Semiconducting compounds and devices incorporating same
Marks, Tobin J; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki
2014-06-17
Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.
Semiconducting compounds and devices incorporating same
Marks, Tobin J.; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki
2016-01-19
Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.
Stretchable and foldable electronic devices
Rogers, John A; Huang, Yonggang; Ko, Heung Cho; Stoykovich, Mark; Choi, Won Mook; Song, Jizhou; Ahn, Jong Hyun; Kim, Dae Hyeong
2013-10-08
Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.
Stretchable and foldable electronic devices
Rogers, John A; Huang, Yonggang; Ko, Heung Cho; Stoykovich, Mark; Choi, Won Mook; Song, Jizhou; Ahn, Jong Hyun; Kim, Dae Hyeong
2014-12-09
Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.
NASA Astrophysics Data System (ADS)
Horike, Shohei; Nagaki, Hiroto; Misaki, Masahiro; Koshiba, Yasuko; Morimoto, Masahiro; Fukushima, Tatsuya; Ishida, Kenji
2018-03-01
This paper describes an evaluation of ionic liquids (ILs) as potential electrolytes for single-layered light-emitting devices with good emission performance. As optoelectronic devices continue to grow in abundance, high-performance light-emitting devices with a single emission layer are becoming increasingly important for low-cost production. We show that a simple technique of osmosing IL into the polymer layer can result in high luminous efficiency and good response times of single-layered light-emitting polymers, even without the additional stacking of charge carrier injection and transport layers. The IL contributions to the light-emission of the polymer are discussed from the perspectives of energy diagrams and of the electric double layers on the electrodes. Our findings enable a faster, cheaper, and lower-in-waste production of light-emitting devices.
Development of non-keyboard input device checklists through assessments.
Woods, Valerie; Hastings, Sarah; Buckle, Peter; Haslam, Roger
2003-11-01
An assessment of non-keyboard input devices (NKID) was conducted to identify factors for good design in relation to operation, performance and comfort. Twenty-seven NKID users, working in health and safety, evaluated eight devices that included mice, trackballs and a joystick mouse. The factors considered important for good design were: (1) comfortable hand and finger position, (2) adequate control, (3) intuitive and easy to use, (4) ease of device, button and trackball movement, (5) good interaction with software, (6) provision of suitable accessories. Mice were rated more favourably than trackballs or the joystick mouse. The design of the standard 2-button mouse (D4) was considered most desirable to use; the 3-button mouse (D1) and 3-button curved mouse (D8) were also favoured. Assessment data and comments were drawn together with previously published research to produce useful tools for NKID purchasing (i.e. Device Purchasing Checklist) and assessment (i.e. Device Assessment Checklist).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
Methods and devices for fabricating and assembling printable semiconductor elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
Methods and devices for fabricating and assembling printable semiconductor elements
Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao
2014-03-04
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
International survey on neuroradiological interventional and therapeutic devices and materials.
van den Berg, René; Mayer, Thomas E
2015-12-01
A web-based survey was performed among the members of the World Federation of Interventional and Therapeutic Neuroradiology to determine the differences in availability, pricing, and performance of endovascular devices with special focus on coils, intra-arterial stroke devices, detachable balloons, and liquid embolic materials. The results of this survey show that the quality of the majority of interventional neuroradiology devices is good and compatibility issues are limited. Individual action towards suppliers is recommended to discuss the availability and pricing of devices and embolization materials. © The Author(s) 2015.
Thermoelectric materials and devices
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Talcott, Noel A. (Inventor)
2011-01-01
New thermoelectric materials comprise highly [111]-oriented twinned group IV alloys on the basal plane of trigonal substrates, which exhibit a high thermoelectric figure of merit and good material performance, and devices made with these materials.
NASA Astrophysics Data System (ADS)
Saravanakumar, B.; Maruthamuthu, S.; Umadevi, V.; Saravanan, V.
To accomplish superior performance in supercapacitors, a fresh class of electrode materials with advantageous structures is essential. Owing to its rich electrochemical activity, vanadium oxides are considered to be an attractive electrode material for energy storing devices. In this work, vanadium pentoxide (V2O5) nanostructures were prepared using surfactant (CTAB)-assisted hydrothermal route. Stacked V2O5 sheets enable additional channels for electrolyte ion intercalation. These stacked V2O5 nanosheets show highest specific capacitance of 466Fg-1 at 0.5Ag-1. In addition, it exhibits good rate capacity, lower value of charge transfer resistance and good stability when used as an electrode material for supercapacitors. Further, an asymmetric supercapacitor device was assembled utilizing the stacked V2O5 sheets and activated carbon as electrodes. The electrochemical features of the device are also discussed.
Geckili, Onur; Bilhan, Hakan; Cilingir, Altug; Bilmenoglu, Caglar; Ates, Gokcen; Urgun, Aliye Ceren; Bural, Canan
2014-12-01
A comparative ex vivo study was performed to determine electronic percussive test values (PTVs) measured by cabled and wireless electronic percussive testing (EPT) devices and to evaluate the intra- and interobserver reliability of the wireless EPT device. Forty implants were inserted into the vertebrae and forty into the pelvis of a steer, a safe distance apart. The implants were all 4.3 mm wide and 13 mm long, from the same manufacturer. PTV of each implant was measured by four different examiners, using both EPT devices, and compared. Additionally, the intra- and interobserver reliability of the wireless EPT device was evaluated. Statistically significant differences (P <0.05) were observed between PTVs made by the two EPT devices. PTVs measured by the wireless EPT device were significantly higher than the cabled EPT device (P <0.05), indicating lower implant stability. The intraobserver reliability of the wireless EPT device was evaluated as excellent for the measurements in type II bone and good-to-excellent in type IV bone; interobserver reliability was evaluated as fair-to-good in both bone types. The wireless EPT device gives PTVs higher than the cabled EPT device, indicating lower implant stability, and its inter- and intraobserver reliability is good and acceptable.
NASA Astrophysics Data System (ADS)
Munusami, Ravindiran; Yakkala, Bhaskar Rao; Prabhakar, Shankar
2013-12-01
Magnetic tunnel junction were made by inserting the magnetic materials between the source, channel and the drain of the High Electron Mobility Transistor (HEMT) to enhance the performance. Material studio software package was used to design the superlattice layers. Different cases were analyzed to optimize the performance of the device by placing the magnetic material at different positions of the device. Simulation results based on conductivity reveals that the device has a very good electron transport due to the magnetic materials and will amplify very low frequency signals.
Few-layered Ni(OH)2 nanosheets for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Sun, Wenping; Rui, Xianhong; Ulaganathan, Mani; Madhavi, Srinivasan; Yan, Qingyu
2015-11-01
Few-layered Ni(OH)2 nanosheets (4-5 nm in thickness) are synthesized towards high-performance supercapacitors. The ultrathin Ni(OH)2 nanosheets show high specific capacitance and good rate capability in both three-electrode and asymmetric devices. In the three-electrode device, the Ni(OH)2 nanosheets deliver a high capacitance of 2064 F g-1 at 2 A g-1, and the capacitance still has a retention of 1837 F g-1 at a high current density of 20 A g-1. Such excellent performance is by far one of the best for Ni(OH)2 electrodes. In the two-electrode asymmetric device, the specific capacitance is 248 F g-1 at 1 A g-1, and reaches 113 F g-1 at 20 A g-1. The capacitance of the asymmetric device maintains to be 166 F g-1 during the 4000th cycle at 2 A g-1, suggesting good cycling stability of the device. Besides, the asymmetric device exhibits gravimetric energy density of 22 Wh kg-1 at a power density of 0.8 kW kg-1. The present results demonstrate that the ultrathin Ni(OH)2 nanosheets are highly attractive electrode materials for achieving fast charging/discharging and high-capacity supercapacitors.
21 CFR 26.37 - Confidence building activities.
Code of Federal Regulations, 2010 CFR
2010-04-01
... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT EVALUATION REPORTS: UNITED STATES AND THE EUROPEAN... assessment bodies (CAB's) to perform quality system or product evaluations to the specifications of the...
21 CFR 26.35 - Length and purpose of transition period.
Code of Federal Regulations, 2010 CFR
2010-04-01
... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT EVALUATION REPORTS: UNITED STATES AND THE EUROPEAN... bodies (CAB's) of the other party with respect to the ability to perform quality system and product...
Imaging performance of a normal incidence soft X-ray telescope
NASA Technical Reports Server (NTRS)
Henry, J. P.; Spiller, E.; Weisskopf, M.
1982-01-01
Measurements are presented of the imaging performance of a normal incidence spherical soft X-ray mirror at BK-alpha (67.6 A). The reflector was a 124-layer coating consisting of alternating Re-W alloy and C layers with a protective C overcoat 34 A thick deposited on a Zerodur substrate. Measurements made at an angle of 1.5 deg off axis with the prototype of the Einstein Observatory high resolution imager reveal the resolution of the mirror to be about 1 arcsec FWHM, with 50% of the reflected power within the detector field of 512 arcsec contained within a diameter of 5 arcsec. The data demonstrate the practicality and potential good performance of normal-incidence soft X-ray optics, and show that the scattering performances of such devices may be as good or better than the best grazing incidence devices.
Design of a handheld infrared imaging device based on uncooled infrared detector
NASA Astrophysics Data System (ADS)
Sun, Xianzhong; Li, Junwei; Zhang, Yazhou
2017-02-01
This paper, we introduced the system structure and operation principle of the device, and discussed our solutions for image data acquisition and storage, operating states and modes control and power management in detail. Besides, we proposed a algorithm of pseudo color for thermal image and applied it to the image processing module of the device. The thermal images can be real time displayed in a 1.8 inches TFT-LCD. The device has a compacted structure and can be held easily by one hand. It also has a good imaging performance with low power consumption, thermal sensitivity is less than 150mK. At last, we introduced one of its applications for fault diagnosis in electronic circuits, the test shows that: it's a good solution for fast fault detection.
Optimum Design of Anti-Siphon Device used to Prevent Cerebrospinal Fluid from Overdraining
NASA Astrophysics Data System (ADS)
Jang, Jong Yun; Lee, Chong Sun; Suh, Chang Min
The present study investigated design parameters of an anti-siphon device used with shunt valves to treat patients with hydrocephalus. Structural analyses were performed to understand roles of design variables and optimize performance of the diaphragm-type anti-siphon device (hereafter referred to as the ASD). Experiments were performed on the lab-made product and showed good agreements with the numerical simulations. Using the simulations, we were able to design a more physiological ASD which gave equal opening pressures in both supine and upright postures. Tissue encapsulization phenomenon was also simulated and the results indicated underdrainage of CSF in the upright position of the patient.
NASA Astrophysics Data System (ADS)
Amalina Raja Seman, Raja Noor; Asyadi Azam, Mohd; Ambri Mohamed, Mohd
2016-12-01
Supercapacitors are highly promising energy devices with superior charge storage performance and a long lifecycle. Construction of the supercapacitor cell, especially electrode fabrication, is critical to ensure good performance in applications. This work demonstrates direct growth of vertically aligned carbon nanotubes (CNTs) on Fe-Ni based metal alloy foils, namely SUS 310S, Inconel 600 and YEF 50, and their use in symmetric vertically aligned CNT supercapacitor electrodes. Alumina and cobalt thin film catalysts were deposited onto the foils, and then CNT growth was performed using alcohol catalytic chemical vapour deposition. By this method, vertically aligned CNTs were successfully grown and used directly as a binder-free supercapacitor electrode to deliver excellent electrochemical performance. The device showed relatively good specific capacitance, a superior rate capability and excellent cycle stability, maintaining about 96% capacitance up to 1000 cycles.
Advanced analytical modeling of double-gate Tunnel-FETs - A performance evaluation
NASA Astrophysics Data System (ADS)
Graef, Michael; Hosenfeld, Fabian; Horst, Fabian; Farokhnejad, Atieh; Hain, Franziska; Iñíguez, Benjamín; Kloes, Alexander
2018-03-01
The Tunnel-FET is one of the most promising devices to be the successor of the standard MOSFET due to its alternative current transport mechanism, which allows a smaller subthreshold slope than the physically limited 60 mV/dec of the MOSFET. Recently fabricated devices show smaller slopes already but mostly not over multiple decades of the current transfer characteristics. In this paper the performance limiting effects, occurring during the fabrication process of the device, such as doping profiles and midgap traps are analyzed by physics-based analytical models and their performance limiting abilities are determined. Additionally, performance enhancing possibilities, such as hetero-structures and ambipolarity improvements are introduced and discussed. An extensive double-gate n-Tunnel-FET model is presented, which meets the versatile device requirements and shows a good fit with TCAD simulations and measurement data.
Modelling of TES X-ray Microcalorimeters with a Novel Absorber Design
NASA Technical Reports Server (NTRS)
Iyomoto, Naoko; Bandler, Simon; Brefosky, Regis; Brown, Ari; Chervenak, James; Figueroa-Feliciano, Enectali; Finkbeiner, Frederick; Kelley, Richard; Kilbourne, Caroline; Lindeman, Mark;
2007-01-01
Our development of a novel x-ray absorber design that has enabled the incorporation of high-conductivity electroplated gold into our absorbers has yielded devices that not only have achieved breakthrough performance at 6 keV, but also are extraordinarily well modelled. We have determined device parameters that reproduce complex impedance curves and noise spectra throughout transition. Observed pulse heights, decay time and baseline energy resolution were in good agreement with simulated results using the same parameters. In the presentation, we will show these results in detail and we will also show highlights of the characterization of our gold/bismuth-absorber devices. We will discuss possible improvement of our current devices and expected performance of future devices using the modelling results.
Kos, Sebastian; Huegli, Rolf; Hofmann, Eugen; Quick, Harald H; Kuehl, Hilmar; Aker, Stephanie; Kaiser, Gernot M; Borm, Paul J A; Jacob, Augustinus L; Bilecen, Deniz
2009-05-01
The purpose of this study was to demonstrate feasibility of percutaneous transluminal aortic stenting and cava filter placement under magnetic resonance imaging (MRI) guidance exclusively using a polyetheretherketone (PEEK)-based MRI-compatible guidewire. Percutaneous transluminal aortic stenting and cava filter placement were performed in 3 domestic swine. Procedures were performed under MRI-guidance in an open-bore 1.5-T scanner. The applied 0.035-inch guidewire has a PEEK core reinforced by fibres, floppy tip, hydrophilic coating, and paramagnetic markings for passive visualization. Through an 11F sheath, the guidewire was advanced into the abdominal (swine 1) or thoracic aorta (swine 2), and the stents were deployed. The guidewire was advanced into the inferior vena cava (swine 3), and the cava filter was deployed. Postmortem autopsy was performed. Procedural success, guidewire visibility, pushability, and stent support were qualitatively assessed by consensus. Procedure times were documented. Guidewire guidance into the abdominal and thoracic aortas and the inferior vena cava was successful. Stent deployments were successful in the abdominal (swine 1) and thoracic (swine 2) segments of the descending aorta. Cava filter positioning and deployment was successful. Autopsy documented good stent and filter positioning. Guidewire visibility through applied markers was rated acceptable for aortic stenting and good for venous filter placement. Steerability, pushability, and device support were good. The PEEK-based guidewire allows either percutaneous MRI-guided aortic stenting in the thoracic and abdominal segments of the descending aorta and filter placement in the inferior vena cava with acceptable to good device visibility and offers good steerability, pushability, and device support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kos, Sebastian, E-mail: skos@gmx.d; Huegli, Rolf; Hofmann, Eugen
The purpose of this study was to demonstrate feasibility of percutaneous transluminal aortic stenting and cava filter placement under magnetic resonance imaging (MRI) guidance exclusively using a polyetheretherketone (PEEK)-based MRI-compatible guidewire. Percutaneous transluminal aortic stenting and cava filter placement were performed in 3 domestic swine. Procedures were performed under MRI-guidance in an open-bore 1.5-T scanner. The applied 0.035-inch guidewire has a PEEK core reinforced by fibres, floppy tip, hydrophilic coating, and paramagnetic markings for passive visualization. Through an 11F sheath, the guidewire was advanced into the abdominal (swine 1) or thoracic aorta (swine 2), and the stents were deployed. Themore » guidewire was advanced into the inferior vena cava (swine 3), and the cava filter was deployed. Postmortem autopsy was performed. Procedural success, guidewire visibility, pushability, and stent support were qualitatively assessed by consensus. Procedure times were documented. Guidewire guidance into the abdominal and thoracic aortas and the inferior vena cava was successful. Stent deployments were successful in the abdominal (swine 1) and thoracic (swine 2) segments of the descending aorta. Cava filter positioning and deployment was successful. Autopsy documented good stent and filter positioning. Guidewire visibility through applied markers was rated acceptable for aortic stenting and good for venous filter placement. Steerability, pushability, and device support were good. The PEEK-based guidewire allows either percutaneous MRI-guided aortic stenting in the thoracic and abdominal segments of the descending aorta and filter placement in the inferior vena cava with acceptable to good device visibility and offers good steerability, pushability, and device support.« less
NASA Astrophysics Data System (ADS)
Cheng, Shiou-Ying
2004-07-01
An InGaP/GaAs heterojunction bipolar transistor (HBT) with a continuous conduction-band structure is demonstrated and theoretically investigated. This device exhibited good performance including lower turn-on voltage, lower offset voltage and smaller collector current saturation voltage. The novel aspect of device structure design is the adoption of the compositionally linear-graded AlGaAs layer between the InGaP-emitter and GaAs-base layers. Therefore, the device studied shows better dc and ac performances than a conventional device. Consequently, this causes the substantial benefit for practical analog and digital applications especially for lower operation voltage, lower power consumption commercial and military products.
Development and control of a magnetorheological haptic device for robot assisted surgery.
Shokrollahi, Elnaz; Goldenberg, Andrew A; Drake, James M; Eastwood, Kyle W; Kang, Matthew
2017-07-01
A prototype magnetorheological (MR) fluid-based actuator has been designed for tele-robotic surgical applications. This device is capable of generating forces up to 47 N, with input currents ranging from 0 to 1.5 A. We begin by outlining the physical design of the device, and then discuss a novel nonlinear model of the device's behavior. The model was developed using the Hammerstein-Wiener (H-W) nonlinear black-box technique and is intended to accurately capture the hysteresis behavior of the MR-fluid. Several experiments were conducted on the device to collect estimation and validation datasets to construct the model and assess its performance. Different estimating functions were used to construct the model, and their effectiveness is assessed based on goodness-of-fit and final-prediction-error measurements. A sigmoid network was found to have a goodness-of-fit of 95%. The model estimate was then used to tune a PID controller. Two control schemes were proposed to eliminate the hysteresis behavior present in the MR fluid device. One method uses a traditional force feedback control loop and the other is based on measuring the magnetic field using a Hall-effect sensor embedded within the device. The Hall-effect sensor scheme was found to be superior in terms of cost, simplicity and real-time control performance compared to the force control strategy.
A merged pipe organ binary-analog correlator
NASA Astrophysics Data System (ADS)
Miller, R. S.; Berry, M. B.
1982-02-01
The design of a 96-stage, programmable binary-analog correlator is described. An array of charge coupled device (CCD) delay lines of differing lengths perform the delay and sum functions. Merging of several CCD channels is employed to reduce the active area. This device architecture allows simplified output detection while maintaining good device performance at higher speeds (5-10 MHz). Experimental results indicate a 50 dB broadband dynamic range and excellent agreement with the theoretical processing gain (19.8 dB) when operated at a 6 MHz sampling frequency as a p-n sequence matched filter.
Kumar, Surender; Ghosh, Somnath; Munichandraiah, N; Vasan, H N
2013-06-14
A porous carbon foam (CF) electrode modified with a reduced graphene oxide-Ag (rGO-Ag) nanocomposite has been fabricated to purify water. It can perform as an antibacterial device by killing pathogenic microbes with the aid of a 1.5 V battery, with very little power consumption. The device is recycled ten times with good performance for long term usage. It is shown that the device may be implemented as a fast water purifier to deactivate the pathogens in drinking water.
High-voltage compatible, full-depleted CCD
Holland, Stephen Edward
2007-09-18
A charge coupled device for detecting electromagnetic and particle radiation is described. The device includes a high-resistivity semiconductor substrate, buried channel regions, gate electrode circuitry, and amplifier circuitry. For good spatial resolution and high performance, especially when operated at high voltages with full or nearly full depletion of the substrate, the device can also include a guard ring positioned near channel regions, a biased channel stop, and a biased polysilicon electrode over the channel stop.
Symmetric supercapacitor: Sulphurized graphene and ionic liquid.
Shaikh, Jasmin S; Shaikh, Navajsharif S; Kharade, Rohini; Beknalkar, Sonali A; Patil, Jyoti V; Suryawanshi, Mahesh P; Kanjanaboos, Pongsakorn; Hong, Chang Kook; Kim, Jin Hyeok; Patil, Pramod S
2018-10-01
Symmetric supercapacitor is advanced over simple supercapacitor device due to their stability over a large potential window and high energy density. Graphene is a desired candidate for supercapacitor application since it has a high surface area, good electronic conductivity and high electro chemical stability. There is a pragmatic use of ionic liquid electrolyte for supercapacitor due to its stability over a large potential window, good ionic conductivity and eco-friendly nature. For high performance supercapacitor, the interaction between ionic liquid electrolyte and graphene are crucial for better charge transportation. In respect of this, a three-dimensional (3D) nanoporous honeycomb shaped sulfur embedded graphene (S-graphene) has been synthesized by simple chemical method. Here, the fabrication of high performance symmetric supercapacitor is done by using S-graphene as an electrode and [BMIM-PF 6 ] as an electrolyte. The particular architecture of S-graphene benefited to reduce the ion diffusion resistance, providing the large surface area for charge transportation and efficient charge storage. The S-graphene and ionic liquid-based symmetric supercapacitor device showed the large potential window of 3.2 V with high energy density 124 Wh kg -1 at 0.2 A g -1 constant applied current density. Furthermore, this device shows good cycling performance (stability) with a capacitive retention of 95% over 20,000 cycles at a higher current density of 2 A g -1 . Copyright © 2018 Elsevier Inc. All rights reserved.
21 CFR 26.9 - Equivalence determination.
Code of Federal Regulations, 2011 CFR
2011-04-01
... RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS... to in appendix D of this subpart, and a demonstrated pattern of consistent performance in accordance...
21 CFR 26.9 - Equivalence determination.
Code of Federal Regulations, 2010 CFR
2010-04-01
... RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS... to in appendix D of this subpart, and a demonstrated pattern of consistent performance in accordance...
Colorimetric Characterization of Mobile Devices for Vision Applications.
de Fez, Dolores; Luque, Maria José; García-Domene, Maria Carmen; Camps, Vicente; Piñero, David
2016-01-01
Available applications for vision testing in mobile devices usually do not include detailed setup instructions, sacrificing rigor to obtain portability and ease of use. In particular, colorimetric characterization processes are generally obviated. We show that different mobile devices differ also in colorimetric profile and that those differences limit the range of applications for which they are most adequate. The color reproduction characteristics of four mobile devices, two smartphones (Samsung Galaxy S4, iPhone 4s) and two tablets (Samsung Galaxy Tab 3, iPad 4), have been evaluated using two procedures: 3D LUT (Look Up Table) and a linear model assuming primary constancy and independence of the channels. The color reproduction errors have been computed with the CIEDE2000 color difference formula. There is good constancy of primaries but large deviations of additivity. The 3D LUT characterization yields smaller reproduction errors and dispersions for the Tab 3 and iPhone 4 devices, but for the iPad 4 and S4, both models are equally good. The smallest reproduction errors occur with both Apple devices, although the iPad 4 has the highest number of outliers of all devices with both colorimetric characterizations. Even though there is good constancy of primaries, the large deviations of additivity exhibited by the devices and the larger reproduction errors make any characterization based on channel independence not recommendable. The smartphone screens show, in average, the best color reproduction performance, particularly the iPhone 4, and therefore, they are more adequate for applications requiring precise color reproduction.
Design and Application of Automatic Falling Device for Different Brands of Goods
NASA Astrophysics Data System (ADS)
Yang, Xudong; Ge, Qingkuan; Zuo, Ping; Peng, Tao; Dong, Weifu
2017-12-01
The Goods-Falling device is an important device in the intelligent sorting goods sorting system, which is responsible for the temporary storage and counting of the goods, and the function of putting the goods on the conveyor belt according to certain precision requirements. According to the present situation analysis and actual demand of the domestic goods sorting equipment, a vertical type Goods - Falling Device is designed and the simulation model of the device is established. The dynamic characteristics such as the angular error of the opening and closing mechanism are carried out by ADAMS software. The simulation results show that the maximum angular error is 0.016rad. Through the test of the device, the goods falling speed is 7031/hour, the good of the falling position error within 2mm, meet the crawl accuracy requirements of the palletizing robot.
Oral and Written Expression in Children With Reading Comprehension Difficulties.
Carretti, Barbara; Motta, Eleonora; Re, Anna Maria
2016-01-01
Several studies have highlighted that children with reading comprehension difficulties also have problems in tasks that involve telling a story, in writing or verbally. The main differences identified regard poor comprehenders' lower level of coherence in their productions by comparison with good comprehenders. Only one study has compared poor and good comprehenders' performance in both modalities (oral and written), however, to see whether these modalities differently influence poor comprehenders' performance. We qualitatively and quantitatively compared the performance of good and poor comprehenders in oral and written narrative tasks with the aim of shedding light on this issue. Regression analyses were also used to explore the role of working memory and vocabulary in explaining individual differences. Our results showed that the two groups produced narratives of comparable length, with similar percentages of spelling mistakes, whereas they differed in terms of the quality of their narratives, regardless of the modality. These differences were qualified by analyzing the children's use of connective devices, and poor comprehenders were found to use a higher proportion of additive devices than good comprehenders. Regression analyses showed that working memory (particularly the intrusion errors measure) explained a modest part of the qualitative differences in narrative production. Implications for our theoretical understanding of poor comprehenders' profiles and education are discussed. © Hammill Institute on Disabilities 2014.
Conjugated polymers and their use in optoelectronic devices
Marks, Tobin J.; Guo, Xugang; Zhou, Nanjia; Chang, Robert P. H.; Drees, Martin; Facchetti, Antonio
2016-10-18
The present invention relates to certain polymeric compounds and their use as organic semiconductors in organic and hybrid optical, optoelectronic, and/or electronic devices such as photovoltaic cells, light emitting diodes, light emitting transistors, and field effect transistors. The present compounds can provide improved device performance, for example, as measured by power conversion efficiency, fill factor, open circuit voltage, field-effect mobility, on/off current ratios, and/or air stability when used in photovoltaic cells or transistors. The present compounds can have good solubility in common solvents enabling device fabrication via solution processes.
Beam Conditioning and Harmonic Generation in Free ElectronLasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charman, A.E.; Penn, G.; Wolski, A.
2004-07-05
The next generation of large-scale free-electron lasers (FELs) such as Euro-XFEL and LCLS are to be devices which produce coherent X-rays using Self-Amplified Spontaneous Emission (SASE). The performance of these devices is limited by the spread in longitudinal velocities of the beam. In the case where this spread arises primarily from large transverse oscillation amplitudes, beam conditioning can significantly enhance FEL performance. Future X-ray sources may also exploit harmonic generation starting from laser-seeded modulation. Preliminary analysis of such devices is discussed, based on a novel trial-function/variational-principle approach, which shows good agreement with more lengthy numerical simulations.
NASA Astrophysics Data System (ADS)
Alves de Mesquita, Jayme; Lopes de Melo, Pedro
2004-03-01
Thermally sensitive devices—thermistors—have usually been used to monitor sleep-breathing disorders. However, because of their long time constant, these devices are not able to provide a good characterization of fast events, like hypopneas. Nasal pressure recording technique (NPR) has recently been suggested to quantify airflow during sleep. It is claimed that the short time constants of the devices used to implement this technique would allow an accurate analysis of fast abnormal respiratory events. However, these devices present errors associated with nonlinearities and acoustic resonance that could reduce the diagnostic value of the NPR. Moreover, in spite of the high scientific and clinical potential, there is no detailed description of a complete instrumentation system to implement this promising technique in sleep studies. In this context, the purpose of this work was twofold: (1) describe the development of a flexible NPR device and (2) evaluate the performance of this device when compared to pneumotachographs (PNTs) and thermistors. After the design details are described, the system static accuracy is evaluated by a comparative analysis with a PNT. This analysis revealed a significant reduction (p<0.001) of the static error when system nonlinearities were reduced. The dynamic performance of the NPR system was investigated by frequency response analysis and time constant evaluations and the results showed that the developed device response was as good as PNT and around 100 times faster (τ=5,3 ms) than thermistors (τ=512 ms). Experimental results obtained in simulated clinical conditions and in a patient are presented as examples, and confirmed the good features achieved in engineering tests. These results are in close agreement with physiological fundamentals, supplying substantial evidence that the improved dynamic and static characteristics of this device can contribute to a more accurate implementation of medical research projects and to improve the diagnoses of sleep-breathing disorders.
Fringe projection profilometry with portable consumer devices
NASA Astrophysics Data System (ADS)
Liu, Danji; Pan, Zhipeng; Wu, Yuxiang; Yue, Huimin
2018-01-01
A fringe projection profilometry (FPP) using portable consumer devices is attractive because it can realize optical three dimensional (3D) measurement for ordinary consumers in their daily lives. We demonstrate a FPP using a camera in a smart mobile phone and a digital consumer mini projector. In our experiment of testing the smart phone (iphone7) camera performance, the rare-facing camera in the iphone7 causes the FPP to have a fringe contrast ratio of 0.546, nonlinear carrier phase aberration value of 0.6 rad, and nonlinear phase error of 0.08 rad and RMS random phase error of 0.033 rad. In contrast, the FPP using the industrial camera has a fringe contrast ratio of 0.715, nonlinear carrier phase aberration value of 0.5 rad, nonlinear phase error of 0.05 rad and RMS random phase error of 0.011 rad. Good performance is achieved by using the FPP composed of an iphone7 and a mini projector. 3D information of a facemask with a size for an adult is also measured by using the FPP that uses portable consumer devices. After the system calibration, the 3D absolute information of the facemask is obtained. The measured results are in good agreement with the ones that are carried out in a traditional way. Our results show that it is possible to use portable consumer devices to construct a good FPP, which is useful for ordinary people to get 3D information in their daily lives.
PCA-based artifact removal algorithm for stroke detection using UWB radar imaging.
Ricci, Elisa; di Domenico, Simone; Cianca, Ernestina; Rossi, Tommaso; Diomedi, Marina
2017-06-01
Stroke patients should be dispatched at the highest level of care available in the shortest time. In this context, a transportable system in specialized ambulances, able to evaluate the presence of an acute brain lesion in a short time interval (i.e., few minutes), could shorten delay of treatment. UWB radar imaging is an emerging diagnostic branch that has great potential for the implementation of a transportable and low-cost device. Transportability, low cost and short response time pose challenges to the signal processing algorithms of the backscattered signals as they should guarantee good performance with a reasonably low number of antennas and low computational complexity, tightly related to the response time of the device. The paper shows that a PCA-based preprocessing algorithm can: (1) achieve good performance already with a computationally simple beamforming algorithm; (2) outperform state-of-the-art preprocessing algorithms; (3) enable a further improvement in the performance (and/or decrease in the number of antennas) by using a multistatic approach with just a modest increase in computational complexity. This is an important result toward the implementation of such a diagnostic device that could play an important role in emergency scenario.
Flexible organic light-emitting devices with a smooth and transparent silver nanowire electrode
NASA Astrophysics Data System (ADS)
Cui, Hai-Feng; Zhang, Yi-Fan; Li, Chuan-Nan
2014-07-01
We demonstrate a flexible organic light-emitting device (OLED) by using silver nanowire (AgNW) transparent electrode. A template stripping process has been employed to fabricate the AgNW electrode on a photopolymer substrate. From this approach, a random AgNW network electrode can be transferred to the flexible substrate and its roughness has been successfully decreased. As a result, the devices obtained by this method exhibit high efficiency. In addition, the flexible OLEDs keep good performance under a small bending radius.
A portable device for calibration of autocollimators with nanoradian precision
NASA Astrophysics Data System (ADS)
Yandayan, Tanfer
2017-09-01
A portable device has been developed in TUBITAK UME to calibrate high precision autocollimators with nanoradian precision. The device can operate in the range of +/-4500" which is far enough for the calibration of the available autocollimators and can generate ultra-small angles in measurement steps of 0.0005" (2.5 nrad). Description of the device with the performance tests using the calibrated precise autocollimators and novel methods will be reported. The test results indicate that the device is a good candidate for application to on-site/in-situ calibration of autocollimators with expanded uncertainties of 0.01" (50 nrad) particularly those used in slope measuring profilers.
Arrayed waveguide Sagnac interferometer.
Capmany, José; Muñoz, Pascual; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz; Martinez, Alfonso
2003-02-01
We present a novel device, an arrayed waveguide Sagnac interferometer, that combines the flexibility of arrayed waveguides and the wide application range of fiber or integrated optics Sagnac loops. We form the device by closing an array of wavelength-selective light paths provided by two arrayed waveguides with a single 2 x 2 coupler in a Sagnac configuration. The equations that describe the device's operation in general conditions are derived. A preliminary experimental demonstration is provided of a fiber prototype in passive operation that shows good agreement with the expected theoretical performance. Potential applications of the device in nonlinear operation are outlined and discussed.
Fused thiophene-based conjugated polymers and their use in optoelectronic devices
Facchetti, Antonio; Marks, Tobin J; Takai, Atsuro; Seger, Mark; Chen, Zhihua
2015-11-03
The present teachings relate to certain polymeric compounds and their use as organic semiconductors in organic and hybrid optical, optoelectronic, and/or electronic devices such as photovoltaic cells, light emitting diodes, light emitting transistors, and field effect transistors. The disclosed compounds can provide improved device performance, for example, as measured by power conversion efficiency, fill factor, open circuit voltage, field-effect mobility, on/off current ratios, and/or air stability when used in photovoltaic cells or transistors. The disclosed compounds can have good solubility in common solvents enabling device fabrication via solution processes.
Huang, Fei; Wu, Hongbin; Cao, Yong
2010-07-01
Water/alcohol soluble conjugated polymers (WSCPs) can be processed from water or other polar solvents, which offer good opportunities to avoid interfacial mixing upon fabrication of multilayer polymer optoelectronic devices by solution processing, and can dramatically improve charge injection from high work-function metal cathode resulting in greatly enhancement of the device performance. In this critical review, the authors provide a brief review of recent developments in this field, including the materials design, functional principles, and their unique applications as interface modification layer in solution-processable multilayer optoelectronic devices (135 references).
Empty-bladder (hysterographic) view on US for evaluation of intrauterine devices. Work in progress.
Carroll, R; Gombergh, R
1987-06-01
Ultrasound scanning of the pelvis with an empty bladder permits a true frontal view of the uterus to be easily obtained. This view is comparable to the en face view seen at hysterography performed with contrast material. Good definition both of the endometrium and the uterine wall makes this the optimal method for the evaluation of an intrauterine contraceptive device.
Stretchable form of single crystal silicon for high performance electronics on rubber substrates
University of Illinois
2009-04-21
The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Stretchable form of single crystal silicon for high performance electronics on rubber substrates
Rogers, John A [Champaign, IL; Khang, Dahl-Young [Seoul, KR; Sun, Yugang [Naperville, IL; Menard, Etienne [Durham, NC
2012-06-12
The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Stretchable form of single crystal silicon for high performance electronics on rubber substrates
Rogers, John A.; Khang, Dahl-Young; Sun, Yugang; Menard, Etienne
2014-06-17
The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Stretchable form of single crystal silicon for high performance electronics on rubber substrates
Rogers, John A.; Khang, Dahl-Young; Sun, Yugang; Menard, Etienne
2016-12-06
The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Stretchable form of single crystal silicon for high performance electronics on rubber substrates
Rogers, John A.; Khang, Dahl -Young; Sun, Yugang; Menard, Etienne
2015-08-11
The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
A charge-based model of Junction Barrier Schottky rectifiers
NASA Astrophysics Data System (ADS)
Latorre-Rey, Alvaro D.; Mudholkar, Mihir; Quddus, Mohammed T.; Salih, Ali
2018-06-01
A new charge-based model of the electric field distribution for Junction Barrier Schottky (JBS) diodes is presented, based on the description of the charge-sharing effect between the vertical Schottky junction and the lateral pn-junctions that constitute the active cell of the device. In our model, the inherently 2-D problem is transformed into a simple but accurate 1-D problem which has a closed analytical solution that captures the reshaping and reduction of the electric field profile responsible for the improved electrical performance of these devices, while preserving physically meaningful expressions that depend on relevant device parameters. The validation of the model is performed by comparing calculated electric field profiles with drift-diffusion simulations of a JBS device showing good agreement. Even though other fully 2-D models already available provide higher accuracy, they lack physical insight making the proposed model an useful tool for device design.
Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti:Sapphire crystal
NASA Astrophysics Data System (ADS)
Ren, Yingying; Zhang, Limu; Xing, Hongguang; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng
2018-07-01
Highly-compact devices capable of beam splitting are intriguing for a broad range of photonic applications. In this work, we report on the fabrication of optical waveguide splitters with rectangular cladding geometry in a Ti:Sapphire crystal by femtosecond laser inscription. Y-splitters are fabricated with 30 μm × 15 μm and 50 μm × 25 μm input ends, corresponding to two 15 μm × 15 μm and 25 μm × 25 μm output ends, respectively. The full branching angle θ between the two output arms are changing from 0.5° to 2°. The performances of the splitters are characterized at 632.8 nm and 1064 nm, showing very good properties including symmetrical output ends, single-mode guidance, equalized splitting ratios, all-angle-polarization light transmission and intact luminescence features in the waveguide cores. The realization of these waveguide splitters with good performances demonstrates the potential of such promising devices in complex monolithic photonic circuits and active optical devices such as miniature tunable lasers.
Memristive effects in oxygenated amorphous carbon nanodevices
NASA Astrophysics Data System (ADS)
Bachmann, T. A.; Koelmans, W. W.; Jonnalagadda, V. P.; Le Gallo, M.; Santini, C. A.; Sebastian, A.; Eleftheriou, E.; Craciun, M. F.; Wright, C. D.
2018-01-01
Computing with resistive-switching (memristive) memory devices has shown much recent progress and offers an attractive route to circumvent the von-Neumann bottleneck, i.e. the separation of processing and memory, which limits the performance of conventional computer architectures. Due to their good scalability and nanosecond switching speeds, carbon-based resistive-switching memory devices could play an important role in this respect. However, devices based on elemental carbon, such as tetrahedral amorphous carbon or ta-C, typically suffer from a low cycling endurance. A material that has proven to be capable of combining the advantages of elemental carbon-based memories with simple fabrication methods and good endurance performance for binary memory applications is oxygenated amorphous carbon, or a-CO x . Here, we examine the memristive capabilities of nanoscale a-CO x devices, in particular their ability to provide the multilevel and accumulation properties that underpin computing type applications. We show the successful operation of nanoscale a-CO x memory cells for both the storage of multilevel states (here 3-level) and for the provision of an arithmetic accumulator. We implement a base-16, or hexadecimal, accumulator and show how such a device can carry out hexadecimal arithmetic and simultaneously store the computed result in the self-same a-CO x cell, all using fast (sub-10 ns) and low-energy (sub-pJ) input pulses.
NASA Astrophysics Data System (ADS)
Lee, Byung-Gwan; Lee, Seung-Hwan
2017-03-01
We report the electrochemical performance of asymmetric hybrid supercapacitors composed of granule Li4Ti5O12 as an anode and activated carbon as a cathode with different current densities. It is demonstrated that the hybrid supercapacitors show good initial discharge capacities were ranged from 39.8 to 46.4 F g-1 in the current densities range of 0.3-1 A g-1. The performance degradation is proportional to the current density due to quick gassing, resulting from H2O and HF formation. In particular, the hybrid supercapacitors show the pretty good cycling stability of 97.4%, even at the high current density of 0.8 A g-1, which are among most important performance in the real application for energy storage devices. Therefore, we believe that hybrid supercapacitors using granule Li4Ti5O12/activated carbon are eligible for the promising next generation energy devices.
A Thin Film Flexible Supercapacitor Based on Oblique Angle Deposited Ni/NiO Nanowire Arrays.
Ma, Jing; Liu, Wen; Zhang, Shuyuan; Ma, Zhe; Song, Peishuai; Yang, Fuhua; Wang, Xiaodong
2018-06-11
With high power density, fast charging-discharging speed, and a long cycling life, supercapacitors are a kind of highly developed novel energy-storage device that has shown a growing performance and various unconventional shapes such as flexible, linear-type, stretchable, self-healing, etc. Here, we proposed a rational design of thin film, flexible micro-supercapacitors with in-plane interdigital electrodes, where the electrodes were fabricated using the oblique angle deposition technique to grow oblique Ni/NiO nanowire arrays directly on polyimide film. The obtained electrodes have a high specific surface area and good adhesion to the substrate compared with other in-plane micro-supercapacitors. Meanwhile, the as-fabricated micro-supercapacitors have good flexibility and satisfactory energy-storage performance, exhibiting a high specific capacity of 37.1 F/cm³, a high energy density of 5.14 mWh/cm³, a power density of up to 0.5 W/cm³, and good stability during charge-discharge cycles and repeated bending-recovery cycles, respectively. Our micro-supercapacitors can be used as ingenious energy storage devices for future portable and wearable electronic applications.
Ottenvall Hammar, Isabelle; Håkansson, Carita
2013-03-01
The purpose was to describe and characterize what women with rheumatoid arthritis (RA) and juvenile idiopathic arthritis (JIA) perceive as important in considering the performance of daily occupations to perceive good health. By using a phenomenographic research approach with semi-structured interviews with nine women between the ages of 42 and 65 the core category "Being able to be as active as possible in daily occupations" emerged. The women's repertoire of daily occupations had changed as the years had passed. To perceive good health the women expressed the importance of continuing to be active and to perform occupations as independently as possible despite their chronic rheumatic diseases. By adapting to their level of physical function and strength and by compensation with assistive devices, selecting adjusted environment, and by getting support from others, the women perceived good health. The results also suggested that training in different ways, medical treatment, and rheumatologic team care were related to increased performance of daily occupations and the perceptions of good health.
Coated Porous Si for High Performance On-Chip Supercapacitors
NASA Astrophysics Data System (ADS)
Grigoras, K.; Keskinen, J.; Grönberg, L.; Ahopelto, J.; Prunnila, M.
2014-11-01
High performance porous Si based supercapacitor electrodes are demonstrated. High power density and stability is provided by ultra-thin TiN coating of the porous Si matrix. The TiN layer is deposited by atomic layer deposition (ALD), which provides sufficient conformality to reach the bottom of the high aspect ratio pores. Our porous Si supercapacitor devices exhibit almost ideal double layer capacitor characteristic with electrode volumetric capacitance of 7.3 F/cm3. Several orders of magnitude increase in power and energy density is obtained comparing to uncoated porous silicon electrodes. Good stability of devices is confirmed performing several thousands of charge/discharge cycles.
Engineering of Metal Oxide Nanoparticles for Application in Electrochemical Devices
NASA Astrophysics Data System (ADS)
Santos, Lidia Sofia Leitao
The growing demand for materials and devices with new functionalities led to the increased interest in the field of nanomaterials and nanotechnologies. Nanoparticles, not only present a reduced size as well as high reactivity, which allows the development of electronic and electrochemical devices with exclusive properties, when compared with thin films. This dissertation aims to explore the development of several nanostructured metal oxides by solvothermal synthesis and its application in different electrochemical devices. Within this broad theme, this study has a specific number of objectives: a) research of the influence of the synthesis parameters to the structure and morphology of the nanoparticles; b) improvement of the performance of the electrochromic devices with the application of the nanoparticles as electrode; c) application of the nanoparticles as probes to sensing devices; and d) production of solution-pro-cessed transistors with a nanostructured metal oxide semiconductor. Regarding the results, several conclusions can be exposed. Solvothermal synthesis shows to be a very versatile method to control the growth and morphology of the nanoparticles. The electrochromic device performance is influenced by the different structures and morphologies of WO3 nanoparticles, mainly due to the surface area and conductivity of the materials. The deposition of the electrochromic layer by inkjet printing allows the patterning of the electrodes without wasting material and without any additional steps. Nanostructured WO3 probes were produced by electrodeposition and drop casting and applied as pH sensor and biosensor, respectively. The good performance and sensitivity of the devices is explained by the high number of electrochemical reactions occurring at the surface of the na-noparticles. GIZO nanoparticles were deposited by spin coating and used in electrolyte-gated transistors, which promotes a good interface between the semiconductor and the dielectric. The produced transistors work at low potential and with improved ON-OFF current ratio, up to 6 orders of mag-nitude. To summarize, the low temperatures used in the production of the devices are compatible with flexible substrates and additionally, the low cost of the techniques involved can be adapted for disposable devices.
NASA Astrophysics Data System (ADS)
Li, Yang; Yao, Zhao; Zhang, Chun-Wei; Fu, Xiao-Qian; Li, Zhi-Ming; Li, Nian-Qiang; Wang, Cong
2017-05-01
In order to provide excellent performance and show the development of a complicated structure in a module and system, this paper presents a double air-bridge-structured symmetrical differential inductor based on integrated passive device technology. Corresponding to the proposed complicated structure, a new manufacturing process fabricated on a high-resistivity GaAs substrate is described in detail. Frequency-independent physical models are presented with lump elements and the results of skin effect-based measurements. Finally, some key features of the inductor are compared; good agreement between the measurements and modeled circuit fully verifies the validity of the proposed modeling approach. Meanwhile, we also present a comparison of different coil turns for inductor performance. The proposed work can provide a good solution for the design, fabrication, modeling, and practical application of radio-frequency modules and systems.
New stapling devices in robotic surgery
Casiraghi, Monica; Pardolesi, Alessandro; Borri, Alessandro; Spaggiari, Lorenzo
2017-01-01
Minimally invasive thoracic surgery is rapidly diffusing worldwide. Robotic anatomic pulmonary resection is gaining popularity and acceptance in the thoracic community for the reported feasibility, safety, and good outcomes. The last available robotic system, da Vinci Xi System, added new technical improvements on robotic device allowing best performances in robotic lung resection. We report our initial experience in the use of EndoWrist Stapler during robotic anatomic surgery for lung cancer. PMID:29078608
Yang, Yi; Qian, Ke-Yuan; Luo, Yi
2006-07-20
A compensation process has been developed to design rotational three-dimensional (3D) nonimaging devices. By compensating the desired light distribution during a two-dimensional (2D) design process for an extended Lambertian source using a compensation coefficient, the meridian plane of a 3D device with good performance can be obtained. This method is suitable in many cases with fast calculation speed. Solutions to two kinds of optical design problems have been proposed, and the limitation of this compensated 2D design method is discussed.
NASA Astrophysics Data System (ADS)
Asgari, Somayyeh; Ghattan Kashani, Zahra; Granpayeh, Nosrat
2018-04-01
The performances of three optical devices including a refractive index sensor, a power splitter, and a 4-channel multi/demultiplexer based on graphene cylindrical resonators are proposed, analyzed, and simulated numerically by using the finite-difference time-domain method. The proposed sensor operates on the principle of the shift in resonance wavelength with a change in the refractive index of dielectric materials. The sensor sensitivity has been numerically derived. In addition, the performances of the power splitter and the multi/demultiplexer based on the variation of the resonance wavelengths of cylindrical resonator have been thoroughly investigated. The simulation results are in good agreement with the theoretical ones. Our studies demonstrate that the graphene based ultra-compact, nano-scale devices can be improved to be used as photonic integrated devices, optical switching, and logic gates.
NASA Astrophysics Data System (ADS)
Ferdous, Sunzida; Liu, Feng; Russell, Thomas
2013-03-01
Solution processing of polymer semiconductors is widely used for fabrication of low cost organic solar cells. Recently, mixed solvent systems or additive based systems for fabricating polymer solar cells have proven to be beneficial for obtaining high performance devices with multi-length scale morphologies. To control the morphology during the processing step, one needs to understand the effect of solvent as it evaporates to form the final thin film structure. In this study, we used diketopyrrolopyrrole (DPP) based low band gap polymer and phenyl-C71-butyric acid methyl ester (PCBM) blend in a series of mixed solvent systems consisting of a good solvent for both of the active material components, as well as different solvents that are good solvents for PCBM, but poor solvents for the polymer. Different evaporation times of the poor solvents during the drying process, and different solubility of the polymer in these poor solvents as well as their interaction with the substrate play an important role in the final morphology. In-situ GIWAXS studies were performed to observe the evolution of the structure as the solvent evaporates. The final morphologies of the thin film devices were also characterized by AFM, TEM, and various x-ray scattering techniques to correlate the morphology with the obtained device performances.
Chen, Po-Chiang; Shen, Guozhen; Chen, Haitian; Ha, Young-geun; Wu, Chao; Sukcharoenchoke, Saowalak; Fu, Yue; Liu, Jun; Facchetti, Antonio; Marks, Tobin J; Thompson, Mark E; Zhou, Chongwu
2009-11-24
We report high-performance arsenic (As)-doped indium oxide (In(2)O(3)) nanowires for transparent electronics, including their implementation in transparent thin-film transistors (TTFTs) and transparent active-matrix organic light-emitting diode (AMOLED) displays. The As-doped In(2)O(3) nanowires were synthesized using a laser ablation process and then fabricated into TTFTs with indium-tin oxide (ITO) as the source, drain, and gate electrodes. The nanowire TTFTs on glass substrates exhibit very high device mobilities (approximately 1490 cm(2) V(-1) s(-1)), current on/off ratios (5.7 x 10(6)), steep subthreshold slopes (88 mV/dec), and a saturation current of 60 microA for a single nanowire. By using a self-assembled nanodielectric (SAND) as the gate dielectric, the device mobilities and saturation current can be further improved up to 2560 cm(2) V(-1) s(-1) and 160 microA, respectively. All devices exhibit good optical transparency (approximately 81% on average) in the visible spectral range. In addition, the nanowire TTFTs were utilized to control green OLEDs with varied intensities. Furthermore, a fully integrated seven-segment AMOLED display was fabricated with a good transparency of 40% and with each pixel controlled by two nanowire transistors. This work demonstrates that the performance enhancement possible by combining nanowire doping and self-assembled nanodielectrics enables silicon-free electronic circuitry for low power consumption, optically transparent, high-frequency devices assembled near room temperature.
High volumetric power density, non-enzymatic, glucose fuel cells.
Oncescu, Vlad; Erickson, David
2013-01-01
The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.
High volumetric power density, non-enzymatic, glucose fuel cells
Oncescu, Vlad; Erickson, David
2013-01-01
The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an “oxygen depletion design” whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm−2) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm−3). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells. PMID:23390576
NASA Astrophysics Data System (ADS)
Chen, Sun-Zen; Peng, Shiang-Hau; Ting, Tzu-Yu; Wu, Po-Shien; Lin, Chun-Hao; Chang, Chin-Yeh; Shyue, Jing-Jong; Jou, Jwo-Huei
2012-10-01
We demonstrate the feasibility of using direct contact-printing in the fabrication of monochromatic and polychromatic organic light-emitting diodes (OLEDs). Bright devices with red, green, blue, and white contact-printed light-emitting layers with a respective maximum luminance of 29 000, 29 000, 4000, and 18 000 cd/m2 were obtained with sound film integrity by blending a polymeric host into a molecular host. For the red OLED as example, the maximum luminance was decreased from 29 000 to 5000 cd/m2 as only the polymeric host was used, or decreased to 7000 cd/m2 as only the molecular host was used. The markedly improved device performance achieved in the devices with blended hosts may be attributed to the employed polymeric host that contributed a good film-forming character, and the molecular host that contributed a good electroluminescence character.
Lee, Ya-Ju; Yang, Zu-Po; Chen, Pin-Guang; Hsieh, Yung-An; Yao, Yung-Chi; Liao, Ming-Han; Lee, Min-Hung; Wang, Mei-Tan; Hwang, Jung-Min
2014-10-20
In this study, we report a novel monolithically integrated GaN-based light-emitting diode (LED) with metal-oxide-semiconductor field-effect transistor (MOSFET). Without additionally introducing complicated epitaxial structures for transistors, the MOSFET is directly fabricated on the exposed n-type GaN layer of the LED after dry etching, and serially connected to the LED through standard semiconductor-manufacturing technologies. Such monolithically integrated LED/MOSFET device is able to circumvent undesirable issues that might be faced by other kinds of integration schemes by growing a transistor on an LED or vice versa. For the performances of resulting device, our monolithically integrated LED/MOSFET device exhibits good characteristics in the modulation of gate voltage and good capability of driving injected current, which are essential for the important applications such as smart lighting, interconnection, and optical communication.
Micromachined structures for vertical microelectrooptical devices on InP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seassal, C.; Leclercq, J.L.; Letartre, X.
1996-12-31
The authors presented a microstructuring method in order to fabricate tunable vertical resonant cavity optical devices. PL characterizations were performed on a test structure in order to evaluate the effect of the cavity thickness on the peak characteristics. Modeling of the mechanical, electrostatic, and optical behavior of the device, PL simulation were performed, and showed a good agreement with the experiments. This is a first preliminary validation of InP-based MOEMS for further realization of tunable wavelength-selective passive filters, or photodiodes and lasers by incorporating active region within the cavity. Micro-reflectivity measurements with a spatial resolution of 20 {micro}m are underwaymore » in their group, in order to measure directly the resonance shift and spectral linewidth.« less
Normally-off AlGaN/GaN-based MOS-HEMT with self-terminating TMAH wet recess etching
NASA Astrophysics Data System (ADS)
Son, Dong-Hyeok; Jo, Young-Woo; Won, Chul-Ho; Lee, Jun-Hyeok; Seo, Jae Hwa; Lee, Sang-Heung; Lim, Jong-Won; Kim, Ji Heon; Kang, In Man; Cristoloveanu, Sorin; Lee, Jung-Hee
2018-03-01
Normally-off AlGaN/GaN-based MOS-HEMT has been fabricated by utilizing damage-free self-terminating tetramethyl ammonium hydroxide (TMAH) recess etching. The device exhibited a threshold voltage of +2.0 V with good uniformity, extremely small hysteresis of ∼20 mV, and maximum drain current of 210 mA/mm. The device also exhibited excellent off-state performances, such as breakdown voltage of ∼800 V with off-state leakage current as low as ∼10-12 A and high on/off current ratio (Ion/Ioff) of 1010. These excellent device performances are believed to be due to the high quality recessed surface, provided by the simple self-terminating TMAH etching.
Performance Enhancement of Small Molecular Solar Cells by Bilayer Cathode Buffer.
Sun, Qinjun; Zhao, Huanbin; Zhou, Miao; Gao, Liyan; Hao, Yuying
2016-04-01
An effective composite bilayer cathode buffer structure is proposed for use in small molecular solar cells. CsF was doped in Alq3 to form the first cathode buffer, leading to small serial resistances. BCP was used as the second cathode buffer to block the holes to the electrode. The optimized bilayer cathode buffer significantly increased the short circuit and fill factor of devices. By integrating this bilayer cathode buffer, the CuPc/C60 small molecular heterojunction cell exhibited a power conversion efficiency of up to 0.8%, which was an improvement of 56% compared to a device with only the Alq3 cathode buffer. Meanwhile, the bilayer cathode buffer still has a good protective effect on the performance of the device.
NASA Astrophysics Data System (ADS)
Grasland-Mongrain, Pol; Miller-Jolicoeur, Erika; Tang, An; Catheline, Stefan; Cloutier, Guy
2016-03-01
This study presents the first observation of shear waves induced remotely within soft tissues. It was performed through the combination of a transcranial magnetic stimulation device and a permanent magnet. A physical model based on Maxwell and Navier equations was developed. Experiments were performed on a cryogel phantom and a chicken breast sample. Using an ultrafast ultrasound scanner, shear waves of respective amplitudes of 5 and 0.5 μm were observed. Experimental and numerical results were in good agreement. This study constitutes the framework of an alternative shear wave elastography method.
Analytical Chemistry in the Regulatory Science of Medical Devices.
Wang, Yi; Guan, Allan; Wickramasekara, Samanthi; Phillips, K Scott
2018-06-12
In the United States, regulatory science is the science of developing new tools, standards, and approaches to assess the safety, efficacy, quality, and performance of all Food and Drug Administration-regulated products. Good regulatory science facilitates consumer access to innovative medical devices that are safe and effective throughout the Total Product Life Cycle (TPLC). Because the need to measure things is fundamental to the regulatory science of medical devices, analytical chemistry plays an important role, contributing to medical device technology in two ways: It can be an integral part of an innovative medical device (e.g., diagnostic devices), and it can be used to support medical device development throughout the TPLC. In this review, we focus on analytical chemistry as a tool for the regulatory science of medical devices. We highlight recent progress in companion diagnostics, medical devices on chips for preclinical testing, mass spectrometry for postmarket monitoring, and detection/characterization of bacterial biofilm to prevent infections.
Low cost microfluidic device based on cotton threads for electroanalytical application.
Agustini, Deonir; Bergamini, Márcio F; Marcolino-Junior, Luiz Humberto
2016-01-21
Microfluidic devices are an interesting alternative for performing analytical assays, due to the speed of analyses, reduced sample, reagent and solvent consumption and less waste generation. However, the high manufacturing costs still prevent the massive use of these devices worldwide. Here, we present the construction of a low cost microfluidic thread-based electroanalytical device (μTED), employing extremely cheap materials and a manufacturing process free of equipment. The microfluidic channels were built with cotton threads and the estimated cost per device was only $0.39. The flow of solutions (1.12 μL s(-1)) is generated spontaneously due to the capillary forces, eliminating the use of any pumping system. To demonstrate the analytical performance of the μTED, a simultaneous determination of acetaminophen (ACT) and diclofenac (DCF) was performed by multiple pulse amperometry (MPA). A linear dynamic range (LDR) of 10 to 320 μmol L(-1) for both species, a limit of detection (LOD) and a limit of quantitation (LOQ) of 1.4 and 4.7 μmol L(-1) and 2.5 and 8.3 μmol L(-1) for ACT and DCF, respectively, as well as an analytical frequency of 45 injections per hour were reached. Thus, the proposed device has shown potential to extend the use of microfluidic analytical devices, due to its simplicity, low cost and good analytical performance.
Solnica, Bogdan
2009-01-01
In this issue of Journal of Diabetes Science and Technology, Chang and colleagues present the analytical performance evaluation of the OneTouch® UltraVue™ blood glucose meter. This device is an advanced construction with a color display, used-strip ejector, no-button interface, and short assay time. Accuracy studies were performed using a YSI 2300 analyzer, considered the reference. Altogether, 349 pairs of results covering a wide range of blood glucose concentrations were analyzed. Patients with diabetes performed a significant part of the tests. Obtained results indicate good accuracy of OneTouch UltraVue blood glucose monitoring system, satisfying the International Organization for Standardization recommendations and thereby locating >95% of tests within zone A of the error grid. Results of the precision studies indicate good reproducibility of measurements. In conclusion, the evaluation of the OneTouch UltraVue meter revealed good analytical performance together with convenient handling useful for self-monitoring of blood glucose performed by elderly diabetes patients. PMID:20144432
Solnica, Bogdan
2009-09-01
In this issue of Journal of Diabetes Science and Technology, Chang and colleagues present the analytical performance evaluation of the OneTouch UltraVue blood glucose meter. This device is an advanced construction with a color display, used-strip ejector, no-button interface, and short assay time. Accuracy studies were performed using a YSI 2300 analyzer, considered the reference. Altogether, 349 pairs of results covering a wide range of blood glucose concentrations were analyzed. Patients with diabetes performed a significant part of the tests. Obtained results indicate good accuracy of OneTouch UltraVue blood glucose monitoring system, satisfying the International Organization for Standardization recommendations and thereby locating >95% of tests within zone A of the error grid. Results of the precision studies indicate good reproducibility of measurements. In conclusion, the evaluation of the OneTouch UltraVue meter revealed good analytical performance together with convenient handling useful for self-monitoring of blood glucose performed by elderly diabetes patients. 2009 Diabetes Technology Society.
78 FR 12068 - Device Good Manufacturing Practice Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-21
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Device Good Manufacturing Practice Advisory Committee; Notice of Meeting AGENCY: Food and Drug... Committee: Device Good Manufacturing Practice Advisory Committee. General Function of the Committee: To...
Rationalizing context-dependent performance of dynamic RNA regulatory devices.
Kent, Ross; Halliwell, Samantha; Young, Kate; Swainston, Neil; Dixon, Neil
2018-06-21
The ability of RNA to sense, regulate and store information is an attractive attribute for a variety of functional applications including the development of regulatory control devices for synthetic biology. RNA folding and function is known to be highly context sensitive, which limits the modularity and reuse of RNA regulatory devices to control different heterologous sequences and genes. We explored the cause and effect of sequence context sensitivity for translational ON riboswitches located in the 5' UTR, by constructing and screening a library of N-terminal synonymous codon variants. By altering the N-terminal codon usage we were able to obtain RNA devices with a broad range of functional performance properties (ON, OFF, fold-change). Linear regression and calculated metrics were used to rationalize the major determining features leading to optimal riboswitch performance, and to identify multiple interactions between the explanatory metrics. Finally, partial least squared (PLS) analysis was employed in order to understand the metrics and their respective effect on performance. This PLS model was shown to provide good explanation of our library. This study provides a novel multi-variant analysis framework by which to rationalize the codon context performance of allosteric RNA-devices. The framework will also serve as a platform for future riboswitch context engineering endeavors.
NASA Astrophysics Data System (ADS)
Fan, Ching-Lin; Lin, Wei-Chun; Chen, Hao-Wei
2018-06-01
This work demonstrates pentacene-based organic thin-film transistors (OTFTs) fabricated by inserting a 6,13-pentacenequinone (PQ) carrier injection layer between the source/drain (S/D) metal Au electrodes and pentacene channel layer. Compared to devices without a PQ layer, the performance characteristics including field-effect mobility, threshold voltage, and On/Off current ratio were significantly improved for the device with a 5-nm-thick PQ interlayer. These improvements are attributed to significant reduction of hole barrier height at the Au/pentacene channel interfaces. Therefore, it is believed that using PQ as the carrier injection layer is a good candidate to improve the pentacene-based OTFTs electrical performance.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-04
... Representatives on the Device Good Manufacturing Practice Advisory Committee AGENCY: Food and Drug Administration... Device Good Manufacturing Practice Advisory Committee (DGMPAC) in the Center for Devices and Radiological... regarding good manufacturing practices governing the methods used in, and the facilities and controls used...
A Hybrid Actuation System Demonstrating Significantly Enhanced Electromechanical Performance
NASA Technical Reports Server (NTRS)
Su, Ji; Xu, Tian-Bing; Zhang, Shujun; Shrout, Thomas R.; Zhang, Qiming
2004-01-01
A hybrid actuation system (HYBAS) utilizing advantages of a combination of electromechanical responses of an electroactive polymer (EAP), an electrostrictive copolymer, and an electroactive ceramic single crystal, PZN-PT single crystal, has been developed. The system employs the contribution of the actuation elements cooperatively and exhibits a significantly enhanced electromechanical performance compared to the performances of the device made of each constituting material, the electroactive polymer or the ceramic single crystal, individually. The theoretical modeling of the performances of the HYBAS is in good agreement with experimental observation. The consistence between the theoretical modeling and experimental test make the design concept an effective route for the development of high performance actuating devices for many applications. The theoretical modeling, fabrication of the HYBAS and the initial experimental results will be presented and discussed.
NASA Astrophysics Data System (ADS)
Ferhati, H.; Djeffal, F.
2017-12-01
In this paper, a new junctionless optical controlled field effect transistor (JL-OCFET) and its comprehensive theoretical model is proposed to achieve high optical performance and low cost fabrication process. Exhaustive study of the device characteristics and comparison between the proposed junctionless design and the conventional inversion mode structure (IM-OCFET) for similar dimensions are performed. Our investigation reveals that the proposed design exhibits an outstanding capability to be an alternative to the IM-OCFET due to the high performance and the weak signal detection benefit offered by this design. Moreover, the developed analytical expressions are exploited to formulate the objective functions to optimize the device performance using Genetic Algorithms (GAs) approach. The optimized JL-OCFET not only demonstrates good performance in terms of derived drain current and responsivity, but also exhibits superior signal to noise ratio, low power consumption, high-sensitivity, high ION/IOFF ratio and high-detectivity as compared to the conventional IM-OCFET counterpart. These characteristics make the optimized JL-OCFET potentially suitable for developing low cost and ultrasensitive photodetectors for high-performance and low cost inter-chips data communication applications.
Image degradation by glare in radiologic display devices
NASA Astrophysics Data System (ADS)
Badano, Aldo; Flynn, Michael J.
1997-05-01
No electronic devices are currently available that can display digital radiographs without loss of visual information compared to traditional transilluminated film. Light scattering within the glass faceplate of cathode-ray tube (CRT) devices causes excessive glare that reduces image contrast. This glare, along with ambient light reflection, has been recognized as a significant limitation for radiologic applications. Efforts to control the effect of glare and ambient light reflection in CRTs include the use of absorptive glass and thin film coatings. In the near future, flat panel displays (FPD) with thin emissive structures should provide very low glare, high performance devices. We have used an optical Monte Carlo simulation to evaluate the effect of glare on image quality for typical CRT and flat panel display devices. The trade-off between display brightness and image contrast is described. For CRT systems, achieving good glare ratio requires a reduction of brightness to 30-40 percent of the maximum potential brightness. For FPD systems, similar glare performance can be achieved while maintaining 80 percent of the maximum potential brightness.
Srivastava, A; Koul, V; Dwivedi, S N; Upadhyaya, A D; Ahuja, A; Saxena, R
2015-08-01
The aim of this study was to evaluate the performance of the newly developed handheld hemoglobinmeter (TrueHb) by comparing its performance against and an automated five-part hematology analyzer, Sysmex counter XT 1800i (Sysmex). Two hundred venous blood samples were subjected through their total hemoglobin evaluation on each device three times. The average of the three readings on each device was considered as their respective device values, that is, TrueHb values and Sysmex values. The two set of values were comparatively analyzed. The repeatability of the performance of TrueHb was also evaluated against Sysmex values. The scatter plot of TrueHb values and Sysmex values showed linear distribution with positive correlations (r = 0.99). The intraclass correlation (ICC) values between the two set of values was found to be 0.995. Regression coefficients through origin, β, was found to be 0.995, with 95% confidence intervals (CI) ranging between 0.9900 and 1.0000. The mean difference in Bland-Altman plots of TrueHb values against the Sysmex values was found to be -0.02, with limits of agreement between -0.777 and 0.732 g/dL. Statistical analysis suggested good repeatability in results of TrueHb, having a low mean CV of 2.22, against 4.44, that of Sysmex values, and 95% confidence interval of 1.99-2.44, against 3.85-5.03, that of Sysmex values. These results suggested a strong positive correlation between the two measurements devices. It is thus concluded that TrueHb is a good point-of-care testing tool for estimating hemoglobin. © 2014 John Wiley & Sons Ltd.
Sumboja, Afriyanti; Foo, Ce Yao; Wang, Xu; Lee, Pooi See
2013-05-28
Well-separated RGO sheets decorated with MnO2 nanoparticles facilitate easy access of the electrolyte ions to the high surface area of the paper electrode, enabling the fabrication of a thicker electrode with heavier areal mass and higher areal capacitance (up to 897 mF cm(-2) ). The electrochemical performance of the bent asymmetric device with a total active mass of 15 mg remains similar to the one in the flat configuration, demonstrating good mechanical robustness of the device. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Good agreement between smart device and inertial sensor-based gait parameters during a 6-min walk.
Proessl, F; Swanson, C W; Rudroff, T; Fling, B W; Tracy, B L
2018-05-28
Traditional laboratory-based kinetic and kinematic gait analyses are expensive, time-intensive, and impractical for clinical settings. Inertial sensors have gained popularity in gait analysis research and more recently smart devices have been employed to provide quantification of gait. However, no study to date has investigated the agreement between smart device and inertial sensor-based gait parameters during prolonged walking. Compare spatiotemporal gait metrics measured with a smart device versus previously validated inertial sensors. Twenty neurologically healthy young adults (7 women; age: 25.0 ± 3.7 years; BMI: 23.4 ± 2.9 kg/m 2 ) performed a 6-min walk test (6MWT) wearing inertial sensors and smart devices to record stride duration, stride length, cadence, and gait speed. Pearson correlations were used to assess associations between spatiotemporal measures from the two devices and agreement between the two methods was assessed with Bland-Altman plots and limits of agreement. All spatiotemporal gait metrics (stride duration, cadence, stride length and gait speed) showed strong (r>0.9) associations and good agreement between the two devices. Smart devices are capable of accurately reflecting many of the spatiotemporal gait metrics of inertial sensors. As the smart devices also accurately reflected individual leg output, future studies may apply this analytical strategy to clinical populations, to identify hallmarks of disability status and disease progression in a more ecologically valid environment. Copyright © 2018. Published by Elsevier B.V.
Zhao, Wangen; Yang, Dong; Liu, Shengzhong Frank
2017-07-01
Organic-inorganic hybrid perovskite as a kind of promising photovoltaic material is booming due to its low-cost, high defect tolerance, and easy fabrication, which result in the huge potential in industrial production. In the pursuit of high efficiency photovoltaic devices, high-quality absorbing layer is essential. Therefore, developing organic-inorganic hybrid perovskite thin films with good coverage, improved uniformity, and crystalline in a single pass deposition is of great concern in realizing good performance of perovskite thin-film solar cell. Here, it is found that the introduction of suitable amounts of LiI plays a dramatically positive role in enlarging the grain size and reducing the grain boundaries of absorbing layer. In addition, the carrier lifetime and built-in potential of the LiI doped perovskite device are observed to increase. Thus, it leads to about 15% gain in solar cell efficiency comparing to that without the LiI doping. Meanwhile, a hysteresis reduction is observed and 18.16% power conversion efficiency is achieved in LiI doped perovskite device, as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yamamoto, Shunsuke; Kitanaka, Takahisa; Miyashita, Tokuji; Mitsuishi, Masaya
2018-06-01
We propose a resistive switching device composed of conductive polymer (PEDOT:PSS) and SiO2 ultra-thin films. The SiO2 film was fabricated from silsesquioxane polymer nanosheets as a resistive switching layer. Devices with metal (Ag or Au)∣SiO2∣PEDOT:PSS architecture show good resistive switching performance with set–reset voltages as low as several hundred millivolts. The device properties and the working mechanism were investigated by varying the electrode material, surrounding atmosphere, and SiO2 film thickness. Results show that resistive switching is based on water and ion migration at the PEDOT:PSS∣SiO2 interface.
Yamamoto, Shunsuke; Kitanaka, Takahisa; Miyashita, Tokuji; Mitsuishi, Masaya
2018-06-29
We propose a resistive switching device composed of conductive polymer (PEDOT:PSS) and SiO 2 ultra-thin films. The SiO 2 film was fabricated from silsesquioxane polymer nanosheets as a resistive switching layer. Devices with metal (Ag or Au)∣SiO 2 ∣PEDOT:PSS architecture show good resistive switching performance with set-reset voltages as low as several hundred millivolts. The device properties and the working mechanism were investigated by varying the electrode material, surrounding atmosphere, and SiO 2 film thickness. Results show that resistive switching is based on water and ion migration at the PEDOT:PSS∣SiO 2 interface.
Zhang, Zhi; Chen, Ying; Debeli, Dereje Kebebew; Guo, Jian Sheng
2018-04-18
The trends toward flexible and wearable electronic devices give rise to the attention of triboelectric nanogenerators (TENGs) which can gather tiny energy from human body motions. However, to accommodate the needs, wearable electronics are still facing challenges for choosing a better dielectric material to improve their performance and practicability. As a kind of synthetic rubber, the thermoplastic elastomer (TPE) contains many advantages such as lightweight, good flexibility, high tear strength, and friction resistance, accompanied by good adhesion with fabrics, which is an optimal candidate of dielectric materials. Herein, a novel nanoparticle (NP)-doped TPE composite fabric-based TENG (TF-TENG) has been developed, which operates based on the NP-doped TPE composite fabric using a facile coating method. The performances of the TENG device are systematically investigated under various thicknesses of TPE films, NP kinds, and doping mass. After being composited with a Cu NP-doped TPE film, the TPE composite fabric exhibited superior elastic behavior and good bending property, along with excellent flexibility. Moreover, a maximum output voltage of 470 V, a current of 24 μA, and a power of 12 mW under 3 MΩ can be achieved by applying a force of 60 N on the TF-TENG. More importantly, the TF-TENG can be successfully used to harvest biomechanical energy from human body and provides much more comfort. In general, the TF-TENG has great application prospects in sustainable wearable devices owing to its lightweight, flexibility, and high mechanical properties.
Power Consumption Analysis of Operating Systems for Wireless Sensor Networks
Lajara, Rafael; Pelegrí-Sebastiá, José; Perez Solano, Juan J.
2010-01-01
In this paper four wireless sensor network operating systems are compared in terms of power consumption. The analysis takes into account the most common operating systems—TinyOS v1.0, TinyOS v2.0, Mantis and Contiki—running on Tmote Sky and MICAz devices. With the objective of ensuring a fair evaluation, a benchmark composed of four applications has been developed, covering the most typical tasks that a Wireless Sensor Network performs. The results show the instant and average current consumption of the devices during the execution of these applications. The experimental measurements provide a good insight into the power mode in which the device components are running at every moment, and they can be used to compare the performance of different operating systems executing the same tasks. PMID:22219688
Power consumption analysis of operating systems for wireless sensor networks.
Lajara, Rafael; Pelegrí-Sebastiá, José; Perez Solano, Juan J
2010-01-01
In this paper four wireless sensor network operating systems are compared in terms of power consumption. The analysis takes into account the most common operating systems--TinyOS v1.0, TinyOS v2.0, Mantis and Contiki--running on Tmote Sky and MICAz devices. With the objective of ensuring a fair evaluation, a benchmark composed of four applications has been developed, covering the most typical tasks that a Wireless Sensor Network performs. The results show the instant and average current consumption of the devices during the execution of these applications. The experimental measurements provide a good insight into the power mode in which the device components are running at every moment, and they can be used to compare the performance of different operating systems executing the same tasks.
Diehl, V A; Mills, C B
1995-11-01
In two experiments, subjects interacted to different extents with relevant devices while reading two complex multistep procedural texts and were then tested with task performance time, true/false, and recall measures. While reading, subjects performed the task (read and do), saw the experimenter perform the task (read and see experimenter do), imagined doing the task (read and imagine), looked at the device while reading (read and see), or only read (read only). Van Dijk and Kintsch's (1983) text representation theory led to the prediction that exposure to the task device (in the read-and-do, read-and-see, and read-and-see-experimenter-do conditions) would lead to the development of a stronger situation model and therefore faster task performance, whereas the read-only and read-and-see conditions would lead to a better textbase, and therefore better performance on the true/false and recall tasks. Paivio's (1991) dual coding theory led to the opposite prediction for recall. The results supported the text representation theory with task performance and recall. The read-and-see condition produced consistently good performance on the true/false measure. Amount of text study time contributed to recall performance. These findings support the notion that information available while reading leads to differential development of representations in memory, which, in turn, causes differences in performance on various measures.
Gao, Yanyan; Xu, Jianping; Shi, Shaobo; Dong, Hong; Cheng, Yahui; Wei, Chengtai; Zhang, Xiaosong; Yin, Shougen; Li, Lan
2018-04-04
The self-powered ultraviolet photodetectors (UV PDs) have attracted increasing attention due to their potential applications without consuming any external power. It is important to obtain the high-performance self-powered UV PDs by a simple method for the practical application. Herein, TiO 2 nanorod arrays (NRs) were synthesized by hydrothermal method, which were integrated with p-type NiO nanoflakes to realize a high performance pn heterojunction for the efficient UV photodetection. TiO x thin film can improve the morphological and carrier transport properties of TiO 2 NRs and decrease the surface and defect states, resulting in the enhanced photocurrent of the devices. NiO/TiO 2 nanostructural heterojunctions show excellent rectifying characteristics (rectification ratio of 2.52 × 10 4 and 1.45 × 10 5 for NiO/TiO 2 NRs and NiO/TiO 2 NRs/TiO x , respectively) with a very low reverse saturation current. The PDs based on the heterojunctions exhibit good spectral selectivity, high photoresponsivity, and fast response and recovery speeds without external applied bias under the weak light radiation. The devices demonstrate good stability and repeatability under UV light radiation. The self-powered performance could be attributed to the proper built-in electric field of the heterojunction. TiO 2 NRs and NiO nanoflakes construct the well-aligned energy-band structure. The enhanced responsivity and detectivity for the devices with TiO x thin films is related to the increased interfacial charge separation efficiency, reduced carrier recombination, and relatively good electron transport of TiO 2 NRs.
Testing Devices Garner Data on Insulation Performance
NASA Technical Reports Server (NTRS)
2014-01-01
To develop a test instrument that could garner measurements of the thermal performance of insulation under extreme conditions, researchers at Kennedy Space Center devised the Cryostat 1 and then Cryostat 2. McLean, Virginia-based QinetiQ North America licensed the technology and plans to market it to organizations developing materials for things like piping and storage tank insulation, refrigeration, appliances, and consumer goods.
NASA Astrophysics Data System (ADS)
Zhang, Wanshu; Zhang, Lanying; Liang, Xiao; Le Zhou; Xiao, Jiumei; Yu, Li; Li, Fasheng; Cao, Hui; Li, Kexuan; Yang, Zhou; Yang, Huai
2017-02-01
High-performance and cost-effective laser protection system is of crucial importance for the rapid advance of lasers in military and civilian fields leading to severe damages of human eyes and sensitive optical devices. However, it is crucially hindered by the angle-dependent protective effect and the complex preparation process. Here we demonstrate that angle-independence, good processibility, wavelength tunability, high optical density and good visibility can be effectuated simultaneously, by embedding dichroic anthraquinone dyes in a cholesteric liquid crystal matrix. More significantly, unconventional two-dimensional parabolic protection behavior is reported for the first time that in stark contrast to the existing protection systems, the overall parabolic protection behavior enables protective effect to increase with incident angles, hence providing omnibearing high-performance protection. The protective effect is controllable by dye concentration, LC cell thickness and CLC reflection efficiency, and the system can be made flexible enabling applications in flexible and even wearable protection devices. This research creates a promising avenue for the high-performance and cost-effective laser protection, and may foster the development of optical applications such as solar concentrators, car explosion-proof membrane, smart windows and polarizers.
Bright color optical switching device by polymer network liquid crystal with a specular reflector.
Lee, Gae Hwang; Hwang, Kyu Young; Jang, Jae Eun; Jin, Yong Wan; Lee, Sang Yoon; Jung, Jae Eun
2011-07-04
The color optical switching device by polymer network liquid crystal (PNLC) with color filter on a specular reflector shows excellent performance; white reflectance of 22%, color gamut of 32%, and contrast ratio up to 50:1 in reflective mode measurement. The view-angle dependence of the reflectance can be adjusted by changing the PNLC thickness. The color chromaticity shown by the device is close to the limit value of color filters, and its value nearly remains with respect to the operating voltage. These optical properties of the device can be explained from the prediction based on multiple interactions between the light and the droplets of liquid crystal. The high reflectance, vivid color image, and moderate responds time allow the PNLC device to drive good color moving image. It can widely extend the applications of the reflective device.
Lu, Xihong; Yu, Minghao; Wang, Gongming; Zhai, Teng; Xie, Shilei; Ling, Yichuan; Tong, Yexiang; Li, Yat
2013-01-11
A flexible solid-state asymmetric supercapacitor device with H-TiO(2) @MnO(2) core-shell NWs as the positive electrode and H-TiO(2) @C core-shell NWs as the negative electrode is developed. This device operates in a 1.8 V voltage window and is able to deliver a high specific capacitance of 139.6 F g(-1) and maximum volumetric energy density of 0.30 mWh cm(-3) with excellent cycling performance and good flexibility. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Xinyue; Wang, Jianxing; Yang, Guowei
2017-07-01
There has been growing interest in transparent and flexible electronic devices such as wrist watch, cell phone, and so on. These devices need the power sources which also have transparent and flexible features. Here, we demonstrate a transparent and flexible energy storage device with outstanding electrochemical performance, high energy density, and super-long life based on ultrafine NiCo2O4 nanospheres which are synthesized by an innovative method concerning laser ablation in liquid and hydrothermal process. The ultrafine NiCo2O4 nanospheres provide high electrochemical activity and the synthesized colloidal solution is suitable for transparent devices. The transparent and flexible device shows a high specific capacitance of 299.7 F/g at the scan rate of 1 mV/s and a long cycling life of 90.4% retention rate after 10,000 cycles at a scan rate of 10 mV/s, which is superior to that of previously reported transparent and flexible energy storage device. In addition, an optical transmittance up to 55% at the wavelength of 550 nm is obtained, and the bending test shows that the bending angle makes no difference to the specific capacitance of the device. In addition, it shows an outstanding energy density of 10.41 Wh/kg. The integrated electrochemical performances of the device are good based on NiCo2O4 nanospheres. These findings make the ultrafine NiCo2O4 nanospheres being promising electrode materials for transparent and flexible energy storage devices.
Pearson, David A; Darrell Nelson, R; Monk, Lisa; Tyson, Clark; Jollis, James G; Granger, Christopher B; Corbett, Claire; Garvey, Lee; Runyon, Michael S
2016-08-01
Team-focused CPR (TFCPR) is a choreographed approach to cardiopulmonary resuscitation (CPR) with emphasis on minimally interrupted high-quality chest compressions, early defibrillation, discourages endotracheal intubation and encourages use of the bag-valve-mask (BVM) and/or blind-insertion airway device (BIAD) with a ventilation rate of 8-10 breaths/min to minimize hyperventilation. Widespread incorporation of TFCPR in North Carolina (NC) EMS agencies began in 2011, yet its impact on outcomes is unknown. To determine whether TFCPR improves survival with good neurological outcome in out-of-hospital cardiac arrest (OHCA) patients compared to standard CPR. This retrospective cohort analysis of NC EMS agencies reporting data to the Cardiac Arrest Registry for Enhanced Survival (CARES) database from January 2010 to June 2014 included adult, non-traumatic OHCA with presumed cardiac etiology where EMS performed CPR or patient received defibrillation. Exclusions were arrest terminated per EMS policy or DNR. EMS agencies self-reported the TFCPR implementation dates. Patients were categorized as receiving either TFCPR or standard CPR. The primary outcome was good neurologic outcome at time of hospital discharge defined as Pittsburgh Cerebral Performance Category (CPC) 1-2. Of 14,994 OHCAs, 14,129 patients were included for analysis with a mean age 65 (IQR 50-81) years, 61% male, 7.3% with good neurologic outcome, 24.3% with shockable initial rhythm, and 71.5% receiving TFCPR. Of the 3427 (24.3%) with an initial shockable rhythm, 739 (71.9%) had a good neurological outcome. Good neurologic outcome was higher with TFCPR [836 (8.3%, 95%CI 7.7-8.8%)] vs. standard CPR [193 (4.8%, 95%CI 4.2-5.5%)]. Logistic regression controlling for demographic and arrest characteristics revealed TFCPR (OR 1.5), witnessed arrest (OR 4.3), initial shockable rhythm (OR 7.1), and in-hospital hypothermia (OR 3.3) were associated with good neurologic outcome. Mechanical CPR device (OR 0.68), CPR feedback device (OR 0.47), and endotracheal intubation (OR 0.44) were associated with less likelihood for a good neurologic outcome. In our statewide OHCA cohort, TFCPR was associated with improved survival with good neurological outcome. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Fast-responding liquid crystal light-valve technology for color-sequential display applications
NASA Astrophysics Data System (ADS)
Janssen, Peter J.; Konovalov, Victor A.; Muravski, Anatoli A.; Yakovenko, Sergei Y.
1996-04-01
A color sequential projection system has some distinct advantages over conventional systems which make it uniquely suitable for consumer TV as well as high performance professional applications such as computer monitors and electronic cinema. A fast responding light-valve is, clearly, essential for a good performing system. Response speed of transmissive LC lightvalves has been marginal thus far for good color rendition. Recently, Sevchenko Institute has made some very fast reflective LC cells which were evaluated at Philips Labs. These devices showed sub millisecond-large signal-response times, even at room temperature, and produced good color in a projector emulation testbed. In our presentation we describe our highly efficient color sequential projector and demonstrate its operation on video tape. Next we discuss light-valve requirements and reflective light-valve test results.
Fixation of operating point and measurement of turn on characteristics of IGBT F4-75R06W1E3
NASA Astrophysics Data System (ADS)
Haseena, A.; Subhash Joshi T., G.; George, Saly
2018-05-01
For the proficient operation of the Power electronic circuit, signal level performance of power electronic devices are very important. For getting good signal level characteristics, fixing operating point is very critical. Device deviates from the typical characteristics given in the datasheet due to the presence of stray components in the circuit lay out. Fixation of operating point of typical silicon IGBT and its turn on characteristics is discussed in this paper.
Solution-Processed Metal Oxides as Efficient Carrier Transport Layers for Organic Photovoltaics.
Choy, Wallace C H; Zhang, Di
2016-01-27
Carrier (electron and hole) transport layers (CTLs) are essential components for boosting the performance of various organic optoelectronic devices such as organic solar cells and organic light-emitting diodes. Considering the drawbacks of conventional CTLs (easily oxidized/unstable, demanding/costly fabrication, etc.), transition metal oxides with good carrier transport/extraction and superior stability have drawn extensive research interest as CTLs for next-generation devices. In recent years, many research efforts have been made toward the development of solution-based metal oxide CTLs with the focus on low- or even room-temperature processes, which can potentially be compatible with the deposition processes of organic materials and can significantly contribute to the low-cost and scale-up of organic devices. Here, the recent progress of different types of solution-processed metal oxide CTLs are systematically reviewed in the context of organic photovoltaics, from synthesis approaches to device performance. Different approaches for further enhancing the performance of solution-based metal oxide CTLs are also discussed, which may push the future development of this exciting field. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhu, Tongtong; Liu, Yingjun; Ding, Tao; Fu, Wai Yuen; Jarman, John; Ren, Christopher Xiang; Kumar, R Vasant; Oliver, Rachel A
2017-03-27
Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices. For many device applications, it is highly desirable to achieve not only high reflectivity and low absorption, but also good conductivity to allow effective electrical injection of charges. Here, we demonstrate the wafer-scale fabrication of highly reflective and conductive non-polar gallium nitride (GaN) DBRs, consisting of perfectly lattice-matched non-polar (11-20) GaN and mesoporous GaN layers that are obtained by a facile one-step electrochemical etching method without any extra processing steps. The GaN/mesoporous GaN DBRs exhibit high peak reflectivities (>96%) across the entire visible spectrum and wide spectral stop-band widths (full-width at half-maximum >80 nm), while preserving the material quality and showing good electrical conductivity. Such mesoporous GaN DBRs thus provide a promising and scalable platform for high performance GaN-based optoelectronic, photonic, and quantum photonic devices.
A flexible ultrasound transducer array with micro-machined bulk PZT.
Wang, Zhe; Xue, Qing-Tang; Chen, Yuan-Quan; Shu, Yi; Tian, He; Yang, Yi; Xie, Dan; Luo, Jian-Wen; Ren, Tian-Ling
2015-01-23
This paper proposes a novel flexible piezoelectric micro-machined ultrasound transducer, which is based on PZT and a polyimide substrate. The transducer is made on the polyimide substrate and packaged with medical polydimethylsiloxane. Instead of etching the PZT ceramic, this paper proposes a method of putting diced PZT blocks into holes on the polyimide which are pre-etched. The device works in d31 mode and the electromechanical coupling factor is 22.25%. Its flexibility, good conformal contacting with skin surfaces and proper resonant frequency make the device suitable for heart imaging. The flexible packaging ultrasound transducer also has a good waterproof performance after hundreds of ultrasonic electric tests in water. It is a promising ultrasound transducer and will be an effective supplementary ultrasound imaging method in the practical applications.
42 CFR 405.201 - Scope of subpart and definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
...). (b) Definitions. As used in this subpart— Class I refers to devices for which the general controls of the Food, Drug, and Cosmetic Act, such as adherence to good manufacturing practice regulations, are... addition to general controls, require special controls, such as performance standards or postmarket...
42 CFR 405.201 - Scope of subpart and definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
...). (b) Definitions. As used in this subpart— Class I refers to devices for which the general controls of the Food, Drug, and Cosmetic Act, such as adherence to good manufacturing practice regulations, are... addition to general controls, require special controls, such as performance standards or postmarket...
42 CFR 405.201 - Scope of subpart and definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
...). (b) Definitions. As used in this subpart— Class I refers to devices for which the general controls of the Food, Drug, and Cosmetic Act, such as adherence to good manufacturing practice regulations, are... addition to general controls, require special controls, such as performance standards or postmarket...
21 CFR 26.39 - Equivalence assessment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS... perform any type of quality system or product evaluation covered by this subpart and with regard to any... any type of quality system or product evaluation. (b) The parties shall allow CAB's not listed for...
Morphology evolution in high-performance polymer solar cells processed from nonhalogenated solvent
Cai, Wanzhu; Liu, Peng; Jin, Yaocheng; ...
2015-05-26
A new processing protocol based on non-halogenated solvent and additive is developed to produce polymer solar cells with power conversion efficiencies better than those processed from commonly used halogenated solvent-additive pair. Morphology studies show that good performance correlates with a finely distributed nanomorphology with a well-defined polymer fibril network structure, which leads to balanced charge transport in device operation.
Three-dimensional charge transport in organic semiconductor single crystals.
He, Tao; Zhang, Xiying; Jia, Jiong; Li, Yexin; Tao, Xutang
2012-04-24
Three-dimensional charge transport anisotropy in organic semiconductor single crystals - both plates and rods (above and below, respectively, in the figure) - is measured in well-performing organic field-effect transistors for the first time. The results provide an excellent model for molecular design and device preparation that leads to good performance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design, analysis, and testing of a flexure-based vibration-assisted polishing device
NASA Astrophysics Data System (ADS)
Gu, Yan; Zhou, Yan; Lin, Jieqiong; Lu, Mingming; Zhang, Chenglong; Chen, Xiuyuan
2018-05-01
A vibration-assisted polishing device (VAPD) composed of leaf-spring and right-circular flexure hinges is proposed with the aim of realizing vibration-assisted machining along elliptical trajectories. To design the structure, energy methods and the finite-element method are used to calculate the performance of the proposed VAPD. An improved bacterial foraging optimization algorithm is used to optimize the structural parameters. In addition, the performance of the VAPD is tested experimentally. The experimental results indicate that the maximum strokes of the two directional mechanisms operating along the Z1 and Z2 directions are 29.5 μm and 29.3 μm, respectively, and the maximum motion resolutions are 10.05 nm and 10.01 nm, respectively. The maximum working bandwidth is 1,879 Hz, and the device has a good step response.
First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping
Ma, Yungui; Liu, Yichao; Lan, Lu; Wu, Tiantian; Jiang, Wei; Ong, C. K.; He, Sailing
2013-01-01
In the past years quasi-conformal mapping has been generally used to design broadband electromagnetic cloaks. However, this technique has some inherit practical limitations such as the lateral beam shift, rendering the device visible or difficult to hide a large object. In this work we circumvent these issues by using strict conformal mapping to build the first isotropic cloak. Microwave near-field measurement shows that our device (with dielectric constant larger than unity everywhere) has a very good cloaking performance and a broad frequency response. The present dielectric approach could be technically extended to the fabrication of other conformal devices at higher frequencies. PMID:23851589
Sun, Bai; Zhang, Xuejiao; Zhou, Guangdong; Yu, Tian; Mao, Shuangsuo; Zhu, Shouhui; Zhao, Yong; Xia, Yudong
2018-06-15
In this work, a flexible resistive switching memory device based on ZnO film was fabricated using a foldable Polyethylene terephthalate (PET) film as substrate while Ag and Ti acts top and bottom electrode. Our as-prepared device represents an outstanding nonvolatile memory behavior with good "write-read-erase-read" stability at room temperature. Finally, a physical model of Ag conductive filament is constructed to understanding the observed memory characteristics. The work provides a new way for the preparation of flexible memory devices based on ZnO films, and especially provides an experimental basis for the exploration of high-performance and portable nonvolatile resistance random memory (RRAM). Copyright © 2018 Elsevier Inc. All rights reserved.
Finite-element analysis of NiTi wire deflection during orthodontic levelling treatment
NASA Astrophysics Data System (ADS)
Razali, M. F.; Mahmud, A. S.; Mokhtar, N.; Abdullah, J.
2016-02-01
Finite-element analysis is an important product development tool in medical devices industry for design and failure analysis of devices. This tool helps device designers to quickly explore various design options, optimizing specific designs and providing a deeper insight how a device is actually performing. In this study, three-dimensional finite-element models of superelastic nickel-titanium arch wire engaged in a three brackets system were developed. The aim was to measure the effect of binding friction developed on wire-bracket interaction towards the remaining recovery force available for tooth movement. Uniaxial and three brackets bending test were modelled and validated against experimental works. The prediction made by the three brackets bending models shows good agreement with the experimental results.
Glassman, Lisa H; Kuster, Anootnara T; Shaw, Jena A; Forman, Evan M; Izzetoglu, Meltem; Matteucci, Alyssa; Herbert, James D
2017-06-01
Functional near-infrared (fNIR) spectroscopy is a promising new technology that has demonstrated utility in the study of normal human cognition. We utilized fNIR spectroscopy to examine the effect of social anxiety and performance on hemodynamic activity in the dorsolateral prefrontal cortex (DLPFC). Socially phobic participants and non-clinical participants with varying levels of social anxiety completed a public speaking task in front of a small virtual audience while the DLPFC was being monitored by the fNIR device. The relationship between anxiety and both blood volume (BV) and deoxygenated hemoglobin (Hb) varied significantly as a function of speech performance, such that individuals with low social anxiety who performed well showed an increase in DLPFC activation relative to those who did not perform well. This result suggests that effortful thinking and/or efficient top-down inhibitory control may have been required to complete an impromptu speech task with good performance. In contrast, good performers who were highly socially anxious showed lower DLPFC activation relative to good performers who were low in social anxiety, suggesting autopilot thinking or less-effortful thinking. In poor performers, slight increases in DLPFC activation were observed from low to highly anxious individuals, which may reflect a shift from effortless thinking to heightened self-focused attention. Heightened self-focused attention, poor inhibitory control resulting in excessive fear or anxiety, or low motivation may lower performance. These results suggest that there can be different underlying mechanisms in the brain that affect the level of speech performance in individuals with varying degrees of social anxiety. This study highlights the utility of the fNIR device in the assessment of changes in DLPFC in response to exposure to realistic phobic stimuli, and further supports the potential utility of this technology in the study of the neurophysiology of anxiety disorders.
Metalorganic chemical vapor deposition of AlGaAs and InGaP heterojunction bipolar transistors
NASA Astrophysics Data System (ADS)
Pan, N.; Welser, R. E.; Lutz, C. R.; DeLuca, P. M.; Han, B.; Hong, K.
2001-05-01
Heterojunction bipolar transistors (HBT) are now beginning to be widely incorporated as power amplifiers, laser drivers, multiplexers, clock data recovery circuits, as well as transimpedance and broadband amplifiers in high performance millimeter wave circuits (MMICs). The increasing acceptance of this device is principally due to advancements in metalorganic chemical vapor deposition (MOCVD), device processing, and circuit design technologies. Many of the DC electrical characteristics of large area devices can be directly correlated to the DC performance of small area RF devices. A precise understanding of the growth parameters and their relationship to device characteristics is critical for ensuring the high degree of reproducibility required for low cost high-yield volume manufacturing. Significant improvements in the understanding of the MOCVD growth process have been realized through the implementation of statistical process control on the key HBT device parameters. This tool has been successfully used to maintain the high quality of the device characteristics in high-volume production of 4″ GaAs-based HBTs. There is a growing demand to migrate towards 6″ diameter wafer size due to the potential cost reductions and increased volume production that can be realized. Preliminary results, indicating good heterostructure layer characteristics, demonstrate the feasibility of 6″ InGaP-based HBT devices.
Xiao, Liangang; Liang, Tianxiang; Gao, Ke; Lai, Tianqi; Chen, Xuebin; Liu, Feng; Russell, Thomas P; Huang, Fei; Peng, Xiaobin; Cao, Yong
2017-09-06
Ternary organic solar cells (OSCs) are very attractive for further enhancing the power conversion efficiencies (PCEs) of binary ones but still with a single active layer. However, improving the PCEs is still challenging because a ternary cell with one more component is more complicated on phase separation behavior. If the two donors or two acceptors have similar chemical structures, good miscibility can be expected to reduce the try-and-error work. Herein, we report ternary devices based on two small molecule donors with the same backbone but different substituents. Whereas both binary devices show PCEs about 9%, the PCE of the ternary cells is enhanced to 10.17% with improved fill factor and short-circuit current values and external quantum efficiencies almost in the whole absorption wavelength region from 440 to 850 nm. The same backbone enables the donors miscible at molecular level, and the donor with a higher HOMO level plays hole relay process to facilitate the charge transportation in the ternary devices. Since side-chain engineering has been well performed to tune the active materials' energy levels in OSCs, our results suggest that their ternary systems are promising for further improving the binary cells' performance although their absorptions are not complementary.
40 CFR 1042.655 - Special certification provisions for-Category 3 engines with aftertreatment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... devices) comply with applicable emission standards. You must use good engineering judgment for all aspects... points. This catalyst or aftertreatment testing may be performed on a benchscale. (c) Engineering analysis. Include with your application a detailed engineering analysis describing how the test data...
40 CFR 1042.655 - Special certification provisions for-Category 3 engines with aftertreatment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... devices) comply with applicable emission standards. You must use good engineering judgment for all aspects... points. This catalyst or aftertreatment testing may be performed on a benchscale. (c) Engineering analysis. Include with your application a detailed engineering analysis describing how the test data...
Xie, Chao; Nie, Biao; Zeng, Longhui; Liang, Feng-Xia; Wang, Ming-Zheng; Luo, Linbao; Feng, Mei; Yu, Yongqiang; Wu, Chun-Yan; Wu, Yucheng; Yu, Shu-Hong
2014-04-22
Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core-shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 10(3) at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core-shell heterojunction device could find potential applications in future high-performance optoelectronic devices.
NASA Astrophysics Data System (ADS)
Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe
2015-01-01
In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices.
Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe
2015-01-12
In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices.
Ultrathin planar graphene supercapacitors.
Yoo, Jung Joon; Balakrishnan, Kaushik; Huang, Jingsong; Meunier, Vincent; Sumpter, Bobby G; Srivastava, Anchal; Conway, Michelle; Reddy, Arava Leela Mohana; Yu, Jin; Vajtai, Robert; Ajayan, Pulickel M
2011-04-13
With the advent of atomically thin and flat layers of conducting materials such as graphene, new designs for thin film energy storage devices with good performance have become possible. Here, we report an "in-plane" fabrication approach for ultrathin supercapacitors based on electrodes comprised of pristine graphene and multilayer reduced graphene oxide. The in-plane design is straightforward to implement and exploits efficiently the surface of each graphene layer for energy storage. The open architecture and the effect of graphene edges enable even the thinnest of devices, made from as grown 1-2 graphene layers, to reach specific capacities up to 80 μFcm(-2), while much higher (394 μFcm(-2)) specific capacities are observed multilayer reduced graphene oxide electrodes. The performances of devices with pristine as well as thicker graphene-based structures are examined using a combination of experiments and model calculations. The demonstrated all solid-state supercapacitors provide a prototype for a broad range of thin-film based energy storage devices.
A molecular nematic liquid crystalline material for high-performance organic photovoltaics
Sun, Kuan; Xiao, Zeyun; Lu, Shirong; Zajaczkowski, Wojciech; Pisula, Wojciech; Hanssen, Eric; White, Jonathan M.; Williamson, Rachel M.; Subbiah, Jegadesan; Ouyang, Jianyong; Holmes, Andrew B.; Wong, Wallace W.H.; Jones, David J.
2015-01-01
Solution-processed organic photovoltaic cells (OPVs) hold great promise to enable roll-to-roll printing of environmentally friendly, mechanically flexible and cost-effective photovoltaic devices. Nevertheless, many high-performing systems show best power conversion efficiencies (PCEs) with a thin active layer (thickness is ~100 nm) that is difficult to translate to roll-to-roll processing with high reproducibility. Here we report a new molecular donor, benzodithiophene terthiophene rhodanine (BTR), which exhibits good processability, nematic liquid crystalline behaviour and excellent optoelectronic properties. A maximum PCE of 9.3% is achieved under AM 1.5G solar irradiation, with fill factor reaching 77%, rarely achieved in solution-processed OPVs. Particularly promising is the fact that BTR-based devices with active layer thicknesses up to 400 nm can still afford high fill factor of ~70% and high PCE of ~8%. Together, the results suggest, with better device architectures for longer device lifetime, BTR is an ideal candidate for mass production of OPVs. PMID:25586307
Hu, Wei; Qin, Ni; Wu, Guangheng; Lin, Yanting; Li, Shuwei; Bao, Dinghua
2012-09-12
The opportunity of spinel ferrites in nonvolatile memory device applications has been demonstrated by the resistive switching performance characteristics of a Pt/NiFe(2)O(4)/Pt structure, such as low operating voltage, high device yield, long retention time (up to 10(5) s), and good endurance (up to 2.2 × 10(4) cycles). The dominant conduction mechanisms are Ohmic conduction in the low-resistance state and in the lower-voltage region of the high-resistance state and Schottky emission in the higher-voltage region of the high-resistance state. On the basis of measurements of the temperature dependence of the resistances and magnetic properties in different resistance states, we explain the physical mechanism of resistive switching of Pt/NiFe(2)O(4)/Pt devices using the model of formation and rupture of conducting filaments by considering the thermal effect of oxygen vacancies and changes in the valences of cations due to the redox effect.
NASA Astrophysics Data System (ADS)
Li, Yang; Yao, Zhao; Fu, Xiao-Qian; Li, Zhi-Ming; Shan, Fu-Kai; Wang, Cong
2017-05-01
Recently, integrated passive devices have become increasingly popular; inductor realization, in particular, offers interesting high performance for RF modules and systems. In this paper, a development of differential inductor fabricated by integrated passive devices technology using a double air-bridge structure is presented. A study of the model development of the differential inductor is first demonstrated. In this model section, a segment box analysis method is applied to provide a clear presentation of the differential inductor. Compared with other work that only shows a brief description of the process, the integrated passive devices process used to fabricate the inductor in this study is elaborated on. Finally, a characterization of differential inductors with different physical layout parameters is illustrated based on inductance and quality factors, which provides a valuable reference for realizing high performance. The proposed work provides a good solution for the design, fabrication and practical application of RF modules and systems.
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik
2008-01-01
A new operational amplifier chip based on silicon-on-insulator technology was evaluated for potential use in extreme temperature environments. The CHT-OPA device is a low power, precision operational amplifier with rail-to-rail output swing capability, and it is rated for operation between -55 C and +225 C. A unity gain inverting circuit was constructed utilizing the CHT-OPA chip and a few passive components. The circuit was evaluated in the temperature range from -190 C to +200 C in terms of signal gain and phase shift, and supply current. The investigations were carried out to determine suitability of this device for use in space exploration missions and aeronautic applications under wide temperature incursion. Re-restart capability at extreme temperatures, i.e. power switched on while the device was soaked at extreme temperatures, was also investigated. In addition, the effects of thermal cycling under a wide temperature range on the operation of this high performance amplifier were determined. The results from this work indicate that this silicon-on-insulator amplifier chip maintained very good operation between +200 C and -190 C. The limited thermal cycling had no effect on the performance of the amplifier, and it was able to re-start at both -190 C and +200 C. In addition, no physical degradation or packaging damage was introduced due to either extreme temperature exposure or thermal cycling. The good performance demonstrated by this silicon-on-insulator operational amplifier renders it a potential candidate for use in space exploration missions or other environments under extreme temperatures. Additional and more comprehensive characterization is, however, required to establish the reliability and suitability of such devices for long term use in extreme temperature applications.
Numerical modeling of high-voltage circuit breaker arcs and their interraction with the power system
NASA Astrophysics Data System (ADS)
Orama, Lionel R.
In this work the interaction between series connected gas and vacuum circuit breaker arcs has been studied. The breakdown phenomena in vacuum interrupters during the post arc current period have been of special interest. Numerical models of gas and vacuum arcs were developed in the form of black box models. Especially, the vacuum post arc model was implemented by combining the existing transition model with an ion density function and expressions for the breakdown mechanisms. The test series studied reflect that for electric fields on the order of 10sp7V/m over the anode, the breakdown of the vacuum gap can result from a combination of both thermal and electrical stresses. For a particular vacuum device, the vacuum model helps to find the interruption limits of the electric field and power density over the anode. The series connection of gas and vacuum interrupters always performs better than the single gas device. Moreover, to take advantage of the good characteristics of both devices, the time between the current zero crossing in each interrupter can be changed. This current zero synchronization is controlled by changing the capacitance in parallel to the gas device. This gas/vacuum interrupter is suitable for interruption of very stressful short circuits in which the product of the dI/dt before current zero and the dV/dt after current zero is very high. Also, a single SF6 interrupter can be replaced by an air circuit breaker of the same voltage rating in series with a vacuum device without compromising the good performance of the SF6 device. Conceptually, a series connected vacuum device can be used for high voltage applications with equal distribution of electrical stresses between the individual interrupters. The equalization can be made by a sequential opening of the individual contact pairs, beginning with the interruptors that are closer to ground potential. This could eliminate the use of grading capacitors.
NASA Astrophysics Data System (ADS)
Fukuda, Kenjiro; Takeda, Yasunori; Kobayashi, Yu; Shimizu, Masahiro; Sekine, Tomohito; Kumaki, Daisuke; Kurihara, Masato; Sakamoto, Masatomi; Tokito, Shizuo
2013-05-01
Fully solution-processed organic thin-film transistor (OTFT) devices have been fabricated with simple patterning process at a relatively low process temperature of 100 °C. In the patterning process, a hydrophobic amorphous fluoropolymer material, which was used as the gate dielectric layer and the underlying base layer, was treated with an oxygen plasma to selectively change its surface wetting properties from hydrophobic to hydrophilic. Silver source and drain electrodes were successfully formed in the treated areas with highly uniform line widths and without residues between the electrodes. Nonuniformities in the thickness of the silver electrodes originating from the “coffee-ring” effect were suppressed by optimizing the blend of solvents used with the silver nanoparticles, such that the printed electrodes are appropriate for bottom-gate OTFT devices. A fully solution-processed OTFT device using a polymer semiconductor material (PB16TTT) exhibited good electrical performance with no hysteresis in its transfer characteristics and with good linearity in its output characteristics. A relatively high carrier mobility of 0.14 cm2 V-1 s-1 and an on/off ratio of 1×105 were obtained with the fabricated TFT device.
Trompier, François; Burbidge, Christopher; Bassinet, Céline; Baumann, Marion; Bortolin, Emanuela; De Angelis, Cinzia; Eakins, Jonathan; Della Monaca, Sara; Fattibene, Paola; Quattrini, Maria Cristina; Tanner, Rick; Wieser, Albrecht; Woda, Clemens
2017-01-01
In the EC-funded project RENEB (Realizing the European Network in Biodosimetry), physical methods applied to fortuitous dosimetric materials are used to complement biological dosimetry, to increase dose assessment capacity for large-scale radiation/nuclear accidents. This paper describes the work performed to implement Optically Stimulated Luminescence (OSL) and Electron Paramagnetic Resonance (EPR) dosimetry techniques. OSL is applied to electronic components and EPR to touch-screen glass from mobile phones. To implement these new approaches, several blind tests and inter-laboratory comparisons (ILC) were organized for each assay. OSL systems have shown good performances. EPR systems also show good performance in controlled conditions, but ILC have also demonstrated that post-irradiation exposure to sunlight increases the complexity of the EPR signal analysis. Physically-based dosimetry techniques present high capacity, new possibilities for accident dosimetry, especially in the case of large-scale events. Some of the techniques applied can be considered as operational (e.g. OSL on Surface Mounting Devices [SMD]) and provide a large increase of measurement capacity for existing networks. Other techniques and devices currently undergoing validation or development in Europe could lead to considerable increases in the capacity of the RENEB accident dosimetry network.
Lam, Paul; Hebert, Debbie; Boger, Jennifer; Lacheray, Hervé; Gardner, Don; Apkarian, Jacob; Mihailidis, Alex
2008-01-01
Background It has been shown that intense training can significantly improve post-stroke upper-limb functionality. However, opportunities for stroke survivors to practice rehabilitation exercises can be limited because of the finite availability of therapists and equipment. This paper presents a haptic-enabled exercise platform intended to assist therapists and moderate-level stroke survivors perform upper-limb reaching motion therapy. This work extends on existing knowledge by presenting: 1) an anthropometrically-inspired design that maximizes elbow and shoulder range of motions during exercise; 2) an unobtrusive upper body postural sensing system; and 3) a vibratory elbow stimulation device to encourage muscle movement. Methods A multi-disciplinary team of professionals were involved in identifying the rehabilitation needs of stroke survivors incorporating these into a prototype device. The prototype system consisted of an exercise device, postural sensors, and a elbow stimulation to encourage the reaching movement. Eight experienced physical and occupational therapists participated in a pilot study exploring the usability of the prototype. Each therapist attended two sessions of one hour each to test and evaluate the proposed system. Feedback about the device was obtained through an administered questionnaire and combined with quantitative data. Results Seven of the nine questions regarding the haptic exercise device scored higher than 3.0 (somewhat good) out of 4.0 (good). The postural sensors detected 93 of 96 (97%) therapist-simulated abnormal postures and correctly ignored 90 of 96 (94%) of normal postures. The elbow stimulation device had a score lower than 2.5 (neutral) for all aspects that were surveyed, however the therapists felt the rehabilitation system was sufficient for use without the elbow stimulation device. Conclusion All eight therapists felt the exercise platform could be a good tool to use in upper-limb rehabilitation as the prototype was considered to be generally well designed and capable of delivering reaching task therapy. The next stage of this project is to proceed to clinical trials with stroke patients. PMID:18498641
Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, Patrick R.
2010-01-07
Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current ormore » leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.« less
Oxide Heteroepitaxy for Flexible Optoelectronics.
Bitla, Yugandhar; Chen, Ching; Lee, Hsien-Chang; Do, Thi Hien; Ma, Chun-Hao; Qui, Le Van; Huang, Chun-Wei; Wu, Wen-Wei; Chang, Li; Chiu, Po-Wen; Chu, Ying-Hao
2016-11-30
The emerging technological demands for flexible and transparent electronic devices have compelled researchers to look beyond the current silicon-based electronics. However, fabrication of devices on conventional flexible substrates with superior performance are constrained by the trade-off between processing temperature and device performance. Here, we propose an alternative strategy to circumvent this issue via the heteroepitaxial growth of transparent conducting oxides (TCO) on the flexible mica substrate with performance comparable to that of their rigid counterparts. With the examples of ITO and AZO as a case study, a strong emphasis is laid upon the growth of flexible yet epitaxial TCO relying muscovite's superior properties compared to those of conventional flexible substrates and its compatibility with the present fabrication methods. Besides excellent optoelectro-mechanical properties, an additional functionality of high-temperature stability, normally lacking in the current state-of-the-art transparent flexitronics, is provided by these heterostructures. These epitaxial TCO electrodes with good chemical and thermal stabilities as well as mechanical durability can significantly contribute to the field of flexible, light-weight, and portable smart electronics.
A simplified design of the staggered herringbone micromixer for practical applications
Du, Yan; Zhang, Zhiyi; Yim, ChaeHo; Lin, Min; Cao, Xudong
2010-01-01
We demonstrated a simple method for the device design of a staggered herringbone micromixer (SHM) using numerical simulation. By correlating the simulated concentrations with channel length, we obtained a series of concentration versus channel length profiles, and used mixing completion length Lm as the only parameter to evaluate the performance of device structure on mixing. Fluorescence quenching experiments were subsequently conducted to verify the optimized SHM structure for a specific application. Good agreement was found between the optimization and the experimental data. Since Lm is straightforward, easily defined and calculated parameter for characterization of mixing performance, this method for designing micromixers is simple and effective for practical applications. PMID:20697584
A simplified design of the staggered herringbone micromixer for practical applications.
Du, Yan; Zhang, Zhiyi; Yim, Chaeho; Lin, Min; Cao, Xudong
2010-05-07
We demonstrated a simple method for the device design of a staggered herringbone micromixer (SHM) using numerical simulation. By correlating the simulated concentrations with channel length, we obtained a series of concentration versus channel length profiles, and used mixing completion length L(m) as the only parameter to evaluate the performance of device structure on mixing. Fluorescence quenching experiments were subsequently conducted to verify the optimized SHM structure for a specific application. Good agreement was found between the optimization and the experimental data. Since L(m) is straightforward, easily defined and calculated parameter for characterization of mixing performance, this method for designing micromixers is simple and effective for practical applications.
Hendrickson, Joshua; Soref, Richard; Sweet, Julian; Majumdar, Arka
2015-01-12
New device designs are proposed and theoretical simulations are performed on electro-optical routing switches in which light beams enter and exit the device either from free space or from lensed fibers. The active medium is a ~100 nm layer of phase change material (Ge(2)Sb(2)Te(5) or GeTe) that is electrically "triggered" to change its phase, giving "self-holding" behavior in each of two phases. Electrical current is supplied to that film by a pair of transparent highly doped conducting Ge prisms on both sides of the layer. For S-polarized light incident at ~80° on the film, a three-layer Fabry-Perot analysis, including dielectric loss, predicts good 1 x 2 and 2 x 2 switch performance at infrared wavelengths of 1.55, 2.1 and 3.0 μm, although the performance at 1.55 μm is degraded by material loss and prism mismatch. Proposals for in-plane and volumetric 1 x 4 and 4 x 4 switches are also presented. An unpolarized 1 x 2 switch projects good performance at mid infrared.
NASA Astrophysics Data System (ADS)
You, Yuxiu; Zheng, Maojun; Ma, Liguo; Yuan, Xiaoliang; Zhang, Bin; Li, Qiang; Wang, Faze; Song, Jingnan; Jiang, Dongkai; Liu, Pengjie; Ma, Li; Shen, Wenzhong
2017-03-01
High-performance supercapacitors are very desirable for many portable electronic devices, electric vehicles and high-power electronic devices. Herein, a facile and binder-free synthesis method, galvanic displacement of the precursor followed by heat treatment, is used to fabricate ultrathin Co3O4 nanosheet arrays on nickel foam substrate. When used as a supercapacitor electrode the prepared Co3O4 on nickel foam exhibits a maximum specific capacitance of 1095 F g-1 at a current density of 1 A g-1 and good cycling stability of 71% retention after 2000 cycling tests. This excellent electrochemical performance can be ascribed to the high specific surface area of each Co3O4 nanosheet that comprises numerous nanoparticles.
Key Reconciliation for High Performance Quantum Key Distribution
Martinez-Mateo, Jesus; Elkouss, David; Martin, Vicente
2013-01-01
Quantum Key Distribution is carving its place among the tools used to secure communications. While a difficult technology, it enjoys benefits that set it apart from the rest, the most prominent is its provable security based on the laws of physics. QKD requires not only the mastering of signals at the quantum level, but also a classical processing to extract a secret-key from them. This postprocessing has been customarily studied in terms of the efficiency, a figure of merit that offers a biased view of the performance of real devices. Here we argue that it is the throughput the significant magnitude in practical QKD, specially in the case of high speed devices, where the differences are more marked, and give some examples contrasting the usual postprocessing schemes with new ones from modern coding theory. A good understanding of its implications is very important for the design of modern QKD devices. PMID:23546440
NASA Astrophysics Data System (ADS)
Huffstutler, Jacob; Wasala, Milinda; Richie, Julianna; Winchester, Andrew; Ghosh, Sujoy; Kar, Swastik; Talapatra, Saikat
2014-03-01
We will present the results of our investigations of electrochemical double layer capacitors (EDLCs) or supercapacitors (SC) fabricated using liquid-phase exfoliated graphene. Several electrolytes, such as aqueous potassium hydroxide KOH (6M), ionic 1-Butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], and ionic 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate[BMP][FAP] were used. These EDLC's show good performance compared to other carbon nanomaterials based EDLC's devices. We found that the liquid phase exfoliated graphene based devices possess specific capacitance values as high as 262 F/g, when used with ionic liquid electrolyte[BMP][FAP], with power densities (~ 454 W/kg) and energy densities (~ 0.38Wh/kg). Further, these devices indicated rapid charge transfer response even without the use of any binders or specially prepared current collectors. A detailed electrochemical impedance spectroscopy analysis in order to understand the phenomenon of charge storage in these materials will be presented.
Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers.
Lei, Ting; Wang, Jie-Yu; Pei, Jian
2014-04-15
Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor-acceptor (D-A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure-property relationships. Recently, isoindigo has been used as a new acceptor of D-A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure-property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending π-conjugated backbones. We have found that using farther branched alkyl chains can effectively decrease interchain π-π stacking distance and improve carrier mobility. When we introduce electron-deficient functional groups on the isoindigo core, the LUMO levels of the polymers markedly decrease, which significantly improves the electron mobility and device stability. In addition, we present a new polymer system called BDOPV, which is based on the concept of π-extended isoindigo. By application of some strategies successfully used in isoindigo-based polymers, BDOPV-based polymers exhibit high mobility and good stability both in n-type and in ambipolar FETs. We believe that a synergy of molecular engineering strategies towards the isoindigo core, donor units, and side chains may further improve the performance and broaden the application of isoindigo-based polymers.
Simulation and performance of brushless dc motor actuators
NASA Astrophysics Data System (ADS)
Gerba, A., Jr.
1985-12-01
The simulation model for a Brushless D.C. Motor and the associated commutation power conditioner transistor model are presented. The necessary conditions for maximum power output while operating at steady-state speed and sinusoidally distributed air-gap flux are developed. Comparison of simulated model with the measured performance of a typical motor are done both on time response waveforms and on average performance characteristics. These preliminary results indicate good agreement. Plans for model improvement and testing of a motor-driven positioning device for model evaluation are outlined.
Shin, Min-Ho; Kim, Hyo-Jun; Kim, Young-Joo
2017-02-20
We proposed an optical simulation model for the quantum dot (QD) nanophosphor based on the mean free path concept to understand precisely the optical performance of optoelectronic devices. A measurement methodology was also developed to get the desired optical characteristics such as the mean free path and absorption spectra for QD nanophosphors which are to be incorporated into the simulation. The simulation results for QD-based white LED and OLED displays show good agreement with the experimental values from the fabricated devices in terms of spectral power distribution, chromaticity coordinate, CCT, and CRI. The proposed simulation model and measurement methodology can be applied easily to the design of lots of optoelectronics devices using QD nanophosphors to obtain high efficiency and the desired color characteristics.
Electromagnetic field tapering using all-dielectric gradient index materials.
Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz
2016-07-28
The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.
Use of a wire extender during neuroprotected vertebral artery angioplasty and stenting.
Lesley, Walter S; Kumar, Ravi; Rangaswamy, Rajesh
2010-09-01
The off-label use of an extender wire during vertebral artery stenting and angioplasty with or with neuroprotection has not been previously reported. Retrospective, single-patient, technical report. After monorail balloon angioplasty was performed on a proximal left vertebral artery stenosis, the 190 cm long Accunet neuroprotection filter device was not long enough for delivery of an over-the-wire stent. After mating a 145 cm long, 0.014 inch extension wire to the filter device, a balloon-mounted Liberté stent was implanted with good angiographic and clinical results. The off-label use of an extender wire permits successful over-the-wire stenting on a monorail neuroprotection device for vertebral artery endosurgery.
Paper-based transparent flexible thin film supercapacitors
NASA Astrophysics Data System (ADS)
Gao, Kezheng; Shao, Ziqiang; Wu, Xue; Wang, Xi; Zhang, Yunhua; Wang, Wenjun; Wang, Feijun
2013-05-01
Paper-based transparent flexible thin film supercapacitors were fabricated using CNF-[RGO]n hybrid paper as an electrode material and charge collector. Owing to the self-anti-stacking of distorted RGO nanosheets and internal electrolyte nanoscale-reservoirs, the device exhibited good electrochemical performance (about 1.73 mF cm-2), and a transmittance of about 56% (at 550 nm).Paper-based transparent flexible thin film supercapacitors were fabricated using CNF-[RGO]n hybrid paper as an electrode material and charge collector. Owing to the self-anti-stacking of distorted RGO nanosheets and internal electrolyte nanoscale-reservoirs, the device exhibited good electrochemical performance (about 1.73 mF cm-2), and a transmittance of about 56% (at 550 nm). Electronic supplementary information (ESI) available: Experimental, TEM image, IR spectra, and XRD spectra of cellulose nanofibers, TEM image, and XRD spectra of RGO, graphite, GO nanosheets, CNF paper, and CNF-[RGO]20 hybrid paper, high-resolution C1s spectra of GO, Raman spectra of GO nanosheets, cross-sectional FESEM image of CNF-[RGO]20 hybrid paper and stress-strain curve of T-SC-20. See DOI: 10.1039/c3nr00674c
Superconducting hot electron bolometers for terahertz sensing
NASA Astrophysics Data System (ADS)
Reese, Matthew Owen
Superconducting Hot Electron Bolometers (HEBs) are good candidates for detecting weak signals in the submillimeter or terahertz range. In this thesis work, a novel fabrication method was developed to make two types of niobium HEBs for different applications. HEBs were designed, fabricated, and then characterized at dc, microwave, and THz frequencies. The first type is a diffusion-cooled HEB, made with a short bridge that determines its cooling time. In this thesis, bridges were typically 400 nm long with bandwidths of about 1 GHz. These diffusion-cooled HEBs were developed as part of a collaboration with the University of Arizona (UA), to develop a proof-of-concept heterodyne array submillimeter camera. Devices were fabricated on thin fused quartz and silica substrates for waveguide coupling in the UA system for the astrophysically interesting 345 and 810 GHz atmospheric windows. The goal of this collaboration is to provide a basis of comparison between Nb diffusion-cooled HEB mixers and superconductorinsulator-superconductor mixers at these frequencies. The second type is a phonon-cooled HEB, made with a ˜3 mum long bridge. Its thermal response is dictated by the electron-phonon relaxation time. These devices were developed in collaboration with Prof. C. Schmuttenmaer's lab in the Yale Chemistry department, Prof. G. Blake at Caltech, and Dr. J. Pearson at the Jet Propulsion Laboratory. These devices were developed for use in quasi-optic systems to be used as fast (>100 MHz) direct detectors that can view room temperature sources without saturating. A variety of experimental applications are envisioned for these detectors including charge transport measurements of novel materials. A series of dc and microwave measurements were performed on the diffusion-cooled devices. A better understanding of the resistance vs. temperature profile was realized, including what design/fabrication parameters affect it and insight into how it affects device performance. This led to a do screening process that can identify good quality devices. The Nb phonon-cooled HEBs studied in this thesis were fully carried through the design, fabrication, and characterization process at dc, microwave and THz frequencies. The saturation power, responsivity, thermal response time, and noise performance were all measured to be within the expected range predicted by the initial design parameters.
Aikio, Sanna; Hiltunen, Jussi; Hiitola-Keinänen, Johanna; Hiltunen, Marianne; Kontturi, Ville; Siitonen, Samuli; Puustinen, Jarkko; Karioja, Pentti
2016-02-08
Flexible photonic integrated circuit technology is an emerging field expanding the usage possibilities of photonics, particularly in sensor applications, by enabling the realization of conformable devices and introduction of new alternative production methods. Here, we demonstrate that disposable polymeric photonic integrated circuit devices can be produced in lengths of hundreds of meters by ultra-high volume roll-to-roll methods on a flexible carrier. Attenuation properties of hundreds of individual devices were measured confirming that waveguides with good and repeatable performance were fabricated. We also demonstrate the applicability of the devices for the evanescent wave sensing of ambient refractive index. The production of integrated photonic devices using ultra-high volume fabrication, in a similar manner as paper is produced, may inherently expand methods of manufacturing low-cost disposable photonic integrated circuits for a wide range of sensor applications.
Evaluation of reliability and validity of three dental color-matching devices.
Tsiliagkou, Aikaterini; Diamantopoulou, Sofia; Papazoglou, Efstratios; Kakaboura, Afrodite
2016-01-01
To assess the repeatability and accuracy of three dental color-matching devices under standardized and freehand measurement conditions. Two shade guides (Vita Classical A1-D4, Vita; and Vita Toothguide 3D-Master, Vita), and three color-matching devices (Easyshade, Vita; SpectroShade, MHT Optic Research; and ShadeVision, X-Rite) were used. Five shade tabs were selected from the Vita Classical A1-D4 (A2, A3.5, B1, C4, D3), and five from the Vita Toothguide 3D-Master (1M1, 2R1.5, 3M2, 4L2.5, 5M3) shade guides. Each shade tab was recorded 15 continuous, repeated times with each device under two different measurement conditions (standardized, and freehand). Both qualitative (color shade) and quantitative (L, a, and b) color characteristics were recorded. The color difference (ΔE) of each recorded value with the known values of the shade tab was calculated. The repeatability of each device was evaluated by the coefficient of variance. The accuracy of each device was determined by comparing the recorded values with the known values of the reference shade tab (one sample t test; α = 0.05). The agreement between the recorded shade and the reference shade tab was calculated. The influence of the parameters (devices and conditions) on the parameter ΔE was investigated (two-way ANOVA). Comparison of the devices was performed with Bonferroni pairwise post-hoc analysis. Under standardized conditions, repeatability of all three devices was very good, except for ShadeVision with Vita Classical A1-D4. Accuracy ranged from good to fair, depending on the device and the shade guide. Under freehand conditions, repeatability and accuracy for Easyshade and ShadeVision were negatively influenced, but not for SpectroShade, regardless of the shade guide. Based on the total of the color parameters assessed per device, SpectroShade was the most reliable of the three color-matching devices studied.
Oligomer Molecules for Efficient Organic Photovoltaics.
Lin, Yuze; Zhan, Xiaowei
2016-02-16
Solar cells, a renewable, clean energy technology that efficiently converts sunlight into electricity, are a promising long-term solution for energy and environmental problems caused by a mass of production and the use of fossil fuels. Solution-processed organic solar cells (OSCs) have attracted much attention in the past few years because of several advantages, including easy fabrication, low cost, lightweight, and flexibility. Now, OSCs exhibit power conversion efficiencies (PCEs) of over 10%. In the early stage of OSCs, vapor-deposited organic dye materials were first used in bilayer heterojunction devices in the 1980s, and then, solution-processed polymers were introduced in bulk heterojunction (BHJ) devices. Relative to polymers, vapor-deposited small molecules offer potential advantages, such as a defined molecular structure, definite molecular weight, easy purification, mass-scale production, and good batch-to-batch reproducibility. However, the limited solubility and high crystallinity of vapor-deposited small molecules are unfavorable for use in solution-processed BHJ OSCs. Conversely, polymers have good solution-processing and film-forming properties and are easily processed into flexible devices, whereas their polydispersity of molecular weights and difficulty in purification results in batch to batch variation, which may hamper performance reproducibility and commercialization. Oligomer molecules (OMs) are monodisperse big molecules with intermediate molecular weights (generally in the thousands), and their sizes are between those of small molecules (generally with molecular weights <1000) and polymers (generally with molecular weights >10000). OMs not only overcome shortcomings of both vapor-deposited small molecules and solution-processed polymers, but also combine their advantages, such as defined molecular structure, definite molecular weight, easy purification, mass-scale production, good batch-to-batch reproducibility, good solution processability, and film-forming properties. Therefore, OMs are a good choice for solution-processed reproducible OSCs toward scalable commercialized applications. Considerable efforts have been dedicated to developing new OM electron donors and electron acceptors for OSCs. So far, the highest PCEs of solution-processed OSCs based on OM donors and acceptors are 9-10% and 6-7%, respectively. OM materials have become promising alternatives to polymer and/or fullerene materials for efficient and stable OSCs. In this Account, we present a brief survey of the recent developments in solution-processable OM electron donors and acceptors and their application in OSCs. Rational design of OMs with star- and linear-shaped structures based on triphenylamine, benzodithiophene, and indacenodithiophene units and their impacts on device performance are discussed. Structure-property relationships are also proposed. Furthermore, the remaining challenges and the key research directions in the near future are also addressed. In the next years, an interdisciplinary approach involving novel OM materials, especially electron acceptor materials, accurate morphology optimization, and advanced device technologies will probably bring high-efficiency and stable OSCs to final commercialization.
Gas transfer model to design a ventilator for neonatal total liquid ventilation.
Bonfanti, Mirko; Cammi, Antonio; Bagnoli, Paola
2015-12-01
The study was aimed to optimize the gas transfer in an innovative ventilator for neonatal Total Liquid Ventilation (TLV) that integrates the pumping and oxygenation functions in a non-volumetric pulsatile device made of parallel flat silicone membranes. A computational approach was adopted to evaluate oxygen (O2) and carbon dioxide (CO2) exchanges between the liquid perfluorocarbon (PFC) and the oxygenating gas, as a function of the geometrical parameter of the device. A 2D semi-empirical model was implemented to this purpose using Comsol Multiphysics to study both the fluid dynamics and the gas exchange in the ventilator. Experimental gas exchanges measured with a preliminary prototype were compared to the simulation outcomes to prove the model reliability. Different device configurations were modeled to identify the optimal design able to guarantee the desired gas transfer. Good agreement between experimental and simulation outcomes was obtained, validating the model. The optimal configuration, able to achieve the desired gas exchange (ΔpCO2 = 16.5 mmHg and ΔpO2 = 69 mmHg), is a device comprising 40 modules, 300 mm in length (total exchange area = 2.28 m(2)). With this configuration gas transfer performance is satisfactory for all the simulated settings, proving good adaptability of the device. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
He, Qiming; Mu, Wenxiang; Dong, Hang; Long, Shibing; Jia, Zhitai; Lv, Hangbing; Liu, Qi; Tang, Minghua; Tao, Xutang; Liu, Ming
2017-02-01
The Pt/β-Ga2O3 Schottky barrier diode and its temperature-dependent current-voltage characteristics were investigated for power device application. The edge-defined film-fed growth (EFG) technique was utilized to grow the (100)-oriented β-Ga2O3 single crystal substrate that shows good crystal quality characterized by X-ray diffraction and high resolution transmission electron microscope. Ohmic and Schottky electrodes were fabricated by depositing Ti and Pt metals on the two surfaces, respectively. Through the current-voltage (I-V) measurement under different temperature and the thermionic emission modeling, the fabricated Pt/β-Ga2O3 Schottky diode was found to show good performances at room temperature, including rectification ratio of 1010, ideality factor (n) of 1.1, Schottky barrier height (ΦB) of 1.39 eV, threshold voltage (Vbi) of 1.07 V, ON-resistance (RON) of 12.5 mΩ.cm2, forward current density at 2 V (J@2V) of 56 A/cm2, and saturation current density (J0) of 2 × 10-16 A/cm2. The effective donor concentration Nd - Na was calculated to be about 2.3 × 1014 cm3. Good temperature dependent performance was also found in the device. The Schottky barrier height was estimated to be about 1.3 eV-1.39 eV at temperatures ranging from room temperature to 150 °C. With increasing temperature, parameters such as RON and J@2V become better, proving that the diode can work well at high temperature. The EFG grown β-Ga2O3 single crystal is a promising material to be used in the power devices.
The Effectiveness of Guided Inquiry Learning for Comparison Topics
NASA Astrophysics Data System (ADS)
Asnidar; Khabibah, S.; Sulaiman, R.
2018-01-01
This research aims at producing a good quality learning device using guided inquiry for comparison topics and describing the effectiveness of guided inquiry learning for comparison topics. This research is a developmental research using 4-D model. The result is learning device consisting of lesson plan, student’s worksheet, and achievement test. The subjects of the study were class VII students, each of which has 46 students. Based on the result in the experimental class, the learning device using guided inquiry for comparison topics has good quality. The learning device has met the valid, practical, and effective aspects. The result, especially in the implementation class, showed that the learning process with guided inquiry has fulfilled the effectiveness indicators. The ability of the teacher to manage the learning process has fulfilled the criteria good. In addition, the students’ activity has fulfilled the criteria of, at least, good. Moreover, the students’ responses to the learning device and the learning activities were positive, and the students were able to complete the classical learning. Based on the result of this research, it is expected that the learning device resulted can be used as an alternative learning device for teachers in implementing mathematic learning for comparison topics.
High Sensitive pH Sensor Based on AlInN/GaN Heterostructure Transistor.
Dong, Yan; Son, Dong-Hyeok; Dai, Quan; Lee, Jun-Hyeok; Won, Chul-Ho; Kim, Jeong-Gil; Chen, Dunjun; Lee, Jung-Hee; Lu, Hai; Zhang, Rong; Zheng, Youdou
2018-04-24
The AlInN/GaN high-electron-mobility-transistor (HEMT) indicates better performances compared with the traditional AlGaN/GaN HEMTs. The present work investigated the pH sensor functionality of an analogous HEMT AlInN/GaN device with an open gate. It was shown that the Al 0.83 In 0.17 N/GaN device demonstrates excellent pH sense functionality in aqueous solutions, exhibiting higher sensitivity (−30.83 μA/pH for AlInN/GaN and −4.6 μA/pH for AlGaN/GaN) and a faster response time, lower degradation and good stability with respect to the AlGaN/GaN device, which is attributed to higher two-dimensional electron gas (2DEG) density and a thinner barrier layer in Al 0.83 In 0.17 N/GaN owning to lattice matching. On the other hand, the open gate geometry was found to affect the pH sensitivity obviously. Properly increasing the width and shortening the length of the open gate area could enhance the sensitivity. However, when the open gate width is too larger or too small, the pH sensitivity would be suppressed conversely. Designing an optimal ratio of the width to the length is important for achieving high sensitivity. This work suggests that the AlInN/GaN-based 2DEG carrier modulated devices would be good candidates for high-performance pH sensors and other related applications.
Phototransistors Development and their Applications to Lidar
NASA Technical Reports Server (NTRS)
Abedin, M. N.; Refaat, Tamer F.; Ismail, Syed; Singh, Upendra N.
2007-01-01
Custom-designed two-micron phototransistors have been developed using Liquid Phase Epitaxy (LPE), Molecular Beam Epitaxy (MBE) and Metal-Organic Chemical Vapor Deposition (MOCVD) techniques under Laser Risk Reduction Program (LRRP). The devices were characterized in the Detector Characterization Laboratory at NASA Langley Research Center. It appears that the performance of LPE- and MBE-grown phototransistors such as responsivity, noise-equivalent-power, and gain, are better than MOCVD-grown devices. Lidar tests have been conducted using LPE and MBE devices under the 2-micrometer CO2 Differential Absorption Lidar (DIAL) Instrument Incubator Program (IIP) at the National Center for Atmospheric Research (NCAR), Boulder, Colorado. The main focus of these tests was to examine the phototransistors performances as compared to commercial InGaAs avalanche photodiode by integrating them into the Raman-shifted Eye-safe Aerosol Lidar (REAL) operating at 1.543 micrometers. A simultaneous measurement of the atmospheric backscatter signals using the LPE phototransistors and the commercial APD demonstrated good agreement between these two devices. On the other hand, simultaneous detection of lidar backscatter signals using MBE-grown phototransistor and InGaAs APD, showed a general agreement between these two devices with a lower performance than LPE devices. These custom-built phototransistors were optimized for detection around 2-micrometer wavelength while the lidar tests were performed at 1.543 micrometers. Phototransistor operation at 2-micron will improve the performance of a lidar system operating at that wavelength. Measurements include detecting hard targets (Rocky Mountains), atmospheric structure consisting of cirrus clouds and boundary layer. These phototransistors may have potential for high sensitivity differential absorption lidar measurements of carbon dioxide and water vapor at 2.05-micrometers and 1.9-micrometers, respectively.
Significant Effect of Pore Sizes on Energy Storage in Nanoporous Carbon Supercapacitors.
Young, Christine; Lin, Jianjian; Wang, Jie; Ding, Bing; Zhang, Xiaogang; Alshehri, Saad M; Ahamad, Tansir; Salunkhe, Rahul R; Hossain, Shahriar A; Khan, Junayet Hossain; Ide, Yusuke; Kim, Jeonghun; Henzie, Joel; Wu, Kevin C-W; Kobayashi, Naoya; Yamauchi, Yusuke
2018-04-20
Mesoporous carbon can be synthesized with good control of surface area, pore-size distribution, and porous architecture. Although the relationship between porosity and supercapacitor performance is well known, there are no thorough reports that compare the performance of numerous types of carbon samples side by side. In this manuscript, we describe the performance of 13 porous carbon samples in supercapacitor devices. We suggest that there is a "critical pore size" at which guest molecules can pass through the pores effectively. In this context, the specific surface area (SSA) and pore-size distribution (PSD) are used to show the point at which the pore size crosses the threshold of critical size. These measurements provide a guide for the development of new kinds of carbon materials for supercapacitor devices. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics
2014-01-01
We demonstrate a new solution-processed electron transport layer (ETL), zinc oxide doped with cesium carbonate (ZnO:Cs2CO3), for achieving organic photovoltaics (OPVs) with good operational stability at ambient air. An OPV employing the ZnO:Cs2CO3 ETL exhibits a fill factor of 62%, an open circuit voltage of 0.90 V, and a short circuit current density of −6.14 mA/cm2 along with 3.43% power conversion efficiency. The device demonstrated air stability for a period over 4 weeks. In addition, we also studied the device structure dependence on the performance of organic photovoltaics. Thus, we conclude that ZnO:Cs2CO3 ETL could be employed in a suitable architecture to achieve high-performance OPV. PMID:25045340
Review on analog/radio frequency performance of advanced silicon MOSFETs
NASA Astrophysics Data System (ADS)
Passi, Vikram; Raskin, Jean-Pierre
2017-12-01
Aggressive gate-length downscaling of the metal-oxide-semiconductor field-effect transistor (MOSFET) has been the main stimulus for the growth of the integrated circuit industry. This downscaling, which has proved beneficial to digital circuits, is primarily the result of the need for improved circuit performance and cost reduction and has resulted in tremendous reduction of the carrier transit time across the channel, thereby resulting in very high cut-off frequencies. It is only in recent decades that complementary metal-oxide-semiconductor (CMOS) field-effect transistor (FET) has been considered as the radio frequency (RF) technology of choice. In this review, the status of the digital, analog and RF figures of merit (FoM) of silicon-based FETs is presented. State-of-the-art devices with very good performance showing low values of drain-induced barrier lowering, sub-threshold swing, high values of gate transconductance, Early voltage, cut-off frequencies, and low minimum noise figure, and good low-frequency noise characteristic values are reported. The dependence of these FoM on the device gate length is also shown, helping the readers to understand the trends and challenges faced by shorter CMOS nodes. Device performance boosters including silicon-on-insulator substrates, multiple-gate architectures, strain engineering, ultra-thin body and buried-oxide and also III-V and 2D materials are discussed, highlighting the transistor characteristics that are influenced by these boosters. A brief comparison of the two main contenders in continuing Moore’s law, ultra-thin body buried-oxide and fin field-effect transistors are also presented. The authors would like to mention that despite extensive research carried out in the semiconductor industry, silicon-based MOSFET will continue to be the driving force in the foreseeable future.
[Transcatheter aortic valve replacement].
Sawa, Yoshiki
2014-07-01
While transcatheter aortic valve replacement( TAVR) has spread rapidly all over the world for highrisk patients with severe aortic stenosis (AS), SAPIEN XT was approved in Japan in October 2013. Since that, approximately 400 TAVR cases were performed in Japan. In our institute, we have performed 164 cases since first case in Japan in 2009 and have achieved satisfactory early results(30-day mortality:1.2%). At the same time, however, simultaneously various TAVR-related complications including a paravalvular leak, stroke, vascular complications, and coronary obstruction were observed. A reduction in the incidence and severity of these complications had led technical improvements in various new devices(2nd generation TAVR device such as the SAPIEN 3, ACURATE, and JenaValve) and in implantation techniques including repositioning/recapturing features, paravalvular sealing technologies, and prevention of coronary obstruction. Furthermore, there is also increasing experience with special indications for TAVR such as pure aortic valve insufficiency or valve-in-valve techniques. Currently, an increasing number of publications of midterm results demonstrate good prosthetic valve function and durability, with good quality of life and low morbidity after TAVR. There are also some randomized trials such as PARTNER 2 or SURTAVI to investigate potential benefits of TAVR for intermediate-risk patients. These improvements in the TAVR devices promises the expansion of TAVR towards the treatment of lower-risk patients in the near future.
Zhang, Xiaoliang; Aitola, Kerttu; Hägglund, Carl; Kaskela, Antti; Johansson, Malin B; Sveinbjörnsson, Kári; Kauppinen, Esko I; Johansson, Erik M J
2017-01-20
Single-walled carbon nanotubes (SWCNTs) show great potential as an alternative material for front electrodes in photovoltaic applications, especially for flexible devices. In this work, a press-transferred transparent SWCNT film was utilized as front electrode for colloidal quantum dot solar cells (CQDSCs). The solar cells were fabricated on both glass and flexible substrates, and maximum power conversion efficiencies of 5.5 and 5.6 %, respectively, were achieved, which corresponds to 90 and 92 % of an indium-doped tin oxide (ITO)-based device (6.1 %). The SWCNTs are therefore a very good alternative to the ITO-based electrodes especially for flexible solar cells. The optical electric field distribution and optical losses within the devices were simulated theoretically and the results agree with the experimental results. With the optical simulations that were performed it may also be possible to enhance the photovoltaic performance of SWCNT-based solar cells even further by optimizing the device configuration or by using additional optical active layers, thus reducing light reflection of the device and increasing light absorption in the quantum dot layer. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films.
Chen, Fanhong; Wan, Pengbo; Xu, Haijun; Sun, Xiaoming
2017-05-31
Flexible transparent electronic devices have recently gained immense popularity in smart wearable electronics and touch screen devices, which accelerates the development of the portable power sources with reliable flexibility, robust transparency and integration to couple these electronic devices. For potentially coupled as energy storage modules in various flexible, transparent and portable electronics, the flexible transparent supercapacitors are developed and assembled from hierarchical nanocomposite films of reduced graphene oxide (rGO) and aligned polyaniline (PANI) nanoarrays upon their synergistic advantages. The nanocomposite films are fabricated from in situ PANI nanoarrays preparation in a blended solution of aniline monomers and rGO onto the flexible, transparent, and stably conducting film (FTCF) substrate, which is obtained by coating silver nanowires (Ag NWs) layer with Meyer rod and then coating of rGO layer on polyethylene terephthalate (PET) substrate. Optimization of the transparency, the specific capacitance, and the flexibility resulted in the obtained all-solid state nanocomposite supercapacitors exhibiting enhanced capacitance performance, good cycling stability, excellent flexibility, and superior transparency. It provides promising application prospects for exploiting flexible, low-cost, transparent, and high-performance energy storage devices to be coupled into various flexible, transparent, and wearable electronic devices.
Development of a pneumatic tensioning device for gap measurement during total knee arthroplasty.
Kwak, Dai-Soon; Kong, Chae-Gwan; Han, Seung-Ho; Kim, Dong-Hyun; In, Yong
2012-09-01
Despite the importance of soft tissue balancing during total knee arthroplasty (TKA), all estimating techniques are dependent on a surgeon's manual distraction force or subjective feeling based on experience. We developed a new device for dynamic gap balancing, which can offer constant load to the gap between the femur and tibia, using pneumatic pressure during range of motion. To determine the amount of distraction force for the new device, 3 experienced surgeons' manual distraction force was measured using a conventional spreader. A new device called the consistent load pneumatic tensor was developed on the basis of the biomechanical tests. Reliability testing for the new device was performed using 5 cadaveric knees by the same surgeons. Intraclass correlation coefficients (ICCs) were calculated. The distraction force applied to the new pneumatic tensioning device was determined to be 150 N. The interobserver reliability was very good for the newly tested spreader device with ICCs between 0.828 and 0.881. The new pneumatic tensioning device can enable us to properly evaluate the soft tissue balance throughout the range of motion during TKA with acceptable reproducibility.
NASA Astrophysics Data System (ADS)
Hyeok Park, Jong; Kim, Chulhee; Kim, Young Chul
2009-02-01
We demonstrate a novel light-emitting diode (LED) of a graded bilayer structure that comprises poly(N-vinylcarbazole) (PVK) with good hole transport ability as the energy donor and a new distyrylanthracene-triazine-based dendrimer with enhanced electron transport ability as the light-emitting molecule. The device contains a graded bilayer structure of the PVK film covered with the dendrimer film prepared by sequential spin-casting of the dendrimer layer from a solvent that only swells the PVK layer. The bilayer device demonstrated a significantly enhanced electoluminescence quantum efficiency compared with the dendrimer single layer device or the PVK : dendrimer blend device with optimized composition. We also prepared composite LEDs with an MEH-PPV : emissive dendrimer blend. By doping the electron-deficient MEH-PPV layer with a small amount of the distyrylanthracene-triazine-based dendrimer, we could not only enhance the device performance but also depress the long-wavelength emission of MEH-PPV.
Lee, Michele D; Kaidonis, Georgia; Kim, Alice Y; Shields, Ryan A; Leng, Theodore
2017-09-01
Choroidal nevi are common benign intraocular tumors with a small risk of malignant transformation. This retrospective study investigates the use of en face spectral-domain optical coherence tomography angiography (SD-OCTA) in determining the clinical features and measurement of choroidal nevi. Patients with choroidal nevi were imaged with both OCTA and a fundus photography device. Greatest longitudinal dimension (GLD), perpendicular dimension (PD), and the GLD/PD ratio were assessed on each device. Inter-device variation and intra- and inter-rater reliability analyses were performed. Fourteen patients with choroidal nevi were included. No significant difference between the GLD/PD ratio as measured by all three devices was found (Chi-square = 2.8, 2 df, P = .247). Intraclass correlation coefficients were greater than 0.7 for repeated measures on all devices, suggesting good repeatability and reproducibility. This study demonstrated inter-device consistency and high intra- and inter-rater reliability when measuring choroidal nevi. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:741-747.]. Copyright 2017, SLACK Incorporated.
Bottom-up realization and electrical characterization of a graphene-based device.
Maffucci, A; Micciulla, F; Cataldo, A; Miano, G; Bellucci, S
2016-03-04
We propose a bottom-up procedure to fabricate an easy-to-engineer graphene-based device, consisting of a microstrip-like circuit where few-layer graphene nanoplatelets are used to contact two copper electrodes. The graphene nanoplatelets are obtained by the microwave irradiation of intercalated graphite, i.e., an environmentally friendly, fast and low-cost procedure. The contact is created by a bottom-up process, driven by the application of a DC electrical field in the gap between the electrodes, yielding the formation of a graphene carpet. The electrical resistance of the device has been measured as a function of the gap length and device temperature. The possible use of this device as a gas sensor is demonstrated by measuring the sensitivity of its electrical resistance to the presence of gas. The measured results demonstrate a good degree of reproducibility in the fabrication process, and the competitive performance of devices, thus making the proposed technique potentially attractive for industrial applications.
Guide Catheter Extension Device Is Effective in Renal Angioplasty for Severely Calcified Lesions.
Sugimoto, Takeshi; Nomura, Tetsuya; Hori, Yusuke; Yoshioka, Kenichi; Kubota, Hiroshi; Miyawaki, Daisuke; Urata, Ryota; Kikai, Masakazu; Keira, Natsuya; Tatsumi, Tetsuya
2017-05-23
BACKGROUND The GuideLiner catheter extension device is a monorail-type "Child" support catheter that facilitates coaxial alignment with the guide catheter and provides an appropriate back-up force. This device has been developed in the field of coronary intervention, and now is becoming widely applied in the field of endovascular treatment. However, there has been no report on the effectiveness of the guide catheter extension device in percutaneous transluminal renal angioplasty (PTRA). CASE REPORT We encountered a case of atherosclerotic subtotal occlusion at the ostium of the left renal artery. Due to the severely calcified orifice and weaker back-up force provided by a JR4 guide catheter, we could not pass any guidewires through the target lesion. Therefore, we introduced a guide catheter extension device, the GuideLiner catheter, through the guide catheter and achieved good guidewire maneuverability. We finally deployed 2 balloon-expandable stents and successfully performed all PTRA procedures. CONCLUSIONS The guide catheter extension device can be effective in PTRA for severely calcified subtotal occlusion.
Performance and Characterization of Magnetic Penetration Thermometer Devices for X-Ray Spectroscopy
NASA Technical Reports Server (NTRS)
Porst, J. -P.; Adams, J. S.; Bandler, S. R.; Balvin, M.; Busch, S. E.; Denis, K. L.; Kelly, D.; Nagler, P.; Sadleir, J. E.; Seidel, G. M.;
2012-01-01
We are developing magnetic penetration thermometers (MPTs) for applications in X-ray astronomy. These non-dissipative devices consist of an X-ray absorber in good thermal contact to a superconducting thin film with a transition temperature around T=100mK. A microfabricated superconducting planar inductor underneath is used to store a persistent current and couple the superconductor's diamagnetic response to a readout SQUID. The strong temperature dependence of the diamagnetic response make these devices suitable for highly sensitive macroscopic thermometers that are capable of achieving very high energy resolution. We present results achieved with MPTs consisting of MoAu bilayer sensors attached to overhanging square 250 micron by 250 micron gold absorbers that have demonstrated an energy resolution of delta E_FWHM=2.3eV at an X-ray energy of 5.9keV. A similar device has shown delta E_FWHM=2.0eV at 1.5 keV. Under certain conditions and for specific device geometries, the temperature responsivity of the MPTs can vary on long timescales degrading the spectral performance. We present the characterization of different inductor geometries to optimize the design for the highest possible temperature sensitivity and compare different device designs with respect to responsivity stability.
Azurin/CdSe-ZnS-Based Bio-Nano Hybrid Structure for Nanoscale Resistive Memory Device.
Yagati, Ajay Kumar; Lee, Taek; Choi, Jeong-Woo
2017-07-15
In the present study, we propose a method for bio-nano hybrid formation by coupling a redox metalloprotein, Azurin, with CdSe-ZnS quantum dot for the development of a nanoscale resistive memory device. The covalent interaction between the two nanomaterials enables a strong and effective binding to form an azurin/CdSe-ZnS hybrid, and also enabled better controllability to couple with electrodes to examine the memory function properties. Morphological and optical properties were performed to confirm both hybrid formations and also their individual components. Current-Voltage (I-V) measurements on the hybrid nanostructures exhibited bistable current levels towards the memory function device, that and those characteristics were unnoticeable on individual nanomaterials. The hybrids showed good retention characteristics with high stability and durability, which is a promising feature for future nanoscale memory devices.
Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe
2015-01-01
In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices. PMID:25578467
NASA Astrophysics Data System (ADS)
Du, H.; Wang, Y. P.; Yuan, X. H.; Deng, Y. D.; Su, C. Q.
2016-03-01
To improve the riding comfort and rational utilization of the electrical energy captured by an automotive thermoelectric generator (ATEG), a temperature-controlled car seat was constructed to adjust the temperature of the car seat surface. Powered by the ATEG and the battery, the seat-embedded air conditioner can improve the riding comfort using a thermoelectric device to adjust the surface temperature of the seat, with an air duct to regulate the cold side and hot side of the thermoelectric device. The performance of the thermoelectric cooler (TEC) and theoretical analysis on the optimum state of the TEC device are put forward. To verify the rationality of the air duct design and to ensure sufficient air supply, the velocity field of the air duct system was obtained by means of the finite element method. To validate the reliability of the numerical simulation, the air velocity around the thermoelectric device was measured by a wind speed transmitter. The performance of the temperature-controlled car seat has been validated and is in good agreement with bench tests and real vehicle tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ralph B. James
2000-01-07
Device simulations of (1) the laterally-contacted-unipolar-nuclear detector (LUND), (2) the SpectrumPlus, (3) and the coplanar grid made of Cd{sub 0.9}Zn{sub 0.1}Te (CZT) were performed for {sup 137}Cs irradiation by 662.15 keV gamma-rays. Realistic and controlled simulations of the gamma-ray interactions with the CZT material were done using the MCNP4B2 Monte Carlo program, and the detector responses were simulated using the Sandia three-dimensional multielectrode simulation program (SandTMSP). The simulations were done for the best and the worst expected carrier nobilities and lifetimes of currently commercially available CZT materials for radiation detector applications. For the simulated unipolar devices, the active device volumesmore » were relatively large and the energy resolutions were fairly good, but these performance characteristics were found to be very sensitive to the materials properties. The internal electric fields, the weighting potentials, and the charge induced efficiency maps were calculated to give insights into the operation of these devices.« less
Paper-based transparent flexible thin film supercapacitors.
Gao, Kezheng; Shao, Ziqiang; Wu, Xue; Wang, Xi; Zhang, Yunhua; Wang, Wenjun; Wang, Feijun
2013-06-21
Paper-based transparent flexible thin film supercapacitors were fabricated using CNF-[RGO]n hybrid paper as an electrode material and charge collector. Owing to the self-anti-stacking of distorted RGO nanosheets and internal electrolyte nanoscale-reservoirs, the device exhibited good electrochemical performance (about 1.73 mF cm(-2)), and a transmittance of about 56% (at 550 nm).
NASA Astrophysics Data System (ADS)
Ko, Wen-Yin; Chen, You-Feng; Lu, Ke-Ming; Lin, Kuan-Jiuh
2016-01-01
The use of lightweight and easily-fabricated MnO2/carbon nanotube (CNT)-based flexible networks as binder-free electrodes and a polyvinyl alcohol/H2SO4 electrolyte for the formation of stretchable solid-state supercapacitors was examined. The active electrodes were fabricated from 3D honeycomb porous MnO2 assembled from cross-walled and interconnected sheet-architectural MnO2 on CNT-based plastic substrates (denoted as honeycomb MnO2/CNT textiles).These substrates were fabricated through a simple two-step procedure involving the coating of multi-walled carbon nanotubes (MWCNTs) onto commercial textiles by a dipping-drying process and subsequent electrodeposition of the interconnected MnO2 sheets onto the MWCNT-coated textile. With such unique MnO2 architectures integrated onto CNT flexible films, good performance was achieved with a specific capacitance of 324 F/g at 0.5 A/g. A maximum energy density of 7.2 Wh/kg and a power density as high as 3.3 kW/kg were exhibited by the honeycomb MnO2/CNT network device, which is comparable to the performance of other carbon-based and metal oxide/carbon-based solid-state supercapacitor devices. Specifically, the long-term cycling stability of this material is excellent, with almost no loss of its initial capacitance and good Coulombic efficiency of 82% after 5000 cycles. These impressive results identify these materials as a promising candidate for use in environmentally friendly, low-cost, and high-performance flexible energy-storage devices.
Ko, Wen-Yin; Chen, You-Feng; Lu, Ke-Ming; Lin, Kuan-Jiuh
2016-01-01
The use of lightweight and easily-fabricated MnO2/carbon nanotube (CNT)-based flexible networks as binder-free electrodes and a polyvinyl alcohol/H2SO4 electrolyte for the formation of stretchable solid-state supercapacitors was examined. The active electrodes were fabricated from 3D honeycomb porous MnO2 assembled from cross-walled and interconnected sheet-architectural MnO2 on CNT-based plastic substrates (denoted as honeycomb MnO2/CNT textiles).These substrates were fabricated through a simple two-step procedure involving the coating of multi-walled carbon nanotubes (MWCNTs) onto commercial textiles by a dipping-drying process and subsequent electrodeposition of the interconnected MnO2 sheets onto the MWCNT-coated textile. With such unique MnO2 architectures integrated onto CNT flexible films, good performance was achieved with a specific capacitance of 324 F/g at 0.5 A/g. A maximum energy density of 7.2 Wh/kg and a power density as high as 3.3 kW/kg were exhibited by the honeycomb MnO2/CNT network device, which is comparable to the performance of other carbon-based and metal oxide/carbon-based solid-state supercapacitor devices. Specifically, the long-term cycling stability of this material is excellent, with almost no loss of its initial capacitance and good Coulombic efficiency of 82% after 5000 cycles. These impressive results identify these materials as a promising candidate for use in environmentally friendly, low-cost, and high-performance flexible energy-storage devices. PMID:26726724
DiFilippo, Frank P.
2008-01-01
A multi-pinhole collimation device is developed that uses the gamma camera detectors of a clinical SPECT or SPECT-CT scanner to produce high resolution SPECT images. The device consists of a rotating cylindrical collimator having 22 tungsten pinholes with 0.9 mm diameter apertures and an animal bed inside the collimator that moves linearly to provide helical or ordered-subsets axial sampling. CT images also may be acquired on a SPECT-CT scanner for purposes of image co-registration and SPECT attenuation correction. The device is placed on the patient table of the scanner without attaching to the detectors or scanner gantry. The system geometry is calibrated in-place from point source data and is then used during image reconstruction. The SPECT imaging performance of the device is evaluated with test phantom scans. Spatial resolution from reconstructed point source images is measured to be 0.6 mm full width at half maximum or better. Micro-Derenzo phantom images demonstrate the ability to resolve 0.7 mm diameter rod patterns. The axial slabs of a Micro-Defrise phantom are visualized well. Collimator efficiency exceeds 0.05% at the center of the field of view, and images of a uniform phantom show acceptable uniformity and minimal artifact. The overall simplicity and relatively good imaging performance of the device make it an interesting low-cost alternative to dedicated small animal scanners. PMID:18635899
NASA Astrophysics Data System (ADS)
Di Filippo, Frank P.
2008-08-01
A multi-pinhole collimation device is developed that uses the gamma camera detectors of a clinical SPECT or SPECT-CT scanner to produce high-resolution SPECT images. The device consists of a rotating cylindrical collimator having 22 tungsten pinholes with 0.9 mm diameter apertures and an animal bed inside the collimator that moves linearly to provide helical or ordered-subsets axial sampling. CT images also may be acquired on a SPECT-CT scanner for purposes of image co-registration and SPECT attenuation correction. The device is placed on the patient table of the scanner without attaching to the detectors or scanner gantry. The system geometry is calibrated in-place from point source data and is then used during image reconstruction. The SPECT imaging performance of the device is evaluated with test phantom scans. Spatial resolution from reconstructed point source images is measured to be 0.6 mm full width at half maximum or better. Micro-Derenzo phantom images demonstrate the ability to resolve 0.7 mm diameter rod patterns. The axial slabs of a Micro-Defrise phantom are visualized well. Collimator efficiency exceeds 0.05% at the center of the field of view, and images of a uniform phantom show acceptable uniformity and minimal artifact. The overall simplicity and relatively good imaging performance of the device make it an interesting low-cost alternative to dedicated small animal scanners.
Wang, Sibo; Ren, Zheng; Guo, Yanbing; ...
2016-03-21
We report the scalable three-dimensional (3-D) integration of functional nanostructures into applicable platforms represents a promising technology to meet the ever-increasing demands of fabricating high performance devices featuring cost-effectiveness, structural sophistication and multi-functional enabling. Such an integration process generally involves a diverse array of nanostructural entities (nano-entities) consisting of dissimilar nanoscale building blocks such as nanoparticles, nanowires, and nanofilms made of metals, ceramics, or polymers. Various synthetic strategies and integration methods have enabled the successful assembly of both structurally and functionally tailored nano-arrays into a unique class of monolithic devices. The performance of nano-array based monolithic devices is dictated bymore » a few important factors such as materials substrate selection, nanostructure composition and nano-architecture geometry. Therefore, the rational material selection and nano-entity manipulation during the nano-array integration process, aiming to exploit the advantageous characteristics of nanostructures and their ensembles, are critical steps towards bridging the design of nanostructure integrated monolithic devices with various practical applications. In this article, we highlight the latest research progress of the two-dimensional (2-D) and 3-D metal and metal oxide based nanostructural integrations into prototype devices applicable with ultrahigh efficiency, good robustness and improved functionality. Lastly, selective examples of nano-array integration, scalable nanomanufacturing and representative monolithic devices such as catalytic converters, sensors and batteries will be utilized as the connecting dots to display a roadmap from hierarchical nanostructural assembly to practical nanotechnology implications ranging from energy, environmental, to chemical and biotechnology areas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Sibo; Ren, Zheng; Guo, Yanbing
We report the scalable three-dimensional (3-D) integration of functional nanostructures into applicable platforms represents a promising technology to meet the ever-increasing demands of fabricating high performance devices featuring cost-effectiveness, structural sophistication and multi-functional enabling. Such an integration process generally involves a diverse array of nanostructural entities (nano-entities) consisting of dissimilar nanoscale building blocks such as nanoparticles, nanowires, and nanofilms made of metals, ceramics, or polymers. Various synthetic strategies and integration methods have enabled the successful assembly of both structurally and functionally tailored nano-arrays into a unique class of monolithic devices. The performance of nano-array based monolithic devices is dictated bymore » a few important factors such as materials substrate selection, nanostructure composition and nano-architecture geometry. Therefore, the rational material selection and nano-entity manipulation during the nano-array integration process, aiming to exploit the advantageous characteristics of nanostructures and their ensembles, are critical steps towards bridging the design of nanostructure integrated monolithic devices with various practical applications. In this article, we highlight the latest research progress of the two-dimensional (2-D) and 3-D metal and metal oxide based nanostructural integrations into prototype devices applicable with ultrahigh efficiency, good robustness and improved functionality. Lastly, selective examples of nano-array integration, scalable nanomanufacturing and representative monolithic devices such as catalytic converters, sensors and batteries will be utilized as the connecting dots to display a roadmap from hierarchical nanostructural assembly to practical nanotechnology implications ranging from energy, environmental, to chemical and biotechnology areas.« less
An easy packaging hybrid optical element in grating based WDM application
NASA Astrophysics Data System (ADS)
Lan, Hsiao-Chin; Cheng, Chao-Chia; Wang, Chih-Ming; Chang, Jenq-Yang
2005-08-01
We developed a new optical element which integrates an off-axis diffractive grating and an on-axis refractive lens surface in a prism. With this optical element, the alignment tolerance can be improved by manufacturing technology of the grating based WDM device and is practicable for mass production. An 100-GHz 16-channel DWDM device which includes this optical element has been designed. Ray tracing and beam propagation method (BPM) simulations showed good performance on the insertion loss of 2.91+/-0.53dB and the adjacent cross talk of 58.02dB. The tolerance discussion for this DWDM device shows that this optical element could be practically achieved by either injection molding or the hot embossing method.
Microfabricated structures with electrical isolation and interconnections
NASA Technical Reports Server (NTRS)
Clark, William A. (Inventor); Juneau, Thor N. (Inventor); Roessig, Allen W. (Inventor); Lemkin, Mark A. (Inventor)
2001-01-01
The invention is directed to a microfabricated device. The device includes a substrate that is etched to define mechanical structures at least some of which are anchored laterally to the remainder of the substrate. Electrical isolation at points where mechanical structures are attached to the substrate is provided by filled isolation trenches. Filled trenches may also be used to electrically isolate structure elements from each other at points where mechanical attachment of structure elements is desired. The performance of microelectromechanical devices is improved by 1) having a high-aspect-ratio between vertical and lateral dimensions of the mechanical elements, 2) integrating electronics on the same substrate as the mechanical elements, 3) good electrical isolation among mechanical elements and circuits except where electrical interconnection is desired.
Efficient double-emitting layer inverted organic light-emitting devices with different spacer layers
NASA Astrophysics Data System (ADS)
Nie, Qu-yang; Zhang, Fang-hui
2017-09-01
Double-emitting layer inverted organic light-emitting devices (IOLEDs) with different spacer layers were investigated, where 2,20,7,70-tetrakis(carbazol-9-yl)-9,9-spirobifluorene (CBP), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen) and 4,40,400-tris(N-carbazolyl)-triphenylamine (TCTA) were used as spacer layers, respectively, and GIr1 and R-4b were used as green and red guest phosphorescent materials, respectively. The results show that the device with BCP spacer layer has the best performance. The maximum current efficiency of the BCP spacer layer device reaches up to 24.15 cd·A-1 when the current density is 3.99 mA·cm-2, which is 1.23 times bigger than that of the CBP spacer layer device. The performance is better than that of corresponding conventional device observably. The color coordinate of the device with BCP spacer layer only changes from (0.625 1, 0.368 0) to (0.599 5, 0.392 8) when the driving voltage increases from 6 V to 10 V, so it shows good stability in color coordinate, which is due to the adoption of the co-doping evaporation method for cladding luminous layer and the effective restriction of spacer layer to carriers in emitting layer.
Intelligent Control Wheelchair Using a New Visual Joystick.
Rabhi, Yassine; Mrabet, Makrem; Fnaiech, Farhat
2018-01-01
A new control system of a hand gesture-controlled wheelchair (EWC) is proposed. This smart control device is suitable for a large number of patients who cannot manipulate a standard joystick wheelchair. The movement control system uses a camera fixed on the wheelchair. The patient's hand movements are recognized using a visual recognition algorithm and artificial intelligence software; the derived corresponding signals are thus used to control the EWC in real time. One of the main features of this control technique is that it allows the patient to drive the wheelchair with a variable speed similar to that of a standard joystick. The designed device "hand gesture-controlled wheelchair" is performed at low cost and has been tested on real patients and exhibits good results. Before testing the proposed control device, we have created a three-dimensional environment simulator to test its performances with extreme security. These tests were performed on real patients with diverse hand pathologies in Mohamed Kassab National Institute of Orthopedics, Physical and Functional Rehabilitation Hospital of Tunis, and the validity of this intelligent control system had been proved.
Intelligent Control Wheelchair Using a New Visual Joystick
Mrabet, Makrem; Fnaiech, Farhat
2018-01-01
A new control system of a hand gesture-controlled wheelchair (EWC) is proposed. This smart control device is suitable for a large number of patients who cannot manipulate a standard joystick wheelchair. The movement control system uses a camera fixed on the wheelchair. The patient's hand movements are recognized using a visual recognition algorithm and artificial intelligence software; the derived corresponding signals are thus used to control the EWC in real time. One of the main features of this control technique is that it allows the patient to drive the wheelchair with a variable speed similar to that of a standard joystick. The designed device “hand gesture-controlled wheelchair” is performed at low cost and has been tested on real patients and exhibits good results. Before testing the proposed control device, we have created a three-dimensional environment simulator to test its performances with extreme security. These tests were performed on real patients with diverse hand pathologies in Mohamed Kassab National Institute of Orthopedics, Physical and Functional Rehabilitation Hospital of Tunis, and the validity of this intelligent control system had been proved. PMID:29599953
Ari, Timucin; Ari, Nilgun
2013-01-01
Early detection of occlusal caries in children is challenging for the dentists, because of the morphology of pit and fissures. The aim of this study was to compare in vitro the diagnostic performance of low-powered magnification with light-emitting diode headlight (LPMLED) using ICDAS-II criteria and AC Impedance Spectroscopy (ACIS) device, on occlusal surfaces of primary molars. The occlusal surfaces of 18 extracted primary molars were examined blindly by two examiners. The teeth were sectioned and examined under light microscopy using Downer's histological criteria as gold standard. Good to excellent inter- and intraexaminer reproducibility, higher sensitivity, specificity, and AUC values were achieved by LPMLED at D1 threshold. Also the relationship between histology and LPMLED was statistically significant. In conclusion visual aids have the potential to improve the performance of early caries detection and clinical diagnostics in children. Despite its potential, ACIS device should be considered as an adjunct method in detecting caries on primary teeth.
Xia, Wei; Peter, Christian; Weng, Junhui; Zhang, Jian; Kliem, Herbert; Jiang, Yulong; Zhu, Guodong
2017-04-05
Ferroelectric polymer based devices exhibit great potentials in low-cost and flexible electronics. To meet the requirements of both low voltage operation and low energy consumption, thickness of ferroelectric polymer films is usually required to be less than, for example, 100 nm. However, decrease of film thickness is also accompanied by the degradation of both crystallinity and ferroelectricity and also the increase of current leakage, which surely degrades device performance. Here we report one epitaxy method based on removable poly(tetrafluoroethylene) (PTFE) templates for high-quality fabrication of ordered ferroelectric polymer thin films. Experimental results indicate that such epitaxially grown ferroelectric polymer films exhibit well improved crystallinity, reduced current leakage and good resistance to electrical breakdown, implying their applications in high-performance and low voltage operated ferroelectric devices. On the basis of this removable PTFE template method, we fabricated organic semiconducting/ferroelectric blend resistive films which presented record electrical performance with operation voltage as low as 5 V and ON/OFF ratio up to 10 5 .
Cikirikcioglu, Mustafa; Cikirikcioglu, Y Banu; Khabiri, Ebrahim; Djebaili, M Karim; Kalangos, Afksendiyos; Walpoth, Beat H
2006-01-01
Intra-operative flow measurement during coronary or peripheral bypass operations is helpful for ruling out technical failures and for prediction of complication and patency rates. Preclinical validation of the flowmeters is required in order to rely on the intra-operatively measured results. The aim of this study is to evaluate a new "dual beam Doppler" blood flowmeter before clinical application and to compare it with the established "transit time flow measure-ment" technique in an artificial circuit. Measurements were performed in an experimental flow model using pig blood and pig arteries. Three different flowmeters were used: Quantix OR (dual beam doppler flowmeter), CardioMed (transit time flowmeter), and Transonic (transit time flowmeter). Three validation tests were performed to assess correlation, precision, and repeatability of devices. (1) Correlation and agreement analysis was performed with various flow amounts (10-350 mL/min) (n = 160). (2) Device reproducibility and measurement stability were tested with a constant flow (flow amount = 300 mL/min) (n = 30). (3) A user accuracy test (intra- and inter-observer variability) was performed by 5 different observers with a constant flow (flow amount = 205 mL/min) (n = 75). Time collected true flow was used as a reference method in all steps and all tests were performed in a blind manner. Results are shown as mean values +/- standard deviations. Pear-son's correlation and Bland-Altman plot analyses were used to compare measurements. The mean flow was 167 +/- 98 mL/min for true flow and 162 +/- 94 mL/min, 165 +/- 94 mL/min, and 166 +/- 100 mL/min for Quantix OR, CardioMed, and Transonic, respectively. Correlation coefficients between Quantix OR, Medi-Stim, Transonic, and time collected true flow were over 0.98 (P = .01). Most of the measured results ( > 90%) were between +/- 1.96 SD agreement limits in Bland and Altman plot analysis. All devices showed good results in the reproducibility test. During the user accuracy test, larger variance changes were observed between intra- and inter-observer results with the dual beam Doppler flowmeter compared to the 2 used transit time flowmeters when used for single sided vessel access without stabilization device (available from the manufacturer). All 3 tested flowmeters showed an excellent correlation to the true flow in an artificial circuit and the accuracy of the tested devices was within agreement limits. Reproducibility of all devices was good and linear. The new dual beam Doppler flow measurement technique compares favorably to the classic transit time method. Clinical use may depend on operator, location, and condition, thus more studies may be required to ensure uniform results using the currently available blood flow measurement devices.
Proposal of an innovative benchmark for comparison of the performance of contactless digitizers
NASA Astrophysics Data System (ADS)
Iuliano, Luca; Minetola, Paolo; Salmi, Alessandro
2010-10-01
Thanks to the improving performances of 3D optical scanners, in terms of accuracy and repeatability, reverse engineering applications have extended from CAD model design or reconstruction to quality control. Today, contactless digitizing devices constitute a good alternative to coordinate measuring machines (CMMs) for the inspection of certain parts. The German guideline VDI/VDE 2634 is the only reference to evaluate whether 3D optical measuring systems comply with the declared or required performance specifications. Nevertheless it is difficult to compare the performance of different scanners referring to such a guideline. An adequate novel benchmark is proposed in this paper: focusing on the inspection of production tools (moulds), the innovative test piece was designed using common geometries and free-form surfaces. The reference part is intended to be employed for the evaluation of the performance of several contactless digitizing devices in computer-aided inspection, considering dimensional and geometrical tolerances as well as other quantitative and qualitative criteria.
Rogers, John A; Meitl, Matthew; Sun, Yugang; Ko, Heung Cho; Carlson, Andrew; Choi, Won Mook; Stoykovich, Mark; Jiang, Hanqing; Huang, Yonggang; Nuzzo, Ralph G; Zhu, Zhengtao; Menard, Etienne; Khang, Dahl-Young
2014-05-20
In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Rogers, John A [Champaign, IL; Meitl, Matthew [Raleigh, NC; Sun, Yugang [Naperville, IL; Ko, Heung Cho [Urbana, IL; Carlson, Andrew [Urbana, IL; Choi, Won Mook [Champaign, IL; Stoykovich, Mark [Dover, NH; Jiang, Hanqing [Urbana, IL; Huang, Yonggang [Glencoe, IL; Nuzzo, Ralph G [Champaign, IL; Lee, Keon Jae [Tokyo, JP; Zhu, Zhengtao [Rapid City, SD; Menard, Etienne [Durham, NC; Khang, Dahl-Young [Seoul, KR; Kan, Seong Jun [Daejeon, KR; Ahn, Jong Hyun [Suwon, KR; Kim, Hoon-sik [Champaign, IL
2012-07-10
In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Aravindan, Vanchiappan; Mhamane, Dattakumar; Ling, Wong Chui; Ogale, Satishchandra; Madhavi, Srinivasan
2013-12-01
One HEC of a material: The use of trigol-reduced graphene oxide nanosheets as cathode material in hybrid lithium-ion electrochemical capacitors (Li-HECs) results in an energy density of 45 Wh kg(-1) ; much enhanced when compared to similar devices. The mass loading of the active materials is optimized, and the devices show good cycling performance. Li-HECs employing these materials outperform other supercapacitors, making them attractive for use in power sources. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal detectors for high resolution spectroscopy
NASA Technical Reports Server (NTRS)
Mccammon, D.; Juda, M.; Zhang, J.; Kelley, R. L.; Moseley, S. H.; Szymkowiak, A. E.
1986-01-01
Cryogenic microcalorimeters can be made sensitive enough to measure the energy deposited by a single particle or X-ray photon with an accuracy of about one electron volt. It may also be possible to construct detectors of several-kilograms mass whose resolution is only a few times worse than this. Data from relatively crude test devices are in good agreement with thermal performance calculations, and a total system noise of 11 eV FWHM has been obtained for a silicon detector operating at 98 mK. Observations of 35 eV FWHM for 6-keV X-rays with a different device have been made.
Food Application of Newly Developed Handy-type Glutamate Sensor.
Mukai, Yuuka; Oikawa, Tsutomu
2016-01-01
Tests on physiological functions of umami have been actively conducted and a need recognized for a high-performance quantification device that is simple and cost-effective, and whose use is not limited to a particular location or user. To address this need, Ajinomoto Co. and Tanita Corp. have jointly been researching and developing a simple device for glutamate measurement. The device uses L-glutamate oxidase immobilized on a hydrogen peroxide electrode. L-glutamate in the sample is converted to α-ketoglutaric acid, which produces hydrogen peroxide. Subsequently, the electrical current from the electrochemical reaction of hydrogen peroxide is measured to determine the L-glutamate concentration. In order to evaluate its basic performance, we used this device to measure the concentration of L-glutamate standard solutions. In a concentration range of 0-1.0%, the difference from the theoretical value was minimal. The coefficient of variation (CV) value of 3 measurements was 4% or less. This shows that the device has a reasonable level of precision and accuracy. The device was also used in trial measurements of L-glutamate concentrations in food. There was a good correlation between the results obtained using the developed device and those obtained with an amino acid analyzer; the correlation coefficient was R=0.997 (n=24). In this review, we demonstrate the use of our device to measure the glutamate concentration in miso soup served daily at a home for elderly people, and other foods and ingredients.
Intelligent walkers for the elderly: performance and safety testing of VA-PAMAID robotic walker.
Rentschler, Andrew J; Cooper, Rory A; Blasch, Bruce; Boninger, Michael L
2003-01-01
A walker that could help navigate and avoid collisions with obstacles could help reduce health costs and increase the quality of care and independence of thousands of people. This study evaluated the safety and performance of the Veterans Affairs Personal Adaptive Mobility Aid (VA-PAMAID). We performed engineering tests on the VA-PAMAID to determine safety factors, including stability, energy consumption, fatigue life, and sensor and control malfunctions. The VA-PAMAID traveled 10.9 km on a full charge and avoided obstacles while traveling at a speed of up to 1.2 m/s. No failures occurred during static stability, climatic, or fatigue testing. Some problems were encountered during obstacle climbing and sensor and control testing. The VA-PAMAID has good range, has adequate reaction time, and is structurally sound. Clinical trials are planned to compare the device to other low-technical adaptive mobility devices.
Ben Oujji, Najwa; Bakas, Idriss; Istamboulié, Georges; Ait-Ichou, Ihya; Ait-Addi, Elhabib; Rouillon, Régis; Noguer, Thierry
2012-01-01
This work presents the development of bioassays and biosensors for the detection of insecticides widely used in the treatment of olive trees. The systems are based on the covalent immobilisation of acetylcholinesterase on magnetic microbeads using either colorimetry or amperometry as detection technique. The magnetic beads were immobilised on screen-printed electrodes or microtitration plates and tested using standard solutions and real samples. The developed devices showed good analytical performances with limits of detection much lower than the maximum residue limit tolerated by international regulations, as well as a good reproducibility and stability. PMID:22969377
NASA Astrophysics Data System (ADS)
Kawai, Jun; Kawabata, Miki; Oyama, Daisuke; Uehara, Gen
We have developed fabrication technique of superconducting quantum interference device (SQUID) magnetometers based on Nb/AlAlOx/Nb junctions directly on a glass epoxy polyimide resin substrate, which has copper terminals embedded in advance. The advantage of this method is that no additional substrate and wirebonds are needed for assembly. Compared to conventional SQUID magnetometers, which are assembled with a SQUID chip fabricated on a Si substrate and wirebonding technique, low risk of disconnection can be expected. A directly-coupled multi-loop SQUID magnetometer fabricated with this method has as good noise performance as a SQUID magnetometer with the same design fabricated on a Si wafer. The magnetometer sustained its performance through thermal cycle test 13 times so far.
Kalinin, Stanislav; Kühnemuth, Ralf; Vardanyan, Hayk; Seidel, Claus A M
2012-09-01
We present a fast hardware photon correlator implemented in a field-programmable gate array (FPGA) combined with a compact confocal fluorescence setup. The correlator has two independent units with a time resolution of 4 ns while utilizing less than 15% of a low-end FPGA. The device directly accepts transistor-transistor logic (TTL) signals from two photon counting detectors and calculates two auto- or cross-correlation curves in real time. Test measurements demonstrate that the performance of our correlator is comparable with the current generation of commercial devices. The sensitivity of the optical setup is identical or even superior to current commercial devices. The FPGA design and the optical setup both allow for a straightforward extension to multi-color applications. This inexpensive and compact solution with a very good performance can serve as a versatile platform for uses in education, applied sciences, and basic research.
Spontaneous Ad Hoc Mobile Cloud Computing Network
Lacuesta, Raquel; Sendra, Sandra; Peñalver, Lourdes
2014-01-01
Cloud computing helps users and companies to share computing resources instead of having local servers or personal devices to handle the applications. Smart devices are becoming one of the main information processing devices. Their computing features are reaching levels that let them create a mobile cloud computing network. But sometimes they are not able to create it and collaborate actively in the cloud because it is difficult for them to build easily a spontaneous network and configure its parameters. For this reason, in this paper, we are going to present the design and deployment of a spontaneous ad hoc mobile cloud computing network. In order to perform it, we have developed a trusted algorithm that is able to manage the activity of the nodes when they join and leave the network. The paper shows the network procedures and classes that have been designed. Our simulation results using Castalia show that our proposal presents a good efficiency and network performance even by using high number of nodes. PMID:25202715
Spontaneous ad hoc mobile cloud computing network.
Lacuesta, Raquel; Lloret, Jaime; Sendra, Sandra; Peñalver, Lourdes
2014-01-01
Cloud computing helps users and companies to share computing resources instead of having local servers or personal devices to handle the applications. Smart devices are becoming one of the main information processing devices. Their computing features are reaching levels that let them create a mobile cloud computing network. But sometimes they are not able to create it and collaborate actively in the cloud because it is difficult for them to build easily a spontaneous network and configure its parameters. For this reason, in this paper, we are going to present the design and deployment of a spontaneous ad hoc mobile cloud computing network. In order to perform it, we have developed a trusted algorithm that is able to manage the activity of the nodes when they join and leave the network. The paper shows the network procedures and classes that have been designed. Our simulation results using Castalia show that our proposal presents a good efficiency and network performance even by using high number of nodes.
USE OF DIAGNODENT® FOR DIAGNOSIS OF NON-CAVITATED OCCLUSALDENTIN CARIES
Costa, Ana Maria; de Paula, Lilian Marly; Bezerra, Ana Cristina Barreto
2008-01-01
The purpose of this study was to evaluate the use of a laser fluorescence device for detection of occlusal caries in permanent teeth. One hundred and ninety-nine non-cavitated teeth from 26 patients aged 10 to 13 years were selected. After dental prophylaxis, two previously calibrated dentists examined the teeth. Visual inspection, radiographic examination and laser measurements were performed under standardized conditions. The validation method was cavity preparation with a small cone-shaped diamond bur, when the two examiners agreed about the presence of dentin caries. It was found that the laser detection method produced high values of sensitivity (0.93) and specificity (0.75) and a moderate positive predictive value (0.63). The laser device showed the lowest value of likelihood ratio (3.68). Kappa coefficient showed good repeatability for all methods. Although the laser device had an acceptable performance, this equipment should be used as an adjunct method to visual inspection to avoid false positive results. PMID:19089284
In vivo skin imaging for hydration and micro relief-measurement.
Kardosova, Z; Hegyi, V
2013-01-01
We present the results of our work with device used for measurement of skin capacitance before and after application of moisturizing creams and results of experiment performed on cellulose filter papers soaked with different solvents. The measurements were performed by a device built on capacitance sensor, which provides an investigator with a capacitance image of the skin. The capacitance values are coded in a range of 256 gray levels then the skin hydration can be characterized using parameters derived from gray level histogram by specific software. The images obtained by device allow a highly precise observation of skin topography. Measuring of skin capacitance brings new, objective, reliable information about topographical, physical and chemical parameters of the skin. The study shows that there is a good correlation between the average grayscale values and skin hydration. In future works we need to complete more comparison studies, interpret the average grayscale values to skin hydration levels and use it for follow-up of dynamics of skin micro-relief and hydration changes (Fig. 6, Ref. 15).
Is hexagonal boron nitride always good as a substrate for carbon nanotube-based devices?
Kang, Seoung-Hun; Kim, Gunn; Kwon, Young-Kyun
2015-02-21
Hexagonal boron nitride sheets have been noted especially for their enhanced properties as substrates for sp(2) carbon-based nanodevices. To evaluate whether such enhanced properties would be retained under various realistic conditions, we investigate the structural and electronic properties of semiconducting carbon nanotubes on perfect and defective hexagonal boron nitride sheets under an external electric field as well as with a metal impurity, using density functional theory. We verify that the use of a perfect hexagonal boron nitride sheet as a substrate indeed improves the device performances of carbon nanotubes, compared with the use of conventional substrates such as SiO2. We further show that even the hexagonal boron nitride with some defects can show better performance as a substrate. Our calculations, on the other hand, also suggest that some defective boron nitride layers with a monovacancy and a nickel impurity could bring about poor device behavior since the imperfections impair electrical conductivity due to residual scattering under an applied electric field.
NASA Astrophysics Data System (ADS)
Kalinin, Stanislav; Kühnemuth, Ralf; Vardanyan, Hayk; Seidel, Claus A. M.
2012-09-01
We present a fast hardware photon correlator implemented in a field-programmable gate array (FPGA) combined with a compact confocal fluorescence setup. The correlator has two independent units with a time resolution of 4 ns while utilizing less than 15% of a low-end FPGA. The device directly accepts transistor-transistor logic (TTL) signals from two photon counting detectors and calculates two auto- or cross-correlation curves in real time. Test measurements demonstrate that the performance of our correlator is comparable with the current generation of commercial devices. The sensitivity of the optical setup is identical or even superior to current commercial devices. The FPGA design and the optical setup both allow for a straightforward extension to multi-color applications. This inexpensive and compact solution with a very good performance can serve as a versatile platform for uses in education, applied sciences, and basic research.
125Mbps ultra-wideband system evaluation for cortical implant devices.
Luo, Yi; Winstead, Chris; Chiang, Patrick
2012-01-01
This paper evaluates the performance of a 125Mbps Impulse Ratio Ultra-Wideband (IR-UWB) system for cortical implant devices by using low-Q inductive coil link operating in the near-field domain. We examine design tradeoffs between transmitted signal amplitude, reliability, noise and clock jitter. The IR-UWB system is modeled using measured parameters from a reported UWB transceiver implemented in 90nm-CMOS technology. Non-optimized inductive coupling coils with low-Q value for near-field data transmission are modeled in order to build a full channel from the transmitter (Tx) to the receiver (Rx). On-off keying (OOK) modulation is used together with a low-complexity convolutional error correcting code. The simulation results show that even though the low-Q coils decrease the amplitude of the received pulses, the UWB system can still achieve acceptable performance when error correction is used. These results predict that UWB is a good candidate for delivering high data rates in cortical implant devices.
Agustini, Deonir; Bergamini, Márcio F; Marcolino-Junior, Luiz Humberto
2017-01-25
The micro flow injection analysis (μFIA) is a powerful technique that uses the principles of traditional flow analysis in a microfluidic device and brings a number of improvements related to the consumption of reagents and samples, speed of analysis and portability. However, the complexity and cost of manufacturing processes, difficulty in integrating micropumps and the limited performance of systems employing passive pumps are challenges that must be overcome. Here, we present the characterization and optimization of a low cost device based on cotton threads as microfluidic channel to perform μFIA based on passive pumps with good analytical performance in a simple, easy and inexpensive way. The transport of solutions is made through cotton threads by capillary force facilitated by gravity. After studying and optimizing several features related to the device, were obtained a flow rate of 2.2 ± 0.1 μL s -1 , an analytical frequency of 208 injections per hour, a sample injection volume of 2.0 μL and a waste volume of approximately 40 μL per analysis. For chronoamperometric determination of naproxen, a detection limit of 0.29 μmol L -1 was reached, with a relative standard deviation (RSD) of 1.69% between injections and a RSD of 3.79% with five different devices. Thus, based on the performance presented by proposed microfluidic device, it is possible to overcome some limitations of the μFIA systems based on passive pumps and allow expansion in the use of this technique. Copyright © 2016 Elsevier B.V. All rights reserved.
Toward High Performance Photovoltaic Cells based on Conjugated Polymers
2016-12-26
AFRL-AFOSR-JP-TR-2016-0103 Toward High Performance Photovoltaic Cells based on Conjugated Polymers Kung-Hwa Wei National Chiao Tung University Final...Conjugated Polymers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-15-1-4113 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Kung-Hwa Wei 5d. PROJECT...gap polymer with good packing order as the active layer for a single-junction photovoltaic device. The light absorptions for the small molecule and the
Encapsulation materials research
NASA Technical Reports Server (NTRS)
Willis, P. B.
1984-01-01
Encapsulation materials for solar cells were investigated. The different phases consisted of: (1) identification and development of low cost module encapsulation materials; (2) materials reliability examination; and (3) process sensitivity and process development. It is found that outdoor photothermal aging devices (OPT) are the best accelerated aging methods, simulate worst case field conditions, evaluate formulation and module performance and have a possibility for life assessment. Outdoor metallic copper exposure should be avoided, self priming formulations have good storage stability, stabilizers enhance performance, and soil resistance treatment is still effective.
2011-09-01
Examine the in situ performance of our current attachment devices and then design and test improved retention systems Report Documentation Page Form...behavior (e.g., beaked whale versus melon-headed whale). 3. In situ behavior of retention system elements (Key individuals: Andrews, Schorr...Although we have a good idea of how the LIMPET retention system operates when first implanted, we do not fully understand the mechanics in a living fin
2014-06-01
in large-scale datasets such as might be obtained by monitoring a corporate network or social network. Identifying guilty actors, rather than payload...by monitoring a corporate network or social network. Identifying guilty actors, rather than payload-carrying objects, is entirely novel in steganalysis...implementation using Compute Unified Device Architecture (CUDA) on NVIDIA graphics cards. The key to good performance is to combine computations so that
NASA Astrophysics Data System (ADS)
Chaitoglou, Stefanos; Amade, Roger; Bertran, Enric
2017-12-01
The combination of graphene with transition metal oxides can result in very promising hybrid materials for use in energy storage applications thanks to its intriguing properties, i.e., highly tunable surface area, outstanding electrical conductivity, good chemical stability, and excellent mechanical behavior. In the present work, we evaluate the performance of graphene/metal oxide (WO3 and CeO x ) layered structures as potential electrodes in supercapacitor applications. Graphene layers were grown by chemical vapor deposition (CVD) on copper substrates. Single and layer-by-layer graphene stacks were fabricated combining graphene transfer techniques and metal oxides grown by magnetron sputtering. The electrochemical properties of the samples were analyzed and the results suggest an improvement in the performance of the device with the increase in the number of graphene layers. Furthermore, deposition of transition metal oxides within the stack of graphene layers further improves the areal capacitance of the device up to 4.55 mF/cm2, for the case of a three-layer stack. Such high values are interpreted as a result of the copper oxide grown between the copper substrate and the graphene layer. The electrodes present good stability for the first 850 cycles before degradation.
NASA Technical Reports Server (NTRS)
Ting, David Z.-Y; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Hoglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, Sir B.; Hill, Cory J.;
2012-01-01
The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from approximately 4.2 micrometers to 6 micrometers, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.
NASA Astrophysics Data System (ADS)
Saha, Priyanka; Banerjee, Pritha; Dash, Dinesh Kumar; Sarkar, Subir Kumar
2018-03-01
This paper presents an analytical model of an asymmetric junctionless double-gate (asymmetric DGJL) silicon-on-nothing metal-oxide-semiconductor field-effect transistor (MOSFET). Solving the 2-D Poisson's equation, the expressions for center potential and threshold voltage are calculated. In addition, the response of the device toward the various short-channel effects like hot carrier effect, drain-induced barrier lowering and threshold voltage roll-off has also been examined along with subthreshold swing and drain current characteristics. Performance analysis of the present model is also demonstrated by comparing its short-channel behavior with conventional DGJL MOSFET. The effect of variation of the device features due to the variation of device parameters is also studied. The simulated results obtained using 2D device simulator, namely ATLAS, are in good agreement with the analytical results, hence validating our derived model.
Fulian; Gooch; Fisher; Stevens; Compton
2000-08-01
The development and application of a new electrochemical device using a computer-aided design strategy is reported. This novel design is based on the flow of electrolyte solution past a microwire electrode situated centrally within a large duct. In the design stage, finite element simulations were employed to evaluate feasible working geometries and mass transport rates. The computer-optimized designs were then exploited to construct experimental devices. Steady-state voltammetric measurements were performed for a reversible one-electron-transfer reaction to establish the experimental relationship between electrolysis current and solution velocity. The experimental results are compared to those predicted numerically, and good agreement is found. The numerical studies are also used to establish an empirical relationship between the mass transport limited current and the volume flow rate, providing a simple and quantitative alternative for workers who would prefer to exploit this device without the need to develop the numerical aspects.
NASA Astrophysics Data System (ADS)
Gao, Long; Yu, Bo-Xiang; Ding, Ya-Yun; Zhou, Li; Wen, Liang-Jian; Xie, Yu-Guang; Wang, Zhi-Gang; Cai, Xiao; Sun, Xi-Lei; Fang, Jian; Xue, Zhen; Zhang, Ai-Wu; Lü, Qi-Wen; Sun, Li-Jun; Ge, Yong-Shuai; Liu, Ying-Biao; Niu, Shun-Li; Hu, Tao; Cao, Jun; Lü, Jun-Guang
2013-07-01
An attenuation length measurement device was constructed using an oscilloscope and LabVIEW for signal acquisition and processing. The performance of the device has been tested in a variety of ways. The test results show that the set-up has a good stability and high precision (sigma/mean reached 0.4 percent). Besides, the accuracy of the measurement system will decrease by about 17 percent if a filter is used. The attenuation length of a gadolinium-loaded liquid scintillator (Gd-LS) was measured as 15.10±0.35 m where Gd-LS was heavily used in the Daya Bay Neutrino Experiment. In addition, one method based on the Beer-Lambert law was proposed to investigate the reliability of the measurement device, the R-square reached 0.9995. Moreover, three purification methods for Linear Alkyl Benzene (LAB) production were compared in the experiment.
High performance quantum cascade lasers: Loss, beam stability, and gain engineering
NASA Astrophysics Data System (ADS)
Bouzi, Pierre Michel
Quantum Cascade (QC) lasers are semiconductor devices emitting in the mid-infrared (3-30 micron) and terahertz (30-300 micron) regions of the electromagnetic spectrum. Since their first demonstration by Jerome Faist et. al. in 1994, they have evolved very quickly into high performance devices and given rise to many applications such as trace-gas sensing, medical diagnosis, free-space communication, and light detection and ranging (LIDAR). In this thesis, we investigate a further increase of the performance of QC devices and, through meticulous device modeling and characterizations, gain a deeper understanding of several of their unique characteristics, especially their carrier transport and lifetime, their characteristic temperature, their waveguide loss and modal gain, their leakage current, and their transverse mode profile. First, in our quest to achieve higher performance, we investigate the effect of growth asymmetries on device transport characteristics. This investigation stems from recent studies on the role of interface roughness on intersubband scattering and device performance. Through a symmetric active core design, we find that interface roughness and ionized impurity scattering induced by dopant migration play a significant role in carrier transport through the device. Understanding how interface roughness affects intersubband scattering, in turn, we engineer the gain in QC devices by placing monolayer barriers at specific locations within the device band structure. These strategically placed additional thin barrier layers introduce roughness scattering into the device active region, thereby selectively decreasing the lower laser state lifetime and increasing population inversion necessary for laser action. Preliminary measurement results from modified devices reveal a 50% decrease in the emission broadening compared to the control structures, which should lead to a two-fold increase in gain. A special class of so-called "strong coupling" QC lasers recently emerged with high optical power and high efficiency at cryogenic temperatures. However their performances decay rather rapidly with temperature in both pulsed and continuous wave modes. Through detailed measurements and analysis, we investigate several possible causes of this shortcoming and propose design modifications for temperature performance improvement. While the strong coupling devices are efficient and powerful, their performance often suffers from unintentional and potentially harmful beam steering at high power. Here, we identify the root of this pointing instability to be from non-linear interactions between multiple transverse modes. And, to resolve this issue, we employ focused ion beam (FIB) milling to etch small lateral constrictions on top of the devices and fill them with metal. This has the effect of greatly reducing the intensity of higher order transverse modes as they propagate through the cavity. A good grasp of the microscopic details involved in QC device operations will result in better lasers, with high beam quality. This, in turn, will enable new applications, such as the detection of SO2 isotopologues near 7.4 micron, which is of particular importance for the study of ultraviolet photolysis and the sulfur cycle on Venus.
Electron transport in nano-scaled piezoelectronic devices
NASA Astrophysics Data System (ADS)
Jiang, Zhengping; Kuroda, Marcelo A.; Tan, Yaohua; Newns, Dennis M.; Povolotskyi, Michael; Boykin, Timothy B.; Kubis, Tillmann; Klimeck, Gerhard; Martyna, Glenn J.
2013-05-01
The Piezoelectronic Transistor (PET) has been proposed as a post-CMOS device for fast, low-power switching. In this device, the piezoresistive channel is metalized via the expansion of a relaxor piezoelectric element to turn the device on. The mixed-valence compound SmSe is a good choice of PET channel material because of its isostructural pressure-induced continuous metal insulator transition, which is well characterized in bulk single crystals. Prediction and optimization of the performance of a realistic, nano-scaled PET based on SmSe requires the understanding of quantum confinement, tunneling, and the effect of metal interface. In this work, a computationally efficient empirical tight binding (ETB) model is developed for SmSe to study quantum transport in these systems and the scaling limit of PET channel lengths. Modulation of the SmSe band gap under pressure is successfully captured by ETB, and ballistic conductance shows orders of magnitude change under hydrostatic strain, supporting operability of the PET device at nanoscale.
Li, Bowei; Fu, Longwen; Zhang, Wei; Feng, Weiwei; Chen, Lingxin
2014-04-01
This paper presents a novel paper-based analytical device based on the colorimetric paper assays through its light reflectance. The device is portable, low cost (<20 dollars), and lightweight (only 176 g) that is available to assess the cost-effectiveness and appropriateness of the original health care or on-site detection information. Based on the light reflectance principle, the signal can be obtained directly, stably and user-friendly in our device. We demonstrated the utility and broad applicability of this technique with measurements of different biological and pollution target samples (BSA, glucose, Fe, and nitrite). Moreover, the real samples of Fe (II) and nitrite in the local tap water were successfully analyzed, and compared with the standard UV absorption method, the quantitative results showed good performance, reproducibility, and reliability. This device could provide quantitative information very conveniently and show great potential to broad fields of resource-limited analysis, medical diagnostics, and on-site environmental detection. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Unipolar resistive switching behaviors and mechanisms in an annealed Ni/ZrO2/TaN memory device
NASA Astrophysics Data System (ADS)
Tsai, Tsung-Ling; Ho, Tsung-Han; Tseng, Tseung-Yuen
2015-01-01
The effects of Ni/ZrO2/TaN resistive switching memory devices without and with a 400 °C annealing process on switching properties are investigated. The devices exhibit unipolar resistive switching behaviors with low set and reset voltages because of a large amount of Ni diffusion with no reaction with ZrO2 after the annealing process, which is confirmed by ToF-SIMS and XPS analyses. A physical model based on a Ni filament is constructed to explain such phenomena. The device that undergoes the 400 °C annealing process exhibits an excellent endurance of more than 1.5 × 104 cycles. The improvement can be attributed to the enhancement of oxygen ion migration along grain boundaries, which result in less oxygen ion consumption during the reset process. The device also performs good retention up to 105 s at 150 °C. Therefore, it has great potential for high-density nonvolatile memory applications.
NASA Astrophysics Data System (ADS)
Guo, Xiaohui; Huang, Ying; Cai, Xia; Liu, Caixia; Liu, Ping
2016-04-01
To achieve the wearable comfort of electronic skin (e-skin), a capacitive sensor printed on a flexible textile substrate with a carbon black (CB)/silicone rubber (SR) composite dielectric was demonstrated in this paper. Organo-silicone conductive silver adhesive serves as a flexible electrodes/shielding layer. The structure design, sensing mechanism and the influence of the conductive filler content and temperature variations on the sensor performance were investigated. The proposed device can effectively enhance the flexibility and comfort of wearing the device asthe sensing element has achieved a sensitivity of 0.02536%/KPa, a hysteresis error of 5.6%, and a dynamic response time of ~89 ms at the range of 0-700 KPa. The drift induced by temperature variations has been calibrated by presenting the temperature compensation model. The research on the time-space distribution of plantar pressure information and the experiment of the manipulator soft-grasping were implemented with the introduced device, and the experimental results indicate that the capacitive flexible textile tactile sensor has good stability and tactile perception capacity. This study provides a good candidate for wearable artificial skin.
Measurement of Retinal Sensitivity on Tablet Devices in Age-Related Macular Degeneration.
Wu, Zhichao; Guymer, Robyn H; Jung, Chang J; Goh, Jonathan K; Ayton, Lauren N; Luu, Chi D; Lawson, David J; Turpin, Andrew; McKendrick, Allison M
2015-06-01
We compared measurements of central retinal sensitivity on a portable, low-cost tablet device to the established method of microperimetry in age-related macular degeneration (AMD). A customized test designed to measure central retinal sensitivity (within the central 1° radius) on a tablet device was developed using an open-source platform called PsyPad. A total of 30 participants with AMD were included in this study, and all participants performed a practice test on PsyPad, followed by four tests of one eye and one test of the other eye. Participants then underwent standardized microperimetry examinations in both eyes. The average test duration on PsyPad was 53.9 ± 7.5 seconds, and no significant learning effect was observed over the examinations performed ( P = 1.000). The coefficient of repeatability of central retinal sensitivity between the first two examinations on PsyPad was ±1.76 dB. The mean central retinal sensitivity was not significantly different between PsyPad (25.7 ± 0.4 dB) and microperimetry (26.1 ± 0.4 dB, P = 0.094), and the 95% limits of agreement between the two measures were between -4.12 and 4.92 dB. The measurements of central retinal sensitivity can be performed effectively using a tablet device, displaying reasonably good agreement with those obtained using the established method of microperimetry. These findings highlight the potential of tablet devices as low-cost and portable tools for developing and performing visual function measures that can be easily and widely implemented.
Kos, Sebastian; Huegli, Rolf; Hofmann, Eugen; Quick, Harald H; Kuehl, Hilmar; Aker, Stephanie; Kaiser, Gernot M; Borm, Paul J; Jacob, Augustinus L; Bilecen, Deniz
2009-04-01
Demonstrate the usability of a new polyetheretherketone (PEEK)-based MR-compatible guidewire for renal artery catheterization, angioplasty, and stenting under MR-guidance using MR-visible markers, in vitro and in vivo. The new 0.035'' guidewire with fiber-reinforced PEEK core, a soft tip, and a hydrophilic coating was used. Paramagnetic markings were coated on the wire and nonbraided catheters for passive visualization. Bending stiffness of the guidewire was compared with available hydrophilic guidewires (Terumo Glidewire Stiff and Standard). A human aortic silicon phantom and 2 pigs were used. The study was animal care and use approved by the committee. Under MR-guidance, renal arteries were catheterized, balloon angioplasty was performed, and balloon expandable renal artery stents were deployed in vivo. Post mortem autopsy was performed. Guidewire visibility, pushability, steerability, and device-support capabilities of the marked guidewire were qualitatively assessed. Procedure times were recorded. Bending stiffness of the new PEEK-based wire was comparable with Standard Glidewire. In vitro and in vivo guidewire guidance, catheter configuration, renal artery catheterization, and balloon angioplasty were successful. In pigs, stent deployments were successful in both renal arteries. Autopsy revealed acceptable stent positioning. Guidewire visibility through applied markers was acceptable. Steerability, pushability, and device support were good in vitro and in vivo. The PEEK-based guide allows percutaneous MR-guided renal artery angioplasty and stenting with sufficient visibility, good steerability, pushability, and device support.
Mitsukawa, Nobuyuki; Saiga, Atsuomi; Morishita, Tadashi; Satoh, Kaneshige
2014-07-01
Patients with bilateral cleft lips and palates have premaxillary protrusion and characteristic jaw deformities involving three-dimensional malposition of the premaxilla and bilateral maxillary bone segments. This study examined patients with bilateral cleft lips and palates who had deviation and hypoplasia of the premaxillas and bilateral maxillary segments. Before bone grafting, the patients were treated with special distraction performed separately for each bone segment using a halo-type external device. This report describes this novel treatment method which produced good results. The subjects were five patients with severe jaw deformities due to bilateral cleft lip and palate. They were treated with maxillary Le Fort I osteotomy and subsequent distraction performed separately for each bone segment using a halo device. In three of five patients, premaxillary osteotomy was not performed, and osteotomy and distraction were performed only for the right and left lateral segments with severe hypoplasia. All patients achieved distraction close to the desired amount. The widths of the alveolar clefts were narrowed, and satisfactory occlusion and maxillary arch form were achieved. After the surgery, three of five patients underwent bone grafting for bilateral alveolar cleft defects and the bone graft survival was satisfactory. This method had many benefits, including narrowing of alveolar clefts, improvement of maxillary hypoplasia, and achievement of a good maxillary arch form. In addition, subsequent bone grafting for alveolar cleft defects was beneficial, dental prostheses were unnecessary, and frequency of surgery and surgical invasiveness were reduced. This method is a good surgical procedure that should be considered for patients with bilateral cleft lips and palates who have premaxillary protrusion and hypoplasia of the right and left lateral segments. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
On the tip of the tongue: learning typing and pointing with an intra-oral computer interface.
Caltenco, Héctor A; Breidegard, Björn; Struijk, Lotte N S Andreasen
2014-07-01
To evaluate typing and pointing performance and improvement over time of four able-bodied participants using an intra-oral tongue-computer interface for computer control. A physically disabled individual may lack the ability to efficiently control standard computer input devices. There have been several efforts to produce and evaluate interfaces that provide individuals with physical disabilities the possibility to control personal computers. Training with the intra-oral tongue-computer interface was performed by playing games over 18 sessions. Skill improvement was measured through typing and pointing exercises at the end of each training session. Typing throughput improved from averages of 2.36 to 5.43 correct words per minute. Pointing throughput improved from averages of 0.47 to 0.85 bits/s. Target tracking performance, measured as relative time on target, improved from averages of 36% to 47%. Path following throughput improved from averages of 0.31 to 0.83 bits/s and decreased to 0.53 bits/s with more difficult tasks. Learning curves support the notion that the tongue can rapidly learn novel motor tasks. Typing and pointing performance of the tongue-computer interface is comparable to performances of other proficient assistive devices, which makes the tongue a feasible input organ for computer control. Intra-oral computer interfaces could provide individuals with severe upper-limb mobility impairments the opportunity to control computers and automatic equipment. Typing and pointing performance of the tongue-computer interface is comparable to performances of other proficient assistive devices, but does not cause fatigue easily and might be invisible to other people, which is highly prioritized by assistive device users. Combination of visual and auditory feedback is vital for a good performance of an intra-oral computer interface and helps to reduce involuntary or erroneous activations.
Children's catching performance when the demands on the postural system is altered.
Angelakopoulos, Georgios T; Tsorbatzoudis, Haralambos; Grouios, George
2014-07-01
In many dynamic interceptive actions performers need to integrate activity of manual and postural subsystems for successful performance. Groups of different skill level (poor and good catchers), (mean age = 9.1 and 9.4 respectively) were required to perform one-handed catches under different postural constraints: standing; standing in contact with a postural support aid by their side (PSAS) or to the left of their trunk (PSAF); Tandem; and sitting (control). Results revealed that, for poor catchers, the number of successful catches increased and grasp errors decreased significantly when sitting and with both postural aids in comparison with standing alone and Tandem conditions. Kinematic analyses showed that the postural aid devices reduced head sway in the anterior-posterior direction, while the PSAF reduced lateral head sway. The poor catchers' performance benefited from an enlarged support surface, and reduction of lateral sway. Good catchers performed successfully under all task constraints, signifying the existence of a functional relationship between postural and grasping subsystems during performance. The results are discussed in the frame of Bernstein's (1967) and Newell's (1986) theory.
Li, Ning; Cao, Chao; Wang, Cong
2017-06-15
Supporting simultaneous access of machine-type devices is a critical challenge in machine-to-machine (M2M) communications. In this paper, we propose an optimal scheme to dynamically adjust the Access Class Barring (ACB) factor and the number of random access channel (RACH) resources for clustered machine-to-machine (M2M) communications, in which Delay-Sensitive (DS) devices coexist with Delay-Tolerant (DT) ones. In M2M communications, since delay-sensitive devices share random access resources with delay-tolerant devices, reducing the resources consumed by delay-sensitive devices means that there will be more resources available to delay-tolerant ones. Our goal is to optimize the random access scheme, which can not only satisfy the requirements of delay-sensitive devices, but also take the communication quality of delay-tolerant ones into consideration. We discuss this problem from the perspective of delay-sensitive services by adjusting the resource allocation and ACB scheme for these devices dynamically. Simulation results show that our proposed scheme realizes good performance in satisfying the delay-sensitive services as well as increasing the utilization rate of the random access resources allocated to them.
Scaling of Device Variability and Subthreshold Swing in Ballistic Carbon Nanotube Transistors
NASA Astrophysics Data System (ADS)
Cao, Qing; Tersoff, Jerry; Han, Shu-Jen; Penumatcha, Ashish V.
2015-08-01
In field-effect transistors, the inherent randomness of dopants and other charges is a major cause of device-to-device variability. For a quasi-one-dimensional device such as carbon nanotube transistors, even a single charge can drastically change the performance, making this a critical issue for their adoption as a practical technology. Here we calculate the effect of the random charges at the gate-oxide surface in ballistic carbon nanotube transistors, finding good agreement with the variability statistics in recent experiments. A combination of experimental and simulation results further reveals that these random charges are also a major factor limiting the subthreshold swing for nanotube transistors fabricated on thin gate dielectrics. We then establish that the scaling of the nanotube device uniformity with the gate dielectric, fixed-charge density, and device dimension is qualitatively different from conventional silicon transistors, reflecting the very different device physics of a ballistic transistor with a quasi-one-dimensional channel. The combination of gate-oxide scaling and improved control of fixed-charge density should provide the uniformity needed for large-scale integration of such novel one-dimensional transistors even at extremely scaled device dimensions.
Rebholz, Julia; Grossmann, Katharina; Pham, David; Pokhrel, Suman; Mädler, Lutz; Weimar, Udo; Barsan, Nicolae
2016-09-06
Here we present a novel concept for the selective recognition of different target gases with a multilayer semiconducting metal oxide (SMOX)-based sensor device. Direct current (DC) electrical resistance measurements were performed during exposure to CO and ethanol as single gases and mixtures of highly porous metal oxide double- and single-layer sensors obtained by flame spray pyrolysis. The results show that the calculated resistance ratios of the single- and double-layer sensors are a good indicator for the presence of specific gases in the atmosphere, and can constitute some building blocks for the development of chemical logic devices. Due to the inherent lack of selectivity of SMOX-based gas sensors, such devices could be especially relevant for domestic applications.
Rebholz, Julia; Grossmann, Katharina; Pham, David; Pokhrel, Suman; Mädler, Lutz; Weimar, Udo; Barsan, Nicolae
2016-01-01
Here we present a novel concept for the selective recognition of different target gases with a multilayer semiconducting metal oxide (SMOX)-based sensor device. Direct current (DC) electrical resistance measurements were performed during exposure to CO and ethanol as single gases and mixtures of highly porous metal oxide double- and single-layer sensors obtained by flame spray pyrolysis. The results show that the calculated resistance ratios of the single- and double-layer sensors are a good indicator for the presence of specific gases in the atmosphere, and can constitute some building blocks for the development of chemical logic devices. Due to the inherent lack of selectivity of SMOX-based gas sensors, such devices could be especially relevant for domestic applications. PMID:27608028
Courvoisier, Aurélien
2016-09-01
Academic research is essential to bring disruptive innovation on medical devices market because the risk-taking is too high for companies and their investors. Performing clinical trials is essential to technical files but no one wants to accept responsibility for implanted off-label devices. The paper explains the academic process for innovation. We see that academic research depends, at the end, on the motivation of companies to develop a product. The key to innovation stands in the early collaboration between the surgeons, the research teams and the companies in a project. Innovation is a good idea supported by the expertise of the right people at the right moment. In orthopaedics, we need, more than ever, to stay focused on the patient benefits.
Circulation and Directional Amplification in the Josephson Parametric Converter
NASA Astrophysics Data System (ADS)
Hatridge, Michael
Nonreciprocal transport and directional amplification of weak microwave signals are fundamental ingredients in performing efficient measurements of quantum states of flying microwave light. This challenge has been partly met, as quantum-limited amplification is now regularly achieved with parametrically-driven, Josephson-junction based superconducting circuits. However, these devices are typically non-directional, requiring external circulators to separate incoming and outgoing signals. Recently this limitation has been overcome by several proposals and experimental realizations of both directional amplifiers and circulators based on interference between several parametric processes in a single device. This new class of multi-parametrically driven devices holds the promise of achieving a variety of desirable characteristics simultaneously- directionality, reduced gain-bandwidth constraints and quantum-limited added noise, and are good candidates for on-chip integration with other superconducting circuits such as qubits.
Oh, Gwangtaek; Kim, Jin-Soo; Jeon, Ji Hoon; Won, EunA; Son, Jong Wan; Lee, Duk Hyun; Kim, Cheol Kyeom; Jang, Jingon; Lee, Takhee; Park, Bae Ho
2015-07-28
High-quality channel layer is required for next-generation flexible electronic devices. Graphene is a good candidate due to its high carrier mobility and unique ambipolar transport characteristics but typically shows a low on/off ratio caused by gapless band structure. Popularly investigated organic semiconductors, such as pentacene, suffer from poor carrier mobility. Here, we propose a graphene/pentacene channel layer with high-k ion-gel gate dielectric. The graphene/pentacene device shows both high on/off ratio and carrier mobility as well as excellent mechanical flexibility. Most importantly, it reveals ambipolar behaviors and related negative differential resistance, which are controlled by external bias. Therefore, our graphene/pentacene barristor with ion-gel gate dielectric can offer various flexible device applications with high performances.
Yuenyongviwat, Varah; Tuntarattanapong, Pakjai; Tangtrakulwanich, Boonsin
2016-01-11
Internal fixation is one treatment for femoral neck fracture. Some devices and techniques reported improved accuracy and decreased fluoroscopic time. However, these are not widely used nowadays due to the lack of available special instruments and techniques. To improve the surgical procedure, the authors designed a new adjustable drill guide and tested the efficacy of the device. The authors developed a new adjustable drill guide for cannulated screw guide wire insertion for multiple screw fixation. Eight orthopaedic surgeons performed the experimental study to evaluate the efficacy of this device. Each surgeon performed guide wire insertion for multiple screw fixation in six synthetic femurs: three times with the new device and three times with the conventional technique. The fluoroscopic time, operative time and surgeon satisfaction were evaluated. In the operations with the new adjustable drill guide, the fluoroscopic and operative times were significantly lower than the operations with the conventional technique (p < 0.05). The mean score for the level of satisfaction of this device was also statistically significantly better (p = 0.02) than the conventional technique. The fluoroscopic and operative times with the new adjustable drill guide were reduced for multiple screw fixation of femoral neck fracture and the satisfaction of the surgeons was good.
A comparison between on-site immunoassay drug-testing devices and laboratory results.
Grönholm, M; Lillsunde, P
2001-09-15
The aim with this study was to evaluate the accuracy of several on-site testing devices on the market. A part of this study is included in the European Union's (EU's) roadside testing assessment project (ROSITA). An other request for this kind of study came from the Finnish prison department in the Ministry of Justice. The evaluation was performed on both urine assays and oral fluid assays. The on-site test results were compared with laboratory results (gas chromatography-mass spectrometry (GC/MS)). The samples were tested on amphetamines (AMP), cannabinoids (THC), opiates (OPI) and cocaine metabolites (COC). Some of the tests also included a metamphetamine (MET) and a benzodiazepine (BZO) test. Both positive and negative samples were tested. A total of 800 persons and eight on-site devices for urine and two for oral fluid testing were included in this study. Good results were obtained for the urine on-site devices, with accuracies of 93-99% for amphetamines, 97-99% for cannabinoids, 94-98% for opiates and 90-98% for benzodiazepines. However, differences in the ease of performance and interpretation of test result were observed. It was possible to detect amphetamines and opiates in oral fluid by the used on-site devices, but the benzodiazepines and cannabinoids did not fulfil the needs of sensitivity.
Fu, Shizhe; Zhang, Xueqing; Xie, Yuzhe; Wu, Jie; Ju, Huangxian
2017-07-06
An efficient enzyme-powered micromotor device was fabricated by assembling multiple layers of catalase on the inner surface of a poly(3,4-ethylenedioxythiophene and sodium 4-styrenesulfonate)/Au microtube (PEDOT-PSS/Au). The catalase assembly was achieved by programmed DNA hybridization, which was performed by immobilizing a designed sandwich DNA structure as the sensing unit on the PEDOT-PSS/Au, and then alternately hybridizing with two assisting DNA to bind the enzyme for efficient motor motion. The micromotor device showed unique features of good reproducibility, stability and motion performance. Under optimal conditions, it showed a speed of 420 μm s -1 in 2% H 2 O 2 and even 51 μm s -1 in 0.25% H 2 O 2 . In the presence of target DNA, the sensing unit hybridized with target DNA to release the multi-layer DNA as well as the multi-catalase, resulting in a decrease of the motion speed. By using the speed as a signal, the micromotor device could detect DNA from 10 nM to 1 μM. The proposed micromotor device along with the cyclic alternate DNA hybridization assembly technique provided a new path to fabricate efficient and versatile micromotors, which would be an exceptional tool for rapid and simple detection of biomolecules.
NASA Astrophysics Data System (ADS)
Muneer, Tariq; Zhang, Xiaodong; Wood, John
2002-03-01
Delta-T Device Limited of Cambridge, UK have developed an integrated device which enables simultaneous measurement of horizontal global and diffuse irradiance as well as sunshine status at any given instance in time. To evaluate the performance of this new device, horizontal global and diffuse irradiance data were simultaneously collected from Delta-T device and Napier University's CIE First Class daylight monitoring station. To enable a cross check a Kipp & Zonen CM11 global irradiance sensor has also been installed in Currie, south-west Edinburgh. Sunshine duration data have been recorded at the Royal Botanical Garden, Edinburgh using their Campbell-Stokes recorder. Hourly data sets were analysed and plotted within the Microsoft Excel environment. Using the common statistical measures, Root Mean Square Difference (RMSD) and Mean Bias Difference (MBD) the accuracy of measurements of Delta-T sensor's horizontal global and diffuse irradiance, and sunshine duration were investigated. The results show a good performance on the part of Delta-T device for the measurement of global and diffuse irradiance. The sunshine measurements were found to have a lack of consistency and accuracy. It is argued herein that the distance between the respective sensors and the poor accuracy of Campbell-Stokes recorder may be contributing factors to this phenomenon.
Borges, Sivanildo S.; Vieira, Gláucia P.; Reis, Boaventura F.
2007-01-01
In this work, an automatic device to deliver titrant solution into a titration chamber with the ability to determine the dispensed volume of solution, with good precision independent of both elapsed time and flow rate, is proposed. A glass tube maintained at the vertical position was employed as a container for the titrant solution. Electronic devices were coupled to the glass tube in order to control its filling with titrant solution, as well as the stepwise solution delivering into the titration chamber. The detection of the titration end point was performed employing a photometer designed using a green LED (λ=545 nm) and a phototransistor. The titration flow system comprised three-way solenoid valves, which were assembled to allow that the steps comprising the solution container loading and the titration run were carried out automatically. The device for the solution volume determination was designed employing an infrared LED (λ=930 nm) and a photodiode. When solution volume delivered from proposed device was within the range of 5 to 105 μl, a linear relationship (R = 0.999) between the delivered volumes and the generated potential difference was achieved. The usefulness of the proposed device was proved performing photometric titration of hydrochloric acid solution with a standardized sodium hydroxide solution and using phenolphthalein as an external indicator. The achieved results presented relative standard deviation of 1.5%. PMID:18317510
Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals.
Jang, Sukjae; Hwang, Euyheon; Lee, Youngbin; Lee, Seungwoo; Cho, Jeong Ho
2015-04-08
The advantages of graphene photodetectors were utilized to design a new multifunctional graphene optoelectronic device. Organic semiconductors, gold nanoparticles (AuNPs), and graphene were combined to fabricate a photodetecting device with a nonvolatile memory function for storing photonic signals. A pentacene organic semiconductor acted as a light absorption layer in the device and provided a high hole photocurrent to the graphene channel. The AuNPs, positioned between the tunneling and blocking dielectric layers, acted as both a charge trap layer and a plasmonic light scatterer, which enable storing of the information about the incident light. The proposed pentacene-graphene-AuNP hybrid photodetector not only performed well as a photodetector in the visible light range, it also was able to store the photonic signal in the form of persistent current. The good photodetection performance resulted from the plasmonics-enabled enhancement of the optical absorption and from the photogating mechanisms in the pentacene. The device provided a photoresponse that depended on the wavelength of incident light; therefore, the signal information (both the wavelength and intensity) of the incident light was effectively committed to memory. The simple process of applying a negative pulse gate voltage could then erase the programmed information. The proposed photodetector with the capacity to store a photonic signal in memory represents a significant step toward the use of graphene in optoelectronic devices.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
1998-01-01
Silicon carbide (SiC)-based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and/or high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching [1- 4] for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications [5-7] to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be realized in experimental SiC devices, primarily due to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems [9]. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high temperature and/or high power SiC electronics are identified.
Dynamic Response Assessment for the MEMS Accelerometer Under Severe Shock Loads
NASA Technical Reports Server (NTRS)
Fan, Mark S.; Shaw, Harry C.
2001-01-01
NASA Goddard Space Flight Center (GSFC) has evaluated the dynamic response of a commercial-off-the-shelf (COTS) microelectromechanical systems (MEMS) device made by Analog Device, Inc. The device is designated as ADXL250 and is designed mainly for sensing dynamic acceleration. It is also used to measure the tilting angle of any system or component from its original level position. The device has been in commercial use (e.g., in automobile airbag deployment system as a dual-axial accelerometer and in the electronic game play-station as a tilting sensor) with success, but NASA needs an in-depth assessment of its performance under severe dynamic shock environments. It was realized while planning this evaluation task that two assessments would be beneficial to NASA's missions: (1) severe dynamic shock response under nominal thermal environments; and (2) general dynamic performance under cryogenic environments. The first evaluation aims at obtaining a good understanding of its micromachined structure within a framework of brittle fracture dynamics, while the second evaluation focuses on the structure integrity under cryogenic temperature conditions. The information we gathered from the manufacturer indicated that the environmental stresses under NASA's evaluation program have been far beyond what the device has experienced with commercial applications, for which the device was designed. Thus NASA needs the outcome of this evaluation in order to make the selection for possible use for its missions. This paper provides details of the first evaluation the dynamic response under severe multi-axial single-pulse shock load. It was performed using finite element tools with nonlinear dynamics procedures.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
2006-01-01
Silicon carbide based semiconductor electronic devices and circuits are presently being developed for use in high-temperature, high-power, and high-radiation conditions under which conventional semiconductors cannot adequately perform. Silicon carbide's ability to function under such extreme conditions is expected to enable significant improvements to a far-ranging variety of applications and systems. These range from greatly improved high-voltage switching for energy savings in public electric power distribution and electric motor drives to more powerful microwave electronics for radar and communications to sensors and controls for cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of power devices, theoretical appraisals have indicated that SiC power MOSFET's and diode rectifiers would operate over higher voltage and temperature ranges, have superior switching characteristics, and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices [8]. However, these tremendous theoretical advantages have yet to be widely realized in commercially available SiC devices, primarily owing to the fact that SiC's relatively immature crystal growth and device fabrication technologies are not yet sufficiently developed to the degree required for reliable incorporation into most electronic systems. This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the differences (both good and bad) between SiC electronics technology and the well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are highlighted for several large-scale applications. Key crystal growth and device-fabrication issues that presently limit the performance and capability of high-temperature and high-power SiC electronics are identified.
Gong, Shaolong; Zhao, Yongbiao; Wang, Meng; Yang, Chuluo; Zhong, Cheng; Qin, Jingui; Ma, Dongge
2010-09-03
Two new bipolar compounds, N,N,N',N'-tetraphenyl-5'-(1-phenyl-1H-benzimidazol-2-yl)-1,1':3',1''-terphenyl-4,4''-diamine (1) and N,N,N',N'-tetraphenyl-5'-(1-phenyl-1H-benzimidazol-2-yl)-1,1':3',1''-terphenyl-3,3''-diamine (2), were synthesized and characterized, and their thermal, photophysical, and electrochemical properties were investigated. Compounds 1 and 2 possess good thermal stability with high glass-transition temperatures of 109-129 degrees C and thermal decomposition temperatures of 501-531 degrees C. The fluorescence quantum yield of 1 (0.52) is higher than that of 2 (0.16), which could be attributed to greater pi conjugation between the donor and acceptor moieties. A nondoped deep-blue fluorescent organic light-emitting diode (OLED) using 1 as the blue emitter displays high performance, with a maximum current efficiency of 2.2 cd A(-1) and a maximum external efficiency of 2.9 % at the CIE coordinates of (0.17, 0.07) that are very close to the National Television System Committee's blue standard (0.15, 0.07). Electrophosphorescent devices using the two compounds as host materials for green and red phosphor emitters show high efficiencies. The best performance of a green phosphorescent device was achieved using 2 as the host, with a maximum current efficiency of 64.3 cd A(-1) and a maximum power efficiency of 68.3 lm W(-1); whereas the best performance of a red phosphorescent device was achieved using 1 as the host, with a maximum current efficiency of 11.5 cd A(-1), and a maximum power efficiency of 9.8 lm W(-1). The relationship between the molecular structures and optoelectronic properties are discussed.
Díaz, Manuel; Rubio, Bartolomé; Van den Abeele, Floris
2018-01-01
Currently, applications in the Internet of Things (IoT) are tightly coupled to the underlying physical devices. As a consequence, upon adding a device, device replacement or user’s relocation to a different physical space, application developers have to re-perform installation and configuration processes to reconfigure applications, which bears costs in time and knowledge of low-level details. In the emerging IoT field, this issue is even more challenging due to its current unpredictable growth in term of applications and connected devices. In addition, IoT applications can be personalised to each end user and can be present in different environments. As a result, IoT scenarios are very changeable, presenting a challenge for IoT applications. In this paper we present Appdaptivity, a system that enables the development of portable device-decoupled applications that can be adapted to changing contexts. Through Appdaptivity, application developers can intuitively create portable and personalised applications, disengaging from the underlying physical infrastructure. Results confirms a good scalability of the system in terms of connected users and components involved. PMID:29701698
Martín, Cristian; Hoebeke, Jeroen; Rossey, Jen; Díaz, Manuel; Rubio, Bartolomé; Van den Abeele, Floris
2018-04-26
Currently, applications in the Internet of Things (IoT) are tightly coupled to the underlying physical devices. As a consequence, upon adding a device, device replacement or user’s relocation to a different physical space, application developers have to re-perform installation and configuration processes to reconfigure applications, which bears costs in time and knowledge of low-level details. In the emerging IoT field, this issue is even more challenging due to its current unpredictable growth in term of applications and connected devices. In addition, IoT applications can be personalised to each end user and can be present in different environments. As a result, IoT scenarios are very changeable, presenting a challenge for IoT applications. In this paper we present Appdaptivity, a system that enables the development of portable device-decoupled applications that can be adapted to changing contexts. Through Appdaptivity, application developers can intuitively create portable and personalised applications, disengaging from the underlying physical infrastructure. Results confirms a good scalability of the system in terms of connected users and components involved.
Castagnola, Elisa; Maggiolini, Emma; Ceseracciu, Luca; Ciarpella, Francesca; Zucchini, Elena; De Faveri, Sara; Fadiga, Luciano; Ricci, Davide
2016-01-01
The long-term reliability of neural interfaces and stability of high-quality recordings are still unsolved issues in neuroscience research. High surface area PEDOT-PSS-CNT composites are able to greatly improve the performance of recording and stimulation for traditional intracortical metal microelectrodes by decreasing their impedance and increasing their charge transfer capability. This enhancement significantly reduces the size of the implantable device though preserving excellent electrical performances. On the other hand, the presence of nanomaterials often rises concerns regarding possible health hazards, especially when considering a clinical application of the devices. For this reason, we decided to explore the problem from a new perspective by designing and testing an innovative device based on nanostructured microspheres grown on a thin tether, integrating PEDOT-PSS-CNT nanocomposites with a soft synthetic permanent biocompatible hydrogel. The pHEMA hydrogel preserves the electrochemical performance and high quality recording ability of PEDOT-PSS-CNT coated devices, reduces the mechanical mismatch between soft brain tissue and stiff devices and also avoids direct contact between the neural tissue and the nanocomposite, by acting as a biocompatible protective barrier against potential nanomaterial detachment. Moreover, the spherical shape of the electrode together with the surface area increase provided by the nanocomposite deposited on it, maximize the electrical contact and may improve recording stability over time. These results have a good potential to contribute to fulfill the grand challenge of obtaining stable neural interfaces for long-term applications. PMID:27147944
Strain induced optical properties of BaReO3
NASA Astrophysics Data System (ADS)
Kumavat, Sandip R.; Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh
2018-05-01
Here, we have performed strain induce optical properties of BaReO3 by using density functional theory (DFT). We noticed that after applying intrinsic and extrinsic strain to the BaReO3, it shows the metallic behavior. We also studied optical properties, which show good activity in the ultraviolet region. The results show that after applying intrinsic and extrinsic strain to BaReO3 the absorption peaks are shifted towards the high UV region of the spectrum. Thus, we concluded that, BaReO3 material with extrinsic strain can be useful for high frequency UV device and optoelectronic devices.
Transient thermal camouflage and heat signature control
NASA Astrophysics Data System (ADS)
Yang, Tian-Zhi; Su, Yishu; Xu, Weikai; Yang, Xiao-Dong
2016-09-01
Thermal metamaterials have been proposed to manipulate heat flux as a new way to cloak or camouflage objects in the infrared world. To date, however, thermal metamaterials only operate in the steady-state and exhibit detectable, transient heat signatures. In this letter, the theoretical basis for a thermal camouflaging technique with controlled transient diffusion is presented. This technique renders an object invisible in real time. More importantly, the thermal camouflaging device instantaneously generates a pre-designed heat signature and behaves as a perfect thermal illusion device. A metamaterial coating with homogeneous and isotropic thermal conductivity, density, and volumetric heat capacity was fabricated and very good camouflaging performance was achieved.
Critical factors to achieve low voltage- and capacitance-based organic field-effect transistors.
Jang, Mi; Park, Ji Hoon; Im, Seongil; Kim, Se Hyun; Yang, Hoichang
2014-01-15
Hydrophobic organo-compatible but low-capacitance dielectrics (10.5 nFcm(-2) ), polystyrene-grafted SiO2 could induce surface-mediated large crystal grains of face-to-face stacked triethylsilylethynyl anthradithiophene (TES-ADT), producing more efficient charge-carrier transport, in comparison to μm-sized pentacene crystals containing a face-to-edge packing. Low-voltage operating TES-ADT OFETs showed good device performance (μFET ≈ 1.3 cm(2) V(-1) s(-1) , Vth ≈ 0.5 V, SS ≈ 0.2 V), as well as excellent device reliability. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A voice-input voice-output communication aid for people with severe speech impairment.
Hawley, Mark S; Cunningham, Stuart P; Green, Phil D; Enderby, Pam; Palmer, Rebecca; Sehgal, Siddharth; O'Neill, Peter
2013-01-01
A new form of augmentative and alternative communication (AAC) device for people with severe speech impairment-the voice-input voice-output communication aid (VIVOCA)-is described. The VIVOCA recognizes the disordered speech of the user and builds messages, which are converted into synthetic speech. System development was carried out employing user-centered design and development methods, which identified and refined key requirements for the device. A novel methodology for building small vocabulary, speaker-dependent automatic speech recognizers with reduced amounts of training data, was applied. Experiments showed that this method is successful in generating good recognition performance (mean accuracy 96%) on highly disordered speech, even when recognition perplexity is increased. The selected message-building technique traded off various factors including speed of message construction and range of available message outputs. The VIVOCA was evaluated in a field trial by individuals with moderate to severe dysarthria and confirmed that they can make use of the device to produce intelligible speech output from disordered speech input. The trial highlighted some issues which limit the performance and usability of the device when applied in real usage situations, with mean recognition accuracy of 67% in these circumstances. These limitations will be addressed in future work.
The eye-tracking computer device for communication in amyotrophic lateral sclerosis.
Spataro, R; Ciriacono, M; Manno, C; La Bella, V
2014-07-01
To explore the effectiveness of communication and the variables affecting the eye-tracking computer system (ETCS) utilization in patients with late-stage amyotrophic lateral sclerosis (ALS). We performed a telephone survey on 30 patients with advanced non-demented ALS that were provisioned an ECTS device. Median age at interview was 55 years (IQR = 48-62), with a relatively high education (13 years, IQR = 8-13). A one-off interview was made and answers were later provided with the help of the caregiver. The interview included items about demographic and clinical variables affecting the daily ETCS utilization. The median time of ETCS device possession was 15 months (IQR = 9-20). The actual daily utilization was 300 min (IQR = 100-720), mainly for the communication with relatives/caregiver, internet surfing, e-mailing, and social networking. 23.3% of patients with ALS (n = 7) had a low daily ETCS utilization; most reported causes were eye-gaze tiredness and oculomotor dysfunction. Eye-tracking computer system is a valuable device for AAC in patients with ALS, and it can be operated with a good performance. The development of oculomotor impairment may limit its functional use. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Chang, Jingbo; Zhou, Guihua; Gao, Xianfeng; ...
2015-08-01
Field-effect transistor (FET) sensors based on reduced graphene oxide (rGO) for detecting chemical species provide a number of distinct advantages, such as ultrasensitivity, label-free, and real-time response. However, without a passivation layer, channel materials directly exposed to an ionic solution could generate multiple signals from ionic conduction through the solution droplet, doping effect, and gating effect. Therefore, a method that provides a passivation layer on the surface of rGO without degrading device performance will significantly improve device sensitivity, in which the conductivity changes solely with the gating effect. In this work, we report rGO FET sensor devices with Hg 2+-dependentmore » DNA as a probe and the use of an Al 2O 3 layer to separate analytes from conducting channel materials. The device shows good electronic stability, excellent lower detection limit (1 nM), and high sensitivity for real-time detection of Hg 2+ in an underwater environment. Our work shows that optimization of an rGO FET structure can provide significant performance enhancement and profound fundamental understanding for the sensor mechanism.« less
Ultrathin Single‐Crystalline Boron Nanosheets for Enhanced Electro‐Optical Performances
Xu, Junqi; Chang, Yangyang; Gan, Lin; Ma, Ying
2015-01-01
Large‐scale single‐crystalline ultrathin boron nanosheets (UBNSs, ≈10 nm) are fabricated through an effective vapor–solid process via thermal decomposition of diborane. The UBNSs have obvious advantages over thicker boron nanomaterials in many aspects. Specifically, the UBNSs demonstrate excellent field emission performances with a low turn‐on field, E to, of 3.60 V μm−1 and a good stability. Further, the dependence of (turn‐on field) E to/(threshold field) E thr and effective work function, Φ e, on temperature is investigated and the possible mechanism of temperature‐dependent field emission phenomenon has been discussed. Moreover, electronic transport in a single UBNS reveals it to be an intrinsic p‐type semiconductor behavior with carrier mobility about 1.26 × 10−1 cm2 V−1 s−1, which is the best data in reported works. Interestingly, a multiconductive mechanism coexisting phenomenon has been explored based on the study of temperature‐dependent conductivity behavior of the UBNSs. Besides, the photodetector device fabricated from single‐crystalline UBNS demonstrates good sensitivity, reliable stability, and fast response, obviously superior to other reported boron nanomaterials. Such superior electronic‐optical performances are originated from the high quality of single crystal and large specific surface area of the UBNSs, suggesting the potential applications of the UBNSs in field‐emitters, interconnects, integrated circuits, and optoelectronic devices. PMID:27980947
Fretting wear study of surface modified Ni-Ti shape memory alloy.
Tan, L; Crone, W C; Sridharan, K
2002-05-01
A combination of shape memory characteristics, pseudoelasticity, and good damping properties make near-equiatomic nickel-titanium (Ni-Ti) alloy a desirable candidate material for certain biomedical device applications. The alloy has moderately good wear resistance, however, further improvements in this regard would be beneficial from the perspective of reducing wear debris generation, improving biocompatibility, and preventing failure during service. Fretting wear tests of Ni-Ti in both austenitic and martensitic microstructural conditions were performed with the goal of simulating wear which medical devices such as stents may experience during surgical implantation or service. The tests were performed using a stainless steel stylus counter-wearing surface under dry conditions and also with artificial plasma containing 80 g/L albumen protein as lubricant. Additionally, the research explores the feasibility of surface modification by sequential ion implantation with argon and oxygen to enhance the wear characteristics of the Ni-Ti alloy. Each of these implantations was performed to a dose of 3 x 10(17) atom/cm(2) and an energy of 50 kV, using the plasma source ion implantation process. Improvements in wear resistance were observed for the austenitic samples implanted with argon and oxygen. Ion implantation with argon also reduced the surface Ni content with respect to Ti due to differential sputtering rates of the two elements, an effect that points toward improved biocompatibility.
Performance of two rapid diagnostic tests for malaria diagnosis at the China-Myanmar border area
2013-01-01
Background Rapid diagnostic tests (RDTs) have become an essential tool in the contemporary malaria control and management programmes in the world. This study aims to evaluate the performance of two commonly used RDTs for malaria diagnosis in the China-Myanmar border area. Methods A total 606 febrile patients in the China-Myanmar border were recruited to this study and were diagnosed for malaria infections by microscopy, two RDTs tests (Pf/Pan device, and Pv/Pf device) and nested PCR. Results Malaria parasites were found in 143 patients by microscopy, of which 51, 73, and 19 were Plasmodium falciparum, Plasmodium vivax and P. falciparum/P. vivax mixed infections, respectively. Compared to microscopy, the sensitivity of the Pf/Pan device was 88.6% for P. falciparum and 69.9% for P. vivax with the specificity of 90.4%. For a subset of 350 patients, the sensitivity of the Pf/Pan device and Pv/Pf device for detection of P. falciparum was 87.5% and 91.7%, respectively; and for detection of P. vivax was 72.0% and 73.8%, respectively. The specificity of the Pf/Pan device and Pv/Pf device was 94.3% and 96.5%, respectively. Nested PCR detected malaria parasites in 174 of 606 samples, of which 67, 79, two and 26 were P. falciparum, P. vivax, P. ovale and P. falciparum/P. vivax mixed infections, respectively. Compared to nested PCR, all other methods had sensitivity below 80%, suggesting that a significant number of cases were missed. Conclusions Compared to PCR, both microscopy and RDTs had lower sensitivities. RDTs had similar performance to microscopy for P. falciparum diagnosis, but performed worse for P. vivax diagnosis. Other RDT products should be selected with higher sensitivity (and good specificity) for both P. falciparum and P. vivax diagnosis. PMID:23433230
NASA Astrophysics Data System (ADS)
Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong
2015-05-01
Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin.Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00841g
NASA Astrophysics Data System (ADS)
Shi, K. X.; Xu, H. Y.; Wang, Z. Q.; Zhao, X. N.; Liu, W. Z.; Ma, J. G.; Liu, Y. C.
2017-11-01
Resistive-switching memory with ultralow-power consumption is very promising technology for next-generation data storage and high-energy-efficiency neurosynaptic chips. Herein, Ta2O5-x-based multilevel memories with ultralow-power consumption and good data retention were achieved by simple Gd-doping. The introduction of a Gd ion, as an oxygen trapper, not only suppresses the generation of oxygen vacancy defects and greatly increases the Ta2O5-x resistance but also increases the oxygen-ion migration barrier. As a result, the memory cells can operate at an ultralow current of 1 μA with the extrapolated retention time of >10 years at 85 °C and the high switching speeds of 10 ns/40 ns for SET/RESET processes. The energy consumption of the device is as low as 60 fJ/bit, which is comparable to emerging ultralow-energy consumption (<100 fJ/bit) memory devices.
Ortmann, Magdalene; Zwitserlood, Pienie; Knief, Arne; Baare, Johanna; Brinkheetker, Stephanie; am Zehnhoff-Dinnesen, Antoinette; Dobel, Christian
2017-01-01
Cochlear implants provide individuals who are deaf with access to speech. Although substantial advancements have been made by novel technologies, there still is high variability in language development during childhood, depending on adaptation and neural plasticity. These factors have often been investigated in the auditory domain, with the mismatch negativity as an index for sensory and phonological processing. Several studies have demonstrated that the MMN is an electrophysiological correlate for hearing improvement with cochlear implants. In this study, two groups of cochlear implant users, both with very good basic hearing abilities but with non-overlapping speech performance (very good or very poor speech performance), were matched according to device experience and age at implantation. We tested the perception of phonemes in the context of specific other phonemes from which they were very hard to discriminate (e.g., the vowels in /bu/ vs. /bo/). The most difficult pair was individually determined for each participant. Using behavioral measures, both cochlear implants groups performed worse than matched controls, and the good performers performed better than the poor performers. Cochlear implant groups and controls did not differ during time intervals typically used for the mismatch negativity, but earlier: source analyses revealed increased activity in the region of the right supramarginal gyrus (220–260 ms) in good performers. Poor performers showed increased activity in the left occipital cortex (220–290 ms), which may be an index for cross-modal perception. The time course and the neural generators differ from data from our earlier studies, in which the same phonemes were assessed in an easy-to-discriminate context. The results demonstrate that the groups used different language processing strategies, depending on the success of language development and the particular language context. Overall, our data emphasize the role of neural plasticity and use of adaptive strategies for successful language development with cochlear implants. PMID:28056017
Rodríguez, C; Anel, L; Alvarez, M; Anel, E; Boixo, J C; Chamorro, C A; de Paz, P
2006-04-01
In vivo ovum pick-up (OPU) in sheep may be improved with a proper choice of aspiration elements (needle and tubing) and aspiration vacuum pressure. In the present study, two experiments were carried out. In Expt 1, visible follicles in ovaries of slaughtered ewes (treated separately according to their diameters: small<3 mm, medium 3-5 mm and large>5 mm) were aspirated using different combinations of the three studied factors such as aspiration flow rate (10, 20, 30, 40 and 50 ml water/min), needle gauge (18 and 20 G) and tubing inner diameter (1, 2 or 3 mm internal diameter). In Expt 2, a study with two 18 G needles of different lengths (18 G: 82 mm; 18 GL: 600 mm) was carried out, using ovaries obtained post-mortem, and performing in vivo laparoscopic follicular aspiration on ewes. We considered good quality oocytes as those with both complete compact cumulus and a homogeneous cytoplasm. Recovery rate, proportion of good quality oocytes (good quality oocytes/100 oocytes recovered) and overall efficiency (good quality oocytes/100 follicles aspirated) were noted. In Expt 1, aspiration flow rate affect remarkable proportion of good quality oocytes (69.5%, 50.5%, 44.8%, 36.5% and 28.3% for flows from 10 to 50 ml/min respectively, p<0.05). Needle gauge did not affect aspiration device efficiency. Thin and intermediate tubings were more effective (overall efficiency rates: 34.9%, 32.3% and 28.1% for 1, 2 and 3 mm respectively, p<0.05). Follicle size did not affect recovery rate, but proportion of good quality oocytes was higher for large (77.9%) and medium (64.4%) follicles (p<0.05). Finally, some combinations of the aspiration device showed greater effectiveness. In Expt 2, needle length did not influence recovery rate, but good quality oocytes rate was significantly modified both post-mortem and in vivo (good quality rate for 18 G vs 18 GL needles: 69.5% vs 47.7% and 58.1% vs 25.4%, post-mortem and in vivo respectively, p<0.05). We conclude that low-aspiration flow rates (10 and 20 ml/min) with thin or intermediate tubings (1 and 2 mm), and any short needle (18 G or 20 G) are the most adequate aspiration factors for OPU in sheep.
Determination of LEDs degradation with entropy generation rate
NASA Astrophysics Data System (ADS)
Cuadras, Angel; Yao, Jiaqiang; Quilez, Marcos
2017-10-01
We propose a method to assess the degradation and aging of light emitting diodes (LEDs) based on irreversible entropy generation rate. We degraded several LEDs and monitored their entropy generation rate ( S ˙ ) in accelerated tests. We compared the thermoelectrical results with the optical light emission evolution during degradation. We find a good relationship between aging and S ˙ (t), because S ˙ is both related to device parameters and optical performance. We propose a threshold of S ˙ (t) as a reliable damage indicator of LED end-of-life that can avoid the need to perform optical measurements to assess optical aging. The method lays beyond the typical statistical laws for lifetime prediction provided by manufacturers. We tested different LED colors and electrical stresses to validate the electrical LED model and we analyzed the degradation mechanisms of the devices.
Development of haptic system for surgical robot
NASA Astrophysics Data System (ADS)
Gang, Han Gyeol; Park, Jiong Min; Choi, Seung-Bok; Sohn, Jung Woo
2017-04-01
In this paper, a new type of haptic system for surgical robot application is proposed and its performances are evaluated experimentally. The proposed haptic system consists of an effective master device and a precision slave robot. The master device has 3-DOF rotational motion as same as human wrist motion. It has lightweight structure with a gyro sensor and three small-sized MR brakes for position measurement and repulsive torque generation, respectively. The slave robot has 3-DOF rotational motion using servomotors, five bar linkage and a torque sensor is used to measure resistive torque. It has been experimentally demonstrated that the proposed haptic system has good performances on tracking control of desired position and repulsive torque. It can be concluded that the proposed haptic system can be effectively applied to the surgical robot system in real field.
Tunnel Field-Effect Transistors in 2-D Transition Metal Dichalcogenide Materials
NASA Astrophysics Data System (ADS)
Ilatikhameneh, Hesameddin; Tan, Yaohua; Novakovic, Bozidar; Klimeck, Gerhard; Rahman, Rajib; Appenzeller, Joerg
2015-12-01
In this work, the performance of Tunnel Field-Effect Transistors (TFETs) based on two-dimensional Transition Metal Dichalcogenide (TMD) materials is investigated by atomistic quantum transport simulations. One of the major challenges of TFETs is their low ON-currents. 2D material based TFETs can have tight gate control and high electric fields at the tunnel junction, and can in principle generate high ON-currents along with a sub-threshold swing smaller than 60 mV/dec. Our simulations reveal that high performance TMD TFETs, not only require good gate control, but also rely on the choice of the right channel material with optimum band gap, effective mass and source/drain doping level. Unlike previous works, a full band atomistic tight binding method is used self-consistently with 3D Poisson equation to simulate ballistic quantum transport in these devices. The effect of the choice of TMD material on the performance of the device and its transfer characteristics are discussed. Moreover, the criteria for high ON-currents are explained with a simple analytic model, showing the related fundamental factors. Finally, the subthreshold swing and energy-delay of these TFETs are compared with conventional CMOS devices.
To, John W. F.; Ng, Jia Wei Desmond; Siahrostami, Samira; ...
2016-11-30
The development of high-performance and low-cost oxygen reduction and evolution catalysts that can be easily integrated into existing devices is crucial for the wide deployment of energy storage systems that utilize O 2-H 2O chemistries, such as regenerative fuel cells and metal-air batteries. Herein, we report an NH 3-activated N-doped hierarchical carbon (NHC) catalyst synthesized via a scalable route, and demonstrate its device integration. The NHC catalyst exhibited good performance for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), as demonstrated by means of electrochemical studies and evaluation when integrated into the oxygen electrode of amore » regenerative fuel cell. The activities observed for both the ORR and the OER were comparable to those achieved by state-of-the-art Pt and Ir catalysts in alkaline environments. We have further identified the critical role of carbon defects as active sites for electrochemical activity through density functional theory calculations and high-resolution TEM visualization. As a result, this work highlights the potential of NHC to replace commercial precious metals in regenerative fuel cells and possibly metal-air batteries for cost-effective storage of intermittent renewable energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
To, John W. F.; Ng, Jia Wei Desmond; Siahrostami, Samira
The development of high-performance and low-cost oxygen reduction and evolution catalysts that can be easily integrated into existing devices is crucial for the wide deployment of energy storage systems that utilize O 2-H 2O chemistries, such as regenerative fuel cells and metal-air batteries. Herein, we report an NH 3-activated N-doped hierarchical carbon (NHC) catalyst synthesized via a scalable route, and demonstrate its device integration. The NHC catalyst exhibited good performance for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), as demonstrated by means of electrochemical studies and evaluation when integrated into the oxygen electrode of amore » regenerative fuel cell. The activities observed for both the ORR and the OER were comparable to those achieved by state-of-the-art Pt and Ir catalysts in alkaline environments. We have further identified the critical role of carbon defects as active sites for electrochemical activity through density functional theory calculations and high-resolution TEM visualization. As a result, this work highlights the potential of NHC to replace commercial precious metals in regenerative fuel cells and possibly metal-air batteries for cost-effective storage of intermittent renewable energy.« less
Zheng, Dingshan; Fang, Hehai; Long, Mingsheng; Wu, Feng; Wang, Peng; Gong, Fan; Wu, Xing; Ho, Johnny C; Liao, Lei; Hu, Weida
2018-06-21
Because of the distinct electronic properties and strong interaction with light, quasi-one-dimensional nanowires (NWs) with semiconducting property have been demonstrated with tremendous potential for various technological applications, especially electronics and optoelectronics. However, until now, most of the state-of-the-art NW photodetectors are predominantly based on the N-type NW channel. Here, we successfully synthesized P-type SnSe and SnS NWs via chemical vapor deposition method and fabricated high-performance single SnSe and SnS NW photodetectors. Importantly, these two NW devices exhibit the impressive photodetection performance with the high photoconductive gain of 1.5 × 10 4 (2.8 × 10 4 ), good responsivity of 1.0× 10 4 A W -1 (1.6× 10 4 A W -1 ) as well as excellent detectivity of 3.3 × 10 12 Jones (2.4 × 10 12 Jones) under near-infrared illumination at a bias of 3 V for the SnSe NW (SnS NW) channel. The rise and fall times can be as efficient as 460 and 520 μs (1.2 and 15.1 ms), respectively, for the SnSe NW (SnS NW) device. Moreover, the spatially resolved photocurrent mapping of the devices further reveals the bias-dependent photocurrent generation. All these results evidently demonstrate that the P-type SnSe and SnS NWs have great potential to be applied in next-generation high-performance optoelectronic devices.
Advances in liquid metals for biomedical applications.
Yan, Junjie; Lu, Yue; Chen, Guojun; Yang, Min; Gu, Zhen
2018-04-23
To date, liquid metals have been widely applied in many fields such as electronics, mechanical engineering and energy. In the last decade, with a better understanding of the physicochemical properties such as low viscosity, good fluidity, high thermal/electrical conductivity and good biocompatibility, gallium and gallium-based low-melting-point (near or below physiological temperature) alloys have attracted considerable attention in bio-related applications. This tutorial review introduces the common performances of liquid metals, highlights their featured properties, as well as summarizes various state-of-the-art bio-applications involving carriers for drug delivery, molecular imaging, cancer therapy and biomedical devices. Challenges for the clinical translation of liquid metals are also discussed.
Low-loss optical waveguides in β-BBO crystal fabricated by femtosecond-laser writing
NASA Astrophysics Data System (ADS)
Li, Ziqi; Cheng, Chen; Romero, Carolina; Lu, Qingming; Vázquez de Aldana, Javier Rodríguez; Chen, Feng
2017-11-01
We report on the fabrication and characterization of β-BBO depressed cladding waveguides fabricated by femtosecond-laser writing with no significant changes in the waveguide lattice microstructure. The waveguiding properties and the propagation losses of the cladding structures are investigated, showing good transmission properties at wavelengths of 400 and 800 nm along TM polarization. The minimum propagation losses are measured to be as low as 0.19 dB/cm at wavelength of 800 nm. The well-preserved waveguide lattice microstructure and good guiding performances with low propagation losses suggest the potential applications of the cladding waveguides in β-BBO crystal as novel integrated photonic devices.
Understanding pressurized metered dose inhaler performance.
Ivey, James W; Vehring, Reinhard; Finlay, Warren H
2015-06-01
Deepening the current understanding of the factors governing the performance of the pressurized metered dose inhaler (pMDI) has the potential to benefit patients by providing improved drugs for current indications as well as by enabling new areas of therapy. Although a great deal of work has been conducted to this end, our knowledge of the physical mechanisms that drive pMDI performance remains incomplete. This review focuses on research into the influence of device and formulation variables on pMDI performance metrics. Literature in the areas of dose metering, atomization and aerosol evolution and deposition is covered, with an emphasis on studies of a more fundamental nature. Simple models which may be of use to those developing pMDI products are summarized. Although researchers have had good success utilizing an empirically developed knowledge base to predict pMDI performance, such knowledge may not be applicable when pursuing innovations in device or formulation technology. Developing a better understanding of the underlying mechanisms is a worthwhile investment for those working to enable the next generation of pMDI products.
All-in-One Graphene Based Composite Fiber: Toward Wearable Supercapacitor.
Lim, Lucas; Liu, Yangshuai; Liu, Wenwen; Tjandra, Ricky; Rasenthiram, Lathankan; Chen, Zhongwei; Yu, Aiping
2017-11-15
Graphene fibers (GF) have aroused great interest in wearable electronics applications because of their excellent mechanical flexibility and superior electrical conductivity. Herein, an all-in-one graphene and MnO 2 composite hybrid supercapacitor fiber device has been developed. The unique coaxial design of this device facilitates large-scale production while avoiding the risk of short circuiting. The core backbone of the device consists of GF that not only provides mechanical stability but also ensures fast electron transfer during charge-discharge. The introduction of a MnO 2 (200 nm in length) hierarchical nanostructured film enhanced the pseudocapacitance dramatically compared to the graphene-only device in part because of the abundant number of active sites in contact with the poly(vinyl alcohol) (PVA)/H 3 PO 4 electrolyte. The entire device exhibits outstanding mechanical strength as well as good electrocapacitive performance with a volumetric capacitance of 29.6 F cm -3 at 2 mv s -1 . The capacitance of the device did not fade under bending from 0° to 150°, while the capacitance retention of 93% was observed after 1000 cycles. These unique features make this device a promising candidate for applications in wearable fabric supercapacitors.
Piezoelectric osteotomy in hand surgery: first experiences with a new technique
Hoigne, Dominik J; Stübinger, Stefan; Kaenel, Oliver Von; Shamdasani, Sonia; Hasenboehler, Paula
2006-01-01
Background In hand and spinal surgery nerve lesions are feared complications with the use of standard oscillating saws. Oral surgeons have started using a newly developed ultrasound bone scalpel when performing precise osteotomies. By using a frequency of 25–29 kHz only mineralized tissue is cut, sparing the soft tissue. This reduces the risk of nerve lesions. As there is a lack of experience with this technique in the field of orthopaedic bone surgery, we performed the first ultrasound osteotomy in hand surgery. Method While performing a correctional osteotomy of the 5th metacarpal bone we used the Piezosurgery® Device from Mectron [Italy] instead of the usual oscillating saw. We will report on our experience with one case, with a follow up time of one year. Results The cut was highly precise and there were no vibrations of the bone. The time needed for the operation was slightly longer than the time needed while using the usual saw. Bone healing was good and at no point were there any neurovascular disturbances. Conclusion The Piezosurgery® Device is useful for small long bone osteotomies. Using the fine tip enables curved cutting and provides an opportunity for new osteotomy techniques. As the device selectively cuts bone we feel that this device has great potential in the field of hand- and spinal surgery. PMID:16611362
Socratous, Josephine; Banger, Kulbinder K; Vaynzof, Yana; Sadhanala, Aditya; Brown, Adam D; Sepe, Alessandro; Steiner, Ullrich; Sirringhaus, Henning
2015-01-01
The electronic structure of low temperature, solution-processed indium–zinc oxide thin-film transistors is complex and remains insufficiently understood. As commonly observed, high device performance with mobility >1 cm2 V−1 s−1 is achievable after annealing in air above typically 250 °C but performance decreases rapidly when annealing temperatures ≤200 °C are used. Here, the electronic structure of low temperature, solution-processed oxide thin films as a function of annealing temperature and environment using a combination of X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and photothermal deflection spectroscopy is investigated. The drop-off in performance at temperatures ≤200 °C to incomplete conversion of metal hydroxide species into the fully coordinated oxide is attributed. The effect of an additional vacuum annealing step, which is beneficial if performed for short times at low temperatures, but leads to catastrophic device failure if performed at too high temperatures or for too long is also investigated. Evidence is found that during vacuum annealing, the workfunction increases and a large concentration of sub-bandgap defect states (re)appears. These results demonstrate that good devices can only be achieved in low temperature, solution-processed oxides if a significant concentration of acceptor states below the conduction band minimum is compensated or passivated by shallow hydrogen and oxygen vacancy-induced donor levels. PMID:26190964
Socratous, Josephine; Banger, Kulbinder K; Vaynzof, Yana; Sadhanala, Aditya; Brown, Adam D; Sepe, Alessandro; Steiner, Ullrich; Sirringhaus, Henning
2015-03-25
The electronic structure of low temperature, solution-processed indium-zinc oxide thin-film transistors is complex and remains insufficiently understood. As commonly observed, high device performance with mobility >1 cm 2 V -1 s -1 is achievable after annealing in air above typically 250 °C but performance decreases rapidly when annealing temperatures ≤200 °C are used. Here, the electronic structure of low temperature, solution-processed oxide thin films as a function of annealing temperature and environment using a combination of X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and photothermal deflection spectroscopy is investigated. The drop-off in performance at temperatures ≤200 °C to incomplete conversion of metal hydroxide species into the fully coordinated oxide is attributed. The effect of an additional vacuum annealing step, which is beneficial if performed for short times at low temperatures, but leads to catastrophic device failure if performed at too high temperatures or for too long is also investigated. Evidence is found that during vacuum annealing, the workfunction increases and a large concentration of sub-bandgap defect states (re)appears. These results demonstrate that good devices can only be achieved in low temperature, solution-processed oxides if a significant concentration of acceptor states below the conduction band minimum is compensated or passivated by shallow hydrogen and oxygen vacancy-induced donor levels.
Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee
2009-01-14
The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 microm(2) to 200 x 200 nm(2). From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I(ON)/I(OFF) approximately 10(4)), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10,000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.
An innovative distillation device for tritiated water analysis with high decontamination factor.
Fang, Hsin-Fa; Wang, Chu-Fang; Wang, Jeng-Jong
2013-11-01
Institute of Nuclear Energy Research (INER) has designed an air-cooling distillation device and got a US patent. The decontamination factor (60)Co and (137)Cs is above 23,000. Tritium loss rate is one of testing items in ASTM D4107 Standard Test Method for Tritium in Drinking Water. In this study, the 3 levels (high, middle and low level) of tritium concentration of testing samples for the loss rate test were prepared similar to the concentrations reported in ASTM D4107. The loss rate of the high level is -2.37%, the middle is -2.31% and the low level is -2.47%. These results show that the air-cooling distillation device has good performance in the environmental water tritium analysis work. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McKay, Thomas G.; Shin, Dong Ki; Percy, Steven; Knight, Chris; McGarry, Scott; Anderson, Iain A.
2014-03-01
Many devices and processes produce low grade waste heat. Some of these include combustion engines, electrical circuits, biological processes and industrial processes. To harvest this heat energy thermoelectric devices, using the Seebeck effect, are commonly used. However, these devices have limitations in efficiency, and usable voltage. This paper investigates the viability of a Stirling engine coupled to an artificial muscle energy harvester to efficiently convert heat energy into electrical energy. The results present the testing of the prototype generator which produced 200 μW when operating at 75°C. Pathways for improved performance are discussed which include optimising the electronic control of the artificial muscle, adjusting the mechanical properties of the artificial muscle to work optimally with the remainder of the system, good sealing, and tuning the resonance of the displacer to minimise the power required to drive it.
Millimeter-wave generation with spiraling electron beams
NASA Technical Reports Server (NTRS)
Kulke, B.
1971-01-01
The feasibility of using the interaction between a thin, solid, spiraling electron beam of 10 to 20 kV energy and a microwave cavity to generate watts of CW millimeter-wave power was investigated. Experimental results are given for several prototype devices operating at 9.4 GHz and at 94 GHz. Power outputs of 5 W, and electronic efficiencies near 3%, were obtained at X band, and moderate gain was obtained at 94 GHz. The small-signal theory gives a good fit to the X-band data, and the device behavior at 94 GHz is as expected from the given beam characteristics. The performance is limited chiefly by the velocity spread in the spiraling electron beam, and once this can be brought under control, high-power generation of millimeter waves appears quite feasible with this type of device.
Zhao, De; He, Zhongyuan; Wang, Gang; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang
2016-09-15
Microfluidic technology plays a significant role in separating biomolecules, because of its miniaturization, integration, and automation. Introducing micro/nanostructured functional materials can improve the properties of microfluidic devices, and extend their application. Inverse opal has a three-dimensional ordered net-like structure. It possesses a large surface area and exhibits good mass transport, making it a good candidate for bio-separation. This study exploits inverse opal titanium dioxide-zirconium dioxide films for on-chip phosphopeptide enrichment. Titanium dioxide-zirconium dioxide inverse opal film-based microfluidic devices were constructed from templates of 270-, 340-, and 370-nm-diameter poly(methylmethacrylate) spheres. The phosphopeptide enrichments of these devices were determined by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The device constructed from the 270-nm-diameter sphere template exhibited good comprehensive phosphopeptide enrichment, and was the best among these three devices. Because the size of opal template used in construction was the smallest, the inverse opal film therefore had the smallest pore sizes and the largest surface area. Enrichment by this device was also better than those of similar devices based on nanoparticle films and single component films. The titanium dioxide-zirconium dioxide inverse opal film-based device provides a promising approach for the efficient separation of various biomolecules. Copyright © 2016 Elsevier Inc. All rights reserved.
An architecture for rapid prototyping of control schemes for artificial ventricles.
Ficola, Antonio; Pagnottelli, Stefano; Valigi, Paolo; Zoppitelli, Maurizio
2004-01-01
This paper presents an experimental system aimed at rapid prototyping of feedback control schemes for ventricular assist devices, and artificial ventricles in general. The system comprises a classical mock circulatory system, an actuated bellow-based ventricle chamber, and a software architecture for control schemes implementation and experimental data acquisition, visualization and storing. Several experiments have been carried out, showing good performance of ventricular pressure tracking control schemes.
Solid State Television Camera (CID)
NASA Technical Reports Server (NTRS)
Steele, D. W.; Green, W. T.
1976-01-01
The design, development and test are described of a charge injection device (CID) camera using a 244x248 element array. A number of video signal processing functions are included which maximize the output video dynamic range while retaining the inherently good resolution response of the CID. Some of the unique features of the camera are: low light level performance, high S/N ratio, antiblooming, geometric distortion, sequential scanning and AGC.
Zhu, Yun Guang; Jia, Chuankun; Yang, Jing; Pan, Feng; Huang, Qizhao; Wang, Qing
2015-06-11
A redox flow lithium-oxygen battery (RFLOB) by using soluble redox catalysts with good performance was demonstrated for large-scale energy storage. The new device enables the reversible formation and decomposition of Li2O2 via redox targeting reactions in a gas diffusion tank, spatially separated from the electrode, which obviates the passivation and pore clogging of the cathode.
Alkali-Resistant Quasi-Solid-State Electrolyte for Stretchable Supercapacitors.
Tang, Qianqiu; Wang, Wenqiang; Wang, Gengchao
2016-10-05
Research on stretchable energy-storage devices has been motivated by elastic electronics, and considerable research efforts have been devoted to the development of stretchable electrodes. However, stretchable electrolytes, another critical component in stretchable devices, have earned quite little attention, especially the alkali-resistant ones. Here, we reported a novel stretchable alkali-resistant electrolyte made of a polyolefin elastomer porous membrane supported potassium hydroxide-potassium polyacrylate (POE@KOH-PAAK). The as-prepared electrolyte shows a negligible plastic deformation even after 1000 stretching cycles at a strain of 150% as well as a high conductivity of 0.14 S cm -1 . It also exhibits excellent alkali resistance, which shows no obvious degradation of the mechanical performance after immersion in 2 M KOH for up to 2 weeks. To demonstrate its good properties, a high-performance stretchable supercapacitor is assembled using a carbon-nanotube-film-supported NiCo 2 O 4 (CNT@NiCo 2 O 4 ) as the cathode and Fe 2 O 3 (CNT@Fe 2 O 3 ) as the anode, proving great application promise of the stretchable alkali-resistant electrolyte in stretchable energy-storage devices.
NASA Astrophysics Data System (ADS)
Tsai, Jung-Hui; Chen, Jeng-Shyan; Chu, Yu-Jui
2005-01-01
The influence of δ-doping channels on the performance of n +-GaAs/p +-InGaP/n-GaAs camel-gate field effect transistors is investigated by theoretical analysis and experimental results. The depleted pn junction of the camel gate and the existence of considerable conduction band discontinuity at the InGaP/GaAs heterojunction enhance the potential barrier height and the forward gate voltage. As the concentration-thickness products of the n-GaAs layer and δ-doping layer are fixed, the higher δ-doping device exhibits a higher potential barrier height, a larger drain current, and a broader gate voltage swing, whereas the transconductance is somewhat lower. For a n +=5.5×10 12 cm -2δ-doping device, the experimental result exhibits a maximum transconductance of 240 mS/mm and a gate voltage swing of 3.5 V. Consequently, the studied devices provide a good potential for large signal and linear circuit applications.
Rosati, R; Rebuffat, C; Pezzuoli, G
1988-01-01
The authors report the preliminary results obtained in animal and clinical experimentation of a new mechanical device for circular anastomosis which they have developed. It is a gun that places an apparatus consisting of three polypropylene rings that, through the compression among them of the severed edges of the bowel, realize a sutureless anastomosis and are spontaneously evacuated. Fifty-eight colonic anastomoses were performed in dogs with this device; 23 stapled colonic anastomoses were also executed concurrently. Forty-four animals underwent a relaparotomy to remove the colonic specimen containing the anastomoses. Bursting pressure and the histologic features of the anastomoses were evaluated at different time intervals after operation. A good healing of all compression anastomoses was observed, thereby allowing them to initiate the experience in humans. Thirteen anastomoses (6 colorectal extraperitoneal, 1 colorectal intraperitoneal, 5 colocolonic, 1 ileorectal) were performed at the 1st Surgical Department, Milan University. One subclinical leakage (7.7%) spontaneously healed in a few days. No stenoses were observed. Images Fig. 1. Fig. 2., Fig. 4., Fig. 6. Fig. 3., Fig. 5., Fig. 7. Fig. 8. Fig. 9. PMID:3345111
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Peng; State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012; Bai, Xue, E-mail: baix@jlu.edu.cn, E-mail: yuzhang@jlu.edu.cn
High quantum yield, narrow full width at half-maximum and tunable emission color of perovskite quantum dots (QDs) make this kind of material good prospects for light-emitting diodes (LEDs). However, the relatively poor stability under high temperature and air condition limits the device performance. To overcome this issue, the liquid-type packaging structure in combination with blue LED chip was employed to fabricate the fluorescent perovskite quantum dot-based LEDs. A variety of monochromatic LEDs with green, yellow, reddish-orange, and red emission were fabricated by utilizing the inorganic cesium lead halide perovskite quantum dots as the color-conversion layer, which exhibited the narrow fullmore » width at half-maximum (<35 nm), the relatively high luminous efficiency (reaching 75.5 lm/W), and the relatively high external quantum efficiency (14.6%), making it the best-performing perovskite LEDs so far. Compared to the solid state LED device, the liquid-type LED devices exhibited excellent color stability against the various working currents. Furthermore, we demonstrated the potential prospects of all-inorganic perovskite QDs for the liquid-type warm white LEDs.« less
A high performance quasi-solid-state supercapacitor based on CuMnO2 nanoparticles
NASA Astrophysics Data System (ADS)
Wang, Lu; Arif, Muhammad; Duan, Guorong; Chen, Shenming; Liu, Xiaoheng
2017-07-01
Mixed metal or transition metal oxides hold an unveiled potential as one of the most promising energy storage material because of their excellent stability, reliable conductivity, and convenient use. In this work, CuMnO2 nanoparticles are successfully prepared by a facile hydrothermal process with the help of dispersing agent cetyltrimethylammonium bromide (CTAB). CuMnO2 nanoparticles possess a uniform quadrilateral shape, small size (approximately 25 × 25 nm-35 × 35 nm), excellent dispersity, and large specific surface specific (56.9 m2 g-1) with an interparticle mesoporous structure. All these characteristics can bring benefit for their application in supercapacitor. A quasi-solid-state symmetric supercapacitor device is assembled by using CuMnO2 nanoparticles as both positive electrode and negative electrode. The device exhibits good supercapacitive performance with a high specific capacitance (272 F g-1), a maximum power density of 7.56 kW kg-1 and a superior cycling stability of 18,000 continuous cycles, indicating an excellent potential to be used in energy storage device.
NASA Astrophysics Data System (ADS)
Rajan, Krishna; Roppolo, Ignazio; Bejtka, Katarzyna; Chiappone, Annalisa; Bocchini, Sergio; Perrone, Denis; Pirri, Candido Fabrizio; Ricciardi, Carlo; Chiolerio, Alessandro
2018-06-01
The present work compares the influence of different polymer matrices on the performance of planar asymmetric Resistive Switching Devices (RSDs) based on silver nitrate and Ionic Liquid (IL). PolyVinyliDene Fluoride-HexaFluoroPropylene (PVDF-HFP), PolyEthylene Oxide (PEO), PolyMethyl MethAcrylate (PMMA) and a blend of PVDF-HFP and PEO were used as matrices and compared. RSDs represent perhaps the most promising electron device to back the More than Moore development, and our approach through functional polymers enables low temperature processing and gives compatibility towards flexible/stretchable/wearable equipment. The switching mechanism in all the four sample families is explained by means of a filamentary conduction. A huge difference in the cyclability and the On/Off ratio is experienced when changing the active polymers and explained based on the polymer crystallinity degree and general morphology of the prepared nanocomposite. It is worth noting that all the RSDs discussed here present good switching behaviour with reasonable endurance. The current study displays one of the most cost-effective and effortless ways to produce an RSD based on solution-processable materials.
NASA Astrophysics Data System (ADS)
Prakash, Ravi; Kaur, Davinder
2018-05-01
The effect of an additional AlN layer in the Cu/TiN/AlN/Pt stack configuration deposited using sputtering has been investigated. The Cu/TiN/AlN/Pt device shows a tristate resistive switching. Multilevel switching is facilitated by ionic and metallic filament formation, and the nature of the filaments formed is confirmed by performing a resistance vs. temperature measurement. Ohmic behaviour and trap controlled space charge limited current (SCLC) conduction mechanisms are confirmed as dominant conduction mechanism at low resistance state (LRS) and high resistance state (HRS). High resistance ratio (102) corresponding to HRS and LRS, good write/erase endurance (105) and non-volatile long retention (105s) are also observed. Higher thermal conductivity of the AlN layer is the main reasons for the enhancement of resistive switching performance in Cu/TiN/AlN/Pt cell. The above result suggests the feasibility of Cu/TiN/AlN/Pt devices for multilevel nonvolatile ReRAM application.
Hydrogen effects on Ni-Ti fatigue performance by self -heating method
NASA Astrophysics Data System (ADS)
Rokbani, M.; Saint-Sulpice, L.; Arbab Chirani, S.; Bouraoui, T.
2017-10-01
Ni-Ti superelastic alloys are extensively used in manufacturing biomedical devices because of their high mechanical performance, good fatigue durability and biocompatibility compared to traditional metallic materials. During clinical use, most of these devices are intended to work under cyclic or repetitive loadings and may be in contact with corrosive environments leading to unexpected failures. It is however recognized that the fatigue-environment interaction, especially fatigue-hydrogen absorption, can be the main cause of these failures. The aim of this work is to investigate the fatigue behavior of superelastic Ni-Ti intended for manufacturing medical devices at high number of cycles (HCF) with a particular emphasis to the effect of hydrogen on fatigue properties. Fatigue tests were analyzed using self-heating measurements based on observing thermal effects during cyclic loadings. The results obtained with self-heating approach showed a trend of a decrease in the fatigue life of Ni-Ti alloys after hydrogen absorption and the fatigue limit extrapolated will be compared with the results obtained with the classical S-N curves method.
NASA Astrophysics Data System (ADS)
Xiong, Pan; Hu, Chenyao; Fan, Ye; Zhang, Wenyao; Zhu, Junwu; Wang, Xin
2014-11-01
A ternary manganese ferrite/graphene/polyaniline (MGP) nanostructure is designed and synthesized via a facile two-step approach. This nanostructure exhibits outstanding electrochemical performances, such as high specific capacitance (454.8 F g-1 at 0.2 A g-1), excellent rate capability (75.8% capacity retention at 5 A g-1), and good cycling stability (76.4% capacity retention after 5000 cycles at 2 A g-1), which are superior to those of its individual components (manganese ferrite, reduced-graphene oxide, polyaniline) and corresponding binary hybrids (manganese ferrite/graphene (MG), manganese ferrite/polyaniline (MP), and graphene/polyaniline (GP)). A symmetric supercapacitor device using the as-obtained hybrid has been fabricated and tested. The device exhibits a high specific capacitance of 307.2 F g-1 at 0.1 A g-1 with a maximum energy density of 13.5 W h kg-1. The high electrochemical performance of ternary MGP can be attributed to its well-designed nanostructure and the synergistic effect of the individual components.
NASA Astrophysics Data System (ADS)
Lin, Hui; Kong, Xiao; Li, Yiran; Kuang, Peng; Tao, Silu
2018-03-01
In this article, we have investigated the effect of nanocomposite gate dielectric layer built by alumina (Al2O3) and poly(4-vinyphenol) (PVP) with solution method which could enhance the dielectric capability and decrease the surface polarity. Then, we used modify layer to optimize the surface morphology of dielectric layer to further improve the insulation capability, and finally we fabricated the high-performance and low-voltage organic thin-film transistors by using this nanocomposite dielectric layer. The result shows that the devices with Al2O3:10%PVP dielectric layer with a modified layer exhibited a mobility of 0.49 cm2/Vs, I on/Ioff ratio of 7.8 × 104, threshold voltage of - 1.2 V, sub-threshold swing of 0.3 V/dec, and operating voltage as low as - 4 V. The improvement of devices performance was owing to the good insulation capability, appropriate capacitance of dielectric layer, and preferable interface contact, smaller crystalline size of active layer.
Wan, Fang; Zhang, Linlin; Dai, Xi; Wang, Xinyu; Niu, Zhiqiang; Chen, Jun
2018-04-25
Rechargeable aqueous zinc-ion batteries are promising energy storage devices due to their high safety and low cost. However, they remain in their infancy because of the limited choice of positive electrodes with high capacity and satisfactory cycling performance. Furthermore, their energy storage mechanisms are not well established yet. Here we report a highly reversible zinc/sodium vanadate system, where sodium vanadate hydrate nanobelts serve as positive electrode and zinc sulfate aqueous solution with sodium sulfate additive is used as electrolyte. Different from conventional energy release/storage in zinc-ion batteries with only zinc-ion insertion/extraction, zinc/sodium vanadate hydrate batteries possess a simultaneous proton, and zinc-ion insertion/extraction process that is mainly responsible for their excellent performance, such as a high reversible capacity of 380 mAh g -1 and capacity retention of 82% over 1000 cycles. Moreover, the quasi-solid-state zinc/sodium vanadate hydrate battery is also a good candidate for flexible energy storage device.
A tapping device for recording and quantitative characterization of rhythmic/auditory sequences.
Piazza, Caterina; Cesareo, Ambra; Caccia, Martina; Reni, Gianluigi; Lorusso, Maria L
2017-07-01
The processing of auditory stimuli is essential for the correct perception of language and deficits in this ability are often related to the presence or development of language disorders. The motor imitation (e.g. tapping or beating) of rhythmic sequences can be a very sensitive correlate of deficits in auditory processing. Thus, the study of the tapping performance, with the investigation of both temporal and intensity information, might be very useful. The present work is aimed at the development and preliminary testing of a tapping device to be used for the imitation and/or the production of rhythmic sequences, allowing the recording of both tapping duration and intensity. The device is essentially made up of a Force Sensing Resistor and an Arduino UNO board. It was validated using different sampling frequencies (f s ) in a group of 10 young healthy adults investigating its efficacy in terms of touch and intensity detection by means of two testing procedures. Results demonstrated a good performance of the device when programmed with fs equal to 50 and 100Hz. Moreover, both temporal and intensity parameters were extracted, thus supporting the potential use of the device for the analysis of the imitation or production of rhythmic sequences. This work represents a first step for the development of a useful, low cost tool to support the diagnosis, training and rehabilitation of language disorders.
Inkjet 3D printing of UV and thermal cure silicone elastomers for dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
McCoul, David; Rosset, Samuel; Schlatter, Samuel; Shea, Herbert
2017-12-01
Dielectric elastomer actuators (DEAs) are an attractive form of electromechanical transducer, possessing high energy densities, an efficient design, mechanical compliance, high speed, and noiseless operation. They have been incorporated into a wide variety of devices, such as microfluidic systems, cell bioreactors, tunable optics, haptic displays, and actuators for soft robotics. Fabrication of DEA devices is complex, and the majority are inefficiently made by hand. 3D printing offers an automated and flexible manufacturing alternative that can fabricate complex, multi-material, integrated devices consistently and in high resolution. We present a novel additive manufacturing approach to DEA devices in which five commercially available, thermal and UV-cure DEA silicone rubber materials have been 3D printed with a drop-on-demand, piezoelectric inkjet system. Using this process, 3D structures and high-quality silicone dielectric elastomer membranes as thin as 2 μm have been printed that exhibit mechanical and actuation performance at least as good as conventionally blade-cast membranes. Printed silicone membranes exhibited maximum tensile strains of up to 727%, and DEAs with printed silicone dielectrics were actuated up to 6.1% area strain at a breakdown strength of 84 V μm-1 and also up to 130 V μm-1 at 2.4% strain. This approach holds great potential to manufacture reliable, high-performance DEA devices with high throughput.
Rekab, Wassima; Stoeckel, Marc-Antoine; El Gemayel, Mirella; Gobbi, Marco; Orgiu, Emanuele; Samorì, Paolo
2016-04-20
Here we describe the fabrication of organic phototransistors based on either single or multifibers integrated in three-terminal devices. These self-assembled fibers have been produced by solvent-induced precipitation of an air stable and solution-processable perylene di-imide derivative, i.e., PDIF-CN2. The optoelectronic properties of these devices were compared to devices incorporating more disordered spin-coated PDIF-CN2 thin-films. The single-fiber devices revealed significantly higher field-effect mobilities, compared to multifiber and thin-films, exceeding 2 cm(2) V(-1) s(-1). Such an efficient charge transport is the result of strong intermolecular coupling between closely packed PDIF-CN2 molecules and of a low density of structural defects. The improved crystallinity allows efficient collection of photogenerated Frenkel excitons, which results in the highest reported responsivity (R) for single-fiber PDI-based phototransistors, and photosensitivity (P) exceeding 2 × 10(3) AW(-1), and 5 × 10(3), respectively. These findings provide unambiguous evidence for the key role played by the high degree of order at the supramolecular level to leverage the material's properties toward the fabrication of light-sensitive organic field-effect transistors combining a good operational stability, high responsivity and photosensitivity. Our results show also that the air-stability performances are superior in devices where highly crystalline supramolecularly engineered architectures serve as the active layer.
Programmable 2-D Addressable Cryogenic Aperture Masks
NASA Technical Reports Server (NTRS)
Kutyrev, A. S.; Moseley, S. H.; Jhabvala, M.; Li, M.; Schwinger, D. S.; Silverberg, R. F.; Wesenberg, R. P.
2004-01-01
We are developing a two-dimensional array of square microshutters (programmable aperture mask) for a multi-object spectrometer for the James Webb Space Telescope (JWST). This device will provide random access selection of the areas in the field to be studied. The device is in essence a close packed array of square slits, each of which can be opened independently to select areas of the sky for detailed study.The device is produced using a 100-micron thick silicon wafer as a substrate with 0.5-micron thick silicon nitride shutters on top of it. Silicon nitride has been selected as the blade and flexure material because its stiffness allows thinner and lighter structures than single crystal Si, the chief alternative, and because of its ease of manufacture. The 100 micron silicon wafer is backetched in a high aspect ratio Deep Reactive Ion Etching (Deep RIE) to leave only a support grid for the shutters and the address electronics. The shutter actuation is done magnetically whereas addressing is electrostatic. 128x128 format microshutter arrays have been produced. Their operation has been demostarted on 32x32 subarrays. Good reliability of the fabrication process and good quality of the microshutters has been achieved. The mechanical behavior and optical performance of the fabricated arrays at cryogenic temperature are being studied.
Knight, Adam C; Weimar, Wendi H
2012-09-01
When the ankle is forced into inversion, the speed at which this movement occurs may affect the extent of injury. The purpose of this investigation was to develop a fulcrum device to mimic the mechanism of a lateral ankle sprain and to determine the reliability and validity of the temporal variables produced by this device. Additionally, this device was used to determine if a single previous lateral ankle sprain or ankle taping effected the time to maximum inversion and/or mean inversion speed. Twenty-six participants (13 with history of a single lateral ankle sprain and 13 with no history of injury) completed the testing. The participants completed testing on three separate days, performing 10 trials with the fulcrum per leg on each testing day, and tape was applied to both ankles on one testing day. No significant interactions or main effects were found for either previous injury or ankle taping, but good reliability was found for time to maximum inversion (ICC = .81) and mean inversion speed (ICC = .79). The findings suggest that although neither variable was influenced by the history of a single previous lateral ankle sprain or ankle taping, both variables demonstrated good reliability and construct validity, but not discriminative validity.
Design optimization of beta- and photovoltaic conversion devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichner, R.; Blum, A.; Fischer-Colbrie, E.
1976-01-08
This report presents the theoretical and experimental results of an LLL Electronics Engineering research program aimed at optimizing the design and electronic-material parameters of beta- and photovoltaic p-n junction conversion devices. To meet this objective, a comprehensive computer code has been developed that can handle a broad range of practical conditions. The physical model upon which the code is based is described first. Then, an example is given of a set of optimization calculations along with the resulting optimized efficiencies for silicon (Si) and gallium-arsenide (GaAs) devices. The model we have developed, however, is not limited to these materials. Itmore » can handle any appropriate material--single or polycrystalline-- provided energy absorption and electron-transport data are available. To check code validity, the performance of experimental silicon p-n junction devices (produced in-house) were measured under various light intensities and spectra as well as under tritium beta irradiation. The results of these tests were then compared with predicted results based on the known or best estimated device parameters. The comparison showed very good agreement between the calculated and the measured results.« less
Role of nanorods insertion layer in ZnO-based electrochemical metallization memory cell
NASA Astrophysics Data System (ADS)
Mangasa Simanjuntak, Firman; Singh, Pragya; Chandrasekaran, Sridhar; Juanda Lumbantoruan, Franky; Yang, Chih-Chieh; Huang, Chu-Jie; Lin, Chun-Chieh; Tseng, Tseung-Yuen
2017-12-01
An engineering nanorod array in a ZnO-based electrochemical metallization device for nonvolatile memory applications was investigated. A hydrothermally synthesized nanorod layer was inserted into a Cu/ZnO/ITO device structure. Another device was fabricated without nanorods for comparison, and this device demonstrated a diode-like behavior with no switching behavior at a low current compliance (CC). The switching became clear only when the CC was increased to 75 mA. The insertion of a nanorods layer induced switching characteristics at a low operation current and improve the endurance and retention performances. The morphology of the nanorods may control the switching characteristics. A forming-free electrochemical metallization memory device having long switching cycles (>104 cycles) with a sufficient memory window (103 times) for data storage application, good switching stability and sufficient retention was successfully fabricated by adjusting the morphology and defect concentration of the inserted nanorod layer. The nanorod layer not only contributed to inducing resistive switching characteristics but also acted as both a switching layer and a cation diffusion control layer.
Bladder perforation owing to a unipolar coagulating device.
Pakter, J; Budnick, L D
1981-09-15
A report on a patient who sustained a burn and perforation of the urinary bladder from visible sparks emanating from a unipolar coagulating device during the couse of laparoscopic sterilization is presented. It is the first report of urinary bladder burns using a unipolar coagulating device. A 24-year-old woman, gravida 10, para 3, abortus 7, underwent a laparoscopic sterilization with a unipolar coagulating device. As the physician was finishing the coagulation, a spark from the device caused a 1-2 cm burn with a central area of perforation into the urinary bladder. Conservative treatment was recommended, and consisted of Foley catheterization and drainage for 5 days. Initial urine culture revealed Klebsiella species, and oral ampicillin was prescribed. Hematuria was noted throughout the patient's hospitalization, and blood clots were present in the urine on Day 2 postoperation. The patient had no abdominal or flank pain, was afebrile, and had a stable hemoglobin level during the hospital stay. Cystography was performed on Day 5 postoperatively and demonstrated no perforation. Foley catheter was removed. Patient was discharged 2 days later and remains in good health 3 months postoperatively.
CFD Validation with Experiment and Verification with Physics of a Propellant Damping Device
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Peugeot, John
2011-01-01
This paper will document our effort in validating a coupled fluid-structure interaction CFD tool in predicting a damping device performance in the laboratory condition. Consistently good comparisons of "blind" CFD predictions against experimental data under various operation conditions, design parameters, and cryogenic environment will be presented. The power of the coupled CFD-structures interaction code in explaining some unexpected phenomena of the device observed during the technology development will be illustrated. The evolution of the damper device design inside the LOX tank will be used to demonstrate the contribution of the tool in understanding, optimization and implementation of LOX damper in Ares I vehicle. It is due to the present validation effort, the LOX damper technology has matured to TRL 5. The present effort has also contributed to the transition of the technology from an early conceptual observation to the baseline design of thrust oscillation mitigation for the Ares I within a 10 month period.
NASA Astrophysics Data System (ADS)
Cortese, Simone; Khiat, Ali; Carta, Daniela; Light, Mark E.; Prodromakis, Themistoklis
2016-01-01
Resistive random access memory (ReRAM) crossbar arrays have become one of the most promising candidates for next-generation non volatile memories. To become a mature technology, the sneak path current issue must be solved without compromising all the advantages that crossbars offer in terms of electrical performances and fabrication complexity. Here, we present a highly integrable access device based on nickel and sub-stoichiometric amorphous titanium dioxide (TiO2-x), in a metal insulator metal crossbar structure. The high voltage margin of 3 V, amongst the highest reported for monolayer selector devices, and the good current density of 104 A/cm2 make it suitable to sustain ReRAM read and write operations, effectively tackling sneak currents in crossbars without compromising fabrication complexity in a 1 Selector 1 Resistor (1S1R) architecture. Furthermore, the voltage margin is found to be tunable by an annealing step without affecting the device's characteristics.
A Novel Ni/WOX/W Resistive Random Access Memory with Excellent Retention and Low Switching Current
NASA Astrophysics Data System (ADS)
Chien, Wei-Chih; Chen, Yi-Chou; Lee, Feng-Ming; Lin, Yu-Yu; Lai, Erh-Kun; Yao, Yeong-Der; Gong, Jeng; Horng, Sheng-Fu; Yeh, Chiao-Wen; Tsai, Shih-Chang; Lee, Ching-Hsiung; Huang, Yu-Kai; Chen, Chun-Fu; Kao, Hsiao-Feng; Shih, Yen-Hao; Hsieh, Kuang-Yeu; Lu, Chih-Yuan
2011-04-01
The behavior of WOX resistive random access memory (ReRAM) is a strong function of the top electrode material, which controls the conduction mechanism and the forming process. When using a top electrode with low work function, the current conduction is limited by space charges. On the other hand, the mechanism becomes thermionic emission for devices with a high work function top electrode. These (thermionic) devices are also found to have higher initial resistance, reduced forming current, and larger resistance window. Based on these insights and considering the compatibility to complementary metal-oxide-semiconductor (CMOS) process, we proposed to use Ni as the top electrode for high performance WOX ReRAM devices. The new Ni/WOX/W device can be switched at a low current density less than 8×105 A/cm2, with RESET/SET resistance ratio greater than 100, and extremely good data retention of more than 300 years at 85 °C.
Fabrication of a liquid-gated enzyme field effect device for sensitive glucose detection.
Fathollahzadeh, M; Hosseini, M; Haghighi, B; Kolahdouz, M; Fathipour, M
2016-06-14
This study presents fabrication of a liquid-gated enzyme field effect device and its implementation as a glucose biosensor. The device consisted of four electrodes on a glass substrate with a channel functionalized by carboxylated multi-walled carbon nanotubes-polyaniline nanocomposite (MWCNTCOOH/PAn) and glucose oxidase. The resistance of functionalized channel increased with increasing the concentration of glucose when an electric field was applied to the liquid gate. The most effective and stable performance was obtained at the applied electric field of 100 mV. The device resistance, R, exhibited a linear relationship with the logarithm of glucose concentration in the range between 0.005 and 500 mM glucose. The detection limit (S/N = 3) for glucose was about 0.5 μM. Large effective area and good conductivity properties of MWCNTCOOH/PAn nanocomposite were the key features of the fabricated sensitive and stable glucose biosensor. Copyright © 2016 Elsevier B.V. All rights reserved.
Hallbeck, M Susan; Koneczny, Sonja; Smith, Justine
2009-01-01
Controls for most technologies, including medical devices, are becoming increasingly complex, difficult to intuitively understand and don't necessarily follow population stereotypes. The resulting delays and errors are unacceptable when seconds can mean the difference between life and death. In this study participants were asked to "control" a system using a paper prototype (color photographs of controls) and then with a higher fidelity prototype of the same physical controls to determine performance differences among ethnicities and genders. No ethnic nor gender differences were found, and the comparison of paper versus higher fidelity prototypes also showed no significant differences. Thus, paper prototypes can be employed as an early device design usability tool to illustrate stereotype violations long before the first physical prototype. This will not only save money in the development and design processes, but also makes sure that even the most complex devices are intuitively understandable and operable for their basic functions.
Flexible, highly efficient all-polymer solar cells
Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J.
2015-01-01
All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices. PMID:26449658
Broadband light trapping in nanotextured thin film photovoltaic devices
NASA Astrophysics Data System (ADS)
Mennucci, Carlo; Muhammad, M. H.; Hameed, Mohamed Farhat O.; Mohamed, Shaimaa A.; Abdelkhalik, Mohamed S.; Obayya, S. S. A.; Buatier de Mongeot, Francesco
2018-07-01
Substrates with engineered roughness are studied with the aim of achieving broadband and omnidirectional photon harvesting in thin film devices. Light coupling across the interfaces of a photonic device is induced by uniaxial pseudo-periodic gratings formed in a self-organised fashion via de-focused ion beam sputtering (IBS). The optical properties of the textured interfaces are assessed both experimentally and numerically using finite difference time domain (FDTD) algorithm, quantitatively demonstrating the optimal geometries which favour broadband diffuse scattering of radiation across the Vis-NIR spectral range. Thin film amorphous silicon solar cells based on the nanostructured patterns have been numerically studied via FDTD to assess absorption enhancement in comparison to flat reference devices, finding a 25% increase of short-circuit current, in good agreement with the experiment. Similar light trapping experiments performed on prototypical solar cells employing a PTB7:PC61BM organic absorber, allow to extend the general validity of the results to a relevant class of materials in the view of photovoltaic applications.
320-nm Flexible Solution-Processed 2,7-dioctyl[1] benzothieno[3,2-b]benzothiophene Transistors.
Ren, Hang; Tang, Qingxin; Tong, Yanhong; Liu, Yichun
2017-08-09
Flexible organic thin-film transistors (OTFTs) have received extensive attention due to their outstanding advantages such as light weight, low cost, flexibility, large-area fabrication, and compatibility with solution-processed techniques. However, compared with a rigid substrate, it still remains a challenge to obtain good device performance by directly depositing solution-processed organic semiconductors onto an ultrathin plastic substrate. In this work, ultrathin flexible OTFTs are successfully fabricated based on spin-coated 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) films. The resulting device thickness is only ~320 nm, so the device has the ability to adhere well to a three-dimension curved surface. The ultrathin C8-BTBT OTFTs exhibit a mobility as high as 4.36 cm² V -1 s -1 and an on/off current ratio of over 10⁶. These results indicate the substantial promise of our ultrathin flexible C8-BTBT OTFTs for next-generation flexible and conformal electronic devices.
NASA Astrophysics Data System (ADS)
Murgunde, B. K.; Rabinal, M. K.; Kalasad, M. N.
2018-01-01
Composite films of deoxyribonucleic acid (DNA) and lead sulfide (PbS) nanoparticles are prepared to fabricate biological memory devices. A simple solution based electrografting is developed to deposit large (few cm2) uniform films of DNA:PbS on conducting substrates. The films are studied by X-ray photoelectron spectroscopy, field emission SEM, FTIR and optical spectroscopy to understand their properties. Charge transport measurements are carried out on ITO-DNA:PbS-metal junctions by cyclic voltage scans, electrical bi-stability is observed with ON/OFF ratio more than ∼104 times with good stability and endurance, such performance being rarely reported. The observed results are interpreted in the light of strong electrostatic binding of nanoparticles and DNA stands, which leads doping of Pb atoms into DNA. As a result, these devices exhibit negative differential resistance (NDR) effect due to oxidation of doped metal atoms. These composites can be the potential materials in the development of new generation non-volatile memory devices.
320-nm Flexible Solution-Processed 2,7-dioctyl[1] benzothieno[3,2-b]benzothiophene Transistors
Ren, Hang; Tang, Qingxin; Tong, Yanhong; Liu, Yichun
2017-01-01
Flexible organic thin-film transistors (OTFTs) have received extensive attention due to their outstanding advantages such as light weight, low cost, flexibility, large-area fabrication, and compatibility with solution-processed techniques. However, compared with a rigid substrate, it still remains a challenge to obtain good device performance by directly depositing solution-processed organic semiconductors onto an ultrathin plastic substrate. In this work, ultrathin flexible OTFTs are successfully fabricated based on spin-coated 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) films. The resulting device thickness is only ~320 nm, so the device has the ability to adhere well to a three-dimension curved surface. The ultrathin C8-BTBT OTFTs exhibit a mobility as high as 4.36 cm2 V−1 s−1 and an on/off current ratio of over 106. These results indicate the substantial promise of our ultrathin flexible C8-BTBT OTFTs for next-generation flexible and conformal electronic devices. PMID:28792438
NASA Astrophysics Data System (ADS)
Chaudhary, Tarun; Khanna, Gargi
2017-03-01
The purpose of this paper is to explore junctionless double gate vertical slit field effect transistor (JLDG VeSFET) with reduced short channel effects and to develop an analytical threshold voltage model for the device considering the impact of thermal variations for the very first time. The model has been derived by solving 2D Poisson's equation and the effects of variation in temperature on various electrical parameters of the device such as Rout, drain current, mobility, subthreshold slope and DIBL has been studied and described in the paper. The model provides a deep physical insight of the device behavior and is also very helpful in contributing to the design space exploration for JLDG VeSFET. The proposed model is verified with simulative analysis at different radii of the device and it has been observed that there is a good agreement between the analytical model and simulation results.
A Study on Performance and Safety Tests of Defibrillator Equipment.
Tavakoli Golpaygani, A; Movahedi, M M; Reza, M
2017-12-01
Nowadays, more than 10,000 different types of medical devices can be found in hospitals. This way, medical electrical equipment is being employed in a wide variety of fields in medical sciences with different physiological effects and measurements. Hospitals and medical centers must ensure that their critical medical devices are safe, accurate, reliable and operational at the required level of performance. Defibrillators are critical resuscitation devices. The use of reliable defibirillators has led to more effective treatments and improved patient safety through better control and management of complications during Cardiopulmonary Resuscitation (CPR). The metrological reliability of twenty frequent use, manual defibrillators in use ten hospitals (4 private and 6 public) in one of the provinces of Iran according to international and national standards was evaluated. Quantitative analysis of control and instrument accuracy showed the amount of the obtained results in many units are critical which had less value over the standard limitations especially in devices with poor battery. For the accuracy of delivered energy analysis, only twelve units delivered acceptable output values and the precision in the output energy measurements especialy in weak battry condition, after activation of discharge alarm, were low. Obtained results indicate a need for new and severe regulations on periodic performance verifications and medical equipment quality control program especially for high risk instruments. It is also necessary to provide training courses on the fundumentals of operation and performane parameters for medical staff in the field of meterology in medicine and how one can get good accuracy results especially in high risk medical devices.
A Study on Performance and Safety Tests of Defibrillator Equipment
Tavakoli Golpaygani, A.; Movahedi, M.M.; Reza, M.
2017-01-01
Introduction: Nowadays, more than 10,000 different types of medical devices can be found in hospitals. This way, medical electrical equipment is being employed in a wide variety of fields in medical sciences with different physiological effects and measurements. Hospitals and medical centers must ensure that their critical medical devices are safe, accurate, reliable and operational at the required level of performance. Defibrillators are critical resuscitation devices. The use of reliable defibirillators has led to more effective treatments and improved patient safety through better control and management of complications during Cardiopulmonary Resuscitation (CPR). Materials and Methods: The metrological reliability of twenty frequent use, manual defibrillators in use ten hospitals (4 private and 6 public) in one of the provinces of Iran according to international and national standards was evaluated. Results: Quantitative analysis of control and instrument accuracy showed the amount of the obtained results in many units are critical which had less value over the standard limitations especially in devices with poor battery. For the accuracy of delivered energy analysis, only twelve units delivered acceptable output values and the precision in the output energy measurements especialy in weak battry condition, after activation of discharge alarm, were low. Conclusion: Obtained results indicate a need for new and severe regulations on periodic performance verifications and medical equipment quality control program especially for high risk instruments. It is also necessary to provide training courses on the fundumentals of operation and performane parameters for medical staff in the field of meterology in medicine and how one can get good accuracy results especially in high risk medical devices. PMID:29445716
Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure.
Yuan, Longyan; Lu, Xi-Hong; Xiao, Xu; Zhai, Teng; Dai, Junjie; Zhang, Fengchao; Hu, Bin; Wang, Xue; Gong, Li; Chen, Jian; Hu, Chenguo; Tong, Yexiang; Zhou, Jun; Wang, Zhong Lin
2012-01-24
A highly flexible solid-state supercapacitor was fabricated through a simple flame synthesis method and electrochemical deposition process based on a carbon nanoparticles/MnO(2) nanorods hybrid structure using polyvinyl alcohol/H(3)PO(4) electrolyte. Carbon fabric is used as a current collector and electrode (mechanical support), leading to a simplified, highly flexible, and lightweight architecture. The device exhibited good electrochemical performance with an energy density of 4.8 Wh/kg at a power density of 14 kW/kg, and a demonstration of a practical device is also presented, highlighting the path for its enormous potential in energy management. © 2011 American Chemical Society
Optimal design of DC-based polarization beam splitter in lithium niobate on insulator
NASA Astrophysics Data System (ADS)
Gong, Zisu; Yin, Rui; Ji, Wei; Wang, Junbao; Wu, Chonghao; Li, Xiao; Zhang, Shicheng
2017-08-01
We propose a DC-based polarization beam splitter (PBS) in lithium niobate on insulator (LNOI). Utilizing the high birefringence property of Lithium Niobate (LiNbO3, LN), the device is achieved by simple structure in a short length. With the use of beam propagation method (BPM), the simulation results show that the device has a good performance for the separation of TE and TM polarizations with a high extinction ratio (about 35 dB). The simulated fabrication tolerance for the variation of the waveguide width is about 100 nm and the bandwidth is about 65 nm when the extinction ratio is higher than 10 dB.
Technological innovations for a sustainable business model in the semiconductor industry
NASA Astrophysics Data System (ADS)
Levinson, Harry J.
2014-09-01
Increasing costs of wafer processing, particularly for lithographic processes, have made it increasingly difficult to achieve simultaneous reductions in cost-per-function and area per device. Multiple patterning techniques have made possible the fabrication of circuit layouts below the resolution limit of single optical exposures but have led to significant increases in the costs of patterning. Innovative techniques, such as self-aligned double patterning (SADP) have enabled good device performance when using less expensive patterning equipment. Other innovations have directly reduced the cost of manufacturing. A number of technical challenges must be overcome to enable a return to single-exposure patterning using short wavelength optical techniques, such as EUV patterning.
Reconditioning perovskite films in vapor environments through repeated cation doping
NASA Astrophysics Data System (ADS)
Boonthum, Chirapa; Pinsuwan, Kusuma; Ponchai, Jitprabhat; Srikhirin, Toemsak; Kanjanaboos, Pongsakorn
2018-06-01
Perovskites have attracted considerable attention for application as high-efficiency photovoltaic devices owing to their low-cost and low-temperature fabrication. A good surface and high crystallinity are necessary for high-performance devices. We examine the negative effects of chemical ambiences on the perovskite crystal formation and morphology. The repeated cation doping (RCD) technique was developed to remedy these issues by gradually dropping methylammonium ions on top of about-to-form perovskite surfaces to cause recrystallization. RCD promotes pinhole-free, compact, and polygonal-like surfaces under various vapor conditions. Furthermore, it enhances the electronic properties and crystallization. The benefits of RCD extend beyond perovskites under vapor ambiences, as it can improve regular and wasted perovskites.
A microfabricated low cost enzyme-free glucose fuel cell for powering low-power implantable devices
NASA Astrophysics Data System (ADS)
Oncescu, Vlad; Erickson, David
In the past decade the scientific community has showed considerable interest in the development of implantable medical devices such as muscle stimulators, neuroprosthetic devices, and biosensors. Those devices have low power requirements and can potentially be operated through fuel cells using reactants present in the body such as glucose and oxygen instead of non-rechargeable lithium batteries. In this paper, we present a thin, enzyme-free fuel cell with high current density and good stability at a current density of 10 μA cm -2. A non-enzymatic approach is preferred because of higher long term stability. The fuel cell uses a stacked electrode design in order to achieve glucose and oxygen separation. An important characteristic of the fuel cell is that it has no membrane separating the electrodes, which results in low ohmic losses and small fuel cell volume. In addition, it uses a porous carbon paper support for the anodic catalyst layer which reduces the amount of platinum or other noble metal catalysts required for fabricating high surface area electrodes with good reactivity. The peak power output of the fuel cell is approximately 2 μW cm -2 and has a sustainable power density of 1.5 μW cm -2 at 10 μA cm -2. An analysis on the effects of electrode thickness and inter electrode gap on the maximum power output of the fuel cell is also performed.
NASA Astrophysics Data System (ADS)
Zhang, Hao; Li, Wanli; Gao, Yue; Zhang, Hao; Jiu, Jinting; Suganuma, Katsuaki
2017-08-01
Micron silver paste enables a low-temperature and pressureless sintering process by using an ether-type solvent CELTOL-IA (C x H y O z , x > 10, boiling point of approximately 200°C) for the die attachment of high-powered devices. The conductive patterns formed by the silver paste had a low electrical resistivity of 8.45 μΩ cm at 180°C. The paste also achieved a high bonding strength above 30 MPa at 180°C without the assistance of pressures. These superior performance indicators result from the favorable removal of the solvent, its thermal behavior, and its good wetting on the silver layer. The results suggest that the micron silver paste with a suitable solvent can promote the further spreading of next-generation power devices owing to its marked cost advantage and excellent performance.
NASA Astrophysics Data System (ADS)
Yan, Jian-Jun; Li, Yan; Chang, Yin; Jiang, Pan; Wang, Cheng-Wei
2016-06-01
An effective solvent sealed natural drying (SND) pretreatment was introduced for forming a satisfactory crystalline porous iodide (PbI2) precursor film, which could help to generate excellent CH3NH3PbI3 perovskite films for high performance of planar heterojunction perovskite solar cells. And the influence of SND pretreated time on the device performance was investigated in detail. We found that the PbI2 precursor film after 10 min pretreatment could make the perovskite device achieve the optimal power conversion efficiency (PCE) of 8.6%, significantly increased up to 95.5% and 28.4% compared to without pretreatment or traditional treatment. The results show that the time of SND pretreatment is critical to forming large grain size and good crystallinity for PbI2 precursor film, which would markedly improve the efficiency of planar heterojunction perovskite solar cells.
A microprocessor based on a two-dimensional semiconductor.
Wachter, Stefan; Polyushkin, Dmitry K; Bethge, Ole; Mueller, Thomas
2017-04-11
The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor-molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.
Study and realization of SI microcalorimeters for high-resolution spectroscopy
NASA Astrophysics Data System (ADS)
Alessandrello, A.; Brofferio, Chiara; Camin, D. V.; Cattadori, C.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Maglione, A.; Margesin, B.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pignatel, Giorgio U.; Previtali, Ezio; Zanotti, Luigi
1994-09-01
We are developing Si-implanted thermistors to realize high resolution microcalorimeters. We plan to use these devices in an experiment for the determination of the neutrino mass. The measure implies the evaluation of the correct end-point energy of a beta spectrum with a calorimetric approach. Our study is devoted to outline the optimum fabrication process concerning performances and reproducibility. For such reasons we have realized Si thermistors with different concentration of dopant impurities and with different implant geometries. Tests are performed between 4.2 and 1.2 K using a pumped helium cryostat, and selected samples are characterized at very low temperatures in a dilution refrigerator. Good reproducibility of the devices is necessary for producing an array of detectors. At the same time suitable electronics are developed to optimize the detectors preamplifiers link: minimization of the parasitic capacitance is necessary to reduce the integration of signal and to maximize the speed response of the detector.
A microprocessor based on a two-dimensional semiconductor
NASA Astrophysics Data System (ADS)
Wachter, Stefan; Polyushkin, Dmitry K.; Bethge, Ole; Mueller, Thomas
2017-04-01
The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor--molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.
NASA Astrophysics Data System (ADS)
Adineh-Vand, A.; Torabi, M.; Roshani, G. H.; Taghipour, M.; Feghhi, S. A. H.; Rezaei, M.; Sadati, S. M.
2013-09-01
This paper presents a soft computing based artificial intelligent technique, adaptive neuro-fuzzy inference system (ANFIS) to predict the neutron production rate (NPR) of IR-IECF device in wide discharge current and voltage ranges. A hybrid learning algorithm consists of back-propagation and least-squares estimation is used for training the ANFIS model. The performance of the proposed ANFIS model is tested using the experimental data using four performance measures: correlation coefficient, mean absolute error, mean relative error percentage (MRE%) and root mean square error. The obtained results show that the proposed ANFIS model has achieved good agreement with the experimental results. In comparison to the experimental data the proposed ANFIS model has MRE% <1.53 and 2.85 % for training and testing data respectively. Therefore, this model can be used as an efficient tool to predict the NPR in the IR-IECF device.
Viscous investigation of a flapping foil propulsor
NASA Astrophysics Data System (ADS)
Posri, Attapol; Phoemsapthawee, Surasak; Thaweewat, Nonthipat
2018-01-01
Inspired by how fishes propel themselves, a flapping-foil device is invented as an alternative propulsion system for ships and boats. The performance of such propulsor has been formerly investigated using a potential flow code. The simulation results have shown that the device has high propulsive efficiency over a wide range of operation. However, the potential flow gives good results only when flow separation is not present. In case of high flapping frequency, the flow separation can occur over a short instant due to fluid viscosity and high angle of attack. This may cause a reduction of propulsive efficiency. A commercial CFD code based on Lattice Boltzmann Method, XFlow, is then employed in order to investigate the viscous effect over the propulsive performance of the flapping foil. The viscous results agree well with the potential flow results, confirming the high efficiency of the propulsor. As expected, viscous results show lower efficiency in high flapping frequency zone.
NASA Astrophysics Data System (ADS)
Jen, Alex
2010-03-01
The performance of polymer solar cells are strongly dependent on the efficiency of light harvesting, exciton dissociation, charge transport, and charge collection at the metal/organic, metal/metal oxide, and organic/metal oxide interfaces. To improve the device performance, two parallel approaches were used: 1) developing novel low band gap conjugated polymers with good charge-transporting properties and 2) modifying the interfaces between the organic/metal oxide and organic/metal layers with functional self-assembling monolayers to tune their energy barriers. Moreover, the molecule engineering approach was also used to tune the energy level, charge mobility, and morphology of organic semiconductors.
High-performance NiO/Ag/NiO transparent electrodes for flexible organic photovoltaic cells.
Xue, Zhichao; Liu, Xingyuan; Zhang, Nan; Chen, Hong; Zheng, Xuanming; Wang, Haiyu; Guo, Xiaoyang
2014-09-24
Transparent electrodes with a dielectric-metal-dielectric (DMD) structure can be implemented in a simple manufacturing process and have good optical and electrical properties. In this study, nickel oxide (NiO) is introduced into the DMD structure as a more appropriate dielectric material that has a high conduction band for electron blocking and a low valence band for efficient hole transport. The indium-free NiO/Ag/NiO (NAN) transparent electrode exhibits an adjustable high transmittance of ∼82% combined with a low sheet resistance of ∼7.6 Ω·s·q(-1) and a work function of 5.3 eV after UVO treatment. The NAN electrode shows excellent surface morphology and good thermal, humidity, and environmental stabilities. Only a small change in sheet resistance can be found after NAN electrode is preserved in air for 1 year. The power conversion efficiencies of organic photovoltaic cells with NAN electrodes deposited on glass and polyethylene terephthalate (PET) substrates are 6.07 and 5.55%, respectively, which are competitive with those of indium tin oxide (ITO)-based devices. Good photoelectric properties, the low-cost material, and the room-temperature deposition process imply that NAN electrode is a striking candidate for low-cost and flexible transparent electrode for efficient flexible optoelectronic devices.
Low-loss electromagnetic composites for RF and microwave applications.
Wang, Hong; Yang, Haibo; Xiang, Feng; Yao, Xi
2011-09-01
Low-loss electromagnetic composites with high permittivity and permeability will benefit the miniaturization and multifunctional of RF devices. A kind of low-loss dielectric-magnetic ceramic-ceramic composite was developed by hybrid processing technology with the goal of integrating the dielectric properties and magnetic properties. The hybrid processing technology exhibits the advantage of lowered sintering temperatures for the composites while retaining good microstructure and high performance. By introducing elastomer as matrix, a kind of flexible low-loss dielectric-magnetic ceramic-polymer composite was prepared and studied. The obtained flexible dielectric-magnetic ceramic-polymer composite exhibited low loss and good mechanical properties. The results show good effects on lowering the dielectric loss and extending the cut-off magnetic frequency of the electromagnetic composite. Methods for tailoring the properties of the multifunctional composites were proposed and discussed.
1990-12-01
expected values. However, because the same good /bad output pattern of a device always gives rise to the same initial ordering, the method has its limitation...For any device and good /bad output pattern, it is easy to come up with an example on which the method does poorly in the sense that the actual...submodule is hss likely to be faulty if it is connec d to more good primary outputs. Initially, candidates are ordered according to their relat -nships with
Case study on impact performance optimization of hydraulic breakers.
Noh, Dae-Kyung; Kang, Young-Ky; Cho, Jae-Sang; Jang, Joo-Sup
2016-01-01
In order to expand the range of activities of an excavator, attachments, such as hydraulic breakers have been developed to be applied to buckets. However, it is very difficult to predict the dynamic behavior of hydraulic impact devices such as breakers because of high non-linearity. Thus, the purpose of this study is to optimize the impact performance of hydraulic breakers. The ultimate goal of the optimization is to increase the impact energy and impact frequency and to reduce the pressure pulsation of the supply and return lines. The optimization results indicated that the four parameters used to optimize the impact performance of the breaker showed considerable improvement over the results reported in the literature. A test was also conducted and the results were compared with those obtained through optimization in order to verify the optimization results. The comparison showed an average relative error of 8.24 %, which seems to be in good agreement. The results of this study can be used to optimize the impact performance of hydraulic impact devices such as breakers, thus facilitating its application to excavators and increasing the range of activities of an excavator.
Sun, Hongmei; He, Wenhui; Zong, Chenghua; Lu, Lehui
2013-03-01
The urgent need for sustainable development has forced material scientists to explore novel materials for next-generation energy storage devices through a green and facile strategy. In this context, yeast, which is a large group of single cell fungi widely distributed in nature environments, will be an ideal candidate for developing effective electrode materials with fascinating structures for high-performance supercapacitors. With this in mind, herein, we present the first example of creating three-dimensional (3D) interpenetrating macroporous carbon materials via a template-free method, using the green, renewable, and widespread yeast cells as the precursors. Remarkably, when the as-prepared materials are used as the electrode materials for supercapacitors, they exhibit outstanding performance with high specific capacitance of 330 F g(-1) at a current density of 1 A g(-1), and good stability, even after 1000 charge/discharge cycles. The approach developed in this work provides a new view of making full use of sustainable resources endowed by nature, opening the avenue to designing and producing robust materials with great promising applications in high-performance energy-storage devices.
Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung
2016-01-01
Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach. PMID:27170543
Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung
2016-05-12
Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.
NASA Astrophysics Data System (ADS)
Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung
2016-05-01
Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.
Argente-García, A; Muñoz-Ortuño, M; Molins-Legua, C; Moliner-Martínez, Y; Campíns-Falcó, P
2016-01-15
A colorimetric composite device is proposed to determine the widely used biocide N-(3-aminopropyl)-N-dodecyl-1,3-propanediamine (ADP).This sensing device is based on a film of 1,2-Naphthoquinone-4-sulfonate (NQS) embedded into polydimethylsiloxane-tetraethylortosilicate-SiO2 nanoparticles composite (PDMS-TEOS-SiO2NPs). Semiquantitative analysis can be performed by visual inspection. Digitalized image or diffuse reflectance (DR) measurements can be carried out for quantitative analysis. Satisfactory detection limit (0.018%, w/v) and relative standard deviations <12% were achieved. The proposed device has been applied for the determination of ADP in detergent industrial formulations with recovery values between 80% and 112%. The method has been successfully validated, showing its high potential to control and monitor this compound because the device is easy to prepare and use, robust, portable, stable over time and cost effective. This device allows a green, simple and rapid approach for the analysis of samples without pretreatment and does not require highly trained personnel. These advantages give the proposed kit good prospects for implementation in several industries. Copyright © 2015 Elsevier B.V. All rights reserved.
Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction
NASA Astrophysics Data System (ADS)
Zhang, Teng-Fei; Li, Zhi-Peng; Wang, Jiu-Zhen; Kong, Wei-Yu; Wu, Guo-An; Zheng, Yu-Zhen; Zhao, Yuan-Wei; Yao, En-Xu; Zhuang, Nai-Xi; Luo, Lin-Bao
2016-12-01
In this study, we present a broadband nano-photodetector based on single-layer graphene (SLG)-carbon nanotube thin film (CNTF) Schottky junction. It was found that the as-fabricated device exhibited obvious sensitivity to a wide range of illumination, with peak sensitivity at 600 and 920 nm. In addition, the SLG-CNTF device had a fast response speed (τr = 68 μs, τf = 78 μs) and good reproducibility in a wide range of switching frequencies (50-5400 Hz). The on-off ratio, responsivity, and detectivity of the device were estimated to be 1 × 102, 209 mAW-1 and 4.87 × 1010 cm Hz1/2 W-1, respectively. What is more, other device parameters including linear performance θ and linear dynamic range (LDR) were calculated to be 0.99 and 58.8 dB, respectively, which were relatively better than other carbon nanotube based devices. The totality of the above study signifies that the present SLG-CNTF Schottky junction broadband nano-photodetector may have promising application in future nano-optoelectronic devices and systems.
Guide Catheter Extension Device Is Effective in Renal Angioplasty for Severely Calcified Lesions
Sugimoto, Takeshi; Nomura, Tetsuya; Hori, Yusuke; Yoshioka, Kenichi; Kubota, Hiroshi; Miyawaki, Daisuke; Urata, Ryota; Kikai, Masakazu; Keira, Natsuya; Tatsumi, Tetsuya
2017-01-01
Patient: Male, 69 Final Diagnosis: Atherosclerotic renal artery stenosis Symptoms: None Medication: — Clinical Procedure: — Specialty: Radiology Objective: Unusual setting of medical care Background: The GuideLiner catheter extension device is a monorail-type “Child” support catheter that facilitates coaxial alignment with the guide catheter and provides an appropriate back-up force. This device has been developed in the field of coronary intervention, and now is becoming widely applied in the field of endovascular treatment. However, there has been no report on the effectiveness of the guide catheter extension device in percutaneous transluminal renal angioplasty (PTRA). Case Report: We encountered a case of atherosclerotic subtotal occlusion at the ostium of the left renal artery. Due to the severely calcified orifice and weaker back-up force provided by a JR4 guide catheter, we could not pass any guide-wires through the target lesion. Therefore, we introduced a guide catheter extension device, the GuideLiner catheter, through the guide catheter and achieved good guidewire maneuverability. We finally deployed 2 balloon-expandable stents and successfully performed all PTRA procedures. Conclusions: The guide catheter extension device can be effective in PTRA for severely calcified subtotal occlusion. PMID:28533503
Multifunctional tunneling devices based on graphene/h-BN/MoSe2 van der Waals heterostructures
NASA Astrophysics Data System (ADS)
Cheng, Ruiqing; Wang, Feng; Yin, Lei; Xu, Kai; Ahmed Shifa, Tofik; Wen, Yao; Zhan, Xueying; Li, Jie; Jiang, Chao; Wang, Zhenxing; He, Jun
2017-04-01
The vertically stacked devices based on van der Waals heterostructures (vdWHs) of two-dimensional layered materials (2DLMs) have attracted considerable attention due to their superb properties. As a typical structure, graphene/hexagonal boron nitride (h-BN)/graphene vdWH has been proved possible to make tunneling devices. Compared with graphene, transition metal dichalcogenides possess intrinsic bandgap, leading to high performance of electronic devices. Here, tunneling devices based on graphene/h-BN/MoSe2 vdWHs are designed for multiple functions. On the one hand, the device shows a typical tunneling field-effect transistor behavior. A high on/off ratio of tunneling current (5 × 103) and an ultrahigh current rectification ratio (7 × 105) are achieved, which are attributed to relatively small electronic affinity of MoSe2 and optimized thickness of h-BN. On the other hand, the same structure also realizes 2D non-volatile memory with a high program/erase current ratio (>105), large memory window (˜150 V from ±90 V), and good retention characteristic. These results could enhance the fundamental understanding of tunneling behavior in vdWHs and contribute to the design of ultrathin rectifiers and memory based on 2DLMs.
Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction
Zhang, Teng-Fei; Li, Zhi-Peng; Wang, Jiu-Zhen; Kong, Wei-Yu; Wu, Guo-An; Zheng, Yu-Zhen; Zhao, Yuan-Wei; Yao, En-Xu; Zhuang, Nai-Xi; Luo, Lin-Bao
2016-01-01
In this study, we present a broadband nano-photodetector based on single-layer graphene (SLG)-carbon nanotube thin film (CNTF) Schottky junction. It was found that the as-fabricated device exhibited obvious sensitivity to a wide range of illumination, with peak sensitivity at 600 and 920 nm. In addition, the SLG-CNTF device had a fast response speed (τr = 68 μs, τf = 78 μs) and good reproducibility in a wide range of switching frequencies (50–5400 Hz). The on-off ratio, responsivity, and detectivity of the device were estimated to be 1 × 102, 209 mAW−1 and 4.87 × 1010 cm Hz1/2 W−1, respectively. What is more, other device parameters including linear performance θ and linear dynamic range (LDR) were calculated to be 0.99 and 58.8 dB, respectively, which were relatively better than other carbon nanotube based devices. The totality of the above study signifies that the present SLG-CNTF Schottky junction broadband nano-photodetector may have promising application in future nano-optoelectronic devices and systems. PMID:27929053
2010-01-01
Miniaturization has evolved in the creation of a pocket-size imaging device which can be utilized as an ultrasound stethoscope. This study assessed the additional diagnostic power of pocket size device by both experts operators and trainees in comparison with physical examination and its appropriateness of use in comparison with standard echo machine in a non-cardiologic population. Three hundred four consecutive non cardiologic outpatients underwent a sequential assessment including physical examination, pocket size imaging device and standard Doppler-echo exam. Pocket size device was used by both expert operators and trainees (who received specific training before the beginning of the study). All the operators were requested to give only visual, qualitative insights on specific issues. All standard Doppler-echo exams were performed by expert operators. One hundred two pocket size device exams were performed by experts and two hundred two by trainees. The time duration of the pocket size device exam was 304 ± 117 sec. Diagnosis of cardiac abnormalities was made in 38.2% of cases by physical examination and in 69.7% of cases by physical examination + pocket size device (additional diagnostic power = 31.5%, p < 0.0001). The overall K between pocket size device and standard Doppler-echo was 0.67 in the pooled population (0.84 by experts and 0.58 by trainees). K was suboptimal for trainees in the eyeball evaluation of ejection fraction, left atrial dilation and right ventricular dilation. Overall sensitivity was 91% and specificity 76%. Sensitivity and specificity were lower in trainees than in experts. In conclusion, pocket size device showed a relevant additional diagnostic value in comparison with physical examination. Sensitivity and specificity were good in experts and suboptimal in trainees. Specificity was particularly influenced by the level of experience. Training programs are needed for pocket size device users. PMID:21110840
NASA Astrophysics Data System (ADS)
Li, Jing; Xie, Huaqing; Li, Yang; Liu, Jie; Li, Zhuxin
Graphene nanosheets/polyaniline nanofibers (GNS/PANI) composites are synthesized via in situ polymerization of aniline monomer in HClO 4 solution. The PANI nanofibers homogeneously coating on the surface of GNS greatly improve the charge transfer reaction. The GNS/PANI composites exhibit better electrochemical performances than the pure individual components. A remarkable specific capacitance of 1130 F g -1 (based on GNS/PANI composites) is obtained at a scan rate of 5 mV s -1 in 1 M H 2SO 4 solution compared to 402 F g -1 for pure PANI and 270 F g -1 for GNS. The excellent performance is not only due to the GNS which can provide good electrical conductivity and high specific surface area, but also associate with a good redox activity of ordered PANI nanofibers. Moreover, the GNS/PANI composites present excellent long cycle life with 87% specific capacitance retained after 1000 charge/discharge processes. The resulting composites are promising electrode materials for high-performance electrical energy storage devices.
Preparation and performance study of a novel liquid scintillator with mixed solvent as the matrix
NASA Astrophysics Data System (ADS)
Zheng, Zhanlong; Zhu, Jiayi; Luo, Xuan; Xu, Yewei; Zhang, Qianfeng; Zhang, Xing; Bi, Yutie; Zhang, Lin
2017-04-01
A novel liquid scintillator with the mixed solvent as the matrix was prepared for obtaining a good comprehensive performance. In this ternary liquid scintillator, the combination of 20% pseudocumene (PC) and 80% linear-alkyl benzene (LAB) by volume was chosen as the mixed solvent, and 2,5-diphenyloxazole (PPO) and 1,4-bis(2-Methylstyryl) benzene (bis-MSB) were as the primary fluor and wavelength shifter, respectively. The optimum prescription was obtained with regard to the light yield. Some characterizations based on the optimal formulation were conducted. The fluorescence emission spectra and wavelength-dependent optical attenuation length of the sample were measured by the fluorescence spectrophotometer and an UV-Vis spectrometer, respectively. The light yield was characterized by adopting the home-made optical platform device. The decay time was tested by adopting the time-correlated single photon counting (TCSPC) technique featured in high dynamic range of several orders of magnitude in light intensity. The experimental test results showed that the sample had a fairly good comprehensive performance.
A general method for assessing brain-computer interface performance and its limitations
NASA Astrophysics Data System (ADS)
Hill, N. Jeremy; Häuser, Ann-Katrin; Schalk, Gerwin
2014-04-01
Objective. When researchers evaluate brain-computer interface (BCI) systems, we want quantitative answers to questions such as: How good is the system’s performance? How good does it need to be? and: Is it capable of reaching the desired level in future? In response to the current lack of objective, quantitative, study-independent approaches, we introduce methods that help to address such questions. We identified three challenges: (I) the need for efficient measurement techniques that adapt rapidly and reliably to capture a wide range of performance levels; (II) the need to express results in a way that allows comparison between similar but non-identical tasks; (III) the need to measure the extent to which certain components of a BCI system (e.g. the signal processing pipeline) not only support BCI performance, but also potentially restrict the maximum level it can reach. Approach. For challenge (I), we developed an automatic staircase method that adjusted task difficulty adaptively along a single abstract axis. For challenge (II), we used the rate of information gain between two Bernoulli distributions: one reflecting the observed success rate, the other reflecting chance performance estimated by a matched random-walk method. This measure includes Wolpaw’s information transfer rate as a special case, but addresses the latter’s limitations including its restriction to item-selection tasks. To validate our approach and address challenge (III), we compared four healthy subjects’ performance using an EEG-based BCI, a ‘Direct Controller’ (a high-performance hardware input device), and a ‘Pseudo-BCI Controller’ (the same input device, but with control signals processed by the BCI signal processing pipeline). Main results. Our results confirm the repeatability and validity of our measures, and indicate that our BCI signal processing pipeline reduced attainable performance by about 33% (21 bits min-1). Significance. Our approach provides a flexible basis for evaluating BCI performance and its limitations, across a wide range of tasks and task difficulties.
NASA Astrophysics Data System (ADS)
Fellowes, David A.; Wood, Michael V.; Hastings, Arthur R., Jr.; Ghosh, Amalkumar P.; Prache, Olivier
2007-04-01
eMagin Corporation has recently developed long-life OLED-XL devices for use in their AMOLED microdisplays for head-worn applications. AMOLED displays have been known to exhibit high levels of performance with regards to contrast, response time, uniformity, and viewing angle, but a lifetime improvement has been perceived to be essential for broadening the applications of OLED's in the military and in the commercial market. The new OLED-XL devices gave the promise of improvements in usable lifetime over 6X what the standard full color, white, and green devices could provide. The US Army's RDECOM CERDEC NVESD performed life tests on several standard and OLED-XL panels from eMagin under a Cooperative Research and Development Agreement (CRADA). Displays were tested at room temperature, utilizing eMagin's Design Reference Kit driver, allowing computer controlled optimization, brightness adjustment, and manual temperature compensation. The OLED Usable Lifetime Model, developed under a previous NVESD/eMagin SPIE paper presented at DSS 2005, has been adjusted based on the findings of these tests. The result is a better understanding of the applicability of AMOLEDs in military and commercial head mounted systems: where good fits are made, and where further development might be needed.
Performance optimization in electric field gradient focusing.
Sun, Xuefei; Farnsworth, Paul B; Tolley, H Dennis; Warnick, Karl F; Woolley, Adam T; Lee, Milton L
2009-01-02
Electric field gradient focusing (EFGF) is a technique used to simultaneously separate and concentrate biomacromolecules, such as proteins, based on the opposing forces of an electric field gradient and a hydrodynamic flow. Recently, we reported EFGF devices fabricated completely from copolymers functionalized with poly(ethylene glycol), which display excellent resistance to protein adsorption. However, the previous devices did not provide the predicted linear electric field gradient and stable current. To improve performance, Tris-HCl buffer that was previously doped in the hydrogel was replaced with a phosphate buffer containing a salt (i.e., potassium chloride, KCl) with high mobility ions. The new devices exhibited stable current, good reproducibility, and a linear electric field distribution in agreement with the shaped gradient region design due to improved ion transport in the hydrogel. The field gradient was calculated based on theory to be approximately 5.76 V/cm(2) for R-phycoerythrin when the applied voltage was 500 V. The effect of EFGF separation channel dimensions was also investigated; a narrower focused band was achieved in a smaller diameter channel. The relationship between the bandwidth and channel diameter is consistent with theory. Three model proteins were resolved in an EFGF channel of this design. The improved device demonstrated 14,000-fold concentration of a protein sample (from 2 ng/mL to 27 microg/mL).
Influence of metal electrode on the performance of ZnO based resistance switching memories
NASA Astrophysics Data System (ADS)
Wang, Xueting; Qian, Haolei; Guan, Liao; Wang, Wei; Xing, Boran; Yan, Xiaoyuan; Zhang, Shucheng; Sha, Jian; Wang, Yewu
2017-10-01
Resistance random access memory (RRAM) is considered a promising candidate for the next generation of non-volatile memory. In this work, we fabricate metal (Ag, Ti, or Pt)/ZnO/Pt RRAM cells and then systematically investigate the effects of different top electrodes and their performance. With the formation and rupture of Ag-bridge and the shapeless oxygen vacancy filaments under a series of positive and negative bias, the set and reset processes have been successfully conducted in the Ag/ZnO/Pt device with very low work voltage, high on-off ratio, and good endurance. When applying the voltage bias to the Ti/ZnO/Pt device, the interfacial oxygen ions' migration causes the redox reaction of the conducting filament's oxygen vacancies, leading to the formation and rupture of the conducting filaments but in a relatively poor endurance. At the same time, for the Pt/ZnO/Pt device, once the filaments in the functional layer consisting of oxygen vacancies are formed, it is difficult to disrupt, resulting in the permanent low resistance state after a forming-like process. The results demonstrated that the devices with a metallic conductive bridge mechanism show much better switching behaviors than those with an oxygen ion/vacancy filament mechanism.
Rodríguez, Alfredo E; Fernandez-Pereira, Carlos; Mieres, Juan; Ascarrunz, Diego; Gabe, Eduardo; Rodríguez-Granillo, Alfredo Matías; Frattini, Romina; Stuzbach, Pablo
2016-01-01
A 79-year-old female was admitted with sudden onset dyspnea, mild oppressive chest pain, and severe anxiety disorder. Patient had history of hypertension, dyslipidemia, smoking, and chronic obstructive pulmonary disease. On admission blood pressure was 160/90 and heart rate was 130 bpm. Transthoracic echocardiography (TE) and contrast tomography showed a thin septum with an abnormal left and right ventricular contraction with an "apical ballooning" pattern and mild increase of cardiac enzymes. At the 4th day of admission, the patient presented symptoms and signs of congestive heart failure and developed cardiogenic shock. EKG showed an inversion of T waves in all precordial leads. In a new TE, a ventricular septal perforation (VSP) in the apical portion of the septum was seen. Coronary angiogram showed angiographically "normal" coronary arteries. With a diagnosis of VSP in takotsubo cardiomyopathy, a percutaneous procedure to repair the VSP was performed 11 days after admission. The VSP was closed with an Amplatzer device. TE performed 24 hours after showed significant improvement of ventricular function and good apposition of the Amplatzer device. Three days later she was discharged from the hospital. To our knowledge, this is the first reported case of a VSP in a TCM repaired percutaneously with an occluder device.
Wasyluk, Jaromir T; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona
2012-03-01
We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18-70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in µm) differ significantly between GDx and all OCT devices. Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients.
NASA Astrophysics Data System (ADS)
Huang, Jinsong
This thesis described three types of organic optoelectronic devices: polymer light emitting diodes (PLED), polymer photovoltaic solar cell, and organic photo detector. The research in this work focuses improving their performance including device efficiency, operation lifetime simplifying fabrication process. With further understanding in PLED device physics, we come up new device operation model and improved device architecture design. This new method is closely related to understanding of the science and physics at organic/metal oxide and metal oxide/metal interface. In our new device design, both material and interface are considered in order to confine and balance all injected carriers, which has been demonstrated very be successful in increasing device efficiency. We created two world records in device efficiency: 18 lm/W for white emission fluorescence PLED, 22 lm/W for red emission phosphorescence PLED. Slow solvent drying process has been demonstrated to significantly increase device efficiency in poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C 61-butyric acid methyl ester (PCBM) mixture polymer solar cell. From the mobility study by time of flight, the increase of efficiency can be well correlated to the improved carrier transport property due to P3HT crystallization during slow solvent drying. And it is found that, similar to PLED, balanced carrier mobility is essential in high efficient polymer solar cell. There is also a revolution in our device fabrication method. A unique device fabrication method is presented by an electronic glue based lamination process combined with interface modification as a one-step polymer solar cell fabrication process. It can completely skip the thermal evaporation process, and benefit device lifetime by several merits: no air reactive. The device obtained is metal free, semi-transparent, flexible, self-encapsulated, and comparable efficiency with that by regular method. We found the photomultiplication (PM) phenomenon in C60 based device accidentally. The high PM factor makes it good candidate for photo detector. The high gain was assigned to the trapped-charge induced enhanced-injection at C60/PEDOT:PSS interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Printz, Adam D.; Lipomi, Darren J., E-mail: dlipomi@ucsd.edu
The primary goal of the field concerned with organic semiconductors is to produce devices with performance approaching that of silicon electronics, but with the deformability—flexibility and stretchability—of conventional plastics. However, an inherent competition between deformability and charge transport has long been observed in these materials, and achieving the extreme (or even moderate) deformability implied by the word “plastic” concurrently with high charge transport may be elusive. This competition arises because the properties needed for high carrier mobilities—e.g., rigid chains in π-conjugated polymers and high degrees of crystallinity in the solid state—are antithetical to deformability. On the device scale, this competitionmore » can lead to low-performance yet mechanically robust devices, or high-performance devices that fail catastrophically (e.g., cracking, cohesive failure, and delamination) under strain. There are, however, some observations that contradict the notion of the mutual exclusivity of electronic and mechanical performances. These observations suggest that this problem may not be a fundamental trade-off, but rather an inconvenience that may be negotiated by a logical selection of materials and processing conditions. For example, the selection of the poly(3-alkylthiophene) with a critical side-chain length—poly(3-heptylthiophene) (n = 7)—marries the high deformability of poly(3-octylthiophene) (n = 8) with the high electronic performance (as manifested in photovoltaic efficiency) of poly(3-hexylthiophene) (n = 6). This review explores the relationship between deformability and charge transport in organic semiconductors. The principal conclusions are that reducing the competition between these two parameters is in fact possible, with two demonstrated routes being: (1) incorporation of softer, insulating material into a stiffer, semiconducting material and (2) increasing disorder in a highly ordered film, but not enough to disrupt charge transport pathways. The aim of this review is to provide a bridge between the fields interested in electronic properties and mechanical properties of conjugated polymers. We provide a high-level introduction to some of the important electronic and mechanical properties and measurement techniques for organic electronic devices, demonstrate an apparent competition between good electronic performance and mechanical deformability, and highlight potential strategies for overcoming this undesirable competition. A marriage of these two fields would allow for rational design of materials for applications requiring large-area, low-cost, printable devices that are ultra-flexible or stretchable, such as organic photovoltaic devices and wearable, conformable, or implantable sensors.« less
Energy harvesting device based on a metallic glass/PVDF magnetoelectric laminated composite
NASA Astrophysics Data System (ADS)
Lasheras, A.; Gutiérrez, J.; Reis, S.; Sousa, D.; Silva, M.; Martins, P.; Lanceros-Mendez, S.; Barandiarán, J. M.; Shishkin, D. A.; Potapov, A. P.
2015-06-01
A flexible, low-cost energy-harvesting device based on the magnetoelectric (ME) effect was designed using Fe64Co17Si7B12 as amorphous magnetostrictive ribbons and polyvinylidene fluoride (PVDF) as the piezoelectric element. A 3 cm-long sandwich-type laminated composite was fabricated by gluing the ribbons to the PVDF with an epoxy resin. A voltage multiplier circuit was designed to produce enough voltage to charge a battery. The power output and power density obtained were 6.4 μW and 1.5 mW cm-3, respectively, at optimum load resistance and measured at the magnetomechanical resonance of the laminate. The effect of the length of the ME laminate on power output was also studied: the power output exhibited decays proportionally with the length of the ME laminate. Nevertheless, good performance was obtained for a 0.5 cm-long device working at 337 KHz within the low radio frequency (LRF) range.
Characteristics of a wind-actuated aerodynamic braking device for high-speed trains
NASA Astrophysics Data System (ADS)
Takami, H.; Maekawa, H.
2017-04-01
To shorten the stopping distance of the high speed trains in case of emergency, we developed a small-sized aerodynamic braking unit without use of the friction between a rail and a wheel. The developed device could actuate a pair of two drag panels with a travelling wind. However, after the drag panel fully opened, vibrational movements of the drag panel characterized by its slight flutter were repeated. In this study, to stabilize the opened panel, matters pertaining to the angle of attack with respect to the drag panel and pertaining to the arrangement of the two panels were examined by a wind tunnel experiment using a scale model. As a result, to stabilize the opened panel and to keep the good performance of the braking device, it is found out that an angle of attack of 75 to 80 degrees is suitable provided that the interval of the two panels is narrow enough.
Analysis of detection performance of multi band laser beam analyzer
NASA Astrophysics Data System (ADS)
Du, Baolin; Chen, Xiaomei; Hu, Leili
2017-10-01
Compared with microwave radar, Laser radar has high resolution, strong anti-interference ability and good hiding ability, so it becomes the focus of laser technology engineering application. A large scale Laser radar cross section (LRCS) measurement system is designed and experimentally tested. First, the boundary conditions are measured and the long range laser echo power is estimated according to the actual requirements. The estimation results show that the echo power is greater than the detector's response power. Secondly, a large scale LRCS measurement system is designed according to the demonstration and estimation. The system mainly consists of laser shaping, beam emitting device, laser echo receiving device and integrated control device. Finally, according to the designed lidar cross section measurement system, the scattering cross section of target is simulated and tested. The simulation results are basically the same as the test results, and the correctness of the system is proved.
LEC GaAs for integrated circuit applications
NASA Technical Reports Server (NTRS)
Kirkpatrick, C. G.; Chen, R. T.; Homes, D. E.; Asbeck, P. M.; Elliott, K. R.; Fairman, R. D.; Oliver, J. D.
1984-01-01
Recent developments in liquid encapsulated Czochralski techniques for the growth of semiinsulating GaAs for integrated circuit applications have resulted in significant improvements in the quality and quantity of GaAs material suitable for device processing. The emergence of high performance GaAs integrated circuit technologies has accelerated the demand for high quality, large diameter semiinsulating GaAs substrates. The new device technologies, including digital integrated circuits, monolithic microwave integrated circuits and charge coupled devices have largely adopted direct ion implantation for the formation of doped layers. Ion implantation lends itself to good uniformity and reproducibility, high yield and low cost; however, this technique also places stringent demands on the quality of the semiinsulating GaAs substrates. Although significant progress was made in developing a viable planar ion implantation technology, the variability and poor quality of GaAs substrates have hindered progress in process development.
Digital synthetic impedance for application in vibration damping.
Nečásek, J; Václavík, J; Marton, P
2016-02-01
In this work we present construction details of a precision, standalone, and compact digital synthetic impedance for application in the field of vibration damping. The presented device is based on an embedded ARM microcontroller with external AD and DA converters and a special analog front-end. The performance of the device is tested by comparing the actually synthesized impedance with several prescribed impedances and shows very good match. Fine-tuning ability of the device, which is crucial for the considered application, is also demonstrated and reaches as small step as 0.1% for the most complicated impedance structure and drops below the level of direct measurability with less complex structures. The real application in vibration damping is demonstrated on a simple and well understood case of a one-dimensional vibrating spring-mass system with piezoelectric actuator embedded as the interface between source of vibrations and vibrating mass.
Digital synthetic impedance for application in vibration damping
NASA Astrophysics Data System (ADS)
Nečásek, J.; Václavík, J.; Marton, P.
2016-02-01
In this work we present construction details of a precision, standalone, and compact digital synthetic impedance for application in the field of vibration damping. The presented device is based on an embedded ARM microcontroller with external AD and DA converters and a special analog front-end. The performance of the device is tested by comparing the actually synthesized impedance with several prescribed impedances and shows very good match. Fine-tuning ability of the device, which is crucial for the considered application, is also demonstrated and reaches as small step as 0.1% for the most complicated impedance structure and drops below the level of direct measurability with less complex structures. The real application in vibration damping is demonstrated on a simple and well understood case of a one-dimensional vibrating spring-mass system with piezoelectric actuator embedded as the interface between source of vibrations and vibrating mass.
Wireless microphone communication system telephonics P/N 484D000-1
NASA Technical Reports Server (NTRS)
1980-01-01
The wireless microphone is a lightweight, portable, wireless voice communications device for use by the crew of the space shuttle orbiter. The wireless microphone allows the crew to have normal hands-free voice communication while they are performing various mission activities. The unit is designed to transmit at 455 or 500 kilohertz and employs narrow band FM modulation. Two orthogonally placed antennas are used to insure good reception at the receiver.
Design of high-efficiency, radiation-hard, GaInP/GaAs solar cells
NASA Technical Reports Server (NTRS)
Kurtz, Sarah R.; Bertness, K. A.; Kibbler, A. E.; Kramer, C.; Olson, J. M.
1994-01-01
In recently years, Ga(0.5)In((0.5)P/GaAs cells have drawn increased attention both because of their high efficiencies and because they are well suited for space applications. They can be grown and processed as two-junction devices with roughly twice the voltage and half the current of GaAs cells. They have low temperature coefficients, and have good potential for radiation hardness. We have previously reported the effects of electron irradiation on test cells which were not optimally designed for space. From those results we estimated that an optimally designed cell could achieve 20 percent after irradiation with 10(exp 15) cm(exp -2) 1 MeV electrons. Modeling studies predicted that slightly higher efficiencies may be achievable. Record efficiencies for EOL performance of other types of cells are significantly lower. Even the best Si and InP cells have BOL efficiencies lower than the EOL efficiency we report here. Good GaAs cells have an EOL efficiency of 16 percent. The InP/Ga(0.5)In(0.5)As two-junction, two-terminal device has a BOL efficiency as high as 22.2 percent, but radiation results for these cells were limited. In this study we use the previous modeling and irradiation results to design a set of Ga(0.5)In(0.5)P/GaAs cells that will demonstrate the importance of the design parameters and result in high-efficiency devices. We report record AMO efficiencies: a BOL efficiency of 25.7 percent for a device optimized for BOL performance and two of different designs with EOL efficiencies of 19.6 percent (at 10(exp 15) cm(exp -2) 1MeV electrons). We vary the bottom-cell base doping and the top-cell thickness to show the effects of these two important design parameters. We get an unexpected result indicating that the dopant added to the bottom-cell base also increases the degradation of the top cell.
Sol-Gel Material-Enabled Electro-Optic Polymer Modulators
Himmelhuber, Roland; Norwood, Robert A.; Enami, Yasufumi; Peyghambarian, Nasser
2015-01-01
Sol-gels are an important material class, as they provide easy modification of material properties, good processability and are easy to synthesize. In general, an electro-optic (EO) modulator transforms an electrical signal into an optical signal. The incoming electrical signal is most commonly information encoded in a voltage change. This voltage change is then transformed into either a phase change or an intensity change in the light signal. The less voltage needed to drive the modulator and the lower the optical loss, the higher the link gain and, therefore, the better the performance of the modulator. In this review, we will show how sol-gels can be used to enhance the performance of electro-optic modulators by allowing for designs with low optical loss, increased poling efficiency and manipulation of the electric field used for driving the modulator. The optical loss is influenced by the propagation loss in the device, as well as the losses occurring during fiber coupling in and out of the device. In both cases, the use of sol-gel materials can be beneficial due to the wide range of available refractive indices and low optical attenuation. The influence of material properties and synthesis conditions on the device performance will be discussed. PMID:26225971
Wang, Lin; Liu, Baiquan; Zhao, Xin; Demir, Hilmi Volkan; Gu, Haoshuang; Sun, Handong
2018-06-13
All-inorganic cesium halide perovskite nanocrystals have attracted much interest in optoelectronic applications for the sake of the readily adjustable band gaps, high photoluminescence quantum yield, pure color emission, and affordable cost. However, because of the ineluctable utilization of organic surfactants during the synthesis, the structural and optical properties of CsPbBr 3 nanocrystals degrade upon transforming from colloidal solutions to solid thin films, which plagues the device operation. Here, we develop a novel solvent-assisted surface engineering strategy, producing high-quality CsPbBr 3 thin films for device applications. A good solvent is first introduced as an assembly trigger to conduct assembly in a one-dimensional direction, which is then interrupted by adding a nonsolvent. The nonsolvent drives the adjacent nanoparticles connecting in a two-dimensional direction. Assembled CsPbBr 3 nanocrystal thin films are densely packed and very smooth with a surface roughness of ∼4.8 nm, which is highly desirable for carrier transport in a light-emitting diode (LED) device. Meanwhile, the film stability is apparently improved. Benefiting from this facile and reliable strategy, we have achieved remarkably improved performance of CsPbBr 3 nanocrystal-based LEDs. Our results not only enrich the methods of nanocrystal surface engineering but also shed light on developing high-performance LEDs.
Enhanced electrostatic vibrational energy harvesting using integrated opposite-charged electrets
NASA Astrophysics Data System (ADS)
Tao, Kai; Wu, Jin; Tang, Lihua; Hu, Liangxing; Woh Lye, Sun; Miao, Jianmin
2017-04-01
This paper presents a sandwich-structured MEMS electret-based vibrational energy harvester (e-VEH) that has two opposite-charged electrets integrated into a single electrostatic device. Compared to the conventional two-plate configuration where the maximum charge can only be induced when the movable mass reaches its lowest position, the proposed harvester is capable of creating maximum charge induction at both the highest and the lowest extremes, leading to an enhanced output performance. As a proof of concept, an out-of-plane MEMS e-VEH device with an overall volume of about 0.24 cm3 is designed, modeled, fabricated and characterized. A holistic equivalent circuit model incorporating the mechanical dynamic model and two capacitive circuits has been established to study the charge circulations. With the fabricated prototype, the experimental analysis demonstrates the superior performance of the proposed sandwiched e-VEH: the output voltage increases by 80.9% and 18.6% at an acceleration of 5 m s-2 compared to the top electret alone and bottom electret alone configurations, respectively. The experimental results also confirm the waveform derivation with the increase of excitation, which is in good agreement with the circuit simulation results. The proposed sandwiched e-VEH topology provides an effective and convenient methodology for improving the performance of electrostatic energy harvesting devices.
NASA Astrophysics Data System (ADS)
Liu, Lei; zhang, Zhihua; Wang, Ya; Qin, hao
2018-03-01
The study on the pressure resistance performance of emulsion explosives in deep water can provide theoretical basis for underwater blasting, deep-hole blasting and emulsion explosives development. The sensitizer is an important component of emulsion explosives. By using reusable experimental devices to simulate the charge environment in deep water, the influence of the content of chemical sensitizer on the deep-water pressure resistance performance of emulsion explosives was studied. The experimental results show that with the increasing of the content of chemical sensitizer, the deep-water pressure resistance performance of emulsion explosives gradually improves, and when the pressure is fairly large, the effect is particularly pronounced; in a certain range, with the increase of the content of chemical sensitizer, that emulsion explosives’ explosion performance also gradually improve, but when the content reaches a certain value, the explosion properties declined instead; under the same emulsion matrix condition, when the content of NANO2 is 0.2%, that the emulsion explosives has good resistance to water pressure and good explosion properties. The correctness of the results above was testified in model blasting.
Delefortrie, Quentin; Schatt, Patricia; Grimmelprez, Alexandre; Gohy, Patrick; Deltour, Didier; Collard, Geneviève; Vankerkhoven, Patrick
2016-02-01
Although colonoscopy associated with histopathological sampling remains the gold standard in the diagnostic and follow-up of inflammatory bowel disease (IBD), calprotectin is becoming an essential biomarker in gastroenterology. The aim of this work is to compare a newly developed kit (Liaison® Calprotectin - Diasorin®) and its two distinct extraction protocols (weighing and extraction device protocol) with a well established point of care test (Quantum Blue® - Bühlmann-Alere®) in terms of analytical performances and ability to detect relapses amongst a Crohn's population in follow-up. Stool specimens were collected over a six month period and were composed of control and Crohn's patients. Amongst the Crohn's population disease activity (active vs quiescent) was evaluated by gastroenterologists. A significant difference was found between all three procedures in terms of calprotectin measurements (weighing protocol=30.3μg/g (median); stool extraction device protocol=36.9μg/g (median); Quantum Blue® (median)=63; Friedman test, P value=0.05). However, a good correlation was found between both extraction methods coupled with the Liaison® analyzer and between the Quantum Blue® (weighing protocol/extraction device protocol Rs=0.844, P=0.01; Quantum Blue®/extraction device protocol Rs=0.708, P=0.01; Quantum Blue®/weighing protocol, Rs=0.808, P=0.01). Finally, optimal cut-offs (and associated negative predictive values - NPV) for detecting relapses were in accordance with above results (Quantum Blue® 183.5μg/g and NPV of 100%>extraction device protocol+Liaison® analyzer 124.5μg/g and NPV of 93.5%>weighing protocol+Liaison® analyzer 106.5μg/g and NPV of 95%). Although all three methods correlated well and had relatively good NPV in terms of detecting relapses amongst a Crohn's population in follow-up, the lack of any international standard is the origin of different optimal cut-offs between the three procedures. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
High-performance heat pipes for heat recovery applications
NASA Technical Reports Server (NTRS)
Saaski, E. W.; Hartl, J. H.
1980-01-01
Methods to improve the performance of reflux heat pipes for heat recovery applications were examined both analytically and experimentally. Various models for the estimation of reflux heat pipe transport capacity were surveyed in the literature and compared with experimental data. A high transport capacity reflux heat pipe was developed that provides up to a factor of 10 capacity improvement over conventional open tube designs; analytical models were developed for this device and incorporated into a computer program HPIPE. Good agreement of the model predictions with data for R-11 and benzene reflux heat pipes was obtained.
Shape-memory effect by specific biodegradable polymer blending for biomedical applications.
Cha, Kook Jin; Lih, Eugene; Choi, Jiyeon; Joung, Yoon Ki; Ahn, Dong Jun; Han, Dong Keun
2014-05-01
Specific biodegradable polymers having shape-memory properties through "polymer-blend" method are investigated and their shape-switching in body temperature (37 °C) is characterized. Poly(L-lactide-co-caprolactone) (PLCL) and poly(L-lactide-co-glycolide) (PLGA) are dissolved in chloroform and the films of several blending ratios of PLCL/PLGA are prepared by solvent casting. The shape-memory properties of films are also examined using dynamic mechanical analysis (DMA). Among the blending ratios, the PLCL50/PLGA50 film shows good performance of shape-fixity and shape-recovery based on glass transition temperature. It displays that the degree of shape recovery is 100% at 37 °C and the shape recovery proceeds within only 15 s. In vitro biocompatibility studies are shown to have good blood compatibility and cytocompatibility for the PLCL50/PLGA50 films. It is expected that this blended biodegradable polymer can be potentially used as a material for blood-contacting medical devices such as a self-expended vascular polymer stents and vascular closure devices in biomedical applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu
2009-03-10
Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Agmore » and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.« less
Preliminary Results Of A 600 Joules Small Plasma Focus Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. H.; Yap, S. L.; Wong, C. S.
Preliminary results of a 600 J (3.7 muF, 18 kV) Mather type plasma focus device operated at low pressure will be presented. The discharge is formed between a solid anode with length of 6 cm and six symmetrically and coaxially arranged cathode rods of same lengths. The cathode base is profiled in a knife-edge design and a set of coaxial plasma gun are attached to it in order to initiate the breakdown and enhance the current sheath formation. The experiments have been performed in argon gas under a low pressure condition of several microbars. The discharge current and the voltagemore » across the electrodes during the discharge are measured with high voltage probe and current coil. The current and voltage characteristics are used to determine the possible range of operating pressure that gives good focusing action. At a narrow pressure regime of 9.0+-0.5 mubar, focusing action is observed with good reproducibility. Preliminary result of ion beam energy is presented. More work will be carried out to investigate the radiation output.« less
AMOLED (active matrix OLED) functionality and usable lifetime at temperature
NASA Astrophysics Data System (ADS)
Fellowes, David A.; Wood, Michael V.; Prache, Olivier; Jones, Susan
2005-05-01
Active Matrix Organic Light Emitting Diode (AMOLED) displays are known to exhibit high levels of performance, and these levels of performance have continually been improved over time with new materials and electronics design. eMagin Corporation developed a manually adjustable temperature compensation circuit with brightness control to allow for excellent performance over a wide temperature range. Night Vision and Electronic Sensors Directorate (US Army) tested the performance and survivability of a number of AMOLED displays in a temperature chamber over a range from -55°C to +85°C. Although device performance of AMOLEDs has always been its strong suit, the issue of usable display lifetimes for military applications continues to be an area of discussion and research. eMagin has made improvements in OLED materials and worked towards the development of a better understanding of usable lifetime for operation in a military system. NVESD ran luminance degradation tests of AMOLED panels at 50°C and at ambient to characterize the lifetime of AMOLED devices. The result is a better understanding of the applicability of AMOLEDs in military systems: where good fits are made, and where further development is needed.
Scoliosis correction with shape-memory metal: results of an experimental study.
Wever, D J; Elstrodt, J A; Veldhuizen, A G; v Horn, J R
2002-04-01
The biocompatibility and functionality of a new scoliosis correction device, based on the properties of the shape-memory metal nickel-titanium alloy, were studied. With this device, the shape recovery forces of a shape-memory metal rod are used to achieve a gradual three-dimensional scoliosis correction. In the experimental study the action of the new device was inverted: the device was used to induce a scoliotic curve instead of correcting one. Surgical procedures were performed in six pigs. An originally curved squared rod, in the cold condition, was straightened and fixed to the spine with pedicle screws. Peroperatively, the memory effect of the rod was activated by heating the rod to 50 degrees C by a low-voltage, high-frequency current. After 3 and after 6 months the animals were sacrificed. The first radiographs, obtained immediately after surgery, showed in all animals an induced curve of about 40 degrees Cobb angle - the original curve of the rod. This curve remained constant during the follow-up. The postoperative serum nickel measurements were around the detection limit, and were not significantly higher compared to the preoperative nickel concentration. Macroscopic inspection after 3 and 6 months showed that the device was almost overgrown with newly formed bone. Corrosion and fretting processes were not observed. Histologic examination of the sections of the surrounding tissues and sections of the lung, liver, spleen and kidney showed no evidence of a foreign body response. In view of the initiation of the scoliotic deformation, it is expected that the shape-memory metal based scoliosis correction device also has the capacity to correct a scoliotic curve. Moreover, it is expected that the new device will show good biocompatibility in clinical application. Extensive fatigue testing of the whole system should be performed before clinical trials are initiated.
Reif, Philipp; Lakovschek, Ioanna; Tappauf, Carmen; Haas, Josef; Lang, Uwe; Schöll, Wolfgang
2014-06-01
Although fetal blood sampling for pH is well established the use of lactate has not been widely adopted. This study validated the performance and utility of a handheld point-of-care (POC) lactate device in comparison with the lactate and pH values obtained by the ABL 800 blood gas analyzer. The clinical performance and influences on accuracy and decision-making criteria were assessed with freshly taken fetal blood scalp samples (n=57) and umbilical cord samples (n=310). Bland-Altman plot was used for data plotting and analyzing the agreement between the two measurement devices and correlation coefficients (R²) were determined using Passing-Bablok regression analysis. Sample processing errors were much lower in the testing device (22.8% vs. 0.5%). Following a preclinical assessment and calibration offset alignment (0.5 mmol/L) the test POC device showed good correlation with the reference method for lactate FBS (R²=0.977, p<0.0001, 95% CI 0.9 59-0.988), arterial cord blood (R²=0.976, p<0.0001, 95% CI 0.967-0.983) and venous cord blood (R²=0.977, p<0.0001, 95% CI 0.968-0.984). A POC device which allows for a calibration adjustment to be made following preclinical testing can provide results that will correlate closely to an incumbent lactate method such as a blood gas analyzer. The use of a POC lactate device can address the impracticality and reality of pH sample collection and testing failures experienced in day to day clinical practice. For the StatStrip Lactate meter we suggest using a lactate cut-off of 5.1 mmol/L for predicting fetal acidosis (pH<7.20).
Acupuncture: a first approach on pain relief using a 617 nm LED device
NASA Astrophysics Data System (ADS)
Costa, J. M.; Corral-Baqués, M. I.; Amat, A.
2007-02-01
In this study, a preliminary approach for pain relief using a novel pulsated LED device was conducted. 12 patients were treated with a Photopuncture device designed by SORISA, which consisted in a 10-channel LED system at 617 nm. 15 patients with different pain localizations were treated: cervicobrachialgia (3 cases), lumbago / sciatica (4 cases), gonalgia (3 cases), cephalalgia (2 cases), talalgia (1 case), epicondylitis (1 case) and trigeminal neuralgia (1 case). To characterize the pain level, the Categorical Pain Scale (none (0), mild (1-3), moderate (4-6) and severe (7-10)) was used. Just patients with severe pain (7-10) were treated. Patients were treated twice a week for 25 minutes; 5 to 8 sessions were given at the following treatment parameters: 10 mW per channel pulsed at 60 Hz with a 50 % duty cycle. The total dose for point was 7.5 J. To characterize the response to the treatment, the results were classified as: "no result", no changes in pain degree; "poor", pain decreased one category; "good", pain decreased two categories; "very good", complete healing (no pain). The results were: 1 case with "very good" result; 11 cases with "good" result; 3 cases with "poor" result; and 0 cases with "no result". We conclude that the Photopuncture led device may be a good alternative to classical Acupuncture in pain relief, although further experimentation is required.
The T 380A intrauterine device: a retrospective 5-year evaluation.
de Araujo, Fabio Fernando; Barbieri, Márcia; Guazzelli, Cristina Aparecida Falho; Lindsey, Prescilla Chow
2008-12-01
The undue resistance to intrauterine device (IUD) use seen in several settings does not seem to occur in the Family Planning Unit of UNIFESP-EPM (São Paulo Federal University, Brazil). In fact, the Copper T 380A IUD in this clinic has reached an outstanding importance and this motivated us to present our differing experience. The prevalence of this method in this clinic is as high as 40%. This contrasts to the low use in the rest of the country, where tubal ligation is by far the most used contraceptive method (40%) and where IUD is inexpressive (1.1%). This is a retrospective study of the records of 118 users of Copper T 380A IUD inserted at the clinic and who were followed during 5 years. The cumulative pregnancy rate was 0.8%. The main cause for discontinuation of the study was loss to follow-up (21.3%). Other reasons for the withdrawal of the device were personal option (13.6%), dislocation (11.7%) and pregnancy wish (3.4%). There was no withdrawal by pelvic inflammatory disease. Bleeding (0.8%) was not an important cause for withdrawal, and there were no withdrawals due to pain. The continuation rate at 5 years was 46.7%. The structured service and an adequate educative program perhaps could explain at least partially the good performance of IUD use in this clinic. There was an amazing prevalence of the components of the metabolic syndrome. This could represent contraindications for hormonal contraception, and, in consequence, it could influence the increased option for and continuation of the IUD. These data show a good performance of the IUD for long duration, in relation to other studies, and this should be considered as a reliable alternative to the high prevalence of female sterilization in this country.
Infrared negative luminescent devices and higher operating temperature detectors
NASA Astrophysics Data System (ADS)
Nash, G. R.; Gordon, N. T.; Hall, D. J.; Ashby, M. K.; Little, J. C.; Masterton, G.; Hails, J. E.; Giess, J.; Haworth, L.; Emeny, M. T.; Ashley, T.
2004-01-01
Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a ‘source’ of IR radiation for gas sensing; radiation shielding for, and non-uniformity correction of, high sensitivity staring infrared detectors; and dynamic infrared scene projection. Similarly, infrared (IR) detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We present results on negative luminescence in the mid- and long-IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1 cm×1 cm. We also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very high-performance imaging is anticipated from systems which require no mechanical cooling.
Infrared negative luminescent devices and higher operating temperature detectors
NASA Astrophysics Data System (ADS)
Nash, Geoff R.; Gordon, Neil T.; Hall, David J.; Little, J. Chris; Masterton, G.; Hails, J. E.; Giess, J.; Haworth, L.; Emeny, Martin T.; Ashley, Tim
2004-02-01
Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a ‘source" of IR radiation for gas sensing; radiation shielding for and non-uniformity correction of high sensitivity starring infrared detectors; and dynamic infrared scene projection. Similarly, IR detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We will present results on negative luminescence in the mid and long IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1cm x 1cm. We will also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very higher performance imaging is anticipated from systems which require no mechanical cooling.
Infrared Negative Luminescent Devices and Higher Operating Temperature Detectors
NASA Astrophysics Data System (ADS)
Ashley, Tim
2003-03-01
Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a source' of IR radiation for gas sensing; radiation shielding for and non-uniformity correction of high sensitivity starring infrared detectors; and dynamic infrared scene projection. Similarly, IR detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We will present results on negative luminescence in the mid and long IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1cm x 1cm. We will also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very high performance imaging is anticipated from systems which require no mechanical cooling.
NASA Astrophysics Data System (ADS)
Wang, M. D.; Li, D. S.; Huang, Y.; Zhang, C.; Zhong, K. M.; Sun, L. N.
2013-08-01
In the notebook and clamshell mobile phone, data communication wire often requires repeated bending. Generally, communication wire with the actual application conditions, the test data cannot assess bending resistance performance of data communication wire is tested conventionally using wires with weights of 90 degree to test bending number, this test method and device is not fully reflect the fatigue performance in high frequency and light load application condition, at the same time it has a large difference between the test data of the long-term reliability of high frequency and low load conditions. In this paper, high frequency light load fatigue testing machine based on the giant magnetostrictive material and stroke multiplier is put forward, in which internal reflux stroke multiplier is driven by giant magnetostrictive material to realize the rapid movement of light load. This fatigue testing device has the following advantages: (1) When the load is far less than the friction, reducing friction is very effective to improve the device performance. Because the body is symmetrical, the friction loss of radial does not exist in theory, so the stress situation of mechanism is good with high transmission efficiency and long service life. (2) The installation position of the output hydraulic cylinder, can be arranged conveniently as ordinary cylinder. (3) Reciprocating frequency, displacement and speed of high frequency movement can be programmed easily to change with higher position precision. (4)Hydraulic oil in this device is closed to transmit, which does not produce any environment pollution. The device has no hydraulic pump and tank, and less energy conversion processes, so it is with the trend of green manufacturing.
Temperature coefficients and radiation induced DLTS spectra of MOCVD grown n(+)p InP solar cells
NASA Technical Reports Server (NTRS)
Walters, Robert J.; Statler, Richard L.; Summers, Geoffrey P.
1991-01-01
The effects of temperature and radiation on n(+)p InP solar cells and mesa diodes grown by metallorganic chemical vapor deposition (MOCVD) were studied. It was shown that MOCVD is capable of consistently producing good quality InP solar cells with Eff greater than 19 percent which display excellent radiation resistance due to minority carrier injection and thermal annealing. It was also shown that universal predictions of InP device performance based on measurements of a small group of test samples can be expected to be quite accurate, and that the degradation of an InP device due to any incident particle spectrum should be predictable from a measurement following a single low energy proton irradiation.
Led, Santiago; Azpilicueta, Leire; Aguirre, Erik; de Espronceda, Miguel Martínez; Serrano, Luis; Falcone, Francisco
2013-01-01
In this work, a novel ambulatory ECG monitoring device developed in-house called HOLTIN is analyzed when operating in complex indoor scenarios. The HOLTIN system is described, from the technological platform level to its functional model. In addition, by using in-house 3D ray launching simulation code, the wireless channel behavior, which enables ubiquitous operation, is performed. The effect of human body presence is taken into account by a novel simplified model embedded within the 3D Ray Launching code. Simulation as well as measurement results are presented, showing good agreement. These results may aid in the adequate deployment of this novel device to automate conventional medical processes, increasing the coverage radius and optimizing energy consumption. PMID:23584122
WiFi-based person identification
NASA Astrophysics Data System (ADS)
Yuan, Jing
2016-10-01
There has been increased interest in WIFI devices equipped with multiple antennas, which brings various wireless sensing applications such as localization, gesture identification and motion tracking. WIFI-based sensing has a lot of benefits such as device Free, which has shown great potential in smart scenarios. In this paper, we present WIP, a system that can distinguish a person from a small group of people. We prove that Channel State Information (CSI) can identify a person's gait. From the related-work, different people have different gait features. Thus the CSI-based gait features can be used to identify a person. We then proposed a machine-learning model-ANN to classify different person. The results show that ANN has a good performance in our scenario.
Fei, Linfeng; Hu, Yongming; Li, Xing; Song, Ruobing; Sun, Li; Huang, Haitao; Gu, Haoshuang; Chan, Helen L W; Wang, Yu
2015-02-18
Bismuth ferrite (BFO) nanofibers were synthesized via a sol-gel-based electrospinning process followed by thermal treatment. The influences of processing conditions on the final structure of the samples were investigated. Nanofibers prepared under optimized conditions were found to have a perovskite structure with good quality of crystallization and free of impurity phase. Ferroelectric and piezoelectric responses were obtained from individual nanofiber measured on a piezoelectric force microscope. A prototype photovoltaic device using laterally aligned BFO nanofibers and interdigital electrodes was developed and its performance was examined on a standard photovoltaic system. The BFO nanofibers were found to exhibit an excellent ferroelectric photovoltaic property with the photocurrent several times larger than the literature data obtained on BFO thin films.
An Investigation of the Performance of Various Reaction Control Devices
NASA Technical Reports Server (NTRS)
Hunter, Paul A.
1959-01-01
An investigation of a small-scale reaction control devices in still air with both subsonic and supersonic internal flows has shown that lateral forces approaching 70 percent of the resultant force of the undeflected jet can be obtained. These results were obtained with a tilted extension at a deflection of 40 deg. The tests of tilted extensions indicated an optimum length-to-diameter ratio of approximately 0.75 to 1.00, dependent upon the deflection angle. For the two geometric types of spoiler tabs tested, blockage-area ratio appears to be the only variable affecting the lateral force developed. Usable values of lateral force were developed by the full-eyelid type of device with reasonably small losses in the thrust and weight flow. Somewhat larger values of lateral force were developed by injecting a secondary flow normal to the primary jet, but for conditions of these tests the losses in thrust and weight flow were large. Relatively good agreement with other investigations was obtained for several of the devices. The agreement of the present results with those of an investigation made with larger-scale equipment indicates that Reynolds number may not be critical for these tests. In as much as the effects of external flow could influence the performance and other factors affecting the choice of a reaction control for a specific use, it would appear desirable to make further tests of the devices described in this report in the presence of external flow.
BRODY, DAVID L.; DONALD, CHRISTINE Mac; KESSENS, CHAD C.; YUEDE, CARLA; PARSADANIAN, MAIA; SPINNER, MIKE; KIM, EDDIE; SCHWETYE, KATHERINE E.; HOLTZMAN, DAVID M.; BAYLY, PHILIP V.
2008-01-01
Genetically modified mice represent useful tools for traumatic brain injury (TBI) research and attractive preclinical models for the development of novel therapeutics. Experimental methods that minimize the number of mice needed may increase the pace of discovery. With this in mind, we developed and characterized a prototype electromagnetic (EM) controlled cortical impact device along with refined surgical and behavioral testing techniques. By varying the depth of impact between 1.0 and 3.0 mm, we found that the EM device was capable of producing a broad range of injury severities. Histologically, 2.0-mm impact depth injuries produced by the EM device were similar to 1.0-mm impact depth injuries produced by a commercially available pneumatic device. Behaviorally, 2.0-, 2.5-, and 3.0-mm impacts impaired hidden platform and probe trial water maze performance, whereas 1.5-mm impacts did not. Rotorod and visible platform water maze deficits were also found following 2.5- and 3.0-mm impacts. No impairment of conditioned fear performance was detected. No differences were found between sexes of mice. Inter-operator reliability was very good. Behaviorally, we found that we could statistically distinguish between injury depths differing by 0.5 mm using 12 mice per group and between injury depths differing by 1.0 mm with 7-8 mice per group. Thus, the EM impactor and refined surgical and behavioral testing techniques may offer a reliable and convenient framework for preclinical TBI research involving mice. PMID:17439349
Kao, Peng-Kai; Hsu, Cheng-Che
2014-09-02
A portable microplasma generation device (MGD) operated in ambient air is introduced for making a microfluidic paper-based analytical device (μPAD) that serves as a primary healthcare platform. By utilizing a printed circuit board fabrication process, a flexible and lightweight MGD can be fabricated within 30 min with ultra low-cost. This MGD can be driven by a portable power supply (less than two pounds), which can be powered using 12 V-batteries or ac-dc converters. This MGD is used to perform maskless patterning of hydrophilic patterns with sub-millimeter spatial resolution on hydrophobic paper substrates with good pattern transfer fidelity. Using this MGD to fabricate μPADs is demonstrated. With a proper design of the MGD electrode geometry, μPADs with 500-μm-wide flow channels can be fabricated within 1 min and with a cost of less than $USD 0.05/device. We then test the μPADs by performing quantitative colorimetric assay tests and establish a calibration curve for detection of glucose and nitrite. The results show a linear response to a glucose assay for 1-50 mM and a nitrite assay for 0.1-5 mM. The low cost, miniaturized, and portable MGD can be used to fabricate μPADs on demand, which is suitable for in-field diagnostic tests. We believe this concept brings impact to the field of biomedical analysis, environmental monitoring, and food safety survey.
Jeong, Mi-Yun; Chung, Ki Soo; Wu, Jeong Weon
2014-11-01
Fine-structured polymerized cholesteric liquid crystal (PCLC) wedge laser devices have been realized, with high fine spatial tunability of the lasing wavelength. With resolution less than 0.3 nm in a broad spectral range, more than one hundred laser lines could be obtained in a PCLC cell without extra devices. For practical device application, we studied the stability of the device in detail over time, and in response to strong external light sources, and thermal perturbation. The PCLC wedge cells had good temporal stability for 1 year and showed good stability for strong perturbations, with the lasing wavelength shifting less than 1 nm, while the laser peak intensities decreased by up to 34%, and the high energy band edge of the photonic band gap (PBG) was red shifted 3 nm by temperature perturbation. However, when we consider the entire lasing spectrum for the PCLC cell, the 1-nm wavelength shift may not matter. Although the laser peak intensities were decreased by up to 34% in total for all of the perturbation cases, the remaining 34% laser peak intensity is considerable extent to make use. This good stability of the PCLC laser device is due to the polymerization of the CLC by UV curing. This study will be helpful for practical CLC laser device development.
Ghosh, Dilip; Skinner, Margot; Ferguson, Lynnette R
2006-04-03
Currently, the regulation of complementary and alternative medicines and related health claims in Australia and New Zealand is managed in a number of ways. Complementary medicines, including herbal, minerals, nutritional/dietary supplements, aromatherapy oils and homeopathic medicines are regulated under therapeutic goods/products legislation. The Therapeutic Goods Administration (TGA), a division of the Commonwealth Department of Health and Ageing is responsible for administering the provisions of the legislation in Australia. The New Zealand Medicines and Medical Devices Safety Authority (Medsafe) administers the provision of legislation in New Zealand. In December 2003 the Australian and New Zealand governments signed a Treaty to establish a single, bi-national agency to regulate therapeutic products, including medical devices prescription, over-the-counter and complementary medicines. A single agency will replace the Australian TGA and the New Zealand Medsafe. The role of the new agency will be to safeguard public health through regulation of the quality, safety and efficacy or performance of therapeutic products in both Australia and New Zealand. The major activities of the new joint Australia New Zealand therapeutic products agency are in product licensing, specifying labelling standards and setting the advertising scheme, together with determining the risk classes of medicines and creating an expanded list of ingredients permitted in Class I medicines. A new, expanded definition of complementary medicines is proposed and this definition is currently under consultation. Related Australian and New Zealand legislation is being developed to implement the joint scheme. Once this legislation is passed, the Treaty will come into force and the new joint regulatory scheme will begin. The agency is expected to commence operation no later than 1 July 2006 and will result in a single agency to regulate complementary and alternative medicines.
Ultra-low-cost clinical pulse oximetry.
Petersen, Christian L; Gan, Heng; MacInnis, Martin J; Dumont, Guy A; Ansermino, J Mark
2013-01-01
An ultra-low-cost pulse oximeter is presented that interfaces a conventional clinical finger sensor with a mobile phone through the headset jack audio interface. All signal processing is performed using the audio subsystem of the phone. In a preliminary volunteer study in a hypoxia chamber, we compared the oxygen saturation obtained with the audio pulse oximeter against a commercially available (and FDA approved) reference pulse oximeter (Nonin Xpod). Good agreement was found between the outputs of the two devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumant, Anirudha
The integration of 2D materials such as molybdenum disulphide (MoS2) with diamond (3D) was achieved by forming an heterojunction between these two materials and its electrical performance was studied experimentally. The device charactertics did show good rectifying nature when p-type single crystal diamond was integrated with n-type MoS2. These results are very encouraging indicating possible applications in semiconductor electronics, however further studies are required for a detailed understanding of the transport phenomena at the MoS2/diamond interface.
[1]Benzothieno[3,2-b]benzothiophene-Based Organic Dyes for Dye-Sensitized Solar Cells.
Capodilupo, Agostina L; Fabiano, Eduardo; De Marco, Luisa; Ciccarella, Giuseppe; Gigli, Giuseppe; Martinelli, Carmela; Cardone, Antonio
2016-04-15
Three new metal-free organic dyes with the [1]benzothieno[3,2-b]benzothiophene (BTBT) π-bridge, having the structure donor-π-acceptor (D-π-A) and labeled as 19, 20 and 21, have been designed and synthesized for application in dye-sensitized solar cells (DSSC). Once the design of the π-acceptor block was fixed, containing the BTBT as the π-bridge and the cyanoacrylic group as the electron acceptor and anchoring unit, we selected three donor units with different electron-donor capacity, in order to assemble new chromophores with high molar extinction coefficients (ε), whose absorption features well reflect the good performance of the final DSSC devices. Starting with the 19 dye, which shows a molar extinction coefficient ε of over 14,000 M(-1) cm(-1) and takes into account the absorption maximun at the longer wavelength, the substitution of the BFT donor unit with the BFA yields a great enhancement of absorptivity (molar extinction coefficient ε > 42,000 M(-1) cm(-1)), until reaching the higher value (ε > 69,000 M(-1) cm(-1)) with the BFPhz donor unit. The good general photovoltaic performances obtained with the three dyes highlight the suitable properties of electron-transport of the BTBT as the π-bridge in organic chromophore for DSSC, making this very cheap and easy to synthesize molecule particularly attractive for efficient and low-cost photovoltaic devices.
NASA Astrophysics Data System (ADS)
Zhou, Cheng; Liu, Jinping
2014-01-01
Carbon nanotubes (CNTs) have received increasing attention as electrode materials for high-performance supercapacitors. We herein present a straightforward method to synthesize CNT films directly on carbon cloths as electrodes for all-solid-state flexible supercapacitors (AFSCs). The as-made highly conductive electrodes possess a three-dimensional (3D) network architecture for fast ion diffusion and good flexibility, leading to an AFSC with a specific capacitance of 106.1 F g-1, an areal capacitance of 38.75 mF cm-2, an ultralong cycle life of 100 000 times (capacitance retention: 99%), a good rate capability (can scan at 1000 mV s-1, at which the capacitance is still ˜37.8% of that at 5 mV s-1), a high energy density (2.4 μW h cm-2) and a high power density (19 mW cm-2). Moreover, our AFSC maintains excellent electrochemical attributes even with serious shape deformation (bending, folding, etc), high mechanical pressure (63 kPa) and a wide temperature window (up to 100 ° C). After charging for only 5 s, three such AFSC devices connected in series can efficiently power a red round LED for 60 s. Our work could pave the way for the design of practical AFSCs, which are expected to be used for various flexible portable/wearable electronic devices in the future.
Fine-motor skills testing and prediction of endovascular performance.
Bech, Bo; Lönn, Lars; Schroeder, Torben V; Ringsted, Charlotte
2013-12-01
Performing endovascular procedures requires good control of fine-motor digital movements and hand-eye coordination. Objective assessment of such skills is difficult. Trainees acquire control of catheter/wire movements at various paces. However, little is known to what extent talent plays for novice candidates at entry to practice. To study the association between performance in a novel aptitude test of fine-motor skills and performance in simulated procedures. The test was based on manual course-tracking using a proprietary hand-operated roller-bar device coupled to a personal computer with monitor view rotation. A total of 40 test repetitions were conducted separately with each hand. Test scores were correlated with simulator performance. Group A (n = 14), clinicians with various levels of endovascular experience, performed a simulated procedure of contralateral iliac artery stenting. Group B (n = 19), medical students, performed 10 repetitions of crossing a challenging aortic bifurcation in a simulator. The test score differed markedly between the individuals in both groups, in particular with the non-dominant hand. Group A: the test score with the non-dominant hand correlated significantly with simulator performance assessed with the global rating scale SAVE (R = -0.69, P = 0.007). There was no association observed from performances with the dominant hand. Group B: there was no significant association between the test score and endovascular skills acquisition neither with the dominant nor with the non-dominant hand. Clinicians with increasing levels of endovascular technical experience had developed good fine-motor control of the non-dominant hand, in particular, that was associated with good procedural performance in the simulator. The aptitude test did not predict endovascular skills acquisition among medical students, thus, cannot be suggested for selection of novice candidates. Procedural experience and practice probably supplant the influence of innate abilities (talent) over time.
NASA Astrophysics Data System (ADS)
Tan, Yongtao; Liu, Ying; Kong, Lingbin; Kang, Long; Ran, Fen
2017-09-01
Nano-Co3O4 decorated with gold nanoparticles is synthesized by a simple method of in-situ reduction of HAuCl4 by sodium citrate for energy storage application, and the effect of gold content in the product on electrochemical performance is investigated in detail. Introducing gold nanoparticles into nano-Co3O4 bulk would contribute to reduce internal resistance of charge transmission. The results show that after in-situ reduction reaction gold nanoparticles imbed uniformly into nano-Co3O4 with irregular nanoparticles. The gold nanoparticles decorated nano-Co3O4 exhibits specific capacitance of 681 F g-1 higher than that of pristine Co3O4 of 368 F g-1. It is interesting that a good cycle life with the specific capacitance retention of 83.1% is obtained after 13000 cycles at 5 A g-1, which recovers to initial specific capacitance value when the test current density is turned to 2 A g-1. In addition, the device of asymmetric supercapacitor, assembled with gold nanoparticles decorated nano-Co3O4 as the positive electrode and activated carbon as the negative electrode, exhibits good energy density of 25 Wh kg-1, which is comparable to the asymmetric device assembled with normal nano-Co3O4, or the symmetric device assembled just with activated carbon.
Grating exchange system of independent mirror supported by floating rotary stage
NASA Astrophysics Data System (ADS)
Zhang, Jianhuan; Tao, Jin; Liu, Yan; Nan, Yan
2015-10-01
The performance of The Grating Exchange System can satisfy the Thirty Meter Telescope - TMT for astronomical observation WFOS index requirements and satisfy the requirement of accuracy in the grating exchange. It is used to install in the MOBIE and a key device of MOBIE. The Wide Field Optical Spectrograph (WFOS) is one of the three first-light observing capabilities selected by the TMT Science Advisory Committee. The Multi-Object Broadband Imaging Echellette (MOBIE) instrument design concept has been developed to address the WFOS requirements as described in the TMT Science-Based Requirements Document (SRD). The Grating Exchange System uses a new type of separate movement way of three grating devices and a mirror device. Three grating devices with a mirror are able to achieve independence movement. This kind of grating exchange system can effectively solve the problem that the volume of the grating change system is too large and that the installed space of MOBIE instruments is too limit. This system adopts the good stability, high precision of rotary stage - a kind of using air bearing (Air bearing is famous for its ultra-high precision, and can meet the optical accuracy requirement) and rotation positioning feedback gauge turntable to support grating device. And with a kind of device which can carry greater weight bracket fixed on the MOBIE instrument, with two sets of servo motor control rotary stage and the mirror device respectively. And we use the control program to realize the need of exercising of the grating device and the mirror device. Using the stress strain analysis software--SolidWorks for stress and strain analysis of this structure. And then checking the structure of the rationality and feasibility. And prove that this system can realize the positioning precision under different working conditions can meet the requirements of imaging optical grating diffraction efficiency and error by the calculation and optical performance analysis.
NASA Astrophysics Data System (ADS)
Wang, Hui; Shi, Jun-jie; Huang, Pu; Ding, Yi-min; Wu, Meng; Cen, Yu-lang; Yu, Tongjun
2018-04-01
Recently, two-dimensional (2D) InSe nanosheet becomes a promising material for electronic and optoelectronic nano-devices due to its excellent electron transport, wide bandgap tunability and good metal contact. The inevitable native point defects are essential in determining its characteristics and device performance. Here we investigate the defect formation energy and thermodynamic transition levels for the most important native defects and clarify the physical origin of n-type conductivity in unintentionally doped 2D InSe by using the powerful first-principles calculations. We find that both surface In adatom and Se vacancy are the key defects, and the In adatom, donated 0.65 electrons to the host, causes the n-type conductivity in monolayer InSe under In-rich conditions. For bilayer or few-layer InSe, the In interstitial within the van der Waals gap, transferred 0.68 electrons to InSe, is found to be the most stable donor defect, which dominates the n-type character. Our results are significant for understanding the defect nature of 2D InSe and improving the related nano-device performance.
Takahashi, Hidekazu; Haraguchi, Naotsugu; Nishimura, Junichi; Hata, Taishi; Matsuda, Chu; Yamamoto, Hirofumi; Mizushima, Tsunekazu; Mori, Masaki; Doki, Yuichiro; Nakajima, Kiyokazu
2018-06-01
Modern electrosurgical tools have a specific coagulation mode called "soft coagulation". However, soft coagulation has not been widely accepted for surgical operations. To optimize the soft coagulation environment, we developed a novel suction device integrated with an electrosurgical probe, called the "Suction ball coagulator" (SBC). In this study, we aimed to optimize the SBC design with a prototyping process involving a bench test and preclinical study; then, we aimed to demonstrate the feasibility, safety, and potential effectiveness of the SBC for laparoscopic surgery in clinical settings. SBC prototyping was performed with a bench test. Device optimization was performed in a preclinical study with a domestic swine bleeding model. Then, SBC was tested in a clinical setting during 17 clinical laparoscopic colorectal surgeries. In the bench tests, two tip hole sizes and patterns showed a good suction capacity. The preclinical study indicated the best tip shape for accuracy. In clinical use, no device-related adverse event was observed. Moreover, the SBC was feasible for prompt hemostasis and blunt dissections. In addition, SBC could evacuate vapors generated by tissue ablation using electroprobe during laparoscopic surgery. We successfully developed a novel, integrated suction/coagulation probe for hemostasis and commercialized it.
Direct laser-patterned micro-supercapacitors from paintable MoS2 films.
Cao, Liujun; Yang, Shubin; Gao, Wei; Liu, Zheng; Gong, Yongji; Ma, Lulu; Shi, Gang; Lei, Sidong; Zhang, Yunhuai; Zhang, Shengtao; Vajtai, Robert; Ajayan, Pulickel M
2013-09-09
Micrometer-sized electrochemical capacitors have recently attracted attention due to their possible applications in micro-electronic devices. Here, a new approach to large-scale fabrication of high-capacitance, two-dimensional MoS2 film-based micro-supercapacitors is demonstrated via simple and low-cost spray painting of MoS2 nanosheets on Si/SiO2 chip and subsequent laser patterning. The obtained micro-supercapacitors are well defined by ten interdigitated electrodes (five electrodes per polarity) with 4.5 mm length, 820 μm wide for each electrode, 200 μm spacing between two electrodes and the thickness of electrode is ∼0.45 μm. The optimum MoS2 -based micro-supercapacitor exhibits excellent electrochemical performance for energy storage with aqueous electrolytes, with a high area capacitance of 8 mF cm(-2) (volumetric capacitance of 178 F cm(-3) ) and excellent cyclic performance, superior to reported graphene-based micro-supercapacitors. This strategy could provide a good opportunity to develop various micro-/nanosized energy storage devices to satisfy the requirements of portable, flexible, and transparent micro-electronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carlos, Emanuel; Kiazadeh, Asal; Deuermeier, Jonas; Branquinho, Rita; Martins, Rodrigo; Fortunato, Elvira
2018-08-24
Lately, resistive switching memories (ReRAM) have been attracting a lot of attention due to their possibilities of fast operation, lower power consumption and simple fabrication process and they can also be scaled to very small dimensions. However, most of these ReRAM are produced by physical methods and nowadays the industry demands more simplicity, typically associated with low cost manufacturing. As such, ReRAMs in this work are developed from a solution-based aluminum oxide (Al 2 O 3 ) using a simple combustion synthesis process. The device performance is optimized by two-stage deposition of the Al 2 O 3 film. The resistive switching properties of the bilayer devices are reproducible with a yield of 100%. The ReRAM devices show unipolar resistive switching behavior with good endurance and retention time up to 10 5 s at 85 °C. The devices can be programmed in a multi-level cell operation mode by application of different reset voltages. Temperature analysis of various resistance states reveals a filamentary nature based on the oxygen vacancies. The optimized film was stacked between ITO and indium zinc oxide, targeting a fully transparent device for applications on transparent system-on-panel technology.
Compact Si-based asymmetric MZI waveguide on SOI as a thermo-optical switch
NASA Astrophysics Data System (ADS)
Rizal, C. S.; Niraula, B.
2018-03-01
A compact low power consuming asymmetric MZI based optical modulator with fast response time has been proposed on SOI platform. The geometrical and performance characteristics were analyzed in depth and optimized using coupled mode analysis and FDTD simulation tools, respectively. It was tested with and without implementation of thermo-optic (TO) effect. The device showed good frequency modulating characteristics when tested without the implementation of the TO effect. The fabricated device showed quality factor, Q ≈ 10,000, and this value is comparable to the Q of the device simulated with 25% transmission loss, showing FSR of 0.195 nm, FWHM ≈ 0.16 nm, and ER of 13 dB. With TO effect, it showed temperature sensitivity of 0.01 nm/°C and FSR of 0.19 nm. With the heater length of 4.18 mm, the device required 0.26 mW per π shift power with a switching voltage of 0.309 V, response time of 10 μ, and figure-of-merit of 2.6 mW μs. All of these characteristics make this device highly attractive for use in integrated Si photonics network as optical switch and wavelength modulator.
NASA Astrophysics Data System (ADS)
Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul
2016-08-01
Numerical solutions of the hydrodynamical model of semiconductor devices are presented in one and two-space dimension. The model describes the charge transport in semiconductor devices. Mathematically, the models can be written as a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the conservation element and solution element (CE/SE) method for hyperbolic step, and a semi-implicit scheme for the relaxation step. The numerical results of the suggested scheme are compared with the splitting scheme based on Nessyahu-Tadmor (NT) central scheme for convection step and the same semi-implicit scheme for the relaxation step. The effects of various parameters such as low field mobility, device length, lattice temperature and voltages for one-space dimensional hydrodynamic model are explored to further validate the generic applicability of the CE/SE method for the current model equations. A two dimensional simulation is also performed by CE/SE method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.
Optimization of ferroelectric liquid crystal optically addressed spatial light modulator performance
NASA Astrophysics Data System (ADS)
Perennes, Frederic; Crossland, William A.
1997-08-01
The switching mechanisms of ferroelectric liquid crystal optically addressed spatial light modulators (OASLMs) using a photosensitive structure made of an intrinsic amorphous silicon layer sandwiched in between an indium tin oxide coated glass sheet and a reflective metal layer are reviewed. Devices based on photoconductor and photodiode layers are briefly reviewed and attention is focused on pixelated metal mirror devices, which offer fast switching and good optical characteristics with the same sensitivity range as the photodiode OASLMs. They are particularly suitable for high frame rate SLMs with intense read beams. Optimum drive conditions for this type of device are considered. An equivalent electrical circuit is proposed for the photosensitive structure and the voltage drop across the liquid crystal layer is investigated and related to the optical response of the device. Experimental work is carried out to demonstrate the validity of our equivalent circuit. We show that the synchronization of a light source with the case pulse enables the OASLM to work at frame rates of a few kilohertz. We also demonstrate that the exact synchronization of the write light source with the write pulse enhances the potential memory of the device.
Large-Area CVD-Grown Sub-2 V ReS2 Transistors and Logic Gates.
Dathbun, Ajjiporn; Kim, Youngchan; Kim, Seongchan; Yoo, Youngjae; Kang, Moon Sung; Lee, Changgu; Cho, Jeong Ho
2017-05-10
We demonstrated the fabrication of large-area ReS 2 transistors and logic gates composed of a chemical vapor deposition (CVD)-grown multilayer ReS 2 semiconductor channel and graphene electrodes. Single-layer graphene was used as the source/drain and coplanar gate electrodes. An ion gel with an ultrahigh capacitance effectively gated the ReS 2 channel at a low voltage, below 2 V, through a coplanar gate. The contact resistance of the ion gel-gated ReS 2 transistors with graphene electrodes decreased dramatically compared with the SiO 2 -devices prepared with Cr electrodes. The resulting transistors exhibited good device performances, including a maximum electron mobility of 0.9 cm 2 /(V s) and an on/off current ratio exceeding 10 4 . NMOS logic devices, such as NOT, NAND, and NOR gates, were assembled using the resulting transistors as a proof of concept demonstration of the applicability of the devices to complex logic circuits. The large-area synthesis of ReS 2 semiconductors and graphene electrodes and their applications in logic devices open up new opportunities for realizing future flexible electronics based on 2D nanomaterials.
Composting in small laboratory pilots: Performance and reproducibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lashermes, G.; Barriuso, E.; Le Villio-Poitrenaud, M.
2012-02-15
Highlights: Black-Right-Pointing-Pointer We design an innovative small-scale composting device including six 4-l reactors. Black-Right-Pointing-Pointer We investigate the performance and reproducibility of composting on a small scale. Black-Right-Pointing-Pointer Thermophilic conditions are established by self-heating in all replicates. Black-Right-Pointing-Pointer Biochemical transformations, organic matter losses and stabilisation are realistic. Black-Right-Pointing-Pointer The organic matter evolution exhibits good reproducibility for all six replicates. - Abstract: Small-scale reactors (<10 l) have been employed in composting research, but few attempts have assessed the performance of composting considering the transformations of organic matter. Moreover, composting at small scales is often performed by imposing a fixed temperature, thus creatingmore » artificial conditions, and the reproducibility of composting has rarely been reported. The objectives of this study are to design an innovative small-scale composting device safeguarding self-heating to drive the composting process and to assess the performance and reproducibility of composting in small-scale pilots. The experimental setup included six 4-l reactors used for composting a mixture of sewage sludge and green wastes. The performance of the process was assessed by monitoring the temperature, O{sub 2} consumption and CO{sub 2} emissions, and characterising the biochemical evolution of organic matter. A good reproducibility was found for the six replicates with coefficients of variation for all parameters generally lower than 19%. An intense self-heating ensured the existence of a spontaneous thermophilic phase in all reactors. The average loss of total organic matter (TOM) was 46% of the initial content. Compared to the initial mixture, the hot water soluble fraction decreased by 62%, the hemicellulose-like fraction by 68%, the cellulose-like fraction by 50% and the lignin-like fractions by 12% in the final compost. The TOM losses, compost stabilisation and evolution of the biochemical fractions were similar to observed in large reactors or on-site experiments, excluding the lignin degradation, which was less important than in full-scale systems. The reproducibility of the process and the quality of the final compost make it possible to propose the use of this experimental device for research requiring a mass reduction of the initial composted waste mixtures.« less
Wasyluk, Jaromir T.; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona
2012-01-01
Summary Background We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Material/Methods Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18–70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. Results The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in μm) differ significantly between GDx and all OCT devices. Conclusions Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients. PMID:22367131
Innovation and the medical devices Farady partnership.
Tavakoli, M; Dunkerton, S B
2005-06-01
Demand for development of new generation medical devices has led many governments to support medical-sector research. In the United Kingdom, the Medical Devices Faraday Partnership was created to establish a collaborative network that would enhance the transfer of good ideas into new products and processes. The services it offers medical device manufacturers are outlined here.
Flexible Photodetectors Based on 1D Inorganic Nanostructures
Lou, Zheng
2015-01-01
Flexible photodetectors with excellent flexibility, high mechanical stability and good detectivity, have attracted great research interest in recent years. 1D inorganic nanostructures provide a number of opportunities and capabilities for use in flexible photodetectors as they have unique geometry, good transparency, outstanding mechanical flexibility, and excellent electronic/optoelectronic properties. This article offers a comprehensive review of several types of flexible photodetectors based on 1D nanostructures from the past ten years, including flexible ultraviolet, visible, and infrared photodetectors. High‐performance organic‐inorganic hybrid photodetectors, as well as devices with 1D nanowire (NW) arrays, are also reviewed. Finally, new concepts of flexible photodetectors including piezophototronic, stretchable and self‐powered photodetectors are examined to showcase the future research in this exciting field. PMID:27774404
Water surface modeling from a single viewpoint video.
Li, Chuan; Pickup, David; Saunders, Thomas; Cosker, Darren; Marshall, David; Hall, Peter; Willis, Philip
2013-07-01
We introduce a video-based approach for producing water surface models. Recent advances in this field output high-quality results but require dedicated capturing devices and only work in limited conditions. In contrast, our method achieves a good tradeoff between the visual quality and the production cost: It automatically produces a visually plausible animation using a single viewpoint video as the input. Our approach is based on two discoveries: first, shape from shading (SFS) is adequate to capture the appearance and dynamic behavior of the example water; second, shallow water model can be used to estimate a velocity field that produces complex surface dynamics. We will provide qualitative evaluation of our method and demonstrate its good performance across a wide range of scenes.
NASA Astrophysics Data System (ADS)
Liang, Xiaoci; Wang, Chengcai; Liang, Jun; Liu, Chuan; Pei, Yanli
2017-09-01
The oxygen related defects in the solution combustion-processed InZnO vitally affect the field-effect mobility and on-off characteristics in thin film transistors (TFTs). We use photoelectron spectroscopy to reveal that these defects can be well controlled by adjusting the atmosphere and flow rate during the combustion reaction, but are hardly affected by further post-annealing after the reaction. In device performance, the threshold voltage of the InZnO-TFTs was regulated in a wide range from 3.5 V to 11.0 V. To compromise the high field-effect mobility and good subthreshold properties, we fabricate the TFTs with double active layers of InZnO to achieve vertical gradience in defect distribution. The resulting TFT exhibits much higher field-effect mobility as 17.5 cm2 · V-1 · s-1, a low reversed sub-threshold slope as 0.35 V/decade, and a high on-off ratio as 107. The presented understandings and methods on defect engineering are efficient in improving the device performance of TFTs made from the combustion reaction process.
Tartaj, Pedro; Amarilla, Jose M
2014-02-28
Porous inorganic nanostructures with colloidal dimensions can be considered as ideal components of electrochemical devices that operate on renewable energy sources. They combine nanoscale properties with good accessibility, a high number of active sites, short diffusion distances and good processability. Herein, we review some of the liquid-phase routes that lead to the controlled synthesis of these nanostructures in the form of non-hollow, hollow or yolk-shell configurations. From solar and fuel cells to batteries and supercapacitors, we put special emphasis on showing how these sophisticated structures can enhance the efficiency of electrochemical energy devices.
Damiani, Mario Francesco; Quaranta, Vitaliano Nicola; Tedeschi, Ersilia; Drigo, Riccardo; Ranieri, Teresa; Carratù, Pierluigi; Resta, Onofrio
2013-08-01
Nocturnal application of continuous positive airway pressure (CPAP) is the standard treatment for patients with obstructive sleep apnoea (OSA). Determination of the therapeutic pressure (CPAP titration) is usually performed by a technician in the sleep laboratory during attended polysomnography. One possible alternative to manual titration is automated titration. Indeed, during the last 15 years, devices have been developed that deliver autoadjustable CPAP (A-CPAP). The aim of the present study was to compare the titration effectiveness of two A-CPAP devices using different flow-based algorithms in patients with OSA. This is a randomized study; 79 subjects underwent two consecutive unattended home A-CPAP titration nights with two different devices (Autoset Resmed; Remstar Auto Respironics); during the third and the fourth night, patients underwent portable monitoring in the sleep laboratory during fixed CPAP at the A-CPAP recommended pressure. Bland Altman plots showed good agreement between the recommended median and maximal pressure levels obtained with the two devices. A significant improvement was observed in all the sleep parameters by both A-CPAP machines to a similar degree. It was observed that the two A-CPAP devices using different algorithms are equally effective in initial titration of CPAP. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.
A NOVEL WEARABLE PUMP-LUNG DEVICE: IN-VITRO AND ACUTE IN-VIVO STUDY
Zhang, Tao; Wei, Xufeng; Bianchi, Giacomo; Wong, Philip M.; Biancucci, Brian; Griffith, Bartley P.; Wu, Zhongjun J.
2011-01-01
Background To provide long-term ambulatory cardiopulmonary and respiratory support for adult patients, a novel wearable artificial pump-lung device has been developed. The design features, in-vitro and acute in-vivo performance of this device are reported in this paper. Methods This device features a uniquely designed hollow fiber membrane bundle integrated with a magnetically levitated impeller together to form one ultra-compact pump-lung device, which can be placed like current paracorporeal ventricular assist devices to allow ambulatory support. The device is 117 mm in length and 89 mm in diameter and has a priming volume of 115 ml. In-vitro hydrodynamic, gas transfer and biocompatibility experiments were carried out in mock flow loops using ovine blood. Acute in-vivo characterization was conducted in ovine by surgically implanting the device between right atrium and pulmonary artery. Results The in-vitro results showed that the device with a membrane surface area of 0.8 m2 was capable of pumping blood from 1 to 4 L/min against a wide range of pressures and transferring oxygen at a rate of up to 180 ml/min at a blood flow of 3.5 L/min. Standard hemolysis tests demonstrated low hemolysis at the targeted operating condition. The acute in-vivo results also confirmed that the device can provide sufficient oxygen transfer with excellent biocompatibility. Conclusions Base on the in-vitro and acute in-vivo study, this highly integrated wearable pump-lung device can provide efficient respiratory support with good biocompatibility and it is ready for long-term evaluation. PMID:22014451
Development of implant loading device for animal study about various loading protocol: a pilot study
Yoon, Joon-Ho; Park, Young-Bum; Cho, Yuna; Kim, Chang-Sung; Choi, Seong-Ho; Moon, Hong-Seok; Lee, Keun-Woo
2012-01-01
PURPOSE The aims of this pilot study were to introduce implant loading devices designed for animal study and to evaluate the validity of the load transmission ability of the loading devices. MATERIALS AND METHODS Implant loading devices were specially designed and fabricated with two implant abutments and cast metal bars, and orthodontic expansion screw. In six Beagles, all premolars were extracted and two implants were placed in each side of the mandibles. The loading device was inserted two weeks after the implant placement. According to the loading protocol, the load was applied to the implants with different time and method,simulating early, progressive, and delayed loading. The implants were clinically evaluated and the loading devices were removed and replaced to the master cast, followed by stress-strain analysis. Descriptive statistics of remained strain (µε) was evaluated after repeating three cycles of the loading device activation. Statistic analysis was performed using nonparametric, independent t-test with 5% significance level and Friedman's test was also used for verification. RESULTS The loading devices were in good action. However, four implants in three Beagles showed loss of osseointegration. In stress-strain analysis, loading devices showed similar amount of increase in the remained strain after applying 1-unit load for three times. CONCLUSION Specialized design of the implant loading device was introduced. The loading device applied similar amount of loads near the implant after each 1-unit loading. However, the direction of the loads was not parallel to the long axis of the implants as predicted before the study. PMID:23236575
Spontaneous quasi single helicity regimes in EXTRAP T2R reversed-field pinch
NASA Astrophysics Data System (ADS)
Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Menmuir, S.; Cecconello, M.
2007-11-01
In recent years, good progress toward a better understanding and control of the plasma performance in reversed-field pinch devices has been made. These improvements consist both of the discovery of spontaneous plasma regimes, termed the quasi single helicity (QSH) regime, in which part of the plasma core is no longer stochastic, and of the development of techniques for active control of plasma instabilities. In this paper, a systematic study of spontaneous QSH in the EXTRAP T2R device [P. R. Brunsell, H. Bergsaker, M. Cecconello et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] is presented. In this device, QSH states can occur spontaneously and it is associated with magnetic and thermal structures. A statistical analysis to determine the most favorable experimental conditions to have a transition to the QSH regime will be presented. The results described here are useful to understand the underlying properties of QSH regimes in view of future applications of the QSH active control in EXTRAP T2R; they are also important to have a comparison with the QSH studied in other devices.
GaAs VLSI for aerospace electronics
NASA Technical Reports Server (NTRS)
Larue, G.; Chan, P.
1990-01-01
Advanced aerospace electronics systems require high-speed, low-power, radiation-hard, digital components for signal processing, control, and communication applications. GaAs VLSI devices provide a number of advantages over silicon devices including higher carrier velocities, ability to integrate with high performance optical devices, and high-resistivity substrates that provide very short gate delays, good isolation, and tolerance to many forms of radiation. However, III-V technologies also have disadvantages, such as lower yield compared to silicon MOS technology. Achieving very large scale integration (VLSI) is particularly important for fast complex systems. At very short gate delays (less than 100 ps), chip-to-chip interconnects severely degrade circuit clock rates. Complex systems, therefore, benefit greatly when as many gates as possible are placed on a single chip. To fully exploit the advantages of GaAs circuits, attention must be focused on achieving high integration levels by reducing power dissipation, reducing the number of devices per logic function, and providing circuit designs that are more tolerant to process and environmental variations. In addition, adequate noise margin must be maintained to ensure a practical yield.
NASA Astrophysics Data System (ADS)
Lee, Soo Hyun; Guan, Xiang-Yu; Jeon, Soo-Kun; Yu, Jae Su
2017-09-01
We investigated the package effect on the temperature-dependent optical and spectral characteristics of InGaN/GaN near-ultraviolet (NUV) lateral light-emitting diodes (LLEDs) on the metal heatsink (MH) and package (PKG) in the injection current range of 0 - 500 mA at 298 and 358 K. For the NUV LLEDs on the MH, the device characteristics reflected directly its chip performance. For the NUV LLEDs on the PKG, the rapidly varied spectral shift as well as the reduced device efficiency was observed due to the increased number of layers with relatively low thermal conductivities. The junction temperature ( T j ) and thermal resistance of the NUV LLEDs on the PKG were also significantly increased compared to the NUV LLEDs on the MH. The three-dimensional heat transfer simulations for both the devices were carried out to obtain the temperature distributions by finite element method. The theoretically calculated T j values showed a good agreement with the experimentally measured T j values.
Evaluation of a High Temperature SOI Half-Bridge MOSFET Driver, Type CHT-HYPERION
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad
2010-01-01
Silicon-On-Insulator (SOI) technology utilizes the addition of an insulation layer in its structure to reduce leakage currents and to minimize parasitic junctions. As a result, SOIbased devices exhibit reduced internal heating as compared to the conventional silicon devices, consume less power, and can withstand higher operating temperatures. In addition, SOI electronic integrated circuits display good tolerance to radiation by virtue of introducing barriers or lengthening the path for penetrating particles and/or providing a region for trapping incident ionization. The benefits of these parts make them suitable for use in deep space and planetary exploration missions where extreme temperatures and radiation are encountered. Although designed for high temperatures, very little data exist on the operation of SOI devices and circuits at cryogenic temperatures. In this work, the performance of a commercial-off-the-shelf (COTS) SOI half-bridge driver integrated circuit was evaluated under extreme temperatures and thermal cycling. The investigations were carried out to establish a baseline on the functionality and to determine suitability of this device for use in space exploration missions under extreme temperature conditions.
Gambe, Yoshiyuki; Sun, Yan; Honma, Itaru
2015-01-01
The development of high energy–density lithium-ion secondary batteries as storage batteries in vehicles is attracting increasing attention. In this study, high-voltage bipolar stacked batteries with a quasi-solid-state electrolyte containing a Li-Glyme complex were prepared, and the performance of the device was evaluated. Via the successful production of double-layered and triple-layered high-voltage devices, it was confirmed that these stacked batteries operated properly without any internal short-circuits of a single cell within the package: Their plateau potentials (6.7 and 10.0 V, respectively) were two and three times that (3.4 V) of the single-layered device, respectively. Further, the double-layered device showed a capacity retention of 99% on the 200th cycle at 0.5 C, which is an indication of good cycling properties. These results suggest that bipolar stacked batteries with a quasi-solid-state electrolyte containing a Li-Glyme complex could readily produce a high voltage of 10 V. PMID:25746860
Feng, Juanjuan; Wang, Xiuqin; Tian, Yu; Bu, Yanan; Luo, Chuannan; Sun, Min
2017-09-29
Carbon fibers (CFs) were functionalized with graphene oxide (GO) by an electrophoretic deposition (EPD) method for in-tube solid-phase microextraction (SPME). GO-CFs were filled into a poly(ether ether ketone) (PEEK) tube to obtain a fibers-in-tube SPME device, which was connected with high performance liquid chromatography (HPLC) equipment to build online SPME-HPLC system. Compared with CFs, GO-CFs presented obviously better extraction performance, due to excellent adsorption property and large surface area of GO. Using ten polycyclic aromatic hydrocarbons (PAHs) as model analytes, the important extraction conditions were optimized, such as sample flow rate, extraction time, organic solvent content and desorption time. An online analysis method was established with wide linear range (0.01-50μgL -1 ) and low detection limits (0.001-0.004μgL -1 ). Good sensitivity resulted from high enrichment factors (1133-3840) of GO-CFs in-tube device towards PAHs. The analysis method was used to online determination of PAHs in wastewater samples. Some target analytes were detected and relative recoveries were in the range of 90.2-112%. It is obvious that the proposed GO-CFs in-tube device was an efficient extraction device, and EPD could be used to develop nanomaterials functionalized sorbents for sample preparation. Copyright © 2017 Elsevier B.V. All rights reserved.
Davies, David James; Clancy, Michael; Dehghani, Hamid; Lucas, Samuel John Edwin; Forcione, Mario; Yakoub, Kamal Makram; Belli, Antonio
2018-06-07
The cost and highly invasive nature of brain monitoring modality in traumatic brain injury patients currently restrict its utility to specialist neurological intensive care settings. We aim to test the abilities of a frequency domain near-infrared spectroscopy (FD-NIRS) device in predicting changes in invasively measured brain tissue oxygen tension. Individuals admitted to a United Kingdom specialist major trauma centre were contemporaneously monitored with an FD-NIRS device and invasively measured brain tissue oxygen tension probe. Area under the curve receiver operating characteristic (AUROC) statistical analysis was utilised to assess the predictive power of FD-NIRS in detecting both moderate and severe hypoxia (20 and 10 mmHg, respectively), as measured invasively. 16 individuals were prospectively recruited to the investigation. Severe hypoxic episodes were detected in 9 of these individuals, with the NIRS demonstrating a broad range of predictive abilities (AUROC 0.68-0.88) from relatively poor to good. Moderate hypoxic episodes were detected in seven individuals with similar predictive performance (AUROC 0.576 - 0.905). A variable performance in the predictive powers of this FD-NIRS device to detect changes in brain tissue oxygen was demonstrated. Consequently, this enhanced NIRS technology has not demonstrated sufficient ability to replace the established invasive measurement.
Design and modeling of a measuring device for a TIR-R concentrator
NASA Astrophysics Data System (ADS)
Calero, Daniel Pérez; Miñano, Juan Carlos; Benitez, Pablo; Hernandez, Maikel; Cvetkovic, Aleksandra
2006-08-01
One of the most usual procedures to measure a concentrator optical efficiency is by direct comparison between the photocurrent generated by the compound concentrator/solar cell and photocurrent that single cell would generate under identical radiation conditions. Unfortunately, such procedure can give a good idea of the generator final performance, but can not indicate the real amount of radiation that will impinge over the cell. This apparent contradiction is based on the fact that once the cell is coupled with the concentrator, rays incidence is not perpendicular, but highly oblique, with an angle that can reach 70 ° or even greater for high concentration devices. The antireflective coating of the cell does not perform well enough for the whole incidence angle and frequency ranges because low cost is other important requirement for the solar cells. In consequence, the generated photocurrent drops for large incidence angles. In our case, a 70% incidence angle could, in the worst case, mean a 34% loss on generated photocurrent. With the aim of correcting such problem a special device has been designed in the framework of a EU funded project called HAMLET. The concept of the device is to substitute the concentrator receptor by a system formed by an optical collimator that would reduce concentration and incidence angle, and a characterized solar cell. The paper gives the results of this measuring procedure.
Current topics in surgery for multiple ventricular septal defects.
Yoshimura, Naoki; Fukahara, Kazuaki; Yamashita, Akio; Doki, Yoshinori; Takeuchi, Katsunori; Higuma, Tomonori; Senda, Kazutaka; Toge, Masayoshi; Matsuo, Tatsuro; Nagura, Saori; Aoki, Masaya; Sakata, Kimimasa; Sakai, Mari
2016-04-01
In this review article, we describe several topics, including the sandwich technique, the transatrial re-endocardialization technique, the limited apical left ventriculotomy approach and device closure. The sandwich technique was introduced for the closure of muscular ventricular septal defects (VSD) by sandwiching the septum between two felt patches placed in the left and right ventricle. This technique requires neither the transection of muscular trabeculae nor ventriculotomy. Although the sandwich technique has resulted in the improvement of surgical outcomes, cases of postoperative cardiac dysfunction have been reported. Multiple smaller VSDs have been closed with transatrial re-endocardialization. Septal dysfunction may be avoided through this technique, in which the septal trabeculae are approximated in two layers of superficial, endocardial running sutures. Recently, a number of reports have recommended a limited apical left ventriculotomy approach. With this technique, a much shorter incision of around 1 cm at the apex of the left ventricle may be sufficient for achieving the complete closure of apical muscular VSDs. The transcatheter or perventricular device closure of muscular VSDs has increasingly been performed with good results. Although favorable early and mid-term results of device closure have been reported, this method is not always safer or less invasive than surgical closure. Long-term evaluations should be performed to determine whether the right and left ventricular functions are affected by treatment with relatively large devices in the heart.
NASA Astrophysics Data System (ADS)
Kaçar, Rifat; Pıravadılı Mucur, Selin; Yıldız, Fikret; Dabak, Salih; Tekin, Emine
2017-06-01
The electrode/organic interface is one of the key factors in attaining superior device performance in organic electronics, and inserting a tailor-made layer can dramatically modify its properties. The use of nano-composite (NC) materials leads to many advantages by combining materials with the objective of obtaining a desirable combination of properties. In this context, zinc oxide/polyethyleneimine (ZnO:PEI) NC film was incorporated as an interfacial layer into inverted bottom-emission organic light emitting diodes (IBOLEDs) and fully optimized. For orange-red emissive MEH-PPV based IBOLEDs, a high power efficiency of 6.1 lm W-1 at a luminance of 1000 cd m-2 has been achieved. Notably, the external quantum efficiency (EQE) increased from 0.1 to 4.8% and the current efficiency (CE) increased from 0.2 to 8.7 cd A-1 with rise in luminance (L) from 1000 to above 10 000 cd m-2 levels when compared to that of pristine ZnO-based devices. An identical device architecture containing a ZnO:PEI NC layer has also been used to successfully fabricate green and blue emissive IBOLEDs. The significant enhancement in the inverted device performance, in terms of luminance and efficiency, is attributed to a good energy-level alignment between the cathode/organic interface which leads to effective carrier balance, resulting in efficient radiative-recombination.
Wang, Yufei; Peng, Wei; Tang, Junling; Dong, Lu; Gu, Chengchen; Zhang, Xin; Zhou, Jian; Jia, Weiping
2018-06-15
A real world clinical study was designed and conducted to evaluate the performance of a novel point-of-care device for determination of glycated haemoglobin A 1c (HbA 1c ), A1C EZ 2.0, in daily clinical practice. Five hundred and fourteen subjects were included in this study, and divided into three groups. HbA 1c was measured by A1C EZ 2.0 and three different high performance liquid chromatography (HPLC) devices: Bio-Rad Variant II Turbo, Tosoh HLC-723 G8 and Premier Hb9210 separately. Precision of A1C EZ 2.0 was also evaluated. Results obtained from A1C EZ 2.0 and all HPLC devices are correlated. Passing-Bablok regression analysis shows the equation of A1C EZ 2.0 results against the mean of HPLC devices with corresponding 95% confidence intervals (95% CI) for the intercept and slope is y = 0.10 (- 0.17 to 0.10) + 1.00 (1.00 to 1.04) x. Bland-Altman difference plot shows that the mean relative difference between A1C EZ 2.0 and Variant II Turbo, G8, Hb9210 and all HPLC results is 2.5%, 0.6%, 0.4% and 1.1%, respectively. In addition, 121 pairs of results determined by using both venous and capillary blood prove that the difference of two kinds of blood sample causes no notable variation when measured by A1C EZ 2.0. Precision study gives 2.3% and 1.9% of total coefficient of variation for normal and abnormal HbA 1c sample in A1C EZ 2.0. HbA 1c values measured by A1C EZ 2.0 were in good accordance with the results obtained with the reference HPLC devices.
Ma, Guofu; Hua, Fengting; Sun, Kanjun; Fenga, Enke; Peng, Hui; Zhang, Zhiguo; Lei, Ziqiang
2018-01-01
The electrochemical performance of an energy conversion and storage device like the supercapacitor mainly depends on the microstructure and morphology of the electrodes. In this paper, to improve the capacitance performance of the supercapacitor, the all-pseudocapacitive electrodes of lamella-like Bi 18 SeO 29 /BiSe as the negative electrode and flower-like Co 0.85 Se nanosheets as the positive electrode are synthesized by using a facile low-temperature one-step hydrothermal method. The microstructures and morphology of the electrode materials are carefully characterized, and the capacitance performances are also tested. The Bi 18 SeO 29 /BiSe and Co 0.85 Se have high specific capacitance (471.3 F g -1 and 255 F g -1 at 0.5 A g -1 ), high conductivity, outstanding cycling stability, as well as good rate capability. The assembled asymmetric supercapacitor completely based on the pseudocapacitive electrodes exhibits outstanding cycling stability (about 93% capacitance retention after 5000 cycles). Moreover, the devices exhibit high energy density of 24.2 Wh kg -1 at a power density of 871.2 W kg -1 in the voltage window of 0-1.6 V with 2 M KOH solution.
NASA Astrophysics Data System (ADS)
Hu, Q.; Li, Y.; Pan, H. L.; Liu, J. T.; Zhuang, B. T.
2015-01-01
Vane type propellant management device (PMD) is one of the key components of the vane-type surface tension tank (STT), and its fluid orbital performance directly determines the STT's success or failure. In present paper, numerical analysis and microgravity experiment study on fluid orbital performance of a vane type PMD were carried out. By using two-phase flow model of volume of fluid (VOF), fluid flow characteristics in the tank with the vane type PMD were numerically calculated, and the rules of fluid transfer and distribution were gotten. A abbreviate model test system of the vane type PMD is established and microgravity drop tower tests were performed, then fluid management and transmission rules of the vane type PMD were obtained under microgravity environment. The analysis and tests results show that the vane type PMD has good and initiative fluid orbital management ability and meets the demands of fluid orbital extrusion in the vane type STT. The results offer valuable guidance for the design and optimization of the new generation of vane type PMD, and also provide a new approach for fluid management and control in space environment.
21 CFR 26.45 - Monitoring continued equivalence.
Code of Federal Regulations, 2010 CFR
2010-04-01
... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT EVALUATION REPORTS: UNITED STATES AND THE EUROPEAN...
Ternary Au/ZnO/rGO nanocomposites electrodes for high performance electrochemical storage devices
NASA Astrophysics Data System (ADS)
Chaudhary, Manchal; Doong, Ruey-an; Kumar, Nagesh; Tseng, Tseung Yuen
2017-10-01
The combination of metal and metal oxide nanoparticles with reduced graphene oxides (rGO) is an active electrode material for electrochemical storage devices. Herein, we have, for the first time, reported the fabrication of ternary Au/ZnO/rGO nanocomposites by using a rapid and environmentally friendly microwave-assisted hydrothermal method for high performance supercapacitor applications. The ZnO/rGO provides excellent electrical conductivity and good macro/mesopore structures, which can facilitate the rapid electrons and ions transport. The Au nanoparticles with particle sizes of 7-12 nm are homogeneously distributed onto the ZnO/rGO surface to enhance the electrochemical performance by retaining the capacitance at high current density. The Au/ZnO/rGO nanocomposites, prepared with the optimized rGO amount of 100 mg exhibit a high specific capacitance of 875 and 424 F g-1 at current densities of 1 and 20 A g-1, respectively, in 2 M KOH. In addition, the energy and power densities of ternary Au/ZnO/rGO can be up to 17.6-36.5 Wh kg-1 and 0.27-5.42 kW kg-1, respectively. Results obtained in this study clearly demonstrate the excellence of ternary Au/ZnO/rGO nanocomposites as the active electrode materials for electrochemical pseudocapacitor performance and can open an avenue to fabricate metal/metal oxide/rGO nanocomposites for electrochemical storage devices with both high energy and power densities.
Progress in GaN devices performances and reliability
NASA Astrophysics Data System (ADS)
Saunier, P.; Lee, C.; Jimenez, J.; Balistreri, A.; Dumka, D.; Tserng, H. Q.; Kao, M. Y.; Chowdhury, U.; Chao, P. C.; Chu, K.; Souzis, A.; Eliashevich, I.; Guo, S.; del Alamo, J.; Joh, J.; Shur, M.
2008-02-01
With the DARPA Wide Bandgap Semiconductor Technology RF Thrust Contract, TriQuint Semiconductor and its partners, BAE Systems, Lockheed Martin, IQE-RF, II-VI, Nitronex, M.I.T., and R.P.I. are achieving great progress towards the overall goal of making Gallium Nitride a revolutionary RF technology ready to be inserted in defense and commercial applications. Performance and reliability are two critical components of success (along with cost and manufacturability). In this paper we will discuss these two aspects. Our emphasis is now operation at 40 V bias voltage (we had been working at 28 V). 1250 µm devices have power densities in the 6 to 9 W/mm with associated efficiencies in the low- to mid 60 % and associated gain in the 12 to 12.5 dB at 10 GHz. We are using a dual field-plate structure to optimize these performances. Very good performances have also been achieved at 18 GHz with 400 µm devices. Excellent progress has been made in reliability. Our preliminary DC and RF reliability tests at 40 V indicate a MTTF of 1E6hrs with1.3 eV activation energy at 150 0C channel temperature. Jesus Del Alamo at MIT has greatly refined our initial findings leading to a strain related theory of degradation that is driven by electric fields. Degradation can occur on the drain edge of the gate due to excessive strain given by inverse piezoelectric effect.
Lv, Qiying; Wang, Shang; Sun, Hongyu; Luo, Jun; Xiao, Jian; Xiao, JunWu; Xiao, Fei; Wang, Shuai
2016-01-13
Although carbonaceous materials possess long cycle stability and high power density, their low-energy density greatly limits their applications. On the contrary, metal oxides are promising pseudocapacitive electrode materials for supercapacitors due to their high-energy density. Nevertheless, poor electrical conductivity of metal oxides constitutes a primary challenge that significantly limits their energy storage capacity. Here, an advanced integrated electrode for high-performance pseudocapacitors has been designed by growing N-doped-carbon-tubes/Au-nanoparticles-doped-MnO2 (NCTs/ANPDM) nanocomposite on carbon fabric. The excellent electrical conductivity and well-ordered tunnels of NCTs together with Au nanoparticles of the electrode cause low internal resistance, good ionic contact, and thus enhance redox reactions for high specific capacitance of pure MnO2 in aqueous electrolyte, even at high scan rates. A prototype solid-state thin-film symmetric supercapacitor (SSC) device based on NCTs/ANPDM exhibits large energy density (51 Wh/kg) and superior cycling performance (93% after 5000 cycles). In addition, the asymmetric supercapacitor (ASC) device assembled from NCTs/ANPDM and Fe2O3 nanorods demonstrates ultrafast charge/discharge (10 V/s), which is among the best reported for solid-state thin-film supercapacitors with both electrodes made of metal oxide electroactive materials. Moreover, its superior charge/discharge behavior is comparable to electrical double layer type supercapacitors. The ASC device also shows superior cycling performance (97% after 5000 cycles). The NCTs/ANPDM nanomaterial demonstrates great potential as a power source for energy storage devices.
Loewenstein, Anat; Ferencz, Joseph R; Lang, Yaron; Yeshurun, Itamar; Pollack, Ayala; Siegal, Ruth; Lifshitz, Tova; Karp, Joseph; Roth, Daniel; Bronner, Guri; Brown, Justin; Mansour, Sam; Friedman, Scott; Michels, Mark; Johnston, Richards; Rapp, Moshe; Havilio, Moshe; Rafaeli, Omer; Manor, Yair
2010-01-01
The primary purpose of this study was to evaluate the ability of a home device preferential hyperacuity perimeter to discriminate between patients with choroidal neovascularization (CNV) and intermediate age-related macular degeneration (AMD), and the secondary purpose was to investigate the dependence of sensitivity on lesion characteristics. All participants were tested with the home device in an unsupervised mode. The first part of this work was retrospective using tests performed by patients with intermediate AMD and newly diagnosed CNV. In the second part, the classifier was prospectively challenged with tests performed by patients with intermediate AMD and newly diagnosed CNV. The dependence of sensitivity on lesion characteristics was estimated with tests performed by patients with CNV of both parts. In 66 eyes with CNV and 65 eyes with intermediate AMD, both sensitivity and specificity were 0.85. In the retrospective part (34 CNV and 43 intermediate AMD), sensitivity and specificity were 0.85 +/- 0.12 (95% confidence interval) and 0.84 +/- 0.11 (95% confidence interval), respectively. In the prospective part (32 CNV and 22 intermediate AMD), sensitivity and specificity were 0.84 +/- 0.13 (95% confidence interval) and 0.86 +/- 0.14 (95% confidence interval), respectively. Chi-square analysis showed no dependence of sensitivity on type (P = 0.44), location (P = 0.243), or size (P = 0.73) of the CNV lesions. A home device preferential hyperacuity perimeter has good sensitivity and specificity in discriminating between patients with newly diagnosed CNV and intermediate AMD. Sensitivity is not dependent on lesion characteristics.
Jin, Li-Na; Liu, Ping; Jin, Chun; Zhang, Jia-Nan; Bian, Shao-Wei
2018-01-15
In this work, a flexible and porous WO 3 /grapheme/polyester (WO 3 /G/PT) textile electrode was successfully prepared by in situ growing WO 3 on the fiber surface inside G/PT composite fabrics. The unique electrode structure facilitates to enhance the energy storage performance because the 3D conductive network constructed by the G/PT increase the electron transportation rate, nanotructured WO 3 exposed enhanced electrochemically active surface area and the hierarchically porous structure improved the electrolyte ion diffusion rate. The optimized WO 3 /G/PT textile electrode exhibited good electrochemical performance with a high areal capacitance of 308.2mFcm -2 at a scan rate of 2mVs -1 and excellent cycling stability. A flexible asymmetric supercapacitor (ASC) device was further fabricated by using the WO 3 /G/PT electrode and G/PT electrode, which exhibited a good specific capacitance of 167.6mFcm -3 and high energy density of 60μWhcm -3 at the power density of 2320 μWcm -3 . Copyright © 2017 Elsevier Inc. All rights reserved.
Simultaneous Calibration: A Joint Optimization Approach for Multiple Kinect and External Cameras.
Liao, Yajie; Sun, Ying; Li, Gongfa; Kong, Jianyi; Jiang, Guozhang; Jiang, Du; Cai, Haibin; Ju, Zhaojie; Yu, Hui; Liu, Honghai
2017-06-24
Camera calibration is a crucial problem in many applications, such as 3D reconstruction, structure from motion, object tracking and face alignment. Numerous methods have been proposed to solve the above problem with good performance in the last few decades. However, few methods are targeted at joint calibration of multi-sensors (more than four devices), which normally is a practical issue in the real-time systems. In this paper, we propose a novel method and a corresponding workflow framework to simultaneously calibrate relative poses of a Kinect and three external cameras. By optimizing the final cost function and adding corresponding weights to the external cameras in different locations, an effective joint calibration of multiple devices is constructed. Furthermore, the method is tested in a practical platform, and experiment results show that the proposed joint calibration method can achieve a satisfactory performance in a project real-time system and its accuracy is higher than the manufacturer's calibration.
Simultaneous Calibration: A Joint Optimization Approach for Multiple Kinect and External Cameras
Liao, Yajie; Sun, Ying; Li, Gongfa; Kong, Jianyi; Jiang, Guozhang; Jiang, Du; Cai, Haibin; Ju, Zhaojie; Yu, Hui; Liu, Honghai
2017-01-01
Camera calibration is a crucial problem in many applications, such as 3D reconstruction, structure from motion, object tracking and face alignment. Numerous methods have been proposed to solve the above problem with good performance in the last few decades. However, few methods are targeted at joint calibration of multi-sensors (more than four devices), which normally is a practical issue in the real-time systems. In this paper, we propose a novel method and a corresponding workflow framework to simultaneously calibrate relative poses of a Kinect and three external cameras. By optimizing the final cost function and adding corresponding weights to the external cameras in different locations, an effective joint calibration of multiple devices is constructed. Furthermore, the method is tested in a practical platform, and experiment results show that the proposed joint calibration method can achieve a satisfactory performance in a project real-time system and its accuracy is higher than the manufacturer’s calibration. PMID:28672823
NASA Astrophysics Data System (ADS)
Hassan, M.; Shahid, A.; Mahmood, Q.
2018-02-01
Density functional theory study of the structural, electrical, optical and thermoelectric behaviors of very less investigated anti-perovskites A3SnO (A = Ca, Sr, Ba) is performed with FP-LAPW technique. The A3SnO exhibit narrow direct band gap, in contrast to the wide indirect band gap of the respective perovskites. Hence, indirect to direct band gap transformation can be realized by the structural transition from perovskite to anti-perovskite. The p-p hybridization between A and O states result in the covalent bonding. The transparency and maximum reflectivity to the certain energies, and the verification of the Penn's model indicate potential optical device applications. Thermoelectric behaviors computed within 200-800 K depict that Ca3SnO exhibits good thermoelectric performance than Ba3SnO and Sr3SnO, and all three operate at their best at 800 K suggesting high temperature thermoelectric device applications.
Malvankar, Nikhil S; Mester, Tünde; Tuominen, Mark T; Lovley, Derek R
2012-02-01
Supercapacitors have attracted interest in energy storage because they have the potential to complement or replace batteries. Here, we report that c-type cytochromes, naturally immersed in a living, electrically conductive microbial biofilm, greatly enhance the device capacitance by over two orders of magnitude. We employ genetic engineering, protein unfolding and Nernstian modeling for in vivo demonstration of charge storage capacity of c-type cytochromes and perform electrochemical impedance spectroscopy, cyclic voltammetry and charge-discharge cycling to confirm the pseudocapacitive, redox nature of biofilm capacitance. The biofilms also show low self-discharge and good charge/discharge reversibility. The superior electrochemical performance of the biofilm is related to its high abundance of cytochromes, providing large electron storage capacity, its nanostructured network with metallic-like conductivity, and its porous architecture with hydrous nature, offering prospects for future low cost and environmentally sustainable energy storage devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Another step towards photodetector innovation: The first 1-inch industrial VSiPMT
NASA Astrophysics Data System (ADS)
Barbarino, G.; Barbato, F. C. T.; Mollo, C. M.; Nocerino, E.; Vivolo, D.; Fukasawa, A.
2018-09-01
The VSiPMT (Vacuum Silicon PhotoMultiplier Tube) is an original design for an innovative light detector we proposed with the aim to create new scientific instrumentation for future missions of exploration and observation of the universe. The idea behind this device is to replace the classical dynode chain of a photomultiplier tube with a silicon photomultiplier, the latter acting as an electron detector and amplifier. In this way we obtain a large area photodetector with an excellent photon counting, proper of the SiPMs, but with the dark noise of only one SiPM (1-inch is equivalent to ∼ 54 SiPM 3 × 3 mm2). From this point of view, the VSiPMT offers very attractive features and unprecedented performance in large area detection, such as: negligible power consumption, excellent SPE resolution, easy low-voltage-based stabilization and very good time performance. Hamamatsu realized for our group a 1-inch prototype. The results of the full characterization of the device are presented in this work.
Advancements in the Design and Fabrication of Ultrasound Transducers for Extreme Temperatures
NASA Astrophysics Data System (ADS)
Bosyj, Christopher
An ultrasound transducer for operation from room temperature to 800 °C is developed. The device includes a lithium niobate piezoelectric crystal, a porous zirconia attenuative backing layer, and a quarter wavelength matching layer. The manufacturing procedure for porous zirconia is optimized by adjusting pore size and forming pressure to yield good acoustic performance and mechanical integrity. Several acoustic coupling methods are evaluated. A novel silver-copper braze and an aluminum-based braze are found to be suitable at elevated temperatures. Several materials are evaluated for their performance as a quarter wavelength matching layer in the transducer stack. The use of either a nickel-chromium or stainless steel matching layer is established in place of ceramic components. Equipment limitations prevent evaluation at 800 °C, though ultrasound transmission is theoretically achievable with the devices established by this study. Reliable high-amplitude, wide-bandwidth ultrasound transmission is achieved from room temperature to 600 °C with two transducer variants.
A microprocessor based on a two-dimensional semiconductor
Wachter, Stefan; Polyushkin, Dmitry K.; Bethge, Ole; Mueller, Thomas
2017-01-01
The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III–V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor—molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material. PMID:28398336
NASA Astrophysics Data System (ADS)
Varma, Tarun; Periasamy, C.; Boolchandani, Dharmendar
2018-02-01
In this paper, we report the simulation, fabrication and characterisation of UV photo-detectors with bottom gate ZnO Thin Film Transistors (TFTs), grown on silicon at room temperature using RF magnetron sputtering process. The static performance of these detectors have been explored by varying the channel lengths (6 μm and 12 μm). The fabricated devices show low leakage currents with threshold voltages of 1.18 & 2.33 V, sub-threshold swings of 13.5 & 12.8 V/dec for channel lengths of 6 μm and 12 μm TFT, respectively. They also exhibit superior electrical characteristics with an ON-OFF ratio of the order of 3. The detector was also tested for device stability, with the transfer characteristics of the TFTs, which got deteriorated mainly by the negative bias-stress. The TFTs were further tested for UV detector applications and found to exhibit good photo-response.
Jiang, Hai-bin; Bai, Yuan; Zong, Gang-jun; Han, Lin; Li, Wei-ping; Lu, Yang; Qin, Yong-wen; Zhao, Xian-xian
2013-01-01
The aim of this study was to evaluate a new type of occluder for patent ductus arteriosus. Patent ductus arteriosus was established in a canine model by anastomosing a length of autologous jugular vein to the descending aorta and the left pulmonary artery in an end-to-side fashion. Transcatheter closure of each patent ductus arteriosus was performed on 10 dogs, which were then monitored for as long as 6 months with aortography, echocardiography, and histologic evaluation. Transcatheter closure with use of the novel pan-nitinol device was successful in all canine models. Postoperative echocardiography showed that the location and shape of the occluders were normal, without any residual shunting. Further histologic evaluation confirmed that the occluder surface was completely endothelialized 3 months after implantation. Transcatheter patent ductus arteriosus closure with the pan-nitinol occluder can be performed safely and successfully in a canine model and shows good biological compatibility and low mortality rates.
NASA Astrophysics Data System (ADS)
Bai, Z. Q.; Lu, Y. H.; Shen, L.; Ko, V.; Han, G. C.; Feng, Y. P.
2012-05-01
Transport properties of giant magnetoresistance (MR) junction consisting of trilayer Co2CrSi/Cu2CrAl/Co2CrSi Heusler alloys (L21) are studied using first-principles approach based on density functional theory and the non-equilibrium Green's function method. Highly conductive channels are found in almost the entire k-plane when the magnetizations of the electrodes are parallel, while they are completely blocked in the antiparallel configuration, which leads to a high magnetoresistance ratio (the pessimistic MR ratio is nearly 100%). Furthermore, the calculated I-V curve shows that the device behaves as a good spin valve with a considerable disparity in currents under the parallel and antiparallel magnetic configurations of the electrodes. The Co2CrSi/Cu2CrAl/Co2CrSi junction could be useful for high-performance all-metallic current-perpendicular-to-plane giant magnetoresistance reading head for the next generation high density magnetic storage.
Magomedov, Artiom; Sakai, Nobuya; Kamarauskas, Egidijus; Jokubauskaitė, Gabrielė; Franckevičius, Marius; Jankauskas, Vygintas; Snaith, Henry J; Getautis, Vytautas
2017-05-04
Perovskite solar cells are considered a promising technology for solar-energy conversion, with power conversion efficiencies currently exceeding 20 %. In most of the reported devices, Spiro-OMeTAD is used for positive-charge extraction and transport layer. Although a number of alternative hole-transporting materials with different aromatic or heteroaromatic fragments have already been synthesized, a cheap and well-performing hole-transporting material is still in high demand. In this work, a two-step synthesis of a carbazole-based hole-transporting material is presented. Synthesized compounds exhibited amorphous nature, good solubility and thermal stability. The perovskite solar cells employing the newly synthesized material generated a power conversion efficiency of 16.5 % which is slightly lower than that obtained with Spiro-OMeTAD (17.5 %). The low-cost synthesis and high performance makes our hole-transport material promising for applications in perovskite-based optoelectronic devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
21 CFR 26.74 - Preservation of regulatory authority.
Code of Federal Regulations, 2010 CFR
2010-04-01
... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT EVALUATION REPORTS: UNITED STATES AND THE EUROPEAN...
21 CFR 26.75 - Suspension of recognition obligations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT EVALUATION REPORTS: UNITED STATES AND THE EUROPEAN...
21 CFR 26.78 - Agreements with other countries.
Code of Federal Regulations, 2010 CFR
2010-04-01
... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT EVALUATION REPORTS: UNITED STATES AND THE EUROPEAN...
21 CFR 26.66 - Designation and listing procedures.
Code of Federal Regulations, 2010 CFR
2010-04-01
... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT EVALUATION REPORTS: UNITED STATES AND THE EUROPEAN...
Yu, Minghao; Zhang, Yangfan; Zeng, Yinxiang; Balogun, Muhammad-Sadeeq; Mai, Kancheng; Zhang, Zishou; Lu, Xihong; Tong, Yexiang
2014-07-16
A kind of multiwalled carbon-nanotube (MWCNT)/polydimethylsiloxane (PDMS) film with excellent conductivity and mechanical properties is developed using a facile and large-scale water surface assisted synthesis method. The film can act as a conductive support for electrochemically active PANI nano fibers. A device based on these PANI/MWCNT/PDMS electrodes shows good and stable capacitive behavior, even under static and dynamic stretching conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A broadband polarization-insensitive cloak based on mode conversion
Gu, Chendong; Xu, Yadong; Li, Sucheng; Lu, Weixin; Li, Jensen; Chen, Huanyang; Hou, Bo
2015-01-01
In this work, we demonstrate an one-dimensional cloak consisting of parallel-plated waveguide with two slabs of gradient index metamaterials attached to its metallic walls. In it objects are hidden without limitation of polarizations, and good performance is observed for a broadband of frequencies. The experiments at microwave frequencies are carried out, supporting the theoretical results very well. The essential principle behind the proposed cloaking device is based on mode conversion, which provides a new strategy to manipulate wave propagation. PMID:26175114
ANALYTiC: An Active Learning System for Trajectory Classification.
Soares Junior, Amilcar; Renso, Chiara; Matwin, Stan
2017-01-01
The increasing availability and use of positioning devices has resulted in large volumes of trajectory data. However, semantic annotations for such data are typically added by domain experts, which is a time-consuming task. Machine-learning algorithms can help infer semantic annotations from trajectory data by learning from sets of labeled data. Specifically, active learning approaches can minimize the set of trajectories to be annotated while preserving good performance measures. The ANALYTiC web-based interactive tool visually guides users through this annotation process.
Bring-Your-Own-Device: Turning Cell Phones into Forces for Good
ERIC Educational Resources Information Center
Imazeki, Jennifer
2014-01-01
Over the last few years, classroom response systems (or "clickers") have become increasingly common. Although most systems require students to use a standalone handheld device, bring-your-own-device (BYOD) systems allow students to use devices they already own (e.g., a cell phone, tablet or laptop) to submit responses via text message or…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
... (ICAO) Dangerous Goods Panel (DGP) regarding certain lithium ion battery-powered mobility aids (e.g... devices on an aircraft and providing for the intentional removal of a lithium ion battery from a device... limit lithium ion batteries used to power portable electronic devices and medical devices to 160 watt...
Martínez, Francisco J; Márquez, Andrés; Gallego, Sergi; Ortuño, Manuel; Francés, Jorge; Pascual, Inmaculada; Beléndez, Augusto
2015-02-20
Parallel-aligned (PA) liquid-crystal on silicon (LCoS) microdisplays are especially appealing in a wide range of spatial light modulation applications since they enable phase-only operation. Recently we proposed a novel polarimetric method, based on Stokes polarimetry, enabling the characterization of their linear retardance and the magnitude of their associated phase fluctuations or flicker, exhibited by many LCoS devices. In this work we apply the calibrated values obtained with this technique to show their capability to predict the performance of spatially varying phase multilevel elements displayed onto the PA-LCoS device. Specifically we address a series of multilevel phase blazed gratings. We analyze both their average diffraction efficiency ("static" analysis) and its associated time fluctuation ("dynamic" analysis). Two different electrical configuration files with different degrees of flicker are applied in order to evaluate the actual influence of flicker on the expected performance of the diffractive optical elements addressed. We obtain a good agreement between simulation and experiment, thus demonstrating the predictive capability of the calibration provided by the average Stokes polarimetric technique. Additionally, it is obtained that for electrical configurations with less than 30° amplitude for the flicker retardance, they may not influence the performance of the blazed gratings. In general, we demonstrate that the influence of flicker greatly diminishes when the number of quantization levels in the optical element increases.
NASA Astrophysics Data System (ADS)
Kim, Dae Kyom; Kim, Nam Dong; Park, Seung-Keun; Seong, Kwang-dong; Hwang, Minsik; You, Nam-Ho; Piao, Yuanzhe
2018-03-01
Flexible all-solid-state supercapacitors are desirable as potential energy storage systems for wearable technologies. Herein, we synthesize aminophenyl multiwall carbon nanotube (AP-MWCNT) grafted polyimide precursor by in situ polymerization method as a nitrogen-doped carbon precursor. Flexible supercapacitor electrodes are fabricated via a coating of carbon precursor on carbon cloth surface and carbonization at high temperature directly. The as-obtained electrodes, which can be directly used without any binders or additives, can deliver a high specific capacitance of 333.4 F g-1 at 1 A g-1 (based on active material mass) and excellent cycle stability with 103% capacitance retention after 10,000 cycles in a three-electrode system. The flexible all-solid-state supercapacitor device exhibits a high volumetric capacitance of 3.88 F cm-3 at a current density of 0.02 mA cm-3. And also the device can deliver a maximum volumetric energy density of 0.50 mWh cm-3 and presents good cycling stability with 85.3% capacitance retention after 10,000 cycles. This device cell can not only show extraordinary mechanical flexibilities allowing folding, twisting, and rolling but also demonstrate remarkable stable electrochemical performances under their forms. This work provides a novel approach to obtain carbon textile-based flexible supercapacitors with high electrochemical performance and mechanical flexibility.
Sánchez-Margallo, F. M.; Tapia-Araya, A.; Díaz-Güemes, I.
2015-01-01
Laparoscopic ovariohysterectomy using single-portal access was performed in nine selected owned dogs admitted for elective ovariohysterectomy and the surgical technique and outcomes were detailed. A multiport device (SILS Port, Covidien, USA) was placed at the umbilical area through a single 3 cm incision. Three cannulae were introduced in the multiport device through the access channels and laparoscopic ovariohysterectomy was performed using a 5-mm sealing device, a 5-mm articulating grasper and a 5-mm 30° laparoscope. The mean total operative time was 52.66±15.20 minutes and the mean skin incision during surgery was 3.09±0.20 cm. Of the nine cases examined, in the one with an ovarian tumour, the technique was converted to multiport laparoscopy introducing an additional 5-mm trocar. No surgical complications were encountered and intraoperative blood loss was minimum in all animals. Clashing of the instruments and reduced triangulation were the main limitations of this technique. The combination of articulated and straight instruments facilitated triangulation towards the surgical field and dissection capability. One month after surgery a complete wound healing was observed in all animals. The present data showed that ovariohysterectomy performed with a single-port access is technically feasible in dogs. The unique abdominal incision minimises the abdominal trauma with good cosmetic results. PMID:26568831
TWIICE - A lightweight lower-limb exoskeleton for complete paraplegics.
Vouga, Tristan; Baud, Romain; Fasola, Jemina; Bouri, Mohamed; Bleuler, Hannes
2017-07-01
This paper introduces TWIICE, a lower-limb exoskeleton that enables people suffering from complete paraplegia to stand up and walk again. TWIICE provides complete mobilization of the lower-limbs, which is a first step toward enabling the user to regain independence in activities of the daily living. The tasks it can perform include level and inclined walking (up to 20° slope), stairs ascent and descent, sitting on a seat, and standing up. Participation in the world's first Cybathlon (Zurich, 2016) demonstrated good performance at these demanding tasks. In this paper, we describe the implementation details of the device and comment on preliminary results from a single user case study.
Siqueira, Vicente N; Mancuso, Frederico J N; Campos, Orlando; De Paola, Angelo A; Carvalho, Antonio C; Moises, Valdir A
2015-10-01
Training requirements for general cardiologists without echocardiographic expertise to perform focused cardiac ultrasound (FCU) with portable devices have not yet been defined. The objective of this study was to evaluate a training program to instruct cardiology residents to perform FCU with a hand-carried device (HCD) in different clinical settings. Twelve cardiology residents were subjected to a 50-question test, 4 lectures on basic echocardiography and imaging interpretation, the supervised interpretation of 50 echocardiograms and performance of 30 exams using HCD. After this period, they repeated the written test and were administered a practical test comprising 30 exams each (360 patients) in different clinical settings. They reported on 15 parameters and a final diagnosis; their findings were compared to the HCD exam of a specialist in echocardiography. The proportion of correct answers on the theoretical test was higher after training (86%) than before (51%; P = 0.001). The agreement was substantial among the 15 parameters analyzed (kappa ranging from 0.615 to 0.891; P < 0.001). The percentage of correct interpretation was lower for abnormal (75%) than normal (95%) items, for valve abnormalities (85%) compared to other items (92%) and for graded scale (87%) than for dichotomous (95%) items (P < 0.0001, for all). For the final diagnoses, the kappa value was higher than 0.941 (P < 0.001; 95% CI [0.914, 0.955]). The training proposed enabled residents to perform FCU with HCD, and their findings were in good agreement with those of a cardiologist specialized in echocardiography. © 2015, Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Aluguri, R.; Kumar, D.; Simanjuntak, F. M.; Tseng, T.-Y.
2017-09-01
A bipolar transistor selector was connected in series with a resistive switching memory device to study its memory characteristics for its application in cross bar array memory. The metal oxide based p-n-p bipolar transistor selector indicated good selectivity of about 104 with high retention and long endurance showing its usefulness in cross bar RRAM devices. Zener tunneling is found to be the main conduction phenomena for obtaining high selectivity. 1BT-1R device demonstrated good memory characteristics with non-linearity of 2 orders, selectivity of about 2 orders and long retention characteristics of more than 105 sec. One bit-line pull-up scheme shows that a 650 kb cross bar array made with this 1BT1R devices works well with more than 10 % read margin proving its ability in future memory technology application.
21 CFR Appendices C-F to Subpart B... - [Reserved
Code of Federal Regulations, 2010 CFR
2010-04-01
... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT EVALUATION REPORTS: UNITED STATES AND THE EUROPEAN...
21 CFR 26.19 - Information relating to quality aspects.
Code of Federal Regulations, 2010 CFR
2010-04-01
... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT EVALUATION REPORTS: UNITED STATES AND THE EUROPEAN...
21 CFR 26.44 - Transmission of product evaluation reports.
Code of Federal Regulations, 2010 CFR
2010-04-01
... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT EVALUATION REPORTS: UNITED STATES AND THE EUROPEAN...
Real time aircraft fly-over noise discrimination
NASA Astrophysics Data System (ADS)
Genescà, M.; Romeu, J.; Pàmies, T.; Sánchez, A.
2009-06-01
A method for measuring aircraft noise time history with automatic elimination of simultaneous urban noise is presented in this paper. A 3 m-long 12-microphone sparse array has been proven to give good performance in a wide range of urban placements. Nowadays, urban placements have to be avoided because their background noise has a great influence on the measurements made by sound level meters or single microphones. Because of the small device size and low number of microphones (that make it so easy to set up), the resolution of the device is not high enough to provide a clean aircraft noise time history by only applying frequency domain beamforming to the spatial cross-correlations of the microphones' signals. Therefore, a new step to the processing algorithm has been added to eliminate this handicap.
Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kyu-Tae; Seo, Sungyong; Yong Lee, Jae
We present transmission visible wavelength filters based on strong interference behaviors in an ultrathin semiconductor material between two metal layers. The proposed devices were fabricated on 2 cm × 2 cm glass substrate, and the transmission characteristics show good agreement with the design. Due to a significantly reduced light propagation phase change associated with the ultrathin semiconductor layer and the compensation in phase shift of light reflecting from the metal surface, the filters show an angle insensitive performance up to ±70°, thus, addressing one of the key challenges facing the previously reported photonic and plasmonic color filters. This principle, described in this paper, canmore » have potential for diverse applications ranging from color display devices to the image sensors.« less
NASA Astrophysics Data System (ADS)
Peng, Cheng; Wu, Liangcai; Rao, Feng; Song, Zhitang; Yang, Pingxiong; Song, Hongjia; Ren, Kun; Zhou, Xilin; Zhu, Min; Liu, Bo; Chu, Junhao
2012-09-01
W-Sb-Te phase-change material has been proposed to improve the performance of phase-change memory (PCM). Crystallization temperature, crystalline resistance, and 10-year data retention of Sb2Te increase markedly by W doping. The Wx(Sb2Te)1-x films crystallize quickly into a stable hexagonal phase with W uniformly distributing in the crystal lattice, which ensures faster SET speed and better operation stability for the application in practical device. PCM device based on W0.07(Sb2Te)0.93 shows ultrafast SET operation (6 ns) and good endurance (1.8 × 105 cycles). W-Sb-Te material is a promising candidate for the trade-off between programming speed and data retention.
NASA Astrophysics Data System (ADS)
Lu, S. G.; Chen, X.; Levard, T.; Diglio, P. J.; Gorny, L. J.; Rahn, C. D.; Zhang, Q. M.
2015-06-01
Poly(vinylidene fluoride) (PVDF) based polymers are attractive for applications for artificial muscles, high energy density storage devices etc. Recently these polymers have been found great potential for being used as actuators for refreshable full-page Braille displays for visually impaired people in terms of light weight, miniaturized size, and larger displacement, compared with currently used lead zirconate titanate ceramic actuators. The applied voltages of published polymer actuators, however, cannot be reduced to meet the requirements of using city power. Here, we report the polymer actuator generating quite large displacement and blocking force at a voltage close to the city power. Our embodiments also show good self-healing performance and disuse of lead-containing material, which makes the Braille device safer, more reliable and more environment-friendly.
Lu, S G; Chen, X; Levard, T; Diglio, P J; Gorny, L J; Rahn, C D; Zhang, Q M
2015-06-16
Poly(vinylidene fluoride) (PVDF) based polymers are attractive for applications for artificial muscles, high energy density storage devices etc. Recently these polymers have been found great potential for being used as actuators for refreshable full-page Braille displays for visually impaired people in terms of light weight, miniaturized size, and larger displacement, compared with currently used lead zirconate titanate ceramic actuators. The applied voltages of published polymer actuators, however, cannot be reduced to meet the requirements of using city power. Here, we report the polymer actuator generating quite large displacement and blocking force at a voltage close to the city power. Our embodiments also show good self-healing performance and disuse of lead-containing material, which makes the Braille device safer, more reliable and more environment-friendly.
NASA Astrophysics Data System (ADS)
Liu, Minghuan; Liu, Yonggang; Zhang, Guiyang; Peng, Zenghui; Li, Dayu; Ma, Ji; Xuan, Li
2016-11-01
Holographic polymer dispersed liquid crystal (HPDLC) based distributed feedback (DFB) lasers were prepared with poly (-methoxy-5-(2‧-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) film as the active medium layer. The HPDLC grating film was fabricated via holographic induced photopolymerization. The pure film spectra of MEH-PPV and the amplified spontaneous emission (ASE) spectrum were investigated. The laser device was single-longitudinal mode operation. The tunability of the HPDLC DFB laser was achieved by selecting different grating periods. The lasing performances were also characterized and compared from different diffraction orders. The lasing threshold increased with the diffraction order and the third order laser possessed the largest conversion efficiency in this device. The experimental results were in good agreement with the theoretical calculations.
Faunce, Thomas Alured
2006-01-01
• Expert evaluations of the safety, efficacy and cost-effectiveness of pharmaceutical and medical devices, prior to marketing approval or reimbursement listing, collectively represent a globally important public good. The scientific processes involved play a major role in protecting the public from product risks such as unintended or adverse events, sub-standard production and unnecessary burdens on individual and governmental healthcare budgets. • Most States now have an increasing policy interest in this area, though institutional arrangements, particularly in the area of cost-effectiveness analysis of medical devices, are not uniformly advanced and are fragile in the face of opposing multinational industry pressure to recoup investment and maintain profit margins. • This paper examines the possibility, in this context, of States commencing negotiations toward bilateral trade agreement provisions, and ultimately perhaps a multilateral Treaty, on safety, efficacy and cost-effectiveness analysis of pharmaceuticals and medical devices. Such obligations may robustly facilitate a conceptually interlinked, but endangered, global public good, without compromising the capacity of intellectual property laws to facilitate local product innovations. PMID:16569240
NASA Astrophysics Data System (ADS)
Shiota, Koki; Kai, Kazuho; Nagaoka, Shiro; Tsuji, Takuto; Wakahara, Akihiro; Rusop, Mohamad
2016-07-01
The educational method which is including designing, making, and evaluating actual semiconductor devices with learning the theory is one of the best way to obtain the fundamental understanding of the device physics and to cultivate the ability to make unique ideas using the knowledge in the semiconductor device. In this paper, the simplified Boron thermal diffusion process using Sol-Gel material under normal air environment was proposed based on simple hypothesis and the feasibility of the reproducibility and reliability were investigated to simplify the diffusion process for making the educational devices, such as p-n junction, bipolar and pMOS devices. As the result, this method was successfully achieved making p+ region on the surface of the n-type silicon substrates with good reproducibility. And good rectification property of the p-n junctions was obtained successfully. This result indicates that there is a possibility to apply on the process making pMOS or bipolar transistors. It suggests that there is a variety of the possibility of the applications in the educational field to foster an imagination of new devices.
21 CFR 26.12 - Nature of recognition of inspection reports.
Code of Federal Regulations, 2010 CFR
2010-04-01
... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT EVALUATION REPORTS: UNITED STATES AND THE EUROPEAN...
High-efficiency white OLEDs based on small molecules
NASA Astrophysics Data System (ADS)
Hatwar, Tukaram K.; Spindler, Jeffrey P.; Ricks, M. L.; Young, Ralph H.; Hamada, Yuuhiko; Saito, N.; Mameno, Kazunobu; Nishikawa, Ryuji; Takahashi, Hisakazu; Rajeswaran, G.
2004-02-01
Eastman Kodak Company and SANYO Electric Co., Ltd. recently demonstrated a 15" full-color, organic light-emitting diode display (OLED) using a high-efficiency white emitter combined with a color-filter array. Although useful for display applications, white emission from organic structures is also under consideration for other applications, such as solid-state lighting, where high efficiency and good color rendition are important. By incorporating adjacent blue and orange emitting layers in a multi-layer structure, highly efficient, stable white emission has been attained. With suitable host and dopant combinations, a luminance yield of 20 cd/A and efficiency of 8 lm/W have been achieved at a drive voltage of less than 8 volts and luminance level of 1000 cd/m2. The estimated external efficiency of this device is 6.3% and a high level of operational stability is observed. To our knowledge, this is the highest performance reported so far for white organic electroluminescent devices. We will review white OLED technology and discuss the fabrication and operating characteristics of these devices.
Shape-Tailorable Graphene-Based Ultra-High-Rate Supercapacitor for Wearable Electronics.
Xie, Binghe; Yang, Cheng; Zhang, Zhexu; Zou, Peichao; Lin, Ziyin; Shi, Gaoquan; Yang, Quanhong; Kang, Feiyu; Wong, Ching-Ping
2015-06-23
With the bloom of wearable electronics, it is becoming necessary to develop energy storage units, e.g., supercapacitors that can be arbitrarily tailored at the device level. Although gel electrolytes have been applied in supercapacitors for decades, no report has studied the shape-tailorable capability of a supercapacitor, for instance, where the device still works after being cut. Here we report a tailorable gel-based supercapacitor with symmetric electrodes prepared by combining electrochemically reduced graphene oxide deposited on a nickel nanocone array current collector with a unique packaging method. This supercapacitor with good flexibility and consistency showed excellent rate performance, cycling stability, and mechanical properties. As a demonstration, these tailorable supercapacitors connected in series can be used to drive small gadgets, e.g., a light-emitting diode (LED) and a minimotor propeller. As simple as it is (electrochemical deposition, stencil printing, etc.), this technique can be used in wearable electronics and miniaturized device applications that require arbitrarily shaped energy storage units.
Liu, Ai-Lin; Li, Zhong-Qiu; Wu, Zeng-Qiang; Xia, Xing-Hua
2018-05-15
For study of the photocatalytic reaction kinetics in a confined microsystem, a photocatalysis microreactor integrated on a microfluidic device has been fabricated using an on-line UV/vis detector. The performance of the photocatalysis microreactor is evaluated by the photocatalytic degradation of Rhodamine B chosen as model target by using commercial titanium dioxide (Degussa P25, TiO 2 ) nanoparticles as a photocatalyst. Results show that the photocatalytic reaction occurs via the Langmuir-Hinshelwood mechanism and the photocatalysis kinetics in the confined microsystem (r = 0.359 min -1 ) is about 10 times larger than that in macrosystem (r = 0.033 min -1 ). In addition, the photocatalysis activity of the immobilized TiO 2 nanoparticles in the microreactor exhibits good stability under flowing conditions. The present microchip device offers an interesting platform for screening of photocatalysts and exploration of photocatalysis mechanisms and kinetics. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jung, Eui Dae; Nam, Yun Seok; Seo, Houn; Lee, Bo Ram; Yu, Jae Choul; Lee, Sang Yun; Kim, Ju-Young; Park, Jang-Ung; Song, Myoung Hoon
2015-09-01
Here, we report a comprehensive analysis of the electrical, optical, mechanical, and surface morphological properties of composite nanostrutures based on silver nanowires (AgNW) and PEDOT:PSS conducting polymer for the use as flexible and transparent electrodes. Compared to ITO or the single material of AgNW or PEDOT:PSS, the AgNW/PEDOT:PSS composite electrode showed high electrical conductivity with a low sheet resistance of 26.8 Ω/sq at 91% transmittance (at 550 nm), improves surface smoothness, and enhances mechanical properties assisted by an amphiphilic fluoro-surfactant. The polymeric light-emitting diodes (PLEDs) and organic solar cells (OSCs) using the AgNW/PEDOT:PSS composite electrode showed higher device performances than those with AgNW and PEDOT:PSS electrodes and excellent flexibility under bending test. These results indicates that the AgNW/PEDOT:PSS composite presented is a good candidate as next-generation transparent elelctrodes for applications into flexible optoelectronic devices. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Dumitrescu, Anca Laura; Paulescu, Marius; Ercuta, Aurel
2015-12-01
The construction of a solid state device-based pyranometer designated to broadband irradiance measurements is presented in this paper. The device is built on the physical basis that the temperature difference between two bodies of identical shape and external surface area, identically exposed to the incident radiation, but having different absorption and heat transfer coefficients (e.g. one body is painted white and the other is painted black), is proportional to the incident irradiance. This proportionality may be put in evidence if the two bodies consisting of identical arrays of correspondingly painted semiconductor diodes, due to the thermal behaviour of their p-n junction. It is theoretically predicted and experimentally confirmed that the voltage drop across a diode passed through a constant forward current linearly decreases with the temperature of the junction. In other words, a signal proportional to the irradiance of the light source may be obtained via conventional analog electronics. The calibration of the apparatus, as performed by means of a professional device (LP PYRA 03), indicates a good linearity.
Fiala, Peter; Li, Yunqi; Dorrer, Christophe
2018-01-29
Here, we investigate the focusing and correcting wavefront aberration of an optical wave using binary amplitude and polarization modulation. Focusing is performed by selectively modulating the field in different zones of the pupil to obtain on-axis constructive interference at a given distance. The conventional Soret zone plate (binary amplitude profile) is expanded to a polarization Soret zone plate with twice the focusing efficiency. Binary pixelated devices that approximate the sinusoidal transmission profile of a Gabor zone plate by spatial dithering are also investigated with amplitude and polarization modulation. Wavefront aberrations are corrected by modulation of the field in the pupilmore » plane to prevent destructive interference in the focal plane of an ideal focusing element. Polarization modulation improves the efficiency obtained by amplitude-only modulation, with a gain that depends on the aberration. Experimental results obtained with Cr-on-glass devices for amplitude modulation and liquid crystal devices operating in the Mauguin condition for polarization modulation are in very good agreement with simulations.« less
NASA Astrophysics Data System (ADS)
Maheswari, Nallappan; Muralidharan, Gopalan
2017-09-01
Well defined crystallographic and one dimensional morphological structure of molybdenum oxide were successfully synthesized by adjusting the duration of hydrothermal treatment. The prepared molybdenum oxide was examined through XRD, SEM, FTIR, TEM, BET and electrochemical studies. The XRD patterns illustrate that MoOx prepared by variying the hydrothermal reaction time are in different crystallographic structure of MoyOx (Mo8O23 and MoO3). SEM studies reveal the different morphological structures ranging from flake like morphology to nanorods. TEM images confirm the excellent nanorod structure. The nanorod structure ensures good cyclic behaviour with maximum capacitance of 1080 F g-1 at a current density of 2 A g-1. This large capacity of the MoO3 nanostructures enabled fabrication of symmetric and asymmertic supercapacitor devices. The asymmertic device exhibits a maximum specific capacitance of 145 F g-1 at 2 mV s-1 with highest energy density of 38.6 W h kg-1 at 374.7 W kg-1 power density.
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2004-01-01
In fiscal year 2003, the continuation of the Hybrid Power Management (HPM) Program through NASA Glenn Research Center's Commercial Technology Office resulted in several new successful applications of this pioneering technology. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors, fuel cells, and photovoltaics. HPM has extremely wide potential, with applications from nanowatts to megawatts--including power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. Fuel cells provide excellent efficiency and energy density, but do not have good power density. In contrast, ultracapacitors have excellent power density and virtually unlimited cycle life. To improve the power density of the fuel cell, the combination of fuel cells and ultracapacitors was evaluated.
Dissolved oxygen sensing using organometallic dyes deposited within a microfluidic environment
NASA Astrophysics Data System (ADS)
Chen, Q. L.; Ho, H. P.; Jin, L.; Chu, B. W.-K.; Li, M. J.; Yam, V. W.-W.
2008-02-01
This work primarily aims to integrate dissolved oxygen sensing capability with a microfluidic platform containing arrays of micro bio-reactors or bio-activity indicators. The measurement of oxygen concentration is of significance for a variety of bio-related applications such as cell culture and gene expression. Optical oxygen sensors based on luminescence quenching are gaining much interest in light of their low power consumption, quick response and high analyte sensitivity in comparison to similar oxygen sensing devices. In our microfluidic oxygen sensor device, a thin layer of oxygen-sensitive luminescent organometallic dye is covalently bonded to a glass slide. Micro flow channels are formed on the glass slide using patterned PDMS (Polydimethylsiloxane). Dissolved oxygen sensing is then performed by directing an optical excitation probe beam to the area of interest within the microfluidic channel. The covalent bonding approach for sensor layer formation offers many distinct advantages over the physical entrapment method including minimizing dye leaching, ensuring good stability and fabrication simplicity. Experimental results confirm the feasibility of the device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiala, Peter; Li, Yunqi; Dorrer, Christophe
Here, we investigate the focusing and correcting wavefront aberration of an optical wave using binary amplitude and polarization modulation. Focusing is performed by selectively modulating the field in different zones of the pupil to obtain on-axis constructive interference at a given distance. The conventional Soret zone plate (binary amplitude profile) is expanded to a polarization Soret zone plate with twice the focusing efficiency. Binary pixelated devices that approximate the sinusoidal transmission profile of a Gabor zone plate by spatial dithering are also investigated with amplitude and polarization modulation. Wavefront aberrations are corrected by modulation of the field in the pupilmore » plane to prevent destructive interference in the focal plane of an ideal focusing element. Polarization modulation improves the efficiency obtained by amplitude-only modulation, with a gain that depends on the aberration. Experimental results obtained with Cr-on-glass devices for amplitude modulation and liquid crystal devices operating in the Mauguin condition for polarization modulation are in very good agreement with simulations.« less
Yang, Eui Yeol; Oh, Se Young
2014-08-01
In the present work, we have fabricated organic photovoltaic cells consisting of ITO/PEDOT:PSS/P3HT:PCBM/DMDCNQI/Al using a dip-coating method with various solvent systems. We have investigated solvent effects (such as solubility, viscosity and vapor pressure) in deposition of a thin DMDCNQI buffer layer on the performance of organic photovoltaic cells. The solvent system which had low viscosity and good solubility properties, made a dense and uniform DMDCNQI ultra thin film, resulting in a high performance device. In particular, a prepared organic photovoltaic cell was fabricated using a cosolvent system (methanol:methylenechloride = 3:1) and showed a maximum power conversion efficiency of 4.53%.
Wang, Wei-Qi; Wang, Xiu-Li; Xia, Xin-Hui; Yao, Zhu-Jun; Zhong, Yu; Tu, Jiang-Ping
2018-05-03
Construction of multifunctional photoelectrochemical energy devices is of great importance to energy saving. In this study, we have successfully prepared a mesoporous WO3 film on FTO glass via a facile dip-coating sol-gel method; the designed mesoporous WO3 film exhibited advantages including high transparency, good adhesion and high porosity. Also, multifunctional integrated energy storage and optical modulation ability are simultaneously achieved by the mesoporous WO3 film. Impressively, the mesoporous WO3 film exhibits a noticeable electrochromic energy storage performance with a large optical modulation up to 75.6% at 633 nm, accompanied by energy storage with a specific capacity of 75.3 mA h g-1. Furthermore, a full electrochromic energy storage window assembled with the mesoporous WO3 anode and PANI nanoparticle cathode is demonstrated with large optical modulation and good long-term stability. Our research provides a new route to realize the coincident utilization of optical-electrochemical energy.
Flexible ultraviolet photodetectors based on ZnO-SnO2 heterojunction nanowire arrays
NASA Astrophysics Data System (ADS)
Lou, Zheng; Yang, Xiaoli; Chen, Haoran; Liang, Zhongzhu
2018-02-01
A ZnO-SnO2 nanowires (NWs) array, as a metal oxide semiconductor, was successfully synthesized by a near-field electrospinning method for the applications as high performance ultraviolet photodetectors. Ultraviolet photodetectors based on a single nanowire exhibited excellent photoresponse properties to 300 nm ultraviolet light illumination including ultrahigh I on/I off ratios (up to 103), good stability and reproducibility because of the separation between photo-generated electron-hole pairs. Moreover, the NWs array shows an enhanced photosensing performance. Flexible photodetectors on the PI substrates with similar tendency properties were also fabricated. In addition, under various bending curvatures and cycles, the as-fabricated flexible photodetectors revealed mechanical flexibility and good stable electrical properties, showing that they have the potential for applications in future flexible photoelectron devices. Project supported by the National Science Foundation of China (No. 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine and Physics, Chinese Academy of Sciences.
Improving yield and performance in ZnO thin-film transistors made using selective area deposition.
Nelson, Shelby F; Ellinger, Carolyn R; Levy, David H
2015-02-04
We describe improvements in both yield and performance for thin-film transistors (TFTs) fabricated by spatial atomic layer deposition (SALD). These improvements are shown to be critical in forming high-quality devices using selective area deposition (SAD) as the patterning method. Selective area deposition occurs when the precursors for the deposition are prevented from reacting with some areas of the substrate surface. Controlling individual layer quality and the interfaces between layers is essential for obtaining good-quality thin-film transistors and capacitors. The integrity of the gate insulator layer is particularly critical, and we describe a method for forming a multilayer dielectric using an oxygen plasma treatment between layers that improves crossover yield. We also describe a method to achieve improved mobility at the important interface between the semiconductor and the gate insulator by, conversely, avoiding oxygen plasma treatment. Integration of the best designs results in wide design flexibility, transistors with mobility above 15 cm(2)/(V s), and good yield of circuits.
Improved performance of graphene transistors by strain engineering.
Nguyen, V Hung; Nguyen, Huy-Viet; Dollfus, P
2014-04-25
By means of numerical simulation, in this work we study the effects of uniaxial strain on the transport properties of strained graphene heterojunctions and explore the possibility of achieving good performance of graphene transistors using these hetero-channels. It is shown that a finite conduction gap can open in the strain junctions due to strain-induced deformation of the graphene bandstructure. These hetero-channels are then demonstrated to significantly improve the operation of graphene field-effect transistors (FETs). In particular, the ON/OFF current ratio can reach a value of over 10(5). In graphene normal FETs, the transconductance, although reduced compared to the case of unstrained devices, is still high, while good saturation of current can be obtained. This results in a high voltage gain and a high transition frequency of a few hundreds of GHz for a gate length of 80 nm. In graphene tunneling FETs, subthreshold swings lower than 30 mV /dec, strong nonlinear effects such as gate-controllable negative differential conductance, and current rectification are observed.
The Design and Performance Evaluation of Hydroformed Tubular Torsion Beam Axle
NASA Astrophysics Data System (ADS)
Kim, Jaehyun; Oh, Jinho; Choi, Hanho
2010-06-01
Suspensions for vehicles are structural devices used for suspending a vehicle body and absorbing shocks from the road. Thus, the suspensions must be designed such that they can attenuate shocks from a road and make passengers feel comfortable despite the shocks, and improve steering stability, determined by the ground contact force of tires during running of vehicles. Another important factor to be considered while designing suspensions is that the suspensions must maintain desired stiffness and desired durability despite the repeated application of shocks from roads thereto. The present relates, in general, to a tubular torsion beam for rear suspensions of vehicles and a manufacturing method thereof and, more particularly, to the provision of tubular torsion beams having excellent roll stiffness and excellent roll strength, produced through hydroforming. The hydroforming technology has a lot of benefit which is shape accuracy, good durability caused by compressive pressure, and good forming quality. In this study, the performance evaluation of the hydroformed tubular torsion beam axle is evaluated.
Scintillating anticoincidence detection elements design and tests with muons and protons
NASA Astrophysics Data System (ADS)
Gilliot, M.; Chabaud, J.; Baronick, J. P.; Colonges, S.; Laurent, P.
2010-09-01
Design, construction and tests of anticoincidence detection elements are presented. Initially planned to be used as active shielding parts of the anticoincidence detector of the Simbol-X mission, they are aimed to detect cosmic protons and provide veto signal against charged-particle background induced on imaging detectors. The sample is made of a scintillator plate into which grooves are machined and waveshifting fibers glued. The fibers are connected to multianode photomultiplier (PM) tubes. The tubes characteristics have been evaluated for this application. The device has been tested with atmospheric muons that deposit similar energy to that of cosmic protons thanks to a specially designed muon telescope also described in this paper. Tests have also been performed with protons of a tandem accelerator beam line. The response is on average above 10 photoelectrons, which is not complicated to detect, which allows very good detection efficiency as well as very good ability to reject noise. In addition many evolution and performance improvements appear possible.
Ultrafast detection in particle physics and positron emission tomography using SiPMs
NASA Astrophysics Data System (ADS)
Dolenec, R.; Korpar, S.; Križan, P.; Pestotnik, R.
2017-12-01
Silicon photomultiplier (SiPM) photodetectors perform well in many particle and medical physics applications, especially where good efficiency, insensitivity to magnetic field and precise timing are required. In Cherenkov time-of-flight positron emission tomography the requirements for photodetector performance are especially high. On average only a couple of photons are available for detection and the best possible timing resolution is needed. Using SiPMs as photodetectors enables good detection efficiency, but the large sensitive area devices needed have somewhat limited time resolution for single photons. We have observed an additional degradation of the timing at very low light intensities due to delayed events in distribution of signals resulting from multiple fired micro cells. In this work we present the timing properties of AdvanSiD ASD-NUV3S-P-40 SiPM at single photon level picosecond laser illumination and a simple modification of the time-walk correction algorithm, that resulted in reduced degradation of timing resolution due to the delayed events.
Wagner-Hattler, Leonie; Schoelkopf, Joachim; Huwyler, Jörg; Puchkov, Maxim
2017-10-01
A new mineral-polymer composite (FCC-PCL) performance was assessed to produce complex geometries to aid in development of controlled release tablet formulations. The mechanical characteristics of a developed material such as compactibility, compressibility and elastoplastic deformation were measured. The results and comparative analysis versus other common excipients suggest efficient formation of a complex, stable and impermeable geometries for constrained drug release modifications under compression. The performance of the proposed composite material has been tested by compacting it into a geometrically altered tablet (Tablet-In-Cup, TIC) and the drug release was compared to commercially available product. The TIC device exhibited a uniform surface, showed high physical stability, and showed absence of friability. FCC-PCL composite had good binding properties and good compactibility. It was possible to reveal an enhanced plasticity characteristic of a new material which was not present in the individual components. The presented FCC-PCL composite mixture has the potential to become a successful tool to formulate controlled-release dosage solid forms.
21 CFR 26.67 - Suspension of listed conformity assessment bodies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... SERVICES GENERAL MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT EVALUATION REPORTS: UNITED STATES AND THE...
21 CFR 26.68 - Withdrawal of listed conformity assessment bodies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... SERVICES GENERAL MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT EVALUATION REPORTS: UNITED STATES AND THE...
21 CFR Appendix B to Subpart A of... - List of Authorities
Code of Federal Regulations, 2010 CFR
2010-04-01
... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT EVALUATION REPORTS: UNITED STATES AND THE EUROPEAN...
An online detection system for aggregate sizes and shapes based on digital image processing
NASA Astrophysics Data System (ADS)
Yang, Jianhong; Chen, Sijia
2017-02-01
Traditional aggregate size measuring methods are time-consuming, taxing, and do not deliver online measurements. A new online detection system for determining aggregate size and shape based on a digital camera with a charge-coupled device, and subsequent digital image processing, have been developed to overcome these problems. The system captures images of aggregates while falling and flat lying. Using these data, the particle size and shape distribution can be obtained in real time. Here, we calibrate this method using standard globules. Our experiments show that the maximum particle size distribution error was only 3 wt%, while the maximum particle shape distribution error was only 2 wt% for data derived from falling aggregates, having good dispersion. In contrast, the data for flat-lying aggregates had a maximum particle size distribution error of 12 wt%, and a maximum particle shape distribution error of 10 wt%; their accuracy was clearly lower than for falling aggregates. However, they performed well for single-graded aggregates, and did not require a dispersion device. Our system is low-cost and easy to install. It can successfully achieve online detection of aggregate size and shape with good reliability, and it has great potential for aggregate quality assurance.
NASA Astrophysics Data System (ADS)
Reddy, Y. Ashok Kumar; Shin, Young Bong; Kang, In-Ku; Lee, Hee Chul
2018-03-01
The present study directly addresses the improved bolometric properties by means of different Nb doping concentrations into TiO2- x films. The x-ray diffraction patterns do not display any obvious diffraction peaks, suggesting that all the films deposited at room temperature had an amorphous structure. A small binding energy shift was observed in x-ray photo electron spectroscopy due to the change of chemical composition with Nb doping concentration. All the device samples exhibit linear I- V characteristics, which attests to the formation of good ohmic contact with low contact resistance between the Nb:TiO2- x (TNO) film and the electrode (Ti) material. The performance of the bolometric material can be evaluated through the temperature coefficient of resistance (TCR), and the absolute value of TCR was found to be increased from 2.54% to 2.78% with increasing the Nb doping concentration. The voltage spectral density of 1/ f noise was measured in the frequency range of 1-60 Hz and found to be decreased with increase of Nb doping concentration. As a result, for 1 at.% Nb-doped TNO sample exhibits improved bolometric properties towards the good infrared image sensor device.
Comparison of wrist-worn and hip-worn activity monitors under free living conditions.
Hargens, Trent A; Deyarmin, Kayla N; Snyder, Kelsey M; Mihalik, Allison G; Sharpe, Lauren E
2017-04-01
Current recommendations state that individuals engage in 150 min of moderate or 75 min of vigorous intensity physical activity (PA) each week. Commercial PA monitors are becoming popular for everyday use. The accuracy of these devices, however, is not well understood. We sought to examine the accuracy of two commercial devices, one wrist and one hip-worn, under free-living conditions. Twenty-two subjects wore two commercially available devices and one ActiGraph (AG) for seven consecutive days under normal activity. Mean steps per day between all three devices differed significantly. No differences were found in moderate-to-vigorous intensity physical activity (MPVA). Daily energy expenditure (EE) also differed significantly between the AG and the commercial devices. Bland-Altman analysis found poor agreement between the AG and the commercial devices with regards to steps and EE, but good agreement in MVPA. Results suggest that the commercial devices are less accurate in estimating steps and EE. These devices did show good agreement with regards to MVPA, suggesting that they may provide useful feedback for individuals seeking to achieve the current PA guidelines for MVPA. Improvements are needed with regards to steps and EE estimation.
Imaging through strong turbulence with a light field approach.
Wu, Chensheng; Ko, Jonathan; Davis, Christopher C
2016-05-30
Under strong turbulence conditions, object's images can be severely distorted and become unrecognizable throughout the observing time. Conventional image restoring algorithms do not perform effectively in these circumstances due to the loss of good references on the object. We propose the use a plenoptic sensor as a light field camera to map a conventional camera image onto a cell image array in the image's sub-angular spaces. Accordingly, each cell image on the plenoptic sensor is equivalent to the image acquired by a sub-aperture of the imaging lens. The wavefront distortion over the lens aperture can be analyzed by comparing cell images in the plenoptic sensor. By using a modified "Laplacian" metric, we can identify a good cell image in a plenoptic image sequence. The good cell image corresponds with the time and sub-aperture area on the imaging lens where wavefront distortion becomes relatively and momentarily "flat". As a result, it will reveal the fundamental truths of the object that would be severely distorted on normal cameras. In this paper, we will introduce the underlying physics principles and mechanisms of our approach and experimentally demonstrate its effectiveness under strong turbulence conditions. In application, our approach can be used to provide a good reference for conventional image restoring approaches under strong turbulence conditions. This approach can also be used as an independent device to perform object recognition tasks through severe turbulence distortions.
The M6-C Cervical Disk Prosthesis: First Clinical Experience in 33 Patients.
Thomas, Sam; Willems, Karel; Van den Daelen, Luc; Linden, Patrick; Ciocci, Maria-Cristina; Bocher, Philippe
2016-05-01
Retrospective study. To determine the short-term clinical succesrate of the M6-C cervical disk prosthesis in primary and secondary surgery. Cervical disk arthroplasty (CDA) provides an alternative to anterior cervical decompression and fusion for the treatment of spondylotic radiculopathy or myelopathy. The prevention of adjacent segment disease (ASD), a possible complication of anterior cervical decompression and fusion, is its most cited--although unproven--benefit. Unlike older arthroplasty devices that rely on a ball-and-socket-type design, the M6-C cervical disk prosthesis represents a new generation of unconstrained implants, developed to achieve better restoration of natural segmental biomechanics. This device should therefore optimize clinical performance of CDA and reduce ASD. All patients had preoperative computed tomography or magnetic resonance imaging and postoperative x-rays. Clinical outcome was assessed using the Neck Disability Index, a Visual Analog Scale, and the SF-36 questionnaire. Patients were asked about overall satisfaction and whether they would have the surgery again. Thirty-three patients were evaluated 17.1 months after surgery, on average. Nine patients had a history of cervical interventions. Results for Neck Disability Index, Visual Analog Scale, and SF-36 were significantly better among patients who had undergone primary surgery. In this group, 87.5% of patients reported a good or excellent result and 91.7% would have the procedure again. In contrast, all 4 device-related complications occurred in the small group of patients who had secondary surgery. The M6-C prosthesis appears to be a valuable addition to the CDA armatorium. It generates very good results in patients undergoing primary surgery, although its use in secondary surgery should be avoided. Longer follow-up is needed to determine to what measure this device can prevent ASD.
III-V HEMTs: low-noise devices for high-frequency applications
NASA Astrophysics Data System (ADS)
Mateos, Javier
2003-05-01
With the recent development of broadband and satellite communications, one of the main engines for the advance of modern Microelectronics is the fabrication of devices with increasing cutoff frequency and lowest possible level of noise. Even if heterojunction bipolar devices (HBTs) have reached a good frequency performance, the top end of high frequency low-noise applications is monopolized by unipolar devices, mainly HEMTs (High Electron Mobility Transistors). In particular, within the vast family of heterojunction devices, the best results ever reported in the W-band have been obtained with InP based HEMTs using the AlInAs/InGaAs material system, improving those of usual GaAs based pseudomorphic HEMTs. In field effect devices, the reduction of the gate length (Lg) up to the technological limit is the main way to achieve the maximum performances. But the design of the devices is not so simple, when reducing the gate length it is convenient to keep constant the aspect ratio (gate length over gate-to-channel distance) in order to limit short channel effects. This operation can lead to the appearance of other unwanted effects, like the depletion of the channel due to the surface potential or the tunneling of electrons from the channel to the gate. Therefore, in order to optimize the high frequency or the low-noise behavior of the devices (that usually can not be reached together) not only the gate-to-channel distance must be chosen carefully, but also many other technological parameters (both geometrical and electrical): composition of materials, width of the device, length, depth and position of the recess, thickness and doping of the different layers, etc. Historically, these parameters have been optimized by classical simulation techniques or, when such simulations are not physically applicable, by the expensive 'test and error' procedure. With the use of computer simulation, the design optimization can be made in a short time and with no money spent. However, classical modelling of electronic devices meets important difficulties when dealing with advanced transistors, mainly due to their small size, and the Monte Carlo technique appears as the only possible choice
Performance of a new hand-held device for exhaled nitric oxide measurement in adults and children.
Alving, K; Janson, C; Nordvall, L
2006-04-20
Exhaled nitric oxide (NO) measurement has been shown to be a valuable tool in the management of patients with asthma. Up to now, most measurements have been done with stationary, chemiluminescence-based NO analysers, which are not suitable for the primary health care setting. A hand-held NO analyser which simplifies the measurement would be of value both in specialized and primary health care. In this study, the performance of a new electrochemical hand-held device for exhaled NO measurements (NIOX MINO) was compared with a standard stationary chemiluminescence unit (NIOX). A total of 71 subjects (6-60 years; 36 males), both healthy controls and atopic patients with and without asthma were included. The mean of three approved exhalations (50 ml/s) in each device, and the first approved measurement in the hand-held device, were compared with regard to NO readings (Bland-Altman plots), measurement feasibility (success rate with 6 attempts) and repeatability (intrasubject SD). Success rate was high (> or = 84%) in both devices for both adults and children. The subjects represented a FENO range of 8-147 parts per billion (ppb). When comparing the mean of three measurements (n = 61), the median of the intrasubject difference in exhaled NO for the two devices was -1.2 ppb; thus generally the hand-held device gave slightly higher readings. The Bland-Altman plot shows that the 95% limits of agreement were -9.8 and 8.0 ppb. The intrasubject median difference between the NIOX and the first approved measurement in the NIOX MINO was -2.0 ppb, and limits of agreement were -13.2 and 10.2 ppb. The median repeatability for NIOX and NIOX MINO were 1.1 and 1.2 ppb, respectively. The hand-held device (NIOX MINO) and the stationary system (NIOX) are in clinically acceptable agreement both when the mean of three measurements and the first approved measurement (NIOX MINO) is used. The hand-held device shows good repeatability, and it can be used successfully on adults and most children. The new hand-held device will enable the introduction of exhaled NO measurements into the primary health care.
21 CFR 886.1350 - Keratoscope.
Code of Federal Regulations, 2013 CFR
2013-04-01
...-powered or battery-powered device intended to measure and evaluate the corneal curvature of the eye. Lines and circles within the keratoscope are used to observe the corneal reflex. This generic type of device... subject to § 886.9. The battery-powered device is exempt from the current good manufacturing practice...
21 CFR 886.1350 - Keratoscope.
Code of Federal Regulations, 2012 CFR
2012-04-01
...-powered or battery-powered device intended to measure and evaluate the corneal curvature of the eye. Lines and circles within the keratoscope are used to observe the corneal reflex. This generic type of device... subject to § 886.9. The battery-powered device is exempt from the current good manufacturing practice...
21 CFR 886.1350 - Keratoscope.
Code of Federal Regulations, 2014 CFR
2014-04-01
...-powered or battery-powered device intended to measure and evaluate the corneal curvature of the eye. Lines and circles within the keratoscope are used to observe the corneal reflex. This generic type of device... subject to § 886.9. The battery-powered device is exempt from the current good manufacturing practice...
21 CFR 886.1350 - Keratoscope.
Code of Federal Regulations, 2011 CFR
2011-04-01
...-powered or battery-powered device intended to measure and evaluate the corneal curvature of the eye. Lines and circles within the keratoscope are used to observe the corneal reflex. This generic type of device... subject to § 886.9. The battery-powered device is exempt from the current good manufacturing practice...
21 CFR 886.1350 - Keratoscope.
Code of Federal Regulations, 2010 CFR
2010-04-01
...-powered or battery-powered device intended to measure and evaluate the corneal curvature of the eye. Lines and circles within the keratoscope are used to observe the corneal reflex. This generic type of device... subject to § 886.9. The battery-powered device is exempt from the current good manufacturing practice...
21 CFR 807.31 - Additional listing information.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., and for good cause, a copy of all advertisements for a particular device. A request for all... operator shall maintain a historical file containing the labeling and advertisements in use on the date of... all labeling for the device; (2) For each restricted device, a copy of all labeling and advertisements...