity to promote the processing of the N-cadherin precursor to the mature form, and its localization at cell-cell junctions. P120 catenin and protein tyrosine phosphatase PTP1B facilitated the recruitment of the N-ethylmaleimide sensitive factor (NSF), an ATPase involved in vesicular trafficking, to the N-cadherin precursor complex. Dominant negative NSF E329Q impaired N-cadherin trafficking, maturation and localization at cell-cell junctions. Our results uncover a new role for p120 catenin bound to the N-cadherin precursor ensuring its trafficking through the biosynthetic pathway towards the cell surface. PMID:27254316

  15. Endoplasmic Reticulum Exit of Golgi-resident Defective for SREBP Cleavage (Dsc) E3 Ligase Complex Requires Its Activity.

    PubMed

    Raychaudhuri, Sumana; Espenshade, Peter J

    2015-06-05

    Layers of quality control ensure proper protein folding and complex formation prior to exit from the endoplasmic reticulum. The fission yeast Dsc E3 ligase is a Golgi-localized complex required for sterol regulatory element-binding protein (SREBP) transcription factor activation that shows architectural similarity to endoplasmic reticulum-associated degradation E3 ligases. The Dsc E3 ligase consists of five integral membrane proteins (Dsc1-Dsc5) and functionally interacts with the conserved AAA-ATPase Cdc48. Utilizing an in vitro ubiquitination assay, we demonstrated that Dsc1 has ubiquitin E3 ligase activity that requires the E2 ubiquitin-conjugating enzyme Ubc4. Mutations that specifically block Dsc1-Ubc4 interaction prevent SREBP cleavage, indicating that SREBP activation requires Dsc E3 ligase activity. Surprisingly, Golgi localization of the Dsc E3 ligase complex also requires Dsc1 E3 ligase activity. Analysis of Dsc E3 ligase complex formation, glycosylation, and localization indicated that Dsc1 E3 ligase activity is specifically required for endoplasmic reticulum exit of the complex. These results define enzyme activity-dependent sorting as an autoregulatory mechanism for protein trafficking.

  16. Endoplasmic reticulum-Golgi intermediate compartment protein 3 knockdown suppresses lung cancer through endoplasmic reticulum stress-induced autophagy.

    PubMed

    Hong, Seong-Ho; Chang, Seung-Hee; Cho, Kyung-Cho; Kim, Sanghwa; Park, Sungjin; Lee, Ah Young; Jiang, Hu-Lin; Kim, Hyeon-Jeong; Lee, Somin; Yu, Kyeong-Nam; Seo, Hwi Won; Chae, Chanhee; Kim, Kwang Pyo; Park, Jongsun; Cho, Myung-Haing

    2016-10-04

    Trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus is elevated in cancer cells. Therefore, proteins of the ER-Golgi intermediate compartment (ERGIC) attract significant attention as targets for cancer treatment. Enhanced cancer cell growth and epithelial-mesenchymal transition by ERGICs correlates with poor-prognosis of lung cancer. This prompted us to assess whether knockdown of ERGIC3 may decrease lung cancer growth. To test the hypothesis, the effects of ERGIC3 short hairpin RNA (shERGIC3) on ER stress-induced cell death and lung tumorigenesis were investigated both in vitro and in vivo. Knockdown of ERGIC3 led to ER stress-induced autophagic cell death and suppression of proliferation in the A549 human lung cancer cell-line. Moreover, non-invasive aerosol-delivery of shERGIC3 using the biocompatible carrier glycerol propoxylate triacrylate and spermine (GPT-SPE) inhibited lung tumorigenesis in the K-rasLA1 murine model of lung cancer. Our data suggest that suppression of ERGIC3 could provide a framework for the development of effective lung cancer therapies.

  17. Endoplasmic reticulum-Golgi intermediate compartment protein 3 knockdown suppresses lung cancer through endoplasmic reticulum stress-induced autophagy

    PubMed Central

    Hong, Seong-Ho; Chang, Seung-Hee; Cho, Kyung-Cho; Kim, Sanghwa; Park, Sungjin; Lee, Ah Young; Jiang, Hu-Lin; Kim, Hyeon-Jeong; Lee, Somin; Yu, Kyeong-Nam; Seo, Hwi Won; Chae, Chanhee; Kim, Kwang Pyo; Park, Jongsun; Cho, Myung-Haing

    2016-01-01

    Trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus is elevated in cancer cells. Therefore, proteins of the ER-Golgi intermediate compartment (ERGIC) attract significant attention as targets for cancer treatment. Enhanced cancer cell growth and epithelial-mesenchymal transition by ERGICs correlates with poor-prognosis of lung cancer. This prompted us to assess whether knockdown of ERGIC3 may decrease lung cancer growth. To test the hypothesis, the effects of ERGIC3 short hairpin RNA (shERGIC3) on ER stress-induced cell death and lung tumorigenesis were investigated both in vitro and in vivo. Knockdown of ERGIC3 led to ER stress-induced autophagic cell death and suppression of proliferation in the A549 human lung cancer cell-line. Moreover, non-invasive aerosol-delivery of shERGIC3 using the biocompatible carrier glycerol propoxylate triacrylate and spermine (GPT-SPE) inhibited lung tumorigenesis in the K-rasLA1 murine model of lung cancer. Our data suggest that suppression of ERGIC3 could provide a framework for the development of effective lung cancer therapies. PMID:27588471

  18. Protein trafficking in kinetoplastid protozoa.

    PubMed Central

    Clayton, C; Häusler, T; Blattner, J

    1995-01-01

    The kinetoplastid protozoa infect hosts ranging from invertebrates to plants and mammals, causing diseases of medical and economic importance. They are the earliest-branching organisms in eucaryotic evolution to have either mitochondria or peroxisome-like microbodies. Investigation of their protein trafficking enables us to identify characteristics that have been conserved throughout eucaryotic evolution and also reveals how far variations, or alternative mechanisms, are possible. Protein trafficking in kinetoplastids is in many respects similar to that in higher eucaryotes, including mammals and yeasts. Differences in signal sequence specificities exist, however, for all subcellular locations so far examined in detail--microbodies, mitochondria, and endoplasmic reticulum--with signals being more degenerate, or shorter, than those of their higher eucaryotic counterparts. Some components of the normal array of trafficking mechanisms may be missing in most (if not all) kinetoplastids: examples are clathrin-coated vesicles, recycling receptors, and mannose 6-phosphate-mediated lysosomal targeting. Other aspects and structures are unique to the kinetoplastids or are as yet unexplained. Some of these peculiarities may eventually prove to be weak points that can be used as targets for chemotherapy; others may turn out to be much more widespread than currently suspected. PMID:7565409

  19. Viral Subversion of Nucleocytoplasmic Trafficking

    PubMed Central

    Yarbrough, Melanie L.; Mata, Miguel A.; Sakthivel, Ramanavelan; Fontoura, Beatriz M. A.

    2014-01-01

    Trafficking of proteins and RNA into and out of the nucleus occurs through the nuclear pore complex (NPC). Due to its critical function in many cellular processes, the NPC and transport factors are common targets of several viruses that disrupt key constituents of the machinery to facilitate viral replication. Many viruses such as poliovirus and severe acute respiratory syndrome (SARS) virus inhibit protein import into the nucleus, while viruses such as influenza A virus target and disrupt host mRNA nuclear export. Current evidence indicates that these viruses may employ such strategies to avert the host immune response. Conversely, many viruses co-opt nucleocytoplasmic trafficking to facilitate transport of viral RNAs. Since viral proteins interact with key regulators of the host nuclear transport machinery, viruses have served as invaluable tools of discovery that led to the identification of novel constituents of nuclear transport pathways. In addition, this review explores the importance of nucleocytoplasmic trafficking to viral pathogenesis as these studies revealed new antiviral therapeutic strategies and exposed previously unknown cellular mechanisms. Further understanding of nuclear transport pathways will determine whether such therapeutics will be useful treatments for important human pathogens. PMID:24289861

  20. Dicumarol, an inhibitor of ADP-ribosylation of CtBP3/BARS, fragments golgi non-compact tubular zones and inhibits intra-golgi transport.

    PubMed

    Mironov, Alexander A; Colanzi, Antonino; Polishchuk, Roman S; Beznoussenko, Galina V; Mironov, Alexander A; Fusella, Aurora; Di Tullio, Giuseppe; Silletta, Maria Giuseppina; Corda, Daniela; De Matteis, Maria Antonietta; Luini, Alberto

    2004-07-01

    Dicumarol (3,3'-methylenebis[4-hydroxycoumarin]) is an inhibitor of brefeldin-A-dependent ADP-ribosylation that antagonises brefeldin-A-dependent Golgi tubulation and redistribution to the endoplasmic reticulum. We have investigated whether dicumarol can directly affect the morphology of the Golgi apparatus. Here we show that dicumarol induces the breakdown of the tubular reticular networks that interconnect adjacent Golgi stacks and that contain either soluble or membrane-associated cargo proteins. This results in the formation of 65-120-nm vesicles that are sometimes invaginated. In contrast, smaller vesicles (45-65 nm in diameter, a size consistent with that of coat-protein-I-dependent vesicles) that excluded cargo proteins from their lumen are not affected by dicumarol. All other endomembranes are largely unaffected by dicumarol, including Golgi stacks, the ER, multivesicular bodies and the trans-Golgi network. In permeabilized cells, dicumarol activity depends on the function of CtBP3/BARS protein and pre-ADP-ribosylation of cytosol inhibits the breakdown of Golgi tubules by dicumarol. In functional experiments, dicumarol markedly slows down intra-Golgi traffic of VSV-G transport from the endoplasmic reticulum to the medial Golgi, and inhibits the diffusional mobility of both galactosyl transferase and VSV-G tagged with green fluorescent protein. However, it does not affect: transport from the trans-Golgi network to the cell surface; Golgi-to-endoplasmic reticulum traffic of ERGIC58; coat-protein-I-dependent Golgi vesiculation by AlF4 or ADP-ribosylation factor; or ADP-ribosylation factor and beta-coat protein binding to Golgi membranes. Thus the ADP-ribosylation inhibitor dicumarol induces the selective breakdown of the tubular components of the Golgi complex and inhibition of intra-Golgi transport. This suggests that lateral diffusion between adjacent stacks has a role in protein transport through the Golgi complex.

  1. Rafting with cholera toxin: endocytosis and trafficking from plasma membrane to ER.

    PubMed

    Chinnapen, Daniel J-F; Chinnapen, Himani; Saslowsky, David; Lencer, Wayne I

    2007-01-01

    Cholera toxin (CT), and members of the AB(5) family of toxins enter host cells and hijack the cell's endogenous pathways to induce toxicity. CT binds to a lipid receptor on the plasma membrane (PM), ganglioside GM1, which has the ability to associate with lipid rafts. The toxin can then enter the cell by various modes of receptor-mediated endocytosis and traffic in a retrograde manner from the PM to the Golgi and the endoplasmic reticulum (ER). Once in the ER, a portion of the toxin is unfolded and retro-translocated to the cytosol so as to induce disease. GM1 is the vehicle that carries CT from PM to ER. Thus, the toxin pathway from PM to ER is a lipid-based sorting pathway, which is potentially meditated by the determinants of the GM1 ganglioside structure itself.

  2. Phytochrome and retrograde signalling pathways coverage to antogonistically regulate a light-induced transcription network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plastid-to-nucleus retrograde signals emitted by dysfunctional chloroplasts impact photomorphogenic development, but the molecular link between retrograde and photosensory-receptor signaling has remained undefined. Here, we show that the phytochrome (phy) and retrograde signaling pathways converge a...

  3. Staurosporines disrupt phosphatidylserine trafficking and mislocalize Ras proteins.

    PubMed

    Cho, Kwang-jin; Park, Jin-Hee; Piggott, Andrew M; Salim, Angela A; Gorfe, Alemaheyu A; Parton, Robert G; Capon, Robert J; Lacey, Ernest; Hancock, John F

    2012-12-21

    Oncogenic mutant Ras is frequently expressed in human cancers, but no anti-Ras drugs have been developed. Since membrane association is essential for Ras biological activity, we developed a high content assay for inhibitors of Ras plasma membrane localization. We discovered that staurosporine and analogs potently inhibit Ras plasma membrane binding by blocking endosomal recycling of phosphatidylserine, resulting in redistribution of phosphatidylserine from plasma membrane to endomembrane. Staurosporines are more active against K-Ras than H-Ras. K-Ras is displaced to endosomes and undergoes proteasomal-independent degradation, whereas H-Ras redistributes to the Golgi and is not degraded. K-Ras nanoclustering on the plasma membrane is also inhibited. Ras mislocalization does not correlate with protein kinase C inhibition or induction of apoptosis. Staurosporines selectively abrogate K-Ras signaling and proliferation of K-Ras-transformed cells. These results identify staurosporines as novel inhibitors of phosphatidylserine trafficking, yield new insights into the role of phosphatidylserine and electrostatics in Ras plasma membrane targeting, and validate a new target for anti-Ras therapeutics.

  4. Using Kinesthetic Activities to Teach Ptolemaic and Copernican Retrograde Motion

    ERIC Educational Resources Information Center

    Richards, Ted

    2012-01-01

    This paper describes a method for teaching planetary retrograde motion, and the Ptolemaic and Copernican accounts of retrograde motion, by means of a series kinesthetic learning activities (KLAs). In the KLAs described, the students literally walk through the motions of the planets in both systems. A retrospective statistical analysis shows that…

  5. Human Sirtuin 2 Localization, Transient Interactions, and Impact on the Proteome Point to Its Role in Intracellular Trafficking.

    PubMed

    Budayeva, Hanna G; Cristea, Ileana M

    2016-10-01

    Human sirtuin 2 (SIRT2) is an NAD(+)-dependent deacetylase that primarily functions in the cytoplasm, where it can regulate α-tubulin acetylation levels. SIRT2 is linked to cancer progression, neurodegeneration, and infection with bacteria or viruses. However, the current knowledge about its interactions and the means through which it exerts its functions has remained limited. Here, we aimed to gain a better understanding of its cellular functions by characterizing SIRT2 subcellular localization, the identity and relative stability of its protein interactions, and its impact on the proteome of primary human fibroblasts. To assess the relative stability of SIRT2 interactions, we used immunoaffinity purification in conjunction with both label-free and metabolic labeling quantitative mass spectrometry. In addition to the expected associations with cytoskeleton proteins, including its known substrate TUBA1A, our results reveal that SIRT2 specifically interacts with proteins functioning in membrane trafficking, secretory processes, and transcriptional regulation. By quantifying their relative stability, we found most interactions to be transient, indicating a dynamic SIRT2 environment. We discover that SIRT2 localizes to the ER-Golgi intermediate compartment (ERGIC), and that this recruitment requires an intact ER-Golgi trafficking pathway. Further expanding these findings, we used microscopy and interaction assays to establish the interaction and coregulation of SIRT2 with liprin-β1 scaffolding protein (PPFiBP1), a protein with roles in focal adhesions disassembly. As SIRT2 functions may be accomplished via interactions, enzymatic activity, and transcriptional regulation, we next assessed the impact of SIRT2 levels on the cellular proteome. SIRT2 knockdown led to changes in the levels of proteins functioning in membrane trafficking, including some of its interaction partners. Altogether, our study expands the knowledge of SIRT2 cytoplasmic functions to define a

  6. A role for Rab14 in the endocytic trafficking of GLUT4 in 3T3-L1 adipocytes.

    PubMed

    Reed, Sam E; Hodgson, Lorna R; Song, Shuang; May, Margaret T; Kelly, Eoin E; McCaffrey, Mary W; Mastick, Cynthia C; Verkade, Paul; Tavaré, Jeremy M

    2013-05-01

    Insulin enhances the uptake of glucose into adipocytes and muscle cells by promoting the redistribution of the glucose transporter isoform 4 (GLUT4) from intracellular compartments to the cell surface. Rab GTPases regulate the trafficking itinerary of GLUT4 and several have been found on immunopurified GLUT4 vesicles. Specifically, Rab14 has previously been implicated in GLUT4 trafficking in muscle although its role, if any, in adipocytes is poorly understood. Analysis of 3T3-L1 adipocytes using confocal microscopy demonstrated that endogenous GLUT4 and endogenous Rab14 exhibited a partial colocalisation. However, when wild-type Rab14 or a constitutively-active Rab14Q70L mutant were overexpressed in these cells, the colocalisation with both GLUT4 and IRAP became extensive. Interestingly, this colocalisation was restricted to enlarged 'ring-like' vesicular structures (mean diameter 1.3 µm), which were observed in the presence of overexpressed wild-type Rab14 and Rab14Q70L, but not an inactive Rab14S25N mutant. These enlarged vesicles contained markers of early endosomes and were rapidly filled by GLUT4 and transferrin undergoing endocytosis from the plasma membrane. The Rab14Q70L mutant reduced basal and insulin-stimulated cell surface GLUT4 levels, probably by retaining GLUT4 in an insulin-insensitive early endosomal compartment. Furthermore, shRNA-mediated depletion of Rab14 inhibited the transit of GLUT4 through early endosomal compartments towards vesicles and tubules in the perinuclear region. Given the previously reported role of Rab14 in trafficking between endosomes and the Golgi complex, we propose that the primary role of Rab14 in GLUT4 trafficking is to control the transit of internalised GLUT4 from early endosomes into the Golgi complex, rather than direct GLUT4 translocation to the plasma membrane.

  7. Persistent and acute chlamydial infections induce different structural changes in the Golgi apparatus.

    PubMed

    Zhu, Huiling; Li, Hongmei; Wang, Pu; Chen, Mukai; Huang, Zengwei; Li, Kunpeng; Li, Yinyin; He, Jian; Han, Jiande; Zhang, Qinfen

    2014-07-01

    Chlamydia trachomatis causes a wide range of diseases that have a significant impact on public health. Acute chlamydial infections can cause fragmentation of the Golgi compartment ensuring the lipid transportation from the host cell. However, the changes that occur in the host cell Golgi apparatus after persistent infections are unclear. Here, we examined Golgi-associated gene (golga5) transcription and expression along with the structure of the Golgi apparatus in cells persistently infected with Chlamydia trachomatis. The results showed that persistent infections caused little fragmentation of the Golgi. The results also revealed that Golgi fragmentation might be associated with the suppression of transcription of the gene golga5.

  8. Decreasing Human Trafficking through Sex Work Decriminalization.

    PubMed

    Albright, Erin; D'Adamo, Kate

    2017-01-01

    In order to decrease human trafficking, health care workers should support the full decriminalization of prostitution. Similar to trafficking in other forms of labor, preventing trafficking in the sex trade requires addressing the different forms of marginalization that create vulnerable communities. By removing punitive laws that prevent reporting of exploitation and abuse, decriminalization allows sex workers to work more safely, thereby reducing marginalization and vulnerability. Decriminalization can also help destigmatize sex work and help resist political, social, and cultural marginalization of sex workers.

  9. Illicit Trafficking Challenges: Fighting the Good Fight Against Illicit Trafficking Networks

    DTIC Science & Technology

    2012-10-01

    2012 U.S. NAVAL POSTGRADUATE SCHOOL • CENTER ON CONTEMPORARY CONFLICT PASCC REPORT NUMBER 2012 012 ILLICIT TRAFFICKING CHALLENGES FIGHTING THE...GOOD FIGHT AGAINST ILLICIT TRAFFICKING NETWORKS Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection... Trafficking Challenges: Fighting the Good Fight Against Illicit Trafficking Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  10. Heterogeneity of lipoprotein particles in hepatic Golgi fractions

    PubMed Central

    1982-01-01

    Newly synthesized phospholipids, labeled with either [14C]choline, [3H]myo-inositol, or [33P]phosphate, partioned preferentially (greater than 80% of total incorporated radioactivity) in a Golgi membrane subfraction, although the cognate content subfraction contained a relatively large amount of secretory lipoproteins. The labeling pattern was the same for all phospholipids tested in the two subfractions. An active exchange process of polar lipids between Golgi membranes and Golgi secretory lipoproteins is postulated as a plausible explanation for these findings. Less than half of all Golgi lipoprotein particles have the density of serum VLDLs and a similar, but not identical, biochemical composition. The remaining lipoprotein particles are characterized by a continuous spectrum of sizes, and (to the extent tested) by a lipid and protein composition different from that of serum VLDLs and HDLs. Results obtained in control experiments rule out the possibility that the heterogeneous population of Golgi lipoprotein particles is an artefact caused by our preparation procedures. It is assumed that these heterogeneous particles are immature precursors of both VLDLs and HDLs. PMID:7085757

  11. Discrete and continuous models of protein sorting in the Golgi

    NASA Astrophysics Data System (ADS)

    Gong, Haijun; Schwartz, Russell

    2009-03-01

    The Golgi apparatus plays an important role in processing and sorting proteins and lipids. Golgi compartments constantly exchange material with each other and with other cellular components, allowing them to maintain and reform distinct identities despite dramatic changes in structure and size during cell division, development and osmotic stress. We have developed two minimal models of membrane and protein exchange in the Golgi --- a discrete, stochastic model [1] and a continuous ordinary differential equation (ODE) model --- both based on two fundamental mechanisms: vesicle-coat-mediated selective concentration of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins during vesicle formation and SNARE-mediated selective fusion of vesicles. Both show similar ability to establish and maintain distinct identities over broad parameter ranges, but they diverge in extreme conditions where Golgi collapse and reassembly may be observed. By exploring where the models differ, we hope to better identify those features essential to minimal models of various Golgi behaviors. [1] H. Gong, D. Sengupta, A. D. Linstedt, R. Schwartz. Biophys J. 95: 1674-1688, 2008.

  12. Morphometric alterations of Golgi apparatus in Alzheimer's disease are related to tau hyperphosphorylation.

    PubMed

    Antón-Fernández, Alejandro; Aparicio-Torres, Guillermo; Tapia, Silvia; DeFelipe, Javier; Muñoz, Alberto

    2017-01-01

    The Golgi apparatus (GA) is a highly dynamic organelle, which is mainly involved in the post-translational processing and targeting of cellular proteins and which undergoes significant morphological changes in response to different physiological and pathological conditions. In the present study, we have analyzed the possible alterations of GA in neurons from the temporal neocortex and hippocampus of Alzheimer's disease (AD) patients, using double immunofluorescence techniques, confocal microscopy and 3D quantification techniques. We found that in AD patients, the percentage of temporal neocortical and CA1 hippocampal pyramidal neurons with a highly altered GA is much higher (approximately 65%) in neurons with neurofibrillary tangles (NFT) than in NFT-free neurons (approximately 6%). Quantitative analysis of the surface area and volume of GA elements in neurons revealed that, compared with NFT-free neurons, NFT-bearing neurons had a reduction of approximately one half in neocortical neurons and one third in CA1 neurons. In both regions, neurons with a pre-tangle stage of phospho-tau accumulation had surface area and GA volume values that were intermediate, that is, between those of NFT-free and NFT-bearing neurons. These findings support the idea that the progressive accumulation of phospho-tau is associated with structural alterations of the GA including fragmentation and a decrease in the surface area and volume of GA elements. These alterations likely impact the processing and trafficking of proteins, which might contribute to neuronal dysfunction in AD.

  13. The multiple activities of CtBP/BARS proteins: the Golgi view.

    PubMed

    Corda, Daniela; Colanzi, Antonino; Luini, Alberto

    2006-03-01

    The C terminal-binding protein (CtBP) family functions in the nucleus as co-repressors of transcription and has a crucial role in differentiation, apoptosis, oncogenesis and development. Recently, the products of the CtBP1 gene have been implicated in important cytoplasmic functions, including membrane fission in intracellular trafficking, the partitioning of the Golgi complex during mitosis and the organization of ribbon synapses. This has led to a redefinition of the CtBPs as multifunctional proteins. Shuttling of CtBPs between the nucleus and the cytoplasm can be finely regulated by post-translational modifications. In addition, the structural homology with the dehydrogenase family of proteins and the ability of CtBPs to bind NAD(+) and acyl-CoAs have offered clues to the molecular mechanisms that enable these proteins to have different functions. Here, we discuss the cytoplasmic roles of the CtBPs and the possible mechanisms that enable them to switch between cell compartments and multiple functions.

  14. The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport

    PubMed Central

    Torgersen, Maria L.; Klokk, Tove Irene; Kavaliauskiene, Simona; Klose, Christian; Simons, Kai; Skotland, Tore; Sandvig, Kirsten

    2016-01-01

    2-hydroxyoleic acid (OHOA, Minerval®) is an example of a substance used for membrane lipid therapy, where the cellular membranes rather than specific proteins constitute the therapeutical target. OHOA is thought to mediate its anti-tumor effect by affecting the biophysical properties of membranes, which leads to altered recruitment and activation of amphitropic proteins, altered cellular signaling, and eventual cell death. Little is known about the initial signaling events upon treatment with OHOA, and whether the altered membrane properties would have any impact on the dynamic intracellular transport system. In the present study we demonstrate that treatment with OHOA led to a rapid release of intracellular calcium and activation of multiple signaling pathways in HeLa cells, including the PI3K-AKT1-MTOR pathway and several MAP kinases, in a process independent of the EGFR. By lipidomics we confirmed that OHOA was incorporated into several lipid classes. Concomitantly, OHOA potently increased retrograde transport of the plant toxin ricin from endosomes to the Golgi and further to the endoplasmic reticulum. The OHOA-stimulated ricin transport seemed to require several amphitropic proteins, including Src, phospholipase C, protein kinase C, and also Ca2+/calmodulin. Interestingly, OHOA induced a slight increase in endosomal localization of the retromer component VPS35. Thus, our data show that addition of a lipid known to alter membrane properties not only affects signaling, but also intracellular transport. PMID:27894086

  15. Distant retrograde orbits for the Moon's exploration

    NASA Astrophysics Data System (ADS)

    Sidorenko, Vladislav

    We discuss the properties of the distant retrograde orbits (which are called quasi-satellite orbits also) around Moon. For the first time the distant retrograde orbits were described by J.Jackson in studies on restricted three body problem at the beginning of 20th century [1]. In the synodic (rotating) reference frame distant retrograde orbit looks like an ellipse whose center is slowly drifting in the vicinity of minor primary body while in the inertial reference frame the third body is orbiting the major primary body. Although being away the Hill sphere the third body permanently stays close enough to the minor primary. Due to this reason the distant retrograde orbits are called “quasi-satellite” orbits (QS-orbits) too. Several asteroids in solar system are in a QS-orbit with respect to one of the planet. As an example we can mention the asteroid 2002VE68 which circumnavigates Venus [2]. Attention of specialists in space flight mechanics was attracted to QS-orbits after the publications of NASA technical reports devoted to periodic moon orbits [3,4]. Moving in QS-orbit the SC remains permanently (or at least for long enough time) in the vicinity of small celestial body even in the case when the Hill sphere lies beneath the surface of the body. The properties of the QS-orbit can be studied using the averaging of the motion equations [5,6,7]. From the theoretical point of view it is a specific case of 1:1 mean motion resonance. The integrals of the averaged equations become the parameters defining the secular evolution of the QS-orbit. If the trajectory is robust enough to small perturbations in the simplified problem (i.e., restricted three body problem) it may correspond to long-term stability of the real-world orbit. Our investigations demonstrate that under the proper choice of the initial conditions the QS-orbits don’t escape from Moon or don’t impact Moon for long enough time. These orbits can be recommended as a convenient technique for the large

  16. [Retrograde nailing in a tibial fracture].

    PubMed

    Valls-Mellado, M; Martí-Garín, D; Fillat-Gomà, F; Marcano-Fernández, F A; González-Vargas, J A

    2014-01-01

    We describe a case of a severely comminuted type iiia open tibial fracture, with distal loss of bone stock (7 cm), total involvement of the tibial joint surface, and severe instability of the fibular-talar joint. The treatment performed consisted of thorough cleansing, placing a retrograde reamed calcaneal-talar-tibial nail with proximal and distal blockage, as well as a fibular-talar Kirschner nail. Primary closure of the skin was achieved. After 3 weeks, an autologous iliac crest bone graft was performed to fill the bone defect, and the endomedullary nail, which had protruded distally was reimpacted and dynamized distally. The bone defect was eventually consolidated after 16 weeks. Currently, the patient can walk without pain the tibial-astragal arthrodesis is consolidated.

  17. Asteroids in Retrograde Orbits: Interesting Cases

    NASA Astrophysics Data System (ADS)

    Kankiewicz, Paweł; Włodarczyk, Ireneusz

    2014-12-01

    We present the most interesting examples of the orbital evolution of asteroids in retrograde orbits (i > 90°). First, we used the latest observational data to determine nominal and averaged orbital elements of these objects. Next, the equations of motion of these asteroids were integrated backward 1 My, taking into account the propagation of observational errors. We used so-called 'cloning' procedure to reproduce the reliability of initial data. We obtained some possible scenarios of the orbit inversion in the past, what is often caused by the long-term influence of outer planets. For two most interesting cases (Apollo and Amor type) we did additional calculations: 100 My in the future. Additionally, we investigated the potential influence of Yarkovski/YORP effects on the long-time orbital evolution.

  18. Evidence for retrograde lithospheric subduction on Venus

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.; Schubert, Gerald

    1992-01-01

    Annular moats and outer rises around large Venus coronas such as Artemis, Latona, and Eithinoha are similar in arcuate planform and topography to the trenches and outer rises of terrestrial subduction zones. On earth, trenches and outer rises are modeled as the flexural response of a thin elastic lithosphere to the bending moment of the subducted slab; this lithospheric flexure model also accounts for the trenches and outer rises outboard of the major coronas on Venus. Accordingly, it is proposed that retrograde lithospheric subduction may be occurring on the margins of the large Venus coronas while compensating back-arc extension is occurring in the expanding coronas interiors. Similar processes may be taking place at other deep arcuate trenches or chasmata on Venus such as those in the Dali-Diana chasmata area of aestern Aphrodite Terra.

  19. Role of cholesterol in SNARE-mediated trafficking on intracellular membranes.

    PubMed

    Enrich, Carlos; Rentero, Carles; Hierro, Aitor; Grewal, Thomas

    2015-03-15

    The cell surface delivery of extracellular matrix (ECM) and integrins is fundamental for cell migration in wound healing and during cancer cell metastasis. This process is not only driven by several soluble NSF attachment protein (SNAP) receptor (SNARE) proteins, which are key players in vesicle transport at the cell surface and intracellular compartments, but is also tightly modulated by cholesterol. Cholesterol-sensitive SNAREs at the cell surface are relatively well characterized, but it is less well understood how altered cholesterol levels in intracellular compartments impact on SNARE localization and function. Recent insights from structural biology, protein chemistry and cell microscopy have suggested that a subset of the SNAREs engaged in exocytic and retrograde pathways dynamically 'sense' cholesterol levels in the Golgi and endosomal membranes. Hence, the transport routes that modulate cellular cholesterol distribution appear to trigger not only a change in the location and functioning of SNAREs at the cell surface but also in endomembranes. In this Commentary, we will discuss how disrupted cholesterol transport through the Golgi and endosomal compartments ultimately controls SNARE-mediated delivery of ECM and integrins to the cell surface and, consequently, cell migration.

  20. The ER-Membrane Transport System Is Critical for Intercellular Trafficking of the NSm Movement Protein and Tomato Spotted Wilt Tospovirus

    PubMed Central

    Feng, Zhike; Xue, Fan; Xu, Min; Chen, Xiaojiao; Zhao, Wenyang; Garcia-Murria, Maria J.; Mingarro, Ismael; Liu, Yong; Huang, Ying; Jiang, Lei; Zhu, Min; Tao, Xiaorong

    2016-01-01

    Plant viruses move through plasmodesmata to infect new cells. The plant endoplasmic reticulum (ER) is interconnected among cells via the ER desmotubule in the plasmodesma across the cell wall, forming a continuous ER network throughout the entire plant. This ER continuity is unique to plants and has been postulated to serve as a platform for the intercellular trafficking of macromolecules. In the present study, the contribution of the plant ER membrane transport system to the intercellular trafficking of the NSm movement protein and Tomato spotted wilt tospovirus (TSWV) is investigated. We showed that TSWV NSm is physically associated with the ER membrane in Nicotiana benthamiana plants. An NSm-GFP fusion protein transiently expressed in single leaf cells was trafficked into neighboring cells. Mutations in NSm that impaired its association with the ER or caused its mis-localization to other subcellular sites inhibited cell-to-cell trafficking. Pharmacological disruption of the ER network severely inhibited NSm-GFP trafficking but not GFP diffusion. In the Arabidopsis thaliana mutant rhd3 with an impaired ER network, NSm-GFP trafficking was significantly reduced, whereas GFP diffusion was not affected. We also showed that the ER-to-Golgi secretion pathway and the cytoskeleton transport systems were not involved in the intercellular trafficking of TSWV NSm. Importantly, TSWV cell-to-cell spread was delayed in the ER-defective rhd3 mutant, and this reduced viral infection was not due to reduced replication. On the basis of robust biochemical, cellular and genetic analysis, we established that the ER membrane transport system serves as an important direct route for intercellular trafficking of NSm and TSWV. PMID:26863622

  1. Aberrant dynamin 2-dependent Na(+) /H(+) exchanger-1 trafficking contributes to cardiomyocyte apoptosis.

    PubMed

    Li, Jun; Xu, Liang; Ye, Jiangchuan; Li, Xiang; Zhang, Dasheng; Liang, Dandan; Xu, Xinran; Qi, Man; Li, Changming; Zhang, Hong; Wang, Jing; Liu, Yi; Zhang, Yuzhen; Zhou, Zhaonian; Liang, Xingqun; Li, Jue; Peng, Luying; Zhu, Weidong; Chen, Yi-Han

    2013-09-01

    Sarcolemmal Na(+) /H(+) exchanger 1 (NHE1) activity is essential for the intracellular pH (pHi ) homeostasis in cardiac myocytes. Emerging evidence indicates that sarcolemmal NHE1 dysfunction was closely related to cardiomyocyte death, but it remains unclear whether defective trafficking of NHE1 plays a role in the vital cellular signalling processes. Dynamin (DNM), a large guanosine triphosphatase (GTPase), is best known for its roles in membrane trafficking events. Herein, using co-immunoprecipitation, cell surface biotinylation and confocal microscopy techniques, we investigated the potential regulation on cardiac NHE1 activity by DNM. We identified that DNM2, a cardiac isoform of DNM, directly binds to NHE1. Overexpression of a wild-type DNM2 or a dominant-negative DNM2 mutant with defective GTPase activity in adult rat ventricular myocytes (ARVMs) facilitated or retarded the internalization of sarcolemmal NHE1, whereby reducing or increasing its activity respectively. Importantly, the increased NHE1 activity associated with DNM2 deficiency led to ARVMs apoptosis, as demonstrated by cell viability, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assay, Bcl-1/Bax expression and caspase-3 activity, which were effectively rescued by pharmacological inhibition of NHE1 with zoniporide. Thus, our results demonstrate that disruption of the DNM2-dependent retrograde trafficking of NHE1 contributes to cardiomyocyte apoptosis.

  2. A role for the membrane Golgi protein Ema in autophagy.

    PubMed

    Kim, Sungsu; DiAntonio, Aaron

    2012-08-01

    Autophagy is a cellular homeostatic response that involves degradation of self-components by the double-membraned autophagosome. The biogenesis of autophagosomes has been well described, but the ensuing processes after autophagosome formation are not clear. In our recent study, we proposed a model in which the Golgi complex contributes to the growth of autophagic structures, and that the Drosophila melanogaster membrane protein Ema promotes this process. In fat body cells of the D. melanogaster ema mutant, the recruitment of the Golgi complex protein Lava lamp (Lva) to autophagic structures is impaired and autophagic structures are very small. In addition, in the ema mutant autophagic turnover of SQSTM1/p62 and mitophagy are impaired. Our study not only identifies a role for Ema in autophagy, but also supports the hypothesis that the Golgi complex may be a potential membrane source for the biogenesis and development of autophagic structures.

  3. A Dendritic Golgi Satellite between ERGIC and Retromer.

    PubMed

    Mikhaylova, Marina; Bera, Sujoy; Kobler, Oliver; Frischknecht, Renato; Kreutz, Michael R

    2016-01-12

    The local synthesis of transmembrane proteins underlies functional specialization of dendritic microdomains in neuronal plasticity. It is unclear whether these proteins have access to the complete machinery of the secretory pathway following local synthesis. In this study, we describe a probe called pGolt that allows visualization of Golgi-related organelles for live imaging in neurons. We show that pGolt labels a widespread microsecretory Golgi satellite (GS) system that is, in contrast to Golgi outposts, present throughout basal and apical dendrites of all pyramidal neurons. The GS system contains glycosylation machinery and is localized between ERGIC and retromer. Synaptic activity restrains lateral movement of ERGIC, GS, and retromer close to one another, allowing confined processing of secretory cargo. Several synaptic transmembrane proteins pass through and recycle back to the GS system. Thus, the presence of an ER-ERGIC-GS-retromer microsecretory system in all neuronal dendrites enables autonomous local control of transmembrane protein synthesis and processing.

  4. Optical Control of Peroxisomal Trafficking

    PubMed Central

    2015-01-01

    The blue-light-responsive LOV2 domain of Avena sativa phototropin1 (AsLOV2) has been used to regulate activity and binding of diverse protein targets with light. Here, we used AsLOV2 to photocage a peroxisomal targeting sequence, allowing light regulation of peroxisomal protein import. We generated a protein tag, LOV-PTS1, that can be appended to proteins of interest to direct their import to the peroxisome with light. This method provides a means to inducibly trigger peroxisomal protein trafficking in specific cells at user-defined times. PMID:26513473

  5. RNAi screening reveals a large signaling network controlling the Golgi apparatus in human cells.

    PubMed

    Chia, Joanne; Goh, Germaine; Racine, Victor; Ng, Susanne; Kumar, Pankaj; Bard, Frederic

    2012-01-01

    The Golgi apparatus has many important physiological functions, including sorting of secretory cargo and biosynthesis of complex glycans. These functions depend on the intricate and compartmentalized organization of the Golgi apparatus. To investigate the mechanisms that regulate Golgi architecture, we developed a quantitative morphological assay using three different Golgi compartment markers and quantitative image analysis, and performed a kinome- and phosphatome-wide RNAi screen in HeLa cells. Depletion of 159 signaling genes, nearly 20% of genes assayed, induced strong and varied perturbations in Golgi morphology. Using bioinformatics data, a large regulatory network could be constructed. Specific subnetworks are involved in phosphoinositides regulation, acto-myosin dynamics and mitogen activated protein kinase signaling. Most gene depletion also affected Golgi functions, in particular glycan biosynthesis, suggesting that signaling cascades can control glycosylation directly at the Golgi level. Our results provide a genetic overview of the signaling pathways that control the Golgi apparatus in human cells.

  6. Mena-GRASP65 interaction couples actin polymerization to Golgi ribbon linking.

    PubMed

    Tang, Danming; Zhang, Xiaoyan; Huang, Shijiao; Yuan, Hebao; Li, Jie; Wang, Yanzhuang

    2016-01-01

    In mammalian cells, the Golgi reassembly stacking protein 65 (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers through the N-terminal GRASP domain. Because the GRASP domain is globular and relatively small, but the gaps between stacks are large and heterogeneous, it remains puzzling how GRASP65 physically links Golgi stacks into a ribbon. To explore the possibility that other proteins may help GRASP65 in ribbon linking, we used biochemical methods and identified the actin elongation factor Mena as a novel GRASP65-binding protein. Mena is recruited onto the Golgi membranes through interaction with GRASP65. Depleting Mena or disrupting actin polymerization resulted in Golgi fragmentation. In cells, Mena and actin were required for Golgi ribbon formation after nocodazole washout; in vitro, Mena and microfilaments enhanced GRASP65 oligomerization and Golgi membrane fusion. Thus Mena interacts with GRASP65 to promote local actin polymerization, which facilitates Golgi ribbon linking.

  7. PRODUCTION OF NEAR-EARTH ASTEROIDS ON RETROGRADE ORBITS

    SciTech Connect

    Greenstreet, S.; Gladman, B.; Ngo, H.; Granvik, M.; Larson, S.

    2012-04-20

    While computing an improved near-Earth object (NEO) steady-state orbital distribution model, we discovered in the numerical integrations the unexpected production of retrograde orbits for asteroids that had originally exited from the accepted main-belt source regions. Our model indicates that {approx}0.1% (a factor of two uncertainty) of the steady-state NEO population (perihelion q < 1.3 AU) is on retrograde orbits. These rare outcomes typically happen when asteroid orbits flip to a retrograde configuration while in the 3:1 mean-motion resonance with Jupiter and then live for {approx}0.001 to 100 Myr. The model predicts, given the estimated near-Earth asteroid (NEA) population, that a few retrograde 0.1-1 km NEAs should exist. Currently, there are two known MPC NEOs with asteroidal designations on retrograde orbits which we therefore claim could be escaped asteroids instead of devolatilized comets. This retrograde NEA population may also answer a long-standing question in the meteoritical literature regarding the origin of high-strength, high-velocity meteoroids on retrograde orbits.

  8. Production of Near-Earth Asteroids on Retrograde Orbits

    NASA Astrophysics Data System (ADS)

    Greenstreet, S.; Gladman, B.; Ngo, H.; Granvik, M.; Larson, S.

    2012-04-01

    While computing an improved near-Earth object (NEO) steady-state orbital distribution model, we discovered in the numerical integrations the unexpected production of retrograde orbits for asteroids that had originally exited from the accepted main-belt source regions. Our model indicates that ~0.1% (a factor of two uncertainty) of the steady-state NEO population (perihelion q < 1.3 AU) is on retrograde orbits. These rare outcomes typically happen when asteroid orbits flip to a retrograde configuration while in the 3:1 mean-motion resonance with Jupiter and then live for ~0.001 to 100 Myr. The model predicts, given the estimated near-Earth asteroid (NEA) population, that a few retrograde 0.1-1 km NEAs should exist. Currently, there are two known MPC NEOs with asteroidal designations on retrograde orbits which we therefore claim could be escaped asteroids instead of devolatilized comets. This retrograde NEA population may also answer a long-standing question in the meteoritical literature regarding the origin of high-strength, high-velocity meteoroids on retrograde orbits.

  9. Rac Regulates Giardia lamblia Encystation by Coordinating Cyst Wall Protein Trafficking and Secretion

    PubMed Central

    Krtková, Jana; Thomas, Elizabeth B.; Alas, Germain C. M.; Schraner, Elisabeth M.; Behjatnia, Habib R.; Hehl, Adrian B.

    2016-01-01

    ABSTRACT Encystation of the common intestinal parasite Giardia lamblia involves the production, trafficking, and secretion of cyst wall material (CWM). However, the molecular mechanism responsible for the regulation of these sequential processes remains elusive. Here, we examined the role of GlRac, Giardia’s sole Rho family GTPase, in the regulation of endomembrane organization and cyst wall protein (CWP) trafficking. Localization studies indicated that GlRac is associated with the endoplasmic reticulum (ER) and the Golgi apparatus-like encystation-specific vesicles (ESVs). Constitutive GlRac signaling increased levels of the ER marker PDI2, induced ER swelling, reduced overall CWP1 production, and promoted the early maturation of ESVs. Quantitative analysis of cells expressing constitutively active hemagglutinin (HA)-tagged GlRac (HA-RacCA) revealed fewer but larger ESVs than control cells. Consistent with the phenotype of premature maturation of ESVs in HA-RacCA-expressing cells, constitutive GlRac signaling resulted in increased CWP1 secretion and, conversely, morpholino depletion of GlRac blocked CWP1 secretion. Wild-type cells unexpectedly secreted large quantities of CWP1 into the medium, and free CWP1 was used cooperatively during cyst formation. These results, in part, could account for the previously reported observation that G. lamblia encysts more efficiently at high cell densities. These studies of GlRac show that it regulates encystation at several levels, and our findings support its coordinating role as a regulator of CWP trafficking and secretion. The central role of GlRac in regulating membrane trafficking and the cytoskeleton, both of which are essential to Giardia parasitism, further suggests its potential as a novel target for drug development to treat giardiasis. PMID:27555307

  10. Preliminary Validation of the Sex Trafficking Attitudes Scale.

    PubMed

    Houston-Kolnik, Jaclyn D; Todd, Nathan R; Wilson, Midge

    2016-09-01

    This study presents the Sex Trafficking Attitudes Scale (STAS), assessing cognitive, behavioral, and affective attitudes toward the sex trafficking of women and girls. Across two studies, exploratory and confirmatory factor analyses revealed and confirmed six subscales: (a) Knowledge About Sex Trafficking, (b) Awareness of Sex Trafficking, (c) Attitudes Toward Ability to Leave Sex Trafficking, (d) Attitudes Toward Helping Survivors, (e) Empathic Reactions Toward Sex Trafficking, and (f) Efficacy to Reduce Sex Trafficking. Results showed support for convergent validity as the subscales were associated with related measures. The STAS holds promise to expand research and inform efforts to support trafficking survivors.

  11. Three-dimensional shape of the Golgi apparatus in different cell types: serial section scanning electron microscopy of the osmium-impregnated Golgi apparatus.

    PubMed

    Koga, Daisuke; Kusumi, Satoshi; Ushiki, Tatsuo

    2016-04-01

    Although many studies of the Golgi apparatus structure have been performed by light and electron microscopy, the full shape of the Golgi apparatus remained unclear due to the technical limitations of the previously applied microscopy techniques. In this study, we used serial section scanning electron microscopy (SEM) for the morphological study of the Golgi apparatus. This method is useful for three-dimensional (3D) reconstruction of cellular structures without requiring specialized instruments, unlike focused ion beam SEM (FIB-SEM) and serial block face SEM (SBF-SEM). Using the serial section SEM method developed by our laboratory, we investigate the 3D shape of the osmium-impregnated Golgi apparatus in rat epididymal cells, pancreatic acinar cells and gonadotropes. The combination of serial section SEM and a 3D reconstruction technique enabled us to elucidate the entire shape of the Golgi apparatus in these cells. The full shape of the Golgi apparatus in epididymal cells formed a basket-like structure with oval-shaped cisterns, while the Golgi apparatus in an acinar cell from the pancreas was composed of elongated ribbon-like structures that were connected to each other, making a coarse network. The overall image of the Golgi apparatus cisterns from a gonadotrope looked like a spherical cage. This study has clearly shown that entire 3D shape of the Golgi apparatus varies depending on the cell type and that the Golgi cisterns network appears as a single mass located in the large region of the cytoplasm.

  12. Human Trafficking. Ministering to The 'Invisible' Victim.

    PubMed

    Scanlon, Colleen; Krausa, Laura

    2016-07-01

    Human trafficking is modern-day slavery - an insidious, criminal industry that gener- ates billions of dollars in labor trafficking alone. It knows no boundary of continent, country, race or class; it is a shattering, impartial predator that robs individuals of their basic human dignity.

  13. Using Kinesthetic Activities to Teach Ptolemaic and Copernican Retrograde Motion

    NASA Astrophysics Data System (ADS)

    Richards, Ted

    2012-06-01

    This paper describes a method for teaching planetary retrograde motion, and the Ptolemaic and Copernican accounts of retrograde motion, by means of a series kinesthetic learning activities (KLAs). In the KLAs described, the students literally walk through the motions of the planets in both systems. A retrospective statistical analysis shows that students who participated in these activities performed better on examination questions pertaining to retrograde motion than students who did not. Potential explanations for this result, including the breaking of classroom routine, the effect of body movement on conceptual memory, and egocentric spatial proprioception, are considered.

  14. A Role for Phospholipase A2 Activity in Membrane Tubule Formation and TGN Trafficking

    PubMed Central

    Schmidt, John A.; Kalkofen, Danielle N.; Donovan, Kirk W.; Brown, William J.

    2015-01-01

    We have investigated the role of phospholipase A2 (PLA2) enzymes in generating membrane tubules at the trans-Golgi network (TGN). Constitutive TGN membrane tubules and those induced by over-expressing kinase dead protein kinase D were inhibited by the PLA2 inhibitors ONO-RS-082 (ONO) and bromoenol lactone. These antagonists also inhibited secretory delivery of both soluble and transmembrane cargoes. Finally, use of the reversible antagonist ONO and time-lapse imaging revealed for the first time that PLA2 antagonists inhibit the initiation of membrane tubule formation at the TGN. Thus, PLA2 enzymes appear to have an important role in the earliest steps of membrane tubule formation at the TGN, which are utilized for membrane trafficking. PMID:20874826

  15. Btn3 is a negative regulator of Btn2-mediated endosomal protein trafficking and prion curing in yeast

    PubMed Central

    Kanneganti, Vydehi; Kama, Rachel; Gerst, Jeffrey E.

    2011-01-01

    Yeast Btn2 facilitates the retrieval of specific proteins from late endosomes (LEs) to the Golgi, a process that may be adversely affected in Batten disease patients. We isolated the putative yeast orthologue of a human complex I deficiency gene, designated here as BTN3, as encoding a Btn2-interacting protein and negative regulator. First, yeast overexpressing BTN3 phenocopy the deletion of BTN2 and mislocalize certain trans-Golgi proteins, like Kex2 and Yif1, to the LE and vacuole, respectively. In contrast, the deletion of BTN3 results in a tighter pattern of protein localization to the Golgi. Second, BTN3 overexpression alters Btn2 localization from the IPOD compartment, which correlates with a sharp reduction in Btn2-mediated [URE3] prion curing. Third, Btn3 and the Snc1 v-SNARE compete for the same binding domain on Btn2, and this competition controls Btn2 localization and function. The inhibitory effects upon protein retrieval and prion curing suggest that Btn3 sequesters Btn2 away from its substrates, thus down-regulating protein trafficking and aggregation. Therefore Btn3 is a novel negative regulator of intracellular protein sorting, which may be of importance in the onset of complex I deficiency and Batten disease in humans. PMID:21441304

  16. Examining the Risk of Nuclear Trafficking

    SciTech Connect

    Balatsky, Galya; Severe, William R; Schoeneck, Jeffery

    2009-01-01

    The need to stop illicit trafficking of nuclear and radioactive materials around the world is undeniable and urgent. This issue is particularly evident due to the highly dangerous consequences of the risks involved, the known interest of terrorist groups in acquiring such materials and the vulnerability of theft and diversion of such materials. Yet the phenomenon of nuclear trafficking remains a subject where the unknown dominates what is known on the subject. The trafficking panel at the Institute for Nuclear Materials Management (INMM) Workshop on Reducing the Risk of Radioactive and Nuclear Materials that took place in Albuquerque, New Mexico, March 10-11, 2009, dealt with some of the issues associated with nuclear trafficking. Different points of view on how to better address trafficking and thwart perpetrator efforts were discussed. This paper presents some of these views and addresses practical measures that should be considered to improve the situation.

  17. Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex

    PubMed Central

    1992-01-01

    The localization of the Golgi complex depends upon the integrity of the microtubule apparatus. At interphase, the Golgi has a restricted pericentriolar localization. During mitosis, it fragments into small vesicles that are dispersed throughout the cytoplasm until telophase, when they again coalesce near the centrosome. These observations have suggested that the Golgi complex utilizes a dynein-like motor to mediate its transport from the cell periphery towards the minus ends of microtubules, located at the centrosome. We utilized semi-intact cells to study the interaction of the Golgi complex with the microtubule apparatus. We show here that Golgi complexes can enter semi-intact cells and associate stably with cytoplasmic constituents. Stable association, termed here "Golgi capture," requires ATP hydrolysis and intact microtubules, and occurs maximally at physiological temperature in the presence of added cytosolic proteins. Once translocated into the semi-intact cell cytoplasm, exogenous Golgi complexes display a distribution similar to endogenous Golgi complexes, near the microtubule-organizing center. The process of Golgi capture requires cytoplasmic tubulin, and is abolished if cytoplasmic dynein is immunodepleted from the cytosol. Cytoplasmic dynein, prepared from CHO cell cytosol, restores Golgi capture activity to reactions carried out with dynein immuno-depleted cytosol. These results indicate that cytoplasmic dynein can interact with isolated Golgi complexes, and participate in their accumulation near the centrosomes of semi-intact, recipient cells. Thus, cytoplasmic dynein appears to play a role in determining the subcellular localization of the Golgi complex. PMID:1387874

  18. The KEEP ON GOING Protein of Arabidopsis Regulates Intracellular Protein Trafficking and Is Degraded during Fungal Infection[C][W][OA

    PubMed Central

    Gu, Yangnan; Innes, Roger W.

    2012-01-01

    In plants, the trans-Golgi network and early endosomes (TGN/EE) function as the central junction for major endomembrane trafficking events, including endocytosis and secretion. Here, we demonstrate that the KEEP ON GOING (KEG) protein of Arabidopsis thaliana localizes to the TGN/EE and plays an essential role in multiple intracellular trafficking processes. Loss-of-function keg mutants exhibited severe defects in cell expansion, which correlated with defects in vacuole morphology. Confocal microscopy revealed that KEG is required for targeting of plasma membrane proteins to the vacuole. This targeting process appeared to be blocked at the step of multivesicular body (MVB) fusion with the vacuolar membrane as the MVB-associated small GTPase ARA6 was also blocked in vacuolar delivery. In addition, loss of KEG function blocked secretion of apoplastic defense proteins, indicating that KEG plays a role in plant immunity. Significantly, KEG was degraded specifically in cells infected by the fungus Golovinomyces cichoracearum, suggesting that this pathogen may target KEG to manipulate the host secretory system as a virulence strategy. Taking these results together, we conclude that KEG is a key component of TGN/EE that regulates multiple post-Golgi trafficking events in plants, including vacuole biogenesis, targeting of membrane-associated proteins to the vacuole, and secretion of apoplastic proteins. PMID:23192225

  19. Regulation of mATG9 trafficking by Src- and ULK1-mediated phosphorylation in basal and starvation-induced autophagy

    PubMed Central

    Zhou, Changqian; Ma, Kaili; Gao, Ruize; Mu, Chenglong; Chen, Linbo; Liu, Qiangqiang; Luo, Qian; Feng, Du; Zhu, Yushan; Chen, Quan

    2017-01-01

    Autophagy requires diverse membrane sources and involves membrane trafficking of mATG9, the only membrane protein in the ATG family. However, the molecular regulation of mATG9 trafficking for autophagy initiation remains unclear. Here we identified two conserved classic adaptor protein sorting signals within the cytosolic N-terminus of mATG9, which mediate trafficking of mATG9 from the plasma membrane and trans-Golgi network (TGN) via interaction with the AP1/2 complex. Src phosphorylates mATG9 at Tyr8 to maintain its endocytic and constitutive trafficking in unstressed conditions. In response to starvation, phosphorylation of mATG9 at Tyr8 by Src and at Ser14 by ULK1 functionally cooperate to promote interactions between mATG9 and the AP1/2 complex, leading to redistribution of mATG9 from the plasma membrane and juxta-nuclear region to the peripheral pool for autophagy initiation. Our findings uncover novel mechanisms of mATG9 trafficking and suggest a coordination of basal and stress-induced autophagy. PMID:27934868

  20. Cell wall accumulation of fluorescent proteins derived from a trans-Golgi cisternal membrane marker and paramural bodies in interdigitated Arabidopsis leaf epidermal cells.

    PubMed

    Akita, Kae; Kobayashi, Megumi; Sato, Mayuko; Kutsuna, Natsumaro; Ueda, Takashi; Toyooka, Kiminori; Nagata, Noriko; Hasezawa, Seiichiro; Higaki, Takumi

    2017-01-01

    In most dicotyledonous plants, leaf epidermal pavement cells develop jigsaw puzzle-like shapes during cell expansion. The rapid growth and complicated cell shape of pavement cells is suggested to be achieved by targeted exocytosis that is coordinated with cytoskeletal rearrangement to provide plasma membrane and/or cell wall materials for lobe development during their morphogenesis. Therefore, visualization of membrane trafficking in leaf pavement cells should contribute an understanding of the mechanism of plant cell morphogenesis. To reveal membrane trafficking in pavement cells, we observed monomeric red fluorescent protein-tagged rat sialyl transferases, which are markers of trans-Golgi cisternal membranes, in the leaf epidermis of Arabidopsis thaliana. Quantitative fluorescence imaging techniques and immunoelectron microscopic observations revealed that accumulation of the red fluorescent protein occurred mostly in the curved regions of pavement cell borders and guard cell ends during leaf expansion. Transmission electron microscopy observations revealed that apoplastic vesicular membrane structures called paramural bodies were more frequent beneath the curved cell wall regions of interdigitated pavement cells and guard cell ends in young leaf epidermis. In addition, pharmacological studies showed that perturbations in membrane trafficking resulted in simple cell shapes. These results suggested possible heterogeneity of the curved regions of plasma membranes, implying a relationship with pavement cell morphogenesis.

  1. Altered trafficking of mutated growth factor receptors and their associated molecules

    PubMed Central

    Kon, Shunsuke; Kobayashi, Nobuhide; Satake, Masanobu

    2014-01-01

    Ligand-stimulated receptor tyrosine kinases (RTKs) are phosphorylated/ubiquitinated, endocytosed and transported to the lysosomes via endosomes/multivesicular bodies, resulting in the attenuation of signal transmission. If this physiological mechanism of RTK signal downregulation is perturbed, signal transduction persists and may contribute to cellular transformation. This article presents several such examples. In some cases, endocytosis is impaired, and the activated RTK remains on the plasma membrane. In other cases, the activated RTK is endocytosed into endosomes/multivesicular bodies, but not subsequently sorted to the lysosomes for degradation. The latter cases indicate that even endocytosed RTKs can transmit signals. Transport of RTKs is accomplished via the formation and movement of membrane vesicles. Blockage or delay of endocytosis/trafficking can be caused by genetic alterations in the RTK itself or by mutations in CBL, Arf GAPs, or other components involved in internalization and vesicle transport. A survey of the literature indicates that, in some cases, even RTKs synthesized de novo can initiate signaling at the endoplasmic reticulum/Golgi before reaching the plasma membrane. The spectrum of molecules targeted by the signal is likely to be different between cell surface- and endoplasmic reticulum/Golgi-localized RTKs. PMID:25210647

  2. Extracellular trafficking of a wheat cold-responsive protein, WLT10.

    PubMed

    Ohno, Ryoko; Takumi, Shigeo

    2015-02-01

    A cold-responsive wheat gene, WLT10, encodes a member of the cereal-specific low temperature-responsive/cold-responsive protein family, which contains a hydrophobic N-terminal 20 amino acid sequence that corresponds to signal peptides associated with extracellular trafficking. To verify the subcellular localization of WLT10 and the function of its putative signal peptide, we constructed three chimeric genes in which either the WLT10 signal peptide, a signal peptide with only 6 additional amino acids, or the full-length WLT10 polypeptide was fused to the N-terminus of green fluorescent protein (GFP). These fusion constructs were transiently introduced into onion epidermal cells by particle bombardment. GFP signals were observed not only in the extracellular space (ECS) but also in the endoplasmic reticulum (ER) and Golgi apparatus. The time course of GFP signal localization suggests the movement of WLT10 through the ER/Golgi pathway and into the ECS. Thus, WLT10 is a cold-responsive secreted protein, and its N-terminal 20 amino acid region is important for transport to the ECS.

  3. From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking.

    PubMed

    Farinha, Carlos M; Canato, Sara

    2017-01-01

    CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.

  4. Fundamental studies of retrograde reactions in direct liquefaction

    SciTech Connect

    Serio, M.A.; Solomon, P.R.; Bassilakis, R.; Kroo, E.

    1989-01-01

    Most of the proposed processing schemes for improving liquefaction yields involve favoring bond-breaking and radical stabilization reactions over the retrograde reactions. The retrograde reactions are often encountered before liquefaction temperatures are reached. The objective of this program is to elucidate and model the retrograde reaction chemistry in direct coal liquefaction through the application of experimental techniques and theoretical models which have been successfully employed at Advanced Fuel Research (AFR) and SRI International (a subcontractor) to understand and predict coal reaction behavior. The study of retrograde reactions is being done using an integrated approach using extensive characterization of the liquefaction chemistry of three kinds of systems: (1) model polymers; (2) coal; and (3) modified coals.

  5. The 'SAFARI' Technique Using Retrograde Access Via Peroneal Artery Access

    SciTech Connect

    Zhuang, Kun Da; Tan, Seck Guan; Tay, Kiang Hiong

    2012-08-15

    The 'SAFARI' technique or subintimal arterial flossing with antegrade-retrograde intervention is a method for recanalisation of chronic total occlusions (CTOs) when subintimal angioplasty fails. Retrograde access is usually obtained via the popliteal, distal anterior tibial artery (ATA)/dorsalis pedis (DP), or distal posterior tibial artery (PTA). Distal access via the peroneal artery has not been described and has a risk of continued bleeding, leading to compartment syndrome due to its deep location. We describe our experience in two patients with retrograde access via the peroneal artery and the use of balloon-assisted hemostasis for these retrograde punctures. This approach may potentially give more options for endovascular interventions in lower limb CTOs.

  6. Plant Intracellular Transport: Tracing Functions of the Retrograde Kinesin.

    PubMed

    Müller, Sabine

    2015-09-21

    Adding to its varied repertoire of functions in cell morphogenesis and cell division, a molecular motor protein of the kinesin-14 class has recently been implicated in rapid retrograde transport along cellular tracks in moss.

  7. ISOLATION AND CHARACTERIZATION OF GOLGI MEMBRANES FROM BOVINE LIVER

    PubMed Central

    Fleischer, Becca; Fleischer, Sidney; Ozawa, Hidehiro

    1969-01-01

    Zonal centrifugation has been used to isolate a fraction from bovine liver which appears to be derived from the Golgi apparatus. Morphologically, the fraction consists mainly of sacs and tubular elements. Spherical inclusions, probably lipoproteins, are occasionally seen in negative stains of this material. The preparation is biochemically unique. UDP-galactose:N-acetyl glucosamine, galactosyl transferase activity is concentrated about 40-fold in this fraction compared to the homogenate. Rotenone- or antimycin-insensitive DPNH- or TPNH- cytochrome c reductase activities are 60–80% of the level of activities found in microsomes. Purified organelles from bovine liver such as plasma membranes, rough microsomes, mitochondria and nuclei have negligible levels of galactosyl transferase. Some activity is present in smooth microsomes but at a level compatible with the possible presence of Golgi membranes in this fraction. The Golgi fraction does not contain appreciable amounts of enzymes such as ATPase, 5'-nucleotidase, glycosidase, glucose-6-phosphatase, acid phosphatase, or succinate-cytochrome c reductase. Similar fractions isolated from bovine epididymis also have very high levels of galactosyl transferase. The fraction is heavily osmicated when incubated for long periods of time at elevated temperatures, a characteristic property of Golgi membranes. PMID:4241907

  8. Voltage-Dependent Intrinsic Bursting in Olfactory Bulb Golgi Cells

    ERIC Educational Resources Information Center

    Pressler, R. Todd; Rozman, Peter A.; Strowbridge, Ben W.

    2013-01-01

    In the mammalian olfactory bulb (OB), local synaptic circuits modulate the evolving pattern of activity in mitral and tufted cells following olfactory sensory stimulation. GABAergic granule cells, the most numerous interneuron subtype in this brain region, have been extensively studied. However, classic studies using Golgi staining methods…

  9. Golgi apparatus analyzed by cryo-electron microscopy.

    PubMed

    Han, Hong-Mei; Bouchet-Marquis, Cedric; Huebinger, Jan; Grabenbauer, Markus

    2013-10-01

    In 1898, the Golgi apparatus was discovered by light microscopy, and since the 1950s, the ultrastructure composition is known by electron microscopic investigation. The complex three-dimensional morphology fascinated researchers and was sometimes even the driving force to develop novel visualization techniques. However, the highly dynamic membrane systems of Golgi apparatus are delicate and prone to fixation artifacts. Therefore, the understanding of Golgi morphology and its function has been improved significantly with the development of better preparation methods. Nowadays, cryo-fixation is the method of choice to arrest instantly all dynamic and physiological processes inside cells, tissues, and small organisms. Embedded in amorphous ice, such samples can be further processed by freeze substitution or directly analyzed in their fully hydrated state by cryo-electron microscopy and tomography. Even though the overall morphology of vitrified Golgi stacks is comparable to well-prepared and resin-embedded samples, previously unknown structural details can be observed solely based on their native density. At this point, any further improvement of sample preparation would gain novel insights, perhaps not in terms of general morphology, but on fine structural details of this dynamic organelle.

  10. A reappraisal of retrograde cerebral perfusion

    PubMed Central

    2013-01-01

    Brain protection during aortic arch surgery by perfusing cold oxygenated blood into the superior vena cava was first reported by Lemole et al. In 1990 Ueda and associates first described the routine use of continuous retrograde cerebral perfusion (RCP) in thoracic aortic surgery for the purpose of cerebral protection during the interval of obligatory interruption of anterograde cerebral flow. The beneficial effects of RCP may be its ability to sustain brain hypothermia during hypothermic circulatory arrest (HCA) and removal of embolic material from the arterial circulation of the brain. RCP can offer effective brain protection during HCA for about 40 to 60 minutes. Animal experiments revealed that RCP provided inadequate cerebral perfusion and that neurological recovery was improved with selective antegrade cerebral perfusion (ACP), however, both RCP and ACP provide comparable clinical outcomes regarding both the mortality and stroke rates by risk-adjusted and case-matched comparative study. RCP still remains a valuable adjunct for brain protection during aortic arch repair in particular pathologies and patients. PMID:23977600

  11. San Andreas Fault tremor and retrograde metamorphism

    NASA Astrophysics Data System (ADS)

    Fagereng, Åke; Diener, Johann F. A.

    2011-12-01

    Tectonic tremor is an enigmatic low-frequency seismic phenomenon mainly observed in subduction zones, but also documented along the deep extension of the central San Andreas Fault. The physical mechanisms behind this unusual seismic event are not yet determined for any tectonic setting; however, low effective stress conditions arising from metamorphic fluid production are commonly inferred for subduction-related tremor. We investigate the petrologic conditions at which the San Andreas tectonic tremor is inferred to occur through calculations of the pressure - temperature - time evolution of stable mineral assemblages and their water content in the dominant lithologies of the Franciscan Complex. We find that tremor locations around Parkfield and Cholame are currently experiencing retrograde metamorphic conditions. Within the temperature-depth conditions of observed tremor activity, at approximately 500°C and 20 km depth, several mineralogical transitions may occur in cooling greywacke and mafic rocks, leading to localised, significant removal of free water and an associated volume decrease. This indicates that, contrary to subduction-related tremor, tremor on the San Andreas Fault is not linked to prograde, crustal metamorphic fluid production within the fault zone; rather it might be related to mantle-derived fluids from below the tremor zone, and/or fault zone weakening that occurs as phyllosilicates replace more competent and granular mineral phases.

  12. Endoscopic Retrograde Cholangiopancreatography in Bilioenteric Anastomosis

    PubMed Central

    Park, Eun Taek

    2016-01-01

    For diagnosis and treatment of pancreatobiliary diseases, endoscopic retrograde cholangiopancreatography (ERCP) is useful method nowadays and its technically success rate is usually in about 90%-95% of patients with normal gastric and pancreaticobiliary anatomy. Recently ERCP is significantly challenging after intestinal reconstruction, particularly in patients who have undergone pancreaticoduodenectomy (PD, classic Whipple’s operation) or pylorus-preserving pancreatoduodenectomy (PPPD) with reconstruction. PD and PPPD relate to numerous techniques have been presented for reconstruction of the digestive tract and pancreaticobiliary tree during the resection bilioenteric stricture commonly occurs later in the postoperative course and developed in 5-year cumulative probability of biliary stricture rate of 8.2% and pancreaticoenteric stricture of 4.6%. This complication was no difference in incidence between patients with benign or malignant disease. In PD or PPPD with reconstruction, short pancreatobiliary limb with biliojejunal anastomosis site is made usually, modestly success rate of intubation to blind loop and cannulation with conventional endoscope. However, in combined Reux-en-Y anastomosis, longer pancreatobiliary limb and additional Reux limb are obstacle to success intubation and cannulation by using conventional endoscope. In this situation, new designed enetroscope with dedicated accessories is efficient. PMID:27838918

  13. Pleuropancreatic fistula: endoscopic retrograde cholangiopancreatography and computed tomography

    SciTech Connect

    McCarthy, S.; Pellegrini, C.A.; Moss, A.A.; Way, L.W.

    1984-06-01

    The complementary use of endoscopic retrograde cholangiopancreatography and computed tomography in the diagnosis and management of pleuropancreatic fistulas is described in relation to four cases in which computed tomography revealedthe thoracic extension of a pancreatic fistula not demonstrable by endoscopic retrograde cholangiopancreatography, although the latter indicated an abnormal pancreatic duct. The complementary use of both techniques may be necessary to define the pathologic anatomy so that the appropriate therapy, particularly the surgical approach, can be decided.

  14. Retrograde Melting and Internal Liquid Gettering in Silicon

    SciTech Connect

    Hudelson, Steve; Newman, Bonna K.; Bernardis, Sarah; Fenning, David P.; Bertoni, Mariana I.; Marcus, Matthew A.; Fakra, Sirine C.; Lai, Barry; Buonassisi, Tonio

    2011-07-01

    Retrograde melting (melting upon cooling) is observed in silicon doped with 3d transition metals, via synchrotron-based temperature-dependent X-ray microprobe measurements. Liquid metal-silicon droplets formed via retrograde melting act as efficient sinks for metal impurities dissolved within the silicon matrix. Cooling results in decomposition of the homogeneous liquid phase into solid multiple-metal alloy precipitates. These phenomena represent a novel pathway for engineering impurities in semiconductor-based systems.

  15. Mitotic Golgi partitioning is driven by the membrane-fissioning protein CtBP3/BARS.

    PubMed

    Hidalgo Carcedo, Cristina; Bonazzi, Matteo; Spanò, Stefania; Turacchio, Gabriele; Colanzi, Antonino; Luini, Alberto; Corda, Daniela

    2004-07-02

    Organelle inheritance is an essential feature of all eukaryotic cells. As with other organelles, the Golgi complex partitions between daughter cells through the fission of its membranes into numerous tubulovesicular fragments. We found that the protein CtBP3/BARS (BARS) was responsible for driving the fission of Golgi membranes during mitosis in vivo. Moreover, by in vitro analysis, we identified two stages of this Golgi fragmentation process: disassembly of the Golgi stacks into a tubular network, and BARS-dependent fission of these tubules. Finally, this BARS-induced fission of Golgi membranes controlled the G2-to-prophase transition of the cell cycle, and hence cell division.

  16. Trafficking to the Ciliary Membrane

    PubMed Central

    Nachury, Maxence V.; Seeley, E. Scott; Jin, Hua

    2010-01-01

    The primary cilium organizes numerous signal transduction cascades and an understanding of signaling receptors trafficking to cilia is now emerging. A defining feature of cilia is the periciliary diffusion barrier that separates the ciliary and plasma membranes despite the topological continuity between these two membranes. Although lateral transport through this barrier may take place, polarized exocytosis to the base of the cilium has been the prevailing model for delivering membrane proteins to cilia. Key players for this polarized exocytosis model include the GTPases Rab8 and Rab11, the exocyst and possibly the intraflagellar tranport machinery. Sorting membrane proteins to cilia critically relies on the recognition of ciliary targeting signals by sorting machines such as the BBSome coat complex or the GTPase Arf4. Finally, signaling at the cilium entails the bidirectional movement of proteins between cytoplasm and cilia and ubiquitination may promote exit from cilia. PMID:19575670

  17. Golgi localized barley MTP8 proteins facilitate Mn transport.

    PubMed

    Pedas, Pai; Schiller Stokholm, Michaela; Hegelund, Josefine Nymark; Ladegård, Anne Hald; Schjoerring, Jan Kofod; Husted, Søren

    2014-01-01

    Many metabolic processes in plants are regulated by manganese (Mn) but limited information is available on the molecular mechanisms controlling cellular Mn homeostasis. In this study, a yeast assay was used to isolate and characterize two genes, MTP8.1 and MTP8.2, which encode membrane-bound proteins belonging to the cation diffusion facilitator (CDF) family in the cereal species barley (Hordeum vulgare). Transient expression in onion epidermal cells showed that MTP8.1 and MTP8.2 proteins fused to the green fluorescent protein (GFP) are localized to Golgi. When heterologously expressed in yeast, MTP8.1 and MTP8.2 were found to be Mn transporters catalysing Mn efflux in a similar manner as the Golgi localized endogenous yeast protein Pmr1p. The level of MTP8.1 transcripts in barley roots increased with external Mn supply ranging from deficiency to toxicity, while MTP8.2 transcripts decreased under the same conditions, indicating non-overlapping functions for the two genes. In barley leaves, the expression of both MTP8 genes declined in response to toxic Mn additions to the roots suggesting a role in ensuring proper delivery of Mn to Golgi. Based on the above we suggest that barley MTP8 proteins are involved in Mn loading to the Golgi apparatus and play a role in Mn homeostasis by delivering Mn to Mn-dependent enzymes and/or by facilitating Mn efflux via secretory vesicles. This study highlights the importance of MTP transporters in Mn homeostasis and is the first report of Golgi localized Mn2+ transport proteins in a monocot plant species.

  18. cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin A treatment in tobacco BY-2 cells

    PubMed Central

    Ito, Yoko; Uemura, Tomohiro; Shoda, Keiko; Fujimoto, Masaru; Ueda, Takashi; Nakano, Akihiko

    2012-01-01

    The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration. PMID:22740633

  19. Trafficking-deficient hERG K⁺ channels linked to long QT syndrome are regulated by a microtubule-dependent quality control compartment in the ER.

    PubMed

    Smith, Jennifer L; McBride, Christie M; Nataraj, Parvathi S; Bartos, Daniel C; January, Craig T; Delisle, Brian P

    2011-07-01

    The human ether-a-go-go related gene (hERG) encodes the voltage-gated K(+) channel that underlies the rapidly activating delayed-rectifier current in cardiac myocytes. hERG is synthesized in the endoplasmic reticulum (ER) as an "immature" N-linked glycoprotein and is terminally glycosylated in the Golgi apparatus. Most hERG missense mutations linked to long QT syndrome type 2 (LQT2) reduce the terminal glycosylation and functional expression. We tested the hypothesis that a distinct pre-Golgi compartment negatively regulates the trafficking of some LQT2 mutations to the Golgi apparatus. We found that treating cells in nocodazole, a microtubule depolymerizing agent, altered the subcellular localization, functional expression, and glycosylation of the LQT2 mutation G601S-hERG differently from wild-type hERG (WT-hERG). G601S-hERG quickly redistributed to peripheral compartments that partially colocalized with KDEL (Lys-Asp-Glu-Leu) chaperones but not calnexin, Sec31, or the ER golgi intermediate compartment (ERGIC). Treating cells in E-4031, a drug that increases the functional expression of G601S-hERG, prevented the accumulation of G601S-hERG to the peripheral compartments and increased G601S-hERG colocalization with the ERGIC. Coexpressing the temperature-sensitive mutant G protein from vesicular stomatitis virus, a mutant N-linked glycoprotein that is retained in the ER, showed it was not restricted to the same peripheral compartments as G601S-hERG at nonpermissive temperatures. We conclude that the trafficking of G601S-hERG is negatively regulated by a microtubule-dependent compartment within the ER. Identifying mechanisms that prevent the sorting or promote the release of LQT2 channels from this compartment may represent a novel therapeutic strategy for LQT2.

  20. Protein kinase C epsilon is localized to the Golgi via its zinc-finger domain and modulates Golgi function.

    PubMed Central

    Lehel, C; Olah, Z; Jakab, G; Anderson, W B

    1995-01-01

    Protein kinase C (PKC) is a multigene family of serine/threonine kinases that are central to many signal transduction pathways. Among the PKC isozymes, only PKC epsilon has been reported to exhibit full oncogenic potential. PKC epsilon also displays unique substrate specificity and intracellular localization. To examine the interrelationship between the biological effects and domain structure of PKC epsilon, NIH 3T3 cells were stably transfected to overexpress different epitope-tagged fragments of PKC epsilon. The overexpressed proteins each contain the epsilon-tag peptide at the C terminus to allow ready detection with an antibody specific for the tag. The holo-PKC epsilon was found to localize with the Golgi network and other compartments, whereas the zinc-finger domain localized exclusively at the Golgi. Golgi-specific glycosaminoglycan sulfation was strongly inhibited in cells overexpressing either holo-PKC epsilon or its zinc-finger domain, while the secretion of sulfated glycosaminoglycans into the medium was impaired in cells expressing the PKC epsilon zinc-finger domain. Thus, these results suggest that PKC epsilon may be involved in specifically regulating Golgi-related processes. Further, the results indicate that PKC epsilon domains other than the kinase domain may also have biological activity and that the zinc-finger domain may function as a subcellular localization signal. Images Fig. 1 Fig. 2 Fig. 3 PMID:7877991

  1. Distribution and morphological changes of the Golgi apparatus during Drosophila spermatogenesis.

    PubMed

    Yasuno, Yusaku; Kawano, Jun-ichi; Inoue, Yoshihiro H; Yamamoto, Masa-Toshi

    2013-08-01

    In spermatogenesis, the Golgi apparatus is important for the formation of the acrosome, which is a sperm-specific organelle essential for fertilization. Comprehensive examinations of the spatiotemporal distribution and morphological characterizations of the Golgi in various cells during spermatogenesis are necessary for functional analyses and mutant screenings in the model eukaryote Drosophila. Here, we examined the distribution and morphology of the Golgi during Drosophila spermatogenesis with immunofluorescence and electron microscopy. In pre-meiotic germ cells, the Golgi apparatuses were distributed evenly in the cytoplasm. In contrast, they were located exclusively in two regions near the poles during the meiotic metaphase, where they were segregated prior to the chromosomes. In cells in anaphase to telophase, the Golgi were predominantly left behind in the equatorial region between the separating daughter nuclei. After completion of meiosis, the dispersed Golgi were assembled at the apical side of the spermatid nucleus to form the acrosome. Further investigation of the Golgi distribution in β2-tubulin mutants showed aberrant and uneven distributions of the Golgi among sister cells in the meiotic spermatocytes and in the post-meiotic spermatids. At the ultrastructural level, the Golgi apparatus in pre-meiotic spermatocytes comprised a pair of stacks. The two stacks were situated adjacent to each other, as if they had duplicated before entering into meiotic division. These results highlight the dynamic nature of the Golgi during spermatogenesis and provide a framework for analyzing the correlations between the dynamics of the Golgi and its function in sperm development.

  2. Glutamate Binding to the GluN2B Subunit Controls Surface Trafficking of N-Methyl-d-aspartate (NMDA) Receptors*♦

    PubMed Central

    She, Kevin; Ferreira, Joana S.; Carvalho, Ana Luisa; Craig, Ann Marie

    2012-01-01

    Trafficking of NMDA receptors to the surface of neurons and to synapses is critical for proper brain function and activity-dependent plasticity. Recent evidence suggests that surface trafficking of other ionotropic glutamate receptors requires ligand binding for exit from the endoplasmic reticulum. Here, we show that glutamate binding to GluN2 is required for trafficking of NMDA receptors to the cell surface. We expressed a panel of GluN2B ligand binding mutants in heterologous cells with GluN1 or in rat cultured neurons and found that surface expression correlates with glutamate efficacy. Such a correlation was found even in the presence of dominant negative dynamin to inhibit endocytosis and surface expression correlated with Golgi localization, indicating differences in forward trafficking. Co-expression of wild type GluN2B did not enhance surface expression of the mutants, suggesting that glutamate must bind to both GluN2 subunits in a tetramer and that surface expression is limited by the least avid of the two glutamate binding sites. Surface trafficking of a constitutively closed cleft GluN2B was indistinguishable from that of wild type, suggesting that glutamate concentrations are typically not limiting for forward trafficking. YFP-GluN2B expressed in hippocampal neurons from GluN2B−/− mice rescued synaptic accumulation at similar levels to wild type. Under these conditions, surface synaptic accumulation of YFP-GluN2B mutants also correlated with apparent glutamate affinity. Altogether, these results indicate that glutamate controls forward trafficking of NMDA receptors to the cell surface and to synapses and raise the intriguing idea that NMDA receptors may be functional at intracellular sites. PMID:22740692

  3. [The isolation and assessment of Golgi apparatus from gastric cancer cells SGC7901].

    PubMed

    He, Tingting; Yi, Yongfen; Li, Yanqing; Xiao, Zhong

    2010-10-01

    The Golgi complex is the central organelle of the secretory pathway and has many complicate functions. The endeavours to isolate and purify the Golgi apparatus from cultured cells will benefit further investigation of Golgi. A large number of gastric cancer cells SGC7901 were cultivated in vitro, then Golgi apparatus were isolated from the cells by differential centrifugation combined with sucrose density gradient ultra-centrifugation. Its purity was characterized biochemically by enzymatic assays, morphologically by electron microscopy (EM) and neutral red supravital staining. Finally the Golgi complex was successfully fractionated from gastric cancer cells SGC7901. The first successful isolation of Golgi apparatus from gastric cancer cells SGC7901 by using ultra-centrifugation will lead to research into the function of Golgi apparatus.

  4. Post-Golgi membrane traffic: brefeldin A inhibits export from distal Golgi compartments to the cell surface but not recycling

    PubMed Central

    1992-01-01

    Recent studies using the fungal metabolite brefeldin A (BFA) have provided important insights into the dynamics and the organization of the ER/Golgi membrane system. Here we examined the effect of BFA on the functional integrity of the distal part of the secretory pathway, i.e., transport between trans-Golgi cisternae and the cell surface. To assay export via the constitutive pathway, we followed the movement of vesicular stomatitis virus (VSV) G glycoprotein that had been accumulated in the trans-Golgi network (TGN) by incubation of infected BHK-21 cells at 20 degrees C. Addition of BFA rapidly and reversibly inhibited cell surface transport of G protein. The block to secretion was not due to redistribution of externalized G protein to internal pools. It was also not due to collapse of TGN to the ER, since VSV G protein blocked in treated cells resided in compartments that were distinct from the ER/Golgi system. Similar effects were found with a bulk-flow marker: BFA blocked constitutive secretion of glycosaminoglycan chains that had been synthesized and sulfated in the trans-Golgi cisternae. To examine export via the regulated secretory pathway, we assayed secretion of [35S]SO4 labeled secretogranin II from PC12 cells, a marker that has been used to study secretory granule budding from the TGN (Tooze, S. A., U. Weiss, and W. B. Huttner. 1990. Nature [Lond.]. 347:207-208). BFA potently inhibited secretion of sulfated secretogranin II induced by K+ depolarization. Inhibition was at the level of granule formation, since BFA had no effect on regulated secretion from preformed granules. Taken together, the results suggest that BFA blocks export via both the constitutive and the regulated pathways. In contrast, endocytosis and recycling of VSV G protein were not blocked by BFA, consistent with previous studies that endocytosis is unaffected (Misumi, Y., Y. Misumi, K. Miki, A Takatsuki, G. Tamura, and Y. Ikehara. 1986. J. Biol. Chem. 261:11398-11403). These and earlier

  5. Female sex trafficking: conceptual issues, current debates, and future directions.

    PubMed

    Meshkovska, Biljana; Siegel, Melissa; Stutterheim, Sarah E; Bos, Arjan E R

    2015-01-01

    Female sex trafficking is a pressing concern. In this article, we provide a comprehensive overview of relevant issues regarding the concept of female sex trafficking and research in the field of human trafficking, drawing on a variety of disciplines, including economics, gender and sexuality studies, psychology, sociology, law, and social work. We discuss the debates surrounding the definition of human trafficking, compare and contrast it with human smuggling, and outline connections between female sex trafficking and the issue of sex work and prostitution. We further discuss the history and current estimations of female sex trafficking. We then outline the main actors in female sex trafficking, including trafficked persons, traffickers, clients, and service providers, and we overview the trafficking process from recruitment to identification, recovery, and (re)integration. Finally, we conclude with recommendations for future research that tie together the concepts of vulnerability, exploitation, and long-term recovery and (re)integration.

  6. Small GTPase Rab2B and Its Specific Binding Protein Golgi-associated Rab2B Interactor-like 4 (GARI-L4) Regulate Golgi Morphology*

    PubMed Central

    Aizawa, Megumi; Fukuda, Mitsunori

    2015-01-01

    Rab small GTPases are crucial regulators of the membrane traffic that maintains organelle identity and morphology. Several Rab isoforms are present in the Golgi, and it has been suggested that they regulate the compacted morphology of the Golgi in mammalian cells. However, the functional relationships among the Golgi-resident Rabs, e.g. whether they are functionally redundant or different, are poorly understood. In this study, we used specific siRNAs to perform genome-wide screening for human Rabs that are involved in Golgi morphology in HeLa-S3 cells. The results showed that knockdown of any one of the six Rab isoforms (Rab1A/1B/2A/2B/6B/8A) induced fragmentation of the Golgi in HeLa-S3 cells and that its phenotype was rescued by re-expression of their respective siRNA-resistant construct. We then performed systematic knockdown-rescue experiments in relation to each of the six Rabs. Interestingly, with the exception of the Rab8A knockdown, the Golgi fragmentation phenotype induced by knockdown of a single Rab isoform, e.g. Rab2B, was efficiently rescued by re-expression of its siRNA-resistant Rab alone, not by any of the other five Rabs, e.g. Rab2A, which is highly homologous to Rab2B, indicating that these Rab isoforms non-redundantly regulate Golgi morphology possibly through interaction with isoform-specific effector molecules. In addition, we identified Golgi-associated Rab2B interactor-like 4 (GARI-L4) as a novel Golgi-resident Rab2B-specific binding protein whose knockdown also induced fragmentation of the Golgi. Our findings suggest that the compacted Golgi morphology of mammalian cells is finely tuned by multiple sets of Rab (or Rab-effector complexes) that for the most part function independently. PMID:26209634

  7. Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation

    PubMed Central

    Köttgen, Michael; Benzing, Thomas; Simmen, Thomas; Tauber, Robert; Buchholz, Björn; Feliciangeli, Sylvain; Huber, Tobias B; Schermer, Bernhard; Kramer-Zucker, Albrecht; Höpker, Katja; Simmen, Katia Carmine; Tschucke, Christoph Carl; Sandford, Richard; Kim, Emily; Thomas, Gary; Walz, Gerd

    2005-01-01

    The trafficking of ion channels to the plasma membrane is tightly controlled to ensure the proper regulation of intracellular ion homeostasis and signal transduction. Mutations of polycystin-2, a member of the TRP family of cation channels, cause autosomal dominant polycystic kidney disease, a disorder characterized by renal cysts and progressive renal failure. Polycystin-2 functions as a calcium-permeable nonselective cation channel; however, it is disputed whether polycystin-2 resides and acts at the plasma membrane or endoplasmic reticulum (ER). We show that the subcellular localization and function of polycystin-2 are directed by phosphofurin acidic cluster sorting protein (PACS)-1 and PACS-2, two adaptor proteins that recognize an acidic cluster in the carboxy-terminal domain of polycystin-2. Binding to these adaptor proteins is regulated by the phosphorylation of polycystin-2 by the protein kinase casein kinase 2, required for the routing of polycystin-2 between ER, Golgi and plasma membrane compartments. Our paradigm that polycystin-2 is sorted to and active at both ER and plasma membrane reconciles the previously incongruent views of its localization and function. Furthermore, PACS proteins may represent a novel molecular mechanism for ion channel trafficking, directing acidic cluster-containing ion channels to distinct subcellular compartments. PMID:15692563

  8. Vps41, a protein involved in lysosomal trafficking, interacts with caspase-8.

    PubMed

    Wang, Lu; Pan, Xiao; He, Liangqiang; Zhang, Rong; Chen, Wei; Zhang, Jing; Lu, Min; Hua, Zi-Chun

    2013-01-01

    Caspase-8 is a member of the cysteine-aspartic acid protease (caspase) family which plays a central role in apoptosis and development. We screened caspase-8 interacting proteins from mouse T-cell lymphoma and 7.5-day embryo cDNA libraries by yeast two-hybrid system and obtained eleven positive clones, including Vacuolar protein sorting 41 (Vps41), a protein involved in trafficking of proteins from the late Golgi to the vacuole. The interaction of Vps41 with caspase-8 was confirmed by co-immunoprecipitation (co-IP) and co-localization studies in HEK293T cells. Co-IP experiments also showed that Vps41 binds to the p18 subunit of caspase-8 through its WD40 region and RING-finger motif. Furthermore, we found that overexpression of Vps41 promotes Fas-induced apoptosis in A549 human lung adenocarcinoma cells. The cleavage of caspase-3, a caspase-8 downstream effector, was increased when cells were transfected with Vps41-overexpressing plasmid. Together, these results suggest a novel interaction of caspase-8 with Vps41 and provide a potential role of Vps41 beyond lysosomal trafficking.

  9. Arf-like Protein 3 (ARL3) Regulates Protein Trafficking and Ciliogenesis in Mouse Photoreceptors.

    PubMed

    Hanke-Gogokhia, Christin; Wu, Zhijian; Gerstner, Cecilia D; Frederick, Jeanne M; Zhang, Houbin; Baehr, Wolfgang

    2016-03-25

    Arf-like protein 3 (ARL3) is a ubiquitous small GTPase expressed in ciliated cells of plants and animals. Germline deletion ofArl3in mice causes multiorgan ciliopathy reminiscent of Bardet-Biedl or Joubert syndromes. As photoreceptors are elegantly compartmentalized and have cilia, we probed the function of ARL3 (ADP-ribosylation factor (Arf)-like 3 protein) by generating rod photoreceptor-specific (prefix(rod)) and retina-specific (prefix(ret))Arl3deletions. In predegenerate(rod)Arl3(-/-)mice, lipidated phototransduction proteins showed trafficking deficiencies, consistent with the role of ARL3 as a cargo displacement factor for lipid-binding proteins. By contrast,(ret)Arl3(-/-)rods and cones expressing Cre recombinase during embryonic development formed neither connecting cilia nor outer segments and degenerated rapidly. Absence of cilia infers participation of ARL3 in ciliogenesis and axoneme formation. Ciliogenesis was rescued, and degeneration was reversed in part by subretinal injection of adeno-associated virus particles expressing ARL3-EGFP. The conditional knock-out phenotypes permitted identification of two ARL3 functions, both in the GTP-bound form as follows: one as a regulator of intraflagellar transport participating in photoreceptor ciliogenesis and the other as a cargo displacement factor transporting lipidated protein to the outer segment. Surprisingly, a farnesylated inositol polyphosphate phosphatase only trafficked from the endoplasmic reticulum to the Golgi, thereby excluding it from a role in photoreceptor cilia physiology.

  10. Transport along the dendritic endoplasmic reticulum mediates the trafficking of GABAB receptors

    PubMed Central

    Valenzuela, José I.; Jaureguiberry-Bravo, Matías; Salas, Daniela A.; Ramírez, Omar A.; Cornejo, Víctor H.; Lu, Hsiangmin E.; Blanpied, Thomas A.; Couve, Andrés

    2014-01-01

    ABSTRACT In neurons, secretory organelles within the cell body are complemented by the dendritic endoplasmic reticulum (ER) and Golgi outposts (GOPs), whose role in neurotransmitter receptor trafficking is poorly understood. γ-aminobutyric acid (GABA) type B metabotropic receptors (GABABRs) regulate the efficacy of synaptic transmission throughout the brain. Their plasma membrane availability is controlled by mechanisms involving an ER retention motif and assembly-dependent ER export. Thus, they constitute an ideal molecular model to study ER trafficking, but the extent to which the dendritic ER participates in GABABR biosynthesis has not been thoroughly explored. Here, we show that GABAB1 localizes preferentially to the ER in dendrites and moves long distances within this compartment. Not only diffusion but also microtubule and dynein-dependent mechanisms control dendritic ER transport. GABABRs insert throughout the somatodendritic plasma membrane but dendritic post-ER carriers containing GABABRs do not fuse selectively with GOPs. This study furthers our understanding of the spatial selectivity of neurotransmitter receptors for dendritic organelles. PMID:24895402

  11. Sex Trafficking of Women and Girls

    PubMed Central

    Deshpande, Neha A; Nour, Nawal M

    2013-01-01

    Sex trafficking involves some form of forced or coerced sexual exploitation that is not limited to prostitution, and has become a significant and growing problem in both the United States and the larger global community. The costs to society include the degradation of human and women’s rights, poor public health, disrupted communities, and diminished social development. Victims of sex trafficking acquire adverse physical and psychological health conditions and social disadvantages. Thus, sex trafficking is a critical health issue with broader social implications that requires both medical and legal attention. Healthcare professionals can work to improve the screening, identification, and assistance of victims of sex trafficking in a clinical setting and help these women and girls access legal and social services. PMID:23687554

  12. Committee opinion no. 507: human trafficking.

    PubMed

    2011-09-01

    Human trafficking is a widespread problem with estimates ranging from 14,000 to 50,000 individuals trafficked into the United States annually. This hidden population involves the commercial sex industry, agriculture, factories, hotel and restaurant businesses, domestic workers, marriage brokers, and some adoption firms. Because 80% of trafficked individuals are women and girls, women’s health care providers may better serve their diverse patient population by increasing their awareness of this problem. The exploitation of people of any race, gender, sexual orientation, or ethnicity is unacceptable at any time, in any place. The members of the American College of Obstetricians and Gynecologists should be aware of this problem and strive to recognize and assist their patients who are victims or who have been victims of human trafficking.

  13. Human trafficking law and social structures.

    PubMed

    Wooditch, Alese

    2012-08-01

    Human trafficking has only recently emerged at the forefront of policy reform, even in developed nations. Yet, heightened awareness of the issue has not translated into effective policy as the majority of nations have ineffective antitrafficking practices; many countries have failed to criminalize human trafficking, whereas others do not actively enforce statutes in place. By applying Black's theory of law, this study offers a preliminary understanding into the variation of global prosecutorial efforts in human trafficking and adequacy of antitrafficking law. To isolate this relationship, the effects of trafficking markets are controlled. As with prior research, the study finds limited support for the theory. The article concludes with a discussion on the implications of the quantity of antitrafficking law and morphology association for policy development.

  14. Ovarian Cystadenoma in a Trafficked Patient.

    PubMed

    Titchen, Kanani E; Katz, Douglas; Martinez, Kidian; White, Krishna

    2016-05-01

    The topic of child sex trafficking is receiving increased attention both in the lay press and in research articles. Recently, a number of physician organizations have issued policy statements calling for the education and involvement of physicians in combating this form of "modern-day slavery." Primary care and emergency medicine physicians have led these efforts, but a number of these victims may present to surgeons. Surgeons are in a unique position to identify trafficked patients; during the process of undraping, intubation, and surgical preparation, signs of trafficking such as tattoos, scars, dental injuries, and bruising may be evident. In addition, these patients may have specific needs in terms of anesthesia and postoperative care due to substance abuse. Here, we report the case of an 18-year-old girl with a history of sexual exploitation who presents for cystadenoma excision. To our knowledge, this is the first report of a sex-trafficked pediatric patient presenting for surgery.

  15. Specific Retrograde Transduction of Spinal Motor Neurons Using Lentiviral Vectors Targeted to Presynaptic NMJ Receptors

    PubMed Central

    Eleftheriadou, I; Trabalza, A; Ellison, SM; Gharun, K; Mazarakis, ND

    2014-01-01

    To understand how receptors are involved in neuronal trafficking and to be able to utilize them for specific targeting via the peripheral route would be of great benefit. Here, we describe the generation of novel lentiviral vectors with tropism to motor neurons that were made by coexpressing onto the lentiviral surface a fusogenic glycoprotein (mutated sindbis G) and an antibody against a cell-surface receptor (Thy1.1, p75NTR, or coxsackievirus and adenovirus receptor) on the presynaptic terminal of the neuromuscular junction. These vectors exhibit binding specificity and efficient transduction of receptor positive cell lines and primary motor neurons in vitro. Targeting of each of these receptors conferred to these vectors the capability of being transported retrogradely from the axonal tip, leading to transduction of motor neurons in vitro in compartmented microfluidic cultures. In vivo delivery of coxsackievirus and adenovirus receptor-targeted vectors in leg muscles of mice resulted in predicted patterns of motor neuron labeling in lumbar spinal cord. This opens up the clinical potential of these vectors for minimally invasive administration of central nervous system-targeted therapeutics in motor neuron diseases. PMID:24670531

  16. Trafficking in Persons Report 10th Edition

    DTIC Science & Technology

    2010-06-01

    prohibits most forms of human trafficking through its 2007 Organic Law on the Right of Women to a Violence-Free Life . Article 56 of this law...www.timmatsui.com 20: REUTERS 21: (left) Jacqueline Abromeit/bigStockPhoto.com 21: ( right ) Environmental Justice Foundation/ www.ejfoundation.org 22: Jacques-Jean...prosecuted, and more instances of this human rights abuse have been pre- vented. Countries that once denied the existence of human trafficking now work

  17. Profilin I attached to the Golgi is required for the formation of constitutive transport vesicles at the trans-Golgi network.

    PubMed

    Dong, J; Radau, B; Otto, A; Müller, E; Lindschau, C; Westermann, P

    2000-07-21

    Profilin I was identified, by mass spectrometric sequencing and immunoblotting, as a component of purified Golgi cisternae from HepG2 cells. Binding to the Golgi was verified by indirect immunofluorescence in MT-1 cells showing that a fraction of profilin I colocalizes with TGN38, a marker of the trans-Golgi network (TGN). Studying the formation of constitutive exocytic vesicles at the TGN in a cell-free system demonstrated that cytosolic profilin I has no effect, while incubation of Golgi cisternae with a profilin I-specific antibody reduced vesicle formation by about 50%. Notably, the antibody displaces a fraction of the Golgi-bound dynamin II indicating that profilin I may indirectly promote vesicle formation by supporting the binding of dynamin II to the Golgi membrane. The impact of dynamin II on vesicle formation is demonstrated by incubating the Golgi with the proline-rich domain of dynamin II which concomitantly displaces dynamin II and inhibits vesicle formation. The data provide evidence that profilin I attaches to the Golgi apparatus and is required for the formation of constitutive transport vesicles.

  18. Association of γ-Secretase with Lipid Rafts in Post-Golgi and Endosome Membranes*

    PubMed Central

    Vetrivel, Kulandaivelu S.; Cheng, Haipeng; Lin, William; Sakurai, Takashi; Li, Tong; Nukina, Nobuyuki; Wong, Philip C.; Xu, Huaxi; Thinakaran, Gopal

    2005-01-01

    Alzheimer’s disease-associated β-amyloid peptides (Aβ) are generated by the sequential proteolytic processing of amyloid precursor protein (APP) by β- and γ-secretases. There is growing evidence that cholesterol- and sphingolipid-rich membrane microdomains are involved in regulating trafficking and processing of APP. BACE1, the major γ-secretase in neurons is a palmi-toylated transmembrane protein that resides in lipid rafts. A subset of APP is subject to amyloidogenic processing by BACE1 in lipid rafts, and this process depends on the integrity of lipid rafts. Here we describe the association of all four components of the γ-secretase complex, namely presenilin 1 (PS1)-derived fragments, mature nicastrin, APH-1, and PEN-2, with cholesterol-rich detergent insoluble membrane (DIM) domains of non-neuronal cells and neurons that fulfill the criteria of lipid rafts. In PS1−/−/PS2−/− and NCT−/− fibroblasts, γ-secretase components that still remain fail to become detergent-resistant, suggesting that raft association requires γ-secretase complex assembly. Biochemical evidence shows that subunits of the γ-secretase complex and three TGN/endosome-resident SNAREs cofractionate in sucrose density gradients, and show similar solubility or insolubility characteristics in distinct non-ionic and zwitterionic detergents, indicative of their co-residence in membrane microdomains with similar protein-lipid composition. This notion is confirmed using magnetic immunoisolation of PS1- or syntaxin 6-positive membrane patches from a mixture of membranes with similar buoyant densities following Lubrol WX extraction or sonication, and gradient centrifugation. These findings are consistent with the localization of γ-secretase in lipid raft microdomains of post-Golgi and endosomes, organelles previously implicated in amyloidogenic processing of APP. PMID:15322084

  19. Axons provide the secretory machinery for trafficking of voltage-gated sodium channels in peripheral nerve

    PubMed Central

    González, Carolina; Cánovas, José; Fresno, Javiera; Couve, Eduardo; Court, Felipe A.; Couve, Andrés

    2016-01-01

    The regulation of the axonal proteome is key to generate and maintain neural function. Fast and slow axoplasmic waves have been known for decades, but alternative mechanisms to control the abundance of axonal proteins based on local synthesis have also been identified. The presence of the endoplasmic reticulum has been documented in peripheral axons, but it is still unknown whether this localized organelle participates in the delivery of axonal membrane proteins. Voltage-gated sodium channels are responsible for action potentials and are mostly concentrated in the axon initial segment and nodes of Ranvier. Despite their fundamental role, little is known about the intracellular trafficking mechanisms that govern their availability in mature axons. Here we describe the secretory machinery in axons and its contribution to plasma membrane delivery of sodium channels. The distribution of axonal secretory components was evaluated in axons of the sciatic nerve and in spinal nerve axons after in vivo electroporation. Intracellular protein trafficking was pharmacologically blocked in vivo and in vitro. Axonal voltage-gated sodium channel mRNA and local trafficking were examined by RT-PCR and a retention-release methodology. We demonstrate that mature axons contain components of the endoplasmic reticulum and other biosynthetic organelles. Axonal organelles and sodium channel localization are sensitive to local blockade of the endoplasmic reticulum to Golgi transport. More importantly, secretory organelles are capable of delivering sodium channels to the plasma membrane in isolated axons, demonstrating an intrinsic capacity of the axonal biosynthetic route in regulating the axonal proteome in mammalian axons. PMID:26839409

  20. The hidden crime: human trafficking.

    PubMed

    Clause, Kristen J; Lawler, Kate Byrnes

    2013-01-01

    As the primary contact in the health care system, nurses can play a role in combating this crime and assisting the victims. Assessment for abuse, neglect, trauma, recurrent sexually transmitted infections (STIs) and fear of a controlling partner is critical. Following up on "red flags" and understanding methods of safe questioning can make the difference between slavery and recovery for victims. Nurses must also know the professional referrals in their areas once a potential victim has been identified. This may be a very dangerous undertaking and must be handled by experienced personnel. Referrals to forensic nurses or physicians, domestic violence professionals or law enforcement may be indicated. Initially, a nurse may want to consult with the agency social worker for guidance. Human trafficking is a human rights crime. Unfortunately, it is more prevalent in all types of communities than most people suspect. Nurses can be heroes to the victims through understanding of this crime and vigilance in the assessment and care of all people they encounter in their practices.

  1. Sex work and sex trafficking.

    PubMed

    Ditmore, M; Saunders, P

    1998-01-01

    Preventing HIV infection and other sexually transmitted diseases (STDs), as well as sexual and physical violence, are major occupational health and safety concerns for prostitutes. Considerable evidence shows that anti-prostitution laws facilitate violence and abuse against prostitutes and may increase their risk of contracting HIV/STDs. For example, police often take advantage of existing laws against prostitution to demand money or sex. In general, the strict enforcement of anti-prostitution laws marginalizes prostitutes from services which could help them avoid abuse and promotes an environment in which prostitutes must take risks to avoid detection and arrest. One strategy to improve prostitutes' lives would therefore be to remove laws which prevent them from working safely and from travelling abroad to work legally. Projects in which prostitutes are actively involved have helped break down stereotypes against prostitutes, while police-sex worker liaison projects in Scotland and Australia have led to higher levels of reporting of crimes against prostitutes. The Network of Sex Work Projects (NSWP), an organization which links sex worker health programs around the world, has found that the incidence of HIV/STDs among prostitutes is lowest when they have control over their work conditions; access to condoms, lubricants, and other safe sex materials; and respect of their basic human and legal rights. People need to understand that consensual involvement in sex work is different from forced sex trafficking.

  2. Lymphatic Regulation of Cellular Trafficking

    PubMed Central

    Jackson, David G.

    2016-01-01

    Lymphatic vessels play vital roles in immune surveillance and immune regulation by conveying antigen loaded dendritic cells, memory T cells, macrophages and neutrophils from the peripheral tissues to draining lymph nodes where they initiate as well as modify immune responses. Until relatively recently however, there was little understanding of how entry and migration through lymphatic vessels is organized or the specific molecular mechanisms that might be involved. Within the last decade, the situation has been transformed by an explosion of knowledge generated largely through the application of microscopic imaging, transgenic animals, specific markers and function blocking mAbs that is beginning to provide a rational conceptual framework. This article provides a critical review of the recent literature, highlighting seminal discoveries that have revealed the fascinating ultrastructure of leucocyte entry sites in lymphatic vessels, as well as generating controversies over the involvement of integrin adhesion, chemotactic and haptotactic mechanisms in DC entry under normal and inflamed conditions. It also discusses the major changes in lymphatic architecture that occur during inflammation and the different modes of leucocyte entry and trafficking within inflamed lymphatic vessels, as well as presenting a timely update on the likely role of hyaluronan and the major lymphatic endothelial hyaluronan receptor LYVE-1 in leucocyte transit. PMID:27808282

  3. The hidden crime: human trafficking.

    PubMed

    Clause, Kristen J; Lawler, Kate Byrnes

    2013-01-01

    As the primary contact in the health care system, nurses can play a role in combating this crime and assisting the victims. Assessment for abuse, neglect, trauma, recurrent sexually transmitted infections (STIs) and fear of a controlling partner is critical. Following up on "red flags" and understanding methods of safe questioning can make the difference between slavery and recovery for victims. Nurses must also know the professional referrals in their areas once a potential victim has been identified. This may be a very dangerous undertaking and must be handled by experienced personnel. Referrals to forensic nurses or physicians, domestic violence professionals or law enforcement may be indicated. Initially, a nurse may want to consult with the agency social worker for guidance. Human trafficking is a human rights crime. Unfortunately, it is more prevalent in all types of communities than most people suspect. Nurses can be heroes to the victims through understanding of this crime and vigilance in the assessment and care of all people they encounter in their practices. To learn more or to help with this cause, visit the Somaly Mam Foundation at www.somaly.org or the U.S. Department of State at www. state.gov.

  4. Transbilayer movement of monohexosylsphingolipids in endoplasmic reticulum and Golgi membranes.

    PubMed

    Buton, Xavier; Hervé, Paulette; Kubelt, Janek; Tannert, Astrid; Burger, Koert N J; Fellmann, P; Müller, Peter; Herrmann, Andreas; Seigneuret, Michel; Devaux, Philippe F

    2002-10-29

    The transbilayer movement of glycosphingolipids has been characterized in Golgi, ER, plasma, and model membranes using spin-labeled and fluorescent analogues of the monohexosylsphingolipids glucosylceramide and galactosylceramide and of the dihexosylsphingolipid lactosylceramide. In large unilamellar lipid vesicles, monohexosylsphingolipids underwent a slow transbilayer diffusion (half-time between 2 and 5 h at 20 degrees C). Similarly, the inward redistribution of these sphingolipids in the plasma membrane of the hepatocyte-like cell line HepG2 and of erythrocytes was slow. However, in rat liver ER and Golgi membranes, we found a rapid transbilayer movement of spin-labeled monohexosylsphingolipids (half-time of approximately 3 min at 20 degrees C), which suggests the existence of a monohexosylsphingolipid flippase. The transbilayer movement of glucosylceramide in the Golgi and the ER displayed a saturable behavior, was inhibited by proteolysis, did not require Mg-ATP, and occurs in both directions. Treatment with DIDS inhibited the flip-flop of glucosylceramide but not that of phosphatidylcholine. These data suggest that the transbilayer movement of monoglucosylceramide in the ER and in the Golgi involves a protein that could be distinct from that previously evidenced for glycerophospholipids in the ER. In vivo, transbilayer diffusion should promote a symmetric distribution of monohexosylsphingolipids which are synthesized in the cytosolic leaflet. This should allow glucosylceramide rapid access to the lumenal leaflet where it is converted to lactosylceramide. No significant transbilayer movement of lactosylceramide occurred in both artificial and natural membranes over 1 h. Thus, lactosylceramide, in turn, is unable to diffuse to the cytosolic leaflet and remains at the lumenal leaflet where it undergoes the subsequent glycosylations.

  5. Golgi, Cajal, and the Fine Structure of the Nervous System

    PubMed Central

    Peters, Alan

    2012-01-01

    Towards the middle of the twentieth century, neuroanatomy was on the decline. It was revived by the development of two new methods. One was the Nauta-Gygax method, which selectively stained nerve fibers that had been caused to degenerate by experimental lesions. This allowed connections between various parts of the nervous system to be better determined. The second was electron microscopy, which allowed the structure of neurons and the synapses between them to be examined in detail, and eventually this led to a revival of the Golgi impregnation methods. This occurred in the 1970s because of the desire of electron microscopists to determine the origins of the neuronal profiles they encountered in electron micrographs of various parts of the central nervous system. Eventually this led to the development of Golgi/EM techniques, whereby individual impregnated neurons could first be characterized by light microscopy and then thin sectioned for detailed analyses. Examining the axon terminals of such impregnated neurons, especially those in the cerebral cortex, for the first time revealed details of intercellular connections and allowed neuronal circuits to be postulated. However, Golgi/EM had only a brief, but fruitful existence. It was soon superceded by intracellular filling techniques, which allowed the added dimension that the physiological properties of identified neurons could also be determined. PMID:17270274

  6. Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus.

    PubMed

    Lu, Qiping; Haragopal, Hariprakash; Slepchenko, Kira G; Stork, Christian; Li, Yang V

    2016-01-01

    Zinc (Zn(2+)) is required for numerous cellular functions. As such, the homeostasis and distribution of intracellular zinc can influence cellular metabolism and signaling. However, the exact distribution of free zinc within live cells remains elusive. Previously we showed the release of zinc from thapsigargin/IP3-sensitive endoplasmic reticulum (ER) storage in cortical neurons. In the present study, we investigated if other cellular organelles also contain free chelatable zinc and function as organelle storage for zinc. To identify free zinc within the organelles, live cells were co-stained with Zinpyr-1, a zinc fluorescent dye, and organelle-specific fluorescent dyes (MitoFluor Red 589: mitochondria; ER Tracker Red: endoplasmic reticulum; BODIPY TR ceramide: Golgi apparatus; Syto Red 64: nucleus). We examined organelles that represent potential storing sites for intracellular zinc. We showed that zinc fluorescence staining was co-localized with MitoFluor Red 589, ER Tracker Red, and BODIPY TR ceramide respectively, suggesting the presence of free zinc in mitochondria, endoplasmic reticulum, and the Golgi apparatus. On the other hand, cytosol and nucleus had nearly no detectable zinc fluorescence. It is known that nucleus contains high amount of zinc binding proteins that have high zinc binding affinity. The absence of zinc fluorescence suggests that there is little free zinc in these two regions. It also indicates that the zinc fluorescence detected in mitochondria, ER and Golgi apparatus represents free chelatable zinc. Taken together, our results support that these organelles are potential zinc storing organelles during cellular zinc homeostasis.

  7. COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis.

    PubMed

    Watkin, Levi B; Jessen, Birthe; Wiszniewski, Wojciech; Vece, Timothy J; Jan, Max; Sha, Youbao; Thamsen, Maike; Santos-Cortez, Regie L P; Lee, Kwanghyuk; Gambin, Tomasz; Forbes, Lisa R; Law, Christopher S; Stray-Pedersen, Asbjørg; Cheng, Mickie H; Mace, Emily M; Anderson, Mark S; Liu, Dongfang; Tang, Ling Fung; Nicholas, Sarah K; Nahmod, Karen; Makedonas, George; Canter, Debra L; Kwok, Pui-Yan; Hicks, John; Jones, Kirk D; Penney, Samantha; Jhangiani, Shalini N; Rosenblum, Michael D; Dell, Sharon D; Waterfield, Michael R; Papa, Feroz R; Muzny, Donna M; Zaitlen, Noah; Leal, Suzanne M; Gonzaga-Jauregui, Claudia; Boerwinkle, Eric; Eissa, N Tony; Gibbs, Richard A; Lupski, James R; Orange, Jordan S; Shum, Anthony K

    2015-06-01

    Unbiased genetic studies have uncovered surprising molecular mechanisms in human cellular immunity and autoimmunity. We performed whole-exome sequencing and targeted sequencing in five families with an apparent mendelian syndrome of autoimmunity characterized by high-titer autoantibodies, inflammatory arthritis and interstitial lung disease. We identified four unique deleterious variants in the COPA gene (encoding coatomer subunit α) affecting the same functional domain. Hypothesizing that mutant COPA leads to defective intracellular transport via coat protein complex I (COPI), we show that COPA variants impair binding to proteins targeted for retrograde Golgi-to-ER transport. Additionally, expression of mutant COPA results in ER stress and the upregulation of cytokines priming for a T helper type 17 (TH17) response. Patient-derived CD4(+) T cells also demonstrate significant skewing toward a TH17 phenotype that is implicated in autoimmunity. Our findings uncover an unexpected molecular link between a vesicular transport protein and a syndrome of autoimmunity manifested by lung and joint disease.

  8. Plasma Membrane Targeting of Endogenous NKCC2 in COS7 Cells Bypasses Functional Golgi Cisternae and Complex N-Glycosylation

    PubMed Central

    Singh, Richa; Kursan, Shams; Almiahoub, Mohamed Y.; Almutairi, Mohammed M.; Garzón-Muvdi, Tomás; Alvarez-Leefmans, Francisco J.; Di Fulvio, Mauricio

    2017-01-01

    Na+K+2Cl− co-transporters (NKCCs) effect the electroneutral movement of Na+-K+ and 2Cl− ions across the plasma membrane of vertebrate cells. There are two known NKCC isoforms, NKCC1 (Slc12a2) and NKCC2 (Slc12a1). NKCC1 is a ubiquitously expressed transporter involved in cell volume regulation, Cl− homeostasis and epithelial salt secretion, whereas NKCC2 is abundantly expressed in kidney epithelial cells of the thick ascending loop of Henle, where it plays key roles in NaCl reabsorption and electrolyte homeostasis. Although NKCC1 and NKCC2 co-transport the same ions with identical stoichiometry, NKCC1 actively co-transports water whereas NKCC2 does not. There is growing evidence showing that NKCC2 is expressed outside the kidney, but its function in extra-renal tissues remains unknown. The present study shows molecular and functional evidence of endogenous NKCC2 expression in COS7 cells, a widely used mammalian cell model. Endogenous NKCC2 is primarily found in recycling endosomes, Golgi cisternae, Golgi-derived vesicles, and to a lesser extent in the endoplasmic reticulum. Unlike NKCC1, NKCC2 is minimally hybrid/complex N-glycosylated under basal conditions and yet it is trafficked to the plasma membrane region of hyper-osmotically challenged cells through mechanisms that require minimal complex N-glycosylation or functional Golgi cisternae. Control COS7 cells exposed to slightly hyperosmotic (~6.7%) solutions for 16 h were not shrunken, suggesting that either one or both NKCC1 and NKCC2 may participate in cell volume recovery. However, NKCC2 targeted to the plasma membrane region or transient over-expression of NKCC2 failed to rescue NKCC1 in COS7 cells where NKCC1 had been silenced. Further, COS7 cells in which NKCC1, but not NKCC2, was silenced exhibited reduced cell size compared to control cells. Altogether, these results suggest that NKCC2 does not participate in cell volume recovery and therefore, NKCC1 and NKCC2 are functionally different Na+K+2Cl

  9. A novel Sec18p/NSF-dependent complex required for Golgi-to-endosome transport in yeast.

    PubMed

    Burd, C G; Peterson, M; Cowles, C R; Emr, S D

    1997-06-01

    The vacuolar protein-sorting (VPS) pathway of Saccharomyces cerevisiae mediates localization of proteins from the trans-Golgi to the vacuole via a prevacuolar endosome compartment. Mutations in class D vacuolar protein-sorting (vps) genes affect vesicle-mediated Golgi-to-endosome transport and result in secretion of vacuolar proteins. Temperature-sensitive-for-function (tsf) and dominant negative mutations in PEP12, encoding a putative SNARE vesicle receptor on the endosome, and tsf mutations in VAC1, a gene implicated in vacuole inheritance and vacuolar protein sorting, were constructed and used to demonstrate that Pep12p and Vac1p are components of the VPS pathway. The sequence of Vac1p contains two putative zinc-binding RING motifs, a zinc finger motif, and a coiled-coil motif. Site-directed mutations in the carboxyl-terminal RING motif strongly affected vacuolar protein sorting. Vac1p was found to be tightly associated with membranes as a monomer and in a large SDS-resistant complex. By using Pep12p affinity chromatography, we found that Vac1p, Vps45p (SEC1 family member), and Sec18p (yeast N-ethyl maleimide-sensitive factor, NSF) bind Pep12p. Consistent with a functional role for this complex in vacuolar protein sorting, double pep12tsfvac1tsf and pep12tsf vps45tsf mutants exhibited synthetic Vps- phenotypes, the tsf phenotype of the vac1tsf mutant was rescued by overexpression of VPS45 or PEP12, overexpression of a dominant pep12 allele in a sec18-1 strain resulted in a severe synthetic growth d