Low temperature thermal conductivity of alloys used in cryogenic coaxial cables
NASA Astrophysics Data System (ADS)
Kushino, Akihiro; Kasai, Soichi
2014-03-01
We have developed thin seamless coaxial cables applied for readout in low temperature experiments below liquid helium temperature. Stainless steel employed as the center and outer electrical conductors of the coaxial cable has adequately low thermal conductivity compared to pure metals and can be used when heat penetration into low temperature stages through cables should be lowered however it has large electrical resistivity which can disturb sensitive measurements. Superconducting NbTi alloy has good performance with rather low thermal conductivity and high electrical conductivity. Meanwhile coaxial cables using normal conducting copper alloys such as cupro-nickel, brass, beryllium-copper, phosphor-bronze are advantageous with their good electrical, thermal and cost performances. We investigated thermal conductivity of such alloys after the drawing process into coaxial cables, and compared to expected values without drawing.
Electrically conductive polymer concrete coatings
Fontana, J.J.; Elling, D.; Reams, W.
1990-03-13
A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.
Electrically conductive polymer concrete coatings
Fontana, Jack J.; Elling, David; Reams, Walter
1990-01-01
A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.
Electrically conductive polymer concrete coatings
Fontana, J.J.; Elling, D.; Reams, W.
1988-05-26
A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.
Organometallic Polymeric Conductors
NASA Technical Reports Server (NTRS)
1997-01-01
For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. The highest conductivities reported (approximately 4/Scm) were achieved with polythiophene in a polystyrene host polymer. The best films using a polyamide as base polymer were four orders of magnitude less conductive than the polystyrene films. The authors suggested that this was because polyimides were unable to swell sufficiently for infiltration of monomer as in the polystyrene. It was not clear, however, if the different conductivities obtained were merely the result of differing oxidation conditions. Oxidation time, temperature and oxidant concentration varied widely among the studies.
Spectrophotometric and electrical properties of imperatorin: an organic molecule
NASA Astrophysics Data System (ADS)
Mir, Feroz A.
2015-09-01
Imperatorin (molecular formula = C16H14O4, molecular mass = 270) an organic molecule was isolated from ethyl acetate extract of the root parts of the plant Prangos pabularia. The optical study was carried out by ultraviolet-visible spectroscopy, and this compound showed an indirect allowed transition. The optical band gap ( E g ) was found around 3.75 eV. Photoluminescence shows various good emission bands. The frequency-dependent real part of the complex ac conductivity was found to follow the universal dielectric response: σ ac ( ω) α ω s [where σ ac ( ω) is the frequency-dependent total conductivity, ω is the frequency, and s is the frequency exponent]. From ac conductivity data analysis, correlated barrier hopping charge-transport mechanism is the dominant electrical transport process shown by this compound. The good emission, less absorption, wide band gap and good electrical properties shown by this compound project them as a bright choice for organic electronic devices.
Xu, Cancan; Yepez, Gerardo; Wei, Zi; Liu, Fuqiang; Bugarin, Alejandro; Hong, Yi
2016-09-01
Biodegradable conductive polymers are currently of significant interest in tissue repair and regeneration, drug delivery, and bioelectronics. However, biodegradable materials exhibiting both conductive and elastic properties have rarely been reported to date. To that end, an electrically conductive polyurethane (CPU) was synthesized from polycaprolactone diol, hexadiisocyanate, and aniline trimer and subsequently doped with (1S)-(+)-10-camphorsulfonic acid (CSA). All CPU films showed good elasticity within a 30% strain range. The electrical conductivity of the CPU films, as enhanced with increasing amounts of CSA, ranged from 2.7 ± 0.9 × 10(-10) to 4.4 ± 0.6 × 10(-7) S/cm in a dry state and 4.2 ± 0.5 × 10(-8) to 7.3 ± 1.5 × 10(-5) S/cm in a wet state. The redox peaks of a CPU1.5 film (molar ratio CSA:aniline trimer = 1.5:1) in the cyclic voltammogram confirmed the desired good electroactivity. The doped CPU film exhibited good electrical stability (87% of initial conductivity after 150 hours charge) as measured in a cell culture medium. The degradation rates of CPU films increased with increasing CSA content in both phosphate-buffered solution (PBS) and lipase/PBS solutions. After 7 days of enzymatic degradation, the conductivity of all CSA-doped CPU films had decreased to that of the undoped CPU film. Mouse 3T3 fibroblasts proliferated and spread on all CPU films. This developed biodegradable CPU with good elasticity, electrical stability, and biocompatibility may find potential applications in tissue engineering, smart drug release, and electronics. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2305-2314, 2016. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Arguin, Maxime
Composite materials are lightweight and have very good mechanical properties which make them a good alternative to metallic structures traditionally used in aircraft. However, these materials have a very low electrical conductivity compared to metal which limits their use for electrical application such as current return network. For example, carbon fiber composites have relatively good in-plane conductivity but a resistance between each ply, generated by the epoxy, reduced the conductivity through the thickness of the material by a thousand. The anisotropy results in a poor current diffusion through each layer of the composite and heat generation at surface when an electric current is applied on a composite panel. For this reason, the electrical conductivity of carbon fibers composite must be improved to be used for electrical applications. This thesis shows a new procedure to enhance the electrical conductivity of composite material in a preferential way (i.e., through the thickness). Multi-walled carbon nanotubes (MWCNTs) were added to the epoxy matrix of a composite to create multiscale composite. An electric field was also used to control the global distribution of the NTCs. Alignment results made on a UV epoxy reinforced with 0.01wt.% of MWCNTs showed a decrease of the resistivity by four orders of magnitude. This decrease of resistivity was also associated with formation of a filamentary microstructure that goes from one electrode to the others creating preferential conduction pathways. Afterwards, a hand lay-up process was modified to incorporate electric field alignment during the manufacturing of the composite. An improvement of the conductivity of 36% and 99% were obtained when an electric of 60V/mm were used to align the nanoparticles in multiscale composites containing 0.01wt.% and 0.1wt.% of MWCNTs, respectively. However, these modest improvements were still not enough to reach a complete current diffusion through the thickness but this technique is still a potential way to achieve it. Finally, the project shows the potential of using electric field induced alignment of the MWCNTs to improve the conductivity of multiscale composite. Furthermore, this technique has the advantage to be suitable to other common manufacturing processes using in the industry.
NASA Astrophysics Data System (ADS)
Sheftman, D.; Shafer, D.; Efimov, S.; Krasik, Ya. E.
2012-03-01
Sub-microsecond timescale underwater electrical wire explosions using Cu and Al materials have been conducted. Current and voltage waveforms and time-resolved streak images of the discharge channel, coupled to 1D magneto-hydrodynamic simulations, have been used to determine the electrical conductivity of the metals for the range of conditions between hot liquid metal and strongly coupled non-ideal plasma, in the temperature range of 10-60 KK. The results of these studies showed that the conductivity values obtained are typically lower than those corresponding to modern theoretical electrical conductivity models and provide a transition between the conductivity values obtained in microsecond time scale explosions and those obtained in nanosecond time scale wire explosions. In addition, the measured wire expansion shows good agreement with equation of state tables.
NASA Astrophysics Data System (ADS)
Felicia, Dian M.; Rochiem, R.; Laia, Standley M.
2018-04-01
Copper have good mechanical properties and good electrical conductivities. Therefore, copper usually used as electrical components. Silver have better electrical conductivities than copper. Female contact resistor is one of the electrical component used in circuit breaker. This study aims to analyze the effect of silver addition to hardness, strength, and electric conductivity properties of copper alloy. This study uses variation of 0; 0.035; 0.07; 0.1 wt. % Ag (silver) addition to determine the effect on mechanical properties and electrical properties of copper alloy through sand casting process. Modelling of thermal analysis and structural analysis was calculated to find the best design for the sand casting experiments. The result of Cu-Ag alloy as cast will be characterized by OES test, metallography test, Brinell hardness test, tensile test, and LCR meter test. The result of this study showed that the addition of silver increase mechanical properties of Cu-Ag. The maximum hardness value of this alloy is 83.1 HRB which is Cu-0.01 Ag and the lowest is 52.26 HRB which is pure Cu. The maximum strength value is 153.2 MPa which is Cu-0.07 Ag and the lowest is 94.6 MPa which is pure Cu. Silver addition decrease electrical properties of this alloy. The highest electric conductivity is 438.98 S/m which is pure Cu and the lowest is 52.61 S.m which is Cu-0.1 Ag.
A Simple Demonstration of the High-Temperature Electrical Conductivity of Glass
ERIC Educational Resources Information Center
Chiaverina, Chris
2014-01-01
We usually think of glass as a good electrical insulator; this, however, is not always the case. There are several ways to show that glass becomes conducting at high temperatures, but the following approach, devised by Brown University demonstration manager Gerald Zani, may be one of the simplest to perform.
NASA Astrophysics Data System (ADS)
Benallou, Amina; Hadri, Baghdad; Martinez-Vega, Juan; El Islam Boukortt, Nour
2018-04-01
The effect of percolation threshold on the behaviour of electrical conductivity at high electric field of insulating polymers has been briefly investigated in literature. Sometimes the dead ends links are not taken into account in the study of the electric field effect on the electrical properties. In this work, we present a theoretical framework and Monte Carlo simulation of the behaviour of the electric conductivity at high electric field based on the percolation theory using the traps energies levels which are distributed according to distribution law (uniform, Gaussian, and power-law). When a solid insulating material is subjected to a high electric field, and during trapping mechanism the dead ends of traps affect with decreasing the electric conductivity according to the traps energies levels, the correlation length of the clusters, the length of the dead ends, and the concentration of the accessible positions for the electrons. A reasonably good agreement is obtained between simulation results and the theoretical framework.
NASA Technical Reports Server (NTRS)
Nellis, W. J.; Mitchell, A. C.; Mccandless, P. C.; Erskine, D. J.; Weir, S. T.
1992-01-01
Electrical conductivities were measured for liquid D2 and H2 shock compressed to pressures of 10-20 GPa (100-200 kbar), molar volumes near 8 cu cm/mol, and calculated temperatures of 2900-4600 K. The semiconducting energy gap derived from the conductivities is 12 eV, in good agreement with recent quasi-particle calculations and with oscillator frequencies measured in diamond-anvil cells.
Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth
NASA Astrophysics Data System (ADS)
Singh, Nandita; Chen, Jinhu; Koziol, Krzysztof K.; Hallam, Keith R.; Janas, Dawid; Patil, Avinash J.; Strachan, Ally; G. Hanley, Jonathan; Rahatekar, Sameer S.
2016-04-01
The design of biocompatible implants for neuron repair/regeneration ideally requires high cell adhesion as well as good electrical conductivity. Here, we have shown that plasma-treated chitin carbon nanotube composite scaffolds show very good neuron adhesion as well as support of synaptic function of neurons. The addition of carbon nanotubes to a chitin biopolymer improved the electrical conductivity and the assisted oxygen plasma treatment introduced more oxygen species onto the chitin nanotube scaffold surface. Neuron viability experiments showed excellent neuron attachment onto plasma-treated chitin nanotube composite scaffolds. The support of synaptic function was evident on chitin/nanotube composites, as confirmed by PSD-95 staining. The biocompatible and electrically-conducting chitin nanotube composite scaffold prepared in this study can be used for in vitro tissue engineering of neurons and, potentially, as an implantable electrode for stimulation and repair of neurons.
Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth.
Singh, Nandita; Chen, Jinhu; Koziol, Krzysztof K; Hallam, Keith R; Janas, Dawid; Patil, Avinash J; Strachan, Ally; G Hanley, Jonathan; Rahatekar, Sameer S
2016-04-21
The design of biocompatible implants for neuron repair/regeneration ideally requires high cell adhesion as well as good electrical conductivity. Here, we have shown that plasma-treated chitin carbon nanotube composite scaffolds show very good neuron adhesion as well as support of synaptic function of neurons. The addition of carbon nanotubes to a chitin biopolymer improved the electrical conductivity and the assisted oxygen plasma treatment introduced more oxygen species onto the chitin nanotube scaffold surface. Neuron viability experiments showed excellent neuron attachment onto plasma-treated chitin nanotube composite scaffolds. The support of synaptic function was evident on chitin/nanotube composites, as confirmed by PSD-95 staining. The biocompatible and electrically-conducting chitin nanotube composite scaffold prepared in this study can be used for in vitro tissue engineering of neurons and, potentially, as an implantable electrode for stimulation and repair of neurons.
NASA Technical Reports Server (NTRS)
Li, C.; Ban, H.; Lin, B.; Scripa, R. N.; Su, C.-H.; Lehoczky, S. L.
2004-01-01
The relaxation phenomenon of semiconductor melts, or the change of melt structure with time, impacts the crystal growth process and the eventual quality of the crystal. The thermophysical properties of the melt are good indicators of such changes in melt structure. Also, thermophysical properties are essential to the accurate predication of the crystal growth process by computational modeling. Currently, the temperature dependent thermophysical property data for the Hg-based II-VI semiconductor melts are scarce. This paper reports the results on the temperature dependence of melt density, viscosity and electrical conductivity of Hg-based II-VI compounds. The melt density was measured using a pycnometric method, and the viscosity and electrical conductivity were measured by a transient torque method. Results were compared with available published data and showed good agreement. The implication of the structural changes at different temperature ranges was also studied and discussed.
Problem Solving in Electricity.
ERIC Educational Resources Information Center
Caillot, Michel; Chalouhi, Elias
Two studies were conducted to describe how students perform direct current (D-C) circuit problems. It was hypothesized that problem solving in the electricity domain depends largely on good visual processing of the circuit diagram and that this processing depends on the ability to recognize when two or more electrical components are in series or…
Multifunctional smart composites with integrated carbon nanotube yarn and sheet
NASA Astrophysics Data System (ADS)
Chauhan, Devika; Hou, Guangfeng; Ng, Vianessa; Chaudhary, Sumeet; Paine, Michael; Moinuddin, Khwaja; Rabiee, Massoud; Cahay, Marc; Lalley, Nicholas; Shanov, Vesselin; Mast, David; Liu, Yijun; Yin, Zhangzhang; Song, Yi; Schulz, Mark
2017-04-01
Multifunctional smart composites (MSCs) are materials that combine the good electrical and thermal conductivity, high tensile and shear strength, good impact toughness, and high stiffness properties of metals; the light weight and corrosion resistance properties of composites; and the sensing or actuation properties of smart materials. The basic concept for MSCs was first conceived by Daniel Inman and others about 25 years ago. Current laminated carbon and glass fiber polymeric composite materials have high tensile strength and are light in weight, but they still lack good electrical and thermal conductivity, and they are sensitive to delamination. Carbon nanotube yarn and sheets are lightweight, electrically and thermally conductive materials that can be integrated into laminated composite materials to form MSCs. This paper describes the manufacturing of high quality carbon nanotube yarn and sheet used to form MSCs, and integrating the nanotube yarn and sheet into composites at low volume fractions. Various up and coming technical applications of MSCs are discussed including composite toughening for impact and delamination resistance; structural health monitoring; and structural power conduction. The global carbon nanotube overall market size is estimated to grow from 2 Billion in 2015 to 5 Billion by 2020 at a CAGR of 20%. Nanotube yarn and sheet products are predicted to be used in aircraft, wind machines, automobiles, electric machines, textiles, acoustic attenuators, light absorption, electrical wire, sporting equipment, tires, athletic apparel, thermoelectric devices, biomedical devices, lightweight transformers, and electromagnets. In the future, due to the high maximum current density of nanotube conductors, nanotube electromagnetic devices may also become competitive with traditional smart materials in terms of power density.
Numerical modeling of friction welding of bi-metal joints for electrical applications
NASA Astrophysics Data System (ADS)
Velu, P. Shenbaga; Hynes, N. Rajesh Jesudoss
2018-05-01
In the manufacturing industries, and more especially in electrical engineering applications, the usage of non-ferrous materials plays a vital role. Today's engineering applications relies upon some of the significant properties such as a good corrosion resistance, mechanical properties, good heat conductivity and higher electrical conductivity. Copper-aluminum bi-metal joint is one such combination that meets the demands requirements for electrical applications. In this work, the numerical simulation of AA 6061 T6 alloy/Copper was carried out under joining conditions. By using this developed model, the temperature distribution along the length of the dissimilar joint is predicted and the time-temperature profile has also been generated. Besides, a Finite Element Model has been developed by using the numerical simulation Tool "ABAQUS". This developed FEM is helpful in predicting various output parameters during friction welding of this dissimilar joint combination.
Development of dopant-free conductive bioelastomers
Xu, Cancan; Huang, Yihui; Yepez, Gerardo; Wei, Zi; Liu, Fuqiang; Bugarin, Alejandro; Tang, Liping; Hong, Yi
2016-01-01
Conductive biodegradable materials are of great interest for various biomedical applications, such as tissue repair and bioelectronics. They generally consist of multiple components, including biodegradable polymer/non-degradable conductive polymer/dopant, biodegradable conductive polymer/dopant or biodegradable polymer/non-degradable inorganic additives. The dopants or additives induce material instability that can be complex and possibly toxic. Material softness and elasticity are also highly expected for soft tissue repair and soft electronics. To address these concerns, we designed a unicomponent dopant-free conductive polyurethane elastomer (DCPU) by chemically linking biodegradable segments, conductive segments, and dopant molecules into one polymer chain. The DCPU films which had robust mechanical properties with high elasticity and conductivity can be degraded enzymatically and by hydrolysis. It exhibited great electrical stability in physiological environment with charge. Mouse 3T3 fibroblasts survived and proliferated on these films exhibiting good cytocompatibility. Polymer degradation products were non-toxic. DCPU could also be processed into a porous scaffold and in an in vivo subcutaneous implantation model, exhibited good tissue compatibility with extensive cell infiltration over 2 weeks. Such biodegradable DCPU with good flexibility and elasticity, processability, and electrical stability may find broad applications for tissue repair and soft/stretchable/wearable bioelectronics. PMID:27686216
Haberkorn, Niko; Weber, Stefan A L; Berger, Rüdiger; Theato, Patrick
2010-06-01
We describe the synthesis and characterization of a cross-linkable siloxane-derivatized tetraphenylbenzidine (DTMS-TPD), which was used for the fabrication of semiconducting highly ordered nanorod arrays on conductive indium tin oxide or Pt-coated substrates. The stepwise process allow fabricating of macroscopic areas of well-ordered free-standing nanorod arrays, which feature a high resistance against organic solvents, semiconducting properties and a good adhesion to the substrate. Thin films of the TPD derivate with good hole-conducting properties could be prepared by cross-linking and covalently attaching to hydroxylated substrates utilizing an initiator-free thermal curing at 160 degrees C. The nanorod arrays composed of cross-linked DTMS-TPD were fabricated by an anodic aluminum oxide (AAO) template approach. Furthermore, the nanorod arrays were investigated by a recently introduced method allowing to probe local conductivity on fragile structures. It revealed that more than 98% of the nanorods exhibit electrical conductance and consequently feature a good electrical contact to the substrate. The prepared nanorod arrays have the potential to find application in the fabrication of multilayered device architectures for building well-ordered bulk-heterojunction solar cells.
Electrically conductive carbon fibre-reinforced composite for aircraft lightning strike protection
NASA Astrophysics Data System (ADS)
Katunin, Andrzej; Krukiewicz, Katarzyna; Turczyn, Roman; Sul, Przemysław; Bilewicz, Marcin
2017-05-01
Aircraft elements, especially elements of exterior fuselage, are subjected to damage caused by lightning strikes. Due to the fact that these elements are manufactured from polymeric composites in modern aircraft, and thus, they cannot conduct electrical charges, the lightning strikes cause burnouts in composite structures. Therefore, the effective lightning strike protection for such structures is highly desired. The solution presented in this paper is based on application of organic conductive fillers in the form of intrinsically conducting polymers and carbon fabric in order to ensure electrical conductivity of whole composite and simultaneously retain superior mechanical properties. The presented studies cover synthesis and manufacturing of the electrically conductive composite as well as its characterization with respect to mechanical and electrical properties. The performed studies indicate that the proposed material can be potentially considered as a constructional material for aircraft industry, which characterizes by good operational properties and low cost of manufacturing with respect to current lightning strike protection materials solutions.
Apparatus for mounting a diode in a microwave circuit
Liu, Shing-gong
1976-07-27
Apparatus for mounting a diode in a microwave circuit for making electrical contact between the circuit and ground and for dissipation of heat between the diode and a heat sink. The diode, supported on a thermally and electrically conductive member, is resiliently pressed in electrical contact with the microwave circuit. A tapered collar on the member is elastically deformably wedged into a tapered aperture formed in a heat sink. The wedged collar tightens firmly around the member establishing good thermal and electrical conduction from the diode to the heat sink and ground. Disassembly is facilitated because of the elastically deformed collar.
NASA Technical Reports Server (NTRS)
Leavy, Donald Lucien
1975-01-01
The electrical conductivity structure was studied of a spherically layered moon consistent with the very low frequency magnetic data collected on the lunar surface and by Explorer 35. In order to obtain good agreement with the lunar surface magnetometer observations, the inclusion of a void cavity behind the moon requires a conductivity at shallow depths higher than that of models having the solar wind impinging on all sides. By varying only the source parameters, a conductivity model can be found that yields a good fit to both the tangential response upstream and the radial response downstream. This model also satisfies the dark side tangential response in the frequency range above 0.006 Hz, but the few data points presently available below this range do not seem to agree with the theory.
Deng, Zexing; Guo, Yi; Ma, Peter X; Guo, Baolin
2018-09-15
Stimuli responsive cryogels with multi-functionality have potential application for electrical devices, actuators, sensors and biomedical devices. However, conventional thermal sensitive poly(N-isopropylacrylamide) cryogels show slow temperature response speed and lack of multi-functionality, which greatly limit their practical application. Herein we present conductive fast (2 min for both deswelling and reswelling behavior) thermally responsive poly(N-isopropylacrylamide) cryogels with rapid shape memory properties (3 s for shape recovery), near-infrared (NIR) light sensitivity and pressure dependent conductivity, and further demonstrated their applications as temperature sensitive on-off switch, NIR light sensitive on-off switch, water triggered shape memory on-off switch and pressure dependent device. These cryogels were first prepared in dimethyl sulfoxide below its melting temperature in ice bath and subsequently put into aniline or pyrrole solution to in situ deposition of conducting polyaniline or polypyrrole nanoparticles. The continuous macroporous sponge-like structure provides cryogels with rapid responsivity both in deswelling, reswelling kinetics and good elasticity. After incorporating electrically conductive polyaniline or polypyrrole nanoaggregates, the hybrid cryogels exhibit desirable conductivity, photothermal property, pressure dependent conductivity and good cytocompatibility. These multifunctional hybrid cryogels make them great potential as stimuli responsive electrical device, tissue engineering scaffolds, drug delivery vehicle and electronic skin. Copyright © 2018 Elsevier Inc. All rights reserved.
Novel Materials Containing Single-Wall Carbon Nanotubes Wrapped in Polymer Molecules
NASA Technical Reports Server (NTRS)
Smalley, Richard E.; O'Connell, Michael J.; Smith, Kenneth; Colbert, Daniel T.
2009-01-01
In this design, single-wall carbon nanotubes (SWNTs) have been coated in polymer molecules to create a new type of material that has low electrical conductivity, but still contains individual nanotubes, and small ropes of individual nanotubes, which are themselves good electrical conductors and serve as small conducting rods immersed in an electrically insulating matrix. The polymer is attached through weak chemical forces that are primarily non-covalent in nature, caused primarily through polarization rather than the sharing of valence electrons. Therefore, the electronic structure of the SWNT involved is substantially the same as that of free, individual (and small ropes of) SWNT. Their high conductivity makes the individual nanotubes extremely electrically polarizable, and materials containing these individual, highly polarizable molecules exhibit novel electrical properties including a high dielectric constant.
Properties of Lightning Strike Protection Coatings
NASA Astrophysics Data System (ADS)
Gagne, Martin
Composite materials are being increasingly used by many industries. In the case of aerospace companies, those materials are installed on their aircraft to save weight, and thus, fuel costs. These aircraft are lighter, but the loss of electrical conductivity makes aircraft vulnerable to lightning strikes, which hit commercial aircrafts on average once per year. This makes lightning strike protection very important, and while current metallic expanded copper foils offer good protection, they increase the weight of composites. Therefore, under the CRIAQ COMP-502 project, a team of industrial partners and academic researchers are investigating new conductive coatings with the following characteristics: High electromagnetic protection, high mechanical resistance, good environmental protection, manufacturability and moderate cost. The main objectives of this thesis, as part of this project, was to determine the main characteristics, such as electrical and tribomechanical properties, of conductive coatings on composite panels. Their properties were also to be tested after destructive tests such as current injection and environmental testing. Bombardier Aerospace provided the substrate, a composite of carbon fiber reinforced epoxy matrix, and the current commercial product, a surfacing film that includes an expanded copper foil used to compare with the other coatings. The conductive coatings fabricated by the students are: silver nanoparticles inside a binding matrix (PEDOT:PSS or a mix of Epoxy and PEDOT:PSS), silvered carbon nanofibers embedded in the surfacing film, cold sprayed tin, graphene oxide functionalized with silver nanowires, and electroless plated silver. Additionally as part of the project and thesis, magnetron sputtered aluminum coated samples were fabricated. There are three main types of tests to characterize the conductive coatings: electrical, mechanical and environmental. Electrical tests consist of finding the sheet resistance and specific resistivity of conductive coatings. Mechanical tests include adhesion, scratch, hardness and Young's modulus of the coatings. The environmental tests are temperature cycling and salt spray cycling. These basic characteristics were investigated first, but further tests also combine the categories, such as electrical tests before, during and after environmental tests, and the effects on the sample's mechanical properties after high electrical current injections. The electrical properties of the conductive coatings have improved and are very close to that of current expanded metallic foil or within an order of magnitude. The mechanical properties of most of these coatings are also good. They exhibit good adhesion, hardness, and no significant loss of flexion properties after current injections. The environmental tests are more mitigated, with some conductive coatings losing their surface conductivity, others having a small increase in specific resistivity, and some were simply unaffected. Tests such as thermogravimetric analysis, scanning electron microscope analysis of scratch tests, and optical microscope observations are included to provide additional analysis of the results of the conductive coatings. The conductive coatings were characterized and tested as part of the CRIAQ project. Lightning strike tests are required to gather further information on these conductive coatings. The main application for these coatings is for lightning strike protection of aircraft, but they can also be used for ground based lightning strike protection and general electromagnetic shielding.
Electrically conductive resinous bond and method of manufacture
Snowden, T.M. Jr.; Wells, B.J.
1985-01-01
A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40 to 365/sup 0/C to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.
Electrically conductive resinous bond and method of manufacture
Snowden, Jr., Thomas M.; Wells, Barbara J.
1987-01-01
A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40.degree. to 365.degree. C. to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.
NASA Astrophysics Data System (ADS)
Tong, Lu; Wang, Xiao-Xiong; He, Xiao-Xiao; Nie, Guang-Di; Zhang, Jun; Zhang, Bin; Guo, Wen-Zhe; Long, Yun-Ze
2018-03-01
Highly stretchable and electrically conductive thermoplastic polyurethane (TPU) nanofibrous composite based on electrospinning for flexible strain sensor and stretchable conductor has been fabricated via in situ polymerization of polyaniline (PANI) on TPU nanofibrous membrane. The PANI/TPU membrane-based sensor could detect a strain from 0 to 160% with fast response and excellent stability. Meanwhile, the TPU composite has good stability and durability. Besides, the composite could be adapted to various non-flat working environments and could maintain opportune conductivity at different operating temperatures. This work provides an easy operating and low-cost method to fabricate highly stretchable and electrically conductive nanofibrous membrane, which could be applied to detect quick and tiny human actions.
Study of physical and sound absorbing property of epoxy blended coir dust biocomposite
NASA Astrophysics Data System (ADS)
Nath, G.; Mishra, S. P.
2016-09-01
Reinforcement biocomposite has gained more attention recently due to its low cost, abundantly availability, low density, specific properties, easy method of separation, enhanced energy recovery, CO2 neutrality, biodegradability and recyclable in nature. As a waste product of coconut fruit, the coconut coir dust (CCD) obtained from the coconut husk. The biocomposite material prepared from the CCD modified with the proper blended solution with the help of ultrasonic technique. The study of adiabatic compressibility of acetone / water (70/30) worth its blending property for bleaching of CCD. The biocomposite material of CCD was prepared with epoxy resin. The different physical properties such as sound absorption coefficient, thermal conductivity and electrical conductivity were measured. The morphological study of biocomposite and measurement of sound absorption coefficient shows good evidence of sound absorbing characteristics of biocomposite of CCD. The sound absorption property of composite material shows a significant result where as the thermal conductivity and electrical conductivity executes a weak result. Thus biocomposite of CCD can acts as a good sound absorber and band conductor of heat and electric current.
NASA Technical Reports Server (NTRS)
Louis, P.; Gokhale, A. M.
1996-01-01
Computer simulation is a powerful tool for analyzing the geometry of three-dimensional microstructure. A computer simulation model is developed to represent the three-dimensional microstructure of a two-phase particulate composite where particles may be in contact with one another but do not overlap significantly. The model is used to quantify the "connectedness" of the particulate phase of a polymer matrix composite containing hollow carbon particles in a dielectric polymer resin matrix. The simulations are utilized to estimate the morphological percolation volume fraction for electrical conduction, and the effective volume fraction of the particles that actually take part in the electrical conduction. The calculated values of the effective volume fraction are used as an input for a self-consistent physical model for electrical conductivity. The predicted values of electrical conductivity are in very good agreement with the corresponding experimental data on a series of specimens having different particulate volume fraction.
Finite element simulation of thunderstorm electrodynamics in the proximity of the storm
NASA Technical Reports Server (NTRS)
Baginski, Michael Edward
1988-01-01
Observations of electric fields, Maxwell current density, and air conductivity over thunderstorms were presented. The measurements were obtained using electric field mils and conductivity probes installed on a U2 aircraft as the aircraft passed approximately directly over an active thunderstorm at an altitude of 18 to 20 km. Accurate electrical observations of this type are rare and provide important information to those involved in numerically modeling a thunderstorm. A preliminary set of computer simulations based on this data were conducted and are described. The simulations show good agreement with measurements and are used to infer the thundercloud's charging current and amount of charge exchanged per flash.
Silver Oxalate Ink with Low Sintering Temperature and Good Electrical Property
NASA Astrophysics Data System (ADS)
Yang, Wendong; Wang, Changhai; Arrighi, Valeria
2018-02-01
Favorable conductivity at low temperature is desirable for flexible electronics technology, where formulation of a suitable ink material is very critical. In this paper, a type of silver organic decomposable ink (10 wt.% silver content) was formulated by using as-prepared silver oxalate and butylamine, producing silver films with good uniformity and conductivity on a polyimide substrate after sintering below 130°C (15.72 μΩ cm) and even at 100°C (36.29 μΩ cm). Silver oxalate powder with good properties and an appropriate solid amine complex with lower decomposition temperature were synthesized, both differing from those reported in the literature. The influence of the factors on the electrical properties of the produced silver films such as sintering temperature and time was studied in detail and the relationship between them was demonstrated.
Clor, Laura E.; McCleskey, R. Blaine; Huebner, Mark A.; Lowenstern, Jacob B.; Heasler, Henry P.; Mahony, Dan L.; Maloney, Tim; Evans, William C.
2012-01-01
This study aims to quantify relations between solute concentrations (especially chloride) and electrical conductivity for several rivers in Yellowstone National Park (YNP), by using automated samplers and conductivity meters. Norton and Friedman (1985) found that chloride concentrations and electrical conductivity have a good correlation in the Falls, Snake, Madison, and Yellowstone Rivers. However, their results are based on limited sampling and hydrologic conditions and their relation with other solutes was not determined. Once the correlations are established, conductivity measurements can then be used as a proxy for chloride concentrations, thereby enabling continuous heat-flow estimation on a much finer timescale and at lower cost than is currently possible with direct sampling. This publication serves as a repository for all data collected during the course of the study from May 2010 through July 2011, but it does not include correlations between solutes and conductivity or recommendations for quantification of chloride through continuous electrical conductivity measurements. This will be the object of a future document.
Polymer composites with graphene nanofillers: electrical properties and applications.
Tjong, Sie Chin
2014-02-01
Graphene with extraordinary high elastic modulus and excellent electrical conductivity has good prospects for use as the filler material for fabricating novel polymer composites designed for electrostatic discharge and EMI shielding protection, field emission, gas sensor, and fuel cell applications. Large amounts of graphene oxide (GO) can be obtained by wet chemical oxidation of graphite into a mixture of concentrated sulfuric acid, sodium nitrate and potassium permanganate. Accordingly, carbon atoms in the basal plane and edges of GO are decorated with oxygenated functional groups, forming an electrical insulator. To restore electrical conductivity, chemical reduction or thermal annealing is needed to eliminate oxygenated groups of GO. However, such treatments induce internal defects and remove oxygenated atoms of GO partially. The remnant-oxygenated groups affect electrical conductivity of graphene greatly. Nevertheless, reduced graphene oxide and thermally reduced graphene oxide are sufficiently conductive to form polymer nanocomposites at very low percolation threshold. This review provides the fundamentals and state-of-the-art developments in the fabrication methods and electrical property characterizations as well as the applications of novel graphene/polymer nanocomposites. Particular attention is paid to their processing-structural-electrical property relationships.
Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering
NASA Astrophysics Data System (ADS)
Pergolesi, Daniele; Roddatis, Vladimir; Fabbri, Emiliana; Schneider, Christof W.; Lippert, Thomas; Traversa, Enrico; Kilner, John A.
2015-02-01
Highly textured thin films with small grain boundary regions can be used as model systems to directly measure the bulk conductivity of oxygen ion conducting oxides. Ionic conducting thin films and epitaxial heterostructures are also widely used to probe the effect of strain on the oxygen ion migration in oxide materials. For the purpose of these investigations a good lattice matching between the film and the substrate is required to promote the ordered film growth. Moreover, the substrate should be a good electrical insulator at high temperature to allow a reliable electrical characterization of the deposited film. Here we report the fabrication of an epitaxial heterostructure made with a double buffer layer of BaZrO3 and SrTiO3 grown on MgO substrates that fulfills both requirements. Based on such template platform, highly ordered (001) epitaxially oriented thin films of 15% Sm-doped CeO2 and 8 mol% Y2O3 stabilized ZrO2 are grown. Bulk conductivities as well as activation energies are measured for both materials, confirming the success of the approach. The reported insulating template platform promises potential application also for the electrical characterization of other novel electrolyte materials that still need a thorough understanding of their ionic conductivity.
Electrical Transport Properties of Liquid Sn-Sb Binary Alloys
NASA Astrophysics Data System (ADS)
Thakore, B. Y.; Suthar, P. H.; Khambholja, S. G.; Jani, A. R.
2010-06-01
The study of electrical transport properties viz. electrical resistivity, thermo electrical power and thermal conductivity of liquid Sn-Sb binary alloys have been made by our well recognized single parametric model potential. In the present work, screening functions due to Hartree, Taylor, Ichimaru et al.. Farid et al.. and Sarkar et al.. have been employed to incorporate the exchange and correlation effects. The liquid alloy is studied as a function of its composition at temperature 823 K according to the Faber-Ziman model. Further, thermoelectric power and thermal conductivity have been predicted. The values of electrical resistivity of binary alloys computed with Ichimaru et al. and Farid et al.. screening function are in good agreement with the experimental data.
Multifunctional carbon nano-paper composite
NASA Astrophysics Data System (ADS)
Zhang, Zhichun; Chu, Hetao; Wang, Kuiwen; Liu, Yanjv; Leng, Jinsong
2013-08-01
Carbon Nanotube (CNT), for its excellent mechanical, electrical properties and nano size, large special surface physical property, become the most promising material. But carbon nanotube can still fabricated in micro dimension, and can't be made into macro size, so to the carbon nanotube filled composite can't explore the properties of the CNT. Carbon nano-paper is made of pure CNT, with micro pore, and it turn micro sized CNT into macro shaped membrane. Based on the piezo-resistivity and electrical conductivity of the carbon nano-paper, we used the carbon nano-paper as functional layers fabricate functional composite, and studies its strain sensing, composite material deicing and shape memory polymer (SMP) material electric actuation performance. The results shown that the resin can pregnant the nano paper, and there was good bond for nano paper and composite. The functional composite can monitoring the strain with high sensitivity comparing to foil strain gauge. The functional composite can be heated via the carbon nano paper with low power supply and high heating rate. The composite has good deicing and heat actuation performance to composite material. For the good strain sensing, electric conductivity and self-heating character of the carbon nano-paper composite, it can be used for self sensing, anti lightning strike and deicing of composite materials in aircrafts and wind turbine blades.
Jung, Yong Chae; Muramatsu, Hiroyuki; Park, Ki Chul; Shimamoto, Daisuke; Kim, Jin Hee; Hayashi, Takuya; Song, Sung Moo; Kim, Yoong Ahm; Endo, Morinobu; Dresselhaus, Mildred S
2009-12-16
It is demonstrated that an optically transparent and electrically conductive polyethylene oxide (PEO) film is fabricated by the introduction of individualized single-walled carbon nanotubes (SWNTs). The incorporated SWNTs in the PEO film sustain their intrinsic electronic and optical properties and, in addition, the intrinsic properties of the polymer matrix are retained. The individualized SWNTs with smaller diameter provide high transmittance as well as good electrical conductivity in PEO films. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pike, J.; Reboul, S.
2015-06-01
SRS High Level Waste Tank Farm personnel rely on conductivity probes for detection of incipient overflow conditions in waste tanks. Minimal information is available concerning the sensitivity that must be achieved such that that liquid detection is assured. Overly sensitive electronics results in numerous nuisance alarms for these safety-related instruments. In order to determine the minimum sensitivity required of the probe, Tank Farm Engineering personnel need adequate conductivity data to improve the existing designs. Little or no measurements of liquid waste conductivity exist; however, the liquid phase of the waste consists of inorganic electrolytes for which the conductivity may bemore » calculated. Savannah River Remediation (SRR) Tank Farm Facility Engineering requested SRNL to determine the conductivity of the supernate resident in SRS waste Tank 40 experimentally as well as computationally. In addition, SRNL was requested to develop a correlation, if possible, that would be generally applicable to liquid waste resident in SRS waste tanks. A waste sample from Tank 40 was analyzed for composition and electrical conductivity as shown in Table 4-6, Table 4-7, and Table 4-9. The conductivity for undiluted Tank 40 sample was 0.087 S/cm. The accuracy of OLI Analyzer™ was determined using available literature data. Overall, 95% of computed estimates of electrical conductivity are within ±15% of literature values for component concentrations from 0 to 15 M and temperatures from 0 to 125 °C. Though the computational results are generally in good agreement with the measured data, a small portion of literature data deviates as much as ±76%. A simplified model was created that can be used readily to estimate electrical conductivity of waste solution in computer spreadsheets. The variability of this simplified approach deviates up to 140% from measured values. Generally, this model can be applied to estimate the conductivity within a factor of two. The comparison of the simplified model to pure component literature data suggests that the simplified model will tend to under estimate the electrical conductivity. Comparison of the computed Tank 40 conductivity with the measured conductivity shows good agreement within the range of deviation identified based on pure component literature data.« less
Thermoelectric Properties in the TiO2/SnO2 System
NASA Technical Reports Server (NTRS)
Dynys, F.; Sayir, A.; Sehirlioglu, A.; Berger, M.
2009-01-01
Nanotechnology has provided a new interest in thermoelectric technology. A thermodynamically driven process is one approach in achieving nanostructures in bulk materials. TiO2/SnO2 system exhibits a large spinodal region with exceptional stable phase separated microstructures up to 1400 C. Fabricated TiO2/SnO2 nanocomposites exhibit n-type behavior with Seebeck coefficients greater than -300 .V/K. Composites exhibit good thermal conductance in the range of 7 to 1 W/mK. Dopant additions have not achieved high electrical conductivity (<1000 S/m). Formation of oxygen deficient composites, TixSn1-xO2-y, can change the electrical conductivity by four orders of magnitude. Achieving higher thermoelectric ZT by oxygen deficiency is being explored. Seebeck coeffcient, thermal conductivity, electrical conductance and microstructure will be discussed in relation to composition and doping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Seungho; Kaviany, Massoud, E-mail: kaviany@umich.edu
2014-02-14
Using ab initio molecular dynamics, the atomic structure and transport properties of eutectic Ga-In and Ga-In-Sn are investigated. The Kubo-Greenwood (K-G) and the Ziman-Faber (Z-F) formulations and the Wiedemann-Franz (W-F) law are used for the electrical and electronic thermal conductivity. The species diffusivity and the viscosity are also predicted using the mean square displacement and the Stokes-Einstein (S-E) relation. Alloying Ga causes more disordered structure, i.e., broadening the atomic distance near the In and Sn atoms, which reduces the transport properties and the melting temperature. The K-G treatment shows excellent agreement with the experimental results while Z-F treatment formula slightlymore » overestimates the electrical conductivity. The predicted thermal conductivity also shows good agreement with the experiments. The species diffusivity and the viscosity are slightly reduced by the alloying of Ga with In and Sn atoms. Good agreements are found with available experimental results and new predicted transport-property results are provided.« less
Concentration Dependent Electrical Transport Properties of Ni-Cr Binary Alloys
NASA Astrophysics Data System (ADS)
Suthar, P. H.; Khambholja, S. G.; Thakore, B. Y.; Gajjar, P. N.; Jani, A. R.
2011-07-01
The concentration dependent electrical transport properties viz. electrical resistivity and thermal conductivity of liquid Ni-Cr alloys are computed at 1400 K temperature. The electrical resistivity has been studied according to Faber-Ziman model in wide range of Cr concentration. In the present work, the electron-ion interaction is incorporated through our well tested local model potential with screening function due to Sarkar et al.. [S] along with the Hartree [H] dielectric function. Good agreement is achieved between the presently calculated results of resistivity as well as thermal conductivity with the experimental data found in the literature, confirming the applicability of model potential and Faber-Ziman model for such a study.
Battery cell thermal-conductive coating increases efficiency
NASA Technical Reports Server (NTRS)
Doyle, H. M.
1973-01-01
Thin coating of high-temperature epoxy resin provides necessary electrical insulation, as well as good thermal conductivity between battery cells. Insulation increases efficiency of nickel-cadmium battery, as it would any multicell battery assembly in which cell-to-cell thermal balance is critical.
Preparation of Electrically Conductive Polystyrene/Carbon Nanofiber Nanocomposite Films
ERIC Educational Resources Information Center
Sun, Luyi; O'Reilly, Jonathan Y.; Tien, Chi-Wei; Sue, Hung-Jue
2008-01-01
A simple and effective approach to prepare conductive polystyrene/carbon nanofiber (PS/CNF) nanocomposite films via a solution dispersion method is presented. Inexpensive CNF, which has a structure similar to multi-walled carbon nanotubes, is chosen as a nanofiller in this experiment to achieve conductivity in PS films. A good dispersion is…
High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong
A two-step method consisting of solid-state microwave irradiation and heat treatment under NH₃ gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007m²g⁻¹), high electrical conductivity (1532S m⁻¹), and low oxygen content (1.5 wt%) for electric double-layer capacitor applications. The specific capacitance of N-RGO was 291 Fg⁻¹ at a current density of 1 A g⁻¹, and a capacitance of 261 F g⁻¹ was retained at 50 A g⁻¹, indicating a very good rate capability. N-RGO also showed excellent cycling stability, preserving 96% of the initial specific capacitance after 100,000 cycles. Near-edge X-ray absorptionmore » fine-structure spectroscopy evidenced the recover of π-conjugation in the carbon networks with the removal of oxygenated groups and revealed the chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.« less
High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors
Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; ...
2015-06-08
A two-step method consisting of solid-state microwave irradiation and heat treatment under NH₃ gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007m²g⁻¹), high electrical conductivity (1532S m⁻¹), and low oxygen content (1.5 wt%) for electric double-layer capacitor applications. The specific capacitance of N-RGO was 291 Fg⁻¹ at a current density of 1 A g⁻¹, and a capacitance of 261 F g⁻¹ was retained at 50 A g⁻¹, indicating a very good rate capability. N-RGO also showed excellent cycling stability, preserving 96% of the initial specific capacitance after 100,000 cycles. Near-edge X-ray absorptionmore » fine-structure spectroscopy evidenced the recover of π-conjugation in the carbon networks with the removal of oxygenated groups and revealed the chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.« less
Frequency shifts of an electric-dipole resonance near a conducting surface
NASA Technical Reports Server (NTRS)
Holland, W. R.; Hall, D. G.
1984-01-01
The resonance frequency of an electric dipole placed near a conducting surface is shifted by the dipole-surface interaction. The observation and measurement of these shifts at optical frequencies is reported for an experimental system that consists of a metal-island film spaced a distance d from a continuous Ag film. The dependence of the shift in the frequency of the island resonance on d shows good agreement with that predicted by a classical theory of the dipole-surface interaction.
Organic/inorganic hybrid synaptic transistors gated by proton conducting methylcellulose films
NASA Astrophysics Data System (ADS)
Wan, Chang Jin; Zhu, Li Qiang; Wan, Xiang; Shi, Yi; Wan, Qing
2016-01-01
The idea of building a brain-inspired cognitive system has been around for several decades. Recently, electric-double-layer transistors gated by ion conducting electrolytes were reported as the promising candidates for synaptic electronics and neuromorphic system. In this letter, indium-zinc-oxide transistors gated by proton conducting methylcellulose electrolyte films were experimentally demonstrated with synaptic plasticity including paired-pulse facilitation and spatiotemporal-correlated dynamic logic. More importantly, a model based on proton-related electric-double-layer modulation and stretched-exponential decay function was proposed, and the theoretical results are in good agreement with the experimentally measured synaptic behaviors.
Organic/inorganic hybrid synaptic transistors gated by proton conducting methylcellulose films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Chang Jin; Wan, Qing, E-mail: wanqing@nju.edu.cn, E-mail: yshi@nju.edu.cn; Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201
The idea of building a brain-inspired cognitive system has been around for several decades. Recently, electric-double-layer transistors gated by ion conducting electrolytes were reported as the promising candidates for synaptic electronics and neuromorphic system. In this letter, indium-zinc-oxide transistors gated by proton conducting methylcellulose electrolyte films were experimentally demonstrated with synaptic plasticity including paired-pulse facilitation and spatiotemporal-correlated dynamic logic. More importantly, a model based on proton-related electric-double-layer modulation and stretched-exponential decay function was proposed, and the theoretical results are in good agreement with the experimentally measured synaptic behaviors.
Organometallic Polymeric Conductors
NASA Technical Reports Server (NTRS)
Youngs, Wiley J.
1997-01-01
For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. Many aerospace applications require a combination of properties. Thus, hybrid films made from polyimides or other engineering resins are of primary interest, but only if conductivities on the same order as those obtained with a polystyrene base could be obtained. Hence, a series of experiments was performed to optimize the conductivity of polyimide-based composite films. The polyimide base chosen for this study was Kapton. 3-MethylThiophene (3MT) was used for the conductive phase. Three processing variables were identified for producing these composite films, namely time, temperature, and oxidant concentration for the in situ oxidation. Statistically designed experiments were used to examine the effects of these variables and synergistic/interactive effects among variables on the electrical conductivity and mechanical strength of the films. Multiple linear regression analysis of the tensile data revealed that temperature and time have the greatest effect on maximum stress. The response surface of maximum stress vs. temperature and time (for oxidant concentration at 1.2 M) is shown. Conductivity of the composite films was measured for over 150 days in air at ambient temperature. The conductivity of the films dropped only half an order of magnitude in that time. Films aged under vacuum at ambient temperature diminished slightly in conductivity in the first day, but did not change thereafter. An experimental design approach will be applied to maximize the efficiency of the laboratory effort. The material properties (initial and long term) will also be monitored and assessed. The experimental results will add to the existing database for electrically conductive polymer materials. Attachments: 1) Synthesis Crystal Structure, and Polymerization of 1,2:5,6:9,10-Tribenzo-3,7,11,13-tetradehydro(14) annulene. 2) Reinvestigation of the Photocyclization of 1,4-Phenylene Bis(phenylmaleic anhydride): Preparation and Structure of (5)Helicene 5,6:9,10-Dianhydride. 3) Preparation and Structure Charecterization of a Platinum Catecholate Complex Containing Two 3-Ethynyltheophone Groups. and 4) Rigid-Rod Polymers Based on Noncoplanar 4,4'-Biphenyldiamines: A Review of Polymer Properties vs Configuration of Diamines.
Electrical Transport Properties of Liquid Al-Cu Alloys
NASA Astrophysics Data System (ADS)
Thakore, B. Y.; Khambholja, S. G.; Suthar, P. H.; Jani, A. R.
2010-06-01
Electrical transport properties viz. electrical resistivity, thermoelectric power and thermal conductivity of liquid Al-Cu alloys as a function of Cu concentration have been studied in the present paper. Ashcroft empty core model potential has been used to incorporate the ion-electron interaction. To incorporate the exchange and correlation effects, five different forms of local field correction functions viz. Hartree, Taylor, Ichimaru et al., Farid et al. and Sarkar et al. have been used. The transport properties of binary system have been studied using Faber-Ziman formulation combined with Ashcroft-Langreth (AL) partial structure factor. The computed values of electrical resistivity are compared with experimental data and for low Cu concentration, good agreement has been observed. Further, thermoelectric power and thermal conductivity have also been predicted.
Ohmic Heating of an Electrically Conductive Food Package.
Kanogchaipramot, Kanyawee; Tongkhao, Kullanart; Sajjaanantakul, Tanaboon; Kamonpatana, Pitiya
2016-12-01
Ohmic heating through an electrically conductive food package is a new approach to heat the food and its package as a whole after packing to avoid post-process contamination and to serve consumer needs for convenience. This process has been successfully completed using polymer film integrated with an electrically conductive film to form a conductive package. Orange juice packed in the conductive package surrounded with a conductive medium was pasteurized in an ohmic heater. A mathematical model was developed to simulate the temperature distribution within the package and its surroundings. A 3-D thermal-electric model showed heating uniformity inside the food package while the hot zone appeared in the orange juice adjacent to the conductive film. The accuracy of the model was determined by comparing the experimental results with the simulated temperature and current drawn; the model showed good agreement between the actual and simulated results. An inoculated pack study using Escherichia coli O157:H7 indicated negative growth of viable microorganisms at the target and over target lethal process temperatures, whereas the microorganism was present in the under target temperature treatment. Consequently, our developed ohmic heating system with conductive packaging offers potential for producing safe food. © 2016 Institute of Food Technologists®.
Electromechanical characterization of individual micron-sized metal coated polymer particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazilchuk, Molly; Kristiansen, Helge; Conpart AS, Skjetten 2013
Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contactmore » behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.« less
Facile synthesis of degradable and electrically conductive polysaccharide hydrogels.
Guo, Baolin; Finne-Wistrand, Anna; Albertsson, Ann-Christine
2011-07-11
Degradable and electrically conductive polysaccharide hydrogels (DECPHs) have been synthesized by functionalizing polysaccharide with conductive aniline oligomers. DECPHs based on chitosan (CS), aniline tetramer (AT), and glutaraldehyde were obtained by a facile one-pot reaction by using the amine group of CS and AT under mild conditions, which avoids the multistep reactions and tedious purification involved in the synthesis of degradable conductive hydrogels in our previous work. Interestingly, these one-pot hydrogels possess good film-forming properties, electrical conductivity, and a pH-sensitive swelling behavior. The chemical structure and morphology before and after swelling of the hydrogels were verified by FT-IR, NMR, and SEM. The conductivity of the hydrogels was tuned by adjusting the content of AT. The swelling ratio of the hydrogels was altered by the content of tetraaniline and cross-linker. The hydrogels underwent slow degradation in a buffer solution. The hydrogels obtained by this facile approach provide new possibilities in biomedical applications, for example, biodegradable conductive hydrogels, films, and scaffolds for cardiovascular tissue engineering and controlled drug delivery.
Hou, Xianghui; Choy, Kwang-Leong; Liu, Jun-Peng
2011-09-01
Transparent conducting oxide (TCO) films have the remarkable combination of high electrical conductivity and optical transparency. There is always a strong motivation to produce TCO films with good performance at low cost. Electrostatic Spray Assisted Vapor Deposition (ESAVD), as a variant of chemical vapour deposition (CVD), is a non-vacuum and low-cost deposition method. Several types of TCO films have been deposited using ESAVD process, including indium tin oxide (ITO), antimony-doped tin oxide (ATO), and fluorine doped tin oxide (FTO). This paper reports the electrical and optical properties of TCO films produced by ESAVD methods, as well as the effects of post treatment by plasma hydrogenation on these TCO films. The possible mechanisms involved during plasma hydrogenation of TCO films are also discussed. Reduction and etching effect during plasma hydrogenation are the most important factors which determine the optical and electrical performance of TCO films.
Electrical and Optical Characteristics of Undoped and Se-Doped Bi2S3 Transistors
NASA Astrophysics Data System (ADS)
Kilcoyne, Colin; Alsaqqa, Ali; Rahman, Ajara A.; Whittaker-Brooks, Luisa; Sambandamurthy, G.
Semiconducting chalcogenides have been drawing increased attention due to their interesting physical properties, especially in low dimensional structures. Bi2S3 has demonstrated a high optical absorption coefficient, a large bulk mobility, small bandgap, high Seebeck coefficient, and low thermal conductivity. These properties make it a good candidate for optical, electric and thermoelectric applications. However, control over the electrical properties for enhanced thermoelectric performance and optical applications is desired. We present electrical transport and optical properties from individual nanowire and few-layer transistors of single crystalline undoped and Se-doped Bi2S3-xSex. All devices exhibit n-type semiconducting behavior and the ON/OFF ratio, mobility, and conductivity noise behavior are studied as functions of dopant concentration, temperature, and charge carrier density in different conduction regimes. The roles of dopant driven scattering mechanisms and mobility/carrier density fluctuations will be discussed. The potential for this series of materials as optical and electrical switches will be presented. NSF DMR.
Wang, Yan; Gu, Fu-Qiang; Ni, Li-Juan; Liang, Kun; Marcus, Kyle; Liu, Shu-Li; Yang, Fan; Chen, Jin-Ju; Feng, Zhe-Sheng
2017-11-30
Conductive polymer composites (CPCs) containing nanoscale conductive fillers have been widely studied for their potential use in various applications. In this paper, polypyrrole (PPy)/polydopamine (PDA)/silver nanowire (AgNW) composites with high electromagnetic interference (EMI) shielding performance, good adhesion ability and light weight are successfully fabricated via a simple in situ polymerization method followed by a mixture process. Benefiting from the intrinsic adhesion properties of PDA, the adhesion ability and mechanical properties of the PPy/PDA/AgNW composites are significantly improved. The incorporation of AgNWs endows the functionalized PPy with tunable electrical conductivity and enhanced EMI shielding effectiveness (SE). By adjusting the AgNW loading degree in the PPy/PDA/AgNW composites from 0 to 50 wt%, the electrical conductivity of the composites greatly increases from 0.01 to 1206.72 S cm -1 , and the EMI SE of the composites changes from 6.5 to 48.4 dB accordingly (8.0-12.0 GHz, X-band). Moreover, due to the extremely low density of PPy, the PPy/PDA/AgNW (20 wt%) composites show a superior light weight of 0.28 g cm -3 . In general, it can be concluded that the PPy/PDA/AgNW composites with tunable electrical conductivity, good adhesion properties and light weight can be used as excellent EMI shielding materials.
Sintered electrode for solid oxide fuel cells
Ruka, Roswell J.; Warner, Kathryn A.
1999-01-01
A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation.
Sintered electrode for solid oxide fuel cells
Ruka, R.J.; Warner, K.A.
1999-06-01
A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation. 4 figs.
NASA Astrophysics Data System (ADS)
An, Geon-Hyoung; Ahn, Hyo-Jin; Hong, Woong-Ki
2015-01-01
Four different types of carbon nanofibers (CNFs) for electrical double-layer capacitors (EDLCs), porous and non-porous CNFs with and without Pt metal nanoparticles, are synthesized by an electrospinning method and their performance in electrical double-layer capacitors (EDLCs) is characterized. In particular, the Pt-embedded porous CNFs (PCNFs) exhibit a high specific surface area of 670 m2 g-1, a large mesopore volume of 55.7%, and a low electrical resistance of 1.7 × 103. The synergistic effects of the high specific surface area with a large mesopore volume, and superior electrical conductivity result in an excellent specific capacitance of 130.2 F g-1, a good high-rate performance, superior cycling durability, and high energy density of 16.9-15.4 W h kg-1 for the performance of EDLCs.
Grudiev, A; Lettry, J; Mattei, S; Paoluzzi, M; Scrivens, R
2014-02-01
Numerical simulation of the CERN LINAC4 H(-) source 2 MHz RF system has been performed taking into account a realistic geometry from 3D Computer Aided Design model using commercial FEM high frequency simulation code. The effect of the plasma has been added to the model by the approximation of a homogenous electrically conducting medium. Electric and magnetic fields, RF power losses, and impedance of the circuit have been calculated for different values of the plasma conductivity. Three different regimes have been found depending on the plasma conductivity: (1) Zero or low plasma conductivity results in RF electric field induced by the RF antenna being mainly capacitive and has axial direction; (2) Intermediate conductivity results in the expulsion of capacitive electric field from plasma and the RF power coupling, which is increasing linearly with the plasma conductivity, is mainly dominated by the inductive azimuthal electric field; (3) High conductivity results in the shielding of both the electric and magnetic fields from plasma due to the skin effect, which reduces RF power coupling to plasma. From these simulations and measurements of the RF power coupling on the CERN source, a value of the plasma conductivity has been derived. It agrees well with an analytical estimate calculated from the measured plasma parameters. In addition, the simulated and measured impedances with and without plasma show very good agreement as well demonstrating validity of the plasma model used in the RF simulations.
Electrical conductivity of metal powders under pressure
NASA Astrophysics Data System (ADS)
Montes, J. M.; Cuevas, F. G.; Cintas, J.; Urban, P.
2011-12-01
A model for calculating the electrical conductivity of a compressed powder mass consisting of oxide-coated metal particles has been derived. A theoretical tool previously developed by the authors, the so-called `equivalent simple cubic system', was used in the model deduction. This tool is based on relating the actual powder system to an equivalent one consisting of deforming spheres packed in a simple cubic lattice, which is much easier to examine. The proposed model relates the effective electrical conductivity of the powder mass under compression to its level of porosity. Other physically measurable parameters in the model are the conductivities of the metal and oxide constituting the powder particles, their radii, the mean thickness of the oxide layer and the tap porosity of the powder. Two additional parameters controlling the effect of the descaling of the particle oxide layer were empirically introduced. The proposed model was experimentally verified by measurements of the electrical conductivity of aluminium, bronze, iron, nickel and titanium powders under pressure. The consistency between theoretical predictions and experimental results was reasonably good in all cases.
Multiple electrical phase transitions in Al substituted barium hexaferrite
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan
2017-12-01
Barium hexaferrite is known to be a very good ferromagnetic material. However, it shows very good dielectric properties, i.e., the dielectric constant is comparable to that of the ferroelectric material. However, its crystal symmetry does not allow it to be a ferroelectric material. Hence, the electrical properties have revived the considerable research interest on these materials, not only for academic interest, but also for technological applications. There are a few reports on temperature dependent dielectric behavior of these materials. However, the exact cause of dielectric as well as electrical conductivity is yet to be established. Hence, Al (very good conducting material) substituted barium hexaferrite (BaFe12-xAlxO19, x = 0.0-4.0) has been prepared by following the modified sol-gel method to understand the ac and DC electrical properties of these materials. The crystal structure and parameters have been studied by employing the XRD and FTIR techniques. There are two transition temperatures, which have been observed in the temperature dependent ac dielectric and DC resistivity measurement. The response of dielectric behaviors to temperature is similar to that of the ferroelectric material; however, the dielectric polarization is due to the polaron hopping, which is evident from the DC resistivity analysis. Hence, the present observations lead to understand the electrical properties of barium hexaferrite. The frequency dependent dielectric dispersion can be understood by the modified Debye model. More interestingly, the dielectric constant decreases and DC resistivity increases with the increase in the Al concentration, which has the correlation between bond length modifications in the crystal due to substitution.
NASA Astrophysics Data System (ADS)
Mareeswaran, S.; Asaithambi, T.
2016-10-01
Now a day's crystals are the pillars of current technology. Crystals are applied in various fields like fiber optic communications, electronic industry, photonic industry, etc. Crystal growth is an interesting and innovative field in the subject of physics, chemistry, material science, metallurgy, chemical engineering, mineralogy and crystallography. In recent decades optically good quality of pure and metal doped KDP crystals have been grown by gel growth method in room temperature and its characterizations were studied. Gel method is a very simple and one of the easiest methods among the various crystal growth methods. Potassium dihydrogen phosphate KH2PO4 (KDP) continues to be an interesting material both academically and technologically. KDP is a delegate of hydrogen bonded materials which possess very good electrical and nonlinear optical properties in addition to interesting electro-optic properties. We made an attempt to grow pure and titanium oxide doped KDP crystals with various doping concentrations (0.002, 0.004, 0.006, 0.008 and 0.010) using gel method. The grown crystals were collected after 20 days. We get crystals with good quality and shaped crystals. The dc electrical conductivity (resistance, capacitance and dielectric constant) values of the above grown crystals were measured at two different frequencies (1KHz and 100 Hz) with a temperature range of 500C to 1200C using simple two probe setup with Q band digital LCR meter present in our lab. The electrical conductivity increases with the increase of temperature. Dielectric constants value of titanium oxide doped KDP crystal was slightly decreased compared with pure KDP crystals. Results were discussed in details.
NASA Astrophysics Data System (ADS)
Xia, Y.-Y.; Yuan, R.-Y.; Yang, Q.-J.; Sun, Q.; Zheng, J.; Guo, Y.
In this paper, with the three-band tight-binding model and non-equilibrium Green’s function technique, we investigate spin transport in electric-barrier-modulated Ferromagnetic/Normal/Ferromagnetic (F/N/F) monolayer (ML) zigzag MoS2 nanoribbon junction. The results demonstrate that once the double electric barriers structure emerges, the oscillations of spin conductances become violent, especially for spin-down conductance, the numbers of resonant peaks increase obviously, thus we can obtain 100% spin polarization in the low energy region. It is also found that with the intensity of the exchange field enhancement, the resonant peaks of spin-up and spin-down conductances move in the opposite direction in a certain energy region. As a consequence, the spin-down conductance can be filtered out completely. The findings here indicate that the present structure may be considered as a good candidate for spin filter.
Thermo-structural analysis and electrical conductivity behavior of epoxy/metals composites
NASA Astrophysics Data System (ADS)
Boumedienne, N.; Faska, Y.; Maaroufi, A.; Pinto, G.; Vicente, L.; Benavente, R.
2017-05-01
This paper reports on the elaboration and characterization of epoxy resin filled with metallic particles powder (aluminum, tin and zinc) composites. The scanning electron microscopy (SEM) pictures, density measurements and x-ray diffraction analysis (DRX) showed a homogeneous phase of obtained composites. The differential scanning calorimetry revealed a good adherence at matrix-filler interfaces, confirming the SEM observations. The measured glass transition temperatures depend on composites fillers' nature. Afterwards, the electrical conductivity of composites versus their fillers' contents has been investigated. The obtained results depict a nonlinear behavior, indicating an insulator to conductor phase transition at a conduction threshold; with high contrast of ten decades. Hence, the elaborated materials give a possibility to obtain dielectric or electrically conducting phases, which can to be interesting in the choice of desired applications. Finally, the obtained results have been successfully simulated on the basis of different percolation models approach combined with structural characterization inferences.
High-Surface-Area Nitrogen-Doped Reduced Graphene Oxide for Electric Double-Layer Capacitors.
Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum
2015-06-08
A two-step method consisting of solid-state microwave irradiation and heat treatment under NH3 gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007 m(2) g(-1) ), high electrical conductivity (1532 S m(-1) ), and low oxygen content (1.5 wt %) for electrical double-layer capacitor applications. The specific capacitance of N-RGO was 291 F g(-1) at a current density of 1 A g(-1) , and a capacitance of 261 F g(-1) was retained at 50 A g(-1) , which indicated a very good rate capability. N-RGO also showed excellent cycling stability and preserved 96 % of the initial specific capacitance after 100 000 cycles. Near-edge X-ray absorption fine-structure spectroscopy results provided evidenced for the recovery of π conjugation in the carbon networks with the removal of oxygenated groups and revealed chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Periodic metallo-dielectric structure in diamond.
Shimizu, M; Shimotsuma, Y; Sakakura, M; Yuasa, T; Homma, H; Minowa, Y; Tanaka, K; Miura, K; Hirao, K
2009-01-05
Intense ultrashort light pulses induce three dimensional localized phase transformation of diamond. Photoinduced amorphous structures have electrical conducting properties of a maximum of 64 S/m based on a localized transition from sp(3) to sp(2) in diamond. The laser parameters of fluence and scanning speed affect the resultant electrical conductivities due to recrystallization and multi-filamentation phenomena. We demonstrate that the laser-processed diamond with the periodic cylinder arrays have the characteristic transmission properties in terahertz region, which are good agreement with theoretical calculations. The fabricated periodic structures act as metallo-dielectric photonic crystal.
AC conductivity and dielectric properties of Ti-doped CoCr 1.2Fe 0.8O 4 spinel ferrite
NASA Astrophysics Data System (ADS)
Elkestawy, M. A.; Abdel kader, S.; Amer, M. A.
2010-01-01
Dielectric properties of spinel ferrite samples Co 1+xTi xCr 1.2-2xFe 0.8O 4 (0≤ x≤0.5) were investigated as a function of frequency at different temperatures using a complex impedance technique. Also Cole-Cole diagrams of both permittivity and electric modulus were investigated at different temperatures to have an insight into the electric nature of the studied solids. It has been found that the electric modulus M* is the dominating property clarifying the intrinsic picture of these polycrystalline ferrites. The low conductivity and loss factor values indicate that the studied compositions may be good candidates for practical applications.
Zhu, Tongtong; Liu, Yingjun; Ding, Tao; Fu, Wai Yuen; Jarman, John; Ren, Christopher Xiang; Kumar, R Vasant; Oliver, Rachel A
2017-03-27
Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices. For many device applications, it is highly desirable to achieve not only high reflectivity and low absorption, but also good conductivity to allow effective electrical injection of charges. Here, we demonstrate the wafer-scale fabrication of highly reflective and conductive non-polar gallium nitride (GaN) DBRs, consisting of perfectly lattice-matched non-polar (11-20) GaN and mesoporous GaN layers that are obtained by a facile one-step electrochemical etching method without any extra processing steps. The GaN/mesoporous GaN DBRs exhibit high peak reflectivities (>96%) across the entire visible spectrum and wide spectral stop-band widths (full-width at half-maximum >80 nm), while preserving the material quality and showing good electrical conductivity. Such mesoporous GaN DBRs thus provide a promising and scalable platform for high performance GaN-based optoelectronic, photonic, and quantum photonic devices.
Electrical and magnetic properties of conductive Cu-based coated conductors
NASA Astrophysics Data System (ADS)
Aytug, T.; Paranthaman, M.; Thompson, J. R.; Goyal, A.; Rutter, N.; Zhai, H. Y.; Gapud, A. A.; Ijaduola, A. O.; Christen, D. K.
2003-11-01
The development of YBa2Cu3O7-δ (YBCO)-based coated conductors for electric power applications will require electrical and thermal stabilization of the high-temperature superconducting (HTS) coating. In addition, nonmagnetic tape substrates are an important factor in order to reduce the ferromagnetic hysteresis energy loss in ac applications. We report progress toward a conductive buffer layer architecture on biaxially textured nonmagnetic Cu tapes to electrically couple the HTS layer to the underlying metal substrate. A protective Ni overlayer, followed by a single buffer layer of La0.7Sr0.3MnO3, was employed to avoid Cu diffusion and to improve oxidation resistance of the substrate. Property characterizations of YBCO films on short prototype samples revealed self-field critical current density (Jc) values exceeding 2×106 A/cm2 at 77 K and good electrical connectivity. Magnetic hysteretic loss due to Ni overlayer was also investigated.
Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole.
Lay, Makara; Méndez, J Alberto; Delgado-Aguilar, Marc; Bun, Kim Ngun; Vilaseca, Fabiola
2016-11-05
In this work, we prepare cellulose nanopapers of high mechanical performance and with the electrical conductivity of a semiconductor. Cellulose nanofibers (CNF) from bleached softwood pulp were coated with polypyrrole (PPy) via in situ chemical polymerization, in presence of iron chloride (III) as oxidant agent. The structure and morphology of nanopapers were studied, as well as their thermal, mechanical and conductive properties. Nanopaper from pure CNF exhibited a very high tensile response (224MPa tensile strength and 14.5GPa elastic modulus). The addition of up to maximum 20% of polypyrrole gave CNF/PPy nanopapers of high flexibility and still good mechanical properties (94MPa strength and 8.8GPa modulus). The electrical conductivity of the resulting CNF/PPy nanopaper was of 5.2 10(-2)Scm(-1), with a specific capacitance of 7.4Fg(-1). The final materials are strong and conductive nanopapers that can find application as biodegradable flexible thin-film transistor (TFT) or as flexible biosensor. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thermoelectric properties of pressure-sintered Si(0.8)Ge(0.2) thermoelectric alloys
NASA Technical Reports Server (NTRS)
Vining, Cronin B.; Laskow, William; Hanson, Jack O.; Van Der Beck, Roland R.; Gorsuch, Paul D.
1991-01-01
The thermoelectric properties of 28 sintered Si(0.8)Ge(0.2) alloys, heavily doped with either B or P and prepared from powders with median particle sizes ranging from about 1 to over 100 microns, have been determined from 300 to 1300 K. The thermal conductivity decreases with decreasing particle size; however, the figure of merit is not significantly increased due to a compensating reduction in the electrical conductivity. The thermoelectric figure of merit is in good agreement with results of Dismukes et al. (1964) on similarly doped alloys prepared by zone-leveling techniques. The electrical and thermal conductivity are found to be sensitive to preparation procedure while the Seebeck coefficient and figure of merit are much less sensitive. The high-temperature electrical properties are consistent with charge carrier scattering by acoustic or optical phonons.
Synthesis, Characterization and Application of Functional Carbon Nano Materials
2014-05-05
properties All nanotubes are expected to be very good thermal conductors along the tube, exhibiting a 12 property known as "ballistic conduction ...by approximately the same value (2.3%) [86]. 5) Thermal properties [87] Graphene is a perfect thermal conductor . Its thermal conductivity at room...other fields of materials science and technology. In particular, owing to their extraordinary thermal conductivity and mechanical and electrical
NASA Astrophysics Data System (ADS)
Varnaitė-Žuravliova, Sandra; Savest, Natalja; Abraitienė, Aušra; Baltušnikaitė-Guzaitienė, Julija; Krumme, Andres
2018-05-01
Intrinsically conductive polymers are one very attractive material, because of their good electrical, electrochemical and optical properties, and a wide range of applications. The spinnability of Polyaniline (PANI) solutions is generally insufficient for it to be electrospun directly into fibers, but addition of another polymer to the organic solutions or usage of dopant and solvent may improve it. The aim of the research was: to produce nanofibers of the smallest diameter as possible by using conventional electrospinning setup; to investigate the influence of viscosity and electrical conductivity to the spinnability of PANI solutions; to control the electrical conductivity of prepared solutions and electrospun nanofibers by changing concentrations of chemicals used. The results of investigations made with prepared solutions shave showed, that the viscosity increases and the electrical conductivity is tending to decrease with increase of Polyethylenoxide (PEO) concentration in the spinning solution. In order to achieve greater conductivity, the Dimethylformamide (DMF) was added as a dopant. Though the conductivity of solutions was reached high enough, but the loss in viscosity resulted in depriation of greater spinnability of PANI nanofibers. Also it was noticed, that despite the fact that the electrical conductivity of all solutions was different, the electrical conductivity of fiber mats can be divided in two groups: fiber mats without DMF and fiber mats with DMF. The morphological analysis of produced fiber mats have showed, that higher PEO concentration resulted in thicker PANI nanofibers—the diameter varied from 333 nm till 4434 nm. The usage of DMF gave an opportunity to receive almost twice thinner conductive PANI nanofibers with narrower distribution in diameter. Slower flow rate of the electrospinning process resulted in thinner nanofibers as well.
Study of electrical resistivity on the location and identification of contamination
NASA Astrophysics Data System (ADS)
McCarty, B. D.
1985-12-01
Electrical resistance studies were conducted in two laboratory models to determine electrical resistivity relationships and to use those defined relationships to identify contamination spikes. A good correlation was established between resistance data and the composition of leachate and copper spiked leachate gelatin blocks under study. The major variable that could not be eliminated from this study which had the greatest effect on data was moisture content. This thesis contains a review of the theory and field application of electrical resistivity, a description of the experimental approach used, and a summary of the data collected.
Lee, J.Y.; Santamarina, J.C.; Ruppel, C.
2010-01-01
The marked decrease in bulk electrical conductivity of sediments in the presence of gas hydrates has been used to interpret borehole electrical resistivity logs and, to a lesser extent, the results of controlled source electromagnetic surveys to constrain the spatial distribution and predicted concentration of gas hydrate in natural settings. Until now, an exhaustive laboratory data set that could be used to assess the impact of gas hydrate on the electromagnetic properties of different soils (sand, silt, and clay) at different effective stress and with different saturations of hydrate has been lacking. The laboratory results reported here are obtained using a standard geotechnical cell and the hydrate-formed tetrahydrofuran (THF), a liquid that is fully miscible in water and able to produce closely controlled saturations of hydrate from dissolved phase. Both permittivity and electrical conductivity are good indicators of the volume fraction of free water in the sediment, which is in turn dependent on hydrate saturation. Permittivity in the microwave frequency range is particularly predictive of free water content since it is barely affected by ionic concentration, pore structure, and surface conduction. Electrical conductivity (or resistivity) is less reliable for constraining water content or hydrate saturation: In addition to fluid-filled porosity, other factors, such as the ionic concentration of the pore fluid and possibly other conduction effects (e.g., surface conduction in high specific surface soils having low conductivity pore fluid), also influence electrical conductivity.
NASA Astrophysics Data System (ADS)
Schubert, Michael; Leupold, Nico; Exner, Jörg; Kita, Jaroslaw; Moos, Ralf
2018-04-01
Alumina (Al2O3) is a widely used material for highly insulating films due to its very low electrical conductivity, even at high temperatures. Typically, alumina films have to be sintered far above 1200 °C, which precludes the coating of lower melting substrates. The aerosol deposition method (ADM), however, is a promising method to manufacture ceramic films at room temperature directly from the ceramic raw powder. In this work, alumina films were deposited by ADM on a three-electrode setup with guard ring and the electrical conductivity was measured between 400 and 900 °C by direct current measurements according to ASTM D257 or IEC 60093. The effects of film annealing and of zirconia impurities in the powder on the electrical conductivity were investigated. The conductivity values of the ADM films correlate well with literature data and can even be improved by annealing at 900 °C from 4.5 × 10-12 S/cm before annealing up to 5.6 × 10-13 S/cm after annealing (measured at 400 °C). The influence of zirconia impurities is very low as the conductivity is only slightly elevated. The ADM-processed films show a very good insulation behavior represented by an even lower electrical conductivity than conventional alumina substrates as they are commercially available for thick-film technology.
Electrical Conductivity in Textiles
NASA Technical Reports Server (NTRS)
2006-01-01
Copper is the most widely used electrical conductor. Like most metals, though, it has several drawbacks: it is heavy, expensive, and can break. Fibers that conduct electricity could be the solutions to these problems, and they are of great interest to NASA. Conductive fibers provide lightweight alternatives to heavy copper wiring in a variety of settings, including aerospace, where weight is always a chief concern. This is an area where NASA is always seeking improved materials. The fibers are also more cost-effective than metals. Expenditure is another area where NASA is always looking to make improvements. In the case of electronics that are confined to small spaces and subject to severe stress, copper is prone to breaking and losing connection over time. Flexible conductive fibers eliminate that problem. They are more supple and stronger than brittle copper and, thus, find good use in these and similar situations. While clearly a much-needed material, electrically conductive fibers are not readily available. The cost of new technology development, with all the pitfalls of troubleshooting production and the years of testing, and without the guarantee of an immediate market, is often too much of a financial hazard for companies to risk. NASA, however, saw the need for electrical fibers in its many projects and sought out a high-tech textile company that was already experimenting in this field, Syscom Technology, Inc., of Columbus, Ohio. Syscom was founded in 1993 to provide computer software engineering services and basic materials research in the areas of high-performance polymer fibers and films. In 1999, Syscom decided to focus its business and technical efforts on development of high-strength, high-performance, and electrically conductive polymer fibers. The company developed AmberStrand, an electrically conductive, low-weight, strong-yet-flexible hybrid metal-polymer YARN.
Ray, S.P.; Rapp, R.A.
1984-06-12
An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. 8 figs.
Ray, Siba P.; Rapp, Robert A.
1984-01-01
An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily.
Ray, Siba P.; Rapp, Robert A.
1986-01-01
An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily.
NASA Astrophysics Data System (ADS)
Saha, B.; Thapa, R.; Jana, S.; Chattopadhyay, K. K.
2010-10-01
Thin films of p-type transparent conducting CuAlO2 have been synthesized through reactive radio frequency magnetron sputtering on silicon and glass substrates at substrate temperature 300°C. Reactive sputtering of a target fabricated from Cu and Al powder (1:1.5) was performed in Ar+O2 atmosphere. The deposition parameters were optimized to obtain phase pure, good quality CuAlO2 thin films. The films were characterized by studying their structural, morphological, optical and electrical properties.
A study of the electrical properties of carbon nanofiber polymer composites
NASA Astrophysics Data System (ADS)
Cardoso, Paulo Jorge Magalhaes
The interest of industry on using carbon nanofibers (CNF) as a possible alternative to carbon nanotubes (CNT) to produce polymer based composites is due to their lower price, the ability to be produced in large amounts and the their usefulness as a reinforcement filler in order to improve the matrix properties such as mechanical, thermal and electrical. Polymers like epoxy resins already have good-to-excellent properties and an extensive range of applications, but the reinforcement with fillers like CNF, which has high aspect ratio (AR) and surface energy, has the potential to extend the range of applications. The Van der Waals interactions between nanofillers, such as CNF, promote the clustering effect which affects their dispersion in the polymer and may interfere with some properties of the nanocomposites. In this sense, it is very important to use appropriate dispersion methods which are able to disentangle the nanofillers to a certain degree, but avoiding the reduction of the nanofibers AR as much as possible. In fact, the methods and conditions of nanocomposites processing have also influence on the filler orientation, dispersion, distribution and aspect ratio. To the present day, there is a lack of complete information in the literature about the relation between structure and properties, in particular electrical properties, for polymer nanocomposites. The main objective of this work is to study the electrical properties of composites based on CNF and epoxy resin using production methods which can be easily implemented in industrial environments and that provide different dispersion levels, investigating therefore the relationship between dispersion level and electrical response. Some of the requirements for such methods are the adaptability to the industrial processes and facilities which allow large scale productions and provide a good relation between quality and cost of the composite materials. In this work, morphological, electrical and electromechanical studies were performed in epoxy resin composites with vapor-grown carbon nanofibers (VGCNF). First, the electrical properties of VGCNF/epoxy resin composites produced with a simple method were studied. Then, it was investigated the relation between the electrical properties and the dispersion level of VGCNF/epoxy composites produced with different methods, which were selected to provide different levels of dispersion.The level of nanofiber dispersion of the composites produced with the different methods and filler contents was analyzed by transmission optical microscopy (TOM) and greyscale analysis (GSA) and then compared to the electrical conductivity measurements. After this study, the influence of different methods of VGCNF dispersion on the electrical conduction mechanism of the composites was investigated. Then, these composites were submitted to electromechanical tests in order to apply them as piezoresistive sensors. The last study of this work was dedicated to an initial comparison between the epoxy composites with VGCNG and multi-walled carbon nanotubes (MWCNT), in terms of electrical and morphological properties. As the main outcomes of the present work, it can be concluded that a better cluster dispersion seems to be more suitable than good filler dispersion for achieving larger electrical conductivities and lower percolation thresholds. It is also concluded that hopping conductivity is a relevant mechanism for determining the overall conductivity of the composites and that the CNF/epoxy composites are appropriate materials for piezoresistive sensors in particular at concentrations close to the percolation threshold.
Tan, Xin; Tahini, Hassan A; Smith, Sean C
2016-12-07
Electrocatalytic, switchable hydrogen storage promises both tunable kinetics and facile reversibility without the need for specific catalysts. The feasibility of this approach relies on having materials that are easy to synthesize, possessing good electrical conductivities. Graphitic carbon nitride (g-C 4 N 3 ) has been predicted to display charge-responsive binding with molecular hydrogen-the only such conductive sorbent material that has been discovered to date. As yet, however, this conductive variant of graphitic carbon nitride is not readily synthesized by scalable methods. Here, we examine the possibility of conductive and easily synthesized boron-doped graphene nanosheets (B-doped graphene) as sorbent materials for practical applications of electrocatalytically switchable hydrogen storage. Using first-principle calculations, we find that the adsorption energy of H 2 molecules on B-doped graphene can be dramatically enhanced by removing electrons from and thereby positively charging the adsorbent. Thus, by controlling charge injected or depleted from the adsorbent, one can effectively tune the storage/release processes which occur spontaneously without any energy barriers. At full hydrogen coverage, the positively charged BC 5 achieves high storage capacities up to 5.3 wt %. Importantly, B-doped graphene, such as BC 49 , BC 7 , and BC 5 , have good electrical conductivity and can be easily synthesized by scalable methods, which positions this class of material as a very good candidate for charge injection/release. These predictions pave the route for practical implementation of electrocatalytic systems with switchable storage/release capacities that offer high capacity for hydrogen storage.
Liu, Qing; Qiu, Guanglei; Zhou, Zhengzhong; Li, Jingguo; Amy, Gary Lee; Xie, Jianping; Lee, Jim Yang
2016-10-04
The organic foulants and bacteria in secondary wastewater treatment can seriously impair the membrane performance in a water treatment plant. The embedded electrode approach using an externally applied potential to repel organic foulants and inhibit bacterial adhesion can effectively reduce the frequency of membrane replacement. Electrode embedment in membranes is often carried out by dispensing a conductor (e.g., carbon nanotubes, or CNTs) in the membrane substrate, which gives rise to two problems: the leaching-out of the conductor and a percolation-limited membrane conductivity that results in an added energy cost. This study presents a facile method for the embedment of a continuous electrode in thin-film composite (TFC) forward osmosis (FO) membranes. Specifically, a conducting porous carbon paper is used as the understructure for the formation of a membrane substrate by the classical phase inversion process. The carbon paper and the membrane substrate polymer form an interpenetrating structure with good stability and low electrical resistance (only about 1Ω/□). The membrane-electrode assembly was deployed as the cathode of an electrochemical cell, and showed good resistance to organic and microbial fouling with the imposition of a 2.0 V DC voltage. The carbon paper-based FO TFC membranes also possess good mechanical stability for practical use.
Jiang, Xiancai; Xiang, Nanping; Zhang, Hongxiang; Sun, Yujun; Lin, Zhen; Hou, Linxi
2018-04-15
Development of bio-based hydrogels with good mechanical properties and high electrical conductivity is of great importance for their excellent biocompatibility and biodegradability. Novel electrically conducive and tough poly(vinyl alcohol)/sodium alginate (PVA/SA) composite hydrogel was obtained by a simple method in this paper. PVA and SA were firstly dissolved in distilled water to form the composite solution and the pure PVA/SA hydrogel was obtained through the freezing/thawing process. The pure PVA/SA hydrogels were subsequently immersed into the saturated NaCl aqueous solution to increase the gel strength and conductivity. The effect of the immersing time on the thermal and mechanical properties of PVA/SA hydrogel was studied. The swelling properties and the antiseptic properties of the obtained PVA/SA hydrogel were also studied. This paper provided a novel way for the preparation of tough hydrogel electrolyte. Copyright © 2018. Published by Elsevier Ltd.
Structure, Raman, dielectric behavior and electrical conduction mechanism of strontium titanate
NASA Astrophysics Data System (ADS)
Trabelsi, H.; Bejar, M.; Dhahri, E.; Graça, M. P. F.; Valente, M. A.; Khirouni, K.
2018-05-01
Strontium titanate was prepared by solid-state reaction method. According to the XRD, it was single phase and has a cubic perovskite structure. The Raman spectroscopic investigation was carried out at room-temperature, and the second-order Raman modes were observed. By employing impedance spectroscopy, the dielectric relaxation and electrical properties were investigated over the temperature range of 500-700 K at various frequencies. The activation energies evaluated from dielectric and modulus studies are in good agreement and these values are attributed to the bulk relaxation. The impedance data were well fitted to an (R1//C1)-(R2//CPE1) equivalent electrical circuit. It could be concluded that the grain boundaries are more resistive and capacitive than the grains. The ac conductivity was found to follow the Jonscher's universal dynamic law ωS and the correlated barrier hopping model (CBH) has been proposed to describe the conduction mechanism.
NASA Astrophysics Data System (ADS)
Jánský, Jaroslav; Lucas, Greg M.; Kalb, Christina; Bayona, Victor; Peterson, Michael J.; Deierling, Wiebke; Flyer, Natasha; Pasko, Victor P.
2017-12-01
This work analyzes different current source and conductivity parameterizations and their influence on the diurnal variation of the global electric circuit (GEC). The diurnal variations of the current source parameterizations obtained using electric field and conductivity measurements from plane overflights combined with global Tropical Rainfall Measuring Mission satellite data give generally good agreement with measured diurnal variation of the electric field at Vostok, Antarctica, where reference experimental measurements are performed. An approach employing 85 GHz passive microwave observations to infer currents within the GEC is compared and shows the best agreement in amplitude and phase with experimental measurements. To study the conductivity influence, GEC models solving the continuity equation in 3-D are used to calculate atmospheric resistance using yearly averaged conductivity obtained from the global circulation model Community Earth System Model (CESM). Then, using current source parameterization combining mean currents and global counts of electrified clouds, if the exponential conductivity is substituted by the conductivity from CESM, the peak to peak diurnal variation of the ionospheric potential of the GEC decreases from 24% to 20%. The main reason for the change is the presence of clouds while effects of 222Rn ionization, aerosols, and topography are less pronounced. The simulated peak to peak diurnal variation of the electric field at Vostok is increased from 15% to 18% from the diurnal variation of the global current in the GEC if conductivity from CESM is used.
Electrical Conductivity Mechanism in Unconventional Lead Vanadate Glasses
NASA Astrophysics Data System (ADS)
Abdel-Wahab, F.; Merazga, A.; Montaser, A. A.
2017-03-01
Lead vanadate glasses of the system (V2O5)_{1-x}(PbO)x with x = 0.4, 0.45, 0.5, 0.55, 0.6 have been prepared by the press-quenching technique. The dc (σ (0)) and ac (σ (ω )) electrical conductivities were measured in the temperature range from 150 to 420 K and the frequency range from 102 to 106 Hz. The electrical properties are shown to be sensitive to composition. The experimental results have been analyzed within the framework of different models. The dc conductivity is found to be proportional to Tp with the exponent p ranging from 8.2 to 9.8, suggesting that the transport is determined by a multi-phonon process of weak electron-lattice coupling. The ac conductivity is explained by the percolation path approximation (PPA). In this model, σ (ω ) is closely related to the σ (0) and fitting the experimental data produces a dielectric relaxation time τ in good agreement with the expected value in both magnitude and temperature dependence.
Nonideal ultrathin mantle cloak for electrically large conducting cylinders.
Liu, Shuo; Zhang, Hao Chi; Xu, He-Xiu; Cui, Tie Jun
2014-09-01
Based on the concept of the scattering cancellation technique, we propose a nonideal ultrathin mantle cloak that can efficiently suppress the total scattering cross sections of an electrically large conducting cylinder (over one free-space wavelength). The cloaking mechanism is investigated in depth based on the Mie scattering theory and is simultaneously interpreted from the perspective of far-field bistatic scattering and near-field distributions. We remark that, unlike the perfect transformation-optics-based cloak, this nonideal cloaking technique is mainly designed to minimize simultaneously several scattering multipoles of a relatively large geometry around considerably broad bandwidth. Numerical simulations and experimental results show that the antiscattering ability of the metasurface gives rise to excellent total scattering reduction of the electrically large cylinder and remarkable electric-field restoration around the cloak. The outstanding cloaking performance together with the good features of and ultralow profile, flexibility, and easy fabrication predict promising applications in the microwave frequencies.
Nonlinear DC Conduction Behavior in Graphene Nanoplatelets/Epoxy Resin Composites
NASA Astrophysics Data System (ADS)
Yuan, Yang; Wang, Qingguo; Qu, Zhaoming
2018-01-01
Graphene nanoplatelets (GNPs)/Epoxy resin (ER) with a low percolation threshold were fabricated. Then the nonlinear DC conduction behavior of GNPs/ER composites was investigated, which indicates that dispersion, exfoliation level and conductivity of GNPs in specimens are closely related to the conduction of composites. Moreover, it could be seen that the modified graphene nanoplatelets made in this paper could be successfully used for increasing the electric conductivity of the epoxy resin, and the GNPs/ER composites with nonlinear conduction behavior have a good application prospects in the field of intelligent electromagnetic protection.
Research@ARL: Materials Modeling at Multiple Scales. Volume 3, Issue 2
2014-07-01
possessing high ionic conductivity , low viscosity, and good thermal and electrochemical stability and, importantly, being compatible with electrodes. As... thermal and electrical properties. ARL conducts extensive research in graphene and other 2D materials such as BN, ZnO, and hybrid graphene-polyethylene...contribution at temperatures below 393 K. Thus, below 393 K, Li2EDC essentially acts as a single ion conductor . The isotropic ionic conductivity from MD
Félix, L Avilés; Sirena, M; Guzmán, L A Agüero; Sutter, J González; Vargas, S Pons; Steren, L B; Bernard, R; Trastoy, J; Villegas, J E; Briático, J; Bergeal, N; Lesueur, J; Faini, G
2012-12-14
The transport properties of ultra-thin SrTiO(3) (STO) layers grown over YBa(2)Cu(3)O(7) electrodes were studied by conductive atomic force microscopy at the nano-scale. A very good control of the barrier thickness was achieved during the deposition process. A phenomenological approach was used to obtain critical parameters regarding the structural and electrical properties of the system. The STO layers present an energy barrier of 0.9 eV and an attenuation length of 0.23 nm, indicating very good insulating properties for the development of high-quality Josephson junctions.
Spin-valleytronics of silicene based nanodevices (SBNs)
NASA Astrophysics Data System (ADS)
Ahmed, Ibrahim Sayed; Asham, Mina Danial; Phillips, Adel Helmy
2018-06-01
The quantum spin and valley characteristics in normal silicene/ferromagnetic silicene/normal silicene junction are investigated under the effects of both electric field and the exchange field of the ferromagnetic silicene. The spin resolved conductance and valley resolved conductance are deduced by solving the Dirac equation. Results show resonant oscillations of both spin and valley conductance. These oscillations might be due to confined states of ferromagnetic silicene. The spin and valley polarizations are also computed. Their trends of figures show that they might be tuned and modulated by the electric field and the exchange field of the ferromagnetic silicene. The present investigated silicene nanodevice might be good for spin-valleytronics applications which are needed for quantum information processing and quantum logic circuits.
Zhou, Gaochao; Tao, Xudong; Shen, Ze; Zhu, Guanghao; Jin, Biaobing; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng
2016-01-01
We propose a kind of general framework for the design of a perfect linear polarization converter that works in the transmission mode. Using an intuitive picture that is based on the method of bi-directional polarization mode decomposition, it is shown that when the device under consideration simultaneously possesses two complementary symmetry planes, with one being equivalent to a perfect electric conducting surface and the other being equivalent to a perfect magnetic conducting surface, linear polarization conversion can occur with an efficiency of 100% in the absence of absorptive losses. The proposed framework is validated by two design examples that operate near 10 GHz, where the numerical, experimental and analytic results are in good agreements. PMID:27958313
NASA Astrophysics Data System (ADS)
Nakamura, D.; Altarawneh, M. M.; Takeyama, S.
2018-03-01
A contactless measurement system of electrical conductivity was developed for application under pulsed high magnetic fields over 100 T by using a self-resonant-type, high-frequency circuit. Electromagnetic fields in the circuit were numerically analysed by the finite element method, to show how the resonant power spectra of the circuit depends on the electrical conductivity of a sample set on the probe-coil. The performance was examined using a high-temperature cuprate superconductor, La2-x Sr x CuO4, in magnetic fields up to 102 T with a high frequency of close to 800 MHz. As a result, the upper critical field could be determined with a good signal-to-noise ratio.
Potentialities of silicon nanowire forests for thermoelectric generation
NASA Astrophysics Data System (ADS)
Dimaggio, Elisabetta; Pennelli, Giovanni
2018-04-01
Silicon is a material with very good thermoelectric properties, with regard to Seebeck coefficient and electrical conductivity. Low thermal conductivities, and hence high thermal to electrical conversion efficiencies, can be achieved in nanostructures, which are smaller than the phonon mean free path but large enough to preserve the electrical conductivity. We demonstrate that it is possible to fabricate a leg of a thermoelectric generator based on large collections of long nanowires, placed perpendicularly to the two faces of a silicon wafer. The process exploits the metal assisted etching technique which is simple, low cost, and can be easily applied to large surfaces. Copper can be deposited by electrodeposition on both faces, so that contacts can be provided, on top of the nanowires. Thermal conductivity of silicon nanowire forests with more than 107 nanowires mm-2 have been measured; the result is comparable with that achieved by several groups on devices based on few nanowires. On the basis of the measured parameters, numerical calculations of the efficiency of silicon-based thermoelectric generators are reported, and the potentialities of these devices for thermal to electrical energy conversion are shown. Criteria to improve the conversion efficiency are suggested and described.
Cryogenic electrical properties of irradiated cyanate ester/epoxy insulation for fusion magnets
NASA Astrophysics Data System (ADS)
Li, X.; Wu, Z. X.; Li, J.; Xu, D.; Liu, H. M.; Huang, R. J.; Li, L. F.
2017-12-01
The insulation materials used in high field fusion magnets require excellent mechanical properties, high electrical breakdown strength, good thermal conductivity and high radiation tolerance. Previous investigations showed that cyanate ester/epoxy (CE/EP) insulation material, a candidate insulation for fusion magnets, can maintain good mechanical performance at cryogenic temperature after 10 MGy irradiation and has a much longer pot life than traditional epoxy insulation material. In order to quantify the electrical properties of the CE/EP insulation material at low temperature, a cryogenic electrical property testing system cooled by a G-M cryocooler was developed for this study. An insulation material with 40% cyanate ester and 60% epoxy was subjected to 60Co γ-ray irradiation in air at ambient temperature with a dose rate of 300 Gy/min, and total doses of 1 MGy, 5 MGy and 10 MGy. The electrical breakdown strength of this CE/EP insulation material was measured before and after irradiation. The results show that cryogenic temperature has a positive effect on the electrical breakdown strength of this composite, while the influence of 60Co γ-ray irradiation is not obvious at 6.1 K.
NASA Astrophysics Data System (ADS)
Nitishinskiy, M.; Yanuka, D.; Virozub, A.; Krasik, Ya. E.
2017-12-01
Time- and space-resolved evolution of the density (down to 0.07 of solid state density) of a copper wire during its microsecond timescale electrical explosion in water was obtained by X-ray backlighting. In the present research, a flash X-ray source of 20 ns pulse-width and >60 keV photon energy was used. The conductivity of copper was evaluated for a temperature of 10 kK and found to be in good agreement with the data obtained in earlier experiments [DeSilva and Katsouros, Phys. Rev. E 57, 5945 (1998) and Sheftman and Krasik, Phys. Plasmas 18, 092704 (2011)] where only electrical and optical diagnostics were applied. Magneto-hydrodynamic simulation shows a good agreement between the simulated and experimental waveforms of the current and voltage and measured the radial expansion of the exploding wire. Also, the radial density distribution obtained by an inverse Abel transform analysis agrees with the results of these simulations. Thus, the validity of the equations of state for copper and the conductivity model used in the simulations was confirmed for the parameters of the exploding wire realized in the present research.
Ray, S.P.; Rapp, R.A.
1986-04-22
An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. 8 figs.
NASA Astrophysics Data System (ADS)
Fereshteh-Saniee, Faramarz; Asgari, Mohammad; Fakhar, Naeimeh
2016-08-01
Despite valuable electrical characteristics, the use of pure aluminum in different applications has been limited due to its low strength. Non-equal channel angular pressing (NECAP) is a recently proposed severe plastic deformation process with greater induced plastic strain and, consequently, better grain refinement in the product, compared with the well-known equal channel angular pressing technique. This research is concerned with the effects of the process temperature and ram velocity on the mechanical, workability and electrical properties of AA1060 aluminum alloy. Increasing the process temperature can concurrently increase the workability, ductility and electrical conductivity, while it has a reverse influence on the strength of the NECAPed specimen, although the strengths of all the products are higher than the as-received alloy. The influence of the ram speed on the mechanical properties of the processed samples is lower than the process temperature. Finally, a compromised process condition is introduced in order to attain a good combination of workability and strength with well-preserved electrical conductivity for electrical applications of components made of pure aluminum.
Sarang, S; Sastry, S K; Gaines, J; Yang, T C S; Dunne, P
2007-06-01
The electrical conductivity of food components is critical to ohmic heating. Food components of different electrical conductivities heat at different rates. While equal electrical conductivities of all phases are desirable, real food products may behave differently. In the present study involving chicken chow mein consisting of a sauce and different solid components, celery, water chestnuts, mushrooms, bean sprouts, and chicken, it was observed that the sauce was more conductive than all solid components over the measured temperature range. To improve heating uniformity, a blanching method was developed to increase the ionic content of the solid components. By blanching different solid components in a highly conductive sauce at 100 degrees C for different lengths of time, it was possible to adjust their conductivity to that of the sauce. Chicken chow mein samples containing blanched particulates were compared with untreated samples with respect to ohmic heating uniformity at 60 Hz up to 140 degrees C. All components of the treated product containing blanched solids heated more uniformly than untreated product. In sensory tests, 3 different formulations of the blanched product showed good quality attributes and overall acceptability, demonstrating the practical feasibility of the blanching protocol.
Modeling of electric field distribution in tissues during electroporation
2013-01-01
Background Electroporation based therapies and treatments (e.g. electrochemotherapy, gene electrotransfer for gene therapy and DNA vaccination, tissue ablation with irreversible electroporation and transdermal drug delivery) require a precise prediction of the therapy or treatment outcome by a personalized treatment planning procedure. Numerical modeling of local electric field distribution within electroporated tissues has become an important tool in treatment planning procedure in both clinical and experimental settings. Recent studies have reported that the uncertainties in electrical properties (i.e. electric conductivity of the treated tissues and the rate of increase in electric conductivity due to electroporation) predefined in numerical models have large effect on electroporation based therapy and treatment effectiveness. The aim of our study was to investigate whether the increase in electric conductivity of tissues needs to be taken into account when modeling tissue response to the electroporation pulses and how it affects the local electric distribution within electroporated tissues. Methods We built 3D numerical models for single tissue (one type of tissue, e.g. liver) and composite tissue (several types of tissues, e.g. subcutaneous tumor). Our computer simulations were performed by using three different modeling approaches that are based on finite element method: inverse analysis, nonlinear parametric and sequential analysis. We compared linear (i.e. tissue conductivity is constant) model and non-linear (i.e. tissue conductivity is electric field dependent) model. By calculating goodness of fit measure we compared the results of our numerical simulations to the results of in vivo measurements. Results The results of our study show that the nonlinear models (i.e. tissue conductivity is electric field dependent: σ(E)) fit experimental data better than linear models (i.e. tissue conductivity is constant). This was found for both single tissue and composite tissue. Our results of electric field distribution modeling in linear model of composite tissue (i.e. in the subcutaneous tumor model that do not take into account the relationship σ(E)) showed that a very high electric field (above irreversible threshold value) was concentrated only in the stratum corneum while the target tumor tissue was not successfully treated. Furthermore, the calculated volume of the target tumor tissue exposed to the electric field above reversible threshold in the subcutaneous model was zero assuming constant conductivities of each tissue. Our results also show that the inverse analysis allows for identification of both baseline tissue conductivity (i.e. conductivity of non-electroporated tissue) and tissue conductivity vs. electric field (σ(E)) of electroporated tissue. Conclusion Our results of modeling of electric field distribution in tissues during electroporation show that the changes in electrical conductivity due to electroporation need to be taken into account when an electroporation based treatment is planned or investigated. We concluded that the model of electric field distribution that takes into account the increase in electric conductivity due to electroporation yields more precise prediction of successfully electroporated target tissue volume. The findings of our study can significantly contribute to the current development of individualized patient-specific electroporation based treatment planning. PMID:23433433
NASA Astrophysics Data System (ADS)
Kafa, C. A.; Triyono, D.; Laysandra, H.
2017-07-01
LaFeO3 is a material with Perovskite structure which electrical properties got investigated a lot, because as a p-type semiconductor it showed good gas sensing behavior through resistivity comparison. Sr doping on LaFeO3 is able to improve the electrical conductivity through structural modification. Using the Sr atoms doping concentration (x) from 0.1 to 0.4, La1-xSrxFeO3 nanocrystal pellets were synthesized using sol-gel method, followed by gradual heat treatment and uniaxial compaction. Structural analysis from XRD characterization shows that the structure of the materials is Orthorhombic Perovskite. The topography of the sample by SEM reveals grain and grain boundary existence with emerging agglomeration. The electrical properties of the material, as functions of frequency, were measured by Impedance Spectroscopy method using RLC meter. Through the Nyquist plot and Bode plot, the electrical conductivity of La1-xSrxFeO3 is contributed by grain and grain boundaries. It is reported that La0.6Sr0.4FeO3 sample has the most superior electrical conductivity of all samples, and the electrical permittivity of both La0.8Sr0.2FeO3 and La0.7Sr0.3FeO3 are the most stable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawal, Abdulazeez T., E-mail: abdul.lawal@yahoo.com
Graphical abstract: Carbon nanotubes. - Highlights: • This review discusses synthesis and applications of carbon nanotubes sensors. • The review summarizes contributions of carbon nanotube to electrochemical biosensor. • Good electrical conductivity makes carbon nanotubes a good material for biosensors. • Carbon nanotubes promotes electron transfer that aids biosensing of biomolecules. - Abstract: This review summarizes the most recent contributions in the fabrication of carbon nanotubes-based electrochemical biosensors in recent years. It discusses the synthesis and application of carbon nanotubes to the assembly of carbon nanotube-based electrochemical sensors, its analytical performance and future expectations. An increasing number of reviews andmore » publications involving carbon nanotubes sensors have been reported ever since the first design of carbon nanotube electrochemical biosensors. The large surface area and good electrical conductivity of carbon nanotubes allow them to act as “electron wire” between the redox center of an enzyme or protein and an electrode's surface, which make them very excellent material for the design of electrochemical biosensors. Carbon nanotubes promote the different rapid electron transfers that facilitate accurate and selective detection of cytochrome-c, β-nicotinamide adenine dinucleotide, hemoglobin and biomolecules, such as glucose, cholesterol, ascorbic acid, uric acid, dopamine pesticides, metals ions and hydrogen peroxide.« less
Long, Hu; Harley-Trochimczyk, Anna; Cheng, Siyi; Hu, Hao; Chi, Won Seok; Rao, Ameya; Carraro, Carlo; Shi, Tielin; Tang, Zirong; Maboudian, Roya
2016-11-23
Nanowire-assembled 3D hierarchical ZnCo 2 O 4 microstructure is synthesized by a facile hydrothermal route and a subsequent annealing process. In comparison to simple nanowires, the resulting dandelion-like structure yields more open spaces between nanowires, which allow for better gas diffusion and provide more active sites for gas adsorption while maintaining good electrical conductivity. The hierarchical ZnCo 2 O 4 microstructure is integrated on a low-power microheater platform without using binders or conductive additives. The hierarchical structure of the ZnCo 2 O 4 sensing material provides reliable electrical connection across the sensing electrodes. The resulting sensor exhibits an ultralow detection limit of 3 ppb toward formaldehyde with fast response and recovery as well as good selectivity to CO, H 2 , and hydrocarbons such as n-pentane, propane, and CH 4 . The sensor only consumes ∼5.7 mW for continuous operation at 300 °C with good long-term stability. The excellent sensing performance of this hierarchical structure based sensor suggests the advantages of combining such structures with microfabricated heaters for practical low-power sensing applications.
Durgam, Hymavathi; Sapp, Shawn; Deister, Curt; Khaing, Zin; Chang, Emily; Luebben, Silvia; Schmidt, Christine E
2010-01-01
Synthetic polymers such as polypyrrole (PPy) are gaining significance in neural studies because of their conductive properties. We evaluated two novel biodegradable block co-polymers of PPy with poly(epsilon-caprolactone) (PCL) and poly(ethyl cyanoacrylate) (PECA) for nerve regeneration applications. PPy-PCL and PPy-PECA co-polymers can be processed from solvent-based colloidal dispersions and have essentially the same or greater conductivity (32 S/cm for PPy-PCL, 19 S/cm for PPy-PECA) compared to the PPy homo-polymer (22 S/cm). The PPy portions of the co-polymers permit electrical stimulation whereas the PCL or PECA blocks enable degradation by hydrolysis. For in vitro tests, films were prepared on polycarbonate sheets by air brushing layers of dispersions and pressing the films. We characterized the films for hydrolytic degradation, electrical conductivity, cell proliferation and neurite extension. The co-polymers were sufficient to carry out electrical stimulation of cells without the requirement of a metallic conductor underneath the co-polymer film. In vitro electrical stimulation of PPy-PCL significantly increased the number of PC12 cells bearing neurites compared to unstimulated PPy-PCL. For in vivo experiments, the PPy co-polymers were coated onto the inner walls of nerve guidance channels (NGCs) made of the commercially available non-conducting biodegradable polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV). The NGCs were implanted in a 10 mm defect made in the sciatic nerve of rats, and harvested after 8 weeks. Histological staining showed axonal growth. The studies indicated that these new conducting degradable biomaterials have good biocompatibility and support proliferation and growth of PC12 cells in vitro (with and without electrical stimulation) and neurons in vivo (without electrical stimulation).
Ultra-Lightweight Nanocomposite Foams and Sandwich Structures for Space Structure Applications
NASA Technical Reports Server (NTRS)
Tan, Seng
2012-01-01
Microcellular nanocomposite foams and sandwich structures have been created to have excellent electrical conductivity and radiation-resistant properties using a new method that does not involve or release any toxicity. The nanocomposite structures have been scaled up in size to 12 X 12 in. (30 X 30 cm) for components fabrication. These sandwich materials were fabricated mainly from PE, CNF, and carbon fibers. Test results indicate that they have very good compression and compression-after-impact properties, excellent electrical conductivity, and superior space environment durability. Compression tests show that 1000 ESH (equivalent Sun hours) of UV exposure has no effect on the structural properties of the sandwich structures. The structures are considerably lighter than aluminum alloy (= 36 percent lighter), which translates to 36 percent weight savings of the electronic enclosure and its housing. The good mechanical properties of the materials may enable the electronic housing to be fabricated with a thinner structure that further reduces the weight. There was no difficulty in machining the sandwich specimens into electronic enclosure housing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diantoro, Markus, E-mail: markus.diantoro.fmipa@um.ac.id; Hidayati, Nisfi Nahari Sani; Latifah, Rodatul
Natural polymers can be extracted from leaf or stem of plants. Pterocarpus Indicus W. (PIW) and Jatropha Multifida L. (JIL) plants are good candidate as natural polymer sources. PIW and JIW polymers contain chemical compound so-called flavonoids which has C{sub 6}-C{sub 3}-C{sub 6} carbons conjugated configuration. The renewable type of polymer as well as their abundancy of flavonoid provide us to explore their physical properties. A number of research have been reported related to broad synthesis method and mechanical properties. So far there is no specific report of electrical conductivity associated to PIW and JIL natural polymers. In order tomore » obtain electrical conductivity and its crystallinity of the extracted polymer films, it was induced on them a various fraction of silver nano particles. The film has been prepared by means of spin coating method on nickel substrate. It was revealed that FTIR spectra confirm the existing of rutine flavonoid. The crystallinity of the samples increase from 0.66%, to 4.11% associated to the respective various of silver fractions of 0.1 M to 0.5 M. SEM images show that there are some grains of silver in the film. The nature of electric conductivity increases a long with the addition of silver. The electrical conductivity increase significantly from 3.22 S/cm, to 542.85 S/cm. On the other hand, PIW films also shows similar trends that increase of Ag induce the increase its crystallinity as well as its electrical conductivity at semiconducting level. This result opens a prospective research and application of the green renewable polymer as optoelectronic materials.« less
NASA Astrophysics Data System (ADS)
Diantoro, Markus; Hidayati, Nisfi Nahari Sani; Latifah, Rodatul; Fuad, Abdulloh; Nasikhudin, Sujito, Hidayat, Arif
2016-03-01
Natural polymers can be extracted from leaf or stem of plants. Pterocarpus Indicus W. (PIW) and Jatropha Multifida L. (JIL) plants are good candidate as natural polymer sources. PIW and JIW polymers contain chemical compound so-called flavonoids which has C6-C3-C6 carbons conjugated configuration. The renewable type of polymer as well as their abundancy of flavonoid provide us to explore their physical properties. A number of research have been reported related to broad synthesis method and mechanical properties. So far there is no specific report of electrical conductivity associated to PIW and JIL natural polymers. In order to obtain electrical conductivity and its crystallinity of the extracted polymer films, it was induced on them a various fraction of silver nano particles. The film has been prepared by means of spin coating method on nickel substrate. It was revealed that FTIR spectra confirm the existing of rutine flavonoid. The crystallinity of the samples increase from 0.66%, to 4.11% associated to the respective various of silver fractions of 0.1 M to 0.5 M. SEM images show that there are some grains of silver in the film. The nature of electric conductivity increases a long with the addition of silver. The electrical conductivity increase significantly from 3.22 S/cm, to 542.85 S/cm. On the other hand, PIW films also shows similar trends that increase of Ag induce the increase its crystallinity as well as its electrical conductivity at semiconducting level. This result opens a prospective research and application of the green renewable polymer as optoelectronic materials.
NASA Astrophysics Data System (ADS)
Hill, Christopher Brandon
Carbon fiber reinforced composite materials have become commonplace in many industries including aerospace, automotive, and sporting goods. Previous research has determined a coupling relationship between the mechanical and electrical properties of these materials where the application of electrical current has been shown to improve their mechanical strengths. The next generations of these composites have started to be produced with the addition of nanocarbon buckypaper layers which provide even greater strength and electrical conductivity potentials. The focus of this current research was to characterize these new composites and compare their electro-mechanical coupling capabilities to those composites which do not contain any nonocarbons.
NASA Astrophysics Data System (ADS)
Gurk, M.; Bosch, F. P.; Tougiannidis, N.
2013-04-01
Common studies on the static electric field distribution over a conductivity anomaly use the self-potential method. However, this method is time consuming and requires nonpolarizable electrodes to be placed in the ground. Moreover, the information gained by this method is restricted to the horizontal variations of the electric field. To overcome the limitation in the self-potential technique, we conducted a field experiment using a non conventional technique to assess the static electric field over a conductivity anomaly. We use two metallic potential probes arranged on an insulated boom with a separation of 126 cm. When placed into the electric field of the free air, a surface charge will be induced on each probe trying to equalize with the potential of the surrounding atmosphere. The use of a plasma source at both probes facilitated continuous and quicker measurement of the electric field in the air. The present study shows first experimental measurements with a modified potential probe technique (MPP) along a 600-meter-long transect to demonstrate the general feasibility of this method for studying the static electric field distribution over shallow conductivity anomalies. Field measurements were carried out on a test site on top of the Bramsche Massif near Osnabrück (Northwest Germany) to benefit from a variety of available near surface data over an almost vertical conductivity anomaly. High resolution self-potential data served in a numerical analysis to estimate the expected individual components of the electric field vector. During the experiment we found more anomalies in the vertical and horizontal components of the electric field than self-potential anomalies. These contrasting findings are successfully cross-validated with conventional near surface geophysical methods. Among these methods, we used self-potential, radiomagnetotelluric, electric resistivity tomography and induced polarization data to derive 2D conductivity models of the subsurface in order to infer the geometrical properties and the origin of the conductivity anomaly in the survey area. The presented study demonstrates the feasibility of electric field measurements in free air to detect and study near surface conductivity anomalies. Variations in Ez correlate well with the conductivity distribution obtained from resistivity methods. Compared to the self-potential technique, continuously free air measurements of the electric field are more rapid and of better lateral resolution combined with the unique ability to analyze vertical components of the electric field which are of particular importance to detect lateral conductivity contrasts. Mapping Ez in free air is a good tool to precisely map lateral changes of the electric field distribution in areas where SP generation fails. MPP offers interesting application in other geophysical techniques e.g. in time domain electromagnetics, DC and IP. With this method we were able to reveal a ca. 150 m broad zone of enhanced electric field strength.
Joule heating effects on particle immobilization in insulator-based dielectrophoretic devices
Gallo-Villanueva, Roberto C.; Sano, Michael B.; Lapizco-Encinas, Blanca H.; Davalos, Rafael V.
2014-01-01
In this work, the temperature effects due to Joule heating obtained by application of a DC electric potential were investigated for a microchannel with cylindrical insulating posts employed for insulator based dielectrophoresis (iDEP). The conductivity of the suspending medium, the local electric field, and the gradient of the squared electric field, which directly affect the magnitude of the dielectrophoretic force exerted on particles, were computationally simulated employing COMSOL Multiphysics. It was observed that a temperature gradient is formed along the microchannel which redistributes the conductivity of the suspending medium leading to an increase of the dielectrophoretic force towards the inlet of the channel while decreasing towards the outlet. Experimental results are in good agreement with simulations on the particle trapping zones anticipated. This study demonstrates the importance of considering Joule heating effects when designing iDEP systems. PMID:24002905
Murray, J.J.
1963-04-23
S>This patent relates to electrode structure for creating an intense direct current electric field which may have a field strength of the order of two to three times that heretofore obtained, with automatic suppression of arcing. The positive electrode is a conventional conductive material such as copper while the negative electrode is made from a special material having a resistivity greater than that of good conductors and less than that of good insulators. When an incipient arc occurs, the moderate resistivity of the negative electrode causes a momentary, localized decrease in the electric field intensity, thus suppressing the flow of electrons and avoiding arcing. Heated glass may be utilized for the negative electrode, since it provides the desired combination of resistivity, capacity, dielectric strength, mechani-cal strength, and thermal stability. (AEC)
NASA Astrophysics Data System (ADS)
Zhang, Xuewei; Liu, Jiang; Wang, Yi; Wu, Wei
2017-12-01
Carbon black (CB)-filled polypropylene (PP) with surface resistivity between 106 and 109 Ω sq-1 is the ideal antistatic plastic material in the electronics and electric industry. However, a large amount of CB may have an adverse effect on the mechanical properties and processing performance of the material, thus an improved ternary system is developed. Blends of CB-filled PP and polyamide 6 (PA6) have been prepared by melt blending in order to obtain electrically conductive polymer composites with a low electrical percolation threshold based on the concept of double percolation. The morphological developments of these composites were studied by scanning electron microscopy. The results showed that CB particles were selectively dispersed in PA6 phases due to the good interaction and interfacial adhesion between CB and PA6. At the same CB loadings, the surface resistivity of PP/PA6/CB composite was smaller than that of PP/CB composite system, which indicated the better conductivity in the former composite. The increasing amount of PA6 in the composites changed the morphology from a typical sea-island morphology to a co-continuous morphology. What is more, with 8 wt% of CB and PP/PA6 phase ratio of 70/30 in which the PP and PA6 phases formed a co-continuous structure, the electrical conductivity of the composite peaked at 2.01 × 105 Ω sq-1.
Monte Carlo simulations of electrical percolation in multicomponent thin films with nanofillers
NASA Astrophysics Data System (ADS)
Ni, Xiaojuan; Hui, Chao; Su, Ninghai; Jiang, Wei; Liu, Feng
2018-02-01
We developed a 2D disk-stick percolation model to investigate the electrical percolation behavior of an insulating thin film reinforced with 1D and 2D conductive nanofillers via Monte Carlo simulation. Numerical predictions of the percolation threshold in single component thin films showed good agreement with the previous published work, validating our model for investigating the characteristics of the percolation phenomena. Parametric studies of size effect, i.e., length of 1D nanofiller and diameter of 2D nanofiller, were carried out to predict the electrical percolation threshold for hybrid systems. The relationships between the nanofillers in two hybrid systems was established, which showed differences from previous linear assumption. The effective electrical conductance was evaluated through Kirchhoff’s current law by transforming it into a resistor network. The equivalent resistance was obtained from the distribution of nodal voltages by solving a system of linear equations with a Gaussian elimination method. We examined the effects of stick length, relative concentration, and contact patterns of 1D/2D inclusions on electrical performance. One novel aspect of our study is its ability to investigate the effective conductance of nanocomposites as a function of relative concentrations, which shows there is a synergistic effect when nanofillers with different dimensionalities combine properly. Our work provides an important theoretical basis for designing the conductive networks and predicting the percolation properties of multicomponent nanocomposites.
Groundwater quality assessment for drinking and agriculture purposes in Abhar city, Iran.
Jafari, Khadijeh; Asghari, Farzaneh Baghal; Hoseinzadeh, Edris; Heidari, Zahra; Radfard, Majid; Saleh, Hossein Najafi; Faraji, Hossein
2018-08-01
The main objective of this study is to assess the quality of groundwater for drinking consume and agriculture purposes in abhar city. The analytical results shows higher concentration of electrical conductivity (100%), total hardness (66.7%), total dissolved solids (40%), magnesium (23%), Sulfate (13.3%) which indicates signs of deterioration as per WHO and Iranian standards for drinking consume. Agricultural index, in terms of the hardness index, 73.3% of the samples in hard water category and 73.3% in sodium content were classified as good. Therefore, the main problem in the agricultural sector was the total hardness Water was estimated. For the RSC index, all 100% of the samples were desirable. In the physicochemical parameters of drinking water, 100% of the samples were undesirable in terms of electrical conductivity and 100% of the samples were desirable for sodium and chlorine parameters. Therefore, the main water problem in Abhar is related to electrical conductivity and water total hardness.
Thermophysical Properties of GRCop-84
NASA Technical Reports Server (NTRS)
Ellis, David L.; Keller, Dennis J.; Nathal, Michael (Technical Monitor)
2000-01-01
The thermophysical properties and electrical resistivity of GRCop-84 (Cu - 8 at.% Cr-4 at.% Nb) were measured from cryogenic temperatures to near its melting point. The data were analyzed using weighted regression to determine the properties as a function of temperature and assign appropriate confidence intervals. The results showed that the thermal expansion of GRCop-84 was significantly lower than NARloy-Z (Cu-3 wt. % Ag-0.5 wt. % Zr), the currently used thrust cell liner material. The lower thermal expansion is expected to translate into lower thermally induced stresses and increases in thrust cell liner lives between 2X and 41X over NARloy-Z. The somewhat lower thermal conductivity of GRCop-84 can be offset by redesigning the liners to utilize its much greater mechanical properties. Optimized designs are not expected to suffer from the lower thermal conductivity. Electrical resistivity data, while not central to the primary application, show that GRCop-84 has potential for applications where a combination of good electrical conductivity and strength is required.
NASA Astrophysics Data System (ADS)
Chen, Guofang; Mao, Chengde
2016-05-01
Complex and functional nanostructures are always desired. Herein, we present the synthesis of novel long conducting polymer nanonecklaces with a `beads-on-a-string' morphology by the DNA nanotube-template approach and in situ oxidative polymerization of the 3-methylthiophene monomer with FeCl3 as the oxidant/catalyst. The length of the nanonecklaces is up to 60 μm, and the polymer beads of around 20-25 nm in diameter are closely packed along the axis of the DNA nanotube template with a density of ca. 45 particles per μm. The formation of porous DNA nanotubes impregnated with FeCl3 was also demonstrated as intermediate nanostructures. The mechanisms for the formation of both the porous DNA nanotubes and the conducting polymer nanonecklaces are discussed in detail. The as-synthesized polymer/DNA nanonecklaces exhibit good electrical properties.Complex and functional nanostructures are always desired. Herein, we present the synthesis of novel long conducting polymer nanonecklaces with a `beads-on-a-string' morphology by the DNA nanotube-template approach and in situ oxidative polymerization of the 3-methylthiophene monomer with FeCl3 as the oxidant/catalyst. The length of the nanonecklaces is up to 60 μm, and the polymer beads of around 20-25 nm in diameter are closely packed along the axis of the DNA nanotube template with a density of ca. 45 particles per μm. The formation of porous DNA nanotubes impregnated with FeCl3 was also demonstrated as intermediate nanostructures. The mechanisms for the formation of both the porous DNA nanotubes and the conducting polymer nanonecklaces are discussed in detail. The as-synthesized polymer/DNA nanonecklaces exhibit good electrical properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01603k
Jang, Ji-Un; Park, Hyeong Cheol; Lee, Hun Su; Khil, Myung-Seob; Kim, Seong Yun
2018-05-16
There is growing interest in carbon fibre fabric reinforced polymer (CFRP) composites based on a thermoplastic matrix, which is easy to rapidly produce, repair or recycle. To expand the applications of thermoplastic CFRP composites, we propose a process for fabricating conductive CFRP composites with improved electrical and thermal conductivities using an in-situ polymerizable and thermoplastic cyclic butylene terephthalate oligomer matrix, which can induce good impregnation of carbon fibres and a high dispersion of nanocarbon fillers. Under optimal processing conditions, the surface resistivity below the order of 10 +10 Ω/sq, which can enable electrostatic powder painting application for automotive outer panels, can be induced with a low nanofiller content of 1 wt%. Furthermore, CFRP composites containing 20 wt% graphene nanoplatelets (GNPs) were found to exhibit an excellent thermal conductivity of 13.7 W/m·K. Incorporating multi-walled carbon nanotubes into CFRP composites is more advantageous for improving electrical conductivity, whereas incorporating GNPs is more beneficial for enhancing thermal conductivity. It is possible to fabricate the developed thermoplastic CFRP composites within 2 min. The proposed composites have sufficient potential for use in automotive outer panels, engine blocks and other mechanical components that require conductive characteristics.
NASA Astrophysics Data System (ADS)
Shi, HaoTian Harvey; Naguib, Hani E.
2016-04-01
Flexible Thin-film Electrochemical Capacitors (ECs) are emerging technology that plays an important role as energy supply for various electronics system for both present era and the future. Intrinsically conductive polymers (ICPs) are promising pseudo-capacitive materials as they feature both good electrical conductivity and high specific capacitance. This study focuses on the construction and characterization of ultra-high surface area porous electrodes based on coating of nano-sized conductive polymer materials on nylon membrane templates. Herein, a novel nano-engineered electrode material based on nylon membranes was presented, which allows the creation of super-capacitor devices that is capable of delivering competitive performance, while maintaining desirable mechanical characteristics. With the formation of a highly conductive network with the polyaniline nano-layer, the electrical conductivity was also increased dramatically to facilitate the charge transfer process. Cyclic voltammetry and specific capacitance results showed promising application of this type of composite materials for future smart textile applications.
Liu, Xujun; Guan, Leilei; Fu, Xiaoniu; Zhao, Yu; Wu, Jiada; Xu, Ning
2014-03-21
Light-absorbing and electrically conductive binary CNx nanocone (CNNC) arrays have been fabricated using a glow discharge plasma-assisted reaction deposition method. The intact CNNCs with amorphous structure and central nickel-filled pipelines could be vertically and neatly grown on nickel-covered substrates according to the catalyst-leading mode. The morphologies and composition of the as-grown CNNC arrays can be well controlled by regulating the methane/nitrogen mixture inlet ratio, and their optical absorption and resistivity strongly depend on their morphologies and composition. Beside large specific surface area, the as-grown CNNC arrays demonstrate high wideband absorption, good conduction, and nice wettability to polymer absorbers.
3D printable highly conductive and mechanically strong thermoplastic-based nanocomposites
NASA Astrophysics Data System (ADS)
Tabiai, Ilyass; Therriault, Daniel
Highly conductive 3D printable inks can be used to design electrical devices with various functionalities and geometries. We use the solvent evaporation assisted 3D-printing method to create high resolution structures made of poly(lactid) acid (PLA) reinforced with multi-walled carbon nanotube (MWCNTs). We characterize fibers with diameters ranging between 100 μm to 330 μm and reinforced with MWCNTs from 0.5 up to 40wt% here. Tensile test, shrinkage ratio, density and electrical conductivity measurements of the printed nanocomposite are presented. The material's electrical conductivity is strongly improved by adding MWCNTs (up to 3000S/m), this value was found to be higher than any 3D-printable carbon based material available in the literature. It is observed that MWCNTs significantly increase the material's strength and stiffness while reducing its ductility. The ink's density was also higher while still being in the range of polymers' densities. The presented nanocomposite is light weight, highly conductive, has good mechanical properties and can be printed in a freeform fashion at the micro scale. A myriad of low power consumption with less resistive heating sensors and devices can potentially be designed using it and integrated into other 3D printable products.
Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67.
Torad, Nagy L; Salunkhe, Rahul R; Li, Yunqi; Hamoudi, Hicham; Imura, Masataka; Sakka, Yoshio; Hu, Chi-Chang; Yamauchi, Yusuke
2014-06-23
Nanoporous carbons (NPCs) have large specific surface areas, good electrical and thermal conductivity, and both chemical and mechanical stability, which facilitate their use in energy storage device applications. In the present study, highly graphitized NPCs are synthesized by one-step direct carbonization of cobalt-containing zeolitic imidazolate framework-67 (ZIF-67). After chemical etching, the deposited Co content can be completely removed to prepare pure NPCs with high specific surface area, large pore volume, and intrinsic electrical conductivity (high content of sp(2) -bonded carbons). A detailed electrochemical study is performed using cyclic voltammetry and galvanostatic charge-discharge measurements. Our NPC is very promising for efficient electrodes for high-performance supercapacitor applications. A maximum specific capacitance of 238 F g(-1) is observed at a scan rate of 20 mV s(-1) . This value is very high compared to previous works on carbon-based electric double layer capacitors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrical characterization of reduced graphene oxide (rGO) on organic thin film transistor (OTFT)
NASA Astrophysics Data System (ADS)
Musa, Nurhazwani; Halim, Nurul Farhanah Ab.; Ahmad, Mohd Noor; Zakaria, Zulkhairi; Hashim, Uda
2017-03-01
A green method and eco-friendly solution were used to chemically reduce graphene oxide (GO) to graphene using green reductant. In this study, graphene oxide (GO) were prepared by using Tours method. Then, reduced graphene oxides (rGO) were prepared by using three typical reduction agents: L-ascorbic acid (L-AA), formamidinesulfinic acid (FAS) and sodium sulfite (Na2SO3). The reduced materials were characterized by Fourier transform infrared spectroscopy (FTIR), Thermo gravimetric analysis (TGA) and X-ray diffraction (XRD). Graphene based organic thin film transistor (G-OTFT) was prepared by a spin coating and thermal evaporation technique. The electrical characterization of G-OTFT was analyzed by using semiconductor parameter analyzer (SPA). The G-OTFT devices show p-type semiconducting behaviour. This article focuses on the synthesis and reduction of graphene oxide using three different reductants in order to maximise its electrical conductivity. The rGO product demonstrated a good electrical conductivity performance with highly sensitivity sensor.
Electron Beam Irradiated Intercalated CNT Yarns For Aerospace Applications
NASA Technical Reports Server (NTRS)
Waters, Deborah L.; Gaier, James R.; Williams, Tiffany S.; Lopez Calero, Johnny E.; Ramirez, Christopher; Meador, Michael A.
2015-01-01
Multi-walled CNT yarns have been experimentally and commercially created to yield lightweight, high conductivity fibers with good tensile properties for application as electrical wiring and multifunctional tendons. Multifunctional tendons are needed as the cable structures in tensegrity robots for use in planetary exploration. These lightweight robust tendons can provide mechanical strength for movement of the robot in addition to power distribution and data transmission. In aerospace vehicles, such as Orion, electrical wiring and harnessing mass can approach half of the avionics mass. Use of CNT yarns as electrical power and data cables could reduce mass of the wiring by thirty to seventy percent. These fibers have been intercalated with mixed halogens to increase their specific electrical conductivity to that near copper. This conductivity, combined with the superior strength and fatigue resistance makes it an attractive alternative to copper for wiring and multifunctional tendon applications. Electron beam irradiation has been shown to increase mechanical strength in pristine CNT fibers through increased cross-linking. Both pristine and intercalated CNT yarns have been irradiated using a 5-megavolt electron beam for various durations and the conductivities and tensile properties will be discussed. Structural information obtained using a field emission scanning electron microscope, energy dispersive X-ray spectroscopy (EDS), and Raman spectroscopy will correlate microstructural details with bulk properties.
Conductivity detection for monitoring mixing reactions in microfluidic devices.
Liu, Y; Wipf, D O; Henry, C S
2001-08-01
A conductivity detector was coupled to poly(dimethylsiloxane)-glass capillary electrophoresis microchips to monitor microfluidic flow. Electroosmotic flow was investigated with both conductivity detection (CD) and the current monitoring method. No significant variation was observed between these methods, but CD showed a lower relative standard deviation. Gradient mixing experiments were employed to investigate the relationship between the electrolyte conductivity and the electrolyte concentration. A good linear response of conductivity to concentration was obtained for solutions whose difference in concentrations were less than 27 mM. The new system holds great promise for precision mixing in microfluidic devices using electrically driven flows.
Liquid on Paper: Rapid Prototyping of Soft Functional Components for Paper Electronics.
Han, Yu Long; Liu, Hao; Ouyang, Cheng; Lu, Tian Jian; Xu, Feng
2015-07-01
This paper describes a novel approach to fabricate paper-based electric circuits consisting of a paper matrix embedded with three-dimensional (3D) microchannels and liquid metal. Leveraging the high electric conductivity and good flowability of liquid metal, and metallophobic property of paper, it is possible to keep electric and mechanical functionality of the electric circuit even after a thousand cycles of deformation. Embedding liquid metal into paper matrix is a promising method to rapidly fabricate low-cost, disposable, and soft electric circuits for electronics. As a demonstration, we designed a programmable displacement transducer and applied it as variable resistors and pressure sensors. The unique metallophobic property, combined with softness, low cost and light weight, makes paper an attractive alternative to other materials in which liquid metal are currently embedded.
NASA Astrophysics Data System (ADS)
Divett, T.; Ingham, M.; Beggan, C. D.; Richardson, G. S.; Rodger, C. J.; Thomson, A. W. P.; Dalzell, M.
2017-10-01
Transformers in New Zealand's South Island electrical transmission network have been impacted by geomagnetically induced currents (GIC) during geomagnetic storms. We explore the impact of GIC on this network by developing a thin-sheet conductance (TSC) model for the region, a geoelectric field model, and a GIC network model. (The TSC is composed of a thin-sheet conductance map with underlying layered resistivity structure.) Using modeling approaches that have been successfully used in the United Kingdom and Ireland, we applied a thin-sheet model to calculate the electric field as a function of magnetic field and ground conductance. We developed a TSC model based on magnetotelluric surveys, geology, and bathymetry, modified to account for offshore sediments. Using this representation, the thin sheet model gave good agreement with measured impedance vectors. Driven by a spatially uniform magnetic field variation, the thin-sheet model results in electric fields dominated by the ocean-land boundary with effects due to the deep ocean and steep terrain. There is a strong tendency for the electric field to align northwest-southeast, irrespective of the direction of the magnetic field. Applying this electric field to a GIC network model, we show that modeled GIC are dominated by northwest-southeast transmission lines rather than east-west lines usually assumed to dominate.
Effect of pond ash on pen surface properties
USDA-ARS?s Scientific Manuscript database
Maintaining adequate feedlot pen surfaces is expensive. Pond ash (PA), a coal-fired electrical generation by-product, has good support qualities. A study was conducted comparing the performance of pond ash (PA) surfaced pens with soil surface (SS) pens. Four pens of an eight pen series with dimensio...
NASA Astrophysics Data System (ADS)
Yakuphanoglu, Fahrettin
2012-06-01
Titanium dioxide (TiO2) material was synthesized using the sol gel calcination method. The structural properties of the TiO2 semiconductor were investigated by atomic force microscopy. The electrical conductivity of the TiO2 was measured as a function of temperature and TiO2 exhibits a conductivity of 2.55 × 10-6 S/m at room temperature with activation energy of 104 meV. The electrical conductivity of the TiO2 at room temperature is higher than that of nanocrystalline TiO2 (3 × 10-7 S/m) and TiO2 thin film in air (5 × 10-9 S/m) and in vacuum (8.8 × 10-10 S/m). It was found that the electrical transport mechanism of the TiO2 is controlled by thermally activated mechanism. The optical band gap of the TiO2 powder sample was determined to be 3.17 eV, which is good in agreement with the bulk TiO2 (Eg = 3.2 eV). Up to our knowledge, there is no any reported data about the band gap of TiO2 nanopowder based on the diffused reflectance calculation. Quartz crystal microbalance (QCM) TiO2 humidity sensor was prepared. The sensor indicates a large frequency change with an interaction occurred between TiO2 and humidity molecules. The sensor exhibits a good repeatability when it was exposed to the moist air of 65% RH.
The stress system generated by an electromagnetic field in a suspension of drops
NASA Technical Reports Server (NTRS)
Erdogan, M. E.
1982-01-01
The stress generated in a suspension of drops in the presence of a uniform electric field and a pure straining motion, taking into account that the magnetohydrodynamic effects are dominant was calculated. It was found that the stress generated in the suspension depended on the direction of the applied electric field, the dielectric constants, the vicosity coefficients, the conductivities, and the permeabilities of fluids inside and outside the drops. The expression of the particle stress shows that for fluids which are good conductors and poor dielectrics, especially for larger drops, magnetohydrodynamic effects end to reduce the dependence on the direction of the applied electric field.
Nagatomi, Hisanori; Yanai, Nobuhiro; Yamada, Teppei; Shiraishi, Kanji; Kimizuka, Nobuo
2018-02-06
Complexation of copper(II) 2,3,9,10,16,17,23,24-octahydroxy-29H,31H-phthalocyanine (CuPcOH) with copper(II) ions gives a two-dimensional (2D) metal-organic framework (MOF). This is the first report of a phthalocyanine-based MOF. This 2D MOF was obtained as a black powder and showed an electrical conductivity of 1.6×10 -6 S cm -1 at 80 °C. When this MOF is used as a cathode of lithium ion battery (LIB), large charge/discharge capacities of 151/128 mAh g -1 were obtained. In addition, it showed a good stability during 200 charge/discharge cycles. The obtained LIB performance mainly originates from the electrically conductive and redox-active framework of the phthalocyanine-based 2D MOF and its hierarchical microporous/mesoporous structure. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Joule heating effects on particle immobilization in insulator-based dielectrophoretic devices.
Gallo-Villanueva, Roberto C; Sano, Michael B; Lapizco-Encinas, Blanca H; Davalos, Rafael V
2014-02-01
In this work, the temperature effects due to Joule heating obtained by application of a direct current electric potential were investigated for a microchannel with cylindrical insulating posts employed for insulator-based dielectrophoresis. The conductivity of the suspending medium, the local electric field, and the gradient of the squared electric field, which directly affect the magnitude of the dielectrophoretic force exerted on particles, were computationally simulated employing COMSOL Multiphysics. It was observed that a temperature gradient is formed along the microchannel, which redistributes the conductivity of the suspending medium leading to an increase of the dielectrophoretic force toward the inlet of the channel while decreasing toward the outlet. Experimental results are in good agreement with simulations on the particle-trapping zones anticipated. This study demonstrates the importance of considering Joule heating effects when designing insulator-based dielectrophoresis systems. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrical conductivity of H2O-NaCl fluids to 10 kbar
NASA Astrophysics Data System (ADS)
Sinmyo, R.; Keppler, H.
2016-12-01
Magnetotelluric studies often reveal zones of elevated electrical conductivity in the mantle wedge above subducting slabs, in the deep crust below fold belts, or below active volcanoes. Since both aqueous fluids and hydrous silivate melts may be highly conductive, they may both account for these observations. Distinguishing between these two posssibilities, however, is difficult. One reason for this problem is that while there are very good conductivity data for silicate melts, such data do not exist for aqueous fluids under the relevant conditions of pressure, temperature and solute concentration. Most crustal and mantle fluids likely contain some NaCl, which greatly enhances conductivity due to its partial dissociation into Na+ and Cl-. We therefore studied the electrical conductivity of 0.01, 0.1 and 1 m NaCl solutions in water to 10 kbar and 600 °C. The measurements were carried out in externally-heated diamond cells containing two gaskets separated by an insulating ring of diamond, following a method described by Ni et al. (2014). The two gaskets were used as electrodes and full impedance spectra were measured from 30 Hz to 10 MHz using a Solartron 1260 impedance analyzer. Electrical conductivity was generally found to increase with pressure temperature, and fluid density. The conductivity increase observed upon variation of NaCl concentration from 0.1m to 1m was smaller than from 0.01m to 0.1m, which reflects the reduced degree of dissociation at high NaCl concentration. In general, the data show that already a very small fraction of NaCl-bearing aqueous fluid is sufficient to enhance bulk conductivities to values that would be expected for a high degree of partial melting. Accordingly, aqueous fluids may be distinguished from hydrous melts by comparing magnetotelluric and seismic data. H2O-NaCl fluids may enhance electrical conductivities with little disturbance of vp or vp/vs ratios.
NASA Astrophysics Data System (ADS)
Gao, Jiangshan; He, Yan; Gong, Xiubin
2018-06-01
The original equipment and method for orienting multi-walled carbon nanotubes (MWCNTs) in natural rubber (NR) by alternating current (AC) electric field were reported in the present study. MWCNTs with various volume fractions were dispersed in the mixture latex which composed of natural rubber, additives and methylbenzene. The application of AC electric field during nanocomposites curing process was used to induce the formation of aligned conductive nanotube networks between the electrodes. The aligned MWCNTs in the composites have a better orientation performance and dispersion quality than these of random MWCNTs by analyzing TEM and SEM images. The effects of MWCNTs anisotropy on thermal conductivity, dielectric properties, and dynamic mechanical properties of NR were studied. The mean value of thermal conductivity of composites loading with aligned MWCNTs was 8.67% higher than that of composites with random MWCNTs due to the anisotropy of aligned MWCNTs. The compounds with aligned MWCNTs possessed low dielectric constant, loss tangents and conductivity, namely a good insulativity. The compounds loading with aligned MWCNTs had lower loss modulus and better dynamic mechanical properties than those with random MWCNTs. This method can make full use of the high thermal conductivity of MWCNTs axis, and expand the application areas of natural rubber like conducting heat in a certain direction with a high efficiency.
Silicon oxide based high capacity anode materials for lithium ion batteries
Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet
2017-03-21
Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.
NASA Astrophysics Data System (ADS)
Nono, Franck; Gibert, Benoit; Loggia, Didier; Parat, Fleurice; Azais, Pierre; Cichy, Sarah
2016-04-01
Although the Icelandic geothermal system has been intensively investigated over the years, targeting increasingly deeper reservoirs (i.e. under supercritical conditions) requires a good knowledge of the behaviour of physical properties of the host rock in order to better interpret large scale geophysical observations. In particular, the interpretation of deep electrical soundings remains controversial as only few studies have investigated the influence of altered minerals and pore fluid properties on electrical properties of rocks at high temperature and pressure. In this study, we investigate the electrical conductivity of drilled samples from different Icelandic geothermal fields at elevated temperature, confining pressure and pore pressure conditions (100°C < T < 600°C, confining pressure up to 100 MPa and pore pressure up to 35 MPa). The investigated rocks are composed of hyaloclastites, dolerites and basalts taken from depths of about 800 m for the hyaloclastites, to almost 2500 m for the dolerites. They display different porosity structures, from vuggy and intra-granular to micro-cracked porosities, and have been hydrothermally alterated in the chlorite to amphibolite facies. Electrical conductivity measurements are first determined at ambient conditions as a function of pore fluid conductivity in order to establish their relationships with lithology and pore space topology, prior to the high pressure and temperature measurements. Cementation factor varies from 1.5 for the dolerites to 2.83 for the basalt, reflecting changes in the shape of the conductive channels. The surface conductivities, measured at very low fluid conductivity, increases with the porosity and is correlated with the cation exchange capacity. At high pressure and temperature, we used the two guard-ring electrodes system. Measurements have been performed in dry and saturated conditions as a function of temperature and pore pressure. The supercritical conditions have been investigated and temperature cycles have been performed systematically. Dry electrical conductivity measurements show for most of the samples irreversible changes when temperatures exceed 500°C. These changes are interpreted as destabilization/dehydration of alteration minerals that could lead to the presence of a conductive fluid phase in the samples. Very low and high salinity (NaCl) electrical conductivity measurements have been performed as a function of temperature. At supercritical conditions, electrical conductivity at low salinity is not pore pressure dependent and surface conduction is preponderant. At saturated conditions, the rock's electrical conductivity increases linearly (as a function of T-1) until 350°C. Above 350°C, the conductivity decreases. All rock types exhibit the same increasing rate. This work was funded by the of the EC project IMAGE (Integrated Methods for Advanced Geothermal Exploration, grant agreement No. 608553).
NASA Astrophysics Data System (ADS)
Guo, Xiaohui; Huang, Ying; Wu, Can; Mao, Leidong; Wang, Yue; Xie, Zhicheng; Liu, Caixia; Zhang, Yugang
2017-10-01
We demonstrated a flexible and reversibly deformable radio-frequency antenna based on SWCNTs/PANI/Lycra conductive fabric and semipermeable film for wireless wearable communications applications. The conductive fabric fabricated by using the ‘dip and dry’ process exhibits good flexibility, electrical stability, stretchability and mechanical properties, and a high electrical conductivity (with low sheet resistance of ˜35 Ω/sq) was obtained based on the SWCNTs/PANI synergistic conductive network. The morphology of the semipermeable film was investigated to further illustrate the waterproof breathable features. Meanwhile, the modeling, fabrication procedure and radiating properties of the radio-frequency textile antenna worked at 2.45 GHz were systematically illustrated. The measured reflection coefficient, VSWR and the -10 dB bandwidth is ˜-18.6 dB, 1.58 and ˜270 MHz respectively, which agreed well with the simulation results. Furthermore, the results indicate that the design methodology for the radio-frequency textile antenna could have promising applications in flexible and reversibly deformable antennas for wearable wireless communications systems.
NASA Astrophysics Data System (ADS)
Gu, Meng; Xiao, Xing-Cheng; Liu, Gao; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Ji-Guang; Liu, Jun; Browning, Nigel D.; Wang, Chong-Min
2014-01-01
Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact.
Highly stretchable and conductive fibers enabled by liquid metal dip-coating
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Roach, Devin J.; Geng, Luchao; Chen, Haosen; Qi, H. Jerry; Fang, Daining
2018-03-01
Highly stretchable and conductive fibers have been fabricated by dip-coating of a layer of liquid metal (eutectic gallium indium, EGaIn) on printed silicone elastomer filaments. This fabrication method exploits a nanolayer of oxide skin that rapidly forms on the surface of EGaIn when exposed to air. Through dip-coating, the sticky nature of the oxide skin leads to the formation of a thin EGaIn coating (˜5 μm thick) on the originally nonconductive filaments and renders these fibers excellent conductivity. Electrical characterization shows that the fiber resistance increases moderately as the fiber elongates but always maintains conductivity even when stretched by 800%. Besides this, these fibers possess good cyclic electrical stability with little degradation after hundreds of stretching cycles, which makes them an excellent candidate for stretchable conductors. We then demonstrate a highly stretchable LED circuit as well as a conductive stretchable net that extends the 1D fibers into a 2D configuration. These examples demonstrate potential applications for topologically complex stretchable electronics.
NASA Astrophysics Data System (ADS)
Gong, Xiaobo; Liu, Liwu; Liu, Yanju; Leng, Jinsong
2016-03-01
Shape memory polymers (SMPs) have the ability to adjust their stiffness, lock a temporary shape, and recover the permanent shape upon imposing an appropriate stimulus. They have found their way into the field of morphing structures. The electrically Joule resistive heating of the conductive composite can be a desirable stimulus to activate the shape memory effect of SMPs without external heating equipment. Electro-induced SMP composites incorporated with carbon fiber felt (CFF) were explored in this work. The CFF is an excellent conductive filler which can easily spread throughout the composite. It has a huge advantage in terms of low cost, simple manufacturing process, and uniform and tunable temperature distribution while heating. A continuous and compact conductive network made of carbon fibers and the overlap joints among them was observed from the microscopy images, and this network contributes to the high conductive properties of the CFF/SMP composites. The CFF/SMP composites can be electrical-heated rapidly and uniformly, and its’ shape recovery effect can be actuated by the electrical resistance Joule heating of the CFF without an external heater. The CFF/SMP composite get higher modulus and higher strength than the pure SMP without losing any strain recovery property. The high dependence of temperature and strain on the electrical resistance also make the composite a good self-sensing material. In general, the CFF/SMP composite shows great prospects as a potential material for the future morphing structures.
NASA Astrophysics Data System (ADS)
Pea, M.; Maiolo, L.; Giovine, E.; Rinaldi, A.; Araneo, R.; Notargiacomo, A.
2016-05-01
We report on the conductive-atomic force microscopy (C-AFM) study of metallic layers in order to find the most suitable configuration for electrical characterization of individual ZnO micro-pillars fabricated by focused ion beam (FIB). The electrical resistance between the probe tip and both as deposited and FIB processed metal layers (namely, Cr, Ti, Au and Al) has been investigated. Both chromium and titanium evidenced a non homogenous and non ohmic behaviour, non negligible scanning probe induced anodic oxidation associated to electrical measurements, and after FIB milling they exhibited significantly higher tip-sample resistance. Aluminium had generally a more apparent non conductive behaviour. Conversely, gold films showed very good tip-sample conduction properties being less sensitive to FIB processing than the other investigated metals. We found that a reliable C-AFM electrical characterization of ZnO microstructures obtained by FIB machining is feasible by using a combination of metal films as top contact layer. An Au/Ti bilayer on top of ZnO was capable to sustain the FIB fabrication process and to form a suitable ohmic contact to the semiconductor, allowing for reliable C-AFM measurement. To validate the consistency of this approach, we measured the resistance of ZnO micropillars finding a linear dependence on the pillar height, as expected for an ohmic conductor, and evaluated the resistivity of the material. This procedure has the potential to be downscaled to nanometer size structures by a proper choice of metal films type and thickness.
Zhang, Xuewei; Liu, Jiang; Wang, Yi
2017-01-01
Carbon black (CB)-filled polypropylene (PP) with surface resistivity between 106 and 109 Ω sq−1 is the ideal antistatic plastic material in the electronics and electric industry. However, a large amount of CB may have an adverse effect on the mechanical properties and processing performance of the material, thus an improved ternary system is developed. Blends of CB-filled PP and polyamide 6 (PA6) have been prepared by melt blending in order to obtain electrically conductive polymer composites with a low electrical percolation threshold based on the concept of double percolation. The morphological developments of these composites were studied by scanning electron microscopy. The results showed that CB particles were selectively dispersed in PA6 phases due to the good interaction and interfacial adhesion between CB and PA6. At the same CB loadings, the surface resistivity of PP/PA6/CB composite was smaller than that of PP/CB composite system, which indicated the better conductivity in the former composite. The increasing amount of PA6 in the composites changed the morphology from a typical sea–island morphology to a co-continuous morphology. What is more, with 8 wt% of CB and PP/PA6 phase ratio of 70/30 in which the PP and PA6 phases formed a co-continuous structure, the electrical conductivity of the composite peaked at 2.01 × 105 Ω sq−1. PMID:29308223
Electrical model of dielectric barrier discharge homogenous and filamentary modes
NASA Astrophysics Data System (ADS)
López-Fernandez, J. A.; Peña-Eguiluz, R.; López-Callejas, R.; Mercado-Cabrera, A.; Valencia-Alvarado, R.; Muñoz-Castro, A.; Rodríguez-Méndez, B. G.
2017-01-01
This work proposes an electrical model that combines homogeneous and filamentary modes of an atmospheric pressure dielectric barrier discharge cell. A voltage controlled electric current source has been utilized to implement the power law equation that represents the homogeneous discharge mode, which starts when the gas breakdown voltage is reached. The filamentary mode implies the emergence of electric current conducting channels (microdischarges), to add this phenomenon an RC circuit commutated by an ideal switch has been proposed. The switch activation occurs at a higher voltage level than the gas breakdown voltage because it is necessary to impose a huge electric field that contributes to the appearance of streamers. The model allows the estimation of several electric parameters inside the reactor that cannot be measured. Also, it is possible to appreciate the modes of the DBD depending on the applied voltage magnitude. Finally, it has been recognized a good agreement between simulation outcomes and experimental results.
NASA Astrophysics Data System (ADS)
Skaggs, Todd H.
2011-10-01
Critical path analysis (CPA) is a method for estimating macroscopic transport coefficients of heterogeneous materials that are highly disordered at the micro-scale. Developed originally to model conduction in semiconductors, numerous researchers have noted that CPA might also have relevance to flow and transport processes in porous media. However, the results of several numerical investigations of critical path analysis on pore network models raise questions about the applicability of CPA to porous media. Among other things, these studies found that (i) in well-connected 3D networks, CPA predictions were inaccurate and became worse when heterogeneity was increased; and (ii) CPA could not fully explain the transport properties of 2D networks. To better understand the applicability of CPA to porous media, we made numerical computations of permeability and electrical conductivity on 2D and 3D networks with differing pore-size distributions and geometries. A new CPA model for the relationship between the permeability and electrical conductivity was found to be in good agreement with numerical data, and to be a significant improvement over a classical CPA model. In sufficiently disordered 3D networks, the new CPA prediction was within ±20% of the true value, and was nearly optimal in terms of minimizing the squared prediction errors across differing network configurations. The agreement of CPA predictions with 2D network computations was similarly good, although 2D networks are in general not well-suited for evaluating CPA. Numerical transport coefficients derived for regular 3D networks of slit-shaped pores were found to be in better agreement with experimental data from rock samples than were coefficients derived for networks of cylindrical pores.
Liquid on Paper: Rapid Prototyping of Soft Functional Components for Paper Electronics
Long Han, Yu; Liu, Hao; Ouyang, Cheng; Jian Lu, Tian; Xu, Feng
2015-01-01
This paper describes a novel approach to fabricate paper-based electric circuits consisting of a paper matrix embedded with three-dimensional (3D) microchannels and liquid metal. Leveraging the high electric conductivity and good flowability of liquid metal, and metallophobic property of paper, it is possible to keep electric and mechanical functionality of the electric circuit even after a thousand cycles of deformation. Embedding liquid metal into paper matrix is a promising method to rapidly fabricate low-cost, disposable, and soft electric circuits for electronics. As a demonstration, we designed a programmable displacement transducer and applied it as variable resistors and pressure sensors. The unique metallophobic property, combined with softness, low cost and light weight, makes paper an attractive alternative to other materials in which liquid metal are currently embedded. PMID:26129723
Ambient-Stable and Durable Conductive Ag-Nanowire-Network 2-D Films Decorated with a Ti Layer.
Kim, Yoon-Mi; Hwang, Bu-Yeon; Lee, Ki-Wook; Kim, Jin-Yeol
2018-05-11
Highly stable and durable conductive silver nanowire (Ag NW) network electrode films were prepared through decoration with a 5-nm-thick Ti layer. The Ag NW network 2-D films showed sheet resistance values as low as 32 ohm/sq at 88% transparency when decorated with Ti. These 2-D films exhibited a 30% increase in electrical conductivity while maintaining good stability of the films through enhanced resistance to moisture and oxygen penetration as a result of the protective effect of the Ti layer.
Comparing soil and pond ash feedlot pen surfaces for environmental management
USDA-ARS?s Scientific Manuscript database
Removing manure and replacing soil to maintain pen surfaces is expensive. Pond ash (PA), a coal-fired electrical generation by-product, has good support qualities. A study was conducted comparing the performance of pond ash (PA) surfaced pens with soil surface (SS) pens. Four pens of an eight pen se...
Li, Xueqin; Hao, Changlong; Tang, Bochong; Wang, Yue; Liu, Mei; Wang, Yuanwei; Zhu, Yihua; Lu, Chenguang; Tang, Zhiyong
2017-02-09
Due to their high specific surface area and good electric conductivity, nitrogen-doped porous carbons (NPCs) and carbon nanotubes (CNTs) have attracted much attention for electrochemical energy storage applications. In the present work, we firstly prepared MWCNT/ZIF-8 composites by decoration of zeolitic imidazolate frameworks (ZIF-8) onto the surface of multi-walled CNTs (MWCNTs), then obtained MWCNT/NPCs by the direct carbonization of MWCNT/ZIF-8. By controlling the reaction conditions, MWCNT/ZIF-8 with three different particle sizes were synthesized. The effect of NPCs size on capacitance performance has been evaluated in detail. The MWCNT/NPC with large-sized NPC (MWCNT/NPC-L) displayed the highest specific capacitance of 293.4 F g -1 at the scan rate of 5 mV s -1 and only lost 4.2% of capacitance after 10 000 cyclic voltammetry cycles, which was attributed to the hierarchically structured pores, N-doping and high electrical conductivity. The studies of symmetric two-electrode supercapacitor cells also confirmed MWCNT/NPC-L as efficient electrode materials that have good electrochemical performance, especially for high-rate applications.
Farid, Asam; Jadoon, Khanzaib; Akhter, Gulraiz; Iqbal, Muhammad Asim
2013-03-01
Hydrostratigraphy and hydrogeology of the Maira vicinity is important for the characterization of aquifer system and developing numerical groundwater flow models to predict the future availability of the water resource. Conventionally, the aquifer parameters are obtained by the analysis of pumping tests data which provide limited spatial information and turn out to be costly and time consuming. Vertical electrical soundings and pump testing of boreholes were conducted to delineate the aquifer system at the western part of the Maira area, Khyber Pakhtun Khwa, Pakistan. Aquifer lithology in the eastern part of the study area is dominated by coarse sand and gravel whereas the western part is characterized by fine sand. An attempt has been made to estimate the hydraulic conductivity of the aquifer system by establishing a relationship between the pumping test results and vertical electrical soundings by using regression technique. The relationship is applied to the area along the resistivity profiles where boreholes are not drilled. Our findings show a good match between pumped hydraulic conductivity and estimated hydraulic conductivity. In case of sparse borehole data, regression technique is useful in estimating hydraulic properties for aquifers with varying lithology.
Huang, Jian; Wang, Zhiwei; Zhang, Junyao; Zhang, Xingran; Ma, Jinxing; Wu, Zhichao
2015-01-01
Membrane fouling remains an obstacle to wide-spread applications of membrane bioreactors (MBRs) for wastewater treatment and reclamation. Herein, we report a simple method to prepare a composite conductive microfiltration (MF) membrane by introducing a stainless steel mesh into a polymeric MF membrane and to effectively control its fouling by applying an external electric field. Linear sweep voltammetry and electrochemical impedance spectroscopy analyses showed that this conductive membrane had very good electrochemical properties. Batch tests demonstrated its anti-fouling ability in filtration of bovine serum albumin, sodium alginate, humic acid and silicon dioxide particles as model foulants. The fouling rate in continuous-flow MBRs treating wastewater was also decreased by about 50% for this conductive membrane with 2 V/cm electric field compared to the control test during long-term operation. The enhanced electrostatic repulsive force between foulants and membrane, in-situ cleaning by H2O2 generated from oxygen reduction, and decreased production of soluble microbial products and extracellular polymeric substances contributed to fouling mitigation in this MBR. The results of this study shed light on the control strategy of membrane fouling for achieving a sustainable operation of MBRs. PMID:25784160
NASA Astrophysics Data System (ADS)
Shrivatsav, Roshan; Mahalingam, Vignesh; Lakshmi Narayanan, E. R.; Naveen Balaji, N.; Balu, Murali; Krishna Prasad, R.; Kumaresan, Duraisamy
2018-04-01
Quasi-solid state iodide/triiodide redox electrolyte containing reduced graphene oxide and poly (methyl methaacrylate) (RGO-PMMA) composites for the fabrication of more durable, high performance dye sensitized solar cells are prepared. The morphological analysis of prepared RGO-PMMA composites showed formation of spherical like morphologies of RGO dispersed PMMA particles with their macroscopic inter-particle networks having voids. The x ray diffraction and electrical conductivity studies showed the addition of 1 wt% of filler RGO into amorphous PMMA matrix increased the electrical conductivity of the polymer composite about three orders of magnitude from 10‑7 and 10‑4 S cm‑1. Further, the photovoltaic current-voltage analysis of DSSCs with different RGO-PMMA composite based iodide/triiodide redox electrolytes showed the highest power conversion efficiency of 5.38% and the fill factor 0.63 for 2% RGO-PMMA electrolyte. The EIS analysis showed an increased recombination resistance (Rct2) at TiO2 electrode/dye/electrolyte interface due to the better electrical conductivity of RGO with good ionic conductivity in 2% RGO-PMMA composite based redox electrolyte boosted the generation of a high current density and fill factor in their DSSCs.
Robust Vacuum-/Air-Dried Graphene Aerogels and Fast Recoverable Shape-Memory Hybrid Foams.
Li, Chenwei; Qiu, Ling; Zhang, Baoqing; Li, Dan; Liu, Chen-Yang
2016-02-17
New graphene aerogels can be fabricated by vacuum/air drying, and because of the mechanical robustness of the graphene aerogels, shape-memory polymer/graphene hybrid foams can be fabricated by a simple infiltration-air-drying-crosslinking method. Due to the superelasticity, high strength, and good electrical conductivity of the as-prepared graphene aerogels, the shape-memory hybrid foams exhibit excellent thermotropical and electrical shape-memory properties, outperforming previously reported shape-memory polymer foams. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Li, Fucheng; Chen, Shilong; Wei, Yong; Liu, Konghua; Lin, Yong; Liu, Lan
2016-07-01
We present a facile approach to prepare high-performance ultraviolet (UV)-curable polyurethane-acrylate-based flexible electrical conductive adhesive (PUA-FECA) for flexible electronics applications. PUA is employed as the polymer matrix so that the ECA is flexible and UV-curable at room temperature in just a few minutes. The effects of the PUA-FECA formulation and curing procedure on the electrical properties have been studied. Very low volume resistivity (5.08 × 10-4 Ω cm) is obtained by incorporating 70 wt.% microsized Ag-coated Cu flakes. Moreover, by simply standing the PUA-FECA paste for 4 h before exposure to UV light, the bulk resistivity of the PUA-FECA is dramatically decreased to 3.62 × 10-4 Ω cm. This can be attributed to rearrangement of Ag-coated Cu flakes in the matrix while standing. PUA-FECA also presents stable electrical conductivity during rolling and compression, excellent adhesion, and good processability, making it easily scalable to large-scale fabrication and enabling screen-printing on various low-cost flexible substrates such as office paper and polyethylene terephthalate film.
Solution processed aluminum paper for flexible electronics.
Lee, Hye Moon; Lee, Ha Beom; Jung, Dae Soo; Yun, Jung-Yeul; Ko, Seung Hwan; Park, Seung Bin
2012-09-11
As an alternative to vacuum deposition, preparation of highly conductive papers with aluminum (Al) features is successfully achieved by the solution process consisting of Al precursor ink (AlH(3){O(C(4)H(9))(2)}) and low temperature stamping process performed at 110 °C without any serious hydroxylation and oxidation problems. Al features formed on several kinds of paper substrates (calendar, magazine, and inkjet printing paper substrates) are less than ~60 nm thick, and their electrical conductivities were found to be as good as thermally evaporated Al film or even better (≤2 Ω/□). Strong adhesion of Al features to paper substrates and their excellent flexibility are also experimentally confirmed by TEM observation and mechanical tests, such as tape and bending tests. The solution processed Al features on paper substrates show different electrical and mechanical performance depending on the paper type, and inkjet printing paper is found to be the best substrate with high and stable electrical and mechanical properties. The Al conductive papers produced by the solution process may be applicable in disposal paper electronics.
NASA Astrophysics Data System (ADS)
Romo, J. M.; Gómez-Treviño, E.; Flores-Luna, C.; García-Abdeslem, J.
2017-12-01
Crustal and sub-crustal structure of northwestern Mexico (peninsular California) resulted from major accretion episodes occurred during the long-lived subduction of the Farallon plate beneath the North American plate, since late Jurassic time. A magnetotelluric profile across central Baja California reveals several electrical conductivity anomalies probably associated to the crustal boundaries of distinct Mezosoic terranes juxtaposed in the current peninsular crust. It is known that electrical conductivity is significantly increased by the pervasive presence of conductive minerals generated during metamorphic processes in highly sheared zones. We interpret a striking sub-horizontal conductivity anomaly reveled in the model as explained by the presence of high-salinity fluids released after dehydration of the subducted Magdalena microplate (Farallon plate?). The presence of fluids at the base of the peninsular crust may produce a zone of weakness, which supports the idea that Baja California lithosphere has not been entirely coupled to the Pacific plate. In addition, crustal thickness is estimated in our model in about 35 km beneath the western Peninsular Ranges batholith (PRB) and 20 km beneath the eastern PRB. This crustal thickness is in good agreement with independent estimations of a thinner crust in the Gulf of California margin and a thicker crust along the axial PRB.
Electrical insulator assembly with oxygen permeation barrier
Van Der Beck, R.R.; Bond, J.A.
1994-03-29
A high-voltage electrical insulator for electrically insulating a thermoelectric module in a spacecraft from a niobium-1% zirconium alloy wall of a heat exchanger filled with liquid lithium while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator has a single crystal alumina layer (SxAl[sub 2]O[sub 3], sapphire) with a niobium foil layer bonded thereto on the surface of the alumina crystal facing the heat exchanger wall, and a molybdenum layer bonded to the niobium layer to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface. 3 figures.
Electrohydrodynamics of a particle-covered drop
NASA Astrophysics Data System (ADS)
Ouriemi, Malika; Vlahovska, Petia
2014-11-01
We study the dynamics of a drop nearly-completely covered with a particle monolayer in a uniform DC electric field. The weakly conducting fluid system consists of a silicon oil drop suspended in castor oil. A broad range of particle sizes, conductivities, and shapes is explored. In weak electric fields, the presence of particles increases drop deformation compared to a particle-free drop and suppresses the electrohydrodynamic flow. Very good agreement is observed between the measured drop deformation and the small deformation theory derived for surfactant-laden drops (Nganguia et al., 2013). In stronger electric fields, where drops are expected to undergo Quincke rotation (Salipante and Vlahovska, 2010), the presence of the particles greatly decreases the threshold for rotation and the stationary tilted drop configuration observed for clean drop is replaced by a spinning drop with either a wobbling inclination or a very low inclination. These behaviors resemble the predicted response of rigid ellipsoids in uniform electric fields. At even stronger electric fields, the particles can form dynamic wings or the drop implodes. The similar behavior of particle-covered and surfactant-laden drops provides new insights into understanding stability of Pickering emulsions. Supported by NSF-CBET 1437545.
NASA Astrophysics Data System (ADS)
Lin, Mei; Chen, Bolei; Wu, Xiao; Qian, Jiasheng; Fei, Linfeng; Lu, Wei; Chan, Lai Wa Helen; Yuan, Jikang
2016-01-01
Well-organized epsilon-MnO2 hollow spheres/reduced graphene oxide (MnO2HS/RGO) composites have been successfully constructed via a facile and one-pot synthetic route. The ε-MnO2 hollow spheres with the diameter of ~500 nm were grown in situ with homogeneous distribution on both sides of graphene oxide (GO) sheets in aqueous suspensions. The formation mechanism of the MnO2HS/RGO composites has been systematically investigated, and a high specific capacitance and good cycling capability were achieved on using the composites as supercapacitors. The galvanostatic charge/discharge curves show a specific capacitance of 471.5 F g-1 at 0.8 A g-1. The hollow structures of ε-MnO2 and the crumpled RGO sheets can enhance the electroactive surface area and improve the electrical conductivity, thus further facilitating the charge transport. The MnO2HS/RGO composite exhibits a high capacitance of 272 F g-1 at 3 A g-1 (92% retention) even after 1000 cycles. The prominent electrochemical performance might be attributed to the combination of the pseudo-capacitance of the MnO2 nanospheres with a hollow structure and to the good electrical conductivity of the RGO sheets. This work explores a new concept in designing metal oxides/RGO composites as electrode materials.Well-organized epsilon-MnO2 hollow spheres/reduced graphene oxide (MnO2HS/RGO) composites have been successfully constructed via a facile and one-pot synthetic route. The ε-MnO2 hollow spheres with the diameter of ~500 nm were grown in situ with homogeneous distribution on both sides of graphene oxide (GO) sheets in aqueous suspensions. The formation mechanism of the MnO2HS/RGO composites has been systematically investigated, and a high specific capacitance and good cycling capability were achieved on using the composites as supercapacitors. The galvanostatic charge/discharge curves show a specific capacitance of 471.5 F g-1 at 0.8 A g-1. The hollow structures of ε-MnO2 and the crumpled RGO sheets can enhance the electroactive surface area and improve the electrical conductivity, thus further facilitating the charge transport. The MnO2HS/RGO composite exhibits a high capacitance of 272 F g-1 at 3 A g-1 (92% retention) even after 1000 cycles. The prominent electrochemical performance might be attributed to the combination of the pseudo-capacitance of the MnO2 nanospheres with a hollow structure and to the good electrical conductivity of the RGO sheets. This work explores a new concept in designing metal oxides/RGO composites as electrode materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07900d
Metal Phosphides and Phosphates-based Electrodes for Electrochemical Supercapacitors.
Li, Xin; Elshahawy, Abdelnaby M; Guan, Cao; Wang, John
2017-10-01
Phosphorus compounds, such as metal phosphides and phosphates have shown excellent performances and great potential in electrochemical energy storage, which are demonstrated by research works published in recent years. Some of these metal phosphides and phosphates and their hybrids compare favorably with transition metal oxides/hydroxides, which have been studied extensively as a class of electrode materials for supercapacitor applications, where they have limitations in terms of electrical and ion conductivity and device stability. To be specific, metal phosphides have both metalloid characteristics and good electric conductivity. For metal phosphates, the open-framework structures with large channels and cavities endow them with good ion conductivity and charge storage capacity. In this review, we present the recent progress on metal phosphides and phosphates, by focusing on their advantages/disadvantages and potential applications as a new class of electrode materials in supercapacitors. The synthesis methods to prepare these metal phosphides/phosphates are looked into, together with the scientific insights involved, as they strongly affect the electrochemical energy storage performance. Particular attentions are paid to those hybrid-type materials, where strong synergistic effects exist. In the summary, the future perspectives and challenges for the metal phosphides, phosphates and hybrid-types are proposed and discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Xiaozhen; Jiang, Yuhua; Hu, Xuebing; Sun, Liangliang; Ling, Yihan
2018-03-01
Proton-conducting solid oxide fuel cell (H-SOFC) based on layered perovskite type GdBaCuCoO5+x (GBCC) cathode was fabricated with in situ drop-coating BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte membrane. The influences of Cu doping into Co sites of GdBaCo2O5+ x on the electrical conductivity and conduction mechanism, thermal expansion property and electrochemical performance of cathode materials and corresponding single cell were investigated. Results show that the electrical conductivity decreased and the conduction mechanism would gradually transform to the semiconductor-like behavior. A high maximum power density of 480 mW cm-2 was obtained for the anode supported NiO-BZCY/NiO-BZCY/BZCY/GBCC single cells with wet H2 fuel at 700 °C. The corresponding polarization resistance was as low as 0.17 Ω cm2. The excellent electrochemical performance of as-prepared single cell indicates that GBCC is a good candidate of cathode materials for H-SOFCs.
Electrically conductive PEDOT coating with self-healing superhydrophobicity.
Zhu, Dandan; Lu, Xuemin; Lu, Qinghua
2014-04-29
A self-healing electrically conductive superhydrophobic poly(3,4-ethylenedioxythiophene) (PEDOT) coating has been prepared by chemical vapor deposition of a fluoroalkylsilane (POTS) onto a PEDOT film, which was obtained by electrochemical deposition. The coating not only maintained high conductivity with a low resistivity of 3.2 × 10(-4) Ω·m, but also displayed a water contact angle larger than 156° and a sliding angle smaller than 10°. After being etched with O2 plasma, the coating showed an excellent self-healing ability, spontaneously regaining its superhydrophobicity when left under ambient conditions for 20 h. This superhydrophobicity recovery process was found to be humidity-dependent, and could be accelerated and completed within 2 h under a high humidity of 84%. The coating also exhibited good superhydrophobicity recovering ability after being corroded by strong acid solution at pH 1 or strong base solution at pH 14 for 3 h.
NASA Astrophysics Data System (ADS)
Li, Xun; Li, Xu; Zhu, Shanan; He, Bin
2009-05-01
Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently proposed imaging modality to image the electrical impedance of biological tissue. It combines the good contrast of electrical impedance tomography with the high spatial resolution of sonography. In this paper, a three-dimensional MAT-MI forward problem was investigated using the finite element method (FEM). The corresponding FEM formulae describing the forward problem are introduced. In the finite element analysis, magnetic induction in an object with conductivity values close to biological tissues was first carried out. The stimulating magnetic field was simulated as that generated from a three-dimensional coil. The corresponding acoustic source and field were then simulated. Computer simulation studies were conducted using both concentric and eccentric spherical conductivity models with different geometric specifications. In addition, the grid size for finite element analysis was evaluated for the model calibration and evaluation of the corresponding acoustic field.
Li, Xun; Li, Xu; Zhu, Shanan; He, Bin
2010-01-01
Magnetoacoustic Tomography with Magnetic Induction (MAT-MI) is a recently proposed imaging modality to image the electrical impedance of biological tissue. It combines the good contrast of electrical impedance tomography with the high spatial resolution of sonography. In this paper, three-dimensional MAT-MI forward problem was investigated using the finite element method (FEM). The corresponding FEM formulas describing the forward problem are introduced. In the finite element analysis, magnetic induction in an object with conductivity values close to biological tissues was first carried out. The stimulating magnetic field was simulated as that generated from a three-dimensional coil. The corresponding acoustic source and field were then simulated. Computer simulation studies were conducted using both concentric and eccentric spherical conductivity models with different geometric specifications. In addition, the grid size for finite element analysis was evaluated for model calibration and evaluation of the corresponding acoustic field. PMID:19351978
Origin of conductivity anomalies in the asthenosphere
NASA Astrophysics Data System (ADS)
Yoshino, T.; Zhang, B.
2013-12-01
Electrical conductivity anomalies with anisotropy parallel to the plate motion have been observed beneath the oceanic lithosphere by electromagnetic studies (e.g., Evans et al., 2005; Baba et al., 2010; Naif et al., 2013). Electrical conductivity of the oceanic asthenosphere at ~100 km depth is very high, about 10-2 to 10-1 S/m. This zone is also known in seismology as the low velocity zone. Since Karato (1990) first suggested that electrical conductivity is sensitive to water content in NAMs, softening of asthenosphere has been regarded as a good indicator for constraining the distribution of water. There are two difficulties to explain the observed conductivity features in the asthenosphere. Recent publications on electrical conductivity of hydrous olivine suggested that olivine with the maximum soluble H2O content at the top of the asthenosphere has much lower conductivity less than 0.1 S/m (e.g., Yoshino et al., 2006; 2009a; Poe et al., 2010; Du Frane and Tyburczy, 2012; Yang, 2012), which is a typical value of conductivity anomaly observed in the oceanic mantle. Partial melting has been considered as an attractive agent for substantially raising the conductivity in this region (Shankland and Waff, 1977), because basaltic melt has greater electrical conductivity (> 100.5 S/m) and high wetting properties. However, dry mantle peridotite cannot reach the solidus temperature at depth 100 km. Volatile components can dramatically reduce melting temperature, even if its amount is very small. Recent studies on conductivity measurement of volatile-bearing melt suggest that conductivity of melt dramatically increases with increasing volatile components (H2O: Ni et al., 2010a, b; CO2: Gaillard et al., 2008; Yoshino et al., 2010; 2012a). Because incipient melt includes higher amount of volatile components, conductivity enhancement by the partial melt is very effective at temperatures just above that of the volatile-bearing peridotite solidus. In this study, the electrical conductivity of peridotite with trace amount of volatile phases was measured in single crystal olivine capsule to protect escape of water from the sample at 3 GPa. The conductivity values were significantly higher than those of dry peridotite, suggesting that the observed conductivity anomalies at the asthenosphere are caused by a presence of trace amount of volatile component in fluid or melt. On the other hand, conductivity of partial molten peridotite measured under shear showed that the conductivity parallel to the shear direction becomes one order of magnitude higher than that normal direction. These observations suggest that partial melting can explain softening and the observed geophysical anomalies of asthenosphere.
Predictions of the electro-mechanical response of conductive CNT-polymer composites
NASA Astrophysics Data System (ADS)
Matos, Miguel A. S.; Tagarielli, Vito L.; Baiz-Villafranca, Pedro M.; Pinho, Silvestre T.
2018-05-01
We present finite element simulations to predict the conductivity, elastic response and strain-sensing capability of conductive composites comprising a polymeric matrix and carbon nanotubes. Realistic representative volume elements (RVE) of the microstructure are generated and both constituents are modelled as linear elastic solids, with resistivity independent of strain; the electrical contact between nanotubes is represented by a new element which accounts for quantum tunnelling effects and captures the sensitivity of conductivity to separation. Monte Carlo simulations are conducted and the sensitivity of the predictions to RVE size is explored. Predictions of modulus and conductivity are found in good agreement with published results. The strain-sensing capability of the material is explored for multiaxial strain states.
NASA Technical Reports Server (NTRS)
Evans, R. W.
1997-01-01
These guidelines address the electrical properties of composite materials which may have an effect on electromagnetic compatibility (EMC). The main topics of the guidelines include the electrical shielding, fault current return, and lightning protection capabilities of graphite reinforced polymers, since they are somewhat conductive but may require enhancement to be adequate for EMC purposes. Shielding effectiveness depends heavily upon the conductivity of the material. Graphite epoxy can provide useful shielding against RF signals, but it is approximately 1,000 times more resistive than good conductive metals. The reduced shielding effectiveness is significant but is still useful in many cases. The primary concern is with gaps and seams in the material just as it is with metal. Current carrying capability of graphite epoxy is adequate for dissipation static charges, but fault currents through graphite epoxy may cause fire at the shorting contact and at joints. The effect of lightning on selected graphite epoxy material and mating surfaces is described, and protection methods are reviewed.
Efforts to Develop a 300°C Solder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norann, Randy A
2015-01-25
This paper covers the efforts made to find a 300°C electrical solder solution for geothermal well monitoring and logging tools by Perma Works LLC. This paper covers: why a high temperature solder is needed, what makes for a good solder, testing flux, testing conductive epoxy and testing intermetallic bonds. Future areas of research are suggested.
NASA Astrophysics Data System (ADS)
Bakan, Gokhan; Adnane, Lhacene; Gokirmak, Ali; Silva, Helena
2012-09-01
Temperature-dependent electrical resistivity, ρ(T), and thermal conductivity, k(T), of nanocrystalline silicon microwires self-heated to melt are extracted by matching simulated current-voltage (I-V) characteristics to experimental I-V characteristics. Electrical resistivity is extracted from highly doped p-type wires on silicon dioxide in which the heat losses are predominantly to the substrate and the self-heating depends mainly on ρ(T) of the wires. The extracted ρ(T) decreases from 11.8 mΩ cm at room-temperature to 5.2 mΩ cm at 1690 K, in reasonable agreement with the values measured up to ˜650 K. Electrical resistivity and thermal conductivity are extracted from suspended highly doped n-type silicon wires in which the heat losses are predominantly through the wires. In this case, measured ρ(T) (decreasing from 20.5 mΩ cm at room temperature to 12 mΩ cm at 620 K) is used to extract ρ(T) at higher temperatures (decreasing to 1 mΩ cm at 1690 K) and k(T) (decreasing from 30 W m-1 K-1 at room temperature to 20 W m-1 K-1 at 1690 K). The method is tested by using the extracted parameters to model wires with different dimensions. The experimental and simulated I-V curves for these wires show good agreement up to high voltage and temperature levels. This technique allows extraction of the electrical resistivity and thermal conductivity up to very high temperatures from self-heated microstructures.
Electroconductive PET/SWNT Films by Solution Casting
NASA Technical Reports Server (NTRS)
Steinert, Brian W.; Dean, Derrick R.
2008-01-01
The market for electrically conductive polymers is rapidly growing, and an emerging pathway for attaining these materials is via polymer-carbon nanotube (CNT) nanocomposites, because of the superior properties of CNTs. Due to their excellent electrical properties and anisotropic magnetic susceptibility, we expect CNTs could be easily aligned to maximize their effectiveness in imparting electrical conductivity to the polymer matrix. Single-walled carbon nanotubes (SWNT) were dispersed in a polyethylene terephthalate (PET) matrix by solution blending then cast onto a glass substrate to create thin, flexible films. Various SWNT loading concentrations were implemented (0.5, 1.0, and 3.0 wt.%) to study the effect of additive density. The processing method was repeated to produce films in the presence of magnetic fields (3 and 9.4 Tesla). The SWNTs showed a high susceptibility to the magnetic field and were effectively aligned in the PET matrix. The alignment was characterized with Raman spectroscopy. Impedance spectroscopy was utilized to study the electrical behavior of the films. Concentration and dispersion seemed to play very important roles in improving electrical conductivity, while alignment played a secondary and less significant role. The most interesting result proved to be the effect of a magnetic field during processing. It appears that a magnetic field may improve dispersion of unmodified SWNTs, which seems to be more important than alignment. It was concluded that SWNTs offer a good option as conductive, nucleating filler for electroconductive polymer applications, and the utilization of a magnetic field may prove to be a novel method for CNT dispersion that could lead to improved nanocomposite materials.
Electro-optical switching and memory display device
Skotheim, T.A.; O'Grady, W.E.; Linkous, C.A.
1983-12-29
An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuits means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.
Electro-optical switching and memory display device
Skotheim, Terje A.; O'Grady, William E.; Linkous, Clovis A.
1986-01-01
An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuit means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.
NASA Astrophysics Data System (ADS)
Han, Y. D.; Zhang, S. M.; Jing, H. Y.; Wei, J.; Bu, F. H.; Zhao, L.; Lv, X. Q.; Xu, L. Y.
2018-04-01
With the aim of developing highly conductive ink for flexible electronics on heat-sensitive substrates, Ag nanospheres and nanoplates were mixed to synthesize hybrid inks. Five kinds of hybrid ink and two types of pure ink were written to square shape on Epson photo paper using rollerball pens, and sintered at a low temperature (100 °C). The microstructure, electrical resistivity, surface porosity, hardness and flexibility of silver patterns were systematically investigated and compared. It was observed that the optimal mixing ratio of nanospheres and nanoplates was 1:1, which equipped the directly written pattern with excellent electrical and mechanical properties. The electrical resistivity was 0.103 μΩ · m, only 6.5 times that of bulk silver. The enhancement compared to pure silver nanospheres or nanoplates based ink was due to the combined action of nanospheres and nanoplates. This demonstrates a valuable way to prepare Ag nanoink with good performance for printed/written electronics.
Effect of annealing over optoelectronic properties of graphene based transparent electrodes
NASA Astrophysics Data System (ADS)
Yadav, Shriniwas; Kaur, Inderpreet
2016-04-01
Graphene, an atom-thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σdc/σopt) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.
Goy, C B; Dominguez, J M; Gómez López, M A; Madrid, R E; Herrera, M C
2013-08-01
The ambulatory monitoring of biosignals involves the use of sensors, electrodes, actuators, processing tools and wireless communication modules. When a garment includes these elements with the purpose of recording vital signs and responding to specific situations it is call a 'Smart Wearable System'. Over the last years several authors have suggested that conductive textile material (e-textiles) could perform as electrode for these systems. This work aims at implementing an electrical characterization of e-textiles and an evaluation of their ability to act as textile electrodes for lower extremity venous occlusion plethysmography (LEVOP). The e-textile electrical characterization is carried out using two experimental set-ups (in vitro evaluation). Besides, LEVOP records are obtained from healthy volunteers (in vivo evaluation). Standard Ag/AgCl electrodes are used for comparison in all tests. Results shown that the proposed e-textiles are suitable for LEVOP recording and a good agreement between evaluations (in vivo and in vitro) is found.
Han, Y D; Zhang, S M; Jing, H Y; Wei, J; Bu, F H; Zhao, L; Lv, X Q; Xu, L Y
2018-02-12
With the aim of developing highly conductive ink for flexible electronics on heat-sensitive substrates, Ag nanospheres and nanoplates were mixed to synthesize hybrid inks. Five kinds of hybrid ink and two types of pure ink were written to square shape on Epson photo paper using rollerball pens, and sintered at a low temperature (100 °C). The microstructure, electrical resistivity, surface porosity, hardness and flexibility of silver patterns were systematically investigated and compared. It was observed that the optimal mixing ratio of nanospheres and nanoplates was 1:1, which equipped the directly written pattern with excellent electrical and mechanical properties. The electrical resistivity was 0.103 μΩ · m, only 6.5 times that of bulk silver. The enhancement compared to pure silver nanospheres or nanoplates based ink was due to the combined action of nanospheres and nanoplates. This demonstrates a valuable way to prepare Ag nanoink with good performance for printed/written electronics.
NASA Astrophysics Data System (ADS)
Suganya, N.; Jaisankar, V.; Sivakumar, E. K. T.
Conducting polymer hydrogels represent a unique class of materials that possess enormous application in flexible electronic devices. In the present work, conducting carboxymethylcellulose (CMC)-co-polyacrylamide (PAAm)/polyaniline was synthesized by a two-step interpenetrating network solution polymerization technique. The synthesized CMC-co-PAAm/polyaniline with interpenetrating network structure was prepared by in situ polymerization of aniline to enhance conductivity. The molecular structure and morphology of the copolymer hydrogels were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The novel conducting polymer hydrogels show good electrical and electrochemical behavior, which makes them potentially useful in electronic devices such as supercapacitors, biosensors, bioelectronics, solar cells and memory devices.
An origin of good electrical conduction in La{sub 4}BaCu{sub 5}O{sub 13+δ}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Daiki; Asai, Shinichiro; Terasaki, Ichiro, E-mail: terra@cc.nagoya-u.ac.jp
2015-07-21
We have prepared a set of polycrystalline samples of the metallic copper oxide La{sub 4}BaCu{sub 5−x}Co{sub x}O{sub 13+δ} (0 ≤ x ≤ 0.35) and have measured the resistivity from 4 to 800 K. All the resistivities show metallic temperature dependence with a small magnitude less than 2 mΩ cm at 800 K, indicating that the metallic conduction is robust against impurities. The robust metallic conduction further suggests that this class of oxide is a promising candidate for electrical leads at high temperature, which might replace platinum. A detailed measurement and analysis on the Hall resistivity have revealed that at least two components are responsible for the electricalmore » conduction, in which a large number of electrons of moderate mobility coexist with a much smaller number of holes of extremely high mobility. This large electron density well screens the impurity potential and retains the metallic conduction against 7% impurity doping.« less
NASA Astrophysics Data System (ADS)
Chatterjee, Shubhayu; Sachdev, Subir; Eberlein, Andreas
2017-08-01
We study thermal and electrical transport in metals and superconductors near a quantum phase transition where antiferromagnetic order disappears. The same theory can also be applied to quantum phase transitions involving the loss of certain classes of intrinsic topological order. For a clean superconductor, we recover and extend well-known universal results. The heat conductivity for commensurate and incommensurate antiferromagnetism coexisting with superconductivity shows a markedly different doping dependence near the quantum critical point, thus allowing us to distinguish between these states. In the dirty limit, the results for the conductivities are qualitatively similar for the metal and the superconductor. In this regime, the geometric properties of the Fermi surface allow for a very good phenomenological understanding of the numerical results on the conductivities. In the simplest model, we find that the conductivities do not track the doping evolution of the Hall coefficient, in contrast to recent experimental findings. We propose a doping dependent scattering rate, possibly due to quenched short-range charge fluctuations below optimal doping, to consistently describe both the Hall data and the longitudinal conductivities.
NASA Astrophysics Data System (ADS)
Ma, Hongru; Li, Zhuo; Tian, Xun; Yan, Shaocun; Li, Zhe; Guo, Xuhong; Ma, Yanqing; Ma, Lei
2018-03-01
Silver dendrites were prepared by a facile replacement reaction between silver nitrate and zinc microparticles of 20 μm in size. The influence of reactant molar ratio, reaction solution volume, silver nitrate concentration, and reaction time on the morphology of dendrites was investigated systematically. It was found that uniform tree-like silver structures are synthesized under the optimal conditions. Their structure can be described as a trunk, symmetrical branches, and leaves, which length scales of 5-10, 1-2 μm, and 100-300 nm, respectively. All features were systematically characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and x-ray powder diffraction. A hybrid fillers system using silver flakes and dendrites as electrically conductive adhesives (ECAs) exhibited excellent overall performance. This good conductivity can be attributed mainly to the synergy between the silver microflakes (5-20 μm sized irregular sheet structures) and dendrites, allowing more conductive pathways to be formed between the fillers. In order to further optimize the overall electrical conductivity, various mixtures of silver microflakes and silver dendrites were tested in ECAs, with results indicating that the highest conductivity was shown when the amounts of silver microflakes, silver dendrites and the polymer matrix were 69.4 wt.% (20.82 vol.%), 0.6 wt.% (0.18 vol.%), and 30.0 wt.% (79.00 vol.%), respectively. The corresponding mass ratio of silver flakes to silver dendrites was 347:3. The resistivity of ECAs reached as low as 1.7 × 10-4 Ω cm.
NASA Astrophysics Data System (ADS)
Higuchi, A.; Watanabe, T.
2013-12-01
Pore-fluid pressure in seismogenic zones can play a key role in the occurrence of earthquakes (e.g., Sibson, 2009). Its evaluation via geophysical observations can lead to a good understanding of seismic activities. The evaluation requires a thorough understanding of the influence of the pore-fluid pressure on geophysical observables like seismic velocity and electrical conductivity. We have studied the influence of pore-fluid pressure on elastic wave velocity and electrical conductivity in water-saturated rocks. Fine grained (100-500μm) biotite granite (Aji, Kagawa pref., Japan) was used as rock samples. The density is 2.658-2.668 g/cm3, and the porosity 0.68-0.87%. The sample is composed of 52.8% plagioclase, 36.0% Quartz, 3.0% K-feldspar, 8.2% biotite. SEM images show that a lot of grain boundaries are open. Few intracrystalline cracks were observed. Following the method proposed by David and Zimmerman (2012), the distribution function of crack aspect ratio was evaluated from the pressure dependence of compressional and shear wave velocities in a dry sample. Cylindrical sample has dimensions of 25 mm in diameter and 30 mm in length, and saturated with 0.01 mol/l KCl aqueous solution. Compressional and shear wave velocities were measured with the pulse transmission technique (PZT transducers, f=2 MHz), and electrical conductivity the two-electrode method (Ag-AgCl electrodes, f=1 Hz-100 kHz). Simultaneous measurements of velocities and conductivity were made using a 200 MPa hydrostatic pressure vessel, in which confining and pore-fluid pressures can be separately controlled. The pore-fluid is electrically insulated from the metal work of the pressure vessel by using a newly designed plastic device (Watanabe and Higuchi, 2013). The confining pressure was progressively increased up to 25 MPa, while the pore-fluid pressure was kept at 0.1 MPa. It took five days or longer for the electrical conductivity to become stationary after increasing the confining pressure. Elastic wave velocities and electrical conductivity showed reproducibly contrasting changes for a small increase in the confining pressure. The elastic wave velocities increased only by 5% as the confining pressure increased from 0.1 MPa to 25 MPa, while the electrical conductivity decreased by an order of magnitude. Based on the SEM examinations, open grain boundaries work as cracks. The changes in elastic wave velocities and electrical conductivity must be caused by the closure of open grain boundaries. Most (˜80%) of the decrease in electrical conductivity occurred below the confining pressure of 5 MPa. As the confining pressure increased from 0.1 MPa to 5 MPa, cracks with the aspect ratio smaller than 7.5×10-5 were closed. The decrease in porosity was only 0.0005%. Such a small change in porosity caused a large change in electrical conductivity. The connectivity of fluid was maintained at the confining pressure of 25 MPa by cracks with the aspect ratio larger than 3.7×10-4. Simultaneous measurements have provided us a lot of information on the microstructure of fluid-bearing rocks.
NASA Technical Reports Server (NTRS)
Clauer, C. R.; Banks, P. M.
1986-01-01
The electrical coupling between the solar wind, magnetosphere, and ionosphere is studied. The coupling is analyzed using observations of high-latitude ion convection measured by the Sondre Stromfjord radar in Greenland and a computer simulation. The computer simulation calculates the ionospheric electric potential distribution for a given configuration of field-aligned currents and conductivity distribution. The technique for measuring F-region in velocities at high time resolution over a large range of latitudes is described. Variations in the currents on ionospheric plasma convection are examined using a model of field-aligned currents linking the solar wind with the dayside, high-latitude ionosphere. The data reveal that high-latitude ionospheric convection patterns, electric fields, and field-aligned currents are dependent on IMF orientation; it is observed that the electric field, which drives the F-region plasma curve, responds within about 14 minutes to IMF variations in the magnetopause. Comparisons of the simulated plasma convection with the ion velocity measurements reveal good correlation between the data.
Electrical insulator assembly with oxygen permeation barrier
Van Der Beck, Roland R.; Bond, James A.
1994-01-01
A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.
Electroosmotic flow and ionic conductance in a pH-regulated rectangular nanochannel
NASA Astrophysics Data System (ADS)
Sadeghi, Morteza; Saidi, Mohammad Hassan; Sadeghi, Arman
2017-06-01
Infinite series solutions are obtained for electrical potential, electroosmotic velocity, ionic conductance, and surface physicochemical properties of long pH-regulated rectangular nanochannels of low surface potential utilizing the double finite Fourier transform method. Closed form expressions are also obtained for channels of large height to width ratio for which the depthwise variations vanish. Neglecting the Stern layer impact, the effects of EDL (Electric Double Layer) overlap, multiple ionic species, and association/dissociation reactions on the surface are all taken into account. Moreover, finite-element-based numerical simulations are conducted to account for the end effects as well as to validate the analytical solutions. We show that, with the exception of the migratory ionic conductivity, all the physicochemical parameters are strong functions of the channel aspect ratio. Accordingly, a slit geometry is not a good representative of a rectangular channel when the width is comparable to the height. It is also observed that the distribution of the electrical potential is not uniform over the surface of a charge-regulated channel. In addition, unlike ordinary channels for which an increase in the background salt concentration is always accompanied by higher flow rates, quite the opposite may be true for a pH-regulated duct at higher salt concentrations.
Influence of a surface film on the particles on the electrorheological response
NASA Astrophysics Data System (ADS)
Wu, C. W.; Conrad, H.
1997-01-01
A conduction model is developed for the dc electrorheological (ER) response of highly conducting particles (e.g., metal particles) suspended in a weakly conducting oil. The numerical analyses show that a surface film with some conductivity is desired, but not a completely insulating film as previously proposed. Increasing the film conductivity leads to an increase in the ER yield stress. However, too high a conductivity will give an unacceptable level of current density. The film should also have an intermediate thickness. A small thickness increases the possibility of electrical breakdown in the film; too large a thickness decreases the ER effect. Good agreement exists between the yield stress and the current density predicted by our model and those measured.
NASA Astrophysics Data System (ADS)
Divvela, Mounica Jyothi; Joo, Yong Lak
2017-04-01
In this paper, we provide a theoretical investigation of axisymmetric instabilities observed during electrospinning, which lead to beads-on-a-string morphology. We used a discretized method to model the instability phenomena observed in the jet. We considered the fluid to be analogous to a bead-spring model. The motion of these beads is governed by the electrical, viscoelastic, surface tension, aerodynamic drag, and gravitational forces. The bead is perturbed at the nozzle, and the growth of the instability is observed over time, and along the length of the jet. We considered both lower electrical conducting polyisobutylene (PIB)-based Boger fluids and highly electrical conducting, polyethylene oxide (PEO)/water systems. In PIB fluids, the onset of the axisymmetric instability is predominantly based on the capillary mode, and the growth rate of the instability is decreased with the viscoelasticity of the jet. However, in the PEO/water system, the instability is electrically driven, and a significant increase in the growth rate of the instability is observed with the increase in the voltage. Our predictions from the discretized model are in good agreement with the previous linear stability analysis and experimental results. Our results also revealed the non-stationary behavior of the disturbance, where the amplitude of the perturbation is observed to be oscillating. Furthermore, we showed that the discretized model is also used to observe the non-axisymmetric behavior of the jet, which can be further used to study the bending instability in electrospinning.
NASA Astrophysics Data System (ADS)
Gillman, M. A.; Lamoureux, S. F.; Lafrenière, M. J.
2017-09-01
The Stream Temperature, Intermittency, and Conductivity (STIC) electrical conductivity (EC) logger as presented by Chapin et al. (2014) serves as an inexpensive (˜50 USD) means to assess relative EC in freshwater environments. This communication demonstrates the calibration of the STIC logger for quantifying EC, and provides examples from a month long field deployment in the High Arctic. Calibration models followed multiple nonlinear regression and produced calibration curves with high coefficient of determination values (R2 = 0.995 - 0.998; n = 5). Percent error of mean predicted specific conductance at 25°C (SpC) to known SpC ranged in magnitude from -0.6% to 13% (mean = -1.4%), and mean absolute percent error (MAPE) ranged from 2.1% to 13% (mean = 5.3%). Across all tested loggers we found good accuracy and precision, with both error metrics increasing with increasing SpC values. During 10, month-long field deployments, there were no logger failures and full data recovery was achieved. Point SpC measurements at the location of STIC loggers recorded via a more expensive commercial electrical conductivity logger followed similar trends to STIC SpC records, with 1:1.05 and 1:1.08 relationships between the STIC and commercial logger SpC values. These results demonstrate that STIC loggers calibrated to quantify EC are an economical means to increase the spatiotemporal resolution of water quality investigations.
Optical and structural properties of Al-doped ZnO thin films by sol gel process.
Jun, Min-Chul; Koh, Jung-Hyuk
2013-05-01
Transparent conducting oxide (TCO) materials with high transmittance and good electrical conductivity have been attracted much attention due to the development of electronic display and devices such as organic light emitting diodes (OLEDs), and dye-sensitized solar cells (DSSCs). Aluminum doped zinc oxide thin films (AZO) have been well known for their use as TCO materials due to its stability, cost-effectiveness, good optical transmittance and electrical properties. Especially, AZO thin film, which have low resistivity of 2-4 x 10(-4) omega x cm which is similar to that of ITO films with wide band gap semiconductors. The AZO thin films were deposited on glass substrates by sol-gel spin-coating process. As a starting material, zinc acetate dihydrate (Zn(CH3COO)2 x 2H2O) and aluminum chloride hexahydrate (AlCl3 6H2O) were used. 2-methoxyethanol and monoethanolamine (MEA) were used as solvent and stabilizer, respectively. After deposited, the films were preheated at 300 degrees C on a hotplate and post-heated at 650 degrees C for 1.5 hrs in the furnace. We have studied the structural and optical properties as a function of Al concentration (0-2.5 mol.%).
Design and Experimental Study of a Current Transformer with a Stacked PCB Based on B-Dot.
Wang, Jingang; Si, Diancheng; Tian, Tian; Ren, Ran
2017-04-10
An electronic current transformer with a B-dot sensor is proposed in this study. The B-dot sensor can realize the current measurement of the transmission line in a non-contact way in accordance with the principle of magnetic field coupling. The multiple electrodes series-opposing structure is applied together with differential input structures and active integrating circuits, which can allow the sensor to operate in differential mode. Maxwell software is adopted to model and simulate the sensor. Optimization of the sensor structural parameters is conducted through finite-element simulation. A test platform is built to conduct the steady-state characteristic, on-off operation, and linearity tests for the designed current transformer under the power-frequency current. As shown by the test results, in contrast with traditional electromagnetic CT, the designed current transformer can achieve high accuracy and good phase-frequency; its linearity is also very good at different distances from the wire. The proposed current transformer provides a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system, thereby satisfying the development demands of the smart power grid.
Design and Experimental Study of a Current Transformer with a Stacked PCB Based on B-Dot
Wang, Jingang; Si, Diancheng; Tian, Tian; Ren, Ran
2017-01-01
An electronic current transformer with a B-dot sensor is proposed in this study. The B-dot sensor can realize the current measurement of the transmission line in a non-contact way in accordance with the principle of magnetic field coupling. The multiple electrodes series-opposing structure is applied together with differential input structures and active integrating circuits, which can allow the sensor to operate in differential mode. Maxwell software is adopted to model and simulate the sensor. Optimization of the sensor structural parameters is conducted through finite-element simulation. A test platform is built to conduct the steady-state characteristic, on-off operation, and linearity tests for the designed current transformer under the power-frequency current. As shown by the test results, in contrast with traditional electromagnetic CT, the designed current transformer can achieve high accuracy and good phase-frequency; its linearity is also very good at different distances from the wire. The proposed current transformer provides a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system, thereby satisfying the development demands of the smart power grid. PMID:28394298
2018-01-01
N-doping of conjugated polymers either requires a high dopant fraction or yields a low electrical conductivity because of their poor compatibility with molecular dopants. We explore n-doping of the polar naphthalenediimide–bithiophene copolymer p(gNDI-gT2) that carries oligoethylene glycol-based side chains and show that the polymer displays superior miscibility with the benzimidazole–dimethylbenzenamine-based n-dopant N-DMBI. The good compatibility of p(gNDI-gT2) and N-DMBI results in a relatively high doping efficiency of 13% for n-dopants, which leads to a high electrical conductivity of more than 10–1 S cm–1 for a dopant concentration of only 10 mol % when measured in an inert atmosphere. We find that the doped polymer is able to maintain its electrical conductivity for about 20 min when exposed to air and recovers rapidly when returned to a nitrogen atmosphere. Overall, solution coprocessing of p(gNDI-gT2) and N-DMBI results in a larger thermoelectric power factor of up to 0.4 μW K–2 m–1 compared to other NDI-based polymers. PMID:29457139
Kiefer, David; Giovannitti, Alexander; Sun, Hengda; Biskup, Till; Hofmann, Anna; Koopmans, Marten; Cendra, Camila; Weber, Stefan; Anton Koster, L Jan; Olsson, Eva; Rivnay, Jonathan; Fabiano, Simone; McCulloch, Iain; Müller, Christian
2018-02-09
N-doping of conjugated polymers either requires a high dopant fraction or yields a low electrical conductivity because of their poor compatibility with molecular dopants. We explore n-doping of the polar naphthalenediimide-bithiophene copolymer p(gNDI-gT2) that carries oligoethylene glycol-based side chains and show that the polymer displays superior miscibility with the benzimidazole-dimethylbenzenamine-based n-dopant N-DMBI. The good compatibility of p(gNDI-gT2) and N-DMBI results in a relatively high doping efficiency of 13% for n-dopants, which leads to a high electrical conductivity of more than 10 -1 S cm -1 for a dopant concentration of only 10 mol % when measured in an inert atmosphere. We find that the doped polymer is able to maintain its electrical conductivity for about 20 min when exposed to air and recovers rapidly when returned to a nitrogen atmosphere. Overall, solution coprocessing of p(gNDI-gT2) and N-DMBI results in a larger thermoelectric power factor of up to 0.4 μW K -2 m -1 compared to other NDI-based polymers.
NASA Astrophysics Data System (ADS)
Anand, Siddeswaran; Muthusamy, Athianna
2018-03-01
A series of benzimidazole monomers, (2-(2, 4-dihydroxyphenyl)-1H-benzimidazol-5-yl)(phenyl) methanone (BIKH), 2-(3-ethoxy-2-hydroxyphenyl)-1H-benzo [d]imidazole-5-yl) (phenyl) methanone (BIKE) and 2-(5-bromo-2-hydroxyphenyl)-1H-benzo [d]imidazole-5-yl) (phenyl) methanone (BIKB) were prepared by condensing three substituted aromatic aldehydes with 3, 4-diaminobenzophenone. In aqueous alkaline medium the benzimidazoles were converted in to oligomers by oxidative polycondensation using NaOCl as oxidant. The formation of monomers and oligomers were confirmed with 1H, 13C NMR, FT-IR, and UV-visible spectroscopic techniques. The oligomers were investigated for their optical, electrical, electrochemical and thermal properties. The electrochemical and optical band gaps of monomers and oligomers were calculated using both UV-visible spectroscopy and cyclic voltametry respectively. The band gap values of monomers are compared with band gap values obtained from quantum theoretical calculations with DFT. The electrical conductivity studies of iodine doped and undoped oligomers were done using two point probe technique. It is found that these values are showing good correlation with the charge densities on imidazole nitrogen obtained from Huckel method. The conductivity of oligomers increases with increase in iodine vapour contact time. The dielectric properties of oligomers have been investigated at different temperature and frequency. The dielectric measurement data were used to calculate the AC conductivity and activation energy of oligomers. Oligomer OBIKH is having greater thermal stability due to its number of chain propagation sites than other oligomers and is shown by its high carbines residue of around 60% at 600 °C in thermogravimetric analysis. I-V characteristics of oligobenzimidazole p-n diodes have shown good rectifying nature in the range -4 to 4 V.
NASA Astrophysics Data System (ADS)
Anand, Siddeswaran; Muthusamy, Athianna; Dineshkumar, Sengottuvelu; Chandrasekaran, J.
2017-11-01
A series of polybenzimidazole polymers, poly-2-(1H-benzo[d] imidazole-2-yl) phenol (PBIP2), poly-3-(1H-benzo[d] imidazole-2-yl) phenol (PBIP3) and poly-4-(1H-benzo[d] imidazole-2-yl) phenol (PBIP4) were synthesized by oxidative polycondensation of benzimidazole monomers 2-(1H-benzo [d] imidazole-2-yl) phenol (BIP2), 3-(1H-benzo [d] imidazole-2-yl) phenol (BIP3) and 4-(1H-benzo [d] imidazole-2-yl) phenol (BIP4). The structure of benzimidazoles monomers and polybenzimidazoles (PBI) were confirmed by various spectroscopic techniques. The quantum theoretical calculations of band gap energy values of monomers were done with DFT and are compared with its optical band gap energy values. Fluorescence spectra of these compounds showed maximum emission in blue region. The electrical conductivity of PBIs was measured by four-point probe technique and showed good electrical response on iodine doping and conductivity increases with increase iodine doping time. The differences in conductivities among the three PBIs are in accordance with the charge density on imidazole nitrogens calculated by Huckel method. The high carbines residue (∼40%) at 500 °C in thermo gravimetric analysis shows that the PBIs are having reasonably good thermal stability. Polymers have recorded high dielectric constant at low applied frequency of 50 Hz at 393 K. The I-V characteristics of polybenzimidazoles p-n diodes showed rectifying nature with a typical forward to reverse current in the range -4 to 4 V. The high n values are caused by non homogeneities and effect of series resistance.
Zou, Qi Ming; Deng, Lei Min; Li, Da Wei; Zhou, Yun Shen; Golgir, Hossein Rabiee; Keramatnejad, Kamran; Fan, Li Sha; Jiang, Lan; Silvain, Jean-Francois; Lu, Yong Feng
2017-10-25
Traditional ceramic-based, high-temperature electrode materials (e.g., lanthanum chromate) are severely limited due to their conditional electrical conductivity and poor stability under harsh circumstances. Advanced composite structures based on vertically aligned carbon nanotubes (VACNTs) and high-temperature ceramics are expected to address this grand challenge, in which ceramic serves as a shielding layer protecting the VACNTs from the oxidation and erosive environment, while the VACNTs work as a conductor. However, it is still a great challenge to fabricate VACNT/ceramic composite structures due to the limited diffusion of ceramics inside the VACNT arrays. In this work, we report on the controllable fabrication of infiltrated (and noninfiltrated) VACNT/silicon composite structures via thermal chemical vapor deposition (CVD) [and laser-assisted CVD]. In laser-assisted CVD, low-crystalline silicon (Si) was quickly deposited at the VACNT subsurfaces/surfaces followed by the formation of high-crystalline Si layers, thus resulting in noninfiltrated composite structures. Unlike laser-assisted CVD, thermal CVD activated the precursors inside and outside the VACNTs simultaneously, which realized uniform infiltrated VACNT/Si composite structures. The growth mechanisms for infiltrated and noninfiltrated VACNT/ceramic composites, which we attributed to the different temperature distributions and gas diffusion mechanism in VACNTs, were investigated. More importantly, the as-farbicated composite structures exhibited excellent multifunctional properties, such as excellent antioxidative ability (up to 1100 °C), high thermal stability (up to 1400 °C), good high velocity hot gas erosion resistance, and good electrical conductivity (∼8.95 Sm -1 at 823 K). The work presented here brings a simple, new approach to the fabrication of advanced composite structures for hot electrode applications.
Molina, Carlos Martin; Pringle, Jamie K; Saumett, Miguel; Evans, Gethin T
2016-04-01
In most Latin American countries there are significant numbers of both missing people and forced disappearances, ∼71,000 Colombia alone. Successful detection of buried human remains by forensic search teams can be difficult in varying terrain and climates. Three clandestine burials were simulated at two different depths commonly encountered in Latin America. In order to gain critical knowledge of optimum geophysical detection techniques, burials were monitored using: ground penetrating radar, magnetic susceptibility, bulk ground conductivity and electrical resistivity up to twenty-two months post-burial. Radar survey results showed good detection of modern 1/2 clothed pig cadavers throughout the survey period on 2D profiles, with the 250MHz antennae judged optimal. Both skeletonised and decapitated and burnt human remains were poorly imaged on 2D profiles with loss in signal continuity observed throughout the survey period. Horizontal radar time slices showed good anomalies observed over targets, but these decreased in amplitude over the post-burial time. These were judged due to detecting disturbed grave soil rather than just the buried targets. Magnetic susceptibility and electrical resistivity were successful at target detection in contrast to bulk ground conductivity surveys which were unsuccessful. Deeper burials were all harder to image than shallower ones. Forensic geophysical surveys should be undertaken at suspected burial sites. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Transport properties of alumina nanofluids.
Wong, Kau-Fui Vincent; Kurma, Tarun
2008-08-27
Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 °C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m(-1) K(-1) was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 °C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at various volumetric concentrations. A 3457.1% increase in the electrical conductivity was measured for a small 1.44% volumetric concentration of alumina nanoparticles in water. The highest value of electrical conductivity, 314 µS cm(-1), was recorded for a volumetric concentration of 8.47%. In the determination of the kinematic viscosity of alumina nanofluid, a standard kinematic viscometer with constant temperature bath was used. Calibrated capillary viscometers were used to measure flow under gravity at precisely controlled temperatures. The capillary viscometers were calibrated with de-ionized water at different temperatures, and the resulting kinematic viscosity values were found to be within 3% of the standard published values. An increase of 35.5% in the kinematic viscosity was observed for an 8.47% volumetric concentration of alumina nanoparticles in water. The maximum kinematic viscosity of alumina nanofluid, 2.901 42 mm(2) s(-1), was obtained at 0 °C for an 8.47% volumetric concentration of alumina nanoparticles. The experimental results of the present work will help researchers arrive at better theoretical models.
Unexpected low thermal conductivity and large power factor in Dirac semimetal Cd3As2
NASA Astrophysics Data System (ADS)
Cheng, Zhang; Tong, Zhou; Sihang, Liang; Junzhi, Cao; Xiang, Yuan; Yanwen, Liu; Yao, Shen; Qisi, Wang; Jun, Zhao; Zhongqin, Yang; Faxian, Xiu
2016-01-01
Thermoelectrics has long been considered as a promising way of power generation for the next decades. So far, extensive efforts have been devoted to the search of ideal thermoelectric materials, which require both high electrical conductivity and low thermal conductivity. Recently, the emerging Dirac semimetal Cd3As2, a three-dimensional analogue of graphene, has been reported to host ultra-high mobility and good electrical conductivity as metals. Here, we report the observation of unexpected low thermal conductivity in Cd3As2, one order of magnitude lower than the conventional metals or semimetals with a similar electrical conductivity, despite the semimetal band structure and high electron mobility. The power factor also reaches a large value of 1.58 mW·m-1·K-2 at room temperature and remains non-saturated up to 400 K. Corroborating with the first-principles calculations, we find that the thermoelectric performance can be well-modulated by the carrier concentration in a wide range. This work demonstrates the Dirac semimetal Cd3As2 as a potential candidate of thermoelectric materials. Project supported by the National Young 1000 Talent Plan China, the Pujiang Talent Plan in Shanghai, China, the National Natural Science Foundation of China (Grant Nos. 61322407 and 11474058), the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China (Grant No. J1103204), and the National Basic Research Program of China (Grant No. 2011CB921803).
Graphene-Decorated Nanocomposites for Printable Electrodes in Thin Wafer Devices
NASA Astrophysics Data System (ADS)
Bakhshizadeh, N.; Sivoththaman, S.
2017-12-01
Printable electrodes that induce less stress and require lower curing temperatures compared to traditional screen-printed metal pastes are needed in thin wafer devices such as future solar cells, and in flexible electronics. The synthesis of nanocomposites by incorporating graphene nanopowders as well as silver nanowires into epoxy-based electrically conductive adhesives (ECA) is examined to improve electrical conductivity and to develop alternate printable electrode materials that induce less stress on the wafer. For the synthesized graphene and Ag nanowire-decorated ECA nanocomposites, the curing kinetics were studied by dynamic and isothermal differential scanning calorimetry measurements. Thermogravimetric analysis on ECA, ECA-AG and ECA/graphene nanopowder nanocomposites showed that the temperatures for onset of decomposition are higher than their corresponding glass transition temperature ( T g) indicating an excellent thermal resistance. Printed ECA/Ag nanowire nanocomposites showed 90% higher electrical conductivity than ECA films, whereas the ECA/graphene nanocomposites increased the conductivity by over two orders of magnitude. Scanning electron microscopy results also revealed the effect of fillers morphology on the conductivity improvement and current transfer mechanisms in nanocomposites. Residual stress analysis performed on Si wafers showed that the ECA and nanocomposite printed wafers are subjected to much lower stress compared to those printed with metallic pastes. The observed parameters of low curing temperature, good thermal resistance, reasonably high conductivity, and low residual stress in the ECA/graphene nanocomposite makes this material a promising alternative in screen-printed electrode formation in thin substrates.
Wu, Yingpeng; Ma, Yanfeng; Wang, Yan; Huang, Lu; Li, Na; Zhang, Tengfei; Zhang, Yi; Wan, Xiangjian; Huang, Yi; Chen, Yongsheng
2013-02-01
Coal, which is abundant and has an incompact structure, is a good candidate to replace graphite as the raw material for the production of graphene. Here, a new solution phase technique for the preparation of graphene from coal has been developed. The precursor: graphene oxide got from coal was examined by atomic force microscopy, dynamic light scattering and X-ray diffraction, the results showed the GO was a small and single layer sheet. The graphene was examined by X-ray photoelectron spectroscopy, and Raman spectroscopy. Furthermore, graphene films have been prepared using direct solution process and the electrical conductivity and Hall effect have been studied. The results showed the conductivity of the films could reach as high as 2.5 x 10(5) Sm(-1) and exhibited an n-type behavior.
NASA Astrophysics Data System (ADS)
Dai, Xiu Hong; Zhao, Hong Dong; Zhang, Lei; Zhu, Hui Juan; Li, Xiao Hong; Zhao, Ya Jun; Guo, Jian Xin; Zhao, Qing Xun; Wang, Ying Long; Liu, Bao Ting; Ma, Lian Xi
2014-03-01
Polycrystalline Bi0.975La0.025Fe0.975Ni0.025O3 (BLFNO) film is fabricated on Pt/Ti/SiO2/Si(111) substrate by sol-gel method. It is found that the well-crystallized BLFNO film is polycrystalline, and the Pt/BLFNO/Pt capacitor possesses good ferroelectric properties with remnant polarization of 74 μC/cm2 at electric field of 833 kV/cm. Moreover, it is also found that the leakage current density of the Pt/BLFNO/Pt capacitor increases with the increase of measurement temperature ranging from 100 to 300 K. The leakage density of the Pt/BLFNO/Pt capacitor satisfies space-charge-limited conduction (SCLC) at higher electric field and shows little dependence on voltage polarity and temperature, but shows polarity and temperature dependence at lower applied electric field. With temperature increasing from 100 to 300 K at lower applied electric field, the most likely conduction mechanism is from Ohmic behavior to SCLC for positive biases, but no clear dominant mechanism for negative biases is shown.
NASA Astrophysics Data System (ADS)
Guillén, C.; Herrero, J.
2015-01-01
Metal layers with high roughness and electrical conductivity are required as back-reflector electrodes in several optoelectronic devices. The metal layer thickness and the process temperature should be adjusted to reduce the material and energetic costs for the electrode preparation. Here, Ag thin films with thickness ranging from 30 to 200 nm have been deposited by sputtering at room temperature on glass substrates. The structure, morphology, optical and electrical properties of the films have been analyzed in the as-grown conditions and after thermal treatment in flowing nitrogen at various temperatures in the 150-550 °C range. The surface texture has been characterized by the root-mean-square roughness and the correlation length coefficients, which are directly related to the electrical resistivity and the light-scattering parameter (reflectance haze) for the various samples. The increment in the reflectance haze has been used to detect surface agglomeration processes that are found dependent on both the film thickness and the annealing temperature. A good compromise between light-scattering and electrical conductivity has been achieved with 70 nm-thick Ag films after 350 °C heating.
3D Freeze-Casting of Cellular Graphene Films for Ultrahigh-Power-Density Supercapacitors.
Shao, Yuanlong; El-Kady, Maher F; Lin, Cheng-Wei; Zhu, Guanzhou; Marsh, Kristofer L; Hwang, Jee Youn; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi; Kaner, Richard B
2016-08-01
3D cellular graphene films with open porosity, high electrical conductivity, and good tensile strength, can be synthesized by a method combining freeze-casting and filtration. The resulting supercapacitors based on 3D porous reduced graphene oxide (RGO) film exhibit extremely high specific power densities and high energy densities. The fabrication process provides an effective means for controlling the pore size, electronic conductivity, and loading mass of the electrode materials, toward devices with high energy-storage performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Zhenzhen; Xin, Yanmei; Zhang, Zhonghai; Wu, Hongjun; Wang, Peng
2015-01-01
One-dimensional nanocomposites of metal-oxide and noble metal were expected to present superior performance for nonenzymatic glucose detection due to its good conductivity and high catalytic activity inherited from noble metal and metal oxide respectively. As a proof of concept, we synthesized gold and copper oxide (Au/CuO) composite with unique one-dimensional nanocauliflowers structure. Due to the nature of the synthesis method, no any foreign binder was needed in keeping either Au or CuO in place. To the best of our knowledge, this is the first attempt in combining metal oxide and noble metal in a binder-free style for fabricating nonenzymatic glucose sensor. The Au/CuO nanocauliflowers with large electrochemical active surface and high electrolyte contact area would promise a wide linear range and high sensitive detection of glucose with good stability and reproducibility due to its good electrical conductivity of Au and high electrocatalytic activity of CuO. PMID:26068705
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gladysiewicz, M., E-mail: marta.gladysiewicz@pwr.edu.pl; Janicki, L.; Kudrawiec, R.
2015-12-28
Electric field distribution in N-polar GaN(channel)/AlGaN/GaN(buffer) heterostructures was studied theoretically by solving Schrodinger and Poisson equations in a self-consistent manner for various boundary conditions and comparing results of these calculations with experimental data, i.e., measurements of electric field in GaN(channel) and AlGaN layers by electromodulation spectroscopy. A very good agreement between theoretical calculations and experimental data has been found for the Fermi-level located at ∼0.3 eV below the conduction band at N-polar GaN surface. With this surface boundary condition, the electric field distribution and two dimensional electron gas concentration are determined for GaN(channel)/AlGaN/GaN(buffer) heterostructures of various thicknesses of GaN(channel) and AlGaNmore » layers.« less
Biological studies and electrical conductivity of paper sheet based on PANI/PS/Ag-NPs nanocomposite.
Youssef, A M; Mohamed, S A; Abdel-Aziz, M S; Abdel-Aziz, M E; Turky, G; Kamel, S
2016-08-20
Polyaniline (PANI) with/without polystyrene (PS), was successfully manufactured in the occurrence of dispersed pulp fibers via the oxidative polymerization reaction of aniline monomer to produce conductive paper sheets containing PANI, PANI/PS composites. Additionally, sliver nitrate (Ag-NO3) was added by varied loadings to the oxidative polymerization of aniline monomer to provide sliver nanoparticles (Ag-NPs) emptied into the prepared paper sheets. The prepared paper sheets were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD) and infrared spectroscopy (IR), the mechanical properties of the prepared paper sheets were evaluated. Moreover, the electrical conductivity and biological studies such as cellulases assay, Microorganism & culture condition and detection of the released of Ag-NPs were evaluated. Furthermore, the prepared paper sheets were displayed good antibacterial properties contrary to gram positive and gram negative bacteria. Consequently, the prepared paper sheet may be used as novel materials for packaging applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jung, Eui Dae; Nam, Yun Seok; Seo, Houn; Lee, Bo Ram; Yu, Jae Choul; Lee, Sang Yun; Kim, Ju-Young; Park, Jang-Ung; Song, Myoung Hoon
2015-09-01
Here, we report a comprehensive analysis of the electrical, optical, mechanical, and surface morphological properties of composite nanostrutures based on silver nanowires (AgNW) and PEDOT:PSS conducting polymer for the use as flexible and transparent electrodes. Compared to ITO or the single material of AgNW or PEDOT:PSS, the AgNW/PEDOT:PSS composite electrode showed high electrical conductivity with a low sheet resistance of 26.8 Ω/sq at 91% transmittance (at 550 nm), improves surface smoothness, and enhances mechanical properties assisted by an amphiphilic fluoro-surfactant. The polymeric light-emitting diodes (PLEDs) and organic solar cells (OSCs) using the AgNW/PEDOT:PSS composite electrode showed higher device performances than those with AgNW and PEDOT:PSS electrodes and excellent flexibility under bending test. These results indicates that the AgNW/PEDOT:PSS composite presented is a good candidate as next-generation transparent elelctrodes for applications into flexible optoelectronic devices. [Figure not available: see fulltext.
Measurement and simulation of thermoelectric efficiency for single leg
NASA Astrophysics Data System (ADS)
Hu, Xiaokai; Yamamoto, Atsushi; Ohta, Michihiro; Nishiate, Hirotaka
2015-04-01
Thermoelectric efficiency measurements were carried out on n-type bismuth telluride legs with the hot-side temperature at 100 and 150 °C. The electric power and heat flow were measured individually. Water coolant was utilized to maintain the cold-side temperature and to measure heat flow out of the cold side. Leg length and vacuum pressure were studied in terms of temperature difference across the leg, open-circuit voltage, internal resistance, and heat flow. Finite-element simulation on thermoelectric generation was performed in COMSOL Multiphysics, by inputting two-side temperatures and thermoelectric material properties. The open-circuit voltage and resistance were in good agreement between the measurement and simulation. Much larger heat flows were found in measurements, since they were comprised of conductive, convective, and radiative contributions. Parasitic heat flow was measured in the absence of bismuth telluride leg, and the conductive heat flow was then available. Finally, the maximum thermoelectric efficiency was derived in accordance with the electric power and the conductive heat flow.
Polyimide/Carbon Nanotube Composite Films for Electrostatic Charge Mitigation
NASA Technical Reports Server (NTRS)
Smith, Joseph G., Jr.; Delozier, Donavon M.; Connell, John W.; Watson, Kent A.
2004-01-01
Low color, space environmentally durable polymeric films with sufficient electrical conductivity to mitigate electrostatic charge (ESC) build-up have potential applications on large, deployable, ultra-light weight Gossamer spacecraft as thin film membranes on antennas, solar sails, thermal/optical coatings, multi-layer insulation blankets, etc.. The challenge has been to develop a method to impart robust electrical conductivity into these materials without increasing solar absorptivity (alpha ) or decreasing optical transparency or film flexibility. Since these spacecraft will require significant compaction prior to launch, the film portion of the spacecraft will require folding. The state-of-the-art clear, conductive coating (e.g. indium-tin-oxide, ITO) is brittle and cannot tolerate folding. In this report, doping a polymer with single-walled carbon nanotubes (SWNTs) using two different methods afforded materials with good flexibility and surface conductivities in the range sufficient for ESC mitigation. A coating method afforded materials with minimal effects on the mechanical, optical, and thermo-optical properties as compared to dispersal of SWNTs in the matrix. The chemistry and physical properties of these nanocomposites are discussed.
Subramanian, Swetha; Mast, T Douglas
2015-10-07
Computational finite element models are commonly used for the simulation of radiofrequency ablation (RFA) treatments. However, the accuracy of these simulations is limited by the lack of precise knowledge of tissue parameters. In this technical note, an inverse solver based on the unscented Kalman filter (UKF) is proposed to optimize values for specific heat, thermal conductivity, and electrical conductivity resulting in accurately simulated temperature elevations. A total of 15 RFA treatments were performed on ex vivo bovine liver tissue. For each RFA treatment, 15 finite-element simulations were performed using a set of deterministically chosen tissue parameters to estimate the mean and variance of the resulting tissue ablation. The UKF was implemented as an inverse solver to recover the specific heat, thermal conductivity, and electrical conductivity corresponding to the measured area of the ablated tissue region, as determined from gross tissue histology. These tissue parameters were then employed in the finite element model to simulate the position- and time-dependent tissue temperature. Results show good agreement between simulated and measured temperature.
Polypyrrole based nanocomposites for supercapacitor applications: A review
NASA Astrophysics Data System (ADS)
Sardar, A.; Gupta, P. S.
2018-05-01
Recently conducting polymers have attracted great interest for supercapacitor applications. Among conducting polymers polypyrrole is most popular due to its unique electrical conductivity, optoelectrical properties, redox property and excellent environmental stability. In this article, we present a comprehensive review of polypyrrole and polypyrrole based nanocomposites for supercapacitor applications. We have included study of various parameters like power density, energy density, specific-capacitance by various authors for different kinds of nanocomposites where fillers are metal oxides, metal sulphides, graphene etc. Some polypyrrole nanocomposits show good electrochemical performances. The extremely stable supercapacitors with excellent flexibility and scalability hold considerable promise for the commerical application of flexible and wearable electronics.
Concentration and Mobility of Electrically-Conducting Defects in Olivine
NASA Astrophysics Data System (ADS)
Constable, S.; Roberts, J.; Duba, A.
2002-12-01
We have collected measurements of electrical conductivity and thermopower as a function of temperature and oxygen fugacity (f O2) on a sample of San Quintin dunite (95% olivine), and measurements of electrical conductivity equilibration after changes in f O2 on Mt.Porndon lherzolite (65% olivine). Both data sets have been analysed using nonlinear parameter inversion of mathematical models relating conductivity, thermopower, and diffusion kinetics to temperature, f O2, time, and defect concentration and mobility. From the dunite thermopower/conductivity data we are able to estimate the concentration and mobilities of electrically conducting defects. Our model allows electrons, small polarons (Fe+++ on Fe++ sites), and magnesium vacancies (V'' Mg) to contribute to conduction, but only polarons and V'' Mg are required by our data. Polarons dominate conduction below 1300°~C; at this temperature conduction, is equal for the two defects at all f O2 tested. Thermopower measurements allow us to estimate defect concentration independently from mobility, and so we can back out polaron mobility as 12.2x 10-6 exp(-1.05~eV/kT) m2V-1s-1 and magnesium vacancy mobility as 2.72x 10-6 exp(-1.09~eV/kT) m2V-1s-1. Electrical conductivity of the lherzolite, measured as a function of time after changes in the oxygen fugacity of the surrounding CO2/CO atmosphere, is used to infer the diffusivity of the point defects associated with the oxidation reactions. An observed f O2 dependence in the time constants associated with equilibration implies two species of fixed diffusivity, each with f O2-dependent concentrations. Although the rate-limiting step may not necessarily be associated with conducting defects, when time constants are converted to mobilities, the magnitudes and activation energies agree extremely well with the model presented above for the dunite, after one free parameter (effective grain size) is fit at a plausible 1.6~mm diameter. Not only does this study represent one of the few direct measurements of polaron mobility, but the very good agreement between two independent measurement techniques (thermopower versus equilibration kinetics) and two independent samples (dunite versus lherzolite) provides some level of confidence in the results. We are currently extending these modeling techniques to study olivine defect mobility anisotropy.
Quantum electric-dipole liquid on a triangular lattice.
Shen, Shi-Peng; Wu, Jia-Chuan; Song, Jun-Da; Sun, Xue-Feng; Yang, Yi-Feng; Chai, Yi-Sheng; Shang, Da-Shan; Wang, Shou-Guo; Scott, James F; Sun, Young
2016-02-04
Geometric frustration and quantum fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets. Geometric frustration and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogues of quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19 with geometric frustration represents a promising candidate for the proposed electric-dipole liquid. We present a series of experimental lines of evidence, including dielectric permittivity, heat capacity and thermal conductivity measured down to 66 mK, to reveal the existence of an unusual liquid-like quantum phase in BaFe12O19, characterized by itinerant low-energy excitations with a small gap. The possible quantum liquids of electric dipoles in frustrated dielectrics open up a fresh playground for fundamental physics.
Heat transport in electrically aligned multiwalled carbon nanotubes dispersed in water
NASA Astrophysics Data System (ADS)
Cervantes-Alvarez, F.; Macias, J. D.; Alvarado-Gil, J. J.
2018-02-01
A modified Ångström method was used to determine the thermal diffusivity and thermal conductivity of aqueous dispersions of multiwalled carbon nanotubes as a function of their weight fraction concentration and in the presence of an externally applied electric field. Measurements were performed in planar samples, with a fixed thickness of 3.18 mm applying an AC voltage in the range from 0 to 70~V_RMS and for concentrations of carbon nanotubes from 0 to 2 wf%. It is shown that this field induces the formation of clusters followed by their alignment along the electric field, which can favor heat transfer in that direction. Heat transfer measurements show two regimes, in the first one under 0.5 wf%, voltages lower than 30~V_RMS are not strong enough to induce the adequate order of the carbon nanostructures, and as a consequence, thermal diffusivity of the dispersion remains close to the thermal diffusivity of water. In contrast for higher concentrations (above 1.5 wf%), 10~V_RMS are enough to get a good alignment. Above such thresholds of concentrations and voltages, thermal diffusivity and conductivity increase, when the electric field is increased, in such a way that for an applied voltage of 20~V_RMS and for a concentration of 1.5 wf%, an increase of 49% of the thermal conductivity was obtained. It is also shown that this approach exhibits limits, due to the fact that the electric-field induced structure, can act as a heating element at high electric field intensities and carbon nanotubes concentrations, which can induce convection and evaporation of the liquid matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuang, Ping
2011-01-01
Transparent conducting electrodes with the combination of high optical transmission and good electrical conductivity are essential for solar energy harvesting and electric lighting devices. Currently, indium tin oxide (ITO) is used because ITO offers relatively high transparency (>80%) to visible light and low sheet resistance (R s = 10 ohms/square (Ω /2)) for electrical conduction. However, ITO is costly due to limited indium reserves, and it is brittle. These disadvantages have motivated the search for other conducting electrodes with similar or better properties. There has been research on a variety of electrode structures involving carbon nanotube networks, graphene films, nanowiremore » and nanopatterned meshes and grids. Due to their novel characteristics in light manipulation and collection, photonic crystal structures show promise for further improvement. Here, we report on a new architecture consisting of nanoscale high aspect ratio metallic photonic structures as transparent electrodes fabricated via a combination of processes. For (Au) and silver (Ag) structures, the visible light transmission can reach as high as 80%, and the sheet resistance of the structure can be as low as 3.2Ω /2. The optical transparency of the high aspect ratio metal structures at visible wavelength range is comparable to that of ITO glass, while their sheet resistance is more than 3 times lower, which indicates a much higher electrical conductivity of the metal structures. Furthermore, the high aspect ratio metal structures have very high infrared (IR) reflection (90%) for the transverse magnetic (TM) mode, which can lead to the development of fabrication of metallic structures as IR filters for heat control applications. Investigations of interdigitated structures based on the high aspect ratio metal electrodes are ongoing to study the feasibility in smart window applications in light transmission modulation.« less
Optical and electrical studies of cerium mixed oxides
NASA Astrophysics Data System (ADS)
Sherly, T. R.; Raveendran, R.
2014-10-01
The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.
Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs
NASA Astrophysics Data System (ADS)
Song, Yuanyuan; Jiang, Yaoquan; Shi, Liyi; Cao, Shaomei; Feng, Xin; Miao, Miao; Fang, Jianhui
2015-08-01
Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq-1, equal to the electronic conductivity, which is about 500 S cm-1. The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products.Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq-1, equal to the electronic conductivity, which is about 500 S cm-1. The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03218k
NASA Astrophysics Data System (ADS)
Zhao, Hailei; Shen, Wei; Zhu, Zhiming; Li, Xue; Wang, Zhifeng
Ba xSr 1- xCo yFe 1- yO 3- δ (BSCF) materials with perovskite structure were synthesized via solid-state reaction. Their structural characteristics, electrical-conduction behavior and cathode performance were investigated. Compared to A-site elements, B-site elements show a wide solid-solution range in BSCF. The electrical-conduction behavior of BSCF obeys the small polaron-hopping mechanism. An increase of Ba or Co content in the BSCF samples results in a decrease of electrical conductivity, which is mainly attributable to the preferential existence of B 3+ rather than B 4+ in Ba- or Co-rich samples. At the same time, this leads to increases in the lattice parameter a and the number of oxygen vacancies. BSCF samples with high Ba content show a high structural stability (high oxygen-loss temperature). Ba 0.6Sr 0.4Co 0.8Fe 0.2O 3- δ and Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ materials present good thermal-cycling stability of the electrical conductivity. Compared with Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ, Ba 0.6Sr 0.4Co 0.8Fe 0.2O 3- δ exhibits a better cathode performance in a Ce 0.8Gd 0.2O 2- δ (GDC)-supported half cell. The cell performance can be improved by introducing a certain amount of GDC electrolyte into the BSCF cathode material.
NASA Astrophysics Data System (ADS)
Shimoi, Norihiro
2015-12-01
Single-walled carbon nanotubes (SWCNTs) synthesized by arc discharge are expected to exhibit good field emission (FE) properties at a low driving voltage. We used a coating containing homogeneously dispersed highly crystalline SWCNTs produced by a high-temperature annealing process to fabricate an FE device by a wet-coating process at a low cost. Using the coating, we succeeded in reducing the power consumption of field emitters for planar lighting devices. SWCNTs synthesized by arc discharge have crystal defects in the carbon network, which are considered to induce inelastic electron tunneling that deteriorates the electrical conductivity of the SWCNTs. In this study, the blocking of the transport of electrons in SWCNTs with crystal defects is simulated using an inelastic electron tunneling model. We succeeded in clarifying the mechanism underlying the electrical conductivity of SWCNTs by controlling their crystallinity. In addition, it was confirmed that field emitters using highly crystalline SWCNTs can lead to new applications operating with low power consumption and new devices that may change our daily lives in the future.
Han, Y D; Zhang, Siming; Jing, H Y; Wei, Jun; Bu, Fanhui; Zhao, Lei; Lv, Xiaoqing; Xu, L Y
2018-01-24
With the aim of developing highly conductive ink for flexible electronics on heat-sensitive substrates, Ag nanospheres and nanoplates were mixed to synthesize hybrid inks. Five kinds of hybrid ink and two types of pure ink were written to square shape on Epson photo paper using rollerball pens and sintered at a low temperature (100℃). The microstructure, electrical resistivity, surface porosity, hardness and flexibility of silver patterns were systematically investigated and compared. It was observed that the optimal mixing ratio of nanospheres and nanoplates was 1:1, which equipped the directly written pattern with excellent electrical and mechanical properties. The electrical resistivity was 0.103 μΩ·m, which was only 6.5 times of bulk silver. The enhancement compared to pure silver nanospheres or nanoplates based ink was owing to the combined action of nanospheres and nanoplates. It was a valued way to prepare Ag nanoink with good performance for printed/written electronics. © 2018 IOP Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimoi, Norihiro, E-mail: shimoi@mail.kankyo.tohoku.ac.jp
2015-12-07
Single-walled carbon nanotubes (SWCNTs) synthesized by arc discharge are expected to exhibit good field emission (FE) properties at a low driving voltage. We used a coating containing homogeneously dispersed highly crystalline SWCNTs produced by a high-temperature annealing process to fabricate an FE device by a wet-coating process at a low cost. Using the coating, we succeeded in reducing the power consumption of field emitters for planar lighting devices. SWCNTs synthesized by arc discharge have crystal defects in the carbon network, which are considered to induce inelastic electron tunneling that deteriorates the electrical conductivity of the SWCNTs. In this study, themore » blocking of the transport of electrons in SWCNTs with crystal defects is simulated using an inelastic electron tunneling model. We succeeded in clarifying the mechanism underlying the electrical conductivity of SWCNTs by controlling their crystallinity. In addition, it was confirmed that field emitters using highly crystalline SWCNTs can lead to new applications operating with low power consumption and new devices that may change our daily lives in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng Lijian; Teixiera, V.; Santos, M. P. dos
Indium tin oxide (ITO) thin films have been deposited onto glass substrates at room temperature by ion beam assisted deposition technique at different deposition rates. During all the deposition processes, the parameters of the Kaufman ion source and the oxygen gas flow are maintained constants. And only the deposition rate is varied from 0,1 nm/s to 0,3 nm/s by adjusting the e-beam power supply. The effects of the deposition rate on the properties of the deposited films have been studied. The structural, optical and electrical properties of the deposited films have been characterized by X-ray diffraction, AFM, transmittance, FTIR, andmore » Hall effect measurements. The optical constants of the deposited films have been calculated by fitting the transmittance spectra. It has been found that although the film prepared at low deposition rate (0,1 nm/s) shows a high transmittance in the visible region, it has a poor electrical conductivity. The films prepared at 0,2 nm/s deposition rate shows a good electrical conductivity, high IR reflectance which is useable for some electromagnetic wave shielding applications and a reasonable transmittance in the visible region.« less
Optical and transport properties of dense liquid silica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Tingting; Millot, Marius; Kraus, Richard G.
2015-06-15
Using density-functional-theory based molecular dynamics and the Kubo-Greenwood linear response theory, we evaluated the high-pressure equation of state and the optical and transport properties of quartz and fused silica shock-compressed to 2000 GPa. The computed Hugoniots and corresponding optical reflectivity values are in very good agreement with published data for quartz, and new data that we obtained on fused silica using magnetically launched flyer plate experiments. The rise of optical reflectivity upon shock compression appears to be primarily a temperature-driven mechanism, which is relatively insensitive to small density variation. We observed that the electrical conductivity does not display Drude-like frequencymore » dependence, especially at lower temperatures. In addition, the Wiedemann-Franz relation between electrical and thermal conductivities was found to be invalid. It suggests that even at three-fold compression, warm dense liquid silica on the Hugoniot curve is still far away from the degenerate limit.« less
NASA Astrophysics Data System (ADS)
Lv, Zijian; Zhong, Qin; Bu, Yunfei; Wu, Junpeng
2016-10-01
The morphology and electrical conductivity are essential to electrochemical performance of electrode materials in renewable energy conversion and storage technologies such as fuel cells and supercapacitors. Here, we explored a facile method to grow Ag@nickel-cobalt layered double hydroxide (Ag@Ni/Co-LDHs) with 3D flower-like microsphere structure. The results show the morphology of Ni/Co-LDHs varies with the introduction of Ag species. The prepared Ag@Ni/Co-LDHs not only exhibits an open hierarchical structure with high specific capacitance but also shows good electrical conductivity to support fast electron transport. Benefiting from the unique structural features, these flower-like Ag@Ni/Co-LDHs microspheres have impressive specific capacitance as high as 1768 F g-1 at 1 A g-1. It can be concluded that engineering the structure of the electrode can increase the efficiency of the specific capacitance as a battery-type electrode for hybrid supercapacitors.
Integral gas seal for fuel cell gas distribution assemblies and method of fabrication
Dettling, Charles J.; Terry, Peter L.
1985-03-19
A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.
Method of fabricating an integral gas seal for fuel cell gas distribution assemblies
Dettling, Charles J.; Terry, Peter L.
1988-03-22
A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.
An estimation of the electrical characteristics of planetary shallow subsurfaces with TAPIR antennas
NASA Astrophysics Data System (ADS)
Le Gall, A.; Reineix, A.; Ciarletti, V.; Berthelier, J. J.; Ney, R.; Dolon, F.; Corbel, C.
2006-06-01
In the frame of the NETLANDER program, we have developed the Terrestrial And Planetary Investigation by Radar (TAPIR) imaging ground-penetrating radar to explore the Martian subsurface at kilometric depths and search for potential water reservoirs. This instrument which is to operate from a fixed lander is based on a new concept which allows one to image the various underground reflectors by determining the direction of propagation of the reflected waves. The electrical parameters of the shallow subsurface (permittivity and conductivity) need to be known to correctly determine the propagation vector. In addition, these electrical parameters can bring valuable information on the nature of the materials close to the surface. The electric antennas of the radar are 35 m long resistively loaded monopoles that are laid on the ground. Their impedance, measured during a dedicated mode of operation of the radar, depends on the electrical parameters of soil and is used to infer the permittivity and conductivity of the upper layer of the subsurface. This paper presents an experimental and theoretical study of the antenna impedance and shows that the frequency profile of the antenna complex impedance can be used to retrieve the geoelectrical characteristics of the soil. Comparisons between a numerical modeling and in situ measurements have been successfully carried over various soils, showing a very good agreement.
NASA Astrophysics Data System (ADS)
Xiao, Wei; Xia, Hui; Fuh, Jerry Y. H.; Lu, Li
2010-05-01
CNT/MnO2 (birnessite-type) composite films have been successfully deposited on Ni-foil substrate via electrophoretic deposition (EPD). The unique EPD CNT/MnO2 composite film electrode shows enhanced electrical conductivity, good contact between composite films and the substrate and open porous structure, which makes the EPD composite films a promising electrode for high-power supercapacitors and lithium ion batteries.
Szabó, Anna; Kecsenovity, Egon; Pápa, Zsuzsanna; Gyulavári, Tamás; Németh, Krisztián; Horvath, Endre; Hernadi, Klara
2017-08-25
In the past two decades, important results have been achieved in the field of carbon nanotube (CNT) research, which revealed that carbon nanotubes have extremely good electrical and mechanical properties The range of applications widens more, if CNTs form a forest-like, vertically aligned structure (VACNT) Although, VACNT-conductive substrate structure could be very advantageous for various applications, to produce proper system without barrier films i.e. with good electrical contact is still a challenge. The aim of the current work is to develop a cheap and easy method for growing carbon nanotubes forests on conductive substrate with the CCVD (Catalytic Chemical Vapor Deposition) technique at 640 °C. The applied catalyst contained Fe and Co and was deposited via dip coating onto an aluminum substrate. In order to control the height of CNT forest several parameters were varied during the both catalyst layer fabrication (e.g. ink concentration, ink composition, dipping speed) and the CCVD synthesis (e.g. gas feeds, reaction time). As-prepared CNT forests were investigated with various methods such as scanning electron microscopy, Raman spectroscopy, and cyclic voltammetry. With such an easy process it was possible to tune both the height and the quality of carbon nanotube forests.
NASA Astrophysics Data System (ADS)
Su, Junming; Zhang, Congcong; Chen, Xiang; Liu, Siyang; Huang, Tao; Yu, Aishui
2018-03-01
Although silicon is the most promising anode material for Li-ion batteries, large volume expansion during lithiation and delithiation is the main obstacle limiting the commercial application of silicon anodes. There are two ways to alleviate volume expansion and prevent further pulverization of a Si anode: fabrication of a rational nanostructure possessing void spaces and uniform distribution of the conducting sites, without a good balance effect in mitigating the limiting factors and enhancing battery performance. In this paper, we propose a novel nanostructure - a carbon-shell-constrained Si cluster (Si/C shell) with both adequate void space and good distribution of electrical contact sites to guarantee homogeneous lithiation in the initial cycle. Benefiting from the ability to maintain electrical conductivity of the outer carbon shell, even after cluster fragmentation, the Si/C shell synthesized from low-cost commercial Al-Si alloy spheres can deliver 0.03% capacity loss from 100th to 1000th cycles at a current density of 1 A g-1. The Si/C shell sample with the dual functional structure mentioned above can also maintain its own nanostructure during cycling and deliver excellent rate performance. It is a concise and scalable strategy which can simplify the preparation of other alloy anode materials for Li-ion batteries.
Liang, Liying; Liu, Haimei; Yang, Wensheng
2013-02-07
The improvement of the electrochemical properties of electrode materials with large capacity and good capacity retention is becoming an important task in the field of lithium ion batteries (LIBs). We designed a function-oriented hybrid material consisting of silver vanadium oxide (β-AgVO(3)) nanowires modified with uniform Ag nanoparticles and multi-walled carbon nanotubes (CNTs) as a high-performance cathode material for LIBs. The Ag nanoparticles which precipitated automatically in the synthetic process act as a bridge between the β-AgVO(3) nanowires and CNTs, creating a self-bridged network structure. The Ag particles at the junction of the nanowires and CNTs facilitate electron transport from the CNTs to the nanowires, and thereby improve the electrical conductivity of the β-AgVO(3) nanowires and the composite. Moreover, the self-bridged network is hierarchically porous with a high surface area. When used as a cathode material, this composite electrode reveals high discharge capacities, excellent rate capability, and good cycling stability. The improved performance of the composite arises from its unique nanosized β-AgVO(3) nanowires with short diffusion pathway for lithium ions, efficient electron collection and transfer in the presence of Ag nanoparticles, together with excellent electrical conductivity of CNTs.
NASA Astrophysics Data System (ADS)
Xu, Kun; Xie, Yiyang; Ma, Huali; Du, Yinxiao; Zeng, Fanguang; Ding, Pei; Gao, Zhiyuan; Xu, Chen; Sun, Jie
2016-12-01
In this paper, by virtue of one-dimensional ZnO nanorods and two-dimensional graphene film hybrid structures, both the enhanced current spreading and enhanced light extraction were realized at the same time. A 1 nm/1 nm Ni/Au layer was used as an interlayer between graphene and pGaN to form ohmic contact, which makes the device have a good forward conduction properties. Through the comparison of the two groups of making ZnO nanorods or not, it was found that the 30% light extraction efficiency of the device was improved by using the ZnO nanorods. By analysis key parameters of two groups such as the turn-on voltage, work voltage and reverse leakage current, it was proved that the method for preparing surface nano structure by hydrothermal method self-organization growth ZnO nanorods applied in GaN LEDs has no influence to device's electrical properties. The hybrid structure application in GaN LED, make an achievement of a good ohmic contact, no use of ITO and enhancement of light extraction at the same time, meanwhile it does not change the device structure, introduce additional process, worsen the electrical properties.
Advances in liquid metals for biomedical applications.
Yan, Junjie; Lu, Yue; Chen, Guojun; Yang, Min; Gu, Zhen
2018-04-23
To date, liquid metals have been widely applied in many fields such as electronics, mechanical engineering and energy. In the last decade, with a better understanding of the physicochemical properties such as low viscosity, good fluidity, high thermal/electrical conductivity and good biocompatibility, gallium and gallium-based low-melting-point (near or below physiological temperature) alloys have attracted considerable attention in bio-related applications. This tutorial review introduces the common performances of liquid metals, highlights their featured properties, as well as summarizes various state-of-the-art bio-applications involving carriers for drug delivery, molecular imaging, cancer therapy and biomedical devices. Challenges for the clinical translation of liquid metals are also discussed.
Growth and characterization of pure and Cadmium chloride doped KDP Crystals grown by gel medium
NASA Astrophysics Data System (ADS)
Kalaivani, M. S.; Asaithambi, T.
2016-10-01
Crystal growth technology provides an important basis for many industrial branches. Crystals are the unrecognized pillars of modern technology. Without crystals, there is no electronic industry, no photonic industry, and no fiber optic communications. Single crystals play a major role and form the strongest base for the fast growing field of engineering, science and technology. Crystal growth is an interdisciplinary subject covering physics, chemistry, material science, chemical engineering, metallurgy, crystallography, mineralogy, etc. In past few decades, there has been a keen interest on crystal growth processes, particularly in view of the increasing demand of materials for technological applications. Optically good quality pure and metal doped KDP crystals have been grown by gel method at room temperature and their characterization have been studied. Gel method is a much uncomplicated method and can be utilized to synthesize crystals which are having low solubility. Potassium dihydrogen orthophosphate KH2PO4 (KDP) continues to be an interesting material both academically and industrially. KDP is a representative of hydrogen bonded materials which possess very good electro - optic and nonlinear optical properties in addition to interesting electrical properties. Due to this interesting properties, we made an attempt to grow pure and cadmium chloride doped KDP crystals in various concentrations (0.002, 0.004, 0.006, 0.008 and 0.010) using gel method. The grown crystals were collected after 20 days. We get crystals with good quality and shaped. The dc electrical conductivity (resistance, capacitance and dielectric constant) values were measured at frequencies in the range of 1 KHZ and 100 HZ of pure and cadmium chloride added crystal with a temperature range of 400C to 1300C using simple two probe setup with Q band digital LCR meter present in our lab. The electrical conductivity increases with increase of temperature. The dielectric constants of metal doped KDP crystals were slightly decreased compared to pure KDP crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Li; Jiang, Wenchao; Yuan, Yang
We report the synthesis of a free-standing two dimensional carbon nanotube (CNT)-reduced graphene oxide (rGO) hybrid by directly growing CNTs on air-sprayed GO paper. As a result of the good integration between CNTs and thermally reduced GO film during chemical vapor deposition, excellent electrical conductivity (2.6×10{sup 4} S/m), mechanical flexibility (electrical resistance only increases 1.1% after bent to 90° for 500 times) and a relatively large surface area (335.3 m{sup 2}/g) are achieved. Two-electrode supercapacitor assembled using the CNT–rGO hybrids in ionic liquid electrolyte (1-ethyl-3-methylimidazolium tetrafluoroborate) shows excellent stability upon 500 bending cycles with the gravimetric energy density measuring 23.7more » Wh/kg and a power density of 2.0 kW/kg. Furthermore, it shows an impedance phase angle of −64.4° at a frequency of 120 Hz, suggesting good potentials for 120 Hz alternating current line filtering applications. - Graphical abstract: Flexible and highly conductive carbon nanotube-reduced graphene oxide nanohybrid. - Highlights: • Direct growth of carbon nanotubes by chemical vapor deposition on air-sprayed graphene oxide paper. • Two-dimensional carbon nanohybrid with excellent conductivity and mechanical flexibility. • Supercapacitor with excellent performance stability upon mechanical deformation for flexible electronics applications. • Supercapacitor with high impedance phase angle for 120 Hz alternating current line filtering applications.« less
NASA Astrophysics Data System (ADS)
Hosseinpour, Rabie; Izadifard, Morteza; Ghazi, Mohammad Ebrahim; Bahramian, Bahram
2018-02-01
The effect of annealing temperature on structural, optical, and electrical properties of Cu2ZnSnS4 (CZTS) thin films grown on a glass substrate by spin coating sol-gel technique has been studied. Structural study showed that all samples had kesterite crystalline structure. Scanning electron microscopy images showed that the crystalline quality of the samples was improved by heat treatment. Optical study showed that the energy gap values for the samples ranged from 1.55 eV to 1.78 eV. Moreover, good optical conductivity values (1012 S-1 to 1014 S-1) were obtained for the samples. Investigation of the electrical properties of the CZTS thin films showed that the carrier concentration increased significantly with the annealing temperature. The photoelectrical behavior of the samples revealed that the photocurrent under light illumination increased significantly. Overall, the results show that the CZTS thin films annealed at 500°C had better structural, optical, and electrical properties and that such CZTS thin films are desirable for use as absorber layers in solar cells. The photovoltaic properties of the CZTS layer annealed at 500°C were also investigated and the associated figure of merit calculated. The results showed that the fabricated ZnS-CZTS heterojunction exhibited good rectifying behavior but rather low fill factor.
Laser Processing of Carbon Nanotube Transparent Conducting Films
NASA Astrophysics Data System (ADS)
Mann, Andrew
Transparent conducting films, or TCFs, are 2D electrical conductors with the ability to transmit light. Because of this, they are used in many popular electronics including smart phones, tablets, solar panels, and televisions. The most common material used as a TCF is indium tin oxide, or ITO. Although ITO has great electrical and optical characteristics, it is expensive, brittle, and difficult to pattern. These limitations have led researchers toward other materials for the next generation of displays and touch panels. The most promising material for next generation TCFs is carbon nanotubes, or CNTs. CNTs are cylindrical tubes of carbon no more than a few atoms thick. They have different electrical and optical properties depending on their atomic structure, and are extremely strong. As an electrode, they conduct electricity through an array of randomly dispersed tubes. The array is highly transparent because of gaps between the tubes, and size and optical properties of the CNTs. Many research groups have tried making CNT TCFs with opto-electric properties similar to ITO but have difficultly achieving high conductivity. This is partly attributed to impurities from fabrication and a mix of different tube types, but is mainly caused by low junction conductivity. In functionalized nanotubes, junction conductivity is impaired by covalently bonded molecules added to the sidewalls of the tubes. The addition of this molecule, known as functionalization, is designed to facilitate CNT dispersion in a solvent by adding properties of the molecule to the CNTs. While necessary for a good solution, functionalization decreases the conductivity in the CNT array by creating defects in the tube's structures and preventing direct inter-carbon bonding. This research investigates removing the functional coating (after tube deposition) by laser processing. Laser light is able to preferentially heat the CNTs because of their optical and electrical properties. Through local conduction, the relatively weak functional molecules are thermally decomposed. This restores the pristine CNT structure and allows carbon to carbon bonds to form; thereby significantly improving the junction and sheet conductivity. Laser processing is performed without damaging the TCF substrate (usually glass or PET) because laser light is not absorbed by the substrate and conduction from the CNTs is limited. In addition to removing the functional coating, laser light improves the electrical conductivity by purifying the CNT array. The purity is improved through the ablation of defective tubes and amorphous carbon in the CNT film.[1] Using higher laser power, it is possible to locally remove the CNTs. Selective laser removal of the CNTs is a dry process that can be used to pattern the electrode. This is a much simpler and less expensive patterning technique than wet acid etching used for ITO. In summary, laser processing of CNT TCFs is shown to improve the electrical conductivity by defunctionalizing the CNTs. In addition, laser exposure increases purity by removing defects and can be used to pattern the electrode. These advances make CNTs more competitive as an alternative for ITO which has both cost and performance limitations. [1] T. Ueda, S. K. (2008). Effect of laser irradiation on carbon nanotube films for NOx gas sensor. Surface & Coatings Technology, 202, 5325--5328.
NASA Astrophysics Data System (ADS)
Li, Jing; Xie, Huaqing; Li, Yang; Liu, Jie; Li, Zhuxin
Graphene nanosheets/polyaniline nanofibers (GNS/PANI) composites are synthesized via in situ polymerization of aniline monomer in HClO 4 solution. The PANI nanofibers homogeneously coating on the surface of GNS greatly improve the charge transfer reaction. The GNS/PANI composites exhibit better electrochemical performances than the pure individual components. A remarkable specific capacitance of 1130 F g -1 (based on GNS/PANI composites) is obtained at a scan rate of 5 mV s -1 in 1 M H 2SO 4 solution compared to 402 F g -1 for pure PANI and 270 F g -1 for GNS. The excellent performance is not only due to the GNS which can provide good electrical conductivity and high specific surface area, but also associate with a good redox activity of ordered PANI nanofibers. Moreover, the GNS/PANI composites present excellent long cycle life with 87% specific capacitance retained after 1000 charge/discharge processes. The resulting composites are promising electrode materials for high-performance electrical energy storage devices.
Electrical and Thermal Transport in Coplanar Polycrystalline Graphene-hBN Heterostructures.
Barrios-Vargas, José Eduardo; Mortazavi, Bohayra; Cummings, Aron W; Martinez-Gordillo, Rafael; Pruneda, Miguel; Colombo, Luciano; Rabczuk, Timon; Roche, Stephan
2017-03-08
We present a theoretical study of electronic and thermal transport in polycrystalline heterostructures combining graphene (G) and hexagonal boron nitride (hBN) grains of varying size and distribution. By increasing the hBN grain density from a few percent to 100%, the system evolves from a good conductor to an insulator, with the mobility dropping by orders of magnitude and the sheet resistance reaching the MΩ regime. The Seebeck coefficient is suppressed above 40% mixing, while the thermal conductivity of polycrystalline hBN is found to be on the order of 30-120 Wm -1 K -1 . These results, agreeing with available experimental data, provide guidelines for tuning G-hBN properties in the context of two-dimensional materials engineering. In particular, while we proved that both electrical and thermal properties are largely affected by morphological features (e.g., by the grain size and composition), we find in all cases that nanometer-sized polycrystalline G-hBN heterostructures are not good thermoelectric materials.
Advanced thermoelectric materials with enhanced crystal lattice structure and methods of preparation
NASA Technical Reports Server (NTRS)
Fleurial, Jean-Pierre (Inventor); Caillat, Thierry F. (Inventor); Borshchevsky, Alexander (Inventor)
1998-01-01
New skutterudite phases including Ru.sub.0.5 Pd.sub.0.5 Sb.sub.3, RuSb.sub.2 Te, and FeSb.sub.2 Te, have been prepared having desirable thermoelectric properties. In addition, a novel thermoelectric device has been prepared using skutterudite phase Fe.sub.0.5 Ni.sub.0.5 Sb.sub.3. The skutterudite-type crystal lattice structure of these semiconductor compounds and their enhanced thermoelectric properties results in semiconductor materials which may be used in the fabrication of thermoelectric elements to substantially improve the efficiency of the resulting thermoelectric device. Semiconductor materials having the desired skutterudite-type crystal lattice structure may be prepared in accordance with the present invention by using powder metallurgy techniques. Measurements of electrical and thermal transport properties of selected semiconductor materials prepared in accordance with the present invention, demonstrated high Hall mobilities and good Seebeck coefficients. These materials have low thermal conductivity and relatively low electrical resistivity, and are good candidates for low temperature thermoelectric applications.
Full Ka Band Waveguide-to-Microstrip Inline Transition Design
NASA Astrophysics Data System (ADS)
Li, Jianxing; Li, Lei; Qiao, Yu; Chen, Juan; Chen, Jianzhong; Zhang, Anxue
2018-05-01
In this paper, a compact and broadband inline waveguide-to-microstrip transition is proposed to cover the full Ka band. The transition can be segmented from the electric point of view into three building blocks, comprising a microstrip line to rectangular coaxial line, a wedged rectangular coaxial line to ridged waveguide, and a final tapered ridged waveguide impedance transformer to standard waveguide. Both good electrical performance and simple modular assembly without any soldering have been simultaneously obtained. The validation of the design concept has been conducted by numerical simulations and experimental measurements. The experimental results of a fabricated back-to-back transition prototype coincide with the simulated results. It shows that the proposed transition achieves good return loss of lower than 15.5 dB and low insertion loss with a fluctuation between 0.23 to 0.60 dB across the entire Ka band. Details of design considerations and operation mechanism as well as simulation and measurement results are presented.
Lu, Yonghua; Muñoz, M; Steplecaru, C S; Hao, Cheng; Bai, Ming; Garcia, N; Schindler, K; Esquinazi, P
2006-08-18
We present measurements of the electric potential fluctuations on the surface of highly oriented pyrolytic graphite using electrostatic force and atomic force microscopy. Micrometric domainlike potential distributions are observed even when the sample is grounded. Such potential distributions are unexpected given the good metallic conductivity of graphite because the surface should be an equipotential. Our results indicate the coexistence of regions with "metalliclike" and "insulatinglike" behaviors showing large potential fluctuations of the order of 0.25 V. In lower quality graphite, this effect is not observed. Experiments are performed in Ar and air atmospheres.
Beavis, Leonard C.; Panitz, Janda K. G.; Sharp, Donald J.
1990-01-01
A photovoltaic assembly for converting high intensity solar radiation into lectrical energy in which a solar cell is separated from a heat sink by a thin layer of a composite material which has excellent dielectric properties and good thermal conductivity. This composite material is a thin film of porous Al.sub.2 O.sub.3 in which the pores have been substantially filled with an electrophoretically-deposited layer of a styrene-acrylate resin. This composite provides electrical breakdown strengths greater than that of a layer consisting essentially of Al.sub.2 O.sub.3 and has a higher thermal conductivity than a layer of styrene-acrylate alone.
Cold plasma welding of polyaniline nanofibers with enhanced electrical and mechanical properties.
Ye, Dong; Yu, Yao; Liu, Lin; Lu, Xinpei; Wu, Yue
2015-12-11
Joining conducting polymer (CP) nanofibers into an interconnected porous network can result in good mechanical and electrical contacts between nanofibers that can be beneficial for the high performance of CP-based devices. Here, we demonstrate the cold welding of polyaniline (PAni) nanofiber loose ends with cold plasma. The room-temperature and atmospheric-pressure helium micro-plasma jet launches highly charged ion bullets at a PAni nanofiber target with high precision and the highly charged ion bullet selectively induces field emission at the sharp nanofiber loose ends. This technique joins nanofiber tips without altering the morphology of the film and protonation thus leading to significantly enhanced electrical and mechanical properties. In addition, this technique has high spatial resolution and is able to selectively weld and dope regions of nanofiber film with promising novel device applications.
Cold plasma welding of polyaniline nanofibers with enhanced electrical and mechanical properties
NASA Astrophysics Data System (ADS)
Ye, Dong; Yu, Yao; Liu, Lin; Lu, Xinpei; Wu, Yue
2015-12-01
Joining conducting polymer (CP) nanofibers into an interconnected porous network can result in good mechanical and electrical contacts between nanofibers that can be beneficial for the high performance of CP-based devices. Here, we demonstrate the cold welding of polyaniline (PAni) nanofiber loose ends with cold plasma. The room-temperature and atmospheric-pressure helium micro-plasma jet launches highly charged ion bullets at a PAni nanofiber target with high precision and the highly charged ion bullet selectively induces field emission at the sharp nanofiber loose ends. This technique joins nanofiber tips without altering the morphology of the film and protonation thus leading to significantly enhanced electrical and mechanical properties. In addition, this technique has high spatial resolution and is able to selectively weld and dope regions of nanofiber film with promising novel device applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nobile, Maria Rossella, E-mail: mrnobile@unisa.it; Somma, Elvira; Valentino, Olga
Rheological and electrical properties of nanocomposites based on multi-walled carbon nanotubes (MWNTs) and high density polyethylene (HDPE), prepared by melt mixing in a micro-twin screw extruder, have been investigated. The effect of MWNT concentration (0.5 and 2.5 wt %) and nanotube surface treatment (oxidative treatment in a tubular furnace at 500°C for 1 hr in a 95% nitrogen, 5% oxygen atmosphere) has been analyzed. It has been found that the sample conductivity with oxidation of the nanotubes decreases more than 2 orders of magnitude. Scanning electron microscopy showed good adhesion and dispersion of nanotubes in the matrix, independently of themore » surface treatment. Electrical and rheological measurements revealed that the oxidative treatment, causing some reduction of the MWNT quality, decreases the efficiency of the nanotube matrix interaction.« less
NASA Astrophysics Data System (ADS)
Wu, Xiaoyu; Hao, Zhenqi; Wu, Di; Zheng, Lu; Jiang, Zhanzhi; Ganesan, Vishal; Wang, Yayu; Lai, Keji
2018-04-01
We report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-field microwave imaging with small distance modulation.
Repulsion-based model for contact angle saturation in electrowetting
2015-01-01
We introduce a new model for contact angle saturation phenomenon in electrowetting on dielectric systems. This new model attributes contact angle saturation to repulsion between trapped charges on the cap and base surfaces of the droplet in the vicinity of the three-phase contact line, which prevents these surfaces from converging during contact angle reduction. This repulsion-based saturation is similar to repulsion between charges accumulated on the surfaces of conducting droplets which causes the well known Coulombic fission and Taylor cone formation phenomena. In our model, both the droplet and dielectric coating were treated as lossy dielectric media (i.e., having finite electrical conductivities and permittivities) contrary to the more common assumption of a perfectly conducting droplet and perfectly insulating dielectric. We used theoretical analysis and numerical simulations to find actual charge distribution on droplet surface, calculate repulsion energy, and minimize energy of the total system as a function of droplet contact angle. Resulting saturation curves were in good agreement with previously reported experimental results. We used this proposed model to predict effect of changing liquid properties, such as electrical conductivity, and system parameters, such as thickness of the dielectric layer, on the saturation angle, which also matched experimental results. PMID:25759748
Repulsion-based model for contact angle saturation in electrowetting.
Ali, Hassan Abdelmoumen Abdellah; Mohamed, Hany Ahmed; Abdelgawad, Mohamed
2015-01-01
We introduce a new model for contact angle saturation phenomenon in electrowetting on dielectric systems. This new model attributes contact angle saturation to repulsion between trapped charges on the cap and base surfaces of the droplet in the vicinity of the three-phase contact line, which prevents these surfaces from converging during contact angle reduction. This repulsion-based saturation is similar to repulsion between charges accumulated on the surfaces of conducting droplets which causes the well known Coulombic fission and Taylor cone formation phenomena. In our model, both the droplet and dielectric coating were treated as lossy dielectric media (i.e., having finite electrical conductivities and permittivities) contrary to the more common assumption of a perfectly conducting droplet and perfectly insulating dielectric. We used theoretical analysis and numerical simulations to find actual charge distribution on droplet surface, calculate repulsion energy, and minimize energy of the total system as a function of droplet contact angle. Resulting saturation curves were in good agreement with previously reported experimental results. We used this proposed model to predict effect of changing liquid properties, such as electrical conductivity, and system parameters, such as thickness of the dielectric layer, on the saturation angle, which also matched experimental results.
Passive safety device and internal short tested method for energy storage cells and systems
Keyser, Matthew; Darcy, Eric; Long, Dirk; Pesaran, Ahmad
2015-09-22
A passive safety device for an energy storage cell for positioning between two electrically conductive layers of the energy storage cell. The safety device also comprising a separator and a non-conductive layer. A first electrically conductive material is provided on the non-conductive layer. A first opening is formed through the separator between the first electrically conductive material and one of the electrically conductive layers of the energy storage device. A second electrically conductive material is provided adjacent the first electrically conductive material on the non-conductive layer, wherein a space is formed on the non-conductive layer between the first and second electrically conductive materials. A second opening is formed through the non-conductive layer between the second electrically conductive material and another of the electrically conductive layers of the energy storage device. The first and second electrically conductive materials combine and exit at least partially through the first and second openings to connect the two electrically conductive layers of the energy storage device at a predetermined temperature.
Prototype Rechargeable Lithium Batteries. Phase 1
1987-06-01
pentoxide [ V2o5 ], titanium disulfide [TiS ], vanadium V) sulfide [V2S 5 ], and lithium cobalt oxide [Li Co02]) witi high conductivity, ester-Eased...2400 envelope while the cathodes were supported with porous glass disks to maintain good electrical contact with the expanded metal current collectors...cells consisted of an electrode stack mounted between two glass slides held together with stainless steel wire and sealed in a Fisher & Porter 3-ounce
Du, Shichao; Ren, Zhiyu; Zhang, Jun; Wu, Jun; Xi, Wang; Zhu, Jiaqing; Fu, Honggang
2015-05-11
A large-area, self-supported Co3O4 nanocrystal/carbon fiber electrode for oxygen and hydrogen evolution reaction was fabricated via thermal decomposition of the [Co(NH3)n](2+)-oleic acid complex and subsequent spray deposition. Due to the exposed active sites and good electrical conductivity, its operate voltage for overall water splitting is nearly the same as commercial Pt/C.
NASA Astrophysics Data System (ADS)
Anand, Siddeswaran; Muthusamy, Athianna
2017-11-01
Three benzimidazole monomers synthesized by condensing various substituted phenolic aldehydes with 4-methylphenylenediamine were converted in to polymers by oxidative polycondensation. The structure of the monomers and polymers were confirmed by various spectroscopic techniques. Electronic distribution of molecular frontier orbitals and optimized geometries of monomers were calculated by Gaussian 09 package. The spectral results showed that the repeating units are connected through both Csbnd C and Csbnd Osbnd C linkages. Both polymers and monomers are showing good fluorescence emission in blue region. The electrical conductivity of I2 doped PBIs was measured using two point probe technique. The conductivities of PBIs were compared on the basis of the charge densities obtained from Huckel method on imidazole nitrogen which is involved in iodine coordination. The conductivity of polymers increases with increase in iodine vapour contact time. The dielectric properties of the synthesized polymers have been investigated at different temperature and frequency. Among the PBIs, PBIOP is having greater thermal stability and is shown by high carbines residues of around 50% at 500 °C in thermogravimetric analysis.
Rapid Cellulose-Mediated Microwave Sintering for High-Conductivity Ag Patterns on Paper.
Jung, Sunshin; Chun, Su Jin; Shon, Chae-Hwa
2016-08-10
Cellulose-based paper is essential in everyday life, but it also has further potentials for use in low-cost, printable, disposable, and eco-friendly electronics. Here, a method is developed for the cellulose-mediated microwave sintering of Ag patterns on conventional paper, in which the paper plays a significant role both as a flexible insulating substrate for the conductive Ag pattern and as a lossy dielectric media for rapid microwave heating. The anisotropic dielectric properties of the cellulose fibers mean that a microwave electric field applied parallel to the paper substrate provides sufficient heating to produce Ag patterns with a conductivity 29-38% that of bulk Ag in a short period of time (∼1 s) at 250-300 °C. Significantly, there is little thermal degradation of the substrate during this process. The microwave-sintered Ag patterns exhibit good mechanical stability against 10 000 bending cycles and can be easily soldered with lead-free solder. Therefore, cellulose-mediated microwave sintering presents a promising means of achieving short processing times and high electrical performance in flexible paper electronics.
Gh, Darshan; Kong, Dexu; Gautrot, Julien; Vootla, Shyam Kumar
2017-07-01
Conductive polymers are interesting materials for a number of biological and medical applications requiring electrical stimulation of cells or tissues. Highly conductive polymers (polypyrrole and polyaniline)/Antheraea mylitta silk fibroin coated fibers are fabricated successfully by in situ polymerization without any modification of the native silk fibroin. Coated fibers characterized by scanning electron microscopy confirm the silk fiber surface is covered by conductive polymers. Thermogravimetric analysis reveals preserved thermal stability of silk fiber after coating process. X-ray diffraction of degummed fiber diffraction peaks at around 2θ = 20.4 and 16.5 confirms the preservation of the β-sheet structure typical of degummed silk II fibers. This phenomenon implies that both polypyrrole and polyaniline chains form interactions with peptide linkages in degummed fiber macromolecules, without significantly disrupting protein assembly. Fourier transform infrared spectroscopy of coated fibers indicates hydrogen bonding and electrostatic interactions exist between silk fibroin macromolecules and conductive polymers. Resulting fibers display good conductive properties compared to corresponding conjugated polymers. In vitro analysis (live/dead assay) of the behavior of human immortalized keratinocytes (HaCaTs) on coated fibers demonstrates improved cell-adhesive properties and viability after polymers coating. Hence, polypyrrole- and polyaniline-coated A. mylitta silk fibers are suitable for application in cell culture and for tissue engineering, where electrical conduction properties are required. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-performance, polymer-based direct cellular interfaces for electrical stimulation and recording
NASA Astrophysics Data System (ADS)
Kim, Seong-Min; Kim, Nara; Kim, Youngseok; Baik, Min-Seo; Yoo, Minsu; Kim, Dongyoon; Lee, Won-June; Kang, Dong-Hee; Kim, Sohee; Lee, Kwanghee; Yoon, Myung-Han
2018-04-01
Due to the trade-off between their electrical/electrochemical performance and underwater stability, realizing polymer-based, high-performance direct cellular interfaces for electrical stimulation and recording has been very challenging. Herein, we developed transparent and conductive direct cellular interfaces based on a water-stable, high-performance poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) film via solvent-assisted crystallization. The crystallized PEDOT:PSS on a polyethylene terephthalate (PET) substrate exhibited excellent electrical/electrochemical/optical characteristics, long-term underwater stability without film dissolution/delamination, and good viability for primarily cultured cardiomyocytes and neurons over several weeks. Furthermore, the highly crystallized, nanofibrillar PEDOT:PSS networks enabled dramatically enlarged surface areas and electrochemical activities, which were successfully employed to modulate cardiomyocyte beating via direct electrical stimulation. Finally, the high-performance PEDOT:PSS layer was seamlessly incorporated into transparent microelectrode arrays for efficient, real-time recording of cardiomyocyte action potentials with a high signal fidelity. All these results demonstrate the strong potential of crystallized PEDOT:PSS as a crucial component for a variety of versatile bioelectronic interfaces.
NASA Astrophysics Data System (ADS)
Ermiş, İ.; Çorumlu, V.; Sertkol, M.; Öztürk, M.; Kaleli, M.; Çetin, A.; Turemiş, M.; Arı, M.
2016-11-01
The solid electrolyte is one of the most important components for a solid oxide fuel cell (SOFC). The various divalent or trivalent metal ion-doped bismuth-based materials exhibit good ionic conductivity. Therefore, these materials are used as electrolytes in the SOFC. In this paper, the samples of (Bi0.92- x Ho0.03Er0.05)2O3 + (ZnO) x solutions with a 0 ≤ x ≤ 0.2 molar ratio are synthesized by the solid state reaction method. The detailed structural and electrical characterizations are investigated by using x-ray diffraction (XRD), alternating current electrochemical impedance spectroscopy, and scanning electron microscopy (SEM). The XRD patterns of all samples are indexed on a monoclinic symmetry with a P21/c space group. In addition, the rietveld parameters are determined by using the FullProf software program. The impedance measurements of the samples are obtained at the 1 Hz to 20 MHz frequency range. The impedance value of the pellets increases with temperature. Based on the impedance results, it is found that the contribution of grain (bulk) is more than a grain boundary in terms of conductivity, which permits the attribution of a grain boundary. The ionic conductivity decreases with an increasing amount of Zn contribution. The value of highest electrical conductivity among all samples is calculated as 0.358 S cm-1 at 800°C for undoped (Bi0.92Ho0.03Er0.05)2O3.
A miniature Joule-Thomson cooler for optical detectors in space.
Derking, J H; Holland, H J; Tirolien, T; ter Brake, H J M
2012-04-01
The utilization of single-stage micromachined Joule-Thomson (JT) coolers for cooling small optical detectors is investigated. A design of a micromachined JT cold stage-detector system is made that focuses on the interface between a JT cold stage and detector, and on the wiring of the detector. Among various techniques, adhesive bonding is selected as most suitable technique for integrating the detector with the JT cold stage. Also, the optimum wiring of the detector is discussed. In this respect, it is important to minimize the heat conduction through the wiring. Therefore, each wire should be optimized in terms of acceptable impedance and thermal heat load. It is shown that, given a certain impedance, the conductive heat load of electrically bad conducting materials is about twice as high as that of electrically good conducting materials. A micromachined JT cold stage is designed and integrated with a dummy detector. The JT cold stage is operated at 100 K with nitrogen as the working fluid and at 140 K with methane. Net cooling powers of 143 mW and 117 mW are measured, respectively. Taking into account a radiative heat load of 40 mW, these measured values make the JT cold stage suitable for cooling a photon detector with a power dissipation up to 50 mW, allowing for another 27 to 53 mW heat load arising from the electrical leads. © 2012 American Institute of Physics
Hall, David R [Provo, UT; Fox, Joe [Spanish Fork, UT
2008-01-15
A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. An electrical conductor connects both the transmission elements. The electrical conductor comprises at least three electrically conductive elements insulated from each other. In the preferred embodiment the electrical conductor comprises an electrically conducting outer shield, an electrically conducting inner shield and an electrical conducting core. In some embodiments of the present invention, the electrical conductor comprises an electrically insulating jacket. In other embodiments, the electrical conductor comprises a pair of twisted wires. In some embodiments, the electrical conductor comprises semi-conductive material.
Core-shell structured MnSiO3 supported with CNTs as a high capacity anode for lithium-ion batteries.
Feng, Jing; Li, Qin; Wang, Huijun; Zhang, Min; Yang, Xia; Yuan, Ruo; Chai, Yaqin
2018-04-17
Metal silicates are good candidates for use in lithium ion batteries (LIBs), however, their electrochemical performance is hindered by their poor electrical conductivity and volume expansion during Li+ insertion/desertion. In this work, one-dimensional core-shell structured MnSiO3 supported with carbon nanotubes (CNTs) (referred to as CNT@MnSiO3) with good conductivity and electrochemical performance has been successfully synthesized using a solvothermal process under moderate conditions. In contrast to traditional composites of CNTs and nanoparticles, the CNT@MnSiO3 composite in this work is made up of CNTs with a layer of MnSiO3 on the surface. The one-dimensional CNT@MnSiO3 nanotubes provide a useful channel for transferring Li+ ions during the discharge/charge process, which accelerates the Li+ diffusion speed. The CNTs inside the structure not only enhance the conductivity of the composite, but also prevent volume expansion. A high reversible capacity (920 mA h g-1 at 500 mA g-1 over 650 cycles) and good rate performance were obtained for CNT@MnSiO3, showing that this strategy of synthesizing coaxial CNT@MnSiO3 nanotubes offers a promising method for preparing other silicates for LIBs or other applications.
Polymer-Single Wall Carbon Nanotube Composites for Potential Spacecraft Applications
NASA Technical Reports Server (NTRS)
Park, C.; Ounaies, Z.; Watson, K. A.; Pawlowski, K.; Lowther, S. E.; Connell, J. W.; Siochi, E. J.; Harrison, J. S.; St.Clair, T. L.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
Polymer-single wall carbon nanotube (SWNT) composite films were prepared and characterized as part of an effort to develop polymeric materials with improved combinations of properties for potential use on future spacecraft. Next generation spacecraft will require ultra-lightweight materials that possess specific and unique combinations of properties such as radiation and atomic oxygen resistance, low solar absorptivity, high thermal emissitivity, electrical conductivity, tear resistance, ability to be folded and seamed, and good mechanical properties. The objective of this work is to incorporate sufficient electrical conductivity into space durable polyimides to mitigate static charge build-up. The challenge is to obtain this level of conductivity (10(exp -8) S/cm) without degrading other properties of importance, particularly optical transparency. Several different approaches were attempted to fully disperse the SWNTs into the polymer matrix. These included high shear mixing, sonication, and synthesizing the polymers in the presence of pre-dispersed SWNTs. Acceptable levels of conductivity were obtained at loading levels less than one tenth weight percent SWNT without significantly sacrificing optical properties. Characterization of the nanocomposite films and the effect of SWNT concentration and dispersion on the conductivity, solar absorptivity, thermal emissivity, mechanical and thermal properties were discussed. Fibers and non-woven porous mats of SWNT reinforced polymer nanocomposite were produced using electrospinning.
Han, Yong-Hyeon; Kim, Hyeong Eun; Hwangbo, Kyung-Hee; Yim, Jin-Heong; Cho, Kuk Young
2013-08-01
Poly(3,4-ethylenedioxythiophene) (PEDOT) has good properties as a conductive polymer such as high conductivity, optical transmittance, and chemical stability, while offering relatively weak physicochemical properties. The main purpose of this paper is to improve physicochemical properties such as solvent resistance and pencil hardness of PEDOT. Carboxyl groups in the poly(MMA-co-MAA) polymer chains can effectively crosslink each other in the presence of aziridine, resulting in physicochemically robust PEDOT/poly(MMA-co-MAA) hybrid conductive films. The electrical conductivity, optical properties, and physicochemical properties of the hybrid conductive film were compared by varying the solid content and poly(MMA-co-MAA) portion in the coating precursor solution. From the results, the transparency and surface resistance of the hybrid film show a tendency to decrease with increasing solid content in the coating precursor. Moreover, solvent resistance and hardness were dramatically enhanced by hybridization of PEDOT and crosslinked poly(MMA-co-MAA) due to curing reactions between carboxyl groups. The chemical composition of 30 wt-% of poly(MMA-co-MAA) (MMA:MAA mole ratio 9:1) and 3 wt-% - 5 wt-% of aziridine yields the best physicochemical properties of poly(MMA-co-MAA)/PEDOT hybrid thin films.
Dhar, Purbarun; Maganti, Lakshmi Sirisha; Harikrishnan, A R
2018-05-30
Electrorheological (ER) fluids are known to exhibit enhanced viscous effects under an electric field stimulus. The present article reports the hitherto unreported phenomenon of greatly enhanced thermal conductivity in such electro-active colloidal dispersions in the presence of an externally applied electric field. Typical ER fluids are synthesized employing dielectric fluids and nanoparticles and experiments are performed employing an in-house designed setup. Greatly augmented thermal conductivity under a field's influence was observed. Enhanced thermal conduction along the fibril structures under the field effect is theorized as the crux of the mechanism. The formation of fibril structures has also been experimentally verified employing microscopy. Based on classical models for ER fluids, a mathematical formalism has been developed to predict the propensity of chain formation and statistically feasible chain dynamics at given Mason numbers. Further, a thermal resistance network model is employed to computationally predict the enhanced thermal conduction across the fibrillary colloid microstructure. Good agreement between the mathematical model and the experimental observations is achieved. The domineering role of thermal conductivity over relative permittivity has been shown by proposing a modified Hashin-Shtrikman (HS) formalism. The findings have implications towards better physical understanding and design of ER fluids from both 'smart' viscoelastic as well as thermally active materials points of view.
In-Situ Wire Damage Detection System
NASA Technical Reports Server (NTRS)
Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Medelius, Pedro J. (Inventor); Roberson, Luke B. (Inventor); Tate, Lanetra C. (Inventor); Smith, Trent M. (Inventor); Williams, Martha K. (Inventor)
2014-01-01
An in-situ system for detecting damage in an electrically conductive wire. The system includes a substrate at least partially covered by a layer of electrically conductive material forming a continuous or non-continuous electrically conductive layer connected to an electrical signal generator adapted to delivering electrical signals to the electrically conductive layer. Data is received and processed to identify damage to the substrate or electrically conductive layer. The electrically conductive material may include metalized carbon fibers, a thin metal coating, a conductive polymer, carbon nanotubes, metal nanoparticles or a combination thereof.
Recent Development of SOFC Metallic Interconnect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu JW, Liu XB
2010-04-01
Interest in solid oxide fuel cells (SOFC) stems from their higher e±ciencies and lower levels of emitted pollu- tants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i:e:, to maintain high elec- trical conductivity, good stability in both reducing and oxidizing atmospheres, and close coe±cient of thermal expansion (CTE) match and good compatibility with other SOFC ceramic components. The paper reviewed the interconnectmore » materials, and coatings for metallic interconnect materials.« less
Ben Franklin's Scientific Amusements
NASA Astrophysics Data System (ADS)
Herschbach, Dudley
2003-04-01
As an American icon, Benjamin Franklin is often portrayed as wise and canny in business and politics, earnestly pursuing and extolling diligence, sensible conduct, pragmatism, and good works. Also legendary are some of his inventions, particularly the lightning rod, bifocals, and an efficient wood-burning stove. The iconic image is misleading in major respects. Today, surprisingly few people appreciate that, in the 18th century, Franklin was greatly esteemed throughout Europe as a scientist (termed then a "natural philosopher.") He was hailed as the "Newton of Electricity." Indeed, until Franklin, electricity seemed more mysterious than had gravity in Newton's time, and lightning was considered the wrath of God. By his own account, Franklin's studies of electricity and many other phenomena were prompted not by practical aims, but by his playful curiosity--which often became obsessive. Also not generally appreciated is the importance of Franklin's scientific reputation in enhancing his efforts to obtain French support for the American Revolution.
Electric heater for nuclear fuel rod simulators
McCulloch, Reginald W.; Morgan, Jr., Chester S.; Dial, Ralph E.
1982-01-01
The present invention is directed to an electric cartridge-type heater for use as a simulator for a nuclear fuel pin in reactor studies. The heater comprises an elongated cylindrical housing containing a longitudinally extending helically wound heating element with the heating element radially inwardly separated from the housing. Crushed cold-pressed preforms of boron nitride electrically insulate the heating element from the housing while providing good thermal conductivity. Crushed cold-pressed preforms of magnesia or a magnesia-15 percent boron nitride mixture are disposed in the cavity of the helical heating element. The coefficient of thermal expansion of the magnesia or the magnesia-boron nitride mixture is higher than that of the boron nitride disposed about the heating element for urging the boron nitride radially outwardly against the housing during elevated temperatures to assure adequate thermal contact between the housing and the boron nitride.
Applications of Micro/Nanoparticles in Microfluidic Sensors: A Review
Jiang, Yusheng; Wang, Hui; Li, Shunbo; Wen, Weijia
2014-01-01
This paper reviews the applications of micro/nanoparticles in microfluidics device fabrication and analytical processing. In general, researchers have focused on two properties of particles—electric behavior and magnetic behavior. The applications of micro/nanoparticles could be summarized on the chip fabrication level and on the processing level. In the fabrication of microfluidic chips (chip fabrication level), particles are good additives in polydimethylsiloxane (PDMS) to prepare conductive or magnetic composites which have wide applications in sensors, valves and actuators. On the other hand, particles could be manipulated according to their electric and magnetic properties under external electric and magnetic fields when they are travelling in microchannels (processing level). Researchers have made a great progress in preparing modified PDMS and investigating the behaviors of particles in microchannels. This article attempts to present a discussion on the basis of particles applications in microfluidics. PMID:24755517
Lin, Jing; Huang, Yang; Bando, Yoshio; Tang, Chengchun; Li, Chun; Golberg, Dmitri
2010-04-27
We report on the synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures via a simple catalyst-free method. A typical heterostructure, where an In2O3 nanowire forms a sort of a "dorsal fin" on the Ga2O3 nanobelt, exhibits the T-shaped cross-section. The structure, electrical porperties, and field-emission properties of this material are systematically investigated. The heterostructures possess a typical n-type semiconducting behavior with enhanced conductivity. Field-emission measurements show that they have a low turn-on field (approximately 1.31 V/microm) and a high field-enhancement factor (over 4000). The excellent field-emission characteristics are attributed to their special geometry and good electrical properties. The present In2O3-decorated Ga2O3 heterostructures are envisaged to be decent field-emitters useful in advanced electronic and optoelectronic nanodevices.
Microwave assisted growth of nanorods vanadium dioxide VO2 (R): structural and electrical properties
NASA Astrophysics Data System (ADS)
Derkaoui, I.; Khenfouch, M.; Mothudi, B. M.; Moloi, S. J.; Zorkani, I.; Jorio, A.; Maaza, M.
2018-03-01
Nanostructured metal oxides have attracted a lot of attention recently owning to their unique structural advantages and demonstrated promising chemical and physical properties for various applications. In this study, we report the structural and electrical properties of vanadium dioxide VO2 (R) prepared via a single reaction microwave (SRC) synthesis. Our results are revealing that the components of VO2 (R) films have a rod-like shape with a uniform size distribution. The nanorods with very smooth and flat surfaces have a typical length of up to 2μm and a width of about several nanometers. The structural investigations reveal the high crystallinity of VO2 (R) ensuring good electrical contact and showing a high conductivity as a function of temperature. This synthesis method provides a new simple route to fabricate one-dimensional nanostructured metal oxides which is suitable for a large field of applications especially for smart windows.
Multi-barrier field-emission behavior in PBTTT thin films at low temperatures
Kang, Evan S. H.; Kim, Eunseong
2015-01-01
We investigated the low-temperature transport mechanism for poly[2,5-bis(3-alkylthiophen-2-yl)thieno(3,2-b)thiophene] (PBTTT). The temperature-dependent transport behavior was studied by varying the drain–source electric field and gate bias. The results suggest that low-temperature charge transport is dominated by direct tunneling at low electric fields, while field emission is prevailing for high electric fields with high carrier densities. However, the obtained barrier heights are remarkably greater than expected in a conventional field emission. We propose a simplified model of field emission through quasi-one-dimensional path with multiple barriers which shows good agreement with the results more clearly. Field emission across the domain boundaries may assist in overcoming the transport barriers induced by the interchain disorder, which results in the weak temperature dependence of conductivities and nonlinear current–voltage relation at low temperatures. PMID:25670532
Lei, Kin Fong; Chen, Kuan-Hao; Tsui, Po-Hsiang; Tsang, Ngan-Ming
2013-01-01
Blood coagulation is an extremely complicated and dynamic physiological process. Monitoring of blood coagulation is essential to predict the risk of hemorrhage and thrombosis during cardiac surgical procedures. In this study, a high throughput microfluidic chip has been developed for the investigation of the blood coagulation process under temperature and hematocrit variations. Electrical impedance of the whole blood was continuously recorded by on-chip electrodes in contact with the blood sample during coagulation. Analysis of the impedance change of the blood was conducted to investigate the characteristics of blood coagulation process and the starting time of blood coagulation was defined. The study of blood coagulation time under temperature and hematocrit variations was shown a good agreement with results in the previous clinical reports. The electrical impedance measurement for the definition of blood coagulation process provides a fast and easy measurement technique. The microfluidic chip was shown to be a sensitive and promising device for monitoring blood coagulation process even in a variety of conditions. It is found valuable for the development of point-of-care coagulation testing devices that utilizes whole blood sample in microliter quantity. PMID:24116099
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xiaoyu; Hao, Zhenqi; Wu, Di
Here, we report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS 2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-fieldmore » microwave imaging with small distance modulation.« less
Wu, Xiaoyu; Hao, Zhenqi; Wu, Di; ...
2018-04-01
Here, we report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS 2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-fieldmore » microwave imaging with small distance modulation.« less
NASA Astrophysics Data System (ADS)
Signor, L.; Kumar, P.; Tressou, B.; Nadot-Martin, C.; Miranda-Ordonez, José; Carr, J.; Joulain, K.; Milhet, X.
2018-07-01
Silver paste sintering is a very promising technology for chip bonding in future power electronics modules owing to its high melting temperature and the good electrical and thermal properties among other classic solder alloys. However, in its sintered form, these joints contain nanometric/submicrometric pores that affect their thermal performance. The present study gives insight into the relationship between the material thermal conductivity and the real three-dimensional porous structure using finite element modelling. It is shown that over a certain pore fraction threshold (˜ 13%), the pore morphology has a non-negligible influence on the thermal conductivity. Results are also compared to predictions obtained by analytical models available in the literature.
NASA Astrophysics Data System (ADS)
Signor, L.; Kumar, P.; Tressou, B.; Nadot-Martin, C.; Miranda-Ordonez, José; Carr, J.; Joulain, K.; Milhet, X.
2018-03-01
Silver paste sintering is a very promising technology for chip bonding in future power electronics modules owing to its high melting temperature and the good electrical and thermal properties among other classic solder alloys. However, in its sintered form, these joints contain nanometric/submicrometric pores that affect their thermal performance. The present study gives insight into the relationship between the material thermal conductivity and the real three-dimensional porous structure using finite element modelling. It is shown that over a certain pore fraction threshold (˜ 13%), the pore morphology has a non-negligible influence on the thermal conductivity. Results are also compared to predictions obtained by analytical models available in the literature.
NASA Astrophysics Data System (ADS)
Eslami, Ghiyam; Esmaeilzadeh, Esmaeil; Pérez, Alberto T.
2016-10-01
Up and down motion of a spherical conductive particle in dielectric viscous fluid driven by a DC electric field between two parallel electrodes was investigated. A nonlinear differential equation, governing the particle dynamics, was derived, based on Newton's second law of mechanics, and solved numerically. All the pertaining dimensionless groups were extracted. In contrast to similar previous works, hydrodynamic interaction between the particle and the electrodes, as well as image electric forces, has been taken into account. Furthermore, the influence of the microdischarge produced between the electrodes and the approaching particle on the particle dynamics has been included in the model. The model results were compared with experimental data available in the literature, as well as with some additional experimental data obtained through the present study showing very good agreement. The results indicate that the wall hydrodynamic effect and the dielectric liquid ionic conductivity are very dominant factors determining the particle trajectory. A lower bound is derived for the charge transferred to the particle while rebounding from an electrode. It is found that the time and length scales of the post-microdischarge motion of the particle can be as small as microsecond and micrometer, respectively. The model is able to predict the so called settling/dwelling time phenomenon for the first time.
Effects of Synthesis Method on Electrical Properties of Graphene
NASA Astrophysics Data System (ADS)
Fuad, M. F. I. Ahmad; Jarni, H. H.; Shariffudin, W. N.; Othman, N. H.; Rahim, A. N. Che Abdul
2018-05-01
The aim of this study is to achieve the highest reduction capability and complete reductions of oxygen from graphene oxide (GO) by using different type of chemical methods. The modification of Hummer’s method has been proposed to produce GO, and hydrazine hydrate has been utilized in the GO’s reduction process into graphene. There are two types of chemical method are used to synthesize graphene; 1) Sina’s method and 2) Sasha’s method. Both GO and graphene were then characterized using X-Ray Powder Diffraction (XRD) and Fourier Transform Infrared Spectrometry (FT-IR). The graph patterns obtained from XRD showed that the values of graphene and GO are within their reliable ranges, FT-IR identified the comparison functional group between GO and graphene. Graphene was verified to experience the reduction process due to absent of functional group consist of oxygen has detected. Electrochemical impedance spectrometry (EIS) was then conducted to test the ability of conducting electricity of two batches (each weighted 1.6g) of graphene synthesized using different methods (Sina’s method and Sasha’s method). Sasha’s method was proven to have lower conductivity value compare to Sina’s method, with value of 6.2E+02 S/m and 8.1E+02 S/m respectively. These values show that both methods produced good graphene; however, by using Sina’s method, the graphene produced has better electrical properties.
NASA Astrophysics Data System (ADS)
Cheng, Ke; Liu, Jingjing; Jin, Ranran; Liu, Jingling; Liu, Xinsheng; Lu, Zhangbo; Liu, Ya; Liu, Xiaolan; Du, Zuliang
2017-07-01
Aluminum-doped zinc oxide (AZO) has attained intensive attention as being a very good transparent conducting oxide for photovoltaic applications. In this work, AZO films have been deposited on glass substrate by radio frequency (RF) magnetron sputtering. The influences of substrate temperatures on morphological, structural, optical and electrical properties of AZO films were systematically investigated. The results indicate that all AZO films have the hexagonal structure with c-axis preferred orientation. Morphological and electrical measurements have revealed that the substrate temperatures have strong influence on the microstructure, optical and electrical properties of AZO films. The AZO film is highly transparent from ultraviolet up to near infrared range with highest average transparency exceeding 83%. The minimum resistivity is as low as 6.1 × 10-4 Ω cm. The carrier concentration and mobility are as high as 3.357 × 1020 cm-3 and 30.48 cm2/Vs, respectively. Finally, the performances of the AZO film are evaluated by its practical application in Cu(In1-xGax)Se2 (CIGS) photovoltaic device as a transparent electrode. Benefited from its highly transparent and conductive feature, the most efficient device reveals an efficiency of 7.8% with a short-circuit current density of 28.99 mA/cm2, an open-circuit voltage of 430 mV, and a fill factor of 62.44 under standard conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tooker, Angela C.; Felix, Sarah H.; Pannu, Satinderpall S.
A neural interface includes a first dielectric material having at least one first opening for a first electrical conducting material, a first electrical conducting material in the first opening, and at least one first interconnection trace electrical conducting material connected to the first electrical conducting material. A stiffening shank material is located adjacent the first dielectric material, the first electrical conducting material, and the first interconnection trace electrical conducting material.
Note: cryogenic microstripline-on-Kapton microwave interconnects.
Harris, A I; Sieth, M; Lau, J M; Church, S E; Samoska, L A; Cleary, K
2012-08-01
Simple broadband microwave interconnects are needed for increasing the size of focal plane heterodyne radiometer arrays. We have measured loss and crosstalk for arrays of microstrip transmission lines in flex circuit technology at 297 and 77 K, finding good performance to at least 20 GHz. The dielectric constant of Kapton substrates changes very little from 297 to 77 K, and the electrical loss drops. The small cross-sectional area of metal in a printed circuit structure yields overall thermal conductivities similar to stainless steel coaxial cable. Operationally, the main performance tradeoffs are between crosstalk and thermal conductivity. We tested a patterned ground plane to reduce heat flux.
Electrical conductivity enhancement by boron-doping in diamond using first principle calculations
NASA Astrophysics Data System (ADS)
Ullah, Mahtab; Ahmed, Ejaz; Hussain, Fayyaz; Rana, Anwar Manzoor; Raza, Rizwan
2015-04-01
Boron doping in diamond plays a vital role in enhancing electrical conductivity of diamond by making it a semiconductor, a conductor or even a superconductor. To elucidate this fact, partial and total density of states has been determined as a function of B-content in diamond. Moreover, the orbital charge distributions, B-C bond lengths and their population have been studied for B-doping in pristine diamond thin films by applying density functional theory (DFT). These parameters have been found to be influenced by the addition of different percentages of boron atoms in diamond. The electronic density of states, B-C bond situations as well as variations in electrical conductivities of diamond films with different boron content and determination of some relationship between these parameters were the basic tasks of this study. Diamond with high boron concentration (∼5.88% B-atoms) showed maximum splitting of energy bands (caused by acceptor impurity states) at the Fermi level which resulted in the enhancement of electron/ion conductivities. Because B atoms either substitute carbon atoms and/or assemble at grain boundaries (interstitial sites) inducing impurity levels close to the top of the valence band. At very high B-concentration, impurity states combine to form an impurity band which accesses the top of the valence band yielding metal like conductivity. Moreover, bond length and charge distributions are found to decrease with increase in boron percentage in diamond. It is noted that charge distribution decreased from +1.89 to -1.90 eV whereas bond length reduced by 0.04 Å with increasing boron content in diamond films. These theoretical results support our earlier experimental findings on B-doped diamond polycrystalline films which depict that the addition of boron atoms to diamond films gives a sudden fall in resistivity even up to 105 Ω cm making it a good semiconductor for its applications in electrical devices.
A high-resolution computational localization method for transcranial magnetic stimulation mapping.
Aonuma, Shinta; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa; Takakura, Tomokazu; Tamura, Manabu; Muragaki, Yoshihiro
2018-05-15
Transcranial magnetic stimulation (TMS) is used for the mapping of brain motor functions. The complexity of the brain deters determining the exact localization of the stimulation site using simplified methods (e.g., the region below the center of the TMS coil) or conventional computational approaches. This study aimed to present a high-precision localization method for a specific motor area by synthesizing computed non-uniform current distributions in the brain for multiple sessions of TMS. Peritumoral mapping by TMS was conducted on patients who had intra-axial brain neoplasms located within or close to the motor speech area. The electric field induced by TMS was computed using realistic head models constructed from magnetic resonance images of patients. A post-processing method was implemented to determine a TMS hotspot by combining the computed electric fields for the coil orientations and positions that delivered high motor-evoked potentials during peritumoral mapping. The method was compared to the stimulation site localized via intraoperative direct brain stimulation and navigated TMS. Four main results were obtained: 1) the dependence of the computed hotspot area on the number of peritumoral measurements was evaluated; 2) the estimated localization of the hand motor area in eight non-affected hemispheres was in good agreement with the position of a so-called "hand-knob"; 3) the estimated hotspot areas were not sensitive to variations in tissue conductivity; and 4) the hand motor areas estimated by this proposal and direct electric stimulation (DES) were in good agreement in the ipsilateral hemisphere of four glioma patients. The TMS localization method was validated by well-known positions of the "hand-knob" in brains for the non-affected hemisphere, and by a hotspot localized via DES during awake craniotomy for the tumor-containing hemisphere. Copyright © 2018 Elsevier Inc. All rights reserved.
Cost and performance prospects for composite bipolar plates in fuel cells and redox flow batteries
NASA Astrophysics Data System (ADS)
Minke, Christine; Hickmann, Thorsten; dos Santos, Antonio R.; Kunz, Ulrich; Turek, Thomas
2016-02-01
Carbon-polymer-composite bipolar plates (BPP) are suitable for fuel cell and flow battery applications. The advantages of both components are combined in a product with high electrical conductivity and good processability in convenient polymer forming processes. In a comprehensive techno-economic analysis of materials and production processes cost factors are quantified. For the first time a technical cost model for BPP is set up with tight integration of material characterization measurements.
NASA Astrophysics Data System (ADS)
Jendras, P.; Lötsch, K.; von Unwerth, T.
2017-03-01
To reduce emissions and to substitute combustion engines automotive manufacturers, legislature and first users aspire hydrogen fuel cell vehicles. Up to now the focus of research was set on ensuring functionality and increasing durability of fuel cell components. Therefore, expensive materials were used. Contemporary research and development try to substitute these substances by more cost-effective material combinations. The bipolar plate is a key component with the greatest influence on volume and mass of a fuel cell stack and they have to meet complex requirements. They support bending sensitive components of stack, spread reactants over active cell area and form the electrical contact to another cell. Furthermore, bipolar plates dissipate heat of reaction and separate one cell gastight from the other. Consequently, they need a low interfacial contact resistance (ICR) to the gas diffusion layer, high flexural strength, good thermal conductivity and a high durability. To reduce costs stainless steel is a favoured material for bipolar plates in automotive applications. Steel is characterized by good electrical and thermal conductivity but the acid environment requires a high chemical durability against corrosion as well. On the one hand formation of a passivating oxide layer increasing ICR should be inhibited. On the other hand pitting corrosion leading to increased permeation rate may not occur. Therefore, a suitable substrate lamination combination is wanted. In this study material testing methods for bipolar plates are considered.
Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs.
Song, Yuanyuan; Jiang, Yaoquan; Shi, Liyi; Cao, Shaomei; Feng, Xin; Miao, Miao; Fang, Jianhui
2015-08-28
Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq(-1), equal to the electronic conductivity, which is about 500 S cm(-1). The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products.
Apparatus for detecting alpha radiation in difficult access areas
Steadman, Peter; MacArthur, Duncan W.
1997-09-02
An electrostatic alpha radiation detector for measuring alpha radiation emitted from inside an enclosure comprising an electrically conductive expandable electrode for insertion into the enclosure. After insertion, the electrically conductive expandable electrode is insulated from the enclosure and defines a decay cavity between the electrically conductive expandable electrode and the enclosure so that air ions generated in the decay cavity are electrostatically captured by the electrically conductive expandable electrode and the enclosure when an electric potential is applied between the electrically conductive expandable electrode and the enclosure. Indicator means are attached to the electrically conductive expandable electrode for indicating an electrical current produced by generation of the air ions generated in the decay cavity by collisions between air molecules and the alpha particles emitted from the enclosure. A voltage source is connected between the indicator means and the electrically conductive enclosure for creating an electric field between the electrically conductive expandable electrode and the enclosure.
Multifunctional Nanofluids with 2D Nanosheets for thermal management and tribological applications
NASA Astrophysics Data System (ADS)
Taha Tijerina, Jose Jaime
Conventional heat-transfer fluids such as water, ethylene glycol, standard oils and other lubricants are typically low-efficiency heat-transfer fluids. Thermal management plays a critical factor in many applications where these fluids can be used, such as in motors/engines, solar cells, biopharmaceuticals, fuel cells, high voltage power transmission systems, micro/nanoelectronics mechanical systems (MEMS/NEMS), and nuclear cooling among others. These insulating fluids require superb filler dispersion, high thermal conduction, and for certain applications as in electrical/electronic devices also electrical insulation. The miniaturization and high efficiency of electrical/electronic devices in these fields demand successful heat management and energy-efficient fluid-based heat-transfer systems. Recent advances in layered materials enable large scale synthesis of various two-dimensional (2D) structures. Some of these 2D materials are good choices as nanofillers in heat transfer fluids; mainly due to their inherent high thermal conductivity (TC) and high surface area available for thermal energy transport. Among various 2D-nanostructures, hexagonal boron nitride (h-BN) and graphene (G) exhibit versatile properties such as outstanding TC, excellent mechanical stability, and remarkable chemical inertness. The following research, even though investigate various conventional fluids, will focus on dielectric insulating nanofluids (mineral oil -- MO) with significant thermal performance. It is presented the plan for synthesis and characterization of stable high-thermal conductivity nanofluids using 2D-nanostructures of h-BN, which will be further incorporated at diverse filler concentrations to conventional fluids for cooling applications, without compromising its electrical insulating property. For comparison, properties of h-BN based fluids are compared with conductive fillers such as graphene; where graphene has similar crystal structure of h-BN and also has similar bulk thermal conductivity. Moreover, bot h-BN and graphene are exfoliated through the same method. In essence, this project, for the first time, unravels the behavior of the exfoliated h-BN effect on reinforced conventional fluids under the influence of atomistic scale structures (particularly, electrically insulating and lubricant/cutting fluids), thereby linking the physical, electrical and mechanical properties of these nanoscale materials. The innovative experimental approach is expected to result in de novo strategies for introducing these systems for new concepts and variables to engineer nanofluid properties suitable for very promising industrial applications.
Zhang, Jing; Zhang, Baogang; Tian, Caixing; Ye, Zhengfang; Liu, Ye; Lei, Zhongfang; Huang, Wenli; Feng, Chuanping
2013-06-01
Microbial fuel cells (MFCs), representing a promising method to treat combined pollutants with energy recovery, were utilized to remove sulfide and recover power with corn stover filtrate (CSF) as the co-substrate in present study. A maximum power density of 744 mW/m(2) was achieved with sulfide removal of 91% during 72 h operation when the CSF concentrations (mg-COD/l) and the electrolyte conductivity were set at 800 mg/l and 10.06 mS/cm, respectively, while almost 52% COD was removed due to the microbial degradation of CSF to the volatile organic carbons. CSF concentrations and electrolyte conductivities had significant effects on the performance of the MFCs. Simultaneous removals of inorganic pollutant and complex organic compounds with electricity generation in MFCs are reported for the first time. These results provide a good reference for multiple contaminations treatment especially sulfide containing wastewaters based on the MFC technology. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahmadi, S.; Delir Kheirollahi Nezhad, P.; Hosseinian, A.; Vessally, E.
2018-06-01
We have inspected the effect of substituting a boron or nitrogen atom of a BN nanocone (BNNC) by two impurity atoms with lower and higher atomic numbers based on the density functional theory calculations. Our results explain the experimental observations in a molecular level. Orbital and partial density of states analyses show that the doping processes increase the electrical conductivity by creating new states within the gap of BNNC as follows: BeB > ON > CB > CN. The electron emission current from the surface of BNNC is improved after the CB and BeB dopings, and it is decreased by CN and ON dopings. The BeB and CN dopings make the BNNC a p-type semiconductor and the CB and ON dopings make it an n-type one in good agreement with the experimental results. The ON and BeB doping processes are suggested for the field emission current, and electrical conductivity enhancement, respectively.
Canonical decomposition of magnetotelluric responses: Experiment on 1D anisotropic structures
NASA Astrophysics Data System (ADS)
Guo, Ze-qiu; Wei, Wen-bo; Ye, Gao-feng; Jin, Sheng; Jing, Jian-en
2015-08-01
Horizontal electrical heterogeneity of subsurface earth is mostly originated from structural complexity and electrical anisotropy, and local near-surface electrical heterogeneity will severely distort regional electromagnetic responses. Conventional distortion analyses for magnetotelluric soundings are primarily physical decomposition methods with respect to isotropic models, which mostly presume that the geoelectric distribution of geological structures is of local and regional patterns represented by 3D/2D models. Due to the widespread anisotropy of earth media, the confusion between 1D anisotropic responses and 2D isotropic responses, and the defects of physical decomposition methods, we propose to conduct modeling experiments with canonical decomposition in terms of 1D layered anisotropic models, and the method is one of the mathematical decomposition methods based on eigenstate analyses differentiated from distortion analyses, which can be used to recover electrical information such as strike directions, and maximum and minimum conductivity. We tested this method with numerical simulation experiments on several 1D synthetic models, which turned out that canonical decomposition is quite effective to reveal geological anisotropic information. Finally, for the background of anisotropy from previous study by geological and seismological methods, canonical decomposition is applied to real data acquired in North China Craton for 1D anisotropy analyses, and the result shows that, with effective modeling and cautious interpretation, canonical decomposition could be another good method to detect anisotropy of geological media.
A high frequency electromagnetic impedance imaging system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex
2003-01-15
Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systemsmore » for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.« less
NASA Astrophysics Data System (ADS)
Melo, B. M. G.; Graça, M. P. F.; Prezas, P. R.; Valente, M. A.; Almeida, A. F.; Freire, F. N. A.; Bih, L.
2016-08-01
In this work, phosphate-borate based glasses with molar composition 20.7P2O5-17.2Nb2O5-13.8WO3-34.5A2O-13.8B2O3, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric, and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σac and σdc, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz-1 MHz.
Porous substrates filled with nanomaterials
Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael
2018-04-03
A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.
Porous substrates filled with nanomaterials
Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael
2014-08-19
A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.
Magnetic field tunable ac electrical transport of LaFeO3-wax nanocomposites
NASA Astrophysics Data System (ADS)
Roy, Supratim; Mandal, S. K.; Debnath, Rajesh; Nath, Debajyoti; Dey, P.
2018-04-01
Single phase perovskite LaFeO3 nanoparticles have been prepared through chemical pyrophoric reaction process. It is further grinded with paraffin wax of quantity 0.5 wt% of total composition to obtain an organic composite 99.5%LaFeO3-0.5%Wax. Studies of ac electrical properties viz. complex impedance, dielectric response, loss coefficient have been done in presence of external dc magnetic field, which reveals a good magnetoimpedance (˜221%) and a negative magnetodielectric (˜ 64%). The value of impedance, its real and imaginary part is observed to increase with dc field. The composite exhibits high dielectric constant (˜4760). The ac conductivity is found to decrease with applied field and increase with ac frequency.
All-electric spin modulator based on a two-dimensional topological insulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Xianbo; Ai, Guoping; Liu, Ying
2016-01-18
We propose and investigate a spin modulator device consisting of two ferromagnetic leads connected by a two-dimensional topological insulator as the channel material. It exploits the unique features of the topological spin-helical edge states, such that the injected carriers with a non-collinear spin-polarization direction would travel through both edges and show interference effect. The conductance of the device can be controlled in a simple and all-electric manner by a side-gate voltage, which effectively rotates the spin-polarization of the carrier. At low voltages, the rotation angle is linear in the gate voltage, and the device can function as a good spin-polarizationmore » rotator by replacing the drain electrode with a non-magnetic material.« less
Low resistance thin film organic solar cell electrodes
Forrest, Stephen [Princeton, NJ; Xue, Jiangeng [Piscataway, NJ
2008-01-01
A method which lower the series resistance of photosensitive devices includes providing a transparent film of a first electrically conductive material arranged on a transparent substrate; depositing and patterning a mask over the first electrically conductive material, such that openings in the mask have sloping sides which narrow approaching the substrate; depositing a second electrically conductive material directly onto the first electrically conductive material exposed in the openings of the mask, at least partially filling the openings; stripping the mask, leaving behind reentrant structures of the second electrically conductive material which were formed by the deposits in the openings of the mask; after stripping the mask, depositing a first organic material onto the first electrically conductive material in between the reentrant structures; and directionally depositing a third electrically conductive material over the first organic material deposited in between the reentrant structures, edges of the reentrant structures aligning deposition so that the third electrically conductive material does not directly contact the first electrically conductive material, and does not directly contact the second electrically conductive material.
Flexible neural interfaces with integrated stiffening shank
Tooker, Angela C.; Felix, Sarah H.; Pannu, Satinderpall S.; Shah, Kedar G.; Sheth, Heeral; Tolosa, Vanessa
2016-07-26
A neural interface includes a first dielectric material having at least one first opening for a first electrical conducting material, a first electrical conducting material in the first opening, and at least one first interconnection trace electrical conducting material connected to the first electrical conducting material. A stiffening shank material is located adjacent the first dielectric material, the first electrical conducting material, and the first interconnection trace electrical conducting material.
Kubo–Greenwood approach to conductivity in dense plasmas with average atom models
Starrett, C. E.
2016-04-13
In this study, a new formulation of the Kubo–Greenwood conductivity for average atom models is given. The new formulation improves upon previous treatments by explicitly including the ionic-structure factor. Calculations based on this new expression lead to much improved agreement with ab initio results for DC conductivity of warm dense hydrogen and beryllium, and for thermal conductivity of hydrogen. We also give and test a slightly modified Ziman–Evans formula for the resistivity that includes a non-free electron density of states, thus removing an ambiguity in the original Ziman–Evans formula. Again, results based on this expression are in good agreement withmore » ab initio simulations for warm dense beryllium and hydrogen. However, for both these expressions, calculations of the electrical conductivity of warm dense aluminum lead to poor agreement at low temperatures compared to ab initio simulations.« less
Tan, Xin; Kou, Liangzhi; Tahini, Hassan A; Smith, Sean C
2015-11-01
Electrical charging of graphitic carbon nitride nanosheets (g-C4 N3 and g-C3 N4 ) is proposed as a strategy for high-capacity and electrocatalytically switchable hydrogen storage. Using first-principle calculations, we found that the adsorption energy of H2 molecules on graphitic carbon nitride nanosheets is dramatically enhanced by injecting extra electrons into the adsorbent. At full hydrogen coverage, the negatively charged graphitic carbon nitride achieves storage capacities up to 6-7 wt %. In contrast to other hydrogen storage approaches, the storage/release occurs spontaneously once extra electrons are introduced or removed, and these processes can be simply controlled by switching on/off the charging voltage. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Importantly, g-C4 N3 has good electrical conductivity and high electron mobility, which can be a very good candidate for electron injection/release. These predictions may prove to be instrumental in searching for a new class of high-capacity hydrogen storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microstructural and electrical properties of PVA/PVP polymer blend films doped with cupric sulphate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemalatha, K.; Gowtham, G. K.; Somashekarappa, H., E-mail: drhssappa@gmail.com
2016-05-23
A series of polyvinyl alcohol (PVA)/polyvinyl pyrrolidone (PVP) polymer blends added with different concentrations of cupric sulphate (CuSO{sub 4}) were prepared by solution casting method and were subjected to X-ray diffraction (XRD) and Ac conductance measurements. An attempt has been made to study the changes in crystal imperfection parameters in PVA/PVP blend films with the increase in concentration of CuSO{sub 4}. Results show that decrease in micro crystalline parameter values is accompanied with increase in the amorphous content in the film which is the reason for film to have more flexibility, biodegradability and good ionic conductivity. AC conductance measurements inmore » these films show that the conductivity increases as the concentration of CuSO{sub 4} increases. These films were suitable for electro chemical applications.« less
Qian, Kai; Cai, Guofa; Nguyen, Viet Cuong; Chen, Tupei; Lee, Pooi See
2016-10-05
Transparent nonvolatile memory has great potential in integrated transparent electronics. Here, we present highly transparent resistive switching memory using stoichiometric WO 3 film produced by cathodic electrodeposition with indium tin oxide electrodes. The memory device demonstrates good optical transmittance, excellent operative uniformity, low operating voltages (+0.25 V/-0.42 V), and long retention time (>10 4 s). Conductive atomic force microscopy, ex situ transmission electron microscopy, and X-ray photoelectron spectroscopy experiments directly confirm that the resistive switching effects occur due to the electric field-induced formation and annihilation of the tungsten-rich conductive channel between two electrodes. Information on the physical and chemical nature of conductive filaments offers insightful design strategies for resistive switching memories with excellent performances. Moreover, we demonstrate the promising applicability of the cathodic electrodeposition method for future resistive memory devices.
Optimization of X-ray Absorbers for TES Microcalorimeters
NASA Technical Reports Server (NTRS)
Iyomoto, Naoko; Sadleir, John E.; Figueroa-Feliciano, Enectali; Saab, Tarek; Bandler, Simon; Kilbourne, Caroline; Chervenak, James; Talley, Dorothy; Finkbeiner, Fred; Brekosky, Regis
2004-01-01
We have investigated the thermal, electrical, and structural properties of Bi and BiCu films that are being developed as X-ray absorbers for transition-edge sensor (TES) microcalorimeter arrays for imaging X-ray spectroscopy. Bi could be an ideal material for an X-ray absorber due to its high X-ray stopping power and low heat capacity, but it has a low thermal conductivity, which can result in position dependence of the pulses in the absorber. In order to improve the thermal conductivity, we added Cu layers in between the Bi layers. We measured electrical and thermal conductivities of the films around 0.1 K(sub 1) the operating temperature of the TES calorimeter, to examine the films and to determine the optimal thickness of the Cu layer. From the electrical conductivity measurements, we found that the Cu is more resistive on the Bi than on a Si substrate. Together with an SEM picture of the Bi surface, we concluded that the rough surface of the Bi film makes the Cu layer resistive when the Cu layer is not thick enough t o fill in the roughness. From the thermal conductivity measurements, we determined the thermal diffusion constant to be 2 x l0(exp 3) micrometers squared per microsecond in a film that consists of 2.25 micrometers of Bi and 0.1 micrometers of Cu. We measured the position dependence in the film and found that its thermal diffusion constant is too low to get good energy resolution, because of the resistive Cu layer and/or possibly a very high heat capacity of our Bi films. We show plans to improve the thermal diffusion constant in our BiCu absorbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, Edelio Danguillecourt, E-mail: edelioalvarez42@gmail.com; Laffita, Yodalgis Mosqueda, E-mail: yodalgis@imre.uh.cu; Montoro, Luciano Andrey, E-mail: landrey.montoro@gmail.com
We have synthesized and electrochemically tested a carbon sample that was suitable as anode for lithium secondary battery. The synthesis was based on the use of the palygorskite clay as template and sugar cane molasses as carbon source. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Brunauer–Emmett–Teller (BET) measurements and High Resolution Transmission Electron Microscope (HRTEM) analysis showed that the nanometric carbon material has a highly disordered graphene-like wrinkled structure and large specific surface area (467 m{sup 2} g{sup −1}). The compositional characterization revealed a 14% of heteroatoms-containing groups (O, H, N, S) doping the as-prepared carbon. Thermophysicalmore » measurements revealed the good thermal stability and an acceptable thermal diffusivity (9·10{sup −7} m{sup 2} s{sup −1}) and conductivity (1.1 W m{sup −1} K{sup −1}) of this carbon. The electrical properties showed an electronic conductivity of hole-like carriers of approximately one S/cm in a 173–293 K range. The testing of this material as anodes in a secondary lithium battery displayed a high specific capacity and excellent performance in terms of number of cycles. A high reversible capacity of 356 mA h g{sup −1} was reached. - Graphical abstract: TEM image and electrochemistry behavior of a new graphene oxide-like carbon. - Highlights: • A high disordered graphene oxide-like conducting carbon is reported. • The synthesis was based on palygorskite and sugar cane molasses as precursors. • The disordered conducting carbon is composed of doped- graphene heterogeneous domains. • This material combines a large specific surface area and high electric conductivity. • The thermophysical and electrochemical properties of this material reveal adequate behavior.« less
Apparatus for detecting alpha radiation in difficult access areas
Steadman, P.; MacArthur, D.W.
1997-09-02
An electrostatic alpha radiation detector for measuring alpha radiation emitted from inside an enclosure comprising an electrically conductive expandable electrode for insertion into the enclosure is disclosed. After insertion, the electrically conductive expandable electrode is insulated from the enclosure and defines a decay cavity between the electrically conductive expandable electrode and the enclosure so that air ions generated in the decay cavity are electrostatically captured by the electrically conductive expandable electrode and the enclosure when an electric potential is applied between the electrically conductive expandable electrode and the enclosure. Indicator means are attached to the electrically conductive expandable electrode for indicating an electrical current produced by generation of the air ions generated in the decay cavity by collisions between air molecules and the alpha particles emitted from the enclosure. A voltage source is connected between the indicator means and the electrically conductive enclosure for creating an electric field between the electrically conductive expandable electrode and the enclosure. 4 figs.
McCleskey, R. Blaine; Clor, Laura; Lowenstern, Jacob B.; Evans, William C.; Nordstrom, D. Kirk; Heasler, Henry; Huebner, Mark
2012-01-01
The thermal output from the Yellowstone magma chamber can be estimated from the Cl flux in the major rivers in Yellowstone National Park; and by utilizing continuous discharge and electrical conductivity measurements the Cl flux can be calculated. The relationship between electrical conductivity and concentrations of Cl and other geothermal solutes (Na, SO4, F, HCO3, SiO2, K, Li, B, and As) was quantified at monitoring sites along the Madison, Gibbon, and Firehole Rivers, which receive discharge from some of the largest and most active geothermal areas in Yellowstone. Except for some trace elements, most solutes behave conservatively and the ratios between geothermal solute concentrations are constant in the Madison, Gibbon, and Firehole Rivers. Hence, dissolved concentrations of Cl, Na, SO4, F, HCO3, SiO2, K, Li, Ca, B and As correlate well with conductivity (R2 > 0.9 for most solutes) and most exhibit linear trends. The 2011 flux for Cl, SO4, F and HCO3 determined using automated conductivity sensors and discharge data from nearby USGS gaging stations is in good agreement with those of previous years (1983–1994 and 1997–2008) at each of the monitoring sites. Continuous conductivity monitoring provides a cost- and labor-effective alternative to existing protocols whereby flux is estimated through manual collection of numerous water samples and subsequent chemical analysis. Electrical conductivity data also yield insights into a variety of topics of research interest at Yellowstone and elsewhere: (1) Geyser eruptions are easily identified and the solute flux quantified with conductivity data. (2) Short-term heavy rain events can produce conductivity anomalies due to dissolution of efflorescent salts that are temporarily trapped in and around geyser basins during low-flow periods. During a major rain event in October 2010, 180,000 kg of additional solute was measured in the Madison River. (3) The output of thermal water from the Gibbon River appears to have increased by about 0.2%/a in recent years, while the output of thermal water for the Firehole River shows a decrease of about 10% from 1983 to 2011. Confirmation of these trends will require continuing Cl flux monitoring over the coming decades.
Highly Stretchable Conductors Based on Expanded Graphite Macroconfined in Tubular Rubber.
Luo, Wei; Wu, Tongfei; Chen, Biqiong; Liang, Mei; Zou, Huawei
2017-12-13
Highly stretchable and durable conductors are significant to the development of wearable devices, robots, human-machine interfaces, and other artificial intelligence products. Although many respectable methods have been reported, it is still a challenge to fabricate stretchable conductors with a large elastic limit, high conductivity, and excellent reliability in rapid, effective, and economic ways. Herein, a facile method is offered to fabricate high-performance stretchable tubular conductors (TCs) based on a macroconfined structure of expanded graphite (EG) in rubber tubing by simply physical packing. The maximum original electrical conductivity of TCs reached a high value of 160.6 S/cm. Meanwhile, TCs showed more insensitive response of conductivity to increasing tensile strain compared to the TCs encapsulated with liquid metal or ionic liquid. The conductivity and effective stretchability of TCs can be adjusted by varying the packing density of EG. A low gauge factor below 3 was reached even under 400% stretching for TCs with a packing density of 1.233 g/cm 3 . The excellent resilience and good stability of conductivity of TCs during dynamic stretching-releasing cycles are attributed to the stable and rapid reconstruction of the percolation network of EG particles. The combination of high conductivity, tunable stretchability, and good reliability renders potential applications to TCs, such as highly stretchable interconnects or strain sensors, in human motion detection.
Dumont, Gaël; Pilawski, Tamara; Dzaomuho-Lenieregue, Phidias; Hiligsmann, Serge; Delvigne, Frank; Thonart, Philippe; Robert, Tanguy; Nguyen, Frédéric; Hermans, Thomas
2016-09-01
The gravimetric water content of the waste material is a key parameter in waste biodegradation. Previous studies suggest a correlation between changes in water content and modification of electrical resistivity. This study, based on field work in Mont-Saint-Guibert landfill (Belgium), aimed, on one hand, at characterizing the relationship between gravimetric water content and electrical resistivity and on the other hand, at assessing geoelectrical methods as tools to characterize the gravimetric water distribution in a landfill. Using excavated waste samples obtained after drilling, we investigated the influences of the temperature, the liquid phase conductivity, the compaction and the water content on the electrical resistivity. Our results demonstrate that Archie's law and Campbell's law accurately describe these relationships in municipal solid waste (MSW). Next, we conducted a geophysical survey in situ using two techniques: borehole electromagnetics (EM) and electrical resistivity tomography (ERT). First, in order to validate the use of EM, EM values obtained in situ were compared to electrical resistivity of excavated waste samples from corresponding depths. The petrophysical laws were used to account for the change of environmental parameters (temperature and compaction). A rather good correlation was obtained between direct measurement on waste samples and borehole electromagnetic data. Second, ERT and EM were used to acquire a spatial distribution of the electrical resistivity. Then, using the petrophysical laws, this information was used to estimate the water content distribution. In summary, our results demonstrate that geoelectrical methods represent a pertinent approach to characterize spatial distribution of water content in municipal landfills when properly interpreted using ground truth data. These methods might therefore prove to be valuable tools in waste biodegradation optimization projects. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Rui; Liu, Jing
2017-10-01
With significant advantages in rapidly restoring the nerve function, electrical stimulation of nervous tissue is a crucial treatment of peripheral nerve injuries leading to common movement disorder. However, the currently available stimulating electrodes generally based on rigid conductive materials would cause a potential mechanical mismatch with soft neural tissues which thus reduces long-term effects of electrical stimulation. Here, we proposed and fabricated a flexible neural microelectrode array system based on the liquid metal GaIn alloy (75.5% Ga and 24.5% In by weight) and via printing approach. Such an alloy with a unique low melting point (10.35 °C) owns excellent electrical conductivity and high compliance, which are beneficial to serve as implantable flexible neural electrodes. The flexible neural microelectrode array embeds four liquid metal electrodes and stretchable interconnects in a PDMS membrane (500 µm in thickness) that possess a lower elastic modulus (1.055 MPa), which is similar to neural tissues with elastic moduli in the 0.1-1.5 MPa range. The electrical experiments indicate that the liquid metal interconnects could sustain over 7000 mechanical stretch cycles with resistance approximately staying at 4 Ω. Over the conceptual experiments on animal sciatic nerve electrical stimulation, the dead bullfrog implanted with flexible neural microelectrode array could even rhythmically contract and move its lower limbs under the electrical stimulations from the implant. This demonstrates a highly efficient way for quickly recovering biological nerve functions. Further, the good biocompatibility of the liquid metal material was justified via a series of biological experiments. This liquid metal modality for neural stimulation is expected to play important roles as biologic electrodes to overcome the fundamental mismatch in mechanics between biological tissues and electronic devices in the coming time.
Yolk–shell Fe 2O 3 ⊙ C composites anchored on MWNTs with enhanced lithium and sodium storage
Zhao, Yi; Feng, Zhenxing; Xu, Zhichuan J.
2015-04-24
For this research, a unique architecture with yolk–shell Fe 2O 3 ⊙ C composites attached to the surface of MWNTs is designed. Benefiting from the good electrical conductivity of MWNTs and carbon layers, as well as the large void space to accommodate the volume expansion/extraction of Fe 2O 3 during battery cycling, the obtained MWNT@Fe 2O 3 ⊙ C exhibited outstanding lithium and sodium storage performance.
Carbon Dots/NiCo2 O4 Nanocomposites with Various Morphologies for High Performance Supercapacitors.
Wei, Ji-Shi; Ding, Hui; Zhang, Peng; Song, Yan-Fang; Chen, Jie; Wang, Yong-Gang; Xiong, Huan-Ming
2016-11-01
A series of carbon dots/NiCo 2 O 4 composites with various morphologies are prepared and tested for supercapacitors. These samples have good electrical conductivities and efficient ions transport paths, so they exhibit high specific capacitances, superior rate performances, and high cycling stabilities. The optimal composite for hybrid supercapacitor exhibits a high energy density up to 62.0 Wh kg -1 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ceramic component for electrodes
Marchant, David D.; Bates, J. Lambert
1980-01-01
A ceramic component suitable for preparing MHD generator electrodes having the compositional formula: Y.sub.x (Mg.sub.y Cr.sub.z).sub.w Al.sub.(1-w) O.sub.3 where x=0.9 to 1.05, y=0.02 to 0.2, z=0.8 to 1.05 and w=1.0 to 0.5. The component is resistant to the formation of hydration products in an MHD environment, has good electrical conductivity and exhibits a lower electrochemical corrosion rate than do comparable compositions of lanthanum chromite.
Application of Pyrometry and IR-Thermography to High Surface Temperature Measurements
2000-04-01
infrared spectra. Pneumatic thermal detectors use the effect of pres- sure change in a gas chamber due to radiation The second group of quantum detectors ...application of photo conductive detectors is re- a good signal to noise ratio. Each detector has a stricted by the recombination noise due to the elec...tricity. The signal power equal to the noise power of the detector is called the noise equivalent power AE tAE (NEP). It strongly depends on the
Titanium diboride ceramic fiber composites for Hall-Heroult cells
Besmann, Theodore M.; Lowden, Richard A.
1990-01-01
An improved cathode structure for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 deg. C can be used.
Chang, Jingbo; Huang, Xingkang; Zhou, Guihua; Cui, Shumao; Hallac, Peter B; Jiang, Junwei; Hurley, Patrick T; Chen, Junhong
2014-02-01
Multilayered Si/RGO anode nanostructures, featuring alternating Si nanoparticle (NP) and RGO layers, good mechanical stability, and high electrical conductivity, allow Si NPs to easily expand between RGO layers, thereby leading to high reversible capacity up to 2300 mAh g(-1) at 0.05 C (120 mA g(-1) ) and 87% capacity retention (up to 630 mAh g(-1) ) at 10 C after 152 cycles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Preparation of Three-Dimensional Graphene Foams Using Powder Metallurgy Templates.
Sha, Junwei; Gao, Caitian; Lee, Seoung-Ki; Li, Yilun; Zhao, Naiqin; Tour, James M
2016-01-26
A simple and scalable method which combines traditional powder metallurgy and chemical vapor deposition is developed for the synthesis of mesoporous free-standing 3D graphene foams. The powder metallurgy templates for 3D graphene foams (PMT-GFs) consist of particle-like carbon shells which are connected by multilayered graphene that shows high specific surface area (1080 m(2) g(-1)), good crystallization, good electrical conductivity (13.8 S cm(-1)), and a mechanically robust structure. The PMT-GFs did not break under direct flushing with DI water, and they were able to recover after being compressed. These properties indicate promising applications of PMT-GFs for fields requiring 3D carbon frameworks such as in energy-based electrodes and mechanical dampening.
Sathasivam, Sanjayan; Bhachu, Davinder S.; Lu, Yao; Chadwick, Nicholas; Althabaiti, Shaeel A.; Alyoubi, Abdulrahman O.; Basahel, Sulaiman N.; Carmalt, Claire J.; Parkin, Ivan P.
2015-01-01
Tungsten doped titanium dioxide films with both transparent conducting oxide (TCO) and photocatalytic properties were produced via aerosol-assisted chemical vapor deposition of titanium ethoxide and dopant concentrations of tungsten ethoxide at 500 °C from a toluene solution. The films were anatase TiO2, with good n-type electrical conductivities as determined via Hall effect measurements. The film doped with 2.25 at.% W showed the lowest resistivity at 0.034 Ω.cm and respectable charge carrier mobility (14.9 cm3/V.s) and concentration (×1019 cm−3). XPS indicated the presence of both W6+ and W4+ in the TiO2 matrix, with the substitutional doping of W4+ inducing an expansion of the anatase unit cell as determined by XRD. The films also showed good photocatalytic activity under UV-light illumination, with degradation of resazurin redox dye at a higher rate than with undoped TiO2. PMID:26042724
Garraín, Daniel; Fazio, Simone; de la Rúa, Cristina; Recchioni, Marco; Lechón, Yolanda; Mathieux, Fabrice
2015-01-01
The aim of this paper is to identify areas of potential improvement of the European Reference Life Cycle Database (ELCD) electricity datasets. The revision is based on the data quality indicators described by the International Life Cycle Data system (ILCD) Handbook, applied on sectorial basis. These indicators evaluate the technological, geographical and time-related representativeness of the dataset and the appropriateness in terms of completeness, precision and methodology. Results show that ELCD electricity datasets have a very good quality in general terms, nevertheless some findings and recommendations in order to improve the quality of Life-Cycle Inventories have been derived. Moreover, these results ensure the quality of the electricity-related datasets to any LCA practitioner, and provide insights related to the limitations and assumptions underlying in the datasets modelling. Giving this information, the LCA practitioner will be able to decide whether the use of the ELCD electricity datasets is appropriate based on the goal and scope of the analysis to be conducted. The methodological approach would be also useful for dataset developers and reviewers, in order to improve the overall Data Quality Requirements of databases.
NASA Astrophysics Data System (ADS)
Moghadasi, Fatemeh S.; Daadmehr, Vahid; Kashfi, Monire
2016-10-01
In this paper, we have synthesized copper ferrite nanocrystals using sol-gel method. X-ray diffraction (XRD) analysis confirms that the ferrite has cubic spinal structure and shows Jahn-Teller effect. Also, scan electron microscope (SEM) image demonstrates that grains are nano size order. We showed that the dielectric properties are compatible with the Maxwell-Wagner model and phenomenological Koop's theory. Loss tangent and conductivity of the ferrite have been measured to have small values of 2.4 and 2×10-7 S/m, respectively at room temperature and at 12 Hz. Conductivity has been investigated in terms of localized hopping mechanism and good obedience of Jonscher's law was observed. Variation of activation energy was studied and showed a transition temperature of 443 °K. The electrical modulus shows relaxation of interfacial polarization with relaxation time of 0.318 ms at 24 °C and 15.9 μs at 72 °C. In Impedance spectroscopy, we observed the effects of grain and grain boundary. By increasing temperature, capacity and conduction would increase which show easier polarization process and a semiconducting behavior. Also, relaxation times are shifted to smaller values to represent increasing the electrons mobility.
Investigating aquifer contamination and groundwater quality in eastern Terai region of Nepal.
Mahato, Sanjay; Mahato, Asmita; Karna, Pankaj Kumar; Balmiki, Nisha
2018-05-21
This study aims at assessing the groundwater quality of the three districts of Eastern Terai region of Nepal viz. Morang, Jhapa, Sunsari using physicochemical characteristics and statistical approach so that possible contamination of water reservoir can be understood. pH, temperature, conductivity, turbidity, color, total dissolved solids, fluorides, ammonia, nitrates, chloride, total hardness, calcium hardness, calcium, magnesium, total alkalinity, iron, manganese, arsenic have to be analyzed to know the present status of groundwater quality. Results revealed that the value of analyzed parameters were within the acceptable limits for drinking water recommended by World Health Organization except for pH, turbidity, ammonia and iron. As per Nepal Drinking Water Quality Standards, fluoride and manganese too were not complying with the permissible limit. Electrical conductivity, total dissolved solids, chloride, total hardness, calcium hardness, manganese, and total alkalinity show good positive correlation with major water quality parameters. Calcium, magnesium, total hardness, calcium hardness and total alkalinity greatly influences total dissolved solids and electrical conductivity. ANOVA, Tukey, and clustering highlight the significance of three districts. Groundwater can be considered safe, but there is always a chance of contamination through chemical wastes in the heavily industrialized area of Morang and Sunsari Industrial corridor.
The Conductive Silver Nanowires Fabricated by Two-beam Laser Direct Writing on the Flexible Sheet.
He, Gui-Cang; Zheng, Mei-Ling; Dong, Xian-Zi; Jin, Feng; Liu, Jie; Duan, Xuan-Ming; Zhao, Zhen-Sheng
2017-02-02
Flexible electrically conductive nanowires are now a key component in the fields of flexible devices. The achievement of metal nanowire with good flexibility, conductivity, compact and smooth morphology is recognized as one critical milestone for the flexible devices. In this study, a two-beam laser direct writing system is designed to fabricate AgNW on PET sheet. The minimum width of the AgNW fabricated by this method is 187 ± 34 nm with the height of 84 ± 4 nm. We have investigated the electrical resistance under different voltages and the applicable voltage per meter range is determined to be less than 7.5 × 10 3 V/m for the fabricated AgNW. The flexibility of the AgNW is very excellent, since the resistance only increases 6.63% even after the stretched bending of 2000 times at such a small bending radius of 1.0 mm. The proposed two-beam laser direct writing is an efficient method to fabricate AgNW on the flexible sheet, which could be applied in flexible micro/nano devices.
Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors.
Kumar, Nanjundan Ashok; Choi, Hyun-Jung; Shin, Yeon Ran; Chang, Dong Wook; Dai, Liming; Baek, Jong-Beom
2012-02-28
An alternative and effective route to prepare conducting polyaniline-grafted reduced graphene oxide (PANi-g-rGO) composite with highly enhanced properties is reported. In order to prepare PANi-g-rGO, amine-protected 4-aminophenol was initially grafted to graphite oxide (GO) via acyl chemistry where a concomitant partial reduction of GO occurred due to the refluxing and exposure of GO to thionyl chloride vapors and heating. Following the deprotection of amine groups, an in situ chemical oxidative grafting of aniline in the presence of an oxidizing agent was carried out to yield highly conducting PANi-g-rGO. Electron microscopic studies demonstrated that the resultant composite has fibrillar morphology with a room-temperature electrical conductivity as high as 8.66 S/cm and capacitance of 250 F/g with good cycling stability.
Thermoelectric Properties of Poly(3-Hexylthiophene) Nanofiber Mat with a Large Void Fraction.
Hiura, Shogo; Okada, Naoki; Wakui, Junma; Narita, Hikari; Kanehashi, Shinji; Shimomura, Takeshi
2017-04-28
The thermoelectric properties of a poly(3-hexylthiophene) (P3HT) nanofiber mat which has higher crystallinity-and thus exhibits larger carrier mobility-than a non-fibrous P3HT film, were investigated. No significant difference was observed in the maximum values of the power factor between the P3HT nanofiber mat and the P3HT film. However, the thermal conductivity of the nanofiber mat was less than half that of the film despite having almost the same electrical conductivity. This higher thermoelectric property of the nanofiber mat than the film is attributed to the existence of highly effective conducting pathways and a large void fraction, and the result means that the nanofiber mat was a good candidate for use as a thermoelectric material.
Electrokinetic coupling in unsaturated porous media.
Revil, A; Linde, N; Cerepi, A; Jougnot, D; Matthäi, S; Finsterle, S
2007-09-01
We consider a charged porous material that is saturated by two fluid phases that are immiscible and continuous on the scale of a representative elementary volume. The wetting phase for the grains is water and the nonwetting phase is assumed to be an electrically insulating viscous fluid. We use a volume-averaging approach to derive the linear constitutive equations for the electrical current density as well as the seepage velocities of the wetting and nonwetting phases on the scale of a representative elementary volume. These macroscopic constitutive equations are obtained by volume-averaging Ampère's law together with the Nernst-Planck equation and the Stokes equations. The material properties entering the macroscopic constitutive equations are explicitly described as functions of the saturation of the water phase, the electrical formation factor, and parameters that describe the capillary pressure function, the relative permeability functions, and the variation of electrical conductivity with saturation. New equations are derived for the streaming potential and electro-osmosis coupling coefficients. A primary drainage and imbibition experiment is simulated numerically to demonstrate that the relative streaming potential coupling coefficient depends not only on the water saturation, but also on the material properties of the sample, as well as the saturation history. We also compare the predicted streaming potential coupling coefficients with experimental data from four dolomite core samples. Measurements on these samples include electrical conductivity, capillary pressure, the streaming potential coupling coefficient at various levels of saturation, and the permeability at saturation of the rock samples. We found very good agreement between these experimental data and the model predictions.
Imaging Electric Properties of Biological Tissues by RF Field Mapping in MRI
Zhang, Xiaotong; Zhu, Shanan; He, Bin
2010-01-01
The electric properties (EPs) of biological tissue, i.e., the electric conductivity and permittivity, can provide important information in the diagnosis of various diseases. The EPs also play an important role in specific absorption rate (SAR) calculation, a major concern in high-field Magnetic Resonance Imaging (MRI), as well as in non-medical areas such as wireless-telecommunications. The high-field MRI system is accompanied by significant wave propagation effects, and the radio frequency (RF) radiation is dependent on the EPs of biological tissue. Based on the measurement of the active transverse magnetic component of the applied RF field (known as B1-mapping technique), we propose a dual-excitation algorithm, which uses two sets of measured B1 data to noninvasively reconstruct the electric properties of biological tissues. The Finite Element Method (FEM) was utilized in three-dimensional (3D) modeling and B1 field calculation. A series of computer simulations were conducted to evaluate the feasibility and performance of the proposed method on a 3D head model within a transverse electromagnetic (TEM) coil and a birdcage (BC) coil. Using a TEM coil, when noise free, the reconstructed EP distribution of tissues in the brain has relative errors of 12% ∼ 28% and correlated coefficients of greater than 0.91. Compared with other B1-mapping based reconstruction algorithms, our approach provides superior performance without the need for iterative computations. The present simulation results suggest that good reconstruction of electric properties from B1 mapping can be achieved. PMID:20129847
NASA Astrophysics Data System (ADS)
Ülen, Simon; Gerlič, Ivan; Slavinec, Mitja; Repnik, Robert
2017-04-01
To provide a good understanding of many abstract concepts in the field of electricity above that of their students is often a major challenge for secondary school teachers. Many educational researchers promote conceptual learning as a teaching approach that can help teachers to achieve this goal. In this paper, we present Physlet-based materials for supporting conceptual learning about electricity. To conduct research into the effectiveness of these materials, we designed two different physics courses: one group of students, the experimental group, was taught using Physlet-based materials and the second group of students, the control group, was taught using expository instruction without using Physlets. After completion of the teaching, we assessed students' thinking skills and analysed the materials with an independent t test, multiple regression analyses and one-way analysis of covariance. The test scores were significantly higher in the experimental group than in the control group ( p < 0.05). The results of this study confirmed the effectiveness of conceptual learning about electricity with the help of Physlet-based materials.
Frequency-dependent electrodeformation of giant phospholipid vesicles in AC electric field
2010-01-01
A model of vesicle electrodeformation is described which obtains a parametrized vesicle shape by minimizing the sum of the membrane bending energy and the energy due to the electric field. Both the vesicle membrane and the aqueous media inside and outside the vesicle are treated as leaky dielectrics, and the vesicle itself is modeled as a nearly spherical shape enclosed within a thin membrane. It is demonstrated (a) that the model achieves a good quantitative agreement with the experimentally determined prolate-to-oblate transition frequencies in the kilohertz range and (b) that the model can explain a phase diagram of shapes of giant phospholipid vesicles with respect to two parameters: the frequency of the applied alternating current electric field and the ratio of the electrical conductivities of the aqueous media inside and outside the vesicle, explored in a recent paper (S. Aranda et al., Biophys J 95:L19–L21, 2008). A possible use of the frequency-dependent shape transitions of phospholipid vesicles in conductometry of microliter samples is discussed. PMID:21886342
Temperature Dependent Electrical Transport Properties of Ni-Cr and Co-Cr Binary Alloys
NASA Astrophysics Data System (ADS)
Thakore, B. Y.; Suthar, P. H.; Khambholja, S. G.; Gajjar, P. N.; Bhatt, N. K.; Jani, A. R.
2011-12-01
The temperature dependent electrical transport properties viz. electrical resistivity and thermal conductivity of Ni10Cr90 and Co20Cr80 alloys are computed at various temperatures. The electrical resistivity has been calculated according to Faber-Ziman model combined with Ashcroft-Langreth partial structure factors. In the present work, to include the ion-electron interaction, we have used a well tested local model potential. For exchange-correlation effects, five different forms of local field correction functions due to Hartree (H), Taylor (T), Ichimaru and Utsumi (IU), Farid et al (F) and Sarkar et al (S) are used. The present results due to S function are in good agreement with the experimental data as compared to results obtained using other four functions. The S functions satisfy compressibility sum rule in long wave length limit more accurately as compared to T, IU and F functions, which may be responsible for better agreement of results, obtained using S function. Also, present result confirms the validity of present approach in determining the transport properties of alloys like Ni-Cr and Co-Cr.
Murray, M.M.; Wilfong, D.H.; Lomax, R.E.
1998-12-08
An electrical cable for connecting transient voltage surge suppressors to electrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation. 6 figs.
Method of Fault Detection and Rerouting
NASA Technical Reports Server (NTRS)
Gibson, Tracy L. (Inventor); Medelius, Pedro J. (Inventor); Lewis, Mark E. (Inventor)
2013-01-01
A system and method for detecting damage in an electrical wire, including delivering at least one test electrical signal to an outer electrically conductive material in a continuous or non-continuous layer covering an electrically insulative material layer that covers an electrically conductive wire core. Detecting the test electrical signals in the outer conductive material layer to obtain data that is processed to identify damage in the outer electrically conductive material layer.
Leopold, Christian; Augustin, Till; Schwebler, Thomas; Lehmann, Jonas; Liebig, Wilfried V; Fiedler, Bodo
2017-11-15
The influence of nanoparticle morphology and filler content on the mechanical and electrical properties of carbon nanoparticle modified epoxy is investigated regarding small volumes. Three types of particles, representing spherical, tubular and layered morphologies are used. A clear size effect of increasing true failure strength with decreasing volume is found for neat and carbon black modified epoxy. Carbon nanotube (CNT) modified epoxy exhibits high potential for strength increase, but dispersion and purity are critical. In few layer graphene modified epoxy, particles are larger than statistically distributed defects and initiate cracks, counteracting any size effect. Different toughness increasing mechanisms on the nano- and micro-scale depending on particle morphology are discussed based on scanning electron microscopy images. Electrical percolation thresholds in the small volume fibres are significantly higher compared to bulk volume, with CNT being found to be the most suitable morphology to form electrical conductive paths. Good correlation between electrical resistance change and stress strain behaviour under tensile loads is observed. The results show the possibility to detect internal damage in small volumes by measuring electrical resistance and therefore indicate to the high potential for using CNT modified polymers in fibre reinforced plastics as a multifunctional, self-monitoring material with improved mechanical properties. Copyright © 2017. Published by Elsevier Inc.
Effects of direct current electric-field using ITO plate on breast cancer cell migration.
Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Seo, Hyok Jin; Koo, Min-Ah; You, Kyung Eun; Kim, Dohyun; Park, Jong-Chul
2014-01-01
Cell migration is an essential activity of the cells in various biological phenomena. The evidence that electrotaxis plays important roles in many physiological phenomena is accumulating. In electrotaxis, cells move with a directional tendency toward the anode or cathode under direct-current electric fields. Indium tin oxide, commonly referred to as ITO has high luminous transmittance, high infrared reflectance, good electrical conductivity, excellent substrate adherence, hardness and chemical inertness and hence, have been widely and intensively studied for many years. Because of these properties of ITO films, the electrotaxis using ITO plate was evaluated. Under the 0 V/cm condition, MDA-MB-231 migrated randomly in all directions. When 1 V/cm of dc EF was applied, cells moved toward anode. The y forward migration index was -0.046 ± 0.357 under the 0 V/cm and was 0.273 ± 0.231 under direct-current electric field of 1 V/cm. However, the migration speed of breast cancer cell was not affected by direct-current electric field using ITO plate. In this study, we designed a new electrotaxis system using an ITO coated glass and observed the migration of MDA-MB-231 on direct current electric-field of the ITO glass.
Cannan, Chad; Bartel, Lewis; Palisch, Terrence; Aldridge, David
2015-01-13
Electrically conductive proppants and methods for detecting, locating, and characterizing same are provided. The electrically conductive proppant can include a substantially uniform coating of an electrically conductive material having a thickness of at least 500 nm. The method can include injecting a hydraulic fluid into a wellbore extending into a subterranean formation at a rate and pressure sufficient to open a fracture therein, injecting into the fracture a fluid containing the electrically conductive proppant, electrically energizing the earth at or near the fracture, and measuring three dimensional (x, y, and z) components of electric and magnetic field responses at a surface of the earth or in an adjacent wellbore.
NASA Astrophysics Data System (ADS)
Shibata, K.; Yoshida, K.; Daiguji, K.; Sato, H.; , T., Ii; Hirakawa, K.
2017-10-01
An electric-field control of quantized conductance in metal (gold) quantum point contacts (QPCs) is demonstrated by adopting a liquid-gated electric-double-layer (EDL) transistor geometry. Atomic-scale gold QPCs were fabricated by applying the feedback-controlled electrical break junction method to the gold nanojunction. The electric conductance in gold QPCs shows quantized conductance plateaus and step-wise increase/decrease by the conductance quantum, G0 = 2e2/h, as EDL-gate voltage is swept, demonstrating a modulation of the conductance of gold QPCs by EDL gating. The electric-field control of conductance in metal QPCs may open a way for their application to local charge sensing at room temperature.
Model of large volumetric capacitance in graphene supercapacitors based on ion clustering
NASA Astrophysics Data System (ADS)
Skinner, Brian; Fogler, M. M.; Shklovskii, B. I.
2011-12-01
Electric double-layer supercapacitors (SCs) are promising devices for high-power energy storage based on the reversible absorption of ions into porous conducting electrodes. Graphene is a particularly good candidate for the electrode material in SCs due to its high conductivity and large surface area. In this paper, we consider SC electrodes made from a stack of graphene sheets with randomly inserted spacer molecules. We show that the large volumetric capacitances C≳100F/cm3 observed experimentally can be understood as a result of collective intercalation of ions into the graphene stack and the accompanying nonlinear screening by graphene electrons that renormalizes the charge of the ion clusters.
A model of large volumetric capacitance in graphene supercapacitors based on ion clustering
NASA Astrophysics Data System (ADS)
Skinner, Brian; Fogler, Michael; Shklovskii, Boris
2012-02-01
Electric double layer supercapacitors are promising devices for high-power energy storage based on the reversible absorption of ions into porous, conducting electrodes. Graphene is a particularly good candidate for the electrode material in supercapacitors due to its high conductivity and large surface area. In this paper we consider supercapacitor electrodes made from a stack of graphene sheets with randomly-inserted ``spacer" molecules. We show that the large volumetric capacitances C > 100 F/cm^3 observed experimentally can be understood as a result of collective intercalation of ions into the graphene stack and the accompanying nonlinear screening by graphene electrons that renormalizes the charge of the ion clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondal, Praloy; Das, Debajyoti, E-mail: erdd@iacs.res.in
2016-05-23
Growth and optimization of the boron dopednanocrystalline silicon (nc-Si) films have been studied by varyingthe gaspressure applied to the hydrogendiluted silane plasma in RF (13.56 MHz) plasma-enhanced chemical vapor deposition (PECVD) system, using diborane (B{sub 2}H{sub 6}) as the dopant gas. High magnitudeof electrical conductivity (~10{sup 2} S cm{sup −1}) and<220>orientedcrystallographic lattice planes have been obtained with high crystalline volume fraction (~86 %) at an optimum pressure of 2.5 Torr. XRD and Raman studies reveal good crystallinity with preferred orientation, suitable for applications in stacked layer devices, particularly in nc–Si solar cells.
Electrical conductivity modeling in fractal non-saturated porous media
NASA Astrophysics Data System (ADS)
Wei, W.; Cai, J.; Hu, X.; Han, Q.
2016-12-01
The variety of electrical conductivity in non-saturated conditions is important to study electric conduction in natural sedimentary rocks. The electrical conductivity in completely saturated porous media is a porosity-function representing the complex connected behavior of single conducting phases (pore fluid). For partially saturated conditions, the electrical conductivity becomes even more complicated since the connectedness of pore. Archie's second law is an empirical electrical conductivity-porosity and -saturation model that has been used to predict the formation factor of non-saturated porous rock. However, the physical interpretation of its parameters, e.g., the cementation exponent m and the saturation exponent n, remains questionable. On basis of our previous work, we combine the pore-solid fractal (PSF) model to build an electrical conductivity model in non-saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as fluid electrical conductivities, pore fractal dimension and tortuosity fractal dimension (representing the complex degree of electrical flowing path). We find the presented model with non-saturation-dependent electrical conductivity datasets indicate excellent match between theory and experiments. This means the value of pore fractal dimension and tortuosity fractal dimension change from medium to medium and depends not only on geometrical properties of pore structure but also characteristics of electrical current flowing in the non-saturated porous media.
He, Hongkun; Gao, Chao
2010-11-01
The amazing properties of graphene are triggering extensive interests of both scientists and engineers, whereas how to fully utilize the unique attributes of graphene to construct novel graphene-based composites with tailor-made, integrated functions remains to be a challenge. Here, we report a facile approach to multifunctional iron oxide nanoparticle-attached graphene nanosheets (graphene@Fe(3)O(4)) which show the integrated properties of strong supraparamagnetism, electrical conductivity, highly chemical reactivity, good solubility, and excellent processability. The synthesis method is efficient, scalable, green, and controllable and has the feature of reduction of graphene oxide and formation of Fe(3)O(4) nanoparticles in one step. When the feed ratios are adjusted, the average diameter of Fe(3)O(4) nanoparticles (1.2-6.3 nm), the coverage density of Fe(3)O(4) nanoparticles on graphene nanosheets (5.3-57.9%), and the saturated magnetization of graphene@Fe(3)O(4) (0.5-44.1 emu/g) can be controlled readily. Because of the good solubility of the as-prepared graphene@Fe(3)O(4), highly flexible and multifunctional films composed of polyurethane and a high content of graphene@Fe(3)O(4) (up to 60 wt %) were fabricated by the solution-processing technique. The graphene@Fe(3)O(4) hybrid sheets showed electrical conductivity of 0.7 S/m and can be aligned into a layered-stacking pattern in an external magnetic field. The versatile graphene@Fe(3)O(4) nanosheets hold great promise in a wide range of fields, including magnetic resonance imaging, electromagnetic interference shielding, microwave absorbing, and so forth.
NASA Astrophysics Data System (ADS)
Mosayebidorcheh, Taha; Hosseinibalam, Fahimeh; Hassanzadeh, Smaeyl
2017-11-01
In this paper, the effect of atmospheric electrical conductivity on the electromagnetic waves radiated by a vertical electric dipole located in the earth, near the surface of the earth, is investigated. As far as electrical conductivity is concerned, the atmosphere is divided into three areas, in which the electrical conductivity changes with altitude. The Maxwell equations in these areas are investigated as well. Using the differential transform method, the differential equation is solved in a way that atmospheric electrical conductivity is variable. Solving the problem in these areas indicates that electrical conductivity in the middle and lower areas of atmosphere may be ignored. However, in the upper areas of atmosphere, the magnitude of the magnetic field in the ionosphere at a frequency of 10 kHz at night is five times smaller when electrical conductivity is considered compared to when it is neglected.
Pu, Wuli; Fu, Daihua; Wang, Zhanhua; Gan, Xinpeng; Lu, Xili; Yang, Li
2018-01-01
Abstract Combining self‐healing functions with damage diagnosing, which can achieve timely healing autonomously, is expected to improve the reliability and reduce life cycle cost of materials. Here, a flexible conductive composite composed of a dynamically crosslinked polyurethane bearing Diels–Alder bonds (PUDA) and carbon nanotubes (CNTs), which possess both crack diagnosing and self‐healing functions, is reported. The introduced dynamic Diels–Alder bonds endow the materials self‐healing function and the powder‐based preparation route based on the specially designed CNTs‐coated PUDA micropowders leads to the formation of segregated CNTs network, which makes the composite possess excellent mechanical properties and high conductivity. Because of the sufficient electrothermal and photothermal effect of CNTs, the composites can be healed rapidly and repeatedly by electricity or near‐infrared light based on the retro‐Diels–Alder reaction. An obvious color difference in the infrared thermograph resulting from the resistance difference between damaged and undamaged area can be observed when applying the voltage, which can be used for crack diagnosing. Using the same electrical circuit, the crack in the PUDA/CNTs composite can be noninvasively detected first and then be autonomously healed. The composites also exhibit a strain‐sensing function with good sensitivity and high reliability, thus will have potential applications in electronic strain sensors. PMID:29876226
Ground-based measurements of the vertical E-field in mountainous regions and the "Austausch" effect
NASA Astrophysics Data System (ADS)
Yaniv, Roy; Yair, Yoav; Price, Colin; Mkrtchyan, Hripsime; Lynn, Barry; Reymers, Artur
2017-06-01
Past measurements of the atmospheric vertical electric field (Ez or potential gradient) at numerous land stations showed a strong response of the daily electric field to a morning local effect known as ;Austausch; - the transport of electrical charges due to increased turbulence. In mountainous regions, nocturnal charge accumulation, followed by an attachment process to aerosols near the surface in valleys, known as the electrode effect, is lifted as a charged aerosol layer by anabatic (upslope) winds during the morning hours due to solar heating. Ground-based measurements during fair weather days were conducted at three mountain stations in Israel and Armenia. We present results of the mean diurnal variation of Ez and make comparisons with the well-known Carnegie curve and with past measurements of Ez on mountains. We report a good agreement between the mean diurnal curves of Ez at various mountain stations and the time of local sunrise when the Ez is found to increase. We attribute this morning maximum to the Austausch (or exchange) layer effect. We support our findings with conduction and turbulent current measurements showing high values of ions and charged aerosols being transported by winds from morning to noon local time, and by model simulations showing the convergence of winds in the early morning hours toward the mountain peak.
First-principles study of lattice thermal conductivity in ZrTe5 and HfTe5
NASA Astrophysics Data System (ADS)
Wang, Cong; Wang, Haifeng; Chen, Y. B.; Yao, Shu-Hua; Zhou, Jian
2018-05-01
Recently, the layered transition-metal pentatellurides ZrTe5 and HfTe5 have attracted increasing attention because of their interesting topological electronic properties. Nevertheless, some of their other good physical properties seem to be ignored now. Actually, both ZrTe5 and HfTe5 have high electric conductivities (>105 Ω-1 m-1) and Seebeck coefficients (> 100 μV/K) at room temperature, thus making them promising thermoelectric materials. However, the disadvantage is that the thermal conductivities of the two materials are relatively high according to the few available experiments; meanwhile, the detailed mechanism of the intrinsic thermal conductivity has not been studied yet. Based on the density functional theory and the Boltzmann transport theory, we present here the theoretical study of the intrinsic lattice thermal conductivities of ZrTe5 and HfTe5, which are found to be in the range of 5-8 W/mṡK at room temperature and well consistent with the experimental results. We also find that the thermal conductivities of the two materials are anisotropic, which are mainly caused by their anisotropic crystal structures. Based on the detailed analysis, we proposed that the thermal conductivities of the two materials could possibly be reduced by different kinds of structural engineering at the atomic and mesoscopic scales, such as alloying, doping, nano-structuring, and polycrystalline structuring, which could make ZrTe5 and HfTe5 good thermoelectric materials for room temperature thermoelectric applications.
Geophysical Signitures From Hydrocarbon Contaminated Aquifers
NASA Astrophysics Data System (ADS)
Abbas, M.; Jardani, A.
2015-12-01
The task of delineating the contamination plumes as well as studying their impact on the soil and groundwater biogeochemical properties is needed to support the remediation efforts and plans. Geophysical methods including electrical resistivity tomography (ERT), induced polarization (IP), ground penetrating radar (GPR), and self-potential (SP) have been previously used to characterize contaminant plumes and investigate their impact on soil and groundwater properties (Atekwana et al., 2002, 2004; Benson et al., 1997; Campbell et al., 1996; Cassidy et al., 2001; Revil et al., 2003; Werkema et al., 2000). Our objective was to: estimate the hydrocarbon contamination extent in a contaminated site in northern France, and to adverse the effects of the oil spill on the groundwater properties. We aim to find a good combination of non-intrusive and low cost methods which we can use to follow the bio-remediation process, which is planned to proceed next year. We used four geophysical methods including electrical resistivity tomography, IP, GPR, and SP. The geophysical data was compared to geochemical ones obtained from 30 boreholes installed in the site during the geophysical surveys. Our results have shown: low electrical resistivity values; high chargeability values; negative SP anomalies; and attenuated GPR reflections coincident with groundwater contamination. Laboratory and field geochemical measurements have demonstrated increased groundwater electrical conductivity and increased microbial activity associated with hydrocarbon contamination of groundwater. Our study results support the conductive model suggested by studies such as Sauck (2000) and Atekwana et al., (2004), who suggest that biological alterations of hydrocarbon contamination can substantially modify the chemical and physical properties of the subsurface, producing a dramatic shift in the geo-electrical signature from resistive to conductive. The next stage of the research will include time lapse borehole and 3D geophysical measurements coupled to biological and chemical surface phase experiments in order to monitor the bioremediation processes.
Livesay, Ronald Jason; Mason, Brandon William; Kuhn, Michael Joseph; Rowe, Nathan Carl
2017-04-04
Disclosed are several examples of a system and method for detecting if an article is being tampered with. Included is a covering made of a substrate that is coated with a layer of an electrically conductive material that forms an electrically conductive surface having an electrical resistance. The covering is configured to at least partially encapsulate the article such that the article cannot be tampered with, without modifying the electrical resistance of the electrically conductive surface of the covering. A sensing device is affixed to the electrically conductive surface of the covering and the sensing device monitors the condition of the covering by producing a signal that is indicative of the electrical resistance of the electrically conductive surface of the covering. A measured electrical resistance that differs from a nominal electrical resistance is indicative of a covering that is being tampered with and an alert is communicated to an observer.
Livesay, Ronald Jason; Mason, Brandon William; Kuhn, Michael Joseph; Rowe, Nathan Carl
2015-10-13
Disclosed are several examples of a system and method for detecting if an article is being tampered with. Included is a covering made of a substrate that is coated with a layer of an electrically conductive material that forms an electrically conductive surface having an electrical resistance. The covering is configured to at least partially encapsulate the article such that the article cannot be tampered with, without modifying the electrical resistance of the electrically conductive surface of the covering. A sensing device is affixed to the electrically conductive surface of the covering and the sensing device monitors the condition of the covering by producing a signal that is indicative of the electrical resistance of the electrically conductive surface of the covering. A measured electrical resistance that differs from a nominal electrical resistance is indicative of a covering that is being tampered with and an alert is communicated to an observer.
An analysis of electrical conductivity model in saturated porous media
NASA Astrophysics Data System (ADS)
Cai, J.; Wei, W.; Qin, X.; Hu, X.
2017-12-01
Electrical conductivity of saturated porous media has numerous applications in many fields. In recent years, the number of theoretical methods to model electrical conductivity of complex porous media has dramatically increased. Nevertheless, the process of modeling the spatial conductivity distributed function continues to present challenges when these models used in reservoirs, particularly in porous media with strongly heterogeneous pore-space distributions. Many experiments show a more complex distribution of electrical conductivity data than the predictions derived from the experiential model. Studies have observed anomalously-high electrical conductivity of some low-porosity (tight) formations compared to more- porous reservoir rocks, which indicates current flow in porous media is complex and difficult to predict. Moreover, the change of electrical conductivity depends not only on the pore volume fraction but also on several geometric properties of the more extensive pore network, including pore interconnection and tortuosity. In our understanding of electrical conductivity models in porous media, we study the applicability of several well-known methods/theories to electrical characteristics of porous rocks as a function of pore volume, tortuosity and interconnection, to estimate electrical conductivity based on the micro-geometrical properties of rocks. We analyze the state of the art of scientific knowledge and practice for modeling porous structural systems, with the purpose of identifying current limitations and defining a blueprint for future modeling advances. We compare conceptual descriptions of electrical current flow processes in pore space considering several distinct modeling approaches. Approaches to obtaining more reasonable electrical conductivity models are discussed. Experiments suggest more complex relationships between electrical conductivity and porosity than experiential models, particularly in low-porosity formations. However, the available theoretical models combined with simulations do provide insight to how microscale physics affects macroscale electrical conductivity in porous media.
Murray, Matthew M.; Wilfong, Dennis H.; Lomax, Ralph E.
1998-01-01
An electrical cable for connecting transient voltage surge suppressers to ectrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation.
Investigation of electrically conducting yarns for use in textile actuators
NASA Astrophysics Data System (ADS)
Martinez, Jose G.; Richter, Klaus; Persson, Nils-Krister; Jager, Edwin W. H.
2018-07-01
Textile actuators are an emerging technology to develop biomimetic actuators with synergetic actuation. They are composed of a passive fabric coated with an electroactive polymer providing with mechanical motion. Here we used different conducting yarns (polyamide + carbon, silicon + carbon, polyamide + silver coated, cellulose + carbon, polyester + 2 × INOX 50 μm, polyester + 2 × Cu/Sn and polyester + gold coated) to develop such textile actuators. It was possible to coat them through direct electrochemical methods, which should provide with an easier and more cost-effective fabrication process. The conductivity and the electrochemical properties of the yarns were sufficient to allow the electropolymerization of the conducting polymer polypyrrole on the yarns. The electropolymerization was carried out and both the linear and angular the actuation of the yarns was investigated. These yarns may be incorporated into textile actuators for assistive prosthetic devices easier and cheaper to get and at the same time with good mechanical performance are envisaged.
Conducting Polymer Coated Graphene Oxide Electrode for Rechargeable Lithium-Sulfur Batteries.
Lee, Hee-Yoon; Jung, Yongju; Kim, Seok
2016-03-01
Poly(diallyldimethylammonium chloride) (PDDA)/graphene oxide-sulfur composites were prepared by a chemical oxidation method. For the PDDA-GO composites, conducting polymers (PDDA) were coated on the surface of GO sheets. PDDA-GO composites could be expected to increase electrical conductivity and protect restacking of graphene sheets. And then, sulfur particles were dispersed into the PDDA-GO composites by mixing in the CS2 solvent. It is expected the PDDA-GO/S composites show the limited release of polysulfides due to the fact that it can provide high surface area, because conducting polymer can be used as spacer between graphene sheets. Electrochemical performances of prepared composites were characterized by cyclic voltammetry (CV). The PDDA-GO/S composites showed a high discharge capacity of 1102 mAh g(-1) at the first cycle and a good cycle retention of 60% after 100 cycles.
Carbon nanotube modified probes for stable and high sensitivity conductive atomic force microscopy
NASA Astrophysics Data System (ADS)
Slattery, Ashley D.; Shearer, Cameron J.; Gibson, Christopher T.; Shapter, Joseph G.; Lewis, David A.; Stapleton, Andrew J.
2016-11-01
Conductive atomic force microscopy (C-AFM) is used to characterise the nanoscale electrical properties of many conducting and semiconducting materials. We investigate the effect of single walled carbon nanotube (SWCNT) modification of commercial Pt/Ir cantilevers on the sensitivity and image stability during C-AFM imaging. Pt/Ir cantilevers were modified with small bundles of SWCNTs via a manual attachment procedure and secured with a conductive platinum pad. AFM images of topography and current were collected from heterogeneous polymer and nanomaterial samples using both standard and SWCNT modified cantilevers. Typically, achieving a good current image comes at the cost of reduced feedback stability. In part, this is due to electrostatic interaction and increased tip wear upon applying a bias between the tip and the sample. The SWCNT modified tips displayed superior current sensitivity and feedback stability which, combined with superior wear resistance of SWCNTs, is a significant advancement for C-AFM.
NASA Astrophysics Data System (ADS)
Aytug, T.; Paranthaman, M.; Kang, B. W.; Sathyamurthy, S.; Goyal, A.; Christen, D. K.
2001-10-01
Coated conductor applications in power technologies require stabilization of the high-temperature superconducting (HTS) layers against thermal runaway. Conductive La0.7Sr0.3MnO3 (LSMO) has been epitaxially grown on biaxially textured Ni substrates as a single buffer layer. The subsequent epitaxial growth of YBa2Cu3O7-δ (YBCO) coatings by pulsed laser deposition yielded self-field critical current densities (Jc) of 0.5×106A/cm2 at 77 K, and provided good electrical connectivity over the entire structure (HTS+conductive-buffer+metal substrate). Property characterizations of YBCO/LSMO/Ni architecture revealed excellent crystallographic and morphological properties. These results have demonstrated that LSMO, used as a single, conductive buffer layer, may offer potential for use in fully stabilized YBCO coated conductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melo, B. M. G.; Graça, M. P. F., E-mail: mpfg@ua.pt; Prezas, P. R.
2016-08-07
In this work, phosphate-borate based glasses with molar composition 20.7P{sub 2}O{sub 5}–17.2Nb{sub 2}O{sub 5}–13.8WO{sub 3}–34.5A{sub 2}O–13.8B{sub 2}O{sub 3}, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric,more » and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σ{sub ac} and σ{sub dc}, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz–1 MHz.« less
Song, Jinhui; Zhou, Jun; Wang, Zhong Lin
2006-08-01
This paper presents the experimental observation of piezoelectric generation from a single ZnO wire/belt for illustrating a fundamental process of converting mechanical energy into electricity at nanoscale. By deflecting a wire/belt using a conductive atomic force microscope tip in contact mode, the energy is first created by the deflection force and stored by piezoelectric potential, and later converts into piezoelectric energy. The mechanism of the generator is a result of coupled semiconducting and piezoelectric properties of ZnO. A piezoelectric effect is required to create electric potential of ionic charges from elastic deformation; semiconducting property is necessary to separate and maintain the charges and then release the potential via the rectifying behavior of the Schottky barrier at the metal-ZnO interface, which serves as a switch in the entire process. The good conductivity of ZnO is rather unique because it makes the current flow possible. This paper demonstrates a principle for harvesting energy from the environment. The technology has the potential of converting mechanical movement energy (such as body movement, muscle stretching, blood pressure), vibration energy (such as acoustic/ultrasonic wave), and hydraulic energy (such as flow of body fluid, blood flow, contraction of blood vessels) into electric energy that may be sufficient for self-powering nanodevices and nanosystems in applications such as in situ, real-time, and implantable biosensing, biomedical monitoring, and biodetection.
Apparatus for Use in Determining Surface Conductivity at Microwave Frequencies
NASA Technical Reports Server (NTRS)
Hearn, Chase P. (Inventor)
1995-01-01
An apparatus is provided for use in determining surface conductivity of a flat or shaped conductive material at microwave frequencies. A plate has an electrically conductive surface with first and second holes passing through the plate. An electrically conductive material under test (MUT) is maintained in a spaced apart relationship with the electrically conductive surface of the plate by one or more nonconductive spacers. A first coupling loop is electrically shielded within the first hole while a second coupling loop is electrically shielded within the second hole. A dielectric resonator element is positioned between the first and second coupling loops, while also being positioned closer to the MUT than the electrically conductive surface of the plate. Microwave energy at an operating frequency f is supplied from a signal source to the first coupling loop while microwave energy received at the second coupling loop is measured. The apparatus is capable of measuring the Q-factor of the dielectric resonator situated in the 'cavity' existing between the electrically conductive surface of the plate and the MUT. Surface conductivity of the electrically conductive surface can be determined via interpolation using: 1 ) the measured Q-factor with the electrically conductive surface in place, and 2) the measured Q-factor when the MUT is replaced with reference standards having known surface conductivities.
Conductive Polymeric Binder for Lithium-Ion Battery Anode
NASA Astrophysics Data System (ADS)
Gao, Tianxiang
Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle is performed under current of 0.1 C.
Al-/Ga-Doped ZnO Window Layers for Highly Efficient Cu₂ZnSn(S,Se)₄ Thin Film Solar Cells.
Seo, Se Won; Seo, Jung Woo; Kim, Donghwan; Cheon, Ki-Beom; Lee, Doh-Kwon; Kim, Jin Young
2018-09-01
The successful use of Al-/Ga-doped ZnO (AGZO) thin films as a transparent conducting oxide (TCO) layer of a Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cell is demonstrated. The AGZO thin films were prepared by radio frequency (RF) sputtering. The structural, crystallographic, electrical, and optical properties of the AGZO thin films were systematically investigated. The photovoltaic properties of CZTSSe thin film solar cells incorporating the AGZO-based TCO layer were also reported. It has been found that the RF power and substrate temperature of the AGZO thin film are important factors determining the electrical, optical, and structural properties. The optimization process involving the RF power and the substrate temperature leads to good electrical and optical transmittance of the AGZO thin films. Finally, the CZTSSe solar cell with the AGZO TCO layer demonstrated a high conversion efficiency of 9.68%, which is higher than that of the conventional AZO counterpart by 12%.
Is hexagonal boron nitride always good as a substrate for carbon nanotube-based devices?
Kang, Seoung-Hun; Kim, Gunn; Kwon, Young-Kyun
2015-02-21
Hexagonal boron nitride sheets have been noted especially for their enhanced properties as substrates for sp(2) carbon-based nanodevices. To evaluate whether such enhanced properties would be retained under various realistic conditions, we investigate the structural and electronic properties of semiconducting carbon nanotubes on perfect and defective hexagonal boron nitride sheets under an external electric field as well as with a metal impurity, using density functional theory. We verify that the use of a perfect hexagonal boron nitride sheet as a substrate indeed improves the device performances of carbon nanotubes, compared with the use of conventional substrates such as SiO2. We further show that even the hexagonal boron nitride with some defects can show better performance as a substrate. Our calculations, on the other hand, also suggest that some defective boron nitride layers with a monovacancy and a nickel impurity could bring about poor device behavior since the imperfections impair electrical conductivity due to residual scattering under an applied electric field.
Said, Zafar; Allagui, Anis; Abdelkareem, Mohammad Ali; Alawadhi, Hussain; Elsaid, Khaled
2018-06-15
Carbon-based nanofluids are viewed as promising thermal fluids for heat transfer applications. However, other properties, such as electrical conductivity and electrochemical behavior, are usually overlooked and rarely investigated despite their importance for the overall performance characterization of a given application. In this study, we synthesized PAN-based carbon nanofibers (CNF) by electrospinning, and characterized them using electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and thermogravimetric analysis. Thermoelectrical and electrochemical measurements were carried out on nanofluids. We found that, although CNF nanofluids exhibit good thermal and electrical properties with a negligible corrosive effect, the suspensions tend to sediment within a few days. However, acid treatment of CNF (F-CNF), which resulted in the shortening of the fibers and the appearance of surface-oxygenated species, made F-CNF-based nanofluids exhibit superior stability in water that extended for more than 90 days, with consistent and superior thermal and electrical properties. Copyright © 2018 Elsevier Inc. All rights reserved.
Application of the self-diagnosis composite into concrete structure
NASA Astrophysics Data System (ADS)
Matsubara, Hideaki; Shin, Soon-Gi; Okuhara, Yoshiki; Nomura, Hiroshi; Yanagida, Hiroaki
2001-04-01
The function and performance of the self-diagnosis composites embedded in mortar/concrete blocks and concrete piles were investigated by bending tests and electrical resistance measurements. Carbon powder (CP) and carbon fiber (CF) were introduced in glass fiber reinforced plastics composites to obtain electrical conductivity. The CP composite has commonly good performances in various bending tests of block and pile specimens, comparing to the CF composite. The electrical resistance of the CP composite increases in a small strain to response remarkably micro-crack formation at about 200 (mu) strain and to detect well to smaller deformations before the crack formation. The CP composite possesses a continuous resistance change up to a large strain level near the final fracture of concrete structures reinforced by steel bars. The cyclic bending tests showed that the micro crack closed at unloading state was able to be evaluated from the measurement of residual resistance. It has been concluded that the self- diagnosis composite is fairly useful for the measurement of damage and fracture in concrete blocks and piles.
NASA Astrophysics Data System (ADS)
García, H.; González, M. B.; Mallol, M. M.; Castán, H.; Dueñas, S.; Campabadal, F.; Acero, M. C.; Sambuco Salomone, L.; Faigón, A.
2018-04-01
The γ-radiation effects on the electrical characteristics of metal-insulator-semiconductor capacitors based on HfO2, and on the resistive switching characteristics of the structures have been studied. The HfO2 was grown directly on silicon substrates by atomic layer deposition. Some of the capacitors were submitted to a γ ray irradiation using three different doses (16 kGy, 96 kGy and 386 kGy). We studied the electrical characteristics in the pristine state of the capacitors. The radiation increased the interfacial state densities at the insulator/semiconductor interface, and the slow traps inside the insulator near the interface. However, the leakage current is not increased by the irradiation, and the conduction mechanism is Poole-Frenkel for all the samples. The switching characteristics were also studied, and no significant differences were obtained in the performance of the devices after having been irradiated, indicating that the fabricated capacitors present good radiation hardness for its use as a RS element.
Low lattice thermal conductivity and good thermoelectric performance of cinnabar
NASA Astrophysics Data System (ADS)
Zhao, Yinchang; Dai, Zhenhong; Lian, Chao; Zeng, Shuming; Li, Geng; Ni, Jun; Meng, Sheng
2017-11-01
Based on the combination of first-principles calculations, Boltzmann transport equation, and electron-phonon interaction (EPI), we investigate the thermal and electronic transport properties of crystalline cinnabar (α -HgS ). The calculated lattice thermal conductivity κL is remarkably low, e.g., 0.60 Wm-1K-1 at 300 K , which is about 30 % of the value for the typical thermoelectric material PbTe. Via taking fully into account the k dependence of the electron relaxation time computed from the EPI matrix, the accurate numerical results of thermopower S , electrical conductivity σ , and electronic thermal conductivity κE are obtained. The calculated power factor S2σ is relatively high while the value of κE is negligible, which, together with the fairly low κL, leads to a good thermoelectric performance in the n -type doped α -HgS , with the figure of merit z T even exceeding 1.4. Our analyses reveal that (i) the large weighted phase space and the quite low phonon group velocity result in the low κL, (ii) the presence of flat band around the Fermi level combined with the large band gap causes the high S , and (iii) the small electron linewidths of the conduction band lead to a large relaxation time and thus a relatively high σ . These results support that α -HgS is a potential candidate for thermoelectric applications.
NASA Astrophysics Data System (ADS)
Wang, Shunguo; Kalscheuer, Thomas; Bastani, Mehrdad; Malehmir, Alireza; Pedersen, Laust B.; Dahlin, Torleif; Meqbel, Naser
2018-04-01
The electrical resistivity tomography (ERT) method provides moderately good constraints for both conductive and resistive structures, while the radio-magnetotelluric (RMT) method is well suited to constrain conductive structures. Additionally, RMT and ERT data may have different target coverage and are differently affected by various types of noise. Hence, joint inversion of RMT and ERT data sets may provide a better constrained model as compared to individual inversions. In this study, joint inversion of boat-towed RMT and lake-floor ERT data has for the first time been formulated and implemented. The implementation was tested on both synthetic and field data sets incorporating RMT transverse electrical mode and ERT data. Results from synthetic data demonstrate that the joint inversion yields models with better resolution compared with individual inversions. A case study from an area adjacent to the Äspö Hard Rock Laboratory (HRL) in southeastern Sweden was used to demonstrate the implementation of the method. A 790-m-long profile comprising lake-floor ERT and boat-towed RMT data combined with partial land data was used for this purpose. Joint inversions with and without weighting (applied to different data sets, vertical and horizontal model smoothness) as well as constrained joint inversions incorporating bathymetry data and water resistivity measurements were performed. The resulting models delineate subsurface structures such as a major northeasterly directed fracture system, which is observed in the HRL facility underground and confirmed by boreholes. A previously uncertain weakness zone, likely a fracture system in the northern part of the profile, is inferred in this study. The fractures are highly saturated with saline water, which make them good targets of resistivity-based geophysical methods. Nevertheless, conductive sediments overlain by the lake water add further difficulty to resolve these deep fracture zones. Therefore, the joint inversion of RMT and ERT data particularly helps to improve the resolution of the resistivity models in areas where the profile traverses shallow water and land sections. Our modification of the joint inversion of RMT and ERT data improves the study of geological units underneath shallow water bodies where underground infrastructures are planned. Thus, it allows better planning and mitigating the risks and costs associated with conductive weakness zones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Hyun Woo; Kim, Jeongmin; Sung, Bong June, E-mail: jjpark@chonnam.ac.kr, E-mail: bjsung@sogang.ac.kr
We investigate how the electrical conductance of microfibers (made of polymers and conductive nanofillers) decreases upon uniaxial deformation by performing both experiments and simulations. Even though various elastic conductors have been developed due to promising applications for deformable electronic devices, the mechanism at a molecular level for electrical conductance change has remained elusive. Previous studies proposed that the decrease in electrical conductance would result from changes in either distances or contact numbers between conductive fillers. In this work, we prepare microfibers of single walled carbon nanotubes (SWCNTs)/polyvinyl alcohol composites and investigate the electrical conductance and the orientation of SWCNTs uponmore » uniaxial deformation. We also perform extensive Monte Carlo simulations, which reproduce experimental results for the relative decrease in conductance and the SWCNTs orientation. We investigate the electrical networks of SWCNTs in microfibers and find that the decrease in the electrical conductance upon uniaxial deformation should be attributed to a subtle change in the topological structure of the electrical network.« less
Campbell, Jeremy B [Torrance, CA; Newson, Steve [Redondo Beach, CA
2011-11-15
A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.
Direct writing of flexible electronics through room temperature liquid metal ink.
Gao, Yunxia; Li, Haiyan; Liu, Jing
2012-01-01
Conventional approaches of making a flexible circuit are generally complex, environment unfriendly, time and energy consuming, and thus expensive. Here, we describe for the first time the method of using high-performance GaIn(10)-based electrical ink, a significantly neglected room temperature liquid metal, as both electrical conductors and interconnects, for directly writing flexible electronics via a rather easy going and cost effective way. The new generation electric ink was made and its wettability with various materials was modified to be easily written on a group of either soft or rigid substrates such as epoxy resin board, glass, plastic, silica gel, paper, cotton, textiles, cloth and fiber etc. Conceptual experiments were performed to demonstrate and evaluate the capability of directly writing the electrical circuits via the invented metal ink. Mechanisms involved were interpreted through a series of fundamental measurements. The electrical resistivity of the fluid like GaIn(10)-based material was measured as 34.5 µΩ·cm at 297 K by four point probe method and increased with addition of the oxygen quantity, which indicates it as an excellent metal ink. The conductive line can be written with features that are approximately 10 µm thick. Several functional devices such as a light emitting diode (LED) array showing designed lighting patterns and electrical fan were made to work by directly writing the liquid metal on the specific flexible substrates. And satisfactory performances were obtained. The present method opens the way to directly and quickly writing flexible electronics which can be as simple as signing a name or drawing a picture on the paper. The unique merit of the GaIn(10)-based liquid metal ink lies in its low melting temperature, well controlled wettability, high electrical conductivity and good biocompability. The new electronics writing strategy and basic principle has generalized purpose and can be extended to more industrial areas, even daily life.
Direct Writing of Flexible Electronics through Room Temperature Liquid Metal Ink
Gao, Yunxia; Li, Haiyan; Liu, Jing
2012-01-01
Background Conventional approaches of making a flexible circuit are generally complex, environment unfriendly, time and energy consuming, and thus expensive. Here, we describe for the first time the method of using high-performance GaIn10-based electrical ink, a significantly neglected room temperature liquid metal, as both electrical conductors and interconnects, for directly writing flexible electronics via a rather easy going and cost effective way. Methods The new generation electric ink was made and its wettability with various materials was modified to be easily written on a group of either soft or rigid substrates such as epoxy resin board, glass, plastic, silica gel, paper, cotton, textiles, cloth and fiber etc. Conceptual experiments were performed to demonstrate and evaluate the capability of directly writing the electrical circuits via the invented metal ink. Mechanisms involved were interpreted through a series of fundamental measurements. Results The electrical resistivity of the fluid like GaIn10-based material was measured as 34.5 µΩ·cm at 297 K by four point probe method and increased with addition of the oxygen quantity, which indicates it as an excellent metal ink. The conductive line can be written with features that are approximately 10 µm thick. Several functional devices such as a light emitting diode (LED) array showing designed lighting patterns and electrical fan were made to work by directly writing the liquid metal on the specific flexible substrates. And satisfactory performances were obtained. Conclusions The present method opens the way to directly and quickly writing flexible electronics which can be as simple as signing a name or drawing a picture on the paper. The unique merit of the GaIn10-based liquid metal ink lies in its low melting temperature, well controlled wettability, high electrical conductivity and good biocompability. The new electronics writing strategy and basic principle has generalized purpose and can be extended to more industrial areas, even daily life. PMID:23029044
Electrically-conductive proppant and methods for making and using same
Cannan, Chad; Roper, Todd; Savoy, Steve; Mitchell, Daniel R.
2016-09-06
Electrically-conductive sintered, substantially round and spherical particles and methods for producing such electrically-conductive sintered, substantially round and spherical particles from an alumina-containing raw material. Methods for using such electrically-conductive sintered, substantially round and spherical particles in hydraulic fracturing operations.
Bernuy-Lopez, Carlos; Rioja-Monllor, Laura; Nakamura, Takashi; Ricote, Sandrine; O’Hayre, Ryan; Amezawa, Koji; Einarsrud, Mari-Ann
2018-01-01
The effect of A-site cation ordering on the cathode performance and chemical stability of A-site cation ordered LaBaCo2O5+δ and disordered La0.5Ba0.5CoO3−δ materials are reported. Symmetric half-cells with a proton-conducting BaZr0.9Y0.1O3−δ electrolyte were prepared by ceramic processing, and good chemical compatibility of the materials was demonstrated. Both A-site ordered LaBaCo2O5+δ and A-site disordered La0.5Ba0.5CoO3−δ yield excellent cathode performance with Area Specific Resistances as low as 7.4 and 11.5 Ω·cm2 at 400 °C and 0.16 and 0.32 Ω·cm2 at 600 °C in 3% humidified synthetic air respectively. The oxygen vacancy concentration, electrical conductivity, basicity of cations and crystal structure were evaluated to rationalize the electrochemical performance of the two materials. The combination of high-basicity elements and high electrical conductivity as well as sufficient oxygen vacancy concentration explains the excellent performance of both LaBaCo2O5+δ and La0.5Ba0.5CoO3−δ materials at high temperatures. At lower temperatures, oxygen-deficiency in both materials is greatly reduced, leading to decreased performance despite the high basicity and electrical conductivity. A-site cation ordering leads to a higher oxygen vacancy concentration, which explains the better performance of LaBaCo2O5+δ. Finally, the more pronounced oxygen deficiency of the cation ordered polymorph and the lower chemical stability at reducing conditions were confirmed by coulometric titration. PMID:29373541
NASA Astrophysics Data System (ADS)
Mesrar, L.; Lakrim, M.; Akdim, M.; Benmar, A.; –Sbai, N. ES; Jabrane, R.
2017-03-01
The marl’s minerals are abundant untreated material in several areas worldwide. They are often under-valued for human use. However, due to demands of the society in terms of sustainability and energy saving, the valuation of these resources to develop new materials, most environmentally friendly has become a concern both scientific and industrial aims. Ceramics are the growing research to obtain materials with good chemical stability and good hot properties [1]. The balance between these properties and industrial requirements allowed clay materials uses at craft departure (pottery, tile), to progress towards high-tech applications such as electrical and thermal insulation, electric candle, sound insulation [2]. The behavior of the doping (Al2O3), which has more scientific research interest, has been a renewed interest since 1980 [3] with the emergence of alumina very high purity. Miocene marl is one of the widespread geological substrates in Fez-Taza vicinity (Central Morocco). In this study we proceed by a physicochemical characterization of the marl after doping with metal oxides, by various analytical techniques, namely the X-ray fluorescence, the mineralogical analysis and geotechnical test. The doping of these marl was conducted by solid oxides of Al2O3 at different percentages (5%, 10% and 15%). The results of chemical analysis showed the Al2O3 increase during doping. So, the mineralogical analysis of doped clays shows peaks’ increases for kaolin. The marl doped acquired the property of their good plasticity and good mechanical resistance compared to crass marl.
Formation of NiFe2O4/Expanded Graphite Nanocomposites with Superior Lithium Storage Properties
NASA Astrophysics Data System (ADS)
Xiao, Yinglin; Zai, Jiantao; Tian, Bingbing; Qian, Xuefeng
2017-07-01
A NiFe2O4/expanded graphite (NiFe2O4/EG) nanocomposite was prepared via a simple and inexpensive synthesis method. Its lithium storage properties were studied with the goal of applying it as an anode in a lithium-ion battery. The obtained nanocomposite exhibited a good cycle performance, with a capacity of 601 mAh g-1 at a current of 1 A g-1 after 800 cycles. This good performance may be attributed to the enhanced electrical conductivity and layered structure of the EG. Its high mechanical strength could postpone the disintegration of the nanocomposite structure, efficiently accommodate volume changes in the NiFe2O4-based anodes, and alleviate aggregation of NiFe2O4 nanoparticles.
An equivalent circuit for small atrial trabeculae of frog.
Jakobsson, E; Barr, L; Connor, J A
1975-01-01
An equivalent electrical circuit has been constructed for small atrial trabecula of frog in a double sucrose gap voltage clamp apparatus. The basic strategy in constructing the circuit was to derive the distribution of membrane capacitance and extracellular resistance from the preparation's response to small voltage displacements near the resting condition, when the membrane conductance is presumably quite low. Then standard Hodgkin-Huxley channels were placed in parallel with the capacitance and the results of voltage clamp experiments were simulated. The results suggest that the membranes of the preparation cannot in fact be clamped near the control voltage nor can the ionic currents be measured directly with reasonable accuracy by axon standards. It may or may not be a realizable goal in the future to define the preparation's electrical behavior well enough to permit the ultimate quantitative description of the membrane's specific ion conductances. The result of this paper suggest that if this goal is achieved using the double sucrose gap voltage clamp, it will be by a detailed quantitative accounting for substantial irreducible errors in voltage control, rather than by experimental achievement of good voltage control. PMID:1203441
Yin, Feng; Ye, Dong; Zhu, Chen; Qiu, Lei; Huang, YongAn
2017-01-01
Harmonious developments of electrical and mechanical performances are crucial for stretchable sensors in structural health monitoring (SHM) of flexible aircraft such as aerostats and morphing aircrafts. In this study, we prepared a highly durable ternary conductive nanocomposite made of polydimethylsiloxane (PDMS), carbon black (CB) and multi-walled carbon nanotubes (MWCNTs) to fabricate stretchable strain sensors. The nanocomposite has excellent electrical and mechanical properties by intensively optimizing the weight percentage of conducting fillers as well as the ratio of PDMS pre-polymer and curing agent. It was found that the nanocomposite with homogeneous hybrid filler of 1.75 wt % CB and 3 wt % MWCNTs exhibits a highly strain sensitive characteristics of good linearity, high gauge factor (GF ~ 12.25) and excellent durability over 105 stretching-releasing cycles under a tensile strain up to 25% when the PDMS was prepared at the ratio of 12.5:1. A strain measurement of crack detection for the aerostats surface was also employed, demonstrating a great potential of such ternary nanocomposite used as stretchable strain sensor in SHM. PMID:29156620
Decreasing electrical resistivity of silver along the melting boundary up to 5 GPa
NASA Astrophysics Data System (ADS)
Littleton, Joshua A. H.; Secco, Richard A.; Yong, Wenjun
2018-04-01
The electrical resistivity of Ag was experimentally measured at high pressures up to 5 GPa and at temperatures up to ∼300 K above melting. The resistivity decreased as a function of pressure and increased as a function of temperature as expected and is in very good agreement with 1 atm data. Observed melting temperatures at high pressures also agree well with previous experimental and theoretical studies. The main finding of this study is that resistivity of Ag decreases along the pressure- and temperature-dependent melting boundary, in conflict with prediction of resistivity invariance. This result is discussed in terms of the dominant contribution of the increasing energy separation between the Fermi level and 4d-band as a function of pressure. Calculated from the resistivity using the Wiedemann-Franz law, the electronic thermal conductivity increased as a function of pressure and decreased as a function of temperature as expected. The decrease in the high pressure thermal conductivity in the liquid phase as a function of temperature contrasts with the behavior of the 1 atm data.
NASA Astrophysics Data System (ADS)
Marom, Rotem; Ziv, Baruch; Banerjee, Anjan; Cahana, Beni; Luski, Shalom; Aurbach, Doron
2015-11-01
Addition of various carbon materials into lead-acid battery electrodes was studied and examined in order to enhance the power density, improve cycle life and stability of both negative and positive electrodes in lead acid batteries. High electrical-conductivity, high-aspect ratio, good mechanical properties and chemical stability of multi-wall carbon nanotubes (MWCNT, unmodified and mofified with carboxylic groups) position them as viable additives to enhance the electrodes' electrical conductivity, to mitigate the well-known sulfation failure mechanism and improve the physical integration of the electrodes. In this study, we investigated the incorporation-effect of carbon nanotubes (CNT) to the positive and the negative active materials in lead-acid battery prototypes in a configuration of flooded cells, as well as gelled cells. The cells were tested at 25% and 30% depth-of-discharge (DOD). The positive effect of the carbon nanotubes (CNT) utilization as additives to both positive and negative electrodes of lead-acid batteries was clearly demonstrated and is explained herein based on microscopic studies.
NASA Astrophysics Data System (ADS)
Adelifard, Mehdi; Darudi, Hosein
2016-07-01
There is a great interest in the use of graphene sheets in thin film solar cells with low-cost and good-optoelectronic properties. Here, the production of absorbent conductive reduced graphene oxide (RGO) thin films was investigated. RGO thin films were prepared from spray-coated graphene oxide (GO) layers at various substrate temperature followed by a simple hydrazine-reducing method. The structural, morphological, optical, and electrical characterizations of graphene oxide (GO) and RGO thin films were investigated. X-ray diffraction analysis showed a phase shift from GO to RGO due to hydrazine treatment, in agreement with the FTIR spectra of the layers. FESEM images clearly exhibited continuous films resulting from the overlap of graphene nanosheets. The produced low-cost thin films had high absorption coefficient up to 1.0 × 105 cm-1, electrical resistance as low as 0.9 kΩ/sq, and effective optical band gap of about 1.50 eV, close to the optimum value for solar conversion. The conductive absorbent properties of the reduced graphene oxide thin films would be useful to develop photovoltaic cells.
NASA Astrophysics Data System (ADS)
Wang, Cunguo; Wang, Rongshun
2000-12-01
Based on energy band theory of solid states, extended Hückel molecular orbital methods (EHMO/CO) were used to calculate the two-dimensional (2D) energy band structures of highly oriented trans-polyacetylene (PA) undoped and doped with n-type dopant (Li, Na, K). The band gaps ( Eg) of undoped PA in directions parallel and perpendicular to the oriented direction were 1.195 and 3.040 eV, respectively. When PA was doped with n-type dopant, the corresponding band gaps Eg1 and Eg2 decreased significantly. Based on the calculated results, we could successfully account for the changes of electrical anisotropy of PA from the undoped state to the doped form. The conductivity anisotropy ratio σ1/ σ2 decreased when PA was doped with n-type dopant, because the PA chains and the dopant showed a strong interchain coupling. It was the interchain coupling that acted as a bridge between two neighboring chains, and made the charge-carrier transport easier between the interchains. The theoretical results for undoped and doped PA are in good agreement with the experiment.
Zn-Ge-Sb glass composite mixed with Ba2+ ions: a high capacity anode material for Na-ion batteries
NASA Astrophysics Data System (ADS)
Ravuri, Balaji Rao; Gandi, Suman; Chinta, Srinivasa Rao
2018-06-01
(100-x)(0.7[0.625ZnO-0.375GeO2]-0.3Sb2O3)-xBaO (x = 0, 2, 4 and 6 mol%, labeled as ZGSB x ) glass anode samples are synthesized using a high-energy ball-milling method and employed as anode material for Na-ion batteries. The results on microstructures (XRD, SEM) and electrochemical properties (constant current charge/discharge tests, CV and EIS) indicated that the optimum concentration of Ba2+ ions in the Zn-Ge-Sb glass anode network exhibits the pillaring effect, which would lead to increased electrical conductivity, minimize the volume changes, cracks and voids to boost up electrochemical performance. The ZGSB4 glass anode sample exhibits good capacity retention even after 20 cycles with 95% coulombic efficiency, which is a significant trend for a successful anode network. Electrochemical performance is considerably enhanced by reducing the cut-off voltage from 2 to 1.25 V due to the disassembly of amorphous intermediate domains, optimum volume changes and increased electrical conductivity in this ZGSB x glass network.
NASA Astrophysics Data System (ADS)
Hui, KeShi; Dai, LiDong; Li, HePing; Hu, HaiYing; Jiang, JianJun; Sun, WenQing; Zhang, Hui
2017-03-01
The electrical conductivity of pyroxene andesite was in situ measured under conditions of 1.0-2.0 GPa and 673-1073 K using a YJ-3000t multi-anvil press and Solartron-1260 Impedance/Gain-phase analyzer. Experimental results indicate that the electrical conductivities of pyroxene andesite increase with increasing temperature, and the electrical conductivities decrease with the rise of pressure, and the relationship between electrical conductivity ( σ) and temperature ( T) conforms to an Arrhenius relation within a given pressure and temperature range. When temperature rises up to 873-923 K, the electrical conductivities of pyroxene andesite abruptly increase, and the activation enthalpy increases at this range, which demonstrates that pyroxene andesite starts to dehydrate. By the virtue of the activation enthalpy (0.35-0.42 eV) and the activation volume (-6.75 ± 1.67 cm3/mole) which characterizes the electrical properties of sample after dehydration, we consider that the conduction mechanism is the small polaron conduction before and after dehydration, and that the rise of carrier concentration is the most important reason of increased electrical conductivity.
Electrically conductive cellulose composite
Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan
2010-05-04
An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.
Experimental analysis of electrical properties of composite materials
NASA Astrophysics Data System (ADS)
Fiala, L.; Rovnaník, P.; Černý, R.
2017-02-01
Dry cement-based composites are electrically non-conductive materials that behave in electric field like dielectrics. However, a relatively low amount of electrically conductive admixture significantly increases the electrical conductivity which extends applicability of such materials in practice. Therefore, they can be used as self-monitoring sensors controlling development of cracks; as sensors monitoring moisture content or when treated by an external electrical voltage as heat sources used for deicing of material's surface layer. Alkali-activated aluminosilicates (AAA), as competing materials to cement-based materials, are intensively investigated in the present due to their superior durability and environmental impact. Whereas the electrical properties of AAA are similar to those cement-based, they can be enhanced in the same way. In both cases, it is crucial to find a reasonable amount of electrically conductive phase to design composites with a sufficient electrical conductivity at an affordable price. In this paper, electrical properties of composites based on AAA binder and electrically conductive admixture represented by carbon nanotubes (CNT) are investigated. Measurements of electrical properties are carried out by means of 2-probes DC technique on nine types of samples; reference sample without the conductive phase and samples with CNT admixture in amount of 0.1 % - 2.5 % by vol. A significant increase of the electrical conductivity starts from the amount of 0.5 % CNT admixture and in case of 2.5 % CNT is about three orders of magnitude higher compared to the reference sample.
Graphite Nanoreinforcements for Aerospace Nanocomposites
NASA Technical Reports Server (NTRS)
Drzal, Lawrence T.
2005-01-01
New advances in the reinforcement of polymer matrix composite materials are critical for advancement of the aerospace industry. Reinforcements are required to have good mechanical and thermal properties, large aspect ratio, excellent adhesion to the matrix, and cost effectiveness. To fulfill the requirements, nanocomposites in which the matrix is filled with nanoscopic reinforcing phases having dimensions typically in the range of 1nm to 100 nm show considerably higher strength and modulus with far lower reinforcement content than their conventional counterparts. Graphite is a layered material whose layers have dimensions in the nanometer range and are held together by weak Van der Waals forces. Once these layers are exfoliated and dispersed in a polymer matrix as nano platelets, they have large aspect ratios. Graphite has an elastic modulus that is equal to the stiffest carbon fiber and 10-15 times that of other inorganic reinforcements, and it is also electrically and thermally conductive. If the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with excellent mechanical properties, superior thermal stability, and very good electrical and thermal properties at very low reinforcement loadings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosch, M.J.; Nielsen, E.
The Scandinavian Twin Auroral Radar Experiment (STARE) and Sweden and Britain Radar Experiment (SABRE) bistatic coherent radar systems have been employed to estimate the spatial and temporal variation of the ionospheric Joule heating in the combined geographic latitude range 63.8 deg - 72.6 deg (corrected geomagnetic latitude 61.5 deg - 69.3 deg) over Scandinavia. The 173 days of good observations with all four radars have been analyzed during the period 1982 to 1986 to estimate the average ionospheric electric field versus time and latitude. The AE dependent empirical model of ionospheric Pedersen conductivity of Spiro et al. (1982) has beenmore » used to calculate the Joule heating. The latitudinal and diurnal variation of Joule heating as well as the estimated mean hemispherical heating of 1.7 x 10(exp 11) W are in good agreement with earlier results. Average Joule heating was found to vary linearly with the AE, AU, and AL indices and as a second-order power law with Kp. The average Joule heating was also examined as a function of the direction and magnitude of the interplanetary magnetic field. It has been shown for the first time that the ionospheric electric field magnitude as well as the Joule heating increase with increasingly negative (southward) Bz.« less
Complex conductivity response to silver nanoparticles in partially saturated sand columns
NASA Astrophysics Data System (ADS)
Abdel Aal, Gamal; Atekwana, Estella A.; Werkema, D. Dale
2017-02-01
The increase in the use of nanoscale materials in consumer products has resulted in a growing concern of their potential hazard to ecosystems and public health from their accidental or intentional introduction to the environment. Key environmental, health, and safety research needs include knowledge and methods for their detection, characterization, fate, and transport. Specifically, techniques available for the direct detection and quantification of their fate and transport in the environment are limited. Their small size, high surface area to volume ratio, interfacial, and electrical properties make metallic nanoparticles, such as silver nanoparticles, good targets for detection using electrical geophysical techniques. Here we measured the complex conductivity response to silver nanoparticles in sand columns under varying moisture conditions (0-30%), nanoparticle concentrations (0-10 mg/g), lithology (presence of clay), pore water salinity (0.0275 and 0.1000 S/m), and particle size (35, 90-210 and 1500-2500 nm). Based on the Cole-Cole relaxation models we obtained the chargeability and the time constant. We demonstrate that complex conductivity can detect silver nanoparticles in porous media with the response enhanced by higher concentrations of silver nanoparticles, moisture content, ionic strength, clay content and particle diameter. Quantification of the volumetric silver nanoparticles content in the porous media can also be obtained from complex conductivity parameters based on the strong power law relationships.
NASA Astrophysics Data System (ADS)
Iijima, Yushi; Harigai, Toru; Isono, Ryo; Degai, Satoshi; Tanimoto, Tsuyoshi; Suda, Yoshiyuki; Takikawa, Hirofumi; Yasui, Haruyuki; Kaneko, Satoru; Kunitsugu, Shinsuke; Kamiya, Masao; Taki, Makoto
2018-01-01
Conductive hard-coating films have potential application as protective films for contact pins used in the electrical inspection process for integrated circuit chips. In this study, multi-layer diamond-like carbon (DLC) films were prepared as conductive hard-coating films. The multi-layer DLC films consisting of DLC and nitrogen-containing DLC (N-DLC) film were prepared using a T-shape filtered arc deposition method. Periodic DLC/N-DLC four-layer and eight-layer films had the same film thickness by changing the thickness of each layer. In the ball-on-disk test, the N-DLC mono-layer film showed the highest wear resistance; however, in the spherical polishing method, the eight-layer film showed the highest polishing resistance. The wear and polishing resistance and the aggressiveness against an opponent material of the multi-layer DLC films improved by reducing the thickness of a layer. In multi-layer films, the soft N-DLC layer between hard DLC layers is believed to function as a cushion. Thus, the tribological properties of the DLC films were improved by a multi-layered structure. The electrical resistivity of multi-layer DLC films was approximately half that of the DLC mono-layer film. Therefore, the periodic DLC/N-DLC eight-layer film is a good conductive hard-coating film.
Titanium diboride ceramic fiber composites for Hall-Heroult cells
Besmann, T.M.; Lowden, R.A.
1990-05-29
An improved cathode structure is described for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 C can be used.
Zhao, Yi; Wei, Chao; Sun, Shengnan; Wang, Luyuan Paul; Xu, Zhichuan J
2015-06-01
Reserving interior void space in the cable-like structure of multiwalled carbon nanotubes-in-SnO 2 -in-carbon layer (MWNTs@SnO 2 @C) is reported for the first time. Such a design enables the structure performing excellent for Li and Na storage, which benefit from the good electrical conductivity of MWNTs and carbon layer as well as the reserved void space to accommodate the volume changes of SnO 2 .
Silylene-diethynyl-arylene polymers having liquid crystalline properties
Barton, Thomas J.; Ding, Yiwei
1993-09-07
The present invention provides linear organosilicon polymers including diethynyl-(substituted)arylene units, and a process for their preparation. These novel polymers possess useful properties including electrical conductivity, liquid crystallinity, and/or photoluminescence. These polymers possess good solubility in organic solvents. A preferred example is produced according to the following reaction scheme. ##STR1## These polymers can be solvent-cast to yield excellent films and can also be pulled into fibers from concentrated solutions. All possess substantial crystallinity as revealed by DSC analysis and observation through a polarizing microscope, and possess liquid crystalline properties.
Electroset Technology: On the Forefront of Manufacturing
1993-01-01
cure of the can be electrically controlled and electrically accelerated. This is useful because polymers are typically not good thermal conductors...from a fluid to a gas. But polymers are not good thermal conductors so it is difficult to get the heat into them in order to make the foam. With
Method of forming an electrically conductive cellulose composite
Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Woodward, Jonathan [Ashtead, GB
2011-11-22
An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.
NASA Astrophysics Data System (ADS)
Hohimer, Cameron J.; Petrossian, Gayaneh; Ameli, Amir; Mo, Changki; Pötschke, Petra
2018-03-01
Additive manufacturing (AM) is an emerging field experiencing rapid growth. This paper presents a feasibility study of using fused-deposition modeling (FDM) techniques with smart materials to fabricate objects with sensing and actuating capabilities. The fabrication of objects with sensing typically requires the integration and assembly of multiple components. Incorporating sensing elements into a single FDM process has the potential to significantly simplify manufacturing. The integration of multiple materials, especially smart materials and those with multi-functional properties, into the FDM process is challenging and still requires further development. Previous works by the authors have demonstrated a good printability of thermoplastic polyurethane/multiwall carbon nanotubes (TPU/MWCNT) while maintaining conductivity and piezoresistive response. This research explores the effects of layer height, nozzle temperature, and bed temperature on the electrical conductivity and piezoresistive response of printed TPU/MWCNT nanocomposites. An impedance analyzer was used to determine the conductivity of printed samples under different printing conditions from 5Hz-13MHz. The samples were then tested under compression loads to measure the piezoresistive response. Results show the conductivity and piezoresistive response are only slightly affected by the print parameters and they can be largely considered independent of the print conditions within the examined ranges of print parameters. This behavior simplifies the printing process design for TPU/MWCNT complex structures. This work demonstrates the possibility of manufacturing embedded and multidirectional flexible strain sensors using an inexpensive and versatile method, with potential applications in soft robotics, flexible electronics, and health monitoring.
NASA Astrophysics Data System (ADS)
Dalla, P. T.; Alafogianni, P.; Tragazikis, I. K.; Exarchos, D. A.; Dassios, K.; Barkoula, N.-M.; Matikas, T. E.
2015-03-01
Cement-based materials have in general low electrical conductivity. Electrical conductivity is the measure of the ability of the material to resist the passage of electrical current. The addition of a conductive admixture such as Multi-Walled Carbon Nanotubes (MWCNTs) in a cement-based material increases the conductivity of the structure. This research aims to characterize nano-modified cement mortars with MWCNT reinforcements. Such nano-composites would possess smartness and multi-functionality. Multifunctional properties include electrical, thermal and piezo-electric characteristics. One of these properties, the electrical conductivity, was measured using a custom made apparatus that allows application of known D.C. voltage on the nano-composite. In this study, the influence of different surfactants/plasticizers on CNT nano-modified cement mortar specimens with various concentrations of CNTs (0.2% wt. cement CNTs - 0.8% wt. cement CNTs) on the electrical conductivity is assessed.
Raggueneau, J L; Gambini, D; Levante, A; Riche, F; de Vernejoul, P; Echter, E
1979-01-01
To evaluate the extra-cellular space, we measure the impedance (or resistance) of the extra-cellular electrolyte compartment with an alternating current at a fixed frequency of 5 kHz that can't pass through the cellular membrane. Total water is measured by the impedance to a current of 1 MHz which is conducted by extra and intra cellular hydro-electrolytic space. There is a good correlation between electrical impedance measurements and distribution of isotopic markers. The extra-cellular compartment was evaluated by diffusion of D.T.P.A. marked with 99mTc or with 111In and the total water by the diffusion of Antipyrin marked with 1,311 or 1,231. The findings indicate that there is not a significant difference between the results of the size of extra-cellular water measured by electrical impedance and D.T.P.A. diffusion (r = 0.75). Comparable results have been obtained in the determination of total water by electrical impedance measure and diffusion of Antipyrin (r = 0.90). We have also studied by method of electric impedance:--The state of hydratation in head injured patients and after pituitary surgery.--The lean body mass and hydro-electrolyte compartments in pregnancy. Electrical impedance measure seems to be a simple and reliable method to assess the hydric state of patients.
Deshmukh, Megha A; Shirsat, Mahendra D; Ramanaviciene, Almira; Ramanavicius, Arunas
2018-07-04
Current review signifies recent trends and challenges in the development of electrochemical sensors based on organic conducting polymers (OCPs), carbon nanotubes (CNTs) and their composites for the determination of trace heavy metal ions in water are reviewed. OCPs and CNTs have some suitable properties, such as good electrical, mechanical, chemical and structural properties as well as environmental stability, etc. However, some of these materials still have significant limitations toward selective and sensitive detection of trace heavy metal ions. To overcome the limitations of these individual materials, OCPs/CNTs composites were developed. Application of OCPs/CNTs composite and their novel properties for the adsorption and detection of heavy metal ions outlined and discussed in this review.
Heat transfer and evaporative cooling in the function of pot-in-pot coolers
NASA Astrophysics Data System (ADS)
Chemin, Arsène; Levy Dit Vehel, Victor; Caussarieu, Aude; Plihon, Nicolas; Taberlet, Nicolas
2018-03-01
A pot-in-pot cooler is an affordable electricity-free refrigerator which uses the latent heat of vaporization of water to maintain a low temperature inside an inner compartment. In this article, we experimentally investigate the influence of the main physical parameters in model pot-in-pot coolers. The effect of the wind on the evaporation rate of the cooling fluid is studied in model experiments while the influence of the fluid properties (thermal conductivity, specific heat, and latent heat) is elucidated using a variety of cooling fluids (water, ethanol, and ether). A model based on a simplified heat conduction equation is proposed and is shown to be in good quantitative agreement with the experimental measurements.
Electrical properties of graphene film for counter electrode in dye sensitized solar cells
NASA Astrophysics Data System (ADS)
Khalifa, Ali; Shafie, S.; Hasan, W. Z. W.; Lim, H. N.; Rusop, M.; Samaila, Buda
2018-05-01
A graphene counter electrode for dye-sensitized solar cell was prepared simply by drop casting method on a conducting FTO glass at room temperature. Raman spectroscopy was used to study the defection in the graphene films. The sheet resistance was also measured and recoded minimum value of 7.04 Ω/□ at 22.19µm thickness. The casted films show good adhesion to substrates with low defects. A DSSC based on graphene counter electrode demonstrates reasonable conversion efficiency of 2.78% with short circuit current of 7.60mA, open circuit voltage of 0.69V and fill factor of 0.52. The high conductivity and low defects render the prepared graphene dispersion for DSSCs' CE application.
Exact Thermal Transport Properties of Gray-Arsenic using Electon-Phonon Coupling
NASA Astrophysics Data System (ADS)
Kang, Seoung-Hun; Kwon, Young-Kyun
Using various theoretical methods, we investigate the thermoelectric property of gray arsenic. Thermoelectric devices that utilize the Seebeck effect convert heat flow into electrical energy. The conversion efficiency of such a device is determined by its figure of merit or ZT value, which is related to various transport coefficients, such as Seebeck coefficient and the ratio of its electrical conductivity to its thermal counterpart for given temperature. To calculate various transport coefficients and thus the ZT values of gray arsenic, we apply the Boltzmann transport theory to its electronic and phononic structures obtained by density functional theory and density functional perturbation theory together with maximally locallized Wannier functions. During this procedure, we evaluate its relaxation time accurately by explicitly considering electron-phonon coupling. Our result reveals that gray arsenic may be used for a good p-type thermoelectric devices.
Temperature dependence of electron impact ionization coefficient in bulk silicon
NASA Astrophysics Data System (ADS)
Ahmed, Mowfaq Jalil
2017-09-01
This work exhibits a modified procedure to compute the electron impact ionization coefficient of silicon for temperatures between 77 and 800K and electric fields ranging from 70 to 400 kV/cm. The ionization coefficients are computed from the electron momentum distribution function through solving the Boltzmann transport equation (BTE). The arrangement is acquired by joining Legendre polynomial extension with BTE. The resulting BTE is solved by differences-differential method using MATLAB®. Six (X) equivalent ellipsoidal and non-parabolic valleys of the conduction band of silicon are taken into account. Concerning the scattering mechanisms, the interval acoustic scattering, non-polar optical scattering and II scattering are taken into consideration. This investigation showed that the ionization coefficients decrease with increasing temperature. The overall results are in good agreement with previous experimental and theoretical reported data predominantly at high electric fields.
NASA Astrophysics Data System (ADS)
Balakrishnan, Vivekananthan; Dinh, Toan; Phan, Hoang-Phuong; Kozeki, Takahiro; Namazu, Takahiro; Viet Dao, Dzung; Nguyen, Nam-Trung
2017-07-01
This paper reports an analytical model and its validation for a released microscale heater made of 3C-SiC thin films. A model for the equivalent electrical and thermal parameters was developed for the two-layer multi-segment heat and electric conduction. The model is based on a 1D energy equation, which considers the temperature-dependent resistivity and allows for the prediction of voltage-current and power-current characteristics of the microheater. The steady-state analytical model was validated by experimental characterization. The results, in particular the nonlinearity caused by temperature dependency, are in good agreement. The low power consumption of the order of 0.18 mW at approximately 310 K indicates the potential use of the structure as thermal sensors in portable applications.
NASA Astrophysics Data System (ADS)
Kosch, M. J.; Nielsen, E.
Two bistatic VHF radar systems, STARE and SABRE, have been employed to estimate ionospheric electric fields in the geomagnetic latitude range 61.1 - 69.3° (geographic latitude range 63.8 - 72.6°) over northern Scandinavia. 173 days of good backscatter from all four radars have been analysed during the period 1982 to 1986, from which the average ionospheric divergence electric field versus latitude and time is calculated. The average magnetic field-aligned currents are computed using an AE-dependent empirical model of the ionospheric conductance. Statistical Birkeland current estimates are presented for high and low values of the Kp and AE indices as well as positive and negative orientations of the IMF B z component. The results compare very favourably to other ground-based and satellite measurements.
Electromagnetic interference filter for automotive electrical systems
Herron, Nicholas Hayden; Carlson, Douglas S; Tang, David; Korich, Mark D
2013-07-02
A filter for an automotive electrical system includes a substrate having first and second conductive members. First and second input terminals are mounted to the substrate. The first input terminal is electrically connected to the first conductive member, and the second input terminal is electrically connected to the second conductive member. A plurality of capacitors are mounted to the substrate. Each of the capacitors is electrically connected to at least one of the first and second conductive members. First and second power connectors are mounted to the substrate. The first power connector is electrically connected to the first conductive member, and the second power connector is electrically connected to the second conductive member. A common mode choke is coupled to the substrate and arranged such that the common mode choke extends around at least a portion of the substrate and the first and second conductive members.
Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder.
Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong
2016-12-22
The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service.
Investigation of the electrical characteristics of electrically conducting yarns and fabrics
NASA Astrophysics Data System (ADS)
Akbarov, R. D.; Baymuratov, B. H.; Akbarov, D. N.; Ilhamova, M.
2017-11-01
Electro-conductive textile materials and products are used presently giving solutions to the problems, related to static electricity, electromagnetic shielding and electromagnetic radiation. Thus a study of their electro-physical characteristics, character of conductivity, possibility of forecasting of electric parameters etc has a substantial value. This work shows the possibility of production electro-conducting textile materials with stable anti-static properties by introduction of electro-conducting yarn into the structure of fabrics. The results of the research, directed to the study of the electro-physical characteristics of electroconducting yarn and fabrics, are influenced by the frequent washing of polyester fabrics containing the different amounts of electro-conducting filaments in the composition. This article reviews the results of the related research, of the electrical characteristics of the yarn and fabric, of the effect of multiple water treatments on the electrical properties of polyester fabrics, containing in their composition different amounts of electrically conductive yarns.
Hu, Jinghang; Zhang, Jianchi; Fu, Zongyuan; Weng, Junhui; Chen, Weibo; Ding, Shijin; Jiang, Yulong; Zhu, Guodong
2015-03-25
Organic semiconducting/ferroelectric blend films attracted much attention due to their electrical bistability and rectification properties and thereof the potential in resistive memory devices. During film deposition from the blend solution, spinodal decomposition induced phase separation, resulting in discrete semiconducting phase whose electrical property could be modulated by the continuous ferroelectric phase. However, blend films processed by common spin coating method showed extremely rough surfaces, even comparable to the film thickness, which caused large electrical leakage and thus compromised the resistive switching performance. To improve film roughness and thus increase the productivity of these resistive devices, we developed temperature controlled spin coating technique to carefully adjust the phase separation process. Here we reported our experimental results from the blend films of ferroelectric poly(vinylidene fluoride-trifluoroethylene (P(VDF-TrFE)) and semiconducting poly(3-hexylthiophene) (P3HT). We conducted a series of experiments at various deposition temperatures ranging from 20 to 90 °C. The resulting films were characterized by AFM, SEM, and VPFM to determine their structure and roughness. Film roughness first decreased and then increased with the increase of deposition temperature. Electrical performance was also characterized and obviously improved insulating property was obtained from the films deposited between 50 and 70 °C. By temperature control during film deposition, it is convenient to efficiently fabricate ferroelectric/semiconducting blend films with good electrical bistability.
33 CFR 159.71 - Electrical controls and conductors.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Electrical controls and... Electrical controls and conductors. Electrical controls and conductors must be installed in accordance with good marine practice. Wire must be copper and must be stranded. Electrical controls and conductors must...
33 CFR 159.71 - Electrical controls and conductors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Electrical controls and... Electrical controls and conductors. Electrical controls and conductors must be installed in accordance with good marine practice. Wire must be copper and must be stranded. Electrical controls and conductors must...
33 CFR 159.71 - Electrical controls and conductors.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Electrical controls and... Electrical controls and conductors. Electrical controls and conductors must be installed in accordance with good marine practice. Wire must be copper and must be stranded. Electrical controls and conductors must...
NASA Astrophysics Data System (ADS)
Patel, Anita; Pulugundla, Gautam; Smolentsev, Sergey; Abdou, Mohamed; Bhattacharyay, Rajendraprasad
2018-04-01
Following the magnetohydrodynamic (MHD) code validation and verification proposal by Smolentsev et al. (Fusion Eng Des 100:65-72, 2015), we perform code to code and code to experiment comparisons between two computational solvers, FLUIDYN and HIMAG, which are presently considered as two of the prospective CFD tools for fusion blanket applications. In such applications, an electrically conducting breeder/coolant circulates in the blanket ducts in the presence of a strong plasma-confining magnetic field at high Hartmann numbers, it{Ha} (it{Ha}^2 is the ratio between electromagnetic and viscous forces) and high interaction parameters, it{N} (it{N} is the ratio of electromagnetic to inertial forces). The main objective of this paper is to provide the scientific and engineering community with common references to assist fusion researchers in the selection of adequate computational means to be used for blanket design and analysis. As an initial validation case, the two codes are applied to the classic problem of a laminar fully developed MHD flows in a rectangular duct. Both codes demonstrate a very good agreement with the analytical solution for it{Ha} up to 15, 000. To address the capabilities of the two codes to properly resolve complex geometry flows, we consider a case of three-dimensional developing MHD flow in a geometry comprising of a series of interconnected electrically conducting rectangular ducts. The computed electric potential distributions for two flows (Case A) it{Ha}=515, it{N}=3.2 and (Case B) it{Ha}=2059, it{N}=63.8 are in very good agreement with the experimental data, while the comparisons for the MHD pressure drop are still unsatisfactory. To better interpret the observed differences, the obtained numerical data are analyzed against earlier theoretical and experimental studies for flows that involve changes in the relative orientation between the flow and the magnetic field.
Ion-conduction and rigidity/flexibility of glasses
NASA Astrophysics Data System (ADS)
Novita, D. I.; Boolchand, P.; Malki, M.; Micoulaut, M.
2007-03-01
The (AgI)x(AgPO3)1-x solid electrolyte glass system has been examined extensively although a consensus on the increase of electrical conductivity with x data has been elusive. Here we show that the variability of the data is likely due to water contamination. Our work is on specifically prepared dry samples which display glass transition temperatures Tg(x) that are at least 50 to 100 C higher than those reported hitherto. In Raman scattering the frequency of the P-Ot bonds in PO4 tetrahedra of long chains is found to systematically red-shift with increasing x, and to display thresholds near x= xc(1) =0.095(3)(stress-transition) and x =xc(2) = 0.379(5)(rigidity transition). Calorimetric measurements show a reversibility window in the 0.09 < x < 0.38 range. Room temperature electrical conductivity, σ(x), increases with x to display thresholds near xc(1) and xc(2), and a logarithmic increase at x> xc(2) with a power-law μ = 1.78(10) that is in good agreement with theoretical predictions^1. Properties of flexibility and rigidity of backbones commonplace in covalent systems^2 is a concept that extends to solid electrolyte glasses as well. ^1Richard Zallen, Physics of Amorphous Solids ^2 P. Boolchand et al. Phil. Mag 85, 3823 (2005)
NASA Astrophysics Data System (ADS)
Kenjeres, S.
2016-09-01
In the present paper we give a concise review of some recent highlights of our research dealing with electromagnetic control of flow, mixing and heat transfer of electrically conductive or magnetized fluids. We apply a combination of state-of-art numerical (DNS and LES) and experimental (PIV and LIF) techniques to provide fundamental insights into the complex phenomena of interactions between imposed (or induced) electromagnetic fields and underlying fluid flow. Our analysis covers an extensive range of working fluids, i.e. weakly- and highly-electrically-conductive, as well as magnetized fluids. These interactions are defined through the presence of different types of body forces acting per volume of fluid. A fully closed system of governing equations containing an extended set of the Navier-Stokes and a simplified set of the Maxwell equations is presented. The four characteristic examples are selected: the electromagnetic control of self-sustained jet oscillations, the electromagnetic enhancement of heat transfer in thermal convection, the wake interactions behind magnetic obstacles and finally, the thermo-magnetic convection in differentially heated cubical enclosure. The comparative assessment between experimental and numerical results is presented. It is concluded that generally good agreement between simulations and experiments is obtained for all cases considered, proving the concept of electromagnetic modulation, which can be used in numerous technological applications.
Complex conductivity response to silver nanoparticles in ...
The increase in the use of nanoscale materials in consumer products has resulted in a growing concern of their potential hazard to ecosystems and public health from their accidental or intentional introduction to the environment. Key environmental, health, and safety research needs include knowledge and methods for their detection, characterization, fate, and transport. Specifically, techniques available for the direct detection and quantification of their fate and transport in the environment are limited. Their small size, high surface area to volume ratio, interfacial, and electrical properties make metallic nanoparticles, such as silver nanoparticles, good targets for detection using electrical geophysical techniques. Here we measured the complex conductivity response to silver nanoparticles in sand columns under varying moisture conditions (0–30%), nanoparticle concentrations (0–10 mg/g), lithology (presence of clay), pore water salinity (0.0275 and 0.1000 S/m), and particle size (35, 90–210 and 1500–2500 nm). Based on the Cole-Cole relaxation models we obtained the chargeability and the time constant. We demonstrate that complex conductivity can detect silver nanoparticles in porous media with the response enhanced by higher concentrations of silver nanoparticles, moisture content, ionic strength, clay content and particle diameter. Quantification of the volumetric silver nanoparticles content in the porous media can also be obtained from complex co
NASA Astrophysics Data System (ADS)
Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong
2015-05-01
Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin.Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00841g
NASA Astrophysics Data System (ADS)
Sukmaji, I. C.; Wijang, W. R.; Andri, S.; Bambang, K.; Teguh, T.
2017-01-01
Nowadays composite is a superior material used in automotive component due to its outstanding mechanical behavior. The sandwich polypropylene honeycomb core with carbon/glass fiber composite skin (SHCG) as based material in a floor component of electric car application is investigated in the present research. In sandwich structure form, it can absorb noise better compare with the conventional material [1]. Also in present paper, Finite Element Analysis (FEA) of SHCG as based material for floor component of the electric car is analyzed. The composite sandwich is contained with a layer uniform carbon fiber and mixing non-uniform carbon-glass fiber in upper and lower skin. Between skins of SHCG are core polypropylene honeycomb that it have good flexibility to form following dies profile. The variables of volume fraction ratio of carbon/glass fiber in SHCG skin are 20/80%, 30/70%, and 50/50%. The specimen of SHCG is tested using the universal testing machine by three points bending method refers to ASTM C393 and ASTM C365. The cross point between tensile strength to the volume fraction the mixing carbon/glass line and ratio cost line are the searched material with good mechanical performance and reasonable cost. The point is 30/70 volume fraction of carbon/glass fiber. The result of the testing experiment is become input properties of model structure sandwich in FEA simulation. FEA simulation approach is conducted to find critical strength and factor of complex safety geometry against varied distributed passenger loads of a floor component the electric car. The passenger loads variable are 80, 100, 150, 200, 250 and 300 kg.
Electrical contact arrangement for a coating process
Kabagambe, Benjamin; McCamy, James W; Boyd, Donald W
2013-09-17
A protective coating is applied to the electrically conductive surface of a reflective coating of a solar mirror by biasing a conductive member having a layer of a malleable electrically conductive material, e.g. a paste, against a portion of the conductive surface while moving an electrodepositable coating composition over the conductive surface. The moving of the electrodepositable coating composition over the conductive surface includes moving the solar mirror through a flow curtain of the electrodepositable coating composition and submerging the solar mirror in a pool of the electrodepositable coating composition. The use of the layer of a malleable electrically conductive material between the conductive member and the conductive surface compensates for irregularities in the conductive surface being contacted during the coating process thereby reducing the current density at the electrical contact area.
Aging of XLPE cable insulation under combined electrical and mechanical stresses
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, E.; Parpal, J.L.; Crine, J.P.
1996-12-31
Extruded crosslinked polyethylene (XLPE) insulation is widely used in high-voltage cables since it presents such attractive features as excellent dielectric properties and good thermomechanical behavior. However, its performance is affected by long-term degradation when it is subjected to the various thermal, mechanical and environmental stresses occurring in service in combination with electrical stress. The synergetic effect of superposed electrical and other stresses remains to be fully clarified. In particular, a fairly high level of mechanical stresses can be present in the insulation volume, originating from residual internal stresses created during the cooling process in the fabrication, external forces when cablesmore » are bent sharply, or thermomechanical stresses caused by differential thermal expansion between the conductor and the insulating material. In order to investigate the influence of the superposition of mechanical and electrical stresses, various measurements were conducted on XLPE and LDPE specimens in tip-plane and plane-plane geometries. Experimental data of time-to-breakdown, breakdown field and tree length are presented as a function of the magnitude of the stresses. In all cases, superposition of the mechanical stress was found to reduce the dielectric strength of the material.« less
Temperature Dependent Electrical Transport Properties of Ni-Cr and Co-Cr Binary Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakore, B. Y.; Khambholja, S. G.; Bhatt, N. K.
2011-12-12
The temperature dependent electrical transport properties viz. electrical resistivity and thermal conductivity of Ni{sub 10}Cr{sub 90} and Co{sub 20}Cr{sub 80} alloys are computed at various temperatures. The electrical resistivity has been calculated according to Faber-Ziman model combined with Ashcroft-Langreth partial structure factors. In the present work, to include the ion-electron interaction, we have used a well tested local model potential. For exchange-correlation effects, five different forms of local field correction functions due to Hartree (H), Taylor (T), Ichimaru and Utsumi (IU), Farid et al (F) and Sarkar et al (S) are used. The present results due to S function aremore » in good agreement with the experimental data as compared to results obtained using other four functions. The S functions satisfy compressibility sum rule in long wave length limit more accurately as compared to T, IU and F functions, which may be responsible for better agreement of results, obtained using S function. Also, present result confirms the validity of present approach in determining the transport properties of alloys like Ni-Cr and Co-Cr.« less
Anisotropy of synthetic quartz electrical conductivity at high pressure and temperature
NASA Astrophysics Data System (ADS)
Wang, Duojun; Li, Heping; Yi, Li; Matsuzaki, Takuya; Yoshino, Takashi
2010-09-01
AC measurements of the electrical conductivity of synthetic quartz along various orientations were made between 0.1 and 1 MHz, at ˜855˜1601 K and at 1.0 GPa. In addition, the electrical conductivity of quartz along the c axis has been studied at 1.0-3.0 GPa. The impedance arcs representing bulk conductivity occur in the frequency range of 103-106 Hz, and the electrical responses of the interface between the sample and the electrode occur in the 0.1˜103 Hz range. The pressure has a weak effect on the electrical conductivity. The electrical conductivity experiences no abrupt change near the α - β phase transition point. The electrical conductivity of quartz is highly anisotropic; the electrical conductivity along the c axis is strongest and several orders of magnitude larger than in other directions. The activation enthalpies along various orientations are determined to be 0.6 and 1.2 eV orders of magnitude, respectively. The interpretation of the former is based on the contribution of alkali ions, while the latter effect is attributed to additional unassociated aluminum ions. Comparison of determined anisotropic conductivity of quartz determined with those from field geophysical models shows that the quartz may potentially provide explanations for the behavior of electrical conductivity of anisotropy in the crust that are inferred from the transverse magnetic mode.
One-dimensional CuO nanowire: synthesis, electrical, and optoelectronic devices application
2014-01-01
In this work, we presented a surface mechanical attrition treatment (SMAT)-assisted approach to the synthesis of one-dimensional copper oxide nanowires (CuO NWs) for nanodevices applications. The as-prepared CuO NWs have diameter and the length of 50 ~ 200 nm and 5 ~ 20 μm, respectively, with a preferential growth orientation along [1 1¯ 0] direction. Interestingly, nanofield-effect transistor (nanoFET) based on individual CuO NW exhibited typical p-type electrical conduction, with a hole mobility of 0.129 cm2V-1 s-1 and hole concentration of 1.34 × 1018 cm-3, respectively. According to first-principle calculations, such a p-type electrical conduction behavior was related to the oxygen vacancies in CuO NWs. What is more, the CuO NW device was sensitive to visible light illumination with peak sensitivity at 600 nm. The responsitivity, conductive gain, and detectivity are estimated to be 2.0 × 102 A W-1, 3.95 × 102 and 6.38 × 1011 cm Hz1/2 W-1, respectively, which are better than the devices composed of other materials. Further study showed that nanophotodetectors assembled on flexible polyethylene terephthalate (PET) substrate can work under different bending conditions with good reproducibility. The totality of the above results suggests that the present CuO NWs are potential building blocks for assembling high-performance optoelectronic devices. PMID:25489288
High electric field conduction in low-alkali boroaluminosilicate glass
NASA Astrophysics Data System (ADS)
Dash, Priyanka; Yuan, Mengxue; Gao, Jun; Furman, Eugene; Lanagan, Michael T.
2018-02-01
Electrical conduction in silica-based glasses under a low electric field is dominated by high mobility ions such as sodium, and there is a transition from ionic transport to electronic transport as the electric field exceeds 108 V/m at low temperatures. Electrical conduction under a high electric field was investigated in thin low-alkali boroaluminosilicate glass samples, showing nonlinear conduction with the current density scaling approximately with E1/2, where E is the electric field. In addition, thermally stimulated depolarization current (TSDC) characterization was carried out on room-temperature electrically poled glass samples, and an anomalous discharging current flowing in the same direction as the charging current was observed. High electric field conduction and TSDC results led to the conclusion that Poole-Frenkel based electronic transport occurs in the mobile-cation-depleted region adjacent to the anode, and accounts for the observed anomalous current.
NASA Astrophysics Data System (ADS)
Yu, Gui-Feng; Yan, Xu; Yu, Miao; Jia, Meng-Yang; Pan, Wei; He, Xiao-Xiao; Han, Wen-Peng; Zhang, Zhi-Ming; Yu, Liang-Min; Long, Yun-Ze
2016-01-01
A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10 000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger motion. The results demonstrate promising application of the patterned nanofibrous membrane in flexible electronic fields.A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10 000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger motion. The results demonstrate promising application of the patterned nanofibrous membrane in flexible electronic fields. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08618c
Capillary zone electrophoresis-mass spectrometer interface
D'Silva, Arthur
1996-08-06
A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conducts is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer.
Schwamb, Timo; Burg, Brian R; Schirmer, Niklas C; Poulikakos, Dimos
2009-10-07
This paper introduces an electrical four-point measurement method enabling thermal and electrical conductivity measurements of nanoscale materials. The method was applied to determine the thermal and electrical conductivity of reduced graphene oxide flakes. The dielectrophoretically deposited samples exhibited thermal conductivities in the range of 0.14-2.87 W m(-1) K(-1) and electrical conductivities in the range of 6.2 x 10(2)-6.2 x 10(3) Omega(-1) m(-1). The measured properties of each flake were found to be dependent on the duration of the thermal reduction and are in this sense controllable.
Zhao, Shanshan; Yan, Tingting; Wang, Hui; Zhang, Jianping; Shi, Liyi; Zhang, Dengsong
2016-07-20
In this work, 3D hierarchical carbon architectures (3DHCAs) with micro-, meso-, and macropores were prepared via a simple self-blowing strategy as highly efficient electrodes for a flow-through deionization capacitor (FTDC). The obtained 3DHCAs have a hierarchically porous structure, large accessible specific surface area (2061 m(2) g(-1)), and good wettability. The electrochemical tests show that the 3DHCA electrode has a high specific capacitance and good electric conductivity. The deionization experiments demonstrate that the 3DHCA electrodes possess a high deionization capacity of 17.83 mg g(-1) in a 500 mg L(-1) NaCl solution at 1.2 V. Moreover, the 3DHCA electrodes present a fast deionization rate in 100-500 mg L(-1) NaCl solutions at 0.8-1.4 V. The 3DHCA electrodes also present a good regeneration behavior in the reiterative regeneration test. These above factors render the 3DHCAs a promising FTDC electrode material.
Wei, Helin; Wei, Sihang; Tian, Weifeng; Zhu, Daming; Liu, Yuhao; Yuan, Lili; Li, Xin
2014-01-01
Hybrid carbon films composed of graphene film and porous carbon film may give full play to the advantages of both carbon materials, and have great potential for application in energy storage and conversion devices. Unfortunately, there are very few reports on fabrication of hybrid carbon films. Here we demonstrate a simple approach to fabricate free-standing sandwich-structured hybrid carbon film composed of porous amorphous carbon film and multilayer graphene film by chemical vapor deposition in a controllable and scalable way. Hybrid carbon films reveal good electrical conductivity, excellent flexibility, and good compatibility with substrate. Supercapacitors assembled by hybrid carbon films exhibit ultrahigh rate capability, wide frequency range, good capacitance performance, and high-power density. Moreover, this approach may provide a general path for fabrication of hybrid carbon materials with different structures by using different metals with high carbon solubility, and greatly expands the application scope of carbon materials. PMID:25394410
Label-Free Detection of Cardiac Troponin-I Using Carbon Nanofiber Based Nanoelectrode Arrays
NASA Technical Reports Server (NTRS)
Periyakaruppan, Adaikkappan; Koehne, Jessica Erin; Gandhiraman, Ram P.; Meyyappan, M.
2013-01-01
A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. A carbon nanofiber (CNF) multiplexed array has been fabricated with 9 sensing pads, each containing 40,000 carbon nanofibers as nanoelectrodes. Here, we report the use of vertically aligned CNF nanoelectrodes for the detection of cardiac Troponin-I for the early diagnosis of myocardial infarction. Antibody, antitroponin, probe immobilization and subsequent binding to human cardiac troponin-I were characterized using electrochemical impedance spectroscopy and cyclic voltammetry techniques. Each step of the modification process resulted in changes in electrical capacitance or resistance to charge transfer due to the changes at the electrode surface upon antibody immobilization and binding to the specific antigen. This sensor demonstrates high sensitivity, down to 0.2 ng/mL, and good selectivity making this platform a good candidate for early stage diagnosis of myocardial infarction.
Electrical condition monitoring method for polymers
Watkins, Jr., Kenneth S.; Morris, Shelby J [Hampton, VA; Masakowski, Daniel D [Worcester, MA; Wong, Ching Ping [Duluth, GA; Luo, Shijian [Boise, ID
2008-08-19
An electrical condition monitoring method utilizes measurement of electrical resistivity of an age sensor made of a conductive matrix or composite disposed in a polymeric structure such as an electrical cable. The conductive matrix comprises a base polymer and conductive filler. The method includes communicating the resistivity to a measuring instrument and correlating resistivity of the conductive matrix of the polymeric structure with resistivity of an accelerated-aged conductive composite.
Carbon-Nanotube Conductive Layers for Thin-Film Solar Cells
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2005-01-01
Thin, transparent layers comprising mats of carbon nanotubes have been proposed for providing lateral (that is, inplane) electrical conductivities for collecting electric currents from the front surfaces of the emitter layers of thin-film solar photovoltaic cells. Traditionally, thin, semitransparent films of other electrically conductive materials (usually, indium tin oxide, zinc oxide, or cadmium sulfide) have been used for this purpose. As in the cases of the traditional semitransparent conductive films, the currents collected by the nanotube layers would, in turn, be further collected by front metal contact stripes. Depending on details of a specific solar-cell design, the layer of carbon nanotubes would be deposited in addition to, or instead of, a semitransparent layer of one of these traditional conductive materials (see figure). The proposal is expected to afford the following advantages: The electrical conductivity of the carbon- nanotube layer would exceed that of the corresponding semitransparent layer of traditional electrically conductive material. The greater electrical conductivity of the carbon-nanotube layer would make it possible to retain adequate lateral electrical conductivity while reducing the thickness of, or eliminating entirely, the traditional semitransparent conductive layer. As a consequence of thinning or elimination of the traditional semitransparent conductive layer, less light would be absorbed, so that more of the incident light would be available for photovoltaic conversion. The greater electrical conductivity of the carbon-nanotube layer would make it possible to increase the distance between front metal contact stripes, in addition to (or instead of) thinning or eliminating the layer of traditional semitransparent conductive material. Consequently, the fraction of solar-cell area shadowed by front metal contact stripes would be reduced again, making more of the incident light available for photovoltaic conversion. The electrical conductivities of individual carbon nanotubes can be so high that the mat of carbon nanotubes could be made sparse enough to be adequately transparent while affording adequate lateral electrical conductivity of the mat as a whole. The thickness of the nanotube layer would be chosen so that the layer would contribute significant lateral electrical conductivity, yet would be as nearly transparent as possible to incident light. A typical thickness for satisfying these competing requirements is expected to lie between 50 and 100 nm. The optimum thickness must be calculated by comparing the lateral electrical conductivity, the distance between front metal stripes, and the amount of light lost by absorption in the nanotube layer.
Electrical conductivity of electrolytes applicable to natural waters from 0 to 100 degrees C
McCleskey, R. Blaine
2011-01-01
The electrical conductivities of 34 electrolyte solutions found in natural waters ranging from (10-4 to 1) molkg-1 in concentration and from (5 to 90) °C have been determined. High-quality electrical conductivity data for numerous electrolytes exist in the scientific literature, but the data do not span the concentration or temperature ranges of many electrolytes in natural waters. Methods for calculating the electrical conductivities of natural waters have incorporated these data from the literature, and as a result these methods cannot be used to reliably calculate the electrical conductivity over a large enough range of temperature and concentration. For the single-electrolyte solutions, empirical equations were developed that relate electrical conductivity to temperature and molality. For the 942 molar conductivity determinations for single electrolytes from this study, the mean relative difference between the calculated and measured values was 0.1 %. The calculated molar conductivity was compared to literature data, and the mean relative difference for 1978 measurements was 0.2 %. These data provide an improved basis for calculating electrical conductivity for most natural waters.
NASA Astrophysics Data System (ADS)
Wang, N.; Meissner, M. V.; MacKinnon, N.; Luchnikov, V.; Mager, D.; Korvink, J. G.
2018-02-01
We present a new fabrication process to create sub-mm micro tubes with embedded conductive patterns. Based on common 2D patterning techniques and a specially designed rolling process, it achieves 3D structures featuring potentially complex, embedded electrical, mechanical and micro-fluidic functions. We demonstrate the advantage in creating freeform electrical conductors around sub-mm tubes, such as needed for a tube-integrated micro heater. The production of the 2D patterns is flexible, and we demonstrate that both additive manufacturing (fast, accessible) and conventional micro-fabrication processes (cleanroom, wafer-scale) are compatible with the rolling process. To adapt the rolling process for high frequency applications, the patterned tracks can be directly electroplated, with good adhesion, to reduce electrical resistance. For the first time, we achieve saddle-geometry NMR micro detectors. They feature 100 μm wide, 10 μm thick conductive tracks on 25 μm thick polyimide film, and were successfully tested in a 500 MHz (11.7 T) NMR spectrometer. Using a 620 μm diameter coil, we measured the single-shot SNR of deionized water sample, which corresponded to a mole sensitivity of 18.78 nmolHz-1/2 , and a water line shape of 1.52/26.8/37.3 Hz (50, 0.55, 0.11% of the maximum height) from a sample volume of only 82 nl.
Spin properties of black phosphorus and phosphorene, and their prospects for spincalorics
NASA Astrophysics Data System (ADS)
Kurpas, Marcin; Gmitra, Martin; Fabian, Jaroslav
2018-05-01
Semiconducting black phosphorus attracts a lot of attention due to its extraordinary electronic properties. Its application to spincalorics requires the knowledge about the spin and thermal properties. Here, we describe first principles calculations of the spin–orbit coupling and spin scattering in phosphorene and bulk black phosphorus. We find that the intrinsic spin–orbit coupling is of the order of 20 meV for the valence and conduction band, both for phosphorene and bulk black phosphorus, and induces spin mixing with the probability b2 ≈ 10-5 –10‑4. A strong anisotropy of b 2 is observed. The calculated Elliott–Yafet spin relaxation times reach nanoseconds for realistic values of the momentum relaxation times. The extrinsic spin–orbit coupling, enabling the D’yakonov–Perel’ spin relaxation mechanism, is studied for phosphorene by application of a transverse electric field. We observe a strong anisotropy of the extrinsic effects for the valence band and much weaker for the conduction band. It is shown, that for small enough electric fields the spin relaxation is dominated by the Elliott–Yafet mechanism, while the D’yakonov–Perel’ matters for higher electric fields. Our theoretical results stay in a good agreement with the experimental findings, and indicates that long spin lifetimes in black phosphorus and phosphorene makes them prospective materials for spincalorics and spintronics.
Characterization by spectroscopic Ellipsometry, the physical properties of silver nanoparticles.
NASA Astrophysics Data System (ADS)
Coanga, Jean-Maurice
2013-04-01
Physicists are able to change their minds through their experiments. I think it is time to go kick the curse and go further in research if we want a human future. I work in the Nano-Optics and Plasmonics research. I defined with ellipsomètrie the structure of new type of Nano particles of silver. It's same be act quickly to replace the old dirty leaded electronic-connexion chip and by the other hand to find a new way for the heath care of cancer disease by nanoparticles the next killers of bad cells. Silver nanoparticle layers are obtained by Spark Plasma Sintering are investigated as an alternative to lead alloy based material for solder joint in power mechatronics modules. These layers are characterized by mean of conventional techniques that is the dilatometry technique, the resistivity measurement through the van der Pauw method, and the flash laser technique. Furthermore, the nanoparticles of silver layer are deeply studied by UV-Visible spectroscopic ellipsometry. Spectroscopic angles parameters are determined in function of temperature and dielectric constants are deduced and analyzed through an optical model which takes into account a Drude and a Lorentz component within the Bruggeman effective medium approximation (EMA). The relaxation times and the electrical conductivity are plot in function of temperature. The obtained electrical conductivity give significant result in good agreement to those reported by four points electrical measurement method.
Chen, Fei-Fei; Zhu, Ying-Jie; Xiong, Zhi-Chao; Dong, Li-Ying; Chen, Feng; Lu, Bing-Qiang; Yang, Ri-Long
2017-11-15
How to survive under various harsh working conditions is a key challenge for flexible electronic devices because their performances are always susceptible to environments. Herein, we demonstrate the novel design and fabrication of a new kind of the all-weather flexible electrically conductive paper based on ultralong hydroxyapatite nanowires (HNs) with unique combination of the superhydrophobic surface, electrothermal effect, and flame retardancy. The superhydrophobic surface with water repellency stabilizes the electrically conductive performance of the paper in water. For example, the electrical current through the superhydrophobic paper onto which water droplets are deposited shows a little change (0.38%), and the electrical performance is steady as well even when the paper is immersed in water for 120 s (just 3.65% change). In addition, the intrinsic electrothermal effect of the electrically conductive paper can efficiently heat the paper to reach a high temperature, for example, 224.25 °C, within 10 s. The synergistic effect between the electrothermal effect and superhydrophobic surface accelerates the melting and removal of ice on the heated electrically conductive paper. Deicing efficiency of the heated superhydrophobic electrically conductive paper is ∼4.5 times that of the unheated superhydrophobic electrically conductive paper and ∼10.4 times that of the heated superhydrophilic paper. More importantly, benefiting from fire-resistant ultralong HNs, thermally stable Ketjen black, and Si-O backbone of poly(dimethylsiloxane), we demonstrate the stable and continuous service of the as-prepared electrically conductive paper in the flame for as long as 7 min. The electrical performance of the electrically conductive paper after flame treatment can maintain as high as 90.60% of the original value. The rational design of the electrically conductive paper with suitable building materials and structure demonstrated here will give an inspiration for the development of new kinds of all-weather flexible electronic devices that can work under harsh conditions.
Ghazikhanlou-Sani, K; Firoozabadi, S M P; Agha-Ghazvini, L; Mahmoodzadeh, H
2016-06-01
There is many ways to assessing the electrical conductivity anisotropy of a tumor. Applying the values of tissue electrical conductivity anisotropy is crucial in numerical modeling of the electric and thermal field distribution in electroporation treatments. This study aims to calculate the tissues electrical conductivity anisotropy in patients with sarcoma tumors using diffusion tensor imaging technique. A total of 3 subjects were involved in this study. All of patients had clinically apparent sarcoma tumors at the extremities. The T1, T2 and DTI images were performed using a 3-Tesla multi-coil, multi-channel MRI system. The fractional anisotropy (FA) maps were performed using the FSL (FMRI software library) software regarding the DTI images. The 3D matrix of the FA maps of each area (tumor, normal soft tissue and bone/s) was reconstructed and the anisotropy matrix was calculated regarding to the FA values. The mean FA values in direction of main axis in sarcoma tumors were ranged between 0.475-0.690. With assumption of isotropy of the electrical conductivity, the FA value of electrical conductivity at each X, Y and Z coordinate axes would be equal to 0.577. The gathered results showed that there is a mean error band of 20% in electrical conductivity, if the electrical conductivity anisotropy not concluded at the calculations. The comparison of FA values showed that there is a significant statistical difference between the mean FA value of tumor and normal soft tissues (P<0.05). DTI is a feasible technique for the assessment of electrical conductivity anisotropy of tissues. It is crucial to quantify the electrical conductivity anisotropy data of tissues for numerical modeling of electroporation treatments.
Bang, Seungmin; Park, Jeong Youp; Jeong, Seok; Kim, Young Ho; Shim, Han Bo; Kim, Tae Song; Lee, Don Haeng; Song, Si Young
2009-02-01
We developed a capsule endoscope (CE), "MiRo," with the novel transmission technology of electric-field propagation. The technology uses the human body as a conductive medium for data transmission. Specifications of the prototype include the ability to receive real-time images; size, 10.8 x 24 mm; weight, 3.3 g; field of view, 150 degrees; resolution of power, 320 x 320 pixels; and transmittal speed, 2 frames per second. To evaluate the clinical safety and diagnostic feasibility of the prototype MiRo, we conducted a multicenter clinical trial. All volunteers underwent baseline examinations, including EGD and electrocardiography for the screening of GI obstructive and cardiovascular diseases, before the trial. In the first 10 cases, 24-hour Holter monitoring was also performed. To evaluate the diagnostic feasibility, transmission rate of the captured images, inspection rate of the entire small bowel, and quality of transmitted images (graded as outstanding, excellent, good/average, below average, and poor) were analyzed. Of the 49 healthy volunteers, 45 were included in the trial, and 4 were excluded because of baseline abnormalities. No adverse effects were noted. All CEs were expelled within 2 days, and the entire small bowel could be explored in all cases. The transmission rates of the captured image in the stomach, small bowel, and colon were 99.5%, 99.6%, and 97.2%, respectively. The mean total duration of image transmission was 9 hours, 51 minutes, and the mean transit time of the entire small bowel was 4 hours, 33 minutes. Image quality was graded as good or better in 41 cases (91.1%). Details of the villi and vascular structures of the entire small bowel were clearly visualized in 31 cases (68.9%). MiRo is safe and effective for exploring the entire small bowel, with good image quality and real-time feasibility. This novel transmission technology may have applications beyond the field of capsule endoscopy.
Grain boundary dominated electrical conductivity in ultrananocrystalline diamond
NASA Astrophysics Data System (ADS)
Wiora, Neda; Mertens, Michael; Brühne, Kai; Fecht, Hans-Jörg; Tran, Ich C.; Willey, Trevor; van Buuren, Anthony; Biener, Jürgen; Lee, Jun-Sik
2017-10-01
N-type electrically conductive ultrananocrystalline diamond (UNCD) films were deposited using the hot filament chemical vapor deposition technique with a gas mixture of H2, CH4 and NH3. Depending on the deposition temperature and ammonia feed gas concentration, which serves as a nitrogen source, room temperature electrical conductivities in the order of 10-2 to 5 × 101 S/cm and activation energies in the meV range were achieved. In order to understand the origin of the enhanced electrical conductivity and clarify the role of ammonia addition to the process gas, a set of UNCD films was grown by systematically varying the ammonia gas phase concentration. These samples were analyzed with respect to their morphology and electrical properties as well as their carbon and nitrogen bonding environments. Temperature dependent electrical conductivity measurements (300-1200 K) show that the electrical conductivity of the samples increases with temperature. The near edge x-ray absorption fine structure measurements reveal that the electrical conductivity of the UNCD films does not correlate directly with ammonia addition, but depends on the total amount of sp2 bonded carbon in the deposited films.
Effect of the mechanical deformation on the electrical properties of the polymer/CNT fiber
NASA Astrophysics Data System (ADS)
Cho, Hyun Woo; Sung, Bong June; Nano-Bio Computational Chemistry Laboratory Team
2014-03-01
We elucidate the effect of the mechanical deformation on the electrical properties of the polymer/CNT fiber. The conductive polymer fiber has drawn a great attention for its potential application to a stretchable electronics such as wearable devices and artificial muscles, etc. However, the electrical conductivity of the polymer-based stretchable electronics decreases significantly during the deformation, which may limit the applicability of the polymer/CNT fiber for the stretchable electronics. Moreover, its physical origin for the decrease in electrical conductivity has not been explained clearly. In this work, we employ a coarse-grained model for the polymer/CNT fiber, and we calculate the electric conductivity using global tunneling network (GTN) model. We show that the electric conductivity decreases during the elongation of the polymer/CNT fiber. We also find using critical path approximation (CPA) that the structure of the electrical network of the CNTs changes collectively during the elongation of the fiber, which is strongly responsible for the reduction of the electrical conductivity of the polymer/CNT fiber.
Electrical Resistivity Measurement of Cu and Zn on the Pressure-Dependent Melting Boundary
NASA Astrophysics Data System (ADS)
Secco, R. A.; Ezenwa, I.; Yong, W.
2016-12-01
Understanding how the core cools through heat conduction and modelling the geodynamo requires knowledge of the thermal and electrical conductivity of solid and liquid Fe and its relevant alloys at high pressures. It has been proposed that electrical resistivity of a pure metal is constant along its P-dependent melting boundary (Stacey and Anderson, PEPI, 2001). If confirmed, this invariant behavior could serve as a practical tool for low P studies to assess electrical resistivity of Earth's core. Since Earth's inner core boundary (ICB) is a melting boundary of mainly Fe, measurements of electrical resistivity of Fe at the melting boundary, under any P, would serve as a proxy for the resistivity at the ICB. A revised treatment (Stacey and Loper, PEPI, 2007) accounted for s-d scattering in transition metals with unfilled d-bands and limited the proposal to metals with electrons of the same type in filled d-band metals. To test this proposal, we made high P, T measurements of electrical resistivity of d-band filled Cu and Zn in solid and liquid states. Experiments were carried out in a 1000 ton cubic anvil press up to 5 GPa and 300K above melting temperatures. Two thermocouples placed at opposite ends of the wire sample served as T probes as well as 4-wire resistance electrodes in a switched circuit. A polarity switch was used to remove any bias voltage measurement using thermocouple legs. Electron microprobe analyses were used to check the compositions of the recovered samples. The expected resistivity decrease with P and increase with T were found and comparisons with 1atm data are in very good agreement. Within the error of measurement, the resistivity values of Cu decrease along the melting boundary while Zn appears to support the hypothesis of constant resistivity along the melting boundary.
Hot wire needle probe for thermal conductivity detection
Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban
2015-11-10
An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.
Maximum on the Electrical Conductivity Polytherm of Molten TeCl4
NASA Astrophysics Data System (ADS)
Salyulev, Alexander B.; Potapov, Alexei M.
2017-05-01
The electrical conductivity of molten TeCl4 was measured up to 761K, i.e. 106 degrees above the normal boiling point of the salt. For the first time it was found that TeCl4 electrical conductivity polytherm has a maximum. It was recorded at 705K (κmax=0.245 Sm/cm), whereupon the conductivity decreases as the temperature rises. The activation energy of electrical conductivity was calculated.
NASA Astrophysics Data System (ADS)
Mehrali, Mohammad; Sadeghinezhad, Emad; Rashidi, Mohammad Mehdi; Akhiani, Amir Reza; Tahan Latibari, Sara; Mehrali, Mehdi; Metselaar, Hendrik Simon Cornelis
2015-06-01
Electrical conductivity is an important property for technological applications of nanofluids that have not been widely investigated, and few studies have been concerned about the electrical conductivity. In this study, nitrogen-doped graphene (NDG) nanofluids were prepared using the two-step method in an aqueous solution of 0.025 wt% Triton X-100 as a surfactant at several concentrations (0.01, 0.02, 0.04, 0.06 wt%). The electrical conductivity of the aqueous NDG nanofluids showed a linear dependence on the concentration and increased up to 1814.96 % for a loading of 0.06 wt% NDG nanosheet. From the experimental data, empirical models were developed to express the electrical conductivity as functions of temperature and concentration. It was observed that increasing the temperature has much greater effect on electrical conductivity enhancement than increasing the NDG nanosheet loading. Additionally, by considering the electrophoresis of the NDG nanosheets, a straightforward electrical conductivity model is established to modulate and understand the experimental results.
Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder
Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong
2016-01-01
The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service. PMID:28004839
System and method for evaluating a wire conductor
Panozzo, Edward; Parish, Harold
2013-10-22
A method of evaluating an electrically conductive wire segment having an insulated intermediate portion and non-insulated ends includes passing the insulated portion of the wire segment through an electrically conductive brush. According to the method, an electrical potential is established on the brush by a power source. The method also includes determining a value of electrical current that is conducted through the wire segment by the brush when the potential is established on the brush. The method additionally includes comparing the value of electrical current conducted through the wire segment with a predetermined current value to thereby evaluate the wire segment. A system for evaluating an electrically conductive wire segment is also disclosed.
NASA Astrophysics Data System (ADS)
Wu, Yuda; Zhao, Gang; Wei, Chengye; Liu, Shuang; Fu, Yu; Liu, Xvxiong
2018-01-01
As a kind of artificial muscle intelligent material, the biological gel electric driver has the advantages of low driving voltage, large strain, good biological compatibility, good flexibility, low price, etc. The application prospect is broad and it has high academic value. Alginate, as a common substance in sea, has characteristics of low cost, green and pollution-free. Therefore,this paper obtains biological gel electric actuator by sodium alginate and calcium chloride. Effects on output force of the electric actuator is researched by changing the crosslinking of calcium chloride concentration and the output force enhancement mechanism is analyzed in this paper.
Ammonia vapor sensing properties of polyaniline-titanium(IV)phosphate cation exchange nanocomposite.
Khan, Asif Ali; Baig, Umair; Khalid, Mohd
2011-02-28
In this study, the electrically conducting polyaniline-titanium(IV)phosphate (PANI-TiP) cation exchange nanocomposite was synthesized by sol-gel method. The cation exchange nanocomposite based sensor for detection of ammonia vapors was developed at room temperature. It was revealed that the sensor showed good reversible response towards ammonia vapors ranging from 3 to 6%. It was found that the sensor with p-toluene sulphonic acid (p-TSA) doped exhibited higher sensing response than hydrochloric acid doped. This sensor has detection limit ≤1% ammonia. The response of resistivity changes of the cation exchange nanocomposite on exposure to different concentrations of ammonia vapors shows its utility as a sensing material. These studies suggest that the cation exchange nanocomposite could be a good material for ammonia sensor at room temperature. Copyright © 2010 Elsevier B.V. All rights reserved.
Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Chen, Gang
2011-01-01
Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature. With graphite/hexadecane suspensions, the electrical conductivity changes 2 orders of magnitude and the thermal conductivity varies up to 3.2 times near 18 °C. The generality of the approach is also demonstrated in other materials such as graphite/water and carbon nanotube/hexadecane suspensions. PMID:21505445
Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Chen, Gang
2011-01-01
Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature. With graphite/hexadecane suspensions, the electrical conductivity changes 2 orders of magnitude and the thermal conductivity varies up to 3.2 times near 18 °C. The generality of the approach is also demonstrated in other materials such as graphite/water and carbon nanotube/hexadecane suspensions.
Depositing bulk or micro-scale electrodes
Shah, Kedar G.; Pannu, Satinderpall S.; Tolosa, Vanessa; Tooker, Angela C.; Sheth, Heeral J.; Felix, Sarah H.; Delima, Terri L.
2016-11-01
Thicker electrodes are provided on microelectronic device using thermo-compression bonding. A thin-film electrical conducting layer forms electrical conduits and bulk depositing provides an electrode layer on the thin-film electrical conducting layer. An insulating polymer layer encapsulates the electrically thin-film electrical conducting layer and the electrode layer. Some of the insulating layer is removed to expose the electrode layer.
Variable Anisotropic Brain Electrical Conductivities in Epileptogenic Foci
Mandelkern, M.; Bui, D.; Salamon, N.; Vinters, H. V.; Mathern, G. W.
2010-01-01
Source localization models assume brain electrical conductivities are isotropic at about 0.33 S/m. These assumptions have not been confirmed ex vivo in humans. This study determined bidirectional electrical conductivities from pediatric epilepsy surgery patients. Electrical conductivities perpendicular and parallel to the pial surface of neocortex and subcortical white matter (n = 15) were measured using the 4-electrode technique and compared with clinical variables. Mean (±SD) electrical conductivities were 0.10 ± 0.01 S/m, and varied by 243% from patient to patient. Perpendicular and parallel conductivities differed by 45%, and the larger values were perpendicular to the pial surface in 47% and parallel in 40% of patients. A perpendicular principal axis was associated with normal, while isotropy and parallel principal axes were linked with epileptogenic lesions by MRI. Electrical conductivities were decreased in patients with cortical dysplasia compared with non-dysplasia etiologies. The electrical conductivity values of freshly excised human brain tissues were approximately 30% of assumed values, varied by over 200% from patient to patient, and had erratic anisotropic and isotropic shapes if the MRI showed a lesion. Understanding brain electrical conductivity and ways to non-invasively measure them are probably necessary to enhance the ability to localize EEG sources from epilepsy surgery patients. PMID:20440549
Coated carbon nanotube array electrodes
Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi
2006-12-12
The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.
Coated carbon nanotube array electrodes
Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA
2008-10-28
The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.
33 CFR 159.71 - Electrical controls and conductors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... conductors. 159.71 Section 159.71 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Electrical controls and conductors. Electrical controls and conductors must be installed in accordance with good marine practice. Wire must be copper and must be stranded. Electrical controls and conductors must...
33 CFR 159.71 - Electrical controls and conductors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... conductors. 159.71 Section 159.71 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Electrical controls and conductors. Electrical controls and conductors must be installed in accordance with good marine practice. Wire must be copper and must be stranded. Electrical controls and conductors must...
Ceramic substrate including thin film multilayer surface conductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Joseph Ambrose; Peterson, Kenneth A.
2017-05-09
A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on anmore » upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.« less
Estimates of olivine-basaltic melt electrical conductivity using a digital rock physics approach
NASA Astrophysics Data System (ADS)
Miller, Kevin J.; Montési, Laurent G. J.; Zhu, Wen-lu
2015-12-01
Estimates of melt content beneath fast-spreading mid-ocean ridges inferred from magnetotelluric tomography (MT) vary between 0.01 and 0.10. Much of this variation may stem from a lack of understanding of how the grain-scale melt geometry influences the bulk electrical conductivity of a partially molten rock, especially at low melt fraction. We compute bulk electrical conductivity of olivine-basalt aggregates over 0.02 to 0.20 melt fraction by simulating electric current in experimentally obtained partially molten geometries. Olivine-basalt aggregates were synthesized by hot-pressing San Carlos olivine and high-alumina basalt in a solid-medium piston-cylinder apparatus. Run conditions for experimental charges were 1.5 GPa and 1350 °C. Upon completion, charges were quenched and cored. Samples were imaged using synchrotron X-ray micro-computed tomography (μ-CT). The resulting high-resolution, 3-dimensional (3-D) image of the melt distribution constitutes a digital rock sample, on which numerical simulations were conducted to estimate material properties. To compute bulk electrical conductivity, we simulated a direct current measurement by solving the current continuity equation, assuming electrical conductivities for olivine and melt. An application of Ohm's Law yields the bulk electrical conductivity of the partially molten region. The bulk electrical conductivity values for nominally dry materials follow a power-law relationship σbulk = Cσmeltϕm with fit parameters m = 1.3 ± 0.3 and C = 0.66 ± 0.06. Laminar fluid flow simulations were conducted on the same partially molten geometries to obtain permeability, and the respective pathways for electrical current and fluid flow over the same melt geometry were compared. Our results indicate that the pathways for flow fluid are different from those for electric current. Electrical tortuosity is lower than fluid flow tortuosity. The simulation results are compared to existing experimental data, and the potential influence of volatiles and melt films on electrical conductivity of partially molten rocks is discussed.
Preparation of Ceramic-Bonded Carbon Block for Blast Furnace
NASA Astrophysics Data System (ADS)
Li, Yiwei; Li, Yawei; Sang, Shaobai; Chen, Xilai; Zhao, Lei; Li, Yuanbing; Li, Shujing
2014-01-01
Traditional carbon blocks for blast furnaces are mainly produced with electrically calcined anthracite owing to its good hot metal corrosion resistance. However, this kind of material shows low thermal conductivity and does not meet the demands for cooling of the hearth and the bottom of blast furnaces. In this article, a new kind of a high-performance carbon block has been prepared via ceramic-bonded carbon (CBC) technology in a coke bed at 1673 K (1400 °C) using artificial graphite aggregate, alumina, metallic aluminum, and silicon powders as starting materials. The results showed that artificial graphite aggregates were strongly bonded by the three-dimensional network of ceramic phases in carbon blocks. In this case, the good resistance of the CBC blocks against erosion/corrosion by the hot metal is provided by the ceramic matrix and the high thermal conductivity by the graphite aggregates. The microstructure of this carbon block resembles that of CBC composites with a mean pore size of less than 0.1 μm, and up to 90 pct of the porosity shows a pore size <1 μm. Its thermal conductivity is higher than 30 W · m-1 · K-1 [293 K (20 °C)]. Meanwhile, its hot metal corrosion resistance is better than that of traditional carbon blocks.
Photovoltaic device having light transmitting electrically conductive stacked films
Weber, Michael F.; Tran, Nang T.; Jeffrey, Frank R.; Gilbert, James R.; Aspen, Frank E.
1990-07-10
A light transmitting electrically conductive stacked film, useful as a light transmitting electrode, including a first light transmitting electrically conductive layer, having a first optical thickness, a second light transmitting layer, having a second optical thickness different from the optical thickness of the first layer, and an electrically conductive metallic layer interposed between and in initimate contact with the first and second layers.
Electric moisture meters for wood
William L. James
1988-01-01
Electric moisture meters for wood measure electric conductance (resistance) or dielectric properties, which vary fairly consistently with moisture content when it is less than 30 percent. The two major classes of electric moisture meters are the conductance (resistance) type and the dielectric type. Conductance-t ype meters use penetrating electrodes that measure in a...
Electrically-Conductive Polyaramid Cable And Fabric
NASA Technical Reports Server (NTRS)
Orban, Ralph F.
1988-01-01
Tows coated with metal provide strength and conductance. Cable suitable for use underwater made of electrically conductive tows of metal-coated polyaramid filaments surrounded by electrically insulating jacket. Conductive tows used to make conductive fabrics. Tension borne by metal-coated filaments, so upon release, entire cable springs back to nearly original length without damage.
NASA Astrophysics Data System (ADS)
Sharma, Nidhi; Khan, Zahid A.; Siddiquee, Arshad Noor; Shihab, Suha K.; Atif Wahid, Mohd
2018-04-01
Copper (Cu) is predominantly used material as a conducting element in electrical and electronic components due to its high conductivity. Aluminum (Al) being lighter in weight and more conductive on weight basis than that of Cu is able to replace or partially replace Cu to make lighter and cost effective electrical components. Conventional methods of joining Al to Cu, such as, fusion welding process have many shortcomings. Friction Stir Welding (FSW) is a solid state welding process which overcomes the shortcoming of the fusion welding. FSW parameters affect the mechanical and electrical properties of the joint. This study aims to evaluate the effect of different process parameters such as shoulder diameter, pin offset, welding and rotational speed on the microstructure and electrical conductivity of the dissimilar Al-Cu joint. FSW is performed using cylindrical pin profile, and four process parameters. Each parameter at different levels is varied according to Taguchi’s L18 standard orthogonal array. It is found that the electrical conductivity of the FSWed joints are equal to that of aluminum at all the welded sections. FSW is found to be an effective technique to join Al to Cu without compromising with the electrical properties. However, the electrical conductivity gets influenced by the process parameters in the stir zone. The optimal combination of the FSW parameters for maximum electrical conductivity is determined. The analysis of variance (ANOVA) technique applied on stir zone suggests that the rotational speed and tool pin offset are the significant parameters to influence the electrical conductivity.
Wu, Jiang; Li, Jia; Xu, Zhenming
2009-08-15
Electrostatic separation presents an effective and environmentally friendly way for recycling metals and nonmetals from ground waste electrical and electronic equipment (WEEE). For this process, the trajectory of conductive particle is significant and some models have been established. However, the results of previous researches are limited by some simplifying assumptions and lead to a notable discrepancy between the model prediction and the experimental results. In the present research, a roll-type corona-electrostatic separator and ground printed circuit board (PCB) wastes were used to investigate the trajectory of the conductive particle. Two factors, the air drag force and the different charging situation, were introduced into the improved model. Their effects were analyzed and an improved model for the theoretical trajectory of conductive particle was established. Compared with the previous one, the improved model shows a good agreement with the experimental results. It provides a positive guidance for designing of separator and makes a progress for recycling the metals and nonmetals from WEEE.
Ag-graphene hybrid conductive ink for writing electronics.
Xu, L Y; Yang, G Y; Jing, H Y; Wei, J; Han, Y D
2014-02-07
With the aim of preparing a method for the writing of electronics on paper by the use of common commercial rollerball pens loaded with conductive ink, hybrid conductive ink composed of Ag nanoparticles (15 wt%) and graphene-Ag composite nanosheets (0.15 wt%) formed by depositing Ag nanoparticles (∼10 nm) onto graphene sheets was prepared for the first time. Owing to the electrical pathway effect of graphene and the decreased contact resistance of graphene junctions by depositing Ag nanoparticles (NPs) onto graphene sheets, the concentration of Ag NPs was significantly reduced while maintaining high conductivity at a curing temperature of 100 ° C. A typical resistivity value measured was 1.9 × 10(-7) Ω m, which is 12 times the value for bulk silver. Even over thousands of bending cycles or rolling, the resistance values of writing tracks only increase slightly. The stability and flexibility of the writing circuits are good, demonstrating the promising future of this hybrid ink and direct writing method.
Engineering and Modeling Carbon Nanofiller-Based Scaffolds for Tissue Regeneration
NASA Astrophysics Data System (ADS)
Al Habis, Nuha Hamad
Conductive biopolymers are starting to emerge as potential scaffolds of the future. These scaffolds exhibit some unique properties such as inherent conductivity, mechanical and surface properties. Traditionally, a conjugated polymer is used to constitute a conductive network. An alternative method currently being used is nanofillers as additives in the polymer. In this dissertation, we fabricated an intelligent scaffold for use in tissue engineering applications. The main idea was to enhance the mechanical, electrical properties and cell growth of scaffolds by using distinct types of nanofillers such as graphene, carbon nanofiber and carbon black. We identified the optimal concentrations of nano-additive in both fibrous and film scaffolds to obtain the highest mechanical and electrical properties without neglecting any of them. Lastly, we investigated the performance of these scaffold with cell biology. To accomplish these tasks, we first studied the mechanical properties of the scaffold as a function of morphology, concentration and variety of carbon nanofillers. Results showed that there was a gradual increase of the modulus and the fracture strength while using carbon black, carbon nanofiber and graphene, due to the small and strong carbon-to-carbon bonds and the length of the interlayer spacing. Moreover, regardless of the fabrication method, there was an increase in mechanical properties as the concentration of nanofillers increased until a threshold of 7 wt% was reached for the nanofiller film scaffold and 1%wt for the fibrous scaffold. Experimental results of carbon black exhibited a good agreement when compared with data obtained using numerical approaches and analytical models, especially in the case of lower carbon black fractions. Second, we examined the influence of electrical properties of nanofillers based on the concentration and the geometry of carbon nanofillers in the polymer matrix using experimental and numerical simulation approaches. The experimental results showed an increase in conductivity as the amount of nanofiller concentration increased. And regardless of nanofiller type, the trend remained the same. The percolation threshold was around 4-5wt% of nano-additive with PCL and PAN matrices, respectively. However, at the same concentrations, conductivity was higher in graphene-based nanocomposites than for CNF and carbon black-based nanocomposites. The numerical modeling highlighted the effect of nanofillers as constructing a conductive network due to the aggregation phenomenon. The conductivity trend for carbon black and carbon nanofiber-based composites by the numerical simulation approach was similar to the experimental approach. Lastly, we studied the effect of these carbon nanocomposite-based scaffolds on the behavior of cell growth. The results showed that regardless of the scaffold shape (film or fiber) and the additive's type, when the concentration of nano-additives was increased, electrical conductivity and cell density increased also. For a given nano-additive concentration and type, cell density increased in the scaffolds with fiber shape vs. the film. Importantly, as the conductivity of the scaffolds increased, so did the cell density. Consequently, this study has highlighted the close relationship between electrical conductivity, cell density and scaffold orientation. An increase in conductivity can be achieved in two ways: by molecular orientation of the nanofillers or by the appropriate selection of nano-additives such as graphene and carbon nanofiber.
Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel
NASA Technical Reports Server (NTRS)
Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.
2004-01-01
The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.
NASA Astrophysics Data System (ADS)
Elilarassi, R.; Chandrasekaran, G.
2017-11-01
In the present investigation, diluted magnetic semiconductor (Zn1-xFexO) nanoparticles with different doping concentrations (x = 0, 0.02, 0.04, 0.06, and 0.08) were successfully synthesized by sol-gel auto-combustion method. The crystal structure, morphology, optical, electrical and magnetic properties of the prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis using x-rays (EDAX), ultraviolet-visible spectrophotometer, fluorescence spectroscope (FS), vibrating sample magnetometer (VSM) and broad band dielectric spectrometer (BDS). XRD results reveal that all the samples possess hexagonal wurtzite crystal structure with good crystalline quality. The absence of impurity phases divulge that Fe ions are well incorporated into the ZnO crystal lattice. The substitutional incorporation of Fe3+ at Zn sites is reflected in optical absorption spectra of the samples. Flouorescence spectra of the samples show a strong near-band edge related UV emission as well as defect related visible emissions. The semiconducting behavior of the samples has been confirmed through electrical conductivity measurements. Magnetic measurements indicated that all the samples possess ferromagnetism at room temperature.
Multifunctional semiconductor micro-Hall devices for magnetic, electric, and photo-detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbertson, A. M.; Cohen, L. F.; Sadeghi, Hatef
2015-12-07
We report the real-space voltage response of InSb/AlInSb micro-Hall devices to local photo-excitation, electric, and magnetic fields at room temperature using scanning probe microscopy. We show that the ultrafast generation of localised photocarriers results in conductance perturbations analogous to those produced by local electric fields. Experimental results are in good agreement with tight-binding transport calculations in the diffusive regime. The magnetic, photo, and charge sensitivity of a 2 μm wide probe are evaluated at a 10 μA bias current in the Johnson noise limit (valid at measurement frequencies > 10 kHz) to be, respectively, 500 nT/√Hz; 20 pW/√Hz (λ = 635 nm) comparable to commercial photoconductive detectors;more » and 0.05 e/√Hz comparable to that of single electron transistors. These results demonstrate the remarkably versatile sensing attributes of simple semiconductor micro-Hall devices that can be applied to a host of imaging and sensing applications.« less
Vollebregt, Sten; Ishihara, Ryoichi
2015-01-01
We demonstrate a method for the low temperature growth (350 °C) of vertically-aligned carbon nanotubes (CNT) bundles on electrically conductive thin-films. Due to the low growth temperature, the process allows integration with modern low-κ dielectrics and some flexible substrates. The process is compatible with standard semiconductor fabrication, and a method for the fabrication of electrical 4-point probe test structures for vertical interconnect test structures is presented. Using scanning electron microscopy the morphology of the CNT bundles is investigated, which demonstrates vertical alignment of the CNT and can be used to tune the CNT growth time. With Raman spectroscopy the crystallinity of the CNT is investigated. It was found that the CNT have many defects, due to the low growth temperature. The electrical current-voltage measurements of the test vertical interconnects displays a linear response, indicating good ohmic contact was achieved between the CNT bundle and the top and bottom metal electrodes. The obtained resistivities of the CNT bundle are among the average values in the literature, while a record-low CNT growth temperature was used. PMID:26709530
Silicon carbide transparent chips for compact atomic sensors
NASA Astrophysics Data System (ADS)
Huet, L.; Ammar, M.; Morvan, E.; Sarazin, N.; Pocholle, J.-P.; Reichel, J.; Guerlin, C.; Schwartz, S.
2017-11-01
Atom chips [1] are an efficient tool for trapping, cooling and manipulating cold atoms, which could open the way to a new generation of compact atomic sensors addressing space applications. This is in particular due to the fact that they can achieve strong magnetic field gradients near the chip surface, hence strong atomic confinement at moderate electrical power. However, this advantage usually comes at the price of reducing the optical access to the atoms, which are confined very close to the chip surface. We will report at the conference experimental investigations showing how these limits could be pushed farther by using an atom chip made of a gold microcircuit deposited on a single-crystal Silicon Carbide (SiC) substrate [2]. With a band gap energy value of about 3.2 eV at room temperature, the latter material is transparent at 780nm, potentially restoring quasi full optical access to the atoms. Moreover, it combines a very high electrical resistivity with a very high thermal conductivity, making it a good candidate for supporting wires with large currents without the need of any additional electrical insulation layer [3].
Phase transformations induced by spherical indentation in ion-implanted amorphous silicon
NASA Astrophysics Data System (ADS)
Haberl, B.; Bradby, J. E.; Ruffell, S.; Williams, J. S.; Munroe, P.
2006-07-01
The deformation behavior of ion-implanted (unrelaxed) and annealed ion-implanted (relaxed) amorphous silicon (a-Si) under spherical indentation at room temperature has been investigated. It has been found that the mode of deformation depends critically on both the preparation of the amorphous film and the scale of the mechanical deformation. Ex situ measurements, such as Raman microspectroscopy and cross-sectional transmission electron microscopy, as well as in situ electrical measurements reveal the occurrence of phase transformations in all relaxed a-Si films. The preferred deformation mode of unrelaxed a-Si is plastic flow, only under certain high load conditions can this state of a-Si be forced to transform. In situ electrical measurements have revealed more detail of the transformation process during both loading and unloading. We have used ELASTICA simulations to obtain estimates of the depth of the metallic phase as a function of load, and good agreement is found with the experiment. On unloading, a clear change in electrical conductivity is observed to correlate with a "pop-out" event on load versus penetration curves.
Microscopic resolution broadband dielectric spectroscopy
NASA Astrophysics Data System (ADS)
Mukherjee, S.; Watson, P.; Prance, R. J.
2011-08-01
Results are presented for a non-contact measurement system capable of micron level spatial resolution. It utilises the novel electric potential sensor (EPS) technology, invented at Sussex, to image the electric field above a simple composite dielectric material. EP sensors may be regarded as analogous to a magnetometer and require no adjustments or offsets during either setup or use. The sample consists of a standard glass/epoxy FR4 circuit board, with linear defects machined into the surface by a PCB milling machine. The sample is excited with an a.c. signal over a range of frequencies from 10 kHz to 10 MHz, from the reverse side, by placing it on a conducting sheet connected to the source. The single sensor is raster scanned over the surface at a constant working distance, consistent with the spatial resolution, in order to build up an image of the electric field, with respect to the reference potential. The results demonstrate that both the surface defects and the internal dielectric variations within the composite may be imaged in this way, with good contrast being observed between the glass mat and the epoxy resin.
Fabric strain sensor integrated with CNPECs for repeated large deformation
NASA Astrophysics Data System (ADS)
Yi, Weijing
Flexible and soft strain sensors that can be used in smart textiles for wearable applications are much desired. They should meet the requirements of low modulus, large working range and good fatigue resistance as well as good sensing performances. However, there were no commercial products available and the objective of the thesis is to investigate fabric strain sensors based on carbon nanoparticle (CNP) filled elastomer composites (CNPECs) for potential wearing applications. Conductive CNPECs were fabricated and investigated. The introduction of silicone oil (SO) significantly decreased modulus of the composites to less than 1 MPa without affecting their deformability and they showed good stability after heat treatment. With increase of CNP concentration, a percolation appeared in electrical resistivity and the composites can be divided into three ranges. I-V curves and impedance spectra together with electro-mechanical studies demonstrated a balance between sensitivity and working range for the composites with CNP concentrations in post percolation range, and were preferred for sensing applications only if the fatigue life was improved. Due to the good elasticity and failure resist property of knitted fabric under repeated extension, it was adopted as substrate to increase the fatigue life of the conductive composites. After optimization of processing parameters, the conductive fabric with CNP concentration of 9.0CNP showed linear I-V curves when voltage is in the range of -1 V/mm and 1 V/mm and negligible capacitive behavior when frequency below 103 Hz even with strain of 60%. It showed higher sensitivity due to the combination of nonlinear resistance-strain behavior of the CNPECs and non-even strain distribution of knitted fabric under extension. The fatigue life of the conductive fabric was greatly improved. Extended on the studies of CNPECs and the coated conductive fabrics, a fabric strain sensor was designed, fabricated and packaged. The Young's modulus of the packaged fabric strain sensor was less than 1 MPa; the strain gauge factor was 4.76 within the strain range of 0-40% and the hysteresis was 5.5%; the resistance relaxation was 5.56% with a constant strain of 40%; the fatigue life of the sensor was more than 100,000 cycles.
Minimizing radiation damage in nonlinear optical crystals
Cooke, D.W.; Bennett, B.L.; Cockroft, N.J.
1998-09-08
Methods are disclosed for minimizing laser induced damage to nonlinear crystals, such as KTP crystals, involving various means for electrically grounding the crystals in order to diffuse electrical discharges within the crystals caused by the incident laser beam. In certain embodiments, electrically conductive material is deposited onto or into surfaces of the nonlinear crystals and the electrically conductive surfaces are connected to an electrical ground. To minimize electrical discharges on crystal surfaces that are not covered by the grounded electrically conductive material, a vacuum may be created around the nonlinear crystal. 5 figs.
Highly Sensitive Flexible Human Motion Sensor Based on ZnSnO3/PVDF Composite
NASA Astrophysics Data System (ADS)
Yang, Young Jin; Aziz, Shahid; Mehdi, Syed Murtuza; Sajid, Memoon; Jagadeesan, Srikanth; Choi, Kyung Hyun
2017-07-01
A highly sensitive body motion sensor has been fabricated based on a composite active layer of zinc stannate (ZnSnO3) nano-cubes and poly(vinylidene fluoride) (PVDF) polymer. The thin film-based active layer was deposited on polyethylene terephthalate flexible substrate through D-bar coating technique. Electrical and morphological characterizations of the films and sensors were carried out to discover the physical characteristics and the output response of the devices. The synergistic effect between piezoelectric ZnSnO3 nanocubes and β phase PVDF provides the composite with a desirable electrical conductivity, remarkable bend sensitivity, and excellent stability, ideal for the fabrication of a motion sensor. The recorded resistance of the sensor towards the bending angles of -150° to 0° to 150° changed from 20 MΩ to 55 MΩ to 100 MΩ, respectively, showing the composite to be a very good candidate for motion sensing applications.
Radiatively coupled thermionic and thermoelectric power system concept
NASA Technical Reports Server (NTRS)
Shimada, K.; Ewell, R.
1981-01-01
The study presented showed that the large power systems (about 100 kW) utilizing radiatively coupled thermionic or thermoelectric converters could be designed so that the power subsystem could be contained in a Space Shuttle bay as a part of an electrically propelled spacecraft. The radiatively coupled system requires a large number of individual converters since the transferred heat is smaller than with the conductively coupled system, but the advantages of the new system indicates merit for further study. The advantages are (1) good electrical isolation between converters and the heat source, (2) physical separation of converters from the heat source (making the system fabrication manageable), and (3) elimination of radiator heat pipes, which are required in an all-heat-pipe power system. In addition, the specific weight of the radiatively coupled power systems favorably compares with that of the all-heat-pipe systems.
Geoelectrical mapping and groundwater contamination
NASA Astrophysics Data System (ADS)
Blum, Rainer
Specific electrical resistivity of near-surface materials is mainly controlled by the groundwater content and thus reacts extremely sensitive to any change in the ion content. Geoelectric mapping is a well-established, simple, and inexpensive technique for observing areal distributions of apparent specific electrical resistivities. These are a composite result of the true resistivities in the underground, and with some additional information the mapping of apparent resistivities can help to delineate low-resistivity groundwater contaminations, typically observed downstream from sanitary landfills and other waste sites. The presence of other good conductors close to the surface, mainly clays, is a serious noise source and has to be sorted out by supporting observations of conductivities in wells and geoelectric depth soundings. The method may be used to monitor the extent of groundwater contamination at a specific time as well as the change of a contamination plume with time, by carrying out repeated measurements. Examples for both are presented.
Fang, Teng; Zhao, Xinbing; Zhu, Tiejun
2018-05-19
Half-Heusler (HH) compounds, with a valence electron count of 8 or 18, have gained popularity as promising high-temperature thermoelectric (TE) materials due to their excellent electrical properties, robust mechanical capabilities, and good high-temperature thermal stability. With the help of first-principles calculations, great progress has been made in half-Heusler thermoelectric materials. In this review, we summarize some representative theoretical work on band structures and transport properties of HH compounds. We introduce how basic band-structure calculations are used to investigate the atomic disorder in n-type M NiSb ( M = Ti, Zr, Hf) compounds and guide the band engineering to enhance TE performance in p-type Fe R Sb ( R = V, Nb) based systems. The calculations on electrical transport properties, especially the scattering time, and lattice thermal conductivities are also demonstrated. The outlook for future research directions of first-principles calculations on HH TE materials is also discussed.
Fang, Teng; Zhao, Xinbing
2018-01-01
Half-Heusler (HH) compounds, with a valence electron count of 8 or 18, have gained popularity as promising high-temperature thermoelectric (TE) materials due to their excellent electrical properties, robust mechanical capabilities, and good high-temperature thermal stability. With the help of first-principles calculations, great progress has been made in half-Heusler thermoelectric materials. In this review, we summarize some representative theoretical work on band structures and transport properties of HH compounds. We introduce how basic band-structure calculations are used to investigate the atomic disorder in n-type MNiSb (M = Ti, Zr, Hf) compounds and guide the band engineering to enhance TE performance in p-type FeRSb (R = V, Nb) based systems. The calculations on electrical transport properties, especially the scattering time, and lattice thermal conductivities are also demonstrated. The outlook for future research directions of first-principles calculations on HH TE materials is also discussed. PMID:29783759
Hall effect in a moving liquid
NASA Astrophysics Data System (ADS)
Di Lieto, Alberto; Giuliano, Alessia; Maccarrone, Francesco; Paffuti, Giampiero
2012-01-01
A simple experiment, suitable for performing in an undergraduate physics laboratory, illustrates electromagnetic induction through the water entering into a cylindrical rubber tube by detecting the voltage developed across the tube in the direction transverse both to the flow velocity and to the magnetic field. The apparatus is a very simple example of an electromagnetic flowmeter, a device which is commonly used both in industrial and physiological techniques. The phenomenology observed is similar to that of the Hall effect in the absence of an electric current in the direction of motion of the carriers. The experimental results show a dependence on the intensity of the magnetic field and on the carrier velocity, in good agreement with the theory. Discussion of the system, based on classical electromagnetism, indicates that the effect depends only on the flow rate, and is independent both of the velocity profile and of the electrical conductivity of the medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, D., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Misra, P., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Joshi, M. P.
In the present study, atomic layer deposition has been used to grow a series of Ti incorporated ZnO thin films by vertically stacking different numbers (n = 1–7) of ZnO/TiO{sub x} layers on (0001) sapphire substrates. The effects of defect states mediated chemisorption of O{sub 2} and/OH groups on the electrical properties of these films have been investigated by illuminating the samples under UV light inside a high vacuum optical cryostat. The ultra-thin film having one stacked layer (n = 1) did not show any change in its electrical resistance upon UV light exposure. On the contrary, marginal drop in the electrical resistivity wasmore » measured for the samples with n ≥ 3. Most surprisingly, the sample with n = 2 (thickness ∼ 12 nm) showed an insulator to metal transition upon UV light exposure. The temperature dependent electrical resistivity measurement on the as grown film (n = 2) showed insulating behaviour, i.e., diverging resistivity on extrapolation to T→ 0 K. However, upon UV light exposure, it transformed to a metallic state, i.e., finite resistivity at T → 0 K. Such an insulator-metal transition plausibly arises due to the de-trapping of conduction electrons from the surface defect sites which resulted in an upward shift of the Fermi level above the mobility edge. The low-temperature electron transport properties on the insulating film (n = 2) were investigated by a combined study of zero field electrical resistivity ρ(T) and magnetoresistance (MR) measurements. The observed negative MR was found to be in good agreement with the magnetic field induced suppression of quantum interference between forward-going paths of tunnelling electrons. Both ρ(T) and MR measurements provided strong evidence for the Efros-Shklovskii type variable range hopping conduction in the low-temperature (≤40 K) regime. Such studies on electron transport in ultra-thin n-type doped ZnO films are crucial to achieve optimum functionality with long term reliability of ZnO based transparent conducting oxides.« less
NASA Astrophysics Data System (ADS)
Saha, D.; Misra, P.; Joshi, M. P.; Kukreja, L. M.
2016-08-01
In the present study, atomic layer deposition has been used to grow a series of Ti incorporated ZnO thin films by vertically stacking different numbers (n = 1-7) of ZnO/TiOx layers on (0001) sapphire substrates. The effects of defect states mediated chemisorption of O2 and/OH groups on the electrical properties of these films have been investigated by illuminating the samples under UV light inside a high vacuum optical cryostat. The ultra-thin film having one stacked layer (n = 1) did not show any change in its electrical resistance upon UV light exposure. On the contrary, marginal drop in the electrical resistivity was measured for the samples with n ≥ 3. Most surprisingly, the sample with n = 2 (thickness ˜ 12 nm) showed an insulator to metal transition upon UV light exposure. The temperature dependent electrical resistivity measurement on the as grown film (n = 2) showed insulating behaviour, i.e., diverging resistivity on extrapolation to T→ 0 K. However, upon UV light exposure, it transformed to a metallic state, i.e., finite resistivity at T → 0 K. Such an insulator-metal transition plausibly arises due to the de-trapping of conduction electrons from the surface defect sites which resulted in an upward shift of the Fermi level above the mobility edge. The low-temperature electron transport properties on the insulating film (n = 2) were investigated by a combined study of zero field electrical resistivity ρ(T) and magnetoresistance (MR) measurements. The observed negative MR was found to be in good agreement with the magnetic field induced suppression of quantum interference between forward-going paths of tunnelling electrons. Both ρ(T) and MR measurements provided strong evidence for the Efros-Shklovskii type variable range hopping conduction in the low-temperature (≤40 K) regime. Such studies on electron transport in ultra-thin n-type doped ZnO films are crucial to achieve optimum functionality with long term reliability of ZnO based transparent conducting oxides.
Choice of electricity provider in California after deregulation
NASA Astrophysics Data System (ADS)
Keanini, Rasa Ilze
Surveys often ask consumers how much they are willing to pay for certain goods and services, without requiring the consumer to actually pay for the good or service. Such surveys, termed stated preference studies, find that consumers value renewable electricity. This result is in contrast to actual experiences in recently deregulated electricity markets in several states, including California. When given the opportunity to choose in California, only one to two percent of the population opted for renewable electricity products. This dissertation used data from residential customers who chose an alternative electricity product in California's deregulated electricity market to determine the value placed on the renewable attribute of electricity products. This dissertation begins by taking a historical look at the electricity market of the nation and specifically California. From 1998 through 2001, California's electricity market was deregulated to include retail competition. This dissertation used data from electric service providers to reveal the factors influencing residential customer's choice of electricity product. Discrete choice models were used to determine the factors influencing electricity product choice. The results indicated that both price and renewable content had an effect on choice of product. Additionally, a more complicated model jointly estimating the discrete choice of electricity product with the continuous choice of electricity consumption (kWh) was specified and estimated.
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.
2018-02-01
The structural characteristics of thermally deposited ZnIn2Se4 thin films were indexed utilizing x-ray diffraction as well as scanning electron microscopy techniques. Dielectric properties, electric modulus and AC electrical conductivity of ZnIn2Se4 thin films were examined in the frequency range from 42 Hz to 106 Hz. The capacitance, conductance and impedance were measured at different temperatures. The dielectric constant and dielectric loss decrease with an increase in frequency. The maximum barrier height was determined from the analysis of the dielectric loss depending on the Giuntini model. The real part of the electric modulus revealed a constant maximum value at higher frequencies and the imaginary part of the electric modulus was characterized by the appearance of dielectric relaxation peaks. The AC electrical conductivity obeyed the Jonscher universal power law. Correlated barrier hopping model was the appropriate mechanism for AC conduction in ZnIn2Se4 thin films. Estimation of the density of states at the Fermi level and activation energy, for AC conduction, was carried out based on the temperature dependence of AC electrical conductivity.
Grain boundary dominated electrical conductivity in ultrananocrystalline diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiora, Neda; Mertens, Michael; Bruhne, Kai
Here, N-type electrically conductive ultrananocrystalline diamond (UNCD) films were deposited using the hot filament chemical vapor deposition technique with a gas mixture of H 2, CH 4 and NH 3. Depending on the deposition temperature and ammonia feed gas concentration, which serves as a nitrogen source, room temperature electrical conductivities in the order of 10 –2 to 5 × 10 1S/cm and activation energies in the meV range were achieved. In order to understand the origin of the enhanced electrical conductivity and clarify the role of ammonia addition to the process gas, a set of UNCD films was grown bymore » systematically varying the ammonia gas phase concentration. These samples were analyzed with respect to their morphology and electrical properties as well as their carbon and nitrogen bonding environments. Temperature dependent electrical conductivity measurements (300–1200 K) show that the electrical conductivity of the samples increases with temperature. The near edge x-ray absorption fine structure measurements reveal that the electrical conductivity of the UNCD films does not correlate directly with ammonia addition, but depends on the total amount of sp2 bonded carbon in the deposited films.« less
Grain boundary dominated electrical conductivity in ultrananocrystalline diamond
Wiora, Neda; Mertens, Michael; Bruhne, Kai; ...
2017-10-09
Here, N-type electrically conductive ultrananocrystalline diamond (UNCD) films were deposited using the hot filament chemical vapor deposition technique with a gas mixture of H 2, CH 4 and NH 3. Depending on the deposition temperature and ammonia feed gas concentration, which serves as a nitrogen source, room temperature electrical conductivities in the order of 10 –2 to 5 × 10 1S/cm and activation energies in the meV range were achieved. In order to understand the origin of the enhanced electrical conductivity and clarify the role of ammonia addition to the process gas, a set of UNCD films was grown bymore » systematically varying the ammonia gas phase concentration. These samples were analyzed with respect to their morphology and electrical properties as well as their carbon and nitrogen bonding environments. Temperature dependent electrical conductivity measurements (300–1200 K) show that the electrical conductivity of the samples increases with temperature. The near edge x-ray absorption fine structure measurements reveal that the electrical conductivity of the UNCD films does not correlate directly with ammonia addition, but depends on the total amount of sp2 bonded carbon in the deposited films.« less
Gasket Assembly for Sealing Mating Surfaces
NASA Technical Reports Server (NTRS)
Bryant, Melvin A., III (Inventor)
2003-01-01
A pair of substantially opposed mating surfaces are joined to each other and sealed in place by means of an electrically-conductive member which is placed in proximity to the mating surfaces. The electrically-conductive member has at least one element secured thereto which is positioned to contact the mating surfaces, and which softens when the electrically-conductive member is heated by passing an electric current therethrough. The softened element conforms to the mating surfaces, and upon cooling of the softened element the mating surfaces are joined together in an effective seal. Of particular significance is an embodiment of the electrically-conductive member which is a gasket having an electrically-conductive gasket base and a pair of the elements secured to opposite sides of the gasket base. This embodiment is positioned between the opposed mating surfaces to be joined to each other. Also significant is an embodiment of the electrically-conductive member which is an electrically-conductive sleeve having an element secured to its inner surface. This embodiment surrounds cylindrical members the bases of which are the substantially opposed mating surfaces to be joined, and the element on the inner surface of the sleeve contacts the outer surfaces of the cylindrical members.
New materials for polymer electrolyte membrane fuel cell current collectors
NASA Astrophysics Data System (ADS)
Hentall, Philip L.; Lakeman, J. Barry; Mepsted, Gary O.; Adcock, Paul L.; Moore, Jon M.
Polymer Electrolyte Membrane Fuel cells for automotive applications need to have high power density, and be inexpensive and robust to compete effectively with the internal combustion engine. Development of membranes and new electrodes and catalysts have increased power significantly, but further improvements may be achieved by the use of new materials and construction techniques in the manufacture of the bipolar plates. To show this, a variety of materials have been fabricated into flow field plates, both metallic and graphitic, and single fuel cell tests were conducted to determine the performance of each material. Maximum power was obtained with materials which had lowest contact resistance and good electrical conductivity. The performance of the best material was characterised as a function of cell compression and flow field geometry.
The use of halophytic plants for salt phytoremediation in constructed wetlands.
Farzi, Abolfazl; Borghei, Seyed Mehdi; Vossoughi, Manouchehr
2017-07-03
This research studied the use of constructed wetlands (CWs) to reduce water salinity. For this purpose, three halophytic species of the Chenopodiaceae family (Salicornia europaea, Salsola crassa, and Bienertia cycloptera) that are resistant to saline conditions were planted in the CWs, and experiments were conducted at three different salinity levels [electrical conductivity (EC)∼2, 6, 10 dS/m]. EC and concentrations of calcium (Ca), magnesium (Mg), sodium (Na), and chlorine (Cl) were measured before and after phytoremediation with a retention time of 1 week. The results suggested that these plants were able to grow well and complete their life cycles at all the salinity levels within this study. Moreover, these plants reduced the measured parameters to acceptable levels. Therefore, these plants can be considered good options for salt phytoremediation.
NASA Astrophysics Data System (ADS)
Talwar, Brijpal Singh
The growing popularity of Poly lactic acid (PLA) is mainly due to its biocompatibility, good mechanical properties, and its synthesis from renewable resources. PLA can be compounded with electrically conductive fillers (e.g., carbon nanotubes (CNTs)) to form conductive polymer composites (CPCs). These fillers provide conductive functionality to the composite material by forming percolation paths. Featuring very low weight densities, CPCs have the potential to replace metals in the electronic industry, if they exhibit similar electrical conductivities to that of the metals. The current challenges being faced during the mixing of CNTs in the polymer matrix are: formation of aggregates due to strong van der Waals forces and breakage of CNTs during dispersion. In this study, we compare: (1) two fabrication methods to create CPCs (i.e., solution mixing by sonication and melt extrusion) (2) effect of various CNT functionalization techniques (i.e., acid and plasma treatments) on the conductivity of CPCs and (3) effect of using binding molecules like para-phenylenediamine, that act as bridges in between the CNTs in the CPCs and its effect on the conductivity of CPCs. Such conductive composite materials find widespread technological applications which either require, or could benefit from, the ability to pattern micro-sized features in two-dimensional (2D) and three-dimensional (3D) architectures. Direct-write fabrication technique is used to realise these printed patterns, using the CPC solution as ink. First, the composites comprising of 30% PLA by weight in Dichloromethane (DCM) and CNTs in different concentrations (up to 5wt. %) are fabricated using a two-step sonication method (i.e., dissolving PLA in DCM and then dispersing the CNTs in this polymer solution). Second, CPCs are fabricated using a twin screw micro extruder operating at 180°C. To verify the effects of functionalization of the CNTs on the conductivity of composites, the CNTs are functionalized by three methods: HNO3 acid functionalization, 3:1 ratio HNO 3 + H2SO4 acid (stronger) functionalization and N2 plasma functionalization. To check the effect of amine binding molecules, HNO3 acid functionalized CNTs are treated with a mixture of para-phenylenediamine and aniline in an acidic solution. These chemically treated CNTs are then mixed with PLA to form composites. CPC fibers are drawn using the solvent-cast printing method. These fibers are tested for their electrical conductivity using the two-probe resistivity measurement method. Maximum electrical conductivity was observed in the 5wt. % CNT concentration samples at 3.97 S/m and 25.16 S/m for CPC fibers obtained via the solution blend and the extrusion methods, respectively. In the case of the functionalized CNTs, conductivity measurements show a negative effect of functionalization on the electrical properties of the CPC. While, the amine treated CNT/PLA CPC fibers show better conductivity at 4.2 S/m when compared to the untreated CNT/PLA samples manufactured using the solution mixing method. Finally, one-dimensional (1D) structures like fibres and 2D, 3D structures like single and multi-layer scaffolds were fabricated using the solvent-cast printing technique with the above manufactured CPC solutions in DCM as inks. Such conductive microstructures find their application in the electronic industry and in micro-scale systems such as pollution detection in natural environments, tissue engineering, mechanical sensors and smart devices.
NASA Astrophysics Data System (ADS)
Dong, Song-Tao; Zhang, Bin-Bin; Xiong, Ye; Lv, Yang-Yang; Yao, Shu-Hua; Chen, Y. B.; Zhou, Jian; Zhang, Shan-Tao; Chen, Yan-Feng
2015-09-01
Bi2AE2Co2O8+δ (AE represents alkaline earth), constructed by stacking of rock-salt Bi2AE2O4 and triangle CoO2 layers alternatively along c-axis, is one of promising thermoelectric oxides. The most impressive feature of Bi2AE2Co2O8+δ, as reported previously, is their electrical conductivity mainly lying along CoO2 plane, adjusting Bi2AE2O4 layer simultaneously manipulates both thermal conductivity and electrical conductivity. It in turn optimizes thermoelectric performance of these materials. In this work, we characterize the anisotropic thermal and electrical conductivity along both ab-plane and c-direction of Bi2AE2Co2O8+δ (AE = Ca, Sr, Ba, Sr1-xBax) single crystals. The results substantiate that isovalence replacement in Bi2AE2Co2O8+δ remarkably modifies their electrical property along ab-plane; while their thermal conductivity along ab-plane only has a slightly difference. At the same time, both the electrical conductivity and thermal conductivity along c-axis of these materials also have dramatic changes. Certainly, the electrical resistance along c-axis is too high to be used as thermoelectric applications. These results suggest that adjusting nano-block Bi2AE2O4 layer in Bi2AE2Co2O8+δ cannot modify the thermal conductivity along high electrical conductivity plane (ab-plane here). The evolution of electrical property is discussed by Anderson localization and electron-electron interaction U. And the modification of thermal conductivity along c-axis is attributed to the microstructure difference. This work sheds more light on the manipulation of the thermal and electrical conductivity in the layered thermoelectric materials.
Qu, Jin; Zhao, Xin; Ma, Peter X; Guo, Baolin
2018-05-01
Injectable hydrogels with multistimuli responsiveness to electrical field and pH as a drug delivery system have been rarely reported. Herein, we developed a series of injectable conductive hydrogels as "smart" drug carrier with the properties of electro-responsiveness, pH-sensitivity, and inherent antibacterial activity. The hydrogels were prepared by mixing chitosan-graft-polyaniline (CP) copolymer and oxidized dextran (OD) as a cross-linker. The chemical structures, morphologies, electrochemical property, swelling ratio, conductivity, rheological property, in vitro and in vivo biodegradation, and gelation time of hydrogels were characterized. The pH-responsive behavior was verified by drug release from hydrogels in PBS solutions with different pH values (pH = 7.4 or 5.5) in an in vitro model. As drug carriers with electric-driven release, the release rate of the model drugs amoxicillin and ibuprofen loaded within CP/OD hydrogels dramatically increased when an increase in voltage was applied. Both chitosan and polyaniline with inherent antibacterial properties endowed the hydrogels with excellent antibacterial properties. Furthermore, cytotoxicity tests of the hydrogels using L929 cells confirmed their good cytocompatibility. The in vivo biocompatibility of the hydrogels was verified by H&E staining. Together, all these results suggest that these injectable pH-sensitive conductive hydrogels with antibacterial activity could be ideal candidates as smart drug delivery vehicles for precise doses of medicine to meet practical demand. Stimuli-responsive or "smart" hydrogels have attracted great attention in the field of biotechnology and biomedicine, especially on designing novel drug delivery systems. Compared with traditional implantable electronic delivery devices, the injectable hydrogels with electrical stimuli not only are easy to generate and control electrical field but also could avoid frequent invasive surgeries that offer a new avenue for chronic diseases. In addition, designing a drug carrier with pH-sensitive property could release drug efficiently in targeted acid environment, and it could reinforce the precise doses of medicine. Furthermore, caused by opportunistic microorganisms and rapid spread of antibiotic-resistant microbes, infection is still a serious threat for many clinical utilities. To overcome these barriers, we designed a series of injectable antibacterial conductive hydrogels based on chitosan-graft-polyaniline (CP) copolymer and oxidized dextran (OD), and we demonstrated their potential as "smart" delivery vehicles with electro-responsiveness and pH-responsive properties for triggered and localized release of drugs. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Electrically conductive material
Singh, Jitendra P.; Bosak, Andrea L.; McPheeters, Charles C.; Dees, Dennis W.
1993-01-01
An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.
Carbon Nanotubes: Present and Future Commercial Applications
NASA Astrophysics Data System (ADS)
De Volder, Michael F. L.; Tawfick, Sameh H.; Baughman, Ray H.; Hart, A. John
2013-02-01
Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.
Application of Graphene Based Nanotechnology in Stem Cells Research.
Hu, Shanshan; Zeng, Yongxiang; Yang, Shuying; Qin, Han; Cai, He; Wang, Jian
2015-09-01
The past several years have witnessed significant advances in stem cell therapy, tissue engineering and regenerative medicine. Graphene, with its unique properties such as high electrical conductivity, elasticity and good molecule absorption, have potential for creating the next generation of biomaterials. This review summarizes the interrelationship between graphene and stem cells. The analysis of graphene when applied on mesenchymal stem cells, neural stem cells, induced pluripotent stem cells, embryonic stem cells, periodontal ligament stem cells, human adipose-derived stem cells and cancer stem cells, and how graphene influences cell behavior and differentiation are discussed in details.
Interfacing of high temperature Z-meter setup using python
NASA Astrophysics Data System (ADS)
Patel, Ashutosh; Sisodia, Shashank; Pandey, Sudhir K.
2017-05-01
In this work, we interface high temperature Z-meter setup to automize the whole measurement process. A program is built on open source programming language `Python' which convert the manual measurement process into fully automated process without any cost addition. Using this program, simultaneous measurement of Seebeck coefficient (α), thermal conductivity (κ) and electrical resistivity (ρ), are performed and using all three, figure-of-merit (ZT) is calculated. Developed program is verified by performing measurement over p-type Bi0.36Sb1.45Te3 sample and the data obtained are found to be in good agreement with the reported data.
Carbon nanotubes: present and future commercial applications.
De Volder, Michael F L; Tawfick, Sameh H; Baughman, Ray H; Hart, A John
2013-02-01
Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.
[Research to achieve a homeopathic lotion].
Verbuţă, A; Cojocaru, I
1996-01-01
A formulation of homeopathic lotion was elaborated. It uses as mother-solutions: the Calendula tincture and the Fumaria tincture prepared according to the homeopathic rules, and a vegetal soft extract conventionally named by us Pt2a, and the 42 C alcohol was used as a vehicle. All dilutions were made at 3CH. The pH, the refraction index and the electrical conductivity of the three solutions prove a good stability of the preparation. The 2 CH a dilution was well tolerated at the administration with juvenile acne and the simple dry phthiriasis, an improving being noted after 3-4 days of treatment.