Sample records for good cycle control

  1. Prospective evaluation of basal stromal Doppler studies in women with good ovarian reserve and infertility undergoing in vitro fertilization-embryo transfer treatment: patients with polycystic ovary syndrome versus ovulatory patients.

    PubMed

    Younis, Johnny S; Jadaon, Jimmy E; Haddad, Sami; Izhaki, Ido; Ben-Ami, Moshe

    2011-04-01

    To gain insight into the ovarian stromal blood flow in women with polycystic ovary syndrome (PCOS) as compared with women with normal ovulation, good ovarian reserve, and infertility and to evaluate the role of stromal flow in these patients to predict clinical pregnancy in an assisted reproductive technologies setting. A prospective observational cohort study. A university-affiliated reproductive medicine unit. Eighteen consecutive patients with PCOS (study) compared with 101 patients with normal ovulation and infertility (control), undergoing their first IVF-ET treatment at our unit. Women with low ovarian reserve were excluded a priori from evaluation. Basal ovarian reserve parameters and stromal flow studies were conducted as routinely performed in our unit, in a natural cycle before starting treatment. None. Basal ovarian endocrine, sonographic, and stromal flow studies were compared between the groups. After completion of treatment, the stromal flow studies were compared between conception and nonconception cycles. Patients' characteristics and basal ovarian reserve, including endocrine and sonographic parameters, were similar between the PCOS and control groups. Only antral follicle count and LH/FSH ratio were higher in the PCOS as compared with the control group, corresponding to 15.11 ± 6.05 versus 9.05 ± 4.77 and 1.14 ± 0.64 versus 0.79 ± 0.37, respectively. Basal stromal flow indices were similar between the PCOS group and the group with normal ovulation and good ovarian reserve. Clinical pregnancy rate per initiated cycle was 50.0% and 39.6% in the PCOS and control groups, respectively, with no significant difference. Flow indices were similar between conception cycles in the PCOS and control groups. As well, the indices did not differ significantly between conception and nonconception cycles within the PCOS and control groups. Basal ovarian stromal blood flow does not differ between women with PCOS and women with normal ovulation, good ovarian reserve, and infertility. Moreover, stromal flow has no predictive value, in these patients, for clinical pregnancy achievement in an IVF-ET setting. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. 40 CFR 86.1852-01 - Waivers for good in-use emission performance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1852-01 Waivers for good in...

  3. Cycle control and side effects of a new combiphasic oral contraceptive regimen.

    PubMed

    Dieben, T O; op ten Berg, M T; Coelingh Bennink, H J

    1994-07-01

    In a multicentre study 882 women were treated during a total of 12,850 cycles with a new combiphasic contraceptive: CTR 24. The study period was 18 cycles. The combiphasic preparation CTR 24 contains 25 micrograms desogestrel (CAS 54024-22-5) plus 40 micrograms ethinylestradiol (CAS 57-63-6) daily for the first 7 days followed by the combination of 125 micrograms desogestrel and 30 micrograms ethinyl-estradiol daily for the subsequent 15 days. The bleeding patterns were analysed over pill cycles and a comparison was made between starters and switchers. The cycle control of the combination was very good. The side effect profile was favourable.

  4. Comparison of GnRH agonist, GnRH antagonist, and GnRH antagonist mild protocol of controlled ovarian hyperstimulation in good prognosis patients.

    PubMed

    Stimpfel, Martin; Vrtacnik-Bokal, Eda; Pozlep, Barbara; Virant-Klun, Irma

    2015-01-01

    The reports on how to stimulate the ovaries for oocyte retrieval in good prognosis patients are contradictory and often favor one type of controlled ovarian hyperstimulation (COH). For this reason, we retrospectively analyzed data from IVF/ICSI cycles carried out at our IVF Unit in good prognosis patients (aged <38 years, first and second attempts of IVF/ICSI, more than 3 oocytes retrieved) to elucidate which type of COH is optimal at our condition. The included patients were undergoing COH using GnRH agonist, GnRH antagonist or GnRH antagonist mild protocol in combination with gonadotrophins. We found significant differences in the average number of retrieved oocytes, immature oocytes, fertilized oocytes, embryos, transferred embryos, embryos frozen per cycle, and cycles with embryo freezing between studied COH protocols. Although there were no differences in live birth rate (LBR), miscarriages, and ectopic pregnancies between compared protocols, pregnancy rate was significantly higher in GnRH antagonist mild protocol in comparison with both GnRH antagonist and GnRH agonist protocols and cumulative LBR per cycle was significantly higher in GnRH antagonist mild protocol in comparison to GnRH agonist protocol. Our data show that GnRH antagonist mild protocol of COH could be the best method of choice in good prognosis patients.

  5. The architecture and conservation pattern of whole-cell control circuitry.

    PubMed

    McAdams, Harley H; Shapiro, Lucy

    2011-05-27

    The control circuitry that directs and paces Caulobacter cell cycle progression involves the entire cell operating as an integrated system. This control circuitry monitors the environment and the internal state of the cell, including the cell topology, as it orchestrates orderly activation of cell cycle subsystems and Caulobacter's asymmetric cell division. The proteins of the Caulobacter cell cycle control system and its internal organization are co-conserved across many alphaproteobacteria species, but there are great differences in the regulatory apparatus' functionality and peripheral connectivity to other cellular subsystems from species to species. This pattern is similar to that observed for the "kernels" of the regulatory networks that regulate development of metazoan body plans. The Caulobacter cell cycle control system has been exquisitely optimized as a total system for robust operation in the face of internal stochastic noise and environmental uncertainty. When sufficient details accumulate, as for Caulobacter cell cycle regulation, the system design has been found to be eminently rational and indeed consistent with good design practices for human-designed asynchronous control systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Variable cycle engines for advanced supersonic transports

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.; Kozlowski, H.

    1975-01-01

    Variable Cycle Engines being studied for advanced commercial supersonic transports show potential for significant environmental and economic improvements relative to 1st generation SST engines. The two most promising concepts are: a Variable Stream Control Engine and a Variable Cycle Engine with a rear flow-control valve. Each concept utilizes variable components and separate burners to provide independent temperature and velocity control for two coannular flow streams. Unique fuel control techniques are combined with cycle characteristics that provide low fuel consumption, similar to a turbojet engine, for supersonic operation. This is accomplished while retaining the good subsonic performance features of a turbofan engine. A two-stream coannular nozzle shows potential to reduce jet noise to below FAR Part 36 without suppressors. Advanced burner concepts have the potential for significant reductions in exhaust emissions. In total, these unique engine concepts have the potential for significant overall improvements to the environmental and economic characteristics of advanced supersonic transports.

  7. Independent Engineering Assessment of the Army’s Transportation Plan for BRAC Recommendation #133 Project Fort Belvoir - Mark Center, Virginia

    DTIC Science & Technology

    2011-11-30

    does not display a currently valid OMB control number. 1. REPORT DATE 30 NOV 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4...Appropriate site variables (for purposes of accurate modeling); • Potential queues caused by the access control facility to the south parking...to LoS D LoS Control Delay/Vehicle (sec) Qualitative Description A ≤10 Good progression, few stops, and short cycle lengths B >10 - 20 Good

  8. A Technology Integration Education (TIE) Model for Millennial Preservice Teachers: Exploring the Canonical Correlation Relationships among Attitudes, Subjective Norms, Perceived Behavioral Controls, Motivation, and Technological, Pedagogical, and Content Knowledge (TPACK) Competencies

    ERIC Educational Resources Information Center

    Holland, Denise D.; Piper, Randy T.

    2016-01-01

    Intellectual goods can follow the same pattern as physical goods with the product life cycle of birth, growth, maturity, and decline. For the intellectual good of technological, pedagogical, and content knowledge (TPACK), its birth began with Shulman (1986, 1987). Canonical correlation analysis (CCA) was used to test the relationships among five…

  9. The incidence of anticipatory nausea and vomiting after repeat cycle chemotherapy: the effect of granisetron.

    PubMed Central

    Aapro, M. S.; Kirchner, V.; Terrey, J. P.

    1994-01-01

    Anticipatory nausea and vomiting (ANV) after repeated cycles of cytotoxic chemotherapy is thought to be a conditioned response to a conditioning stimulus. Good control of acute and delayed emesis may result in a lower incidence of ANV. We have analysed data from 574 chemotherapy patients who received granisetron as their antiemetic treatment during repeat cycle chemotherapy. Per treatment cycle, less than 10% of patients displayed symptoms of anticipatory nausea and 2% or less had symptoms of anticipatory vomiting. It is concluded that the use of granisetron as an antiemetic during the acute phase of chemotherapy may result in a lower incidence of ANV in patients undergoing repeat cycle chemotherapy. PMID:8180031

  10. Research on the application of BIM technology in the whole life cycle of construction projects

    NASA Astrophysics Data System (ADS)

    Chang-liu, CHEN; Wei-wei, KOU; Shuai-hua, YE

    2018-05-01

    BIM technology can realize information sharing, and good BIM application will reduce the whole life cycle cost of construction projects. The popularization of BIM technology challenges the application of BIM technology at all stages of the whole life cycle of the construction project. It will give full play to the value of BIM, if developing a reasonable BIM project execution plan, defining BIM requirements, specifying Level of Development, determining the BIM quality control plan and clearing BIM application content of each stage, and will provide a unified method for project stakeholders, realize the whole life cycle of construction projects, and achieve the desired information sharing in construction project.

  11. Intelligent processing for thick composites

    NASA Astrophysics Data System (ADS)

    Shin, Daniel Dong-Ok

    2000-10-01

    Manufacturing thick composite parts are associated with adverse curing conditions such as large in-plane temperature gradient and exotherms. The condition is further aggravated because the manufacturer's cycle and the existing cure control systems do not adequately counter such affects. In response, the forecast-based thermal control system is developed to have better cure control for thick composites. Accurate cure kinetic model is crucial for correctly identifying the amount of heat generated for composite process simulation. A new technique for identifying cure parameters for Hercules AS4/3502 prepreg is presented by normalizing the DSC data. The cure kinetics is based on an autocatalytic model for the proposed method, which uses dynamic and isothermal DSC data to determine its parameters. Existing models are also used to determine kinetic parameters but rendered inadequate because of the material's temperature dependent final degree of cure. The model predictions determined from the new technique showed good agreement to both isothermal and dynamic DSC data. The final degree of cure was also in good agreement with experimental data. A realistic cure simulation model including bleeder ply analysis and compaction is validated with Hercules AS4/3501-6 based laminates. The nonsymmetrical temperature distribution resulting from the presence of bleeder plies agreed well to the model prediction. Some of the discrepancies in the predicted compaction behavior were attributed to inaccurate viscosity and permeability models. The temperature prediction was quite good for the 3cm laminate. The validated process simulation model along with cure kinetics model for AS4/3502 prepreg were integrated into the thermal control system. The 3cm Hercules AS4/3501-6 and AS4/3502 laminate were fabricated. The resulting cure cycles satisfied all imposed requirements by minimizing exotherms and temperature gradient. Although the duration of the cure cycles increased, such phenomena was inevitable since longer time was required to maintain acceptable temperature gradient. The derived cure cycles were slightly different than what was anticipated by the offline simulation. Nevertheless, the system adapted to unanticipated events to satisfy the cure requirements.

  12. c-Myc plays a key role in TADs-induced apoptosis and cell cycle arrest in human hepatocellular carcinoma cells.

    PubMed

    Zhang, Dongdong; Qi, Junpeng; Liu, Rui; Dai, Bingling; Ma, Weina; Zhan, Yingzhuan; Zhang, Yanmin

    2015-01-01

    Cancer cell growth is complicated progression which is regulated and controlled by multiple factors including cell cycle, migration and apoptosis. In present study, we report that TADs, a novel derivative of taspine, has an essential role in resisting hepatocellular carcinoma growth (including arrest cell cycle) and migration, and inducing cell apoptosis. Our findings demonstrated that the TADs showed good inhibition on the hepatoma cell growth and migration, and good action on apoptosis induction. Using genome-wide microarray analysis, we found the down-regulated growth and apoptosis factors, and selected down-regulated genes were confirmed by Western blot. Knockdown of a checkpoint c-Myc by siRNA significantly attenuated tumor inhibition and apoptosis effects of TADs. Moreover, our results indicated TADs could simultaneously increase cyclin D1 protein levels and decrease amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins, and also TADs reduced Bcl-2 expression, and upregulated Bad, Bak and Bax activities. In conclusion, these results illustrated that TADs is a key factor in growth and apoptosis signaling inhibitor, has potential in cancer therapy.

  13. Embryological outcomes in cycles with human oocytes containing large tubular smooth endoplasmic reticulum clusters after conventional in vitro fertilization.

    PubMed

    Itoi, Fumiaki; Asano, Yukiko; Shimizu, Masashi; Honnma, Hiroyuki; Murata, Yasutaka

    2016-01-01

    There have been no studies analyzing the effect of large aggregates of tubular smooth endoplasmic reticulum (aSERT) after conventional in vitro fertilization (cIVF). The aim of this study was to investigate whether aSERT can be identified after cIVF and the association between the embryological outcomes of oocytes in cycles with aSERT. This is a retrospective study examining embryological data from cIVF cycles showing the presence of aSERT in oocytes 5-6 h after cIVF. To evaluate embryo quality, cIVF cycles with at least one aSERT-metaphase II (MII) oocyte observed (cycles with aSERT) were compared to cycles with normal-MII oocytes (control cycles). Among the 4098 MII oocytes observed in 579 cycles, aSERT was detected in 100 MII oocytes in 51 cycles (8.8%). The fertilization rate, the rate of embryo development on day 3 and day 5-6 did not significantly differ between cycles with aSERT and control group. However, aSERT-MII oocytes had lower rates for both blastocysts and good quality blastocysts (p < 0.05). aSERT can be detected in the cytoplasm by removing the cumulus cell 5 h after cIVF. However, aSERT-MII oocytes do not affect other normal-MII oocytes in cycles with aSERT.

  14. Enhancing Command and Control (C2) Assessment through Semantic Systems

    DTIC Science & Technology

    2011-06-01

    distribution unlimited 13. SUPPLEMENTARY NOTES Presented at the 16th International Command and Control Research and Technology Symposium (ICCRTS 2011...University Press, Washington, D.C., April 2008) 3 present complex contingencies that will require significant capabilities in which the power of the...cycle elements are not being brought forward and presented in ways that effectively frame and support good decisions that maximize achievement of

  15. Is cryopreservation of embryos a legitimate surrogate marker of embryo quality in studies of assisted reproductive technology conducted using national databases?

    PubMed

    Stern, Judy E; Lieberman, Ellice S; Macaluso, Maurizio; Racowsky, Catherine

    2012-04-01

    To investigate whether cryopreservation of supernumerary embryos is a good surrogate for embryo quality. Retrospective study of 6,859 assisted reproductive technology (ART) cycles from women aged <35 years with two fresh day 3 embryos transferred. National Society for Assisted Reproductive Technology Clinic Outcome Reporting System data from 2006-2008. Women undergoing ART. None. Embryo quality (good, fair, or poor), cell number, and live births were compared for cycles with and without cryopreservation, using χ(2) to evaluate statistical significance. The association of freezing with embryo quality was examined using multiple logistic regression after adjusting for confounders (patient age, oocyte yield, intracytoplasmic sperm injection [ICSI], assisted hatching, male factor infertility). Cycles with cryopreservation were more likely to have two embryos of good quality transferred (81.3% vs. 48.5%) and had more 8-cell embryos transferred (76.0% vs. 50.1%). Relative to cycles with two good embryos (good-good), the adjusted odds ratios (OR) for cryopreservation were: good-fair (OR = 0.301, 95% confidence interval [CI] = 0.257-0.354), fair-fair (OR = 0.308, 95% CI = 0.258-0.367), and any poor (OR = 0.058, 95% CI = 0.040-0.083). The live birth rate was 52.4% for cycles with freezing and 40.6% for cycles without. Embryo quality and cell number were both associated with embryo cryopreservation. However, although cryopreservation was a strong marker for good quality, not having cryopreservation did not reliably indicate poor quality, as almost half of those cycles had two good quality embryos. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Reciprocating Linear Electric Motor

    NASA Technical Reports Server (NTRS)

    Goldowsky, M. P.

    1984-01-01

    Features include structural simplicity and good force/displacement characteristics. Reciprocating motor has simple, rugged construction, relatively low reciprocating weight, improved power delivery, and improved force control. Wear reduced by use of magnetic bearings. Intended to provide drivers for long-lived Stirling-cycle cryogenic refrigerators, concept has less exotic applications, such as fuel pumps.

  17. CMOS single-stage input-powered bridge rectifier with boost switch and duty cycle control

    NASA Astrophysics Data System (ADS)

    Radzuan, Roskhatijah; Mohd Salleh, Mohd Khairul; Hamzah, Mustafar Kamal; Ab Wahab, Norfishah

    2017-06-01

    This paper presents a single-stage input-powered bridge rectifier with boost switch for wireless-powered devices such as biomedical implants and wireless sensor nodes. Realised using CMOS process technology, it employs a duty cycle switch control to achieve high output voltage using boost technique, leading to a high output power conversion. It has only six external connections with the boost inductance. The input frequency of the bridge rectifier is set at 50 Hz, while the switching frequency is 100 kHz. The proposed circuit is fabricated on a single 0.18-micron CMOS die with a space area of 0.024 mm2. The simulated and measured results show good agreement.

  18. c-Myc plays a key role in TADs-induced apoptosis and cell cycle arrest in human hepatocellular carcinoma cells

    PubMed Central

    Zhang, Dongdong; Qi, Junpeng; Liu, Rui; Dai, Bingling; Ma, Weina; Zhan, Yingzhuan; Zhang, Yanmin

    2015-01-01

    Cancer cell growth is complicated progression which is regulated and controlled by multiple factors including cell cycle, migration and apoptosis. In present study, we report that TADs, a novel derivative of taspine, has an essential role in resisting hepatocellular carcinoma growth (including arrest cell cycle) and migration, and inducing cell apoptosis. Our findings demonstrated that the TADs showed good inhibition on the hepatoma cell growth and migration, and good action on apoptosis induction. Using genome-wide microarray analysis, we found the down-regulated growth and apoptosis factors, and selected down-regulated genes were confirmed by Western blot. Knockdown of a checkpoint c-Myc by siRNA significantly attenuated tumor inhibition and apoptosis effects of TADs. Moreover, our results indicated TADs could simultaneously increase cyclin D1 protein levels and decrease amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins, and also TADs reduced Bcl-2 expression, and upregulated Bad, Bak and Bax activities. In conclusion, these results illustrated that TADs is a key factor in growth and apoptosis signaling inhibitor, has potential in cancer therapy. PMID:26045987

  19. Potassium topping cycles for stationary power. [conceptual analysis

    NASA Technical Reports Server (NTRS)

    Rossbach, R. J.

    1975-01-01

    A design study was made of the potassium topping cycle powerplant for central station use. Initially, powerplant performance and economics were studied parametrically by using an existing steam plant as the bottom part of the cycle. Two distinct powerplants were identified which had good thermodynamic and economic performance. Conceptual designs were made of these two powerplants in the 1200 MWe size, and capital and operating costs were estimated for these powerplants. A technical evaluation of these plants was made including conservation of fuel resources, environmental impact, technology status, and degree of development risk. It is concluded that the potassium topping cycle could have a significant impact on national goals such as air and water pollution control and conservation of natural resources because of its higher energy conversion efficiency.

  20. New control strategies for neuroprosthetic systems.

    PubMed

    Crago, P E; Lan, N; Veltink, P H; Abbas, J J; Kantor, C

    1996-04-01

    The availability of techniques to artificially excite paralyzed muscles opens enormous potential for restoring both upper and lower extremity movements with neuroprostheses. Neuroprostheses must stimulate muscle, and control and regulate the artificial movements produced. Control methods to accomplish these tasks include feedforward (open-loop), feedback, and adaptive control. Feedforward control requires a great deal of information about the biomechanical behavior of the limb. For the upper extremity, an artificial motor program was developed to provide such movement program input to a neuroprosthesis. In lower extremity control, one group achieved their best results by attempting to meet naturally perceived gait objectives rather than to follow an exact joint angle trajectory. Adaptive feedforward control, as implemented in the cycle-to-cycle controller, gave good compensation for the gradual decrease in performance observed with open-loop control. A neural network controller was able to control its system to customize stimulation parameters in order to generate a desired output trajectory in a given individual and to maintain tracking performance in the presence of muscle fatigue. The authors believe that practical FNS control systems must exhibit many of these features of neurophysiological systems.

  1. Report on SNL RCBC control options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponciroli, R.; Vilim, R. B.

    The attractive performance of the S-CO 2 recompression cycle arises from the thermo-physical properties of carbon dioxide near the critical point. However, to ensure efficient operation of the cycle near the critical point, precise control of the heat removal rate by the Printed Circuit Heat Exchanger (PCHE) upstream of the main compressor is required. Accomplishing this task is not trivial because of the large variations in fluid properties with respect to temperature and pressure near the critical point. The use of a model-based approach for the design of a robust feedback regulator is being investigated to achieve acceptable control ofmore » heat removal rate at different operating conditions. A first step in this procedure is the development of a dynamic model of the heat exchanger. In this work, a one-dimensional (1-D) control-oriented model of the PCHE was developed using the General Plant Analyzer and System Simulator (GPASS) code. GPASS is a transient simulation code that supports analysis and control of power conversion cycles based on the S-CO 2 Brayton cycle. This modeling capability was used this fiscal year to analyze experiment data obtained from the heat exchanger in the SNL recompression Brayton cycle. The analysis suggested that the error in the water flowrate measurement was greater than required for achieving precise control of heat removal rate. Accordingly, a new water flowmeter was installed, significantly improving the quality of the measurement. Comparison of heat exchanger measurements in subsequent experiments with code simulations yielded good agreement establishing a reliable basis for the use of the GPASS PCHE model for future development of a model-based feedback controller.« less

  2. A study of cycle control, side effects and client's satisfaction of a low dose combined contraceptive containing ethinylestradiol/drospirenone (24/4 regimen).

    PubMed

    Chaiyasit, Noppadol; Taneepanichskul, Surasak

    2010-05-01

    To study cycle control, side effects, and satisfaction of low dose 24-day combined contraceptive containing 20 microg of Ethinylestradiol and 3 mg of Drospirenone. This was an open label, non-comparative study. The healthy females from the family planning clinic at King Chulalongkorn Memorial Hospital were assigned to receive six cycles of combined oral contraceptive containing 20 microg of ethinylestradiol and 3 mg of drospirenone administered daily for 24 days followed by 4-day hormone-free interval. Data were collected on cycle control, side effects, and satisfaction. Data were analyzed using descriptive statistics for descriptive data and Paired t test for comparison. One hundred fifty four women were assigned the study medication, including one (0.64%) who did not start medication. In the second reference period, the occurrence of frequent and infrequent bleeding was low (2.1% and 4.9%). Only one woman (0.65%) discontinued medication because of irregular bleeding. There was no pregnancy reported during the present study. Overall, the study medication was well tolerated and five subjects (3.24%) discontinued study because of side effects. No serious side effects related to the study medication were reported. The majority of women (84.2%) were satisfied and very satisfied with the treatment and most (73.3%) would continue the medication if it were available. The low dose combined contraceptive containing Ethinylestradiol/Drospirenone (24/4 regimen) has acceptable cycle control and good tolerability.

  3. Nuclear proliferation-resistance and safeguards for future nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Kuno, Y.; Inoue, N.; Senzaki, M.

    2009-03-01

    Corresponding to the world nuclear security concerns, future nuclear fuel cycle (NFC) should have high proliferation-resistance (PR) and physical protection (PP), while promotion of the peaceful use of the nuclear energy must not be inhibited. In order to accomplish nuclear non-proliferation from NFC, a few models of the well-PR systems should be developed so that international community can recognize them as worldwide norms. To find a good balance of 'safeguard-ability (so-called extrinsic measure or institutional barrier)' and 'impede-ability (intrinsic feature or technical barrier)' will come to be essential for NFC designers to optimize civilian nuclear technology with nuclear non-proliferation, although the advanced safeguards with high detectability can still play a dominant role for PR in the states complying with full institutional controls. Accomplishment of such goal in a good economic efficiency is a future key challenge.

  4. 3D Porous Nanoarchitectures Derived from SnS/S-Doped Graphene Hybrid Nanosheets for Flexible All-Solid-State Supercapacitors.

    PubMed

    Liu, Chunyan; Zhao, Shulin; Lu, Yanan; Chang, Yingxue; Xu, Dongdong; Wang, Qi; Dai, Zhihui; Bao, Jianchun; Han, Min

    2017-03-01

    3D porous nanoarchitectures derived from SnS/S-doped graphene hybrid nanosheets are successfully prepared by controllable thermal conversion of oleylamine-capped mixed-phase SnS 2 -SnS nanodisks precursors, and employed as electroactive material to fabricate flexible, symmetric, all-solid-state supercapacitors. The fabricated solid devices exhibit very high areal specific capacitance (2.98 mF cm -2 ), good cycling stability (99% for 10 000 cycles), excellent flexibility, and desirable mechanical stability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Controlling calcium precipitation in an integrated anaerobic-aerobic treatment system of a "zero-discharge" paper mill.

    PubMed

    van Lier, J B; Boncz, M A

    2002-01-01

    The pulp and paper industry uses significant amounts of water and energy for the paper production process. Closing the water cycles in this industry, therefore, promises large benefits for the environment and has the potential of huge cost savings for the industry. Closing the water cycle on the other hand also introduces problems with process water quality, quality of the end-product and scaling, owing to increased water contamination. An inline treatment system is discussed in which anaerobic-aerobic bioreactors perform a central role for removing both organic and inorganic pollutants from the process water cycle. In the proposed set-up, the organic compounds are converted to methane gas and reused for energy supply, while sulphur compounds are stripped from the process cycle and calcium carbonate is removed by precipitation. Improved control of the treatment system will direct the inorganic precipitates to a location where it does not adversely affect paper production and process water treatment. A simulation program for triggering and controlling CaCO3 precipitation was developed that takes both biological conversions and all relevant chemical equilibria in the system into account. Simulation results are in good agreement with data gathered in a full-scale "zero-emission" paper plant and indicate that control of CaCO3 precipitation can be improved, e.g. in the aerobic post-treatment. Alternatively, a separate precipitation unit could be considered.

  6. Modeling and Simulation of a Parametrically Resonant Micromirror With Duty-Cycled Excitation.

    PubMed

    Shahid, Wajiha; Qiu, Zhen; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R

    2014-12-01

    High frequency large scanning angle electrostatically actuated microelectromechanical systems (MEMS) mirrors are used in a variety of applications involving fast optical scanning. A 1-D parametrically resonant torsional micromirror for use in biomedical imaging is analyzed here with respect to operation by duty-cycled square waves. Duty-cycled square wave excitation can have significant advantages for practical mirror regulation and/or control. The mirror's nonlinear dynamics under such excitation is analyzed in a Hill's equation form. This form is used to predict stability regions (the voltage-frequency relationship) of parametric resonance behavior over large scanning angles using iterative approximations for nonlinear capacitance behavior of the mirror. Numerical simulations are also performed to obtain the mirror's frequency response over several voltages for various duty cycles. Frequency sweeps, stability results, and duty cycle trends from both analytical and simulation methods are compared with experimental results. Both analytical models and simulations show good agreement with experimental results over the range of duty cycled excitations tested. This paper discusses the implications of changing amplitude and phase with duty cycle for robust open-loop operation and future closed-loop operating strategies.

  7. Predicting Baseline for Analysis of Electricity Pricing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, T.; Lee, D.; Choi, J.

    2016-05-03

    To understand the impact of new pricing structure on residential electricity demands, we need a baseline model that captures every factor other than the new price. The standard baseline is a randomized control group, however, a good control group is hard to design. This motivates us to devlop data-driven approaches. We explored many techniques and designed a strategy, named LTAP, that could predict the hourly usage years ahead. The key challenge in this process is that the daily cycle of electricity demand peaks a few hours after the temperature reaching its peak. Existing methods rely on the lagged variables ofmore » recent past usages to enforce this daily cycle. These methods have trouble making predictions years ahead. LTAP avoids this trouble by assuming the daily usage profile is determined by temperature and other factors. In a comparison against a well-designed control group, LTAP is found to produce accurate predictions.« less

  8. Morphology and crystallinity-controlled synthesis of manganese cobalt oxide/manganese dioxides hierarchical nanostructures for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Fei; Li, Gang; Chen, Hao; Jia, Jia Qi; Dong, Fan; Hu, Yao Bo; Shang, Zheng Guo; Zhang, Yu Xin

    2015-11-01

    We demonstrate a novel preparative strategy for the well-controlled MnCo2O4.5@MnO2 hierarchical nanostructures. Both δ-MnO2 nanosheets and α-MnO2 nanorods can uniformly decorate the surface of MnCo2O4.5 nanowires to form core-shell heterostructures. Detailed electrochemical characterization reveals that MnCo2O4.5@δ-MnO2 pattern exhibits not only high specific capacitance of 357.5 F g-1 at a scan rate of 0.5 A g-1, but also good cycle stability (97% capacitance retention after 1000 cycles at a scan rate of 5 A g-1), which make it have a promising application as a supercapacitor electrode material.

  9. Extremely Stable Polypyrrole Achieved via Molecular Ordering for Highly Flexible Supercapacitors.

    PubMed

    Huang, Yan; Zhu, Minshen; Pei, Zengxia; Huang, Yang; Geng, Huiyuan; Zhi, Chunyi

    2016-01-27

    The cycling stability of flexible supercapacitors with conducting polymers as electrodes is limited by the structural breakdown arising from repetitive counterion flow during charging/discharging. Supercapacitors made of facilely electropolymerized polypyrrole (e-PPy) have ultrahigh capacitance retentions of more than 97, 91, and 86% after 15000, 50000, and 100000 charging/discharging cycles, respectively, and can sustain more than 230000 charging/discharging cycles with still approximately half of the initial capacitance retained. To the best of our knowledge, such excellent long-term cycling stability was never reported. The fully controllable electropolymerization shows superiority in molecular ordering, favoring uniform stress distribution and charge transfer. Being left at ambient conditions for even 8 months, e-PPy supercapacitors completely retain the good electrochemical performance. The extremely stable supercapacitors with excellent flexibility and scalability hold considerable promise for the commerical application of flexible and wearable electronics.

  10. The Good, the Bad and the Ugly - Interacting Physical, Biogeochemical and Biolological Controls of Nutrient Cycling at Ecohydrological Interfaces

    NASA Astrophysics Data System (ADS)

    Krause, S.; Baranov, V. A.; Lewandowski, J.; Blaen, P. J.; Romeijn, P.

    2016-12-01

    The interfaces between streams, lakes and their bed sediments have for a long time been in the research focus of ecohydrologists, aquatic ecologists and biogeochemists. While over the past decades, critical understanding has been gained of the spatial patterns and temporal dynamics in nutrient cycling at sediment-freshwater interfaces, important question remain as to the actual drivers (physical, biogeochemical and biological) of the often observed hot spots and hot moments of nutrient cycling at these highly reactive systems. This study reports on a combination of laboratory manipulation, artificial stream and field experiments from reach to river network scales to investigate the interplay of physical, biogeochemical and biological drivers of interface nutrient cycling under the impact of and resilience to global environmental change. Our results indicate that biogeochemical hotspots at sediment-freshwater interfaces were controlled not only by reactant mixing ratios and residence time distributions, but strongly affected by patterns in streambed physical properties and bioavailability of organic carbon. Lab incubation experiments revealed that geology, and in particular organic matter content strongly controlled the magnitude of enhanced streambed greenhouse gas production caused by increasing water temperatures. While these findings help to improve our understanding of physical and biogeochemical controls on nutrient cycling, we only start to understand to what degree biological factors can enhance these processes even further. We found that for instance chironomid or brittle star facilitated bioturbation in has the potential to substantially enhance freshwater or marine sediment pore-water flow and respiration. We revealed that ignorance of these important biologically controls on physical exchange fluxes can lead to critical underestimation of whole system respiration and its increase under global environmental change.

  11. High Energy, Long Cycle Life Lithium-ion Batteries for PHEV Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Donghai; Manthiram, Arumugam; Wang, Chao-Yang

    High-loading and high quality PSU Si anode has been optimized and fabricated. The electrochemical performance has been utilized. The PSU Si-graphite anode exhibits the mass loading of 5.8 mg/cm2, charge capacity of 850 mAh/ g and good cycling performance. This optimized electrode has been used for full-cell fabrication. The performance enhancement of Ni-rich materials can be achieved by a diversity of strategies. Higher Mn content and a small amount of Al doping can improve the electrochemical performance by suppressing interfacial side reactions with electrolytes, thus greatly benefiting the cyclability of the samples. Also, surface coatings of Li-rich materials and AlFmore » 3 are able to improve the performance stability of Ni-rich cathodes. One kilogram of optimized concentration-gradient LiNi 0.76Co 0.10Mn 0.14O 2 (CG) with careful control of composition, morphology and electrochemical performance was delivered to our collaborators. The sample achieved an initial specific capacity close to 190 mA h g -1 at C/10 rate and 180 mA h g -1 at C/3 rate as well as good cyclability in pouch full cells with a 4.4 V upper cut-off voltage at room temperature. Electrolyte additive with Si-N skeleton forms a less resistant SEI on the surface of silicon anode (from PSU) as evidenced by the evolution of the impedance at various lithiation/de-lithiation stages and the cycling data The prelithiation result demonstrates a solution processing method to achieve large area, uniform SLMP coating on well-made anode surface for the prelithiation of lithium-ion batteries. The prelithiation effect with this method is applied both in graphite half cells, graphite/NMC full cells, SiO half cells, SiO/NMC full cells, Si-Graphite half cells and Si-Graphite/NMC full cells with improvements in cycle performance and higher first cycle coulombic efficiency than their corresponding cells without SLMP prelithiation. As to the full cell fabrication and test, full pouch cells with high capacity of 2.2 Ah and 1.2 Ah have been fabricated and delivered. The cells show great uniformity and good cycling performance. The prelithiation method effectively compensate the loss in the first cycle. The cell with high energy density and long-cycle life has been achieved.« less

  12. Administrative Preparedness Strategies: Expediting Procurement and Contracting Cycle Times During an Emergency.

    PubMed

    Hurst, David; Sharpe, Sharon; Yeager, Valerie A

    We assessed whether administrative preparedness processes that were intended to expedite the acquisition of goods and services during a public health emergency affect estimated procurement and contracting cycle times. We obtained data from 2014-2015 applications to the Hospital Preparedness Program and Public Health Emergency Preparedness (HPP-PHEP) cooperative agreements. We compared the estimated procurement and contracting cycle times of 61 HPP-PHEP awardees that did and did not have certain administrative processes in place. Certain processes, such as statutes allowing for procuring and contracting on the open market, had an effect on reducing the estimated cycle times for obtaining goods and services. Other processes, such as cooperative purchasing agreements, also had an effect on estimated procurement time. For example, awardees with statutes that permitted them to obtain goods and services in the open market had an average procurement cycle time of 6 days; those without such statutes had a cycle time of 17 days ( P = .04). PHEP awardees should consider adopting these or similar processes in an effort to reduce cycle times.

  13. Vapor-phase polymerization of poly(3, 4-ethylenedioxythiophene) nanofibers on carbon cloth as electrodes for flexible supercapacitors.

    PubMed

    Zhao, Xin; Dong, Mengyang; Zhang, Junxian; Li, Yingzhi; Zhang, Qinghua

    2016-09-23

    In this study, an evaporative vapor-phase polymerization approach was employed to fabricate vertically aligned poly(3, 4-ethylenedioxythiophene) (PEDOT) nanofibers on the surface of carbon cloth (CC). Optimized reaction conditions can obtain well distributed and uniform layers of high-aspect-ratio PEDOT nanofibers on CC. The hierarchical PEDOT/CC structure as a freestanding electrode exhibits good electrochemical properties. As a flexible symmetric supercapacitor, the PEDOT/CC hybrid electrode displays a specific areal capacitance of 201.4 mF cm(-2) at 1 mA cm(-2), good flexibility with a higher value (204.6 mF cm(-2)) in the bending state, and a good cycling stability of 92.4% after 1000 cycles. Moreover, the device shows a maximum energy density of 4.0 Wh kg(-1) (with a power density of 3.2 kW kg(-1)) and a maximum power density of 4.2 kW kg(-1) (with an energy density of 3.1 Wh kg(-1)). The results demonstrate that PEDOT may be a promising material for storage devices through a simple and efficient vapor-phase polymerization process with precisely controlled reaction conditions.

  14. Vapor-phase polymerization of poly(3, 4-ethylenedioxythiophene) nanofibers on carbon cloth as electrodes for flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Dong, Mengyang; Zhang, Junxian; Li, Yingzhi; Zhang, Qinghua

    2016-09-01

    In this study, an evaporative vapor-phase polymerization approach was employed to fabricate vertically aligned poly(3, 4-ethylenedioxythiophene) (PEDOT) nanofibers on the surface of carbon cloth (CC). Optimized reaction conditions can obtain well distributed and uniform layers of high-aspect-ratio PEDOT nanofibers on CC. The hierarchical PEDOT/CC structure as a freestanding electrode exhibits good electrochemical properties. As a flexible symmetric supercapacitor, the PEDOT/CC hybrid electrode displays a specific areal capacitance of 201.4 mF cm-2 at 1 mA cm-2, good flexibility with a higher value (204.6 mF cm-2) in the bending state, and a good cycling stability of 92.4% after 1000 cycles. Moreover, the device shows a maximum energy density of 4.0 Wh kg-1 (with a power density of 3.2 kW kg-1) and a maximum power density of 4.2 kW kg-1 (with an energy density of 3.1 Wh kg-1). The results demonstrate that PEDOT may be a promising material for storage devices through a simple and efficient vapor-phase polymerization process with precisely controlled reaction conditions.

  15. Central receiver solar thermal power system, Phase 1. CDRL item 2. Pilot plant preliminary design report. Volume VI. Electrical power generation and master control subsystems and balance of plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    The requirements, performance, and subsystem configuration for both the Commercial and Pilot Plant electrical power generation subsystems (EPGS) and balance of plants are presented. The EPGS for both the Commercial Plant and Pilot Plant make use of conventional, proven equipment consistent with good power plant design practices in order to minimize risk and maximize reliability. The basic EPGS cycle selected is a regenerative cycle that uses a single automatic admission, condensing, tandem-compound double-flow turbine. Specifications, performance data, drawings, and schematics are included. (WHK)

  16. Temporal-spatial parameters of the upper limb during a Reach & Grasp Cycle for children.

    PubMed

    Butler, Erin E; Ladd, Amy L; Lamont, Lauren E; Rose, Jessica

    2010-07-01

    The objective of this study was to characterize normal temporal-spatial patterns during the Reach & Grasp Cycle and to identify upper limb motor deficits in children with cerebral palsy (CP). The Reach & Grasp Cycle encompasses six sequential tasks: reach, grasp cylinder, transport to self (T(1)), transport back to table (T(2)), release cylinder, and return to initial position. Three-dimensional motion data were recorded from 25 typically developing children (11 males, 14 females; ages 5-18 years) and 12 children with hemiplegic CP (2 males, 10 females; ages 5-17 years). Within-day and between-day coefficients of variation for the control group ranged from 0 to 0.19, indicating good repeatability of all parameters. The mean duration of the Cycle for children with CP was nearly twice as long as controls, 9.5±4.3s versus 5.1±1.2s (U=37.0, P=.002), partly due to prolonged grasp and release durations. Peak hand velocity occurred at approximately 40% of each phase and was greater during the transport (T(1), T(2)) than non-transport phases (reach, return) in controls (P<.001). Index of curvature was lower during transport versus non-transport phases for all children. Children with CP demonstrated an increased index of curvature during reach (U=46.0, P=.0074) and an increased total number of movement units (U=16.5, P<.0001) compared to controls, indicating less efficient and less smooth movements. Total duration of the Reach & Grasp Cycle (rho=.957, P<.0001), index of curvature during reach and T(1) (rho=.873, P=.0002 and rho=.778, P=.0028), and total number of movement units (rho=.907, P<.0001) correlated strongly with MACS score. The consistent normative data and the substantial differences between children with CP and controls reflect utility of the Reach & Grasp Cycle for quantitative evaluation of upper limb motor deficits. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Are general practice characteristics predictors of good glycaemic control in patients with diabetes? A cross-sectional study.

    PubMed

    Esterman, Adrian J; Fountaine, Tim; McDermott, Robyn

    2016-01-18

    To determine whether certain characteristics of general practices are associated with good glycaemic control in patients with diabetes and with completing an annual cycle of care (ACC). Our cross-sectional analysis used baseline data from the Australian Diabetes Care Project conducted between 2011 and 2014. Practice characteristics were self-reported. Characteristics of the patients that were assessed included glycaemic control (HbA1c level ≤ 53 mmol/mol), age, sex, duration of diabetes, socio-economic disadvantage (SEIFA) score, the complexity of the patient's condition, and whether the patient had completed an ACC for diabetes in the past 18 months. Clustered logistic regression was used to establish predictors of glycaemic control and a completed ACC. Data were available from 147 general practices and 5455 patients with established type 1 or type 2 diabetes in three Australian states. After adjustment for other patient characteristics, only the patient completing an ACC was statistically significant as a predictor of glycaemic control (P = 0.011). In a multivariate model, the practice having a chronic disease-focused practice nurse (P = 0.036) and running educational events for patients with diabetes (P = 0.004) were statistically significant predictors of the patient having complete an ACC. Patient characteristics are moderately good predictors of whether the patient is in glycaemic control, whereas practice characteristics appear to predict only the likelihood of patients completing an ACC. The ACC is an established indicator of good diabetes management. This is the first study to report a positive association between having completed an ACC and the patient being in glycaemic control.

  18. Performance and Safety Characteristics of Lithium-molybdenum Disulfide Cells

    NASA Technical Reports Server (NTRS)

    Stiles, J. A.

    1984-01-01

    The lithium-molybdenum disulfide system offers attractive characteristics including high rate capability, successful operation up to 75 C, a very low self-discharge rate, a good cycle life and safety characteristics which compare favorably to those of other lithium cells. Moreover, the materials and manufacturing costs for the system is effectively controlled, so the cells should ultimately be competitive with currently marketed rechargeable cells.

  19. Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Geng, Hongbo; Ang, Huixiang; Ding, Xianguang; Tan, Huiteng; Guo, Guile; Qu, Genlong; Yang, Yonggang; Zheng, Junwei; Yan, Qingyu; Gu, Hongwei

    2016-01-01

    In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g-1, good cycling stability (around 803 mA h g-1 at a current density of 200 mA g-1 after 100 cycles), and stable rate performance (around 520 mA h g-1 at a current density of 1000 mA g-1). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling.In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g-1, good cycling stability (around 803 mA h g-1 at a current density of 200 mA g-1 after 100 cycles), and stable rate performance (around 520 mA h g-1 at a current density of 1000 mA g-1). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08570e

  20. Controllable Synthesis of Copper Oxide/Carbon Core/Shell Nanowire Arrays and Their Application for Electrochemical Energy Storage

    PubMed Central

    Zhan, Jiye; Chen, Minghua; Xia, Xinhui

    2015-01-01

    Rational design/fabrication of integrated porous metal oxide arrays is critical for the construction of advanced electrochemical devices. Herein, we report self-supported CuO/C core/shell nanowire arrays prepared by the combination of electro-deposition and chemical vapor deposition methods. CuO/C nanowires with diameters of ~400 nm grow quasi-vertically to the substrates forming three-dimensional arrays architecture. A thin carbon shell is uniformly coated on the CuO nanowire cores. As an anode of lithium ion batteries, the resultant CuO/C nanowire arrays are demonstrated to have high specific capacity (672 mAh·g−1 at 0.2 C) and good cycle stability (425 mAh·g−1 at 1 C up to 150 cycles). The core/shell arrays structure plays positive roles in the enhancement of Li ion storage due to fast ion/electron transfer path, good strain accommodation and sufficient contact between electrolyte and active materials. PMID:28347084

  1. Modeling and Simulation of a Parametrically Resonant Micromirror With Duty-Cycled Excitation

    PubMed Central

    Shahid, Wajiha; Qiu, Zhen; Duan, Xiyu; Li, Haijun; Wang, Thomas D.; Oldham, Kenn R.

    2014-01-01

    High frequency large scanning angle electrostatically actuated microelectromechanical systems (MEMS) mirrors are used in a variety of applications involving fast optical scanning. A 1-D parametrically resonant torsional micromirror for use in biomedical imaging is analyzed here with respect to operation by duty-cycled square waves. Duty-cycled square wave excitation can have significant advantages for practical mirror regulation and/or control. The mirror’s nonlinear dynamics under such excitation is analyzed in a Hill’s equation form. This form is used to predict stability regions (the voltage-frequency relationship) of parametric resonance behavior over large scanning angles using iterative approximations for nonlinear capacitance behavior of the mirror. Numerical simulations are also performed to obtain the mirror’s frequency response over several voltages for various duty cycles. Frequency sweeps, stability results, and duty cycle trends from both analytical and simulation methods are compared with experimental results. Both analytical models and simulations show good agreement with experimental results over the range of duty cycled excitations tested. This paper discusses the implications of changing amplitude and phase with duty cycle for robust open-loop operation and future closed-loop operating strategies. PMID:25506188

  2. Transdermal granisetron versus palonosetron for prevention of chemotherapy-induced nausea and vomiting following moderately emetogenic chemotherapy: a multicenter, randomized, open-label, cross-over, active-controlled, and phase IV study.

    PubMed

    Seol, Young Mi; Kim, Hyo Jeong; Choi, Young Jin; Lee, Eun Mi; Kim, Yang Soo; Oh, Sung Yong; Koh, Su Jin; Baek, Jin Ho; Lee, Won Sik; Joo, Young Don; Lee, Hyun Gi; Yun, Eun Young; Chung, Joo Seop

    2016-02-01

    Palonosetron is the second-generation 5-hydroxytryptamine 3 receptor antagonist (5-HT3RA) that has shown better efficacy than the first-generation 5-HT3RA for prevention of chemotherapy-induced nausea and vomiting (CINV) in patients receiving moderately emetogenic chemotherapy (MEC). Granisetron transdermal delivery system (GTDS), a novel transdermal formulation, was developed to deliver granisetron continuously over 7 days. This study compared the efficacy and tolerability of the GTDS to palonosetron for the control of CINV following MEC. A total of 196 patients were randomized to GP or PG group. In this multicenter, randomized, open-label, cross-over, active-controlled, Phase IV study, GP group was assigned to receive transdermal granisetron (one GTDS patch, 7 days) in the first chemotherapy cycle, palonosetron (iv 0.25 mg/day, 1 days) in the second chemotherapy cycle before receiving MEC, and PG group was assigned to receive palonosetron in the first cycle and GTDS in the second cycle. Primary endpoint was the percentage of chemotherapy cycles achieving complete response (CR; defined as no emetic episodes and no rescue medication use) during the acute phase (0-24 h in post-chemotherapy; non-inferiority comparison with palonosetron). Total 333 cycles (165 in GTDS and 168 in palonosetron) were included in the per protocol analysis. The GTDS cycles showed non-inferiority to palonosetron cycles during the acute phase: CR was achieved by 124 (75.2 %) patients in the GTDS cycles and 134 (79.8 %) patients in the palonosetron cycles (treatment difference, -4.6 %; 95 % confidence interval, -13.6-4.4). There was no significant difference in CR rate during acute phase after the end of the first and second chemotherapy cycle between GP and PG group (p = 0.405, p = 0.074). Patients' satisfaction, assessed using Functional Living Index-Emesis (FLI-E), GTDS cycle were higher than those of palonosetron cycle in GP group (FLI-E score; median 1549.5 in GTDS cycle, median 1670.0 in palonosetron cycle). Both treatments were well tolerated and safe. Transdermal granisetron is a good alternative therapeutic option to palonosetron for preventing CINV after MEC.

  3. Decreased Sperm Motility Retarded ICSI Fertilization Rate in Severe Oligozoospermia but Good-Quality Embryo Transfer Had Achieved the Prospective Clinical Outcomes.

    PubMed

    Zheng, Jufeng; Lu, Yongning; Qu, Xianqin; Wang, Peng; Zhao, Luiwen; Gao, Minzhi; Shi, Huijuan; Jin, Xingliang

    Spermatozoa motility is the critical parameter to affect the treatment outcomes during assisted reproductive technologies (ART), but its reproductive capability remains a little informed in condition of severe male factor infertility. This retrospective cohort study aimed to evaluate the effects of reduced sperm motility on the embryological and clinical outcomes in intra-cytoplasmic sperm injection (ICSI) treatment of severe oligozoospermia. 966 cycles (812 couples) of severe oligozoospermia diagnosed by spermatozoa count ≤ 5 × 106/mL and motile spermatozoa ≤ 2 × 106/mL were divided into four groups in according to the number of motile spermatozoa in one ejaculate on the day of oocyte retrieval (Group B-E). The control (Group A) was 188 cycles of moderate oligozoospermia with spermatozoa count > 5 × 106/mL and motile spermatozoa > 2 × 106/mL. All female partners were younger than 35 years of age. Logistic regression analyzed embryological outcomes (the rates of fertilization, cleavage and good-quality embryo) and clinical outcomes (the rates of pregnancy, implantation, early miscarriage and live birth). Quality of embryo transfer (ET) was divided into three classes as continuous factor to test the effects of embryo quality on clinical outcomes. The reduction in the number of motile sperm in four groups of severe oligozoospermia gave rise to comparable inability of the fertilization (p < 0.001) and a decreased rate of good-quality embryo at Day 3 (p < 0.001) by compared to the control. The cleavage rate of the derived zygotes was similar to the control. ET classes significantly affected the clinical outcomes (p < 0.001). Class I ET gave rise to similar rates of clinical outcomes between five groups, but Class II and Class III ET retarded the rates of pregnancy, implantation and live birth and this particularly occurred in Group C, D and E. The rate of early miscarriage was not comparably different between groups. Overall rates in all groups were 41.26% clinical pregnancy, 25.74% implantation and 36.32% live birth, which gave live birth to 252 girls and 252 boys. The reduction of motile spermatozoa in severe oligozoospermia decreased the rates of fertilization and good-quality embryo. Obtaining and transfer of good-quality embryos was the good prognostic to achieve prospective clinical outcomes regardless of the severity of oligozoospermia.

  4. A comparative look at sunspot cycles

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1984-01-01

    On the basis of cycles 8 through 20, spanning about 143 years, observations of sunspot number, smoothed sunspot number, and their temporal properties were used to compute means, standard deviations, ranges, and frequency of occurrence histograms for a number of sunspot cycle parameters. The resultant schematic sunspot cycle was contrasted with the mean sunspot cycle, obtained by averaging smoothed sunspot number as a function of time, tying all cycles (8 through 20) to their minimum occurence date. A relatively good approximation of the time variation of smoothed sunspot number for a given cycle is possible if sunspot cycles are regarded in terms of being either HIGH- or LOW-R(MAX) cycles or LONG- or SHORT-PERIOD cycles, especially the latter. Linear regression analyses were performed comparing late cycle parameters with early cycle parameters and solar cycle number. The early occurring cycle parameters can be used to estimate later occurring cycle parameters with relatively good success, based on cycle 21 as an example. The sunspot cycle record clearly shows that the trend for both R(MIN) and R(MAX) was toward decreasing value between cycles 8 through 14 and toward increasing value between cycles 14 through 20. Linear regression equations were also obtained for several measures of solar activity.

  5. Electric and hybrid vehicle environmental control subsystem study

    NASA Technical Reports Server (NTRS)

    Heitner, K. L.

    1980-01-01

    An environmental control subsystem (ECS) in electric and hybrid vehicles is studied. A combination of a combustion heater and gasoline engine (Otto cycle) driven vapor compression air conditioner is selected. The combustion heater, the small gasoline engine, and the vapor compression air conditioner are commercially available. These technologies have good cost and performance characteristics. The cost for this ECS is relatively close to the cost of current ECS's. Its effect on the vehicle's propulsion battery is minimal and the ECS size and weight do not have significant impact on the vehicle's range.

  6. Successful completion of a cyclic ground test of a mercury ion auxiliary propulsion system

    NASA Technical Reports Server (NTRS)

    Francisco, David R.; Low, Charles A., Jr.; Power, John L.

    1988-01-01

    An engineering model Ion Auxiliary Propulsion System (IAPS) 8-cm thruster (S/N 905) has completed a life test at NASA Lewis Research Center. The mercury ion thruster successfully completed and exceeded the test goals of 2557 on/off cycles and 7057 hr of operation at full thrust. The final 1200 cycles and 3600 hr of the life test were conducted using an engineering model of the IAPS power electronics unit (PEU) and breadboard digital controller and interface unit (DCIU). This portion of the test is described in this paper with a charted history of thruster operating parameters and off-normal events. Performance and operating characteristics were constant throughout the test with only minor variations. The engineering model power electronics unit operated without malfunction; the flight software in the digital controller and interface unit was exercised and verified. Post-test inspection of the thruster revealed facility enhanced accelerator grid erosion but overall the thruster was in good condition. It was concluded that the thruster performance was not drastically degraded by time or cycles. Additional cyclic testing is currently under consideration.

  7. Successful completion of a cyclic ground test of a mercury Ion Auxiliary Propulsion System

    NASA Technical Reports Server (NTRS)

    Francisco, David R.; Low, Charles A., Jr.; Power, John L.

    1988-01-01

    An engineering model Ion Auxiliary Propulsion System (IAPS) 8-cm thruster (S/N 905) has completed a life test at NASA Lewis Research Center. The mercury ion thruster successfully completed and exceeded the test goals of 2557 on/off cycles and 7057 hr of operation at full thrust. The final 1200 cycles and 3600 hr of the life test were conducted using an engineering model of the IAPS power electronics unit (PEU) and breadboard digital controller and interface unit (DCIU). This portion of the test is described in this paper with a charted history of thruster operating parameters and off-normal events. Performance and operating characteristics were constant throughout the test with only minor variations. The engineering model power electronics unit operated without malfunction; the flight software in the digital controller and interface unit was exercised and verified. Post-test inspection of the thruster revealed facility enhanced accelerator grid erosion but overall the thruster was in good condition. It was concluded that the thruster performance was not drastically degraded by time or cycles. Additional cyclic testing is currently under consideration.

  8. Efficacy and safety of a low-dose monophasic combination oral contraceptive containing 100 microg levonorgestrel and 20 microg ethinyl estradiol (Alesse). North american Levonorgestrel Study Group (NALSG).

    PubMed

    Archer, D F; Maheux, R; DelConte, A; O'Brien, F B

    1999-11-01

    The efficacy and safety of a low-dose 21-day combination oral contraceptive containing 100 microg levonorgestrel and 20 microg ethinyl estradiol were evaluated in an open-label, multicenter trial. A total of 1708 subjects with regular menstrual cycles (27,011 cycles) were evaluated. The oral contraceptive was administered once a day for 21 days, followed by 7 days of placebo for a complete cycle. During 26,554 cycles evaluated for efficacy, 18 pregnancies occurred (Pearl index of 0.88); 6 of these events were attributable to subject noncompliance. After 30 cycles of exposure the cumulative rate of withdrawal as a result of accidental pregnancy was 1.9%. Breakthrough bleeding (with or without spotting) occurred in 12.9% of the cycles and spotting alone occurred in 10.1% of the cycles. The 2 most common adverse events cited as reasons for discontinuation were headache (2% of subjects) and metrorrhagia (2%). One serious event led to withdrawal of a subject. Overall, the results of this study demonstrate that the monophasic regimen of 100 microg levonorgestrel and 20 microg ethinyl estradiol offers effective contraception, acceptable cycle control, and a good tolerability profile.

  9. Antibiotic Cycling and Antibiotic Mixing: Which One Best Mitigates Antibiotic Resistance?

    PubMed

    Beardmore, Robert Eric; Peña-Miller, Rafael; Gori, Fabio; Iredell, Jonathan

    2017-04-01

    Can we exploit our burgeoning understanding of molecular evolution to slow the progress of drug resistance? One role of an infection clinician is exactly that: to foresee trajectories to resistance during antibiotic treatment and to hinder that evolutionary course. But can this be done at a hospital-wide scale? Clinicians and theoreticians tried to when they proposed two conflicting behavioral strategies that are expected to curb resistance evolution in the clinic, these are known as "antibiotic cycling" and "antibiotic mixing." However, the accumulated data from clinical trials, now approaching 4 million patient days of treatment, is too variable for cycling or mixing to be deemed successful. The former implements the restriction and prioritization of different antibiotics at different times in hospitals in a manner said to "cycle" between them. In antibiotic mixing, appropriate antibiotics are allocated to patients but randomly. Mixing results in no correlation, in time or across patients, in the drugs used for treatment which is why theorists saw this as an optimal behavioral strategy. So while cycling and mixing were proposed as ways of controlling evolution, we show there is good reason why clinical datasets cannot choose between them: by re-examining the theoretical literature we show prior support for the theoretical optimality of mixing was misplaced. Our analysis is consistent with a pattern emerging in data: neither cycling or mixing is a priori better than the other at mitigating selection for antibiotic resistance in the clinic. : antibiotic cycling, antibiotic mixing, optimal control, stochastic models. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Linear quadratic Gaussian and feedforward controllers for the DSS-13 antenna

    NASA Technical Reports Server (NTRS)

    Gawronski, W. K.; Racho, C. S.; Mellstrom, J. A.

    1994-01-01

    The controller development and the tracking performance evaluation for the DSS-13 antenna are presented. A trajectory preprocessor, linear quadratic Gaussian (LQG) controller, feedforward controller, and their combination were designed, built, analyzed, and tested. The antenna exhibits nonlinear behavior when the input to the antenna and/or the derivative of this input exceeds the imposed limits; for slewing and acquisition commands, these limits are typically violated. A trajectory preprocessor was designed to ensure that the antenna behaves linearly, just to prevent nonlinear limit cycling. The estimator model for the LQG controller was identified from the data obtained from the field test. Based on an LQG balanced representation, a reduced-order LQG controller was obtained. The feedforward controller and the combination of the LQG and feedforward controller were also investigated. The performance of the controllers was evaluated with the tracking errors (due to following a trajectory) and the disturbance errors (due to the disturbances acting on the antenna). The LQG controller has good disturbance rejection properties and satisfactory tracking errors. The feedforward controller has small tracking errors but poor disturbance rejection properties. The combined LQG and feedforward controller exhibits small tracking errors as well as good disturbance rejection properties. However, the cost for this performance is the complexity of the controller.

  11. Effect of Carbon Coating on Li4TiO12 of Anode Material for Hybrid Capacitor.

    PubMed

    Lee, Jong-Kyu; Lee, Byung-Gwan; Yoon, Jung-Rag

    2015-11-01

    The carbon-coated Li4Ti5O12 of anode material for hybrid capacitor was prepared by controlling carbonization time at 700 degrees C in nitrogen. With increasing of carbonization time, the discharge capacity and capacitance were decreased, while the equivalent series resistance was not changed remarkably. The rate capability and cycle performance of carbon-coated Li4Ti5O12 were larger than that of Li4Ti5O12. Carbon coating improved conductivity as well as Li-ion diffusion, and thus also resulted in good rate capabilities and cycle stability. The effects of carbon coating on the gas generation of hybrid capacitor were also discussed.

  12. Efficacy of corifollitropin alfa followed by recombinant follicle-stimulating hormone in a gonadotropin-releasing hormone antagonist protocol for Korean women undergoing assisted reproduction.

    PubMed

    Park, Hyo Young; Lee, Min Young; Jeong, Hyo Young; Rho, Yong Sook; Song, Sang Jin; Choi, Bum-Chae

    2015-06-01

    To evaluate the effect of a gonadotropin-releasing hormone (GnRH) antagonist protocol using corifollitropin alfa in women undergoing assisted reproduction. Six hundred and eighty-six in vitro fertilization-embryo transfer (IVF)/intracytoplasmic sperm injection (ICSI) cycles were analyzed. In 113 cycles, folliculogenesis was induced with corifollitropin alfa and recombinant follicle stimulating hormone (rFSH), and premature luteinizing hormone (LH) surges were prevented with a GnRH antagonist. In the control group (573 cycles), premature LH surges were prevented with GnRH agonist injection from the midluteal phase of the preceding cycle, and ovarian stimulation was started with rFSH. The treatment duration, quality of oocytes and embryos, number of embryo transfer (ET) cancelled cycles, risk of ovarian hyperstimulation syndrome (OHSS), and the chemical pregnancy rate were evaluated in the two ovarian stimulation protocols. There were no significant differences in age and infertility factors between treatment groups. The treatment duration was shorter in the corifollitropin alfa group than in the control group. Although not statistically significant, the mean numbers of matured (86.8% vs. 85.1%) and fertilized oocytes (84.2% vs. 83.1%), good embryos (62.4% vs. 60.3%), and chemical pregnancy rates (47.2% vs. 46.8%) were slightly higher in the corifollitropin alfa group than in the control group. In contrast, rates of ET cancelled cycles and the OHSS risk were slightly lower in the corifollitropin alfa group (6.2% and 2.7%) than in the control group (8.2% and 3.5%), although these differences were also not statistically significant. Although no significant differences were observed, the use of corifollitropin alfa seems to offer some advantages to patients because of its short treatment duration, safety, lower ET cancellation rate and reduced risk of OHSS.

  13. A study of elevated temperature testing techniques for the fatigue behavior of PMCS: Application to T650-35/AMB21

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Gastelli, Michael G.; Ellis, John R.; Burke, Christopher S.

    1995-01-01

    An experimental study was conducted to investigate the mechanical behavior of a T650-35/AMB21 eight-harness satin weave polymer composite system. Emphasis was placed on the development and refinement of techniques used in elevated temperature uniaxial PMC testing. Issues such as specimen design, gripping, strain measurement, and temperature control and measurement were addressed. Quasi-static tensile and fatigue properties (R(sub sigma) = 0.1) were examined at room and elevated temperatures. Stiffness degradation and strain accumulation during fatigue cycling were recorded to monitor damage progression and provide insight for future analytical modeling efforts. Accomplishments included an untabbed dog-bone specimen design which consistently failed in the gage section, accurate temperature control and assessment, and continuous in-situ strain measurement capability during fatigue loading at elevated temperatures. Finally, strain accumulation and stiffness degradation during fatigue cycling appeared to be good indicators of damage progression.

  14. Experimental and Numerical Simulations of Phase Transformations Occurring During Continuous Annealing of DP Steel Strips

    NASA Astrophysics Data System (ADS)

    Wrożyna, Andrzej; Pernach, Monika; Kuziak, Roman; Pietrzyk, Maciej

    2016-04-01

    Due to their exceptional strength properties combined with good workability the Advanced High-Strength Steels (AHSS) are commonly used in automotive industry. Manufacturing of these steels is a complex process which requires precise control of technological parameters during thermo-mechanical treatment. Design of these processes can be significantly improved by the numerical models of phase transformations. Evaluation of predictive capabilities of models, as far as their applicability in simulation of thermal cycles thermal cycles for AHSS is considered, was the objective of the paper. Two models were considered. The former was upgrade of the JMAK equation while the latter was an upgrade of the Leblond model. The models can be applied to any AHSS though the examples quoted in the paper refer to the Dual Phase (DP) steel. Three series of experimental simulations were performed. The first included various thermal cycles going beyond limitations of the continuous annealing lines. The objective was to validate models behavior in more complex cooling conditions. The second set of tests included experimental simulations of the thermal cycle characteristic for the continuous annealing lines. Capability of the models to describe properly phase transformations in this process was evaluated. The third set included data from the industrial continuous annealing line. Validation and verification of models confirmed their good predictive capabilities. Since it does not require application of the additivity rule, the upgrade of the Leblond model was selected as the better one for simulation of industrial processes in AHSS production.

  15. Insitu measurement and control of processing properties of composite resins in a production tool

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D.; Hoff, M.; Haverty, P.; Loos, A.; Freeman, T.

    1988-01-01

    An in situ measuring technique for use in automated composite processing and quality control is discussed. Frequency dependent electromagnetic sensors are used to measure processing parameters at four ply positions inside a thick section 192-ply graphite-epoxy composite during cure in an 8 x 4 in. autoclave. Viscosity measurements obtained using the sensors are compared with the viscosities calculated using the Loos-Springer cure process model. Good overall agreement is obtained. In a subsequent autoclave run, the output from the four sensors was used to control the autoclave temperature. Using the 'closed loop' sensor controlled autoclave temperature resulted in a more uniform and more rapid cure cycle.

  16. Reynolds-Averaged Navier-Stokes Analysis of Zero Efflux Flow Control over a Hump Model

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2006-01-01

    The unsteady flow over a hump model with zero efflux oscillatory flow control is modeled computationally using the unsteady Reynolds-averaged Navier-Stokes equations. Three different turbulence models produce similar results, and do a reasonably good job predicting the general character of the unsteady surface pressure coefficients during the forced cycle. However, the turbulent shear stresses are underpredicted in magnitude inside the separation bubble, and the computed results predict too large a (mean) separation bubble compared with experiment. These missed predictions are consistent with earlier steady-state results using no-flow-control and steady suction, from a 2004 CFD validation workshop for synthetic jets.

  17. Reynolds-Averaged Navier-Stokes Analysis of Zero Efflux Flow Control Over a Hump Model

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2006-01-01

    The unsteady flow over a hump model with zero efflux oscillatory flow control is modeled computationally using the unsteady Reynolds-averaged Navier-Stokes equations. Three different turbulence models produce similar results, and do a reasonably good job predicting the general character of the unsteady surface pressure coefficients during the forced cycle. However, the turbulent shear stresses are underpredicted in magnitude inside the separation bubble, and the computed results predict too large a (mean) separation bubble compared with experiment. These missed predictions are consistent with earlier steady-state results using no-flow-control and steady suction, from a 2004 CFD validation workshop for synthetic jets.

  18. Silicon oxide based high capacity anode materials for lithium ion batteries

    DOEpatents

    Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet

    2017-03-21

    Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.

  19. Anatase TiO2 as a Cheap and Sustainable Buffering Filler for Silicon Nanoparticles in Lithium-Ion Battery Anodes.

    PubMed

    Maroni, Fabio; Carbonari, Gilberto; Croce, Fausto; Tossici, Roberto; Nobili, Francesco

    2017-12-08

    The design of effective supporting matrices to efficiently cycle Si nanoparticles is often difficult to achieve and requires complex preparation strategies. In this work, we present a simple synthesis of low-cost and environmentally benign aAnatase TiO 2 nanoparticles as buffering filler for Si nanoparticles (Si@TiO 2 ). The average anatase TiO 2 crystallite size was approximately 5 nm. A complete structural, morphological, and electrochemical characterization was performed. Electrochemical test results show very good specific capacity values of up to 1000 mAh g -1 and cycling at several specific currents, ranging from 500 to 2000 mA g -1 , demonstrating a very good tolerance to high cycling rates. Postmortem morphological analysis shows very good electrode integrity after 100 cycles at 500 mA g -1 specific current. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [Clinical outcomes and economic analysis of two ovulation induction protocols in patients undergoing repeated IVF/ICSI cycles].

    PubMed

    Chen, Xiao; Geng, Ling; Li, Hong

    2014-04-01

    To compare the clinical outcomes and cost-effectiveness of luteal phase down-regulation with gonadotrophin-releasing hormone (GnRH) agonist protocol and GnRH antagonist protocol in patients undergoing repeated in vitro fertilization and intracytoplasmic sperm injection (IVF-ICSI) cycles. A retrospective analysis of clinical outcomes and costs was conducted among 198 patients undergoing repeated IVF-ICSI cycles, including 109 receiving luteal phase down-regulation with GnRH agonist protocol (group A) and 89 receiving GnRH antagonist protocol (group B). The numbers of oocytes retrieved and good embryos, clinical pregnancy rate, abortion rate, the live birth rate, mean total cost, and the cost-effective ratio were compared between the two groups. In patients undergoing repeated IVF-ICSI cycles, the two protocols produced no significant differences in the number of good embryos, clinical pregnancy rate, abortion rate, or twin pregnancy rate. Compared with group B, group A had better clinical outcomes though this difference was not statistically significant. The number of retrieved oocytes was significantly greater and live birth rate significantly higher in group A than in group B (9.13=4.98 vs 7.11=4.74, and 20.2% vs 9.0%, respectively). Compared with group B, group A had higher mean total cost per cycle but lower costs for each oocyte retrieved (2729.11 vs 3038.60 RMB yuan), each good embryo (8867.19 vs 9644.85 RMB yuan), each clinical pregnancy (77598.06 vs 96139.85 RMB yuan). For patients undergoing repeated IVF/ICSI cycle, luteal phase down-regulation with GnRH agonist protocol produces good clinical outcomes with also good cost-effectiveness in spite an unsatisfactory ovarian reserve.

  1. Low Cycle Fatigue Properties of Extruded Mg10GdxNd Alloys

    NASA Astrophysics Data System (ADS)

    Tober, Gerhard; Maier, Petra; Müller, Sören; Hort, Norbert

    The Rare Earth (RE) containing magnesium alloys Mg10Gd and Mg10Gd1Nd show after extrusion very good low cycle fatigue (LCF) properties. Considering extruded AZ31 as a possible benchmark alloy, life times as a function of LCF stress values are similar to the alloys investigated in this study. Mechanical properties determined in tension and compression show smaller values for both RE containing alloys. Therefore the LCF behavior is analyzed by the stress-strain hysteresis evaluation resulting in cyclic creep and plastic hardening or softening. LCF tests were strain controlled with amplitude of 0.5 % and 0.8 % at a frequency of 5Hz. The fracture surfaces are examined by SEM, where the area of crack propagation and overload were of main interest. Micrographs of longitudinal cross sections reveal twinning along the region of crack propagation. The correlation between the amount of twins and the number of cycles is discussed.

  2. Tapered US carbon emissions during good times: what's old, what's new?

    PubMed

    Eng, Yoke-Kee; Wong, Chin-Yoong

    2017-11-01

    In light of a slow buildup in CO 2 emissions since the recovery, this paper revisits the relationship between CO 2 emissions and the US economy using a nonlinear autoregressive distributed lag model, in which the determinants are identified through an expanded real business cycle model. We find convincing evidence that CO 2 emissions decline more rapidly during recessions than increase during expansions over the long run. Of all determinants considered, long-run asymmetry is fostered once vehicle miles traveled is controlled. This calls for a greater attention to public transportation development and vehicle miles traveled tax for slowing down stock buildup of CO 2 emissions during good times.

  3. The Science of Cycling

    ERIC Educational Resources Information Center

    Crompton, Zoe; Daniels, Shelley

    2014-01-01

    Children are engaged by finding out about science in the real world (Harlen, 2010). Many children will be cyclists or will have seen or heard about the success of British cyclists in the Olympics and the Tour de France. This makes cycling a good hook to draw children into learning science. It is also a good cross-curricular topic, with strong…

  4. Ovarian stimulation length, number of follicles higher than 17 mm and estradiol on the day of human chorionic gonadotropin administration are risk factors for multiple pregnancy in intrauterine insemination

    PubMed Central

    MELO, MARCO A.B.; SIMÓN, CARLOS; REMOHÍ, JOSÉ; PELLICER, ANTONIO; MESEGUER, MARCOS

    2007-01-01

    Aim:  The aim of the present study was to identify the risk factors, their prognostic value on multiple pregnancies (MP) prediction and their thresholds in women undergoing controlled ovarian hyperstimulation (COH) with follicle stimulating hormone (FSH) and intrauterine insemination (IUI). Methods:  A case‐control study was carried out by identifying in our database all the pregnancies reached by donor and conjugal IUI (DIUI and CIUI, respectively), and compared cycle features, patients’ characteristics and sperm analysis results between women achieving single pregnancy (SP) versus MP. The number of gestational sacs, follicular sizes and estradiol levels on the human chorionic gonadotropin (hCG) administration day, COH length and semen parameters were obtained from each cycle and compared. Student's t‐tests for mean comparisons, receiver–operator curve (ROC) analysis to determine the predictive value of each parameter on MP achievement and multiple regression analysis to determine single parameter influence were carried out. Results:  Women with MP in IUI stimulated cycles reached the adequate size of the dominant follicle (17 mm) significantly earlier than those achieving SP. Also, the mean follicles number, and estradiol levels on the hCG day were higher in the CIUI and DIUI MP group. Nevertheless, only ROC curve analysis revealed good prognostic value for estradiol and follicles higher than 17 mm. Multiple regression analysis confirmed these results. No feature of the basic sperm analysis, either in the ejaculate or in the prepared sample, was different or predictive of MP. When using donor sperm, different thresholds of follicle number, stimulation length and estradiol in the prediction of MP were noted, in comparison with CIUI. Conclusions:  MP in stimulated IUI cycles are closely associated to stimulation length, number of developed follicles higher than 17 mm on the day of hCG administration and estradiol levels. Also, estradiol has a good predictive value over MP in IUI stimulated cycles. The establishment of clinical thresholds will certainly help in the management of these couples to avoid undesired multiple pregnancies by canceling cycles or converting them into in vitro fertilization procedures. (Reprod Med Biol 2007; 6: 19–26) PMID:29699262

  5. Modelling the pelagic nitrogen cycle and vertical particle flux in the Norwegian sea

    NASA Astrophysics Data System (ADS)

    Haupt, Olaf J.; Wolf, Uli; v. Bodungen, Bodo

    1999-02-01

    A 1D Eulerian ecosystem model (BIological Ocean Model) for the Norwegian Sea was developed to investigate the dynamics of pelagic ecosystems. The BIOM combines six biochemical compartments and simulates the annual nitrogen cycle with specific focus on production, modification and sedimentation of particles in the water column. The external forcing and physical framework is based on a simulated annual cycle of global radiation and an annual mixed-layer cycle derived from field data. The vertical resolution of the model is given by an exponential grid with 200 depth layers, allowing specific parameterization of various sinking velocities, breakdown of particles and the remineralization processes. The aim of the numerical experiments is the simulation of ecosystem dynamics considering the specific biogeochemical properties of the Norwegian Sea, for example the life cycle of the dominant copepod Calanus finmarchicus. The results of the simulations were validated with field data. Model results are in good agreement with field data for the lower trophic levels of the food web. With increasing complexity of the organisms the differences increase between simulated processes and field data. Results of the numerical simulations suggest that BIOM is well adapted to investigate a physically controlled ecosystem. The simulation of grazing controlled pelagic ecosystems, like the Norwegian Sea, requires adaptations of parameterization to the specific ecosystem features. By using seasonally adaptation of the most sensible processes like utilization of light by phytoplankton and grazing by zooplankton results were greatly improved.

  6. Bikes, helmets, and public health: decision-making when goods collide.

    PubMed

    Bateman-House, Alison

    2014-06-01

    How ought public officials address policy choices that entail trade-offs between desirable public health goods? Increasing cycling improves public health both by promoting physical activity and by decreasing vehicle use, thus reducing vehicular emissions. Proponents of bicycle helmets argue that, used properly, they protect individual cyclists; however, there is concern that mandating helmet use may result in a decrease in cycling. In 2012, New York City Mayor Michael Bloomberg opposed a bicycle helmet mandate, concerned that it would have a negative impact on the city's cycling rate, which he had sought to increase. The mayor did not explain his rationale, leaving constituents unsure why he opposed the proposal. This case study underscores the challenge of creating public policy in the context of competing public health goods.

  7. Day 4 good morula embryo transfer provided compatible live birth rate with day 5 blastocyst embryo in fresh IVF/ET cycles.

    PubMed

    Li, Ryh-Sheng; Hwu, Yuh-Ming; Lee, Robert Kuo-Kuang; Li, Sheng-Hsiang; Lin, Ming-Huei

    2018-02-01

    Embryo transfers during cleavage stage (day 2 or day 3) and blastocyst stages (day 5 or day 6) are common in current daily practice in fresh IVF/ET cycles. Data regarding transferring day 4 embryos, morula/compact stage, is still restricted and the grading system is also inconsistent, as between IVF clinics. This study provided a new detailed classification system for morula/compact stage embryos and compared successes rates between day 4 and day 5 ET. This was a retrospective study. A review of medical records from January 1st, 2013, to December 31st 2015, performed for all conventional insemination and ICSI cycles with a GnRH-antagonist protocol at the Infertility Division of MacKay Memorial Hospital in Taipei City, Taiwan. There were 427 cycles included in our study, 107 in study group (day 4 MET) and 320 in control group (day 5 BET). Pregnancy rates and live birth rate were compatible, as between morula embryo transfer (MET) and blastocyst embryo transfer (BET). The implantation rate (36.3% vs. 39.6%, respectively, p = 0.500), clinical pregnancy rate (49.5% vs. 51.9%, respectively, p = 0.737), and live birth rate (42.1% vs. 45.6%, respectively, p = 0.574) were statistically insignificant between groups. The term birth rate was statistically higher in the MET group than in the BET group (95.7% vs. 79.5%, respectively, p = 0.006). When the clinical outcomes between day 4 good MET and day 5 good BET were compared, the results were compatible. The implantation rate (48.8% vs. 41.1%, respectively, p = 0.335), clinical pregnancy rate (55.0% vs. 53.2%, respectively, p = 0.867), and live birth rate (47.5% vs. 47.1%, respectively, p = 1.000) showed no significant difference. The term birth rate was also higher in day 4 good MET group than in day 5 good BET group (100% vs. 78.3%, respectively, p = 0.025). In this study, we performed day 4 MET avoid BET on Sunday. The grading system we provided was more detailed for embryo selection and it was easier to remember. Our data showed that morula embryo transfer might be a flexible, easier and applicable method for embryo transfer in daily routine. Copyright © 2018. Published by Elsevier B.V.

  8. Computer validation in toxicology: historical review for FDA and EPA good laboratory practice.

    PubMed

    Brodish, D L

    1998-01-01

    The application of computer validation principles to Good Laboratory Practice is a fairly recent phenomenon. As automated data collection systems have become more common in toxicology facilities, the U.S. Food and Drug Administration and the U.S. Environmental Protection Agency have begun to focus inspections in this area. This historical review documents the development of regulatory guidance on computer validation in toxicology over the past several decades. An overview of the components of a computer life cycle is presented, including the development of systems descriptions, validation plans, validation testing, system maintenance, SOPs, change control, security considerations, and system retirement. Examples are provided for implementation of computer validation principles on laboratory computer systems in a toxicology facility.

  9. Facile fabrication of plate-shaped hydrohausmannite as electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Liang, Jun; Chai, Yao; Li, Deli; Li, Meng; Lu, Jiaxue; Li, Li; Luo, Min

    2017-08-01

    A simple and one-step solvothermal synthesis method has been developed to prepare two-dimensional (2-D) hydrohausmannite ((Mn4-2xMnx)Mn8O16-x(OH)x) nanoplates with radial length of 300 nm and thickness of about 25 nm in a binary ethanediamine/water solvent system. The formation mechanism of hydrohausmannite is suggested. As an anode material for electrochemical capacitors, the plate-shaped hydrohausmannite not only displays a high specific capacity (215 at 0.1 A g-1) and good rate capability, but also shows good stable performance along with 94% specific capacity retained after 3000 cycle tests. The method can be easily controlled and expected to be applicable for the large-scale preparation of the 2-D hydrohausmannite.

  10. Methotrexate, Doxorubicin, and Cisplatin (MAP) Plus Maintenance Pegylated Interferon Alfa-2b Versus MAP Alone in Patients With Resectable High-Grade Osteosarcoma and Good Histologic Response to Preoperative MAP: First Results of the EURAMOS-1 Good Response Randomized Controlled Trial

    PubMed Central

    Bielack, Stefan S.; Smeland, Sigbjørn; Whelan, Jeremy S.; Marina, Neyssa; Jovic, Gordana; Hook, Jane M.; Krailo, Mark D.; Gebhardt, Mark; Pápai, Zsuzsanna; Meyer, James; Nadel, Helen; Randall, R. Lor; Deffenbaugh, Claudia; Nagarajan, Rajaram; Brennan, Bernadette; Letson, G. Douglas; Teot, Lisa A.; Goorin, Allen; Baumhoer, Daniel; Kager, Leo; Werner, Mathias; Lau, Ching C.; Sundby Hall, Kirsten; Gelderblom, Hans; Meyers, Paul; Gorlick, Richard; Windhager, Reinhard; Helmke, Knut; Eriksson, Mikael; Hoogerbrugge, Peter M.; Schomberg, Paula; Tunn, Per-Ulf; Kühne, Thomas; Jürgens, Heribert; van den Berg, Henk; Böhling, Tom; Picton, Susan; Renard, Marleen; Reichardt, Peter; Gerss, Joachim; Butterfass-Bahloul, Trude; Morris, Carol; Hogendoorn, Pancras C.W.; Seddon, Beatrice; Calaminus, Gabriele; Michelagnoli, Maria; Dhooge, Catharina; Sydes, Matthew R.; Bernstein, Mark

    2015-01-01

    Purpose EURAMOS-1, an international randomized controlled trial, investigated maintenance therapy with pegylated interferon alfa-2b (IFN-α-2b) in patients whose osteosarcoma showed good histologic response (good response) to induction chemotherapy. Patients and Methods At diagnosis, patients age ≤ 40 years with resectable high-grade osteosarcoma were registered. Eligibility after surgery for good response random assignment included ≥ two cycles of preoperative MAP (methotrexate, doxorubicin, and cisplatin), macroscopically complete surgery of primary tumor, < 10% viable tumor, and no disease progression. These patients were randomly assigned to four additional cycles MAP with or without IFN-α-2b (0.5 to 1.0 μg/kg per week subcutaneously, after chemotherapy until 2 years postregistration). Outcome measures were event-free survival (EFS; primary) and overall survival and toxicity (secondary). Results Good response was reported in 1,041 of 2,260 registered patients; 716 consented to random assignment (MAP, n = 359; MAP plus IFN-α-2b, n = 357), with baseline characteristics balanced by arm. A total of 271 of 357 started IFN-α-2b; 105 stopped early, and 38 continued to receive treatment at data freeze. Refusal and toxicity were the main reasons for never starting IFN-α-2b and for stopping prematurely, respectively. Median IFN-α-2b duration, if started, was 67 weeks. A total of 133 of 268 patients who started IFN-α-2b and provided toxicity information reported grade ≥ 3 toxicity during IFN-α-2b treatment. With median follow-up of 44 months, 3-year EFS for all 716 randomly assigned patients was 76% (95% CI, 72% to 79%); 174 EFS events were reported (MAP, n = 93; MAP plus IFN-α-2b, n = 81). Hazard ratio was 0.83 (95% CI, 0.61 to 1.12; P = .214) from an adjusted Cox model. Conclusion At the preplanned analysis time, MAP plus IFN-α-2b was not statistically different from MAP alone. A considerable proportion of patients never started IFN-α-2b or stopped prematurely. Long-term follow-up for events and survival continues. PMID:26033801

  11. High passive CEP stability from a few-cycle, tunable NOPA-DFG system for observation of CEP-effects in photoemission.

    PubMed

    Vogelsang, Jan; Robin, Jörg; Piglosiewicz, Björn; Manzoni, Cristian; Farinello, Paolo; Melzer, Stefan; Feru, Philippe; Cerullo, Giulio; Lienau, Christoph; Groß, Petra

    2014-10-20

    The investigation of fundamental mechanisms taking place on a femtosecond time scale is enabled by ultrafast pulsed laser sources. Here, the control of pulse duration, center wavelength, and especially the carrier-envelope phase has been shown to be of essential importance for coherent control of high harmonic generation and attosecond physics and, more recently, also for electron photoemission from metallic nanostructures. In this paper we demonstrate the realization of a source of 2-cycle laser pulses tunable between 1.2 and 2.1 μm, and with intrinsic CEP stability. The latter is guaranteed by difference frequency generation between the output pulse trains of two noncollinear optical parametric amplifier stages that share the same CEP variations. The CEP stability is better than 50 mrad over 20 minutes, when averaging over 100 pulses. We demonstrate the good CEP stability by measuring kinetic energy spectra of photoemitted electrons from a single metal nanostructure and by observing a clear variation of the electron yield with the CEP.

  12. Predictors of treatment failure in young patients undergoing in vitro fertilization.

    PubMed

    Jacobs, Marni B; Klonoff-Cohen, Hillary; Agarwal, Sanjay; Kritz-Silverstein, Donna; Lindsay, Suzanne; Garzo, V Gabriel

    2016-08-01

    The purpose of the study was to evaluate whether routinely collected clinical factors can predict in vitro fertilization (IVF) failure among young, "good prognosis" patients predominantly with secondary infertility who are less than 35 years of age. Using de-identified clinic records, 414 women <35 years undergoing their first autologous IVF cycle were identified. Logistic regression was used to identify patient-driven clinical factors routinely collected during fertility treatment that could be used to model predicted probability of cycle failure. One hundred ninety-seven patients with both primary and secondary infertility had a failed IVF cycle, and 217 with secondary infertility had a successful live birth. None of the women with primary infertility had a successful live birth. The significant predictors for IVF cycle failure among young patients were fewer previous live births, history of biochemical pregnancies or spontaneous abortions, lower baseline antral follicle count, higher total gonadotropin dose, unknown infertility diagnosis, and lack of at least one fair to good quality embryo. The full model showed good predictive value (c = 0.885) for estimating risk of cycle failure; at ≥80 % predicted probability of failure, sensitivity = 55.4 %, specificity = 97.5 %, positive predictive value = 95.4 %, and negative predictive value = 69.8 %. If this predictive model is validated in future studies, it could be beneficial for predicting IVF failure in good prognosis women under the age of 35 years.

  13. Number size distribution of particulate emissions of heavy-duty engines in real world test cycles

    NASA Astrophysics Data System (ADS)

    Lehmann, Urs; Mohr, Martin; Schweizer, Thomas; Rütter, Josef

    Five in-service engines in heavy-duty trucks complying with Euro II emission standards were measured on a dynamic engine test bench at EMPA. The particulate matter (PM) emissions of these engines were investigated by number and mass measurements. The mass of the total PM was evaluated using the standard gravimetric measurement method, the total number concentration and the number size distribution were measured by a Condensation Particle Counter (lower particle size cut-off: 7 nm) and an Electrical Low Pressure Impactor (lower particle size: 32 nm), respectively. The transient test cycles used represent either driving behaviour on the road (real-world test cycles) or a type approval procedure. They are characterised by the cycle power, the average cycle power and by a parameter for the cycle dynamics. In addition, the particle number size distribution was determined at two steady-state operating modes of the engine using a Scanning Mobility Particle Sizer. For quality control, each measurement was repeated at least three times under controlled conditions. It was found that the number size distributions as well as the total number concentration of emitted particles could be measured with a good repeatability. Total number concentration was between 9×10 11 and 1×10 13 particles/s (3×10 13-7×10 14 p/kWh) and mass concentration was between 0.09 and 0.48 g/kWh. For all transient cycles, the number mean diameter of the distributions lay typically at about 120 nm for aerodynamic particle diameter and did not vary significantly. In general, the various particle measurement devices used reveal the same trends in particle emissions. We looked at the correlation between specific gravimetric mass emission (PM) and total particle number concentration. The correlation tends to be influenced more by the different engines than by the test cycles.

  14. Controlled functionalization of carbonaceous fibers for asymmetric solid-state micro-supercapacitors with high volumetric energy density.

    PubMed

    Yu, Dingshan; Goh, Kunli; Zhang, Qiang; Wei, Li; Wang, Hong; Jiang, Wenchao; Chen, Yuan

    2014-10-22

    A 1.8 V asymmetric solid-state flexible micro-supercapacitor is designed with one MnO2 -coated reduced graphene oxide/single-walled carbon nanotube (rGO/SWCNT) composite fiber as positive electrode and one nitrogen-doped rGO/SWCNT fiber as negative electrode, which demonstrates ultrahigh volumetric energy density, comparable to some thin-film lithium batteries, along with high power density, long cycle life, and good flexibility. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Food and Drug Administration regulation and evaluation of vaccines.

    PubMed

    Marshall, Valerie; Baylor, Norman W

    2011-05-01

    The vaccine-approval process in the United States is regulated by the Center for Biologics Evaluation and Research of the US Food and Drug Administration. Throughout the life cycle of development, from preclinical studies to after licensure, vaccines are subject to rigorous testing and oversight. Manufacturers must adhere to good manufacturing practices and control procedures to ensure the quality of vaccines. As mandated by Title 21 of the Code of Regulations, licensed vaccines must meet stringent criteria for safety, efficacy, and potency.

  16. Controllable synthesis of nitrogen-doped hollow mesoporous carbon spheres using ionic liquids as template for supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Aibing; Li, Yunqian; Liu, Lei; Yu, Yifeng; Xia, Kechan; Wang, Yuying; Li, Shuhui

    2017-01-01

    We have demonstrated a facile and controllable synthesis of monodispersed nitrogen-doped hollow mesoporous carbon spheres (N-HMCSs) using resorcinol/formaldehyde resin as a carbon precursor, tetraethyl orthosilicate as a structure-assistant agent, ionic liquids (ILs) as soft template, partial carbon sources, and nitrogen sources. The sizes and the architectures including hollow and yolk-shell of resultant carbon spheres can be efficiently controlled through the adjustment of the content of ILs. Alkyl chain length of the ILs also has an important effect on the formation of N-HMCSs. With proper alkyl chain length and content of ILs, the resultant N-HMCSs show monodispersed hollow spheres with high surface areas (up to 1158 m2 g-1), large pore volumes (up to 1.70 cm3 g-1), and uniform mesopore size (5.0 nm). Combining the hollow mesoporous structure, high porosity, large surface area, and nitrogen functionality, the as-synthesized N-HMCSs have good supercapacitor performance with good capacitance (up to 159 F g-1) and favorable capacitance retention (88% capacitive retention after 5000 cycles).

  17. Antibiotic Cycling and Antibiotic Mixing: Which One Best Mitigates Antibiotic Resistance?

    PubMed Central

    Peña-Miller, Rafael; Gori, Fabio; Iredell, Jonathan

    2017-01-01

    Abstract Can we exploit our burgeoning understanding of molecular evolution to slow the progress of drug resistance? One role of an infection clinician is exactly that: to foresee trajectories to resistance during antibiotic treatment and to hinder that evolutionary course. But can this be done at a hospital-wide scale? Clinicians and theoreticians tried to when they proposed two conflicting behavioral strategies that are expected to curb resistance evolution in the clinic, these are known as “antibiotic cycling” and “antibiotic mixing.” However, the accumulated data from clinical trials, now approaching 4 million patient days of treatment, is too variable for cycling or mixing to be deemed successful. The former implements the restriction and prioritization of different antibiotics at different times in hospitals in a manner said to “cycle” between them. In antibiotic mixing, appropriate antibiotics are allocated to patients but randomly. Mixing results in no correlation, in time or across patients, in the drugs used for treatment which is why theorists saw this as an optimal behavioral strategy. So while cycling and mixing were proposed as ways of controlling evolution, we show there is good reason why clinical datasets cannot choose between them: by re-examining the theoretical literature we show prior support for the theoretical optimality of mixing was misplaced. Our analysis is consistent with a pattern emerging in data: neither cycling or mixing is a priori better than the other at mitigating selection for antibiotic resistance in the clinic. Key words: antibiotic cycling, antibiotic mixing, optimal control, stochastic models. PMID:28096304

  18. Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Gu, Meng; Xiao, Xing-Cheng; Liu, Gao; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Ji-Guang; Liu, Jun; Browning, Nigel D.; Wang, Chong-Min

    2014-01-01

    Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact.

  19. Turbulent boundary layer under the control of different schemes

    NASA Astrophysics Data System (ADS)

    Qiao, Z. X.; Zhou, Y.; Wu, Z.

    2017-06-01

    This work explores experimentally the control of a turbulent boundary layer over a flat plate based on wall perturbation generated by piezo-ceramic actuators. Different schemes are investigated, including the feed-forward, the feedback, and the combined feed-forward and feedback strategies, with a view to suppressing the near-wall high-speed events and hence reducing skin friction drag. While the strategies may achieve a local maximum drag reduction slightly less than their counterpart of the open-loop control, the corresponding duty cycles are substantially reduced when compared with that of the open-loop control. The results suggest a good potential to cut down the input energy under these control strategies. The fluctuating velocity, spectra, Taylor microscale and mean energy dissipation are measured across the boundary layer with and without control and, based on the measurements, the flow mechanism behind the control is proposed.

  20. Turbulent boundary layer under the control of different schemes.

    PubMed

    Qiao, Z X; Zhou, Y; Wu, Z

    2017-06-01

    This work explores experimentally the control of a turbulent boundary layer over a flat plate based on wall perturbation generated by piezo-ceramic actuators. Different schemes are investigated, including the feed-forward, the feedback, and the combined feed-forward and feedback strategies, with a view to suppressing the near-wall high-speed events and hence reducing skin friction drag. While the strategies may achieve a local maximum drag reduction slightly less than their counterpart of the open-loop control, the corresponding duty cycles are substantially reduced when compared with that of the open-loop control. The results suggest a good potential to cut down the input energy under these control strategies. The fluctuating velocity, spectra, Taylor microscale and mean energy dissipation are measured across the boundary layer with and without control and, based on the measurements, the flow mechanism behind the control is proposed.

  1. Turbulent boundary layer under the control of different schemes

    PubMed Central

    Zhou, Y.; Wu, Z.

    2017-01-01

    This work explores experimentally the control of a turbulent boundary layer over a flat plate based on wall perturbation generated by piezo-ceramic actuators. Different schemes are investigated, including the feed-forward, the feedback, and the combined feed-forward and feedback strategies, with a view to suppressing the near-wall high-speed events and hence reducing skin friction drag. While the strategies may achieve a local maximum drag reduction slightly less than their counterpart of the open-loop control, the corresponding duty cycles are substantially reduced when compared with that of the open-loop control. The results suggest a good potential to cut down the input energy under these control strategies. The fluctuating velocity, spectra, Taylor microscale and mean energy dissipation are measured across the boundary layer with and without control and, based on the measurements, the flow mechanism behind the control is proposed. PMID:28690409

  2. Serum bioactive and immunoreactive luteinizing hormone and follicle-stimulating hormone levels in women with cycle abnormalities, with or without polycystic ovarian disease.

    PubMed

    Fauser, B C; Pache, T D; Lamberts, S W; Hop, W C; de Jong, F H; Dahl, K D

    1991-10-01

    Serum steroid, gonadotropin, and alpha-subunit levels were assessed in 35 women with cycle abnormalities [11 with and 24 without polycystic ovarian disease (PCOD) according to strict clinical and biochemical criteria] and 8 regularly cycling women in the early (cycle day 3 or 4) and mid (cycle day 7 or 8) follicular phase. LH and FSH levels were estimated using two immunological techniques [RIA and immunoradiometric assay (IRMA)] and in vitro bioassays (BIO), using mouse Leydig cells and rat granulosa cells, respectively. In PCOD patients mean alpha-subunit, free androgen index [FAI; testosterone x 100/sex hormone-binding globulin (SHBG)], androstenedione, estrone, and estradiol (E2) were significantly elevated compared to levels in the early follicular phase of control cycles and non-PCOD patients. In addition, in PCOD patients mean IRMA-LH and RIA-LH levels were distinctly increased (2.8- to 3.6 fold, respectively; both comparisons, P less than 0.001) compared to control values, but in the same order of magnitude (1.3- to 1.4-fold increments) as that in non-PCOD patients. However, the median BIO-LH level in PCOD patients was 5.9-fold higher than that in non-PCOD patients and 4.0-fold higher than the BIO-LH in the early follicular phase of control women. Consequently, the median BIO/IRMA-LH ratio was 4.8-fold higher in PCOD patients compared to non-PCOD patients. In women with cycle abnormalities, individual BIO/IRMA-LH ratios correlated with BIO-LH (rs = 0.48), FAI (rs = 0.39), free estrogens (E2/SHBG ratios; rs = 0 0.47), and dehydroepiandrosterone sulfate (rs = 0.60) concentrations. Mean IRMA-, RIA-, and BIO-FSH levels and BIO/IRMA-FSH ratios were not significantly different when various groups were compared. Although RIA- and IRMA-LH levels showed good correlation (rs = 0.88), RIA-LH levels were consistently higher, resulting in distinctly higher RIA-LH/FSH ratios (mean, 4.5) compared to IRMA-LH/FSH ratios (median, 1.8) in PCOD patients.(ABSTRACT TRUNCATED AT 400 WORDS)

  3. [Efficacy and safety of drospirenone-ethinylestradiol on contraception in healthy Chinese women: a multicenter randomized controlled trial].

    PubMed

    Fan, Guang-sheng; Bian, Mei-lu; Cheng, Li-nan; Cao, Xiao-ming; Huang, Zi-rong; Han, Zi-yan; Jing, Xiao-ping; Li, Jian; Wu, Shu-ying; Xiong, Cheng-liang; Xiong, Zheng-ai; Yue, Tian-fu

    2009-01-01

    To evaluate the contraception efficacy, mode of bleeding, side effects and other positive effects of drospirenone-ethinylestradiol (Yasmin) in healthy Chinese women. This was a multicenter, randomized, control study of 768 healthy Chinese women who consulted about contraception. The subjects were randomized into Yasmin group (30 microg ethinylestradiol plus 3 mg drospirenone, 573 cases) or desogestrel group (30 microg ethinylestradiol plus 150 microg desogestrel, 195 cases) with the ratio of 3:1. Each individual was treated for 13 cycles. Further visits were required at cycle 4, cycle 7, cycle 10 and cycle 13 of treatment Weight, height, body mass index were evaluated at each visit. The menstrual distress questionnaire (MDQ) was given to the women at baseline, visit 3 (cycle 7) and visit 5 (after cycle 13). The values of basal features were similar between two groups (P > 0.05). The Pearl index (method failure) of Yasmin was 0. 208/hundred women year which was lower than that of desogestrel (0. 601/hundred women year). The mode of bleeding was similar between two groups after trial without showing any significant difference. According to MDQ subscale, the improvement of water retention and increasing appetite during inter-menstrual period and water retention and general well-being during menstrual period in the Yasmin group (-0.297, -0.057, 0.033, 0.150 respectively) was more obvious than that in the desogestrel group (-0.108, 0.023, 0.231, -0.023 respectively) with a significant difference (P < 0.05). Some other values which improved in both two groups, especially the improvement of breast tenderness and pain and skin abnormality in Yasmin group (18.0%, 89/494; 12.6%, 62/494) was more distinct than that in desogestrel group (11.3%, 19/168; 5.4%, 9/168). The mean weight increased in desogestrel group (0.57 kg) while it decreased in Yasmin group (-0.28 kg) with a significant difference (P < 0.01). Both Yasmin and desogestrel have good efficacy on contraception and similar modes of menstrual bleeding. Yasmin is better than desogestrel in terms of weight control and premenstrual syndrome of oral contraceptive.

  4. Dealing with Emergy Algebra in the Life Cycle Assessment Framework

    EPA Science Inventory

    The Life Cycle Inventory (LCI) represents one of the four steps of the Life Cycle Assessment (LCA) methodology, which is a standardized procedure (ISO 14040:2006) to estimate the environmental impacts generated by the production, use and disposal of goods and services. In this co...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alekseev, A.A.

    The article examines exchange rate modeling for two cases: (a) when the trading partners have mutual interests and (b) when the trading partners have antogonistic interests. Exchange rates in world markets are determined by supply and demand for the currency of each state, and states may control the exchange rate of their currency by changing the interest rate, the volume of credit, and product prices in both domestic and export markets. Abstracting from issues of production and technology in different countries and also ignoring various trade, institutional, and other barriers, we consider in this article only the effect of exportmore » and import prices on the exchange rate, we propose a new criterion of external trade activity: each trading partner earns a profit which is proportional to the volume of benefits enjoyed by the other partner. We consider a trading cycle that consists of four stages: (a) purchase of goods in the domestic market with the object of selling them abroad; (b) sale of the goods in foreign markets; (c) purchase of goods abroad with the object of selling them in the domestic market; (d) sale of the goods domestically.« less

  6. Clomiphene citrate versus letrozole with gonadotropins in intrauterine insemination cycles: A randomized trial.

    PubMed

    Pourali, Leila; Ayati, Sedigheh; Tavakolizadeh, Shirin; Soleimani, Hourieh; Teimouri Sani, Fatemeh

    2017-01-01

    Clomiphene citrate is one of the effective drugs for infertility treatment due to oligo-ovulation or anovulation. Intrauterine insemination (IUI) is one of more adherent methods for treatment of infertile cases which is followed by controlled ovarian hyperstimulation (COH). the aim of this study was to evaluate Clomiphene citrate versus letrozole with gonadotropins in IUI cycles. In this prospective randomized trial, 180 infertile women who were referred to Milad Hospital were selected. The first group received 5 mg/day letrozole on day 3-7 of menstrual cycle. The second group received 100 mg/day Clomiphene in the same way as letrozole. In both groups, human menopausal gonadotropin was administered every day starting on day between 6-8 of cycle. Ovulation was triggered with urinary Human Chorionic Gonadotropin (5000 IU) when have two follicles of ≥16 mm. IUI was performed 36 hr later. The number of matured follicles, cycle cancellation, and abortion were the same in both groups. Endometrial thickness was higher at the time of human menopausal gonadotropin administration in letrozole group. Chemical and clinical pregnancy rates were much higher in letrozole group. Ovarian hyperstimulation was significantly higher in clomiphene group. Letrozole appears to be a good alternative to clomiphene citrate with fewer side effects.

  7. Real-time, adaptive machine learning for non-stationary, near chaotic gasoline engine combustion time series.

    PubMed

    Vaughan, Adam; Bohac, Stanislav V

    2015-10-01

    Fuel efficient Homogeneous Charge Compression Ignition (HCCI) engine combustion timing predictions must contend with non-linear chemistry, non-linear physics, period doubling bifurcation(s), turbulent mixing, model parameters that can drift day-to-day, and air-fuel mixture state information that cannot typically be resolved on a cycle-to-cycle basis, especially during transients. In previous work, an abstract cycle-to-cycle mapping function coupled with ϵ-Support Vector Regression was shown to predict experimentally observed cycle-to-cycle combustion timing over a wide range of engine conditions, despite some of the aforementioned difficulties. The main limitation of the previous approach was that a partially acasual randomly sampled training dataset was used to train proof of concept offline predictions. The objective of this paper is to address this limitation by proposing a new online adaptive Extreme Learning Machine (ELM) extension named Weighted Ring-ELM. This extension enables fully causal combustion timing predictions at randomly chosen engine set points, and is shown to achieve results that are as good as or better than the previous offline method. The broader objective of this approach is to enable a new class of real-time model predictive control strategies for high variability HCCI and, ultimately, to bring HCCI's low engine-out NOx and reduced CO2 emissions to production engines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Outcome of gestational surrogacy according to IVF protocol.

    PubMed

    Machtinger, Ronit; Duvdevani, Nir-Ram; Lebovitz, Oshrit; Dor, Jehoshua; Hourvitz, Ariel; Orvieto, Raoul

    2017-04-01

    Surrogacy remains the only option for having a biologic child for a unique population of women with severe medical conditions. However, no study has looked at surrogacy outcome as a result of the type of ovarian stimulation of the intended mother [controlled ovarian stimulation (COH), modified natural cycle (MNC), and in vitro maturation (IVM)] for oocyte retrieval. This is a retrospective study, including all intended mothers and gestational carriers in a tertiary, university affiliated, medical center, from 1998 to 2016. Fifty-two women underwent 252 oocyte retrieval cycles. The pregnancy outcome of 212 embryo transfer cycles (64 gestational carriers) was reviewed according to the origin of the embryo. The number of retrieved oocytes was significantly higher following COH (n = 132) compared with IVM (n = 58) and MNC cycles (n = 62) (p = 0.013 and p < 0.0001, respectively). Pregnancy rates for embryos transferred according to each protocol were similar. All pregnancies that ended in live births when oocytes from IVM cycles were used derived from transfers of retrieved mature and mixed mature and immature oocytes. Pregnancies that involved embryos derived solely from immature oocytes that further matured in vitro and were transferred to gestational carriers were unsuccessful. MNC protocol is a good option to achieve pregnancy for intended mothers using gestational surrogacy who have contraindications to COH. The yield of IVM cycles in which immature oocytes are retrieved is inconclusive.

  9. Cumulative sum control charts for assessing performance in arterial surgery.

    PubMed

    Beiles, C Barry; Morton, Anthony P

    2004-03-01

    The Melbourne Vascular Surgical Association (Melbourne, Australia) undertakes surveillance of mortality following aortic aneurysm surgery, patency at discharge following infrainguinal bypass and stroke and death following carotid endarterectomy. Quality improvement protocol employing the Deming cycle requires that the system for performing surgery first be analysed and optimized. Then process and outcome data are collected and these data require careful analysis. There must be a mechanism so that the causes of unsatisfactory outcomes can be determined and a good feedback mechanism must exist so that good performance is acknowledged and unsatisfactory performance corrected. A simple method for analysing these data that detects changes in average outcome rates is available using cumulative sum statistical control charts. Data have been analysed both retrospectively from 1999 to 2001, and prospectively during 2002 using cumulative sum control methods. A pathway to deal with control chart signals has been developed. The standard of arterial surgery in Victoria, Australia, is high. In one case a safe and satisfactory outcome was achieved by following the pathway developed by the audit committee. Cumulative sum control charts are a simple and effective tool for the identification of variations in performance standards in arterial surgery. The establishment of a pathway to manage problem performance is a vital part of audit activity.

  10. Mesoporous carbon spheres with controlled porosity for high-performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dexian; Fu, Aiping; Li, Hongliang; Wang, Yiqian; Guo, Peizhi; Liu, Jingquan; Zhao, Xiu Song

    2015-07-01

    Mesoporous carbon (MC) spheres with hierarchical pores, controlled pore volume and high specific surface areas have been prepared by a mass-producible spray drying assisted template method using sodium alginate as carbon precursor and commercial colloidal silica particles as hard template. The resulting MC spheres, possessing hierarchical pores in the range of 3-30 nm, are employed as conductive matrices for the preparation of cathode materials for lithium-sulfur batteries. A high pressure induced one-step impregnation of elemental sulfur into the pore of the MC spheres has been exploited. The electrochemical performances of sulfur-impregnated MC spheres (S-MC) derived from MC spheres with different pore volume and specific surface area but with the same sulfur loading ratio of 60 wt% (S-MC-X-60) have been investigated in details. The S-MC-4-60 composite cathode material displayed a high initial discharge capacity of 1388 mAhg-1 and a good cycling stability of 857 mAhg-1 after 100 cycles at 0.2C, and shows also excellent rate capability of 864 mAhg-1 at 2C. More importantly, the sulfur loading content in MC-4 spheres can reach as high as 80%, and it still can deliver a capacity of 569 mAhg-1 after 100 cycles at 0.2C.

  11. Effect of tetracalcium phosphate/monetite toothpaste on dentin remineralization and tubule occlusion in vitro.

    PubMed

    Medvecky, L; Stulajterova, R; Giretova, M; Mincik, J; Vojtko, M; Balko, J; Briancin, J

    2018-03-01

    To investigate the tubule occlusion and remineralization potential of a novel toothpaste with active tetracalcium phosphate/monetite mixtures under de/remineralization cycling. Dentin de/remineralization cycling protocol consisted of demineralization in 1% citric acid at pH 4.6 with following remineralization with toothpastes and soaking in artificial saliva. Effectiveness of toothpastes to promote remineralization was evaluated by measurement of microhardness recovery, analysis of surface roughness, thickness of coating and scanning electron microscopy. The novel tetracalcium phosphate/monetite dentifrice had comparable remineralization potential as commercial calcium silicate/phosphate (SENSODYNE ® ) and magnesium aluminum silicate (Colgate ® ) toothpastes and significantly higher than control saliva (p<0.02). Surface roughness was significantly lower after treatment with prepared and SENSODYNE ® dentifirice (p<0.05). The coatings on dentin surfaces was significantly thicker after applying toothpastes as compared to negative control (p<0.001). The new fluoride toothpaste formulation with bioactive tetracalcium phosphate/monetite calcium phosphate mixture effectively occluded dentin tubules and showed good dentin remineralization potential under de/remineralization cycling. It could replace professional powder preparation based on this mixture. It was demonstrated that prepared dentifrice had comparable properties with commercial fluoride calcium silicate/phosphate or magnesium aluminum silicate dentifrices. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Polar Chromospheric Signatures of the Subdued Cycle 23/24 Solar Minimum

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Yashiro, S.; Makela, P.; Shibasaki, K.; Hathaway, D.

    2010-01-01

    Coronal holes appear brighter than the quiet Sun in microwave images, with a brightness enhancement of 500 to 2000 K. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is about 10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radioheliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approximately 250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes.

  13. CYCD3 D-type cyclins regulate cambial cell proliferation and secondary growth in Arabidopsis

    PubMed Central

    Collins, Carl; Maruthi, N. M.; Jahn, Courtney E.

    2015-01-01

    A major proportion of plant biomass is derived from the activity of the cambium, a lateral meristem responsible for vascular tissue formation and radial organ enlargement in a process termed secondary growth. In contrast to our relatively good understanding of the regulation of primary meristems, remarkably little is known concerning the mechanisms controlling secondary growth, particularly how cambial cell divisions are regulated and integrated with vascular differentiation. A genetic loss-of-function approach was used here to reveal a rate-limiting role for the Arabidopsis CYCLIN D3 (CYCD3) subgroup of cell-cycle genes in the control of cambial cell proliferation and secondary growth, providing conclusive evidence of a direct link between the cell cycle and vascular development. It is shown that all three CYCD3 genes are specifically expressed in the cambium throughout vascular development. Analysis of a triple loss-of-function CYCD3 mutant revealed a requirement for CYCD3 in promoting the cambial cell cycle since mutant stems and hypocotyls showed a marked reduction in diameter linked to reduced mitotic activity in the cambium. Conversely, loss of CYCD3 provoked an increase in xylem cell size and the expression of differentiation markers, showing that CYCD3 is required to restrain the differentiation of xylem precursor cells. Together, our data show that tight control of cambial cell division through developmental- and cell type-specific regulation of CYCD3 is required for normal vascular development, constituting part of a novel mechanism controlling organ growth in higher plants. PMID:26022252

  14. Building Information Management as a Tool for Managing Knowledge throughout whole Building Life Cycle

    NASA Astrophysics Data System (ADS)

    Nývlt, Vladimír; Prušková, Kristýna

    2017-10-01

    BIM today is much more than drafting in 3D only, and project participants are further challenging, what is the topic of both this paper, and further research. Knowledge of objects, their behaviour, and other characteristics has high impact on whole building life cycle. Other structured and unstructured knowledge is rightfully added (e.g. historically based experience, needs and requirements of users, investors, needs for project and objects revisions) Grasping of all attributes into system for collection, managing and time control of knowledge. Further important findings lie in the necessity of understanding how to manage knowledge needs with diverse and variable ways, when BIM maturity levels are advanced, as defined by Bew and Richards (2008). All decisions made would always rely on good, timely, and correct data. Usage of BIM models in terms of Building Information Management can support all decisions through data gathering, sharing, and using across all disciplines and all Life Cycle steps. It particularly significantly improves possibilities and level of life cycle costing. Experience and knowledge stored in data models of BIM, describing user requirements, best practices derived from other projects and/or research outputs will help to understand sustainability in its complexity and wholeness.

  15. Microfluidic generation of aqueous two-phase system (ATPS) droplets by controlled pulsating inlet pressures.

    PubMed

    Moon, Byeong-Ui; Jones, Steven G; Hwang, Dae Kun; Tsai, Scott S H

    2015-06-07

    We present a technique that generates droplets using ultralow interfacial tension aqueous two-phase systems (ATPS). Our method combines a classical microfluidic flow focusing geometry with precisely controlled pulsating inlet pressure, to form monodisperse ATPS droplets. The dextran (DEX) disperse phase enters through the central inlet with variable on-off pressure cycles controlled by a pneumatic solenoid valve. The continuous phase polyethylene glycol (PEG) solution enters the flow focusing junction through the cross channels at a fixed flow rate. The on-off cycles of the applied pressure, combined with the fixed flow rate cross flow, make it possible for the ATPS jet to break up into droplets. We observe different droplet formation regimes with changes in the applied pressure magnitude and timing, and the continuous phase flow rate. We also develop a scaling model to predict the size of the generated droplets, and the experimental results show a good quantitative agreement with our scaling model. Additionally, we demonstrate the potential for scaling-up of the droplet production rate, with a simultaneous two-droplet generating geometry. We anticipate that this simple and precise approach to making ATPS droplets will find utility in biological applications where the all-biocompatibility of ATPS is desirable.

  16. A case-control pilot study of low-intensity IVF in good-prognosis patients.

    PubMed

    Gleicher, Norbert; Weghofer, Andrea; Barad, David H

    2012-04-01

    Low-intensity IVF (LI-IVF) is rapidly gaining in popularity. Yet studies comparing LI-IVF to standard IVF are lacking. This is a case-control pilot study, reporting on 14 first LI-IVF and 14 standard IVF cycles in women with normal age-specific ovarian reserve under age 38, matched for age, laboratory environment, staff and time of cycle. LI-IVF cycles underwent mild ovarian stimulation, utilizing clomiphene citrate, augmented by low-dose gonadotrophin stimulation. Control patients underwent routine ovarian stimulation. LI-IVF and regular IVF patients were similar in age, body mass index, FSH and anti-Müllerian hormone. Standard IVF utilized more gonadotrophins (P<0.001), yielded more oocytes (P<0.001) and cryopreserved more embryos (P<0.001). With similar embryo numbers transferred, after ethnicity adjustments, standard IVF demonstrated better odds for pregnancy (OR 7.07; P=0.046) and higher cumulative pregnancy rates (63.3% versus 21.4%; OR 6.6; P=0.02). Adjustments for age, ethnicity and diagnosis maintained significance but oocyte adjustment did not. Cost assessments failed to reveal differences between LI-IVF and standard IVF. In this small study, LI-IVF reduced pregnancy chances without demonstrating cost advantages, raising questions about its utility. In the absence of established clinical and/or economic foundations, LI-IVF should be considered an experimental procedure. Low-intensity IVF (LI-IVF) is increasingly propagated as an alternative to standard IVF. LI-IVF has, however, never been properly assessed in comparison to standard IVF. Such a comparison is presented in the format of a small pilot study, matching LI-IVF cycles with regular IVF cycles and comparing outcomes as well as costs. The study suggests that LI-IVF, at least in this setting, is clinically inferior and economically at best similar to standard IVF. LI-IVF should, therefore, as of this point not be offered as routine IVF treatment but only as an experimental procedure. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  17. Magnetic Pd nanocatalyst Fe3O4@Pd for C-C bond formation and hydrogenation reactions

    NASA Astrophysics Data System (ADS)

    Biglione, Catalina; Cappelletti, Ariel L.; Strumia, Miriam C.; Martín, Sandra E.; Uberman, Paula M.

    2018-05-01

    Small core-shell Fe3O4@Pd superparamagnetic nanoparticles (MNPs) were obtained with good control in size and shape distribution by metal-complex thermal decomposition in organic media. The role of the stabilizer in the synthesis of MNPs was studied, employing oleylamine (OA), triphenylphosphine (TPP) and triphenylamine (TPA). The results revealed that, among the stabilizer investigated, the presence of oleylamine in the reaction media is crucial in order to obtain an uniform shell of Pd(0) in Fe3O4@Pd MNPs of 7 ± 1 nm. The synthesized core-shell MNPs were tested in Pd-catalyzed Heck-Mizoroki and Suzuki-Miyaura coupling reactions and p-chloronitrobenzene hydrogenation. High conversion, good reaction yields, and good TOF values were achieved in the three reaction systems with this nanocatalyst. The core-shell nanoparticle was easily recovered by a simple magnetic separation using a neodymium commercial magnet, which allowed performing up to four cycles of reuse. [Figure not available: see fulltext.

  18. A proficiency testing program of hemoglobin analysis in prevention and control of severe hemoglobinopathies in Thailand.

    PubMed

    Karnpean, Rossarin; Fucharoen, Goonnapa; Pansuwan, Anupong; Changtrakul, Duangrudee; Fucharoen, Supan

    2013-06-01

    No external quality assessment program for hemoglobin (Hb) analysis in the prevention and control of thalassemia has been established in Thailand. To improve the first line provisional diagnostics, the first proficiency testing (PT) program has been established. External Hb controls prepared at our center were sent to Hb analysis laboratories all over the country. Three cycles per year were performed in 2010 and 2011. In each cycle, two control samples with corresponding hematological parameters, designated as husband and his pregnant wife were supplied for Hb analysis. Each member analyzed the control samples in their routine practices. The results of Hb analysis, laboratory interpretation and risk assessment of the expected fetus for severe thalassemia diseases targeted for prevention and control were entered into the report form and sent back to our center. Participants reports were analyzed and classified into four different quality groups; Excellent (when all the three parameters are correct), Good (correct Hb analysis and interpretation but incorrect risk assessment), Fair (correct Hb analysis but incorrect interpretation and risk assessment) and Needs improvement (incorrect Hb analysis). It was found that most participants could report correct Hb types and quantifications but some misinterpretations and risk assessments were noted. These were clearly seen when control samples with more complexity were supplied. These results indicate a further improvement is required in the laboratory interpretation and knowledge of the laboratory diagnosis of thalassemia. The established system should facilitate the prevention and control program of thalassemia in the region.

  19. Zinc naphthalenedicarboxylate coordination complex: A promising anode material for lithium and sodium-ion batteries with good cycling stability.

    PubMed

    Fei, Hailong; Feng, Wenjing; Xu, Tan

    2017-02-15

    It is important to discover new, cheap and environmental friendly electrode materials with high capacity and good cycling stability for lithium and sodium-ion batteries. Zinc 1,4-naphthalenedicarboxylate was firstly found to be stable anode materials for lithium and sodium-ion batteries. The discharge capacity can be up to 468.9mAhg -1 after 100 cycles at a current density of 100mAg -1 for lithium-ion batteries, while the second discharge capacity of 320.7mAhg -1 was achieved as anode materials for sodium-ion batteries. A possible electrochemical reaction mechanism was discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. "It's Good to Have Wheels!" Perceptions of Cycling among Homeless Young People in Sydney, Australia

    ERIC Educational Resources Information Center

    Crawford, Belinda; Rissel, Chris; Yamazaki, Rowena; Franke, Elise; Amanatidis, Sue; Ravulo, Jioji; Bindon, Jenni; Torvaldsen, Siranda

    2012-01-01

    Participation in sporting or recreational programs can be unattainable for many disadvantaged young people. Encouraging regular cycling is an important public health strategy to increase participation in physical activity and expand personal transport options for marginalised youth. Perceptions and attitudes toward cycling were explored in eight…

  1. Shape control VO2 nanorods prepared by soft chemistry and electrochemical method

    NASA Astrophysics Data System (ADS)

    Simo, A.; Sibanyoni, J.; Fuku, X.; Numan, N.; Omorogbe, S.; Maaza, M.

    2018-07-01

    "Bottom up" approach is of primary interest for chemistry and materials science because the fundamental building blocks are atoms. Thus colloidal chemical synthetic methods can be utilized to prepare uniform nanocrystals with controlled particle size. In the following work of study, thermochromic VO2 nanostructures were prepared by hydrothermal technique soft chemistry. We concentrate on solution phase synthetic methods that enable a proper shape and size control of metal oxide nanocrystals. Their structural properties were studied by Scanning Electron Microscopy (SEM), Fourier Transform IR (FTIR) and Differential Scanning Calorimetry (DSC). It is demonstrated that the surfactant assistance (NaOH) has great influence on the morphology-control of the material. Electrochemical properties of the nanospheres show good stability after 20 cycles and the surface diffusion coefficient was calculated to be 5 × 10-6 cm2 s-1.

  2. A 3D heterogeneous FeTiO3/TiO2@C fiber membrane as a self-standing anode for power Li-ion battery

    NASA Astrophysics Data System (ADS)

    Li, Jing-quan; Jing, Mao-xiang; Han, Chong; Yao, Shan-shan; Zhai, Hong-ai; Chen, Li-li; Shen, Xiang-qian; Xiao, Ke-song

    2018-04-01

    A three-dimensional (3D) networking FeTiO3/TiO2@C flexible fiber membrane was successfully fabricated by an electrospinning process and a controlled hot-press sintering method. This FeTiO3/TiO2@C fiber membrane displays a long-range continuous conductive networks, which can be directly used as self-standing anodes. The electrode sintered at 750 °C for 3 h possesses a reversible capacity of 205.4 mAh/g after 100 cycles at a current density of 300 mA/g. The superior cycle and rate performance can be attributed to the synergistic effect of little volume variation of TiO2 matrix, high capacity of FeTiO3 and good electrical conductivity of 3D networking.

  3. Vacuum variable-angle far-infrared ellipsometer

    NASA Astrophysics Data System (ADS)

    Friš, Pavel; Dubroka, Adam

    2017-11-01

    We present the design and performance of a vacuum far-infrared (∼50-680 cm-1) ellipsometer with a rotating analyser. The system is based on a Fourier transform spectrometer, an in-house built ellipsometer chamber and a closed-cycle bolometer. The ellipsometer chamber is equipped with a computer controlled θ-2θ goniometer for automated measurements at various angles of incidence. We compare our measurements on SrTiO3 crystal with the results acquired above 300 cm-1 with a commercially available ellipsometer system. After the calibration of the angle of incidence and after taking into account the finite reflectivity of mirrors in the detector part we obtain a very good agreement between the data from the two instruments. The system can be supplemented with a closed-cycle He cryostat for measurements between 5 and 400 K.

  4. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.

    PubMed

    Ford, Matthew D; Nikolov, Hristo N; Milner, Jaques S; Lownie, Stephen P; Demont, Edwin M; Kalata, Wojciech; Loth, Francis; Holdsworth, David W; Steinman, David A

    2008-04-01

    Computational fluid dynamics (CFD) modeling of nominally patient-specific cerebral aneurysms is increasingly being used as a research tool to further understand the development, prognosis, and treatment of brain aneurysms. We have previously developed virtual angiography to indirectly validate CFD-predicted gross flow dynamics against the routinely acquired digital subtraction angiograms. Toward a more direct validation, here we compare detailed, CFD-predicted velocity fields against those measured using particle imaging velocimetry (PIV). Two anatomically realistic flow-through phantoms, one a giant internal carotid artery (ICA) aneurysm and the other a basilar artery (BA) tip aneurysm, were constructed of a clear silicone elastomer. The phantoms were placed within a computer-controlled flow loop, programed with representative flow rate waveforms. PIV images were collected on several anterior-posterior (AP) and lateral (LAT) planes. CFD simulations were then carried out using a well-validated, in-house solver, based on micro-CT reconstructions of the geometries of the flow-through phantoms and inlet/outlet boundary conditions derived from flow rates measured during the PIV experiments. PIV and CFD results from the central AP plane of the ICA aneurysm showed a large stable vortex throughout the cardiac cycle. Complex vortex dynamics, captured by PIV and CFD, persisted throughout the cardiac cycle on the central LAT plane. Velocity vector fields showed good overall agreement. For the BA, aneurysm agreement was more compelling, with both PIV and CFD similarly resolving the dynamics of counter-rotating vortices on both AP and LAT planes. Despite the imposition of periodic flow boundary conditions for the CFD simulations, cycle-to-cycle fluctuations were evident in the BA aneurysm simulations, which agreed well, in terms of both amplitudes and spatial distributions, with cycle-to-cycle fluctuations measured by PIV in the same geometry. The overall good agreement between PIV and CFD suggests that CFD can reliably predict the details of the intra-aneurysmal flow dynamics observed in anatomically realistic in vitro models. Nevertheless, given the various modeling assumptions, this does not prove that they are mimicking the actual in vivo hemodynamics, and so validations against in vivo data are encouraged whenever possible.

  5. Fatigue test of a fiberglass based composite panel. Increasing the lifetime of freight wagon

    NASA Astrophysics Data System (ADS)

    Sobek, M.; Baier, A.; Grabowski, Ł.; Majzner, M.

    2016-08-01

    In the XXI century transportation of goods plays a key role in the economy. Due to a good logistics the economy is able to grow fluently. Although land transportation is carried out mainly through trucks for the last several years there has been noted an increase in the percentage share of rail transport in the freight transport. The main goods transported by railways are mineral fuels, mining and quarrying products. They constitute the greater part of 70% of total transported goods. Transportation of material of such high weight, high hardness and with different shapes involves increased and accelerated wear and tear of the cargo space of the wagon. This process is also magnified by substances used to prevent overheating or goods theft. Usually they are in the form of chemical compounds powder, eg. Calcium. A very large impact on the wear of the freight wagons hull is made because of mechanical damage. Their source comes mostly from loading cargo with impetus and using heavy machines during unloading. A large number of cycles of loading and unloading during the working period causes abrasion of body and as a result after several years a wagon car qualifies for a major maintenance. Possibility of application composite panels in the process of renovating the wagons body could reduce the weight of whole train and prolong the service life between mandatory technical inspection. The Paper "Fatigue test of a fiberglass based composite panel. Increasing the lifetime of freight wagon" presents the research process and the results of the endurance test of the composite panel samples fixed to a metal plate. As a fixing method a stainless steel rivet nut and a stainless steel button head socket screws were chosen. Cyclic and multiple load were applied to test samples using a pneumatic cylinder. Such a methodology simulated the forces resulting from loading and unloading of the wagon and movement of the cargo during transport. In the study a dedicated stand equipped with a pneumatic cylinder and a strain gauge sensors was used. A logic controller to control pneumatic valves was used. Tests were carried out for different number of cycles. The paper contains the results and conclusions which will be useful for the actual application of composite panels on the hull of a freight wagon.

  6. Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Zhang, Haitao; Zhang, Xiong; Sun, Xianzhong; Ma, Yanwei

    2013-12-01

    Morphology control of carbon-based nanomaterials (nanocarbons) is critical to practical applications because their physical and chemical properties are highly shape-dependent. The discovery of novel shaped nanocarbons stimulates new development in carbon science and technology. Based on direct reaction of CO2 with Mg metal, we achieved controlled synthesis of several different types of nanocarbons including mesoporous graphene, carbon nanotubes, and hollow carbon nanoboxes. The last one, to our knowledge, has not been previously reported to this date. The method described here allows effective control of the shape and dimensions of nanocarbons through manipulation of reaction temperature. The formation mechanism of nanocarbons is proposed. As a proof of concept, the synthesized nanocarbons are used for electrodes in symmetrical supercapacitors, which exhibit high capacitance and good cycling stability. The reported protocols are instructive to production of nanocarbons with controlled shape and dimensions which are much desirable for many practical applications.

  7. Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide

    PubMed Central

    Zhang, Haitao; Zhang, Xiong; Sun, Xianzhong; Ma, Yanwei

    2013-01-01

    Morphology control of carbon-based nanomaterials (nanocarbons) is critical to practical applications because their physical and chemical properties are highly shape-dependent. The discovery of novel shaped nanocarbons stimulates new development in carbon science and technology. Based on direct reaction of CO2 with Mg metal, we achieved controlled synthesis of several different types of nanocarbons including mesoporous graphene, carbon nanotubes, and hollow carbon nanoboxes. The last one, to our knowledge, has not been previously reported to this date. The method described here allows effective control of the shape and dimensions of nanocarbons through manipulation of reaction temperature. The formation mechanism of nanocarbons is proposed. As a proof of concept, the synthesized nanocarbons are used for electrodes in symmetrical supercapacitors, which exhibit high capacitance and good cycling stability. The reported protocols are instructive to production of nanocarbons with controlled shape and dimensions which are much desirable for many practical applications. PMID:24346481

  8. Investigating the Effect of Livestock Grazing and Associated Plant Community Shifts on Carbon and Nutrient Cycling in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Hewins, D. B.; Chuan, S.; Stolnikova, E.; Bork, E. W.; Carlyle, C. N.; Chang, S. X.

    2015-12-01

    Grassland ecosystems are ubiquitous across the globe covering an estimated 40 % of Earth's terrestrial landmass. These ecosystems are widely valued for providing forage for domestic livestock and a suite of important ecosystem goods and services including carbon (C) storage. Despite storing more than 30 % of soil C globally, the effect of both livestock grazing and the associated change in plant community structure in response to grazing on C and nutrient cycling remains uncertain. To gain a quantitative understanding of the direct and indirect effects of livestock grazing on C and nutrient cycling, we established study sites at 15 existing site localities with paired long-term grazing (ca. 30 y) and non-grazed treatments (totaling 30 unique plant communities). Our sites were distributed widely across Alberta in three distinct grassland bioclimatic zones allowing us to make comparisons across the broad range of climate variability typical of western Canadian grasslands. In each plant community we decomposed 5 common plant species that are known to increase or decrease in response to grazing pressure, a unique plant community sample, and a cellulose paper control. We measured mass loss, initial lignin, C and N concentrations at 0, 1, 3, 6 and 12 months of field incubation. In addition we assayed hydrolytic and oxidative extracellular enzymes associated with for C (n= 5 hydrolytic; phenoloxidase and peroxidase) and nutrients (i.e. N and P; n=1 ea.) cycling from each litter sample at each collection. Our results suggest that by changing the plant community structure, grazing can affect rates of decomposition and associated biogeochemical cycling by changing plant species and associated litter inputs. Moreover, measures of microbial function are controlled by site-specific conditions (e.g. temperature and precipitation), litter chemistry over the course of our incubation.

  9. Effect of sildenafil citrate on endometrial preparation and outcome of frozen-thawed embryo transfer cycles: a randomized clinical trial.

    PubMed

    Dehghani Firouzabadi, Razieh; Davar, Robab; Hojjat, Farzaneh; Mahdavi, Mohamad

    2013-02-01

    Sildenafil citrate may increase endometrial thickness and affect the outcome of frozen-thawed embryo transfer cycles. The aim of this study was to estimate the effect of sildenafil citrate on ultrasonographic endometrial thickness and pattern and to investigate the estrogen level on the day of progesterone administration, the implantation rate and chemical pregnancy rate in frozen embryo transfer cycles. This randomized controlled trial was conducted on 80 patients who had an antecedent of poor endometrial response and frozen embryos. 40 patients were given estradiol by a step up method with menstruation to prepare the endometrium, and the other 40 were given sildenafil citrate tablets (50 mg) daily in addition to the above treatment protocol from the first day of the cycle until the day progesterone was started. This was discontinued 48-72 hours prior to the embryo transfer. The endometrial thickness was significantly higher in the sildenafil citrate group (p<0.0001), the triple line patterns of the endometrium were significantly higher in the sildenafil citrate group (p<0.0001), while the intermediate patterns of the endometrium were not significantly different in the two groups. The echogen patterns of the endometrium were significantly higher in control group (p<0.0001). Finally, implantation rate and the chemical pregnancy rates were higher in the sildenafil citrate group but not significantly. As our study shows, the oral use of sildenafil citrate is a good way to improve the endometrial receptivity. We recommend the routine use of oral sildenafil citrate in patients with a previous failure of assisted reproduction technology cycles due to poor endometrial thickness.

  10. The cinema LED lighting system design based on SCM

    NASA Astrophysics Data System (ADS)

    En, De; Wang, Xiaobin

    2010-11-01

    A LED lighting system in the modern theater and the corresponding control program is introduced. Studies show that moderate and mutative brightness in the space would attract audiences' attention on the screen easily. SCM controls LED dynamically by outputting PWM pulse in different duty cycle. That cinema dome lights' intensity can vary with the plot changed, make people get a better view of experience. This article expounds the architecture of hardware system in the schedule and the control flow of the host of the solution. Besides, it introduces the design of software as well. At last, the system which is proved energy-saving, reliable, good visual effect and having using value by means of producing a small-scale model, which reproduce the whole system and achieves the desired result.

  11. An Introduction to Goodness of Fit for PMU Parameter Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riepnieks, Artis; Kirkham, Harold

    2017-10-01

    New results of measurements of phasor-like signals are presented based on our previous work on the topic. In this document an improved estimation method is described. The algorithm (which is realized in MATLAB software) is discussed. We examine the effect of noisy and distorted signals on the Goodness of Fit metric. The estimation method is shown to be performing very well with clean data and with a measurement window as short as a half a cycle and as few as 5 samples per cycle. The Goodness of Fit decreases predictably with added phase noise, and seems to be acceptable evenmore » with visible distortion in the signal. While the exact results we obtain are specific to our method of estimation, the Goodness of Fit method could be implemented in any phasor measurement unit.« less

  12. Exergy optimization for a novel combination of organic Rankine cycles, Stirling cycle and direct expander turbines

    NASA Astrophysics Data System (ADS)

    Moghimi, Mahdi; Khosravian, Mohammadreza

    2018-01-01

    In this paper, a novel combination of organic Rankine cycles (ORCs), Stirling cycle and direct expander turbines is modeled and optimized using the genetic algorithm. The Exergy efficiency is considered as an objective function in the genetic algorithm. High efficiency is the main advantage of Stirling cycle, however, it needs nearly isothermal compressor and turbine. Therefore, an argon ORC and a R14 ORC are placed before and after the Striling cycle along with two expander turbines at the end of the line. Each component and cycle of the proposed plant in this article is verified by the previous works available in the literature and good agreement is achieved. The obtained results reveal that 27.98%, 20.86% and 12.90% of the total cold exergy are used by argon ORC, Stirling cycle and R14 ORC, respectively. Therefore, utilization of the Stirling cycle is a good idea for the LNG line cold exergy. The maximum exergy destruction occurs in the heat exchanger after the argon ORC (85.786 kJ/s per one kg/s LNG) due to the wasted cold exergy, which can be used for air conditioning systems in the plant. Finally, it would be shown that the maximum efficiency of the proposed plant is 54.25% and the maximum output power is 355.72 kW.

  13. Chromospheric Signatures of the Subdued Cycle 23/24 Solar Minimum in Microwaves

    NASA Technical Reports Server (NTRS)

    Yashiro, S.; Makela, P.; Shibasaki, K.; Hathaway, D.

    2011-01-01

    Coronal holes appear brighter than the quiet Sun in microwave images, with a brightness enhancement of 500 to 2000 K. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is about 10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radio-heliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approx.250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes.

  14. Exergy optimization for a novel combination of organic Rankine cycles, Stirling cycle and direct expander turbines

    NASA Astrophysics Data System (ADS)

    Moghimi, Mahdi; Khosravian, Mohammadreza

    2018-06-01

    In this paper, a novel combination of organic Rankine cycles (ORCs), Stirling cycle and direct expander turbines is modeled and optimized using the genetic algorithm. The Exergy efficiency is considered as an objective function in the genetic algorithm. High efficiency is the main advantage of Stirling cycle, however, it needs nearly isothermal compressor and turbine. Therefore, an argon ORC and a R14 ORC are placed before and after the Striling cycle along with two expander turbines at the end of the line. Each component and cycle of the proposed plant in this article is verified by the previous works available in the literature and good agreement is achieved. The obtained results reveal that 27.98%, 20.86% and 12.90% of the total cold exergy are used by argon ORC, Stirling cycle and R14 ORC, respectively. Therefore, utilization of the Stirling cycle is a good idea for the LNG line cold exergy. The maximum exergy destruction occurs in the heat exchanger after the argon ORC (85.786 kJ/s per one kg/s LNG) due to the wasted cold exergy, which can be used for air conditioning systems in the plant. Finally, it would be shown that the maximum efficiency of the proposed plant is 54.25% and the maximum output power is 355.72 kW.

  15. Formation of Double-Shelled Zinc-Cobalt Sulfide Dodecahedral Cages from Bimetallic Zeolitic Imidazolate Frameworks for Hybrid Supercapacitors.

    PubMed

    Zhang, Peng; Guan, Bu Yuan; Yu, Le; Lou, Xiong Wen David

    2017-06-12

    Complex metal-organic frameworks used as precursors allow design and construction of various nanostructured functional materials which might not be accessible by other methods. Here, we develop a sequential chemical etching and sulfurization strategy to prepare well-defined double-shelled zinc-cobalt sulfide (Zn-Co-S) rhombic dodecahedral cages (RDCs). Yolk-shelled zinc/cobalt-based zeolitic imidazolate framework (Zn/Co-ZIF) RDCs are first synthesized by a controlled chemical etching process, followed by a hydrothermal sulfurization reaction to prepare double-shelled Zn-Co-S RDCs. Moreover, the strategy reported in this work enables easy control of the Zn/Co molar ratio in the obtained double-shelled Zn-Co-S RDCs. Owing to the structural and compositional benefits, the obtained double-shelled Zn-Co-S RDCs exhibit enhanced performance with high specific capacitance (1266 F g -1 at 1 A g -1 ), good rate capability and long-term cycling stability (91 % retention over 10,000 cycles) as a battery-type electrode material for hybrid supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Role of nanorods insertion layer in ZnO-based electrochemical metallization memory cell

    NASA Astrophysics Data System (ADS)

    Mangasa Simanjuntak, Firman; Singh, Pragya; Chandrasekaran, Sridhar; Juanda Lumbantoruan, Franky; Yang, Chih-Chieh; Huang, Chu-Jie; Lin, Chun-Chieh; Tseng, Tseung-Yuen

    2017-12-01

    An engineering nanorod array in a ZnO-based electrochemical metallization device for nonvolatile memory applications was investigated. A hydrothermally synthesized nanorod layer was inserted into a Cu/ZnO/ITO device structure. Another device was fabricated without nanorods for comparison, and this device demonstrated a diode-like behavior with no switching behavior at a low current compliance (CC). The switching became clear only when the CC was increased to 75 mA. The insertion of a nanorods layer induced switching characteristics at a low operation current and improve the endurance and retention performances. The morphology of the nanorods may control the switching characteristics. A forming-free electrochemical metallization memory device having long switching cycles (>104 cycles) with a sufficient memory window (103 times) for data storage application, good switching stability and sufficient retention was successfully fabricated by adjusting the morphology and defect concentration of the inserted nanorod layer. The nanorod layer not only contributed to inducing resistive switching characteristics but also acted as both a switching layer and a cation diffusion control layer.

  17. Resistive switching phenomena of tungsten nitride thin films with excellent CMOS compatibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Seok Man; Kim, Hee-Dong; An, Ho-Myoung

    2013-12-15

    Graphical abstract: - Highlights: • The resistive switching characteristics of WN{sub x} thin films. • Excellent CMOS compatibility WN{sub x} films as a resistive switching material. • Resistive switching mechanism revealed trap-controlled space charge limited conduction. • Good endurance and retention properties over 10{sup 5} cycles, and 10{sup 5} s, respectively - Abstract: We report the resistive switching (RS) characteristics of tungsten nitride (WN{sub x}) thin films with excellent complementary metal-oxide-semiconductor (CMOS) compatibility. A Ti/WN{sub x}/Pt memory cell clearly shows bipolar RS behaviors at a low voltage of approximately ±2.2 V. The dominant conduction mechanisms at low and high resistancemore » states were verified by Ohmic behavior and trap-controlled space-charge-limited conduction, respectively. A conducting filament model by a redox reaction explains the RS behavior in WN{sub x} films. We also demonstrate the memory characteristics during pulse operation, including a high endurance over >10{sup 5} cycles and a long retention time of >10{sup 5} s.« less

  18. [First line management without IVF of infertility related to endometriosis: Result of medical therapy? Results of ovarian superovulation? Results of intrauterine insemination? CNGOF-HAS Endometriosis Guidelines].

    PubMed

    Boujenah, J; Santulli, P; Mathieu-d'Argent, E; Decanter, C; Chauffour, C; Poncelet, P

    2018-03-01

    Using the structured methodology of French guidelines (HAS-CNGOF), the aim of this chapter was to formulate good practice points (GPP), in relation to optimal non-ART management of endometriosis related to infertility, based on the best available evidence in the literature. This guideline was produced by a group of experts in the field including a thorough systematic search of the literature (from January 1980 to March 2017). Were included only women with endometriosis related to infertility. For each recommendation, a grade (A-D, where A is the highest quality) was assigned based on the strength of the supporting evidence. Management of endometriosis related to infertility should be multidisciplinary and take account into the pain, the global evaluation of infertile couple and the different phenotypes of endometriotic lesions (good practice point). Hormonal treatment for suppression of ovarian function should not prescribe to improve fertility (grade A). After laproscopy for endometriosis related to infertility, the Endometriosis Fertility Index should be used to counsel patients regarding duration of conventional treatments before undergoing ART (grade C). After laparoscopy surgery for infertile women with AFS/ASRM stage I/II endometriosis or superficial peritoneal endometriosis, controlled ovarian stimulation with or without intrauterine insemination could be used to enhance non-ART pregnancy rate (grade C). Gonadotrophins should be the first line therapy for the stimulation (grade B). The number of cycles before referring ART should not exceed up to 6 cycles (good practice point). No recommendation can be performed for non-ART management of deep infiltrating endometriosis or endometrioma, as suitable evidence is lacking. Non-ART management is a possible option for the management of endometriosis related to infertility. Endometriosis Fertilty Index could be a useful tool for subsequent postoperative fertility management. Controlled ovarian stimulation can be proposed. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries.

    PubMed

    Geng, Hongbo; Ang, Huixiang; Ding, Xianguang; Tan, Huiteng; Guo, Guile; Qu, Genlong; Yang, Yonggang; Zheng, Junwei; Yan, Qingyu; Gu, Hongwei

    2016-02-07

    In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g(-1), good cycling stability (around 803 mA h g(-1) at a current density of 200 mA g(-1) after 100 cycles), and stable rate performance (around 520 mA h g(-1) at a current density of 1000 mA g(-1)). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling.

  20. Controllable synthesis of CuS hollow microflowers hierarchical structures for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Yanxia; Zhou, Zhaoxiao; Zhang, Shengping; Luo, Wenhao; Zhang, Guofeng

    2018-06-01

    One of the major challenges of high-performance asymmetric supercapacitors is engineering electrode materials with high capacitance and good cycling stability. Hence, we have successfully prepared different CuS hierarchical structures including CuS tubular structures (T-CuS), CuS hollow microspheres (S-CuS) and CuS hollow microflowers (H-CuS) by adjusting the solvents, all of which are investigated as electrode materials for supercapacitors. Among them, the H-CuS electrode exhibits the best electrochemical performance involving a high capacitance of 536.7 F g-1 at a current density of 8 A g-1 and excellent cycling stability with 83.6% capacitance retention for 20,000 continuous cycles at a current density of 5 A g-1. In addition, an asymmetric supercapacitor has assembled with H-CuS as positive electrode and activated carbon (AC) as negative electrode, which exhibits a desirable energy density of 15.97 W h kg-1 when the power density is 185.4 W kg-1. These desirable electrochemical performances powerfully demonstrate that the H-CuS electrode has promising potential for applications in energy storage fields.

  1. Artificial oocyte activation in intracytoplasmic sperm injection cycles using testicular sperm in human in vitro fertilization.

    PubMed

    Kang, Hee Jung; Lee, Sun-Hee; Park, Yong-Seog; Lim, Chun Kyu; Ko, Duck Sung; Yang, Kwang Moon; Park, Dong-Wook

    2015-06-01

    Artificial oocyte activation (AOA) is an effective method to avoid total fertilization failure in human in vitro fertilization-embryo transfer (IVF-ET) cycles. AOA performed using a calcium ionophore can induce calcium oscillation in oocytes and initiate the fertilization process. We evaluated the usefulness of AOA with a calcium ionophore in cases of total fertilization failure in previous cycles and in cases of severe male factor infertility patients with non-motile spermatozoa after pentoxifylline (PF) treatment. The present study describes 29 intracytoplasmic sperm injection (ICSI)-AOA cycles involving male factor infertility at Cheil General Hospital from January 2006 to June 2013. Patients were divided into two groups (control, n=480; AOA, n=29) depending on whether or not AOA using a calcium ionophore (A23187) was performed after testicular sperm extraction-ICSI (TESE-ICSI). The AOA group was further split into subgroups according to sperm motility after PF treatment: i.e., motile sperm-injected (n=12) and non-motile sperm-injected (n=17) groups (total n=29 cycles). The good embryo rate (52.3% vs. 66.9%), pregnancy rate (20.7% vs. 52.1%), and delivery rate (10.3% vs. 40.8%) were lower in the PF/AOA group than in the control group. When evaluating the effects of restoration of sperm motility after PF treatment on clinical outcomes there was no difference in fertilization rate (66.6% vs. 64.7% in non-motile and motile sperm, respectively), pregnancy rate (17.6% vs. 33.3%), or delivery rate (5.9% vs. 16.7%) between the two groups. We suggest that oocyte activation is a useful method to ensure fertilization in TESE-ICSI cycles regardless of restoration of sperm motility after PF treatment. AOA may be useful in selected patients who have a low fertilization rate or total fertilization failure.

  2. Artificial oocyte activation in intracytoplasmic sperm injection cycles using testicular sperm in human in vitro fertilization

    PubMed Central

    Kang, Hee Jung; Lee, Sun-Hee; Park, Yong-Seog; Lim, Chun Kyu; Ko, Duck Sung; Yang, Kwang Moon

    2015-01-01

    Objective Artificial oocyte activation (AOA) is an effective method to avoid total fertilization failure in human in vitro fertilization-embryo transfer (IVF-ET) cycles. AOA performed using a calcium ionophore can induce calcium oscillation in oocytes and initiate the fertilization process. We evaluated the usefulness of AOA with a calcium ionophore in cases of total fertilization failure in previous cycles and in cases of severe male factor infertility patients with non-motile spermatozoa after pentoxifylline (PF) treatment. Methods The present study describes 29 intracytoplasmic sperm injection (ICSI)-AOA cycles involving male factor infertility at Cheil General Hospital from January 2006 to June 2013. Patients were divided into two groups (control, n=480; AOA, n=29) depending on whether or not AOA using a calcium ionophore (A23187) was performed after testicular sperm extraction-ICSI (TESE-ICSI). The AOA group was further split into subgroups according to sperm motility after PF treatment: i.e., motile sperm-injected (n=12) and non-motile sperm-injected (n=17) groups (total n=29 cycles). Results The good embryo rate (52.3% vs. 66.9%), pregnancy rate (20.7% vs. 52.1%), and delivery rate (10.3% vs. 40.8%) were lower in the PF/AOA group than in the control group. When evaluating the effects of restoration of sperm motility after PF treatment on clinical outcomes there was no difference in fertilization rate (66.6% vs. 64.7% in non-motile and motile sperm, respectively), pregnancy rate (17.6% vs. 33.3%), or delivery rate (5.9% vs. 16.7%) between the two groups. Conclusion We suggest that oocyte activation is a useful method to ensure fertilization in TESE-ICSI cycles regardless of restoration of sperm motility after PF treatment. AOA may be useful in selected patients who have a low fertilization rate or total fertilization failure. PMID:26161332

  3. Telomerase reverse transcriptase (TERT) expression and role of vincristine sulfate in mouse model of malignancy related peritoneal ascites: an experimental metastatic condition.

    PubMed

    Chaklader, M; Das, P; Pereira, J A; Chatterjee, S; Basak, P; Law, A; Banerjee, T; Chauhan, S; Law, S

    2011-06-01

    To evaluate the efficacy of intraperitoneal vincristine administration into ascitic sarcoma-180 bearing mice as a model of human malignant ascites regarding various peritoneal/retroperitoneal sarcomatosis, and to evaluate the flowcytometric telomerase reverse transcriptase expression for the diagnostic and prognostic purposes. Present study included disease induction by intraperitoneal homologous ascitic sarcoma-180 transplantation followed by in vivo intraperitoneal drug administration to study mitotic index, flowcytometric cell cycle and telomerase reverse transcriptase expression pattern, erythrosin-B dye exclusion study for malignant cell viability assessment. Besides, in vitro malignant ascite culture in presence and absence of vincristine sulfate and survival study were also taken into consideration. Intraperitoneal vincristine administration (concentration 0.5 mg/kg body weight) significantly diminished the mitotic index in diseased subjects in comparison to untreated control subjects. Treated group of animals showed increased life span and median survival time. Cell viability assessment during the course of drug administration also revealed gradual depression on cell viability over time. Flowcytometric cell cycle analysis showed a good prognostic feature of chemotherapeutic administration schedule by representing high G2/M phase blocked cells along with reduced telomerase reverse transcriptase positive cells in treated animals. We conclude that long term administration of vincristine sulfate in small doses could be a good pharmacological intervention in case of malignant peritoneal ascites due to sarcomatosis as it indirectly reduced the level of telomerase reverse transcriptase expression in malignant cells by directly regulating cell cycle and simultaneously increased the life expectancy of the diseased subjects.

  4. Three-Dimensional Tubular MoS2/PANI Hybrid Electrode for High Rate Performance Supercapacitor.

    PubMed

    Ren, Lijun; Zhang, Gaini; Yan, Zhe; Kang, Liping; Xu, Hua; Shi, Feng; Lei, Zhibin; Liu, Zong-Huai

    2015-12-30

    By using three-dimensional (3D) tubular molybdenum disulfide (MoS2) as both an active material in electrochemical reaction and a framework to provide more paths for insertion and extraction of ions, PANI nanowire arrays with a diameter of 10-20 nm can be controllably grown on both the external and internal surface of 3D tubular MoS2 by in situ oxidative polymerization of aniline monomers and 3D tubular MoS2/PANI hybrid materials with different amounts of PANI are prepared. A controllable growth of PANI nanowire arrays on the tubular MoS2 surface provides an opportunity to optimize the capacitive performance of the obtained electrodes. When the loading amount of PANI is 60%, the obtained MoS2/PANI-60 hybrid electrode not only shows a high specific capacitance of 552 F/g at a current density of 0.5 A/g, but also gives excellent rate capability of 82% from 0.5 to 30 A/g. The remarkable rate performance can be mainly attributed to the architecture with synergistic effect between 3D tubular MoS2 and PANI nanowire arrays. Moreover, the MoS2/PANI-60 based symmetric supercapacitor also exhibits the excellent rate performance and good cycling stability. The specific capacitance based on the total mass of the two electrodes is 124 F/g at a current density of 1 A/g and 79% of its initial capacitance is remained after 6000 cycles. The 3D tubular structure provides a good and favorable method for improving the capacitance retention of PANI electrode.

  5. Maintaining women's oral health.

    PubMed

    McCann, A L; Bonci, L

    2001-07-01

    Women must adopt health-promoting strategies for both general health and the oral cavity, because the health of a woman's body and oral cavity are bidirectional. For general health-maintenance strategies, dental practitioners should actively advise women to minimize alcohol use, abstain from or cease smoking, stay physically active, and choose the right foods to nourish both the body and mind. For oral health-maintenance strategies, dental practitioners should advise women on how to prevent or control oral infections, particularly dental caries and periodontal diseases. Specifically, women need to know how to remove plaque from the teeth mechanically, use appropriate chemotherapeutic agents and dentifrices, use oral irrigation, and control halitosis. Dental practitioners also need to stress the importance of regular maintenance visits for disease prevention. Adolescent women are more prone to gingivitis and aphthous ulcers when they begin their menstrual cycles and need advice about cessation of tobacco use, mouth protection during athletic activities, cleaning orthodontic appliances, developing good dietary habits, and avoiding eating disorders. Women in early to middle adulthood may be pregnant or using oral contraceptives with concomitant changes in oral tissues. Dental practitioners need to advise them how to take care of the oral cavity during these changes and how to promote the health of their infants, including good nutrition. Older women experience the onset of menopause and increased vulnerability to osteoporosis. They may also experience xerostomia and burning mouth syndrome. Dental practitioners need to help women alleviate these symptoms and encourage them to continue good infection control and diet practices.

  6. Women's fertility across the cycle increases the short-term attractiveness of creative intelligence.

    PubMed

    Haselton, Martie G; Miller, Geoffrey F

    2006-03-01

    Male provisioning ability may have evolved as a "good dad" indicator through sexual selection, whereas male creativity may have evolved partly as a "good genes" indicator. If so, women near peak fertility (midcycle) should prefer creativity over wealth, especially in short-term mating. Forty-one normally cycling women read vignettes describing creative but poor men vs. uncreative but rich men. Women's estimated fertility predicted their short-term (but not long-term) preference for creativity over wealth, in both their desirability ratings of individual men (r=.40, p<.01) and their forced-choice decisions between men (r=.46, p<.01). These preliminary results are consistent with the view that creativity evolved at least partly as a good genes indicator through mate choice.

  7. A Multicentre Audit of Single-Use Surgical Instruments (SUSI) for Tonsillectomy and Adenoidectomy

    PubMed Central

    O'Flynn, P; Silva, S; Kothari, P; Persaud, R

    2007-01-01

    INTRODUCTION Prions are resistant to conventional sterilisation procedures and, therefore, could be transmitted iatrogenically through re-usable adenoid and tonsil surgical instruments. Using disposable instruments would avoid the risk of transmission. We present the results of a complete audit loop using BBraun single-use surgical instruments (SUSI). PATIENTS AND METHODS This was a prospective multicentre audit. Surgeons were asked to fill in a standardised questionnaire recording details including postoperative complications, and evaluation of each piece of equipment compared with their own experience of conventional re-usable instruments. In the first cycle, constructive criticisms of the instruments were noted and the manufacturers modified the instruments accordingly. A second cycle of audit was subsequently undertaken. RESULTS A total of 86 patients were audited in the first cycle and 97 in the second cycle. Postoperative haemorrhage rate for both cycles was well within acceptable range. In the first audit cycle, surgeons generally found the Draffin rods, Boyle-Davis gag and bipolar diathermy forceps of poor quality and difficult to use. These were redesigned and, on repeat evaluation during the second audit cycle, were found to be just as good, if not better, than the re-usable instruments. CONCLUSIONS This study suggests that SUSI may be just as good as re-usable instruments. Furthermore, they may be more cost effective. PMID:18201478

  8. Magnet Design with High B0 Homogeneity for Fast-Field-Cycling NMR Applications

    NASA Astrophysics Data System (ADS)

    Lips, O.; Privalov, A. F.; Dvinskikh, S. V.; Fujara, F.

    2001-03-01

    The design, construction, and performance of a low-inductance solenoidal coil with high B0 homogeneity for fast-field-cycling NMR is presented. It consists of six concentric layers. The conductor width is varied to minimize the B0 inhomogeneity in the volume of the sample. This is done using an algorithm which takes the real shape of the conductor directly into account. The calculated coil geometry can be manufactured easily using standard computerized numeric control equipment, which keeps the costs low. The coil is liquid cooled and produces a B0 field of 0.95 T at 800 A . The field inhomogeneity in a cylindrical volume (diameter 5 mm, length 10 mm) is about 10 ppm, and the inductance is 190 μH. Switching times below 200 μs can be achieved. During 6 months of operation the coil has shown good stability and reliability.

  9. Silicon/copper dome-patterned electrodes for high-performance hybrid supercapacitors.

    PubMed

    Liu, Xuyan; Jung, Hun-Gi; Kim, Sang-Ok; Choi, Ho-Suk; Lee, Sangwha; Moon, Jun Hyuk; Lee, Joong Kee

    2013-12-02

    This study proposes a method for manufacturing high-performance electrode materials in which controlling the shape of the current collector and electrode material for a Li-ion capacitor (LIC). In particular, the proposed LIC manufacturing method maintains the high voltage of a cell by using a microdome-patterned electrode material, allowing for reversible reactions between the Li-ion and the active material for an extended period of time. As a result, the LICs exhibit initial capacities of approximately 42 F g⁻¹, even at 60 A g⁻¹. The LICs also exhibit good cycle performance up to approximately 15,000 cycles. In addition, these advancements allow for a considerably higher energy density than other existing capacitor systems. The energy density of the proposed LICs is approximately nine, two, and 1.5 times higher than those of the electrochemical double layer capacitor (EDLC), AC/LiMn₂O₄ hybrid capacitor, and intrinsic Si/AC LIC, respectively.

  10. Silicon/copper dome-patterned electrodes for high-performance hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Xuyan; Jung, Hun-Gi; Kim, Sang-Ok; Choi, Ho-Suk; Lee, Sangwha; Moon, Jun Hyuk; Lee, Joong Kee

    2013-12-01

    This study proposes a method for manufacturing high-performance electrode materials in which controlling the shape of the current collector and electrode material for a Li-ion capacitor (LIC). In particular, the proposed LIC manufacturing method maintains the high voltage of a cell by using a microdome-patterned electrode material, allowing for reversible reactions between the Li-ion and the active material for an extended period of time. As a result, the LICs exhibit initial capacities of approximately 42 F g-1, even at 60 A g-1. The LICs also exhibit good cycle performance up to approximately 15,000 cycles. In addition, these advancements allow for a considerably higher energy density than other existing capacitor systems. The energy density of the proposed LICs is approximately nine, two, and 1.5 times higher than those of the electrochemical double layer capacitor (EDLC), AC/LiMn2O4 hybrid capacitor, and intrinsic Si/AC LIC, respectively.

  11. Hydrothermal synthesis of cobalt sulfide nanotubes: The size control and its application in supercapacitors

    NASA Astrophysics Data System (ADS)

    Wan, Houzhao; Ji, Xiao; Jiang, Jianjun; Yu, Jingwen; Miao, Ling; Zhang, Li; Bie, Shaowei; Chen, Haichao; Ruan, Yunjun

    2013-12-01

    Cobalt sulfide nanotubes are synthesized by hydrothermal method. The precursor is characterized by XRD, FTIR and SEM. We study the influence of temperature on the evolution of this special coarse shape nanostructure and analyze relationship between the sizes of cobalt sulfide nanotubes and the capacitive properties of active materials. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are used to study the effects of microstructure and morphology of the samples on their capacitance and conductivity. The specific capacitance of cobalt sulfide nanotubes (obtained in 80 °C) electrode exhibits a capacitance of 285 F g-1 at the current density of 0.5 A g-1 as well as rather good cycling stability. Moreover, during the cycling process, the coulombic efficiency remains 99%. The as-prepared cobalt sulfide nanotubes electrode exhibits excellent electrochemical performance as electrode materials for supercapacitors.

  12. Subsonic panel method for designing wing surfaces from pressure distribution

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.; Hawk, J. D.

    1983-01-01

    An iterative method has been developed for designing wing section contours corresponding to a prescribed subcritical distribution of pressure. The calculations are initialized by using a surface panel method to analyze a baseline wing or wing-fuselage configuration. A first-order expansion to the baseline panel method equations is then used to calculate a matrix containing the partial derivative of potential at each control point with respect to each unknown geometry parameter. In every iteration cycle, the matrix is used both to calculate the geometry perturbation and to analyze the perturbed geometry. The distribution of potential on the perturbed geometry is established by simple linear extrapolation from the baseline solution. The extrapolated potential is converted to pressure by Bernoulli's equation. Not only is the accuracy of the approach good for very large perturbations, but the computing cost of each complete iteration cycle is substantially less than one analysis solution by a conventional panel method.

  13. Constant flow-driven microfluidic oscillator for different duty cycles

    PubMed Central

    Kim, Sung-Jin; Yokokawa, Ryuji; Lesher-Perez, Sasha Cai; Takayama, Shuichi

    2012-01-01

    This paper presents microfluidic devices that autonomously convert two constant flow inputs into an alternating oscillatory flow output. We accomplish this hardware embedded self-control programming using normally closed membrane valves that have an inlet, an outlet, and a membrane-pressurization chamber connected to a third terminal. Adjustment of threshold opening pressures in these 3-terminal flow switching valves enabled adjustment of oscillation periods to between 57–360 s with duty cycles of 0.2–0.5. These values are in relatively good agreement with theoretical values, providing the way for rational design of an even wider range of different waveform oscillations. We also demonstrate the ability to use these oscillators to perform temporally patterned delivery of chemicals to living cells. The device only needs a syringe pump, thus removing the use of complex, expensive external actuators. These tunable waveform microfluidic oscillators are envisioned to facilitate cell-based studies that require temporal stimulation. PMID:22206453

  14. Thallium 2223 high Tc superconductor in a silver matrix and its magnetic shielding, hermal cycle and time aging properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, X.; He, W.S.; Havenhill, A.

    1994-12-31

    Superconducting Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} (Tl2223) was ground to powder. Mixture with silver powder (0--80% weight) and press to desired shape. After proper annealing, one can get good silver-content Tl2223 bulk superconductor. It is time-stable and has good superconducting property as same as pure Tl2223. It also has better mechanical property and far better thermal cycle property than pure Tl2223.

  15. Solution-grown silicon nanowires for lithium-ion battery anodes.

    PubMed

    Chan, Candace K; Patel, Reken N; O'Connell, Michael J; Korgel, Brian A; Cui, Yi

    2010-03-23

    Composite electrodes composed of silicon nanowires synthesized using the supercritical fluid-liquid-solid (SFLS) method mixed with amorphous carbon or carbon nanotubes were evaluated as Li-ion battery anodes. Carbon coating of the silicon nanowires using the pyrolysis of sugar was found to be crucial for making good electronic contact to the material. Using multiwalled carbon nanotubes as the conducting additive was found to be more effective for obtaining good cycling behavior than using amorphous carbon. Reversible capacities of 1500 mAh/g were observed for 30 cycles.

  16. Refined Sulfur Nanoparticles Immobilized in Metal-Organic Polyhedron as Stable Cathodes for Li-S Battery.

    PubMed

    Bai, Linyi; Chao, Dongliang; Xing, Pengyao; Tou, Li Juan; Chen, Zhen; Jana, Avijit; Shen, Ze Xiang; Zhao, Yanli

    2016-06-15

    The lithium-sulfur (Li-S) battery presents a promising rechargeable energy storage technology for the increasing energy demand in a worldwide range. However, current main challenges in Li-S battery are structural degradation and instability of the solid-electrolyte interphase caused by the dissolution of polysulfides during cycling, resulting in the corrosion and loss of active materials. Herein, we developed novel hybrids by employing metal-organic polyhedron (MOP) encapsulated PVP-functionalized sulfur nanoparticles (S@MOP), where the active sulfur component was efficiently encapsulated within the core of MOP and PVP as a surfactant was helpful to stabilize the sulfur nanoparticles and control the size and shape of corresponding hybrids during their syntheses. The amount of sulfur embedded into MOP could be controlled according to requirements. By using the S@MOP hybrids as cathodes, an obvious enhancement in the performance of Li-S battery was achieved, including high specific capacity with good cycling stability. The MOP encapsulation could enhance the utilization efficiency of sulfur. Importantly, the structure of the S@MOP hybrids was very stable, and they could last for almost 1000 cycles as cathodes in Li-S battery. Such high performance has rarely been obtained using metal-organic framework systems. The present approach opens up a promising route for further applications of MOP as host materials in electrochemical and energy storage fields.

  17. Electrochemical properties of lithium iron phosphate cathode material using polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Kwang; Choi, Jae-Won; Cheruvally, Gouri; Shin, Yong-Jo; Ahn, Jou-Hyeon; Cho, Kwon-Koo; Ahn, Hyo-Jun; Kim, Ki-Won

    2007-12-01

    Carbon-coated lithium iron phosphate (LiFePO4/C) cathode material was synthesized by mechano-chemical activation method. The performance of LiFePO4/C in lithium battery was tested with an electrospun polymer-based electrolyte. Liquid electrolyte of 1M lithium hexafluorophosphate (LiPF6) in ethylene carbonate/dimethyl carbonate (EC/DMC) (1 : 1vol) was incorporated in electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (P(VdF-HFP)) microfibrous membrane to prepare the polymer electrolyte (PE). The cell based on Li|PE|Li FePO4/C exhibited an initial discharge capacity of 142 mAh g-1 at 0.1 C-rate at room temperature. Good cycling performance even under the high current density of 2 C could be obtained. Impedance spectroscopy was applied to investigate the material behavior during 0.1 C-rate charge-discharge cycling. When the fresh cell and the cell after different cycles were compared, impedance resistance was found to decrease with cycling. Impedance study indicated good cycle life for the cell when tested at room temperature.

  18. Revision Cycles for Economics Textbooks: An Application of the Theory of Durable Goods Monopoly

    ERIC Educational Resources Information Center

    Li, Xin

    2011-01-01

    In this dissertation, I study economics textbook markets as an example of durable goods monopoly. Textbooks are protected by copyrights, and from a student's point of view, different textbooks are not good substitutes because students wish to use the textbook adopted by their instructors. Therefore sellers have market power. Textbooks can be…

  19. Depositional environments and cyclicity of the Early Ordovician carbonate ramp in the western Tarim Basin (NW China)

    NASA Astrophysics Data System (ADS)

    Guo, Chuan; Chen, Daizhao; Song, Yafang; Zhou, Xiqiang; Ding, Yi; Zhang, Gongjing

    2018-06-01

    During the Early Ordovician, the Tarim Basin (NW China) was mainly occupied by an extensive shallow-water carbonate platform, on which a carbonate ramp system was developed in the Bachu-Keping area of the western part of the basin. Three well-exposed typical outcrop sections of the Lower Ordovician Penglaiba Formation were investigated in order to identify the depositional facies and to clarify origins of meter-scale cycles and depositional sequences, thereby the platform evolution. Thirteen lithofacies are identified and further grouped into three depositional facies (associations): peritidal, restricted and open-marine subtidal facies. These lithofacies are vertically stacked into meter-scale, shallowing-upward peritidal and subtidal cycles. The peritidal cycles are mainly distributed in the lower and uppermost parts of the Penglaiba Formation deposited in the inner-middle ramp, and commonly start with shallow subtidal to intertidal facies followed by inter- to supratidal facies. In contrast, the subtidal cycles occur throughout the formation mostly in the middle-outer ramp and are dominated by shallow to relatively deep (i.e., intermediate) subtidal facies. The dominance of asymmetrical and incomplete cycles suggests a dominant control of Earth's orbital forcing on the cyclic deposition on the platform. On the basis of vertical facies and cycle stacking patterns, and accommodation changes illustrated by the Fischer plots from all studied sections, five third-order depositional sequences are recognized in the Penglaiba Formation. Individual sequences comprise a lower transgressive part and an upper regressive one. In shallow-water depositional environments, the transgressive packages are dominated by thicker-than-average subtidal cycles, indicating an increase in accommodation space, whereas regressive parts are mainly represented by thinner-than-average peritidal and subtidal cycles, denoting a decrease in accommodation space. In contrast, in intermediate to deep subtidal environments, transgressive and regressive packages display an opposite trend in accommodation space changes. Sequence boundaries (except the basal and top boundaries of the Penglaiba Formation) are usually represented by laterally traceable, transitional boundary zones without apparent subaerial exposure features. Good correlation of the long-term changes in accommodation space (or sea-level) inferred from vertical stacking patterns of facies and cycles suggests an overriding eustatic control on the formation of meter-scale cycles and third-order depositional sequences as well as platform evolution superimposed with local and/or regional tectonic influence during the Early Ordovician. This study would help understand the controls on the tempo-spatial facies distribution, stratal cyclicity and carbonate platform evolution in the western Tarim Basin during the Early Ordovician, facilitating prediction for favorable subsurface carbonate reservoirs and future hydrocarbon exploration and production in the Penglaiba Formation.

  20. Oocytes with a dark zona pellucida demonstrate lower fertilization, implantation and clinical pregnancy rates in IVF/ICSI cycles.

    PubMed

    Shi, Wei; Xu, Bo; Wu, Li-Min; Jin, Ren-Tao; Luan, Hong-Bing; Luo, Li-Hua; Zhu, Qing; Johansson, Lars; Liu, Yu-Sheng; Tong, Xian-Hong

    2014-01-01

    The morphological assessment of oocytes is important for embryologists to identify and select MII oocytes in IVF/ICSI cycles. Dysmorphism of oocytes decreases viability and the developmental potential of oocytes as well as the clinical pregnancy rate. Several reports have suggested that oocytes with a dark zona pellucida (DZP) correlate with the outcome of IVF treatment. However, the effect of DZP on oocyte quality, fertilization, implantation, and pregnancy outcome were not investigated in detail. In this study, a retrospective analysis was performed in 268 infertile patients with fallopian tube obstruction and/or male factor infertility. In 204 of these patients, all oocytes were surrounded by a normal zona pellucida (NZP, control group), whereas 46 patients were found to have part of their retrieved oocytes enclosed by NZP and the other by DZP (Group A). In addition, all oocytes enclosed by DZP were retrieved from 18 patients (Group B). No differences were detected between the control and group A. Compared to the control group, the rates of fertilization, good quality embryos, implantation and clinical pregnancy were significantly decreased in group B. Furthermore, mitochondria in oocytes with a DZP in both of the two study groups (A and B) were severely damaged with several ultrastructural alterations, which were associated with an increased density of the zona pellucida and vacuolization. Briefly, oocytes with a DZP affected the clinical outcome in IVF/ICSI cycles and appeared to contain more ultrastructural alterations. Thus, DZP could be used as a potential selective marker for embryologists during daily laboratory work.

  1. Endometrial injury to overcome recurrent embryo implantation failure: a systematic review and meta-analysis.

    PubMed

    Potdar, Neelam; Gelbaya, Tarek; Nardo, Luciano G

    2012-12-01

    Mechanical endometrial injury (biopsy/scratch or hysteroscopy) in the cycle preceding ovarian stimulation for IVF has been proposed to improve implantation in women with unexplained recurrent implantation failure (RIF). This is a systematic review and meta-analysis of studies comparing the efficacy of endometrial injury versus no intervention in women with RIF undergoing IVF. All controlled studies of endometrial biopsy/scratch or hysteroscopy performed in the cycle preceding ovarian stimulation were included and the primary outcome measure was clinical pregnancy rate. Pooling of seven controlled studies (four randomized and three non-randomized), with 2062 participants, showed that local endometrial injury induced in the cycle preceding ovarian stimulation is 70% more likely to result in a clinical pregnancy as opposed to no intervention. There was no statistically significant heterogeneity in the methods used, clinical pregnancy rates being twice as high with biopsy/scratch (RR 2.32, 95% CI 1.72-3.13) as opposed to hysteroscopy (RR 1.51, 95% CI 1.30-1.75). The evidence is strongly in favour of inducing local endometrial injury in the preceding cycle of ovarian stimulation to improve pregnancy outcomes in women with unexplained RIF. However, large randomized studies are required before iatrogenic induction of local endometrial injury can be warranted in routine clinical practice. Some women undergoing IVF treatment fail to conceive despite several attempts with good-quality embryos and no identifiable reason. We call this 'recurrent implantation failure' (RIF) where the embryo fails to embed or implant within the lining of the womb. Studies have shown that inducing injury to the lining of the womb in the cycle before starting ovarian stimulation for IVF can help improve the chances of achieving pregnancy. Injury can be induced by either scratching the lining of the womb using a biopsy tube or by telescopic investigation of the womb using a camera. We performed a collective review of the available good-quality studies that used the above two methods in the cycle prior to starting ovarian stimulation for IVF. We pooled results from seven studies, which included 2062 women with RIF and assessed the difference in clinical pregnancy rates for those undergoing injury to the womb lining compared with no injury prior to IVF. The results suggest that inducing injury is 70% more likely to result in a clinical pregnancy as opposed to no treatment. Furthermore, scratching of the lining was 2-times more likely to result in a clinical pregnancy compared with telescopic evaluation of the lining of the womb. This study suggests that in women with RIF, inducing local injury to the womb lining in the cycle prior to starting ovarian stimulation for IVF can improve pregnancy outcomes. However, large studies are required before this can be warranted in routine clinical practice. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  2. Cost optimisation and minimisation of the environmental impact through life cycle analysis of the waste water treatment plant of Bree (Belgium).

    PubMed

    De Gussem, K; Wambecq, T; Roels, J; Fenu, A; De Gueldre, G; Van De Steene, B

    2011-01-01

    An ASM2da model of the full-scale waste water plant of Bree (Belgium) has been made. It showed very good correlation with reference operational data. This basic model has been extended to include an accurate calculation of environmental footprint and operational costs (energy consumption, dosing of chemicals and sludge treatment). Two optimisation strategies were compared: lowest cost meeting the effluent consent versus lowest environmental footprint. Six optimisation scenarios have been studied, namely (i) implementation of an online control system based on ammonium and nitrate sensors, (ii) implementation of a control on MLSS concentration, (iii) evaluation of internal recirculation flow, (iv) oxygen set point, (v) installation of mixing in the aeration tank, and (vi) evaluation of nitrate setpoint for post denitrification. Both an environmental impact or Life Cycle Assessment (LCA) based approach for optimisation are able to significantly lower the cost and environmental footprint. However, the LCA approach has some advantages over cost minimisation of an existing full-scale plant. LCA tends to chose control settings that are more logic: it results in a safer operation of the plant with less risks regarding the consents. It results in a better effluent at a slightly increased cost.

  3. GO-induced assembly of gelatin toward stacked layer-like porous carbon for advanced supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomeng; Jiao, Yanqing; Sun, Li; Wang, Lei; Wu, Aiping; Yan, Haijing; Meng, Meichen; Tian, Chungui; Jiang, Baojiang; Fu, Honggang

    2016-01-01

    Layer-like nanocarbons with high surface area and good conductivity are promising materials for supercapacitors due to their good ability for effective charge-transfer and mass-transfer. In this paper, stacked layer-like porous carbon containing RGO (reduced graphene oxides) (LPCG) was constructed via the GO-induced assembly of gelatin followed by carbonization and activation processes. Under suitable conditions, LPCG-based materials with a thickness of about 100 nm and a high specific surface area (up to 1476 m2 g-1) could be obtained. In the materials, the closed combination of RGO and porous carbon can be observed, which is favourable for the development of the synergistic effects of both components. The presence of GO can not only enhance the conductivity of LPCG-based materials, but also is essential for the formation of a thin carbon sheet with a stacked structure. Otherwise, the plate-like, non-stacked carbon with a thickness of about 500 nm could be formed in the absence of RGO. The porous structure along with the presence of RGO allows rapid charge-transfer and easy access and diffusion of electrolyte ions. As a result, the materials exhibited a high discharge specific capacitance (455 F g-1 at 0.5 A g-1, 366 F g-1 at 1 A g-1), good rate capability (221 F g-1 at density 30 A g-1) and good cycling stability. In aqueous electrolytes, the energy density could be up to 9.32 W h kg-1 at a relatively low power density of 500 W kg-1 with a good cycling stability (>96% over 5000 cycles). It was found that (1) the rational combination of RGO and porous carbon is essential for enhancing the capacitance performance and improving the cycling stability and (2) the high conductivity is favorable for improving the rate performance of the materials. The LPCG-based materials have extensive potential for practical applications in energy storage and conversion devices.Layer-like nanocarbons with high surface area and good conductivity are promising materials for supercapacitors due to their good ability for effective charge-transfer and mass-transfer. In this paper, stacked layer-like porous carbon containing RGO (reduced graphene oxides) (LPCG) was constructed via the GO-induced assembly of gelatin followed by carbonization and activation processes. Under suitable conditions, LPCG-based materials with a thickness of about 100 nm and a high specific surface area (up to 1476 m2 g-1) could be obtained. In the materials, the closed combination of RGO and porous carbon can be observed, which is favourable for the development of the synergistic effects of both components. The presence of GO can not only enhance the conductivity of LPCG-based materials, but also is essential for the formation of a thin carbon sheet with a stacked structure. Otherwise, the plate-like, non-stacked carbon with a thickness of about 500 nm could be formed in the absence of RGO. The porous structure along with the presence of RGO allows rapid charge-transfer and easy access and diffusion of electrolyte ions. As a result, the materials exhibited a high discharge specific capacitance (455 F g-1 at 0.5 A g-1, 366 F g-1 at 1 A g-1), good rate capability (221 F g-1 at density 30 A g-1) and good cycling stability. In aqueous electrolytes, the energy density could be up to 9.32 W h kg-1 at a relatively low power density of 500 W kg-1 with a good cycling stability (>96% over 5000 cycles). It was found that (1) the rational combination of RGO and porous carbon is essential for enhancing the capacitance performance and improving the cycling stability and (2) the high conductivity is favorable for improving the rate performance of the materials. The LPCG-based materials have extensive potential for practical applications in energy storage and conversion devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07857a

  4. Combined therapy in children and adolescents with classical Hodgkin's lymphoma: A report from the SFCE on MDH-03 national guidelines.

    PubMed

    Seror, E; Donadieu, J; Pacquement, H; Abbou, S; Lambilliotte, A; Schell, M; Curtillet, C; Gandemer, V; Pasquet, M; Aladjidi, N; Lutz, P; Schmitt, C; Deville, A; Minckes, O; Vanier, J P; Armari-Alla, C; Thomas, C; Gorde-Grosjean, S; Millot, F; Blouin, P; Garnier, N; Coze, C; Devoldere, C; Reguerre, Y; Helfre, S; Claude, L; Clavel, J; Oberlin, O; Landman-Parker, J; Leblanc, T

    Hodgkin's lymphoma (HL) in children and adolescents is highly curable, but children are at risk of long-term toxicity. The MDH-03 guidelines were established in order to decrease the burden of treatment in good-responder patients, and this report should be considered a step toward further optimization of treatment within large collaborative trials. We report the therapy and long-term outcomes of 417 children and adolescents treated according to the national guidelines, which were applied between 2003 and 2007 in France. The patients were stratified into three groups according to disease extension. Chemotherapy consisted of four cycles of VBVP (vinblastine, bleomycin, VP16, prednisone) in localized stages (G1/95 pts/23%), four cycles of COPP/ABV (cyclophosphamide, vincristine, procarbazine, prednisone, adriamycin, bleomycin, vinblastine) cycles in intermediate stages (G2/184 pts/44%) and three cycles of OPPA (vincristine, procarbazine, prednisone, adriamycin) plus three cycles of COPP in advanced stages (G3/138 pts/33%). Radiation therapy of the involved field was given to 97% of the patients, with the dose limited to 20 Gy in good responders (88%). With a median follow-up of 6.6 years, the 5-year event-free survival (EFS) and overall survival (OS) were 86.7% (83.1-89.7%) and 97% (94.5-98.1%), respectively. EFS and OS for G1, G2, and G3 were 98% and 100%, 81% and 97%, and 87% and 95%, respectively. Low-risk patients treated without alkylating agents and anthracycline had excellent outcomes and a low expected incidence of late effects. Intensification with a third OPPA cycle in high-risk group patients, including stage IV patients, allowed for very good outcomes, without increased toxicity.

  5. Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance

    NASA Astrophysics Data System (ADS)

    Wang, Ziya; Wang, Fengping; Li, Yan; Hu, Jianlin; Lu, Yanzhen; Xu, Mei

    2016-03-01

    Structure designing and morphology control can lead to high performance pseudocapacitive materials for supercapacitors. In this work, we have designed interlinked multiphase Fe-doped MnO2 nanostructures (α-MnO2/R-MnO2/ε-MnO2) to enhance the electrochemical properties by a facile method. These hierarchical hollow microspheres assembled by interconnected nanoflakes, and with plenty of porous nanorods radiating from the spherical shells were hydrothermally obtained. The supercapacitor electrode prepared from the unique construction exhibits outstanding specific capacitance of 267.0 F g-1 even under a high mass loading (~5 mg cm-2). Obviously improved performances compared to pure MnO2 are also demonstrated with a good rate capability, high energy density (1.30 mW h cm-3) and excellent cycling stability of 100% capacitance retention after 2000 cycles at 2 A g-1. The synergistic effects of alternative crystal structures, appropriate crystallinity and optimal morphology are identified to be responsible for the observations. This rational multiphase composite strategy provides a promising idea for materials scientists to design and prepare scalable electrode materials for energy storage devices.Structure designing and morphology control can lead to high performance pseudocapacitive materials for supercapacitors. In this work, we have designed interlinked multiphase Fe-doped MnO2 nanostructures (α-MnO2/R-MnO2/ε-MnO2) to enhance the electrochemical properties by a facile method. These hierarchical hollow microspheres assembled by interconnected nanoflakes, and with plenty of porous nanorods radiating from the spherical shells were hydrothermally obtained. The supercapacitor electrode prepared from the unique construction exhibits outstanding specific capacitance of 267.0 F g-1 even under a high mass loading (~5 mg cm-2). Obviously improved performances compared to pure MnO2 are also demonstrated with a good rate capability, high energy density (1.30 mW h cm-3) and excellent cycling stability of 100% capacitance retention after 2000 cycles at 2 A g-1. The synergistic effects of alternative crystal structures, appropriate crystallinity and optimal morphology are identified to be responsible for the observations. This rational multiphase composite strategy provides a promising idea for materials scientists to design and prepare scalable electrode materials for energy storage devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08857g

  6. Self-assembled LiFePO4 nanowires with high rate capability for Li-ion batteries.

    PubMed

    Peng, Lele; Zhao, Yu; Ding, Yu; Yu, Guihua

    2014-08-28

    Controlling the dimensions in the nanometer scale of olivine-type LiFePO4 has been regarded as one of the most effective strategies to improve its electrochemical performance for Li-ion batteries. In this communication, we demonstrate a novel LiFePO4 nanoarchitecture, which is composed of self-assembled single-crystalline nanowires and exhibits good rate capability with a reversible capacity of ∼110 mA h g(-1) at a current rate of 30 C, and a stable capacity retention of ∼86% after 1000 cycles at a current rate of 10 C.

  7. An adsorption of carbon dioxide on activated carbon controlled by temperature swing adsorption

    NASA Astrophysics Data System (ADS)

    Tomas, Korinek; Karel, Frana

    2017-09-01

    This work deals with a method of capturing carbon dioxide (CO2) in indoor air. Temperature Swing Adsorption (TSA) on solid adsorbent was chosen for CO2 capture. Commercial activated carbon (AC) in form of extruded pellets was used as a solid adsorbent. There was constructed a simple device to testing effectiveness of CO2 capture in a fixed bed with AC. The TSA cycle was also simulated using the open-source software OpenFOAM. There was a good agreement between results obtained from numerical simulations and experimental data for adsorption process.

  8. Association Between Progesterone Elevation on the Day of Human Chronic Gonadotropin Trigger and Pregnancy Outcomes After Fresh Embryo Transfer in In Vitro Fertilization/Intracytoplasmic Sperm Injection Cycles.

    PubMed

    Esteves, Sandro C; Khastgir, Gautam; Shah, Jatin; Murdia, Kshitiz; Gupta, Shweta Mittal; Rao, Durga G; Dash, Soumyaroop; Ingale, Kundan; Patil, Milind; Moideen, Kunji; Thakor, Priti; Dewda, Pavitra

    2018-01-01

    Progesterone elevation (PE) during the late follicular phase of controlled ovarian stimulation in fresh embryo transfer in vitro fertilization (IVF)/intracytoplasmic sperm injection cycles has been claimed to be associated with decreased pregnancy rates. However, the evidence is not unequivocal, and clinicians still have questions about the clinical validity of measuring P levels during the follicular phase of stimulated cycles. We reviewed the existing literature aimed at answering four relevant clinical questions, namely (i) Is gonadotropin type associated with PE during the follicular phase of stimulated cycles? (ii) Is PE on the day of human chorionic gonadotropin (hCG) associated with negative fresh embryo transfer IVF/intracytoplasmic sperm injection (ICSI) cycles outcomes in all patient subgroups? (iii) Which P thresholds are best to identify patients at risk of implantation failure due to PE in a fresh embryo transfer? and (iv) Should a freeze all policy be adopted in all the cycles with PE on the day of hCG? The existing evidence indicates that late follicular phase progesterone rise in gonadotropin releasing analog cycles is mainly caused by the supraphysiological stimulation of granulosa cells with exogenous follicle-stimulating hormone. Yet, the type of gonadotropin used for stimulation seems to play no significant role on progesterone levels at the end of stimulation. Furthermore, PE is not a universal phenomenon with evidence indicating that its detrimental consequences on pregnancy outcomes do not affect all patient populations equally. Patients with high ovarian response to control ovarian stimulation are more prone to exhibit PE at the late follicular phase. However, in studies showing an overall detrimental effect of PE on pregnancy rates, the adverse effect of PE on endometrial receptivity seems to be offset, at least in part, by the availability of good quality embryo for transfer in women with a high ovarian response. Given the limitations of the currently available assays to measure progesterone at low ranges, caution should be applied to adopt specific cutoff values above which the effect of progesterone rise could be considered detrimental and to recommend "freeze-all" based solely on pre-defined cutoff points.

  9. Thermal control systems for low-temperature heat rejection on a lunar base

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Gottmann, Matthias

    1992-01-01

    In this report, Rankine-cycle heat pumps and absorption heat pumps (ammonia-water and lithium bromide-water) have been analyzed and optimized for a lunar base cooling load of 100 kW. For the Rankine cycle, a search of several commonly used commercial refrigerants provided R11 and R717 as possible working fluids. Hence, the Rankine-cycle analysis has been performed for both R11 and R717. Two different configurations were considered for the system--one in which the heat pump is directly connected to the rejection loop and another in which a heat exchanger connects the heat pump to the rejection loop. For a marginal increase in mass, the decoupling of the rejection loop and the radiator from the heat pump provides greater reliability of the system and better control. Hence, the decoupled system is the configuration of choice. The optimal TCS mass for a 100 kW cooling load at 270 K was 5940 kg at a radiator temperature of 362 K. R11 was the working fluid in the heat pump, and R717 was the transport fluid in the rejection loop. Two TCS's based on an absorption-cycle heat pump were considered, one with an ammonia-water mixture and the other with a lithium bromide-water mixture as the working fluid. A complete cycle analysis was performed for these systems. The system components were approximated as heat exchangers with no internal pressure drop for the mass estimate. This simple approach underpredicts the mass of the systems, but is a good 'optimistic' first approximation to the TCS mass in the absence of reliable component mass data. The mass estimates of the two systems reveal that, in spite of this optimistic estimate, the absorption heat pumps are not competitive with the Rankine-cycle heat pumps. Future work at the systems level will involve similar analyses for the Brayton- and Stirling-cycle heat pumps. The analyses will also consider the operation of the pump under partial-load conditions. On the component level, a capillary evaporator will be designed, built, and tested in order to investigate its suitability in lunar base TCS and microgravity two-phase applications.

  10. Constant speed control of four-stroke micro internal combustion swing engine

    NASA Astrophysics Data System (ADS)

    Gao, Dedong; Lei, Yong; Zhu, Honghai; Ni, Jun

    2015-09-01

    The increasing demands on safety, emission and fuel consumption require more accurate control models of micro internal combustion swing engine (MICSE). The objective of this paper is to investigate the constant speed control models of four-stroke MICSE. The operation principle of the four-stroke MICSE is presented based on the description of MICSE prototype. A two-level Petri net based hybrid model is proposed to model the four-stroke MICSE engine cycle. The Petri net subsystem at the upper level controls and synchronizes the four Petri net subsystems at the lower level. The continuous sub-models, including breathing dynamics of intake manifold, thermodynamics of the chamber and dynamics of the torque generation, are investigated and integrated with the discrete model in MATLAB Simulink. Through the comparison of experimental data and simulated DC voltage output, it is demonstrated that the hybrid model is valid for the four-stroke MICSE system. A nonlinear model is obtained from the cycle average data via the regression method, and it is linearized around a given nominal equilibrium point for the controller design. The feedback controller of the spark timing and valve duration timing is designed with a sequential loop closing design approach. The simulation of the sequential loop closure control design applied to the hybrid model is implemented in MATLAB. The simulation results show that the system is able to reach its desired operating point within 0.2 s, and the designed controller shows good MICSE engine performance with a constant speed. This paper presents the constant speed control models of four-stroke MICSE and carries out the simulation tests, the models and the simulation results can be used for further study on the precision control of four-stroke MICSE.

  11. A Thin Film Flexible Supercapacitor Based on Oblique Angle Deposited Ni/NiO Nanowire Arrays.

    PubMed

    Ma, Jing; Liu, Wen; Zhang, Shuyuan; Ma, Zhe; Song, Peishuai; Yang, Fuhua; Wang, Xiaodong

    2018-06-11

    With high power density, fast charging-discharging speed, and a long cycling life, supercapacitors are a kind of highly developed novel energy-storage device that has shown a growing performance and various unconventional shapes such as flexible, linear-type, stretchable, self-healing, etc. Here, we proposed a rational design of thin film, flexible micro-supercapacitors with in-plane interdigital electrodes, where the electrodes were fabricated using the oblique angle deposition technique to grow oblique Ni/NiO nanowire arrays directly on polyimide film. The obtained electrodes have a high specific surface area and good adhesion to the substrate compared with other in-plane micro-supercapacitors. Meanwhile, the as-fabricated micro-supercapacitors have good flexibility and satisfactory energy-storage performance, exhibiting a high specific capacity of 37.1 F/cm³, a high energy density of 5.14 mWh/cm³, a power density of up to 0.5 W/cm³, and good stability during charge-discharge cycles and repeated bending-recovery cycles, respectively. Our micro-supercapacitors can be used as ingenious energy storage devices for future portable and wearable electronic applications.

  12. Coupled Oscillator Model of the Business Cycle withFluctuating Goods Markets

    NASA Astrophysics Data System (ADS)

    Ikeda, Y.; Aoyama, H.; Fujiwara, Y.; Iyetomi, H.; Ogimoto, K.; Souma, W.; Yoshikawa, H.

    The sectoral synchronization observed for the Japanese business cycle in the Indices of Industrial Production data is an example of synchronization. The stability of this synchronization under a shock, e.g., fluctuation of supply or demand, is a matter of interest in physics and economics. We consider an economic system made up of industry sectors and goods markets in order to analyze the sectoral synchronization observed for the Japanese business cycle. A coupled oscillator model that exhibits synchronization is developed based on the Kuramoto model with inertia by adding goods markets, and analytic solutions of the stationary state and the coupling strength are obtained. We simulate the effects on synchronization of a sectoral shock for systems with different price elasticities and the coupling strengths. Synchronization is reproduced as an equilibrium solution in a nearest neighbor graph. Analysis of the order parameters shows that the synchronization is stable for a finite elasticity, whereas the synchronization is broken and the oscillators behave like a giant oscillator with a certain frequency additional to the common frequency for zero elasticity.

  13. Understanding growth and development of forage plants

    USDA-ARS?s Scientific Manuscript database

    Understanding the developmental morphology of forage plants is important for making good management decisions. Many such decisions involve timing the initiation or termination of a management practice to a particular stage of development in the life cycle of the forage. The life cycles of forage pl...

  14. Examining Language To Capture Scientific Understandings: The Case of the Water Cycle.

    ERIC Educational Resources Information Center

    Varelas, Maria; Pappas, Christine; Barry, Anne; O'Neill, Amy

    2001-01-01

    Presents units that address states of matter and changes of states of matter linked with the water cycle and integrates literacy and science. Discusses the language in science books. Lists characteristics of good science inquiry units. (Contains 11 references.) (ASK)

  15. Analysis and modeling of the seasonal South China Sea temperature cycle using remote sensing

    NASA Astrophysics Data System (ADS)

    Twigt, Daniel J.; de Goede, Erik D.; Schrama, Ernst J. O.; Gerritsen, Herman

    2007-10-01

    The present paper describes the analysis and modeling of the South China Sea (SCS) temperature cycle on a seasonal scale. It investigates the possibility to model this cycle in a consistent way while not taking into account tidal forcing and associated tidal mixing and exchange. This is motivated by the possibility to significantly increase the model’s computational efficiency when neglecting tides. The goal is to develop a flexible and efficient tool for seasonal scenario analysis and to generate transport boundary forcing for local models. Given the significant spatial extent of the SCS basin and the focus on seasonal time scales, synoptic remote sensing is an ideal tool in this analysis. Remote sensing is used to assess the seasonal temperature cycle to identify the relevant driving forces and is a valuable source of input data for modeling. Model simulations are performed using a three-dimensional baroclinic-reduced depth model, driven by monthly mean sea surface anomaly boundary forcing, monthly mean lateral temperature, and salinity forcing obtained from the World Ocean Atlas 2001 climatology, six hourly meteorological forcing from the European Center for Medium range Weather Forecasting ERA-40 dataset, and remotely sensed sea surface temperature (SST) data. A sensitivity analysis of model forcing and coefficients is performed. The model results are quantitatively assessed against climatological temperature profiles using a goodness-of-fit norm. In the deep regions, the model results are in good agreement with this validation data. In the shallow regions, discrepancies are found. To improve the agreement there, we apply a SST nudging method at the free water surface. This considerably improves the model’s vertical temperature representation in the shallow regions. Based on the model validation against climatological in situ and SST data, we conclude that the seasonal temperature cycle for the deep SCS basin can be represented to a good degree. For shallow regions, the absence of tidal mixing and exchange has a clear impact on the model’s temperature representation. This effect on the large-scale temperature cycle can be compensated to a good degree by SST nudging for diagnostic applications.

  16. Laser cooling of BaF

    NASA Astrophysics Data System (ADS)

    Bo, Yan; Bu, Wenhao; Chen, Tao; Lv, Guitao

    2017-04-01

    In this poster, we report our recently experimental progresses in laser cooling of BaF molecule. Our theoretic calculation shows BaF is a good candidate for laser cooling: quasi-cycling transitions, good wavelengths (around 900nm) for the main transitions. We have built a 4K cryogenic machine, laser ablate the target to make BaF molecules. The precise spectroscopy of BaF is measured and the laser cooling related transitions are identified. The collision between BaF and 4K He is carefully characterized. The quasi-cycling transition is demonstrated. And laser cooling experiment is going on.

  17. Liquid Oxygen Thermodynamic Vent System Testing with Helium Pressurization

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.

    2014-01-01

    This report presents the results of several thermodynamic vent system (TVS) tests with liquid oxygen plus a test with liquid nitrogen. In all tests, the liquid was heated above its normal boiling point to 111 K for oxygen and 100 K for nitrogen. The elevated temperature was representative of tank conditions for a candidate lunar lander ascent stage. An initial test series was conducted with saturated oxygen liquid and vapor at 0.6 MPa. The initial series was followed by tests where the test tank was pressurized with gaseous helium to 1.4 to 1.6 MPa. For these tests, the helium mole fraction in the ullage was quite high, about 0.57 to 0.62. TVS behavior is different when helium is present than when helium is absent. The tank pressure becomes the sum of the vapor pressure and the partial pressure of helium. Therefore, tank pressure depends not only on temperature, as is the case for a pure liquid-vapor system, but also on helium density (i.e., the mass of helium divided by the ullage volume). Thus, properly controlling TVS operation is more challenging with helium pressurization than without helium pressurization. When helium was present, the liquid temperature would rise with each successive TVS cycle if tank pressure was kept within a constant control band. Alternatively, if the liquid temperature was maintained within a constant TVS control band, the tank pressure would drop with each TVS cycle. The final test series, which was conducted with liquid nitrogen pressurized with helium, demonstrated simultaneous pressure and temperature control during TVS operation. The simultaneous control was achieved by systematic injection of additional helium during each TVS cycle. Adding helium maintained the helium partial pressure as the liquid volume decreased because of TVS operation. The TVS demonstrations with liquid oxygen pressurized with helium were conducted with three different fluid-mixer configurations-a submerged axial jet mixer, a pair of spray hoops in the tank ullage, and combined use of the axial jet and spray hoops. A submerged liquid pump and compact heat exchanger located inside the test tank were used with all the mixer configurations. The initial series without helium and the final series with liquid nitrogen both used the axial jet mixer. The axial jet configuration successfully demonstrated the ability to control tank pressure; but in the normal-gravity environment, the temperature in the upper tank region (ullage and unwetted wall) was not controlled. The spray hoops and axial jet combination also successfully demonstrated pressure control as well as temperature control of the entire tank and contents. The spray-hoops-only configuration was not expected to be a reliable means of tank mixing because there was no direct means to produce liquid circulation. However, surprisingly good results also were obtained with the sprayhoops- only configuration (i.e., performance metrics such as cycle-averaged vent flowrate were similar to those obtained with the other configurations). A simple thermodynamic model was developed that correctly predicted the TVS behavior (temperature rise or pressure drop per TVS cycle) when helium was present in the ullage. The model predictions were correlated over a range of input parameters. The correlations show that temperature rise or pressure drop per cycle was proportional to both helium mole fraction and tank heat input. The response also depended on the tank fill fraction: the temperature rise or pressure drop (per TVS cycle) increased as the ullage volume decreased.

  18. Effects of Reducing Antimicrobial Use and Applying a Cleaning and Disinfection Program in Veal Calf Farming: Experiences from an Intervention Study to Control Livestock-Associated MRSA

    PubMed Central

    Bos, Marian E. H.; Verstappen, Koen M.; Van Cleef, Brigitte A. G. L.; Kluytmans, Jan A. J. W.; Wagenaar, Jaap A.; Heederik, Dick J. J.

    2015-01-01

    With the ultimate aim of containing the emergence of resistant bacteria, a Dutch policy was set in place in 2010 promoting a reduction of antimicrobial use (AMU) in food-producing animals. In this context, a study evaluated strategies to curb livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA). Fifty-one veal calf farms were assigned to one of 3 study arms: RAB farms reducing antimicrobials by protocol; RAB-CD farms reducing antimicrobials by protocol and applying a cleaning and disinfection program; and Control farms without interventions. MRSA carriage was tested in week 0 and week 12 of 2 consecutive production cycles in farmers, family members and veal calves. Interventions were validated and a cyclic rise in MRSA-prevalence in animals was shown with a more moderate increase in RAB farms. Prevalence in humans declined parallel over time in the study arms but RAB farms were at the lowest MRSA levels from the beginning of the study. In RAB-CD farms, human and animal prevalence did not differ from Control farms and MRSA air loads were significantly higher than in the other study arms. Mimicking the national trend, an overall AMU decrease (daily dosages per animal per cycle (DDDA/C)) was observed over 4 pre-study and the 2 study cycles; this trend did not have a significant effect on a set of evaluated farm technical parameters. AMU was positively associated with MRSA across study arms (ORs per 10 DDDA/C increase = 1.26 for both humans (p = 0.07) and animals (p = 0.12 in first cycle)). These results suggest that AMU reduction might be a good strategy for curbing MRSA in veal calf farming, however the specific cleaning and disinfecting program in RAB-CD farms was not effective. The drop in MRSA prevalence in people during the study could be attributed to the observed long-term AMU decreasing trend. PMID:26305895

  19. Effects of Reducing Antimicrobial Use and Applying a Cleaning and Disinfection Program in Veal Calf Farming: Experiences from an Intervention Study to Control Livestock-Associated MRSA.

    PubMed

    Dorado-García, Alejandro; Graveland, Haitske; Bos, Marian E H; Verstappen, Koen M; Van Cleef, Brigitte A G L; Kluytmans, Jan A J W; Wagenaar, Jaap A; Heederik, Dick J J

    2015-01-01

    With the ultimate aim of containing the emergence of resistant bacteria, a Dutch policy was set in place in 2010 promoting a reduction of antimicrobial use (AMU) in food-producing animals. In this context, a study evaluated strategies to curb livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA). Fifty-one veal calf farms were assigned to one of 3 study arms: RAB farms reducing antimicrobials by protocol; RAB-CD farms reducing antimicrobials by protocol and applying a cleaning and disinfection program; and Control farms without interventions. MRSA carriage was tested in week 0 and week 12 of 2 consecutive production cycles in farmers, family members and veal calves. Interventions were validated and a cyclic rise in MRSA-prevalence in animals was shown with a more moderate increase in RAB farms. Prevalence in humans declined parallel over time in the study arms but RAB farms were at the lowest MRSA levels from the beginning of the study. In RAB-CD farms, human and animal prevalence did not differ from Control farms and MRSA air loads were significantly higher than in the other study arms. Mimicking the national trend, an overall AMU decrease (daily dosages per animal per cycle (DDDA/C)) was observed over 4 pre-study and the 2 study cycles; this trend did not have a significant effect on a set of evaluated farm technical parameters. AMU was positively associated with MRSA across study arms (ORs per 10 DDDA/C increase = 1.26 for both humans (p = 0.07) and animals (p = 0.12 in first cycle)). These results suggest that AMU reduction might be a good strategy for curbing MRSA in veal calf farming, however the specific cleaning and disinfecting program in RAB-CD farms was not effective. The drop in MRSA prevalence in people during the study could be attributed to the observed long-term AMU decreasing trend.

  20. Learning outcomes through the cooperative learning team assisted individualization on research methodology’ course

    NASA Astrophysics Data System (ADS)

    Pakpahan, N. F. D. B.

    2018-01-01

    All articles must contain an abstract. The research methodology is a subject in which the materials must be understood by the students who will take the thesis. Implementation of learning should create the conditions for active learning, interactive and effective are called Team Assisted Individualization (TAI) cooperative learning. The purpose of this study: 1) improving student learning outcomes at the course research methodology on TAI cooperative learning. 2) improvement of teaching activities. 3) improvement of learning activities. This study is a classroom action research conducted at the Department of Civil Engineering Universitas Negeri Surabaya. The research subjects were 30 students and lecturer of courses. Student results are complete in the first cycle by 20 students (67%) and did not complete 10 students (33%). In the second cycle students who complete being 26 students (87%) and did not complete 4 students (13%). There is an increase in learning outcomes by 20%. Results of teaching activities in the first cycle obtained the value of 3.15 with the criteria enough well. In the second cycle obtained the value of 4.22 with good criterion. The results of learning activities in the first cycle obtained the value of 3.05 with enough criterion. In the second cycle was obtained 3.95 with good criterion.

  1. Pregnancy rates after artificial insemination with cooled stallion spermatozoa either with or without single layer centrifugation.

    PubMed

    Morrell, J M; Richter, J; Martinsson, G; Stuhtmann, G; Hoogewijs, M; Roels, K; Dalin, A-M

    2014-11-01

    A successful outcome after artificial insemination with cooled semen is dependent on many factors, the sperm quality of the ejaculate being one. Previous studies have shown that spermatozoa with good motility, normal morphology, and good chromatin integrity can be selected by means of colloid centrifugation, particularly single layer centrifugation (SLC) using species-specific colloids. The purpose of the present study was to conduct an insemination trial with spermatozoa from "normal" ejaculates, i.e., from stallions with no known fertility problem, to determine whether the improvements in sperm quality seen in SLC-selected sperm samples compared with uncentrifuged controls in laboratory tests are reflected in an increased pregnancy rate after artificial insemination. In a multicentre study, SLC-selected sperm samples and uncentrifuged controls from eight stallions were inseminated into approximately 10 mares per treatment per stallion. Ultrasound examination was carried out approximately 16 days after insemination to detect an embryonic vesicle. The pregnancy rates per cycle were 45% for controls and 69% for SLC-selected sperm samples, which is statistically significant (P < 0.0018). Thus, the improvement in sperm quality reported previously for SLC-selected sperm samples is associated with an increase in pregnancy rate, even for ejaculates from stallions with no known fertility problem. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The Peculiar Solar Minimum 23/24 Revealed by the Microwave Butterfly Diagram

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk; Yashiro, Seiji; Makela, Pertti; Shibasaki, Kiyoto; Hathaway, David

    2010-01-01

    The diminished polar magnetic field strength during the minimum between cycles 23 and 24 is also reflected in the thermal radio emission originating from the polar chromosphere. During solar minima, the polar corona has extended coronal holes containing intense unipolar flux. In microwave images, the coronal holes appear bright, with a brightness enhancement of 500 to 2000 K with respect to the quiet Sun. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is approx.10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radioheliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approx.250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes..

  3. Global perspectives on ensuring the safety of pharmaceutical products in the distribution process
.

    PubMed

    Jeong, Sohyun; Ji, Eunhee

    2018-01-01

    The distribution of counterfeit or falsified drugs is increasing worldwide. This can contribute to the high burden of disease and cost to society and is of global concern with the worldwide circulation of pharmaceuticals. The preparation and implementation of good distribution practice should be one of the most important aspects of ensuring safe drug circulation and administration. This research aimed to compare and analyze good distribution practice guidelines from advanced countries and international organizations, and to evaluate the status of the current good distribution practice guidelines in the world. Advanced pharmaceutical countries and international organizations, such as the World Health Organization, European Union, Pharmaceutical Inspection Co-operation Scheme, United States of America, Canada, and Australia, which have stable good distribution practice guidelines and public confidence, were included in the analysis. The World Health Organization and European Union guidelines are models for standardized good distribution practice for nations worldwide. The United States of America has a combination of four different series of distribution practices which have a unique structure and detailed content compared to those of other countries. The Canadian guidelines focus on temperature control during storage and transportation. The Australian guidelines apply to both classes of medicinal products and medical devices and need separate standardization. Transparent information about the Internet chain, international cooperation regarding counterfeiting, a high-standard qualification of sellers and customers, and technology to track and trace the whole life cycle of drugs should be the main focus of future good distribution practice guidelines worldwide.
.

  4. Controllable in situ synthesis of epsilon manganese dioxide hollow structure/RGO nanocomposites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Lin, Mei; Chen, Bolei; Wu, Xiao; Qian, Jiasheng; Fei, Linfeng; Lu, Wei; Chan, Lai Wa Helen; Yuan, Jikang

    2016-01-01

    Well-organized epsilon-MnO2 hollow spheres/reduced graphene oxide (MnO2HS/RGO) composites have been successfully constructed via a facile and one-pot synthetic route. The ε-MnO2 hollow spheres with the diameter of ~500 nm were grown in situ with homogeneous distribution on both sides of graphene oxide (GO) sheets in aqueous suspensions. The formation mechanism of the MnO2HS/RGO composites has been systematically investigated, and a high specific capacitance and good cycling capability were achieved on using the composites as supercapacitors. The galvanostatic charge/discharge curves show a specific capacitance of 471.5 F g-1 at 0.8 A g-1. The hollow structures of ε-MnO2 and the crumpled RGO sheets can enhance the electroactive surface area and improve the electrical conductivity, thus further facilitating the charge transport. The MnO2HS/RGO composite exhibits a high capacitance of 272 F g-1 at 3 A g-1 (92% retention) even after 1000 cycles. The prominent electrochemical performance might be attributed to the combination of the pseudo-capacitance of the MnO2 nanospheres with a hollow structure and to the good electrical conductivity of the RGO sheets. This work explores a new concept in designing metal oxides/RGO composites as electrode materials.Well-organized epsilon-MnO2 hollow spheres/reduced graphene oxide (MnO2HS/RGO) composites have been successfully constructed via a facile and one-pot synthetic route. The ε-MnO2 hollow spheres with the diameter of ~500 nm were grown in situ with homogeneous distribution on both sides of graphene oxide (GO) sheets in aqueous suspensions. The formation mechanism of the MnO2HS/RGO composites has been systematically investigated, and a high specific capacitance and good cycling capability were achieved on using the composites as supercapacitors. The galvanostatic charge/discharge curves show a specific capacitance of 471.5 F g-1 at 0.8 A g-1. The hollow structures of ε-MnO2 and the crumpled RGO sheets can enhance the electroactive surface area and improve the electrical conductivity, thus further facilitating the charge transport. The MnO2HS/RGO composite exhibits a high capacitance of 272 F g-1 at 3 A g-1 (92% retention) even after 1000 cycles. The prominent electrochemical performance might be attributed to the combination of the pseudo-capacitance of the MnO2 nanospheres with a hollow structure and to the good electrical conductivity of the RGO sheets. This work explores a new concept in designing metal oxides/RGO composites as electrode materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07900d

  5. Ferritin-Triggered Redox Cycling for Highly Sensitive Electrochemical Immunosensing of Protein.

    PubMed

    Akanda, Md Rajibul; Ju, Huangxian

    2018-06-04

    Electrochemical immunoassay amplified with redox cycling has become a challenging topic in highly sensitive analysis of biomarkers. Here a ferritin-triggered redox cycling is reported by using a highly outersphere reaction-philic (OSR-philic) redox mediator ruthenium hexamine (Ru(NH3)63+) to perform the OSR-philic/innersphere reaction-philic (ISR-philic) controlled signal amplification. The screened mediator can meet the needs of lower E0 than ferritin, low reactivity with ISR-philic species, and quick electron exchange with ferritin redox couple. The ferritin-labeled antibody is firstly bounded to immunosensor surface by recognizing the target antigen capured by the immobilized primary antibody. The ferritin then mediates OSR-philic/ISR-philic transfer from Ru(NH3)63+/2+/immunosensor to ferritin-H2O2 redox system. The fast mediation and excellent resistant of highly OSR-philic Ru(NH3)63+ against radical oxygen species lead to highly sensitive electrochemical readout and high signal-to-background ratio. The proposed redox cycling greatly enhances the readout signal and the sensitivity of traditional ferritin-labelled sandwich immunoassay. Using Enteropathogenic Coli (E. Coli) antigen as a model analyte, the developed method shows excellent linearity over the concentration range from 10.0 pg/mL to 0.1 µg/mL and a detection limit of 10.0 fg/mL. The acceptable accuracy, good reproducibility and selectivity of the proposed immunoassay method in real samples indicate the superior practicability of the ferritin-triggered redox cycling.

  6. Facile Co-Electrodeposition Method for High-Performance Supercapacitor Based on Reduced Graphene Oxide/Polypyrrole Composite Film.

    PubMed

    Chen, Junchen; Wang, Yaming; Cao, Jianyun; Liu, Yan; Zhou, Yu; Ouyang, Jia-Hu; Jia, Dechang

    2017-06-14

    A facile co-electrodeposition method has been developed to fabricate reduced graphene oxide/polypyrrole (rGO/PPy) composite films, with sodium dodecyl benzene sulfonate as both a surfactant and supporting electrolyte in the precursor solution. The introduction of rGO into the PPy films forms porous structure and enhances the conductivity across the film, leading to superior electrochemical performance. By controlling the deposition time and rGO concentration, the highest area capacitance can reach 411 mF/cm 2 (0.2 mA/cm 2 ) for rGO/PPy films, whereas optimized specific capacitance is as high as 361 F/g (0.2 mA/cm 2 ). All of the composite films exhibit excellent rate capability (at least 175 F/g at the current density of 12 mA/cm 2 ) compared with pure PPy film (only 12 F/g at the current density of 12 mA/cm 2 ). The rGO/PPy composite exhibits excellent cycling stability that maintains 104% of its initial capacitance after cycling for 2000 cycles and 80% for 5000 cycles. The two-electrode solid-state supercapacitor (SC) based on rGO/PPy composite electrodes demonstrates good rate performance, excellent cycling stability, as well as a high area capacitance of 222 mF/cm 2 . The solid-state planar SC based on the rGO/PPy composite exhibits an area capacitance of 9.4 mF/cm 2 , demonstrating great potential for fabrication of microsupercapacitors.

  7. Shape-Controlled Synthesis of Co2P Nanostructures and Their Application in Supercapacitors.

    PubMed

    Chen, Xiaojuan; Cheng, Ming; Chen, Di; Wang, Rongming

    2016-02-17

    Co2P nanostructures with rod-like and flower-like morphologies have been synthesized by controlling the decomposition process of Co(acac)3 in oleylamine system with triphenylphosphine as phosphorus source. Investigations indicate that the final morphologies of the products are determined by their peculiar phosphating processes. Electrochemical measurements manifest that the Co2P nanostructures exhibit excellent morphology-dependent supercapacitor properties. Compared with that of 284 F g(-1) at a current density of 1 A g(-1) for Co2P nanorods, the capacitance for Co2P nanoflowers reaches 416 F g(-1) at the same current density. Furthermore, an optimized asymmetric supercapacitor by using Co2P nanoflowers as anode and graphene as cathode is fabricated. It can deliver a high energy density of 8.8 Wh kg(-1) (at a high power density of 6 kW kg(-1)) and good cycling stability with over 97% specific capacitance remained after 6000 cycles, which makes the Co2P nanostructures potential applications in energy storage/conversion systems. This study paves the way to explore a new class of cobalt phosphide-based materials for supercapacitor applications.

  8. Surface Control of Cold Hibernated Elastic Memory Self-Deployable Structure

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold M.; Ghaffarian, Reza

    2006-01-01

    A new class of simple, reliable, lightweight, low packaging volume and cost, self-deployable structures has been developed for use in space and commercial applications. This technology called 'cold hibernated elastic memory' (CHEM) utilizes shape memory polymers (SMP)in open cellular (foam) structure or sandwich structures made of shape memory polymer foam cores and polymeric composite skins. Some of many potential CHEM space applications require a high precision deployment and surface accuracy during operation. However, a CHEM structure could be slightly distorted by the thermo-mechanical processing as well as by thermal space environment Therefore, the sensor system is desirable to monitor and correct the potential surface imperfection. During these studies, the surface control of CHEM smart structures was demonstrated using a Macro-Fiber Composite (MFC) actuator developed by the NASA LaRC and US Army ARL. The test results indicate that the MFC actuator performed well before and after processing cycles. It reduced some residue compressive strain that in turn corrected very small shape distortion after each processing cycle. The integrated precision strain gages were detecting only a small flat shape imperfection indicating a good recoverability of original shape of the CHEM test structure.

  9. Decision support for risk prioritisation of environmental health hazards in a UK city.

    PubMed

    Woods, Mae; Crabbe, Helen; Close, Rebecca; Studden, Mike; Milojevic, Ai; Leonardi, Giovanni; Fletcher, Tony; Chalabi, Zaid

    2016-03-08

    There is increasing appreciation of the proportion of the health burden that is attributed to modifiable population exposure to environmental health hazards. To manage this avoidable burden in the United Kingdom (UK), government policies and interventions are implemented. In practice, this procedure is interdisciplinary in action and multi-dimensional in context. Here, we demonstrate how Multi Criteria Decision Analysis (MCDA) can be used as a decision support tool to facilitate priority setting for environmental public health interventions within local authorities. We combine modelling and expert elicitation to gather evidence on the impacts and ranking of interventions. To present the methodology, we consider a hypothetical scenario in a UK city. We use MCDA to evaluate and compare the impact of interventions to reduce the health burden associated with four environmental health hazards and rank them in terms of their overall performance across several criteria. For illustrative purposes, we focus on heavy goods vehicle controls to reduce outdoor air pollution, remediation to control levels of indoor radon, carbon monoxide and fitting alarms, and encouraging cycling to target the obesogenic environment. Regional data was included as model evidence to construct a ratings matrix for the city. When MCDA is performed with uniform weights, the intervention of heavy goods vehicle controls to reduce outdoor air pollution is ranked the highest. Cycling and the obesogenic environment is ranked second. We argue that a MCDA based approach provides a framework to guide environmental public health decision makers. This is demonstrated through an online interactive MCDA tool. We conclude that MCDA is a transparent tool that can be used to compare the impact of alternative interventions on a set of pre-defined criteria. In our illustrative example, we ranked the best intervention across the equally weighted selected criteria out of the four alternatives. Further work is needed to test the tool with decision makers and stakeholders.

  10. Flexible muscle modes and synergies in challenging whole-body tasks.

    PubMed

    Danna-Dos-Santos, Alessander; Degani, Adriana M; Latash, Mark L

    2008-08-01

    We used the idea of hierarchical control to study multi-muscle synergies during a whole-body sway task performed by a standing person. Within this view, at the lower level of the hierarchy, muscles are united into groups (M-modes). At the higher level, gains at the M-modes are co-varied by the controller in a task-specific way to ensure low variability of important physical variables. In particular, we hypothesized that (1) the composition of M-modes could adjust and (2) an index of M-mode co-variation would become weaker in more challenging conditions. Subjects were required to perform a whole-body sway at 0.5 Hz paced by a metronome. They performed the task with eyes open and closed, while standing on both feet or on one foot only, with and without vibration applied to the Achilles tendons. Integrated indices of muscle activation were subjected to principal component analysis to identify M-modes. An increase in the task complexity led to an increase in the number of principal components that contained significantly loaded indices of muscle activation from 3 to 5. Hence, in more challenging tasks, the controller manipulated a larger number of variables. Multiple regression analysis was used to define the Jacobian of the system mapping small changes in M-mode gains onto shifts of the center of pressure (COP) in the anterior-posterior direction. Further, the variance in the M-mode space across sway cycles was partitioned into two components, one that did not affect an average across cycles COP coordinate and the other that did (good and bad variance, respectively). Under all conditions, the subjects showed substantially more good variance than bad variance interpreted as a multi-M-mode synergy stabilizing the COP trajectory. An index of the strength of the synergy was comparable across all conditions, and there was no modulation of this index over the sway cycle. Hence, our first hypothesis that the composition of M-modes could adjust under challenging conditions has been confirmed while the second hypothesis stating that the index of M-mode co-variation would become weaker in more challenging conditions has been falsified. We interpret the observations as suggesting that adjustments at the lower level of the hierarchy-in the M-mode composition-allowed the subjects to maintain a comparable level of stabilization of the COP trajectory in more challenging tasks. The findings support the (at least) two-level hierarchical control scheme of whole-body movements.

  11. Flexible Muscle Modes and Synergies in Challenging Whole-Body Tasks

    PubMed Central

    Danna-dos-Santos, Alessander; Degani, Adriana M.; Latash, Mark L.

    2008-01-01

    We used the idea of hierarchical control to study multi-muscle synergies during a whole-body sway task performed by a standing person. Within this view, at the lower level of the hierarchy, muscles are united into groups (M-modes). At the higher level, gains at the M-modes are co-varied by the controller in a task specific way to ensure low variability of important physical variables. In particular, we hypothesized that (1) the composition of M-modes could adjust and (2) an index of M-mode co-variation would become weaker in more challenging conditions. Subjects were required to perform a whole-body sway at 0.5 Hz paced by a metronome. They performed the task with eyes open and closed, while standing on both feet or on one foot only, with and without vibration applied to the Achilles tendons. Integrated indices of muscle activation were subjected to principal component analysis to identify M-modes. An increase in the task complexity led to an increase in the number of principal components that contained significantly loaded indices of muscle activation from 3 to 5. Hence, in more challenging tasks, the controller manipulated a larger number of variables. Multiple regression analysis was used to define the Jacobian of the system mapping small changes in M-mode gains onto shifts of the center of pressure (COP) in the anterior-posterior direction. Further, the variance in the M-mode space across sway cycles was partitioned into two components, one that did not affect an average across cycles COP coordinate and the other that did (good and bad variance, respectively). Under all conditions, the subjects showed substantially more good variance than bad variance interpreted as a multi-M-mode synergy stabilizing the COP trajectory. An index of the strength of the synergy was comparable across all conditions, and there was no modulation of this index over the sway cycle. Hence, our first hypothesis that the composition of M-modes could adjust under challenging conditions has been confirmed while the second hypothesis stating that the index of M-mode co-variation would become weaker in more challenging conditions has been falsified. We interpret the observations as suggesting that adjustments at the lower level of the hierarchy - in the M-mode composition - allowed the subjects to maintain a comparable level of stabilization of the COP trajectory in more challenging tasks. The findings support the (at least) two-level hierarchical control scheme of whole-body movements. PMID:18521583

  12. Development of a neural network technique for KSTAR Thomson scattering diagnostics.

    PubMed

    Lee, Seung Hun; Lee, J H; Yamada, I; Park, Jae Sun

    2016-11-01

    Neural networks provide powerful approaches of dealing with nonlinear data and have been successfully applied to fusion plasma diagnostics and control systems. Controlling tokamak plasmas in real time is essential to measure the plasma parameters in situ. However, the χ 2 method traditionally used in Thomson scattering diagnostics hampers real-time measurement due to the complexity of the calculations involved. In this study, we applied a neural network approach to Thomson scattering diagnostics in order to calculate the electron temperature, comparing the results to those obtained with the χ 2 method. The best results were obtained for 10 3 training cycles and eight nodes in the hidden layer. Our neural network approach shows good agreement with the χ 2 method and performs the calculation twenty times faster.

  13. Supersonic propulsion technology. [variable cycle engines

    NASA Technical Reports Server (NTRS)

    Powers, A. G.; Coltrin, R. E.; Stitt, L. E.; Weber, R. J.; Whitlow, J. B., Jr.

    1979-01-01

    Propulsion concepts for commercial supersonic transports are discussed. It is concluded that variable cycle engines, together with advanced supersonic inlets and low noise coannular nozzles, provide good operating performance for both supersonic and subsonic flight. In addition, they are reasonably quiet during takeoff and landing and have acceptable exhaust emissions.

  14. Thermodynamic design of natural gas liquefaction cycles for offshore application

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung; Lim, Hye Su; Choe, Kun Hyung

    2014-09-01

    A thermodynamic study is carried out for natural gas liquefaction cycles applicable to offshore floating plants, as partial efforts of an ongoing governmental project in Korea. For offshore liquefaction, the most suitable cycle may be different from the on-land LNG processes under operation, because compactness and simple operation are important as well as thermodynamic efficiency. As a turbine-based cycle, closed Claude cycle is proposed to use NG (natural gas) itself as refrigerant. The optimal condition for NG Claude cycle is determined with a process simulator (Aspen HYSYS), and the results are compared with fully-developed C3-MR (propane pre-cooled mixed refrigerant) JT cycles and various N2 (nitrogen) Brayton cycles in terms of efficiency and compactness. The newly proposed NG Claude cycle could be a good candidate for offshore LNG processes.

  15. The porous carbon derived from water hyacinth with well-designed hierarchical structure for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zheng, Kaiwen; Li, Yuanyuan; Zhu, Ming; Yu, Xi; Zhang, Mengyan; Shi, Ling; Cheng, Jue

    2017-10-01

    A hierarchical porous water hyacinth-derived carbon (WHC) is fabricated by pre-carbonization and KOH activation for supercapacitors. The physicochemical properties of WHC are researched by scanning electron microscopy (SEM), N2 adsorption-desorption measurements, X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The results indicate that WHC exhibits hierarchical porous structure and high specific surface area of 2276 m2/g. And the electrochemical properties of WHC are studied by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) tests. In a three-electrode test system, WHC shows considerable specific capacitance of 344.9 F/g at a current density of 0.5 A/g, good rate performance with 225.8 F/g even at a current density of 30 A/g, and good cycle stability with 95% of the capacitance retention after 10000 cycles of charge-discharge at a current density of 5 A/g. Moreover, WHC cell delivers an energy density of 23.8 Wh/kg at 0.5 A/g and a power density of 15.7 kW/kg at 10 A/g. Thus, using water hyacinth as carbon source to fabricate supercapacitors electrodes is a promising approach for developing inexpensive, sustainable and high-performance carbon materials. Additionally, this study supports the sustainable development and the control of biological invasion.

  16. KNT-artificial neural network model for flux prediction of ultrafiltration membrane producing drinking water.

    PubMed

    Oh, H K; Yu, M J; Gwon, E M; Koo, J Y; Kim, S G; Koizumi, A

    2004-01-01

    This paper describes the prediction of flux behavior in an ultrafiltration (UF) membrane system using a Kalman neuro training (KNT) network model. The experimental data was obtained from operating a pilot plant of hollow fiber UF membrane with groundwater for 7 months. The network was trained using operating conditions such as inlet pressure, filtration duration, and feed water quality parameters including turbidity, temperature and UV254. Pre-processing of raw data allowed the normalized input data to be used in sigmoid activation functions. A neural network architecture was structured by modifying the number of hidden layers, neurons and learning iterations. The structure of KNT-neural network with 3 layers and 5 neurons allowed a good prediction of permeate flux by 0.997 of correlation coefficient during the learning phase. Also the validity of the designed model was evaluated with other experimental data not used during the training phase and nonlinear flux behavior was accurately estimated with 0.999 of correlation coefficient and a lower error of prediction in the testing phase. This good flux prediction can provide preliminary criteria in membrane design and set up the proper cleaning cycle in membrane operation. The KNT-artificial neural network is also expected to predict the variation of transmembrane pressure during filtration cycles and can be applied to automation and control of full scale treatment plants.

  17. 40 CFR 86.1830-01 - Acceptance of vehicles for emission testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... good engineering judgment. (3) Test vehicles must have air conditioning installed and operational if... whole-vehicle cycle, all emission-related hardware and software must be installed and operational during.... Manufacturers shall use good engineering judgment in making such determinations. (c) Special provisions for...

  18. 40 CFR 86.1830-01 - Acceptance of vehicles for emission testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... good engineering judgment. (3) Test vehicles must have air conditioning installed and operational if... whole-vehicle cycle, all emission-related hardware and software must be installed and operational during.... Manufacturers shall use good engineering judgment in making such determinations. (c) Special provisions for...

  19. 40 CFR 86.1830-01 - Acceptance of vehicles for emission testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... good engineering judgment. (3) Test vehicles must have air conditioning installed and operational if... whole-vehicle cycle, all emission-related hardware and software must be installed and operational during.... Manufacturers shall use good engineering judgment in making such determinations. (c) Special provisions for...

  20. Endometrial thickness as a predictor of the reproductive outcomes in fresh and frozen embryo transfer cycles: A retrospective cohort study of 1512 IVF cycles with morphologically good-quality blastocyst.

    PubMed

    Zhang, Tao; Li, Zhou; Ren, Xinling; Huang, Bo; Zhu, Guijin; Yang, Wei; Jin, Lei

    2018-01-01

    To evaluate the relationship between endometrial thickness during fresh in vitro fertilization (IVF) cycles and the clinical outcomes of subsequent frozen embryo transfer (FET) cycles.FET cycles using at least one morphological good-quality blastocyst conducted between 2012 and 2013 at a university-based reproductive center were reviewed retrospectively. Endometrial ultrasonographic characteristics were recorded both on the oocyte retrieval day and on the day of progesterone supplementation in FET cycles. Clinical pregnancy rate, spontaneous abortion rate, and live birth rate were analyzed.One thousand five hundred twelve FET cycles was included. The results showed that significant difference in endometrial thickness on day of oocyte retrieval (P = .03) was observed between the live birth group (n = 844) and no live birth group (n = 668), while no significant difference in FET endometrial thickness was found (P = .261) between the live birth group and no live birth group. For endometrial thickness on oocyte retrieval day, clinical pregnancy rate ranged from 50.0% among patients with an endometrial thickness of ≤6 mm to 84.2% among patients with an endometrial thickness of >16 mm, with live birth rate from 33.3% to 63.2%. Multiple logistic regression analysis of factors related to live birth indicated endometrial thickness on oocyte retrieval day was associated with improved live birth rate (OR was 1.069, 95% CI: 1.011-1.130, P = .019), while FET endometrial thickness did not contribute significantly to pregnancy outcomes following FET cycles. The ROC curves revealed the cut-off points of endometrial thickness on oocyte retrieval day was 8.75 mm for live birth.Endometrial thickness during fresh IVF cycles was a better predictor of endometrial receptivity in subsequent FET cycles than FET cycle endometrial thickness. For those females with thin endometrium in fresh cycles, additional estradiol stimulation might be helpful for adequate endometrial development.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghassemi-Armaki, Hassan; Leff, Asher C.; Taheri, Mitra L.

    Compression-compression cyclic deformation of nanocrystalline NiTi tubes intended for medical stents and with an outer diameter of 1 mm and wall thickness of 70 μm was studied using micropillars produced by FIB with the loading axis orthogonal to the tube axis. These micropillars were cycled in a displacement-controlled mode using a nanoindenter equipped with a flat punch to strain levels of 4, 6 and 8% in each cycle and specimens were subjected to several hundred cycles. Furthermore, the cyclic response of two NiTi tubes, one with Af of 17 °C and the other with an Af of -5 °C ismore » compared. The texture of the tube with the Af of -5 °C was measured at the microscopic level using transmission electron microscopy and at the macroscopic level by X-ray diffraction and good agreement was noted. Characteristics such as i) a reduction in the forward transformation stress, ii) increase in maximum stress for a given displacement amplitude, and iii) a reduction in the hysteresis loop area, all with increasing number of cycles, observed typically during cyclic deformation of conventional macroscopic specimens, were captured in the micropillar cyclic tests. Our observations lead to the conclusion that micropillar compression testing in a cyclic mode can enable characterizing the orientation-dependent response in such small dimension components that see complex loading in service, and additionally provide an opportunity for calibrating constitutive equations in micromechanical models.« less

  2. Interior Fracture Mechanism Analysis and Fatigue Life Prediction of Surface-Hardened Gear Steel under Axial Loading.

    PubMed

    Li, Wei; Deng, Hailong; Liu, Pengfei

    2016-10-18

    The interior defect-induced fracture of surface-hardened metallic materials in the long life region has become a key issue on engineering design. In the present study, the axial loading test with fully reversed condition was performed to examine the fatigue property of a surface-carburized low alloy gear steel in the long life region. Results show that this steel represents the duplex S-N (stress-number of cycles) characteristics without conventional fatigue limit related to 10⁷ cycles. Fatigue cracks are all originated from the interior inclusions in the matrix region due to the inhabitation effect of carburized layer. The inclusion induced fracture with fisheye occurs in the short life region below 5 × 10⁵ cycles, whereas the inclusion induced fracture with fine granular area (FGA) and fisheye occurs in the long life region beyond 10⁶ cycles. The stress intensity factor range at the front of FGA can be regarded as the threshold value controlling stable growth of interior long crack. The evaluated maximum inclusion size in the effective damage volume of specimen is about 27.29 μm. Considering the size relationships between fisheye and FGA, and inclusion, the developed life prediction method involving crack growth can be acceptable on the basis of the good agreement between the predicted and experimental results.

  3. Electromagnetic Basis of Metabolism and Heredity

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Stolc, Viktor

    2016-01-01

    Living organisms control their cellular biological clocks to maintain functional oscillation of the redox cycle, also called the "metabolic cycle" or "respiratory cycle". Organization of cellular processes requires parallel processing on a synchronized time-base. These clocks coordinate the timing of all biochemical processes in the cell, including energy production, DNA replication, and RNA transcription. When this universal time keeping function is perturbed by exogenous induction of reactive oxygen species (ROS), the rate of metabolism changes. This causes oxidative stress, aging and mutations. Therefore, good temporal coordination of the redox cycle not only actively prevents chemical conflict between the reductive and oxidative partial reactions; it also maintains genome integrity and lifespan. Moreover, this universal biochemical rhythm can be disrupted by ROS induction in vivo. This in turn can be achieved by blocking the electron transport chain either endogenously or exogenously by various metabolites, e.g. hydrogen sulfide (H2S), highly diffusible drugs, and carbon monoxide (CO). Alternatively, the electron transport in vivo can be attenuated via a coherent or interfering transfer of energy from exogenous ultralow frequency (ULF) and extremely low frequency (ELF) electromagnetic (EM) fields, suggesting that-on Earth-such ambient fields are an omnipresent (and probably crucially important) factor for the time-setting basis of universal biochemical reactions in living cells. Our work demonstrated previously un-described evidence for quantum effects in biology by electromagnetic coupling below thermal noise at the universal electron transport chain (ETC) in vivo.

  4. Wave Fluid Film Bearing Tests for an Aviation Gearbox

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin; Proctor, Margaret P.; Fleming, David P.; Keith, Theo G., Jr.

    2000-01-01

    An oil-lubricated wave journal-thrust bearing assembly was successfully tested at conditions found in general aviation engine gearboxes. The bearing performed well at both steady state conditions and in start-stop tests. It ran stably under all loading conditions, including zero load, at all speeds up to 16 000 rpm. The bearing carried 25 percent more load than required for the gearbox application, supporting 8900 N (94 bars average pressure), and showed very good thermal stability. 450 start-stop cycles were also performed, including 350 cycles without oil supply during starting and stopping. Test results and numerical predictions were in good agreement.

  5. Improving the students’ skills in developing geometry learning by building the character of academic atmosphere in Study Program of Elementary School Teacher Universitas Negeri Semarang

    NASA Astrophysics Data System (ADS)

    Nugraheni, N.; Wahyuningsih

    2018-03-01

    The purposes of this study for knowing how to improve the character of academic atmosphere to improve the ability in designing geometry learning on Study Program of Elementary School TeacherUniversitas Negeri Semarang students. This research is a classroom action research conducted in two cycles and each cycle consists of two meetings. Each cycle consists of planning, execution, observation, and evaluation. The subjects of this study are lecturers of geometry and students who take geometry course. The technique in collecting data is using test and non-test techniques. The data analysis is done in quantitative and qualitative descriptive analysis. The result of research shows that the lecturers’ activity is in good category and student activity is on very good category. While the students’ learning outcomes are in good category. From the field notes, students are able to perform independent and structured tasks with their full responsibility, hard work, and diligence. It shows that the character of academic atmosphere has increased. It is suggested that a set of task bills so that prerequisites have been owned by the students. Structured tasks should be given to see the students’ ability.

  6. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    PubMed

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.

  7. Treatment of premenstrual dysphoric disorder (PMDD) with a novel formulation of drospirenone and ethinyl estradiol.

    PubMed

    De Berardis, Domenico; Serroni, Nicola; Salerno, Rosa Maria; Ferro, Filippo Maria

    2007-08-01

    Premenstrual dysphoric disorder (PMDD) is a severe form of premenstrual syndrome (PMS). Pharmacologic options studied for treating severe PMS and PMDD may include selective serotonin reuptake inhibitors, anxiolytic agents, gonadotropin-releasing hormone agonists and the diuretic spironolactone. However, the use of combined oral contraceptives (COC) may be a therapeutic option in treating PMS and PMDD. The combination of drospirenone with ethinylestradiol (EE/drospirenone) was approved for marketing as an oral contraceptive in Europe and the United States. The preparation is characterized by a high contraceptive efficacy in combination with excellent cycle control, good tolerability, and a favourable impact on lipid and glucose metabolism. Recently, some placebo-controlled, randomized studies have tested clinical efficacy and tolerability of this COC in the treatment of PMDD. The aim of the present review was to elucidate the possible benefits or disadvantages of PMDD treatment with this novel formulation of EE/drospirenone. The results of trials evaluating the use of EE/drospirenone combination in the treatment of PMDD are encouraging but further studies are needed. However, the reported clinical efficacy and the relative good tolerability of EE/drospirenone may contribute to widen the therapeutic spectrum of PMDD.

  8. Treatment of premenstrual dysphoric disorder (PMDD) with a novel formulation of drospirenone and ethinyl estradiol

    PubMed Central

    De Berardis, Domenico; Serroni, Nicola; Salerno, Rosa Maria; Ferro, Filippo Maria

    2007-01-01

    Premenstrual dysphoric disorder (PMDD) is a severe form of premenstrual syndrome (PMS). Pharmacologic options studied for treating severe PMS and PMDD may include selective serotonin reuptake inhibitors, anxiolytic agents, gonadotropin-releasing hormone agonists and the diuretic spironolactone. However, the use of combined oral contraceptives (COC) may be a therapeutic option in treating PMS and PMDD. The combination of drospirenone with ethinylestradiol (EE/drospirenone) was approved for marketing as an oral contraceptive in Europe and the United States. The preparation is characterized by a high contraceptive efficacy in combination with excellent cycle control, good tolerability, and a favourable impact on lipid and glucose metabolism. Recently, some placebo-controlled, randomized studies have tested clinical efficacy and tolerability of this COC in the treatment of PMDD. The aim of the present review was to elucidate the possible benefits or disadvantages of PMDD treatment with this novel formulation of EE/drospirenone. The results of trials evaluating the use of EE/drospirenone combination in the treatment of PMDD are encouraging but further studies are needed. However, the reported clinical efficacy and the relative good tolerability of EE/drospirenone may contribute to widen the therapeutic spectrum of PMDD. PMID:18472980

  9. Transparent and Self-Supporting Graphene Films with Wrinkled- Graphene-Wall-Assembled Opening Polyhedron Building Blocks for High Performance Flexible/Transparent Supercapacitors.

    PubMed

    Li, Na; Huang, Xuankai; Zhang, Haiyan; Li, Yunyong; Wang, Chengxin

    2017-03-22

    Improving mass loading while maintaining high transparency and large surface area in one self-supporting graphene film is still a challenge. Unfortunately, all of these factors are absolutely essential for enhancing the energy storage performance of transparent supercapacitors for practical applications. To solve the above bottleneck problem, we produce a novel self-supporting flexible and transparent graphene film (STF-GF) with wrinkled-wall-assembled opened-hollow polyhedron building units. Taking advantage of the microscopic morphology, the STF-GF exhibits improved mass loading with high transmittance (70.2% at 550 nm), a large surface area (1105.6 m 2 /g), and good electrochemical performance: high energy (552.3 μWh/cm 3 ), power densities (561.9 mW/cm 3 ), a superlong cycle life, and good cycling stability (the capacitance retention is ∼94.8% after 20,000 cycles).

  10. Effect of thermal cycling on flexural properties of carbon-graphite fiber-reinforced polymers.

    PubMed

    Segerström, Susanna; Ruyter, I Eystein

    2009-07-01

    To determine flexural strength and modulus after water storage and thermal cycling of carbon-graphite fiber-reinforced (CGFR) polymers based on poly(methyl methacrylate) and a copolymer matrix, and to examine adhesion between fiber and matrix by scanning electron microscopy (SEM). Solvent cleaned carbon-graphite (CG) braided tubes of fibers were treated with a sizing resin. The resin mixture of the matrix was reinforced with 24, 36, 47 and 58wt% (20, 29, 38 and 47vol.%) CG-fibers. After heat polymerization the specimens were kept for 90 days in water and thereafter hydrothermally cycled (12,000 cycles, 5/55 degrees C). Mechanical properties were evaluated by three-point bend testing. After thermal cycling, the adhesion between fibers and matrix was evaluated by SEM. Hydrothermal cycling did not decrease flexural strength of the CGFR polymers with 24 and 36wt% fiber loadings; flexural strength values after thermocycling were 244.8 (+/-32.33)MPa for 24wt% and 441.3 (+/-68.96)MPa for 36wt%. Flexural strength values after thermal cycling were not further increased after increasing the fiber load to 47 (459.2 (+/-45.32)MPa) and 58wt% (310.4 (+/-52.79)MPa). SEM revealed good adhesion between fibers and matrix for all fiber loadings examined. The combination of the fiber treatment and resin matrix described resulted in good adhesion between CG-fibers and matrix. The flexural values for fiber loadings up to 36wt% appear promising for prosthodontic applications such as implant-retained prostheses.

  11. A preliminary study of the relationship between the long arm of the Y chromosome (Yqh+) and reproductive outcomes in IVF/ICSI-ET.

    PubMed

    Xiao, Zhuoni; Zhou, Xin; Xu, Wangming; Yang, Jing

    2012-11-01

    To compare the reproductive outcomes of Yqh+-carrying and control couples undergoing IVF/ICSI treatments. Retrospective analysis of 72 Yqh+ carriers and 986 Yqh+ non-carriers undergoing their first cycle of ART in a single centre between August 2005 and May 2011. Yqh+ carrying couples had significantly worse reproductive outcomes compared with control couples undergoing IVF treatment. There were a significantly higher cancellation rate (20.69% vs 7.9%; P<0.05; OR, 3.03; CI, 1.18-7.79) and a significant lower fertilisation rate (50.05% vs 66.01%; P<0.05; OR, 0.61; CI, 0.49-0.57), implantation rate (8.33% vs 20.87%; P<0.05; OR, 0.35; CI, 0.14-0.87), good quality embryo ratio (44.70% vs 57.89%; P<0.05; OR, 0.59; CI, 0.43-0.80) and clinical pregnancy rate (17.39% vs 39.59%; P<0.05; OR, 0.32; CI, 0.11-0.96) in Yqh+ group compared with control group undergoing IVF treatment. Yqh+ carrying couples had similar reproductive outcomes compared with control couples undergoing ICSI treatment. The Y chromosome polymorphic variant Yqh+ most likely plays a role in infertility. Yqh+ couples with poor reproductive outcomes in IVF treatment can be advised to undergo ICSI to improve their reproductive results in the next cycle. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. A novel approach using a minimal number of injections during the IVF/ICSI cycle: Luteal half-dose depot GnRH agonist following corifollitropin alfa versus the corifollitropin alfa with a GnRH-antagonist cycle.

    PubMed

    Haydardedeoğlu, Bülent; Kılıçdağ, Esra Bulgan

    2016-01-01

    Corifollitropin alfa is a good choice for assisted reproductive technology (ART) cycles because fewer injections are needed than with other agents. In this retrospective cohort, we analyzed luteal injected half-dose depot gonadotropin hormone-releasing hormone (GnRH) agonist cycles in women who received corifollitropin alfa and those who underwent a conventional corifollitropin alfa cycle with a GnRH antagonist. In this retrospective cohort, we analyzed luteal injected half-dose depot GnRH agonist cycles in women who received corifollitropin alfa and those who underwent a conventional corifollitropin alfa cycle with a GnRH antagonist at the Division of Reproductive Endocrinology and IVF Unit, Obstetrics and Gynecology Department, Başkent University School of Medicine, Adana, Turkey, from March 2014 to August 2015. The patient's baseline characteristics were similar between the two groups. Forty-five patients underwent the long protocol, in which a half-dose of depot GnRH agonist was administered on day 21 of the preceding cycle. Forty-nine patients underwent the GnRH-antagonist protocol. Corifollitropin alfa was administered on the menstrual cycle day 3. The mean ages of the two groups were similar (32.77±5.55 vs. 34.2±4.51 years ["for the long- and antagonist-protocol groups, respectively"]). The total number of retrieved oocytes, the fertilization rate, and the number of transferred embryos were similar between the two groups. The only significant difference between the two protocols was the number of injections during the controlled ovarian stimulation (COH) cycle, which included the depot-agonist injection in the long-protocol group (4.46±1.64 vs. 5.71±2.51, p=0.006). The clinical pregnancy and implantation rates were similar in the two protocols (16/45 [35.6%] vs. 16/49 [32.7%] for the intention to treat and 32.5±6.82% vs. 36.25±8.58%, respectively). Our results show that ART cycles could be performed with fewer injections using corifollitropin alfa and a half-dose of depot GnRH agonist.

  13. Infant stepping: a method to study the sensory control of human walking

    PubMed Central

    Yang, Jaynie F; Stephens, Marilee J; Vishram, Rosie

    1998-01-01

    Stepping responses were studied in infants between the ages of 10 days and 10 months while they were supported to step on a slowly moving treadmill belt. Surface electromyography (EMG) from muscles in the lower limb, force exerted by the feet on the treadmill belt, and the motion of the lower limbs were recorded. Two groups of infants were studied, those who had a small amount of daily practice in stepping and those who did not. Practice resulted in a dramatic increase in the incidence of stepping recorded in the laboratory, particularly for the periods between 1 and 6 months of age. The majority of infants showed clear alternation between the flexor and extensor muscles during walking, regardless of age. Co-contraction between flexors and extensors, estimated by the overlap in area between rectified and smoothed EMG from a muscle pair, was greater for some muscle groups in the infant compared with the adult. Practice resulted in a significantly lower co-contraction index for the tibialis anterior- quadriceps muscle pair. Practice did not affect the mean step cycle duration. Infants of all ages could step at a range of treadmill speeds by adjusting their step cycle duration. The relationship between the treadmill speed and cycle duration was well fitted by a power function, similar to those reported for intact cats and adult humans. The change in step cycle duration resulted almost entirely from a change in the extensor burst duration, whereas the flexor burst duration remained constant. Airstepping could be elicited in some infants. The cycle durations for airstepping were close to the shortest cycles recorded on the treadmill. In conclusion, the system for generating rhythmic, alternating activity of the lower limbs for stepping is clearly developed by birth. The stepping is sustained and regular, particularly if stepping practice is incorporated briefly each day. The infant population provides a good subject pool for studying the afferent control of walking in the human, before cerebral influences are fully developed. The characteristics and maturity of the system remain to be determined. PMID:9508851

  14. Quadriceps muscle injury in trans-femoral amputees.

    PubMed

    Alsindi, Z; Datta, D

    1998-12-01

    Two male trans-femoral amputees using modular trans-femoral prostheses lost control and fell to the ground when their prosthetic knees gave way. The semi-automatic knee lock malfunctioned in the first case while the free knee stabilising mechanics gave way in the second case. This resulted in a high tensile force acting on the contralateral quadriceps muscle causing it to rupture. As there are a significant number of patients with both kinds of prostheses it is important to be aware of this possibility so that necessary actions can be taken to minimise its occurrence. Even with the currently available weight activated stance phase control, the prosthetic knee will give way if the knee is flexed more than 20 degrees on weight bearing. Good power and control of hip extensors on the amputation side is needed to control the prosthetic knee joint, especially in the early stage of the walking cycle, i.e., from heel strike to mid-stance. Quadriceps muscle injury in amputees, as far as the authors are aware, has not been reported previously.

  15. Heating-rate-induced porous α-Fe2O3 with controllable pore size and crystallinity grown on graphene for supercapacitors.

    PubMed

    Yang, Shuhua; Song, Xuefeng; Zhang, Peng; Gao, Lian

    2015-01-14

    Porous α-Fe2O3/graphene composites (S-PIGCs) have been synthesized by a simple hydrothermal method combined with a slow annealing route. The S-PIGCs as a supercapacitors electrode material exhibit an ultrahigh specific capacitance of 343.7 F g(-1) at a current density of 3 A g(-1), good rate capability, and excellent cycling stability. The enhanced electrochemical performances are attributed to the combined contribution from the optimally architecture of the porous α-Fe2O3, as a result of a slow annealing, and the extraordinary electrical conductivity of the graphene sheets.

  16. Behaviour of L. monocytogenes in sliced, vacuum-packed mortadella

    PubMed Central

    Bersot, Luciano dos Santos; Gillio, Cíntia; Tavolaro, Paula; Landgraf, Mariza; de Melo Franco, Bernadette Dora Gombossy; Destro, Maria Teresa

    2008-01-01

    This study evaluated the growth of naturally occurring L. monocytogenes in sliced, vacuum-packed mortadella samples during storage at 5°C until the expiration date. Tukey’s test indicated that counts of L. monocytogenes on 0, 10, 20, 30 and 40 days of storage were significantly different (p<0.05), indicating growth during shelf life. In three trials, the mean increase was 1.72 log cycles. Vacuum packing and storage under refrigeration were not effective in controlling the growth of L. monocytogenes in sliced mortadella, indicating that good manufacturing practices and implemented HACCP programs are essential to assure safety of this product. PMID:24031257

  17. Experimental operation of a sodium heat pipe

    NASA Astrophysics Data System (ADS)

    Holtz, R. E.; McLennan, G. A.; Koehl, E. R.

    1985-05-01

    This report documents the operation of a 28 in. long sodium heat pipe in the Heat Pipe Test Facility (HPTF) installed at Argonne National Laboratory. Experimental data were collected to simulate conditions prototypic of both a fluidized bed coal combustor application and a space environment application. Both sets of experiment data show good agreement with the heat pipe analytical model. The heat transfer performance of the heat pipe proved reliable over a substantial period of operation and over much thermal cycling. Additional testing of longer heat pipes under controlled laboratory conditions will be necessary to determine performance limitations and to complete the design code validation.

  18. [Individualization of low-dose oral contraceptives. Pharmacological principles and practical indications for oral contraceptives].

    PubMed

    Cianci, A; De Leo, V

    2007-08-01

    The contraceptive pill has been a revolution of the last 40 years. In Italy, however, it is much less widely used than in other countries. Explanations for this phenomenon range from religious implications and customs to misinformation and word-of-mouth communication of negative experiences. The oral contraceptive pill is often used to correct menstrual disorders, leading to poor results and side-effects. Recent advances in oral contraception have led to a substantial reduction in doses and side-effects. Low-dose pills contain minimal doses of progesterones and estrogens and ensure good control of the menstrual cycle. Although reduction of ethinyl estradiol (EE) concentrations has reduced the incidence of negative systemic side effects such as water retention, edema and swollen breasts, the low estrogen dose may be associated with spotting and hypomenorrhea or amenorrhea in the long term, as well as dyspareunia due to reduced vaginal trophism, which may induce women to suspend use of the drug. It is also true that only one type of estrogen is used in the pill, albeit at different doses, whereas the progesterone may differ and in many cases is the cause of common side-effects. The choice of progesterone therefore involves not only its effect on the endometrium in synergy with estrogen, but also possible residual androgenic activity which may have negative metabolic repercussions. Indeed, addition of a progesterone, especially androgen-derived, attenuates the positive metabolic effects of estrogen. Two new monophasic oral contraceptives were recently released. They contain 30 microg (Yasmin) or 20 muicrog (Yasminelle) EE and a new progesterone, drospirenone, derived from spirolactone, which has antiandrogenic and antimineralcorticoid activity similar to endogenous progesterone. Like progesterone, the drospirenone molecule is an aldosterone antagonist and has a natriuretic effect that opposes the sodium retention effect of EE. It may, therefore, help to prevent the water retention, weight gain and arterial hypertension often associated with oral contraceptive use. Recent comparative studies recorded weight loss that stabilized after 6 months of treatment with drospirenone/EE. Overweight women may therefore benefit from the formulation with 20 microg EE, whereas the formulation with at least 30 microg EE should be more appropriate for underweight women. Women with slight to moderate acne, the formulation with 30 microg EE has been found to be as effective as 2 mg cyproterone acetate combined with 35 micrig EE (Diane). Menstrual cycle characteristics, however, remain the main factor determining the choice of formulation. Randomised control studies comparing the new formulation with others containing second or third generation progesterones have found similar efficacy in cycle control and incidence of spotting. From this point of view, it is not advisable to prescribe more than 30 microg EE (Yasmin or Yasminelle) for women with normal menstrual cycles, whereas in cases of hypomenorrhea and/or amenorrhea at least this dose of EE plus drospirenone may be used. Women with hypermenorrhea run the risk of spotting if an inappropriate drug is chosen. A solution is to use 30 microg EE/drospirenone from day 5 of the cycle. To control so-called minor side-effects, the dose of EE must be appropriate. In women with premenstrual tension a dose of at least 30 microg EE associated with drospirenone reduces or even prevents symptoms. On the other hand, in cases of chronic headache or headache as a side-effect of oral contraceptive use, a lower dose of estrogen is beneficial, and doses below 20 microg may be used. Although the progesterone component is not considered to affect headache, good results have been obtained with drospirenone, the antimineralcorticoid effects of which reduce blood pressure and improve symptoms. Formulations with 20 microg EE and drospirenone are particularly indicated in women with pre-existing mastodynia, fibrocystic breast manifestations or who develop mastodynia as a side-effect of oral contraceptive use. Since high plasma concentrations of androgens have been recorded in these women, a progesterone with antiandrogen and antiedema activity can be beneficial. Finally, it is worth recalling that monophasic pills with low estrogen doses, such as the formulations mentioned above, ensure good mood control, reducing the depressive symptoms often associated with oral contraceptive use. In conclusion, formulations containing drospirenone are a valid alternative to conventional oral contraceptives for the personalisation of these drugs.

  19. Development of a nickel/metal hydride battery (Ni/MH) system for EV application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikoma, M.; Hamada, S.; Morishita, N.

    1994-12-31

    In order to satisfy basic battery characteristics for electric vehicles (EV) such as specific energy, specific power and cycle life that are required for driving on urban streets, the authors have selected the valve-regulated lead acid battery as a conventional battery and the nickel/metal-hydride battery as an advanced battery, and have been studying their development in order to put them into practical use by 1998. Regarding the nickel/metal-hydride battery, excellent nickel positive electrode with high temperature charge efficiency accomplished with additives such as Ca compounds, and an exceedingly good hydrogen absorbing alloy negative electrode with high capacity and long cyclemore » life, achieved by adjustment of alloy composition, surface treatment, and control of binder and conductive additive have been developed to overcome difficulties in the scale-up of battery size. Modular batteries using this technology possess specific energy twice (70 Wh/kg) that of the lead-acid battery, and have superior specific power (160 Wh/kg) and cycle life. 5 refs.« less

  20. Silicon/copper dome-patterned electrodes for high-performance hybrid supercapacitors

    PubMed Central

    Liu, Xuyan; Jung, Hun-Gi; Kim, Sang-Ok; Choi, Ho-Suk; Lee, Sangwha; Moon, Jun Hyuk; Lee, Joong Kee

    2013-01-01

    This study proposes a method for manufacturing high-performance electrode materials in which controlling the shape of the current collector and electrode material for a Li-ion capacitor (LIC). In particular, the proposed LIC manufacturing method maintains the high voltage of a cell by using a microdome-patterned electrode material, allowing for reversible reactions between the Li-ion and the active material for an extended period of time. As a result, the LICs exhibit initial capacities of approximately 42 F g−1, even at 60 A g−1. The LICs also exhibit good cycle performance up to approximately 15,000 cycles. In addition, these advancements allow for a considerably higher energy density than other existing capacitor systems. The energy density of the proposed LICs is approximately nine, two, and 1.5 times higher than those of the electrochemical double layer capacitor (EDLC), AC/LiMn2O4 hybrid capacitor, and intrinsic Si/AC LIC, respectively. PMID:24292725

  1. Electric double layer capacitors employing nitrogen and sulfur co-doped, hierarchically porous graphene electrodes with synergistically enhanced performance

    NASA Astrophysics Data System (ADS)

    Kannan, Aravindaraj G.; Samuthirapandian, Amaresh; Kim, Dong-Won

    2017-01-01

    Hierarchically porous graphene nanosheets co-doped with nitrogen and sulfur are synthesized via a simple hydrothermal method, followed by a pore activation step. Pore architectures are controlled by varying the ratio of chemical activation agents to graphene, and its influence on the capacitive performance is evaluated. The electric double layer capacitor (EDLC) assembled with optimized dual-doped graphene delivers a high specific capacitance of 146.6 F g-1 at a current density of 0.8 A g-1, which is higher than that of cells with un-doped and single-heteroatom doped graphene. The EDLC with dual-doped graphene electrodes exhibits stable cycling performance with a capacitance retention of 94.5% after 25,000 cycles at a current density of 3.2 A g-1. Such a good performance can be attributed to synergistic effects due to co-doping of the graphene nanosheets and the presence of hierarchical porous structures.

  2. Self-assembled Li 3V 2(PO 4) 3/reduced graphene oxide multilayer composite prepared by sequential adsorption

    DOE PAGES

    Kim, Myeong-Seong; Bak, Seong-Min; Lee, Suk-Woo; ...

    2017-09-26

    Here in this paper, we report on Li 3V 2(PO 4) 3 (LVP)/reduced graphene oxide (rGO) multilayer composites prepared via a sequential adsorption method and subsequent heat treatment, and their use as cathodes for high-rate lithium-ion batteries. The sequential adsorption process includes adsorbing oppositely charged components of anionic inorganic species and cationic head of a surfactant adsorbed to graphite oxide sheets, which is a key step in the fabrication of the LVP/rGO multilayer composites. The multilayer structure has open channels between the highly conductive rGO layers while achieving a relatively high tap density, which could effectively improve the rate capability.more » Consequently, the LVP/rGO multilayer composites exhibit a high tap density (0.6 g cm -3) and good electrochemical properties. Specifically, in the voltage range of 3.0–4.3 V, the composite exhibits a specific capacity of 131 mAh g -1 at 0.1C, a good rate capabilities (88% capacity retention at 60C), and long cycling performance (97% capacity retention after 500 cycles at 10C). Moreover, in the extended voltage range of 3.0–4.8 V, it exhibits a high specific capacity of 185 mAh g -1 at 0.2C, a good rate capability (66% capacity retention at 30C), and stable cycling performance (96% capacity retention after 500 cycles at 10C).« less

  3. Self-assembled Li 3V 2(PO 4) 3/reduced graphene oxide multilayer composite prepared by sequential adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Myeong-Seong; Bak, Seong-Min; Lee, Suk-Woo

    Here in this paper, we report on Li 3V 2(PO 4) 3 (LVP)/reduced graphene oxide (rGO) multilayer composites prepared via a sequential adsorption method and subsequent heat treatment, and their use as cathodes for high-rate lithium-ion batteries. The sequential adsorption process includes adsorbing oppositely charged components of anionic inorganic species and cationic head of a surfactant adsorbed to graphite oxide sheets, which is a key step in the fabrication of the LVP/rGO multilayer composites. The multilayer structure has open channels between the highly conductive rGO layers while achieving a relatively high tap density, which could effectively improve the rate capability.more » Consequently, the LVP/rGO multilayer composites exhibit a high tap density (0.6 g cm -3) and good electrochemical properties. Specifically, in the voltage range of 3.0–4.3 V, the composite exhibits a specific capacity of 131 mAh g -1 at 0.1C, a good rate capabilities (88% capacity retention at 60C), and long cycling performance (97% capacity retention after 500 cycles at 10C). Moreover, in the extended voltage range of 3.0–4.8 V, it exhibits a high specific capacity of 185 mAh g -1 at 0.2C, a good rate capability (66% capacity retention at 30C), and stable cycling performance (96% capacity retention after 500 cycles at 10C).« less

  4. Monitoring of stimulated cycles in assisted reproduction (IVF and ICSI).

    PubMed

    Kwan, I; Bhattacharya, S; McNeil, A; van Rumste, M M E

    2008-04-16

    Traditional monitoring of ovarian hyperstimulation during in vitro fertilisation (IVF) treatment has included ultrasonography plus serum estradiol concentration to ensure safe practice by reducing the incidence and severity of ovarian hyperstimulation syndrome (OHSS). The need for intensive monitoring during ovarian stimulation in IVF is controversial. It has been suggested that close monitoring is time consuming, expensive and inconvenient for the woman and simplification of IVF therapy by using ultrasound only should be considered. This systematic review assessed the effects of ovarian monitoring by ultrasound only versus ultrasound plus serum estradiol measurement on IVF outcomes and the occurrence of OHSS in women undergoing stimulated cycles in IVF and intra-cytoplasmic sperm injection (ICSI) treatment. To quantify the effect of monitoring controlled ovarian stimulation in IVF and ICSI cycles with ultrasound plus serum estradiol concentration versus ultrasound only in terms of live birth rates, pregnancy rates and the incidence of OHSS. We searched the Menstrual Disorders and Subfertility Group Specialised Register of controlled trials, Cochrane Central Register of Controlled Trials (CENTRAL) on the latest issue of The Cochrane Library, MEDLINE (1966 to May 2007), EMBASE (1980 to May 2007), CINAHL (1982 to May 2007), the National Research Register, and web-based trial databases such as Current Controlled Trials. There was no language restriction. Additionally all references in the identified trials and background papers were checked and authors were contacted to identify relevant published and unpublished data. Only randomised controlled trials that compared monitoring with ultrasound plus serum estradiol concentration versus ultrasound only in women undergoing ovarian hyperstimulation for IVF and ICSI treatment were included. Two review authors independently examined the electronic search results for relevant trials, extracted data and assessed trial quality. They resolved disagreements by discussion with two other authors. Outcomes data were pooled when appropriate and summary statistics presented when limited data did not allow meta-analysis. Our search strategy identified 1119 potentially eligible reports, of which two met our inclusion criteria. These involved 411 women who underwent controlled ovarian stimulation monitoring. Our primary outcome of live birth rate was not reported in either study. One trial reported clinical pregnancy rate per woman (33% versus 31%; RR 1.07, 95% CI 0.77 to 1.49), the second trial reported clinical pregnancy rate per oocyte retrieval (22% versus 25%). There was no significant difference between the ultrasound plus estradiol group and the ultrasound alone group in the mean number of oocytes retrieved (WMD -0.55, 95% CI -1.79 to 0.69) and the incidence of ovarian hyperstimulation (RR 0.73, 95% CI 0.30 to 1.78) for the two studies. There is no evidence from randomised trials to support cycle monitoring by ultrasound plus serum estradiol as more efficacious than cycle monitoring by ultrasound only on outcomes of live birth and pregnancy rates. A large well-designed randomised controlled trial is needed that reports on live birth rates and pregnancy, with economic evaluation of the costs involved and the views of the women undergoing cycle monitoring. A randomised trial with sufficiently large sample size to test the effects of different monitoring protocols on OHSS, a rare outcome, will pose a great challenge. Until such a trial is considered feasible, cycle monitoring by transvaginal ultrasound plus serum estradiol may need to be retained as a precautionary good practice point.

  5. Characterization of the Vectron PX-570 Crystal Oscillator for Use in Harsh Environments

    NASA Technical Reports Server (NTRS)

    Li, Jacob; Patterson, Richard L.; Hammoud, Ahmad

    2012-01-01

    Computing hardware, data-acquisition systems, communications systems, and many electronic control systems require well-controlled timing signals for proper and accurate operation. These signals are, in most cases, provided by circuits that employ crystal oscillators due to availability, cost, ease of operation, and accuracy. In some cases, the electronic systems are expected to survive and operate under harsh conditions that include exposure to extreme temperatures. These applications exist in terrestrial systems as well as in aerospace products. Well-logging, geothermal systems, and industrial process control are examples of ground-based applications, while distributed jet engine control in aircraft, space-based observatories (such as the James Webb Space Telescope), satellites, and lunar and planetary landers are typical environments where electronics are exposed to harsh operating conditions. To ensure these devices produce reliable results, the digital heartbeat from the oscillator must deliver a stable signal that is not affected by external temperature or other conditions. One such solution is a recently introduced commercial-off-the-shelf (COTS) oscillator, the PX-570 series from Vectron International. The oscillator was designed for high-temperature applications and as proof, the crystal oscillator was subjected to a wide suite of tests to determine its ruggedness for operation in harsh environments. The tests performed by Vectron included electrical characterization under wide range of temperature, accelerated life test/aging, shock and vibration, internal moisture analysis, ESD threshold, and latch-up testing. The parametric evaluation was performed on the oscillator's frequency, output signal rise and fall times, duty cycle, and supply current over the temperature range of -125 C to +230 C. The evaluations also determined the effects of thermal cycling and the oscillator's re-start capability at extreme hot and cold temperatures. These thermal cycling and restart tests were performed at the NASA Glenn Research Center. Overall, the crystal oscillator performed well and demonstrated very good frequency stability. This paper will discuss the test procedures and present details of the performance results.

  6. Life-Cycle Costing of Food Waste Management in Denmark: Importance of Indirect Effects.

    PubMed

    Martinez-Sanchez, Veronica; Tonini, Davide; Møller, Flemming; Astrup, Thomas Fruergaard

    2016-04-19

    Prevention has been suggested as the preferred food waste management solution compared to alternatives such as conversion to animal fodder or to energy. In this study we used societal life-cycle costing, as a welfare economic assessment, and environmental life-cycle costing, as a financial assessment combined with life-cycle assessment, to evaluate food waste management. Both life-cycle costing assessments included direct and indirect effects. The latter are related to income effects, accounting for the marginal consumption induced when alternative scenarios lead to different household expenses, and the land-use-changes effect, associated with food production. The results highlighted that prevention, while providing the highest welfare gains as more services/goods could be consumed with the same income, could also incur the highest environmental impacts if the monetary savings from unpurchased food commodities were spent on goods/services with a more environmentally damaging production than that of the (prevented) food. This was not the case when savings were used, e.g., for health care, education, and insurances. This study demonstrates that income effects, although uncertain, should be included whenever alternative scenarios incur different financial costs. Furthermore, it highlights that food prevention measures should not only demote the purchase of unconsumed food but also promote a low-impact use of the savings generated.

  7. Effects of resource quality on the population dynamics of the Indian meal moth Plodia interpunctella and its granulovirus.

    PubMed

    McVean, Ross I; Sait, Steve M; Thompson, David J; Begon, Mike

    2002-03-01

    Although the Plodia interpunctella-granulovirus system is one of the most studied models for insect-pathogen interactions, there are relatively few precise data on the dynamics of the virus in coexisting populations of these two organisms. Previous work has suggested that resource quality, in terms of the diet supplied to P. interpunctella, has a strong effect on the population dynamics of host and pathogen. Here we investigate the impact of resource-dependent host patterns of abundance on pathogen dynamics and prevalence. In the laboratory, three populations of P. interpunctella feeding on a good quality food and infected with a granulovirus were compared with three populations also infected with a granulovirus but feeding on poor quality food. Populations feeding on good quality food produced larger adult moths, and had greater numbers of adult moths, healthy larvae, and virus-infected larvae. A higher proportion of larvae in these good quality populations were infected with virus, and adult moths exhibited cyclic fluctuations in abundance, unlike those on poor quality food. This cyclic behaviour was shown to be associated with cycles in the age structure of the larval population. Previous theoretical work suggests that these cycles may result from asymmetric competition between young and old larvae. Cyclic fluctuations in the proportion of infected larvae, that occurred on good, but not on poor quality food, were also shown to be related to cycles in the age structure of the larval population.

  8. Breaking the Cycle of Poverty: Whole Family Approach

    ERIC Educational Resources Information Center

    Bernard van Leer Foundation, 2016

    2016-01-01

    "The demographics of families in poverty around the globe may be diverse, but parents' dreams for their children are similar everywhere: good health, a good education, economic stability, and a better future." This new report from the Bernard van Leer Foundation and Ascend at The Aspen Institute develops a "two generation"…

  9. Antibiotic resistance rates in causative agents of infections in diabetic patients: rising concerns.

    PubMed

    Boyanova, Lyudmila; Mitov, Ivan

    2013-04-01

    The vicious cycle is that hyperglycemia (≥11.1 mmol/l) or other diabetes-associated factors facilitate or worsen the development of infections and vice versa, the infections deteriorate the glycemic control of the patients. Diabetic patients are prone to some infections, infection recurrences and poor outcomes. Immunocompromised state and frequent antibiotic use are associated with antibiotic resistance of the bacterial pathogens, such as Mycobacterium tuberculosis (in some studies), methicillin-resistant Staphylococcus aureus, Streptococcus pneumoniae, Gram-negative bacteria such as Pseudomonas aeruginosa and Acinetobacter baumannii, bacteria in diabetic foot infections and different opportunistic and rare pathogens or multidrug-resistant strains. Prompt diagnostics and susceptibility testing, early and aggressive surgical and/or antibiotic therapy, and, importantly, good glycemic control are of utmost importance for treatment of antibiotic-resistant infections in diabetic patients.

  10. The cell cycle.

    PubMed

    Singh, N; Lim, R B; Sawyer, M A

    2000-07-01

    The cell cycle and the cell cycle control system are the engines that drive life. They allow for the processes of cell renewal and the growth of organisms, under controlled conditions. The control system is essential for the monitoring of normal cell growth and replication of genetic material and to ensure that normal, functional daughter cells are produced at completion of each cell cycle. Although certain clinical applications exist which take advantage of the events of the cell cycle, our understanding of its mechanisms and how to manipulate them is infantile. The next decades will continue to see the effort of many researchers focused upon unlocking the mysteries of the cell cycle and the cell cycle control system.

  11. Association Between Progesterone Elevation on the Day of Human Chronic Gonadotropin Trigger and Pregnancy Outcomes After Fresh Embryo Transfer in In Vitro Fertilization/Intracytoplasmic Sperm Injection Cycles

    PubMed Central

    Esteves, Sandro C.; Khastgir, Gautam; Shah, Jatin; Murdia, Kshitiz; Gupta, Shweta Mittal; Rao, Durga G.; Dash, Soumyaroop; Ingale, Kundan; Patil, Milind; Moideen, Kunji; Thakor, Priti; Dewda, Pavitra

    2018-01-01

    Progesterone elevation (PE) during the late follicular phase of controlled ovarian stimulation in fresh embryo transfer in vitro fertilization (IVF)/intracytoplasmic sperm injection cycles has been claimed to be associated with decreased pregnancy rates. However, the evidence is not unequivocal, and clinicians still have questions about the clinical validity of measuring P levels during the follicular phase of stimulated cycles. We reviewed the existing literature aimed at answering four relevant clinical questions, namely (i) Is gonadotropin type associated with PE during the follicular phase of stimulated cycles? (ii) Is PE on the day of human chorionic gonadotropin (hCG) associated with negative fresh embryo transfer IVF/intracytoplasmic sperm injection (ICSI) cycles outcomes in all patient subgroups? (iii) Which P thresholds are best to identify patients at risk of implantation failure due to PE in a fresh embryo transfer? and (iv) Should a freeze all policy be adopted in all the cycles with PE on the day of hCG? The existing evidence indicates that late follicular phase progesterone rise in gonadotropin releasing analog cycles is mainly caused by the supraphysiological stimulation of granulosa cells with exogenous follicle-stimulating hormone. Yet, the type of gonadotropin used for stimulation seems to play no significant role on progesterone levels at the end of stimulation. Furthermore, PE is not a universal phenomenon with evidence indicating that its detrimental consequences on pregnancy outcomes do not affect all patient populations equally. Patients with high ovarian response to control ovarian stimulation are more prone to exhibit PE at the late follicular phase. However, in studies showing an overall detrimental effect of PE on pregnancy rates, the adverse effect of PE on endometrial receptivity seems to be offset, at least in part, by the availability of good quality embryo for transfer in women with a high ovarian response. Given the limitations of the currently available assays to measure progesterone at low ranges, caution should be applied to adopt specific cutoff values above which the effect of progesterone rise could be considered detrimental and to recommend “freeze-all” based solely on pre-defined cutoff points. PMID:29755412

  12. Efficacy and safety of the combined oral contraceptive ethinylestradiol/drospirenone (Yasmin) in healthy Chinese women: a randomized, open-label, controlled, multicentre trial.

    PubMed

    Guang-Sheng, Fan; Mei-Lu, Bian; Li-Nan, Cheng; Xiao-Ming, Cao; Zi-Rong, Huang; Zi-Yan, Han; Xiao-Ping, Jing; Jian, Li; Shu-Ying, Wu; Cheng-Liang, Xiong; Zheng-Ai, Xiong; Tian-Fu, Yue

    2010-01-01

    To evaluate and compare the contraceptive efficacy, bleeding pattern, side effects and other positive effects of a combined oral contraceptive (COC) containing drospirenone (DRSP) [Yasmin] with those of a COC containing desogestrel (DSG) in healthy Chinese women. This was a randomized, open-label, controlled, multicentre study of 768 healthy Chinese women requiring contraception. The subjects were randomized to ethinylestradiol (EE) 30 microg/DRSP 3 mg (n = 573) or EE 30 microg/ DSG 150 microg (n = 195), at a ratio of 3 : 1. Each individual was treated for 13 cycles. Further visits were required at cycle 4, cycle 7, cycle 10 and cycle 13 of treatment. Weight, height and body mass index were evaluated at each visit. The Menstrual Distress Questionnaire (MDQ) was administered at baseline, visit 3 (cycle 7) and visit 5 (after cycle 13). Baseline characteristics were similar between the two groups (p > 0.05). The Pearl Index (method failure) for EE/DRSP was 0.208 per 100 women-years, which was lower than that for EE/DSG (0.601 per 100 women-years). There were no significant differences between the treatment groups with regard to bleeding patterns. According to the MDQ subscale, improvements in water retention and increases in appetite during the intermenstrual period and in water retention and general well-being during the menstrual period in the EE/DRSP group (-0.297, -0.057, 0.033 and 0.150, respectively) were significantly improved compared with the EE/DSG group (-0.108, 0.023, 0.231 and -0.023, respectively) [all p < 0.05]. Other values that improved in both groups, particularly improvement in breast pain and tenderness and skin condition, were more evident in the EE/DRSP group (18.0%, 89/494; 12.6%, 62/494) than in the EE/DSG group (11.3%, 19/168; 5.4%, 9/168). Mean weight increased in the EE/DSG group (0.57 kg) while there was a significant decrease in mean weight (-0.28 kg) in the EE/DRSP group (p < 0.01). Both EE/DRSP and EE/DSG have good contraceptive efficacy and a comparable bleeding pattern. EE/DRSP had a more favourable effect on weight and premenstrual symptoms than EE/DSG.

  13. The role of interest and inflation rates in life-cycle cost analysis

    NASA Technical Reports Server (NTRS)

    Eisenberger, I.; Remer, D. S.; Lorden, G.

    1978-01-01

    The effect of projected interest and inflation rates on life cycle cost calculations is discussed and a method is proposed for making such calculations which replaces these rates by a single parameter. Besides simplifying the analysis, the method clarifies the roles of these rates. An analysis of historical interest and inflation rates from 1950 to 1976 shows that the proposed method can be expected to yield very good projections of life cycle cost even if the rates themselves fluctuate considerably.

  14. A novel electrolyte salt additive for lithium-ion batteries with voltages greater than 4.7 V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yunchao; Wan, Shun; Veith, Gabriel M.

    2016-11-07

    Here, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), as an additive in conventional electrolyte for LiNi 0.5Mn 1.5O 4, exhibits improved coulombic efficiencies and cycling stability. Cyclic voltammograms indicate the cells with additive form good SEIs during the first cycle whereas no additive cell needs more cycles to form a functional SEI. XPS reveals LiBMFMB could reduce the decomposition of LiPF 6 salt and solvents, resulting in thinner SEI.

  15. Evolutionary model of an anonymous consumer durable market

    NASA Astrophysics Data System (ADS)

    Kaldasch, Joachim

    2011-07-01

    An analytic model is presented that considers the evolution of a market of durable goods. The model suggests that after introduction goods spread always according to a Bass diffusion. However, this phase will be followed by a diffusion process for durable consumer goods governed by a variation-selection-reproduction mechanism and the growth dynamics can be described by a replicator equation. The theory suggests that products play the role of species in biological evolutionary models. It implies that the evolution of man-made products can be arranged into an evolutionary tree. The model suggests that each product can be characterized by its product fitness. The fitness space contains elements of both sites of the market, supply and demand. The unit sales of products with a higher product fitness compared to the mean fitness increase. Durables with a constant fitness advantage replace other goods according to a logistic law. The model predicts in particular that the mean price exhibits an exponential decrease over a long time period for durable goods. The evolutionary diffusion process is directly related to this price decline and is governed by Gompertz equation. Therefore it is denoted as Gompertz diffusion. Describing the aggregate sales as the sum of first, multiple and replacement purchase the product life cycle can be derived. Replacement purchase causes periodic variations of the sales determined by the finite lifetime of the good (Juglar cycles). The model suggests that both, Bass- and Gompertz diffusion may contribute to the product life cycle of a consumer durable. The theory contains the standard equilibrium view of a market as a special case. It depends on the time scale, whether an equilibrium or evolutionary description is more appropriate. The evolutionary framework is used to derive also the size, growth rate and price distribution of manufacturing business units. It predicts that the size distribution of the business units (products) is lognormal, while the growth rates exhibit a Laplace distribution. Large price deviations from the mean price are also governed by a Laplace distribution (fat tails). These results are in agreement with empirical findings. The explicit comparison of the time evolution of consumer durables with empirical investigations confirms the close relationship between price decline and Gompertz diffusion, while the product life cycle can be described qualitatively for a long time period.

  16. Low-cycle fatigue testing methods

    NASA Technical Reports Server (NTRS)

    Lieurade, H. P.

    1978-01-01

    The good design of highly stressed mechanical components requires accurate knowledge of the service behavior of materials. The main methods for solving the problems of designers are: determination of the mechanical properties of the material after cyclic stabilization; plotting of resistance to plastic deformation curves; effect of temperature on the life on low cycle fatigue; and simulation of notched parts behavior.

  17. 40 CFR 1039.505 - How do I test engines using steady-state duty cycles, including ramped-modal testing?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... You may extend the sampling time to improve measurement accuracy of PM emissions, using good..., you may omit speed, torque, and power points from the duty-cycle regression statistics if the... mapped. (2) For variable-speed engines without low-speed governors, you may omit torque and power points...

  18. 40 CFR 1039.505 - How do I test engines using steady-state duty cycles, including ramped-modal testing?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... You may extend the sampling time to improve measurement accuracy of PM emissions, using good..., you may omit speed, torque, and power points from the duty-cycle regression statistics if the... mapped. (2) For variable-speed engines without low-speed governors, you may omit torque and power points...

  19. An integrated process analytical technology (PAT) approach to monitoring the effect of supercooling on lyophilization product and process parameters of model monoclonal antibody formulations.

    PubMed

    Awotwe Otoo, David; Agarabi, Cyrus; Khan, Mansoor A

    2014-07-01

    The aim of the present study was to apply an integrated process analytical technology (PAT) approach to control and monitor the effect of the degree of supercooling on critical process and product parameters of a lyophilization cycle. Two concentrations of a mAb formulation were used as models for lyophilization. ControLyo™ technology was applied to control the onset of ice nucleation, whereas tunable diode laser absorption spectroscopy (TDLAS) was utilized as a noninvasive tool for the inline monitoring of the water vapor concentration and vapor flow velocity in the spool during primary drying. The instantaneous measurements were then used to determine the effect of the degree of supercooling on critical process and product parameters. Controlled nucleation resulted in uniform nucleation at lower degrees of supercooling for both formulations, higher sublimation rates, lower mass transfer resistance, lower product temperatures at the sublimation interface, and shorter primary drying times compared with the conventional shelf-ramped freezing. Controlled nucleation also resulted in lyophilized cakes with more elegant and porous structure with no visible collapse or shrinkage, lower specific surface area, and shorter reconstitution times compared with the uncontrolled nucleation. Uncontrolled nucleation however resulted in lyophilized cakes with relatively lower residual moisture contents compared with controlled nucleation. TDLAS proved to be an efficient tool to determine the endpoint of primary drying. There was good agreement between data obtained from TDLAS-based measurements and SMART™ technology. ControLyo™ technology and TDLAS showed great potential as PAT tools to achieve enhanced process monitoring and control during lyophilization cycles. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Effectiveness and efficiency of the two trolley system as an infection control mechanism in the operating theatre.

    PubMed

    Tuisawana, Viliame

    2009-11-01

    A good infection control manager understands the need to prevent a complete cycle of infection. The Infection Control Working Group Manual of Fiji, emphasised that the Cycle of Infection is the series of stage in which infection is spread. Operating theatres have infection control protocols. Most equipments and instruments used in operating theatre circulate within the theatre. The theatre trolleys are a main component in managing an operating theatre but the least recognised. This paper reviews the effectiveness and efficiency of the current two-trolley system as an infection control mechanism in theatre. The paper will discuss infection control using the current trolley system in relation to the layout of Labasa Hospital operating theatre, human resource, equipment standard and random swab results. The following are random swab results of theatre equipments taken by the Infection Control Nurse from 2006 to 2008. The Labasa Hospital Infection Committee have discouraged random swab sample from mid 2008 based on new guidelines on infection control. The two trolley system, in which an allocated outside trolley transports patients from the ward to a semi-sterile area in theatre. The inside trolley which transports the patient to the operating table. The two trolley system means more trolleys, extra staffs for lifting, additional handling of very sick patients, congestion and delay in taking patients to operating table in theatres should be considered. The one-trolley system in theatre greatly reduces the chances of manually lifting patients, thus reducing the risk of patient injury from fall and risk of back injuries to nurses. There are other evident based practices which can compliment the one trolley system for an effective infection control mechanism in theatres. The Fiji Infection Control Manual (2002) emphases the importance of regularly cleaning the environment and equipments in theatre but there is never a mention about using a two trolley system as an infection control mechanism for theatre.

  1. Selection of putative Terra Maranhão plantain cultivar mutants obtained by gamma radiation.

    PubMed

    Reis, R V; Amorim, E P; Ledo, C A S; Pestana, R K N; Gonçalves, Z S; Borém, A

    2015-05-11

    The aim of this study was to select putative Terra Maranhão plantain cultivar mutants obtained by gamma radiation, with good agronomic traits and short height. A total of 315 buds were irradiated in vitro with gamma rays in doses of 20 Gy and were subcultivated and evaluated in the field over 2 production cycles. The clones were evaluated to select the best 10% of the plants. Cultivation was undertaken at a spacing of 3 x 4 m, and fertilization was carried out according to the technical recommendations for the crop. A total of 111 irradiated plants and 41 controls were evaluated in the field. Among the irradiated plants selected, genotypes that exhibited reduced height were observed. The genotypes Irra 04, Irra 13, Irra 19, and Irra 21 exhibited a height of 3.6 m, which was below the mean value of the controls selected. Other irradiated genotypes selected such as Irra 14 and Irra 16, with a height of 3.65 m, are promising because, in addition to reduced height, they exhibited good bunch weight and shorter period to flowering in relation to the mean value of the controls, which is a significant factor for the next stages in breeding. These results confirm the possibility of inducing mutations in Terra type banana plants to obtain desirable agronomic traits and short height.

  2. Shape control of Co3O4 micro-structures for high-performance gas sensor

    NASA Astrophysics Data System (ADS)

    Zhou, Qu; Zeng, Wen

    2018-01-01

    Recently, spinel cobalt oxide (Co3O4) structure has been widely investigated due to its excellent sensitivity towards various noxious gases and good response/recovery speed at low concentration. In this work, we designed and synthesized two kinds of different Co3O4 micro-structure (cube and octahedron) with a similar size. After fabricating them into gas sensors, we found that the crystal plane structure of Co3O4 has an important effect on its gas sensing performance. Furthermore, the {111} planes of Co3O4may be more sensitive than {100} planes to various testing gases. Co3O4 octahedrons micro-structure exhibits an excellent sensitivity (about 12.6), good response/recovery speed and cycling stability (no decline even after 2 days) under 50 ppm ethanol gases at working temperature of 200 °C. As such, thisCo3O4 octahedrons micro-structure is a promising candidate for a high-performance gas sensing material.

  3. Use of case-based reasoning to enhance intensive management of patients on insulin pump therapy.

    PubMed

    Schwartz, Frank L; Shubrook, Jay H; Marling, Cynthia R

    2008-07-01

    This study was conducted to develop case-based decision support software to improve glucose control in patients with type 1 diabetes mellitus (T1DM) on insulin pump therapy. While the benefits of good glucose control are well known, achieving and maintaining good glucose control remains a difficult task. Case-based decision support software may assist by recalling past problems in glucose control and their associated therapeutic adjustments. Twenty patients with T1DM on insulin pumps were enrolled in a 6-week study. Subjects performed self-glucose monitoring and provided daily logs via the Internet, tracking insulin dosages, work, sleep, exercise, meals, stress, illness, menstrual cycles, infusion set changes, pump problems, hypoglycemic episodes, and other events. Subjects wore a continuous glucose monitoring system at weeks 1, 3, and 6. Clinical data were interpreted by physicians, who explained the relationship between life events and observed glucose patterns as well as treatment rationales to knowledge engineers. Knowledge engineers built a prototypical system that contained cases of problems in glucose control together with their associated solutions. Twelve patients completed the study. Fifty cases of clinical problems and solutions were developed and stored in a case base. The prototypical system detected 12 distinct types of clinical problems. It displayed the stored problems that are most similar to the problems detected, and offered learned solutions as decision support to the physician. This software can screen large volumes of clinical data and glucose levels from patients with T1DM, identify clinical problems, and offer solutions. It has potential application in managing all forms of diabetes.

  4. Recycling cycle of materials applied to acrylonitrile-butadiene-styrene/policarbonate blends with styrene-butadiene-styrene copolymer addition

    NASA Astrophysics Data System (ADS)

    Cândido, L. H. A.; Ferreira, D. B.; Júnior, W. Kindlein; Demori, R.; Mauler, R. S.

    2014-05-01

    The scope of this research is the recycling of polymers from mobile phones hulls discarded and the performance evaluation when they are submitted to the Recycling Cycle of Materials (RCM). The studied material was the ABS/PC blend in a 70/30 proportion. Different compositions were evaluated adding virgin material, recycled material and using the copolymer SBS as impact modifier. In order to evaluate the properties of material's composition, the samples were characterized by TGA, FTIR, SEM, IZOD impact strength and tensile strength tests. At the first stage, the presented results suggest the composition containing 25% of recycled material and 5% of SBS combines good mechanical performance to the higher content of recycled material and lower content of impact modifier providing major benefits to recycling plans. Five cycles (RCM) were applied in the second stage; they evidenced a decrease trend considering the impact strength. At first and second cycle the impact strength was higher than reference material (ABS/PC blend) and from the fourth cycle it was lower. The superiority impact strength in the first and second cycles can be attributed to impact modifier effect. The thermal tests and the spectrometry didn't show the presence of degradation process in the material and the TGA curves demonstrated the process stability. The impact surface of each sample was observed at SEM. The microstructures are not homogeneous presenting voids and lamellar appearance, although the outer surface presents no defects, demonstrating good moldability. The present work aims to assess the life cycle of the material from the successive recycling processes.

  5. 41 CFR 109-1.5304 - Deviations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... High Risk Personal Property § 109-1.5304 Deviations. (a) Life cycle control determinations. When the HFO approves a contractor program containing controls, other than life cycle control consistent with... Secretary for Procurement and Assistance Management. A HFO's decision not to provide life-cycle control...

  6. 41 CFR 109-1.5304 - Deviations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... High Risk Personal Property § 109-1.5304 Deviations. (a) Life cycle control determinations. When the HFO approves a contractor program containing controls, other than life cycle control consistent with... Secretary for Procurement and Assistance Management. A HFO's decision not to provide life-cycle control...

  7. 41 CFR 109-1.5304 - Deviations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... High Risk Personal Property § 109-1.5304 Deviations. (a) Life cycle control determinations. When the HFO approves a contractor program containing controls, other than life cycle control consistent with... Secretary for Procurement and Assistance Management. A HFO's decision not to provide life-cycle control...

  8. 41 CFR 109-1.5304 - Deviations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... High Risk Personal Property § 109-1.5304 Deviations. (a) Life cycle control determinations. When the HFO approves a contractor program containing controls, other than life cycle control consistent with... Secretary for Procurement and Assistance Management. A HFO's decision not to provide life-cycle control...

  9. 41 CFR 109-1.5304 - Deviations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... High Risk Personal Property § 109-1.5304 Deviations. (a) Life cycle control determinations. When the HFO approves a contractor program containing controls, other than life cycle control consistent with... Secretary for Procurement and Assistance Management. A HFO's decision not to provide life-cycle control...

  10. Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium-sulfur batteries.

    PubMed

    Zhao, Cunyu; Liu, Lianjun; Zhao, Huilei; Krall, Andy; Wen, Zhenhai; Chen, Junhong; Hurley, Patrick; Jiang, Junwei; Li, Ying

    2014-01-21

    Sulfur has received increasing attention as a cathode material for lithium-sulfur (Li-S) batteries due to its high theoretical specific capacity. However, the commercialization of Li-S batteries is limited by the challenges of poor electrical conductivity of sulfur, dissolution of the polysulfide intermediates into the electrolyte, and volume expansion of sulfur during cycling. Herein, we report the fabrication of novel-structured porous carbon microspheres with a controllable multi-modal pore size distribution, i.e., a combination of interconnected micropores, mesopores and macropores. Cathodes made of sulfur infiltrated in such a hierarchical carbon framework provide several advantages: (1) a continuous and high surface area carbon network for enhanced electrical conductivity and high sulfur loading; (2) macropores and large mesopores bridged by small mesopores to provide good electrolyte accessibility and fast Li ion transport and to accommodate volume expansion of sulfur; and (3) small mesopores and micropores to improve carbon/sulfur interaction and to help trap polysulfides. An initial discharge capacity at 1278 mA h g(-1) and capacity retention at 70.7% (904 mA h g(-1)) after 100 cycles at a high rate (1 C) were achieved. The material fabrication process is relatively simple and easily scalable.

  11. Polymer optical fiber strain gauge for human-robot interaction forces assessment on an active knee orthosis

    NASA Astrophysics Data System (ADS)

    Leal-Junior, Arnaldo G.; Frizera, Anselmo; Marques, Carlos; Sánchez, Manuel R. A.; Botelho, Thomaz R.; Segatto, Marcelo V.; Pontes, Maria José

    2018-03-01

    This paper presents the development of a polymer optical fiber (POF) strain gauge based on the light coupling principle, which the power attenuation is created by the misalignment between two POFs. The misalignment, in this case, is proportional to the strain on the structure that the fibers are attached. This principle has the advantages of low cost, ease of implementation, temperature insensitiveness, electromagnetic fields immunity and simplicity on the sensor interrogation and signal processing. Such advantages make the proposed solution an interesting alternative to the electronic strain gauges. For this reason, an analytical model for the POF strain gauge is proposed and validated. Furthermore, the proposed POF sensor is applied on an active orthosis for knee rehabilitation exercises through flexion/extension cycles. The controller of the orthosis provides 10 different levels of robotic assistance on the flexion/extension movement. The POF strain gauge is tested at each one of these levels. Results show good correlation between the optical and electronic strain gauges with root mean squared deviation (RMSD) of 1.87 Nm when all cycles are analyzed, which represents a deviation of less than 8%. For the application, the proposed sensor presented higher stability than the electronic one, which can provide advantages on the rehabilitation exercises and on the inner controller of the device.

  12. Design of high-efficiency Joule-Thomson cycles for high-temperature superconductor power cable cooling

    NASA Astrophysics Data System (ADS)

    Jin, Lingxue; Lee, Cheonkyu; Baek, Seungwhan; Jeong, Sangkwon

    2018-07-01

    Liquid nitrogen (LN2) is commonly used as the coolant of a high temperature superconductor (HTS) power cable. The LN2 is continuously cooled by a subcooler to maintain an appropriate operating temperature of the cable. This paper proposes two Joule-Thomson (JT) refrigeration cycles for subcooling the LN2 coolant by using nitrogen itself as the working fluid. Additionally, an innovative HTS cooling cycle, of which the cable coolant and the refrigerant are unified and supplied from the same source, is suggested and analyzed in detail. Among these cycles, the highest COP is obtained in the JT cycle with a vacuum pump (Cycle A) which is 0.115 at 78 K, and the Carnot efficiency is 32.8%. The integrated HTS cooling cycle (Cycle C) can reach the maximum COP of 0.087, and the Carnot efficiency of 24.8%. Although Cycle C has a relatively low cycle efficiency when compared to that of the separated refrigeration cycle, it can be a good alternative in engineering applications, because the assembled hardware has few machinery components in a more compact configuration than the other cycles.

  13. Therapeutic Efficacy of Endometrial Scratching in Repeated Controlled Ovarian Stimulation (COS) Failure Cycles

    PubMed Central

    Wadhwa, Leena; Mishra, Mona

    2018-01-01

    Objective: The objective of the study was (1) “to evaluate the therapeutic efficacy of endometrial scratching in repeated controlled ovarian stimulation (COS) failure cycles.” And (2) “to compare differences in pregnancy outcome by endometrial scratching in early (D2–D4) and late follicular phases (D7–D9) of the same stimulation cycle.” Materials and Methods: Women attending infertility clinic in a tertiary care center and who have two or more repeated COS failure cycles and planned for COS with intrauterine insemination (IUI) were included in the study which is a prospective parallel, interventional, single-blinded, randomized control study, in 1:1 allocation ratio. A total of 165 patients were recruited and randomly allocated into three groups: Group A (n = 55) underwent endometrial scratching on D2–D4 of the same COS cycle, Group B (n = 55) on D7–D9, and Group C (n = 55) no intervention done. All the patients underwent COS according to standard protocol followed by IUI. Results: Clinical pregnancy rate was 12.73% (odds ratio [OR] =0.87 95% confidence interval [CI] =0.288–2.55, P = 1), 16.36% (OR = 1.15; 95% CI = 0.40–3.23, P = 1), and 14.54%, respectively, in Group A, B, and C, respectively (P = 0.86), as per intention to treat analysis. Using Chi-square test, P value between Group A and B was 0.787, between Group A and C was 1.000, and between Group B and C was 1.000. As per protocol analysis, clinical pregnancy rate was 13.46% (OR = 0.83; 95% CI = 0.27–2.5, P = 0.74), 19.57% (OR = 1.3 95%; CI = 0.45–3.73, P = 0.41), and 15.69%. Using Chi-square test, Pvalue between Group A and B was 0.588, between Group A and C was 0.967, and between Group B and C was 0.815. No abortions and multiple pregnancies occurred in either of the groups. Conclusion: The effect found was of good quantum in Group B as per protocol analysis which could be of clinical relevance if larger sample size would have been taken. Endometrial scratching is a cost-effective and easy technique which may improve clinical pregnancy rates in previous COS failure cycles, but more trials are needed to be conducted using larger sample size to achieve the improved and significant outcome. PMID:29681718

  14. Automatic control of clock duty cycle

    NASA Technical Reports Server (NTRS)

    Feng, Xiaoxin (Inventor); Roper, Weston (Inventor); Seefeldt, James D. (Inventor)

    2010-01-01

    In general, this disclosure is directed to a duty cycle correction (DCC) circuit that adjusts a falling edge of a clock signal to achieve a desired duty cycle. In some examples, the DCC circuit may generate a pulse in response to a falling edge of an input clock signal, delay the pulse based on a control voltage, adjust the falling edge of the input clock signal based on the delayed pulse to produce an output clock signal, and adjust the control voltage based on the difference between a duty cycle of the output clock signal and a desired duty cycle. Since the DCC circuit adjusts the falling edge of the clock cycle to achieve a desired duty cycle, the DCC may be incorporated into existing PLL control loops that adjust the rising edge of a clock signal without interfering with the operation of such PLL control loops.

  15. The Goldilocks Dilemma: Homework Policy Creating a Culture Where Simply Good Is Just Not Good Enough

    ERIC Educational Resources Information Center

    Watkins, Paul J.; Stevens, David W.

    2013-01-01

    Throughout the decades of educational reform cycles, the value of homework has proven either meaningful or meaningless depending on the reforming framework. Questions about homework as simply busy work or knowledge work, mere content distraction or content extension, ambivalence toward importance, or discipline of character all cloud any…

  16. Effect of body condition score of does and use of bucks subjected to added artificial light on estrus response of Alpine goats.

    PubMed

    Rivas-Muñoz, Raymundo; Carrillo, Evaristo; Rodriguez-Martinez, Rafael; Leyva, Carlos; Mellado, Miguel; Véliz, Francisco Gerardo

    2010-08-01

    The effects of body condition score of does and exposure to sexually active bucks after exposure to long-day artificial photoperiod were examined in mature anovulatory French Alpine goat in Northern Mexico. In June, goats in good (2.3 +/- 0.2, scale 1 to 4; n = 10) or poor (1.6 +/- 0.3; n = 10) body condition were exposed during 15 day to sexually active bucks, which had been exposed to long photoperiod (16:8-h light-dark cycle, starting in December). A third group of goats in good body condition was exposed to bucks kept under the natural photoperiod of this region (26 degrees N). All goats in good body condition exposed to bucks treated with prolonged photoperiod exhibited estrus behavior, whereas only 50% of the does in poor body condition showed estrous behavior during the 15-day buck exposure. None of the does in good body condition showed estrus when exposed to bucks under natural photoperiod. These results revealed that a good body condition is required for maximum estrus response in anestrous Alpine goats and that exposure of bucks to long photoperiod in winter is essential for an adequate stimulus to reestablish estrus cycles in anovulatory Alpine does in Northern Mexico.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Xiaomei; Lv, Xin; Wang, Limin

    Graphical abstract: - Highlights: • Effect of CTAB on the morphology and crystallization of MnFe{sub 2}O{sub 4}. • The lowest coercivity of MnFe{sub 2}O{sub 4} polyhedron is 11.9 Oe. • MnFe{sub 2}O{sub 4} as anode for LIB shows good reversible capacity and cycle performances. - Abstract: The uniform different morphologies MnFe{sub 2}O{sub 4}, including cube, truncated cube, polyhedron and octahedron, were successfully synthesized via a solvothermal route using cetyltrimethylammonium bromide. The results of control experiments revealed that the concentration of cetyltrimethylammonium bromide was an important factor, which affected the morphology and crystallization of MnFe{sub 2}O{sub 4} submicro-crystals. All the preparedmore » samples exhibited soft-magnetic behavior at room temperature. Especially, the coercivity of MnFe{sub 2}O{sub 4} polyhedron with 200 nm diameter was 11.9 Oe, which was among the lowest values reported so far. Moreover, MnFe{sub 2}O{sub 4} submicro-crystals with special morphologies demonstrated higher reversible capacity (about 1000 mAh g{sup −1}) and different cycle performances. After 50 cycles, polyhedron structure remained 428 mAh/g. The MnFe{sub 2}O{sub 4} would have a potential application as anode material for lithium ion batteries.« less

  18. Ceria nanoparticles uniformly decorated on graphene nanosheets with coral-like morphology for high-performance supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Yan; Ruiyi, Li; Haiyan, Zhu

    Graphical abstract: The study reported the synthesis of coral-like CeO{sub 2}/GNs for supercapacitors. The unique architecture with overall connected framework and good conducting network of the graphene greatly boosts the Faradaic redox reaction. Therefore, the CeO{sub 2}/GNs delivers an excellent electrochemical performance. - Highlights: • The study reported the synthesis of CeO{sub 2}/GNs. • The graphene was woven into CeO{sub 2}, acting as a good conducting network. • The CeO{sub 2}/GNs shows a coral-like structure. • The architecture creates an overall connected framework. • The CeO{sub 2}/GNs delivers good capacitive performances. - Abstract: CeO{sub 2}/graphene was synthesized by a simplemore » microwave method along with subsequent calcination. CeO{sub 2} nanoparticles with an average size of 68.8 nm are uniformly decorated on graphene nanosheets (CeO{sub 2}/GNs). The CeO{sub 2}/GNs displays a like-coral morphology. The architecture including overall connected framework, abundant intercrossed and interconnected nanochannels and perfect conducting network of the graphene, endows the CeO{sub 2}/GNs material with a superior electron and mass transport. As a result, the CeO{sub 2}/GNs gives a high specific capacitance of 503.4 F/g at 2 A/g and good cycle performance with 91.8% capacitance retention after 3000 cycles. Further, an asymmetric supercapacitors was assembled by using CeO{sub 2}/GNs as the positive electrode and activated carbon as the negative electrode, the asymmetric device demonstrate a favorable energy density of 30.2 Wh/kg at the power density of 750.0 W/kg and superior cycle life with 86.4% the capacitance retenion at 5 A/g after 3000 cycles.« less

  19. Is overprotection of the sulfur cathode good for Li-S batteries?

    PubMed

    Gao, Tian; Shao, Jie; Li, Xingxing; Zhu, Guobin; Lu, Qiujian; Han, Yuyao; Qu, Qunting; Zheng, Honghe

    2015-08-11

    How to restrain the dissolution of polysulfides from the sulfur cathode is the current research focus of Li-S batteries. Here, we find that moderate dissolution of polysulfides is of great importance for high-efficiency and stable discharge/charge cycling. Both overprotection and inadequate protection of the sulfur cathode are unfavorable for the cycling of Li-S batteries.

  20. Ultrafine manganese dioxide nanowire network for high-performance supercapacitors.

    PubMed

    Jiang, Hao; Zhao, Ting; Ma, Jan; Yan, Chaoyi; Li, Chunzhong

    2011-01-28

    Ultrafine MnO(2) nanowires with sub-10 nm diameters have been synthesized by a simple process of hydrothermal treatment with subsequent calcinations to form networks that exhibit an enhanced specific capacitance (279 F g(-1) at 1 A g(-1)), high rate capability (54.5% retention at 20 A g(-1)) and good cycling stability (1.7% loss after 1000 cycles).

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, John B.; Detsi, Eric; Liu, Yijin

    Next generation Li-ion batteries will require negative electrode materials with energy densities many-fold higher than that found in the graphitic carbon currently used in commercial Li-ion batteries. While various nanostructured alloying-type anode materials may satisfy that requirement, such materials do not always exhibit long cycle lifetimes and/or their processing routes are not always suitable for large-scale synthesis. Here, we report on a high-performance anode material for next generation Li-ion batteries made of nanoporous Sn powders with hierarchical ligament morphology. This material system combines both long cycle lifetimes (more than 72% capacity retention after 350 cycles), high capacity (693 mAh/g, nearlymore » twice that of commercial graphitic carbon), good charging/discharging capabilities (545 mAh/g at 1 A/g, 1.5C), and a scalable processing route that involves selective alloy corrosion. The good cycling performance of this system is attributed to its nanoporous architecture and its unique hierarchical ligament morphology, which accommodates the large volume changes taking place during lithiation, as confirmed by synchrotron-based ex-situ X-ray 3D tomography analysis. In conclusion, our findings are an important step for the development of high-performance Li-ion batteries.« less

  2. Emission rates of regulated pollutants from current technology heavy-duty diesel and natural gas goods movement vehicles.

    PubMed

    Thiruvengadam, Arvind; Besch, Marc C; Thiruvengadam, Pragalath; Pradhan, Saroj; Carder, Daniel; Kappanna, Hemanth; Gautam, Mridul; Oshinuga, Adewale; Hogo, Henry; Miyasato, Matt

    2015-04-21

    Chassis dynamometer emissions testing of 11 heavy-duty goods movement vehicles, including diesel, natural gas, and dual-fuel technology, compliant with US-EPA 2010 emissions standard were conducted. Results of the study show that three-way catalyst (TWC) equipped stoichiometric natural gas vehicles emit 96% lower NOx emissions as compared to selective catalytic reduction (SCR) equipped diesel vehicles. Characteristics of drayage truck vocation, represented by the near-dock and local drayage driving cycles, were linked to high NOx emissions from diesel vehicles equipped with a SCR. Exhaust gas temperatures below 250 °C, for more than 95% duration of the local and near-dock driving cycles, resulted in minimal SCR activity. The low percentage of activity SCR over the local and near-dock cycles contributed to a brake-specific NOx emissions that were 5-7 times higher than in-use certification limit. The study also illustrated the differences between emissions rate measured from chassis dynamometer testing and prediction from the EMFAC model. The results of the study emphasize the need for model inputs relative to SCR performance as a function of driving cycle and engine operation characteristics.

  3. Disassembly factories for electrical and electronic products to recover resources in product and material cycles.

    PubMed

    Basdere, Bahadir; Seliger, Guenther

    2003-12-01

    Cycle economy as a paradigm for industry in the 21st century depends on the economical and ecological treatment of limited resources. The objective is to achieve more use with fewer resources to increase the use-productivity of these resources. The European Union, aware of the adverse environmental impacts associated with electrical and electronic consumer goods in particular, has passed legislation regulating their appropriate end-of-life treatment. Adaptation processes, including essential disassembly and re-assembly operations, contribute significantly toward the economical fulfillment of these new legal requirements. Typically, the disassembly of used products is characterized by a high rate of manual operations, wide variety of product types, and unknown product properties. To cope with such demands, life cycle units or product accompanying information systems, are being developed and used for acquiring data about a specific product throughout its life cycle to aid in determining the level of product deterioration. Modular disassembly processes and tools have been developed and realized to enable the handling of multiple productvariants. They are being implemented in prototypical hybrid disassembly systemsfor large- and small-size electrical and electronic consumer goods.

  4. Carbon Cathodes in Rechargeable Lithium-Oxygen Batteries Based on Double-Lithium-Salt Electrolytes.

    PubMed

    Yoo, Eunjoo; Zhou, Haoshen

    2016-06-08

    The use of carbon materials as air electrodes in lithium-oxygen (Li-O2 ) batteries is known to be advantageous owing to their good conductivity and because they offer sites suitable for the reversible electrode reactions. However, the exact influence of carbon materials on the electrochemical performance of Li-O2 batteries is not clear. In this study the electrochemical performance of four different types of carbon materials (multiwalled carbon nanotubes (MWCNTs), CMK-3, graphene nanosheets (GNSs), and Ketjen Black (KB)) as air electrodes is examined. We find that a Li-O2 cell based on an electrode of multiwalled carbon nanotubes (MWCNTs) demonstrates good rate performance and cycle stability, when using LiNO3 -LiTFSI/DMSO as electrolyte. Li-O2 cells based on such MWCNT electrodes, with a cut-off capacity of 1000 mAh g(-1) at 500 mA g(-1) , can undergo around 90 cycles without obvious losses of capacity. Even when the discharge depth is increased to 2000 mA h g(-1) , stable cycling is maintained for 45 cycles at a charge potential below 4.0 V. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Experimental study of refrigeration performance based on linear Fresnel solar thermal photovoltaic system

    NASA Astrophysics Data System (ADS)

    Song, Jinghui; Yuan, Hui; Xia, Yunfeng; Kan, Weimin; Deng, Xiaowen; Liu, Shi; Liang, Wanlong; Deng, Jianhua

    2018-03-01

    This paper introduces the working principle and system constitution of the linear Fresnel solar lithium bromide absorption refrigeration cycle, and elaborates several typical structures of absorption refrigeration cycle, including single-effect, two-stage cycle and double-effect lithium bromide absorption refrigeration cycle A 1.n effect absorption chiller system based on the best parameters was introduced and applied to a linear Fresnel solar absorption chiller system. Through the field refrigerator performance test, the results show: Based on this heat cycle design and processing 1.n lithium bromide absorption refrigeration power up to 35.2KW, It can meet the theoretical expectations and has good flexibility and reliability, provides guidance for the use of solar thermal energy.

  6. Climatic precession is the main driver of Early Cretaceous sedimentation in the Vocontian Basin (France): Evidence from the Valanginian Orpierre succession

    NASA Astrophysics Data System (ADS)

    Boulila, Slah; Charbonnier, Guillaume; Galbrun, Bruno; Gardin, Silvia

    2015-07-01

    The Valanginian sediments outcropping in the Vocontian Basin (SE France) exhibit striking marl-limestone alternations, which were formed under the influence of orbital forcing and which have served for geochronological and paleoenvironmental studies. Previous studies have suggested an obliquity forcing during the Late Valanginian interval, reflecting specific environmental conditions such as polar ice. Using a cyclostratigraphic correlation of previously studied sections and performing time-series analysis on the most complete Late Valanginian interval we argue that the climatic precession cycle is the primary driver of these marl-limestone alternations. In addition, we highlight the modulation of the precession by the ~ 100 and 405 kyr eccentricity cycles. We suggest that the cyclostratigraphic misinterpretation (i.e., obliquity-forcing hypothesis) results mainly from poorly preserved 405 kyr eccentricity cycles, due to local hiatuses and/or "missed beats". This study shows the potential of cyclostratigraphic correlations for the detection and quantification of differential hiatuses and/or "missed beats" within intrabasinal sequences, hence providing constraints on cyclostratigraphic interpretations. The recorded 405 kyr eccentricity cycle is of prominent amplitude, and controlled the fourth-order sea-level sequences. These latter are faithfully detected through cyclostratigraphically inferred sedimentation rate. Finally, we show that the well-known, pronounced lithostratigraphic markers/intervals in the basin were orbitally paced by the 405 kyr eccentricity extrema. This is a good argument for the strong impact of this cyclicity on the sedimentary processes, especially during greenhouse periods.

  7. Cyclic compression response of micropillars extracted from textured nanocrystalline NiTi thin-walled tubes

    DOE PAGES

    Ghassemi-Armaki, Hassan; Leff, Asher C.; Taheri, Mitra L.; ...

    2017-06-22

    Compression-compression cyclic deformation of nanocrystalline NiTi tubes intended for medical stents and with an outer diameter of 1 mm and wall thickness of 70 μm was studied using micropillars produced by FIB with the loading axis orthogonal to the tube axis. These micropillars were cycled in a displacement-controlled mode using a nanoindenter equipped with a flat punch to strain levels of 4, 6 and 8% in each cycle and specimens were subjected to several hundred cycles. Furthermore, the cyclic response of two NiTi tubes, one with Af of 17 °C and the other with an Af of -5 °C ismore » compared. The texture of the tube with the Af of -5 °C was measured at the microscopic level using transmission electron microscopy and at the macroscopic level by X-ray diffraction and good agreement was noted. Characteristics such as i) a reduction in the forward transformation stress, ii) increase in maximum stress for a given displacement amplitude, and iii) a reduction in the hysteresis loop area, all with increasing number of cycles, observed typically during cyclic deformation of conventional macroscopic specimens, were captured in the micropillar cyclic tests. Our observations lead to the conclusion that micropillar compression testing in a cyclic mode can enable characterizing the orientation-dependent response in such small dimension components that see complex loading in service, and additionally provide an opportunity for calibrating constitutive equations in micromechanical models.« less

  8. Systems and methods for compensating for electrical converter nonlinearities

    DOEpatents

    Perisic, Milun; Ransom, Ray M.; Kajouke, Lateef A.

    2013-06-18

    Systems and methods are provided for delivering energy from an input interface to an output interface. An electrical system includes an input interface, an output interface, an energy conversion module coupled between the input interface and the output interface, and a control module. The control module determines a duty cycle control value for operating the energy conversion module to produce a desired voltage at the output interface. The control module determines an input power error at the input interface and adjusts the duty cycle control value in a manner that is influenced by the input power error, resulting in a compensated duty cycle control value. The control module operates switching elements of the energy conversion module to deliver energy to the output interface with a duty cycle that is influenced by the compensated duty cycle control value.

  9. Assembly of flexible CoMoO4@NiMoO4·xH2O and Fe2O3 electrodes for solid-state asymmetric supercapacitors

    PubMed Central

    Wang, Jing; Zhang, Leipeng; Liu, Xusong; Zhang, Xiang; Tian, Yanlong; Liu, Xiaoxu; Zhao, Jiupeng; Li, Yao

    2017-01-01

    In this work, CoMoO4@NiMoO4·xH2O core-shell heterostructure electrode is directly grown on carbon fabric (CF) via a feasible hydrothermal procedure with CoMoO4 nanowires (NWs) as the core and NiMoO4 nanosheets (NSs) as the shell. This core-shell heterostructure could provide fast ion and electron transfer, a large number of active sites, and good strain accommodation. As a result, the CoMoO4@NiMoO4·xH2O electrode yields high-capacitance performance with a high specific capacitance of 1582 F g−1, good cycling stability with the capacitance retention of 97.1% after 3000 cycles and good rate capability. The electrode also shows excellent mechanical flexibility. Also, a flexible Fe2O3 nanorods/CF electrode with enhanced electrochemical performance was prepared. A solid-state asymmetric supercapacitor device is successfully fabricated by using flexible CoMoO4@NiMoO4·xH2O as the positive electrode and Fe2O3 as the negative electrode. The asymmetric supercapacitor with a maximum voltage of 1.6 V demonstrates high specific energy (41.8 Wh kg−1 at 700 W kg−1), high power density (12000 W kg−1 at 26.7 Wh kg−1), and excellent cycle ability with the capacitance retention of 89.3% after 5000 cycles (at the current density of 3A g−1). PMID:28106170

  10. Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu

    2017-10-01

    A constitutive model of rocks subjected to cyclic stress-temperature was proposed. Based on statistical damage theory, the damage constitutive model with Weibull distribution was extended. Influence of model parameters on the stress-strain curve for rock reloading after stress-temperature cycling was then discussed. The proposed model was initially validated by rock tests for cyclic stress-temperature and only cyclic stress. Finally, the total damage evolution induced by stress-temperature cycling and reloading after cycling was explored and discussed. The proposed constitutive model is reasonable and applicable, describing well the stress-strain relationship during stress-temperature cycles and providing a good fit to the test results. Elastic modulus in the reference state and the damage induced by cycling affect the shape of reloading stress-strain curve. Total damage induced by cycling and reloading after cycling exhibits three stages: initial slow increase, mid-term accelerated increase, and final slow increase.

  11. Composite of K-doped (NH4)2V3O8/graphene as an anode material for sodium-ion batteries.

    PubMed

    Liu, Xin; Li, Zhiwei; Fei, Hailong; Wei, Mingdeng

    2015-11-21

    A layer structured K-doped (NH4)2V3O8/graphene (K-NVG) was prepared via a hydrothermal route and then used as an anode material for sodium-ion batteries for the first time. The K-NVG nanosheets have a diameter in the range of 200-500 nm. The K-NVG electrode exhibited stable cycling and a good rate performance with a reversible capacity of 235.4 mA h g(-1), which is much higher than the 90.5 mA h g(-1) value of the (NH4)2V3O8/graphene electrode after 100 cycles at a current density of 100 mA g(-1). Simultaneously, the retention rate was maintained at 82% even after 250 cycles at the current density of 300 mA g(-1). Such good electrochemical properties may be attributed to the K-NVG's stable layered structure.

  12. Fabrication of thorium bearing carbide fuels

    DOEpatents

    Gutierrez, Rueben L.; Herbst, Richard J.; Johnson, Karl W. R.

    1981-01-01

    Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750.degree. C. and 2000.degree. C. were used during the reduction cycle. Sintering temperatures of 1800.degree. C. and 2000.degree. C. were used to prepare fuel pellet densities of 87% and >94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproducibility of chemicals and phase composition. Methods employing liquid techniques that form carbide microspheres or alloying-techniques which form alloys of thorium-uranium or thorium-plutonium suffer from limitation on the quantities processed of because of criticality concerns and lack of precise control of process conditions, respectively.

  13. 3D printed graphene-based electrodes with high electrochemical performance

    NASA Astrophysics Data System (ADS)

    Vernardou, D.; Vasilopoulos, K. C.; Kenanakis, G.

    2017-10-01

    Three-dimensional (3D) printed graphene pyramids were fabricated through a dual-extrusion FDM-type 3D printer using a commercially available PLA-based conductive graphene. Compared with flat printed graphene, a substantial enhancement in the electrochemical performance was clearly observed for the case of 3D printed graphene pyramids with 5.0 mm height. Additionally, the charge transfer of Li+ across the graphene pyramids/electrolyte interface was easier enhancing its performance presenting a specific discharge capacity of 265 mAh g-1 with retention of 93% after 1000 cycles. The importance of thickness control towards the printing of an electrode with good stability and effective electrochemical behavior is highlighted.

  14. What information strategy responding to social needs should be?

    NASA Astrophysics Data System (ADS)

    Fujii, Kunihiko

    With the contemporary social phenomena that people think much of diversity of value, they are concerned with differentiation from others. Consumers' tendency to seek unique goods is common to all, giving impetus to makers' attitude that they try to produce varieties of goods but small amount for each. Consequently, life cycle of goods has become smaller than ever, and rapid and creative information gathering and utilization have become essential when makers produce goods responding to consumers' need. The author discusses how information strategy should be worked in the comprehensive business activities, and how information should be located as the powerful management resource.

  15. Characterization of oocyte retrieval cycles with empty zona pellucida.

    PubMed

    Oride, Aki; Kanasaki, Haruhiko; Hara, Tomomi; Ohta, Hiroko; Kyo, Satoru

    2018-01-01

    To identify the factors that characterize cycles with empty zona pellucida (EZP). Thirty-six oocyte retrieval cycles from which EZP were collected and another 36 cycles from which no EZP was collected were compared. The patients were divided into three groups: those with no EZP collected during any cycle, those with EZP collected during all cycles, and those experiencing cycles both with and without EZP. The mean number of oocytes collected per cycle was higher in the cycles with EZP than without EZP. The fertilization rate of the collected oocytes and the rate of good embryo formation were significantly lower in the cycles with EZP. No significant difference was observed between the three groups in terms of age, number of oocytes collected, or hormone levels before and after the oocyte retrieval. The fertilization and pregnancy rates were highest in the patients with no EZP being collected during any cycle, followed by those experiencing cycles both with and without EZP, and then by those with EZP collected during all cycles. The observation of lower fertilization, poor embryo formation, and a low pregnancy rate in the patients with EZP suggests the poor quality of oocytes that were collected with EZP in the same cycle.

  16. THE FAILURE OF STRUCTURAL METALS SUBJECTED TO STRAIN-CYCLING CONDITIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swindeman, R.W.; Douglas, D.A.

    1958-11-01

    Data showing the isothermal strain-cycling capacity of three metals, inconel, Hastelloy "B," and beryllium, are presented. It is noted that at frequencies of 0.5 cycles per minute the data satisfied am equation of the form N/ sup alpha / epsilon /sub p/ = K, where N is the number of cycles to failure, epsilon /sub p/ is the plastic strain per cycle, and alpha and K are constants whose values depend on the structure and test conditions. Data on Ihconel are given to establish the effect of grain size, specimen geometry, temperature, and frequency. It is found that at temperaturesmore » above 1300 F, grain sine amd frequency exert a pronounced effect on the rupture life. Fine-gralned metal survives more cycles before failure than coarsegrained material. Lomg time cycles shorten the number of cycles to failure when the strain per cycle is low. Thermal strain cycling dain for ihconel are compared to strain cycling data at the same mean temperature. Good correlation is found to exist between the two types of data. (auth)« less

  17. A High-Precision Counter Using the DSP Technique

    DTIC Science & Technology

    2004-09-01

    DSP is not good enough to process all the 1-second samples. The cache memory is also not sufficient to store all the sampling data. So we cut the...sampling number in a cycle is not good enough to achieve an accuracy less than 2×10-11. For this reason, a correlation operation is performed for... not good enough to process all the 1-second samples. The cache memory is also not sufficient to store all the sampling data. We will solve this

  18. Annular dynamics after mitral valve repair with different prosthetic rings: A real-time three-dimensional transesophageal echocardiography study.

    PubMed

    Nishi, Hiroyuki; Toda, Koichi; Miyagawa, Shigeru; Yoshikawa, Yasushi; Fukushima, Satsuki; Kawamura, Masashi; Yoshioka, Daisuke; Saito, Tetsuya; Ueno, Takayoshi; Kuratani, Toru; Sawa, Yoshiki

    2016-09-01

    We assessed the effects of different types of prosthetic rings on mitral annular dynamics using real-time three-dimensional echocardiography (RT3DE). RT3DE was performed in 44 patients, including patients undergoing mitral annuloplasty using the Cosgrove-Edwards flexible band (Group A, n = 10), the semi-rigid Sorin Memo 3D ring (Group B, n = 17), the semi-rigid Edwards Physio II ring (Group C, n = 7) and ten control subjects. Various annular diameters were measured throughout the cardiac cycle. We observed flexible anterior annulus motion in all of the groups except Group C. A flexible posterior annulus was only observed in Group B and the Control group. The mitral annular area changed during the cardiac cycle by 8.4 ± 3.2, 6.3 ± 2.0, 3.2 ± 1.3, and 11.6 ± 5.0 % in Group A, Group B, Group C, and the Control group, respectively. The dynamic diastolic to systolic change in mitral annular diameters was lost in Group C, while it was maintained in Group A, and to a good degree in Group B. In comparison to the Control group, the mitral annulus shape was more ellipsoid in Group B and Group C, and more circular in Group A. Although mitral regurgitation was well controlled by all of the types of rings that were utilized in the present study, we demonstrated that the annulus motion and annulus shape differed according to the type of prosthetic ring that was used, which might provide important information for the selection of an appropriate prosthetic ring.

  19. (PECASE 08) - ION-Conducting Network Membranes Using Tapered Block Copolymers

    DTIC Science & Technology

    2015-07-08

    iron phosphate ( LiFePO4 ) as an active material for the cathode. The composite cathode was prepared by mixing P(S-EO) with carbon black and LiFePO4 ...salt- doping ratio of [EO]:[Li] = 12:1. Example cycle-life data for the Li/P(S-EO)/ LiFePO4 cell is shown in Figure 1. The specific discharge...rates, indicating good cycling stability. This investigation currently is in progress. 1 Figure 1: Cycle-life data for the Li/P(S-EO)/ LiFePO4 cell

  20. Two-dimensional ultra-thin SiO(x) (0 < x < 2) nanosheets with long-term cycling stability as lithium ion battery anodes.

    PubMed

    Sun, Lin; Su, Tingting; Xu, Lei; Liu, Meipin; Du, Hong-Bin

    2016-03-21

    Ultra-thin SiO(x) (0 < x < 2) nanosheets were obtained via a convenient solvothermal route from a Zintl compound CaSi2. After carbon coating, the SiOx@C nanosheet anodes exhibit high capacity, good rate and superior cycling performance for high-capacity lithium ion battery applications. The specific capacity can be maintained as high as 760 mA h g(-1) with almost no capacity decay after 400 cycles at a current density of 0.5 A g(-1).

  1. Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells.

    PubMed

    Lachgar, S; Charveron, M; Gall, Y; Bonafe, J L

    1998-03-01

    The hair follicle dermal papilla which controls hair growth, is characterized in the anagen phase by a highly developed vascular network. We have demonstrated in a previous study that the expression of an angiogenic growth factor called vascular endothelial growth factor (VEGF) mRNA varied during the hair cycle. VEGF mRNA is strongly expressed in dermal papilla cells (DPC) in the anagen phase, but during the catagen and telogen phases. VEGF mRNA is less strongly expressed. This involvement of VEGF during the hair cycle allowed us to determine whether VEGF mRNA expression by DPC was regulated by minoxidil. In addition, the effect of minoxidil on VEGF protein synthesis in both cell extracts and DPC-conditioned medium, was investigated immunoenzymatically. Both VEGF mRNA and protein were significantly elevated in treated DPC compared with controls. DPC incubated with increasing minoxidil concentrations (0.2, 2, 6, 12 and 24 mumol/L) induced a dose-dependent expression of VEGF mRNA. Quantification of transcripts showed that DPC stimulated with 24 mumol/L minoxidil express six times more VEGF mRNA than controls. Similarly, VEGF protein production increases in cell extracts and conditioned media following minoxidil stimulation. These studies strongly support the likely involvement of minoxidil in the development of dermal papilla vascularization via a stimulation of VEGF expression, and support the hypothesis that minoxidil has a physiological role in maintaining a good vascularization of hair follicles in androgenetic alopecia.

  2. Periodically pulsed wet annealing approach for low-temperature processable amorphous InGaZnO thin film transistors with high electrical performance and ultrathin thickness

    PubMed Central

    Kim, Ye Kyun; Ahn, Cheol Hyoun; Yun, Myeong Gu; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun

    2016-01-01

    In this paper, a simple and controllable “wet pulse annealing” technique for the fabrication of flexible amorphous InGaZnO thin film transistors (a-IGZO TFTs) processed at low temperature (150 °C) by using scalable vacuum deposition is proposed. This method entailed the quick injection of water vapor for 0.1 s and purge treatment in dry ambient in one cycle; the supply content of water vapor was simply controlled by the number of pulse repetitions. The electrical transport characteristics revealed a remarkable performance of the a-IGZO TFTs prepared at the maximum process temperature of 150 °C (field-effect mobility of 13.3 cm2 V−1 s−1; Ion/Ioff ratio ≈ 108; reduced I-V hysteresis), comparable to that of a-IGZO TFTs annealed at 350 °C in dry ambient. Upon analysis of the angle-resolved x-ray photoelectron spectroscopy, the good performance was attributed to the effective suppression of the formation of hydroxide and oxygen-related defects. Finally, by using the wet pulse annealing process, we fabricated, on a plastic substrate, an ultrathin flexible a-IGZO TFT with good electrical and bending performances. PMID:27198067

  3. Periodically pulsed wet annealing approach for low-temperature processable amorphous InGaZnO thin film transistors with high electrical performance and ultrathin thickness.

    PubMed

    Kim, Ye Kyun; Ahn, Cheol Hyoun; Yun, Myeong Gu; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun

    2016-05-20

    In this paper, a simple and controllable "wet pulse annealing" technique for the fabrication of flexible amorphous InGaZnO thin film transistors (a-IGZO TFTs) processed at low temperature (150 °C) by using scalable vacuum deposition is proposed. This method entailed the quick injection of water vapor for 0.1 s and purge treatment in dry ambient in one cycle; the supply content of water vapor was simply controlled by the number of pulse repetitions. The electrical transport characteristics revealed a remarkable performance of the a-IGZO TFTs prepared at the maximum process temperature of 150 °C (field-effect mobility of 13.3 cm(2) V(-1) s(-1); Ion/Ioff ratio ≈ 10(8); reduced I-V hysteresis), comparable to that of a-IGZO TFTs annealed at 350 °C in dry ambient. Upon analysis of the angle-resolved x-ray photoelectron spectroscopy, the good performance was attributed to the effective suppression of the formation of hydroxide and oxygen-related defects. Finally, by using the wet pulse annealing process, we fabricated, on a plastic substrate, an ultrathin flexible a-IGZO TFT with good electrical and bending performances.

  4. Development of battery management system for nickel-metal hydride batteries in electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Jung, Do Yang; Lee, Baek Haeng; Kim, Sun Wook

    Electric vehicle (EV) performance is very dependent on traction batteries. For developing electric vehicles with high performance and good reliability, the traction batteries have to be managed to obtain maximum performance under various operating conditions. Enhancement of battery performance can be accomplished by implementing a battery management system (BMS) that plays an important role in optimizing the control mechanism of charge and discharge of the batteries as well as monitoring the battery status. In this study, a BMS has been developed for maximizing the use of Ni-MH batteries in electric vehicles. This system performs several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state-of-charge (SOC), safety, and thermal management. The BMS is installed in and tested in a DEV5-5 electric vehicle developed by Daewoo Motor Co. and the Institute for Advanced Engineering in Korea. Eighteen modules of a Panasonic nickel-metal hydride (Ni-MH) battery, 12 V, 95 A h, are used in the DEV5-5. High accuracy within a range of 3% and good reliability are obtained. The BMS can also improve the performance and cycle-life of the Ni-MH battery peak, as well as the reliability and the safety of the electric vehicles.

  5. Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Cunyu; Liu, Lianjun; Zhao, Huilei; Krall, Andy; Wen, Zhenhai; Chen, Junhong; Hurley, Patrick; Jiang, Junwei; Li, Ying

    2013-12-01

    Sulfur has received increasing attention as a cathode material for lithium-sulfur (Li-S) batteries due to its high theoretical specific capacity. However, the commercialization of Li-S batteries is limited by the challenges of poor electrical conductivity of sulfur, dissolution of the polysulfide intermediates into the electrolyte, and volume expansion of sulfur during cycling. Herein, we report the fabrication of novel-structured porous carbon microspheres with a controllable multi-modal pore size distribution, i.e., a combination of interconnected micropores, mesopores and macropores. Cathodes made of sulfur infiltrated in such a hierarchical carbon framework provide several advantages: (1) a continuous and high surface area carbon network for enhanced electrical conductivity and high sulfur loading; (2) macropores and large mesopores bridged by small mesopores to provide good electrolyte accessibility and fast Li ion transport and to accommodate volume expansion of sulfur; and (3) small mesopores and micropores to improve carbon/sulfur interaction and to help trap polysulfides. An initial discharge capacity at 1278 mA h g-1 and capacity retention at 70.7% (904 mA h g-1) after 100 cycles at a high rate (1 C) were achieved. The material fabrication process is relatively simple and easily scalable.Sulfur has received increasing attention as a cathode material for lithium-sulfur (Li-S) batteries due to its high theoretical specific capacity. However, the commercialization of Li-S batteries is limited by the challenges of poor electrical conductivity of sulfur, dissolution of the polysulfide intermediates into the electrolyte, and volume expansion of sulfur during cycling. Herein, we report the fabrication of novel-structured porous carbon microspheres with a controllable multi-modal pore size distribution, i.e., a combination of interconnected micropores, mesopores and macropores. Cathodes made of sulfur infiltrated in such a hierarchical carbon framework provide several advantages: (1) a continuous and high surface area carbon network for enhanced electrical conductivity and high sulfur loading; (2) macropores and large mesopores bridged by small mesopores to provide good electrolyte accessibility and fast Li ion transport and to accommodate volume expansion of sulfur; and (3) small mesopores and micropores to improve carbon/sulfur interaction and to help trap polysulfides. An initial discharge capacity at 1278 mA h g-1 and capacity retention at 70.7% (904 mA h g-1) after 100 cycles at a high rate (1 C) were achieved. The material fabrication process is relatively simple and easily scalable. Electronic supplementary information (ESI) available: Preparation process scheme; X-ray mapping images and EDX analysis for the surface of PMC/S-40; X-ray mapping images for the cross-section of PMC/S-40; thermogravimetric analysis (TGA) of PMC/S samples; T-plot results for PMC sample; and electrochemical measurements of lithium-sulfur batteries using PMC/S as cathode materials. See DOI: 10.1039/c3nr04532c

  6. Nitrogen-doped 3D flower-like carbon materials derived from polyimide as high-performance anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Liu, Jiaqi; Yuan, Chenpei; Li, Qiang; Wang, Heng-guo

    2017-12-01

    Nitrogen-doped 3D flower-like carbon materials (NFCs) have been fabricated using a simple and effective strategy, namely, the hierarchical assembly of polyimide (PI) and subsequent thermal treatment. The effect of pyrolysis temperature on the structural evolution process of PI is also investigated systematically. When evaluated as anode materials for lithium ion batteries (LIBs), the as-obtained NFCs, especially NFCs-550, exhibit good electrochemical performance, including a high reversible capacity (1488.1 mAh g-1 at 0.05 A g-1), excellent rate performance (287.6 mAh g-1 at 2 A g-1), and good cycling stability (645 mAh g-1 with 96% retention after 300 cycles at 0.1 A g-1). The good electrochemical performance is attributed to the synergistic effect between 3D flower-like nanostructure and high nitrogen content. This approach may provide some inspiration to construct a series of heteroatom doped and hierarchical structured carbon materials using polymers for LIBs.

  7. Controllers for Battery Chargers and Battery Chargers Therefrom

    NASA Technical Reports Server (NTRS)

    Elmes, John (Inventor); Kersten, Rene (Inventor); Pepper, Michael (Inventor)

    2014-01-01

    A controller for a battery charger that includes a power converter has parametric sensors for providing a sensed Vin signal, a sensed Vout signal and a sensed Iout signal. A battery current regulator (BCR) is coupled to receive the sensed Iout signal and an Iout reference, and outputs a first duty cycle control signal. An input voltage regulator (IVR) receives the sensed Vin signal and a Vin reference. The IVR provides a second duty cycle control signal. A processor receives the sensed Iout signal and utilizes a Maximum Power Point Tracking (MPPT) algorithm, and provides the Vin reference to the IVR. A selection block forwards one of the first and second duty cycle control signals as a duty cycle control signal to the power converter. Dynamic switching between the first and second duty cycle control signals maximizes the power delivered to the battery.

  8. Target Water Consumption Calculation for Human Water Management based on Water Balance

    NASA Astrophysics Data System (ADS)

    Sang, X.; Zhai, Z.; Ye, Y.; Zhai, J.

    2016-12-01

    Degradation of the regional ecological environment has become increasingly serious due to the rapid increase of water usage. Critical to water consumption management is a good approach to control the growth of water usage. Through the identification and analysis of water consumption for various sectors in the hydrosocial cycle, the method for calculating the regional target water consumption also is derived based on water balance theory. Analysis shows that during 1980 - 2004 in Tianjin City, there were 22 years in which the actual water consumption of Tianjin exceeded its target water consumption, with an average excess of 66 million m3 annually. Moreover, calculations show that the maximum human target water consumption water supply is 1.91 billion m3/a. If water consumption is controlled according to the target, the sustainable development of water resource, economic and social growth, and ecological environment in this region can be expected to be achieved.

  9. 78 FR 67223 - Proposed Guidance for Fuel Cycle Facility; Material Control and Accounting Plans and Completing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ..., 72, et al. Proposed Guidance for Fuel Cycle Facility; Material Control and Accounting Plans and Completing NRC Form 327 and Amendments to Material Control and Accounting Regulations; Proposed Rules #0;#0... Guidance for Fuel Cycle Facility; Material Control and Accounting Plans and Completing NRC Form 327 AGENCY...

  10. A PC-based shutter glasses controller for visual stimulation using multithreading in LabWindows/CVI.

    PubMed

    Gramatikov, Ivan; Simons, Kurt; Guyton, David; Gramatikov, Boris

    2017-05-01

    Amblyopia, commonly known as "lazy eye," is poor vision in an eye from prolonged neurologic suppression. It is a major public health problem, afflicting up to 3.6% of children, and will lead to lifelong visual impairment if not identified and treated in early childhood. Traditional treatment methods, such as occluding or penalizing the good eye with eye patches or blurring eye drops, do not always yield satisfactory results. Newer methods have emerged, based on liquid crystal shutter glasses that intermittently occlude the better eye, or alternately occlude the two eyes, thus stimulating vision in the "lazy" eye. As yet there is no technology that allows easy and efficient optimization of the shuttering characteristics for a given individual. The purpose of this study was to develop an inexpensive, computer-based system to perform liquid crystal shuttering in laboratory and clinical settings to help "wake up" the suppressed eye in amblyopic patients, and to help optimize the individual shuttering parameters such as wave shape, level of transparency/opacity, frequency, and duty cycle of the shuttering. We developed a liquid crystal glasses controller connected by USB cable to a PC computer. It generates the voltage waveforms going to the glasses, and has potentiometer knobs for interactive adjustments by the patient. In order to achieve good timing performance in this bidirectional system, we used multithreading programming techniques with data protection, implemented in LabWindows/CVI. The hardware and software developed were assessed experimentally. We achieved an accuracy of ±1Hz for the frequency, and ±2% for the duty cycle of the occlusion pulses. We consider these values to be satisfactory for the purpose of optimizing the visual stimulation by means of shutter glasses. The system can be used for individual optimization of shuttering attributes by clinicians, for training sessions in clinical settings, or even at home, aimed at stimulating vision in the "lazy" eye. Multithreading offers significant benefits for data acquisition and instrument control, making it possible to implement time-efficient algorithms in inexpensive yet versatile medical instrumentation with only minimum requirements on the hardware. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Using trading zones and life cycle analysis to understand nanotechnology regulation.

    PubMed

    Wardak, Ahson; Gorman, Michael E

    2006-01-01

    This article reviews the public health and environmental regulations applicable to nanotechnology using a life cycle model from basic research through end-of-life for products. Given nanotechnology's immense promise and public investment, regulations are important, balancing risk with the public good. Trading zones and earth systems engineering management assist in explaining potential solutions to gaps in an otherwise complex, overlapping regulatory system.

  12. Simulating the Current Water Cycle with the NASA Ames Mars Global Climate Model

    NASA Astrophysics Data System (ADS)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R. A.; Montmessin, F.

    2017-12-01

    The water cycle is a critical component of the current Mars climate system, and it is now widely recognized that water ice clouds significantly affect the nature of the simulated water cycle. Two processes are key to implementing clouds in a Mars global climate model (GCM): the microphysical processes of formation and dissipation, and their radiative effects on atmospheric heating/cooling rates. Together, these processes alter the thermal structure, change the atmospheric dynamics, and regulate inter-hemispheric transport. We have made considerable progress using the NASA Ames Mars GCM to simulate the current-day water cycle with radiatively active clouds. Cloud fields from our baseline simulation are in generally good agreement with observations. The predicted seasonal extent and peak IR optical depths are consistent MGS/TES observations. Additionally, the thermal response to the clouds in the aphelion cloud belt (ACB) is generally consistent with observations and other climate model predictions. Notably, there is a distinct gap in the predicted clouds over the North Residual Cap (NRC) during local summer, but the clouds reappear in this simulation over the NRC earlier than the observations indicate. Polar clouds are predicted near the seasonal CO2 ice caps, but the column thicknesses of these clouds are generally too thick compared to observations. Our baseline simulation is dry compared to MGS/TES-observed water vapor abundances, particularly in the tropics and subtropics. These areas of disagreement appear to be a consistent with other current water cycle GCMs. Future avenues of investigation will target improving our understanding of what controls the vertical extent of clouds and the apparent seasonal evolution of cloud particle sizes within the ACB.

  13. Using nitrate dual isotopic composition (δ15N and δ18O) as a tool for exploring sources and cycling of nitrate in an estuarine system: Elkhorn Slough, California

    USGS Publications Warehouse

    Wankel, Scott D.; Kendall, Carol; Paytan, Adina

    2009-01-01

    Nitrate (NO-3 concentrations and dual isotopic composition (??15N and ??18O) were measured during various seasons and tidal conditions in Elkhorn Slough to evaluate mixing of sources of NO-3 within this California estuary. We found the isotopic composition of NO-3 was influenced most heavily by mixing of two primary sources with unique isotopic signatures, a marine (Monterey Bay) and terrestrial agricultural runoff source (Old Salinas River). However, our attempt to use a simple two end-member mixing model to calculate the relative contribution of these two NO-3 sources to the Slough was complicated by periods of nonconservative behavior and/or the presence of additional sources, particularly during the dry season when NO-3 concentrations were low. Although multiple linear regression generally yielded good fits to the observed data, deviations from conservative mixing were still evident. After consideration of potential alternative sources, we concluded that deviations from two end-member mixing were most likely derived from interactions with marsh sediments in regions of the Slough where high rates of NO-3 uptake and nitrification result in NO-3 with low ?? 15N and high ??18O values. A simple steady state dual isotope model is used to illustrate the impact of cycling processes in an estuarine setting which may play a primary role in controlling NO -3 isotopic composition when and where cycling rates and water residence times are high. This work expands our understanding of nitrogen and oxygen isotopes as biogeochemical tools for investigating NO -3 sources and cycling in estuaries, emphasizing the role that cycling processes may play in altering isotopic composition. Copyright 2009 by the American Geophysical Union.

  14. Unregulated greenhouse gas and ammonia emissions from current technology heavy-duty vehicles.

    PubMed

    Thiruvengadam, Arvind; Besch, Marc; Carder, Daniel; Oshinuga, Adewale; Pasek, Randall; Hogo, Henry; Gautam, Mridul

    2016-11-01

    The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions. Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to increase both carbonyl and nitrous oxide emissions.

  15. Surveillance and Control of Malaria Transmission in Thailand using Remotely Sensed Meteorological and Environmental Parameters

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.; Adimi, Farida; Soika, Valerii; Nigro, Joseph

    2007-01-01

    These slides address the use of remote sensing in a public health application. Specifically, this discussion focuses on the of remote sensing to detect larval habitats to predict current and future endemicity and identify key factors that sustain or promote transmission of malaria in a targeted geographic area (Thailand). In the Malaria Modeling and Surveillance Project, which is part of the NASA Applied Sciences Public Health Applications Program, we have been developing techniques to enhance public health's decision capability for malaria risk assessments and controls. The main objectives are: 1) identification of the potential breeding sites for major vector species; 2) implementation of a risk algorithm to predict the occurrence of malaria and its transmission intensity; 3) implementation of a dynamic transmission model to identify the key factors that sustain or intensify malaria transmission. The potential benefits are: 1) increased warning time for public health organizations to respond to malaria outbreaks; 2) optimized utilization of pesticide and chemoprophylaxis; 3) reduced likelihood of pesticide and drug resistance; and 4) reduced damage to environment. !> Environmental parameters important to malaria transmission include temperature, relative humidity, precipitation, and vegetation conditions. The NASA Earth science data sets that have been used for malaria surveillance and risk assessment include AVHRR Pathfinder, TRMM, MODIS, NSIPP, and SIESIP. Textural-contextual classifications are used to identify small larval habitats. Neural network methods are used to model malaria cases as a function of the remotely sensed parameters. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records. Discrete event simulations are used for modeling the detailed interactions among the vector life cycle, sporogonic cycle and human infection cycle, under the explicit influences of selected extrinsic and intrinsic factors. The output of the model includes the individual infection status and the quantities normally observed in field studies, such as mosquito biting rates, sporozoite infection rates, gametocyte prevalence and incidence. Results are in good agreement with mosquito vector and human malaria data acquired by Coleman et al. over 4.5 years in Kong Mong Tha, a remote village in western Thailand. Application of our models is not restricted to the Greater Mekong Subregion. Our models have been applied to malaria in Indonesia, Korea, and other regions in the world with similar success.

  16. The hydrological cycle in the high Pamir Mountains: how temperature and seasonal precipitation distribution influence stream flow in the Gunt catchment, Tajikistan

    NASA Astrophysics Data System (ADS)

    Pohl, E.; Knoche, M.; Gloaguen, R.; Andermann, C.; Krause, P.

    2014-12-01

    Complex climatic interactions control hydrological processes in high mountains that in their turn regulate the erosive forces shaping the relief. To unravel the hydrological cycle of a glaciated watershed (Gunt River) considered representative of the Pamirs' hydrologic regime we developed a remote sensing-based approach. At the boundary between two distinct climatic zones dominated by Westerlies and Indian summer monsoon, the Pamir is poorly instrumented and only a few in situ meteorological and hydrological data are available. We adapted a suitable conceptual distributed hydrological model (J2000g). Interpolations of the few available in situ data are inadequate due to strong, relief induced, spatial heterogeneities. Instead we use raster data, preferably from remote sensing sources depending on availability and validation. We evaluate remote sensing-based precipitation and temperature products. MODIS MOD11 surface temperatures show good agreement with in situ data, perform better than other products and represent a good proxy for air temperatures. For precipitation we tested remote sensing products as well as the HAR10 climate model data and the interpolation-based APHRODITE dataset. All products show substantial differences both in intensity and seasonal distribution with in-situ data. Despite low resolutions, the datasets are able to sustain high model efficiencies (NSE ≥0.85). In contrast to neighbouring regions in the Himalayas or the Hindukush, discharge is dominantly the product of snow and glacier melt and thus temperature is the essential controlling factor. 80% of annual precipitation is provided as snow in winter and spring contrasting peak discharges during summer. Hence, precipitation and discharge are negatively correlated and display complex hysteresis effects that allow to infer the effect of inter-annual climatic variability on river flow. We infer the existence of two subsurface reservoirs. The groundwater reservoir (providing 40% of annual discharge) recharges in spring and summer and releases slowly during fall and winter. A not fully constrained shallow reservoir with very rapid retention times buffers melt waters during spring and summer. This study highlights the importance of a better understanding of the hydrologic cycle to constrain natural hazards such as floods and landslides as well as water availability in the downstream areas. The negative glacier mass balance (-0.6 m w.e. yr-1) indicates glacier retreat, that will effect the currently 30% contribution of glacier melt to stream flow.

  17. Metal-Free Atom Transfer Radical Polymerization of Methyl Methacrylate with ppm Level of Organic Photocatalyst.

    PubMed

    Huang, Zhicheng; Gu, Yu; Liu, Xiaodong; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2017-05-01

    It is well known that the recently developed photoinduced metal-free atom transfer radical polymerization (ATRP) has been considered as a promising methodology to completely eliminate transition metal residue in polymers. However, a serious problem needs to be improved, namely, large amount of organic photocatalysts should be used to keep the controllability over molecular weights and molecular weight distributions. In this work, a novel photocatalyst 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) with strong excited state reduction potential is successfully used to mediate a metal-free ATRP of methyl methacrylate just with parts per million (ppm) level usage under irradiation of blue light emitting diode at room temperature, using ethyl α-bromophenyl-acetate as a typical initiator with high initiator efficiency. The polymerization kinetic study, multiple controlled "on-off" light switching cycle regulation, and chain extension experiment confirm the "living"/controlled features of this promising photoinduced metal-free ATRP system with good molecular weight control in the presence of ppm level photocatalyst 4CzIPN. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Treatment of premenstrual syndrome with a phytopharmaceutical formulation containing Vitex agnus castus.

    PubMed

    Loch, E G; Selle, H; Boblitz, N

    2000-04-01

    A multicentric noninterventional trial (open study without control) to investigate the efficacy and tolerance of a drug in a large number of patients under routine medical conditions was performed for a new solid preparation from an extract of the fruit of Vitex agnus castus (VAC, Vitex, chaste tree, Chasteberry) in 1634 patients suffering from premenstrual syndrome (PMS). A specific questionnaire was developed for determining the effect of Vitex on psychic and somatic complaints, on the four characteristic PMS symptom complexes depression, anxiety, craving, and hyperhydration (DACH), and on single groups of symptoms. After a treatment period of three menstrual cycles 93% of patients reported a decrease in the number of symptoms or even cessation of PMS complaints. To a certain extent, this effect was observed within all symptom complexes and correlated with the global assessment of therapeutic efficacy. Whereas 85% of physicians rated it as good or very good, 81% of patients assessed their status after treatment as very much or much better. Analysis of frequency and severity of mastodynia as the predominant symptom revealed that complaints still present after 3 months of therapy were mostly less severe. Ninety-four percent of patients assessed the tolerance of Vitex treatment as good or very good. Adverse drug reactions were suspected by physicians in 1.2% of patients, but there were no serious adverse drug reactions. Hence, the risk/benefit ratio of the new Vitex preparation can be rated as very good, with significant efficacy for all aspects of the multifaceted and inhomogeneous clinical picture of PMS, with a safety profile comparable to other Vitex preparations.

  19. Can the halophilic ciliate Fabrea salina be used as a bio-control of microalgae blooms in solar salterns?

    NASA Astrophysics Data System (ADS)

    Hong, Hyun Pyo; Choi, Joong Ki

    2015-09-01

    The microlage Dunaliella salina, a major producer in salterns, is a serious problem for salt production. In this study we tried to assess if Fabrea salina can control D. salina. By parameterising numerical and functional response (growth and grazing vs prey abundance, respectively) at 90 psu and 30°C, where the ciliate is abundant and grows well, we developed a predator-prey model. The model is used to explore how change in microalga growth rate affect the dynamics, and the functional response is used in combination with field data to assess the potential impact of F. salina on D. salina. Over the 20 d simulation the ciliate controlled the prey population under all prey growth rates; although once D. salina were exhausted below the threshold level, F. salina died due to starvation, allowing the alga to increase in abundance, resulting in one or two predatorprey cycle, depending on prey growth rate. In general, the model predicted trends observed by others in the field, suggesting that it provided a good prediction of what may occur under the conditions we examined. Likewise we show that the ciliate can have a high impact on microalgal populations in the field. Finally, a literature review indicated that F. salina could be a good competitor with other protozoa and metazoan in salterns, depending on salinity and temperature, which requires further study and attention. In summary, we encourage continued studies on this unique ciliate on solar salterns and suggest that it may be useful in the bio-control of micoalgae.

  20. Characterizing Observed Limit Cycles in the Cassini Main Engine Guidance Control System

    NASA Technical Reports Server (NTRS)

    Rizvi, Farheen; Weitl, Raquel M.

    2011-01-01

    The Cassini spacecraft dynamics-related telemetry during long Main Engine (ME) burns has indicated the presence of stable limit cycles between 0.03-0.04 Hz frequencies. These stable limit cycles cause the spacecraft to possess non-zero oscillating rates for extended periods of time. This indicates that the linear ME guidance control system does not model the complete dynamics of the spacecraft. In this study, we propose that the observed limit cycles in the spacecraft dynamics telemetry appear from a stable interaction between the unmodeled nonlinear elements in the ME guidance control system. Many nonlinearities in the control system emerge from translating the linear engine gimbal actuator (EGA) motion into a spacecraft rotation. One such nonlinearity comes from the gear backlash in the EGA system, which is the focus of this paper. The limit cycle characteristics and behavior can be predicted by modeling this gear backlash nonlinear element via a describing function and studying the interaction of this describing function with the overall dynamics of the spacecraft. The linear ME guidance controller and gear backlash nonlinearity are modeled analytically. The frequency, magnitude, and nature of the limit cycle are obtained from the frequency response of the ME guidance controller and nonlinear element. In addition, the ME guidance controller along with the nonlinearity is simulated. The simulation response contains a limit cycle with similar characterstics as predicted analytically: 0.03-0.04 Hz frequency and stable, sustained oscillations. The analytical and simulated limit cycle responses are compared to the flight telemetry for long burns such as the Saturn Orbit Insertion and Main Engine Orbit Trim Maneuvers. The analytical and simulated limit cycle characteristics compare well with the actual observed limit cycles in the flight telemetry. Both have frequencies between 0.03-0.04 Hz and stable oscillations. This work shows that the stable limit cycles occur due to the interaction between the unmodeled nonlinear elements and linear ME guidance controller.

  1. An extensive program of periodic alternative splicing linked to cell cycle progression

    PubMed Central

    Dominguez, Daniel; Tsai, Yi-Hsuan; Weatheritt, Robert; Wang, Yang; Blencowe, Benjamin J; Wang, Zefeng

    2016-01-01

    Progression through the mitotic cell cycle requires periodic regulation of gene function at the levels of transcription, translation, protein-protein interactions, post-translational modification and degradation. However, the role of alternative splicing (AS) in the temporal control of cell cycle is not well understood. By sequencing the human transcriptome through two continuous cell cycles, we identify ~1300 genes with cell cycle-dependent AS changes. These genes are significantly enriched in functions linked to cell cycle control, yet they do not significantly overlap genes subject to periodic changes in steady-state transcript levels. Many of the periodically spliced genes are controlled by the SR protein kinase CLK1, whose level undergoes cell cycle-dependent fluctuations via an auto-inhibitory circuit. Disruption of CLK1 causes pleiotropic cell cycle defects and loss of proliferation, whereas CLK1 over-expression is associated with various cancers. These results thus reveal a large program of CLK1-regulated periodic AS intimately associated with cell cycle control. DOI: http://dx.doi.org/10.7554/eLife.10288.001 PMID:27015110

  2. Progress on Variable Cycle Engines

    NASA Technical Reports Server (NTRS)

    Westmoreland, J. S.; Howlett, R. A.; Lohmann, R. P.

    1979-01-01

    Progress in the development and future requirements of the Variable Stream Control Engine (VSCE) are presented. The two most critical components of this advanced system for future supersonic transports, the high performance duct burner for thrust augmentation, and the low jet coannular nozzle were studied. Nozzle model tests substantiated the jet noise benefit associated with the unique velocity profile possible with a coannular nozzle system on a VSCE. Additional nozzle model performance tests have established high thrust efficiency levels only at takeoff and supersonic cruise for this nozzle system. An experimental program involving both isolated component and complete engine tests has been conducted for the high performance, low emissions duct burner with good results and large scale testing of these two components is being conducted using a F100 engine as the testbed for simulating the VSCE. Future work includes application of computer programs for supersonic flow fields to coannular nozzle geometries, further experimental testing with the duct burner segment rig, and the use of the Variable Cycle Engine (VCE) Testbed Program for evaluating the VSCE duct burner and coannular nozzle technologies.

  3. High-performance symmetric supercapacitors based on carbon nanotube/graphite nanofiber nanocomposites.

    PubMed

    Zhou, Yongsheng; Jin, Pan; Zhou, Yatong; Zhu, Yingchun

    2018-06-13

    This work reports the nanocomposites of graphitic nanofibers (GNFs) and carbon nanotubes (CNTs) as the electrode material for supercapacitors. The hybrid CNTs/GNFs was prepared via a synthesis route that involved catalytic chemical vapor deposition (CVD) method. The structure and morphology of CNTs/GNFs can be precisely controlled by adjusting the flow rates of reactant gases. The nest shape entanglement of CNTs and GNFs which could not only have high conductivity to facilitate ion transmission, but could also increase surface area for more electrolyte ions access. When assembled in a symmetric two-electrode system, the CNTs/GNFs-based supercapacitor showed a very good cycling stability of 96% after 10 000 charge/discharge cycles. Moreover, CNTs/GNFs-based symmetric device can deliver a maximum specific energy of 72.2 Wh kg -1 at a power density of 686.0 W kg -1 . The high performance of the hybrid performance can be attributed to the wheat like GNFs which provide sufficient accessible sites for charge storage, and the CNTs skeleton which provide channels for charge transport.

  4. Flexible supercapacitors with high areal capacitance based on hierarchical carbon tubular nanostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Haitao; Su, Hai; Zhang, Lei; Zhang, Binbin; Chun, Fengjun; Chu, Xiang; He, Weidong; Yang, Weiqing

    2016-11-01

    Hierarchical structure design can greatly enhance the unique properties of primary material(s) but suffers from complicated preparation process and difficult self-assembly of materials with different dimensionalities. Here we report on the growth of single carbon tubular nanostructures with hierarchical structure (hCTNs) through a simple method based on direct conversion of carbon dioxide. Resorting to in-situ transformation and self-assembly of carbon micro/nano-structures, the obtained hCTNs are blood-like multichannel hierarchy composed of one large channel across the hCTNs and plenty of small branches connected to each other. Due to the unique pore structure and high surface area, these hCTN-based flexible supercapacitors possess the highest areal capacitance of ∼320 mF cm-2, as well as good rate-capability and excellent cycling stability (95% retention after 2500 cycles). It was established that this method can control the morphology, size, and density of hCTNs and effectively construct hCTNs well anchored to the various substrates. Our work unambiguously demonstrated the potential of hCTNs for large flexible supercapacitors and integrated energy management electronics.

  5. Novel water-air circulation quenching process for AISI 4140 steel

    NASA Astrophysics Data System (ADS)

    Zheng, Liyun; Zheng, Dawei; Zhao, Lixin; Wang, Lihui; Zhang, Kai

    2013-11-01

    AISI 4140 steel is usually used after quenching and tempering. During the heat treatment process in industry production, there are some problems, such as quenching cracks, related to water-cooling and low hardness due to oil quenching. A water-air circulation quenching process can solve the problems of quenching cracks with water and the high cost quenching with oil, which is flammable, unsafe and not enough to obtain the required hardness. The control of the water-cooling and air-cooling time is a key factor in the process. This paper focuses on the quenching temperature, water-air cycle time and cycle index to prevent cracking for AISI 4140 steel. The optimum heat treatment parameters to achieve a good match of the strength and toughness of AISI 4140 steel were obtained by repeated adjustment of the water-air circulation quenching process parameters. The tensile strength, Charpy impact energy at -10 °C and hardness of the heat treated AISI 4140 steel after quenching and tempering were approximately 1098 MPa, 67.5 J and 316 HB, respectively.

  6. Mesoporous CNT@TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes.

    PubMed

    Wang, Bin; Xin, Huolin; Li, Xiaodong; Cheng, Jianli; Yang, Guangcheng; Nie, Fude

    2014-01-16

    A well-designed nanostructure CNT@TiO2-C with fine anatase TiO2 particle (< 8 nm), good electronic conducting network (inner CNT core and outer carbon layer), and mesoporous structure was prepared by a simple and green one-pot hydrothermal reaction. The utilization of glucose in the hydrothermal process not only solves the interfacial incompatibility between CNTs and titanate sol and controls the nucleation and growth of TiO2 particles, but also introduces a uniform, glucose-derived, carbon-layer on the TiO2 particles. The nanosized TiO2 particle, high conducting network, and interconnected nanopores of the CNT@TiO2-C nanocable greatly improve its electrochemical performances, especially rate capability. The CNT@TiO2-C nanocables show remarkable rate capability with reversible charge capacity of 297, 240, 210,178 and 127 mAh g(-1) at 1C, 5C, 10C, 20C and 50C, respectively, as well as excellent high rate cycling stability with capacity retention of 87% after 2000 cycles at 50C.

  7. Mesoporous CNT@TiO2-C Nanocable with Extremely Durable High Rate Capability for Lithium-Ion Battery Anodes

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Xin, Huolin; Li, Xiaodong; Cheng, Jianli; Yang, Guangcheng; Nie, Fude

    2014-01-01

    A well-designed nanostructure CNT@TiO2-C with fine anatase TiO2 particle (< 8 nm), good electronic conducting network (inner CNT core and outer carbon layer), and mesoporous structure was prepared by a simple and green one-pot hydrothermal reaction. The utilization of glucose in the hydrothermal process not only solves the interfacial incompatibility between CNTs and titanate sol and controls the nucleation and growth of TiO2 particles, but also introduces a uniform, glucose-derived, carbon-layer on the TiO2 particles. The nanosized TiO2 particle, high conducting network, and interconnected nanopores of the CNT@TiO2-C nanocable greatly improve its electrochemical performances, especially rate capability. The CNT@TiO2-C nanocables show remarkable rate capability with reversible charge capacity of 297, 240, 210,178 and 127 mAh g-1 at 1C, 5C, 10C, 20C and 50C, respectively, as well as excellent high rate cycling stability with capacity retention of 87% after 2000 cycles at 50C.

  8. Snow hydrology in a general circulation model

    NASA Technical Reports Server (NTRS)

    Marshall, Susan; Roads, John O.; Glatzmaier, Gary

    1994-01-01

    A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas. The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snowpack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter. Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.

  9. Effect of endometrial biopsy on intrauterine insemination outcome in controlled ovarian stimulation cycle.

    PubMed

    Wadhwa, Leena; Pritam, Amrita; Gupta, Taru; Gupta, Sangeeta; Arora, Sarika; Chandoke, Rajkumar

    2015-01-01

    The objective was to evaluate the effect of endometrial biopsy (EB) on intrauterine insemination (IUI) outcome in controlled ovarian stimulation (COS) cycle. Prospective randomized control study. Tertiary care center. A total of 251 subjects were enrolled in the study. Subjects undergoing COS with IUI were randomly allocated into three groups. Group A: EB was taken between D19 and 24 of the spontaneous menstrual cycles that precedes the fertility treatment and IUI, which was done in next cycle (n = 86). Group B: EB was taken before D6 of the menstrual cycle, and fertility treatment and IUI was done in the same cycle (n = 90). Group C: (control group) no EB in previous 3 cycle (n = 75). Clinical pregnancy rate (CPR). Clinical pregnancy rate was 19.77%, 31.11%, and 9.3% for Group A, Group B, and Group C, respectively. The results show a highly significant value for the paired t-test of intervention Group B and control Group C of the cases (P = 0.000957). CPR was maximum after first cycle of ovulation induction and IUI following EB scratch in both Groups A and in Group B (P < 0.001). Endometrial biopsy done in early follicular phase in the same cycle of stimulation with IUI gives better CPR as compared with EB done in the luteal phase of the previous cycle.

  10. Limit-cycle-based control of the myogenic wingbeat rhythm in the fruit fly Drosophila

    PubMed Central

    Bartussek, Jan; Mutlu, A. Kadir; Zapotocky, Martin; Fry, Steven N.

    2013-01-01

    In many animals, rhythmic motor activity is governed by neural limit cycle oscillations under the control of sensory feedback. In the fruit fly Drosophila melanogaster, the wingbeat rhythm is generated myogenically by stretch-activated muscles and hence independently from direct neural input. In this study, we explored if generation and cycle-by-cycle control of Drosophila's wingbeat are functionally separated, or if the steering muscles instead couple into the myogenic rhythm as a weak forcing of a limit cycle oscillator. We behaviourally tested tethered flying flies for characteristic properties of limit cycle oscillators. To this end, we mechanically stimulated the fly's ‘gyroscopic’ organs, the halteres, and determined the phase relationship between the wing motion and stimulus. The flies synchronized with the stimulus for specific ranges of stimulus amplitude and frequency, revealing the characteristic Arnol'd tongues of a forced limit cycle oscillator. Rapid periodic modulation of the wingbeat frequency prior to locking demonstrates the involvement of the fast steering muscles in the observed control of the wingbeat frequency. We propose that the mechanical forcing of a myogenic limit cycle oscillator permits flies to avoid the comparatively slow control based on a neural central pattern generator. PMID:23282849

  11. Gemcitabine Chemotherapy and Single-Fraction Stereotactic Body Radiotherapy for Locally Advanced Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schellenberg, Devin; Goodman, Karyn A.; Lee, Florence

    2008-11-01

    Purpose: Fractionated radiotherapy and chemotherapy for locally advanced pancreatic cancer achieves only modest local control. This prospective trial evaluated the efficacy of a single fraction of 25 Gy stereotactic body radiotherapy (SBRT) delivered between Cycle 1 and 2 of gemcitabine chemotherapy. Methods and Materials: A total of 16 patients with locally advanced, nonmetastatic, pancreatic adenocarcinoma received gemcitabine with SBRT delivered 2 weeks after completion of the first cycle. Gemcitabine was resumed 2 weeks after SBRT and was continued until progression or dose-limiting toxicity. The gross tumor volume, with a 2-3-mm margin, was treated in a single 25-Gy fraction by Cyberknife.more » Patients were evaluated at 4-6 weeks, 10-12 weeks, and every 3 months after SBRT. Results: All 16 patients completed SBRT. A median of four cycles (range one to nine) of chemotherapy was delivered. Three patients (19%) developed local disease progression at 14, 16, and 21 months after SBRT. The median survival was 11.4 months, with 50% of patients alive at 1 year. Patients with normal carbohydrate antigen (CA)19-9 levels either at diagnosis or after Cyberknife SBRT had longer survival (p <0.01). Acute gastrointestinal toxicity was mild, with 2 cases of Grade 2 (13%) and 1 of Grade 3 (6%) toxicity. Late gastrointestinal toxicity was more common, with five ulcers (Grade 2), one duodenal stenosis (Grade 3), and one duodenal perforation (Grade 4). A trend toward increased duodenal volumes radiated was observed in those experiencing late effects (p = 0.13). Conclusion: SBRT with gemcitabine resulted in comparable survival to conventional chemoradiotherapy and good local control. However, the rate of duodenal ulcer development was significant.« less

  12. The role of G-CSF in recurrent implantation failure: A randomized double blind placebo control trial.

    PubMed

    Davari-Tanha, Fatemeh; Shahrokh Tehraninejad, Ensieh; Ghazi, Mohadese; Shahraki, Zahra

    2016-12-01

    Recurrent implantation failure (RIF) is the absence of implantation after three consecutive In Vitro Fertilization (IVF) cycles with transferring at least four good quality embryos in a minimum of three fresh or frozen cycles in a woman under 40 years. The definition and management of RIF is under constant scrutiny. To investigate the effects of Granulocyte colony stimulating factor (G-CSF) on RIF, pregnancy rate, abortion rate and implantation rates. A double blind placebo controlled randomized trial was conducted at two tertiary university based hospitals. One hundred patients with the history of RIF from December 2011 until January 2014 were recruited in the study. G-CSF 300µg/1ml was administered at the day of oocyte puncture or day of progesterone administration of FET cycle. Forty patients were recruited at G-CSF group, 40 in saline and 20 in placebo group. The mean age for whole study group was 35.3±4.2 yrs (G-CSF 35.5±4.32, saline 35.3±3.98, placebo 35.4±4.01, respectively). Seventeen patients had a positive pregnancy test after embryo transfer [10 (25%) in G-CSF; 5 (12.5%) in saline; and 2 (10%) in placebo group]. The mean of abortion rates was 17.6% (3), two of them in G-CSF, one in saline group. The implantation rate was 12.3% in G-CSF, 6.1% in saline and 4.7% in placebo group. G-CSF may increase chemical pregnancy and implantation rate in patients with recurrent implantation failure but clinical pregnancy rate and abortion rate was unaffected.

  13. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    DOE PAGES

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NO X and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustionmore » when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less

  14. Scratch2 prevents cell cycle re-entry by repressing miR-25 in postmitotic primary neurons.

    PubMed

    Rodríguez-Aznar, Eva; Barrallo-Gimeno, Alejandro; Nieto, M Angela

    2013-03-20

    During the development of the nervous system the regulation of cell cycle, differentiation, and survival is tightly interlinked. Newly generated neurons must keep cell cycle components under strict control, as cell cycle re-entry leads to neuronal degeneration and death. However, despite their relevance, the mechanisms controlling this process remain largely unexplored. Here we show that Scratch2 is involved in the control of the cell cycle in neurons in the developing spinal cord of the zebrafish embryo. scratch2 knockdown induces postmitotic neurons to re-enter mitosis. Scratch2 prevents cell cycle re-entry by maintaining high levels of the cycle inhibitor p57 through the downregulation of miR-25. Thus, Scratch2 appears to safeguard the homeostasis of postmitotic primary neurons by preventing cell cycle re-entry.

  15. Evolution of engine cycles for STOVL propulsion concepts

    NASA Technical Reports Server (NTRS)

    Bucknell, R. L.; Frazier, R. H.; Giulianetti, D. J.

    1990-01-01

    Short Take-off, Vertical Landing (STOVL) demonstrator concepts using a common ATF engine core are discussed. These concepts include a separate fan and core flow engine cycle, mixed flow STOVL cycles, separate flow cycles convertible to mixed flow, and reaction control system engine air bleed. STOVL propulsion controls are discussed.

  16. Architecture and inherent robustness of a bacterial cell-cycle control system.

    PubMed

    Shen, Xiling; Collier, Justine; Dill, David; Shapiro, Lucy; Horowitz, Mark; McAdams, Harley H

    2008-08-12

    A closed-loop control system drives progression of the coupled stalked and swarmer cell cycles of the bacterium Caulobacter crescentus in a near-mechanical step-like fashion. The cell-cycle control has a cyclical genetic circuit composed of four regulatory proteins with tight coupling to processive chromosome replication and cell division subsystems. We report a hybrid simulation of the coupled cell-cycle control system, including asymmetric cell division and responses to external starvation signals, that replicates mRNA and protein concentration patterns and is consistent with observed mutant phenotypes. An asynchronous sequential digital circuit model equivalent to the validated simulation model was created. Formal model-checking analysis of the digital circuit showed that the cell-cycle control is robust to intrinsic stochastic variations in reaction rates and nutrient supply, and that it reliably stops and restarts to accommodate nutrient starvation. Model checking also showed that mechanisms involving methylation-state changes in regulatory promoter regions during DNA replication increase the robustness of the cell-cycle control. The hybrid cell-cycle simulation implementation is inherently extensible and provides a promising approach for development of whole-cell behavioral models that can replicate the observed functionality of the cell and its responses to changing environmental conditions.

  17. 40 CFR 1037.510 - Duty-cycle exhaust testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... part 86. For cruise cycle testing of vehicles equipped with cruise control, use the vehicle's cruise... CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Test and Modeling Procedures § 1037.510...: variable speeds for the transient test and constant speeds for the cruise tests. None of these cycles...

  18. 40 CFR 1037.510 - Duty-cycle exhaust testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... part 86. For cruise cycle testing of vehicles equipped with cruise control, use the vehicle's cruise... CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Test and Modeling Procedures § 1037.510...: variable speeds for the transient test and constant speeds for the cruise tests. None of these cycles...

  19. 40 CFR 1037.510 - Duty-cycle exhaust testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... part 86. For cruise cycle testing of vehicles equipped with cruise control, use the vehicle's cruise... CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Test and Modeling Procedures § 1037.510...: variable speeds for the transient test and constant speeds for the cruise tests. None of these cycles...

  20. Life cycle assessment of wood energy for residential heating—opportunities for wood pellet production in southeast Alaska

    Treesearch

    Allen M. Brackley; David L. Nicholls; Maureen Puettmann; Elaine Oneil

    2017-01-01

    Southeast Alaska is a remote area, located approximately 700 miles north of Seattle, Washington. Most of the region’s goods are imported by barge, creating logistical and economic challenges not faced by many other parts of the United States. In this context, we used life cycle assessment (LCA) to evaluate the potential environmental impact on global warming potential...

  1. An Alternative to Farmer Age as an Indicator of Life-Cycle Stage: The Case for a Farm Family Age Index

    ERIC Educational Resources Information Center

    Burton, Rob J. F.

    2006-01-01

    In studies of farming, the age of the principal decision-maker (PDM) has been associated with numerous farm structural and managerial features and has been widely accepted as a good indicator of the influence of life-cycle factors on decision-making. As such, it has become an important aspect of many quantitative studies of agricultural change.…

  2. Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure

    PubMed Central

    Lu, Zhe; Myoung, Sang-Won; Jung, Yeon-Gil; Balakrishnan, Govindasamy; Lee, Jeongseung; Paik, Ungyu

    2013-01-01

    The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs) was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF) for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS) method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF) for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF) and low-pressure plasma spray (LPPS) methods showed a partial cracking (and/or delamination) and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50%) after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF. PMID:28811441

  3. Preparation of LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries by a mist CVD process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadanaga, Kiyoharu, E-mail: tadanaga@chem.osakafu-u.ac.jp; Yamaguchi, Akihiro; Sakuda, Atsushi

    2014-05-01

    Highlights: • LiMn{sub 2}O{sub 4} thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn{sub 2}O{sub 4} thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueousmore » solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles.« less

  4. Carbon-shell-constrained silicon cluster derived from Al-Si alloy as long-cycling life lithium ion batteries anode

    NASA Astrophysics Data System (ADS)

    Su, Junming; Zhang, Congcong; Chen, Xiang; Liu, Siyang; Huang, Tao; Yu, Aishui

    2018-03-01

    Although silicon is the most promising anode material for Li-ion batteries, large volume expansion during lithiation and delithiation is the main obstacle limiting the commercial application of silicon anodes. There are two ways to alleviate volume expansion and prevent further pulverization of a Si anode: fabrication of a rational nanostructure possessing void spaces and uniform distribution of the conducting sites, without a good balance effect in mitigating the limiting factors and enhancing battery performance. In this paper, we propose a novel nanostructure - a carbon-shell-constrained Si cluster (Si/C shell) with both adequate void space and good distribution of electrical contact sites to guarantee homogeneous lithiation in the initial cycle. Benefiting from the ability to maintain electrical conductivity of the outer carbon shell, even after cluster fragmentation, the Si/C shell synthesized from low-cost commercial Al-Si alloy spheres can deliver 0.03% capacity loss from 100th to 1000th cycles at a current density of 1 A g-1. The Si/C shell sample with the dual functional structure mentioned above can also maintain its own nanostructure during cycling and deliver excellent rate performance. It is a concise and scalable strategy which can simplify the preparation of other alloy anode materials for Li-ion batteries.

  5. Nanoporous Tin with a Granular Hierarchical Ligament Morphology as a Highly Stable Li-Ion Battery Anode

    DOE PAGES

    Cook, John B.; Detsi, Eric; Liu, Yijin; ...

    2016-12-07

    Next generation Li-ion batteries will require negative electrode materials with energy densities many-fold higher than that found in the graphitic carbon currently used in commercial Li-ion batteries. While various nanostructured alloying-type anode materials may satisfy that requirement, such materials do not always exhibit long cycle lifetimes and/or their processing routes are not always suitable for large-scale synthesis. Here, we report on a high-performance anode material for next generation Li-ion batteries made of nanoporous Sn powders with hierarchical ligament morphology. This material system combines both long cycle lifetimes (more than 72% capacity retention after 350 cycles), high capacity (693 mAh/g, nearlymore » twice that of commercial graphitic carbon), good charging/discharging capabilities (545 mAh/g at 1 A/g, 1.5C), and a scalable processing route that involves selective alloy corrosion. The good cycling performance of this system is attributed to its nanoporous architecture and its unique hierarchical ligament morphology, which accommodates the large volume changes taking place during lithiation, as confirmed by synchrotron-based ex-situ X-ray 3D tomography analysis. In conclusion, our findings are an important step for the development of high-performance Li-ion batteries.« less

  6. [Actigraphy in Bipolar Disorder and First Degree Relatives].

    PubMed

    Andrade Carrillo, Rommel; Gómez Cano, Sujey; Palacio Ortiz, Juan David; García Valencia, Jenny

    2015-01-01

    Bipolar disorder is a disabling disease that involves a significant economic costs to the health system, making it is essential to investigate possible early predictors such as changes in sleep-wake cycle in high-risk populations. To review the available literature on alterations in the sleep-wake cycle and circadian rhythm in patients with bipolar disorder and their first degree relatives. A literature search was performed in the data bases, Access Medicine, ClinicalKey, EMBASE, JAMA, Lilacs, OVID, Oxford Journals, ScienceDirect, SciELO, APA y PsycNET. Articles in both English and Spanish were reviewed, without limits by study type. Actigraphy is a non-invasive, useful method for assessing sleep-wake cycle disturbances in the active phases of bipolar disorder, and during euthymia periods. Actigraphy showed good sensitivity to predict true sleep, but low specificity, compared with polysomnography. Although studies in bipolar offspring and relatives are scarce, they show sleep changes similar to bipolar patients. Actigraphy may be a good screening tool of sleep/wake cycle in patients with bipolar disorders, because it is economic, non-invasive and sensitive. Longitudinal studies are required to evaluate its potential use as a risk marker. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  7. Non-MTC gait cycles: An adaptive toe trajectory control strategy in older adults.

    PubMed

    Santhiranayagam, Braveena K; Sparrow, W A; Lai, Daniel T H; Begg, Rezaul K

    2017-03-01

    Minimum-toe-clearance (MTC) above the walking surface is a critical representation of toe-trajectory control due to its association with tripping risk. Not all gait cycles exhibit a clearly defined MTC within the swing phase but there have been few previous accounts of the biomechanical characteristics of non-MTC gait cycles. The present report investigated the within-subject non-MTC gait cycle characteristics of 15 older adults (mean 73.1 years) and 15 young controls (mean 26.1 years). Participants performed the following tasks on a motorized treadmill: preferred speed walking, dual task walking (carrying a glass of water) and a dual-task speed-matched control. Toe position-time coordinates were acquired using a 3 dimensional motion capture system. When MTC was present, toe height at MTC (MTC height ) was extracted. The proportion of non-MTC gait cycles was computed for the age groups and individuals. For non-MTC gait cycles an 'indicative' toe height at the individual's average swing phase time (MTC time ) for observed MTC cycles was averaged across multiple non-MTC gait cycles. In preferred-speed walking Young demonstrated 2.9% non-MTC gait cycles and Older 18.7%. In constrained walking conditions both groups increased non-MTC gait cycles and some older adults revealed over 90%, confirming non-MTC gait cycles as an ageing-related phenomenon in lower limb trajectory control. For all participants median indicative toe-height on non-MTC gait cycles was greater than median MTC height . This result suggests that eliminating the biomechanically hazardous MTC event by adopting more of the higher-clearance non-MTC gait cycles, is adaptive in reducing the likelihood of toe-ground contact. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Method for controlling start-up and steady state performance of a closed split flow recompression brayton cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasch, James Jay

    A method of resolving a balanced condition that generates control parameters for start-up and steady state operating points and various component and cycle performances for a closed split flow recompression cycle system. The method provides for improved control of a Brayton cycle thermal to electrical power conversion system. The method may also be used for system design, operational simulation and/or parameter prediction.

  9. Lowland sheep: the nutrition and management cycle.

    PubMed

    Speedy, A W; Clark, C F

    1981-06-06

    Good management of lowland sheep depends on strategic uses of resources during the management cycle and manipulation of body reserves. Critical periods are around mating, late pregnancy and early lactation. Good condition at mating is achieved by expanding the grazing area apportioned to the ewes in autumn. Thereafter, ewes are restricted to allow the resting of pasture for spring growth. A feeding plan for late pregnancy is given which takes account of body condition score and expected lambing date. The recommended concentrate ration contains a proportion of undegradable protein which is fed until grass growth can support lactation. Nutrition in later lactation is not limiting provided fertiliser nitrogen is applied regularly at a level related to stocking rate. By integration with other enterprises (cattle and crops), efficient use of resources is achieved.

  10. Formation of NiFe2O4/Expanded Graphite Nanocomposites with Superior Lithium Storage Properties

    NASA Astrophysics Data System (ADS)

    Xiao, Yinglin; Zai, Jiantao; Tian, Bingbing; Qian, Xuefeng

    2017-07-01

    A NiFe2O4/expanded graphite (NiFe2O4/EG) nanocomposite was prepared via a simple and inexpensive synthesis method. Its lithium storage properties were studied with the goal of applying it as an anode in a lithium-ion battery. The obtained nanocomposite exhibited a good cycle performance, with a capacity of 601 mAh g-1 at a current of 1 A g-1 after 800 cycles. This good performance may be attributed to the enhanced electrical conductivity and layered structure of the EG. Its high mechanical strength could postpone the disintegration of the nanocomposite structure, efficiently accommodate volume changes in the NiFe2O4-based anodes, and alleviate aggregation of NiFe2O4 nanoparticles.

  11. Human chorionic gonadotropin-administered natural cycle versus spontaneous ovulatory cycle in patients undergoing two pronuclear zygote frozen-thawed embryo transfer.

    PubMed

    Lee, You-Jung; Kim, Chung-Hoon; Kim, Do-Young; Ahn, Jun-Woo; Kim, Sung-Hoon; Chae, Hee-Dong; Kang, Byung-Moon

    2018-03-01

    To compare human chorionic gonadotropin (HCG)-administered natural cycle with spontaneous ovulatory cycle in patients undergoing frozen-thawed embryo transfer (FTET) in natural cycles. In this retrospective cohort study, we analyzed the clinical outcome of a total of 166 consecutive FTET cycles that were performed in either natural cycle controlled by HCG for ovulation triggering (HCG group, n=110) or natural cycle with spontaneous ovulation (control group, n=56) in 166 infertile patients between January 2009 and November 2013. There were no differences in patients' characteristics between the 2 groups. The numbers of oocytes retrieved, mature oocytes, fertilized oocytes, grade I or II embryos and frozen embryos in the previous in vitro fertilization (IVF) cycle in which embryos were frozen were comparable between the HCG and control groups. Significant differences were not also observed between the 2 groups in clinical pregnancy rate (CPR), embryo implantation rate, miscarriage rate, live birth rate and multiple CPR. However, the number of hospital visits for follicular monitoring was significantly fewer in the HCG group than in the control group ( P <0.001). Our results demonstrated that HCG administration for ovulation triggering in natural cycle reduces the number of hospital visits for follicular monitoring without any detrimental effect on FTET outcome when compared with spontaneous ovulatory cycles in infertile patients undergoing FTET in natural ovulatory cycles.

  12. Cycling and floating performance of symmetric supercapacitor derived from coconut shell biomass

    NASA Astrophysics Data System (ADS)

    Barzegar, Farshad; Khaleed, Abubakar A.; Ugbo, Faith U.; Oyeniran, Kabir O.; Momodu, Damilola Y.; Bello, Abdulhakeem; Dangbegnon, Julien K.; Manyala, Ncholu

    2016-11-01

    This work present two-step synthesizes route to low-cost mesoporous carbon from coconut shell. The electrochemical characterization of the coconut shell based activated carbon (CSAC) material as electrode for supercapacitor showed a specific capacitance of 186 F g-1, energy density of ˜11 Wh kg-1 and power density of 325 W kg-1 at a 0.5 A g-1 with an excellent stability after floating for 100 h and cycling for 10000 cycles in polymer gel electrolyte. The CSAC showed very good potential as a stable material for supercapacitors desirable for high power applications.

  13. Encapsulating micro-nano Si/SiO x into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Zhou, Meijuan; Tan, Guoqiang

    2015-01-01

    Silicon monoxide, a promising silicon-based anode candidate for lithium-ion batteries, has recently attracted much attention for its high theoretical capacity, good cycle stability, low cost, and environmental benignity. Currently, the most critical challenge is to improve its low initial coulombic efficiency and significant volume changes during the charge–discharge processes. Herein, we report a binder-free monolithic electrode structure based on directly encapsulating micro-nano Si/SiOx particles into conjugated nitrogen-doped carbon frameworks to form monolithic, multi-core, cross-linking composite matrices. We utilize micro-nano Si/SiOx reduced by high-energy ball-milling SiO as active materials, and conjugated nitrogen-doped carbon formed by the pyrolysis of polyacrylonitrile both asmore » binders and conductive agents. Owing to the high electrochemical activity of Si/SiOx and the good mechanical resiliency of conjugated nitrogen-doped carbon backbones, this specific composite structure enhances the utilization efficiency of SiO and accommodates its large volume expansion, as well as its good ionic and electronic conductivity. The annealed Si/SiOx/polyacrylonitrile composite electrode exhibits excellent electrochemical properties, including a high initial reversible capacity (2734 mA h g-1 with 75% coulombic efficiency), stable cycle performance (988 mA h g-1 after 100 cycles), and good rate capability (800 mA h g-1 at 1 A g-1 rate). Because the composite is naturally abundant and shows such excellent electrochemical performance, it is a promising anode candidate material for lithium-ion batteries. The binder-free monolithic architectural design also provides an effective way to prepare other monolithic electrode materials for advanced lithium-ion batteries.« less

  14. Operational status and current trends in gas turbines for utility applications in Europe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, R.A.

    1976-08-16

    This investigation was conducted to ascertain the operational status and current trends in gas turbines for electric utility applications in Europe. A number of selected organizations were contacted by letter and personal visits and readily available pertinent literature was reviewed. The impact of business recovery in 1976 and increases in power demand on gas turbine operation and design trends is reflected in the following: annual operating hours on simple cycle gas turbines is very low in favor of more efficient combined cycle or steam plants which comprise part of the present excess reserve capacity; economics indicates the need for highermore » single unit ratings, e.g., in the 100 MW power range; inquiries and discussion of new plants are predominantly for more efficient systems--combined cycles and/or exhaust heat utilization; dual-purpose heat and power plants are getting much more attention; re-powering of existing steam plants is an attractive approach which has been demonstrated and should expand in use; ability to burn (or handle) dirty fuels is important; closed cycle gas turbine plants are receiving renewed consideration because of their good operational experience with dirty fuels including coal, flexibility in supplying varying amounts of heat and power with independent control, low pollution characteristics, ability to use over 80 percent of the heat content in thefuel, and potential for advantageous use in direct cycle, gas cooled nuclear power stations; the broad use of nuclear energy appears inevitable, and the potential advantages of direct cycle gas cooled systems with helium turbines offer incentives of increased efficiency, safety, and lower cost; and component trends are toward higher turbine inlet temperatures (1700 to 2000/sup 0/F) and toward higher compressor pressure ratios and variable geometry. Gas turbines are expected to play an important and continuing role in the utility industry in accordance with its changing requirements.« less

  15. Accelerometric gait analysis for use in hospital outpatients.

    PubMed

    Auvinet, B; Chaleil, D; Barrey, E

    1999-01-01

    To provide clinicians with a quantitative human gait analysis tool suitable for routine use. We evaluated the reproducibility, sensitivity, and specificity of gait analysis based on measurements of acceleration at a point near the center of gravity of the body. Two accelerometers held over the middle of the low back by a semi-elastic belt were used to record craniocaudal and side-to-side accelerations at a frequency of 50 Hz. Subjects were asked to walk at their normal speed to the end of a straight 40 meter-long hospital corridor and back. A 20-second period of stabilized walking was used to calculate cycle frequency, stride symmetry, and stride regularity. Symmetry and regularity were each derived from an auto-correlation coefficient; to convert their distribution from nonnormal to normal, Fisher's Z transformation was applied to the auto-coefficients for these two variables. Intraobserver reproducibility was evaluated by asking the same observer to test 16 controls on three separate occasions at two-day intervals and interobserver reproducibility by asking four different observers to each test four controls (Latin square). Specificity and sensitivity were determined by testing 139 controls and 63 patients. The 139 controls (70 women and 69 men) were divided into five age groups (third through seventh decades of life). The 63 patients had a noninflammatory musculoskeletal condition predominating on one side. ROC curves were used to determine the best cutoffs for separating normal from abnormal values. Neither intra- nor interobserver variability was significant (P > 0.05). Cycle frequency was significantly higher in female than in male controls (1.05 +/- 0.06 versus 0.98 +/- 0.05 cycles/s; P < 0.001). Neither symmetry nor regularity were influenced by gender in the controls; both variables were also unaffected by age, although nonsignificant decreases were found in the 61 to 70-year age group, which included only nine subjects. In the ROC curve analysis, the area under the curve was high for all three variables (frequency, 0.81 +/- 0.04; symmetry, 0.85 +/- 0.03; and regularity, 0.88 +/- 0.03), establishing that there was a good compromise between sensitivity and specificity. Our gait analysis method offers satisfactory reproducibility and is sufficiently sensitive and specific to be used by clinicians in the quantitative evaluation of gait abnormalities.

  16. Long-term Recall of Time to Pregnancy.

    PubMed

    Jukic, Anne Marie Z; McConnaughey, D Robert; Weinberg, Clarice R; Wilcox, Allen J; Baird, Donna D

    2016-09-01

    Despite the widespread use of retrospectively reported time to pregnancy to evaluate fertility either as an outcome or as a risk factor for chronic disease, only two small studies have directly compared prospective data with later recall. The North Carolina Early Pregnancy Study (1982-1986) collected prospective time-to-pregnancy data from the beginning of participants' pregnancy attempt. In 2010, (24-28 years later) women were sent a questionnaire including lifetime reproductive history that asked about all prior times to pregnancy. Of the 202 women with prospective time-to-pregnancy data, 76% provided recalled time to pregnancy. A lower proportion of women with times to pregnancy ≥3 cycles provided a recalled time to pregnancy than women with times to pregnancy <3 cycles. Also, high gravidity or parity was associated with a lower likelihood of providing a recalled time to pregnancy. Women with very short or very long times to pregnancy (1 cycle or ≥13 cycles) had good recall of time to pregnancy. Positive predictive values of 1 or ≥13 cycles were 73% and 68%, respectively, while positive predictive values for other categories of time to pregnancy ranged from 38% to 58%. The weighted kappa statistic for recalled versus prospective time to pregnancy was 0.72 (95% confidence interval: 0.65, 0.79). Recalled time to pregnancy showed good agreement with prospective time to pregnancy. Informative missingness must be considered when imputing recalled time to pregnancy. Associations observed in future studies can be corrected for misclassification.

  17. 31 CFR 560.306 - Iranian-origin goods or services; goods or services owned or controlled by the Government of Iran.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; goods or services owned or controlled by the Government of Iran. 560.306 Section 560.306 Money and... goods or services; goods or services owned or controlled by the Government of Iran. (a) The terms goods..., extracted, or processed in Iran; and (2) Goods which have entered into Iranian commerce. (b) The terms...

  18. 31 CFR 560.306 - Iranian-origin goods or services; goods or services owned or controlled by the Government of Iran.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; goods or services owned or controlled by the Government of Iran. 560.306 Section 560.306 Money and... goods or services; goods or services owned or controlled by the Government of Iran. (a) The terms goods..., extracted, or processed in Iran; and (2) Goods which have entered into Iranian commerce. (b) The terms...

  19. 31 CFR 560.306 - Iranian-origin goods or services; goods or services owned or controlled by the Government of Iran.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; goods or services owned or controlled by the Government of Iran. 560.306 Section 560.306 Money and... goods or services; goods or services owned or controlled by the Government of Iran. (a) The terms goods..., extracted, or processed in Iran; and (2) Goods which have entered into Iranian commerce. (b) The terms...

  20. Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers

    NASA Astrophysics Data System (ADS)

    Liu, Wenwen; Yan, Xingbin; Chen, Jiangtao; Feng, Yaqiang; Xue, Qunji

    2013-06-01

    In comparison with graphene sheets, graphene quantum dots (GQDs) exhibit novel chemical/physical properties including nanometer-size, abundant edge defects, good electrical conductivity, high mobility, chemical inertia, stable photoluminescence and better surface grafting, making them promising for fabricating various novel devices. In the present work, an asymmetric micro-supercapacitor, using GQDs as negative active material and polyaniline (PANI) nanofibers as positive active material, is built for the first time by a simple and controllable two-step electro-deposition on interdigital finger gold electrodes. Electrochemical measurements reveal that the as-made GQDs//PANI asymmetric micro-supercapacitor has a more excellent rate capability (up to 1000 V s-1) than previously reported electrode materials, as well as faster power response capability (with a very short relaxation time constant of 115.9 μs) and better cycling stability after 1500 cycles in aqueous electrolyte. On this basis, an all-solid-state GQDs//PANI asymmetric micro-supercapacitor is fabricated using H3PO4-polyvinyl alcohol gel as electrolyte, which also exhibits desirable electrochemical capacitive performances. These encouraging results presented here may open up new insight into GQDs with highly promising applications in high-performance energy-storage devices, and further expand the potential applications of GQDs beyond the energy-oriented application of GQDs discussed above.In comparison with graphene sheets, graphene quantum dots (GQDs) exhibit novel chemical/physical properties including nanometer-size, abundant edge defects, good electrical conductivity, high mobility, chemical inertia, stable photoluminescence and better surface grafting, making them promising for fabricating various novel devices. In the present work, an asymmetric micro-supercapacitor, using GQDs as negative active material and polyaniline (PANI) nanofibers as positive active material, is built for the first time by a simple and controllable two-step electro-deposition on interdigital finger gold electrodes. Electrochemical measurements reveal that the as-made GQDs//PANI asymmetric micro-supercapacitor has a more excellent rate capability (up to 1000 V s-1) than previously reported electrode materials, as well as faster power response capability (with a very short relaxation time constant of 115.9 μs) and better cycling stability after 1500 cycles in aqueous electrolyte. On this basis, an all-solid-state GQDs//PANI asymmetric micro-supercapacitor is fabricated using H3PO4-polyvinyl alcohol gel as electrolyte, which also exhibits desirable electrochemical capacitive performances. These encouraging results presented here may open up new insight into GQDs with highly promising applications in high-performance energy-storage devices, and further expand the potential applications of GQDs beyond the energy-oriented application of GQDs discussed above. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01139a

  1. Dietary protein in urea cycle defects: How much? Which? How?

    PubMed

    Boneh, Avihu

    2014-01-01

    Dietary recommendations for patients with urea cycle disorders (UCDs) are designed to prevent metabolic decompensation (primarily hyperammonaemia), and to enable normal growth. They are based on the 'recommended daily intake' guidelines, on theoretical considerations and on local experience. A retrospective dietary review of 28 patients with UCDs in good metabolic control, at different ages, indicates that most patients can tolerate a natural protein intake that is compatible with metabolic stability and good growth. However, protein aversion presents a problem in many patients, leading to poor compliance with the prescribed daily protein intake. These patients are at risk of chronic protein deficiency. Failing to recognise this risk, and further restricting protein intake because of persistent hyperammonaemia may aggravate the deficiency and potentially lead to episodes of metabolic decompensation for which no clear cause is found. These patients may need on-going supplementation with essential amino acids (EAA) to prevent protein malnutrition. Current recommendations for the management of acute metabolic decompensation include cessation of protein intake whilst increasing energy (calorie) intake in the first 24h. We have found that plasma concentrations of all EAA are low at the time of admission to hospital for metabolic decompensation, with correlation between low EAA concentrations, particularly branched-chain amino acids, and hyperammonaemia. Thus, supplementation with EAA should be considered at times of metabolic decompensation. Finally, it would be advantageous to treat patients in metabolic decompensation through enteral supplementation, whenever possible, because of the contribution of the splanchnic (portal-drained viscera) system to protein retention and metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Determination of combustion parameters using engine crankshaft speed

    NASA Astrophysics Data System (ADS)

    Taglialatela, F.; Lavorgna, M.; Mancaruso, E.; Vaglieco, B. M.

    2013-07-01

    Electronic engine controls based on real time diagnosis of combustion process can significantly help in complying with the stricter and stricter regulations on pollutants emissions and fuel consumption. The most important parameter for the evaluation of combustion quality in internal combustion engines is the in-cylinder pressure, but its direct measurement is very expensive and involves an intrusive approach to the cylinder. Previous researches demonstrated the direct relationship existing between in-cylinder pressure and engine crankshaft speed and several authors tried to reconstruct the pressure cycle on the basis of the engine speed signal. In this paper we propose the use of a Multi-Layer Perceptron neural network to model the relationship between the engine crankshaft speed and some parameters derived from the in-cylinder pressure cycle. This allows to have a non-intrusive estimation of cylinder pressure and a real time evaluation of combustion quality. The structure of the model and the training procedure is outlined in the paper. A possible combustion controller using the information extracted from the crankshaft speed information is also proposed. The application of the neural network model is demonstrated on a single-cylinder spark ignition engine tested in a wide range of speeds and loads. Results confirm that a good estimation of some combustion pressure parameters can be obtained by means of a suitable processing of crankshaft speed signal.

  3. 2D MOF Nanoflake-Assembled Spherical Microstructures for Enhanced Supercapacitor and Electrocatalysis Performances

    NASA Astrophysics Data System (ADS)

    Xia, Huicong; Zhang, Jianan; Yang, Zhao; Guo, Shiyu; Guo, Shihui; Xu, Qun

    2017-10-01

    Metal-organic frameworks (MOFs) are of great interest as potential electrochemically active materials. However, few studies have been conducted into understanding whether control of the shape and components of MOFs can optimize their electrochemical performances due to the rational realization of their shapes. Component control of MOFs remains a significant challenge. Herein, we demonstrate a solvothermal method to realize nanostructure engineering of 2D nanoflake MOFs. The hollow structures with Ni/Co- and Ni-MOF (denoted as Ni/Co-MOF nanoflakes and Ni-MOF nanoflakes) were assembled for their electrochemical performance optimizations in supercapacitors and in the oxygen reduction reaction (ORR). As a result, the Ni/Co-MOF nanoflakes exhibited remarkably enhanced performance with a specific capacitance of 530.4 F g-1 at 0.5 A g-1 in 1 M LiOH aqueous solution, much higher than that of Ni-MOF (306.8 F g-1) and ZIF-67 (168.3 F g-1), a good rate capability, and a robust cycling performance with no capacity fading after 2000 cycles. Ni/Co-MOF nanoflakes also showed improved electrocatalytic performance for the ORR compared to Ni-MOF and ZIF-67. The present work highlights the significant role of tuning 2D nanoflake ensembles of Ni/Co-MOF in accelerating electron and charge transportation for optimizing energy storage and conversion devices. [Figure not available: see fulltext.

  4. DEMONSTRATION OF POTENTIAL FOR SELECTIVE CATALYTIC REDUCTION AND DIESEL PARTICULATE FILTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGILL,R; KHAIR, M; SHARP, C

    2003-08-24

    This project addresses the potential for Selective Catalytic Reduction (SCR) devices (using urea as reductant) together with Diesel Particulate Filters (DPF) and low-pressure loop exhaust gas recirculation (EGR) to achieve future stringent emissions standards for heavy-duty engines powering Class 8 vehicles. Two emission control systems consisting of the three technologies (EGR, SCR, and DPF) were calibrated on a Caterpillar C-12 heavy-duty diesel engine. Results of these calibrations showed good promise in meeting the 2010 heavy-duty emission standards as set forth by the Environmental Protection Agency (EPA). These two emission control systems were developed to evaluate a series of fuels thatmore » have similar formulations except for their sulfur content. Additionally, one fuel, code-named BP15, was also evaluated. This fuel was prepared by processing straight-run distillate stocks through a commercial, single stage hydrotreater employing high activity catalyst at maximum severity. An additional goal of this program is to provide data for an on-going EPA technology review that evaluates progress toward meeting 2007/2010 emission standards. These emissions levels were to be achieved not only on the transient test cycles but in other modes of operation such as the steady-state Euro-III style emission test known as the OICA (Organisation Internationale des Compagnies d'Automobiles) or the ESC (European Stationary Cycle). Additionally, hydrocarbon and carbon monoxide emissions standards are to be met.« less

  5. Controllable synthesis of MnO2/polyaniline nanocomposite and its electrochemical capacitive property

    PubMed Central

    2013-01-01

    Polyaniline (PANI) and MnO2/PANI composites are simply fabricated by one-step interfacial polymerization. The morphologies and components of MnO2/PANI composites are modulated by changing the pH of the solution. Formation procedure and capacitive property of the products are investigated by XRD, FTIR, TEM, and electrochemical techniques. We demonstrate that MnO2 as an intermedia material plays a key role in the formation of sample structures. The MnO2/PANI composites exhibit good cycling stability as well as a high capacitance close to 207 F g−1. Samples fabricated with the facile one-step method are also expected to be adopted in other field such as catalysis, lithium ion battery, and biosensor. PMID:23594724

  6. Controllable synthesis of MnO2/polyaniline nanocomposite and its electrochemical capacitive property

    NASA Astrophysics Data System (ADS)

    Meng, Fanhui; Yan, Xiuling; Zhu, Ye; Si, Pengchao

    2013-04-01

    Polyaniline (PANI) and MnO2/PANI composites are simply fabricated by one-step interfacial polymerization. The morphologies and components of MnO2/PANI composites are modulated by changing the pH of the solution. Formation procedure and capacitive property of the products are investigated by XRD, FTIR, TEM, and electrochemical techniques. We demonstrate that MnO2 as an intermedia material plays a key role in the formation of sample structures. The MnO2/PANI composites exhibit good cycling stability as well as a high capacitance close to 207 F g-1. Samples fabricated with the facile one-step method are also expected to be adopted in other field such as catalysis, lithium ion battery, and biosensor.

  7. Beyond debuttressing: Mechanics of paraglacial rock slope damage during repeat glacial cycles

    NASA Astrophysics Data System (ADS)

    Grämiger, Lorenz M.; Moore, Jeffrey R.; Gischig, Valentin S.; Ivy-Ochs, Susan; Loew, Simon

    2017-04-01

    Cycles of glaciation impose mechanical stresses on underlying bedrock as glaciers advance, erode, and retreat. Fracture initiation and propagation constitute rock mass damage and act as preparatory factors for slope failures; however, the mechanics of paraglacial rock slope damage remain poorly characterized. Using conceptual numerical models closely based on the Aletsch Glacier region of Switzerland, we explore how in situ stress changes associated with fluctuating ice thickness can drive progressive rock mass failure preparing future slope instabilities. Our simulations reveal that glacial cycles as purely mechanical loading and unloading phenomena produce relatively limited new damage. However, ice fluctuations can increase the criticality of fractures in adjacent slopes, which may in turn increase the efficacy of fatigue processes. Bedrock erosion during glaciation promotes significant new damage during first deglaciation. An already weakened rock slope is more susceptible to damage from glacier loading and unloading and may fail completely. We find that damage kinematics are controlled by discontinuity geometry and the relative position of the glacier; ice advance and retreat both generate damage. We correlate model results with mapped landslides around the Great Aletsch Glacier. Our result that most damage occurs during first deglaciation agrees with the relative age of the majority of identified landslides. The kinematics and dimensions of a slope failure produced in our models are also in good agreement with characteristics of instabilities observed in the field. Our results extend simplified assumptions of glacial debuttressing, demonstrating in detail how cycles of ice loading, erosion, and unloading drive paraglacial rock slope damage.

  8. One-pot synthesis of carbon-coated nanosized LiTi2(PO4)3 as anode materials for aqueous lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Zhantao; Qin, Xusong; Xu, Hui; Chen, Guohua

    2015-10-01

    In this study, a one-pot sintering process incorporating sol-gel preparation route and in-situ carbon coating was proposed for the synthesis of carbon-coated nanosized LiTi2(PO4)3. Experimental results show that the prepared LiTi2(PO4)3 particles are of high crystallinity and well-coated by turbostratic carbon. Attributed to nanosized particles and enhanced conductivity provided by turbostratic carbon coating, the carbon-coated LiTi2(PO4)3 showed high rate performance and good cycling life in aqueous electrolyte. Particularly, the carbon-coated LiTi2(PO4)3 exhibited initial specific capacities of 103 and 89 mAh g-1, and retained 80.6% and 97% of the initial capacities after 120 cycles at 1C and 10C in aqueous electrolyte, respectively. The high rate performance and good cycling life of carbon-coated LiTi2(PO4)3 in aqueous electrolyte reveal its potential as negative electrode in aqueous lithium-ion batteries for electric vehicles and industrial-scale energy storage systems.

  9. TiO₂ Nanobelt@Co₉S₈ Composites as Promising Anode Materials for Lithium and Sodium Ion Batteries.

    PubMed

    Zhou, Yanli; Zhu, Qian; Tian, Jian; Jiang, Fuyi

    2017-09-02

    TiO₂ anodes have attracted great attention due to their good cycling stability for lithium ion batteries and sodium ion batteries (LIBs and SIBs). Unfortunately, the low specific capacity and poor conductivity limit their practical application. The mixed phase TiO₂ nanobelt (anatase and TiO₂-B) based Co₉S₈ composites have been synthesized via the solvothermal reaction and subsequent calcination. During the formation process of hierarchical composites, glucose between TiO₂ nanobelts and Co₉S₈ serves as a linker to increase the nucleation and growth of sulfides on the surface of TiO₂ nanobelts. As anode materials for LIBs and SIBs, the composites combine the advantages of TiO₂ nanobelts with those of Co₉S₈ nanomaterials. The reversible specific capacity of TiO₂ nanobelt@Co₉S₈ composites is up to 889 and 387 mAh·g -1 at 0.1 A·g -1 after 100 cycles, respectively. The cooperation of excellent cycling stability of TiO₂ nanobelts and high capacities of Co₉S₈ nanoparticles leads to the good electrochemical performances of TiO₂ nanobelt@Co₉S₈ composites.

  10. Impact of offering cycle training in schools upon cycling behaviour: a natural experimental study.

    PubMed

    Goodman, Anna; van Sluijs, Esther M F; Ogilvie, David

    2016-03-08

    England's national cycle training scheme, 'Bikeability', aims to give children in England the confidence to cycle more. There is, however, little evidence on the effectiveness of cycle training in achieving this. We therefore examined whether delivering Bikeability was associated with cycling frequency or with independent cycling. We conducted a natural experimental study using information on children aged 10-11 years participating in the nationally-representative Millennium Cohort Study. We identified Cohort participants whose schools had offered Bikeability in 2011-2012 using operational Bikeability delivery data (children in London excluded, as delivery data not available). Our natural experimental design capitalised on the fact that Cohort participants were surveyed at different times during 2012 and were also offered Bikeability at different times during 2012. This allowed us to compare cycling levels between children whose schools delivered Bikeability before their survey interview ('intervention group', N = 2563) and an otherwise comparable group of children whose schools delivered Bikeability later in the year ('control group', N = 773). Parents reported whether their child had completed formal cycle training; their child's cycling frequency; whether their child ever made local cycling trips without an adult; and other child and family factors. We used Poisson regression with robust standard errors to examine whether cycling behaviour differed between the intervention and control groups. Children whose school had offered Bikeability were much more likely to have completed cycle training than the control group (68% vs. 28%, p < 0.001). There was, however, no evidence that delivering Bikeability in school was associated with cycling more often (49.0% cycling at least once per week in the intervention group vs. 49.6% in the control group; adjusted risk ratio 0.99, 95% CI 0.89, 1.10). There was likewise no evidence of an association with cycling independently (51.5% in the intervention group vs. 50.1% in the control group; adjusted risk ratio 0.97, 95% CI 0.89, 1.06). Offering high-quality cycle training free at the point of delivery in English schools encourages children to do cycle training, but we found no evidence of short-term effects on cycling frequency or independent cycling. Future evaluation should investigate longer-term effects on these and other stated Bikeability objectives such as increasing cycling safety.

  11. Effects of the Menstrual Cycle and Oral Contraception on Singers' Pitch Control

    ERIC Educational Resources Information Center

    La, Filipa M. B.; Sundberg, Johan; Howard, David M.; Sa-Couto, Pedro; Freitas, Adelaide

    2012-01-01

    Purpose: Difficulties with intonation and vibrato control during the menstrual cycle have been reported by singers; however, this phenomenon has not yet been systematically investigated. Method: A double-blind randomized placebo-controlled trial assessing effects of the menstrual cycle and use of a combined oral contraceptive pill (OCP) on pitch…

  12. A self-supported metal-organic framework derived Co3O4 film prepared by an in-situ electrochemically assistant process as Li ion battery anodes

    NASA Astrophysics Data System (ADS)

    Zhao, Guangyu; Sun, Xin; Zhang, Li; Chen, Xuan; Mao, Yachun; Sun, Kening

    2018-06-01

    Derivates of metal-organic frameworks are promising materials of self-supported Li ion battery anodes due to the good dispersion of active materials, conductive scaffold, and mass transport channels in them. However, the discontinuous growth and poor adherence of metal-organic framework films on substrates hamper their development in self-supported electrodes. In the present study, cobalt-based metal-organic frameworks are anchored on Ti nanowire arrays through an electrochemically assistant method, and then the metal-organic framework films are pyrolyzed to carbon-containing, porous, self-supported anodes of Li ion battery anodes. Scanning electron microscope images indicate that, a layer cobaltosic oxide polyhedrons inserted by the nanowires are obtained with the controllable in-situ synthesis. Thanks to the good dispersion and adherence of cobaltosic oxide polyhedrons on Ti substrates, the self-supported anodes exhibit remarkable rate capability and durability. They possess a capacity of 300 mAh g-1 at a rate current of 20 A g-1, and maintain 2000 charge/discharge cycles without obvious decay.

  13. Supercapacitor electrode materials with hierarchically structured pores from carbonization of MWCNTs and ZIF-8 composites.

    PubMed

    Li, Xueqin; Hao, Changlong; Tang, Bochong; Wang, Yue; Liu, Mei; Wang, Yuanwei; Zhu, Yihua; Lu, Chenguang; Tang, Zhiyong

    2017-02-09

    Due to their high specific surface area and good electric conductivity, nitrogen-doped porous carbons (NPCs) and carbon nanotubes (CNTs) have attracted much attention for electrochemical energy storage applications. In the present work, we firstly prepared MWCNT/ZIF-8 composites by decoration of zeolitic imidazolate frameworks (ZIF-8) onto the surface of multi-walled CNTs (MWCNTs), then obtained MWCNT/NPCs by the direct carbonization of MWCNT/ZIF-8. By controlling the reaction conditions, MWCNT/ZIF-8 with three different particle sizes were synthesized. The effect of NPCs size on capacitance performance has been evaluated in detail. The MWCNT/NPC with large-sized NPC (MWCNT/NPC-L) displayed the highest specific capacitance of 293.4 F g -1 at the scan rate of 5 mV s -1 and only lost 4.2% of capacitance after 10 000 cyclic voltammetry cycles, which was attributed to the hierarchically structured pores, N-doping and high electrical conductivity. The studies of symmetric two-electrode supercapacitor cells also confirmed MWCNT/NPC-L as efficient electrode materials that have good electrochemical performance, especially for high-rate applications.

  14. Merits of flywheels for spacecraft energy storage

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1984-01-01

    Flywheel energy storage systems which have a very good potential for use in spacecraft are discussed. This system can be superior to alkaline secondary batteries and regenerable fuel cells in most of the areas that are important in spacecraft applications. Of special importance, relative to batteries, are lighter weight, longer cycle and operating life, and high efficiency which minimizes solar array size and the amount of orbital makeup fuel required. Flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have characteristics which would be useful for military applications. The major disadvantages of flywheel energy storage systems are that: power is not available during the launch phase without special provisions; and in flight failure of units may force shutdown of good counter rotating units, amplifying the effects of failure and limiting power distribution system options; no inherent emergency power capability unless specifically designed for, and a high level of complexity compared with batteries. The potential advantages of the flywheel energy storage system far outweigh the disadvantages.

  15. Simulation and Optimization of Vacuum Swing Adsorption Units for Spacesuit Carbon Dioxide and Humidity Control

    NASA Technical Reports Server (NTRS)

    Swickrath, Michael J.; Anderson, Molly; McMillin, Summer; Broerman, Craig

    2010-01-01

    Controlling carbon dioxide (CO2) and humidity levels in a spacesuit is critical to ensuring both the safety and comfort of an astronaut during extra-vehicular activity (EVA). Traditionally, this has been accomplished utilizing non-regenerative lithium hydroxide (LiOH) or regenerative metal oxide (MetOx) canisters which pose a significant weight burden. Although such technology enables air revitalization, the volume requirements to store the waste canisters as well as the mass to transport multiple units become prohibitive as mission durations increase. Consequently, motivation exists toward developing a fully regenerative technology for environmental control. The application of solid amine materials with vacuum swing adsorption technology has shown the capacity to control CO2 and concomitantly manage humidity levels through a fully regenerative cycle eliminating mission constraints imposed with non-regenerative technologies. Experimental results for full-size and sub-scale test articles have been collected and are described herein. In order to accelerate the developmental efforts, an axially-dispersed plug ow model with an accompanying energy balance has been established and correlated with the experimental data. The experimental and simulation results display good agreement for a variety of ow rates (110-170 SLM), replicated metabolic challenges (100-590 Watts), and atmosphere pressures under consideration for the spacesuit (248 and 760 mm Hg). The relationship between swing adsorption cycles for an outlet criterion of 6.0 mm Hg of CO2 partial pressure has been established for each metabolic challenge. In addition, variable metabolic profiles were imposed on the test articles in order to assess the ability of the technology to transition to new operational constraints. The advent of the model provides the capacity to apply computer-aided engineering practices to support the ongoing efforts to optimize and mature this technology for future application to space exploration.

  16. Controlling successive ionic layer absorption and reaction cycles to optimize silver nanoparticle-induced localized surface plasmon resonance effects on the paper strip

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Chul; Kim, Wansun; Park, Hun-Kuk; Choi, Samjin

    2017-03-01

    This study investigates why a silver nanoparticle (SNP)-induced surface-enhanced Raman scattering (SERS) paper chip fabricated at low successive ionic layer absorption and reaction (SILAR) cycles leads to a high SERS enhancement factor (7 × 108) with an inferior nanostructure and without generating a hot spot effect. The multi-layered structure of SNPs on cellulose fibers, verified by magnified scanning electron microscopy (SEM) and analyzed by a computational simulation method, was hypothesized as the reason. The pattern of simulated local electric field distribution with respect to the number of SILAR cycles showed good agreement with the experimental Raman intensity, regardless of the wavelength of the excitation laser sources. The simulated enhancement factor at the 785-nm excitation laser source (2.8 × 109) was 2.5 times greater than the experimental enhancement factor (1.1 × 109). A 532-nm excitation laser source exhibited the highest maximum local electric field intensity (1.9 × 1011), particularly at the interparticle gap called a hot spot. The short wavelength led to a strong electric field intensity caused by strong electromagnetic coupling arising from the SNP-induced local surface plasmon resonance (LSPR) effects through high excitation energy. These findings suggest that our paper-based SILAR-fabricated SNP-induced LSPR model is valid for understanding SNP-induced LSPR effects.

  17. The effect of legislation on outcomes of assisted reproduction technology: lessons from the 2004 Italian law.

    PubMed

    La Sala, Giovanni Battista; Villani, Maria Teresa; Nicoli, Alessia; Valli, Barbara; Iannotti, Francesca; Blickstein, Isaac

    2008-04-01

    To evaluate the effect of the 2004 Italian regulations (insemination of

  18. Nature-Inspired Na2Ti3O7 Nanosheets-Formed Three-Dimensional Microflowers Architecture as a High-Performance Anode Material for Rechargeable Sodium-Ion Batteries.

    PubMed

    Anwer, Shoaib; Huang, Yongxin; Liu, Jia; Liu, Jiajia; Xu, Meng; Wang, Ziheng; Chen, Renjie; Zhang, Jiatao; Wu, Feng

    2017-04-05

    Low cycling stability and poor rate performance are two of the distinctive drawbacks of most electrode materials for sodium-ion batteries (SIBs). Here, inspired by natural flower structures, we take advantage of the three-dimensional (3D) hierarchical flower-like stable microstructures formed by two-dimensional (2D) nanosheets to solve these problems. By precise control of the hydrothermal synthesis conditions, a novel three-dimensional (3D) flower-like architecture consisting of 2D Na 2 Ti 3 O 7 nanosheets (Na-TNSs) has been successfully synthesized. The arbitrarily arranged but closely interlinked thin nanosheets in carnation-shaped 3D Na 2 Ti 3 O 7 microflowers (Na-TMFs) originate a good network of electrically conductive paths in an electrode. Thus, Na-TMFs can get electrons from all directions and be fully utilized for sodium-ion insertion and extraction reactions, which can improve sodium storage properties with enhanced rate capability and super cycling performance. Furthermore, the large specific surface area provides a high capacity, which can be ascribed to the pseudo-capacitance effect. The wettability of the electrolyte was also improved by the porous and crumpled structure. The remarkably improved cycling performance and rate capability of Na-TMFs make a captivating case for its development as an advanced anode material for SIBs.

  19. Loading Path and Control Mode Effects During Thermomechanical Cycling of Polycrystalline Shape Memory NiTi

    NASA Astrophysics Data System (ADS)

    Nicholson, D. E.; Benafan, O.; Padula, S. A.; Clausen, B.; Vaidyanathan, R.

    2018-01-01

    Loading path dependencies and control mode effects in polycrystalline shape memory NiTi were investigated using in situ neutron and synchrotron X-ray diffraction performed during mechanical cycling and thermal cycling at constant strain. Strain-controlled, isothermal, reverse loading (to ± 4%) and stress-controlled, isothermal, cyclic loading (to ± 400 MPa for up to ten cycles) at room temperature demonstrated that the preferred martensite variants selected correlated directly with the macroscopic uniaxial strain and did not correlate with the compressive or tensile state of stress. During cyclic loading (up to ten cycles), no significant cycle-to-cycle evolution of the variant microstructure corresponding to a given strain was observed, despite changes in the slope of the stress-strain response with each cycle. Additionally, thermal cycling (to above and below the phase transformation) under constant strain (up to 2% tensile strain) showed that the martensite variant microstructure correlated directly with strain and did not evolve following thermal cycling, despite relaxation of stress in both martensite and austenite phases. Results are presented in the context of variant reorientation and detwinning processes in martensitic NiTi, the fundamental thermoelastic nature of such processes and the ability of the variant microstructure to accommodate irreversible deformation processes.

  20. Loading Path and Control Mode Effects During Thermomechanical Cycling of Polycrystalline Shape Memory NiTi

    NASA Astrophysics Data System (ADS)

    Nicholson, D. E.; Benafan, O.; Padula, S. A.; Clausen, B.; Vaidyanathan, R.

    2018-03-01

    Loading path dependencies and control mode effects in polycrystalline shape memory NiTi were investigated using in situ neutron and synchrotron X-ray diffraction performed during mechanical cycling and thermal cycling at constant strain. Strain-controlled, isothermal, reverse loading (to ± 4%) and stress-controlled, isothermal, cyclic loading (to ± 400 MPa for up to ten cycles) at room temperature demonstrated that the preferred martensite variants selected correlated directly with the macroscopic uniaxial strain and did not correlate with the compressive or tensile state of stress. During cyclic loading (up to ten cycles), no significant cycle-to-cycle evolution of the variant microstructure corresponding to a given strain was observed, despite changes in the slope of the stress-strain response with each cycle. Additionally, thermal cycling (to above and below the phase transformation) under constant strain (up to 2% tensile strain) showed that the martensite variant microstructure correlated directly with strain and did not evolve following thermal cycling, despite relaxation of stress in both martensite and austenite phases. Results are presented in the context of variant reorientation and detwinning processes in martensitic NiTi, the fundamental thermoelastic nature of such processes and the ability of the variant microstructure to accommodate irreversible deformation processes.

  1. Effect of endometrial biopsy on intrauterine insemination outcome in controlled ovarian stimulation cycle

    PubMed Central

    Wadhwa, Leena; Pritam, Amrita; Gupta, Taru; Gupta, Sangeeta; Arora, Sarika; Chandoke, Rajkumar

    2015-01-01

    OBJECTIVE: The objective was to evaluate the effect of endometrial biopsy (EB) on intrauterine insemination (IUI) outcome in controlled ovarian stimulation (COS) cycle. DESIGN: Prospective randomized control study. SETTING: Tertiary care center. MATERIALS AND METHODS: A total of 251 subjects were enrolled in the study. Subjects undergoing COS with IUI were randomly allocated into three groups. Group A: EB was taken between D19 and 24 of the spontaneous menstrual cycles that precedes the fertility treatment and IUI, which was done in next cycle (n = 86). Group B: EB was taken before D6 of the menstrual cycle, and fertility treatment and IUI was done in the same cycle (n = 90). Group C: (control group) no EB in previous 3 cycle (n = 75). MAIN OUTCOME MEASURE: Clinical pregnancy rate (CPR). RESULTS: Clinical pregnancy rate was 19.77%, 31.11%, and 9.3% for Group A, Group B, and Group C, respectively. The results show a highly significant value for the paired t-test of intervention Group B and control Group C of the cases (P = 0.000957). CPR was maximum after first cycle of ovulation induction and IUI following EB scratch in both Groups A and in Group B (P < 0.001). CONCLUSIONS: Endometrial biopsy done in early follicular phase in the same cycle of stimulation with IUI gives better CPR as compared with EB done in the luteal phase of the previous cycle. PMID:26538858

  2. Assessment and Management of Aging in Phenix Nuclear Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumarcher, V.; Bourrier, J.L.; Chaucheprat, P.

    2006-07-01

    The combination of one or several processes of ruins can involve the materials failure of a nuclear power plant. These processes arise from the external agents action such as the pressure, the mechanical efforts, the heat flows and the radiations constitute the whole of the 'actions' of the surrounding medium. The prolongation and the repetition of these effects can involve a deterioration of the machine. In accordance with the decree of February 26, 1974, the PWR operator must be firstly, sure that the system is controlled according to the situations considered in the file of dimensioning and secondly, be ablemore » to know anytime the life of the equipment. The physical phenomena which cause the structures ruin are less complex in the PWR than in the SFR. In the SFR, the high temperatures imposed on components for long periods can involve a significant creep. In the course of time, this deformations accelerate the release of fatigue cracks. To consider the creep, the reactor lifespan is correlated at the numbers of thermals transients envisaged initially. To realize the management of aging in Phenix power plant, it is necessary to carry out an individualized monitoring of the structures and not only on the vessel. We must ensure the good state and/or the correct operation of the significant stations for safety which are the control of the reactivity, the movement of control rods, the primary sodium containment and the decay heat removal. For that, we monitor the main vessel, the conical skirt, the IHX and the Core Cover Plug. A profound knowledge of the thermal transients of the past is necessary to carry out an effective assessment. In order to guarantee that any harmful situation is well taken into the management of aging, we monitor permanently certain measurements (primary and secondary pump speed, hot and cold pool temperatures, IHX-main vessel and reactor roof temperatures). We present in the article the scientific method used in the Physics Section. A logical diagram specific to the type of situation and the structure allows to associate the harmful transient at a identical situation which has been happened in the past. During the last two cycles, the nuclear power plant has sustained 34 startup (20 during the 51. cycle and 14 during the 52. cycle). After two cycles of operation, there is approximately 70 to 80% of occurrences authorized for the whole of the structures. For the last 4 cycles, the number of transients to come will remain quite lower than the number dimensioned initially. (authors)« less

  3. Completing the Legacy of Hubble's Wide/Deep Fields: An Aligned Complete Dataset of 1220 Orbits on the GOODS-N/CANDELS-N Region

    NASA Astrophysics Data System (ADS)

    Illingworth, Garth

    2017-08-01

    The GOODS-N/CANDELS-N region is second only to the GOODS-S/ECDF-S region in the extent of its HST and Spitzer coverage, making it a remarkable science resource. Yet of 1220 orbits of ACS and WFC3/IR imaging from 27 programs on the GOODS-N region, fully 42% of the total, about 520 orbits of imaging data from 22 programs, remains unavailable in MAST as a high-level science data product (HLSP). The GOODS-N region dataset is a key Legacy field ( 3 Msec from HST, 6 Msec from Spitzer, and 2 Msec from Chandra). We propose to deliver, with catalogs, HST ACS and WFC3/IR HLSPs to MAST for all 1220 orbits of GOODS-N data. We will also deliver HLSPs for the EGS, UDS and the COSMOS CANDELS regions, including new data not included to date. These four HLSPs, 2300 orbits of HST data ( 75% of a HST Cycle ), will add substantially to (1) our understanding of the build-up of galaxies to z 6 in the first Gyr during reionization, (2) the development of galaxies over the subsequent Gyr to the peak of the star formation rate in the universe at z 2-3, and (3) the transition at z<2 of early star-forming galaxies to the full splendor of the Hubble sequence. We can do this major AR Legacy program, having submitted a HLSP of ALL 2442 orbits of HST data on the GOODS- S region (>950 orbits new). The total volume of data in the GOODS-S Hubble Legacy Field (HLF-GOODS-S) is 5.8 Msec in 7211 exposures ( 70% of a HST cycle). The HLF-GOODS-S includes 4 new deep areas akin to the HUDF/XDF. The four proposed NEW Hubble Legacy Field datasets will complement the Frontier Field datasets and our recent HLF-GOODS-S and HUDF/XDF HLSP submissions. They will be cornerstones of Hubble's Legacy as the JWST era dawns.

  4. Solid-State Lithium Conductors for Lithium Metal Batteries Based on Electrospun Nanofiber/Plastic Crystal Composites.

    PubMed

    Zhou, Yundong; Wang, Xiaoen; Zhu, Haijin; Yoshizawa-Fujita, Masahiro; Miyachi, Yukari; Armand, Michel; Forsyth, Maria; Greene, George W; Pringle, Jennifer M; Howlett, Patrick C

    2017-08-10

    Organic ionic plastic crystals (OIPCs) are a class of solid-state electrolytes with good thermal stability, non-flammability, non-volatility, and good electrochemical stability. When prepared in a composite with electrospun polyvinylidene fluoride (PVdF) nanofibers, a 1:1 mixture of the OIPC N-ethyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide ([C 2 mpyr][FSI]) and lithium bis(fluorosulfonyl)imide (LiFSI) produced a free-standing, robust solid-state electrolyte. These high-concentration Li-containing electrolyte membranes had a transference number of 0.37(±0.02) and supported stable lithium symmetric-cell cycling at a current density of 0.13 mA cm -2 . The effect of incorporating PVdF in the Li-containing plastic crystal was investigated for different ratios of PVdF and [Li][FSI]/[C 2 mpyr][FSI]. In addition, Li|LiNi 1/3 Co 1/3 Mn 1/3 O 2 cells were prepared and cycled at ambient temperature and displayed a good rate performance and stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Modular Control of Treadmill vs Overground Running

    PubMed Central

    Farina, Dario; Kersting, Uwe Gustav

    2016-01-01

    Motorized treadmills have been widely used in locomotion studies, although a debate remains concerning the extrapolation of results obtained from treadmill experiments to overground locomotion. Slight differences between treadmill (TRD) and overground running (OVG) kinematics and muscle activity have previously been reported. However, little is known about differences in the modular control of muscle activation in these two conditions. Therefore, we aimed at investigating differences between motor modules extracted from TRD and OVG by factorization of multi-muscle electromyographic (EMG) signals. Twelve healthy men ran on a treadmill and overground at their preferred speed while we recorded tibial acceleration and surface EMG from 11 ipsilateral lower limb muscles. We extracted motor modules representing relative weightings of synergistic muscle activations by non-negative matrix factorization from 20 consecutive gait cycles. Four motor modules were sufficient to accurately reconstruct the EMG signals in both TRD and OVG (average reconstruction quality = 92±3%). Furthermore, a good reconstruction quality (80±7%) was obtained also when muscle weightings of one condition (either OVG or TRD) were used to reconstruct the EMG data from the other condition. The peak amplitudes of activation signals showed a similar timing (pattern) across conditions. The magnitude of peak activation for the module related to initial contact was significantly greater for OVG, whereas peak activation for modules related to leg swing and preparation to landing were greater for TRD. We conclude that TRD and OVG share similar muscle weightings throughout motion. In addition, modular control for TRD and OVG is achieved with minimal temporal adjustments, which were dependent on the phase of the running cycle. PMID:27064978

  6. Characterization and quenching of friction-induced limit cycles of electro-hydraulic servovalve control systems with transport delay.

    PubMed

    Wang, Yuan-Jay

    2010-10-01

    This paper develops a systematic and straightforward methodology to characterize and quench the friction-induced limit cycle conditions in electro-hydraulic servovalve control systems with transport delay in the transmission line. The nonlinear friction characteristic is linearized by using its corresponding describing function. The delay time in the transmission line, which could accelerate the generation of limit cycles is particularly considered. The stability equation method together with parameter plane method provides a useful tool for the establishment of necessary conditions to sustain a limit cycle directly in the constructed controller coefficient plane. Also, the stable region, the unstable region, and the limit cycle region are identified in the parameter plane. The parameter plane characterizes a clear relationship between limit cycle amplitude, frequency, transport delay, and the controller coefficients to be designed. The stability of the predicted limit cycle is checked by plotting stability curves. The stability of the system is examined when the viscous gain changes with respect to the temperature of the working fluid. A feasible stable region is characterized in the parameter plane to allow a flexible choice of controller gains. The robust prevention of limit cycle is achieved by selecting controller gains from the asymptotic stability region. The predicted results are verified by simulations. It is seen that the friction-induced limit cycles can be effectively predicted, removed, and quenched via the design of the compensator even in the case of viscous gain and delay time variations unconditionally. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  7. 31 CFR 560.306 - Iranian-origin goods or services; goods or services owned or controlled by the Government of Iran.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; goods or services owned or controlled by the Government of Iran. 560.306 Section 560.306 Money and... Iranian-origin goods or services; goods or services owned or controlled by the Government of Iran. (a) The..., extracted, or processed in Iran; and (2) Goods which have entered into Iranian commerce. (b) The terms...

  8. 31 CFR 560.306 - Iranian-origin goods or services; goods or services owned or controlled by the Government of Iran.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; goods or services owned or controlled by the Government of Iran. 560.306 Section 560.306 Money and... Iranian-origin goods or services; goods or services owned or controlled by the Government of Iran. (a) The..., extracted, or processed in Iran; and (2) Goods which have entered into Iranian commerce. (b) The terms...

  9. Closed-Loop Control of Vortex Formation in Separated Flows

    NASA Technical Reports Server (NTRS)

    Colonius, Tim; Joe, Won Tae; MacMynowski, Doug; Rowley, Clancy; Taira, Sam; Ahuja, Sunil

    2010-01-01

    In order to phase lock the flow at the desired shedding cycle, particularly at Phi,best, We designed a feedback compensator. (Even though the open-loop forcing at Wf below Wn can lead to phase-locked limit cycles with a high average lift,) This feedback controller resulted in the phase-locked limit cycles that the open-loop control could not achieve for alpha=30 and 40 Particularly for alpha=40, the feedback was able to stabilize the limit cycle that was not stable with any of the open-loop periodic forcing. This results in stable phase-locked limit cycles for a larger range of forcing frequencies than the open-loop control. Also, it was shown that the feedback achieved the high-lift unsteady flow states that open-loop control could not sustain even after the states have been achieved for a long period of time.

  10. Are slide-hold-slide tests a good analogue for the seismic cycle?

    NASA Astrophysics Data System (ADS)

    van den Ende, Martijn; Niemeijer, André; Marketos, George; Spiers, Christopher

    2017-04-01

    Earthquakes are among the most disruptive of natural hazards known to man. Owing to their destructive potential and poor predictability, earthquakes and unstable frictional sliding in general receive considerable attention, both in experimental and in modelling studies. For reliable seismic hazard assessments, accurate predictions of the failure strength of seismogenic faults is paramount. To study the time-dependent restrengthening (or "healing") of faults in a laboratory setting, the slide-hold-slide (SHS) method is commonly employed as an analogue for the seismic cycle. Using this method, it is assumed that the rate of restrengthening as observed in SHS tests is similar to the rate of restrengthening of natural faults during the interseismic phase. However, the dynamic and kinematic boundary conditions of SHS tests are inherently different to those of a fault that is being tectonically loaded. As such, it can be questioned whether SHS tests (in which the interseismic period is characterised by stress relaxation) yield the same rate of restrengthening as would be expected from laboratory stick-slip or natural seismic cycles (characterised by a more complex stress history). This question could in principle be addressed experimentally by comparing the results from SHS tests with the stress drop and recurrence time of regular stick-slips. However, due to technical limitations, direct comparison between SHS and stick-slips is non-trivial, and uncertainties in extrapolating the laboratory results remain. To assess the validity of SHS tests as an analogue for the seismic cycle, we simulate laboratory SHS tests as well as stick-slips using the Discrete Element Method (DEM). DEM is a particle-based numerical technique that is suitable for modelling granular media, such as fault gouges. Its constitutive relations are linked to grain-scale micro-processes, and, in the work presented here, we incorporate pressure solution creep and frictional sliding. The simultaneous operation of these deformation mechanisms has been proposed as a basis for velocity-weakening behaviour (Niemeijer & Spiers, 2007), and allows for the generation of regular stick-slips in our DEM model. By varying the stiffness of the system, we can control the recurrence interval of slip events, and investigate the relation between stress build-up (or stress drop during the slip event) and recurrence time as a measure for the restrengthening rate. These results are subsequently compared with simulations that mimic the laboratory SHS procedure. We find that, for the assumed micro-mechanisms, there is a good agreement between the restrengthening rate observed in SHS- and in stick-slip simulations, suggesting that the SHS method is a good laboratory analogue for studying the interseismic period of the seismic cycle. Furthermore, we find that the rate of restrengthening observed in the SHS simulations is independent of the stiffness of the system, and therefore the amount of slip during relaxation, implying that the rate-and-state ageing law better describes interseismic restrengthening than does the slip law, as has previously been observed experimentally by Beeler et al. (1994). References: Beeler et al. (1994), GRL 21(18), doi:10.1029/94GL01599 Niemeijer & Spiers (2007), JGR 112, doi:10.1029/2007JB005008

  11. Bipolar and Monopolar Lithium-Ion Battery Technology at Yardney

    NASA Technical Reports Server (NTRS)

    Russell, P.; Flynn, J.; Reddy, T.

    1996-01-01

    Lithium-ion battery systems offer several advantages: intrinsically safe; long cycle life; environmentally friendly; high energy density; wide operating temperature range; good discharge rate capability; low self-discharge; and no memory effect.

  12. Free-standing anode of N-doped carbon nanofibers containing SnO{sub x} for high-performance lithium batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Mingzhong; Li, Jiaxin, E-mail: ljx3012982@yahoo.com; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002

    2014-12-15

    Highlights: • Self-standing SnO{sub x} N-CNF electrodes were synthesized by electrospinning. • The SnO{sub x} N-CNFs anode exhibits high capacity, good cyclic stability, and excellent rate performance for lithium ion batteries. • The enhanced performance is ascribed to the synergetic effects between N-CNFs and SnO{sub x} nanoparticles. - Abstract: Free-standing paper of N-doped carbon nanofibers (NCNFs) containing SnO{sub x} was prepared by electrospinning. The structure and morphology of the sample were analyzed by XRD, XPS, SEM, and TEM. The results show that nitrogen atoms were successfully doped into CNFs. The SnO{sub x} were homogenously embedded in the N-doped CNFs viamore » annealing treatment. Subsequently, the SnO{sub x} NCNF paper was cut into disks and used as anodes for lithium ion batteries (LIBs). The anodes of SnO{sub x} NCNFs exhibit excellent cycling stability and show high capacity of 520 mA h g{sup −1} tested at a 200 mA g{sup −1} after 100 cycles. More importantly, at a high current density of 500 mA g{sup −1}, a large reversible capacity of 430 mA h g{sup −1} after 100 cycles can still be obtained. The good electrochemical performance should be attributed to the good electronic conductivity from the NCNFs and the synergistic effects from NCNFs and SnO{sub x} materials.« less

  13. The effect of Iron Supplying on VO2 MAX and Haematology Parameter on Menstrual Woman

    NASA Astrophysics Data System (ADS)

    Nailuvar Sinaga, Rika; Sari Harahap, Novita; Mediyana Sari, Rima

    2018-03-01

    One of the supporting factors to have good aerobic endurance requires high VO2 max levels supported by good quality and quantity level of Haematology parameter especially such as erythrocytes, hematocrit and hemoglobin. One of the components in hemoglobin is iron which functions as theoxygen transport to parts of all body required in the process of metabolism. The objective of this research was to find out the difference between VO2 Max and Haematology parameter between iron supplying and no iron supplyingonmenstrual woman. The type of this research is quasi experimental research with non-randomized control group Pretest-Postest Design. The subjectsarethe studentsat faculty of Sports Sciences, Medan State University with the criteria of female gender, monthly regular menstrual cycle, having the level of health and the level of training, willing to be a sample by filling out informed consent. The total number of research subjectsis twenty students, divided into two groups namely the treatment group and the control group. The hematology parameter was measuredby Haemotology analyzer and VO2 Max was measured by multi-stage run. The result showed that there was a significant effect of iron supplyingon the increase of erythrocyte level on menstrual women, hemotocrit, haemoglobin and an increase in VO2 Max. Iron supplying on menstrual woman has the effect on the increase of erythrocyte, hematocrit, hemoglobin level and VO2 Max

  14. Iterative LQG Controller Design Through Closed-Loop Identification

    NASA Technical Reports Server (NTRS)

    Hsiao, Min-Hung; Huang, Jen-Kuang; Cox, David E.

    1996-01-01

    This paper presents an iterative Linear Quadratic Gaussian (LQG) controller design approach for a linear stochastic system with an uncertain open-loop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQC controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.

  15. Dilution cycle control for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    A dilution cycle control system for an absorption refrigeration system is disclosed. The control system includes a time delay relay for sensing shutdown of the absorption refrigeration system and for generating a control signal only after expiration of a preselected time period measured from the sensed shutdown of the absorption refrigeration system, during which the absorption refrigeration system is not restarted. A dilution cycle for the absorption refrigeration system is initiated in response to generation of a control signal by the time delay relay. This control system is particularly suitable for use with an absorption refrigeration system which is frequently cycled on and off since the time delay provided by the control system prevents needless dilution of the absorption refrigeration system when the system is turned off for only a short period of time and then is turned back on.

  16. Regularity in the control of the free-running sleep-wakefulness rhythm

    NASA Technical Reports Server (NTRS)

    Webb, W. B.; Agnew, H. W., Jr.

    1974-01-01

    In the present experiment, rigid control over the sleep and wake-up times was employed in an attempt to contain the natural rhythm to a 24-hr cycle. Eight subjects were isolated from all time and social cues for 10 days. They were placed on a rigid schedule of sleep between 11 p.m. and 7 a.m. The results indicate that, for practical purposes, the free-running sleep-wakefulness rhythm can be contained to a 24-hr cycle by rigid control of the sleep portion of the cycle. When part of the control was released by allowing the subjects to sleep beyond 7 a.m., they slept an average of 67 min longer and showed sleep latencies which averaged 73 min. From these data it is concluded that control of the sleep portion of the sleep-wakefulness cycle, particularly control of the wake-up time, is sufficient to contain the free-running sleep-wakefulness rhythm to a 24-hr cycle.

  17. Mathematical modeling and characteristic analysis for over-under turbine based combined cycle engine

    NASA Astrophysics Data System (ADS)

    Ma, Jingxue; Chang, Juntao; Ma, Jicheng; Bao, Wen; Yu, Daren

    2018-07-01

    The turbine based combined cycle engine has become the most promising hypersonic airbreathing propulsion system for its superiority of ground self-starting, wide flight envelop and reusability. The simulation model of the turbine based combined cycle engine plays an important role in the research of performance analysis and control system design. In this paper, a turbine based combined cycle engine mathematical model is built on the Simulink platform, including a dual-channel air intake system, a turbojet engine and a ramjet. It should be noted that the model of the air intake system is built based on computational fluid dynamics calculation, which provides valuable raw data for modeling of the turbine based combined cycle engine. The aerodynamic characteristics of turbine based combined cycle engine in turbojet mode, ramjet mode and mode transition process are studied by the mathematical model, and the influence of dominant variables on performance and safety of the turbine based combined cycle engine is analyzed. According to the stability requirement of thrust output and the safety in the working process of turbine based combined cycle engine, a control law is proposed that could guarantee the steady output of thrust by controlling the control variables of the turbine based combined cycle engine in the whole working process.

  18. Selection of euploid blastocysts for cryopreservation with array comparative genomic hybridization (aCGH) results in increased implantation rates in subsequent frozen and thawed embryo transfer cycles

    PubMed Central

    2013-01-01

    Background In assisted reproductive treatments, embryos remaining after fresh embryo transfer are usually selected for cryopreservation based on traditional morphology assessment. Our previous report has demonstrated that array comparative genomic hybridization (aCGH) screening for IVF patients with good prognosis significantly improves clinical and ongoing pregnancy rates in fresh embryo transfer cycles. The current study further investigates the efficiency of applying aCGH in the selection of euploid embryos for cryopreservation as related to pregnancy and implantation outcomes in subsequent frozen embryo transfer (FET) cycles. Methods First-time IVF patients with good prognosis undergoing fresh single embryo transfer and having at least one remaining blastocyst for cryopreservation were prospectively randomized into two groups: 1) Group A patients had embryos assessed by morphology first and then by aCGH screening of trophectoderm cells and 2) Group B patients had embryos evaluated by morphology alone. All patients had at least one blastocyst available for cryopreservation after fresh embryo transfer. There were 15 patients in Group A and 23 patients in Group B who failed to conceive after fresh embryo transfer and completed the FET cycles. Blastocyst survival and implantation rates were compared between the two groups. Results There were no significant differences in blastocyst survival rates between Group A and Group B (90.9% vs. 91.3%, respectively; p >0.05). However, a significantly higher implantation rate was observed in the morphology assessment plus aCGH screening group compared to the morphology assessment alone group (65.0% vs. 33.3%, respectively; p = 0.038). There was no miscarriage observed in Group A while a 16.7% miscarriage rate was recorded in Group B (0% vs. 16.7%, respectively; p >0.05). Conclusions While aCGH screening has been recently applied to select euploid blastocysts for fresh transfer in young, low-risk IVF patients, this is the first prospective study on the impact of aCGH specifically on blastocyst survival and implantation outcomes in the subsequent FET cycles of IVF patients with good prognosis. The present study demonstrates that aCGH screening of blastocysts prior to cryopreservation significantly improves implantation rates and may reduce the risk of miscarriage in subsequent FET cycles. Further randomized clinical studies with a larger sample size are needed to validate these preliminary findings. PMID:23937723

  19. A multifunctional β-CD-modified Fe3O4@ZnO:Er(3+),Yb(3+) nanocarrier for antitumor drug delivery and microwave-triggered drug release.

    PubMed

    Peng, Hongxia; Cui, Bin; Li, Guangming; Wang, Yingsai; Li, Nini; Chang, Zhuguo; Wang, Yaoyu

    2015-01-01

    We constructed a novel core-shell structured Fe3O4@ZnO:Er(3+),Yb(3+)@(β-CD) nanoparticles used as drug carrier to investigate the loading and controllable release properties of the chemotherapeutic drug etoposide (VP-16). The cavity of β-cyclodextrin is chemically inert, it can store etoposide molecules by means of hydrophobic interactions. The Fe3O4 core and ZnO:Er(3+),Yb(3+) shell functioned successfully for magnetic targeting and up-conversion fluorescence imaging, respectively. In addition, the ZnO:Er(3+),Yb(3+) shell acts as a good microwave absorber with excellent microwave thermal response property for microwave triggered drug release (the VP-16 release of 18% under microwave irradiation for 15 min outclass the 2% within 6h without microwave irradiation release). The release profile could be controlled by the duration and number of cycles of microwave application. This material therefore promises to be a useful noninvasive, externally controlled drug-delivery system in cancer therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Evaluation of absorption cycle for space station environmental control system application

    NASA Technical Reports Server (NTRS)

    Sims, W. H.; Oneill, M. J.; Reid, H. C.; Bisenius, P. M.

    1972-01-01

    The study to evaluate an absorption cycle refrigeration system to provide environmental control for the space stations is reported. A zero-gravity liquid/vapor separator was designed and tested. The results were used to design a light-weight, efficient generator for the absorption refrigeration system. It is concluded that absorption cycle refrigeration is feasible for providing space station environmental control.

  1. Rutile TiO2 Mesocrystals as Sulfur Host for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Sun, Qingqing; Chen, Kaixiang; Liu, Yubin; Li, Yafeng; Wei, Mingdeng

    2017-11-16

    Although lithium-sulfur (Li-S) batteries are among the most promising rechargeable batteries in the field of energy-storage devices, their poor cycling performance restricts their potential applications. Polar materials can improve the cycling stability owing to their inherent strong chemical interaction with polysulfides. Herein, novel rutile TiO 2 mesocrystals (RTMs) are employed as the host for sulfur in Li-S batteries; the RTMs display a stable cycling performance with a capacity retention of 64 % and a small average capacity decay rate of 0.12 % per cycle over 300 cycles at 1 C rate. The good electrochemical properties are attributed to the interior ordered nanopores of the RTMs, which can effectively limit the dissolution of polysulfides, and the ultrafine nanowires in RTMs, which shorten the path for lithium-ion transport effectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Identification of a Potential Antimalarial Drug Candidate from a Series of 2-Aminopyrazines by Optimization of Aqueous Solubility and Potency across the Parasite Life Cycle.

    PubMed

    Le Manach, Claire; Nchinda, Aloysius T; Paquet, Tanya; Gonzàlez Cabrera, Diego; Younis, Yassir; Han, Ze; Bashyam, Sridevi; Zabiulla, Mohammed; Taylor, Dale; Lawrence, Nina; White, Karen L; Charman, Susan A; Waterson, David; Witty, Michael J; Wittlin, Sergio; Botha, Mariëtte E; Nondaba, Sindisiswe H; Reader, Janette; Birkholtz, Lyn-Marie; Jiménez-Díaz, María Belén; Martínez, María Santos; Ferrer, Santiago; Angulo-Barturen, Iñigo; Meister, Stephan; Antonova-Koch, Yevgeniya; Winzeler, Elizabeth A; Street, Leslie J; Chibale, Kelly

    2016-11-10

    Introduction of water-solubilizing groups on the 5-phenyl ring of a 2-aminopyrazine series led to the identification of highly potent compounds against the blood life-cycle stage of the human malaria parasite Plasmodium falciparum. Several compounds displayed high in vivo efficacy in two different mouse models for malaria, P. berghei-infected mice and P. falciparum-infected NOD-scid IL-2Rγ null mice. One of the frontrunners, compound 3, was identified to also have good pharmacokinetics and additionally very potent activity against the liver and gametocyte parasite life-cycle stages.

  3. High-Columbic-Efficiency Lithium Battery Based on Silicon Particle Materials.

    PubMed

    Zhang, Junying; Zhang, Chunqian; Wu, Shouming; Zhang, Xu; Li, Chuanbo; Xue, Chunlai; Cheng, Buwen

    2015-12-01

    Micro-sized polycrystalline silicon particles were used as anode materials of lithium-ion battery. The columbic efficiency of the first cycle reached a relatively high value of 91.8 % after prelithiation and increased to 99 % in the second cycle. Furthermore, columbic efficiency remained above 99 % for up to 280+ cycles. The excellent performances of the batteries were the results of the use of a proper binder to protect the electrode from cracking and the application of a suitable conductive agent to provide an efficient conductive channel. The good performance was also significantly attributed to the electrolyte in the packaging process.

  4. Comparison of antiemetic efficacy of granisetron and ondansetron in Oriental patients: a randomized crossover study.

    PubMed Central

    Poon, R. T.; Chow, L. W.

    1998-01-01

    A double-blind randomized crossover trial was performed to compare the antiemetic efficacy of two 5-HT3 receptor antagonists, granisetron and ondansetron, in Chinese patients receiving adjuvant chemotherapy (cyclophosphamide, methotrexate and 5-fluorouracil) for breast cancer. Twenty patients were randomized to receive chemotherapy with either granisetron on day 1 and ondansetron on day 8 of the first cycle followed by the reverse order in the second cycle, or vice versa. The number of vomiting episodes and the severity of nausea in the first 24 h (acute vomiting/nausea) and the following 7 days (delayed vomiting/nausea) were studied. Acute vomiting was completely prevented in 29 (72.5%) cycles with granisetron and 27 (67.5%) cycles with ondansetron, and treatment failure (>5 vomiting episodes) occurred in two (5%) cycles with each agent (P = NS). Acute nausea was completely controlled in 15 (37.5%) cycles with granisetron and 14 (35%) cycles with ondansetron, whereas severe acute nausea occurred in four (10%) cycles with each agent (P = NS). However, complete response for delayed vomiting was observed in only 21 (52.5%) cycles with granisetron and 22 (55%) cycles with ondansetron (P = NS), and delayed nausea was completely controlled in only 11 (27.5%) and ten (25%) cycles respectively (P = NS). In conclusion, both granisetron and ondansetron are effective in controlling acute nausea and vomiting in Chinese patients, with equivalent antiemetic efficacy. Control of delayed nausea and vomiting is less satisfactory. PMID:9635849

  5. Proceedings: 1990 fossil plant cycling conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-01

    Fossil plant cycling continues to be a key issue for many electric utilities. EPRI's previous cycling workshops, held in 1983, 1985, and 1987, allowed utilities to benefit from collective industry experience in the conversion of baseload fossil units to cyclic operation. Continued improvements in equipment, retrofits, diagnostics, and controls were highlighted at the 1990 conference. The objective is to provide a forum for utility discussions of the cycling operation of fossil fuel power plants. Potomac Electric Power Company (PEPCO) hosted the 1990 EPRI Fossil Fuel Cycling Conference in Washington, DC, on December 4--6, 1990. More than 130 representatives from utilities,more » vendors, government agencies, universities, and industry associations attended the conference. Following the general session, technical sessions covered such topics as plant modifications, utility retrofit experience, cycling economics, life assessment, controls, environmental controls, and energy storage. Attendees also toured PEPCO's Potomac River generating station, the site of an earlier EPRI cycling conversion study.« less

  6. Cell-cycle control in the face of damage--a matter of life or death.

    PubMed

    Clarke, Paul R; Allan, Lindsey A

    2009-03-01

    Cells respond to DNA damage or defects in the mitotic spindle by activating checkpoints that arrest the cell cycle. Alternatively, damaged cells can undergo cell death by the process of apoptosis. The correct balance between these pathways is important for the maintenance of genomic integrity while preventing unnecessary cell death. Although the molecular mechanisms of the cell cycle and apoptosis have been elucidated, the links between them have not been clear. Recent work, however, indicates that common components directly link the regulation of apoptosis with cell-cycle checkpoints operating during interphase, whereas in mitosis, the control of apoptosis is directly coupled to the cell-cycle machinery. These findings shed new light on how the balance between cell-cycle progression and cell death is controlled.

  7. Local linear approximation of the Jacobian matrix better captures phase resetting of neural limit cycle oscillators.

    PubMed

    Oprisan, Sorinel Adrian

    2014-01-01

    One effect of any external perturbations, such as presynaptic inputs, received by limit cycle oscillators when they are part of larger neural networks is a transient change in their firing rate, or phase resetting. A brief external perturbation moves the figurative point outside the limit cycle, a geometric perturbation that we mapped into a transient change in the firing rate, or a temporal phase resetting. In order to gain a better qualitative understanding of the link between the geometry of the limit cycle and the phase resetting curve (PRC), we used a moving reference frame with one axis tangent and the others normal to the limit cycle. We found that the stability coefficients associated with the unperturbed limit cycle provided good quantitative predictions of both the tangent and the normal geometric displacements induced by external perturbations. A geometric-to-temporal mapping allowed us to correctly predict the PRC while preserving the intuitive nature of this geometric approach.

  8. Complexity dynamics and Hopf bifurcation analysis based on the first Lyapunov coefficient about 3D IS-LM macroeconomics system

    NASA Astrophysics Data System (ADS)

    Ma, Junhai; Ren, Wenbo; Zhan, Xueli

    2017-04-01

    Based on the study of scholars at home and abroad, this paper improves the three-dimensional IS-LM model in macroeconomics, analyzes the equilibrium point of the system and stability conditions, focuses on the parameters and complex dynamic characteristics when Hopf bifurcation occurs in the three-dimensional IS-LM macroeconomics system. In order to analyze the stability of limit cycles when Hopf bifurcation occurs, this paper further introduces the first Lyapunov coefficient to judge the limit cycles, i.e. from a practical view of the business cycle. Numerical simulation results show that within the range of most of the parameters, the limit cycle of 3D IS-LM macroeconomics is stable, that is, the business cycle is stable; with the increase of the parameters, limit cycles becomes unstable, and the value range of the parameters in this situation is small. The research results of this paper have good guide significance for the analysis of macroeconomics system.

  9. Electrochemical potassium-ion intercalation in NaxCoO2: a novel cathode material for potassium-ion batteries.

    PubMed

    Sada, Krishnakanth; Senthilkumar, Baskar; Barpanda, Prabeer

    2017-07-27

    Reversible electrochemical potassium-ion intercalation in P2-type Na x CoO 2 was examined for the first time. Hexagonal Na 0.84 CoO 2 platelets prepared by a solution combustion synthesis technique were found to work as an efficient host for K + intercalation. They deliver a high reversible capacity of 82 mA h g -1 , good rate capability and excellent cycling performance up to 50 cycles.

  10. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  11. An Ambient Temperature Molten Sodium-Vanadium Battery with Aqueous Flowing Catholyte.

    PubMed

    Liu, Caihong; Shamie, Jack S; Shaw, Leon L; Sprenkle, Vincent L

    2016-01-20

    In this study, we have investigated the key factors dictating the cyclic performance of a new type of hybrid sodium-based flow batteries (HNFBs) that can operate at room temperature with high cell voltages (>3 V), multiple electron transfer redox reactions per active ion, and decoupled design of power and energy. HNFBs are composed of a molten Na-Cs alloy anode, flowing aqueous catholyte, and a Na-β″-Al2O3 solid electrolyte as the separator. The surface functionalization of graphite felt electrodes for the flowing aqueous catholyte has been studied for its effectiveness in enhancing V(2+)/V(3+), V(3+)/V(4+), and V(4+)/V(5+) redox couples. The V(4+)/V(5+) redox reaction has been further investigated at different cell operation temperatures for its cyclic stability and how the properties of the solid electrolyte membrane play a role in cycling. These fundamental understandings provide guidelines for improving the cyclic performance and stability of HNFBs with aqueous catholytes. We show that the HNFB with aqueous V-ion catholyte can reach high storage capacity (∼70% of the theoretical capacity) with good Coulombic efficiency (90% ± 1% in 2-30 cycles) and cyclic performance (>99% capacity retention for 30 cycles). It demonstrates, for the first time, the potential of high capacity HNFBs with aqueous catholytes, good capacity retention and long cycling life. This is also the first demonstration that Na-β″-Al2O3 solid electrolyte can be used with aqueous electrolyte at near room temperature for more than 30 cycles.

  12. Live birth following IVF/ICSI using oocytes from donor who was conceived via IVF: a case report.

    PubMed

    Kavoussi, Shahryar K; Odenwald, Kate C; Summers-Colquitt, Roxanne B; Kavoussi, Parviz K; Kavoussi, K M; Shelinbarger, Caitlin L; Pool, Thomas B

    2015-11-01

    The purpose of the study was to report a case of live birth following donor oocyte in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) in which the oocyte donor herself was conceived via IVF. To our knowledge, such a case has not been previously reported. Retrospective chart review; this case is reported after chart review of a successful outcome. A 42 year-old woman, with diminished ovarian reserve, and her husband desired to conceive. She underwent a fresh IVF/ICSI cycle with her own oocytes, which unfortunately was not fruitful in terms of pregnancy or cryopreserved embryos. The couple was counseled regarding the option of donor oocytes, and they elected to proceed with a fresh cycle of donor oocyte IVF/ICSI. The couple selected an anonymous oocyte donor from a donor agency who was a first-time oocyte donor and, interestingly, was conceived via IVF herself. The fresh donor oocyte/IVF/ICSI cycle did not result in pregnancy; however, two supernumerary blastocysts were cryopreserved for future cycles. The recipient's subsequent frozen-thawed embryo transfer (FET) resulted in a singleton gestation and live birth. An oocyte donor who was conceived via IVF had good ovarian response to stimulation, a good number of oocytes retrieved, and the formation and cryopreservation of blastocysts which, in a subsequent FET cycle, resulted in pregnancy and live birth for a recipient couple. To our knowledge, this is the first case reported of live birth with the use of donor oocytes from an oocyte donor who herself was conceived via IVF.

  13. Exercise-induced menstrual cycle changes. A functional, temporary adaptation to metabolic stress.

    PubMed

    Bonen, A

    1994-06-01

    Chronic exercise is now known to alter the menstrual cycle. Yet, we do not yet know the true incidence of menstrual cycle alterations in athletes, because good normative data do not exist and the metabolic cost of training has not been considered in many studies. Secondary amenorrhoea is not easily induced by exercise training alone but seems to require additional metabolic stressors. Induction of secondary amenorrhoea in prospective exercise studies has not occurred, although the onset of short luteal or inadequate luteal phase cycles may occur in women even when running distances are not extensive. Such menstrual cycles may cause infertility, but this is only a temporary phenomenon since pregnancy, if desired, will usually occur upon cessation of training. Exercise-related changes in the menstrual cycle can be viewed as a functionally adaptive rather than a maladaptive dysfunction. A strong case can be made that the changes in the menstrual cycle as a result of exercise are an energy conserving strategy to protect more important biological processes. This hypothesis is consistent with the theory of metabolic arrest that has been identified in lower organisms and hibernating mammals.

  14. Solar Thermochemical Energy Storage Through Carbonation Cycles of SrCO3/SrO Supported on SrZrO3.

    PubMed

    Rhodes, Nathan R; Barde, Amey; Randhir, Kelvin; Li, Like; Hahn, David W; Mei, Renwei; Klausner, James F; AuYeung, Nick

    2015-11-01

    Solar thermochemical energy storage has enormous potential for enabling cost-effective concentrated solar power (CSP). A thermochemical storage system based on a SrO/SrCO3 carbonation cycle offers the ability to store and release high temperature (≈1200 °C) heat. The energy density of SrCO3/SrO systems supported by zirconia-based sintering inhibitors was investigated for 15 cycles of exothermic carbonation at 1150 °C followed by decomposition at 1235 °C. A sample with 40 wt % of SrO supported by yttria-stabilized zirconia (YSZ) shows good energy storage stability at 1450 MJ m(-3) over fifteen cycles at the same cycling temperatures. After further testing over 45 cycles, a decrease in energy storage capacity to 1260 MJ m(-3) is observed during the final cycle. The decrease is due to slowing carbonation kinetics, and the original value of energy density may be obtained by lengthening the carbonation steps. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 40 CFR 1033.530 - Duty cycles and calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Duty cycles and calculations. 1033.530 Section 1033.530 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.530 Duty cycles and calculations...

  16. 40 CFR 1033.530 - Duty cycles and calculations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Duty cycles and calculations. 1033.530 Section 1033.530 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.530 Duty cycles and calculations...

  17. 40 CFR 1033.530 - Duty cycles and calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Duty cycles and calculations. 1033.530 Section 1033.530 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.530 Duty cycles and calculations...

  18. 40 CFR 1033.530 - Duty cycles and calculations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Duty cycles and calculations. 1033.530 Section 1033.530 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.530 Duty cycles and calculations...

  19. Topology and Control of the Cell-Cycle-Regulated Transcriptional Circuitry

    PubMed Central

    Haase, Steven B.; Wittenberg, Curt

    2014-01-01

    Nearly 20% of the budding yeast genome is transcribed periodically during the cell division cycle. The precise temporal execution of this large transcriptional program is controlled by a large interacting network of transcriptional regulators, kinases, and ubiquitin ligases. Historically, this network has been viewed as a collection of four coregulated gene clusters that are associated with each phase of the cell cycle. Although the broad outlines of these gene clusters were described nearly 20 years ago, new technologies have enabled major advances in our understanding of the genes comprising those clusters, their regulation, and the complex regulatory interplay between clusters. More recently, advances are being made in understanding the roles of chromatin in the control of the transcriptional program. We are also beginning to discover important regulatory interactions between the cell-cycle transcriptional program and other cell-cycle regulatory mechanisms such as checkpoints and metabolic networks. Here we review recent advances and contemporary models of the transcriptional network and consider these models in the context of eukaryotic cell-cycle controls. PMID:24395825

  20. Multivariable control of vapor compression systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, X.D.; Liu, S.; Asada, H.H.

    1999-07-01

    This paper presents the results of a study of multi-input multi-output (MIMO) control of vapor compression cycles that have multiple actuators and sensors for regulating multiple outputs, e.g., superheat and evaporating temperature. The conventional single-input single-output (SISO) control was shown to have very limited performance. A low order lumped-parameter model was developed to describe the significant dynamics of vapor compression cycles. Dynamic modes were analyzed based on the low order model to provide physical insight of system dynamic behavior. To synthesize a MIMO control system, the Linear-Quadratic Gaussian (LQG) technique was applied to coordinate compressor speed and expansion valve openingmore » with guaranteed stability robustness in the design. Furthermore, to control a vapor compression cycle over a wide range of operating conditions where system nonlinearities become evident, a gain scheduling scheme was used so that the MIMO controller could adapt to changing operating conditions. Both analytical studies and experimental tests showed that the MIMO control could significantly improve the transient behavior of vapor compression cycles compared to the conventional SISO control scheme. The MIMO control proposed in this paper could be extended to the control of vapor compression cycles in a variety of HVAC and refrigeration applications to improve system performance and energy efficiency.« less

  1. Monitoring walking and cycling of middle-aged to older community dwellers using wireless wearable accelerometers.

    PubMed

    Zhang, Yuting; Beenakker, Karel G M; Butala, Pankil M; Lin, Cheng-Chieh; Little, Thomas D C; Maier, Andrea B; Stijntjes, Marjon; Vartanian, Richard; Wagenaar, Robert C

    2012-01-01

    Changes in gait parameters have been shown to be an important indicator of several age-related cognitive and physical declines of older adults. In this paper we propose a method to monitor and analyze walking and cycling activities based on a triaxial accelerometer worn on one ankle. We use an algorithm that can (1) distinguish between static and dynamic functional activities, (2) detect walking and cycling events, (3) identify gait parameters, including step frequency, number of steps, number of walking periods, and total walking duration per day, and (4) evaluate cycling parameters, including cycling frequency, number of cycling periods, and total cycling duration. Our algorithm is evaluated against the triaxial accelerometer data obtained from a group of 297 middle-aged to older adults wearing an activity monitor on the right ankle for approximately one week while performing unconstrained daily activities in the home and community setting. The correlation coefficients between each of detected gait and cycling parameters on two weekdays are all statistically significant, ranging from 0.668 to 0.873. These results demonstrate good test-retest reliability of our method in monitoring walking and cycling activities and analyzing gait and cycling parameters. This algorithm is efficient and causal in time and thus implementable for real-time monitoring and feedback.

  2. Isothermal life prediction of composite lamina using a damage mechanics approach

    NASA Technical Reports Server (NTRS)

    Abuelfoutouh, Nader M.; Verrilli, Michael J.; Halford, Gary R.

    1989-01-01

    A method for predicting isothermal plastic fatigue life of a composite lamina is presented in which both fibers and matrix are isotropic materials. In general, the fatigue resistances of the matrix, fibers, and interfacial material must be known in order to predict composite fatigue life. Composite fatigue life is predicted using only the matrix fatigue resistance due to inelasticity micromechanisms. The effect of the fiber orientation on loading direction is accounted for while predicting composite life. The application is currently limited to isothermal cases where the internal thermal stresses that might arise from thermal strain mismatch between fibers and matrix are negligible. The theory is formulated to predict the fatigue life of a composite lamina under either load or strain control. It is applied currently to predict the life of tungsten-copper composite lamina at 260 C under tension-tension load control. The calculated life of the lamina is in good agreement with available composite low cycle fatigue data.

  3. Evaluation of commercially supplied silver coated Teflon for spacecraft temperature control usage

    NASA Technical Reports Server (NTRS)

    Heaney, J. B.

    1974-01-01

    A series of tests are described which were performed to evaluate the acceptability of a commercially supplied silver backed teflon thermal control coating relative to teflon previously coated at GSFC. Optical measurements made on numerous samples indicate that the commercial material possesses an average solar absorptance of 0.085, an emittance of 0.76 and an average alpha/epsilon equal to 0.112, all of which are equivalent to the GSFC coated teflon. The emittance of the protective inconel backing was found to be 0.037. The coating is shown to have good adhesion at the Ag-teflon interface and exposure to UV irradiation uncovered no coating irregularities. Temperature cycling over the range -135 C to +200 C produced crazing in the evaporated Ag layer as expected but no delamination was observed. The suitability of Mystik no. 7366 and 3M no. 467 adhesives as bonding agents for the metallized polymer is demonstrated. Various problems associated with production reproducibility and selection of a proper bonding process are discussed.

  4. Improved knee biomechanics among patients reporting a good outcome in knee-related quality of life one year after total knee arthroplasty.

    PubMed

    Naili, Josefine E; Wretenberg, Per; Lindgren, Viktor; Iversen, Maura D; Hedström, Margareta; Broström, Eva W

    2017-03-21

    It is not well understood why one in five patients report poor outcomes following knee arthroplasty. This study evaluated changes in knee biomechanics, and perceived pain among patients reporting either a good or a poor outcome in knee-related quality of life after total knee arthroplasty. Twenty-eight patients (mean age 66 (SD 7) years) were included in this prospective study. Within one month of knee arthroplasty and one year after surgery, patients underwent three-dimensional (3D) gait analysis, completed the Knee Injury and Osteoarthritis Outcome Score (KOOS), and rated perceived pain using a visual analogue scale. A "good outcome" was defined as a change greater than the minimally detectable change in the KOOS knee-related quality of life, and a "poor outcome" was defined as change below the minimally detectable change. Nineteen patients (68%) were classified as having a good outcome. Groups were analyzed separately and knee biomechanics were compared using a two-way repeated measures ANOVA. Differences in pain between groups were evaluated using Mann Whitney U test. Patients classified as having a good outcome improved significantly in most knee gait biomechanical outcomes including increased knee flexion-extension range, reduced peak varus angle, increased peak flexion moment, and reduced peak valgus moment. The good outcome group also displayed a significant increase in walking speed, a reduction (normalization) of stance phase duration (% of gait cycle) and increased passive knee extension. Whereas, the only change in knee biomechanics, one year after surgery, for patients classified as having a poor outcome was a significant reduction in peak varus angle. No differences in pain postoperatively were found between groups. Patients reporting a good outcome in knee-related quality of life improved in knee biomechanics during gait, while patients reporting a poor outcome, despite similar reduction in pain, remained unchanged in knee biomechanics one year after total knee arthroplasty. With regards to surgeon-controlled biomechanical factors, surgery may most successfully address frontal plane knee alignment. However, achieving a good outcome in patient-reported knee-related quality of life may be related to dynamic improvements in the sagittal plane.

  5. A model-based gain scheduling approach for controlling the common-rail system for GDI engines

    NASA Astrophysics Data System (ADS)

    di Gaeta, Alessandro; Montanaro, Umberto; Fiengo, Giovanni; Palladino, Angelo; Giglio, Veniero

    2012-04-01

    The progressive reduction in vehicle emission requirements have forced the automotive industry to invest in research for developing alternative and more efficient control strategies. All control features and resources are permanently active in an electronic control unit (ECU), ensuring the best performance with respect to emissions, fuel economy, driveability and diagnostics, independently from engine working point. In this article, a considerable step forward has been achieved by the common-rail technology which has made possible to vary the injection pressure over the entire engine speed range. As a consequence, the injection of a fixed amount of fuel is more precise and multiple injections in a combustion cycle can be made. In this article, a novel gain scheduling pressure controller for gasoline direct injection (GDI) engine is designed to stabilise the mean fuel pressure into the rail and to track demanded pressure trajectories. By exploiting a simple control-oriented model describing the mean pressure dynamics in the rail, the control structure turns to be simple enough to be effectively implemented in commercial ECUs. Experimental results in a wide range of operating points confirm the effectiveness of the proposed control method to tame efficiently the mean value pressure dynamics of the plant showing a good accuracy and robustness with respect to unavoidable parameters uncertainties, unmodelled dynamics, and hidden coupling terms.

  6. The Adder Phenomenon Emerges from Independent Control of Pre- and Post-Start Phases of the Budding Yeast Cell Cycle.

    PubMed

    Chandler-Brown, Devon; Schmoller, Kurt M; Winetraub, Yonatan; Skotheim, Jan M

    2017-09-25

    Although it has long been clear that cells actively regulate their size, the molecular mechanisms underlying this regulation have remained poorly understood. In budding yeast, cell size primarily modulates the duration of the cell-division cycle by controlling the G1/S transition known as Start. We have recently shown that the rate of progression through Start increases with cell size, because cell growth dilutes the cell-cycle inhibitor Whi5 in G1. Recent phenomenological studies in yeast and bacteria have shown that these cells add an approximately constant volume during each complete cell cycle, independent of their size at birth. These results seem to be in conflict, as the phenomenological studies suggest that cells measure the amount they grow, rather than their size, and that size control acts over the whole cell cycle, rather than specifically in G1. Here, we propose an integrated model that unifies the adder phenomenology with the molecular mechanism of G1/S cell-size control. We use single-cell microscopy to parameterize a full cell-cycle model based on independent control of pre- and post-Start cell-cycle periods. We find that our model predicts the size-independent amount of cell growth during the full cell cycle. This suggests that the adder phenomenon is an emergent property of the independent regulation of pre- and post-Start cell-cycle periods rather than the consequence of an underlying molecular mechanism measuring a fixed amount of growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Cycling injury risk in London: A case-control study exploring the impact of cycle volumes, motor vehicle volumes, and road characteristics including speed limits.

    PubMed

    Aldred, Rachel; Goodman, Anna; Gulliver, John; Woodcock, James

    2018-08-01

    Cycling injury risk is an important topic, but few studies explore cycling risk in relation to exposure. This is largely because of a lack of exposure data, in other words how much cycling is done at different locations. This paper helps to fill this gap. It reports a case-control study of cycling injuries in London in 2013-2014, using modelled cyclist flow data alongside datasets covering some characteristics of the London route network. A multilevel binary logistic regression model is used to investigate factors associated with injury risk, comparing injury sites with control sites selected using the modelled flow data. Findings provide support for 'safety in numbers': for each increase of a natural logarithmic unit (2.71828) in cycling flows, an 18% decrease in injury odds was found. Conversely, increased motor traffic volume is associated with higher odds of cycling injury, with one logarithmic unit increase associated with a 31% increase in injury odds. Twenty-mile per hour compared with 30mph speed limits were associated with 21% lower injury odds. Residential streets were associated with reduced injury odds, and junctions with substantially higher injury odds. Bus lanes do not affect injury odds once other factors are controlled for. These data suggest that speed limits of 20 mph may reduce cycling injury risk, as may motor traffic reduction. Further, building cycle routes that generate new cycle trips should generate 'safety in numbers' benefits. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins.

    PubMed

    Yu, Guohui; Hu, Jingdong; Tan, Jianping; Gao, Yang; Lu, Yongfeng; Xuan, Fuzhen

    2018-03-16

    Pressure sensors with high performance (e.g., a broad pressure sensing range, high sensitivities, rapid response/relaxation speeds, temperature-stable sensing), as well as a cost-effective and highly efficient fabrication method are highly desired for electronic skins. In this research, a high-performance pressure sensor based on microstructured carbon nanotube/polydimethylsiloxane arrays was fabricated using an ultra-violet/ozone (UV/O 3 ) microengineering technique. The UV/O 3 microengineering technique is controllable, cost-effective, and highly efficient since it is conducted at room temperature in an ambient environment. The pressure sensor offers a broad pressure sensing range (7 Pa-50 kPa), a sensitivity of ∼ -0.101 ± 0.005 kPa -1 (<1 kPa), a fast response/relaxation speed of ∼10 ms, a small dependence on temperature variation, and a good cycling stability (>5000 cycles), which is attributed to the UV/O 3 engineered microstructures that amplify and transfer external applied forces and rapidly store/release the energy during the PDMS deformation. The sensors developed show the capability to detect external forces and monitor human health conditions, promising for the potential applications in electronic skin.

  9. Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance.

    PubMed

    Wang, Ziya; Wang, Fengping; Li, Yan; Hu, Jianlin; Lu, Yanzhen; Xu, Mei

    2016-04-07

    Structure designing and morphology control can lead to high performance pseudocapacitive materials for supercapacitors. In this work, we have designed interlinked multiphase Fe-doped MnO2 nanostructures (α-MnO2/R-MnO2/ε-MnO2) to enhance the electrochemical properties by a facile method. These hierarchical hollow microspheres assembled by interconnected nanoflakes, and with plenty of porous nanorods radiating from the spherical shells were hydrothermally obtained. The supercapacitor electrode prepared from the unique construction exhibits outstanding specific capacitance of 267.0 F g(-1) even under a high mass loading (∼5 mg cm(-2)). Obviously improved performances compared to pure MnO2 are also demonstrated with a good rate capability, high energy density (1.30 mW h cm(-3)) and excellent cycling stability of 100% capacitance retention after 2000 cycles at 2 A g(-1). The synergistic effects of alternative crystal structures, appropriate crystallinity and optimal morphology are identified to be responsible for the observations. This rational multiphase composite strategy provides a promising idea for materials scientists to design and prepare scalable electrode materials for energy storage devices.

  10. Enabling high-rate electrochemical flow capacitors based on mesoporous carbon microspheres suspension electrodes

    NASA Astrophysics Data System (ADS)

    Tian, Meng; Sun, Yueqing; Zhang, Chuanfang (John); Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui

    2017-10-01

    Electrochemical flow capacitor (EFC) is a promising technology for grid energy storage, which combines the fast charging/discharging capability of supercapacitors with the scalable energy capacity of flow batteries. In this study, we report a high-power-density EFC using mesoporous carbon microspheres (MCMs) as suspension electrodes. By using a simple yet effective spray-drying technique, monodispersed MCMs with average particle size of 5 μm, high BET surface area of 1150-1267 m2 g-1, large pore volume of 2-4 cm3 g-1 and controllable mesopore size of 7-30 nm have been successfully prepared. The resultant MCMs suspension electrode shows excellent stability and considerable high capacitance of 100 F g-1 and good cycling ability (86% of initial capacitance after 10000 cycles). Specially, the suspension electrode exhibits excellent rate performance with 75% capacitance retention from 2 to 100 mV s-1, significantly higher than that of microporous carbon electrodes (20∼30%), due to the developed mesoporous channels facilitating for rapid ion diffusion. In addition, the electrochemical responses on both negative and positive suspension electrodes are studied, based on which an optimal capacitance matching between them is suggested for large-scale EFC unit.

  11. Morphology Engineering of Co3O4 Nanoarrays as Free-Standing Catalysts for Lithium-Oxygen Batteries.

    PubMed

    He, Mu; Zhang, Peng; Xu, Shan; Yan, Xingbin

    2016-09-14

    The effective shape-controlled synthesis of Co3O4 nanoarrays on nickel foam substrates has been achieved through a simple hydrothermal strategy. When they served as the binder- and conductive-agent-free porous cathodes for nonaqueous Li-O2 batteries, they sufficiently reflect the favorable catalytic characteristic of Co3O4 and alleviate the problems of serious pore blocking and surface passivation caused by insoluble and insulating discharge products. In particular, Co3O4 rectangular nanosheets exhibit superior electrocatalytic performance comparing with Co3O4 nanowires and hexagonal nanosheets, leading to higher specific capacity and better cycling stability over 54 cycles at 100 mA g(-1), which relate to their good pore structure, large specific surface area, and highly active {112} exposed plane, effectively promoting the mass transport and reversible formation and decomposition of discharge products in the cathode. These comparisons further indicate the morphology effect of nanostructured Co3O4 on their performances as free-standing catalysts for Li-O2 batteries, which also have been proved through the further analysis of discharge products on different shapes of Co3O4 nanoarrays electrodes.

  12. A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins

    NASA Astrophysics Data System (ADS)

    Yu, Guohui; Hu, Jingdong; Tan, Jianping; Gao, Yang; Lu, Yongfeng; Xuan, Fuzhen

    2018-03-01

    Pressure sensors with high performance (e.g., a broad pressure sensing range, high sensitivities, rapid response/relaxation speeds, temperature-stable sensing), as well as a cost-effective and highly efficient fabrication method are highly desired for electronic skins. In this research, a high-performance pressure sensor based on microstructured carbon nanotube/polydimethylsiloxane arrays was fabricated using an ultra-violet/ozone (UV/O3) microengineering technique. The UV/O3 microengineering technique is controllable, cost-effective, and highly efficient since it is conducted at room temperature in an ambient environment. The pressure sensor offers a broad pressure sensing range (7 Pa-50 kPa), a sensitivity of ˜ -0.101 ± 0.005 kPa-1 (<1 kPa), a fast response/relaxation speed of ˜10 ms, a small dependence on temperature variation, and a good cycling stability (>5000 cycles), which is attributed to the UV/O3 engineered microstructures that amplify and transfer external applied forces and rapidly store/release the energy during the PDMS deformation. The sensors developed show the capability to detect external forces and monitor human health conditions, promising for the potential applications in electronic skin.

  13. Smart Nanocomposite Coatings with Chameleon Surface Adaptation in Tribological Applications

    NASA Astrophysics Data System (ADS)

    Voevodin, A. A.; Zabinski, J. S.

    Smart nanocomposite tribological coatings were designed to respond to changing environmental conditions by self-adjustment of their surface properties to maintain good tribological performance in any environment. These coatings have been dubbed "chameleon" because of their ability to change their surface chemistry and structure to avoid wear. The first "chameleon" coatings were made of WC, WS2, and DLC; these coatings provided superior mechanical toughness and performance in dry/humid environmental cycling. In order to address temperature variation, the second generation of "chameleon" coatings were made of yttria stabilized zirconia (YSZ) in a gold matrix with encapsulated nano-sized reservoirs of MoS2 and DLC. High temperature lubrication with low melting point glassy ceramic phases was also explored. All coatings were produced using a combination of laser ablation and magnetron sputtering. They were thoroughly characterized by various analytical, mechanical, and tribological methods. Coating toughness was remarkably enhanced by activation of a grain boundary sliding mechanism. Friction and wear endurance measurements were performed in controlled humidity air, dry nitrogen, and vacuum environments, as well as at 500-600 °C in air. Unique friction and wear performance in environmental cycling was demonstrated.

  14. High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds.

    PubMed

    Luo, Wen; Feng, Yiyu; Qin, Chengqun; Li, Man; Li, Shipei; Cao, Chen; Long, Peng; Liu, Enzuo; Hu, Wenping; Yoshino, Katsumi; Feng, Wei

    2015-10-21

    An important method for establishing a high-energy, stable and recycled molecular solar heat system is by designing and preparing novel photo-isomerizable molecules with a high enthalpy and a long thermal life by controlling molecular interactions. A meta- and ortho-bis-substituted azobenzene chromophore (AZO) is covalently grafted onto reduced graphene oxide (RGO) for solar thermal storage materials. High grafting degree and close-packed molecules enable intermolecular hydrogen bonds (H-bonds) for both trans-(E) and cis-(Z) isomers of AZO on the surface of nanosheets, resulting in a dramatic increase in enthalpy and lifetime. The metastable Z-form of AZO on RGO is thermally stabilized with a half-life of 52 days by steric hindrance and intermolecular H-bonds calculated using density functional theory (DFT). The AZO-RGO fuel shows a high storage capacity of 138 Wh kg(-1) by optimizing intermolecular H-bonds with a good cycling stability for 50 cycles induced by visible light at 520 nm. Our work opens up a new method for making advanced molecular solar thermal storage materials by tuning molecular interactions on a nano-template.

  15. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase.

    PubMed

    Paquet, Tanya; Le Manach, Claire; Cabrera, Diego González; Younis, Yassir; Henrich, Philipp P; Abraham, Tara S; Lee, Marcus C S; Basak, Rajshekhar; Ghidelli-Disse, Sonja; Lafuente-Monasterio, María José; Bantscheff, Marcus; Ruecker, Andrea; Blagborough, Andrew M; Zakutansky, Sara E; Zeeman, Anne-Marie; White, Karen L; Shackleford, David M; Mannila, Janne; Morizzi, Julia; Scheurer, Christian; Angulo-Barturen, Iñigo; Martínez, María Santos; Ferrer, Santiago; Sanz, Laura María; Gamo, Francisco Javier; Reader, Janette; Botha, Mariette; Dechering, Koen J; Sauerwein, Robert W; Tungtaeng, Anchalee; Vanachayangkul, Pattaraporn; Lim, Chek Shik; Burrows, Jeremy; Witty, Michael J; Marsh, Kennan C; Bodenreider, Christophe; Rochford, Rosemary; Solapure, Suresh M; Jiménez-Díaz, María Belén; Wittlin, Sergio; Charman, Susan A; Donini, Cristina; Campo, Brice; Birkholtz, Lyn-Marie; Hanson, Kirsten K; Drewes, Gerard; Kocken, Clemens H M; Delves, Michael J; Leroy, Didier; Fidock, David A; Waterson, David; Street, Leslie J; Chibale, Kelly

    2017-04-26

    As part of the global effort toward malaria eradication, phenotypic whole-cell screening revealed the 2-aminopyridine class of small molecules as a good starting point to develop new antimalarial drugs. Stemming from this series, we found that the derivative, MMV390048, lacked cross-resistance with current drugs used to treat malaria. This compound was efficacious against all Plasmodium life cycle stages, apart from late hypnozoites in the liver. Efficacy was shown in the humanized Plasmodium falciparum mouse model, and modest reductions in mouse-to-mouse transmission were achieved in the Plasmodium berghei mouse model. Experiments in monkeys revealed the ability of MMV390048 to be used for full chemoprotection. Although MMV390048 was not able to eliminate liver hypnozoites, it delayed relapse in a Plasmodium cynomolgi monkey model. Both genomic and chemoproteomic studies identified a kinase of the Plasmodium parasite, phosphatidylinositol 4-kinase, as the molecular target of MMV390048. The ability of MMV390048 to block all life cycle stages of the malaria parasite suggests that this compound should be further developed and may contribute to malaria control and eradication as part of a single-dose combination treatment. Copyright © 2017, American Association for the Advancement of Science.

  16. Hierarchical Mesoporous Lithium-Rich Li[Li0.2Ni0.2Mn0.6]O2 Cathode Material Synthesized via Ice Templating for Lithium-Ion Battery.

    PubMed

    Li, Yu; Wu, Chuan; Bai, Ying; Liu, Lu; Wang, Hui; Wu, Feng; Zhang, Na; Zou, Yufeng

    2016-07-27

    Tuning hierarchical micro/nanostructure of electrode materials is a sought-after means to reinforce their electrochemical performance in the energy storage field. Herein, we introduce a type of hierarchical mesoporous Li[Li0.2Ni0.2Mn0.6]O2 microsphere composed of nanoparticles synthesized via an ice templating combined coprecipitation strategy. It is a low-cost, eco-friendly, and easily operated method using ice as a template to control material with homogeneous morphology and rich porous channels. The as-prepared material exhibits remarkably enhanced electrochemical performances with higher capacity, more excellent cycling stability and more superior rate property, compared with the sample prepared by conventional coprecipitation method. It has satisfactory initial discharge capacities of 280.1 mAh g(-1) at 0.1 C, 207.1 mAh g(-1) at 2 C, and 152.4 mAh g(-1) at 5 C, as well as good cycle performance. The enhanced electrochemical performance can be ascribed to the stable hierarchical microsized structure and the improved lithium-ion diffusion kinetics from the highly porous structure.

  17. External Quality Monitoring of the Cervical Cytopathological Exams in the Rio de Janeiro City.

    PubMed

    Rocha, Vânia Stiepanowez de Oliveira; Malfacini, Solange da Silva; Gomes, Alex Moreira; Rocha, Cláudia Ramos Marques da

    2018-06-20

     To discuss the implementation and contributions of the External Quality Monitoring in the city of Rio de Janeiro and to analyze the performance of the main providers of cervical cytopathology in this city from September 2013 to March 2017, here referred to as "Alpha laboratory" and "Beta laboratory."  Observational, cross-sectional, retrospective study using information from the Cervical Cancer Control Information System (SISCOLO, in the Portuguese acronym), municipal coordination module, External Quality Monitoring report. The proportions of false positives, false negatives, unsatisfactory samples and rejected samples were estimated. The agreement among the observers was analyzed through the Kappa index and the reduction of disagreements in the period for each laboratory studied, comparing the results of each cycle.  A total of 19,158 examinations were selected, of which 19,130 (99.85%) were monitored, 16.649 (87, 03%) were reviewed by the External Quality Monitoring Unit, 2,481 (12,97%) were rejected and 441 (2,65%) were considered unsatisfactory. The "Beta laboratory" presented excellent concordance in all cycles; the "Alpha laboratory" had good concordance in the first two cycles (K = 0.76 and 0.79), becoming excellent in the following four cycles. The average Kappa index was 0.85, with median of 0.86. The percentage of diagnostic disagreement was 6.63% of the reviewed exams, of which 5.38% required a change of conduct CONCLUSION:  External Quality Monitoring is an exercise in diagnostic improvement, and its implementation was fundamental to ensure the reliability of the cytopathological exams in the city of Rio de Janeiro. Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil.

  18. Conductive Polymeric Binder for Lithium-Ion Battery Anode

    NASA Astrophysics Data System (ADS)

    Gao, Tianxiang

    Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle is performed under current of 0.1 C.

  19. Development of a new assessment tool for cervical myelopathy using hand-tracking sensor: Part 1: validity and reliability.

    PubMed

    Alagha, M Abdulhadi; Alagha, Mahmoud A; Dunstan, Eleanor; Sperwer, Olaf; Timmins, Kate A; Boszczyk, Bronek M

    2017-04-01

    To assess the reliability and validity of a hand motion sensor, Leap Motion Controller (LMC), in the 15-s hand grip-and-release test, as compared against human inspection of an external digital camera recording. Fifty healthy participants were asked to fully grip-and-release their dominant hand as rapidly as possible for two trials with a 10-min rest in-between, while wearing a non-metal wrist splint. Each test lasted for 15 s, and a digital camera was used to film the anterolateral side of the hand on the first test. Three assessors counted the frequency of grip-and-release (G-R) cycles independently and in a blinded fashion. The average mean of the three was compared with that measured by LMC using the Bland-Altman method. Test-retest reliability was examined by comparing the two 15-s tests. The mean number of G-R cycles recorded was: 47.8 ± 6.4 (test 1, video observer); 47.7 ± 6.5 (test 1, LMC); and 50.2 ± 6.5 (test 2, LMC). Bland-Altman indicated good agreement, with a low bias (0.15 cycles) and narrow limits of agreement. The ICC showed high inter-rater agreement and the coefficient of repeatability for the number of cycles was ±5.393, with a mean bias of 3.63. LMC appears to be valid and reliable in the 15-s grip-and-release test. This serves as a first step towards the development of an objective myelopathy assessment device and platform for the assessment of neuromotor hand function in general. Further assessment in a clinical setting and to gauge healthy benchmark values is warranted.

  20. Compensation for electrical converter nonlinearities

    DOEpatents

    Perisic, Milun; Ransom, Ray M; Kajouke, Lateef A

    2013-11-19

    Systems and methods are provided for delivering energy from an input interface to an output interface. An electrical system includes an input interface, an output interface, an energy conversion module between the input interface and the output interface, an inductive element between the input interface and the energy conversion module, and a control module. The control module determines a compensated duty cycle control value for operating the energy conversion module to produce a desired voltage at the output interface and operates the energy conversion module to deliver energy to the output interface with a duty cycle that is influenced by the compensated duty cycle control value. The compensated duty cycle control value is influenced by the current through the inductive element and accounts for voltage across the switching elements of the energy conversion module.

  1. Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors.

    PubMed

    Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong

    2016-12-07

    As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo 2 S 4 @NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm -2 at the current density of 1 mA cm -2 and excellent cycling stability (about 89% retention after 10,000 cycles). Moreover, an all-solid-state asymmetric supercapacitor (ASC) device has been assembled with NiCo 2 S 4 @NiO NWAs as the positive electrode and active carbon (AC) as the negative electrode, delivering a high energy density of 30.38 W h kg -1 at 0.288 KW kg -1 and good cycling stability (about 109% retention after 5000 cycles). The results show that NiCo 2 S 4 @NiO NWAs are promising for high-performance supercapacitors with stable cycling based on the unique core-shell structure and well-designed combinations.

  2. Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong

    2016-12-01

    As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo2S4@NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm-2 at the current density of 1 mA cm-2 and excellent cycling stability (about 89% retention after 10,000 cycles). Moreover, an all-solid-state asymmetric supercapacitor (ASC) device has been assembled with NiCo2S4@NiO NWAs as the positive electrode and active carbon (AC) as the negative electrode, delivering a high energy density of 30.38 W h kg-1 at 0.288 KW kg-1 and good cycling stability (about 109% retention after 5000 cycles). The results show that NiCo2S4@NiO NWAs are promising for high-performance supercapacitors with stable cycling based on the unique core-shell structure and well-designed combinations.

  3. Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors

    PubMed Central

    Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong

    2016-01-01

    As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo2S4@NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm−2 at the current density of 1 mA cm−2 and excellent cycling stability (about 89% retention after 10,000 cycles). Moreover, an all-solid-state asymmetric supercapacitor (ASC) device has been assembled with NiCo2S4@NiO NWAs as the positive electrode and active carbon (AC) as the negative electrode, delivering a high energy density of 30.38 W h kg−1 at 0.288 KW kg−1 and good cycling stability (about 109% retention after 5000 cycles). The results show that NiCo2S4@NiO NWAs are promising for high-performance supercapacitors with stable cycling based on the unique core-shell structure and well-designed combinations. PMID:27924927

  4. The reliability and validity of fatigue measures during short-duration maximal-intensity intermittent cycling.

    PubMed

    Glaister, Mark; Stone, Michael H; Stewart, Andrew M; Hughes, Michael; Moir, Gavin L

    2004-08-01

    The purpose of the present study was to assess the reliability and validity of fatigue measures, as derived from 4 separate formulae, during tests of repeat sprint ability. On separate days over a 3-week period, 2 groups of 7 recreationally active men completed 6 trials of 1 of 2 maximal (20 x 5 seconds) intermittent cycling tests with contrasting recovery periods (10 or 30 seconds). All trials were conducted on a friction-braked cycle ergometer, and fatigue scores were derived from measures of mean power output for each sprint. Apart from formula 1, which calculated fatigue from the percentage difference in mean power output between the first and last sprint, all remaining formulae produced fatigue scores that showed a reasonably good level of test-retest reliability in both intermittent test protocols (intraclass correlation range: 0.78-0.86; 95% likely range of true values: 0.54-0.97). Although between-protocol differences in the magnitude of the fatigue scores suggested good construct validity, within-protocol differences highlighted limitations with each formula. Overall, the results support the use of the percentage decrement score as the most valid and reliable measure of fatigue during brief maximal intermittent work.

  5. Characterization of the Body-to-Body Propagation Channel for Subjects during Sports Activities.

    PubMed

    Mohamed, Marshed; Cheffena, Michael; Moldsvor, Arild

    2018-02-18

    Body-to-body wireless networks (BBWNs) have great potential to find applications in team sports activities among others. However, successful design of such systems requires great understanding of the communication channel as the movement of the body components causes time-varying shadowing and fading effects. In this study, we present results of the measurement campaign of BBWN during running and cycling activities. Among others, the results indicated the presence of good and bad states with each state following a specific distribution for the considered propagation scenarios. This motivated the development of two-state semi-Markov model, for simulation of the communication channels. The simulation model was validated using the available measurement data in terms of first and second order statistics and have shown good agreement. The first order statistics obtained from the simulation model as well as the measured results were then used to analyze the performance of the BBWNs channels under running and cycling activities in terms of capacity and outage probability. Cycling channels showed better performance than running, having higher channel capacity and lower outage probability, regardless of the speed of the subjects involved in the measurement campaign.

  6. A Completed Cycle Audit of Psychiatric Discharge Summaries.

    PubMed

    Najim, Hellme; Jaffar, Khalid

    2015-09-01

    Patients discharge summaries are important as they record a vital miles stone in patients' care. Their accurate record improves patients' care and clarifies communication between different health professionals. 60 Discharge summaries from different consultant psychiatrists' case load were audited. The results were analysed and presented with recommendations to improve them a format was suggested. A reaudit of 62 discharge summaries was carried out by the same team after three years in the same catchment area but the practice has changed to inpatient and community. Improvement in most of the areas audited occur in the reaudit which indicates the usefulness of audit in improving clinical practice which a pivotal part of clinical governance. This completed audit cycle has proven that clinical practice has been reviewed and methods of improving it have been implemented. It has been noted that more items were reviewed and added to the second cycle which should be condoned. Discharge summaries are important clinical documents in secondary and primary care communications. They are helpful for secondary care staff as they good references for people in out of hours services and Accident and Emergency. Good quality discharge summaries improve patients care and make it easy to manage clinical risk.

  7. Association of solar flares with coronal mass ejections accompanied by Deca-Hectometric type II radio burst for two solar cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Kharayat, Hema; Prasad, Lalan; Pant, Sumit

    2018-05-01

    The aim of present study is to find the association of solar flares with coronal mass ejections (CMEs) accompanied by Deca-Hectometric (DH) type II radio burst for the period 1997-2014 (solar cycle 23 and ascending phase of solar cycle 24). We have used a statistical analysis and found that 10-20∘ latitudinal belt of northern region and 80-90∘ longitudinal belts of western region of the sun are more effective for flare-CME accompanied by DH type II radio burst events. M-class flares (52%) are in good association with the CMEs accompanied by DH type II radio burst. Further, we have calculated the flare position and found that most frequent flare site is at the center of the CME span. However, the occurrence probability of all flares is maximum outside the CME span. X-class flare associated CMEs have maximum speed than that of M, C, and B-class flare associated CMEs. We have also found a good correlation between flare position and central position angle of CMEs accompanied by DH type II radio burst.

  8. Preparation, optimization and property of PVA-HA/PAA composite hydrogel.

    PubMed

    Chen, Kai; Liu, Jinlong; Yang, Xuehui; Zhang, Dekun

    2017-09-01

    PVA-HA/PAA composite hydrogel is prepared by freezing-thawing, PEG dehydration and annealing method. Orthogonal design method is used to choose the optimization combination. Results showed that HA and PVA have the maximum effect on water content. PVA and freezing-thawing cycles have the maximum effect on creep resistance and stress relaxation rate of hydrogel. Annealing temperature and freezing-thawing cycles have the maximum effect on compressive elastic modulus of hydrogel. Comparing with the water content and mechanical properties of 16 kinds of combination, PVA-HA/PAA composite hydrogel with freezing-thawing cycles of 3, annealing temperature of 120°C, PVA of 16%, HA of 2%, PAA of 4% has the optimization comprehensive properties. PVA-HA/PAA composite hydrogel has a porous network structure. There are some interactions between PVA, HA and PAA in hydrogel and the properties of hydrogel are strengthened. The annealing treatment improves the crystalline and crosslinking of hydrogel. Therefore, the annealing PVA-HA/PAA composite hydrogel has good thermostability, strength and mechanical properties. It also has good lubrication property and its friction coefficient is relative low. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Hard Carbon Originated from Polyvinyl Chloride Nanofibers As High-Performance Anode Material for Na-Ion Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Ying; Wang, Zhen; Wu, Chuan

    2015-02-27

    Two types of hard carbon materials were synthesized through direct pyrolysis of commercial polyvinyl chloride (PVC) particles and pyrolysis of PVC nanofibers at 600-800 degrees C, respectively, where the nanofibers were prepared by an electrospinning PVC precursors method. These as-prepared hard carbon samples were used as anode materials for Na-ion batteries. The hard carbon obtained from PVC nanofibers achieved a high reversible capacity of 271 mAh/g and an initial Coulombic efficiency of 69.9%, which were much superior to the one from commercial PVC, namely, a reversible capacity of 206 mAh/g and an initial Coulombic efficiency of 60.9%. In addition, themore » hard carbon originated from the PVC nanofibers exhibited good cycling stability and rate performance: the initial discharge capacities were 389, 228, 194, 178, 147 mAh/g at the current density of 12, 24, 60, 120, and 240 mA/g, respectively, retaining 211 mAh/g after 150 cycles. Such excellent cycle performance, high reversible capacity, and good rate capability enabled this hard carbon to be a promising candidate as anode material for Na-ion battery application.« less

  10. Core-Shell Coating Silicon Anode Interfaces with Coordination Complex for Stable Lithium-Ion Batteries.

    PubMed

    Zhou, Jinqiu; Qian, Tao; Wang, Mengfan; Xu, Na; Zhang, Qi; Li, Qun; Yan, Chenglin

    2016-03-02

    In situ core-shell coating was used to improve the electrochemical performance of Si-based anodes with polypyrrole-Fe coordination complex. The vast functional groups in the organometallic coordination complex easily formed hydrogen bonds when in situ modifying commercial Si nanoparticles. The incorporation of polypyrrole-Fe resulted in the conformal conductive coating surrounding each Si nanoparticle, not only providing good electrical connection to the particles but also promoting the formation of a stable solid-electrolyte-interface layer on the Si electrode surface, enhancing the cycling properties. As an anode material for Li-ion batteries, modified silicon powders exhibited high reversible capacity (3567 mAh/g at 0.3 A/g), good rate property (549.12 mAh/g at 12 A/g), and excellent cycling performance (reversible capacity of 1500 mAh/g after 800 cycles at 1.2 A/g). The constructed novel concept of core-shell coating Si particles presented a promising route for facile and large-scale production of Si-based anodes for extremely durable Li-ion batteries, which provided a wide range of applications in the field of energy storage of the renewable energy derived from the solar energy, hydropower, tidal energy, and geothermal heat.

  11. Cure Cycle Optimization of Rapidly Cured Out-Of-Autoclave Composites.

    PubMed

    Dong, Anqi; Zhao, Yan; Zhao, Xinqing; Yu, Qiyong

    2018-03-13

    Out-of-autoclave prepreg typically needs a long cure cycle to guarantee good properties as the result of low processing pressure applied. It is essential to reduce the manufacturing time, achieve real cost reduction, and take full advantage of out-of-autoclave process. The focus of this paper is to reduce the cure cycle time and production cost while maintaining high laminate quality. A rapidly cured out-of-autoclave resin and relative prepreg were independently developed. To determine a suitable rapid cure procedure for the developed prepreg, the effect of heating rate, initial cure temperature, dwelling time, and post-cure time on the final laminate quality were evaluated and the factors were then optimized. As a result, a rapid cure procedure was determined. The results showed that the resin infiltration could be completed at the end of the initial cure stage and no obvious void could be seen in the laminate at this time. The laminate could achieve good internal quality using the optimized cure procedure. The mechanical test results showed that the laminates had a fiber volume fraction of 59-60% with a final glass transition temperature of 205 °C and excellent mechanical strength especially the flexural properties.

  12. Cure Cycle Optimization of Rapidly Cured Out-Of-Autoclave Composites

    PubMed Central

    Dong, Anqi; Zhao, Yan; Zhao, Xinqing; Yu, Qiyong

    2018-01-01

    Out-of-autoclave prepreg typically needs a long cure cycle to guarantee good properties as the result of low processing pressure applied. It is essential to reduce the manufacturing time, achieve real cost reduction, and take full advantage of out-of-autoclave process. The focus of this paper is to reduce the cure cycle time and production cost while maintaining high laminate quality. A rapidly cured out-of-autoclave resin and relative prepreg were independently developed. To determine a suitable rapid cure procedure for the developed prepreg, the effect of heating rate, initial cure temperature, dwelling time, and post-cure time on the final laminate quality were evaluated and the factors were then optimized. As a result, a rapid cure procedure was determined. The results showed that the resin infiltration could be completed at the end of the initial cure stage and no obvious void could be seen in the laminate at this time. The laminate could achieve good internal quality using the optimized cure procedure. The mechanical test results showed that the laminates had a fiber volume fraction of 59–60% with a final glass transition temperature of 205 °C and excellent mechanical strength especially the flexural properties. PMID:29534048

  13. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery.

    PubMed

    Bai, Ying; Wang, Zhen; Wu, Chuan; Xu, Rui; Wu, Feng; Liu, Yuanchang; Li, Hui; Li, Yu; Lu, Jun; Amine, Khalil

    2015-03-11

    Two types of hard carbon materials were synthesized through direct pyrolysis of commercial polyvinyl chloride (PVC) particles and pyrolysis of PVC nanofibers at 600-800 °C, respectively, where the nanofibers were prepared by an electrospinning PVC precursors method. These as-prepared hard carbon samples were used as anode materials for Na-ion batteries. The hard carbon obtained from PVC nanofibers achieved a high reversible capacity of 271 mAh/g and an initial Coulombic efficiency of 69.9%, which were much superior to the one from commercial PVC, namely, a reversible capacity of 206 mAh/g and an initial Coulombic efficiency of 60.9%. In addition, the hard carbon originated from the PVC nanofibers exhibited good cycling stability and rate performance: the initial discharge capacities were 389, 228, 194, 178, 147 mAh/g at the current density of 12, 24, 60, 120, and 240 mA/g, respectively, retaining 211 mAh/g after 150 cycles. Such excellent cycle performance, high reversible capacity, and good rate capability enabled this hard carbon to be a promising candidate as anode material for Na-ion battery application.

  14. A knittable fiber-shaped supercapacitor based on natural cotton thread for wearable electronics

    NASA Astrophysics Data System (ADS)

    Zhou, Qianlong; Jia, Chunyang; Ye, Xingke; Tang, Zhonghua; Wan, Zhongquan

    2016-09-01

    At present, the topic of building high-performance, miniaturized and mechanically flexible energy storage modules which can be directly integrated into textile based wearable electronics is a hotspot in the wearable technology field. In this paper, we reported a highly flexible fiber-shaped electrode fabricated through a one-step convenient hydrothermal process. The prepared graphene hydrogels/multi-walled carbon nanotubes-cotton thread derived from natural cotton thread is electrochemically active and mechanically strong. Fiber-shaped supercapacitor based on the prepared fiber electrodes and polyvinyl alcohol-H3PO4 gel electrolyte exhibits good capacitive performance (97.73 μF cm-1 at scan rate of 2 mV s-1), long cycle life (95.51% capacitance retention after 8000 charge-discharge cycles) and considerable stability (90.75% capacitance retention after 500 continuous bending cycles). Due to its good mechanical and electrochemical properties, the graphene hydrogels/multi-walled carbon nanotubes-cotton thread based all-solid fiber-shaped supercapacitor can be directly knitted into fabrics and maintain its original capacitive performance. Such a low-cost textile thread based versatile energy storage device may hold great potential for future wearable electronics applications.

  15. Binder-free flexible LiMn2O4/carbon nanotube network as high power cathode for rechargeable hybrid aqueous battery

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao; Wu, Xianwen; Doan, The Nam Long; Tian, Ye; Zhao, Hongbin; Chen, P.

    2016-09-01

    Highly flexible LiMn2O4/carbon nanotube (CNT) electrodes are developed and used as a high power cathode for the Rechargeable Hybrid Aqueous Battery (ReHAB). LiMn2O4 particles are entangled into CNT networks, forming a self-supported free-standing hybrid films. Such hybrid films can be used as electrodes of ARLB without using any additional binders. The binder-free LiMn2O4/CNT electrode exhibits good mechanical properties, high conductivity, and effective charge transport. High-rate capability and high cycling stability are obtained. Typically, the LiMn2O4/CNT electrode achieves a discharge capacity of 72 mAh g-1 at the large-current of 20 C (1 C = 120 mAh g-1), and exhibits good cycling performance and high reversibility: Coulombic efficiency of almost 100% over 300 charge-discharge cycles at 4 C. By reducing the weight, and improving the large-current rate capability simultaneously, the LiMn2O4/CNT electrode can highly enhance the energy/power density of ARLB and hold potential to be used in ultrathin, lightweight electronic devices.

  16. Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries

    NASA Astrophysics Data System (ADS)

    Raghavan, Prasanth; Manuel, James; Zhao, Xiaohui; Kim, Dul-Sun; Ahn, Jou-Hyeon; Nah, Changwoon

    Electrospun membranes of polyacrylonitrile are prepared, and the electrospinning parameters are optimized to get fibrous membranes with uniform bead-free morphology. The polymer solution of 16 wt.% in N, N-dimethylformamide at an applied voltage of 20 kV results in the nanofibrous membrane with average fiber diameter of 350 nm and narrow fiber diameter distribution. Gel polymer electrolytes are prepared by activating the nonwoven membranes with different liquid electrolytes. The nanometer level fiber diameter and fully interconnected pore structure of the host polymer membranes facilitate easy penetration of the liquid electrolyte. The gel polymer electrolytes show high electrolyte uptake (>390%) and high ionic conductivity (>2 × 10 -3 S cm -1). The cell fabricated with the gel polymer electrolytes shows good interfacial stability and oxidation stability >4.7 V. Prototype coin cells with gel polymer electrolytes based on a membrane activated with 1 M LiPF 6 in ethylene carbonate/dimethyl carbonate or propylene carbonate are evaluated for discharge capacity and cycle property in Li/LiFePO 4 cells at room temperature. The cells show remarkably good cycle performance with high initial discharge properties and low capacity fade under continuous cycling.

  17. Corrosion management of PbCaSn alloys in lead-acid batteries: Effect of composition, metallographic state and voltage conditions

    NASA Astrophysics Data System (ADS)

    Rocca, E.; Bourguignon, G.; Steinmetz, J.

    Since several years, lead calcium-based alloys have supplanted lead antimony alloys as structural materials for positive grids of lead-acid batteries in many applications, especially for VRLA batteries. Nevertheless, the positive grid corrosion probably remains one of the causes of rapid and premature failure of lead-acid batteries. The objective of the present study is to present a comprehensive study of the PbCaSn alloy corrosion in function of their composition, metallographic state and voltage conditions (discharge, overcharge, floating and cycling conditions). For that, four alloys PbCaSn x wt.% (x = 0, 0.6, 1.2, 2) were synthesized in two extreme metallurgical conditions and tested by four electrochemical lab-tests. Weight loss measurements and analyses by SEM, EPMA and XRD allowed to monitor the oxidation tests and to characterize the corrosion layers after the oxidation tests. The results show that the tin level in PbCaSn alloys should be adapted on the calcium concentration and the rate of overageing process, to maintain the beneficial effect of tin in service during the battery lifetime. According to our results, a Sn/Ca ratio of 2.5 gives good corrosion resistance in all potential conditions. Nevertheless, when tin level is too high, the corrosion layers can peel off from the metal, which involves a lack of cohesion between the collector and the paste, in cycling conditions. The anodic potential undergone by the metal is a second main factor determining the corrosion, especially the floating conditions and the frequency of deep discharge and overcharge. Thus the adjustment of the charge controller parameters of a battery system is a necessity to increase the lifetime of the grids and maintain a good rechargeability.

  18. Strong hydrological control on nutrient cycling of subtropical rainforests

    NASA Astrophysics Data System (ADS)

    Lin, T. C.; Chang, C. T.; Huang, J. C.; Wang, L.; Lin, N. H.

    2016-12-01

    Forest nutrient cycling is strongly controlled by both biological and hydrological factors. However, based on a close examination of earlier reports, we highlight the role of hydrological control on nutrient cycling at a global scale and is more important at humid tropical and subtropical forests. we analyzed the nutrient budget of precipitation input and stream water output from 1994 to 2013 in a subtropical forest in Taiwan and conducted a data synthesis using results from 32 forests across the globe. The results revealed that monthly input and output of ions were positively correlated with water quantity, indicating hydrological control on nutrient cycling. Hydrological control is also evident from the greater ions export via stream water during the warm and wet growing season. The synthesis also illustrates that strong hydrological control leads to lower nitrogen retention and greater net loss of base cations in humid regions, particularly in the humid tropical and subtropical forests. Our result is of great significance in an era of global climate change because climate change could directly affect ecosystem nutrient cycling particularly in the tropics through changes in patterns of precipitation regime.

  19. Freight tricycle operations in New York City.

    DOT National Transportation Integrated Search

    2014-10-01

    As cities become more congested and increasingly focused on sustainability, cargo cycles offer a potential alternative to motorized vehicles for local and : last : - : mile goods delivery. However, few studies have examined this mode in the North Ame...

  20. Highly efficient growth of vertically aligned carbon nanotubes on Fe-Ni based metal alloy foils for supercapacitors

    NASA Astrophysics Data System (ADS)

    Amalina Raja Seman, Raja Noor; Asyadi Azam, Mohd; Ambri Mohamed, Mohd

    2016-12-01

    Supercapacitors are highly promising energy devices with superior charge storage performance and a long lifecycle. Construction of the supercapacitor cell, especially electrode fabrication, is critical to ensure good performance in applications. This work demonstrates direct growth of vertically aligned carbon nanotubes (CNTs) on Fe-Ni based metal alloy foils, namely SUS 310S, Inconel 600 and YEF 50, and their use in symmetric vertically aligned CNT supercapacitor electrodes. Alumina and cobalt thin film catalysts were deposited onto the foils, and then CNT growth was performed using alcohol catalytic chemical vapour deposition. By this method, vertically aligned CNTs were successfully grown and used directly as a binder-free supercapacitor electrode to deliver excellent electrochemical performance. The device showed relatively good specific capacitance, a superior rate capability and excellent cycle stability, maintaining about 96% capacitance up to 1000 cycles.

  1. Selective removal of mercury from aqueous solutions using thiolated cross-linked polyethylenimine

    NASA Astrophysics Data System (ADS)

    Saad, Dalia M.; Cukrowska, Ewa M.; Tutu, Hlanganani

    2013-06-01

    A successful approach to develop an insoluble form of polyethylenimine with a thiol-based functional group for selective removal of Hg(II) from aqueous solutions is reported. The selectivity of the modified polymer for Hg(II) as well as its ability to be regenerated for re-use has been studied. The synthesised polymer exhibited high selectivity for Hg(II) with high removal efficiency of up to 97 %, even in the presence of competing ions. The Freundlich isotherm was found to best fit and describe the experimental data. The pseudo-second-order equation explains the adsorption kinetics most effectively implying chemisorption. The thermodynamic study of the adsorption process revealed high activation energies >41 kJ mol-1, further confirming chemisorption as the mechanism of interaction between mercury ions and the polymer surface. The polymer exhibited good potential for re-use after many cycles of regeneration, giving good removal efficiency up to the fifth cycle.

  2. Estimation of wear in total hip replacement using a ten station hip simulator.

    PubMed

    Brummitt, K; Hardaker, C S

    1996-01-01

    The results of hip simulator tests on a total of 16 total hip joints, all of them 22.25 mm Charnley designs, are presented. Wear at up to 6.75 million cycles was assessed by using a coordinate measuring machine. The results gave good agreement with clinical estimates of wear rate on the same design of joint replacement from a number of sources. Good agreement was also obtained when comparison was made with the published results from more sophisticated simulators. The major source of variation in the results was found to occur in the first million cycles where creep predominates. The results of this study support the use of this type of simplified simulator for estimating wear in a total hip prosthesis. The capability to test a significant number of joints simultaneously may make this mechanism preferable to more complex machines in many cases.

  3. High performance porous Si@C anodes synthesized by low temperature aluminothermic reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Kuber; Zheng, Jianming; Patel, Rajankumar

    A low temperature (210°C) aluminothermic reduction reaction process has been developed to synthesis porous silicon (Si) as an anode for Li ion battery applications. An eutectic mixture of AlCl3 and ZnCl2 is used as the mediator to reduce the reaction temperature. With carbon pre-coated on the porous SiO2 precursor, porous Si@C core shell structured anodes could be obtained with structure and morphology similar to that of the porous precursor. In addition, carbon coated porous Si also exhibits superior cyclic stability, higher rate performance, and higher coulombic efficiency. The porous Si anode demonstrates a high specific capacity of ~2100 mAh/g atmore » the current density of 1.2 A/g and has a good cycling stability with ~76% capacity retention over 250 cycles. Therefore, it will be a good candidate for anode used in high energy density Li-ion batteries.« less

  4. Malaria vaccines and the new malaria agenda.

    PubMed

    Greenwood, B M; Targett, G A T

    2011-11-01

    The development of an effective malaria vaccine has taken many decades, but there is now a good chance that the first malaria vaccine will be licensed within the next few years. However, this vaccine (RTS,S) will not be fully effective, and more efficacious, second-generation vaccines will be needed. Good progress is being made in the development of potential vaccines directed at each of the three main stages of the parasite's life cycle, with a variety of different approaches, but many challenges remain, e.g. overcoming the problem of polymorphism in many key parasite antigens. It is likely vaccines that are effective enough to block transmission, and thus contribute to increasing drives towards malaria elimination, will need to contain antigens from different stages of the parasite's life cycle. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  5. In Search of a Good Night's Sleep.

    PubMed

    Leahy, Laura G

    2017-10-01

    A good night's sleep is essential to overall physical, cognitive, and emotional well-being. Sleep deprivation, whether general or related to time changes (e.g., daylight saving time), contributes to decreased cognition, impaired memory, poor coordination, mood fluctuations, increased risk of heart disease and diabetes, and weight gain, among others. The sleep cycle is defined by five stages and two distinct parts-rapid eye movement (REM) and non-REM sleep-that work to promote not only the quantity of sleep but also the quality of sleep, which impacts overall health. Each stage of sleep is influenced by various neurochemical actions among the brain regions. The neurochemistry and neuropath-ways related to the sleep/wake cycle as well as the mechanisms of action of sleep-inducing and wake-promoting medications are explored. [Journal of Psychosocial Nursing and Mental Health Services, 55(10), 19-26.]. Copyright 2017, SLACK Incorporated.

  6. Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO(4)-3D graphene hybrid electrodes.

    PubMed

    Yu, Xinzhi; Lu, Bingan; Xu, Zhi

    2014-02-01

    Nanohoneycomb-like strongly coupled CoMoO4 -3D graphene hybird electrodes are synthesized for supercapacitors which exhibit excellent specific capacitance and superior long-term cycle stability. The supercapacitor device can power a 5 mm-diameter LED efficiently for more than 3 min with a charging time of only 2 s, and shows high energy densities and good cycle stability. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Side-welded fast response sheathed thermocouple

    DOEpatents

    Carr, K.R.

    A method of fabricating the measuring junction of a grounded-junction sheathed thermocouple to obtain fast time response and good thermal cycling performance is provided. Slots are tooled or machined into the sheath wall at the measuring junction, the thermocouple wires are laser-welded into the slots. A thin metal closure cap is then laser-welded over the end of the sheath. Compared to a conventional grounded-junction thermocouple, the response time is 4 to 5 times faster and the thermal shock and cycling capabilities are substantially improved.

  8. Side-welded fast response sheathed thermocouple

    DOEpatents

    Carr, Kenneth R.

    1981-01-01

    A method of fabricating the measuring junction of a grounded-junction sheathed thermocouple to obtain fast time response and good thermal cycling performance is provided. Slots are tooled or machined into the sheath wall at the measuring junction, the thermocouple wires are laser-welded into the slots. A thin metal closure cap is then laser-welded over the end of the sheath. Compared to a conventional grounded-junction thermocouple, the response time is 4-5 times faster and the thermal shock and cycling capabilities are substantially improved.

  9. 20V, 40 Ah Lithium Ion Polymer Battery for the Spacesuit

    NASA Technical Reports Server (NTRS)

    Darcy, Eric; Wilburn, Monique; Hall, Dan; Roth, Peter; Das Gupta, Sankar; Jacobs, Jim; Bhola, Rakesh; Milicic, Gordan; Vandemeer, Dave

    2006-01-01

    Objective: Consider a new battery design for EMU. Results: a) Electrovaya s aerospace cell production line is improving, but must further improve to achieve acceptable reliability; b) Completed functional, vibration, and thermal cycling of LIB; c) So far, electrical safety tests have produced good results; d) Completed functional, vibration, thermal cycling, power quality and EMI of LIB Charger; e) Completed CDR on 9/23/04; and f) Manufacturing Readiness Review for flight cell/battery production scheduled for Dec 04.

  10. Impact of cancer and chemotherapy on autonomic nervous system function and cardiovascular reactivity in young adults with cancer: a case-controlled feasibility study.

    PubMed

    Adams, Scott C; Schondorf, Ronald; Benoit, Julie; Kilgour, Robert D

    2015-05-18

    Preliminary evidence suggests cancer- and chemotherapy-related autonomic nervous system (ANS) dysfunction may contribute to the increased cardiovascular (CV) morbidity- and mortality-risks in cancer survivors. However, the reliability of these findings may have been jeopardized by inconsistent participant screening and assessment methods. Therefore, good laboratory practices must be established before the presence and nature of cancer-related autonomic dysfunction can be characterized. The purpose of this study was to assess the feasibility of conducting concurrent ANS and cardiovascular evaluations in young adult cancer patients, according to the following criteria: i) identifying methodological pitfalls and proposing good laboratory practice criteria for ANS testing in cancer, and ii) providing initial physiologic evidence of autonomic perturbations in cancer patients using the composite autonomic scoring scale (CASS). Thirteen patients (mixed diagnoses) were assessed immediately before and after 4 cycles of chemotherapy. Their results were compared to 12 sex- and age-matched controls. ANS function was assessed using standardized tests of resting CV (tilt-table, respiratory sinus arrhythmia and Valsalva maneuver) and sudomotor (quantitative sudomotor axon reflex test) reactivity. Cardiovascular reactivity during exercise was assessed using a modified Astrand-Ryhming cycle ergometer protocol. Our feasibility criteria addressed: i) recruitment potential, ii) retention rates, iii) pre-chemotherapy assessment potential, iv) test performance/tolerability, and v) identification and minimizing the influence of potentially confounding medication. T-tests and repeated measures ANOVAs were used to assess between- and within-group differences at baseline and follow-up. The overall success rate in achieving our feasibility criteria was 98.4 %. According to the CASS, there was evidence of ANS impairment at baseline in 30.8 % of patients, which persisted in 18.2 % of patients at follow-up, compared to 0 % of controls at baseline or follow-up. Results from our feasibility assessment suggest that the investigation of ANS function in young adult cancer patients undergoing chemotherapy is possible. To the best of our knowledge, this is the first study to report CASS-based evidence of ANS impairment and sudomotor dysfunction in any cancer population. Moreover, we provide evidence of cancer- and chemotherapy-related parasympathetic dysfunction - as a possible contributor to the pathogenesis of CV disease in cancer survivors.

  11. Determination of urinary levels of leukotriene B(4) using ad highly specific and sensitive methodology based on automatic MEPS combined with UHPLC-PDA analysis.

    PubMed

    Perestrelo, Rosa; Silva, Catarina L; Câmara, José S

    2015-11-01

    Leukotriene B4 (LTB4) is a potent mediator of inflammation and plays a key function in the pathophysiology of chronic asthma. Detectable urinary levels of LTB4, arises from the activation of leukotriene pathways. In this study an ultra-fast, selective and sensitive analytical method based on semi-automatic microextraction by packed sorbents (MEPS) technique, using a new digitally controlled syringe (eVol®) combined with ultra-high pressure liquid chromatography (UHPLC), is proposed for the measurement of urinary LTB4 (U-LTB4) levels in a group of asthmatic patients (APs) and healthy controls (CTRL). Important parameters affecting MEPS performance, namely sorbent type, number of extraction cycles (extract-discard) and elution volume, were evaluated. The optimal experimental conditions among those investigated for the quantification of U-LTB4 in urine samples were as follows: porous graphitic carbon sorbent (PGC), 10 extractions cycle (10×250 μL of sample) and LTB4 elution with 100 μL of acetonitrile. The UHPLC optimum conditions resulted in a mobile phase consisting of 95% (v/v) of acid aqueous solution (v/v), and acetonitrile 5% (v/v); flow rate of 500 µL/min, and a column temperature of 37±0.1 °C. Under optimized conditions the proposed method exhibit good selectivity and sensitivity LOD (0.37 ng/mL) and LOQ (1.22 ng/mL). The recovery ranging from 86.4 to 101.1% for LTB4, with relative standard deviations (% RSD) no larger than 5%. In addition, the method also afforded good results in terms of linearity (r(2)>0.995) within the established concentration range, with a residual deviation for each calibration point below 6%, and intra- and inter-day repeatability in urine samples with RSD values lower than 4 and 5%, respectively. The application of the method to urine samples revealed a tendency towards the increased urinary LTB4 levels in APs (5.42±0.17 ng/mL) when compared to those of CTRL group (from ND to 1.9 ng/mL). Urinary measurement of LTB4 may be an interesting and non-invasive option to assess control of asthma. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Randomized controlled trial of the effect of endometrial injury on implantation and clinical pregnancy rates during the first ICSI cycle.

    PubMed

    Maged, Ahmed M; Rashwan, Hamsa; AbdelAziz, Suzy; Ramadan, Wafaa; Mostafa, Walaa A I; Metwally, Ahmed A; Katta, Maha

    2018-02-01

    To assess whether endometrial injury in the cycle preceding controlled ovarian hyperstimulation during intracytoplasmic sperm injection (ICSI) improves the implantation and pregnancy rates. Between January 1, 2016, and March 31, 2017, a randomized controlled trial was conducted at a center in Egypt among 300 women who met inclusion criteria (first ICSI cycle, aged <40 years, day-3 follicle-stimulating hormone <10 IU/L, normal serum prolactin, no uterine cavity abnormality). The women were randomly allocated using a web-based system to undergo endometrial scratch in the cycle preceding controlled ovarian hyperstimulation (n=150) or to a control group (n=150). Only data analysts were masked to group assignment. The primary outcomes were the implantation and clinical pregnancy rates at 14 days and 4 weeks after embryo transfer, respectively. Analyses were by intention to treat. The implantation rate was significantly higher in the endometrial scratch group (41.3% [90/218]) than in the control group (30.0% [63/210]; P<0.001). The clinical pregnancy rate was also significantly higher in the endometrial scratch group (44.2% [61/138]) than in the control group (30.4% [41/135]; P<0.001). Endometrial injury in the cycle preceding the stimulation cycle improved implantation and pregnancy rates during ICSI. CLINICALTRIALS.GOV: NCT02660125. © 2017 International Federation of Gynecology and Obstetrics.

  13. 40 CFR 1033.520 - Alternative ramped modal cycles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Following the completion of the third test phase of the applicable ramped modal cycle, conduct the post... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.520 Alternative ramped modal... locomotive notch settings. Ramped modal cycles combine multiple test modes of a discrete-mode steady-state...

  14. Enhancing TSM&O strategies through life cycle benefit/cost analysis : life cycle benefit/cost analysis & life cycle assessment of adaptive traffic control systems and ramp metering systems.

    DOT National Transportation Integrated Search

    2015-05-01

    The research team developed a comprehensive Benefit/Cost (B/C) analysis framework to evaluate existing and anticipated : intelligent transportation system (ITS) strategies, particularly, adaptive traffic control systems and ramp metering systems, : i...

  15. Carrier-envelope phase control of carrier-wave Rabi flopping in asymmetric semiparabolic quantum well.

    PubMed

    Zhang, Chaojin; Song, Xiaohong; Yang, Weifeng; Xu, Zhizhan

    2008-02-04

    We investigate the carrier-wave Rabi flopping effects in an asymmetric semiparabolic semiconductor quantum well (QW) with few-cycle pulse. It is found that higher spectral components of few-cycle ultrashort pulses in the semiparabolic QW depend crucially on the carrier-envelope phase (CEP) of the few-cycle ultrashort pulses: continuum and distinct peaks can be achieved by controlling the CEP. Our results demonstrate that by adjusting the CEP of few-cycle ultrashort pulses, the intersubband dynamics in the asymmetric semiparabolic QW can be controlled in an ultrashort timescale with moderate laser intensity.

  16. Helium Catalyzed D-D Fusion in a Levitated Dipole

    NASA Astrophysics Data System (ADS)

    Kesner, J.; Bromberg, L.; Garnier, D. T.; Hansen, A.; Mauel, M. E.

    2003-10-01

    Fusion research has focused on the goal of deuterium and tritium (D-T) fusion power because the reaction rate is large compared with the other fusion fuels: D-D or D-He3. Furthermore, the D-D cycle is difficult in traditional confinement devices, such as tokamaks, because good energy confinement is accompanied by good particle confinement which leads to an accumulation of ash. Fusion reactors based on the D-D reaction would be advantageous to D-T based reactors since they do not require the breeding of tritium and can reduce the flux of energetic neutrons that cause material damage. We propose a fusion power source based on the levitated dipole fusion concept that uses a "helium catalyzed D-D" fuel cycle, where rapid circulation of plasma allows the removal of tritium and the re-injection of the He3 decay product, eliminating the need for a massive blanket and shield. Stable dipole confinement derives from plasma compressibility instead of the magnetic shear and average good curvature. As a result, a dipole magnetic field can stabilize plasma at high beta while allowing large-scale adiabatic particle circulation. These properties may make the levitated dipole uniquely capable of achieving good energy confinement with low particle confinement. We find that a dipole based D-D power source can provide better utilization of magnetic field energy with a comparable mass power density to a D-T based tokamak power source.

  17. Including the introduction of exotic species in life cycle impact assessment: the case of inland shipping.

    PubMed

    Hanafiah, Marlia M; Leuven, Rob S E W; Sommerwerk, Nike; Tockner, Klement; Huijbregts, Mark A J

    2013-12-17

    While the ecological impact of anthropogenically introduced exotic species is considered a major threat for biodiversity and ecosystems functioning, it is generally not accounted for in the environmental life cycle assessment (LCA) of products. In this article, we propose a framework that includes exotic species introduction in an LCA context. We derived characterization factors for exotic fish species introduction related to the transport of goods across the Rhine-Main-Danube canal. These characterization factors are expressed as the potentially disappeared fraction (PDF) of native freshwater fish species in the rivers Rhine and Danube integrated over space and time per amount of goods transported (PDF·m(3)·yr·kg(-1)). Furthermore, we quantified the relative importance of exotic fish species introduction compared to other anthropogenic stressors in the freshwater environment (i.e., eutrophication, ecotoxicity, greenhouse gases, and water consumption) for transport of goods through the Rhine-Main-Danube waterway. We found that the introduction of exotic fish species contributed to 70-85% of the total freshwater ecosystem impact, depending on the distance that goods were transported. Our analysis showed that it is relevant and feasible to include the introduction of exotic species in an LCA framework. The proposed framework can be further extended by including the impacts of other exotic species groups, types of water bodies and pathways for introduction.

  18. Factors related to clinical pregnancy after vitrified-warmed embryo transfer: a retrospective and multivariate logistic regression analysis of 2313 transfer cycles.

    PubMed

    Shi, Wenhao; Zhang, Silin; Zhao, Wanqiu; Xia, Xue; Wang, Min; Wang, Hui; Bai, Haiyan; Shi, Juanzi

    2013-07-01

    What factors does multivariate logistic regression show to be significantly associated with the likelihood of clinical pregnancy in vitrified-warmed embryo transfer (VET) cycles? Assisted hatching (AH) and if the reason to freeze embryos was to avoid the risk of ovarian hyperstimulation syndrome (OHSS) were significantly positively associated with a greater likelihood of clinical pregnancy. Single factor analysis has shown AH, number of embryos transferred and the reason of freezing for OHSS to be positively and damaged blastomere to be negatively significantly associated with the chance of clinical pregnancy after VET. It remains unclear what factors would be significant after multivariate analysis. The study was a retrospective analysis of 2313 VET cycles from 1481 patients performed between January 2008 and April 2012. A multivariate logistic regression analysis was performed to identify the factors to affect clinical pregnancy outcome of VET. There were 22 candidate variables selected based on clinical experiences and the literature. With the thresholds of α entry = α removal= 0.05 for both variable entry and variable removal, eight variables were chosen to contribute the multivariable model by the bootstrap stepwise variable selection algorithm (n = 1000). Eight variables were age at controlled ovarian hyperstimulation (COH), reason for freezing, AH, endometrial thickness, damaged blastomere, number of embryos transferred, number of good-quality embryos, and blood presence on transfer catheter. A descriptive comparison of the relative importance was accomplished by the proportion of explained variation (PEV). Among the reasons for freezing, the OHSS group showed a higher OR than the surplus embryo group when compared with other reasons for VET groups (OHSS versus Other, OR: 2.145; CI: 1.4-3.286; Surplus embryos versus Other, OR: 1.152; CI: 0.761-1.743) and high PEV (marginal 2.77%, P = 0.2911; partial 1.68%; CI of area under receptor operator characteristic curve (ROC): 0.5576-0.6000). AH also showed a high OR (OR: 2.105, CI: 1.554-2.85) and high PEV (marginal 1.97%; partial 1.02%; CI of area under ROC: 0.5344-0.5647). The number of good-quality embryos showed the highest marginal PEV and partial PEV (marginal 3.91%, partial 2.28%; CI of area under ROC: 0.5886-0.6343). This was a retrospective multivariate analysis of the data obtained in 5 years from a single IVF center. Repeated cycles in the same woman were treated as independent observations, which could introduce bias. Results are based on clinical pregnancy and not live births. Prospective analysis of a larger data set from a multicenter study based on live births is necessary to confirm the findings. Paying attention to the quality of embryos, the number of good embryos, AH and the reasons for freezing that are associated with clinical pregnancy after VET will assist the improvement of success rates.

  19. The change of radial power factor distribution due to RCCA insertion at the first cycle core of AP1000

    NASA Astrophysics Data System (ADS)

    Susilo, J.; Suparlina, L.; Deswandri; Sunaryo, G. R.

    2018-02-01

    The using of a computer program for the PWR type core neutronic design parameters analysis has been carried out in some previous studies. These studies included a computer code validation on the neutronic parameters data values resulted from measurements and benchmarking calculation. In this study, the AP1000 first cycle core radial power peaking factor validation and analysis were performed using CITATION module of the SRAC2006 computer code. The computer code has been also validated with a good result to the criticality values of VERA benchmark core. The AP1000 core power distribution calculation has been done in two-dimensional X-Y geometry through ¼ section modeling. The purpose of this research is to determine the accuracy of the SRAC2006 code, and also the safety performance of the AP1000 core first cycle operating. The core calculations were carried out with the several conditions, those are without Rod Cluster Control Assembly (RCCA), by insertion of a single RCCA (AO, M1, M2, MA, MB, MC, MD) and multiple insertion RCCA (MA + MB, MA + MB + MC, MA + MB + MC + MD, and MA + MB + MC + MD + M1). The maximum power factor of the fuel rods value in the fuel assembly assumedapproximately 1.406. The calculation results analysis showed that the 2-dimensional CITATION module of SRAC2006 code is accurate in AP1000 power distribution calculation without RCCA and with MA+MB RCCA insertion.The power peaking factor on the first operating cycle of the AP1000 core without RCCA, as well as with single and multiple RCCA are still below in the safety limit values (less then about 1.798). So in terms of thermal power generated by the fuel assembly, then it can be considered that the AP100 core at the first operating cycle is safe.

  20. Ratcheting fatigue behaviour of Al-7075 T6 alloy: Influence of stress parameters

    NASA Astrophysics Data System (ADS)

    Amarnath, Lala; Bhattacharjee, Antara; Dutta, K.

    2016-02-01

    The use of aluminium and aluminium based alloys are increasing rapidly on account of its high formability, good thermal and electrical conductivity, high strength and lightness. Aluminium alloys are extensively used in aerospace, automobile, marine and space research industries and are also put into structural applications where chances of fatigue damage cannot be ruled out. In the current work, it is intended to study the ratcheting fatigue behavior of 7075-T6 aluminium alloy at room temperature. This Al alloy is potentially used in aviation, marine and automotive components as well as in bicycle parts, rock mounting equipment and parts of ammunition where there is every chance of failure of the parts due to deformation caused by ratcheting. Ratcheting is the process of accruement of plastic stain produced when a component is subjected to asymmetric cyclic loading under the influence of low cycle fatigue. To accomplish the requirements of the projected research, stress-controlled cyclic loading experiments were done using a ±250 kN servo-hydraulic universal testing machine (Instron: 8800R). The effect of stress parameters such as mean stress and stress amplitude were investigated on the ratcheting behavior of the selected aluminium alloy. It was observed that, ratcheting strain increased with increase in the value of stress amplitude at any constant mean stress while a saturation in strain accumulation attained in the investigated material after around 10-20 cycles, under all test conditions. The analyses of hysteresis loop generated during cyclic loading indicate that the material exhibits cyclic hardening in the initial fifty cycles which gets softened in further loading up to about 70-80 cycles and finally attains a steady state. The increase in the ratcheting strain value with stress parameters happens owing to increased deformation domain during cycling. The cyclic hardening accompanied by softening is correlated with characteristic precipitation features of the investigated Al 7075 alloy.

  1. Cost-effectiveness of seven IVF strategies: results of a Markov decision-analytic model.

    PubMed

    Fiddelers, Audrey A A; Dirksen, Carmen D; Dumoulin, John C M; van Montfoort, Aafke P A; Land, Jolande A; Janssen, J Marij; Evers, Johannes L H; Severens, Johan L

    2009-07-01

    A selective switch to elective single embryo transfer (eSET) in IVF has been suggested to prevent complications of fertility treatment for both mother and infants. We compared seven IVF strategies concerning their cost-effectiveness using a Markov model. The model was based on a three IVF-attempts time horizon and a societal perspective using real world strategies and data, comparing seven IVF strategies, concerning costs, live births and incremental cost-effectiveness ratios (ICERs). In order to increase pregnancy probability, one cycle of eSET + one cycle of standard treatment policy [STP, i.e. eSET in patients <38 years of age with at least one good quality embryo and double embryo transfer (DET) in the remainder of patients] + one cycle of DET have an ICER of 16,593 euro compared with three cycles of eSET. Furthermore, three STP cycles have an ICER of 17,636 euro compared with one cycle of eSET + one cycle of STP + one cycle of DET, and three DET cycles have an ICER of 26,729 euro compared with three cycles STP. Our study shows that in patients qualifying for IVF treatment, combining several transfer policies was not cost-effective. A choice has to be made between three cycles of eSET, STP or DET. It depends, however, on society's willingness to pay which strategy is to be preferred from a cost-effectiveness point of view.

  2. 78 FR 71532 - Amendments to Material Control and Accounting Regulations and Proposed Guidance for Fuel Cycle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... Accounting Regulations and Proposed Guidance for Fuel Cycle Facility Material Control and Accounting Plans... material control and accounting (MC&A) of special nuclear material (SNM) and the proposed guidance...

  3. Single-Cycle Versus Multicycle Proof Testing

    NASA Technical Reports Server (NTRS)

    Hudak, S. J., Jr.; Mcclung, R. C.; Bartlett, M. L.; Fitzgerald, J. H.; Russell, D. A.

    1992-01-01

    Report compares single-cycle with multiple-cycle mechanical-stress tests of parts under mechanical stresses. Objective of proof testing: to screen out gross manufacturing or material deficiencies and provide additional assurance of quality. Report concludes that changes in distribution of crack sizes during multicycle proof testing depend on initial distribution, number of cycles, relationship between resistance of material and elastic/plastic fracture-mechanics parameter, relationship between load control and displacement control, and magnitude of applied load or displacement. Whether single-cycle or multicycle testing used depends on shape, material, and technique of fabrication of components tested.

  4. HFL-10 lifting body flight control system characteristics and operational experience

    NASA Technical Reports Server (NTRS)

    Painter, W. D.; Sitterle, G. J.

    1974-01-01

    A flight evaluation was made of the mechanical hydraulic flight control system and the electrohydraulic stability augmentation system installed in the HL-10 lifting body research vehicle. Flight tests performed in the speed range from landing to a Mach number of 1.86 and the altitude range from 697 meters (2300 feet) to 27,550 meters (90,300 feet) were supplemented by ground tests to identify and correct structural resonance and limit-cycle problems. Severe limit-cycle and control sensitivity problems were encountered during the first flight. Stability augmentation system structural resonance electronic filters were modified to correct the limit-cycle problem. Several changes were made to control stick gearing to solve the control sensitivity problem. Satisfactory controllability was achieved by using a nonlinear system. A limit-cycle problem due to hydraulic fluid contamination was encountered during the first powered flight, but the problem did not recur after preflight operations were improved.

  5. Microstructural modeling of fatigue fracture of shape memory alloys at thermomechanical cyclic loading

    NASA Astrophysics Data System (ADS)

    Belyaev, Fedor S.; Evard, Margarita E.; Volkov, Aleksandr E.

    2018-05-01

    A microstructural model of shape memory alloys (SMA) describing their deformation and fatigue fracture is presented. A new criterion of fracture has been developed which takes into account the effect of hydrostatic pressure, deformation defects and material damage. It is shown that the model can describe the fatigue fracture of SMA under various thermomechanical cycling regimes. Results of calculating the number of cycles to failure at thermocycling under a constant stress, at symmetric two-sided cyclic deformation, at straining-unloading cycles, at cycling in the regime of the thermodynamic cycles of a SMA working body in the hard (strain controlled) and soft (stress controlled) working cycles, is studied. Results of calculating the number of cycles to failure are presented for different parameters of these cycles.

  6. Effects of Levodopa on Vowel Articulation in Patients with Parkinson's Disease.

    PubMed

    Okada, Yukihiro; Murata, Miho; Toda, Tatsushi

    2016-04-27

    The effects of levodopa on articulatory dysfunction in patients with Parkinson's disease remain inconclusive. This study aimed to investigate the effects of levodopa on isolated vowel articulation and motor performance in patients with moderate to severe Parkinson's disease, excluding speech fluctuations caused by dyskinesia. 21 patients (14 males and 7 females) and 21 age- and sex- matched healthy subjects were enrolled. Together with motor assessment, the patients phonated five Japanese isolated vowels (/a/, /i/, /u/, /e/, and /o/) 20 times before and 1 h after levodopa treatment. We made the frequency analysis of each vowel and measured the first and second formants. From these formants we constructed the pentagonal vowel space area which should be the good indicator for articulatory dysfunction of vowels. In control subjects, only speech samples were analyzed. To investigate the sequential relationship between plasma levodopa concentrations, motor performances, and acoustic measurements after treatment, entire drug cycle tests were performed in 4 patients. The pentagonal vowel space area was significantly expanded together with motor amelioration after levodopa treatment, although the enlargement is not enough for the space area of control subjects. Drug cycle tests revealed that sequential increases or decreases in plasma levodopa levels after treatment correlated well with expansion or decrease of the vowel space areas and improvement or deterioration of motor manifestations. Levodopa expanded the vowel space area and ameliorated motor performance, suggesting that dysfunctions in vowel articulation and motor performance in patients with Parkinson's disease are based on dopaminergic pathology.

  7. Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor for Supercapacitors.

    PubMed

    Liu, Chao; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2015-08-26

    N-doped hollow carbon spheres (N-HCSs) are promising candidates as electrode material for supercapacitor application. In this work, we report a facile one-step synthesis of discrete and highly dispersible N-HCSs with dopamine (DA) as a carbon precursor and TEOS as a structure-assistant agent in a mixture containing water, ethanol, and ammonia. The architectures of resultant N-HCSs, including yolk-shell hollow carbon spheres (YS-HCSs), single-shell hollow carbon spheres (SS-HCSs), and double-shells hollow carbon spheres (DS-HCSs), can be efficiently controlled through the adjustment of the amount of ammonia. To explain the relation and formation mechanism of these hollow carbon structures, the samples during the different synthetic steps, including polymer/silica spheres, carbon/silica spheres and silica spheres by combustion in air, were characterized by TEM. Electrochemical measurements performed on YS-HCSs, SS-HCSs, and DS-HCSs showed high capacitance with 215, 280, and 381 F g(-1), respectively. Moreover, all the nitrogen-doped hollow carbon nanospheres showed a good cycling stability 97.0% capacitive retention after 3000 cycles. Notably, the highest capacitance of DS-HCSs up to 381 F g(-1) is higher than the capacitance reported so far for many carbon-based materials, which may be attributed to the high surface area, hollow structure, nitrogen functionalization, and double-shell architecture. These kinds of N-doped hollow-structured carbon spheres may show promising prospects as advanced energy storage materials and catalyst supports.

  8. Multiple autoclave cycles affect the surface of rotary nickel-titanium files: an atomic force microscopy study.

    PubMed

    Valois, Caroline R A; Silva, Luciano P; Azevedo, Ricardo B

    2008-07-01

    The purpose of this study was to evaluate the surface of rotary nickel-titanium (Ni-Ti) files after multiple autoclave cycles. Two different types of rotary Ni-Ti (Greater Taper and ProFile) were attached to a glass base. After 1, 5, and 10 autoclave cycles the files were positioned in the atomic force microscope. The analyses were performed on 15 different points. The same files were used as control before any autoclave cycle. The following vertical topographic parameters were measured: arithmetic mean roughness, maximum height, and root mean square. The differences were tested by analysis of variance with Tukey test. All topographic parameters were higher for both Greater Taper and ProFile after 10 cycles compared with the control (P < .05). ProFile also showed higher topographic parameters after 5 cycles compared with the control (P < .05). The results indicated that multiple autoclave cycles increase the depth of surface irregularities located on rotary Ni-Ti files.

  9. Ultrahigh-performance pseudocapacitor based on phase-controlled synthesis of MoS2 nanosheets decorated Ni3S2 hybrid structure through annealing treatment

    NASA Astrophysics Data System (ADS)

    Huang, Long; Hou, Huijie; Liu, Bingchuan; Zeinu, Kemal; Zhu, Xiaolei; Yuan, Xiqing; He, Xiulin; Wu, Longsheng; Hu, Jingping; Yang, Jiakuan

    2017-12-01

    In this work, a hierarchical Ni3S2@MoS2 hybrid structure was synthesized by an effective strategy with a combined hydrothermal route and subsequent annealing treatment. When tested as supercapacitor electrodes, the Ni3S2@MoS2 composites exhibited high specific capacitance of 1418.5 F g-1 at 0.5 A g-1, which also showed a good capacitance retention of 75.8% at 5 A g-1 after 1250 cycles. The Ni3S2@MoS2 composites demonstrated 1.9 fold higher specific capacitance compared to the amorphous shell counterpart (NixSy@MoS2). Furthermore, the assembled asymmetric supercapacitor (Ni3S2@MoS2//rGO) also demonstrated a capacitance of 61 F g-1 at 0.5 A g-1, with energy and power densities of 21.7 Wh kg-1 at 400 W kg-1 and 12 Wh kg-1 at 2400 W kg-1 under an operating window of 1.6 V. The asymmetric supercapacitor also showed a favorable cycle stability with 72% capacity retention over 4000 cycles at 10 A g-1. The improved electrochemical performance is attributed to the synergetic effect of the large accessible surface area and optimal contacts between the MoS2 and the electrolyte, as well as high capacitance of the metallic Ni3S2 core.

  10. Polyelectrolyte brushes: a novel stable lubrication system in aqueous conditions.

    PubMed

    Kobayashi, Motoyasu; Terada, Masami; Takahara, Atsushi

    2012-01-01

    Surface-initiated controlled radical copolymerizations of 2-dimethylaminoethyl methacrylate (DMAEMA), 2-(methacryloyloxy)ethyl phosphorylcholine (MPC), 2-(methacryloyloxy)ethyltrimethylammonium chloride) (MTAC), and 3-sulfopropyl methacrylate potassium salt (SPMK) were carried out on a silicon wafer and glass ball to prepare polyelectrolyte brushes with excellent water wettability. The frictional coefficient of the polymer brushes was recorded on a ball-on-plate type tribometer by linear reciprocating motion of the brush specimen at a selected velocity of 1.5 x 10(-3) m s-1 under a normal load of 0.49 N applied to the stationary glass ball (d = 10 mm) at 298 K. The poly(DMAEMA-co-MPC) brush partially cross-linked by bis(2-iodoethoxy)ethane maintained a relatively low friction coefficient around 0.13 under humid air (RH > 75%) even after 200 friction cycles. The poly(SPMK) brush revealed an extremely low friction coefficient around 0.01 even after 450 friction cycles. We supposed that the abrasion of the brush was prevented owing to the good affinity of the poly(SPMK) brush for water forming a water lubrication layer, and electrostatic repulsive interactions among the brushes bearing sulfonic acid groups. Furthermore, the poly(SPMK-co-MTAC) brush with a chemically cross-linked structure showed a stable low friction coefficient in water even after 1400 friction cycles under a normal load of 139 MPa, indicating that the cross-linking structure improved the wear resistance of the brush layer.

  11. An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems

    NASA Astrophysics Data System (ADS)

    Alemayehu, Tadesse; van Griensven, Ann; Taddesse Woldegiorgis, Befekadu; Bauwens, Willy

    2017-09-01

    The Soil and Water Assessment Tool (SWAT) is a globally applied river basin ecohydrological model used in a wide spectrum of studies, ranging from land use change and climate change impacts studies to research for the development of the best water management practices. However, SWAT has limitations in simulating the seasonal growth cycles for trees and perennial vegetation in the tropics, where rainfall rather than temperature is the dominant plant growth controlling factor. Our goal is to improve the vegetation growth module of SWAT for simulating the vegetation variables - such as the leaf area index (LAI) - for tropical ecosystems. Therefore, we present a modified SWAT version for the tropics (SWAT-T) that uses a straightforward but robust soil moisture index (SMI) - a quotient of rainfall (P) and reference evapotranspiration (ETr) - to dynamically initiate a new growth cycle within a predefined period. Our results for the Mara Basin (Kenya/Tanzania) show that the SWAT-T-simulated LAI corresponds well with the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI for evergreen forest, savanna grassland and shrubland. This indicates that the SMI is reliable for triggering a new annual growth cycle. The water balance components (evapotranspiration and streamflow) simulated by the SWAT-T exhibit a good agreement with remote-sensing-based evapotranspiration (ET-RS) and observed streamflow. The SWAT-T model, with the proposed vegetation growth module for tropical ecosystems, can be a robust tool for simulating the vegetation growth dynamics in hydrologic models in tropical regions.

  12. Structural stability of anhydrous proton conducting SrZr0.9Er0.1O3-δ perovskite ceramic vs. protonation/deprotonation cycling: Neutron diffraction and Raman studies

    NASA Astrophysics Data System (ADS)

    Slodczyk, Aneta; Colomban, Philippe; Upasen, Settakorn; Grasset, Frédéric; André, Gilles

    2015-08-01

    Long-term chemical and structural stability of an ion conducting ceramic is one of the main criteria for its selection as an electrolytic membrane in energy plant devices. Consequently, medium density SrZr0.9Er0.1O3-δ (SZE) anhydrous proton conducting ceramic - a potential electrolyte of SOFC/PCFC, was analysed by neutron diffraction between room temperature and 900 °C. After the first heating/cooling cycle, the ceramic pieces were exposed to water vapour pressure in an autoclave (500 °C, 40 bar, 7 days) in order to incorporate protonic species; the protonated compound was then again analysed by neutron diffraction. This procedure was repeated two times. At each step, the sample was also controlled by TGA and Raman spectroscopy. These studies allow the first comprehensive comparison of structural and chemical stability during the protonation/deprotonation cycling. The results reveal good structural stability, although an irreversible small contraction of the unit-cell volume and local structure modifications near Zr/ErO5[] octahedra are detected after the first protonation. After the second protonation easy ceramic crumbling under a stress is observed because of the presence of secondary phases (SrCO3, Sr(OH)2) well detected by Raman scattering and TGA. The role of crystallographic purity, substituting element and residual porosity in the proton conducting perovskite electrolyte stability is discussed.

  13. Validation of a program for supercritical power plant calculations

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Łukowicz, Henryk; Bartela, Łukasz; Michalski, Sebastian

    2011-12-01

    This article describes the validation of a supercritical steam cycle. The cycle model was created with the commercial program GateCycle and validated using in-house code of the Institute of Power Engineering and Turbomachinery. The Institute's in-house code has been used extensively for industrial power plants calculations with good results. In the first step of the validation process, assumptions were made about the live steam temperature and pressure, net power, characteristic quantities for high- and low-pressure regenerative heat exchangers and pressure losses in heat exchangers. These assumptions were then used to develop a steam cycle model in Gate-Cycle and a model based on the code developed in-house at the Institute of Power Engineering and Turbomachinery. Properties, such as thermodynamic parameters at characteristic points of the steam cycle, net power values and efficiencies, heat provided to the steam cycle and heat taken from the steam cycle, were compared. The last step of the analysis was calculation of relative errors of compared values. The method used for relative error calculations is presented in the paper. The assigned relative errors are very slight, generally not exceeding 0.1%. Based on our analysis, it can be concluded that using the GateCycle software for calculations of supercritical power plants is possible.

  14. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors.

    PubMed

    Yu, Peng; Cao, Gejin; Yi, Sha; Zhang, Xiong; Li, Chen; Sun, Xianzhong; Wang, Kai; Ma, Yanwei

    2018-03-29

    Two-dimensional (2D) MXenes have a very good application prospect in the field of electrochemical energy storage due to their metallic conductivity, high volumetric capacity, mechanical and thermal stability. Herein, we report the preparation of titanium carbide (Ti3C2Tx)/carbon nanotube (CNT) flexible self-supporting composite films by vacuum filtration. The CNTs can effectively prevent Ti3C2Tx from stacking and improve the electrochemical performance. The as-fabricated Ti3C2Tx/CNT film shows a high reversible capacity of 489 mA h g-1 at a current density of 50 mA g-1 together with good cycling performance. The full-cell lithium-ion capacitor (LIC) is assembled using the Ti3C2Tx/CNT film as the anode and activated carbon as the cathode. The LIC exhibits a high energy density of 67 Wh kg-1 (based on the total weight of the anode and the cathode), and a good capacity retention of 81.3% after 5000 cycles. These results suggest that Ti3C2Tx-CNT films are promising as anode materials for lithium ion capacitors.

  15. Comparative study on polyvinyl chloride film as flexible substrate for preparing free-standing polyaniline-based composite electrodes for supercapacitors.

    PubMed

    Wang, Hongxing; Liu, Dong; Du, Pengcheng; Wei, Wenli; Wang, Qi; Liu, Peng

    2017-11-15

    The free-standing polyaniline (PANI)-based composite film electrodes were prepared with polyvinyl chloride (PVC) and the aniline modified PVC (PVC-An) films as flexible substrates for supercapacitors, via facile in-situ chemical oxidative polymerization of aniline, with conventional chemical oxidative polymerization or rapid-mixing chemical oxidative polymerization technique. Owing to the grafting of PANI from the PVC-An film as substrate and the suppression of the secondary growth of the primary PANI particles in the rapid-mixing chemical oxidative polymerization, the PVC-g-PANI-2 composite film with loose surface possessed better comprehensive performance, accompanying the high specific capacitance (645.3F/g at a current density of 1A/g), good rate capacitance (retaining 63.2% of original value at a current density of 10A/g and 52.0% at a scan rate of 100mV/s), good cycle stability (retaining 83.1% after 1000 cycles) and the improved internal resistance. Besides its excellent flexibility, it could retain 61.2% of its original specific capacitance under the stress of 8.66MPa for 1h, demonstrating a good tensile-resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Special report: Occlusive cuff controller

    NASA Technical Reports Server (NTRS)

    Baker, J. T.

    1975-01-01

    A mechanical occlusive cuff controller suitable for blood flow experiments in space shuttle flights is described. The device requires 115 volt ac power and a pressurized gas source. Two occluding cuff pressures (30 and 50 mmHg) are selectable by a switch on the front panel. A screw driver adjustment allows accurate cuff pressurization levels for under or oversized limbs. Two pressurization cycles (20 second and 2 minutes) can be selected by a front panel switch. Adjustment of the timing cycles is also available through the front panel. A pushbutton hand switch allows remote start of the cuff inflation cycle. A stop/reset switch permits early termination of the cycle and disabling of the controller to prevent inadvertent reactivation. Pressure in the cuff is monitored by a differential aneroid barometer. In addition, an electrocardiogram trigger circuit permits the initiation of the pressurization cycle by an externally supplied ECG cycle.

  17. Distribution of shortest cycle lengths in random networks

    NASA Astrophysics Data System (ADS)

    Bonneau, Haggai; Hassid, Aviv; Biham, Ofer; Kühn, Reimer; Katzav, Eytan

    2017-12-01

    We present analytical results for the distribution of shortest cycle lengths (DSCL) in random networks. The approach is based on the relation between the DSCL and the distribution of shortest path lengths (DSPL). We apply this approach to configuration model networks, for which analytical results for the DSPL were obtained before. We first calculate the fraction of nodes in the network which reside on at least one cycle. Conditioning on being on a cycle, we provide the DSCL over ensembles of configuration model networks with degree distributions which follow a Poisson distribution (Erdős-Rényi network), degenerate distribution (random regular graph), and a power-law distribution (scale-free network). The mean and variance of the DSCL are calculated. The analytical results are found to be in very good agreement with the results of computer simulations.

  18. Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K.H. Kim; C.T. Lee; C.B. Lee

    2013-10-01

    Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 degrees C showed that HfN, TiC, ZrC, and Y2O3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 degrees C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y2O3 do not form significant reaction layer between U–20 wt.% Zr melt and the coating layer. Plasma-sprayed Y2O3 coating exhibited the mostmore » promising characteristics among HfN, TiC, ZrC, and Y2O3 coating.« less

  19. Elastic-plastic finite-element analyses of thermally cycled single-edge wedge specimens

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1982-01-01

    Elastic-plastic stress-strain analyses were performed for single-edge wedge alloys subjected to thermal cycling in fluidized beds. Three cases (NASA TAZ-8A alloy under one cycling condition and 316 stainless steel alloy under two cycling conditions) were analyzed by using the MARC nonlinear, finite-element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions that used the NASTRAN and ISO3DQ computer programs. The NASA TAZ-8A case exhibited no plastic strains, and the elastic and elastic-plastic analyses gave identical results. Elastic-plastic analyses of the 316 stainless steel alloy showed plastic strain reversal with a shift of the mean stresses in the compressive direction. The maximum equivalent total strain ranges for these cases were 13 to 22 percent greater than that calculated from elastic analyses.

  20. Resistance Spot Welding Characteristics and High Cycle Fatigue Behavior of DP 780 Steel Sheet

    NASA Astrophysics Data System (ADS)

    Pal, Tapan Kumar; Bhowmick, Kaushik

    2012-02-01

    Resistance spot welding characteristics of DP 780 steel was investigated using peel test, microhardness test, tensile shear test, and fatigue test. Tensile shear test provides better spot weld quality than conventional peel test and hardness is not a good indicator of the susceptibility to interfacial fracture. The results of high-cycle fatigue behavior of spot welded DP 780 steel under two different parameters show that at high load low cycle range a significant difference in the S- N curve and almost similar fatigue behavior of spot welds at low load high cycle range are obtained. However, when applied load was converted to stress intensity factor, the difference in the fatigue behavior between welds diminished. Furthermore, a transition in fracture mode, i.e., interfacial and plug and hole-type at about 50% of yield load is observed.

  1. Does a frozen embryo transfer ameliorate the effect of elevated progesterone seen in fresh transfer cycles?

    PubMed

    Healy, Mae Wu; Patounakis, George; Connell, Matt T; Devine, Kate; DeCherney, Alan H; Levy, Michael J; Hill, Micah J

    2016-01-01

    To compare the effect of progesterone (P) on the day of trigger in fresh assisted reproduction technology (ART) transfer cycles versus its effect on subsequent frozen embryo transfer (FET) cycles. Retrospective cohort study. Large private ART practice. Fresh autologous and FET cycles from 2011-2013. None. Live birth. A paired analysis of patients who underwent both a fresh transfer and subsequent FET cycle and an unpaired analysis of data from all fresh transfer cycles and all FET cycles were performed. We analyzed 1,216 paired and 4,124 unpaired cycles, and P was negatively associated with birth in fresh but not FET cycles in all analyses. Interaction testing of P and cycle type indicated P had a different association with birth in fresh versus FET cycles. When P was ≥ 2 ng/mL at the time of trigger, live birth was more likely in FET versus fresh cycles in the paired analysis (47% vs. 10%), in the unpaired analysis (51% vs. 14%), and in unpaired, good blastocyst only transfer subgroup (51% vs. 29%). Live birth was similar in FET cycles, with P ≥ 2 ng/mL versus P < 2 ng/mL (51% vs. 49%). Conversely, live birth was lower in fresh cycles, with P ≥ 2 ng/mL versus P <2 ng/mL (15% vs. 45%). Elevated P levels on the day of trigger during the initial fresh cycle were negatively associated with live birth in the fresh transfer cycles but not in subsequent FET cycles. Freezing embryos and performing a subsequent FET cycle ameliorates the effect of elevated P on live-birth rates. Published by Elsevier Inc.

  2. The influence of cycling temperature and cycling rate on the phase specific degradation of a positive electrode in lithium ion batteries: A post mortem analysis

    NASA Astrophysics Data System (ADS)

    Darma, Mariyam Susana Dewi; Lang, Michael; Kleiner, Karin; Mereacre, Liuda; Liebau, Verena; Fauth, Francois; Bergfeldt, Thomas; Ehrenberg, Helmut

    2016-09-01

    The influence of cycling temperatures and cycling rates on the cycling stability of the positive electrode (cathode) of commercial batteries are investigated. The cathode is a mixture of LiMn2O4 (LMO), LiNi0.5Co0.2Mn0.3O2 (NCM) and LiNi0.8Co0.15Al0.05O2 (NCA). It is found that increasing the cycling temperature from 25 °C to 40 °C is detrimental to the long term cycling stability of the cathode. Contrastingly, the improved cycling stability is observed for the cathodes cycled at higher charge/discharge rate (2C/3C instead of 1C/2C). The microstructure analysis by X-ray powder diffraction reveals that a significant capacity fading and an increased overvoltage is observed for NCM and NCA in all the fatigued cathodes. After high number of cycling (above 1500 cycles), NCM becomes partially inactive. In contrast to NCM and NCA, LMO shows a good cycling stability at 25 °C. A pronounced degradation of LMO is only observed for the fatigued cathodes cycled at 40 °C. The huge capacity losses of NCM and NCA are most likely because the blended cathodes were cycled up to 4.12 V vs. the graphite anode during the cycle-life test (corresponds to 4.16 V vs. Li+/Li); which is beyond the stability limit of the layered oxides below 4.05 V vs. Li+/Li.

  3. Feedback control of combustion instabilities from within limit cycle oscillations using H∞ loop-shaping and the ν-gap metric

    PubMed Central

    Morgans, Aimee S.

    2016-01-01

    Combustion instabilities arise owing to a two-way coupling between acoustic waves and unsteady heat release. Oscillation amplitudes successively grow, until nonlinear effects cause saturation into limit cycle oscillations. Feedback control, in which an actuator modifies some combustor input in response to a sensor measurement, can suppress combustion instabilities. Linear feedback controllers are typically designed, using linear combustor models. However, when activated from within limit cycle, the linear model is invalid, and such controllers are not guaranteed to stabilize. This work develops a feedback control strategy guaranteed to stabilize from within limit cycle oscillations. A low-order model of a simple combustor, exhibiting the essential features of more complex systems, is presented. Linear plane acoustic wave modelling is combined with a weakly nonlinear describing function for the flame. The latter is determined numerically using a level set approach. Its implication is that the open-loop transfer function (OLTF) needed for controller design varies with oscillation level. The difference between the mean and the rest of the OLTFs is characterized using the ν-gap metric, providing the minimum required ‘robustness margin’ for an H∞ loop-shaping controller. Such controllers are designed and achieve stability both for linear fluctuations and from within limit cycle oscillations. PMID:27493558

  4. New pressure control method of mixed gas in a combined cycle power plant of a steel mill

    NASA Astrophysics Data System (ADS)

    Xie, Yudong; Wang, Yong

    2017-08-01

    The enterprise production concept is changing with the development of society. A steel mill requires a combined-cycle power plant, which consists of both a gas turbine and steam turbine. It can recycle energy from the gases that are emitted from coke ovens and blast furnaces during steel production. This plant can decrease the overall energy consumption of the steel mill and reduce pollution to our living environment. To develop a combined-cycle power plant, the pressure in the mixed-gas transmission system must be controlled in the range of 2.30-2.40 MPa. The particularity of the combined-cycle power plant poses a challenge to conventional controllers. In this paper, a composite control method based on the Smith predictor and cascade control was proposed for the pressure control of the mixed gases. This method has a concise structure and can be easily implemented in actual industrial fields. The experiment has been conducted to validate the proposed control method. The experiment illustrates that the proposed method can suppress various disturbances in the gas transmission control system and sustain the pressure of the gas at the desired level, which helps to avoid abnormal shutdowns in the combined-cycle power plant.

  5. How do fission yeast cells grow and connect growth to the mitotic cycle?

    PubMed

    Sveiczer, Ákos; Horváth, Anna

    2017-05-01

    To maintain size homeostasis in a unicellular culture, cells should coordinate growth to the division cycle. This is achieved via size control mechanisms (also known as size checkpoints), i.e. some events during the mitotic cycle supervene only if the cell has reached a critical size. Rod-shaped cells like those of fission yeast are ideal model organisms to study these checkpoints via time-lapse microphotography. By applying this method, once we can analyse the growth process between two consecutive divisions at a single (or even at an 'average') cellular level, moreover, we can also position the size checkpoint(s) at the population level. Finally, any of these controls can be abolished in appropriate cell cycle mutants, either in steady-state or in induction synchronised cultures. In the latter case, we produce abnormally oversized cells, and microscopic experiments with them clearly show the existence of a critical size above which the size checkpoint ceases (becomes cryptic). In this review, we delineate the development of our knowledge both on the growth mode of fission yeast and on the operating size control(s) during its mitotic cycle. We finish these historical stories with our recent findings, arguing that three different size checkpoints exist in the fission yeast cell cycle, namely in late G1, in mid G2 and in late G2, which has been concluded by analysing these controls in several cell cycle mutants.

  6. Time-Dependent Testing Evaluation and Modeling for Rubber Stopper Seal Performance.

    PubMed

    Zeng, Qingyu; Zhao, Xia

    2018-01-01

    Sufficient rubber stopper sealing performance throughout the entire sealed product life cycle is essential for maintaining container closure integrity in the parenteral packaging industry. However, prior publications have lacked systematic considerations for the time-dependent influence on sealing performance that results from the viscoelastic characteristics of the rubber stoppers. In this paper, we report results of an effort to study these effects by applying both compression stress relaxation testing and residual seal force testing for time-dependent experimental data collection. These experiments were followed by modeling fit calculations based on the Maxwell-Wiechert theory modified with the Kohlrausch-Williams-Watts stretched exponential function, resulting in a nonlinear, time-dependent sealing force model. By employing both testing evaluations and modeling calculations, an in-depth understanding of the time-dependent effects on rubber stopper sealing force was developed. Both testing and modeling data show good consistency, demonstrating that the sealing force decays exponentially over time and eventually levels off because of the viscoelastic nature of the rubber stoppers. The nonlinearity of stress relaxation derives from the viscoelastic characteristics of the rubber stoppers coupled with the large stopper compression deformation into restrained geometry conditions. The modeling fit with capability to handle actual testing data can be employed as a tool to calculate the compression stress relaxation and residual seal force throughout the entire sealed product life cycle. In addition to being time-dependent, stress relaxation is also experimentally shown to be temperature-dependent. The present work provides a new, integrated methodology framework and some fresh insights to the parenteral packaging industry for practically and proactively considering, designing, setting up, controlling, and managing stopper sealing performance throughout the entire sealed product life cycle. LAY ABSTRACT: Historical publications in the parenteral packaging industry have lacked systematic considerations for the time-dependent influence on the sealing performance that results from effects of viscoelastic characteristic of the rubber stoppers. This study applied compression stress relaxation testing and residual seal force testing for time-dependent experimental data collection. These experiments were followed by modeling fit calculations based on the Maxwell-Wiechert theory modified with the Kohlrausch-Williams-Watts stretched exponential function, resulting in a nonlinear, time-dependent sealing force model. Experimental and modeling data show good consistency, demonstrating that sealing force decays exponentially over time and eventually levels off. The nonlinearity of stress relaxation derives from the viscoelastic characteristics of the rubber stoppers coupled with the large stopper compression deformation into restrained geometry conditions. In addition to being time-dependent stress relaxation, it is also experimentally shown to be temperature-dependent. The present work provides a new, integrated methodology framework and some fresh insights to the industry for practically and proactively considering, designing, setting up, controlling, and managing of the stopper sealing performance throughout the entire sealed product life cycle. © PDA, Inc. 2018.

  7. 40 CFR Appendix II to Part 1045 - Duty Cycles for Propulsion Marine Engines

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Duty Cycles for Propulsion Marine...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Pt. 1045, App. II Appendix II to Part 1045—Duty Cycles for Propulsion Marine Engines (a) The...

  8. 40 CFR Appendix II to Part 1045 - Duty Cycles for Propulsion Marine Engines

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Duty Cycles for Propulsion Marine...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Pt. 1045, App. II Appendix II to Part 1045—Duty Cycles for Propulsion Marine Engines (a) The...

  9. 40 CFR Appendix II to Part 1045 - Duty Cycles for Propulsion Marine Engines

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Duty Cycles for Propulsion Marine...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Pt. 1045, App. II Appendix II to Part 1045—Duty Cycles for Propulsion Marine Engines (a) The...

  10. 40 CFR Appendix II to Part 1045 - Duty Cycles for Propulsion Marine Engines

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Duty Cycles for Propulsion Marine...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Pt. 1045, App. II Appendix II to Part 1045—Duty Cycles for Propulsion Marine Engines (a) The...

  11. Bypass control valve seal and bearing life cycle test report

    NASA Technical Reports Server (NTRS)

    Lundback, A. V.

    1972-01-01

    The operating characteristics of a bypass control valve seal and bearing life cycle tests are reported. Data from the initial assembly, leak, torque, and deflection tests are included along with the cycle life test results and conclusions. The equipment involved was to be used in the nuclear engine for the rocket vehicles program.

  12. Effects of a self-management program on antiemetic-induced constipation during chemotherapy among breast cancer patients: a randomized controlled clinical trial.

    PubMed

    Hanai, Akiko; Ishiguro, Hiroshi; Sozu, Takashi; Tsuda, Moe; Arai, Hidenori; Mitani, Akira; Tsuboyama, Tadao

    2016-01-01

    Research on patient-reported outcomes indicates that constipation is a common adverse effect of chemotherapy, and the use of 5-hydroxytryptamine (serotonin; 5HT3) receptor antagonists aggravates this condition. As cancer patients take multiple drugs as a part of their clinical management, a non-pharmacological self-management (SM) of constipation would be recommended. We aimed to evaluate the effectiveness of a SM program on antiemetic-induced constipation in cancer patients. Thirty patients with breast cancer, receiving 5HT3 receptor antagonists to prevent emesis during chemotherapy were randomly assigned to the intervention or control group. The SM program consisted of abdominal massage, abdominal muscle stretching, and education on proper defecation position. The intervention group started the program before the first chemotherapy cycle, whereas patients in the wait-list control group received the program on the day before their second chemotherapy cycle. The primary outcome was constipation severity, assessed by the constipation assessment scale (CAS, sum of eight components). The secondary outcome included each CAS component (0-2 points) and mood states. A self-reported assessment of satisfaction with the program was performed. The program produced a statistically and clinically significant alleviation of constipation severity (mean difference in CAS, -3.00; P = 0.02), decrease in the likelihood of a small volume of stool (P = 0.03), and decrease in depression and dejection (P = 0.02). With regards to program satisfaction, 43.6 and 26.4 % patients rated the program as excellent and good, respectively. Our SM program is effective for mitigating the symptoms of antiemetic-induced constipation during chemotherapy.

  13. Exclusive Alternating Chemotherapy and Radiotherapy in Nonmetastatic Inflammatory Breast Cancer: 20 Years of Follow-Up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourgier, Celine, E-mail: bourgier@igr.fr; Pessoa, Eduardo Lima; Dunant, Ariane

    2012-02-01

    Background: Locoregional treatment of inflammatory breast cancer (IBC) is crucial because local relapses may be highly symptomatic and are commonly associated with distant metastasis. With a median follow-up of 20 years, we report here the long-term results of a monocentric clinical trial combining primary chemotherapy (CT) with a schedule of anthracycline-based CT and an alternating split-course of radiotherapy (RT Asterisk-Operator CT) without mastectomy. Methods and Materials: From September 1983 to December 1989, 124 women with nonmetastatic IBC (T4d M0) were treated with three cycles of primary AVCMF chemotherapy (anthracycline, vincristine, cyclophosphamide, methotrexate, and 5-fluorouracil) and then an alternating RT Asterisk-Operatormore » CT schedule followed by three cycles of FAC. Hormonal therapy was systematically administered: ovarian irradiation (12 Gy in four fractions) or tamoxifen 20 mg daily. Results: Local control was achieved in 82% of patients. The 10- and 20-year local relapse rates were 26% and 33%, respectively, but only 10% of locally controlled cases were not associated with concurrent distant metastasis. The 10- and 20-year overall survival rates were 39% and 19%, respectively. Severe fibrosis occurred in 54% of patients, grade 3 brachial plexus neuropathy in 4%, grade 2 pneumonitis in 9%. Grade 1, 2 and 3 cardiac toxicity was observed in 3.8%, 3.8% and 1.2% of cases respectively. Conclusions: This combined regimen allowed good long-term local control without surgery. Survival rates were similar to those obtained with conventional regimens (primary chemotherapy, total mastectomy, and adjuvant radiotherapy). Since IBC continues to be an entity with a dismal prognosis, this approach, safely combining preoperative or postoperative radiation therapy and systemic treatments, should be reassessed when suitable targeted agents are available.« less

  14. Predictive modeling and reducing cyclic variability in autoignition engines

    DOEpatents

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-08-30

    Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.

  15. Spinal Cord Excitability and Sprint Performance Are Enhanced by Sensory Stimulation During Cycling

    PubMed Central

    Pearcey, Gregory E. P.; Noble, Steven A.; Munro, Bridget; Zehr, E. Paul

    2017-01-01

    Spinal cord excitability, as assessed by modulation of Hoffmann (H-) reflexes, is reduced with fatiguing isometric contractions. Furthermore, spinal cord excitability is reduced during non-fatiguing arm and leg cycling. Presynaptic inhibition of Ia terminals is believed to contribute to this suppression of spinal cord excitability. Electrical stimulation to cutaneous nerves reduces Ia presynaptic inhibition, which facilitates spinal cord excitability, and this facilitation is present during arm cycling. Although it has been suggested that reducing presynaptic inhibition may prolong fatiguing contractions, it is unknown whether sensory stimulation can alter the effects of fatiguing exercise on performance or spinal cord excitability. Thus, the aim of this experiment was to determine if sensory stimulation can interfere with fatigue-related suppression of spinal cord excitability, and alter fatigue rates during cycling sprints. Thirteen participants randomly performed three experimental sessions that included: unloaded cycling with sensory stimulation (CONTROL + STIM), sprints with sensory stimulation (SPRINT + STIM) and sprints without stimulation (SPRINT). Seven participants also performed a fourth session (CONTROL), which consisted of unloaded cycling. During SPRINT and SPRINT + STIM, participants performed seven, 10 s cycling sprints interleaved with 3 min rest. For CONTROL and CONTROL + STIM, participants performed unloaded cycling for ~30 min. During SPRINT + STIM and CONTROL + STIM, participants received patterned sensory stimulation to nerves of the right foot. H-reflexes and M-waves of the right soleus were evoked by stimulation of the tibial nerve at multiple time points throughout exercise. Sensory stimulation facilitated soleus H-reflexes during unloaded cycling, whereas sprints suppressed soleus H-reflexes. While receiving sensory stimulation, there was less suppression of soleus H-reflexes and slowed reduction in average power output, compared to sprints without stimulation. These results demonstrate that sensory stimulation can substantially mitigate the fatiguing effects of sprints. PMID:29326570

  16. Spinal Cord Excitability and Sprint Performance Are Enhanced by Sensory Stimulation During Cycling.

    PubMed

    Pearcey, Gregory E P; Noble, Steven A; Munro, Bridget; Zehr, E Paul

    2017-01-01

    Spinal cord excitability, as assessed by modulation of Hoffmann (H-) reflexes, is reduced with fatiguing isometric contractions. Furthermore, spinal cord excitability is reduced during non-fatiguing arm and leg cycling. Presynaptic inhibition of Ia terminals is believed to contribute to this suppression of spinal cord excitability. Electrical stimulation to cutaneous nerves reduces Ia presynaptic inhibition, which facilitates spinal cord excitability, and this facilitation is present during arm cycling. Although it has been suggested that reducing presynaptic inhibition may prolong fatiguing contractions, it is unknown whether sensory stimulation can alter the effects of fatiguing exercise on performance or spinal cord excitability. Thus, the aim of this experiment was to determine if sensory stimulation can interfere with fatigue-related suppression of spinal cord excitability, and alter fatigue rates during cycling sprints. Thirteen participants randomly performed three experimental sessions that included: unloaded cycling with sensory stimulation ( CONTROL + STIM ), sprints with sensory stimulation ( SPRINT + STIM ) and sprints without stimulation ( SPRINT ). Seven participants also performed a fourth session ( CONTROL ), which consisted of unloaded cycling. During SPRINT and SPRINT + STIM, participants performed seven, 10 s cycling sprints interleaved with 3 min rest. For CONTROL and CONTROL + STIM , participants performed unloaded cycling for ~30 min. During SPRINT + STIM and CONTROL + STIM , participants received patterned sensory stimulation to nerves of the right foot. H-reflexes and M-waves of the right soleus were evoked by stimulation of the tibial nerve at multiple time points throughout exercise. Sensory stimulation facilitated soleus H-reflexes during unloaded cycling, whereas sprints suppressed soleus H-reflexes. While receiving sensory stimulation, there was less suppression of soleus H-reflexes and slowed reduction in average power output, compared to sprints without stimulation. These results demonstrate that sensory stimulation can substantially mitigate the fatiguing effects of sprints.

  17. Efficacy and safety of rolapitant for prevention of chemotherapy-induced nausea and vomiting over multiple cycles of moderately or highly emetogenic chemotherapy.

    PubMed

    Rapoport, Bernardo; Schwartzberg, Lee; Chasen, Martin; Powers, Dan; Arora, Sujata; Navari, Rudolph; Schnadig, Ian

    2016-04-01

    Rolapitant, a novel neurokinin-1 receptor antagonist (RA), was shown to protect against delayed chemotherapy-induced nausea and vomiting (CINV) during the first cycle of moderately emetogenic chemotherapy (MEC) or highly emetogenic chemotherapy (HEC) in randomized, double-blind trials. This analysis explored the efficacy and safety of rolapitant in preventing CINV over multiple cycles of MEC or HEC. Patients in one phase III MEC, one phase II HEC, and two phase III HEC clinical trials were randomized to receive oral rolapitant (180 mg) or placebo in combination with a 5-hydroxytryptamine type 3 RA and dexamethasone. Regardless of response in cycle 1, patients could continue the same antiemetic treatment for up to six cycles. On days 6-8 of each subsequent chemotherapy cycle, patients reported the incidence of emesis and/or nausea interfering with normal daily life. Post hoc analyses of pooled safety and efficacy data from the four trials were performed for cycles 2-6. Significantly more patients receiving rolapitant than control reported no emesis or interfering nausea (combined measure) in cycles 2 (p = 0.006), 3 (p < 0.001), 4 (p = 0.001), and 5 (p = 0.021). Over cycles 1-6, time-to-first emesis was significantly longer with rolapitant than with control (p < 0.001). The incidence of treatment-related adverse events during cycles 2-6 was similar in rolapitant (5.5%) and control (6.8%) arms. No cumulative toxicity was observed. Over multiple cycles of MEC or HEC, rolapitant provided superior CINV protection and reduced emesis and nausea interfering with daily life compared with control and remained well tolerated. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. UNIX helps integrate control packages for combined cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbes, H.W.

    1994-05-01

    This article describes the use of integrated UNIX based control systems in a combined-cycle power plant. The topics of the article include equipment configuration, control domains and functions for the gas turbine, steam turbine, balance of plant, unit-coordination, and plant master control, device gateway functions, and data-acquisition environment.

  19. One-year follow-up of mud-bath therapy in patients with bilateral knee osteoarthritis: a randomized, single-blind controlled trial

    NASA Astrophysics Data System (ADS)

    Fioravanti, A.; Bacaro, G.; Giannitti, C.; Tenti, S.; Cheleschi, S.; Guidelli, G. M.; Pascarelli, N. A.; Galeazzi, M.

    2015-09-01

    The objective of this prospective parallel randomized single-blind study was to assess that a cycle of mud-bath therapy (MBT) provides any benefits over usual treatment in patients with bilateral knee osteoarthritis (OA). Patients with symptomatic primary bilateral knee OA, according to ACR criteria, were included in the study and randomized to one of two groups: one group received a cycle of MBT at spa center of Chianciano Terme (Italy) in addition to the usual treatment, and one group continued their regular care routine alone. Clinical assessments were performed 7 days before enrollment (screening visit), at the time of enrollment (basal time), after 2 weeks, and after 3, 6, 9, and 12 months after the beginning of the study. All assessments were conducted by two researchers blinded to treatment allocation. The primary efficacy outcomes were the global pain score evaluated by Visual Analog Scale (VAS) and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) subscore for physical function (W-TPFS). Of the 235 patients screened, 103 met the inclusion criteria: 53 patients were included in the MBT group and 50 in the control group. In the group of patients treated with MBT, we observed a statistically significant ( p < 0.001) reduction of VAS and W-TPFS score at the end of the treatment; this improvement was significant ( p < 0.05) also at 3 months of follow-up. The control group did not show significant differences between baseline time and all other times. The differences between one group were significant for both primary parameters already from the 15th day and persisted up to the 9th month. This beneficial effect was confirmed by the significant reduction of symptomatic drug consumption. Tolerability of MBT seemed to be good, with light and transitory side effects. Our results confirm that a cycle of MBT added to usual treatment provides a beneficial effect on the painful symptoms and functional capacities in patients with knee OA that lasts over time. Mud-bath therapy can represent a useful backup to pharmacologic treatment of knee OA or a valid alternative for patients who do not tolerate pharmacological treatments.

  20. Anodic electrochemical performances of MgCo{sub 2}O{sub 4} synthesized by oxalate decomposition method and electrospinning technique for Li-ion battery application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darbar, Devendrasinh; Department of Mechanical Engineering, National University of Singapore, 117576; Department of Physics, National University of Singapore, 117542

    2016-01-15

    Highlights: • MgCo{sub 2}O{sub 4} was prepared by oxalate decomposition method and electrospinning technique. • Electrospun MgCo{sub 2}O{sub 4} shows the reversible capacity of 795 and 227 mAh g{sup −1} oxalate decomposition MgCo{sub 2}O{sub 4} after 50 cycle. • Electrospun MgCo{sub 2}O{sub 4} show good cycling stability and electrochemical performance. - Abstract: Magnesium cobalt oxide, MgCo{sub 2}O{sub 4} was synthesized by oxalate decomposition method and electrospinning technique. The electrochemical performances, structures, phase formation and morphology of MgCo{sub 2}O{sub 4} synthesized by both the methods are compared. Scanning electron microscope (SEM) studies show spherical and fiber type morphology, respectively for themore » oxalate decomposition and electrospinning method. The electrospun nanofibers of MgCo{sub 2}O{sub 4} calcined at 650 °C, showed a very good reversible capacity of 795 mAh g{sup −1} after 50 cycles when compared to bulk material capacity of 227 mAh g{sup −1} at current rate of 60 mA g{sup −1}. MgCo{sub 2}O{sub 4} nanofiber showed a reversible capacity of 411 mAh g{sup −1} (at cycle) at current density of 240 mA g{sup −1}. Improved performance was due to improved conductivity of MgO, which may act as buffer layer leading to improved cycling stability. The cyclic voltammetry studies at scan rate of 0.058 mV/s show main cathodic at around 1.0 V and anodic peaks at 2.1 V vs. Li.« less

  1. Since 2015 the SinoGerman research project SIGN supports water quality improvement in the Taihu region, China.

    PubMed

    Schmidt, Kathrin Rachel; der Beek, Tim Aus; Dai, Xiaohu; Dong, Bingzhi; Dopp, Elke; Eichinger, Florian; Hammers-Wirtz, Monika; Haußmann, Regina; Holbach, Andreas; Hollert, Henner; Illgen, Marc; Jiang, Xia; Koehler, Jan; Koester, Stephan; Korth, Andreas; Kueppers, Stephan; Li, Aili; Lohmann, Matthias; Moldaenke, Christian; Norra, Stefan; Qin, Boqiang; Qin, Yanwen; Reese, Moritz; Riehle, Edmund; Santiago-Schuebel, Beatrix; Schaefer, Charlotte; Simon, Anne; Song, Yonghui; Staaks, Christian; Steinhardt, Joerg; Subklew, Guenter; Tao, Tao; Wu, Tingfeng; Yin, Daqiang; Zhao, Fangfang; Zheng, Binghui; Zhou, Meiyue; Zou, Hua; Zuo, Jiane; Tiehm, Andreas

    2016-01-01

    The Taihu (Tai lake) region is one of the most economically prospering areas of China. Due to its location within this district of high anthropogenic activities, Taihu represents a drastic example of water pollution with nutrients (nitrogen, phosphate), organic contaminants and heavy metals. High nutrient levels combined with very shallow water create large eutrophication problems, threatening the drinking water supply of the surrounding cities. Within the international research project SIGN (SinoGerman Water Supply Network, www.water-sign.de), funded by the German Federal Ministry of Education and Research (BMBF), a powerful consortium of fifteen German partners is working on the overall aim of assuring good water quality from the source to the tap by taking the whole water cycle into account: The diverse research topics range from future proof strategies for urban catchment, innovative monitoring and early warning approaches for lake and drinking water, control and use of biological degradation processes, efficient water treatment technologies, adapted water distribution up to promoting sector policy by good governance. The implementation in China is warranted, since the leading Chinese research institutes as well as the most important local stakeholders, e.g. water suppliers, are involved.

  2. The relationship between leaf rolling and ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe setosa subjected to drought stress.

    PubMed

    Saruhan, Neslihan; Terzi, Rabiye; Saglam, Aykut; Kadioglu, Asim

    2009-01-01

    The ascorbate-glutathione (ASC-GSH) cycle has an important role in defensive processes against oxidative damage generated by drought stress. In this study, the changes that take place in apoplastic and symplastic ASC-GSH cycle enzymes of the leaf and petiole were investigated under drought stress causing leaf rolling in Ctenanthe setosa (Rose.) Eichler (Marantaceae). Apoplastic and symplastic extractions of leaf and petiole were performed at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others are intermediate forms). Glutathione reductase (GR), a key enzyme in the GSH regeneration cycle, and ascorbate (ASC) were present in apoplastic spaces of the leaf and petiole, whereas dehydroascorbate reductase (DHAR), which uses glutathione as reductant, monodehydroascorbate reductase (MDHAR), which uses NAD(P)H as reductant, and glutathione were absent. GR, DHAR and MDHAR activities increased in the symplastic and apoplastic areas of the leaf. Apoplastic and symplastic ASC and dehydroascorbate (DHA), the oxidized form of ascorbate, rose at all scores except score 4 of symplastic ASC in the leaf. On the other hand, while reduced glutathione (GSH) content was enhanced, oxidized glutathione (GSSG) content decreased in the leaf during rolling. As for the petiole, GR activity increased in the apoplastic area but decreased in the symplastic area. DHAR and MDHAR activities increased throughout all scores, but decreased to the score 1 level at score 4. The ASC content of the apoplast increased during leaf rolling. Conversely, symplastic ASC content increased at score 2, however decreased at the later scores. While the apoplastic DHA content declined, symplastic DHA rose at score 2, but later was down to the level of score 1. While GSH content enhanced during leaf rolling, GSSG content did not change except at score 2. As well, there were good correlations between leaf rolling and ASC-GSH cycle enzyme activities in the leaf (GR and DHAR) and leaf rolling and GSSG. These results showed that in apoplastic and symplastic areas, ASC-GSH cycle enzymes leading ROS detoxification may have a role in controlling leaf rolling.

  3. Integrated design strategy for product life-cycle management

    NASA Astrophysics Data System (ADS)

    Johnson, G. Patrick

    2001-02-01

    Two major trends suggest new considerations for environmentally conscious manufacturing (ECM) -- the continuation of dematerialization and the growing trend toward goods becoming services. A diversity of existing research could be integrated around those trends in ways that can enhance ECM. Major research-based achievements in information, computation, and communications systems, sophisticated and inexpensive sensing capabilities, highly automated and precise manufacturing technologies, and new materials continue to drive the phenomenon of dematerialization - the reduction of the material and energy content of per capita GDP. Knowledge is also growing about the sociology, economics, mathematics, management and organization of complex socio-economic systems. And that has driven a trend towards goods evolving into services. But even with these significant trends, the value of material, energy, information and human resources incorporated into the manufacture, use and disposal of modern products and services often far exceeds the benefits realized. Multi-disciplinary research integrating these drivers with advances in ECM concepts could be the basis for a new strategy of production. It is argued that a strategy of integrating information resources with physical and human resources over product life cycles, together with considering products as streams of service over time, could lead to significant economic payoff. That strategy leads to an overall design concept to minimize costs of all resources over the product life cycle to more fully capture benefits of all resources incorporated into modern products. It is possible by including life cycle monitoring, periodic component replacement, re-manufacture, salvage and human factor skill enhancement into initial design.

  4. Zinc cobalt sulfide nanosheets array derived from 2D bimetallic metal-organic frameworks for high-performance supercapacitor.

    PubMed

    Tao, Kai; Han, Xue; Cheng, Qiuhui; Yang, Yujing; Yang, Zheng; Ma, Qingxiang; Han, Lei

    2018-04-19

    Porous ternary metal sulfide integrated electrode materials with abundant electroactive sites and redox reactions are very promising for supercapacitors. Here, porous zinc cobalt sulfide nanosheets array on Ni foam (Zn-Co-S/NF) has been successfully constructed by a facile growth of 2D bimetallic zinc/cobalt-based metal-organic frameworks (Zn/Co-MOF) nanosheets with leaf-like morphology on Ni foam, followed by additional sulfurization. The Zn-Co-S/NF nanosheets array is directly acted as an electrode for supercapacitor, showing much better electrochemical performance (2354.3 F g-1 and 88.6% retention over 1000 cycles) when compared with zinc cobalt sulfide powder (355.3 F g-1 and 75.8% retention over 1000 cycles), which is originated from good electric conductivity and mechanical stability, abundant electroactive sites, and facilitated transportation of electron and electrolyte ion endowed by the unique nanosheets array structure. The asymmetric supercapacitor (ASC) device assembled from Zn-Co-S/NF and activated carbon electrodes can deliver the highest energy density of 31.9 Wh kg-1 and the maximum power density of 8.5 kW kg-1. Most importantly, this ASC also presents good cycling stability (97% retention over 1000 cycles). Furthermore, a red light-emitting diode (LED) can be illuminated by two connected ASCs, indicating that as-synthesized Zn-Co-S/NF hold great potential for practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Gram-scale production of B, N co-doped graphene-like carbon for high performance supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Hou, Liqiang; Cao, Yan; Tang, Yushu; Li, Yongfeng

    2018-03-01

    Boron and nitrogen co-doped graphene-like carbon (BNC) with a gram scale was synthesized via a two-step method including a ball-milling process and a calcination process and used as electrode materials for supercapacitors. High surface area and abundant active sites of graphene-like carbon were created by the ball-milling process. Interestingly, the nitrogen atoms are doped in carbon matrix without any other N sources except for air. The textual and chemical properties can be easily tuned by changing the calcination temperature, and at 900 oC the BNC with a high surface area (802.35 m2/g), a high boron content (2.19 at%), a hierarchical pore size distribution and a relatively high graphitic degree was obtained. It shows an excellent performance of high specific capacitance retention about 78.2% at high current density (199 F/g at 100 A/g) of the initial capacitance (254 F/g at 0.25 A/g) and good cycling stability (90% capacitance retention over 1000 cycles at 100 A/g) measured in a three-electrode system. Furthermore, in a two-electrode system, a specific capacitance of 225 F/g at 0.25 A/g and a good cycling stability (93% capacitance retention over 20,000 cycles at 25 A/g) were achieved by using BNC as electrodes. The strategy of synthesis is facile and effective to fabricate multi-doped graphene-like carbon for promising candidates as electrode materials in supercapacitors.

  6. Implementation of ICARE learning model using visualization animation on biotechnology course

    NASA Astrophysics Data System (ADS)

    Hidayat, Habibi

    2017-12-01

    ICARE is a learning model that directly ensure the students to actively participate in the learning process using animation media visualization. ICARE have five key elements of learning experience from children and adult that is introduction, connection, application, reflection and extension. The use of Icare system to ensure that participants have opportunity to apply what have been they learned. So that, the message delivered by lecture to students can be understood and recorded by students in a long time. Learning model that was deemed capable of improving learning outcomes and interest to learn in following learning process Biotechnology with applying the ICARE learning model using visualization animation. This learning model have been giving motivation to participate in the learning process and learning outcomes obtained becomes more increased than before. From the results of student learning in subjects Biotechnology by applying the ICARE learning model using Visualization Animation can improving study results of student from the average value of middle test amounted to 70.98 with the percentage of 75% increased value of final test to be 71.57 with the percentage of 68.63%. The interest to learn from students more increasing visits of student activities at each cycle, namely the first cycle obtained average value by 33.5 with enough category. The second cycle is obtained an average value of 36.5 to good category and third cycle the average value of 36.5 with a student activity to good category.

  7. Development of the ANL plant dynamics code and control strategies for the supercritical carbon dioxide Brayton cycle and code validation with data from the Sandia small-scale supercritical carbon dioxide Brayton cycle test loop.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisseytsev, A.; Sienicki, J. J.

    2011-11-07

    Significant progress has been made in the ongoing development of the Argonne National Laboratory (ANL) Plant Dynamics Code (PDC), the ongoing investigation and development of control strategies, and the analysis of system transient behavior for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycles. Several code modifications have been introduced during FY2011 to extend the range of applicability of the PDC and to improve its calculational stability and speed. A new and innovative approach was developed to couple the Plant Dynamics Code for S-CO{sub 2} cycle calculations with SAS4A/SASSYS-1 Liquid Metal Reactor Code System calculations for the transient system level behavior onmore » the reactor side of a Sodium-Cooled Fast Reactor (SFR) or Lead-Cooled Fast Reactor (LFR). The new code system allows use of the full capabilities of both codes such that whole-plant transients can now be simulated without additional user interaction. Several other code modifications, including the introduction of compressor surge control, a new approach for determining the solution time step for efficient computational speed, an updated treatment of S-CO{sub 2} cycle flow mergers and splits, a modified enthalpy equation to improve the treatment of negative flow, and a revised solution of the reactor heat exchanger (RHX) equations coupling the S-CO{sub 2} cycle to the reactor, were introduced to the PDC in FY2011. All of these modifications have improved the code computational stability and computational speed, while not significantly affecting the results of transient calculations. The improved PDC was used to continue the investigation of S-CO{sub 2} cycle control and transient behavior. The coupled PDC-SAS4A/SASSYS-1 code capability was used to study the dynamic characteristics of a S-CO{sub 2} cycle coupled to a SFR plant. Cycle control was investigated in terms of the ability of the cycle to respond to a linear reduction in the electrical grid demand from 100% to 0% at a rate of 5%/minute. It was determined that utilization of turbine throttling control below 50% load improves the cycle efficiency significantly. Consequently, the cycle control strategy has been updated to include turbine throttle valve control. The new control strategy still relies on inventory control in the 50%-90% load range and turbine bypass for fine and fast generator output adjustments, but it now also includes turbine throttling control in the 0%-50% load range. In an attempt to investigate the feasibility of using the S-CO{sub 2} cycle for normal decay heat removal from the reactor, the cycle control study was extended beyond the investigation of normal load following. It was shown that such operation is possible with the extension of the inventory and the turbine throttling controls. However, the cycle operation in this range is calculated to be so inefficient that energy would need to be supplied from the electrical grid assuming that the generator could be capable of being operated in a motoring mode with an input electrical energy from the grid having a magnitude of about 20% of the nominal plant output electrical power level in order to maintain circulation of the CO{sub 2} in the cycle. The work on investigation of cycle operation at low power level will be continued in the future. In addition to the cycle control study, the coupled PDC-SAS4A/SASSYS-1 code system was also used to simulate thermal transients in the sodium-to-CO{sub 2} heat exchanger. Several possible conditions with the potential to introduce significant changes to the heat exchanger temperatures were identified and simulated. The conditions range from reactor scram and primary sodium pump failure or intermediate sodium pump failure on the reactor side to pipe breaks and valve malfunctions on the S-CO{sub 2} side. It was found that the maximum possible rate of the heat exchanger wall temperature change for the particular heat exchanger design assumed is limited to {+-}7 C/s for less than 10 seconds. Modeling in the Plant Dynamics Code has been compared with available data from the Sandia National Laboratories (SNL) small-scale S-CO{sub 2} Brayton cycle demonstration that is being assembled in a phased approach currently at Barber-Nichols Inc. and at SNL in the future. The available data was obtained with an earlier configuration of the S-CO{sub 2} loop involving only a single-turbo-alternator-compressor (TAC) instead of two TACs, a single low temperature recuperator (LTR) instead of both a LTR and a high temperature recuperator (HTR), and fewer than the later to be installed full set of electric heaters. Due to the absence of the full heating capability as well as the lack of a high temperature recuperator providing additional recuperation, the temperature conditions obtained with the loop are too low for the loop conditions to be prototypical of the S-CO{sub 2} cycle.« less

  8. Thallium 2223 high T(sub c) superconductor in a silver matrix and its magnetic shielding, hermalcycle and time aging properties

    NASA Technical Reports Server (NTRS)

    Fei, X.; He, W. S.; Havenhill, A.; Ying, Z. Q.; Xin, Y.; Alzayed, N.; Wong, K. K.; Guo, Y.; Reichle, D.; Lucas, M. S. P.

    1995-01-01

    Superconducting Tl2Ba2Ca2Cu3O10 (Tl2223) was ground to powder. Mixture with silver powder (0-80% weight) and press to desired shape. After proper annealing, one can get good silver-content Tl2223 bulk superconductor. It is time-stable and has good superconducting property as same as pure Tl2223. It also has better mechanical property and far better thermal cycle property than pure Tl2223.

  9. Factors associated with good TB infection control practices among primary healthcare workers in the Free State Province, South Africa.

    PubMed

    Engelbrecht, Michelle; Janse van Rensburg, André; Kigozi, Gladys; van Rensburg, Hcj Dingie

    2016-11-04

    Despite the availability of TB infection control guidelines, and good levels of healthcare worker knowledge about infection control, often these measures are not well implemented. This study sought to determine the factors associated with healthcare workers' good TB infection control practices in primary health care facilities in the Free State Province, South Africa. A cross-sectional self-administered survey among nurses (n = 202) and facility-based community healthcare workers (n = 34) as well as facility observations were undertaken at all 41 primary health care facilities in a selected district of the Free State Province. The majority of respondents were female (n = 200; 87.7 %) and the average age was 44.19 years (standard deviation ±10.82). Good levels of knowledge were recorded, with 42.8 % (n = 101) having an average score (i.e. 65-79 %) and 31.8 % (n = 75) a good score (i.e. ≥ 80 %). Most respondents (n = 189; 80.4 %) had positive attitudes towards TB infection control practices (i.e. ≥ 80 %). While good TB infection control practices were reported by 72.9 % (n = 161) of the respondents (i.e. ≥75 %), observations revealed this to not necessarily be the case. For every unit increase in attitudes, good practices increased 1.090 times (CI:1.016-1.169). Respondents with high levels of knowledge (≥80 %) were 4.029 (CI: 1.550-10.469) times more likely to have good practices when compared to respondents with poor levels of knowledge (<65 %). The study did not find TB/HIV-related training to be a predictor of good practices. Positive attitudes and good levels of knowledge regarding TB infection control were the main factors associated with good infection control practices. Although many respondents reported good infection control practices - which was somewhat countered by the observations - there are areas that require attention, particularly those related to administrative controls and the use of personal protective equipment.

  10. Latitude Distribution of Sunspots: Analysis Using Sunspot Data and a Dynamo Model

    NASA Astrophysics Data System (ADS)

    Mandal, Sudip; Karak, Bidya Binay; Banerjee, Dipankar

    2017-12-01

    In this paper, we explore the evolution of sunspot latitude distribution and explore its relations with the cycle strength. With the progress of the solar cycle, the distributions in two hemispheres from mid-latitudes propagate toward the equator and then (before the usual solar minimum) these two distributions touch each other. By visualizing the evolution of the distributions in two hemispheres, we separate the solar cycles by excluding this hemispheric overlap. From these isolated solar cycles in two hemispheres, we generate latitude distributions for each cycle, starting from cycle 8 to cycle 23. We find that the parameters of these distributions, namely the central latitude (C), width (δ), and height (H), evolve with the cycle number, and they show some hemispheric asymmetries. Although the asymmetries in these parameters persist for a few successive cycles, they get corrected within a few cycles, and the new asymmetries appear again. In agreement with the previous study, we find that distribution parameters are correlated with the strengths of the cycles, although these correlations are significantly different in two hemispheres. The general trend features, i.e., (i) stronger cycles that begin sunspot eruptions at relatively higher latitudes, and (ii) stronger cycles that have wider bands of sunspot emergence latitudes, are confirmed when combining the data from two hemispheres. We explore these features using a flux transport dynamo model with stochastic fluctuations. We find that these features are correctly reproduced in this model. The solar cycle evolution of the distribution center is also in good agreement with observations. Possible explanations of the observed features based on this dynamo model are presented.

  11. Life cycle assessment part 2: current impact assessment practice.

    PubMed

    Pennington, D W; Potting, J; Finnveden, G; Lindeijer, E; Jolliet, O; Rydberg, T; Rebitzer, G

    2004-07-01

    Providing our society with goods and services contributes to a wide range of environmental impacts. Waste generation, emissions and the consumption of resources occur at many stages in a product's life cycle-from raw material extraction, energy acquisition, production and manufacturing, use, reuse, recycling, through to ultimate disposal. These all contribute to impacts such as climate change, stratospheric ozone depletion, photooxidant formation (smog), eutrophication, acidification, toxicological stress on human health and ecosystems, the depletion of resources and noise-among others. The need exists to address these product-related contributions more holistically and in an integrated manner, providing complimentary insights to those of regulatory/process-oriented methodologies. A previous article (Part 1, Rebitzer et al., 2004) outlined how to define and model a product's life cycle in current practice, as well as the methods and tools that are available for compiling the associated waste, emissions and resource consumption data into a life cycle inventory. This article highlights how practitioners and researchers from many domains have come together to provide indicators for the different impacts attributable to products in the life cycle impact assessment (LCIA) phase of life cycle assessment (LCA).

  12. Relationship between H2 sorption properties and aqueous corrosion mechanisms in A2Ni7 hydride forming alloys (A = Y, Gd or Sm)

    NASA Astrophysics Data System (ADS)

    Charbonnier, Véronique; Monnier, Judith; Zhang, Junxian; Paul-Boncour, Valérie; Joiret, Suzanne; Puga, Beatriz; Goubault, Lionel; Bernard, Patrick; Latroche, Michel

    2016-09-01

    Intermetallic compounds A2B7 (A = rare earth, B = transition metal) are of interest for Ni-MH batteries. Indeed they are able to absorb hydrogen reversibly and exhibit good specific capacity in electrochemical route. To understand the effect of rare earth on properties of interest such as thermodynamic, cycling stability and corrosion, we synthesized and studied three compounds: Y2Ni7, Gd2Ni7 and Sm2Ni7. Using Sieverts' method, we plot P-c-isotherms up to 10 MPa and study hydride stability upon solid-gas cycling. Electrochemical cycling was also performed, as well as calendar and cycling corrosion study. Corrosion products were characterized by means of X-ray diffraction, electron diffraction, Raman micro-spectroscopy and scanning and transmission electron microscopies. Magnetic measurements were also performed to calculate corrosion rates. A corrosion mechanism, based on the nature of corrosion products, is proposed. By combining results from solid-gas cycling, electrochemical cycling and corrosion study, we attribute the loss in capacity either to corrosion or loss of crystallinity.

  13. A new algorithm to find fuzzy Hamilton cycle in a fuzzy network using adjacency matrix and minimum vertex degree.

    PubMed

    Nagoor Gani, A; Latha, S R

    2016-01-01

    A Hamiltonian cycle in a graph is a cycle that visits each node/vertex exactly once. A graph containing a Hamiltonian cycle is called a Hamiltonian graph. There have been several researches to find the number of Hamiltonian cycles of a Hamilton graph. As the number of vertices and edges grow, it becomes very difficult to keep track of all the different ways through which the vertices are connected. Hence, analysis of large graphs can be efficiently done with the assistance of a computer system that interprets graphs as matrices. And, of course, a good and well written algorithm will expedite the analysis even faster. The most convenient way to quickly test whether there is an edge between two vertices is to represent graphs using adjacent matrices. In this paper, a new algorithm is proposed to find fuzzy Hamiltonian cycle using adjacency matrix and the degree of the vertices of a fuzzy graph. A fuzzy graph structure is also modeled to illustrate the proposed algorithms with the selected air network of Indigo airlines.

  14. Evaluation of a Mineral Dust Simulation in the Atmospheric-Chemistry General Circulation Model-EMAC

    NASA Astrophysics Data System (ADS)

    Abdel Kader, M.; Astitha, M.; Lelieveld, J.

    2012-04-01

    This study presents an evaluation of the atmospheric mineral dust cycle in the Atmospheric Chemistry General Circulation Model (AC-GCM) using new developed dust emissions scheme. The dust cycle, as an integral part of the Earth System, plays an important role in the Earth's energy balance by both direct and indirect ways. As an aerosol, it significantly impacts the absorption and scattering of radiation in the atmosphere and can modify the optical properties of clouds and snow/ice surfaces. In addition, dust contributes to a range of physical, chemical and bio-geological processes that interact with the cycles of carbon and water. While our knowledge of the dust cycle, its impacts and interactions with the other global-scale bio-geochemical cycles has greatly advanced in the last decades, large uncertainties and knowledge gaps still exist. Improving the dust simulation in global models is essential to minimize the uncertainties in the model results related to dust. In this study, the results are based on the ECHAM5 Modular Earth Submodel System (MESSy) AC-GCM simulations using T106L31 spectral resolution (about 120km ) with 31 vertical levels. The GMXe aerosol submodel is used to simulate the phase changes of the dust particles between soluble and insoluble modes. Dust emission, transport and deposition (wet and dry) are calculated on-line along with the meteorological parameters in every model time step. The preliminary evaluation of the dust concentration and deposition are presented based on ground observations from various campaigns as well as the evaluation of the optical properties of dust using AERONET and satellite (MODIS and MISR) observations. Preliminarily results show good agreement with observations for dust deposition and optical properties. In addition, the global dust emissions, load, deposition and lifetime is in good agreement with the published results. Also, the uncertainties in the dust cycle that contribute to the overall model performance will be briefly discussed as it is a subject of future work.

  15. A Predictive Framework for Thermomechanical Fatigue Life of High Silicon Molybdenum Ductile Cast Iron Based on Considerations of Strain Energy Dissipation

    NASA Astrophysics Data System (ADS)

    Avery, Katherine R.

    Isothermal low cycle fatigue (LCF) and anisothermal thermomechanical fatigue (TMF) tests were conducted on a high silicon molybdenum (HiSiMo) cast iron for temperatures up to 1073K. LCF and out-of-phase (OP) TMF lives were significantly reduced when the temperature was near 673K due to an embrittlement phenomenon which decreases the ductility of HiSiMo at this temperature. In this case, intergranular fracture was predominant, and magnesium was observed at the fracture surface. When the thermal cycle did not include 673K, the failure mode was predominantly transgranular, and magnesium was not present on the fracture surface. The in-phase (IP) TMF lives were unaffected when the thermal cycle included 673K, and the predominant failure mode was found to be transgranular fracture, regardless of the temperature. No magnesium was present on the IP TMF fracture surfaces. Thus, the embrittlement phenomenon was found to contribute to fatigue damage only when the temperature was near 673K and a tensile stress was present. To account for the temperature- and stress-dependence of the embrittlement phenomenon on the TMF life of HiSiMo cast iron, an original model based on the cyclic inelastic energy dissipation is proposed which accounts for temperature-dependent differences in the rate of fatigue damage accumulation in tension and compression. The proposed model has few empirical parameters. Despite the simplicity of the model, the predicted fatigue life shows good agreement with more than 130 uniaxial low cycle and thermomechanical fatigue tests, cyclic creep tests, and tests conducted at slow strain rates and with hold times. The proposed model was implemented in a multiaxial formulation and applied to the fatigue life prediction of an exhaust manifold subjected to severe thermal cycles. The simulation results show good agreement with the failure locations and number of cycles to failure observed in a component-level experiment.

  16. Analysis of the capability to effectively design complementary metal oxide semiconductor integrated circuits

    NASA Astrophysics Data System (ADS)

    McConkey, M. L.

    1984-12-01

    A complete CMOS/BULK design cycle has been implemented and fully tested to evaluate its effectiveness and a viable set of computer-aided design tools for the layout, verification, and simulation of CMOS/BULK integrated circuits. This design cycle is good for p-well, n-well, or twin-well structures, although current fabrication technique available limit this to p-well only. BANE, an integrated layout program from Stanford, is at the center of this design cycle and was shown to be simple to use in the layout of CMOS integrated circuits (it can be also used to layout NMOS integrated circuits). A flowchart was developed showing the design cycle from initial layout, through design verification, and to circuit simulation using NETLIST, PRESIM, and RNL from the University of Washington. A CMOS/BULK library was designed and includes logic gates that were designed and completely tested by following this flowchart. Also designed was an arithmetic logic unit as a more complex test of the CMOS/BULK design cycle.

  17. Endometriosis

    MedlinePlus

    ... Z health topics Reproductive Health Breastfeeding Menopause Menstrual Cycle Pregnancy Popular topics Bacterial vaginosis Birth control methods ... Z health topics Reproductive Health Breastfeeding Menopause Menstrual Cycle Pregnancy Popular topics Bacterial vaginosis Birth control methods ...

  18. 7 CFR 400.202 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... during the normal operation cycle of the business or within one year if the operation cycle is shorter...), International Business Systems (IBM)-defined, byte controlled communications protocol, using control characters...

  19. Variable pressure power cycle and control system

    DOEpatents

    Goldsberry, Fred L.

    1984-11-27

    A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

  20. A limit-cycle self-organizing map architecture for stable arm control.

    PubMed

    Huang, Di-Wei; Gentili, Rodolphe J; Katz, Garrett E; Reggia, James A

    2017-01-01

    Inspired by the oscillatory nature of cerebral cortex activity, we recently proposed and studied self-organizing maps (SOMs) based on limit cycle neural activity in an attempt to improve the information efficiency and robustness of conventional single-node, single-pattern representations. Here we explore for the first time the use of limit cycle SOMs to build a neural architecture that controls a robotic arm by solving inverse kinematics in reach-and-hold tasks. This multi-map architecture integrates open-loop and closed-loop controls that learn to self-organize oscillatory neural representations and to harness non-fixed-point neural activity even for fixed-point arm reaching tasks. We show through computer simulations that our architecture generalizes well, achieves accurate, fast, and smooth arm movements, and is robust in the face of arm perturbations, map damage, and variations of internal timing parameters controlling the flow of activity. A robotic implementation is evaluated successfully without further training, demonstrating for the first time that limit cycle maps can control a physical robot arm. We conclude that architectures based on limit cycle maps can be organized to function effectively as neural controllers. Copyright © 2016 Elsevier Ltd. All rights reserved.

Top