21 CFR 26.15 - Monitoring continued equivalence.
Code of Federal Regulations, 2010 CFR
2010-04-01
... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM... COMMUNITY Specific Sector Provisions for Pharmaceutical Good Manufacturing Practices § 26.15 Monitoring... number of joint inspections; and the conduct of common training sessions. ...
21 CFR 26.15 - Monitoring continued equivalence.
Code of Federal Regulations, 2011 CFR
2011-04-01
... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM... COMMUNITY Specific Sector Provisions for Pharmaceutical Good Manufacturing Practices § 26.15 Monitoring... number of joint inspections; and the conduct of common training sessions. ...
[A wireless mobile monitoring system based on bluetooth technology].
Sun, Shou-jun; Wu, Kai; Wu, Xiao-Ming
2006-09-01
This paper presents a wireless mobile monitoring system based on Bluetooth technology. This system realizes the remote mobile monitoring of multiple physiological parameters, and has the characters of easy use, low cost, good reliability and strong capability of anti-jamming.
NASA Astrophysics Data System (ADS)
Yang, Xiaojun; Zhu, Xiaofei; Deng, Chi; Li, Junyi; Liu, Cheng; Yu, Wenpeng; Luo, Hui
2017-10-01
To improve the level of management and monitoring of leakage and abnormal disturbance of long distance oil pipeline, the distributed optical fiber temperature and vibration sensing system is employed to test the feasibility for the healthy monitoring of a domestic oil pipeline. The simulating leakage and abnormal disturbance affairs of oil pipeline are performed in the experiment. It is demonstrated that the leakage and abnormal disturbance affairs of oil pipeline can be monitored and located accurately with the distributed optical fiber sensing system, which exhibits good performance in the sensitivity, reliability, operation and maintenance etc., and shows good market application prospect.
Development of Novel Non-Contact Electrodes for Mobile Electrocardiogram Monitoring System
Chou, Willy; Wang, Hsing-Yu; Huang, Yan-Jun; Pan, Jeng-Shyang
2013-01-01
Real-time monitoring of cardiac health is helpful for patients with cardiovascular disease. Many telemedicine systems based on ubiquitous computing and communication techniques have been proposed for monitoring the user's electrocardiogram (ECG) anywhere and anytime. Usually, wet electrodes are used in these telemedicine systems. However, wet electrodes require conduction gels and skin preparation that can be inconvenient and uncomfortable for users. In order to overcome this issue, a new non-contact electrode circuit was proposed and applied in developing a mobile electrocardiogram monitoring system. The proposed non-contact electrode can measure bio-potentials across thin clothing, allowing it to be embedded in a user's normal clothing to monitor ECG in daily life. We attempted to simplify the design of these non-contact electrodes to reduce power consumption while continuing to provide good signal quality. The electrical specifications and the performance of monitoring arrhythmia in clinical settings were also validated to investigate the reliability of the proposed design. Experimental results show that the proposed non-contact electrode provides good signal quality for measuring ECG across thin clothes. PMID:27170853
Bearg, D W
1998-09-01
This article summarizes an approach for improving the indoor air quality (IAQ) in a building by providing feedback on the performance of the ventilation system. The delivery of adequate quantities of ventilation to all building occupants is necessary for the achievement of good IAQ. Feedback on the performance includes information on the adequacy of ventilation provided, the effectiveness of the distribution of this air, the adequacy of the duration of operation of the ventilation system, and the identification of leakage into the return plenum, either of outdoor or supply air. Keeping track of ventilation system performance is important not only in terms of maintaining good IAQ, but also making sure that this system continues to perform as intended after changes in building use. Information on the performance of the ventilation system is achieved by means of an automated sampling system that draws air from multiple locations and delivers it to both a carbon dioxide monitor and dew point sensor. The use of single shared sensors facilitates calibration checks as well as helps to guarantee data integrity. This approach to monitoring a building's ventilation system offers the possibility of achieving sustainable performance of this important aspect of good IAQ.
NASA Astrophysics Data System (ADS)
Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang
2017-10-01
In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.
Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.
Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi
2015-09-18
Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.
Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks
Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi
2015-01-01
Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications. PMID:26393596
Smart textile for respiratory monitoring and thoraco-abdominal motion pattern evaluation.
Massaroni, Carlo; Venanzi, Cecilia; Silvatti, Amanda P; Lo Presti, Daniela; Saccomandi, Paola; Formica, Domenico; Giurazza, Francesco; Caponero, Michele A; Schena, Emiliano
2018-05-01
The use of wearable systems for monitoring vital parameters has gained wide popularity in several medical fields. The focus of the present study is the experimental assessment of a smart textile based on 12 fiber Bragg grating sensors for breathing monitoring and thoraco-abdominal motion pattern analysis. The feasibility of the smart textile for monitoring several temporal respiratory parameters (ie, breath-by-breath respiratory period, breathing frequency, duration of inspiratory and expiratory phases), volume variations of the whole chest wall and of its compartments is performed on 8 healthy male volunteers. Values gathered by the textile are compared to the data obtained by a motion analysis system, used as the reference instrument. Good agreement between the 2 systems on both respiratory period (bias of 0.01 seconds), breathing frequency (bias of -0.02 breaths/min) and tidal volume (bias of 0.09 L) values is demonstrated. Smart textile shows good performance in the monitoring of thoraco-abdominal pattern and its variation, as well. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Development of automatic urine monitoring system].
Wei, Liang; Li, Yongqin; Chen, Bihua
2014-03-01
An automatic urine monitoring system is presented to replace manual operation. The system is composed of the flow sensor, MSP430f149 single chip microcomputer, human-computer interaction module, LCD module, clock module and memory module. The signal of urine volume is captured when the urine flows through the flow sensor and then displayed on the LCD after data processing. The experiment results suggest that the design of the monitor provides a high stability, accurate measurement and good real-time, and meets the demand of the clinical application.
Architecture for Improving Terrestrial Logistics Based on the Web of Things
Castro, Miguel; Jara, Antonio J.; Skarmeta, Antonio
2012-01-01
Technological advances for improving supply chain efficiency present three key challenges for managing goods: tracking, tracing and monitoring (TTM), in order to satisfy the requirements for products such as perishable goods where the European Legislations requires them to ship within a prescribed temperature range to ensure freshness and suitability for consumption. The proposed system integrates RFID for tracking and tracing through a distributed architecture developed for heavy goods vehicles, and the sensors embedded in the SunSPOT platform for monitoring the goods transported based on the concept of the Internet of Things. This paper presents how the Internet of Things is integrated for improving terrestrial logistics offering a comprehensive and flexible architecture, with high scalability, according to the specific needs for reaching an item-level continuous monitoring solution. The major contribution from this work is the optimization of the Embedded Web Services based on RESTful (Web of Things) for the access to TTM services at any time during the transportation of goods. Specifically, it has been extended the monitoring patterns such as observe and blockwise transfer for the requirements from the continuous conditional monitoring, and for the transfer of full inventories and partial ones based on conditional queries. In definitive, this work presents an evolution of the previous TTM solutions, which were limited to trailer identification and environment monitoring, to a solution which is able to provide an exhaustive item-level monitoring, required for several use cases. This exhaustive monitoring has required new communication capabilities through the Web of Things, which has been optimized with the use and improvement of a set of communications patterns. PMID:22778657
Architecture for improving terrestrial logistics based on the Web of Things.
Castro, Miguel; Jara, Antonio J; Skarmeta, Antonio
2012-01-01
Technological advances for improving supply chain efficiency present three key challenges for managing goods: tracking, tracing and monitoring (TTM), in order to satisfy the requirements for products such as perishable goods where the European Legislations requires them to ship within a prescribed temperature range to ensure freshness and suitability for consumption. The proposed system integrates RFID for tracking and tracing through a distributed architecture developed for heavy goods vehicles, and the sensors embedded in the SunSPOT platform for monitoring the goods transported based on the concept of the Internet of Things. This paper presents how the Internet of Things is integrated for improving terrestrial logistics offering a comprehensive and flexible architecture, with high scalability, according to the specific needs for reaching an item-level continuous monitoring solution. The major contribution from this work is the optimization of the Embedded Web Services based on RESTful (Web of Things) for the access to TTM services at any time during the transportation of goods. Specifically, it has been extended the monitoring patterns such as observe and blockwise transfer for the requirements from the continuous conditional monitoring, and for the transfer of full inventories and partial ones based on conditional queries. In definitive, this work presents an evolution of the previous TTM solutions, which were limited to trailer identification and environment monitoring, to a solution which is able to provide an exhaustive item-level monitoring, required for several use cases. This exhaustive monitoring has required new communication capabilities through the Web of Things, which has been optimized with the use and improvement of a set of communications patterns.
Solnica, Bogdan
2009-01-01
In this issue of Journal of Diabetes Science and Technology, Chang and colleagues present the analytical performance evaluation of the OneTouch® UltraVue™ blood glucose meter. This device is an advanced construction with a color display, used-strip ejector, no-button interface, and short assay time. Accuracy studies were performed using a YSI 2300 analyzer, considered the reference. Altogether, 349 pairs of results covering a wide range of blood glucose concentrations were analyzed. Patients with diabetes performed a significant part of the tests. Obtained results indicate good accuracy of OneTouch UltraVue blood glucose monitoring system, satisfying the International Organization for Standardization recommendations and thereby locating >95% of tests within zone A of the error grid. Results of the precision studies indicate good reproducibility of measurements. In conclusion, the evaluation of the OneTouch UltraVue meter revealed good analytical performance together with convenient handling useful for self-monitoring of blood glucose performed by elderly diabetes patients. PMID:20144432
Solnica, Bogdan
2009-09-01
In this issue of Journal of Diabetes Science and Technology, Chang and colleagues present the analytical performance evaluation of the OneTouch UltraVue blood glucose meter. This device is an advanced construction with a color display, used-strip ejector, no-button interface, and short assay time. Accuracy studies were performed using a YSI 2300 analyzer, considered the reference. Altogether, 349 pairs of results covering a wide range of blood glucose concentrations were analyzed. Patients with diabetes performed a significant part of the tests. Obtained results indicate good accuracy of OneTouch UltraVue blood glucose monitoring system, satisfying the International Organization for Standardization recommendations and thereby locating >95% of tests within zone A of the error grid. Results of the precision studies indicate good reproducibility of measurements. In conclusion, the evaluation of the OneTouch UltraVue meter revealed good analytical performance together with convenient handling useful for self-monitoring of blood glucose performed by elderly diabetes patients. 2009 Diabetes Technology Society.
Clint, S A; Eastwood, D M; Chasseaud, M; Calder, P R; Marsh, D R
2010-02-01
Although there is much in the literature regarding pin site infections, there is no accepted, validated method for documenting their state. We present a system for reliably labelling pin sites on any ring fixator construct and an easy-to-remember grading system to document the state of each pin site. Each site is graded in terms of erythema, pain and discharge to give a 3-point scale, named "Good", "Bad" and "Ugly" for ease of recall. This system was tested for intra- and inter-observer reproducibility. 15 patients undergoing elective limb reconstruction were recruited. A total of 218 pin sites were independently scored by 2 examiners. 82 were then re-examined later by the same examiners. 514 pin sites were felt to be "Good", 80 "Bad" and 6 "Ugly". The reproducibility of the system was found to be excellent. We feel our system gives a quick, reliable and reproducible method to monitor individual pin sites and their response to treatment. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-07-01
... pollution control equipment and monitoring equipment, in a manner consistent with safety and good air... include, but is not limited to, monitoring results, review of operation and maintenance procedures, review... VOHAP-containing materials to and from containers, tanks, vats, drums, and piping systems is conducted...
Code of Federal Regulations, 2014 CFR
2014-07-01
... pollution control equipment and monitoring equipment, in a manner consistent with safety and good air... include, but is not limited to, monitoring results, review of operation and maintenance procedures, review... VOHAP-containing materials to and from containers, tanks, vats, drums, and piping systems is conducted...
Code of Federal Regulations, 2013 CFR
2013-07-01
... pollution control equipment and monitoring equipment, in a manner consistent with safety and good air... include, but is not limited to, monitoring results, review of operation and maintenance procedures, review... VOHAP-containing materials to and from containers, tanks, vats, drums, and piping systems is conducted...
NASA Astrophysics Data System (ADS)
Prasetyo, Hoedi; Sugiarto, Yohanes; Nur Rosyidi, Cucuk
2018-03-01
Conveyor is a very useful equipment to replace manpower in transporting the goods. It highly influences the productivity, production capacity utilization and eventually the production cost. This paper proposes a system to monitor the utilization of conveyor at a low cost through a case study at powder coating process line in a sheet metal fabrication. Preliminary observation was conducted to identify the problems. The monitoring system was then built and executed. The system consists of two sub systems. First is sub system for collecting and transmitting the required data and the second is sub system for displaying the data. The system utilizes sensors, wireless data transfer and windows-based application. The test results showed that the whole system works properly. By this system, the productivity and status of the conveyor can be monitored in real time. This research enriches the development of conveyor monitoring system especially for implementation in small and medium enterprises.
Inventory Control System by Using Vendor Managed Inventory (VMI)
NASA Astrophysics Data System (ADS)
Sabila, Alzena Dona; Mustafid; Suryono
2018-02-01
The inventory control system has a strategic role for the business in managing inventory operations. Management of conventional inventory creates problems in the stock of goods that often runs into vacancies and excess goods at the retail level. This study aims to build inventory control system that can maintain the stability of goods availability at the retail level. The implementation of Vendor Managed Inventory (VMI) method on inventory control system provides transparency of sales data and inventory of goods at retailer level to supplier. Inventory control is performed by calculating safety stock and reorder point of goods based on sales data received by the system. Rule-based reasoning is provided on the system to facilitate the monitoring of inventory status information, thereby helping the process of inventory updates appropriately. Utilization of SMS technology is also considered as a medium of collecting sales data in real-time due to the ease of use. The results of this study indicate that inventory control using VMI ensures the availability of goods ± 70% and can reduce the accumulation of goods ± 30% at the retail level.
An ultra-high input impedance ECG amplifier for long-term monitoring of athletes.
Gargiulo, Gaetano; Bifulco, Paolo; Cesarelli, Mario; Ruffo, Mariano; Romano, Maria; Calvo, Rafael A; Jin, Craig; van Schaik, André
2010-01-01
We present a new, low-power electrocardiogram (ECG) recording system with an ultra-high input impedance that enables the use of long-lasting, dry electrodes. The system incorporates a low-power Bluetooth module for wireless connectivity and is designed to be suitable for long-term monitoring during daily activities. The new system using dry electrodes was compared with a clinically approved ECG reference system using gelled Ag/AgCl electrodes and performance was found to be equivalent. In addition, the system was used to monitor an athlete during several physical tasks, and a good quality ECG was obtained in all cases, including when the athlete was totally submerged in fresh water.
40 CFR Table 3 to Subpart Bbbbbb... - Applicability of General Provisions
Code of Federal Regulations, 2012 CFR
2012-07-01
... Maintain monitoring system in a manner consistent with good air pollution control practices Yes. § 63.8(c...) Maintenance records Recordkeeping of maintenance on air pollution control and monitoring equipment Yes. § 63... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
40 CFR Table 3 to Subpart Bbbbbb... - Applicability of General Provisions
Code of Federal Regulations, 2011 CFR
2011-07-01
... Maintain monitoring system in a manner consistent with good air pollution control practices Yes. § 63.8(c...) Maintenance records Recordkeeping of maintenance on air pollution control and monitoring equipment Yes. § 63... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
40 CFR Table 3 to Subpart Bbbbbb... - Applicability of General Provisions
Code of Federal Regulations, 2014 CFR
2014-07-01
... Maintain monitoring system in a manner consistent with good air pollution control practices Yes. § 63.8(c...) Maintenance records Recordkeeping of maintenance on air pollution control and monitoring equipment Yes. § 63... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
Code of Federal Regulations, 2011 CFR
2011-04-01
... Management Systems: Good Practices for Development and Implementation.” 3 An effective SMS should include, at... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRANSPORTATION INFRASTRUCTURE MANAGEMENT MANAGEMENT AND MONITORING SYSTEMS Management Systems § 500.108 SMS. An SMS is a systematic process with the goal of reducing the...
Code of Federal Regulations, 2010 CFR
2010-04-01
... Management Systems: Good Practices for Development and Implementation.” 3 An effective SMS should include, at... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRANSPORTATION INFRASTRUCTURE MANAGEMENT MANAGEMENT AND MONITORING SYSTEMS Management Systems § 500.108 SMS. An SMS is a systematic process with the goal of reducing the...
Design and validation of wireless system for oil monitoring base on optical sensing unit
NASA Astrophysics Data System (ADS)
Niu, Liqun; Wang, Weiming; Zhang, Shuaishuai; Li, Zhirui; Yu, Yan; Huang, Hui
2017-04-01
According to the situation of oil leakage and the development of oil detection technology, a wireless monitoring system, combining with the sensor technology, optical measurement technology, and wireless technology, is designed. In this paper, the architecture of a wireless system is designed. In the hardware, the collected data, acquired by photoelectric conversion and analog to digital conversion equipment, will be sent to the upper machine where they are saved and analyzed. The experimental results reveals that the wireless system has the characteristics of higher precision, more real-time and more convenient installation, it can reflect the condition of the measuring object truly and implement the dynamic monitoring for a long time on-site, stability—thus it has a good application prospect in the oil monitoring filed.
An Implementation of the Salt-Farm Monitoring System Using Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Ju, Jonggil; Park, Ingon; Lee, Yongwoong; Cho, Jongsik; Cho, Hyunwook; Yoe, Hyun; Shin, Changsun
In producing solar salt, natural environmental factors such as temperature, humidity, solar radiation, wind direction, wind speed and rain are essential elements which influence on the productivity and quality of salt. If we can manage the above mentioned environmental elements efficiently, we could achieve improved results in production of salt with good quality. To monitor and manage the natural environments, this paper suggests the Salt-Farm Monitoring System (SFMS) which is operated with renewable energy power. The system collects environmental factors directly from the environmental measure sensors and the sensor nodes. To implement a stand-alone system, we applied solar cell and wind generator to operate this system. Finally, we showed that the SFMS could monitor the salt-farm environments by using wireless sensor nodes and operate correctly without external power supply.
Maegawa, Hiroshi; Morino, Katsutaro; Nishio, Yoshihiko; Sato, Toshiyuki; Okada, Seiki; Kikkawa, Yasuo; Watanabe, Toshihiro; Nakajima, Hiromu; Kashiwagi, Atsunori
2016-01-01
Background Management of postprandial hyperglycemia is a key aspect in diabetes treatment. We developed a novel system to measure glucose area under the curve (AUC) using minimally invasive interstitial fluid extraction technology (MIET) for simple monitoring of postprandial glucose excursions. In this study, we evaluated the relationship between our system and continuous glucose monitoring (CGM) by comparing glucose AUC obtained using MIET with that obtained using CGM for a long duration. Methods Twenty diabetic inpatients wearing a CGM system were enrolled. For MIET measurement, a plastic microneedle array was applied to the skin as pretreatment, and hydrogels were placed on the pretreated area to collect interstitial fluid. Hydrogels were replaced every 2 or 4 hours and AUC was predicted on the basis of glucose and sodium ion levels. Results AUC predicted by MIET correlated well with that measured by CGM (r=0.93). Good performances of both consecutive 2- and 4-hour measurements were observed (measurement error: 11.7%±10.2% for 2 hours and 11.1%±7.9% for 4 hours), indicating the possibility of repetitive measurements up to 8 hours. The influence of neither glucose fluctuation nor average glucose level over the measurement accuracy was observed through 8 hours. Conclusion Our system showed good relationship with AUC values from CGM up to 8 hours, indicating that single pretreatment can cover a large portion of glucose excursion in a day. These results indicated possibility of our system to contribute to convenient monitoring of glucose excursions for a long duration. PMID:27535643
Ugi, Satoshi; Maegawa, Hiroshi; Morino, Katsutaro; Nishio, Yoshihiko; Sato, Toshiyuki; Okada, Seiki; Kikkawa, Yasuo; Watanabe, Toshihiro; Nakajima, Hiromu; Kashiwagi, Atsunori
2016-08-01
Management of postprandial hyperglycemia is a key aspect in diabetes treatment. We developed a novel system to measure glucose area under the curve (AUC) using minimally invasive interstitial fluid extraction technology (MIET) for simple monitoring of postprandial glucose excursions. In this study, we evaluated the relationship between our system and continuous glucose monitoring (CGM) by comparing glucose AUC obtained using MIET with that obtained using CGM for a long duration. Twenty diabetic inpatients wearing a CGM system were enrolled. For MIET measurement, a plastic microneedle array was applied to the skin as pretreatment, and hydrogels were placed on the pretreated area to collect interstitial fluid. Hydrogels were replaced every 2 or 4 hours and AUC was predicted on the basis of glucose and sodium ion levels. AUC predicted by MIET correlated well with that measured by CGM (r=0.93). Good performances of both consecutive 2- and 4-hour measurements were observed (measurement error: 11.7%±10.2% for 2 hours and 11.1%±7.9% for 4 hours), indicating the possibility of repetitive measurements up to 8 hours. The influence of neither glucose fluctuation nor average glucose level over the measurement accuracy was observed through 8 hours. Our system showed good relationship with AUC values from CGM up to 8 hours, indicating that single pretreatment can cover a large portion of glucose excursion in a day. These results indicated possibility of our system to contribute to convenient monitoring of glucose excursions for a long duration.
Jang, Yongwon; Noh, Hyung Wook; Lee, I B; Jung, Ji-Wook; Song, Yoonseon; Lee, Sooyeul; Kim, Seunghwan
2012-01-01
A patch type embedded cardiac function monitoring system was developed to detect arrhythmias such as PVC (Premature Ventricular Contraction), pause, ventricular fibrillation, and tachy/bradycardia. The overall system is composed of a main module including a dual processor and a Bluetooth telecommunication module. The dual microprocessor strategy minimizes power consumption and size, and guarantees the resources of embedded software programs. The developed software was verified with standard DB, and showed good performance.
Real-time monitoring system of composite aircraft wings utilizing Fibre Bragg Grating sensor
NASA Astrophysics Data System (ADS)
Vorathin, E.; Hafizi, Z. M.; Che Ghani, S. A.; Lim, K. S.
2016-10-01
Embedment of Fibre Bragg Grating (FBG) sensor in composite aircraft wings leads to the advancement of structural condition monitoring. The monitored aircraft wings have the capability to give real-time response under critical loading circumstances. The main objective of this paper is to develop a real-time FBG monitoring system for composite aircraft wings to view real-time changes when the structure undergoes some static loadings and dynamic impact. The implementation of matched edge filter FBG interrogation system to convert wavelength variations to strain readings shows that the structure is able to response instantly in real-time when undergoing few loadings and dynamic impact. This smart monitoring system is capable of updating the changes instantly in real-time and shows the weight induced on the composite aircraft wings instantly without any error. It also has a good agreement with acoustic emission (AE) sensor in the dynamic test.
Graphene based strain sensor with LCP substrate
NASA Astrophysics Data System (ADS)
Nie, M.; Yang, H. S.; Xia, Y. H.
2018-02-01
A flexible strain sensor constructed by an efficient, low-cost fabrication strategy is presented in this paper. It is assembled by adhering grid-like graphene on LCP substrate. Kinds of measurement setup have been designed to verify that the proposed flexible sensor device is suitable to be used in health monitoring system. From the experiment results, it can be proved that the sensor exhibits the following features: ultra-light, relatively good sensitivity, high reversibility, superior physical robustness, easy fabrication. With the great performance of this flexible strain sensor, it is considered to play an important role in body monitoring, structural health monitoring system, fatigue detection and healthcare systems in the near future.
Sinabro: A Smartphone-Integrated Opportunistic Electrocardiogram Monitoring System
Kwon, Sungjun; Lee, Dongseok; Kim, Jeehoon; Lee, Youngki; Kang, Seungwoo; Seo, Sangwon; Park, Kwangsuk
2016-01-01
In our preliminary study, we proposed a smartphone-integrated, unobtrusive electrocardiogram (ECG) monitoring system, Sinabro, which monitors a user’s ECG opportunistically during daily smartphone use without explicit user intervention. The proposed system also monitors ECG-derived features, such as heart rate (HR) and heart rate variability (HRV), to support the pervasive healthcare apps for smartphones based on the user’s high-level contexts, such as stress and affective state levels. In this study, we have extended the Sinabro system by: (1) upgrading the sensor device; (2) improving the feature extraction process; and (3) evaluating extensions of the system. We evaluated these extensions with a good set of algorithm parameters that were suggested based on empirical analyses. The results showed that the system could capture ECG reliably and extract highly accurate ECG-derived features with a reasonable rate of data drop during the user’s daily smartphone use. PMID:26978364
Sinabro: A Smartphone-Integrated Opportunistic Electrocardiogram Monitoring System.
Kwon, Sungjun; Lee, Dongseok; Kim, Jeehoon; Lee, Youngki; Kang, Seungwoo; Seo, Sangwon; Park, Kwangsuk
2016-03-11
In our preliminary study, we proposed a smartphone-integrated, unobtrusive electrocardiogram (ECG) monitoring system, Sinabro, which monitors a user's ECG opportunistically during daily smartphone use without explicit user intervention. The proposed system also monitors ECG-derived features, such as heart rate (HR) and heart rate variability (HRV), to support the pervasive healthcare apps for smartphones based on the user's high-level contexts, such as stress and affective state levels. In this study, we have extended the Sinabro system by: (1) upgrading the sensor device; (2) improving the feature extraction process; and (3) evaluating extensions of the system. We evaluated these extensions with a good set of algorithm parameters that were suggested based on empirical analyses. The results showed that the system could capture ECG reliably and extract highly accurate ECG-derived features with a reasonable rate of data drop during the user's daily smartphone use.
Design and Realization of Online Monitoring System of Distributed New Energy and Renewable Energy
NASA Astrophysics Data System (ADS)
Tang, Yanfen; Zhou, Tao; Li, Mengwen; Zheng, Guotai; Li, Hao
2018-01-01
Aimed at difficult centralized monitoring and management of current distributed new energy and renewable energy generation projects due to great varieties, different communication protocols and large-scale difference, this paper designs a online monitoring system of new energy and renewable energy characterized by distributed deployment, tailorable functions, extendible applications and fault self-healing performance. This system is designed based on international general standard for grid information data model, formulates unified data acquisition and transmission standard for different types of new energy and renewable energy generation projects, and can realize unified data acquisition and real-time monitoring of new energy and renewable energy generation projects, such as solar energy, wind power, biomass energy, etc. within its jurisdiction. This system has applied in Beijing. At present, 576 projects are connected to the system. Good effect is achieved and stability and reliability of the system have been validated.
Design of wireless communication system for environmental monitoring
NASA Astrophysics Data System (ADS)
Jiang, Li; Zhang, Xiaoyang; Sun, Zhixiang; Tian, Youcheng; Wang, Juan; Guo, Jianghua
2017-05-01
This paper introduces the basic principle and advantages of GPRS data transmission, and discusses in detail about the hardware structure of the GPRS module, the connection mode and the research process of GPRS application in the device. The feasibility and superiority of GPRS data transmission in wireless water quality monitoring device have been tested and proved, which provides great convenience for water quality monitoring, and has good application prospect.
Giordan, Daniele; Allasia, Paolo; Dematteis, Niccolò; Dell’Anese, Federico; Vagliasindi, Marco; Motta, Elena
2016-01-01
In this work, we present the results of a low-cost optical monitoring station designed for monitoring the kinematics of glaciers in an Alpine environment. We developed a complete hardware/software data acquisition and processing chain that automatically acquires, stores and co-registers images. The system was installed in September 2013 to monitor the evolution of the Planpincieux glacier, within the open-air laboratory of the Grandes Jorasses, Mont Blanc massif (NW Italy), and collected data with an hourly frequency. The acquisition equipment consists of a high-resolution DSLR camera operating in the visible band. The data are processed with a Pixel Offset algorithm based on normalized cross-correlation, to estimate the deformation of the observed glacier. We propose a method for the pixel-to-metric conversion and present the results of the projection on the mean slope of the glacier. The method performances are compared with measurements obtained by GB-SAR, and exhibit good agreement. The system provides good support for the analysis of the glacier evolution and allows the creation of daily displacement maps. PMID:27775652
Giordan, Daniele; Allasia, Paolo; Dematteis, Niccolò; Dell'Anese, Federico; Vagliasindi, Marco; Motta, Elena
2016-10-21
In this work, we present the results of a low-cost optical monitoring station designed for monitoring the kinematics of glaciers in an Alpine environment. We developed a complete hardware/software data acquisition and processing chain that automatically acquires, stores and co-registers images. The system was installed in September 2013 to monitor the evolution of the Planpincieux glacier, within the open-air laboratory of the Grandes Jorasses, Mont Blanc massif (NW Italy), and collected data with an hourly frequency. The acquisition equipment consists of a high-resolution DSLR camera operating in the visible band. The data are processed with a Pixel Offset algorithm based on normalized cross-correlation, to estimate the deformation of the observed glacier. We propose a method for the pixel-to-metric conversion and present the results of the projection on the mean slope of the glacier. The method performances are compared with measurements obtained by GB-SAR, and exhibit good agreement. The system provides good support for the analysis of the glacier evolution and allows the creation of daily displacement maps.
21 CFR 26.45 - Monitoring continued equivalence.
Code of Federal Regulations, 2010 CFR
2010-04-01
... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT EVALUATION REPORTS: UNITED STATES AND THE EUROPEAN...
Sakaguchi, Kazuhiko; Hirota, Yushi; Hashimoto, Naoko; Ogawa, Wataru; Sato, Toshiyuki; Okada, Seiki; Hagino, Kei; Asakura, Yoshihiro; Kikkawa, Yasuo; Kojima, Junko; Maekawa, Yasunori; Nakajima, Hiromu
2012-06-01
Recent studies have highlighted the importance of managing postprandial hyperglycemia, but adequate monitoring of postprandial glucose remains difficult because of wide variations in levels. We have therefore developed a minimally invasive system to monitor postprandial glucose area under the curve (AUC). This system involves no blood sampling and uses interstitial fluid glucose (IG) AUC (IG-AUC) as a surrogate marker of postprandial glucose. This study aimed to evaluate the usefulness of this system by comparing data with the findings of oral glucose tolerance tests (OGTTs) in subjects with and without diabetes. The glucose AUC monitoring system was validated by OGTTs in 37 subjects with and 10 subjects without diabetes. A plastic microneedle array was stamped on the forearm to extract IG. A hydrogel patch was then placed on the pretreated area to accumulate IG. Glucose and sodium ion concentrations in the hydrogel were measured to calculate IG-AUC at 2-h postload glucose. Plasma glucose (PG) levels were measured every 30 min to calculate reference PG-AUC. IG-AUC correlated strongly with reference PG-AUC (r=0.93) over a wide range. The level of correlation between IG-AUC and maximum PG level was also high (r=0.86). The painless nature of the technique was confirmed by the response of patients to questionnaires. The glucose AUC monitoring system using IG provided good estimates of reference PG-AUC and maximum PG level during OGTTs in subjects with and without diabetes. This system provides easy-to-use monitoring of glucose AUC, which is a good indicator of postprandial glucose.
A real-time posture monitoring method for rail vehicle bodies based on machine vision
NASA Astrophysics Data System (ADS)
Liu, Dongrun; Lu, Zhaijun; Cao, Tianpei; Li, Tian
2017-06-01
Monitoring vehicle operation conditions has become significantly important in modern high-speed railway systems. However, the operational impact of monitoring the roll angle of vehicle bodies has principally been limited to tilting trains, while few studies have focused on monitoring the running posture of vehicle bodies during operation. We propose a real-time posture monitoring method to fulfil real-time monitoring requirements, by taking rail surfaces and centrelines as detection references. In realising the proposed method, we built a mathematical computational model based on space coordinate transformations to calculate attitude angles of vehicles in operation and vertical and lateral vibration displacements of single measuring points. Moreover, comparison and verification of reliability between system and field results were conducted. Results show that monitoring of the roll angles of car bodies obtained through the system exhibit variation trends similar to those converted from the dynamic deflection of bogie secondary air springs. The monitoring results of two identical conditions were basically the same, highlighting repeatability and good monitoring accuracy. Therefore, our monitoring results were reliable in reflecting posture changes in running railway vehicles.
RFID Technology for Continuous Monitoring of Physiological Signals in Small Animals.
Volk, Tobias; Gorbey, Stefan; Bhattacharyya, Mayukh; Gruenwald, Waldemar; Lemmer, Björn; Reindl, Leonhard M; Stieglitz, Thomas; Jansen, Dirk
2015-02-01
Telemetry systems enable researchers to continuously monitor physiological signals in unrestrained, freely moving small rodents. Drawbacks of common systems are limited operation time, the need to house the animals separately, and the necessity of a stable communication link. Furthermore, the costs of the typically proprietary telemetry systems reduce the acceptance. The aim of this paper is to introduce a low-cost telemetry system based on common radio frequency identification technology optimized for battery-independent operational time, good reusability, and flexibility. The presented implant is equipped with sensors to measure electrocardiogram, arterial blood pressure, and body temperature. The biological signals are transmitted as digital data streams. The device is able of monitoring several freely moving animals housed in groups with a single reader station. The modular concept of the system significantly reduces the costs to monitor multiple physiological functions and refining procedures in preclinical research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Karen S; Kasemir, Kay
2009-01-01
An effective alarm system consists of a mechanism to monitor control points and generate alarm notifications, tools for operators to view, hear, acknowledge and handle alarms and a good configuration. Despite the availability of numerous fully featured tools, accelerator alarm systems continue to be disappointing to operations, frequently to the point of alarms being permanently silenced or totally ignored. This is often due to configurations that produce an excessive number of alarms or fail to communicate the required operator response. Most accelerator controls systems do a good job of monitoring specified points and generating notifications when parameters exceed predefined limits.more » In some cases, improved tools can help, but more often, poor configuration is the root cause of ineffective alarm systems. A SNS, we have invested considerable effort in generating appropriate configurations using a rigorous set of rules based on best practices in the industrial process controls community. This paper will discuss our alarm configuration philosophy and operator response to our new system.« less
Novel online monitoring and alert system for anaerobic digestion reactors.
Dong, Fang; Zhao, Quan-Bao; Li, Wen-Wei; Sheng, Guo-Ping; Zhao, Jin-Bao; Tang, Yong; Yu, Han-Qing; Kubota, Kengo; Li, Yu-You; Harada, Hideki
2011-10-15
Effective monitoring and diagnosis of anaerobic digestion processes is a great challenge for anaerobic digestion reactors, which limits their stable operation. In this work, an online monitoring and alert system for upflow anaerobic sludge blanket (UASB) reactors is developed on the basis of a set of novel evaluating indexes. The two indexes, i.e., stability index S and auxiliary index a, which incorporate both gas- and liquid-phase parameters for UASB, enable a quantitative and comprehensive evaluation of reactor status. A series of shock tests is conducted to evaluate the response of the monitoring and alert system to organic overloading, hydraulic, temperature, and toxicant shocks. The results show that this system enables an accurate and rapid monitoring and diagnosis of the reactor status, and offers reliable early warnings on the potential risks. As the core of this system, the evaluating indexes are demonstrated to be of high accuracy and sensitivity in process evaluation and good adaptability to the artificial intelligence and automated control apparatus. This online monitoring and alert system presents a valuable effort to promote the automated monitoring and control of anaerobic digestion process, and holds a high promise for application.
On-line biofilm monitoring by "BIOX" electrochemical probe.
Mollica, A; Cristiani, P
2003-01-01
The innovative electrochemical monitoring probe (BIOX) recently developed to improve the antifouling treatments of cooling systems in industrial plants is presented. On the basis of the good results obtained from applications on marine sites, some research has been stated to validate this technique in biofilm growth and prevention of microbial corrosion in fresh and drinking waters.
NASA Astrophysics Data System (ADS)
Soeharwinto; Sinulingga, Emerson; Siregar, Baihaqi
2017-01-01
An accurate information can be useful for authorities to make good policies for preventive and mitigation after volcano eruption disaster. Monitoring of environmental parameters of post-eruption volcano provides an important information for authorities. Such monitoring system can be develop using the Wireless Network Sensor technology. Many application has been developed using the Wireless Sensor Network technology, such as floods early warning system, sun radiation mapping, and watershed monitoring. This paper describes the implementation of a remote environment monitoring system of mount Sinabung post-eruption. The system monitor three environmental parameters: soil condition, water quality and air quality (outdoor). Motes equipped with proper sensors, as components of the monitoring system placed in sample locations. The measured value from the sensors periodically sends to data server using 3G/GPRS communication module. The data can be downloaded by the user for further analysis.The measurement and data analysis results generally indicate that the environmental parameters in the range of normal/standard condition. The sample locations are safe for living and suitable for cultivation, but awareness is strictly required due to the uncertainty of Sinabung status.
NASA Astrophysics Data System (ADS)
Yue, Yanfei; Bai, Yun; Basheer, P. A. Muhammed; Boland, John J.; Wang, Jing Jing
2013-04-01
Formation of ettringite and gypsum from sulfate attack together with carbonation and chloride ingress have been considered as the most serious deterioration mechanisms of concrete structures. Although Electrical Resistance Sensors and Fibre Optic Chemical Sensors could be used to monitoring the latter two mechanisms in situ, currently there is no system for monitoring the deterioration mechanisms of sulfate attack and hence still needs to be developed. In this paper, a preliminary study was carried out to investigate the feasibility of monitoring the sulfate attack with optical fibre Raman spectroscopy through characterizing the ettringite and gypsum formed in deteriorated cementitious materials under an `optical fibre excitation + spectroscopy objective collection' configuration. Bench-mounted Raman spectroscopy analysis was also used to validate the spectrum obtained from the fibre-objective configuration. The results showed that the expected Raman bands of ettringite and gypsum in the sulfate attacked cement paste have been clearly identified by the optical fibre Raman spectroscopy and are in good agreement with those identified from bench-mounted Raman spectroscopy. Therefore, based on these preliminary results, there is a good potential of developing an optical fibre Raman spectroscopy-based system for monitoring the deterioration mechanisms of concrete subjected to the sulfate attack in the future.
Enhanced Raman Monitor Project
NASA Technical Reports Server (NTRS)
Westenskow, Dwayne
1996-01-01
Monitoring of gaseous contaminants stems from the need to ensure a healthy and safe environment. NASA/Ames needs sensors that are able to monitor common atmospheric gas concentrations as well as trace amounts of contaminant gases. To provide an accurate assessment of air quality, a monitoring system would need to be continuous and on-line with full spectrum capabilities, allowing simultaneous detection of all gas components in a sample, including both combustible and non-combustible gases. The system demands a high degree of sensitivity to detect low gas concentrations in the low-ppm and sub-ppm regions. For clean and healthy air ('good' category), criteria established by the EPA requires that contaminant concentrations not exceed 4 ppm of carbon monoxide (CO) in an 8 hour period, 60 ppb of ozone(O3) in a one hour period and 30 ppb of sulfur dioxide (SO2) in a 24 hour period. One step below this is the National Ambient Air Quality Standard ('moderate' category) which requires that contaminant concentrations not exceed 9 ppm of carbon monoxide (CO), 120 ppb of ozone (O3) and 140 ppb of sulfur dioxide (SO2) for their respective time periods. Ideally a monitor should be able to detect the concentrations specified in the 'good' category. To benchmark current abilities of Raman technology in gas phase analysis, laboratory experiments were performed to evaluate the RASCAL II anesthetic gas monitor.
77 FR 5155 - Interest Rate Risk Policy and Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-02
... directors and management; appropriate IRR measurement and monitoring systems; good internal controls; and informed decision-making based on IRR measurement system results. It also provides guidelines for... technical aspects of IRR measurement methods. Of these, some said Appendix B implied a preference for the...
Software for marine ecological environment comprehensive monitoring system based on MCGS
NASA Astrophysics Data System (ADS)
Wang, X. H.; Ma, R.; Cao, X.; Cao, L.; Chu, D. Z.; Zhang, L.; Zhang, T. P.
2017-08-01
The automatic integrated monitoring software for marine ecological environment based on MCGS configuration software is designed and developed to realize real-time automatic monitoring of many marine ecological parameters. The DTU data transmission terminal performs network communication and transmits the data to the user data center in a timely manner. The software adopts the modular design and has the advantages of stable and flexible data structure, strong portability and scalability, clear interface, simple user operation and convenient maintenance. Continuous site comparison test of 6 months showed that, the relative error of the parameters monitored by the system such as temperature, salinity, turbidity, pH, dissolved oxygen was controlled within 5% with the standard method and the relative error of the nutrient parameters was within 15%. Meanwhile, the system had few maintenance times, low failure rate, stable and efficient continuous monitoring capabilities. The field application shows that the software is stable and the data communication is reliable, and it has a good application prospect in the field of marine ecological environment comprehensive monitoring.
Effective HTCondor-based monitoring system for CMS
NASA Astrophysics Data System (ADS)
Balcas, J.; Bockelman, B. P.; Da Silva, J. M.; Hernandez, J.; Khan, F. A.; Letts, J.; Mascheroni, M.; Mason, D. A.; Perez-Calero Yzquierdo, A.; Vlimant, J.-R.; pre="for the"> CMS Consortium, 2017-10-01 The CMS experiment at the LHC relies on HTCondor and glideinWMS as its primary batch and pilot-based Grid provisioning systems, respectively. Given the scale of the global queue in CMS, the operators found it increasingly difficult to monitor the pool to find problems and fix them. The operators had to rely on several different web pages, with several different levels of information, and sift tirelessly through log files in order to monitor the pool completely. Therefore, coming up with a suitable monitoring system was one of the crucial items before the beginning of the LHC Run 2 in order to ensure early detection of issues and to give a good overview of the whole pool. Our new monitoring page utilizes the HTCondor ClassAd information to provide a complete picture of the whole submission infrastructure in CMS. The monitoring page includes useful information from HTCondor schedulers, central managers, the glideinWMS frontend, and factories. It also incorporates information about users and tasks making it easy for operators to provide support and debug issues.
Miniaturized system of a gas chromatograph coupled with a Paul ion trap mass spectrometer
NASA Technical Reports Server (NTRS)
Shortt, B. J.; Darrach, M. R.; Holland, Paul M.; Chutjian, A.
2005-01-01
Miniature gas chromatography (GC) and miniature mass spectrometry (MS) instrumentation has been developed to identify and quantify the chemical compounds present in complex mixtures of gases. The design approach utilizes micro-GC components coupled with a Paul quadrupole ion trap (QIT) mass spectrometer. Inherent to the system are high sensitivity, good dynamic range, good QIT resolution, low GC flow-rates to minimize vacuum requirements and the need for consumables; and the use of a modular approach to adapt to volatile organic compounds dissolved in water or present in sediment. Measurements are reported on system response to gaseous species at concentrations varying over four orders of magnitude. The ability of the system to deal with complicated mixtures is demonstrated, and future improvements are discussed. The GC/QIT system described herein has a mass, volume and power that are, conservatively, one-twentieth of those of commercial off-the-shelf systems. Potential applications are to spacecraft cabin-air monitoring, robotic planetary exploration and trace-species detection for residual gas analysis and environmental monitoring.
NASA Astrophysics Data System (ADS)
Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo
An automatic welding system using Tungsten Inert Gas (TIG) welding with vision sensor for welding of aluminum pipe was constructed. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position and moving welding torch with the AC welding machine. The monitoring system consists of a vision sensor using a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Neural network model for welding speed control were constructed to perform the process automatically. From the experimental results it shows the effectiveness of the control system confirmed by good detection of molten pool and sound weld of experimental result.
Three years of operational experience from Schauinsland CTBT monitoring station.
Zähringer, M; Bieringer, J; Schlosser, C
2008-04-01
Data from three years of operation of a low-level aerosol sampler and analyzer (RASA) at Schauinsland monitoring station are reported. The system is part of the International Monitoring System (IMS) for verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The fully automatic system is capable to measure aerosol borne gamma emitters with high sensitivity and routinely quantifies 7Be and 212Pb. The system had a high level of data availability of 90% within the reporting period. A daily screening process rendered 66 tentative identifications of verification relevant radionuclides since the system entered IMS operation in February 2004. Two of these were real events and associated to a plausible source. The remaining 64 cases can consistently be explained by detector background and statistical phenomena. Inter-comparison with data from a weekly sampler operated at the same station shows instabilities of the calibration during the test phase and a good agreement since certification of the system.
Design of Plant Eco-physiology Monitoring System Based on Embedded Technology
NASA Astrophysics Data System (ADS)
Li, Yunbing; Wang, Cheng; Qiao, Xiaojun; Liu, Yanfei; Zhang, Xinlu
A real time system has been developed to collect plant's growth information comprehensively. Plant eco-physiological signals can be collected and analyzed effectively. The system adopted embedded technology: wireless sensors network collect the eco-physiological information. Touch screen and ARM microprocessor make the system work independently without PC. The system is versatile and all parameters can be set by the touch screen. Sensors' intelligent compensation can be realized in this system. Information can be displayed by either graphically or in table mode. The ARM microprocessor provides the interface to connect with the internet, so the system support remote monitoring and controlling. The system has advantages of friendly interface, flexible construction and extension. It's a good tool for plant's management.
Application of the thermoelectric MEMS microwave power sensor in a power radiation monitoring system
NASA Astrophysics Data System (ADS)
Bo, Gao; Jing, Yang; Si, Jiang; Debo, Wang
2016-08-01
A power radiation monitoring system based on thermoelectric MEMS microwave power sensors is studied. This monitoring system consists of three modules: a data acquisition module, a data processing and display module, and a data sharing module. It can detect the power radiation in the environment and the date information can be processed and shared. The measured results show that the thermoelectric MEMS microwave power sensor and the power radiation monitoring system both have a relatively good linearity. The sensitivity of the thermoelectric MEMS microwave power sensor is about 0.101 mV/mW, and the sensitivity of the monitoring system is about 0.038 V/mW. The voltage gain of the monitoring system is about 380 times, which is relatively consistent with the theoretical value. In addition, the low-frequency and low-power module in the monitoring system is adopted in order to reduce the electromagnetic pollution and the power consumption, and this work will extend the application of the thermoelectric MEMS microwave power sensor in more areas. Project supported by the National Natural Science Foundation of China (No. 11304158), the Province Natural Science Foundation of Jiangsu (No. BK20140890), the Open Research Fund of the Key Laboratory of MEMS of Ministry of Education, Southeast University (No. 3206005302), and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (Nos. NY213024, NY215139).
Adaptive model training system and method
Bickford, Randall L; Palnitkar, Rahul M; Lee, Vo
2014-04-15
An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.
Adaptive model training system and method
Bickford, Randall L; Palnitkar, Rahul M
2014-11-18
An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.
Fast-responding liquid crystal light-valve technology for color-sequential display applications
NASA Astrophysics Data System (ADS)
Janssen, Peter J.; Konovalov, Victor A.; Muravski, Anatoli A.; Yakovenko, Sergei Y.
1996-04-01
A color sequential projection system has some distinct advantages over conventional systems which make it uniquely suitable for consumer TV as well as high performance professional applications such as computer monitors and electronic cinema. A fast responding light-valve is, clearly, essential for a good performing system. Response speed of transmissive LC lightvalves has been marginal thus far for good color rendition. Recently, Sevchenko Institute has made some very fast reflective LC cells which were evaluated at Philips Labs. These devices showed sub millisecond-large signal-response times, even at room temperature, and produced good color in a projector emulation testbed. In our presentation we describe our highly efficient color sequential projector and demonstrate its operation on video tape. Next we discuss light-valve requirements and reflective light-valve test results.
Development of a low-cost temperature data monitoring. An upgrade for hot box apparatus
NASA Astrophysics Data System (ADS)
de Rubeis, T.; Nardi, I.; Muttillo, M.
2017-11-01
The monitoring phase has gained a fundamental role in the energy efficiency evaluation of a system. Number and typology of the probes depend on the physical quantity to be monitored, and on the size and complexity of the system. Moreover, a measurement equipment should be designed to allow the employment of probes different for number and measured physical quantities. For this reason, a scalable equipment represents a good way for easily carrying out a system monitoring. Proprietary software and high costs characterize instruments of current use, thus limiting the possibilities to realize customized monitoring. In this paper, a temperature measuring instrument, conceived, designed, and realized for real time applications, is presented. The proposed system is based on digital thermometers and on open-source code. A remarkable feature of the instrument is the possibility of acquiring data from a high and variable number of probes (order of hundred), assuring flexibility of the software, since it can be programmed, and low-cost of the hardware components. The contemporary use of multiple temperature probes suggested to apply this instrument for a hot box apparatus, although the software can be set for recording different physical quantities. A hot box compliant with standard EN ISO 8990 should be equipped with several temperature probes to investigate heat exchanges of a specimen wall and thermal field of the chambers. In this work, preliminary tests have been carried out focusing only on the evaluation of the prototypal system’s performance. The tests were realized by comparing different sensors, such as thermocouples and resistance thermometers, traditionally employed in hot box experiments. A preliminary test was realized imposing a dynamic condition with a thermoelectric Peltier cell. Data obtained by digital thermometers DS18B20, compared with the ones of Pt100 probes, show a good correlation. Based on these encouraging results, a further test was carried out in hot box, comparing the data measured by digital thermometers, Pt100 and T-type thermocouples. In this case also, the analyses show a good correlation between either digital thermometers and analog sensors. From these results, it is reasonable to foresee that this measuring instrument could help those willing to realize or refurbish a hot box apparatus, and those who want to undertake temperature monitoring.
Design and monitoring of photostability systems for amlodipine dosage forms.
Ragno, G; Cione, E; Garofalo, A; Genchi, G; Ioele, G; Risoli, A; Spagnoletta, A
2003-10-20
Photostability of amlodipine (AML) has been monitored in several pharmaceutical inclusion systems characterized by plurimolecular aggregation of the drug and excipients with high molecular weight. Several formulations including cyclodextrins, liposomes and microspheres have been prepared and characterized. The photodegradation process has been monitored according to the conditions suggested by the ICH Guideline for photostability testing, by using a light cabinet equipped with a Xenon lamp and monitored by spectrophotometry. The formulations herein tested have been found to be able to considerably increase drug stability, when compared with usual pharmaceutical forms. The residual concentration detected in the inclusion complexes with cyclodextrins and liposomes was 90 and 77%, respectively, while a very good value of 97% was found for microspheres, after a radiant exposure of 11,340 kJm(-2).
Toda, Kei; Hato, Yuki; Ohira, Shin-ichi; Namihira, Takao
2007-11-05
In this paper, novel microsystems for gas analysis and gas generation are described. The same microchannel devices covered with a gas permeable membrane were used for both the gas collection and the gas generation. For the first time, a dual liquid flow system was utilized in a micro-gas analysis system. Even though micropumps are utilized in the dual line microsystem, a good baseline was obtained in the NO2 measurement with Griess-Saltzman chemistry. The system was developed for on-site measurements in medical treatment; the treatment is of respiratory disease syndrome by NO inhalation and the monitoring is of the product NO and the harmful byproduct NO2. The system was also applied to mobile atmospheric monitoring. Chemical NO generation using the microchannel device was investigated for safe NO inhalation as an alternative to a NO generator based on pulsed arc discharge.
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Vassilakos, Gregory J.
2015-01-01
This report summarizes the initial modeling of the global response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris(MMOD) impacts using a structural, nonlinear, transient dynamic, finite element code. These models complement the on-orbit deployment of the Distributed Impact Detection System (DIDS) to support structural health monitoring studies. Two global models were developed. The first focused exclusively on impacts on the soft-goods (fabric-envelop) portion of BEAM. The second incorporates the bulkhead to support understanding of bulkhead impacts. These models were exercised for random impact locations and responses monitored at the on-orbit sensor locations. The report concludes with areas for future study.
Standing Naval Forces and Global Security
1993-06-04
standards an- good engineering practices. The team submits a r:-,cr: to !PPC recommending that the prcject be accepted b NATO. 8. Audit . The...established. A system of common funds and trailing audits must be in effect to pay for the infrastructure. NATO infrastructure appears to be a good example to...Search And Rescue and maritime safety monitor marine polution 6. sharing maritime inteiiigence1 5 Commodore Bateman foresees coupling these activities or
Wu, Juanjuan; Ye, Zhuo; Wu, Feng; Wang, Hongying; Zeng, Lintao; Bao, Guang-Ming
2018-05-01
Thiophenols are a class of highly toxic environmental pollutant, hence it is very necessary to monitor thiophenols in environment and living cells with an efficient and reliable method. Herein, a novel fluorescent probe for thiophenols has been developed, which exhibited a colorimetric and fluorescence turn-on dual response towards thiophenols with good selectivity and fast response. The sensing mechanism for thiophenols was attributed to nucleophilic substitution reaction, which was confirmed by HPLC. The probe exhibited good recovery (from 90% to 107%) and low limit of detection for thiophenols (37nM) in industrial wastewater. Moreover, the probe has been successfully employed to visualize thiophenol in living cells. Therefore, the fluorescent probe has good capability for monitoring thiophenols in environmental samples and biological systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Take the Test: Sample Questions from OECD's PISA Assessments
ERIC Educational Resources Information Center
Salz, Susanne, Comp.; Figueroa, Diana Toledo, Comp.
2009-01-01
Parents, students, teachers, school leaders, governments and the general public need good information on how well their education systems prepare students for life. A growing commitment by governments to monitor the outcomes of education systems in terms of student achievement on a regular basis and within an internationally agreed framework led…
Uchida, Yukihiro; Tachibana, Hidenobu; Kamei, Yoshiyuki; Kashihara, Kenichi
2017-11-01
This study aimed to clinically validate a simple real-time baseline shift monitoring system in a prospective study of consecutive patients undergoing stereotactic body radiation therapy (SBRT) of lung tumors, and to investigate baseline shift due to intrafraction motion of the patient's body during lung SBRT. Ten consecutive patients with peripheral lung tumors were treated by SBRT consisting of four fractions of 12 Gy each, with a total dose of 48 Gy. During treatment, each patient's geometric displacement in the anterior-posterior and left-right directions (the baseline shift) was measured using a real-time monitoring webcam system. Displacement between the start and end of treatment was measured using an X-ray fluoroscopic imaging system. The displacement measurements of the two systems were compared, and the measurements of baseline shift acquired by the monitoring system during treatment were analyzed for all patients. There was no significant deviation between the monitoring system and the X-ray imaging system, with the accuracy of measurement being within 1 mm. Measurements using the monitoring system showed that 7 min of treatment generated displacements of more than 1 mm in 50% of the patients. Baseline shift of a patient's body may be measured accurately in real time, using a monitoring system without X-ray exposure. The manubrium of the sternum is a good location for measuring the baseline shift of a patient's body at all times. The real-time monitoring system may be useful for measuring the baseline shift of a patient's body independently of a gating system. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Parsaei, H.; Vakily, A.; Shafiei, A.M.
2017-01-01
Background: The basic requirements for monitoring anesthetized patients during surgery are assessing cardiac and respiratory function. Esophageal stethoscopes have been developed for this purpose, but these devices may not provide clear heart and lung sound due to existence of various noises in operating rooms. In addition, the stethoscope is not applicable for continues monitoring, and it is unsuitable for observing inaccessible patients in some conditions such as during CT scan. Objective: A wireless electronic esophageal stethoscope is designed for continues auscultation of heart and lung sounds in anesthetized patients. The system consists of a transmitter and a receiver. The former acquires, amplifies and transmits the acquired sound signals to the latter via a frequency modulation transmitter. The receiver demodulates, amplifies, and delivers the received signal to a headphone to be heard by anesthesiologist. Results: The usability and effectiveness of the designed system was qualitatively evaluated by 5 anesthesiologists in Namazi Hospital and Shahid Chamran Hospital, Shiraz, Iran on 30 patients in several operating rooms in different conditions; e.g., when electro surgery instruments are working. Fortunately, the experts on average ranked good quality for the heard heart and lung sounds and very good on the user friendly being of the instrument. Conclusion: Evaluation results demonstrate that the developed system is capable of capturing and transmitting heart and lung sounds successfully. Therefore, it can be used to continuously monitor anesthetized patients’ cardiac and respiratory function. Since via the instrument wireless auscultation is possible, it could be suitable for observing inaccessible patients in several conditions such as during CT scan. PMID:28451580
Quaternion Based Thermal Condition Monitoring System
NASA Astrophysics Data System (ADS)
Wong, Wai Kit; Loo, Chu Kiong; Lim, Way Soong; Tan, Poi Ngee
In this paper, we will propose a new and effective machine condition monitoring system using log-polar mapper, quaternion based thermal image correlator and max-product fuzzy neural network classifier. Two classification characteristics namely: peak to sidelobe ratio (PSR) and real to complex ratio of the discrete quaternion correlation output (p-value) are applied in the proposed machine condition monitoring system. Large PSR and p-value observe in a good match among correlation of the input thermal image with a particular reference image, while small PSR and p-value observe in a bad/not match among correlation of the input thermal image with a particular reference image. In simulation, we also discover that log-polar mapping actually help solving rotation and scaling invariant problems in quaternion based thermal image correlation. Beside that, log-polar mapping can have a two fold of data compression capability. Log-polar mapping can help smoother up the output correlation plane too, hence makes a better measurement way for PSR and p-values. Simulation results also show that the proposed system is an efficient machine condition monitoring system with accuracy more than 98%.
A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway
Shao, Minggang
2017-01-01
This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly. PMID:29204258
A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway.
Guan, Kai; Shao, Minggang; Wu, Shuicai
2017-01-01
This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly.
Achilles tendon reflex measuring system
NASA Astrophysics Data System (ADS)
Szebeszczyk, Janina; Straszecka, Joanna
1995-06-01
The examination of Achilles tendon reflex is widely used as a simple, noninvasive clinical test in diagnosis and pharmacological therapy monitoring in such diseases as: hypothyroidism, hyperthyroidism, diabetic neuropathy, the lower limbs obstructive angiopathies and intermittent claudication. Presented Achilles tendon reflect measuring system is based on the piezoresistive sensor connected with the cylinder-piston system. To determinate the moment of Achilles tendon stimulation a detecting circuit was used. The outputs of the measuring system are connected to the PC-based data acquisition board. Experimental results showed that the measurement accuracy and repeatability is good enough for diagnostics and therapy monitoring purposes. A user friendly, easy-to-operate measurement system fulfills all the requirements related to recording, presentation and storing of the patients' reflexograms.
Hydrogel-coated fiber Bragg grating sensor for pH monitoring
NASA Astrophysics Data System (ADS)
Pabbisetti, Vayu Nandana Kishore; Madhuvarasu, Sai Shankar
2016-06-01
We present a fiber-optic wavelength-modulated sensor for pH applications. Fiber Bragg grating (FBG) is functionalized with a stimulus-responsive hydrogel that induces a strain on FBG due to mechanical expansion of the gel in response to ambient pH changes. The gel is synthesized from the blends of poly (vinyl alcohol)/poly (acrylic acid). The induced strain results in a shift of FBG reflected peak that is monitored by an interrogator. The sensor system shows good linearity in the acidic pH range of 3 to 7 with a sensitivity of 12.16 pm/pH. In addition, it shows good repeatability and oscillator behavior, which proves it to be fit for pH sensing applications.
NASA Astrophysics Data System (ADS)
Pla-Garcia, Jorge; Rafkin, Scot C. R.; Kahre, Melinda; Gomez-Elvira, Javier; Hamilton, Victoria E.; Navarro, Sara; Torres, Josefina; Marín, Mercedes; Vasavada, Ashwin R.
2016-12-01
Air temperature, ground temperature, pressure, and wind speed and direction data obtained from the Rover Environmental Monitoring Station onboard the Mars Science Laboratory rover Curiosity are compared to data from the Mars Regional Atmospheric Modeling System. A full diurnal cycle at four different seasons (Ls 0, 90, 180 and 270) is investigated at the rover location within Gale crater, Mars. Model results are shown to be in good agreement with observations when considering the uncertainties in the observational data set. The good agreement provides justification for utilizing the model results to investigate the broader meteorological environment of the Gale crater region, which is described in the second, companion paper.
Development of a biosensor telemetry system for monitoring fermentation in craft breweries.
Farina, Donatella; Zinellu, Manuel; Fanari, Mauro; Porcu, Maria Cristina; Scognamillo, Sergio; Puggioni, Giulia Maria Grazia; Rocchitta, Gaia; Serra, Pier Andrea; Pretti, Luca
2017-03-01
The development and applications of biosensors in the food industry has had a rapid grown due to their sensitivity, specificity and simplicity of use with respect to classical analytical methods. In this study, glucose and ethanol amperometric biosensors integrated with a wireless telemetry system were developed and used for the monitoring of top and bottom fermentations in beer wort samples. The collected data were in good agreement with those obtained by reference methods. The simplicity of construction, the low cost and the short time of analysis, combined with easy interpretation of the results, suggest that these devices could be a valuable alternative to conventional methods for monitoring fermentation processes in the food industry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Non-invasive hypoglycemia monitoring system using extreme learning machine for Type 1 diabetes.
Ling, Sai Ho; San, Phyo Phyo; Nguyen, Hung T
2016-09-01
Hypoglycemia is a very common in type 1 diabetic persons and can occur at any age. It is always threatening to the well-being of patients with Type 1 diabetes mellitus (T1DM) since hypoglycemia leads to seizures or loss of consciousness and the possible development of permanent brain dysfunction under certain circumstances. Because of that, an accurate continuing hypoglycemia monitoring system is a very important medical device for diabetic patients. In this paper, we proposed a non-invasive hypoglycemia monitoring system using the physiological parameters of electrocardiography (ECG) signal. To enhance the detection accuracy, extreme learning machine (ELM) is developed to recognize the presence of hypoglycemia. A clinical study of 16 children with T1DM is given to illustrate the good performance of ELM. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Research of real-time video processing system based on 6678 multi-core DSP
NASA Astrophysics Data System (ADS)
Li, Xiangzhen; Xie, Xiaodan; Yin, Xiaoqiang
2017-10-01
In the information age, the rapid development in the direction of intelligent video processing, complex algorithm proposed the powerful challenge on the performance of the processor. In this article, through the FPGA + TMS320C6678 frame structure, the image to fog, merge into an organic whole, to stabilize the image enhancement, its good real-time, superior performance, break through the traditional function of video processing system is simple, the product defects such as single, solved the video application in security monitoring, video, etc. Can give full play to the video monitoring effectiveness, improve enterprise economic benefits.
NASA Astrophysics Data System (ADS)
Jegadeeshwaran, R.; Sugumaran, V.
2015-02-01
Hydraulic brakes in automobiles are important components for the safety of passengers; therefore, the brakes are a good subject for condition monitoring. The condition of the brake components can be monitored by using the vibration characteristics. On-line condition monitoring by using machine learning approach is proposed in this paper as a possible solution to such problems. The vibration signals for both good as well as faulty conditions of brakes were acquired from a hydraulic brake test setup with the help of a piezoelectric transducer and a data acquisition system. Descriptive statistical features were extracted from the acquired vibration signals and the feature selection was carried out using the C4.5 decision tree algorithm. There is no specific method to find the right number of features required for classification for a given problem. Hence an extensive study is needed to find the optimum number of features. The effect of the number of features was also studied, by using the decision tree as well as Support Vector Machines (SVM). The selected features were classified using the C-SVM and Nu-SVM with different kernel functions. The results are discussed and the conclusion of the study is presented.
Sizirici, Banu; Tansel, Berrin; Kumar, Vivek
2011-06-01
Post-closure care (PCC) activities at landfills include cap maintenance; water quality monitoring; maintenance and monitoring of the gas collection/control system, leachate collection system, groundwater monitoring wells, and surface water management system; and general site maintenance. The objective of this study was to develop an integrated data and knowledge based decision making tool for preliminary estimation of PCC needs at closed landfills. To develop the decision making tool, 11 categories of parameters were identified as critical areas which could affect future PCC needs. Each category was further analyzed by detailed questions which could be answered with limited data and knowledge about the site, its history, location, and site specific characteristics. Depending on the existing knowledge base, a score was assigned to each question (on a scale 1-10, as 1 being the best and 10 being the worst). Each category was also assigned a weight based on its relative importance on the site conditions and PCC needs. The overall landfill score was obtained from the total weighted sum attained. Based on the overall score, landfill conditions could be categorized as critical, acceptable, or good. Critical condition indicates that the landfill may be a threat to the human health and the environment and necessary steps should be taken. Acceptable condition indicates that the landfill is currently stable and the monitoring should be continued. Good condition indicates that the landfill is stable and the monitoring activities can be reduced in the future. The knowledge base algorithm was applied to two case study landfills for preliminary assessment of PCC performance. Copyright © 2011 Elsevier Ltd. All rights reserved.
Progress and challenges associated with halal authentication of consumer packaged goods.
Premanandh, Jagadeesan; Bin Salem, Samara
2017-11-01
Abusive business practices are increasingly evident in consumer packaged goods. Although consumers have the right to protect themselves against such practices, rapid urbanization and industrialization result in greater distances between producers and consumers, raising serious concerns on the supply chain. The operational complexities surrounding halal authentication pose serious challenges on the integrity of consumer packaged goods. This article attempts to address the progress and challenges associated with halal authentication. Advancement and concerns on the application of new, rapid analytical methods for halal authentication are discussed. The significance of zero tolerance policy in consumer packaged foods and its impact on analytical testing are presented. The role of halal assurance systems and their challenges are also considered. In conclusion, consensus on the establishment of one standard approach coupled with a sound traceability system and constant monitoring would certainly improve and ensure halalness of consumer packaged goods. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
A surface acoustic wave ICP sensor with good temperature stability.
Zhang, Bing; Hu, Hong; Ye, Aipeng; Zhang, Peng
2017-07-20
Intracranial pressure (ICP) monitoring is very important for assessing and monitoring hydrocephalus, head trauma and hypertension patients, which could lead to elevated ICP or even devastating neurological damage. The mortality rate due to these diseases could be reduced through ICP monitoring, because precautions can be taken against the brain damage. This paper presents a surface acoustic wave (SAW) pressure sensor to realize ICP monitoring, which is capable of wireless and passive transmission with antenna attached. In order to improve the temperature stability of the sensor, two methods were adopted. First, the ST cut quartz was chosen as the sensor substrate due to its good temperature stability. Then, a differential temperature compensation method was proposed to reduce the effects of temperature. Two resonators were designed based on coupling of mode (COM) theory and the prototype was fabricated and verified using a system established for testing pressure and temperature. The experiment result shows that the sensor has a linearity of 2.63% and hysteresis of 1.77%. The temperature stability of the sensor has been greatly improved by using the differential compensation method, which validates the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Park, Chan-Hee; Lee, Cholwoo
2016-04-01
Raspberry Pi series is a low cost, smaller than credit-card sized computers that various operating systems such as linux and recently even Windows 10 are ported to run on. Thanks to massive production and rapid technology development, the price of various sensors that can be attached to Raspberry Pi has been dropping at an increasing speed. Therefore, the device can be an economic choice as a small portable computer to monitor temporal hydrogeological data in fields. In this study, we present a Raspberry Pi system that measures a flow rate, and temperature of groundwater at sites, stores them into mysql database, and produces interactive figures and tables such as google charts online or bokeh offline for further monitoring and analysis. Since all the data are to be monitored on internet, any computers or mobile devices can be good monitoring tools at convenience. The measured data are further integrated with OpenGeoSys, one of the hydrogeological models that is also ported to the Raspberry Pi series. This leads onsite hydrogeological modeling fed by temporal sensor data to meet various needs.
Stefaniak, Katarzyna; Wróżyńska, Magdalena
2018-02-01
Protection of common natural goods is one of the greatest challenges man faces every day. Extracting and processing natural resources such as mineral deposits contributes to the transformation of the natural environment. The number of activities designed to keep balance are undertaken in accordance with the concept of integrated order. One of them is the use of comprehensive systems of tailings storage facility monitoring. Despite the monitoring, system failures still occur. The quantitative aspect of the failures illustrates both the scale of the problem and the quantitative aspect of the consequences of tailings storage facility failures. The paper presents vast possibilities provided by the global monitoring in the effective prevention of these failures. Particular attention is drawn to the potential of using multidirectional monitoring, including technical and environmental monitoring by the example of one of the world's biggest hydrotechnical constructions-Żelazny Most Tailings Storage Facility (TSF), Poland. Analysis of monitoring data allows to take preventive action against construction failures of facility dams, which can have devastating effects on human life and the natural environment.
21 CFR 26.69 - Monitoring of conformity assessment bodies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE PRODUCT EVALUATION REPORTS: UNITED STATES AND THE EUROPEAN... cause to maintain, ongoing surveillance over their CAB's by means of regular audit or assessment; (b...
LEMON - LHC Era Monitoring for Large-Scale Infrastructures
NASA Astrophysics Data System (ADS)
Marian, Babik; Ivan, Fedorko; Nicholas, Hook; Hector, Lansdale Thomas; Daniel, Lenkes; Miroslav, Siket; Denis, Waldron
2011-12-01
At the present time computer centres are facing a massive rise in virtualization and cloud computing as these solutions bring advantages to service providers and consolidate the computer centre resources. However, as a result the monitoring complexity is increasing. Computer centre management requires not only to monitor servers, network equipment and associated software but also to collect additional environment and facilities data (e.g. temperature, power consumption, cooling efficiency, etc.) to have also a good overview of the infrastructure performance. The LHC Era Monitoring (Lemon) system is addressing these requirements for a very large scale infrastructure. The Lemon agent that collects data on every client and forwards the samples to the central measurement repository provides a flexible interface that allows rapid development of new sensors. The system allows also to report on behalf of remote devices such as switches and power supplies. Online and historical data can be visualized via a web-based interface or retrieved via command-line tools. The Lemon Alarm System component can be used for notifying the operator about error situations. In this article, an overview of the Lemon monitoring is provided together with a description of the CERN LEMON production instance. No direct comparison is made with other monitoring tool.
Conductivity detection for monitoring mixing reactions in microfluidic devices.
Liu, Y; Wipf, D O; Henry, C S
2001-08-01
A conductivity detector was coupled to poly(dimethylsiloxane)-glass capillary electrophoresis microchips to monitor microfluidic flow. Electroosmotic flow was investigated with both conductivity detection (CD) and the current monitoring method. No significant variation was observed between these methods, but CD showed a lower relative standard deviation. Gradient mixing experiments were employed to investigate the relationship between the electrolyte conductivity and the electrolyte concentration. A good linear response of conductivity to concentration was obtained for solutions whose difference in concentrations were less than 27 mM. The new system holds great promise for precision mixing in microfluidic devices using electrically driven flows.
NASA Astrophysics Data System (ADS)
Beguería, S.
2017-12-01
While large efforts are devoted to developing crop status monitoring and yield forecasting systems trough the use of Earth observation data (mostly remotely sensed satellite imagery) and observational and modeled weather data, here we focus on the information value of qualitative data on crop status from direct observations made by humans. This kind of data has a high value as it reflects the expert opinion of individuals directly involved in the development of the crop. However, they have issues that prevent their direct use in crop monitoring and yield forecasting systems, such as their non-spatially explicit nature, or most importantly their qualitative nature. Indeed, while the human brain is good at categorizing the status of physical systems in terms of qualitative scales (`very good', `good', `fair', etcetera), it has difficulties in quantifying it in physical units. This has prevented the incorporation of this kind of data into systems that make extensive use of numerical information. Here we show an example of using qualitative crop condition data to estimate yields of the most important crops in the US early in the season. We use USDA weekly crop condition reports, which are based on a sample of thousands of reporters including mostly farmers and people in direct contact with them. These reporters provide subjective evaluations of crop conditions, in a scale including five levels ranging from `very poor' to `excellent'. The USDA report indicates, for each state, the proportion of reporters fort each condition level. We show how is it possible to model the underlying non-observed quantitative variable that reflects the crop status on each state, and how this model is consistent across states and years. Furthermore, we show how this information can be used to monitor the status of the crops and to produce yield forecasts early in the season. Finally, we discuss approaches for blending this information source with other, more classical earth data sources such as remote sensing or weather data, in the context of hierarchical regression models.
Apparatus for monitoring crystal growth
Sachs, Emanual M.
1981-01-01
A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.
Method of monitoring crystal growth
Sachs, Emanual M.
1982-01-01
A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.
Telefetalcare: a first prototype of a wearable fetal electrocardiograph.
Fanelli, A; Signorini, M G; Ferrario, M; Perego, P; Piccini, L; Andreoni, G; Magenes, G
2011-01-01
Fetal heart rate monitoring is fundamental to infer information about fetal health state during pregnancy. The cardiotocography (CTG) is the most common antepartum monitoring technique. Abdominal ECG recording represents the most valuable alternative to cardiotocography, as it allows passive, non invasive and long term fetal monitoring. Unluckily fetal ECG has low SNR and needs to be extracted from abdominal recordings using ad hoc algorithms. This work describes a prototype of a wearable fetal ECG electrocardiograph. The system has flat band frequency response between 1-60 Hz and guarantees good signal quality. It was tested on pregnant women between the 30(th) and 34(th) gestational week. Several electrodes configurations were tested, in order to identify the best solution. Implementation of a simple algorithm for FECG extraction permitted the reliable detection of maternal and fetal QRS complexes. The system will allow continuative and deep screening of fetal heart rate, introducing the possibility of home fetal monitoring.
Marmet Locks and Dam, Kanawha River, West Virginia
2015-07-01
emptying system has a through-the-sill intake, an in-chamber longitudinal culvert system, and Stoney gate valves. The lock was monitored using time... culvert system experienced peak average velocities of 18 feet per second, although no adverse pressures were found. A remotely operated vehicle...inspection indicated the walls of the culverts were in good condition. The Stoney gate valves are performing well and not showing any signs of unusual
A Feasibility Study of Real-Time Remote CT Reading for Suspected Acute Appendicitis Using an iPhone.
Kim, Changsun; Kang, Bossng; Choi, Hyuk Joong; Park, Joon Bum
2015-08-01
We aimed to evaluate the feasibility of an iPhone-based remote control system as a real-time remote computed tomography (CT) reading tool for suspected appendicitis using a third-generation (3G) network under suboptimal illumination. One hundred twenty abdominal CT scans were selected; 60 had no signs of appendicitis, whereas the remaining 60 had signs of appendicitis. The 16 raters reviewed the images using the liquid crystal display (LCD) monitor of a picture archiving and communication system (PACS) workstation, as well as using an iPhone connected to the PACS workstation via a remote control system. We graded the probability of the presence of acute appendicitis for each examination using a five-point Likert scale. The overall sensitivity and specificity for the diagnosis of suspected appendicitis using the iPhone and the LCD monitor were high, and they were not significantly different (sensitivity P = 1.00, specificity P = 0.14). The average areas under the receiver operating characteristic curves for all CT readings with the iPhone and LCD monitor were 0.978 (confidence interval 0.965-0.991) and 0.974 (0.960-0.988), respectively, and the two devices did not have significantly different diagnostic performances (P = 0.55). The inter-rater agreement for both devices was very good; the kappa value for the iPhone was 0.809 (0.793-0.826), and that for the LCD monitor was 0.817 (0.801-0.834). Each rater had moderate-to-very good intra-observer agreement between the two devices. We verified the feasibility of an iPhone-based remote control system as a real-time remote CT reading tool for identifying suspected appendicitis using a 3G network and suboptimal illumination.
NASA Astrophysics Data System (ADS)
Suciu, Cornel; Mihai, Ioan
2016-12-01
Classical systems have the main disadvantage of being unable to ensure that high load diesel engine vehicles are slowed in good conditions, for the entire range of combinations of inclinations and lengths of sloped public roads. On such roads, where brakes are used repeatedly and for long periods, friction components that enter classical braking systems will overheat and lead to failure. The present paper aims to investigate, the efficiency of a braking system based on compression release, called a Jake Brake. In such a system, the exhaust valve is actuated at a certain predetermined angle of the crankshaft. The presented research was conducted on an experimental rig based on a four-stroke mono-cylinder diesel engine model Lombardini 6 LD400. Pressure and temperature evolutions were monitored before and during the use of the Jake Brake system. As the generated phonic pollution is the main disadvantage of such systems, noise generated in the vicinity of the engine was monitored as well. The monitored parameters were then plotted in diagrams that allowed evaluating the performances of the system.
Kovács, Ákos T.; van Hartskamp, Mariska; Kuipers, Oscar P.; van Kranenburg, Richard
2010-01-01
Bacillus coagulans has good potential as an industrial production organism for platform chemicals from renewable resources but has limited genetic tools available. Here, we present a targeted gene disruption system using the Cre-lox system, development of a LacZ reporter assay for monitoring gene transcription, and heterologous d-lactate dehydrogenase expression. PMID:20400555
Massaroni, C; Ciocchetti, M; Di Tomaso, G; Saccomandi, P; Caponero, M A; Polimadei, A; Formica, D; Schena, E
2016-08-01
Comfortable and easy to wear smart textiles have gained popularity for continuous respiratory monitoring. Among different emerging technologies, smart textiles based on fiber optic sensors (FOSs) have several advantages, like Magnetic Resonance (MR)-compatibility and good metrological properties. In this paper we report on the development and assessment of an MR-compatible smart textiles based on FOSs for respiratory monitoring. The system consists of six fiber Bragg grating (FBG) sensors glued on the textile to monitor six compartments of the chest wall (i.e., right and left upper thorax, right and left abdominal rib cage, and right and left abdomen). This solution allows monitoring both global respiratory parameters and each compartment volume change. The system converts thoracic movements into strain measured by the FBGs. The positioning of the FBGs was optimized by experiments performed using an optoelectronic system. The feasibility of the smart textile was assessed on 6 healthy volunteers. Experimental data were compared to the ones estimated by an optoelectronic plethysmography used as reference. Promising results were obtained on both breathing period (maximum percentage error is 1.14%), inspiratory and expiratory period, as well as on total volume change (mean percentage difference between the two systems was ~14%). The Bland-Altman analysis shows a satisfactory accuracy for the parameters under investigation. The proposed system is safe and non-invasive, MR-compatible, and allows monitoring compartmental volumes.
Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process.
Zhang, Kuanshuang; Zhou, Zhenggan; Zhou, Jianghua
2015-09-01
Application of a laser ultrasonic method is developed for on-line monitoring of the friction stir spot welding (FSSW) process. Based on the technology of FSSW, laser-generated ultrasonic waves in a good weld and nonweld area are simulated by a finite element method. The reflected and transmitted waves are analyzed to disclose the properties of the welded interface. The noncontact-laser ultrasonic-inspection system was established to verify the numerical results. The reflected waves in the good-weld and nonweld area can be distinguished by time-of-flight. The transmitted waves evidently attenuate in the nonweld area in contrast to signal amplitude in the good weld area because of interfacial impedance difference. Laser ultrasonic C-scan images can sufficiently evaluate the intrinsic character of the weld area in comparison with traditional water-immersion ultrasonic testing results. The research results confirm that laser ultrasonics would be an effective method to realize the characterization of FSSW defects.
Cristino, Sandra; Legnani, Pier Paolo; Leoni, Erica
2012-04-01
In accordance with the international and national guidelines, the Emilia-Romagna Region (Italy) has established regional guidelines for the surveillance and prevention of legionellosis based on the concept of risk assessment, with particular attention to environmental monitoring. The aim of this study was to verify how environmental surveillance in the context of risk assessment plans could help to guide decisions about preventive strategies against Legionella infections in Long Term Care Facilities (LTCF). In six LTCFs in the city of Bologna (Emilia-Romagna Region) a self-control plan was implemented that included the environmental monitoring of Legionella spp. and the surveillance of hospital-acquired Legionnaires' Disease. At baseline, four hot water systems were colonized by Legionella pneumophila (3 LCTFs) and Legionella londiniensis (1 LCTF). In each establishment specific control measures were adopted based on the characteristics of the system, the virulence of the strain and the level of the contamination. The monitoring, carried out for around two years, was also extended to the ways in which the system and the distal water distribution points were used and maintained with respect to the good practices in operation and management. The adopted actions (shock and/or continuous disinfection treatments) and the implementation of the good practice measures reduced the contamination to acceptable and stable levels. No cases of hospital-acquired legionellosis occurred during the period of study. The environmental surveillance was successful in evaluating the risk and identifying the most suitable preventive strategies. Copyright © 2011 Elsevier GmbH. All rights reserved.
Cost effective system for monitoring of fish migration with a camera
NASA Astrophysics Data System (ADS)
Sečnik, Matej; Brilly, Mitja; Vidmar, Andrej
2016-04-01
Within the European LIFE project Ljubljanica connects (LIFE10 NAT/SI/000142) we have developed a cost-effective solution for the monitoring of fish migration through the fish passes with the underwater camera. In the fish pass at Ambrožev trg and in the fish pass near the Fužine castle we installed a video camera called "Fishcam" to be able to monitor the migration of fish through the fish passes and success of its reconstruction. Live stream from fishcams installed in the fishpassesis available on our project website (http://ksh.fgg.uni-lj.si/ljubljanicaconnects/ang/12_camera). The system for the fish monitoring is made from two parts. First is the waterproof box for the computer with charger and the second part is the camera itself. We used a high sensitive Sony analogue camera. The advantage of this camera is that it has very good sensitivity in low light conditions, so it can take good quality pictures even at night with a minimum additional lighting. For the night recording we use additional IR reflector to illuminate passing fishes. The camera is connected to an 8-inch tablet PC. We decided to use a tablet PC because it is quite small, cheap, it is relatively fast and has a low power consumption. On the computer we use software which has advanced motion detection capabilities, so we can also detect the small fishes. When the fish is detected by a software, its photograph is automatically saved to local hard drive and for backup also on Google drive. The system for monitoring of fish migration has turned out to work very well. From the beginning of monitoring in June 2015 to end of the year there were more than 100.000 photographs produced. The first analysis of them was already prepared estimating fish species and their frequency in passing the fish pass.
NASA Astrophysics Data System (ADS)
Bocciolone, Marco; Bucca, Giuseppe; Collina, Andrea; Comolli, Lorenzo
2013-12-01
One of the most common way to collect the traction current needed for the underground vehicle operation is by using the pantograph-overhead line system. The periodically check of pantographs and overhead lines is important to assure the correct interaction between the two systems in terms of good current collection quality. The main diagnostic tools are the monitoring of the vertical force between the overhead line and the pantograph head, and the vertical acceleration on the pantograph head. The pantograph system works under high voltage (1500 V, DC, in our tests) and high electromagnetic disturbances are present. For this reason, traditional electrical sensors can be used only with particular precautions that complicate the measurement set up; fibre optic sensors, and in particular fibre Bragg grating (FBG) sensors, are particularly suitable for this application. In this paper, the application of the FBG sensors on a pantograph for the monitoring of underground pantograph-catenary system is presented. FBG sensors are used to measure both the contact force and the vertical acceleration of the pantograph head. The same measurements are also gathered with a traditional electrical system, allowing a comparison. The result is a very good agreement between electrical and optical measurements, except in particular frequency ranges where the different positioning of the sensors influences the output, limiting the comparison. Moreover, some interesting results on the dynamic behaviour of the pantograph and its interaction with the overhead line are presented. Finally, a method to point out the main defects on the overhead line is shown.
A Survey on Data Quality for Dependable Monitoring in Wireless Sensor Networks.
Jesus, Gonçalo; Casimiro, António; Oliveira, Anabela
2017-09-02
Wireless sensor networks are being increasingly used in several application areas, particularly to collect data and monitor physical processes. Non-functional requirements, like reliability, security or availability, are often important and must be accounted for in the application development. For that purpose, there is a large body of knowledge on dependability techniques for distributed systems, which provide a good basis to understand how to satisfy these non-functional requirements of WSN-based monitoring applications. Given the data-centric nature of monitoring applications, it is of particular importance to ensure that data are reliable or, more generically, that they have the necessary quality. In this survey, we look into the problem of ensuring the desired quality of data for dependable monitoring using WSNs. We take a dependability-oriented perspective, reviewing the possible impairments to dependability and the prominent existing solutions to solve or mitigate these impairments. Despite the variety of components that may form a WSN-based monitoring system, we give particular attention to understanding which faults can affect sensors, how they can affect the quality of the information and how this quality can be improved and quantified.
Flexible surface acoustic wave respiration sensor for monitoring obstructive sleep apnea syndrome
NASA Astrophysics Data System (ADS)
Jin, Hao; Tao, Xiang; Dong, Shurong; Qin, Yiheng; Yu, Liyang; Luo, Jikui; Deen, M. Jamal
2017-11-01
Obstructive sleep apnea syndrome (OSAS) has received much attention in recent years due to its significant harm to human health and high morbidity rate. A respiration monitoring system is needed to detect OSAS, so that the patient can receive treatment in a timely manner. Wired and wireless OSAS monitoring systems have been developed, but they require a wire connection and batteries to operate, and they are bulky, heavy and not user-friendly. In this paper, we propose the use of a flexible surface acoustic wave (SAW) microsensor to detect and monitor OSAS by measuring the humidity change associated with the respiration of a person. SAW sensors on rigid 128° YX LiNbO3 substrate are also characterized for this application. Results show both types of SAW sensors are suitable for OSAS monitoring with good sensitivity, repeatability and reliability, and the response time and recovery time for the flexible SAW sensors are 1.125 and 0.75 s, respectively. Our work demonstrates the potential for an innovative flexible microsensor for the detection and monitoring of OSAS.
40 CFR Table 3 to Subpart Bbbbbb... - Applicability of General Provisions
Code of Federal Regulations, 2010 CFR
2010-07-01
... and Maintenance Maintain monitoring system in a manner consistent with good air pollution control... pollution control equipment; maintenance on air pollution control equipment; actions during SSM Yes. § 63.10... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
Tilapia fish microbial spoilage monitored by a single optical gas sensor.
Semeano, Ana T S; Maffei, Daniele F; Palma, Susana; Li, Rosamaria W C; Franco, Bernadette D G M; Roque, Ana C A; Gruber, Jonas
2018-07-01
As consumption of fish and fish-based foods increases, non-destructive monitoring of fish freshness also becomes more prominent. Fish products are very perishable and prone to microbiological growth, not always easily detected by organoleptic evaluation. The analysis of the headspace of fish specimens through gas sensing is an interesting approach to monitor fish freshness. Here we report a gas sensing method for monitoring Tilapia fish spoilage based on the application of a single gas sensitive gel material coupled to an optical electronic nose. The optical signals of the sensor and the extent of bacterial growth were followed over time, and results indicated good correlation between the two determinations, which suggests the potential application of this simple and low cost system for Tilapia fish freshness monitoring.
An overview of the artificial intelligence and expert systems component of RICIS
NASA Technical Reports Server (NTRS)
Feagin, Terry
1987-01-01
Artificial Intelligence and Expert Systems are the important component of RICIS (Research Institute and Information Systems) research program. For space applications, a number of problem areas that should be able to make good use of the above tools include: resource allocation and management, control and monitoring, environmental control and life support, power distribution, communications scheduling, orbit and attitude maintenance, redundancy management, intelligent man-machine interfaces and fault detection, isolation and recovery.
The role of ecological monitoring in managing wilderness
Peter B. Landres
1995-01-01
Good management requires good information. Monitoring provides this information when it is structured into the process of management, well designed and executed. As federal and state agencies strive to implement a management paradigm based on sustaining ecosystems, ecological information becomes a vital part of managing natural resources. Inventory and monitoring...
A new kind of universal smart home security safety monitoring system
NASA Astrophysics Data System (ADS)
Li, Biqing; Li, Zhao
2018-04-01
With the current level of social development, improved quality of life, existence and security issues of law and order has become an important issue. This graduation project adopts the form of wireless transmission, to STC89C52 microcontroller as the host control human infrared induction anti-theft monitoring system. The system mainly consists of main control circuit, power supply circuit, activities of the human body detection module, sound and light alarm circuit, record and display circuit. The main function is to achieve exploration activities on the human body, then the information is transmitted to the control panel, according to the system microcontroller program control sound and light alarm circuit, while recording the alarm location and time, and always check the record as required, and ultimately achieve the purpose of monitoring. The advantage of using pyroelectric infrared sensor can be installed in a hidden place, not easy to find, and low cost, good detection results, and has broad prospects for development.
Novel textile systems for the continuous monitoring of vital signals: design and characterization.
Trindade, Isabel G; Martins, Frederico; Dias, Rúben; Oliveira, Cristina; Machado da Silva, José
2015-08-01
In this article we present a smart textile system for the continuous monitoring of cardiorespiratory signals, produced and integrated with an industrial embroidery unit. The design of a T-shirt system, having embedded textile sensors and interconnects and custom designed circuit for data collection and Bluetooth transmission is presented. The performance of skin-contact textile electrodes, having distinctive electrical characteristics and surface morphologies, was characterized by measurements of signal to noise ratio, under dry and moisture conditions. The influence of the electrodes size and the wear resistance were addressed. Results of an electrocardiogram acquisition with a subject wearing the T-shirt and display on a smartphone are also shown. The presented smart textile systems exhibit good performance and versatility for custom demand production.
John Moore; Ian Payton; Larry Burrows; Chris Goulding; Peter Beets; Paul Lane; Peter Stephens
2007-01-01
This article discusses the development of a monitoring system to estimate carbon sequestration in New Zealand's planted Kyoto forests, those forests that have been planted since January 1, 1990, on land that previously did not contain forest. The system must meet the Intergovernmental Panel on Climate Change good practice guidance and must be seen to be unbiased,...
Czugala, Monika; Gorkin, Robert; Phelan, Thomas; Gaughran, Jennifer; Curto, Vincenzo Fabio; Ducrée, Jens; Diamond, Dermot; Benito-Lopez, Fernando
2012-12-07
This work describes the first use of a wireless paired emitter detector diode device (PEDD) as an optical sensor for water quality monitoring in a lab-on-a-disc device. The microfluidic platform, based on an ionogel sensing area combined with a low-cost optical sensor, is applied for quantitative pH and qualitative turbidity monitoring of water samples at point-of-need. The autonomous capabilities of the PEDD system, combined with the portability and wireless communication of the full device, provide the flexibility needed for on-site water testing. Water samples from local fresh and brackish sources were successfully analysed using the device, showing very good correlation with standard bench-top systems.
Centralized sanctioning and legitimate authority promote cooperation in humans.
Baldassarri, Delia; Grossman, Guy
2011-07-05
Social sanctioning is widely considered a successful strategy to promote cooperation among humans. In situations in which individual and collective interests are at odds, incentives to free-ride induce individuals to refrain from contributing to public goods provision. Experimental evidence from public goods games shows that when endowed with sanctioning powers, conditional cooperators can discipline defectors, thus leading to greater levels of cooperation. However, extant evidence is based on peer punishment institutions, whereas in complex societies, systems of control are often centralized: for instance, we do not sanction our neighbors for driving too fast, the police do. Here we show the effect of centralized sanctioning and legitimate authority on cooperation. We designed an adaptation of the public goods game in which sanctioning power is given to a single monitor, and we experimentally manipulated the process by which the monitor is chosen. To increase the external validity of the study, we conducted lab-in-the-field experiments involving 1,543 Ugandan farmers from 50 producer cooperatives. This research provides evidence of the effectiveness of centralized sanctioning and demonstrates the causal effect of legitimacy on cooperation: participants are more responsive to the authority of an elected monitor than a randomly chosen monitor. Our essay contributes to the literature on the evolution of cooperation by introducing the idea of role differentiation. In complex societies, cooperative behavior is not only sustained by mechanisms of selection and reciprocity among peers, but also by the legitimacy that certain actors derive from their position in the social hierarchy.
Monitoring Accreting X-ray Pulsars with the GLAST Burst Monitor
NASA Technical Reports Server (NTRS)
Wilson, Colleen A.; Finger, Mark H.; Patel, Sandeep K.; Bhat, P. Narayana; Preece, Robert D.; Meegan, Charles A.
2007-01-01
Accreting pulsars are exceptionally good laboratories for probing the detailed physics of accretion onto magnetic stars. While similar accretion flows also occur in other types of astrophysical systems, e.g. magnetic CVs, only neutron stars have a small enough moment of inertia for the accretion of angular momentum to result in measurable changes in spin-frequency in a timescale of days. Long-term monitoring of accreting pulsar spin-frequencies and fluxes was demonstrated with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Here we present sample results from BATSE, discuss measurement techniques appropriate for GBM, and estimate the expected GBM sensitivity.
Preventing and managing aggression and violence in the NHS.
Bleetman, Anthony; Fayeye, Oloruntoba O
2003-12-01
Streaming in emergency departments reduces waiting times and stress, and removes the causes of most violent attacks against staff. In spite of this some people will still attack staff. Staff must be protected by a sound trust policy and effective and realistic training, monitored by a good reporting system.
40 CFR 63.1159 - Operational and equipment standards for existing, new, or reconstructed sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... atmosphere shall be equipped with a local fume capture system, ventilated through an air pollution control... pollution control equipment and monitoring equipment in a manner consistent with safety and good air... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS...
40 CFR 63.1159 - Operational and equipment standards for existing, new, or reconstructed sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... atmosphere shall be equipped with a local fume capture system, ventilated through an air pollution control... pollution control equipment and monitoring equipment in a manner consistent with safety and good air... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS...
Nuclear Powerplant Safety: Operations.
ERIC Educational Resources Information Center
Department of Energy, Washington, DC. Nuclear Energy Office.
Powerplant systems and procedures that ensure the day-to-day health and safety of people in and around the plant is referred to as operational safety. This safety is the result of careful planning, good engineering and design, strict licensing and regulation, and environmental monitoring. Procedures that assure operational safety at nuclear…
Feasibility study of a gamma camera for monitoring nuclear materials in the PRIDE facility
NASA Astrophysics Data System (ADS)
Jo, Woo Jin; Kim, Hyun-Il; An, Su Jung; Lee, Chae Young; Song, Han-Kyeol; Chung, Yong Hyun; Shin, Hee-Sung; Ahn, Seong-Kyu; Park, Se-Hwan
2014-05-01
The Korea Atomic Energy Research Institute (KAERI) has been developing pyroprocessing technology, in which actinides are recovered together with plutonium. There is no pure plutonium stream in the process, so it has an advantage of proliferation resistance. Tracking and monitoring of nuclear materials through the pyroprocess can significantly improve the transparency of the operation and safeguards. An inactive engineering-scale integrated pyroprocess facility, which is the PyRoprocess Integrated inactive DEmonstration (PRIDE) facility, was constructed to demonstrate engineering-scale processes and the integration of each unit process. the PRIDE facility may be a good test bed to investigate the feasibility of a nuclear material monitoring system. In this study, we designed a gamma camera system for nuclear material monitoring in the PRIDE facility by using a Monte Carlo simulation, and we validated the feasibility of this system. Two scenarios, according to locations of the gamma camera, were simulated using GATE (GEANT4 Application for Tomographic Emission) version 6. A prototype gamma camera with a diverging-slat collimator was developed, and the simulated and experimented results agreed well with each other. These results indicate that a gamma camera to monitor the nuclear material in the PRIDE facility can be developed.
System theory in industrial patient monitoring: an overview.
Baura, G D
2004-01-01
Patient monitoring refers to the continuous observation of repeating events of physiologic function to guide therapy or to monitor the effectiveness of interventions, and is used primarily in the intensive care unit and operating room. Commonly processed signals are the electrocardiogram, intraarterial blood pressure, arterial saturation of oxygen, and cardiac output. To this day, the majority of physiologic waveform processing in patient monitors is conducted using heuristic curve fitting. However in the early 1990s, a few enterprising engineers and physicians began using system theory to improve their core processing. Applications included improvement of signal-to-noise ratio, either due to low signal levels or motion artifact, and improvement in feature detection. The goal of this mini-symposium is to review the early work in this emerging field, which has led to technologic breakthroughs. In this overview talk, the process of system theory algorithm research and development is discussed. Research for industrial monitors involves substantial data collection, with some data used for algorithm training and the remainder used for validation. Once the algorithms are validated, they are translated into detailed specifications. Development then translates these specifications into DSP code. The DSP code is verified and validated per the Good Manufacturing Practices mandated by FDA.
Simultaneous chromatic dispersion, polarization-mode-dispersion and OSNR monitoring at 40Gbit/s.
Baker-Meflah, Lamia; Thomsen, Benn; Mitchell, John; Bayvel, Polina
2008-09-29
A novel method for independent and simultaneous monitoring of chromatic dispersion (CD), first-order PMD and OSNR in 40Gbit/s systems is proposed and demonstrated. This is performed using in-band tone monitoring of 5GHz, optically down-converted to a low intermediate-frequency (IF) of 10kHz. The measurement provides a large monitoring range with good accuracies for CD (4742+/-100ps/nm), differential group delay (DGD) (200+/-4ps) and OSNR (23+/-1dB), independently of the bit-rate. In addition, the use of electro-absorption modulators (EAM) for the simultaneous down-conversion of all channels and the use of low-speed detectors makes it cost effective for multi-channel operation.
A system for respiratory motion detection using optical fibers embedded into textiles.
D'Angelo, L T; Weber, S; Honda, Y; Thiel, T; Narbonneau, F; Luth, T C
2008-01-01
In this contribution, a first prototype for mobile respiratory motion detection using optical fibers embedded into textiles is presented. The developed system consists of a T-shirt with an integrated fiber sensor and a portable monitoring unit with a wireless communication link enabling the data analysis and visualization on a PC. A great effort is done worldwide to develop mobile solutions for health monitoring of vital signs for patients needing continuous medical care. Wearable, comfortable and smart textiles incorporating sensors are good approaches to solve this problem. In most of the cases, electrical sensors are integrated, showing significant limits such as for the monitoring of anaesthetized patients during Magnetic Resonance Imaging (MRI). OFSETH (Optical Fibre Embedded into technical Textile for Healthcare) uses optical sensor technologies to extend the current capabilities of medical technical textiles.
The wireless networking system of Earthquake precursor mobile field observation
NASA Astrophysics Data System (ADS)
Wang, C.; Teng, Y.; Wang, X.; Fan, X.; Wang, X.
2012-12-01
The mobile field observation network could be real-time, reliably record and transmit large amounts of data, strengthen the physical signal observations in specific regions and specific period, it can improve the monitoring capacity and abnormal tracking capability. According to the features of scatter everywhere, a large number of current earthquake precursor observation measuring points, networking technology is based on wireless broadband accessing McWILL system, the communication system of earthquake precursor mobile field observation would real-time, reliably transmit large amounts of data to the monitoring center from measuring points through the connection about equipment and wireless accessing system, broadband wireless access system and precursor mobile observation management center system, thereby implementing remote instrument monitoring and data transmition. At present, the earthquake precursor field mobile observation network technology has been applied to fluxgate magnetometer array geomagnetic observations of Tianzhu, Xichang,and Xinjiang, it can be real-time monitoring the working status of the observational instruments of large area laid after the last two or three years, large scale field operation. Therefore, it can get geomagnetic field data of the local refinement regions and provide high-quality observational data for impending earthquake tracking forecast. Although, wireless networking technology is very suitable for mobile field observation with the features of simple, flexible networking etc, it also has the phenomenon of packet loss etc when transmitting a large number of observational data due to the wireless relatively weak signal and narrow bandwidth. In view of high sampling rate instruments, this project uses data compression and effectively solves the problem of data transmission packet loss; Control commands, status data and observational data transmission use different priorities and means, which control the packet loss rate within an acceptable range and do not affect real-time observation curve. After field running test and earthquake tracking project applications, the field mobile observation wireless networking system is operate normally, various function have good operability and show good performance, the quality of data transmission meet the system design requirements and play a significant role in practical applications.
Study of weld quality real-time monitoring system for auto-body assembly
NASA Astrophysics Data System (ADS)
Xu, Jun; Li, Yong-Bing; Chen, Guan-Long
2005-12-01
Resistance spot welding (RSW) is widely used for the auto-body assembly in automotive industry. But RSW suffers from a major problem of inconsistent quality from weld to weld. The major problem is the complexity of the basic process that may involve material coatings, electrode force, electrode wear, fit up, etc. Therefore weld quality assurance is still a big challenge and goal. Electrode displacement has proved to be a particularly useful signal which correlates well with weld quality. This paper introduces a novel auto-body spot weld quality monitoring system which uses electrode displacement as the quality parameter. This system chooses the latest laser displacement sensor with high resolution to measure the real-time electrode displacement. It solves the interference problem of sensor mounting by designing special fixture, and can be successfully applied on the portable welding machine. It is capable of evaluating weld quality and making diagnosis of process variations such as surface asperities, shunting, worn electrode and weld expansion with real-time electrode displacement. As proved by application in the workshop, the monitoring system has good stability and reliability, and is qualified for monitoring weld quality in process.
NASA Astrophysics Data System (ADS)
Kaneko, D.; Sakuma, H.
2014-12-01
The first author has been developing RSEM crop-monitoring system using satellite-based assessment of photosynthesis, incorporating meteorological conditions. Crop production comprises of several stages and plural mechanisms based on leaf photosynthesis, surface energy balance, and the maturing of grains after fixation of CO2, along with water exchange through soil vegetation-atmosphere transfer. Grain production in prime countries appears to be randomly perturbed regionally and globally. Weather for crop plants reflects turbulent phenomena of convective and advection flows in atmosphere and surface boundary layer. It has been difficult for scientists to simulate and forecast weather correctly for sufficiently long terms to crop harvesting. However, severely poor harvests related to continental events must originate from a consistent mechanism of abnormal energetic flow in the atmosphere through both land and oceans. It should be remembered that oceans have more than 100 times of energy storage compared to atmosphere and ocean currents represent gigantic energy flows, strongly affecting climate. Anomalies of Sea Surface Temperature (SST), globally known as El Niño, Indian Ocean dipole, and Atlantic Niño etc., affect the seasonal climate on a continental scale. The authors aim to combine monitoring and seasonal forecasting, considering such mechanisms through land-ocean biosphere transfer. The present system produces assessments for all continents, specifically monitoring agricultural fields of main crops. Historical regions of poor and good harvests are compared with distributions of SST anomalies, which are provided by NASA GSFC. Those comparisons fairly suggest that the Worst harvest in 1993 and the Best in 1994 relate to the offshore distribution of low temperature anomalies and high gaps in ocean surface temperatures. However, high-temperature anomalies supported good harvests because of sufficient solar radiation for photosynthesis, and poor harvests because of insufficient precipitation. Integrated rates of photosynthesis on prime grains with planted areas were compared with the SST anomalies in poor and good harvests years. Other factors for poor harvest such as rainfall, solar radiation in addition to the intensity of winds as a measure of pressure perturbations need to be studied.
Development of structural health monitoring and early warning system for reinforced concrete system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iranata, Data, E-mail: iranata-data@yahoo.com, E-mail: data@ce.its.ac.id; Wahyuni, Endah; Murtiadi, Suryawan
Many buildings have been damaged due to earthquakes that occurred recently in Indonesia. The main cause of the damage is the large deformation of the building structural component cannot accommodate properly. Therefore, it is necessary to develop the Structural Health Monitoring System (SHMS) to measure precisely the deformation of the building structural component in the real time conditions. This paper presents the development of SHMS for reinforced concrete structural system. This monitoring system is based on deformation component such as strain of reinforcement bar, concrete strain, and displacement of reinforced concrete component. Since the deformation component has exceeded the limitmore » value, the warning message can be sent to the building occupies. This warning message has also can be performed as early warning system of the reinforced concrete structural system. The warning message can also be sent via Short Message Service (SMS) through the Global System for Mobile Communications (GSM) network. Hence, the SHMS should be integrated with internet modem to connect with GSM network. Additionally, the SHMS program is verified with experimental study of simply supported reinforced concrete beam. Verification results show that the SHMS has good agreement with experimental results.« less
Boonyasit, Yuwadee; Laiwattanapaisal, Wanida
2015-01-01
A method for acquiring albumin-corrected fructosamine values from whole blood using a microfluidic paper-based analytical system that offers substantial improvement over previous methods is proposed. The time required to quantify both serum albumin and fructosamine is shortened to 10 min with detection limits of 0.50 g dl(-1) and 0.58 mM, respectively (S/N = 3). The proposed system also exhibited good within-run and run-to-run reproducibility. The results of the interference study revealed that the acceptable recoveries ranged from 95.1 to 106.2%. The system was compared with currently used large-scale methods (n = 15), and the results demonstrated good agreement among the techniques. The microfluidic paper-based system has the potential to continuously monitor glycemic levels in low resource settings.
Remote monitoring and fault recovery for FPGA-based field controllers of telescope and instruments
NASA Astrophysics Data System (ADS)
Zhu, Yuhua; Zhu, Dan; Wang, Jianing
2012-09-01
As the increasing size and more and more functions, modern telescopes have widely used the control architecture, i.e. central control unit plus field controller. FPGA-based field controller has the advantages of field programmable, which provide a great convenience for modifying software and hardware of control system. It also gives a good platform for implementation of the new control scheme. Because of multi-controlled nodes and poor working environment in scattered locations, reliability and stability of the field controller should be fully concerned. This paper mainly describes how we use the FPGA-based field controller and Ethernet remote to construct monitoring system with multi-nodes. When failure appearing, the new FPGA chip does self-recovery first in accordance with prerecovery strategies. In case of accident, remote reconstruction for the field controller can be done through network intervention if the chip is not being restored. This paper also introduces the network remote reconstruction solutions of controller, the system structure and transport protocol as well as the implementation methods. The idea of hardware and software design is given based on the FPGA. After actual operation on the large telescopes, desired results have been achieved. The improvement increases system reliability and reduces workload of maintenance, showing good application and popularization.
ERIC Educational Resources Information Center
Flynn, Francis J.; Ames, Daniel R.
2006-01-01
The authors posit that women can rely on self-monitoring to overcome negative gender stereotypes in certain performance contexts. In a study of mixed-sex task groups, the authors found that female group members who were high self-monitors were considered more influential and more valuable contributors than women who were low self-monitors. Men…
Li, Qi; Song, Ranran; Shi, Hui; Ma, Jianli; Liu, Xuehao; Li, Xiaochun
2018-04-01
The CO 2 injected into deep formations during implementation of carbon dioxide (CO 2 ) capture and storage (CCS) technology may leak and migrate into shallow aquifers or ground surfaces through a variety of pathways over a long period. The leaked CO 2 can threaten shallow environments as well as human health. Therefore, almost all monitoring programs for CCS projects around the world contain near-surface monitoring. This paper presents a U-tube based near-surface monitoring technology focusing on its first application in the Shenhua CCS demonstration project, located in the Ordos Basin, Inner Mongolia, China. First, background information on the site monitoring program of the Shenhua CCS demonstration project was provided. Then, the principle of fluid sampling and the monitoring methods were summarized for the U-tube sampler system, and the monitoring data were analyzed in detail. The U-tube based monitoring results showed that the U-tube sampler system is accurate, flexible, and representative of the subsurface fluid sampling process. The monitoring indicators for the subsurface water and soil gas at the Shenhua CCS site indicate good stratification characteristics. The concentration level of each monitoring indicator decreases with increasing depth. Finally, the significance of this near-surface environmental monitoring technology for CO 2 leakage assessments was preliminarily confirmed at the Shenhua CCS site. The application potential of the U-tube based monitoring technology was also demonstrated during the subsurface environmental monitoring of other CCS projects.
Tracking the NOvA Detectors' Performance
NASA Astrophysics Data System (ADS)
Psihas, Fernanda; NOvA Collaboration
2016-03-01
The NOvA experiment measures long baseline νμ -->νe oscillations in Fermilab's NuMI beam. We employ two detectors equipped with over 10 thousand sets of data-taking electronics; avalanche photo diodes and front end boards which collect and process the scintillation signal from particle interactions within the detectors. These sets of electronics -as well as the systems which power and cool them- must be monitored and maintained at precise working conditions to ensure maximal data-taking uptime, good data quality and a lasting life for our detectors. This poster describes the automated systems used on NOvA to simultaneously monitor our data quality, diagnose hardware issues, track our performance and coordinate maintenance for the detectors.
Capacitive beam position monitors for the low-β beam of the Chinese ADS proton linac
NASA Astrophysics Data System (ADS)
Zhang, Yong; Wu, Jun-Xia; Zhu, Guang-Yu; Jia, Huan; Xue, Zong-Heng; Zheng, Hai; Xie, Hong-Ming; Kang, Xin-Cai; He, Yuan; Li, Lin; Denard, Jean Claude
2016-02-01
Beam Position Monitors (BPMs) for the low-β beam of the Chinese Accelerator Driven Subcritical system (CADS) Proton linac are of the capacitive pick-up type. They provide higher output signals than that of the inductive type. This paper will describe the design and tests of the capacitive BPM system for the low-β proton linac, including the pick-ups, the test bench and the read-out electronics. The tests done with an actual proton beam show a good agreement between the measurements and the simulations in the time domain. Supported by National Natural Science Foundation of China (11405240) and “Western Light” Talents Training Program of Chinese Academy of Sciences
Objective for monitoring the corona discharge
NASA Astrophysics Data System (ADS)
Obrezkov, Andrey; Rodionov, Andrey Yu.; Pisarev, Viktor N.; Chivanov, Alexsey N.; Baranov, Yuri P.; Korotaev, Valery V.
2016-04-01
Remote optoelectronic probing is one of the most actual aspects of overhead electric line maintenances. By installing such systems on a helicopter (for example) it becomes possible to monitor overhead transmission line status and to search damaged parts of the lines. Thermal and UV-cameras are used for more effective diagnostic. UV-systems are fitted with filters, that attenuate visible spectrum, which is an undesired type of signal. Also these systems have a wide view angle for better view and proper diagnostics. For even more effectiveness, it is better to use several spectral channels: like UV and IR. Such spectral selection provides good noise reduction. Experimental results of spectral parameters of the wide view angle multispectral objective for such systems are provided in this report. There is also data on point spread function, UV and IR scattering index data and technical requirements for detectors.
The utility of gravity and water-level monitoring at alluvial aquifer wells in southern Arizona
Pool, D.R.
2008-01-01
Coincident monitoring of gravity and water levels at 39 wells in southern Arizona indicate that water-level change might not be a reliable indicator of aquifer-storage change for alluvial aquifer systems. One reason is that water levels in wells that are screened across single or multiple aquifers might not represent the hydraulic head and storage change in a local unconfined aquifer. Gravity estimates of aquifer-storage change can be approximated as a one-dimensional feature except near some withdrawal wells and recharge sources. The aquifer storage coefficient is estimated by the linear regression slope of storage change (estimated using gravity methods) and water-level change. Nonaquifer storage change that does not percolate to the aquifer can be significant, greater than 3 ??Gal, when water is held in the root zone during brief periods following extreme rates of precipitation. Monitor-ing of storage change using gravity methods at wells also can improve understanding of local hydrogeologic conditions. In the study area, confined aquifer conditions are likely at three wells where large water-level variations were accompanied by little gravity change. Unconfined conditions were indicated at 15 wells where significant water-level and gravity change were positively linearly correlated. Good positive linear correlations resulted in extremely large specific-yield values, greater than 0.35, at seven wells where it is likely that significant ephemeral streamflow infiltration resulted in unsaturated storage change. Poor or negative linear correlations indicate the occurrence of confined, multiple, or perched aquifers. Monitoring of a multiple compressible aquifer system at one well resulted in negative correlation of rising water levels and subsidence-corrected gravity change, which suggests that water-level trends at the well are not a good indicatior of overall storage change. ?? 2008 Society of Exploration Geophysicists. All rights reserved.
Evidence for the Automatic Evaluation of Self-Generated Actions
ERIC Educational Resources Information Center
Aarts, Kristien; De Houwer, Jan; Pourtois, Gilles
2012-01-01
The accuracy of simple actions is swiftly determined through specific monitoring brain systems. However, it remains unclear whether this evaluation is accompanied by a rapid and compatible emotional appraisal of the action that allows to mark incorrect actions as negative/bad and conversely correct actions as positive/good. In this study, we used…
How Good and Useful Are Air Pollution Models?
ERIC Educational Resources Information Center
Environmental Science and Technology, 1973
1973-01-01
The Regional Air Pollution Study (RAPS) to be conducted in St. Louis, is the largest air monitoring program of the Environmental Protection Agency. A key segment will be the collection of a data base on which this system of mathematical models can be tested and upon which submodels can be validated. (BL)
The ATLAS tile calorimeter performance at the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calkins, R.
The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. Due to the very good muon signal to noise ratio it assists the spectrometer in the identification and reconstruction of muons. TileCal is built of steel and scintillating tiles coupled to optical fibers and read out by photomultipliers. The calorimeter is equipped with systems that allow to monitor and to calibrate each stage of the read out system exploiting different signal sources: laser light, charge injection andmore » a radioactive source. The performance of the calorimeter has been measured and monitored using calibration data, random triggered data, cosmic muons and more importantly LHC collision events. The results presented here assess the absolute energy scale calibration precision, the energy and timing uniformity and the synchronization precision. The ensemble of the results demonstrates a very good understanding of the performance of the Tile Calorimeter that is proved to be well within the design expectations. (authors)« less
POFBG-Embedded Cork Insole for Plantar Pressure Monitoring
Vilarinho, Débora; Theodosiou, Antreas; Domingues, Maria de Fátima; André, Paulo; Marques, Carlos
2017-01-01
We propose a novel polymer optical fiber (POF) sensing system based on fiber Bragg gratings (FBGs) to measure foot plantar pressure. The plantar pressure signals are detected by five FBGs, in the same piece of cyclic transparent optical polymer (CYTOP) fiber, which are embedded in a cork insole for the dynamic monitoring of gait. The calibration and measurements performed with the suggested system are presented, and the results obtained demonstrate the accuracy and reliability of the sensing platform to monitor the foot plantar pressure distribution during gait motion and the application of pressure. This architecture does not compromise the patient’s mobility nor interfere in their daily activities. The results using the CYTOP fiber showed a very good response when compared with solutions using silica optical fibers, resulting in a sensitivity almost twice as high, with excellent repeatability and ease of handling. The advantages of POF (e.g., high flexibility and robustness) proved that this is a viable solution for this type of application, since POF’s high fracture toughness enables its application in monitoring patients with higher body mass compared with similar systems based on silica fiber. This study has demonstrated the viability of the proposed system based on POF technology as a useful alternative for plantar pressure detection systems. PMID:29258166
POFBG-Embedded Cork Insole for Plantar Pressure Monitoring.
Vilarinho, Débora; Theodosiou, Antreas; Leitão, Cátia; Leal-Junior, Arnaldo G; Domingues, Maria de Fátima; Kalli, Kyriacos; André, Paulo; Antunes, Paulo; Marques, Carlos
2017-12-16
We propose a novel polymer optical fiber (POF) sensing system based on fiber Bragg gratings (FBGs) to measure foot plantar pressure. The plantar pressure signals are detected by five FBGs, in the same piece of cyclic transparent optical polymer (CYTOP) fiber, which are embedded in a cork insole for the dynamic monitoring of gait. The calibration and measurements performed with the suggested system are presented, and the results obtained demonstrate the accuracy and reliability of the sensing platform to monitor the foot plantar pressure distribution during gait motion and the application of pressure. This architecture does not compromise the patient's mobility nor interfere in their daily activities. The results using the CYTOP fiber showed a very good response when compared with solutions using silica optical fibers, resulting in a sensitivity almost twice as high, with excellent repeatability and ease of handling. The advantages of POF (e.g., high flexibility and robustness) proved that this is a viable solution for this type of application, since POF's high fracture toughness enables its application in monitoring patients with higher body mass compared with similar systems based on silica fiber. This study has demonstrated the viability of the proposed system based on POF technology as a useful alternative for plantar pressure detection systems.
Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung; Kim, Tae-Seong
2010-12-01
Mobility is a good indicator of health status and thus objective mobility data could be used to assess the health status of elderly patients. Accelerometry has emerged as an effective means for long-term physical activity monitoring in the elderly. However, the output of an accelerometer varies at different positions on a subject's body, even for the same activity, resulting in high within-class variance. Existing accelerometer-based activity recognition systems thus require firm attachment of the sensor to a subject's body. This requirement makes them impractical for long-term activity monitoring during unsupervised free-living as it forces subjects into a fixed life pattern and impede their daily activities. Therefore, we introduce a novel single-triaxial-accelerometer-based activity recognition system that reduces the high within-class variance significantly and allows subjects to carry the sensor freely in any pocket without its firm attachment. We validated our system using seven activities: resting (lying/sitting/standing), walking, walking-upstairs, walking-downstairs, running, cycling, and vacuuming, recorded from five positions: chest pocket, front left trousers pocket, front right trousers pocket, rear trousers pocket, and inner jacket pocket. Its simplicity, ability to perform activities unimpeded, and an average recognition accuracy of 94% make our system a practical solution for continuous long-term activity monitoring in the elderly.
A Survey on Data Quality for Dependable Monitoring in Wireless Sensor Networks
Oliveira, Anabela
2017-01-01
Wireless sensor networks are being increasingly used in several application areas, particularly to collect data and monitor physical processes. Non-functional requirements, like reliability, security or availability, are often important and must be accounted for in the application development. For that purpose, there is a large body of knowledge on dependability techniques for distributed systems, which provide a good basis to understand how to satisfy these non-functional requirements of WSN-based monitoring applications. Given the data-centric nature of monitoring applications, it is of particular importance to ensure that data are reliable or, more generically, that they have the necessary quality. In this survey, we look into the problem of ensuring the desired quality of data for dependable monitoring using WSNs. We take a dependability-oriented perspective, reviewing the possible impairments to dependability and the prominent existing solutions to solve or mitigate these impairments. Despite the variety of components that may form a WSN-based monitoring system, we give particular attention to understanding which faults can affect sensors, how they can affect the quality of the information and how this quality can be improved and quantified. PMID:28869505
SAR-based sea traffic monitoring: a reliable approach for maritime surveillance
NASA Astrophysics Data System (ADS)
Renga, Alfredo; Graziano, Maria D.; D'Errico, M.; Moccia, A.; Cecchini, A.
2011-11-01
Maritime surveillance problems are drawing the attention of multiple institutional actors. National and international security agencies are interested in matters like maritime traffic security, maritime pollution control, monitoring migration flows and detection of illegal fishing activities. Satellite imaging is a good way to identify ships but, characterized by large swaths, it is likely that the imaged scenes contain a large number of ships, with the vast majority, hopefully, performing legal activities. Therefore, the imaging system needs a supporting system which identifies legal ships and limits the number of potential alarms to be further monitored by patrol boats or aircrafts. In this framework, spaceborne Synthetic Aperture Radar (SAR) sensors, terrestrial AIS and the ongoing satellite AIS systems can represent a great potential synergy for maritime security. Starting from this idea the paper develops different designs for an AIS constellation able to reduce the time lag between SAR image and AIS data acquisition. An analysis of SAR-based ship detection algorithms is also reported and candidate algorithms identified.
Galderisi, Alfonso; Schlissel, Elise; Cengiz, Eda
2017-09-23
Decades after the invention of insulin pump, diabetes management has encountered a technology revolution with the introduction of continuous glucose monitoring, sensor-augmented insulin pump therapy and closed-loop/artificial pancreas systems. In this review, we discuss the significance of the 2016 Endocrine Society Guidelines for insulin pump therapy and continuous glucose monitoring and summarize findings from relevant diabetes technology studies that were conducted after the publication of the 2016 Endocrine Society Guidelines. The 2016 Endocrine Society Guidelines have been a great resource for clinicians managing diabetes in this new era of diabetes technology. There is good body of evidence indicating that using diabetes technology systems safely tightens glycemic control while managing both type 1 and type 2 diabetes. The first-generation diabetes technology systems will evolve as we gain more experience and collaboratively work to improve them with an ultimate goal of keeping people with diabetes complication and burden-free until the cure for diabetes becomes a reality.
Vermeulen, Joan; Neyens, Jacques CL; Spreeuwenberg, Marieke D; van Rossum, Erik; Sipers, Walther; Habets, Herbert; Hewson, David J; de Witte, Luc P
2013-01-01
Purpose To involve elderly people during the development of a mobile interface of a monitoring system that provides feedback to them regarding changes in physical functioning and to test the system in a pilot study. Methods and participants The iterative user-centered development process consisted of the following phases: (1) selection of user representatives; (2) analysis of users and their context; (3) identification of user requirements; (4) development of the interface; and (5) evaluation of the interface in the lab. Subsequently, the monitoring and feedback system was tested in a pilot study by five patients who were recruited via a geriatric outpatient clinic. Participants used a bathroom scale to monitor weight and balance, and a mobile phone to monitor physical activity on a daily basis for six weeks. Personalized feedback was provided via the interface of the mobile phone. Usability was evaluated on a scale from 1 to 7 using a modified version of the Post-Study System Usability Questionnaire (PSSUQ); higher scores indicated better usability. Interviews were conducted to gain insight into the experiences of the participants with the system. Results The developed interface uses colors, emoticons, and written and/or spoken text messages to provide daily feedback regarding (changes in) weight, balance, and physical activity. The participants rated the usability of the monitoring and feedback system with a mean score of 5.2 (standard deviation 0.90) on the modified PSSUQ. The interviews revealed that most participants liked using the system and appreciated that it signaled changes in their physical functioning. However, usability was negatively influenced by a few technical errors. Conclusion Involvement of elderly users during the development process resulted in an interface with good usability. However, the technical functioning of the monitoring system needs to be optimized before it can be used to support elderly people in their self-management. PMID:24039407
Heinemann, Lutz
2018-04-01
At the 2017 10th annual International Conference on Advanced Technologies and Treatments for Diabetes (ATTD) in Paris, France, four speakers presented their perspectives on the roles of continuous glucose monitoring (CGM) and of blood glucose monitoring (BGM) in patient management within one symposium. These presentations included discussions of the differences in the accuracy of CGM and BGM, a clinical perspective on the physiological reasons behind differences in CGM and BGM values, and an overview of the impact of variations in device accuracy on patients with diabetes. Subsequently a short summary of these presentations is given, highlighting the value of good accuracy of BGM or CGM systems and the ongoing need for standardization. The important role of both BGM and CGM in patient management was a theme across all presentations.
Cyclodextrin–polysaccharide-based, in situ-gelled system for ocular antifungal delivery
Fernández-Ferreiro, Anxo; Fernández Bargiela, Noelia; Varela, María Santiago; Martínez, Maria Gil; Pardo, Maria; Piñeiro Ces, Antonio; Méndez, José Blanco; Barcia, Miguel González; Lamas, Maria Jesus
2014-01-01
Summary Fluconazole was studied with two different hydrophilic cyclodextrins (hydroxypropyl-β-cyclodextrin (HPBCD) and sulfobutyl ether-β-cyclodextrin (SBECD)) for the formation of inclusion complexes. HPBCD and SBECD showed low cell cytotoxicity in human keratocytes as assessed by the label-free xCELLigence system for real-time monitoring. The fluconazole–HPBCD complex was incorporated into an ion-sensitive ophthalmic gel composed of the natural polysaccharides gellan gum and κ-carrageenan. This system showed good bioadhesive properties and effective control of fluconazole release. PMID:25550757
Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller.
Soons, Zita I T A; van den IJssel, Jan; van der Pol, Leo A; van Straten, Gerrit; van Boxtel, Anton J B
2009-04-01
This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst others the headspace and tubing to the analyzer. These gas phase dynamics are modelled using knowledge of the system in order to reconstruct oxygen consumption. The second aspect is to evaluate performance of the monitoring and control system with the required modifications of the oxygen consumption calculation on pilot-scale. In pilot-scale fed-batch cultivation good monitoring and control performance is obtained enabling a doubled concentration of bulk vaccine compared to standard batch production.
NASA Astrophysics Data System (ADS)
Cammalleri, Carmelo; Vogt, Jürgen V.; Bisselink, Bernard; de Roo, Ad
2017-12-01
Agricultural drought events can affect large regions across the world, implying the need for a suitable global tool for an accurate monitoring of this phenomenon. Soil moisture anomalies are considered a good metric to capture the occurrence of agricultural drought events, and they have become an important component of several operational drought monitoring systems. In the framework of the JRC Global Drought Observatory (GDO, http://edo.jrc.ec.europa.eu/gdo/), the suitability of three datasets as possible representations of root zone soil moisture anomalies has been evaluated: (1) the soil moisture from the Lisflood distributed hydrological model (namely LIS), (2) the remotely sensed Land Surface Temperature data from the MODIS satellite (namely LST), and (3) the ESA Climate Change Initiative combined passive/active microwave skin soil moisture dataset (namely CCI). Due to the independency of these three datasets, the triple collocation (TC) technique has been applied, aiming at quantifying the likely error associated with each dataset in comparison to the unknown true status of the system. TC analysis was performed on five macro-regions (namely North America, Europe, India, southern Africa and Australia) detected as suitable for the experiment, providing insight into the mutual relationship between these datasets as well as an assessment of the accuracy of each method. Even if no definitive statement on the spatial distribution of errors can be provided, a clear outcome of the TC analysis is the good performance of the remote sensing datasets, especially CCI, over dry regions such as Australia and southern Africa, whereas the outputs of LIS seem to be more reliable over areas that are well monitored through meteorological ground station networks, such as North America and Europe. In a global drought monitoring system, the results of the error analysis are used to design a weighted-average ensemble system that exploits the advantages of each dataset.
2007-06-01
box with the dip slides provides application instructions and illustrates acceptable bacteria levels. Both dip slide and Biotrace ATP Luminometer...Control Good Control Poor Control Biotrace ATP Planktonic 100 to 300 RLU 300 to 1000 RLU >1000 RLU Dip Tube Anaerobic Bacteria 0 organism/mL ɝ...completed monthly to record biocide levels and bacteria tests. Another biocide test method, the Biotrace ATP Luminometer, measures planktonic
Emergency information systems for cars
NASA Astrophysics Data System (ADS)
Thirunavukkarasu, M.; Vani Manasa, N.; Kumar, K. Rajesh; Sundar, S.
2017-11-01
The main objective of this work is to create a Health Care monitoring and Guidance system for persons who are travelling in outdoor environments like cars. GSM (Global System for Mobile Communications) and GPS (Global Positioning System) technologies are separately and combined today in many applications in our day to day life. The GSM module will send a message along with the GPS location to the end user through text, and a call is initiated to the user for further instructions. The Global Positioning System (GPS) will give the location of the interested vehicle. This system helps the doctor or anyone to monitor the accident who is outdoor and has less help. This will help the hospital to monitor the accident as well as guide the injured through difficult situations. Using a buzzer, the persons nearby will come to know that the person is in danger or in poor health conditions. This project provides a good two-way communication with the injured and the hospital to assist them to give first aid before an ambulance arrives. So, this paper devices a novel technique to assist the people who just met with accident through GPS and GSM.
Design of PID temperature control system based on STM32
NASA Astrophysics Data System (ADS)
Zhang, Jianxin; Li, Hailin; Ma, Kai; Xue, Liang; Han, Bianhua; Dong, Yuemeng; Tan, Yue; Gu, Chengru
2018-03-01
A rapid and high-accuracy temperature control system was designed using proportional-integral-derivative (PID) control algorithm with STM32 as micro-controller unit (MCU). The temperature control system can be applied in the fields which have high requirements on the response speed and accuracy of temperature control. The temperature acquisition circuit in system adopted Pt1000 resistance thermometer as temperature sensor. Through this acquisition circuit, the monitoring actual temperature signal could be converted into voltage signal and transmitted into MCU. A TLP521-1 photoelectric coupler was matched with BD237 power transistor to drive the thermoelectric cooler (TEC) in FTA951 module. The effective electric power of TEC was controlled by the pulse width modulation (PWM) signals which generated by MCU. The PWM signal parameters could be adjusted timely by PID algorithm according to the difference between monitoring actual temperature and set temperature. The upper computer was used to input the set temperature and monitor the system running state via serial port. The application experiment results show that the temperature control system is featured by simple structure, rapid response speed, good stability and high temperature control accuracy with the error less than ±0.5°C.
Monitoring clinical standards in a chronic peritoneal dialysis program.
Leung, Dora K C
2009-02-01
Multiple factors may influence the effectiveness of a chronic peritoneal dialysis program. Continuous monitoring of various aspects of clinical standards with reviews enhances opportunities for bridging the gap between existing practice and good practice, and good practice to best practice.
Monitoring internal organ motion with continuous wave radar in CT.
Pfanner, Florian; Maier, Joscha; Allmendinger, Thomas; Flohr, Thomas; Kachelrieß, Marc
2013-09-01
To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT. The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements. Concerning the measurements of the test persons, there is a very good correlation (ρ = 0.917) between the respiratory motion phases received by the radar system and the external motion monitor. Our concept of using an array of transmitting antennas turned out to be widely insensitive to the positioning of the test persons. A time shift between the respiratory motion curves recorded with the radar system and the motion curves from the external respiratory monitor was observed which indicates a slight difference between internal organ motion and motion detected by the external respiratory monitor. The simulations were in good accordance with the measurements. A continuous wave radar operating in the near field of the antennas can be used to determine the respiratory motion of humans accurately. In contrast to trigger systems used today, the radar system is able to measure motion inside the body. If such a monitor was routinely available in clinical CT, it would be possible optimizing the scan start with respect to the respiratory state of the patient. Breathing commands would potentially widely be avoided, and as far as uncooperative patients or children are concerned, less sedation might be necessary. Further applications of the radar system could be in radiation therapy or interventional imaging for instance.
Crack identification for rigid pavements using unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Bahaddin Ersoz, Ahmet; Pekcan, Onur; Teke, Turker
2017-09-01
Pavement condition assessment is an essential piece of modern pavement management systems as rehabilitation strategies are planned based upon its outcomes. For proper evaluation of existing pavements, they must be continuously and effectively monitored using practical means. Conventionally, truck-based pavement monitoring systems have been in-use in assessing the remaining life of in-service pavements. Although such systems produce accurate results, their use can be expensive and data processing can be time consuming, which make them infeasible considering the demand for quick pavement evaluation. To overcome such problems, Unmanned Aerial Vehicles (UAVs) can be used as an alternative as they are relatively cheaper and easier-to-use. In this study, we propose a UAV based pavement crack identification system for monitoring rigid pavements’ existing conditions. The system consists of recently introduced image processing algorithms used together with conventional machine learning techniques, both of which are used to perform detection of cracks on rigid pavements’ surface and their classification. Through image processing, the distinct features of labelled crack bodies are first obtained from the UAV based images and then used for training of a Support Vector Machine (SVM) model. The performance of the developed SVM model was assessed with a field study performed along a rigid pavement exposed to low traffic and serious temperature changes. Available cracks were classified using the UAV based system and obtained results indicate it ensures a good alternative solution for pavement monitoring applications.
NASA Technical Reports Server (NTRS)
Maxwell, M. S.
1984-01-01
Present technology allows radiometric monitoring of the Earth, ocean and atmosphere from a geosynchronous platform with good spatial, spectral and temporal resolution. The proposed system could provide a capability for multispectral remote sensing with a 50 m nadir spatial resolution in the visible bands, 250 m in the 4 micron band and 1 km in the 11 micron thermal infrared band. The diffraction limited telescope has a 1 m aperture, a 10 m focal length (with a shorter focal length in the infrared) and linear and area arrays of detectors. The diffraction limited resolution applies to scenes of any brightness but for a dark low contrast scenes, the good signal to noise ratio of the system contribute to the observation capability. The capabilities of the AGP system are assessed for quantitative observations of ocean scenes. Instrument and ground system configuration are presented and projected sensor capabilities are analyzed.
Choi1, Yong Seok; Lee, Kelvin H.
2016-01-01
Alzheimer's disease (AD) is the most common type of dementia, but early and accurate diagnosis remains challenging. Previously, a panel of cerebrospinal fluid (CSF) biomarker candidates distinguishing AD and non-AD CSF accurately (> 90%) was reported. Furthermore, a multiple reaction monitoring (MRM) assay based on nano liquid chromatography tandem mass spectrometry (nLC-MS/MS) was developed to help validate putative AD CSF biomarker candidates including proteins from the panel. Despite the good performance of the MRM assay, wide acceptance may be challenging because of limited availability of nLC-MS/MS systems laboratories. Thus, here, a new MRM assay based on conventional LC-MS/MS is presented. This method monitors 16 peptides representing 16 (of 23) biomarker candidates that belonged to the previous AD CSF panel. A 30-times more concentrated sample than the sample used for the previous study was loaded onto a high capacity trap column, and all 16 MRM transitions showed good linearity (average R2 = 0.966), intra-day reproducibility (average coefficient of variance (CV) = 4.78%), and inter-day reproducibility (average CV = 9.85%). The present method has several advantages such as a shorter analysis time, no possibility of target variability, and no need for an internal standard. PMID:26404792
Choi, Yong Seok; Lee, Kelvin H
2016-03-01
Alzheimer's disease (AD) is the most common type of dementia, but early and accurate diagnosis remains challenging. Previously, a panel of cerebrospinal fluid (CSF) biomarker candidates distinguishing AD and non-AD CSF accurately (>90 %) was reported. Furthermore, a multiple reaction monitoring (MRM) assay based on nano liquid chromatography tandem mass spectrometry (nLC-MS/MS) was developed to help validate putative AD CSF biomarker candidates including proteins from the panel. Despite the good performance of the MRM assay, wide acceptance may be challenging because of limited availability of nLC-MS/MS systems in laboratories. Thus, here, a new MRM assay based on conventional LC-MS/MS is presented. This method monitors 16 peptides representing 16 (of 23) biomarker candidates that belonged to the previous AD CSF panel. A 30-times more concentrated sample than the sample used for the previous study was loaded onto a high capacity trap column, and all 16 MRM transitions showed good linearity (average R(2) = 0.966), intra-day reproducibility (average coefficient of variance (CV) = 4.78 %), and inter-day reproducibility (average CV = 9.85 %). The present method has several advantages such as a shorter analysis time, no possibility of target variability, and no need for an internal standard.
Del Mazo-Barbara, Anna; Mirabel, Clémentine; Nieto, Valentín; Reyes, Blanca; García-López, Joan; Oliver-Vila, Irene; Vives, Joaquim
2016-09-01
Computerized systems (CS) are essential in the development and manufacture of cell-based medicines and must comply with good manufacturing practice, thus pushing academic developers to implement methods that are typically found within pharmaceutical industry environments. Qualitative and quantitative risk analyses were performed by Ishikawa and Failure Mode and Effects Analysis, respectively. A process for qualification of a CS that keeps track of environmental conditions was designed and executed. The simplicity of the Ishikawa analysis permitted to identify critical parameters that were subsequently quantified by Failure Mode Effects Analysis, resulting in a list of test included in the qualification protocols. The approach presented here contributes to simplify and streamline the qualification of CS in compliance with pharmaceutical quality standards.
Development of a neutron measurement system in unified non-destructive assay for the PRIDE facility
NASA Astrophysics Data System (ADS)
Seo, Hee; Park, Se-Hwan; Won, Byung-Hee; Ahn, Seong-Kyu; Shin, Hee-Sung; Na, Sang-Ho; Song, Dae-Yong; Kim, Ho-Dong; Lee, Seung Kyu
2013-12-01
The Korea Atomic Energy Research Institute (KAERI) has made an effort to develop pyroprocessing technology to resolve an on-going problem in Korea, i.e., the management of spent nuclear fuels. To this end, a test-bed facility for pyroprocessing, called PRIDE (PyRoprocessing Integrated inactive DEmonstration facility), is being constructed at KAERI. The main objective of PRIDE is to evaluate the performance of the unit processes, remote operation, maintenance, and proliferation resistance. In addition, integrating all unit processes into a one-step process is also one of the main goals. PRIDE can also provide a good opportunity to test safeguards instrumentations for a pyroprocessing facility such as nuclear material accounting devices, surveillance systems, radiation monitoring systems, and process monitoring systems. In the present study, a non-destructive assay (NDA) system for the testing of nuclear material accountancy of PRIDE was designed by integrating three different NDA techniques, i.e., neutron, gamma-ray, and mass measurements. The developed neutron detection module consists of 56 3He tubes and 16 AMPTEK A111 signal processing circuits. The amplifiers were matched in terms of the gain and showed good uniformity after a gain-matching procedure (%RSD=0.37%). The axial and the radial efficiency distributions within the cavity were then measured using a 252Cf neutron source and were compared with the MCNPX calculation results. The measured efficiency distributions showed excellent agreement with the calculations, which confirmed the accuracy of the MCNPX model of the system.
Jochmann, Anja; Artusio, Luca; Jamalzadeh, Angela; Nagakumar, Prasad; Delgado-Eckert, Edgar; Saglani, Sejal; Bush, Andrew; Frey, Urs; Fleming, Louise J
2017-12-01
International guidelines recommend that severe asthma can only be diagnosed after contributory factors, including adherence, have been addressed. Accurate assessment of adherence is difficult in clinical practice. We hypothesised that electronic monitoring in children would identify nonadherence, thus delineating the small number with true severe asthma.Asthmatic children already prescribed inhaled corticosteroids were prospectively recruited and persistence of adherence assessed using electronic monitoring devices. Spirometry, airway inflammation and asthma control were measured at the start and end of the monitoring period.93 children (62 male; median age 12.4 years) were monitored for a median of 92 days. Median (range) monitored adherence was 74% (21-99%). We identified four groups: 1) good adherence during monitoring with improved control, 24% (likely previous poor adherence); 2) good adherence with poor control, 18% (severe therapy-resistant asthma); 3) poor adherence with good control, 26% (likely overtreated); and 4) poor adherence with poor control, 32%. No clinical parameter prior to monitoring distinguished these groups.Electronic monitoring is a useful tool for identifying children in whom a step up in treatment is indicated. Different approaches are needed in those who are controlled when adherent or who are nonadherent. Electronic monitoring is essential in a paediatric severe asthma clinic. Copyright ©ERS 2017.
Comparison study and thoron interference test of different radon monitors.
Sumesh, C G; Kumar, A Vinod; Tripathi, R M; Puranik, V D
2013-03-01
A comparison study and thoron interference test for different continuous radon monitors were carried out. The comparison study includes three passive diffusion monitors [one pulse ionisation chamber based-Alpha Guard and two silicon semi-conductor based-Radon Scout Plus (RSP)] and one silicon semi-conductor-based active radon thoron discriminating monitor--RAD 7. Radon emanation standard, supplied by National Institute of Science and Technology, has been utilised for the comparison study to qualify the calibration of the continuous radon monitors. All the instruments showed good agreement with the estimated radon concentration using (226)Ra/(222)Rn emanation standard. It was found that the active radon monitoring system is having a higher initial response towards the transient radon concentration than the passive radon monitors studied. The instruments measuring radon concentration without energy discrimination are likely to have some sensitivity towards the thoron concentration. Thus, thoron interference study was carried out in the above monitors. Nine percent interference in measured radon concentration in the Alpha Guard monitor and 4 % interference in the semi-conductor-based RSP monitors was observed. Study indicates that the interference of thoron in radon monitors depends on the area of diffusion of gas, volume of detection and sensitivity factor.
Ramírez-Herrejón, Juan Pablo; Mercado-Silva, Norman; Medina-Nava, Martina; Domínguez-Domínguez, Omar
2012-12-01
Efforts to halt freshwater ecosystem degradation in central Mexico can benefit from using bio-monitoring tools that reflect the condition of their biotic integrity. We analyzed the applicability of two fish-based indices of biotic integrity using data from lotic and lentic systems in the Angulo River subbasin (Lerma-Chapala basin). Both independent data from our own collections during two consecutive years, and existing information detailing the ecological attributes of each species, were used to calculate indices of biological integrity for 16 sites in lotic and lentic habitats. We assessed environmental quality by combining independent evaluations water and habitat quality for each site. We found sites with poor, regular and good biotic integrity. Our study did not find sites with good environmental quality. Fish-based IBI scores were strongly and significantly correlated with scores from independent environmental assessment techniques. IBI scores were adequate at representing environmental conditions in most study sites. These results expand the area where a lotic system fish-based IBI can be used, and constitute an initial validation of a lentic system fish-based IBI. Our results suggest that these bio-monitoring tools can be used in future conservation efforts in freshwater ecosystems in the Middle Lerma Basin.
Requirements management: keeping your technology acquisition project under control.
Carr, J J
2000-03-01
Whether you are acquiring clinical or business information systems, patient monitoring systems, or therapeutic and diagnostic systems, the odds are good that the project will be delivered late, will cost far more than predicted, and will not provide all the features promised. The principal reason for project failure is improper management of the requirements of the system. Requirements engineering and management is a skill from the systems engineering profession that can be learned by nearly any professional who is managing a technology acquisition project. The author discusses what requirements engineering and management is and how it is done.
Lu, Min-Xia; Zhang, Yan-Yun; Jiang, Jun-Fang; Ju, Yang; Wu, Qing; Zhao, Xin; Wang, Xiao-Hua
2016-11-01
Daily weight monitoring is frequently recommended as a part of heart failure self-management to prevent exacerbations. This study is to identify factors that influence weight monitoring compliance of congestive heart failure patients at baseline and after a 1-year weight management (WM) program. This was a secondary analysis of an investigative study and a randomized controlled study. A general information questionnaire assessed patient demographics and clinical variables such as medicine use and diagnoses, and the weight management scale evaluated their WM abilities. Good and poor compliance based on abnormal weight gain from the European Society of Cardiology (> 2 kg in 3 days) were compared, and hierarchical multiple logistic regression analysis was used to identify factors influencing weight monitoring compliance. A total of 316 patients were enrolled at baseline, and 66 patients were enrolled after the 1-year WM program. Of them, 12.66% and 60.61% had good weight monitoring compliance at baseline and after 1 year of WM, respectively. A high WM-related belief score indicated good weight monitoring compliance at both time points [odds ratio (OR), 1.043, 95% confidence interval (CI), 1.023-1.063, p < 0.001; and OR, 2.054, 95% CI, 1.209-3.487, p < 0.001, respectively). Patients with a high WM-related practice score had good weight monitoring compliance at baseline (OR, 1.046, 95% CI, 1.027-1.065, p < 0.001), and patients who had not monitored abnormal weight had poor weight monitoring compliance after the 1-year WM program (OR, 0.244, 95% CI, 0.006-0.991, p = 0.049). Data from this study suggested that belief related to WM plays an important role in weight monitoring compliance.
STS-47 PS Mohri uses Spacelab Japan microscope to study cells aboard OV-105
1992-09-20
STS047-05-025 (12 - 20 Sept 1992) --- Payload specialist Mamoru Mohri, representing Japan's National Space Development Agency (NASDA), uses a microscope to produce photomicrographs of mammalian cells. The mammal cell structure experiment is one of a large number of tests that were performed during the eight-day Spacelab-J mission. On his back, Dr. Mohri totes a health monitoring experiment. The primary objective of the physiological monitoring system is to observe the health condition of the Japanese payload specialist so that good health can be maintained during and after the spaceflight.
Development and evaluation of an ambulatory stress monitor based on wearable sensors.
Choi, Jongyoon; Ahmed, Beena; Gutierrez-Osuna, Ricardo
2012-03-01
Chronic stress is endemic to modern society. However, as it is unfeasible for physicians to continuously monitor stress levels, its diagnosis is nontrivial. Wireless body sensor networks offer opportunities to ubiquitously detect and monitor mental stress levels, enabling improved diagnosis, and early treatment. This article describes the development of a wearable sensor platform to monitor a number of physiological correlates of mental stress. We discuss tradeoffs in both system design and sensor selection to balance information content and wearability. Using experimental signals collected from the wearable sensor, we describe a selected number of physiological features that show good correlation with mental stress. In particular, we propose a new spectral feature that estimates the balance of the autonomic nervous system by combining information from the power spectral density of respiration and heart rate variability. We validate the effectiveness of our approach on a binary discrimination problem when subjects are placed under two psychophysiological conditions: mental stress and relaxation. When used in a logistic regression model, our feature set is able to discriminate between these two mental states with a success rate of 81% across subjects. © 2012 IEEE
Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K K; Luk, Connie W Y; Ning, Zhi
2016-02-05
This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring.
Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K.K.; Luk, Connie W.Y.; Ning, Zhi
2016-01-01
This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring. PMID:26861336
Video Monitoring a Simulation-Based Quality Improvement Program in Bihar, India.
Dyer, Jessica; Spindler, Hilary; Christmas, Amelia; Shah, Malay Bharat; Morgan, Melissa; Cohen, Susanna R; Sterne, Jason; Mahapatra, Tanmay; Walker, Dilys
2018-04-01
Simulation-based training has become an accepted clinical training andragogy in high-resource settings with its use increasing in low-resource settings. Video recordings of simulated scenarios are commonly used by facilitators. Beyond using the videos during debrief sessions, researchers can also analyze the simulation videos to quantify technical and nontechnical skills during simulated scenarios over time. Little is known about the feasibility and use of large-scale systems to video record and analyze simulation and debriefing data for monitoring and evaluation in low-resource settings. This manuscript describes the process of designing and implementing a large-scale video monitoring system. Mentees and Mentors were consented and all simulations and debriefs conducted at 320 Primary Health Centers (PHCs) were video recorded. The system design, number of video recordings, and inter-rater reliability of the coded videos were assessed. The final dataset included a total of 11,278 videos. Overall, a total of 2,124 simulation videos were coded and 183 (12%) were blindly double-coded. For the double-coded sample, the average inter-rater reliability (IRR) scores were 80% for nontechnical skills, and 94% for clinical technical skills. Among 4,450 long debrief videos received, 216 were selected for coding and all were double-coded. Data quality of simulation videos was found to be very good in terms of recorded instances of "unable to see" and "unable to hear" in Phases 1 and 2. This study demonstrates that video monitoring systems can be effectively implemented at scale in resource limited settings. Further, video monitoring systems can play several vital roles within program implementation, including monitoring and evaluation, provision of actionable feedback to program implementers, and assurance of program fidelity.
ERIC Educational Resources Information Center
Yeung, Brendan; Ng, Tuck Wah; Tan, Han Yen; Liew, Oi Wah
2012-01-01
The use of different types of stains in the quantification of proteins separated on gels using electrophoresis offers the capability of deriving good outcomes in terms of linear dynamic range, sensitivity, and compatibility with specific proteins. An inexpensive, simple, and versatile lighting system based on liquid crystal display backlighting is…
ERIC Educational Resources Information Center
Alonzo, Julie; Tindal, Gerald; Lai, Cheng-Fei
2010-01-01
This technical report provides a summary of feedback from teachers, administrators, and support personnel who used the easyCBM progress monitoring and benchmark assessment system during school year 2009/2010. Data were gathered from semi-structured focus groups conducted during the 2010 easyCBM August Institute at the University of Oregon. Results…
A tsunami early warning system for the coastal area modeling
NASA Astrophysics Data System (ADS)
Soebroto, Arief Andy; Sunaryo, Suhartanto, Ery
2015-04-01
The tsunami disaster is a potential disaster in the territory of Indonesia. Indonesia is an archipelago country and close to the ocean deep. The tsunami occurred in Aceh province in 2004. Early prevention efforts have been carried out. One of them is making "tsunami buoy" which has been developed by BPPT. The tool puts sensors on the ocean floor near the coast to detect earthquakes on the ocean floor. Detection results are transmitted via satellite by a transmitter placed floating on the sea surface. The tool will cost billions of dollars for each system. Another constraint was the transmitter theft "tsunami buoy" in the absence of guard. In this study of the system has a transmission system using radio frequency and focused on coastal areas where costs are cheaper, so that it can be applied at many beaches in Indonesia are potentially affected by the tsunami. The monitoring system sends the detection results to the warning system using a radio frequency with a capability within 3 Km. Test results on the sub module sensor monitoring system generates an error of 0.63% was taken 10% showed a good quality sensing. The test results of data transmission from the transceiver of monitoring system to the receiver of warning system produces 100% successful delivery and reception of data. The test results on the whole system to function 100% properly.
NASA Astrophysics Data System (ADS)
Msagati, Titus A. M.; Mamba, Bhekie B.
The supported liquid membrane (SLM) extraction technique has been developed and successfully used for the monitoring of trace quantities of ionisable organic contaminants, including 17β-estradiol and its metabolites, testosterones and their methyl ester derivatives, benzimidazole anthelmintic antibiotics and sulphonamides in aquatic systems. A number of parameters which control the mass transfer in the supported liquid membrane extraction process such as donor and acceptor pH, extraction time and the type of organic liquid membrane were optimised to enhance the efficiency of the liquid membrane in the removal of these compounds. The method developed gave very low detection limits (0.3 ng/l to 2.4 ng/l for 17β-estradiol and its metabolites; between 1 μg/l and 20 μg/l for sulphonamides; and between 0.1 ng/l and 10 ng/l for benzimidazole anthelmintic compounds). The SLM method showed good linearity, reproducibility and repeatability values and is therefore suitable for routine monitoring of such compounds in water and wastewater systems.
NASA Astrophysics Data System (ADS)
Oks, A.; Katashev, A.; Bernans, E.; Abolins, V.
2017-10-01
The aim of the study was to present a new DAid®Pressure Sock System for feet locomotion monitoring and to verify it’s temporal characteristics by data comparison with the same obtained by two other widely used methods as reference. Designed system is based on sensors which can be knitted directly in the garment or hosiery items. DAid®Pressure Sock System was created for sport and medical applications. Comparison of temporal characteristics of different types of locomotion, obtained using designed system and reference devises, showed good agreement between data.
Monitoring progress towards universal health coverage at country and global levels.
Boerma, Ties; Eozenou, Patrick; Evans, David; Evans, Tim; Kieny, Marie-Paule; Wagstaff, Adam
2014-09-01
Universal health coverage (UHC) has been defined as the desired outcome of health system performance whereby all people who need health services (promotion, prevention, treatment, rehabilitation, and palliation) receive them, without undue financial hardship. UHC has two interrelated components: the full spectrum of good-quality, essential health services according to need, and protection from financial hardship, including possible impoverishment, due to out-of-pocket payments for health services. Both components should benefit the entire population. This paper summarizes the findings from 13 country case studies and five technical reviews, which were conducted as part of the development of a global framework for monitoring progress towards UHC. The case studies show the relevance and feasibility of focusing UHC monitoring on two discrete components of health system performance: levels of coverage with health services and financial protection, with a focus on equity. These components link directly to the definition of UHC and measure the direct results of strategies and policies for UHC. The studies also show how UHC monitoring can be fully embedded in often existing, regular overall monitoring of health sector progress and performance. Several methodological and practical issues related to the monitoring of coverage of essential health services, financial protection, and equity, are highlighted. Addressing the gaps in the availability and quality of data required for monitoring progress towards UHC is critical in most countries.
Monitoring Progress towards Universal Health Coverage at Country and Global Levels
Boerma, Ties; Eozenou, Patrick; Evans, David; Evans, Tim; Kieny, Marie-Paule; Wagstaff, Adam
2014-01-01
Universal health coverage (UHC) has been defined as the desired outcome of health system performance whereby all people who need health services (promotion, prevention, treatment, rehabilitation, and palliation) receive them, without undue financial hardship. UHC has two interrelated components: the full spectrum of good-quality, essential health services according to need, and protection from financial hardship, including possible impoverishment, due to out-of-pocket payments for health services. Both components should benefit the entire population. This paper summarizes the findings from 13 country case studies and five technical reviews, which were conducted as part of the development of a global framework for monitoring progress towards UHC. The case studies show the relevance and feasibility of focusing UHC monitoring on two discrete components of health system performance: levels of coverage with health services and financial protection, with a focus on equity. These components link directly to the definition of UHC and measure the direct results of strategies and policies for UHC. The studies also show how UHC monitoring can be fully embedded in often existing, regular overall monitoring of health sector progress and performance. Several methodological and practical issues related to the monitoring of coverage of essential health services, financial protection, and equity, are highlighted. Addressing the gaps in the availability and quality of data required for monitoring progress towards UHC is critical in most countries. PMID:25243899
Monitoring internal organ motion with continuous wave radar in CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfanner, Florian; Maier, Joscha; Allmendinger, Thomas
Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods:more » The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the measurements of the test persons, there is a very good correlation (ρ= 0.917) between the respiratory motion phases received by the radar system and the external motion monitor. Our concept of using an array of transmitting antennas turned out to be widely insensitive to the positioning of the test persons. A time shift between the respiratory motion curves recorded with the radar system and the motion curves from the external respiratory monitor was observed which indicates a slight difference between internal organ motion and motion detected by the external respiratory monitor. The simulations were in good accordance with the measurements.Conclusions: A continuous wave radar operating in the near field of the antennas can be used to determine the respiratory motion of humans accurately. In contrast to trigger systems used today, the radar system is able to measure motion inside the body. If such a monitor was routinely available in clinical CT, it would be possible optimizing the scan start with respect to the respiratory state of the patient. Breathing commands would potentially widely be avoided, and as far as uncooperative patients or children are concerned, less sedation might be necessary. Further applications of the radar system could be in radiation therapy or interventional imaging for instance.« less
Ribeiro, David S M; Prior, João A V; Taveira, Christian J M; Mendes, José M A F S; Santos, João L M
2011-06-15
In this work, and for the first time, it was developed an automatic and fast screening miniaturized flow system for the toxicological control of glibenclamide in beverages, with application in forensic laboratory investigations, and also, for the chemical control of commercially available pharmaceutical formulations. The automatic system exploited the multipumping flow (MPFS) concept and allowed the implementation of a new glibenclamide determination method based on the fluorometric monitoring of the drug in acidic medium (λ(ex)=301 nm; λ(em)=404 nm), in the presence of an anionic surfactant (SDS), promoting an organized micellar medium to enhance the fluorometric measurements. The developed approach assured good recoveries in the analysis of five spiked alcoholic beverages. Additionally, a good agreement was verified when comparing the results obtained in the determination of glibenclamide in five commercial pharmaceutical formulations by the proposed method and by the pharmacopoeia reference procedure. Copyright © 2011 Elsevier B.V. All rights reserved.
Kim, Jeong Tae; Ho, Samuel Y M; Kim, Youn Hwan
2014-02-01
Postoperative flap monitoring is a vital aspect of free tissue transfer in order to detect early vascular compromise and to enable early flap salvage. The implantable Doppler monitoring system is one of many monitoring devices used to ensure accuracy and reduce unnecessary flap explorations. However, there are a number of concerns with its use, namely tension on the anastomosis, possible vessel constriction and false-negative detection. This study aimed to alleviate these concerns, by introducing a new method of placing the implantable Doppler probe on the adjacent vessel limb of a chimaeric flap. This is illustrated by a case series of chimaeric free tissue flaps that allow this surrogate placement of the Doppler probe. The flap is raised in a chimaeric fashion, with a main perforator pedicle to the skin or muscle paddle for the main reconstructive purpose and a side branch from the main pedicle going to a smaller adipofascial or muscle flap for monitoring. This branch vascular pedicle leading to the chimaeric tissue is kept sufficiently long to enable placement of the Doppler cuff and prevent turbulence. The probe of a Cook-Swartz implantable Doppler system is placed around the branch pedicle, approximately 5 mm from the branching point, and secured with a vessel clip. This is then secured away from the major vessels of the main free flap. Removal of the probe's crystal and wire is easily done with a single gentle traction on postoperative day 7. Five cases of chimaeric free flaps were performed with this manoeuvre: three thoracodorsal perforator chimaeric flaps for head-and-neck or extremity reconstruction, one latissimus dorsi neuromuscular chimaeric flap for facial reanimation and one digastric lymph node transfer for the treatment of lower limb lymphoedema. The Doppler system showed a low but sustained oscillating flow in all cases indicating vascular patency, with minimal flow interference from other large-calibre vessels. There was no discernible kinking on the anastomosis. There were no complications encountered during probe removal. This postoperative monitoring manoeuvre was done successfully with good results. The monitoring equipment is very sensitive to any flow disturbance due to positional changes in the head-and-neck region or the extremities and is able to detect flow changes in buried flaps postoperatively. Chimaeric flap composition is easier now than before because of perforator-oriented pedicle dissection, and surrogate Doppler monitoring is one more application of the chimaeric flap. This novel chimaeric fashion of implantable Doppler probe placement is a good surrogate measure of flow in the main pedicle. Copyright © 2013. Published by Elsevier Ltd.
Transionospheric radiosounding (Review)
NASA Astrophysics Data System (ADS)
Danilkin, N. P.
2017-09-01
The transionospheric radiosounding (TIS) method has naturally brought together the two most precise methods for scanning and monitoring the ionosphere (ionospheric radiosounding by airborne and ground ionosondes) into a single system. The subsequent development of TIS equipment has led to a qualitative change in the structure and operation of the ionospheric observatory, which greatly broadened the diagnostic capabilities of the ionospheric monitoring and expanded the ionospheric region monitored by the ground station. In fact, it can be said that a closed radiosounding system has been developed. It uses three branches of ionospheric multifrequency ray (or radio wave) fans to monitor the inner and outer ionosphere and to control both of these regions via transillumination of the ionosphere at the boundary of its radio transparency. The advantage of such a system is the full use of the entire range of radiated radio waves, each part of which is responsible for certain components of the diagnostic circuit. The paper presents the results of scientific studies obtained based on TIS data, which have led to the appearance of new and, to some extent, unexpected and previously unknown phenomena and effects. Special attention is paid to the modern stage of development of the TIS concept, which has good prospects for continuous monitoring of the polar ionosphere. It is questioned whether it is expedient to replace the term sounding with the term transillumination. It is noted that TIS was and remains the most precise method of ionosphere diagnostics.
An innovative nonintrusive driver assistance system for vital signal monitoring.
Sun, Ye; Yu, Xiong Bill
2014-11-01
This paper describes an in-vehicle nonintrusive biopotential measurement system for driver health monitoring and fatigue detection. Previous research has found that the physiological signals including eye features, electrocardiography (ECG), electroencephalography (EEG) and their secondary parameters such as heart rate and HR variability are good indicators of health state as well as driver fatigue. A conventional biopotential measurement system requires the electrodes to be in contact with human body. This not only interferes with the driver operation, but also is not feasible for long-term monitoring purpose. The driver assistance system in this paper can remotely detect the biopotential signals with no physical contact with human skin. With delicate sensor and electronic design, ECG, EEG, and eye blinking can be measured. Experiments were conducted on a high fidelity driving simulator to validate the system performance. The system was found to be able to detect the ECG/EEG signals through cloth or hair with no contact with skin. Eye blinking activities can also be detected at a distance of 10 cm. Digital signal processing algorithms were developed to decimate the signal noise and extract the physiological features. The extracted features from the vital signals were further analyzed to assess the potential criterion for alertness and drowsiness determination.
Ecological monitoring in a discrete-time prey-predator model.
Gámez, M; López, I; Rodríguez, C; Varga, Z; Garay, J
2017-09-21
The paper is aimed at the methodological development of ecological monitoring in discrete-time dynamic models. In earlier papers, in the framework of continuous-time models, we have shown how a systems-theoretical methodology can be applied to the monitoring of the state process of a system of interacting populations, also estimating certain abiotic environmental changes such as pollution, climatic or seasonal changes. In practice, however, there may be good reasons to use discrete-time models. (For instance, there may be discrete cycles in the development of the populations, or observations can be made only at discrete time steps.) Therefore the present paper is devoted to the development of the monitoring methodology in the framework of discrete-time models of population ecology. By monitoring we mean that, observing only certain component(s) of the system, we reconstruct the whole state process. This may be necessary, e.g., when in a complex ecosystem the observation of the densities of certain species is impossible, or too expensive. For the first presentation of the offered methodology, we have chosen a discrete-time version of the classical Lotka-Volterra prey-predator model. This is a minimal but not trivial system where the methodology can still be presented. We also show how this methodology can be applied to estimate the effect of an abiotic environmental change, using a component of the population system as an environmental indicator. Although this approach is illustrated in a simplest possible case, it can be easily extended to larger ecosystems with several interacting populations and different types of abiotic environmental effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cottrell, Lesley; Rishel, Carrie; Lilly, Christa; Cottrell, Scott; Metzger, Aaron; Ahmadi, Halima; Wang, Bo; Li, Xiaoming; Stanton, Bonita
2015-01-01
In this study, we examined how adolescents compare monitoring efforts by their parents to those of a "good parent" standard and assessed the impact of these comparisons on adolescent self-disclosure and risk behavior and their perceptions of their parents' monitoring knowledge. Survey responses from 519 adolescents (12-17 years) at baseline of a larger, longitudinal study examining parental monitoring and adolescent risk were examined. Adolescents' "good parent comparisons" differed greatly by monitoring areas (e.g., telephone use, health, money); however, between 5.5% and 25.8% of adolescents believed their parents needed to monitor their activities more than they currently were monitoring. Alternatively, between 8.5% and 23.8% of adolescents believed their parents needed to monitor their activities less often. These perceptions significantly distinguished adolescents in terms of their level of disclosure, perceived monitoring knowledge, and risk involvement. Adolescents who viewed their parents as needing to monitor more were less likely to disclose information to their parents (p<.001), less likely to perceive their parents as having greater monitoring knowledge (p<.001), and more likely to be involved in a risk behaviors (p<.001) than adolescents who perceived their parents needed no change. Adolescent disclosure to a parent is a powerful predictor of adolescent risk and poor health outcomes. These findings demonstrate that adolescents' comparisons of their parents' monitoring efforts can predict differences in adolescent disclosure and future risk. Obtaining adolescent "good parent" comparisons may successfully identify intervention opportunities with the adolescent and parent by noting the areas of need and direction of monitoring improvement.
Photoacoustic imaging to detect rat brain activation after cocaine hydrochloride injection
NASA Astrophysics Data System (ADS)
Jo, Janggun; Yang, Xinmai
2011-03-01
Photoacoustic imaging (PAI) was employed to detect small animal brain activation after the administration of cocaine hydrochloride. Sprague Dawley rats were injected with different concentrations (2.5, 3.0, and 5.0 mg per kg body) of cocaine hydrochloride in saline solution through tail veins. The brain functional response to the injection was monitored by photoacoustic tomography (PAT) system with horizontal scanning of cerebral cortex of rat brain. Photoacoustic microscopy (PAM) was also used for coronal view images. The modified PAT system used multiple ultrasonic detectors to reduce the scanning time and maintain a good signal-to-noise ratio (SNR). The measured photoacoustic signal changes confirmed that cocaine hydrochloride injection excited high blood volume in brain. This result shows PAI can be used to monitor drug abuse-induced brain activation.
An open-source and low-cost monitoring system for precision enology.
Di Gennaro, Salvatore Filippo; Matese, Alessandro; Mancin, Mirko; Primicerio, Jacopo; Palliotti, Alberto
2014-12-05
Winemaking is a dynamic process, where microbiological and chemical effects may strongly differentiate products from the same vineyard and even between wine vats. This high variability means an increase in work in terms of control and process management. The winemaking process therefore requires a site-specific approach in order to optimize cellar practices and quality management, suggesting a new concept of winemaking, identified as Precision Enology. The Institute of Biometeorology of the Italian National Research Council has developed a wireless monitoring system, consisting of a series of nodes integrated in barrel bungs with sensors for the measurement of wine physical and chemical parameters in the barrel. This paper describes an open-source evolution of the preliminary prototype, using Arduino-based technology. Results have shown good performance in terms of data transmission and accuracy, minimal size and power consumption. The system has been designed to create a low-cost product, which allows a remote and real-time control of wine evolution in each barrel, minimizing costs and time for sampling and laboratory analysis. The possibility of integrating any kind of sensors makes the system a flexible tool that can satisfy various monitoring needs.
Kamann, Stefanie; Aerts, Olivier; Heinemann, Lutz
2018-05-01
In the past decade, new diabetes technologies, including continuous glucose monitoring (CGM) systems, support patients with diabetes in their daily struggle with achieving a good glucose control. However, shortly after the first CGM systems appeared on the market, also the first concerns about adverse skin reactions were raised. Most patients claimed to suffer from (sometimes severe) skin irritation, or even allergy, which they related to the (acrylate-based) adhesive part of the device. For a long time the actual substance that caused these skin reactions with, for example, the Flash Glucose Monitoring system (iscCGM; Freestyle® Libre) could not be identified; however, recently Belgian and Swedish dermatologists reported that the majority of their patients that have developed a contact-allergic while using iscCGM react sensitively to a specific acrylate, that is, isobornyl acrylate (IBOA). Subsequently they showed by means of gas chromatography-mass spectrometry that this substance is present in the case of the glucose sensor attached by an adhesive to the skin. We report three additional cases from Germany, including a 10-year-old boy, suffering from severe allergic contact dermatitis to IBOA.
Flexible Graphene Electrodes for Prolonged Dynamic ECG Monitoring
Lou, Cunguang; Li, Ruikai; Li, Zhaopeng; Liang, Tie; Wei, Zihui; Run, Mingtao; Yan, Xiaobing; Liu, Xiuling
2016-01-01
This paper describes the development of a graphene-based dry flexible electrocardiography (ECG) electrode and a portable wireless ECG measurement system. First, graphene films on polyethylene terephthalate (PET) substrates and graphene paper were used to construct the ECG electrode. Then, a graphene textile was synthesized for the fabrication of a wearable ECG monitoring system. The structure and the electrical properties of the graphene electrodes were evaluated using Raman spectroscopy, scanning electron microscopy (SEM), and alternating current impedance spectroscopy. ECG signals were then collected from healthy subjects using the developed graphene electrode and portable measurement system. The results show that the graphene electrode was able to acquire the typical characteristics and features of human ECG signals with a high signal-to-noise (SNR) ratio in different states of motion. A week-long continuous wearability test showed no degradation in the ECG signal quality over time. The graphene-based flexible electrode demonstrates comfortability, good biocompatibility, and high electrophysiological detection sensitivity. The graphene electrode also combines the potential for use in long-term wearable dynamic cardiac activity monitoring systems with convenience and comfort for use in home health care of elderly and high-risk adults. PMID:27809270
Pavurala, Naresh; Xu, Xiaoming; Krishnaiah, Yellela S R
2017-05-15
Hyperspectral imaging using near infrared spectroscopy (NIRS) integrates spectroscopy and conventional imaging to obtain both spectral and spatial information of materials. The non-invasive and rapid nature of hyperspectral imaging using NIRS makes it a valuable process analytical technology (PAT) tool for in-process monitoring and control of the manufacturing process for transdermal drug delivery systems (TDS). The focus of this investigation was to develop and validate the use of Near Infra-red (NIR) hyperspectral imaging to monitor coat thickness uniformity, a critical quality attribute (CQA) for TDS. Chemometric analysis was used to process the hyperspectral image and a partial least square (PLS) model was developed to predict the coat thickness of the TDS. The goodness of model fit and prediction were 0.9933 and 0.9933, respectively, indicating an excellent fit to the training data and also good predictability. The % Prediction Error (%PE) for internal and external validation samples was less than 5% confirming the accuracy of the PLS model developed in the present study. The feasibility of the hyperspectral imaging as a real-time process analytical tool for continuous processing was also investigated. When the PLS model was applied to detect deliberate variation in coating thickness, it was able to predict both the small and large variations as well as identify coating defects such as non-uniform regions and presence of air bubbles. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Alves de Mesquita, Jayme; Lopes de Melo, Pedro
2004-03-01
Thermally sensitive devices—thermistors—have usually been used to monitor sleep-breathing disorders. However, because of their long time constant, these devices are not able to provide a good characterization of fast events, like hypopneas. Nasal pressure recording technique (NPR) has recently been suggested to quantify airflow during sleep. It is claimed that the short time constants of the devices used to implement this technique would allow an accurate analysis of fast abnormal respiratory events. However, these devices present errors associated with nonlinearities and acoustic resonance that could reduce the diagnostic value of the NPR. Moreover, in spite of the high scientific and clinical potential, there is no detailed description of a complete instrumentation system to implement this promising technique in sleep studies. In this context, the purpose of this work was twofold: (1) describe the development of a flexible NPR device and (2) evaluate the performance of this device when compared to pneumotachographs (PNTs) and thermistors. After the design details are described, the system static accuracy is evaluated by a comparative analysis with a PNT. This analysis revealed a significant reduction (p<0.001) of the static error when system nonlinearities were reduced. The dynamic performance of the NPR system was investigated by frequency response analysis and time constant evaluations and the results showed that the developed device response was as good as PNT and around 100 times faster (τ=5,3 ms) than thermistors (τ=512 ms). Experimental results obtained in simulated clinical conditions and in a patient are presented as examples, and confirmed the good features achieved in engineering tests. These results are in close agreement with physiological fundamentals, supplying substantial evidence that the improved dynamic and static characteristics of this device can contribute to a more accurate implementation of medical research projects and to improve the diagnoses of sleep-breathing disorders.
Analysis and Implementation of Methodologies for the Monitoring of Changes in Eye Fundus Images
NASA Astrophysics Data System (ADS)
Gelroth, A.; Rodríguez, D.; Salvatelli, A.; Drozdowicz, B.; Bizai, G.
2011-12-01
We present a support system for changes detection in fundus images of the same patient taken at different time intervals. This process is useful for monitoring pathologies lasting for long periods of time, as are usually the ophthalmologic. We propose a flow of preprocessing, processing and postprocessing applied to a set of images selected from a public database, presenting pathological advances. A test interface was developed designed to select the images to be compared in order to apply the different methods developed and to display the results. We measure the system performance in terms of sensitivity, specificity and computation times. We have obtained good results, higher than 84% for the first two parameters and processing times lower than 3 seconds for 512x512 pixel images. For the specific case of detection of changes associated with bleeding, the system responds with sensitivity and specificity over 98%.
Low-cost failure sensor design and development for water pipeline distribution systems.
Khan, K; Widdop, P D; Day, A J; Wood, A S; Mounce, S R; Machell, J
2002-01-01
This paper describes the design and development of a new sensor which is low cost to manufacture and install and is reliable in operation with sufficient accuracy, resolution and repeatability for use in newly developed systems for pipeline monitoring and leakage detection. To provide an appropriate signal, the concept of a "failure" sensor is introduced, in which the output is not necessarily proportional to the input, but is unmistakably affected when an unusual event occurs. The design of this failure sensor is based on the water opacity which can be indicative of an unusual event in a water distribution network. The laboratory work and field trials necessary to design and prove out this type of failure sensor are described here. It is concluded that a low-cost failure sensor of this type has good potential for use in a comprehensive water monitoring and management system based on Artificial Neural Networks (ANN).
Stefanov, Dimitar H; Bien, Zeungnam; Bang, Won-Chul
2004-06-01
Smart houses are considered a good alternative for the independent life of older persons and persons with disabilities. Numerous intelligent devices, embedded into the home environment, can provide the resident with both movement assistance and 24-h health monitoring. Modern home-installed systems tend to be not only physically versatile in functionality but also emotionally human-friendly, i.e., they may be able to perform their functions without disturbing the user and without causing him/her any pain, inconvenience, or movement restriction, instead possibly providing him/her with comfort and pleasure. Through an extensive survey, this paper analyzes the building blocks of smart houses, with particular attention paid to the health monitoring subsystem as an important component, by addressing the basic requirements of various sensors implemented from both research and clinical perspectives. The paper will then discuss some important issues of the future development of an intelligent residential space with a human-friendly health monitoring functional system.
Closed-Loop Control of Humidification for Artifact Reduction in Capacitive ECG Measurements.
Leicht, Lennart; Eilebrecht, Benjamin; Weyer, Soren; Leonhardt, Steffen; Teichmann, Daniel
2017-04-01
Recording biosignals without the need for direct skin contact offers new opportunities for ubiquitous health monitoring. Electrodes with capacitive coupling have been shown to be suitable for the monitoring of electrical potentials on the body surface, in particular ECG. However, due to triboelectric charge generation and motion artifacts, signal and thus diagnostic quality is inferior to galvanic coupling. Active closed-loop humidification of capacitive electrodes is proposed in this work as a new concept to improve signal quality. A capacitive ECG recording system integrated into a common car seat is presented. It can regulate the micro climate at the interface of electrode and patient by actively dispensing water vapour and monitoring humidity in a closed-loop approach. As a regenerative water reservoir, silica gel is used. The system was evaluated with respect to subjective and objective ECG signal quality. Active humidification was found to have a significant positive effect in case of previously poor quality. Also, it had no diminishing effect in case of already good signal quality.
Validation of Contact-Free Sleep Monitoring Device with Comparison to Polysomnography.
Tal, Asher; Shinar, Zvika; Shaki, David; Codish, Shlomi; Goldbart, Aviv
2017-03-15
To validate a contact-free system designed to achieve maximal comfort during long-term sleep monitoring, together with high monitoring accuracy. We used a contact-free monitoring system (EarlySense, Ltd., Israel), comprising an under-the-mattress piezoelectric sensor and a smartphone application, to collect vital signs and analyze sleep. Heart rate (HR), respiratory rate (RR), body movement, and calculated sleep-related parameters from the EarlySense (ES) sensor were compared to data simultaneously generated by the gold standard, polysomnography (PSG). Subjects in the sleep laboratory underwent overnight technician-attended full PSG, whereas subjects at home were recorded for 1 to 3 nights with portable partial PSG devices. Data were compared epoch by epoch. A total of 63 subjects (85 nights) were recorded under a variety of sleep conditions. Compared to PSG, the contact-free system showed similar values for average total sleep time (TST), % wake, % rapid eye movement, and % non-rapid eye movement sleep, with 96.1% and 93.3% accuracy of continuous measurement of HR and RR, respectively. We found a linear correlation between TST measured by the sensor and TST determined by PSG, with a coefficient of 0.98 (R = 0.87). Epoch-by-epoch comparison with PSG in the sleep laboratory setting revealed that the system showed sleep detection sensitivity, specificity, and accuracy of 92.5%, 80.4%, and 90.5%, respectively. TST estimates with the contact-free sleep monitoring system were closely correlated with the gold-standard reference. This system shows good sleep staging capability with improved performance over accelerometer-based apps, and collects additional physiological information on heart rate and respiratory rate. © 2017 American Academy of Sleep Medicine
NASA Astrophysics Data System (ADS)
Liu, Z.; Zhang, S.; Jin, Y. M.; Ouyang, H.; Zou, Y.; Wang, X. X.; Xie, L. X.; Li, Z.
2017-06-01
A wearable self-powered active sensor for respiration and healthcare monitoring was fabricated based on a flexible piezoelectric nanogenerator. An electrospinning poly(vinylidene fluoride) thin film on silicone substrate was polarized to fabricate the flexible nanogenerator and its electrical property was measured. When periodically stretched by a linear motor, the flexible piezoelectric nanogenerator generated an output open-circuit voltage and short-circuit current of up to 1.5 V and 400 nA, respectively. Through integration with an elastic bandage, a wearable self-powered sensor was fabricated and used to monitor human respiration, subtle muscle movement, and voice recognition. As respiration proceeded, the electrical output signals of the sensor corresponded to the signals measured by a physiological signal recording system with good reliability and feasibility. This self-powered, wearable active sensor has significant potential for applications in pulmonary function evaluation, respiratory monitoring, and detection of gesture and vocal cord vibration for the personal healthcare monitoring of disabled or paralyzed patients.
Site-specific landslide assessment in Alpine area using a reliable integrated monitoring system
NASA Astrophysics Data System (ADS)
Romeo, Saverio; Di Matteo, Lucio; Kieffer, Daniel Scott
2016-04-01
Rockfalls are one of major cause of landslide fatalities around the world. The present work discusses the reliability of integrated monitoring of displacements in a rockfall within the Alpine region (Salzburg Land - Austria), taking into account also the effect of the ongoing climate change. Due to the unpredictability of the frequency and magnitude, that threatens human lives and infrastructure, frequently it is necessary to implement an efficient monitoring system. For this reason, during the last decades, integrated monitoring systems of unstable slopes were widely developed and used (e.g., extensometers, cameras, remote sensing, etc.). In this framework, Remote Sensing techniques, such as GBInSAR technique (Groung-Based Interferometric Synthetic Aperture Radar), have emerged as efficient and powerful tools for deformation monitoring. GBInSAR measurements can be useful to achieve an early warning system using surface deformation parameters as ground displacement or inverse velocity (for semi-empirical forecasting methods). In order to check the reliability of GBInSAR and to monitor the evolution of landslide, it is very important to integrate different techniques. Indeed, a multi-instrumental approach is essential to investigate movements both in surface and in depth and the use of different monitoring techniques allows to perform a cross analysis of the data and to minimize errors, to check the data quality and to improve the monitoring system. During 2013, an intense and complete monitoring campaign has been conducted on the Ingelsberg landslide. By analyzing both historical temperature series (HISTALP) recorded during the last century and those from local weather stations, temperature values (Autumn-Winter, Winter and Spring) are clearly increased in Bad Hofgastein area as well as in Alpine region. As consequence, in the last decades the rockfall events have been shifted from spring to summer due to warmer winters. It is interesting to point out that temperature values recorded in the valley and on the slope show a good relationship indicating that the climatic monitoring is reliable. In addition, the landslide displacement monitoring is reliable as well: the comparison between displacements in depth by extensometers and in surface by GBInSAR - referred to March-December 2013 - shows ad high reliability as confirmed by the inter-rater reliability analysis (Pearson correlation coefficient higher than 0.9). In conclusion, the reliability of the monitoring system confirms that data can be useful to improve the knowledge on rockfall kinematic and to develop an accurate early warning system useful for civil protection issues.
Flynn, Francis J; Ames, Daniel R
2006-03-01
The authors posit that women can rely on self-monitoring to overcome negative gender stereotypes in certain performance contexts. In a study of mixed-sex task groups, the authors found that female group members who were high self-monitors were considered more influential and more valuable contributors than women who were low self-monitors. Men benefited relatively less from self-monitoring behavior. In an experimental study of dyadic negotiations, the authors found that women who were high self-monitors performed better than women who were low self-monitors, particularly when they were negotiating over a fixed pool of resources, whereas men did not benefit as much from self-monitoring. Further analyses suggest that high self-monitoring women altered their behavior in these negotiations--when their partner behaved assertively, they increased their level of assertiveness, whereas men and low self-monitoring women did not alter their behavior.
Scanner focus metrology and control system for advanced 10nm logic node
NASA Astrophysics Data System (ADS)
Oh, Junghun; Maeng, Kwang-Seok; Shin, Jae-Hyung; Choi, Won-Woong; Won, Sung-Keun; Grouwstra, Cedric; El Kodadi, Mohamed; Heil, Stephan; van der Meijden, Vidar; Hong, Jong Kyun; Kim, Sang-Jin; Kwon, Oh-Sung
2018-03-01
Immersion lithography is being extended beyond the 10-nm node and the lithography performance requirement needs to be tightened further to ensure good yield. Amongst others, good on-product focus control with accurate and dense metrology measurements is essential to enable this. In this paper, we will present new solutions that enable onproduct focus monitoring and control (mean and uniformity) suitable for high volume manufacturing environment. We will introduce the concept of pure focus and its role in focus control through the imaging optimizer scanner correction interface. The results will show that the focus uniformity can be improved by up to 25%.
Cho, Jae-Hyoung; Lee, Hye-Chung; Lim, Dong-Jun; Kwon, Hyuk-Sang; Yoon, Kun-Ho
2009-01-01
A mobile phone with a glucometer integrated into the battery pack (the 'Diabetes Phone') was launched in Korea in 2003. We compared its effect on management of type 2 diabetes to the Internet-based glucose monitoring system (IBGMS), which had been studied previously. We conducted a randomized trial involving 69 patients for three months. Participants were assigned to an Internet group or a phone group. The phone group communicated with medical staff through the mobile phone only. Their glucose-monitoring data were automatically transferred to individual, web-based charts and they received medical recommendations by short message service. The Internet group used the IBGMS. There were no significant differences between the groups at baseline. After three months' intervention, HbA(1c) levels of both groups had decreased significantly, from 7.6% to 6.9% for the Internet group and from 8.3% to 7.1% for the phone group (P < 0.01). Levels of patient satisfaction and adherence to medical advice were similar. Mobile, bidirectional communication between doctors and patients using the diabetes phone was as effective for glucose control as the previously-studied Internet-based monitoring system and it was good for patient satisfaction and adherence.
Study on visual detection method for wind turbine blade failure
NASA Astrophysics Data System (ADS)
Chen, Jianping; Shen, Zhenteng
2018-02-01
Start your abstract here…At present, the non-destructive testing methods of the wind turbine blades has fiber bragg grating, sound emission and vibration detection, but there are all kinds of defects, and the engineering application is difficult. In this regard, three-point slope deviation method, which is a kind of visual inspection method, is proposed for monitoring the running status of wind turbine blade based on the image processing technology. A better blade image can be got through calibration, image splicing, pretreatment and threshold segmentation algorithm. Design of the early warning system to monitor wind turbine blade running condition, recognition rate, stability and impact factors of the method were statistically analysed. The experimental results shown showed that it has highly accurate and good monitoring effect.
D-Shaped Polarization Maintaining Fiber Sensor for Strain and Temperature Monitoring.
Qazi, Hummad Habib; Mohammad, Abu Bakar; Ahmad, Harith; Zulkifli, Mohd Zamani
2016-09-15
A D-shaped polarization-maintaining fiber (PMF) as fiber optic sensor for the simultaneous monitoring of strain and the surrounding temperature is presented. A mechanical end and edge polishing system with aluminum oxide polishing film is utilized to perform sequential polishing on one side (lengthwise) of the PMF in order to fabricate a D-shaped cross-section. Experimental results show that the proposed sensor has high sensitivity of 46 pm/µε and 130 pm/°C for strain and temperature, respectively, which is significantly higher than other recently reported work (mainly from 2013) related to fiber optic sensors. The easy fabrication method, high sensitivity, and good linearity make this sensing device applicable in various applications such as health monitoring and spatial analysis of engineering structures.
D-Shaped Polarization Maintaining Fiber Sensor for Strain and Temperature Monitoring
Qazi, Hummad Habib; Mohammad, Abu Bakar; Ahmad, Harith; Zulkifli, Mohd Zamani
2016-01-01
A D-shaped polarization-maintaining fiber (PMF) as fiber optic sensor for the simultaneous monitoring of strain and the surrounding temperature is presented. A mechanical end and edge polishing system with aluminum oxide polishing film is utilized to perform sequential polishing on one side (lengthwise) of the PMF in order to fabricate a D-shaped cross-section. Experimental results show that the proposed sensor has high sensitivity of 46 pm/µε and 130 pm/°C for strain and temperature, respectively, which is significantly higher than other recently reported work (mainly from 2013) related to fiber optic sensors. The easy fabrication method, high sensitivity, and good linearity make this sensing device applicable in various applications such as health monitoring and spatial analysis of engineering structures. PMID:27649195
Klingensmith, Georgeanna J; Aisenberg, Javier; Kaufman, Francine; Halvorson, Mary; Cruz, Eric; Riordan, Mary Ellen; Varma, Chandrasekhar; Pardo, Scott; Viggiani, Maria T; Wallace, Jane F; Schachner, Holly C; Bailey, Timothy
2013-08-01
The purpose of this study was to assess the performance and acceptability of a blood glucose meter coupled with a gaming system for children, adolescents, and young adults with type 1 diabetes. During an in-clinic visit, duplicate blood samples were tested by subjects (N = 147; aged 5-24 yr) and health care providers (HCPs) to evaluate the accuracy and precision of the Didget® system. Subjects' meter results were compared against Yellow Springs Instruments (YSI) reference results and HCP results using least squares regression and error grid analyses. Precision was measured by average within-subject and within-HCP coefficient of variation (CV). During the home-use component of this study, subjects (n = 58) tested their blood glucose at least two to three times daily for 3-5 d to evaluate routine use of the system. Subjects' meter results showed significant correlations with both YSI (r(2) = 0.94; p < 0.001 for regression slope) and HCP results (r(2) = 0.96; p < 0.001). Average within-subject and within-HCP CVs were 5.9 and 7.2%, respectively. Overall satisfaction was assessed by subjects, their parents or guardians, and HCP surveys. Subject satisfaction with the Didget® system was good to excellent; most subjects found the system easy to use, motivating, and helpful for building good blood glucose monitoring habits. Most HCPs agreed that the system fulfilled a need in diabetes management. In conclusion, the Didget® system was precise and clinically accurate in the hands of children, adolescents, and young adults with type 1 diabetes. © 2011 John Wiley & Sons A/S.
Approach to Achieve High Availability in Critical Infrastructure
2015-09-01
possibility of sensing temperature, vibration , noise , lubrication, and corrosion. The basis of condition-based maintenance is an accurate assessment of the... vibration would be a sign of possible issues such as misalignment or excessive wear and tear. Noise monitoring can complement the temperature sensor...Availability of good sensor Maintenance Approach Cooling systems Unobservable failure Vibration sensor TBM/CBM Blast doors Observable failure No TBM
Clinical audit: shining a light on good practice.
Grainger, Angela
2010-07-01
Healthcare organisations undertake quality assurance to produce safe and effective patient care systems. Statutory quality assurance requirements are met through external reviews, monitoring and inspection processes, and each NHS trust must produce a corporate annual quality account. However, this can result in approaching audits as if they are 'tick-box activities'. This article discusses how organisations can avoid this trap by applying audit results to practice.
47 CFR 73.754 - Frequency monitors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... station shall operate a frequency monitor at the transmitter independent of the frequency control of the transmitter. (b) The frequency monitor shall be designed and constructed in accordance with good engineering...
A system for beach video-monitoring: Beachkeeper plus
NASA Astrophysics Data System (ADS)
Brignone, Massimo; Schiaffino, Chiara F.; Isla, Federico I.; Ferrari, Marco
2012-12-01
A suitable knowledge of coastal systems, of their morphodynamic characteristics and their response to storm events and man-made structures is essential for littoral conservation and management. Nowadays webcams represent a useful device to obtain information from beaches. Video-monitoring techniques are generally site specific and softwares working with any image acquisition system are rare. Therefore, this work aims at submitting theory and applications of an experimental video monitoring software: Beachkeeper plus, a freeware non-profit software, can be employed and redistributed without modifications. A license file is provided inside software package and in the user guide. Beachkeeper plus is based on Matlab® and it can be used for the analysis of images and photos coming from any kind of acquisition system (webcams, digital cameras or images downloaded from internet), without any a-priori information or laboratory study of the acquisition system itself. Therefore, it could become a useful tool for beach planning. Through a simple guided interface, images can be analyzed by performing georeferentiation, rectification, averaging and variance. This software was initially operated in Pietra Ligure (Italy), using images from a tourist webcam, and in Mar del Plata (Argentina) using images from a digital camera. In both cases the reliability in different geomorphologic and morphodynamic conditions was confirmed by the good quality of obtained images after georeferentiation, rectification and averaging.
Construction of a Cerebral Hemorrhage Test System Operated in Real-time
NASA Astrophysics Data System (ADS)
Li, Gen; Sun, Jian; Ma, Ke; Yan, Qingguang; Zheng, Xiaolin; Qin, Mingxin; Jin, Gui; Ning, Xu; Zhuang, Wei; Feng, Hua; Huang, Shiyuwei
2017-02-01
The real-time monitoring and evaluation of the severity and progression of cerebral hemorrhage is essential to its intensive care and its successful emergency treatment. Based on magnetic induction phase shift technology combined with a PCI data acquisition system and LabVIEW software, this study established a real-time monitoring system for cerebral hemorrhage. To test and evaluate the performance of the system, the authors performed resolution conductivity experiments, salted water simulation experiments and cerebral hemorrhage experiments in rabbits and found that when the conductivity difference was 0.73 S/m, the phase difference was 13.196°. The phase difference change value was positively proportional to the volume of saline water, and the conductivity value was positively related to the phase difference of liquid under the same volume conditions. After injecting 3 mL blood into six rabbits, the average change in the blood phase difference was -2.03783 ± 0.22505°, and it was positively proportional to the volume of blood, which was consistent with the theoretical results. The results show that the system can monitor the progressive development of cerebral hemorrhage in real-time and has the advantages of low cost, small size, high phase accuracy, and good clinical application potentiality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harker, Y.D.
On August 3-4, 1994, an INEL team made measurements related to a real-time monitoring system for use on the epithermal beam facility at the BMRR. BNL has installed two fission chambers in front of the beam collimator, which are to monitor the beam coming from the reactor. These two monitors are located with one just above the 16-cm dia. front aperture and the other is just below. The fission chambers contain depleted uranium, but because of the small amount of U-235 present, they respond to thermal and near thermal neutrons rather than fast neutrons. This feature combined with their relativelymore » small size (0.6 cm dia x 4 cm long) makes them very good monitors in the BMRR epithermal neutron beam. The INEL team worked with H.B. Lui (BNL) in performing initial tests of these monitors and established the settings to achieve stable operation. The main purpose of the measurement studies was to establish a basis for a monitoring method that tracks the dose the patient is receiving rather than the neutron fluence being delivered down the beam line.« less
Cottrell, Lesley; Cottrell, Scott; Metzger, Aaron; Ahmadi, Halima; Wang, Bo; Li, Xiaoming; Stanton, Bonita
2015-01-01
In this study, we examined how adolescents compare monitoring efforts by their parents to those of a "good parent" standard and assessed the impact of these comparisons on adolescent self-disclosure and risk behavior and their perceptions of their parents' monitoring knowledge. Survey responses from 519 adolescents (12–17 years) at baseline of a larger, longitudinal study examining parental monitoring and adolescent risk were examined. Adolescents’ “good parent comparisons” differed greatly by monitoring areas (e.g., telephone use, health, money); however, between 5.5% and 25.8% of adolescents believed their parents needed to monitor their activities more than they currently were monitoring. Alternatively, between 8.5% and 23.8% of adolescents believed their parents needed to monitor their activities less often. These perceptions significantly distinguished adolescents in terms of their level of disclosure, perceived monitoring knowledge, and risk involvement. Adolescents who viewed their parents as needing to monitor more were less likely to disclose information to their parents (p<.001), less likely to perceive their parents as having greater monitoring knowledge (p<.001), and more likely to be involved in a risk behaviors (p<.001) than adolescents who perceived their parents needed no change. Adolescent disclosure to a parent is a powerful predictor of adolescent risk and poor health outcomes. These findings demonstrate that adolescents' comparisons of their parents' monitoring efforts can predict differences in adolescent disclosure and future risk. Obtaining adolescent "good parent" comparisons may successfully identify intervention opportunities with the adolescent and parent by noting the areas of need and direction of monitoring improvement. PMID:25955160
NASA Astrophysics Data System (ADS)
Dong, Hancheng; Jin, Xiaoning; Lou, Yangbing; Wang, Changhong
2014-12-01
Lithium-ion batteries are used as the main power source in many electronic and electrical devices. In particular, with the growth in battery-powered electric vehicle development, the lithium-ion battery plays a critical role in the reliability of vehicle systems. In order to provide timely maintenance and replacement of battery systems, it is necessary to develop a reliable and accurate battery health diagnostic that takes a prognostic approach. Therefore, this paper focuses on two main methods to determine a battery's health: (1) Battery State-of-Health (SOH) monitoring and (2) Remaining Useful Life (RUL) prediction. Both of these are calculated by using a filter algorithm known as the Support Vector Regression-Particle Filter (SVR-PF). Models for battery SOH monitoring based on SVR-PF are developed with novel capacity degradation parameters introduced to determine battery health in real time. Moreover, the RUL prediction model is proposed, which is able to provide the RUL value and update the RUL probability distribution to the End-of-Life cycle. Results for both methods are presented, showing that the proposed SOH monitoring and RUL prediction methods have good performance and that the SVR-PF has better monitoring and prediction capability than the standard particle filter (PF).
Structural health monitoring of inflatable structures for MMOD impacts
NASA Astrophysics Data System (ADS)
Anees, Muhammad; Gbaguidi, Audrey; Kim, Daewon; Namilae, Sirish
2017-04-01
Inflatable structures for space habitat are highly prone to damage caused by micrometeoroid and orbital debris impacts. Although the structures are effectively shielded against these impacts through multiple layers of impact resistant materials, there is a necessity for a health monitoring system to monitor the structural integrity and damage state within the structures. Assessment of damage is critical for the safety of personnel in the space habitat, as well as predicting the repair needs and the remaining useful life of the habitat. In this paper, we propose a unique impact detection and health monitoring system based on hybrid nanocomposite sensors. The sensors are composed of two fillers, carbon nanotubes and coarse graphene platelets with an epoxy matrix material. The electrical conductivity of these flexible nanocomposite sensors is highly sensitive to strains as well as presence of any holes and damage in the structure. The sensitivity of the sensors to the presence of 3mm holes due to an event of impact is evaluated using four point probe electrical resistivity measurements. An array of these sensors when sandwiched between soft good layers in a space habitat can act as a damage detection layer for inflatable structures. An algorithm is developed to determine the event of impact, its severity and location on the sensing layer for active health monitoring.
Validation of Contact-Free Sleep Monitoring Device with Comparison to Polysomnography
Tal, Asher; Shinar, Zvika; Shaki, David; Codish, Shlomi; Goldbart, Aviv
2017-01-01
Study Objectives: To validate a contact-free system designed to achieve maximal comfort during long-term sleep monitoring, together with high monitoring accuracy. Methods: We used a contact-free monitoring system (EarlySense, Ltd., Israel), comprising an under-the-mattress piezoelectric sensor and a smartphone application, to collect vital signs and analyze sleep. Heart rate (HR), respiratory rate (RR), body movement, and calculated sleep-related parameters from the EarlySense (ES) sensor were compared to data simultaneously generated by the gold standard, polysomnography (PSG). Subjects in the sleep laboratory underwent overnight technician-attended full PSG, whereas subjects at home were recorded for 1 to 3 nights with portable partial PSG devices. Data were compared epoch by epoch. Results: A total of 63 subjects (85 nights) were recorded under a variety of sleep conditions. Compared to PSG, the contact-free system showed similar values for average total sleep time (TST), % wake, % rapid eye movement, and % non-rapid eye movement sleep, with 96.1% and 93.3% accuracy of continuous measurement of HR and RR, respectively. We found a linear correlation between TST measured by the sensor and TST determined by PSG, with a coefficient of 0.98 (R = 0.87). Epoch-by-epoch comparison with PSG in the sleep laboratory setting revealed that the system showed sleep detection sensitivity, specificity, and accuracy of 92.5%, 80.4%, and 90.5%, respectively. Conclusions: TST estimates with the contact-free sleep monitoring system were closely correlated with the gold-standard reference. This system shows good sleep staging capability with improved performance over accelerometer-based apps, and collects additional physiological information on heart rate and respiratory rate. Citation: Tal A, Shinar Z, Shaki D, Codish S, Goldbart A. Validation of contact-free sleep monitoring device with comparison to polysomnography. J Clin Sleep Med. 2017;13(3):517–522. PMID:27998378
Brosteanu, Oana; Schwarz, Gabriele; Houben, Peggy; Paulus, Ursula; Strenge-Hesse, Anke; Zettelmeyer, Ulrike; Schneider, Anja; Hasenclever, Dirk
2017-12-01
Background According to Good Clinical Practice, clinical trials must protect rights and safety of patients and make sure that the trial results are valid and interpretable. Monitoring on-site has an important role in achieving these objectives; it controls trial conduct at trial sites and informs the sponsor on systematic problems. In the past, extensive on-site monitoring with a particular focus on formal source data verification often lost sight of systematic problems in study procedures that endanger Good Clinical Practice objectives. ADAMON is a prospective, stratified, cluster-randomised, controlled study comparing extensive on-site monitoring with risk-adapted monitoring according to a previously published approach. Methods In all, 213 sites from 11 academic trials were cluster-randomised between extensive on-site monitoring (104) and risk-adapted monitoring (109). Independent post-trial audits using structured manuals were performed to determine the frequency of major Good Clinical Practice findings at the patient level. The primary outcome measure is the proportion of audited patients with at least one major audit finding. Analysis relies on logistic regression incorporating trial and monitoring arm as fixed effects and site as random effect. The hypothesis was that risk-adapted monitoring is non-inferior to extensive on-site monitoring with a non-inferiority margin of 0.60 (logit scale). Results Average number of monitoring visits and time spent on-site was 2.1 and 2.7 times higher in extensive on-site monitoring than in risk-adapted monitoring, respectively. A total of 156 (extensive on-site monitoring: 76; risk-adapted monitoring: 80) sites were audited. In 996 of 1618 audited patients, a total of 2456 major audit findings were documented. Depending on the trial, findings were identified in 18%-99% of the audited patients, with no marked monitoring effect in any of the trials. The estimated monitoring effect is -0.04 on the logit scale with two-sided 95% confidence interval (-0.40; 0.33), demonstrating that risk-adapted monitoring is non-inferior to extensive on-site monitoring. At most, extensive on-site monitoring could reduce the frequency of major Good Clinical Practice findings by 8.2% compared with risk-adapted monitoring. Conclusion Compared with risk-adapted monitoring, the potential benefit of extensive on-site monitoring is small relative to overall finding rates, although risk-adapted monitoring requires less than 50% of extensive on-site monitoring resources. Clusters of findings within trials suggest that complicated, overly specific or not properly justified protocol requirements contributed to the overall frequency of findings. Risk-adapted monitoring in only a sample of patients appears sufficient to identify systematic problems in the conduct of clinical trials. Risk-adapted monitoring has a part to play in quality control. However, no monitoring strategy can remedy defects in quality of design. Monitoring should be embedded in a comprehensive quality management approach covering the entire trial lifecycle.
Brosteanu, Oana; Schwarz, Gabriele; Houben, Peggy; Paulus, Ursula; Strenge-Hesse, Anke; Zettelmeyer, Ulrike; Schneider, Anja; Hasenclever, Dirk
2017-01-01
Background According to Good Clinical Practice, clinical trials must protect rights and safety of patients and make sure that the trial results are valid and interpretable. Monitoring on-site has an important role in achieving these objectives; it controls trial conduct at trial sites and informs the sponsor on systematic problems. In the past, extensive on-site monitoring with a particular focus on formal source data verification often lost sight of systematic problems in study procedures that endanger Good Clinical Practice objectives. ADAMON is a prospective, stratified, cluster-randomised, controlled study comparing extensive on-site monitoring with risk-adapted monitoring according to a previously published approach. Methods In all, 213 sites from 11 academic trials were cluster-randomised between extensive on-site monitoring (104) and risk-adapted monitoring (109). Independent post-trial audits using structured manuals were performed to determine the frequency of major Good Clinical Practice findings at the patient level. The primary outcome measure is the proportion of audited patients with at least one major audit finding. Analysis relies on logistic regression incorporating trial and monitoring arm as fixed effects and site as random effect. The hypothesis was that risk-adapted monitoring is non-inferior to extensive on-site monitoring with a non-inferiority margin of 0.60 (logit scale). Results Average number of monitoring visits and time spent on-site was 2.1 and 2.7 times higher in extensive on-site monitoring than in risk-adapted monitoring, respectively. A total of 156 (extensive on-site monitoring: 76; risk-adapted monitoring: 80) sites were audited. In 996 of 1618 audited patients, a total of 2456 major audit findings were documented. Depending on the trial, findings were identified in 18%–99% of the audited patients, with no marked monitoring effect in any of the trials. The estimated monitoring effect is −0.04 on the logit scale with two-sided 95% confidence interval (−0.40; 0.33), demonstrating that risk-adapted monitoring is non-inferior to extensive on-site monitoring. At most, extensive on-site monitoring could reduce the frequency of major Good Clinical Practice findings by 8.2% compared with risk-adapted monitoring. Conclusion Compared with risk-adapted monitoring, the potential benefit of extensive on-site monitoring is small relative to overall finding rates, although risk-adapted monitoring requires less than 50% of extensive on-site monitoring resources. Clusters of findings within trials suggest that complicated, overly specific or not properly justified protocol requirements contributed to the overall frequency of findings. Risk-adapted monitoring in only a sample of patients appears sufficient to identify systematic problems in the conduct of clinical trials. Risk-adapted monitoring has a part to play in quality control. However, no monitoring strategy can remedy defects in quality of design. Monitoring should be embedded in a comprehensive quality management approach covering the entire trial lifecycle. PMID:28786330
Yi, Wei-Ying; Leung, Kwong-Sak; Leung, Yee
2017-12-22
Urban air pollution has caused public concern globally because it seriously affects human life. Modern monitoring systems providing pollution information with high spatio-temporal resolution have been developed to identify personal exposures. However, these systems' hardware specifications and configurations are usually fixed according to the applications. They can be inconvenient to maintain, and difficult to reconfigure and expand with respect to sensing capabilities. This paper aims at tackling these issues by adopting the proposed Modular Sensor System (MSS) architecture and Universal Sensor Interface (USI), and modular design in a sensor node. A compact MSS sensor node is implemented and evaluated. It has expandable sensor modules with plug-and-play feature and supports multiple Wireless Sensor Networks (WSNs). Evaluation results show that MSS sensor nodes can easily fit in different scenarios, adapt to reconfigurations dynamically, and detect low concentration air pollution with high energy efficiency and good data accuracy. We anticipate that the efforts on system maintenance, adaptation, and evolution can be significantly reduced when deploying the system in the field.
Evaluation of a Small-Crack Monitoring System
NASA Technical Reports Server (NTRS)
Newman, John A.; Johnston, William M.
2010-01-01
A new system has been developed to obtain fatigue crack growth rate data from a series of images acquired during fatigue testing of specimens containing small surface cracks that initiate at highly-polished notches. The primary benefit associated with replica-based crack growth rate data methods is preserving a record of the crack configuration during the life of the specimen. Additionally, this system has the benefits of both reducing time and labor, and not requiring introduction of surface replica media into the crack. Fatigue crack growth rate data obtained using this new system are found to be in good agreement with similar results obtained from surface replicas.
Dėdelė, Audrius; Miškinytė, Auksė
2015-09-01
In many countries, road traffic is one of the main sources of air pollution associated with adverse effects on human health and environment. Nitrogen dioxide (NO2) is considered to be a measure of traffic-related air pollution, with concentrations tending to be higher near highways, along busy roads, and in the city centers, and the exceedances are mainly observed at measurement stations located close to traffic. In order to assess the air quality in the city and the air pollution impact on public health, air quality models are used. However, firstly, before the model can be used for these purposes, it is important to evaluate the accuracy of the dispersion modelling as one of the most widely used method. The monitoring and dispersion modelling are two components of air quality monitoring system (AQMS), in which statistical comparison was made in this research. The evaluation of the Atmospheric Dispersion Modelling System (ADMS-Urban) was made by comparing monthly modelled NO2 concentrations with the data of continuous air quality monitoring stations in Kaunas city. The statistical measures of model performance were calculated for annual and monthly concentrations of NO2 for each monitoring station site. The spatial analysis was made using geographic information systems (GIS). The calculation of statistical parameters indicated a good ADMS-Urban model performance for the prediction of NO2. The results of this study showed that the agreement of modelled values and observations was better for traffic monitoring stations compared to the background and residential stations.
The ESO astronomical site monitor upgrade
NASA Astrophysics Data System (ADS)
Chiozzi, Gianluca; Sommer, Heiko; Sarazin, Marc; Bierwirth, Thomas; Dorigo, Dario; Vera Sequeiros, Ignacio; Navarrete, Julio; Del Valle, Diego
2016-08-01
Monitoring and prediction of astronomical observing conditions are essential for planning and optimizing observations. For this purpose, ESO, in the 90s, developed the concept of an Astronomical Site Monitor (ASM), as a facility fully integrated in the operations of the VLT observatory[1]. Identical systems were installed at Paranal and La Silla, providing comprehensive local weather information. By now, we had very good reasons for a major upgrade: • The need of introducing new features to satisfy the requirements of observing with the Adaptive Optics Facility and to benefit other Adaptive Optics systems. • Managing hardware and software obsolescence. • Making the system more maintainable and expandable by integrating off-the-shelf hardware solutions. The new ASM integrates: • A new Differential Image Motion Monitor (DIMM) paired with a Multi Aperture Scintillation Sensor (MASS) to measure the vertical distribution of turbulence in the high atmosphere and its characteristic velocity. • A new SLOpe Detection And Ranging (SLODAR) telescope, for measuring the altitude and intensity of turbulent layers in the low atmosphere. • A water vapour radiometer to monitor the water vapour content of the atmosphere. • The old weather tower, which is being refurbished with new sensors. The telescopes and the devices integrated are commercial products and we have used as much as possible the control system from the vendors. The existing external interfaces, based on the VLT standards, have been maintained for full backward compatibility. All data produced by the system are directly fed in real time into a relational database. A completely new web-based display replaces the obsolete plots based on HP-UX RTAP. We analyse here the architectural and technological choices and discuss the motivations and trade-offs.
Hiki, Shinichiro; Mawatari, Kazuma; Aota, Arata; Saito, Maki; Kitamori, Takehiko
2011-06-15
A portable, highly sensitive, and continuous ammonia gas monitoring system was developed with a microfluidic chip. The system consists of a main unit, a gas pumping unit, and a computer which serves as an operation console. The size of the system is 45 cm width × 30 cm depth × 30 cm height, and the portable system was realized. A highly efficient and stable extraction method was developed by utilizing an annular gas/liquid laminar flow. In addition, a stable gas/liquid separation method with a PTFE membrane was developed by arranging a fluidic network in three dimensions to achieve almost zero dead volume at the gas/liquid extraction part. The extraction rate was almost 100% with a liquid flow rate of 3.5 μL/min and a gas flow rate of 100 mL/min (contact time of ~15 ms), and the concentration factor was 200 times by calculating the NH(3) concentration (w/w unit) in the gas and liquid phases. Stable phase separation and detection was sustained for more than 3 weeks in an automated operation, which was sufficient for the monitoring application. The lower limit of detection calculated based on a signal-to-noise ratio of 3 was 84 ppt, which showed good detectability for NH(3) analysis. We believe that our system is a very powerful tool for gas analysis due to the advantages of portable size, high sensitivity, and continuous monitoring, and it is particularly useful in the semiconductor field.
Monte Carlo simulation of non-invasive glucose measurement based on FMCW LIDAR
NASA Astrophysics Data System (ADS)
Xiong, Bing; Wei, Wenxiong; Liu, Nan; He, Jian-Jun
2010-11-01
Continuous non-invasive glucose monitoring is a powerful tool for the treatment and management of diabetes. A glucose measurement method, with the potential advantage of miniaturizability with no moving parts, based on the frequency modulated continuous wave (FMCW) LIDAR technology is proposed and investigated. The system mainly consists of an integrated near-infrared tunable semiconductor laser and a detector, using heterodyne technology to convert the signal from time-domain to frequency-domain. To investigate the feasibility of the method, Monte Carlo simulations have been performed on tissue phantoms with optical parameters similar to those of human interstitial fluid. The simulation showed that the sensitivity of the FMCW LIDAR system to glucose concentration can reach 0.2mM. Our analysis suggests that the FMCW LIDAR technique has good potential for noninvasive blood glucose monitoring.
BPcontrol. A Mobile App to Monitor Hypertensive Patients.
Carrera, Adrian; Pifarré, Marc; Vilaplana, Jordi; Cuadrado, Josep; Solsona, Sara; Mateo, Jordi; Solsona, Francesc
2016-12-07
Hypertension or high blood pressure is on the rise. Not only does it affect the elderly but is also increasingly spreading to younger sectors of the population. Treating this condition involves exhaustive monitoring of patients. The current mobile health services can be improved to perform this task more effectively. To develop a useful, user-friendly, robust and efficient app, to monitor hypertensive patients and adapted to the particular requirements of hypertension. This work presents BPcontrol, an Android and iOS app that allows hypertensive patients to communicate with their health-care centers, thus facilitating monitoring and diagnosis. Usability, robustness and efficiency factors for BPcontrol were evaluated for different devices and operating systems (Android, iOS and system-aware). Furthermore, its features were compared with other similar apps in the literature. BPcontrol is robust and user-friendly. The respective start-up efficiency of the Android and iOS versions of BPcontrol were 2.4 and 8.8 times faster than a system-aware app. Similar values were obtained for the communication efficiency (7.25 and 11.75 times faster for the Android and iOS respectively). When comparing plotting performance, BPcontrol was on average 2.25 times faster in the Android case. Most of the apps in the literature have no communication with a server, thus making it impossible to compare their performance with BPcontrol. Its optimal design and the good behavior of its facilities make BPcontrol a very promising mobile app for monitoring hypertensive patients.
Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures
NASA Technical Reports Server (NTRS)
Moslehi, Behzad; Black, Richard J.; Gowayed, Yasser
2012-01-01
Lightweight, electromagnetic interference (EMI) immune, fiber-optic, sensor- based structural health monitoring (SHM) will play an increasing role in aerospace structures ranging from aircraft wings to jet engine vanes. Fiber Bragg Grating (FBG) sensors for SHM include advanced signal processing, system and damage identification, and location and quantification algorithms. Potentially, the solution could be developed into an autonomous onboard system to inspect and perform non-destructive evaluation and SHM. A novel method has been developed to massively multiplex FBG sensors, supported by a parallel processing interrogator, which enables high sampling rates combined with highly distributed sensing (up to 96 sensors per system). The interrogation system comprises several subsystems. A broadband optical source subsystem (BOSS) and routing and interface module (RIM) send light from the interrogation system to a composite embedded FBG sensor matrix, which returns measurand-dependent wavelengths back to the interrogation system for measurement with subpicometer resolution. In particular, the returned wavelengths are channeled by the RIM to a photonic signal processing subsystem based on powerful optical chips, then passed through an optoelectronic interface to an analog post-detection electronics subsystem, digital post-detection electronics subsystem, and finally via a data interface to a computer. A range of composite structures has been fabricated with FBGs embedded. Stress tensile, bending, and dynamic strain tests were performed. The experimental work proved that the FBG sensors have a good level of accuracy in measuring the static response of the tested composite coupons (down to submicrostrain levels), the capability to detect and monitor dynamic loads, and the ability to detect defects in composites by a variety of methods including monitoring the decay time under different dynamic loading conditions. In addition to quasi-static and dynamic load monitoring, the system can capture acoustic emission events that can be a prelude to structural failure, as well as piezoactuator-induced ultrasonic Lamb-waves-based techniques as a basis for damage detection.
21 CFR 26.15 - Monitoring continued equivalence.
Code of Federal Regulations, 2014 CFR
2014-04-01
... COMMUNITY Specific Sector Provisions for Pharmaceutical Good Manufacturing Practices § 26.15 Monitoring continued equivalence. Monitoring activities for the purpose of maintaining equivalence shall include review... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Monitoring continued equivalence. 26.15 Section 26...
21 CFR 26.15 - Monitoring continued equivalence.
Code of Federal Regulations, 2013 CFR
2013-04-01
... COMMUNITY Specific Sector Provisions for Pharmaceutical Good Manufacturing Practices § 26.15 Monitoring continued equivalence. Monitoring activities for the purpose of maintaining equivalence shall include review... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Monitoring continued equivalence. 26.15 Section 26...
21 CFR 26.15 - Monitoring continued equivalence.
Code of Federal Regulations, 2012 CFR
2012-04-01
... COMMUNITY Specific Sector Provisions for Pharmaceutical Good Manufacturing Practices § 26.15 Monitoring continued equivalence. Monitoring activities for the purpose of maintaining equivalence shall include review... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Monitoring continued equivalence. 26.15 Section 26...
The network of photodetectors and diode lasers of the CMS Link alignment system
NASA Astrophysics Data System (ADS)
Arce, P.; Barcala, J. M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Brochero, J.; Calderón, A.; Fernández, M. G.; Gómez, G.; González-Sánchez, F. J.; Martínez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Árbol, P.; Scodellaro, L.; Sobrón, M.; Vila, I.; Virto, A. L.; Fernández, J.; Raics, P.; Szabó, Zs.; Trócsnyi, Z.; Ujvári, B.; Zilizi, Gy.; Béni, N.; Christian, G.; Imrek, J.; Molnar, J.; Novak, D.; Pálinkás, J.; Székely, G.; Szillási, Z.; Bencze, G. L.; Vestergombi, G.; Benettoni, M.; Gasparini, F.; Montecassiano, F.; Rampazzo, M.; Zago, M.; Benvenuti, A.; Reithler, H.; Jiang, C.
2018-07-01
The central feature of the CMS Link alignment system is a network of Amorphous Silicon Position Detectors distributed throughout the muon spectrometer that are connected by multiple laser lines. The data collected during the years from 2008 to 2015 is presented confirming an outstanding performance of the photo sensors during more than seven years of operation. Details of the photo sensor readout of the laser signals are presented. The mechanical motions of the CMS detector are monitored using these photosensors and good agreement with distance sensors is obtained.
Geslot, B; Vermeeren, L; Filliatre, P; Lopez, A Legrand; Barbot, L; Jammes, C; Bréaud, S; Oriol, L; Villard, J-F
2011-03-01
Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 × 10(20) n∕cm(2). A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.
NASA Astrophysics Data System (ADS)
Geslot, B.; Vermeeren, L.; Filliatre, P.; Lopez, A. Legrand; Barbot, L.; Jammes, C.; Bréaud, S.; Oriol, L.; Villard, J.-F.
2011-03-01
Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 × 1020 n/cm2. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.
Development and Testing of a Post-Installable Deepwater Monitoring System Using Fiber-Optic Sensors
NASA Technical Reports Server (NTRS)
Seaman, Calvin H.; Brower, David V.; Le, Suy Q.; Tang, Henry H.
2015-01-01
This paper addresses the design and development of a fiber-optic monitoring system that can be deployed on existing deepwater risers and flowlines; and provides a summary of test article fabrication and the subsequent laboratory testing performed at the National Aeronautics and Space Administration-Johnson Space Center (NASA-JSC). A major challenge of a post-installed instrumentation system is to ensure adequate coupling between the instruments and the riser or flowline of interest. This work investigates the sensor coupling for pipelines that are suspended in a water column (from topside platform to seabed) using a fiber-optic sensor clamp and subsea bonding adhesive. The study involved the design, fabrication, and test of several prototype clamps that contained fiber-optic sensors. A mold was produced by NASA using 3-D printing methods that allowed the casting of polyurethane clamp test articles to accommodate 4-inch and 8-inch diameter pipes. The prototype clamps were installed with a subsea adhesive in a "wet" environment and then tested in the NASA Structures Test Laboratory (STL). The tension, compression, and bending test data showed that the prototype sensor clamps achieved good structural coupling, and could provide high quality strain measurement for active monitoring.
Torres, Róbinson; López-Isaza, Sergio; Mejía-Mejía, Elisa; Paniagua, Viviana; González, Víctor
2017-01-01
An apnea episode is defined as the cessation of breathing for ≥15 seconds or as any suspension of breathing accompanied by hypoxia and bradycardia. Obtaining information about the respiratory system in a neonate can be accomplished using electromyography signals from the diaphragm muscle. The purpose of this paper is to illustrate a method by which the respiratory and electrocardiographic signals from neonates can be obtained using diaphragmatic electromyography. The system was developed using single-supply, micropower components, which deliver a low-power consumption system appropriate for the development of portable devices. The stages of the system were tested in both adult and neonate patients. The system delivers signals as those expected in both patients and allows the acquisition of respiratory signals directly from the diaphragmatic electromyography. This low-power system may present a good alternative for monitoring the cardiac and respiratory activity in newborn babies, both in the hospital and at home. The system delivers good signals but needs to be validated for its use in neonates. It is being used in the Neonatal Intensive Care Unit of the Hospital General de Medellín Luz Castro de Gutiérrez.
FRP/steel composite damage acoustic emission monitoring and analysis
NASA Astrophysics Data System (ADS)
Li, Dongsheng; Chen, Zhi
2015-04-01
FRP is a new material with good mechanical properties, such as high strength of extension, low density, good corrosion resistance and anti-fatigue. FRP and steel composite has gotten a wide range of applications in civil engineering because of its good performance. As the FRP/steel composite get more and more widely used, the monitor of its damage is also getting more important. To monitor this composite, acoustic emission (AE) is a good choice. In this study, we prepare four identical specimens to conduct our test. During the testing process, the AE character parameters and mechanics properties were obtained. Damaged properties of FRP/steel composite were analyzed through acoustic emission (AE) signals. By the growing trend of AE accumulated energy, the severity of the damage made on FRP/steel composite was estimated. The AE sentry function has been successfully used to study damage progression and fracture emerge release rate of composite laminates. This technique combines the cumulative AE energy with strain energy of the material rather than analyzes the AE information and mechanical separately.
Establishing the fundamentals for an elephant early warning and monitoring system.
Zeppelzauer, Matthias; Stoeger, Angela S
2015-09-04
The decline of habitat for elephants due to expanding human activity is a serious conservation problem. This has continuously escalated the human-elephant conflict in Africa and Asia. Elephants make extensive use of powerful infrasonic calls (rumbles) that travel distances of up to several kilometers. This makes elephants well-suited for acoustic monitoring because it enables detecting elephants even if they are out of sight. In sight, their distinct visual appearance makes them a good candidate for visual monitoring. We provide an integrated overview of our interdisciplinary project that established the scientific fundamentals for a future early warning and monitoring system for humans who regularly experience serious conflict with elephants. We first draw the big picture of an early warning and monitoring system, then review the developed solutions for automatic acoustic and visual detection, discuss specific challenges and present open future work necessary to build a robust and reliable early warning and monitoring system that is able to operate in situ. We present a method for the automated detection of elephant rumbles that is robust to the diverse noise sources present in situ. We evaluated the method on an extensive set of audio data recorded under natural field conditions. Results show that the proposed method outperforms existing approaches and accurately detects elephant rumbles. Our visual detection method shows that tracking elephants in wildlife videos (of different sizes and postures) is feasible and particularly robust at near distances. From our project results we draw a number of conclusions that are discussed and summarized. We clearly identified the most critical challenges and necessary improvements of the proposed detection methods and conclude that our findings have the potential to form the basis for a future automated early warning system for elephants. We discuss challenges that need to be solved and summarize open topics in the context of a future early warning and monitoring system. We conclude that a long-term evaluation of the presented methods in situ using real-time prototypes is the most important next step to transfer the developed methods into practical implementation.
Electro-focusing liquid extractive surface analysis (EF-LESA) coupled to mass spectrometry.
Brenton, A Gareth; Godfrey, A Ruth
2014-04-01
Analysis of the chemical composition of surfaces by liquid sampling devices interfaced to mass spectrometry is attractive as the sample stream can be continuously monitored at good sensitivity and selectivity. A sampling probe has been constructed that takes discrete liquid samples (typically <100 nL) of a surface. It incorporates an electrostatic lens system, comprising three electrodes, to which static and pulsed voltages are applied to form a conical "liquid tip", employed to dissolve analytes at a surface. A prototype system demonstrates spatial resolution of 0.093 mm(2). Time of contact between the liquid tip and the surface is controlled to standardize extraction. Calibration graphs of different analyte concentrations on a stainless surface have been measured, together with the probe's reproducibility, carryover, and recovery. A leucine enkephalin-coated surface demonstrated good linearity (R(2) = 0.9936), with a recovery of 90% and a limit of detection of 38 fmol per single spot sampled. The probe is compact and can be fitted into automated sample analysis equipment having potential for rapid analysis of surfaces at a good spatial resolution.
Electro-Focusing Liquid Extractive Surface Analysis (EF-LESA) Coupled to Mass Spectrometry
2014-01-01
Analysis of the chemical composition of surfaces by liquid sampling devices interfaced to mass spectrometry is attractive as the sample stream can be continuously monitored at good sensitivity and selectivity. A sampling probe has been constructed that takes discrete liquid samples (typically <100 nL) of a surface. It incorporates an electrostatic lens system, comprising three electrodes, to which static and pulsed voltages are applied to form a conical “liquid tip”, employed to dissolve analytes at a surface. A prototype system demonstrates spatial resolution of 0.093 mm2. Time of contact between the liquid tip and the surface is controlled to standardize extraction. Calibration graphs of different analyte concentrations on a stainless surface have been measured, together with the probe’s reproducibility, carryover, and recovery. A leucine enkephalin-coated surface demonstrated good linearity (R2 = 0.9936), with a recovery of 90% and a limit of detection of 38 fmol per single spot sampled. The probe is compact and can be fitted into automated sample analysis equipment having potential for rapid analysis of surfaces at a good spatial resolution. PMID:24597530
Clinical evaluation of a new intracranial pressure monitoring device.
Stendel, R; Heidenreich, J; Schilling, A; Akhavan-Sigari, R; Kurth, R; Picht, T; Pietilä, T; Suess, O; Kern, C; Meisel, J; Brock, M
2003-03-01
Continuous monitoring of intracranial pressure (ICP) still plays a key role in the management of patients at risk from intracranial hypertension. Numerous ICP-measuring devices are available. The aim of the present study was to investigate the clinical characteristics and the magnetic resonance imaging (MRI) compatibility of the recently developed Neurovent-P(REHAU AG+CO, REHAU, Germany) ICP monitoring device. In a prospective two-center study, a total of 98 patients with severe head injury, subarachnoid haemorrhage, intracerebral haemorrhage, and non-traumatic brain edema underwent intraparenchymal monitoring of ICP using the Neurovent-P. A control group comprising 50 patients underwent implantation of the Camino-OLM-110-4B ICP monitor. The zero drift of the probes was determined before and after the ICP recording period. Technical and medical complications were documented. The MRI compatibility of the Neurovent-P ICP probe was investigated by evaluating artifacts caused by the probe, probe function and temperature changes during MRI, and probe movement caused by the magnetic field. The mean zero drift was 0.2+/-0.41 mmHg (maximum 3 mmHg) for the Neurovent-P ICP probes and 0.4+/-0.57 mmHg (maximum 12 mmHg) for the Camino-OLM-110-4B ICP probes. No significant correlation was identified between the extent of zero drift following the removal of the probes and the length of monitoring. Intraparenchymal haemorrhage spatially related to the probe occurred in 1 out of 50 (2%) patients with a Camino-OLM-110-4B probe and in 1 out of 98 (1%) with a Neurovent-P. Damage of the probe due to kinking or overextension of the cable or glass fiber occurred in 4 of the 50 (8%) Camino-OLM-110-4B ICP probes and in 5 of the 98 (5%) Neurovent-P probes. On T2-weighted MR images, the Neurovent-P ICP probe induced only small artifacts with very good discrimination of the surrounding tissue. On T1-weighted MR images, there was a good imaging quality but artifact-related local disturbances in signal occurred. There was no temperature change in the Neurovent-P probe and in the surrounding brain tissue during MR imaging. The Neurovent-P ICP measuring system is a safe and reliable tool for ICP monitoring. Handling of the Neurovent-P system is safe when performed properly.
2017-01-01
Urban air pollution has caused public concern globally because it seriously affects human life. Modern monitoring systems providing pollution information with high spatio-temporal resolution have been developed to identify personal exposures. However, these systems’ hardware specifications and configurations are usually fixed according to the applications. They can be inconvenient to maintain, and difficult to reconfigure and expand with respect to sensing capabilities. This paper aims at tackling these issues by adopting the proposed Modular Sensor System (MSS) architecture and Universal Sensor Interface (USI), and modular design in a sensor node. A compact MSS sensor node is implemented and evaluated. It has expandable sensor modules with plug-and-play feature and supports multiple Wireless Sensor Networks (WSNs). Evaluation results show that MSS sensor nodes can easily fit in different scenarios, adapt to reconfigurations dynamically, and detect low concentration air pollution with high energy efficiency and good data accuracy. We anticipate that the efforts on system maintenance, adaptation, and evolution can be significantly reduced when deploying the system in the field. PMID:29271952
NASA Astrophysics Data System (ADS)
Katpatal, Yashwant B.; Rishma, C.; Singh, Chandan K.
2018-05-01
The Gravity Recovery and Climate Experiment (GRACE) satellite mission is aimed at assessment of groundwater storage under different terrestrial conditions. The main objective of the presented study is to highlight the significance of aquifer complexity to improve the performance of GRACE in monitoring groundwater. Vidarbha region of Maharashtra, central India, was selected as the study area for analysis, since the region comprises a simple aquifer system in the western region and a complex aquifer system in the eastern region. Groundwater-level-trend analyses of the different aquifer systems and spatial and temporal variation of the terrestrial water storage anomaly were studied to understand the groundwater scenario. GRACE and its field application involve selecting four pixels from the GRACE output with different aquifer systems, where each GRACE pixel encompasses 50-90 monitoring wells. Groundwater storage anomalies (GWSA) are derived for each pixel for the period 2002 to 2015 using the Release 05 (RL05) monthly GRACE gravity models and the Global Land Data Assimilation System (GLDAS) land-surface models (GWSAGRACE) as well as the actual field data (GWSAActual). Correlation analysis between GWSAGRACE and GWSAActual was performed using linear regression. The Pearson and Spearman methods show that the performance of GRACE is good in the region with simple aquifers; however, performance is poorer in the region with multiple aquifer systems. The study highlights the importance of incorporating the sensitivity of GRACE in estimation of groundwater storage in complex aquifer systems in future studies.
Implementation of in-line infrared monitor in full-scale anaerobic digestion process.
Spanjers, H; Bouvier, J C; Steenweg, P; Bisschops, I; van Gils, W; Versprille, B
2006-01-01
During start up but also during normal operation, anaerobic reactor systems should be run and monitored carefully to secure trouble-free operation, because the process is vulnerable to disturbances such as temporary overloading, biomass wash out and influent toxicity. The present method of monitoring is usually by manual sampling and subsequent laboratory analysis. Data collection, processing and feedback to system operation is manual and ad hoc, and involves high-level operator skills and attention. As a result, systems tend to be designed at relatively conservative design loading rates resulting in significant over-sizing of reactors and thus increased systems cost. It is therefore desirable to have on-line and continuous access to performance data on influent and effluent quality. Relevant variables to indicate process performance include VFA, COD, alkalinity, sulphate, and, if aerobic post-treatment is considered, total nitrogen, ammonia and nitrate. Recently, mid-IR spectrometry was demonstrated on a pilot scale to be suitable for in-line simultaneous measurement of these variables. This paper describes a full-scale application of the technique to test its ability to monitor continuously and without human intervention the above variables simultaneously in two process streams. For VFA, COD, sulphate, ammonium and TKN good agreement was obtained between in-line and manual measurements. During a period of six months the in-line measurements had to be interrupted several times because of clogging. It appeared that the sample pre-treatment unit was not able to cope with high solids concentrations all the time.
Water Loss Reduction as the Basis of Good Water Supply Companies' Management
NASA Astrophysics Data System (ADS)
Ociepa-Kubicka, Agnieszka; Wilczak, Krzysztof
2017-10-01
Companies using water distribution systems to reduce the operating costs and increase the reliability of water supply systems, as well as to protect disposable water resources, must search for ways to reduce water losses. The article points out the economic and environmental aspects of water losses. The possibilities of using international water loss assessment standards have been analysed. The reflections presented in the paper refer to the current trends and world standards in the field of water distribution systems management. The article presents the results and analysis of water losses for the water supply network operated by the Water Supply and Sewerage Company in Gliwice (Przedsiębiorstwo Wodociągów i Kanalizacji w Gliwicach, PWiK). The losses were determined on the basis of numerous indicators and compared with other distribution systems. At present, most indicators of water loss are at a very good or good level. The Infrastructure Leakage Index (ILI), as one of the most reliable loss indicators for the surveyed distribution system, assumed values from 3.33 in 2012 to 2.06 in 2015. The recent drop in ILI values indicates the effectiveness of the Company's strategy for water leakage reduction. The success comprises a number of undertakings, such as ongoing monitoring, pressure reduction and stabilisation, repairs and replacement of the most emergency wires.
Manchikanti, Laxmaiah; Abdi, Salahadin; Atluri, Sairam; Balog, Carl C; Benyamin, Ramsin M; Boswell, Mark V; Brown, Keith R; Bruel, Brian M; Bryce, David A; Burks, Patricia A; Burton, Allen W; Calodney, Aaron K; Caraway, David L; Cash, Kimberly A; Christo, Paul J; Damron, Kim S; Datta, Sukdeb; Deer, Timothy R; Diwan, Sudhir; Eriator, Ike; Falco, Frank J E; Fellows, Bert; Geffert, Stephanie; Gharibo, Christopher G; Glaser, Scott E; Grider, Jay S; Hameed, Haroon; Hameed, Mariam; Hansen, Hans; Harned, Michael E; Hayek, Salim M; Helm, Standiford; Hirsch, Joshua A; Janata, Jeffrey W; Kaye, Alan D; Kaye, Adam M; Kloth, David S; Koyyalagunta, Dhanalakshmi; Lee, Marion; Malla, Yogesh; Manchikanti, Kavita N; McManus, Carla D; Pampati, Vidyasagar; Parr, Allan T; Pasupuleti, Ramarao; Patel, Vikram B; Sehgal, Nalini; Silverman, Sanford M; Singh, Vijay; Smith, Howard S; Snook, Lee T; Solanki, Daneshvari R; Tracy, Deborah H; Vallejo, Ricardo; Wargo, Bradley W
2012-07-01
Part 2 of the guidelines on responsible opioid prescribing provides the following recommendations for initiating and maintaining chronic opioid therapy of 90 days or longer. 1. A) Comprehensive assessment and documentation is recommended before initiating opioid therapy, including documentation of comprehensive history, general medical condition, psychosocial history, psychiatric status, and substance use history. ( good) B) Despite limited evidence for reliability and accuracy, screening for opioid use is recommended, as it will identify opioid abusers and reduce opioid abuse. ( limited) C) Prescription monitoring programs must be implemented, as they provide data on patterns of prescription usage, reduce prescription drug abuse or doctor shopping. ( good to fair) D) Urine drug testing (UDT) must be implemented from initiation along with subsequent adherence monitoring to decrease prescription drug abuse or illicit drug use when patients are in chronic pain management therapy. ( good) 2. A) Establish appropriate physical diagnosis and psychological diagnosis if available prior to initiating opioid therapy. ( good) B) Caution must be exercised in ordering various imaging and other evaluations, interpretation and communication with the patient, to avoid increased fear, activity restriction, requests for increased opioids, and maladaptive behaviors. ( good) C) Stratify patients into one of the 3 risk categories - low, medium, or high risk. D) A pain management consultation, may assist non-pain physicians, if high-dose opioid therapy is utilized. ( fair) 3. Essential to establish medical necessity prior to initiation or maintenance of opioid therapy. ( good) 4. Establish treatment goals of opioid therapy with regard to pain relief and improvement in function. ( good) 5. A) Long-acting opioids in high doses are recommended only in specific circumstances with severe intractable pain that is not amenable to short-acting or moderate doses of long-acting opioids, as there is no significant difference between long-acting and short-acting opioids for their effectiveness or adverse effects. ( fair) B) The relative and absolute contraindications to opioid use in chronic non-cancer pain must be evaluated including respiratory instability, acute psychiatric instability, uncontrolled suicide risk, active or history of alcohol or substance abuse, confirmed allergy to opioid agents, coadministration of drugs capable of inducing life-limiting drug interaction, concomitant use of benzodiazepines, active diversion of controlled substances, and concomitant use of heavy doses of central nervous system depressants. ( fair to limited) 6. A robust agreement which is followed by all parties is essential in initiating and maintaining opioid therapy as such agreements reduce overuse, misuse, abuse, and diversion. ( fair) 7. A) Once medical necessity is established, opioid therapy may be initiated with low doses and short-acting drugs with appropriate monitoring to provide effective relief and avoid side effects. ( fair for short-term effectiveness, limited for long-term effectiveness) B) Up to 40 mg of morphine equivalent is considered as low dose, 41 to 90 mg of morphine equivalent as a moderate dose, and greater than 91 mg of morphine equivalence as high dose. ( fair) C) In reference to long-acting opioids, titration must be carried out with caution and overdose and misuse must be avoided. ( good) 8. A) Methadone is recommended for use in late stages after failure of other opioid therapy and only by clinicians with specific training in the risks and uses. ( limited) B) Monitoring recommendation for methadone prescription is that an electrocardiogram should be obtained prior to initiation, at 30 days and yearly thereafter. ( fair) 9. In order to reduce prescription drug abuse and doctor shopping, adherence monitoring by UDT and PMDPs provide evidence that is essential to the identification of those patients who are non-compliant or abusing prescription drugs or illicit drugs. ( fair) 10. Constipation must be closely monitored and a bowel regimen be initiated as soon as deemed necessary. ( good) 11. Chronic opioid therapy may be continued, with continuous adherence monitoring, in well-selected populations, in conjunction with or after failure of other modalities of treatments with improvement in physical and functional status and minimal adverse effects. ( fair). The guidelines are based on the best available evidence and do not constitute inflexible treatment recommendations. Due to the changing body of evidence, this document is not intended to be a "standard of care."
Hidden Markov models and neural networks for fault detection in dynamic systems
NASA Technical Reports Server (NTRS)
Smyth, Padhraic
1994-01-01
Neural networks plus hidden Markov models (HMM) can provide excellent detection and false alarm rate performance in fault detection applications, as shown in this viewgraph presentation. Modified models allow for novelty detection. Key contributions of neural network models are: (1) excellent nonparametric discrimination capability; (2) a good estimator of posterior state probabilities, even in high dimensions, and thus can be embedded within overall probabilistic model (HMM); and (3) simple to implement compared to other nonparametric models. Neural network/HMM monitoring model is currently being integrated with the new Deep Space Network (DSN) antenna controller software and will be on-line monitoring a new DSN 34-m antenna (DSS-24) by July, 1994.
Zahnert, Thomas; Metasch, Marie-Luise; Seidler, Hannes; Bornitz, Matthias; Lasurashvili, Nicoloz; Neudert, Marcus
2016-12-01
Electromagnetical excitation of ossicular vibration is suitable for middle ear transmission measurements in the experimental and clinical setting. Thereby, it can be used as a real-time monitoring system for quality control in ossiculoplasty. Positioning and coupling of middle ear prosthesis are a precondition for good postoperative hearing results, but at the same time completely dependent upon the surgeon's subjective judgment during surgery. We evaluated an electromagnetically driven measurement system that enables for in vitro and in vivo transmission measurements and thus can be used as a real-time monitoring tool in ossicular reconstruction. For electromagnetical excitation a magnet was placed on the umbo of the malleus handle and driven by a magnetic field. The induced stapes displacement was picked up by laser Doppler vibrometry on the footplate. Measurements were performed on the intact ossicular chain in five cadaveric temporal bones and during five cochlear implant surgeries. Additionally, two ossiculoplasties were performed under real-time transmission feedback with the monitoring system. Experimentally, the equivalent sound pressure level of the electromagnetic excitation was about 70 to 80 dB which is 10 to 20 dB less than the acoustic stimulation. In the intraoperative setup the generated stapes displacements were about 5 to 20 dB smaller compared with the temporal bone experiments. Applied as real-time feedback system, an improvement in the middle ear transfer function of 4.5 dB in total and 20 dB in partial ossicular reconstruction were achieved. The electromagnetical excitation and measurement system is comparable to the gold standard with acoustical stimulation in both, the experimental setup in temporal bones as well as in vivo. The technical feasibility of the electromagnetical excitation method has been proven and it is shown that it can be used as a real-time monitoring system for ossiculoplasty in the operation room.
Design of a Sensor System for On-Line Monitoring of Contact Pressure in Chalcographic Printing.
Jiménez, José Antonio; Meca, Francisco Javier; Santiso, Enrique; Martín, Pedro
2017-09-05
Chalcographic printer is the name given to a specific type of press which is used to transfer the printing of a metal-based engraved plate onto paper. The printing system consists of two rollers for pressing and carrying a metal plate onto which an engraved inked plate is placed. When the driving mechanism is operated, the pressure exerted by the rollers, also called contact pressure, allows the engraved image to be transferred into paper, thereby obtaining the final image. With the aim of ensuring the quality of the result, in terms of good and even transfer of ink, the contact pressure must be uniform. Nowadays, the strategies utilized to measure the pressure are implemented off-line, i.e., when the press machines are shut down for maintenance, which poses limitations. This paper proposes a novel sensor system aimed at monitoring the pressure exerted by the rollers on the engraved plate while chalcographic printer is operating, i.e., on-line. The purpose is two-fold: firstly, real-time monitoring reduces the number of breakdown repairs required, reduces machine downtime and reduces the number of low-quality engravings, which increases productivity and revenues; and secondly, the on-line monitoring and register of the process parameters allows the printing process to be reproducible even with changes in the environmental conditions or other factors such as the wear of the parts that constitute the mechanical system and a change in the dimensions of the printing materials. The proposed system consists of a strain gauge-based load cell and conditioning electronics to sense and treat the signals.
Design of a Sensor System for On-Line Monitoring of Contact Pressure in Chalcographic Printing
Jiménez, José Antonio; Meca, Francisco Javier; Santiso, Enrique; Martín, Pedro
2017-01-01
Chalcographic printer is the name given to a specific type of press which is used to transfer the printing of a metal-based engraved plate onto paper. The printing system consists of two rollers for pressing and carrying a metal plate onto which an engraved inked plate is placed. When the driving mechanism is operated, the pressure exerted by the rollers, also called contact pressure, allows the engraved image to be transferred into paper, thereby obtaining the final image. With the aim of ensuring the quality of the result, in terms of good and even transfer of ink, the contact pressure must be uniform. Nowadays, the strategies utilized to measure the pressure are implemented off-line, i.e., when the press machines are shut down for maintenance, which poses limitations. This paper proposes a novel sensor system aimed at monitoring the pressure exerted by the rollers on the engraved plate while chalcographic printer is operating, i.e., on-line. The purpose is two-fold: firstly, real-time monitoring reduces the number of breakdown repairs required, reduces machine downtime and reduces the number of low-quality engravings, which increases productivity and revenues; and secondly, the on-line monitoring and register of the process parameters allows the printing process to be reproducible even with changes in the environmental conditions or other factors such as the wear of the parts that constitute the mechanical system and a change in the dimensions of the printing materials. The proposed system consists of a strain gauge-based load cell and conditioning electronics to sense and treat the signals. PMID:28872583
Rao, Jing; Ratassepp, Madis; Lisevych, Danylo; Hamzah Caffoor, Mahadhir; Fan, Zheng
2017-12-12
Corrosion is a major safety and economic concern to various industries. In this paper, a novel ultrasonic guided wave tomography (GWT) system based on self-designed piezoelectric sensors is presented for on-line corrosion monitoring of large plate-like structures. Accurate thickness reconstruction of corrosion damages is achieved by using the dispersive regimes of selected guided waves and a reconstruction algorithm based on full waveform inversion (FWI). The system makes use of an array of miniaturised piezoelectric transducers that are capable of exciting and receiving highly dispersive A0 Lamb wave mode at low frequencies. The scattering from transducer array has been found to have a small effect on the thickness reconstruction. The efficiency and the accuracy of the new system have been demonstrated through continuous forced corrosion experiments. The FWI reconstructed thicknesses show good agreement with analytical predictions obtained by Faraday's law and laser measurements, and more importantly, the thickness images closely resemble the actual corrosion sites.
Geovisualization for Smart Video Surveillance
NASA Astrophysics Data System (ADS)
Oves García, R.; Valentín, L.; Serrano, S. A.; Palacios-Alonso, M. A.; Sucar, L. Enrique
2017-09-01
Nowadays with the emergence of smart cities and the creation of new sensors capable to connect to the network, it is not only possible to monitor the entire infrastructure of a city, including roads, bridges, rail/subways, airports, communications, water, power, but also to optimize its resources, plan its preventive maintenance and monitor security aspects while maximizing services for its citizens. In particular, the security aspect is one of the most important issues due to the need to ensure the safety of people. However, if we want to have a good security system, it is necessary to take into account the way that we are going to present the information. In order to show the amount of information generated by sensing devices in real time in an understandable way, several visualization techniques are proposed for both local (involves sensing devices in a separated way) and global visualization (involves sensing devices as a whole). Taking into consideration that the information is produced and transmitted from a geographic location, the integration of a Geographic Information System to manage and visualize the behavior of data becomes very relevant. With the purpose of facilitating the decision-making process in a security system, we have integrated the visualization techniques and the Geographic Information System to produce a smart security system, based on a cloud computing architecture, to show relevant information about a set of monitored areas with video cameras.
NASA Technical Reports Server (NTRS)
Clayton, K. M. (Principal Investigator)
1975-01-01
The author has identified the following significant results. An objective system for regionalization is described, using ERTS-1 (or LANDSAT) computer compatible tapes. A range of computer programs for analysis of these tapes was developed. Emphasis is on a level of generalization appropriate to a satellite system whith repetitive global coverage. The main variables are land/water ratios and vegetation cover. The scale or texture of the pattern of change in these variables varies a good deal across the earth's surface, and it seems best if the unit of generalization adopted varies in sympathy with the surface being analyzed.
1982-03-01
system. Regenerator flue gas composi- tion, spent catalyst carbon content and regenerated cata- lyst content are monitored for material balance purposes...and good material balance closures obtained. During each run pro- duct gas samples, regenerator flue gas samples, spent and -85- regenerated...TEMPERATURE DEPENDENCE OF DENITROGENATION AT 2 LHSV ON CO/MO ......................... 26 111-2 TEMPERATURE DEPENDENCE OF DESULFURIZATION AT 2 LHSV ON
Discrimination Between Child and Adult Forms Using Radar Frequency Signature Analysis
2013-03-14
Distances. This sensor poses no risk to human subjects or persons operating the equipment. The 88 th Medical Group Bio -Environmental Safety...method of remotely characterizing human activity. Unlike optical sensors , radar systems need not rely upon line-of-sight or good weather to perform well...and in monitoring vital signs through chemical or bio - logical protection suits. These military applications have seen research as early as the mid
Man-machine cooperation in advanced teleoperation
NASA Technical Reports Server (NTRS)
Fiorini, Paolo; Das, Hari; Lee, Sukhan
1993-01-01
Teleoperation experiments at JPL have shown that advanced features in a telerobotic system are a necessary condition for good results, but that they are not sufficient to assure consistently good performance by the operators. Two or three operators are normally used during training and experiments to maintain the desired performance. An alternative to this multi-operator control station is a man-machine interface embedding computer programs that can perform some of the operator's functions. In this paper we present our first experiments with these concepts, in which we focused on the areas of real-time task monitoring and interactive path planning. In the first case, when performing a known task, the operator has an automatic aid for setting control parameters and camera views. In the second case, an interactive path planner will rank different path alternatives so that the operator will make the correct control decision. The monitoring function has been implemented with a neural network doing the real-time task segmentation. The interactive path planner was implemented for redundant manipulators to specify arm configurations across the desired path and satisfy geometric, task, and performance constraints.
Cennamo, Nunzio; De Maria, Letizia; D’Agostino, Girolamo; Zeni, Luigi; Pesavento, Maria
2015-01-01
In this work an innovative, miniaturized and low cost optical chemical sensor (POF-MIP platform), based on a molecular imprinted polymer (MIP) and surface plasmon resonance in a plastic optical fiber (POF), is presented and preliminarily tested for monitoring of furfural (furan-2-carbaldehyde) in transformer oil. To this end, the optical platform was coupled to an MIP layer, highly selective for furfural. The ability of the developed sensor to directly detect furfural in the insulating oil was investigated. The detection limit of the sensor has been found to be 9 ppb, with a linear response up to about 30 ppb. However there is a sensible response up to 0.15 ppm. Because of the small linearity range, the Hill equation is suggested for the quantification. The sensor has been effectively tested in real oil samples collected from aged electrical equipment removed from service. The assessed concentration of furfural is in good agreement with that evaluated by a high pressure liquid chromatography (HLPC) method, confirming the good selectivity of the proposed sensor. PMID:25871719
Cennamo, Nunzio; De Maria, Letizia; D'Agostino, Girolamo; Zeni, Luigi; Pesavento, Maria
2015-04-13
In this work an innovative, miniaturized and low cost optical chemical sensor (POF-MIP platform), based on a molecular imprinted polymer (MIP) and surface plasmon resonance in a plastic optical fiber (POF), is presented and preliminarily tested for monitoring of furfural (furan-2-carbaldehyde) in transformer oil. To this end, the optical platform was coupled to an MIP layer, highly selective for furfural. The ability of the developed sensor to directly detect furfural in the insulating oil was investigated. The detection limit of the sensor has been found to be 9 ppb, with a linear response up to about 30 ppb. However there is a sensible response up to 0.15 ppm. Because of the small linearity range, the Hill equation is suggested for the quantification. The sensor has been effectively tested in real oil samples collected from aged electrical equipment removed from service. The assessed concentration of furfural is in good agreement with that evaluated by a high pressure liquid chromatography (HLPC) method, confirming the good selectivity of the proposed sensor.
Development of a Post-Installed Deepwater Monitoring System
NASA Technical Reports Server (NTRS)
Seaman, C.; Brower, D. V.; Tang, H.; Le, S.
2015-01-01
A monitoring system that can be deployed on already existing deep water risers and flowlines has been developed. This paper describes the design concepts and testing that was performed in developing the monitoring system. A major challenge of a post-installed instrumentation system is to ensure adequate coupling is achieved between the instruments and the riser or flowline. This work investigates the sensor coupling for pipelines that are suspended in both the water column (from topside platform to the seabed) and for those that are located directly on the seabed. These different environments have resulted in two sensor attachment methods: (1) subsea adhesive sensor clamp design and (2) a friction surface sensor attachment method. This paper presents the adhesive attachment method. The monitoring elements consist of fiber optic sensors that are encased in a polyurethane clamp. With a subsea adhesive, the clamp can be installed by divers in shallow depths or by use of an ROV for deeper applications. The NASA Johnson Space Center was initially involved in the selection and testing of subsea adhesives. It was determined that up to 75 percent of the bonding strength could be achieved with the adhesive from optimal dry bonding versus bonding in submerged sea water environments. The next phase of the study involved the design, fabrication, and testing of several prototype clamps that contained the fiber optic sensors. A mold was produced by NASA using 3-D printing methods that allowed the fabrication of subscale test articles that would accommodate 4-inch and 8-inch diameter pipes. The clamps were installed with adhesive in a "wet" environment on the pipe test articles and tested in the NASA Structures Test Laboratory. The tension/compression and bending tests showed that the prototype sensor clamps achieved good coupling, and could provide high quality strain measurement for active monitoring.
NASA Astrophysics Data System (ADS)
Yuan, Zhen; Zhang, Jian
2018-02-01
The adult zebrafish has pronounced regenerative capacity of the brain, which makes it an ideal model organism of vertebrate biology for the investigation of recovery of central nervous system injuries. The aim of this study was to employ spectral-domain optical coherence tomography (SD-OCT) system for long-term in vivo monitoring of tissue regeneration using an adult zebrafish model of brain injury. Based on a 1325 nm light source and two high-speed galvo mirrors, the SD-OCT system can offer a large field of view of the three-dimensional (3D) brain structures with high imaging resolution (12 μm axial and 13 μm lateral) at video rate. In vivo experiments based on this system were conducted to monitor the regeneration process of zebrafish brain after injury during a period of 43 days. To monitor and detect the process of tissue regeneration, we performed 3D in vivo imaging in a zebrafish model of adult brain injury during a period of 43 days. The coronal and sagittal views of the injured zebrafish brain at each time point (0 days, 10 days, 20 days and 43 days postlesion) were presented to show the changes of the brain lesion in detail. In addition, the 3D SD-OCT images for an injured zebrafish brain were also reconstructed at days 0 and days 43 post-lesion. We found that SD-OCT is able to effectively and noninvasively monitor the regeneration of the adult zebrafish brain after injury in real time with high 3D spatial resolution and good penetration depth. Our findings also suggested that the adult zebrafish has the extraordinary capability of brain regeneration and is able to repair itself after brain injury.
NASA Astrophysics Data System (ADS)
Wang, Hongrui; Qi, Jin; Li, Huiduan; Fang, Wei
2017-01-01
The total solar irradiance (TSI) has been recorded daily since October 2013 by the Total Solar Irradiance Monitor (TSIM) onboard the FY-3C satellite, which is mainly designed for Earth observation. The TSIM has a pointing system to perform solar tracking using a sun sensor. The TSI is measured by two electrical substitution radiometers with traceability to the World Radiation Reference. The TSI value measured with the TSIM on 2 October 2013 is 1364.88 W m^{-2} with an uncertainty of 1.08 W m^{-2}. Short-term TSI variations recorded with the TSIM show good agreement with SOHO/VIRGO and SORCE/TIM. The data quality and accuracy of FY-3C/TSIM are much better than its predecessors on the FY-3A and FY-3B satellites, which operated in a scanning mode.
A wearable device for emotional recognition using facial expression and physiological response.
Jangho Kwon; Da-Hye Kim; Wanjoo Park; Laehyun Kim
2016-08-01
This paper introduces a glasses-typed wearable system to detect user's emotions using facial expression and physiological responses. The system is designed to acquire facial expression through a built-in camera and physiological responses such as photoplethysmogram (PPG) and electrodermal activity (EDA) in unobtrusive way. We used video clips for induced emotions to test the system suitability in the experiment. The results showed a few meaningful properties that associate emotions with facial expressions and physiological responses captured by the developed wearable device. We expect that this wearable system with a built-in camera and physiological sensors may be a good solution to monitor user's emotional state in daily life.
Phase-I monitoring of standard deviations in multistage linear profiles
NASA Astrophysics Data System (ADS)
Kalaei, Mahdiyeh; Soleimani, Paria; Niaki, Seyed Taghi Akhavan; Atashgar, Karim
2018-03-01
In most modern manufacturing systems, products are often the output of some multistage processes. In these processes, the stages are dependent on each other, where the output quality of each stage depends also on the output quality of the previous stages. This property is called the cascade property. Although there are many studies in multistage process monitoring, there are fewer works on profile monitoring in multistage processes, especially on the variability monitoring of a multistage profile in Phase-I for which no research is found in the literature. In this paper, a new methodology is proposed to monitor the standard deviation involved in a simple linear profile designed in Phase I to monitor multistage processes with the cascade property. To this aim, an autoregressive correlation model between the stages is considered first. Then, the effect of the cascade property on the performances of three types of T 2 control charts in Phase I with shifts in standard deviation is investigated. As we show that this effect is significant, a U statistic is next used to remove the cascade effect, based on which the investigated control charts are modified. Simulation studies reveal good performances of the modified control charts.
NASA Astrophysics Data System (ADS)
Crawford, David L.; McKenna, D.
2006-12-01
A good estimate of sky brightness and its variations throughout the night, the months, and even the years is an essential bit of knowledge both for good observing and especially as a tool in efforts to minimize sky brightness through local action. Hence a stable and accurate monitor can be a valuable and necessary tool. We have developed such a monitor, with the financial help of Vatican Observatory and Walker Management. The device is now undergoing its Beta test in preparation for production. It is simple, accurate, well calibrated, and automatic, sending its data directly to IDA over the internet via E-mail . Approximately 50 such monitors will be ready soon for deployment worldwide including most major observatories. Those interested in having one should enquire of IDA about details.
Maritime Situational Awareness: The MARISS Experience
NASA Astrophysics Data System (ADS)
Margarit, G.; Tabasco, A.; Gomez, C.
2010-04-01
This paper presents the operational solution developed by GMV to provide support to maritime situational awareness via Earth Observation (EO) technologies. The concept falls on integrating the information retrieved from Synthetic Aperture Radar (SAR) images and transponder-based polls (AIS and similar) in an advanced GeoPortal web. The service has been designed in the framework of the MARISS project, a project conceived to help improving ship monitoring with the support of a large user segment. In this context, the interaction with official agencies has provided good feedback about system performance and its usefulness in supporting monitoring and surveillance tasks. Some representative samples are analyzed along the paper in order to validate key kernel utilities, such as ship and coastline detection, and ship classification. They justify the promotion of extended R&D activities to increase monitoring performance and to include advanced added- value tools, such as decision making and route tracking.
Valenza, Gaetano; Gentili, Claudio; Lanatà, Antonio; Scilingo, Enzo Pasquale
2013-01-01
Bipolar disorders are characterized by a series of both depressive and manic or hypomanic episodes. Although common and expensive to treat, the clinical assessment of bipolar disorder is still ill-defined. In the current literature several correlations between mood disorders and dysfunctions involving the autonomic nervous system (ANS) can be found. The objective of this work is to develop a novel mood recognition system based on a pervasive, wearable and personalized monitoring system using ANS-related biosignals. The monitoring platform used in this study is the core sensing system of the personalized monitoring systems for care in mental health (PSYCHE) European project. It is comprised of a comfortable sensorized t-shirt that can acquire the inter-beat interval time series, the heart rate, and the respiratory dynamics for long-term monitoring during the day and overnight. In this study, three bipolar patients were followed for a period of 90 days during which up to six monitoring sessions and psychophysical evaluations were performed for each patient. Specific signal processing techniques and artificial intelligence algorithms were applied to analyze more than 120 h of data. Experimental results are expressed in terms of confusion matrices and an exhaustive descriptive statistics of the most relevant features is reported as well. A classification accuracy of about 97% is achieved for the intra-subject analysis. Such an accuracy was found in distinguishing relatively good affective balance state (euthymia) from severe clinical states (severe depression and mixed state) and is lower in distinguishing euthymia from the milder states (accuracy up to 88%). The PSYCHE platform could provide a viable decision support system in order to improve mood assessment in patient care. Evidences about the correlation between mood disorders and ANS dysfunctions were found and the obtained results are promising for an effective biosignal-based mood recognition. Copyright © 2012 Elsevier B.V. All rights reserved.
Development of the Diabetes Technology Society Blood Glucose Monitor System Surveillance Protocol
Klonoff, David C.; Lias, Courtney; Beck, Stayce; Parkes, Joan Lee; Kovatchev, Boris; Vigersky, Robert A.; Arreaza-Rubin, Guillermo; Burk, Robert D.; Kowalski, Aaron; Little, Randie; Nichols, James; Petersen, Matt; Rawlings, Kelly; Sacks, David B.; Sampson, Eric; Scott, Steve; Seley, Jane Jeffrie; Slingerland, Robbert; Vesper, Hubert W.
2015-01-01
Background: Inaccurate blood glucsoe monitoring systems (BGMSs) can lead to adverse health effects. The Diabetes Technology Society (DTS) Surveillance Program for cleared BGMSs is intended to protect people with diabetes from inaccurate, unreliable BGMS products that are currently on the market in the United States. The Surveillance Program will provide an independent assessment of the analytical performance of cleared BGMSs. Methods: The DTS BGMS Surveillance Program Steering Committee included experts in glucose monitoring, surveillance testing, and regulatory science. Over one year, the committee engaged in meetings and teleconferences aiming to describe how to conduct BGMS surveillance studies in a scientifically sound manner that is in compliance with good clinical practice and all relevant regulations. Results: A clinical surveillance protocol was created that contains performance targets and analytical accuracy-testing studies with marketed BGMS products conducted by qualified clinical and laboratory sites. This protocol entitled “Protocol for the Diabetes Technology Society Blood Glucose Monitor System Surveillance Program” is attached as supplementary material. Conclusion: This program is needed because currently once a BGMS product has been cleared for use by the FDA, no systematic postmarket Surveillance Program exists that can monitor analytical performance and detect potential problems. This protocol will allow identification of inaccurate and unreliable BGMSs currently available on the US market. The DTS Surveillance Program will provide BGMS manufacturers a benchmark to understand the postmarket analytical performance of their products. Furthermore, patients, health care professionals, payers, and regulatory agencies will be able to use the results of the study to make informed decisions to, respectively, select, prescribe, finance, and regulate BGMSs on the market. PMID:26481642
Development of the Diabetes Technology Society Blood Glucose Monitor System Surveillance Protocol.
Klonoff, David C; Lias, Courtney; Beck, Stayce; Parkes, Joan Lee; Kovatchev, Boris; Vigersky, Robert A; Arreaza-Rubin, Guillermo; Burk, Robert D; Kowalski, Aaron; Little, Randie; Nichols, James; Petersen, Matt; Rawlings, Kelly; Sacks, David B; Sampson, Eric; Scott, Steve; Seley, Jane Jeffrie; Slingerland, Robbert; Vesper, Hubert W
2016-05-01
Inaccurate blood glucsoe monitoring systems (BGMSs) can lead to adverse health effects. The Diabetes Technology Society (DTS) Surveillance Program for cleared BGMSs is intended to protect people with diabetes from inaccurate, unreliable BGMS products that are currently on the market in the United States. The Surveillance Program will provide an independent assessment of the analytical performance of cleared BGMSs. The DTS BGMS Surveillance Program Steering Committee included experts in glucose monitoring, surveillance testing, and regulatory science. Over one year, the committee engaged in meetings and teleconferences aiming to describe how to conduct BGMS surveillance studies in a scientifically sound manner that is in compliance with good clinical practice and all relevant regulations. A clinical surveillance protocol was created that contains performance targets and analytical accuracy-testing studies with marketed BGMS products conducted by qualified clinical and laboratory sites. This protocol entitled "Protocol for the Diabetes Technology Society Blood Glucose Monitor System Surveillance Program" is attached as supplementary material. This program is needed because currently once a BGMS product has been cleared for use by the FDA, no systematic postmarket Surveillance Program exists that can monitor analytical performance and detect potential problems. This protocol will allow identification of inaccurate and unreliable BGMSs currently available on the US market. The DTS Surveillance Program will provide BGMS manufacturers a benchmark to understand the postmarket analytical performance of their products. Furthermore, patients, health care professionals, payers, and regulatory agencies will be able to use the results of the study to make informed decisions to, respectively, select, prescribe, finance, and regulate BGMSs on the market. © 2015 Diabetes Technology Society.
NASA Astrophysics Data System (ADS)
Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Tanaka, J.; Muraoka, K.
2017-11-01
Thermal spray is a technique to form molten droplets using either plasma- or combustion-heating, which impinge upon substrates to form coating layers for various purposes, such as anti-corrosion and anti-wear layers. Although it is an established technique having a history of more than a century, operations of spray guns together with preparing suitable substrate surfaces for obtaining good coating layers still rely on experienced technicians. Because of the necessity of meeting more and more stringent requirements for coating quality and cost from customers, there has been a strong need to try to monitor spray processes, so as to obtain the best possible spray coating layers. The basic requirements for such monitoring systems are *reasonably cheap, *easy operation for laypersons, *easy access to targets to be investigated, and *an in-situ capability. The purpose of the present work is to provide suitable optical monitoring systems for (1) droplets behavior and (2) substrate pre-treatments. For the former (1), the first result was already presented at the 17th laser-aided plasma diagnostics meeting (LAPD17) in 2015 in Sapporo, and the results of its subsequent applications into real spray environments are shown in this article in order to validate the previous proposal. Topic (2) is new in the research program, and the proof-of-principle experiment for the proposed method yielded a favorable result. Based on this positive result, an overall strategy is being planned to fulfill the final objective of the optical monitoring of substrate pre-treatments. Details of these two programs (1) and (2) together with the present status are described.
NASA Astrophysics Data System (ADS)
Petrov, Andrey; Prough, Donald S.; Petrov, Irene Y.; Petrov, Yuriy; Deyo, Donald J.; Henkel, Sheryl N.; Seeton, Roger; Esenaliev, Rinat O.
2013-03-01
Monitoring of cerebral venous oxygenation is useful to facilitate management of patients with severe or moderate traumatic brain injury (TBI). Prompt recognition of low cerebral venous oxygenation is a key to avoiding secondary brain injury associated with brain hypoxia. In specialized clinical research centers, jugular venous bulb catheters have been used for cerebral venous oxygenation monitoring and have demonstrated that oxygen saturation < 50% (normal range is 55-75%) correlates with poor clinical outcome. We developed an optoacoustic technique for noninvasive monitoring of cerebral venous oxygenation. Recently, we designed and built a novel, medical grade optoacoustic system operating in the near-infrared spectral range for continuous, real-time oxygenation monitoring in the superior sagittal sinus (SSS), a large central cerebral vein. In this work, we designed and built a novel SSS optoacoustic probe and developed a new algorithm for SSS oxygenation measurement. The SSS signals were measured in healthy volunteers during voluntary hyperventilation, which induced changes in SSS oxygenation. Simultaneously, we measured exhaled carbon dioxide concentration (EtCO2) using capnography. Good temporal correlation between decreases in optoacoustically measured SSS oxygenation and decreases in EtCO2 was obtained. Decreases in EtCO2 from normal values (35-45 mmHg) to 20-25 mmHg resulted in SSS oxygenation decreases by 3-10%. Intersubject variability of the responses may relate to nonspecific brain activation associated with voluntary hyperventilation. The obtained data demonstrate the capability of the optoacoustic system to detect in real time minor changes in the SSS blood oxygenation.
A Low-Cost and Portable Dual-Channel Fiber Optic Surface Plasmon Resonance System.
Liu, Qiang; Liu, Yun; Chen, Shimeng; Wang, Fang; Peng, Wei
2017-12-04
A miniaturization and integration dual-channel fiber optic surface plasmon resonance (SPR) system was proposed and demonstrated in this paper. We used a yellow light-emitting diode (LED, peak wavelength 595 nm) and built-in web camera as a light source and detector, respectively. Except for the detection channel, one of the sensors was used as a reference channel to compensate nonspecific binding and physical absorption. We packaged the LED and surface plasmon resonance (SPR) sensors together, which are flexible enough to be applied to mobile devices as a compact and portable system. Experimental results show that the normalized intensity shift and refractive index (RI) of the sample have a good linear relationship in the RI range from 1.328 to 1.348. We used this sensor to monitor the reversible, specific interaction between lectin concanavalin A (Con A) and glycoprotein ribonuclease B (RNase B), which demonstrate its capabilities of specific identification and biochemical samples concentration detection. This sensor system has potential applications in various fields, such as medical diagnosis, public health, food safety, and environment monitoring.
A Fault Recognition System for Gearboxes of Wind Turbines
NASA Astrophysics Data System (ADS)
Yang, Zhiling; Huang, Haiyue; Yin, Zidong
2017-12-01
Costs of maintenance and loss of power generation caused by the faults of wind turbines gearboxes are the main components of operation costs for a wind farm. Therefore, the technology of condition monitoring and fault recognition for wind turbines gearboxes is becoming a hot topic. A condition monitoring and fault recognition system (CMFRS) is presented for CBM of wind turbines gearboxes in this paper. The vibration signals from acceleration sensors at different locations of gearbox and the data from supervisory control and data acquisition (SCADA) system are collected to CMFRS. Then the feature extraction and optimization algorithm is applied to these operational data. Furthermore, to recognize the fault of gearboxes, the GSO-LSSVR algorithm is proposed, combining the least squares support vector regression machine (LSSVR) with the Glowworm Swarm Optimization (GSO) algorithm. Finally, the results show that the fault recognition system used in this paper has a high rate for identifying three states of wind turbines’ gears; besides, the combination of date features can affect the identifying rate and the selection optimization algorithm presented in this paper can get a pretty good date feature subset for the fault recognition.
The spatial data and knowledge gateways at the International Water Management Institute (IWMI)
NASA Astrophysics Data System (ADS)
Thenkabail, P. S.; Biradar, C. M.; Noojipady, P.; Islam, A.; Velpuri, M.; Vithanage, J.; Kulawardhana, W.; Li, Yuan Jie; Dheeravath, V.; Gunasinghe, S.; Alankara, R.
2006-10-01
In this paper we discuss spatial data and knowledge base (SDKB) gateway portals developed by the International Water Management Institute (IWMI). Our vision is to generate and/or facilitate easy and free access to state-of-art SDKB of excellence globally. Our mission is to make SDKB accessible online, globally, for free. The IWMI data storehouse pathway (IWMIDSP; http://www.iwmidsp.org) is a pathfinder global public good (GPG) portal on remote sensing and GIS (RS/GIS) data and products with specific emphasis on river basin data, but also storing valuable data on Nations, Regions, and the World. A number of other specialty GPG portals have also been released. These include Global map of irrigated area (http://www.iwmigiam.org), Drought monitoring system for southwest Asia (http://dms.iwmi.org), Tsunami satellite sensor data catalogue (http://tsdc.iwmi.org), and Knowledge base system (KBS) for Sri Lanka (http://www.iwmikbs.org). The IWMIDSP has been the backbone of several other projects such as global irrigated area mapping, drought monitoring system, wetlands, and knowledge base systems. A discussion on these pathfinder web portals follow.
Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.L. Rovey
A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strainmore » measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit sensor data underwater from the rotating frame of the blade to a fixed relay station. Data are then broadcast via radio waves to a remote monitoring station. Results indicate that the assembled system can transmit simulated sensor data with an accuracy of ±5% at a maximum sampling rate of 500 samples/sec. A power investigation of the transmitter within the blade shows that continuous max-sampling operation is only possible for short durations (~days), and is limited due to the capacity of the battery power source. However, intermittent sampling, with long periods between samples, allows for the system to last for very long durations (~years). Finally, because the data transmission system can operate at a high sampling rate for short durations or at a lower sampling rate/higher duty cycle for long durations, it is well-suited for short-term prototype and environmental testing, as well as long-term commercially-deployed hydrokinetic machines.« less
Endoscopic techniques in aesthetic plastic surgery.
McCain, L A; Jones, G
1995-01-01
There has been an explosive interest in endoscopic techniques by plastic surgeons over the past two years. Procedures such as facial rejuvenation, breast augmentation and abdominoplasty are being performed with endoscopic assistance. Endoscopic operations require a complex setup with components such as video camera, light sources, cables and hard instruments. The Hopkins Rod Lens system consists of optical fibers for illumination, an objective lens, an image retrieval system, a series of rods and lenses, and an eyepiece for image collection. Good illumination of the body cavity is essential for endoscopic procedures. Placement of the video camera on the eyepiece of the endoscope gives a clear, brightly illuminated large image on the monitor. The video monitor provides the surgical team with the endoscopic image. It is important to become familiar with the equipment before actually doing cases. Several options exist for staff education. In the operating room the endoscopic cart needs to be positioned to allow a clear unrestricted view of the video monitor by the surgeon and the operating team. Fogging of the endoscope may be prevented during induction by using FREDD (a fog reduction/elimination device) or a warm bath. The camera needs to be white balanced. During the procedure, the nurse monitors the level of dissection and assesses for clogging of the suction.
Aircraft monitoring by the fusion of satellite and ground ADS-B data
NASA Astrophysics Data System (ADS)
Zhang, Xuan; Zhang, Jingjing; Wu, Shufan; Cheng, Qian; Zhu, Rui
2018-02-01
The Automatic Dependent Surveillance- Broadcast (ADS-B) system is today a standard equipment on civil aircraft, transmitting periodically data packages containing information of key data such as aircraft ID, position, altitude and intention. It is designed for terrestrial based ground station to monitor air traffic flow in certain regions. Space based ADS-B is the idea to place sensitive receivers on board satellites in orbit, which can receive ADS-B packages and relay them the relevant ground stations. The terrestrial ADS-B receiver has been widely applied for airport information system, help monitor and control traffic flow, etc. However, its coverage is strongly limited by sea or mountain conditions. This paper first introduces the CubeSat mission, then discusses the integrated application of ADS-B data received from ground stations and from satellites, analyze their characteristics with statistical results of comparison, and explore the technologies to fuse these two different data resources for an integrated application. The satellite data is based on a Chinese CubeSat, STU-2C, being launched into space on Sept 25th 2015. The ADS-B data received from two different resources have shown a good complementary each other, such as to increase the coverage of space for air traffic, and to monitor the whole space in a better and complete way.
de Merich, D; Pellicci, M; Serignoli, R
2010-01-01
Within the intelligence support and training to small and medium-sized enterprises (SMEs) and promoting a culture of health and safety at work, ISPESL is engaged on two fundamental pillars of activity: Consolidation of the national surveillance system of injuries through the promotion of methods and tools for the reconstruction of the dynamics incidental identification of causal determinants, with the aim of improving the capabilities of risk assessment of systems to prevent corporate. The promotion of good working practices, as Focal Point of the European Health and Safety at Work in Bilbao, the goal is to support prevention activities by providing business application examples of measures for improvement (technical, organizational, procedural) made in the proposing firms and validated by a technical appraisal conducted by ISPESL. Among the methodologies and tools that can be made available to companies in the operational management of health and safety in work activities, the approach to analyze and evaluate the behavior implemented by all persons within the company (managers, employees, workers) is a the most innovative preventive strategies that can be implemented to correct any improper practices behavioral wrongly tolerated in everyday work practice. The experience of Crown Aerosol Italy, the program "STOP TO ACCIDENTS, 2009 Best Practices award in the competition on the theme" Risk Assessment ", aims to demonstrate how the application of a method for monitoring behavior at work, shared in its planning with all those business, has not only reached but would assist the organization has developed at an individual level greater awareness and sense of responsibility also to their colleagues, by promoting good working practices.
Avigliano, Esteban; Schenone, Nahuel
2016-08-01
The South American Atlantic rainforest is a one-of-a-kind ecosystem considered as a biodiversity hotspot; however, in the last decades, it was intensively reduced to 7 % of its original surface. Water resources and water quality are one of the main goods and services this system provides to people. For monitoring and management recommendations, the present study is focused on (1) determining the nutrient content (nitrate, nitrite, ammonium, and phosphate) and physiochemical parameters (temperature, pH, electrical conductivity, turbidity, dissolved oxygen, and total dissolved solids) in surface water from 24 rainforest mountain rivers in Argentina, (2) analyzing the human health risk, (3) assessing the environmental distribution of the determined pollutants, and (4) analyzing water quality indices (WQIobj and WQImin). In addition, for total coliform bacteria, a dataset was used from literature. Turbidity, total dissolved solids, and nitrite (NO2 (-)) exceeded the guideline value recommended by national or international guidelines in several sampling stations. The spatial distribution pattern was analyzed by Principal Component Analysis and Factor Analysis (PCA/FA) showing well-defined groups of rivers. Both WQI showed good adjustment (R (2) = 0.89) and rated water quality as good or excellent in all sampling sites (WQI > 71). Therefore, this study suggests the use of the WQImin for monitoring water quality in the region and also the water treatment of coliform, total dissolved solids, and turbidity.
Ultrasonic Sensors in Urban Traffic Driving-Aid Systems
Alonso, Luciano; Milanés, Vicente; Torre-Ferrero, Carlos; Godoy, Jorge; Oria, Juan P.; de Pedro, Teresa
2011-01-01
Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems. PMID:22346596
Ultrasonic sensors in urban traffic driving-aid systems.
Alonso, Luciano; Milanés, Vicente; Torre-Ferrero, Carlos; Godoy, Jorge; Oria, Juan P; de Pedro, Teresa
2011-01-01
Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.
NASA Astrophysics Data System (ADS)
Arnhardt, Christian; Fernández-Steeger, Tomas; Azzam, Rafig
2010-05-01
Monitoring systems in landslide areas are important elements of effective Early Warning structures. Data acquisition and retrieval allows the detection of movement processes and thus is essential to generate warnings in time. Apart from the precise measurement, the reliability of data is fundamental, because outliers can trigger false alarms and leads to the loss of acceptance of such systems. For the monitoring of mass movements and their risk it is important to know, if there is movement, how fast it is and how trustworthy is the information. The joint project "Sensorbased landslide early warning system" (SLEWS) deals with these questions, and tries to improve data quality and to reduce false alarm rates, due to the combination of sensor date (sensor fusion). The project concentrates on the development of a prototypic Alarm- and Early Warning system (EWS) for different types of landslides by using various low-cost sensors, integrated in a wireless sensor network (WSN). The network consists of numerous connection points (nodes) that transfer data directly or over other nodes (Multi-Hop) in real-time to a data collection point (gateway). From there all the data packages are transmitted to a spatial data infrastructure (SDI) for further processing, analyzing and visualizing with respect to end-user specifications. The ad-hoc characteristic of the network allows the autonomous crosslinking of the nodes according to existing connections and communication strength. Due to the independent finding of new or more stable connections (self healing) a breakdown of the whole system is avoided. The bidirectional data stream enables the receiving of data from the network but also allows the transfer of commands and pointed requests into the WSN. For the detection of surface deformations in landslide areas small low-cost Micro-Electro-Mechanical-Systems (MEMS) and positionsensors from the automobile industries, different industrial applications and from other measurement technologies were chosen. The MEMS-Sensors are acceleration-, tilt- and barometric pressure sensors. The positionsensors are draw wire and linear displacement transducers. In first laboratory tests the accuracy and resolution were investigated. The tests showed good results for all sensors. For example tilt-movements can be monitored with an accuracy of +/- 0,06° and a resolution of 0,1°. With the displacement transducer change in length of >0,1mm is possible. Apart from laboratory tests, field tests in South France and Germany were done to prove data stability and movement detection under real conditions. The results obtained were very satisfying, too. In the next step the combination of numerous sensors (sensor fusion) of the same type (redundancy) or different types (complementary) was researched. Different experiments showed that there is a high concordance between identical sensor-types. According to different sensor parameters (sensitivity, accuracy, resolution) some sensor-types can identify changes earlier. Taking this into consideration, good correlations between different kinds of sensors were achieved, too. Thus the experiments showed that combination of sensors is possible and this could improve the detection of movement and movement rate but also outliers. Based on this results various algorithms were setup that include different statistical methods (outlier tests, testing of hypotheses) and procedures from decision theories (Hurwicz-criteria). These calculation formulas will be implemented in the spatial data infrastructure (SDI) for the further data processing and validation. In comparison with today existing mainly punctually working monitoring systems, the application of wireless sensor networks in combination with low-cost, but precise micro-sensors provides an inexpensive and easy to set up monitoring system also in large areas. The correlation of same but also different sensor-types permits a good data control. Thus the sensor fusion is a promising tool to detect movement more reliable and thus contributes essential to the improvement of Early Warning Systems.
NASA Astrophysics Data System (ADS)
Kishore, P. V. N.; Sai Shankar, M.
2017-04-01
This paper describes a fiber optics based pH sensor by using wavelength modulated techniques. Fiber Bragg grating (FBG) is functionalized with a stimulus responsive hydrogel which induces a strain on FBG due to mechanical expansion of the gel in response to ambient pH changes. The gel is synthesized from the blends of Poly (vinyl alcohol)/Poly (acrylic acid). The induced strain results in a shift of FBG reflected peak which is monitored by an interrogator. The sensor system shows a good linearity in acidic pH range of 3 to 7 with a sensitivity of 12.16pm/pH. Besides that it shows good repeatability which proves it to be fit for pH sensing applications.
NASA Astrophysics Data System (ADS)
Razuc, Mariela; Garrido, Mariano; Caro, Yamile S.; Teglia, Carla M.; Goicoechea, Héctor C.; Fernández Band, Beatriz S.
2013-04-01
A simple and fast on line spectrophotometric method combined with a hybrid hard-soft modeling multivariate curve resolution (HS-MCR) was proposed for the monitoring of photodegradation reaction of ciprofloxacin under UV radiation. The studied conditions attempt to emulate the effect of sunlight on these antibiotics that could be eventually present in the environment. The continuous flow system made it possible to study the ciprofloxacin degradation at different pH values almost at real time, avoiding errors that could arise from typical batch monitoring of the reaction. On the base of a concentration profiles obtained by previous pure soft-modeling approach, reaction pathways have been proposed for the parent compound and its photoproducts at different pH values. These kinetic models were used as a constraint in the HS-MCR analysis. The kinetic profiles and the corresponding pure response profile (UV-Vis spectra) of ciprofloxacin and its main degradation products were recovered after the application of HS-MCR analysis to the spectra recorded throughout the reaction. The observed behavior showed a good agreement with the photodegradation studies reported in the bibliography. Accordingly, the photodegradation reaction was studied by high performance liquid chromatography coupled with UV-Vis diode array detector (HPLC-DAD). The spectra recorded during the chromatographic analysis present a good correlation with the ones recovered by UV-Vis/HS-MCR method.
Auditing radiation sterilization facilities
NASA Astrophysics Data System (ADS)
Beck, Jeffrey A.
The diversity of radiation sterilization systems available today places renewed emphasis on the need for thorough Quality Assurance audits of these facilities. Evaluating compliance with Good Manufacturing Practices is an obvious requirement, but an effective audit must also evaluate installation and performance qualification programs (validation_, and process control and monitoring procedures in detail. The present paper describes general standards that radiation sterilization operations should meet in each of these key areas, and provides basic guidance for conducting QA audits of these facilities.
2013-08-01
thermoset system designed to achieve good wetting , high-strength and low-creep adhesion. Many commercially-available adhesives were sourced and...Bragg grating: 1. Removal of the fibre coating. 2. Photosensitization of the fibre. 3. Exposure of the grating to UV laser light. 4. Annealing and...molecular hydrogen loading (H2 loading) in a heated pressure vessel . Photosensitisation results in a stronger refractive index contrast for a given
Drinking water quality management: a holistic approach.
Rizak, S; Cunliffe, D; Sinclair, M; Vulcano, R; Howard, J; Hrudey, S; Callan, P
2003-01-01
A growing list of water contaminants has led to some water suppliers relying primarily on compliance monitoring as a mechanism for managing drinking water quality. While such monitoring is a necessary part of drinking water quality management, experiences with waterborne disease threats and outbreaks have shown that compliance monitoring for numerical limits is not, in itself, sufficient to guarantee the safety and quality of drinking water supplies. To address these issues, the Australian National Health and Medical Research Council (NHMRC) has developed a Framework for Management of Drinking Water Quality (the Framework) for incorporation in the Australian Drinking Water Guidelines, the primary reference on drinking water quality in Australia. The Framework was developed specifically for drinking water supplies and provides a comprehensive and preventive risk management approach from catchment to consumer. It includes holistic guidance on a range of issues considered good practice for system management. The Framework addresses four key areas: Commitment to Drinking Water Quality Management, System Analysis and System Management, Supporting Requirements, and Review. The Framework represents a significantly enhanced approach to the management and regulation of drinking water quality and offers a flexible and proactive means of optimising drinking water quality and protecting public health. Rather than the primary reliance on compliance monitoring, the Framework emphasises prevention, the importance of risk assessment, maintaining the integrity of water supply systems and application of multiple barriers to assure protection of public health. Development of the Framework was undertaken in collaboration with the water industry, regulators and other stakeholder, and will promote a common and unified approach to drinking water quality management throughout Australia. The Framework has attracted international interest.
Schmidt, Wiebke; Raymond, David; Parish, David; Ashton, Ian G C; Miller, Peter I; Campos, Carlos J A; Shutler, Jamie D
2018-01-01
The need to ensure future food security and issues of varying estuarine water quality is driving the expansion of aquaculture into near-shore coastal waters. It is prudent to fully evaluate new or proposed aquaculture sites, prior to any substantial financial investment in infrastructure and staffing. Measurements of water temperature, salinity and dissolved oxygen can be used to gain insight into the physical, chemical and biological water quality conditions within a farm site, towards identifying its suitability for farming, both for the stock species of interest and for assessing the potential risk from harmful or toxic algae. The latter can cause closure of shellfish harvesting. Unfortunately, commercial scientific monitoring systems can be cost prohibitive for small organisations and companies to purchase and operate. Here we describe the design, construction and deployment of a low cost (<£ 5000) monitoring buoy suitable for use within a near-shore aquaculture farm or bathing waters. The mooring includes a suite of sensors designed for supporting and understanding variations in near-shore physical, chemical and biological water quality. The system has been designed so that it can be operated and maintained by non-scientific staff, whilst still providing good quality scientific data. Data collected from two deployments totalling 14 months, one in a coastal bay location, another in an estuary, have illustrated the robust design and provided insight into the suitability of these sites for aquaculture and the potential occurrence of a toxin causing algae ( Dinophysis spp.). The instruments maintained good accuracy during the deployments when compared to independent in situ measurements (e.g. RMSE 0.13-0.16 °C, bias 0.03-0.08 °C) enabling stratification and biological features to be identified, along with confirming that the waters were suitable for mussel ( Mytilus spp.) and lobster ( Homarus gammarus ) aquaculture, whilst sites showed conditions agreeable for Dinophysis spp.
Led, Santiago; Azpilicueta, Leire; Aguirre, Erik; de Espronceda, Miguel Martínez; Serrano, Luis; Falcone, Francisco
2013-01-01
In this work, a novel ambulatory ECG monitoring device developed in-house called HOLTIN is analyzed when operating in complex indoor scenarios. The HOLTIN system is described, from the technological platform level to its functional model. In addition, by using in-house 3D ray launching simulation code, the wireless channel behavior, which enables ubiquitous operation, is performed. The effect of human body presence is taken into account by a novel simplified model embedded within the 3D Ray Launching code. Simulation as well as measurement results are presented, showing good agreement. These results may aid in the adequate deployment of this novel device to automate conventional medical processes, increasing the coverage radius and optimizing energy consumption. PMID:23584122
Clinical application of a modern high-definition head-mounted display in sonography.
Takeshita, Hideki; Kihara, Kazunori; Yoshida, Soichiro; Higuchi, Saori; Ito, Masaya; Nakanishi, Yasukazu; Kijima, Toshiki; Ishioka, Junichiro; Matsuoka, Yoh; Numao, Noboru; Saito, Kazutaka; Fujii, Yasuhisa
2014-08-01
Because of the remarkably improved image quality and wearability of modern head-mounted displays, a monitoring system using a head-mounted display rather than a fixed-site monitor for sonographic scanning has the potential to improve the diagnostic performance and lessen the examiner's physical burden during a sonographic examination. In a preclinical setting, 2 head-mounted displays, the HMZ-T2 (Sony Corporation, Tokyo, Japan) and the Wrap1200 (Vuzix Corporation, Rochester, NY), were found to be applicable to sonography. In a clinical setting, the feasibility of the HMZ-T2 was shown by its good image quality and acceptable wearability. This modern device is appropriate for clinical use in sonography. © 2014 by the American Institute of Ultrasound in Medicine.
Kiliç, Ebru Tarikçi; Gerenli, Nelgin; Akdemir, Mehmet Salim; Tastan, Necmi Onur; Atag, Egemen
2018-01-01
Leigh syndrome (LS) is a rare disease mainly affecting the central nervous system due to the abnormalities of mitochondrial energy generation and seen in early childhood with progressive loss of movement, mental abilities, seizures, nystagmus, ophthalmoparesis, optic atrophy, ataxia, dystonia, or respiratory failure. Anesthesia and surgery exacerbate the risks of aspiration, wheezing, and breathing difficulties. Tracheal irritability can be stimulated with the efforts of intubation. We report the anesthetic management of a rare case of an 11-year-old boy with a severe form of LS for percutaneous endoscopic gastrostomy insertion. The patient was closely monitored during the procedure and the postoperative period. Carefully chosen anesthetic agents, good pain control, and close monitoring are essential. PMID:29628597
Torres, Róbinson; López-Isaza, Sergio; Mejía-Mejía, Elisa; Paniagua, Viviana; González, Víctor
2017-01-01
Introduction An apnea episode is defined as the cessation of breathing for ≥15 seconds or as any suspension of breathing accompanied by hypoxia and bradycardia. Obtaining information about the respiratory system in a neonate can be accomplished using electromyography signals from the diaphragm muscle. Objective The purpose of this paper is to illustrate a method by which the respiratory and electrocardiographic signals from neonates can be obtained using diaphragmatic electromyography. Materials and methods The system was developed using single-supply, micropower components, which deliver a low-power consumption system appropriate for the development of portable devices. The stages of the system were tested in both adult and neonate patients. Results The system delivers signals as those expected in both patients and allows the acquisition of respiratory signals directly from the diaphragmatic electromyography. Conclusion This low-power system may present a good alternative for monitoring the cardiac and respiratory activity in newborn babies, both in the hospital and at home. Significance The system delivers good signals but needs to be validated for its use in neonates. It is being used in the Neonatal Intensive Care Unit of the Hospital General de Medellín Luz Castro de Gutiérrez. PMID:28260954
Hydroponic system design with real time OS based on ARM Cortex-M microcontroller
NASA Astrophysics Data System (ADS)
Atmadja, Wiedjaja; Liawatimena, Suryadiputra; Lukas, Jonathan; Nata, Eka Putra Leo; Alexander, Ivan
2017-12-01
Hydroponic is the process of growing plants without soil, plant root flooded or moist with nutrient-rich solutions in inert material. Hydroponics has become a reality for greenhouse growers in virtually all climates. Large hydroponic installations exist throughout the world for growing flowers, vegetables and some short period fruit like tomato and cucumber. In soilless culture, we must maintain stable pH and conductivity level of nutrient solution to make plant grow well, large variation of pH of certain time will poisoned plant. This paper describes development complete automation hydroponic system, from maintaining stable nutrient composition (conductivity and pH), grow light, and monitor plant environment such as CO2, temperature and humidity. The heart of our automation is ARM Cortex-M4 from ST Microelectronic running ARM mbed OS, the official Real Time Operating System (RTOS) for ARM Cortex-M microcontroller. Using RTOS gives us flexibility to have multithreaded process. Results show that system capable to control desired concentration level with variation of less than 3%, pH sensor show good accuracy 5.83% from pH value 3.23-10. Growing light intensity measurement show result 105 μmol/m2/s therefore we need turn on the light at least 17 hours/day to fulfil plant light requirement. RTOS give good performance with latency and jitter less than 15 us, system overall show good performance and accuracy for automating hydroponic plant in vegetative phase of growth.
Integrated System for Monitoring and Prevention in Obstetrics-Gynaecology.
Robu, Andreea; Gauca, Bianca; Crisan-Vida, Mihaela; Stoicu-Tivadar, Lăcrămioara
2016-01-01
A better monitoring of pregnant women, mainly during the third trimester of pregnancy and an easy communication between physician and patients are very important for the prevention and good health of baby and mother. The paper presents an integrated system as support for the Obstetrics - Gynaecology domain consisting in two modules: a mobile application, ObGynCare, dedicated to the pregnant women and a new component of the Obstetrics-Gynaecology Department Information System dedicated to the physicians for a better monitoring of the pregnant women. The mobile application informs the pregnant women about their status, permits them to introduce glycaemia and weight values and has as option pulse and blood pressure acquisition from a smart sensor and provides results in a graphic format. It also provides support for easy patient-doctor communication related to any health problems. ObGyn Care offers nutrition recommendations and gives the pregnant women the possibility to enter a social space of common interests using social networks (Facebook) to exchange useful and practical information. Data collected from patients and from sensor are stored on the cloud and the physician may access the information and analyse it. The extended module of the Obstetrics-Gynaecology Department Information System already developed supports the physicians to visualize weekly, monthly, or on a trimester, the patient data and to discuss with her through the chat module. The mobile application is in test by pregnant women and medical personnel.
Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System.
Ni, Jun; Yao, Lili; Zhang, Jingchao; Cao, Weixing; Zhu, Yan; Tai, Xiuxiang
2017-03-03
In view of the demand for a low-cost, high-throughput method for the continuous acquisition of crop growth information, this study describes a crop-growth monitoring system which uses an unmanned aerial vehicle (UAV) as an operating platform. The system is capable of real-time online acquisition of various major indexes, e.g., the normalized difference vegetation index (NDVI) of the crop canopy, ratio vegetation index (RVI), leaf nitrogen accumulation (LNA), leaf area index (LAI), and leaf dry weight (LDW). By carrying out three-dimensional numerical simulations based on computational fluid dynamics, spatial distributions were obtained for the UAV down-wash flow fields on the surface of the crop canopy. Based on the flow-field characteristics and geometrical dimensions, a UAV-borne crop-growth sensor was designed. Our field experiments show that the monitoring system has good dynamic stability and measurement accuracy over the range of operating altitudes of the sensor. The linear fitting determination coefficients (R²) for the output RVI value with respect to LNA, LAI, and LDW are 0.63, 0.69, and 0.66, respectively, and the Root-mean-square errors (RMSEs) are 1.42, 1.02 and 3.09, respectively. The equivalent figures for the output NDVI value are 0.60, 0.65, and 0.62 (LNA, LAI, and LDW, respectively) and the RMSEs are 1.44, 1.01 and 3.01, respectively.
Olola, C H O; Missinou, M A; Issifou, S; Anane-Sarpong, E; Abubakar, I; Gandi, J N; Chagomerana, M; Pinder, M; Agbenyega, T; Kremsner, P G; Newton, C R J C; Wypij, D; Taylor, T E
2006-01-01
Computers are widely used for data management in clinical trials in the developed countries, unlike in developing countries. Dependable systems are vital for data management, and medical decision making in clinical research. Monitoring and evaluation of data management is critical. In this paper we describe database structures and procedures of systems used to implement, coordinate, and sustain data management in Africa. We outline major lessons, challenges and successes achieved, and recommendations to improve medical informatics application in biomedical research in sub-Saharan Africa. A consortium of experienced research units at five sites in Africa in studying children with disease formed a new clinical trials network, Severe Malaria in African Children. In December 2000, the network introduced an observational study involving these hospital-based sites. After prototyping, relational database management systems were implemented for data entry and verification, data submission and quality assurance monitoring. Between 2000 and 2005, 25,858 patients were enrolled. Failure to meet data submission deadline and data entry errors correlated positively (correlation coefficient, r = 0.82), with more errors occurring when data was submitted late. Data submission lateness correlated inversely with hospital admissions (r = -0.62). Developing and sustaining dependable DBMS, ongoing modifications to optimize data management is crucial for clinical studies. Monitoring and communication systems are vital in multi-center networks for good data management. Data timeliness is associated with data quality and hospital admissions.
Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System
Ni, Jun; Yao, Lili; Zhang, Jingchao; Cao, Weixing; Zhu, Yan; Tai, Xiuxiang
2017-01-01
In view of the demand for a low-cost, high-throughput method for the continuous acquisition of crop growth information, this study describes a crop-growth monitoring system which uses an unmanned aerial vehicle (UAV) as an operating platform. The system is capable of real-time online acquisition of various major indexes, e.g., the normalized difference vegetation index (NDVI) of the crop canopy, ratio vegetation index (RVI), leaf nitrogen accumulation (LNA), leaf area index (LAI), and leaf dry weight (LDW). By carrying out three-dimensional numerical simulations based on computational fluid dynamics, spatial distributions were obtained for the UAV down-wash flow fields on the surface of the crop canopy. Based on the flow-field characteristics and geometrical dimensions, a UAV-borne crop-growth sensor was designed. Our field experiments show that the monitoring system has good dynamic stability and measurement accuracy over the range of operating altitudes of the sensor. The linear fitting determination coefficients (R2) for the output RVI value with respect to LNA, LAI, and LDW are 0.63, 0.69, and 0.66, respectively, and the Root-mean-square errors (RMSEs) are 1.42, 1.02 and 3.09, respectively. The equivalent figures for the output NDVI value are 0.60, 0.65, and 0.62 (LNA, LAI, and LDW, respectively) and the RMSEs are 1.44, 1.01 and 3.01, respectively. PMID:28273815
Are we on course for reporting on the Millennium Development Goals in 2015?
Rugg, Deborah; Marais, Hein; Carael, Michel; De Lay, Paul; Warner-Smith, Matthew
2009-12-01
At the 2001 United Nations General Assembly Special Session on HIV/AIDS (UNGASS), Member States agreed to regularly review progress made in national responses to HIV. This article provides (1) a brief overview of how the resultant global UNGASS reporting system was developed; (2) the origins, background, limitations and potential of that system; (3) an overview of the articles in this supplement; and (4) crosscutting institutional and methodological issues. United Nations Member States biennially provide The Joint United Nations Programme on HIV/AIDS (UNAIDS) with data on 25 core indicators of national responses to HIV, collected in Country Progress Reports. This article critically reviews and interprets these data in light of international political considerations and overall data needs. There has been a considerable improvement in response rates, accompanied by an increase in data quality and completeness. Both nationally and internationally, the UNGASS process is viewed as being more substantial and important than a reporting exercise to the United Nations General Assembly. The process has catalyzed the development of national monitoring systems and has created opportunities for civil society to monitor and challenge government commitments and deeds. Although the UNGASS global reporting system now comprises an unequaled wealth of data on HIV responses, collected from a broad range of countries, it cannot yet answer several critical questions about the progress and effectiveness of those responses. Evaluation studies that go beyond indicator monitoring are needed, but they will take time to design, fund, implement and interpret. In the meantime, this global monitoring system provides a good indication of the overall progress in the global response to HIV and whether Millennium Development Goal (MDG) 6 (to halt and reverse the HIV epidemic) is likely to be reached by 2015.
Measuring the arterial-induced skin vibration by geometrical moiré fringe
NASA Astrophysics Data System (ADS)
Chiu, Shih-Yung; Wang, Chun-Hsiung; Lee, Shu-Sheng; Wu, Wen-Jong; Hsu, Yu-Hsiang; Lee, Chih-Kung
2018-02-01
The demand for self-measured blood pressure self-monitoring device has much increased due to cardiovascular diseases have become leading causes of death for aging population. Currently, the primary non-invasive blood pressure monitoring method is cuff-based. It is well developed and accurate. However, the measuring process is not comfortable, and it cannot provide a continuous measurement. To overcome this problem, methods such as tonometry, volume clamp method, photoplethysmography, pulse wave velocity, and pulse transit time are reported. However, the limited accuracy hindered its application for diagnostics. To perform sequential blood pressure measurement with a high accuracy and long-term examination, we apply moiré interferometry to measure wrist skin vibration induced by radial artery. To achieve this goal, we developed a miniaturized device that can perform moiré interferometry around the wrist region. The 0.4-mm-pitched binary grating and tattoo sticker with 0.46 mm-pitched stripe pattern are used to perform geometric moiré. We demonstrated that the sensitivity and accuracy of this integrated system were sufficient to monitor arterialinduced skin vibration non-invasively. Our developed system was validated with ECG signals collected by a commercial system. According to our studies from measurement, the repeatability of wrist pulsation measurement was achieved with an accuracy of 99.1% in heart rate. A good repeatability of wrist pulse measurement was achieved. Simulations and experiments are both conducted in this paper and prove of geometrical moiré method a suitable technique for arterial-induced skin vibration monitoring.
Carrera, Adrián; Pifarré, Marc; Vilaplana, Jordi; Cuadrado, Josep; Solsona, Sara; Mateo, Jordi
2016-01-01
Summary Background Hypertension or high blood pressure is on the rise. Not only does it affect the elderly but is also increasingly spreading to younger sectors of the population. Treating this condition involves exhaustive monitoring of patients. The current mobile health services can be improved to perform this task more effectively. Objective To develop a useful, user-friendly, robust and efficient app, to monitor hypertensive patients and adapted to the particular requirements of hypertension. Methods This work presents BPcontrol, an Android and iOS app that allows hypertensive patients to communicate with their health-care centers, thus facilitating monitoring and diagnosis. Usability, robustness and efficiency factors for BPcontrol were evaluated for different devices and operating systems (Android, iOS and system-aware). Furthermore, its features were compared with other similar apps in the literature. Results BPcontrol is robust and user-friendly. The respective start-up efficiency of the Android and iOS versions of BPcontrol were 2.4 and 8.8 times faster than a system-aware app. Similar values were obtained for the communication efficiency (7.25 and 11.75 times faster for the Android and iOS respectively). When comparing plotting performance, BPcontrol was on average 2.25 times faster in the Android case. Most of the apps in the literature have no communication with a server, thus making it impossible to compare their performance with BPcontrol. Conclusions Its optimal design and the good behavior of its facilities make BPcontrol a very promising mobile app for monitoring hypertensive patients. PMID:27924346
NASA Astrophysics Data System (ADS)
Geng, T.
2015-12-01
Nowadays more and more high-rate Global Navigation Satellite Systems (GNSS) data become available in real time, which provide more opportunities to monitor the seismic waveforms. China's GNSS, BeiDou Navigation Satellite System (BDS), has already satisfied the requirement of stand-alone precise positioning in Asia-Pacific region with 14 in-orbit satellites, which promisingly suggests that BDS could be applied to the high-precision earthquake monitoring as GPS. In the present paper, real-time monitoring of seismic waveforms using BDS measurements is assessed. We investigate a so-called "variometric" approach to measure real-time seismic waveforms with high-rate BDS observations. This approach is based on time difference technique and standard broadcast products which are routinely available in real time. The 1HZ BDS data recorded by Beidou Experimental Tracking Stations (BETS) during the 2015 Mw 7.8 Nepal earthquake is analyzed. The results indicate that the accuracies of velocity estimation from BDS are 2-3 mm/s in horizontal components and 8-9 mm/s in vertical component, respectively, which are consistent with GPS. The seismic velocity waveforms during earthquake show good agreement between BDS and GPS. Moreover, the displacement waveforms is reconstructed by an integration of velocity time series with trend removal. The displacement waveforms with the accuracy of 1-2 cm are derived by comparing with post-processing GPS precise point positioning (PPP).
Positives and pathologies of natural resource management on private land-conservation areas.
Clements, Hayley S; Cumming, Graeme S
2017-06-01
In managed natural resource systems, such as fisheries and rangelands, there is a recognized trade-off between managing for short-term benefits and managing for longer term resilience. Management actions that stabilize ecological attributes or processes can improve productivity in the supply of ecosystem goods and services in the short term but erode system resilience at longer time scales. For example, fire suppression in rangelands can increase grass biomass initially but ultimately result in an undesirable, shrub-dominated system. Analyses of this phenomenon have focused largely on how management actions influence slow-changing biophysical system attributes (such as vegetation composition). Data on the frequency of management actions that reduce natural ecological variation on 66 private land-conservation areas (PLCAs) in South Africa were used to investigate how management actions are influenced by manager decision-making approaches, a largely ignored part of the problem. The pathology of natural resource management was evident on some PLCAs: increased focus on revenue-generation in decision making resulted in an increased frequency of actions to stabilize short-term variation in large mammal populations, which led to increased revenues from ecotourism or hunting. On many PLCAs, these management actions corresponded with a reduced focus on ecological monitoring and an increase in overstocking of game (i.e., ungulate species) and stocking of extralimitals (i.e., game species outside their historical range). Positives in natural resource management also existed. Some managers monitored slower changing ecological attributes, which resulted in less-intensive management, fewer extralimital species, and lower stocking rates. Our unique, empirical investigation of monitoring-management relationships illustrates that management decisions informed by revenue monitoring versus ecological monitoring can have opposing consequences for natural resource productivity and sustainability. Promoting management actions that maintain resilience in natural resource systems therefore requires cognizance of why managers act the way they do and how these actions can gradually shift managers toward unsustainable strategies. © 2016 Society for Conservation Biology.
Development of a Corrosion Sensor for AN Aircraft Vehicle Health Monitoring System
NASA Astrophysics Data System (ADS)
Scott, D. A.; Price, D. C.; Edwards, G. C.; Batten, A. B.; Kolmeder, J.; Muster, T. H.; Corrigan, P.; Cole, I. S.
2010-02-01
A Rayleigh-wave-based sensor has been developed to measure corrosion damage in aircraft. This sensor forms an important part of a corrosion monitoring system being developed for a major aircraft manufacturer. This system measures the corrosion rate at the location of its sensors, and through a model predicts the corrosion rates in nearby places on an aircraft into which no sensors can be placed. In order to calibrate this model, which yields corrosion rates rather than the accumulated effect, an absolute measure of the damage is required. In this paper the development of a surface wave sensor capable of measuring accumulated damage will be described in detail. This sensor allows the system to measure material loss due to corrosion regardless of the possible loss of historical corrosion rate data, and can provide, at any stage, a benchmark for the predictive model that would allow a good estimate of the accumulated corrosion damage in similar locations on an aircraft. This system may obviate the need for costly inspection of difficult-to-access places in aircraft, where presently the only way to check for corrosion is by periodic dismantling and reassembly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Andrena
The Ida H. Goode Gymnasium was constructed in 1964 to serve as a focal point for academics, student recreation, and health and wellness activities. This 38,000 SF building contains a gymnasium with a stage, swimming pool, eight classrooms, a weight room, six offices and auxiliary spaces for the athletic programs. The gym is located on a 4-acre greenfield, which is slated for improvement and enhancement to future athletics program at Bennett College. The available funding for this project was used to weatherize the envelope of the gymnasium, installation of a new energy-efficient mechanical system, and a retrofit of the existingmore » lighting systems in the building’s interior. The envelope weatherization was completed without disturbing the building’s historic preservation eligibility. The existing heating system was replaced with a new high efficiency condensing system. The new heating system also includes a new Building Automation System which provides additional monitoring. Proper usage of this system will provide additional energy savings. Most of the existing interior lighting fixtures and bulbs were replaced with new LED and high efficiency T-8 bulbs and fixtures. Occupancy sensors were installed in applicable areas. The Ida Goode Gymnasium should experience high electricity and natural gas savings as well as operational/maintenance efficiency increases. The aesthetics of the building was maintained and the overall safety was improved.« less
Looking inside the Ocean: Toward an Autonomous Imaging System for Monitoring Gelatinous Zooplankton
Corgnati, Lorenzo; Marini, Simone; Mazzei, Luca; Ottaviani, Ennio; Aliani, Stefano; Conversi, Alessandra; Griffa, Annalisa
2016-01-01
Marine plankton abundance and dynamics in the open and interior ocean is still an unknown field. The knowledge of gelatinous zooplankton distribution is especially challenging, because this type of plankton has a very fragile structure and cannot be directly sampled using traditional net based techniques. To overcome this shortcoming, Computer Vision techniques can be successfully used for the automatic monitoring of this group.This paper presents the GUARD1 imaging system, a low-cost stand-alone instrument for underwater image acquisition and recognition of gelatinous zooplankton, and discusses the performance of three different methodologies, Tikhonov Regularization, Support Vector Machines and Genetic Programming, that have been compared in order to select the one to be run onboard the system for the automatic recognition of gelatinous zooplankton. The performance comparison results highlight the high accuracy of the three methods in gelatinous zooplankton identification, showing their good capability in robustly selecting relevant features. In particular, Genetic Programming technique achieves the same performances of the other two methods by using a smaller set of features, thus being the most efficient in avoiding computationally consuming preprocessing stages, that is a crucial requirement for running on an autonomous imaging system designed for long lasting deployments, like the GUARD1. The Genetic Programming algorithm has been installed onboard the system, that has been operationally tested in a two-months survey in the Ligurian Sea, providing satisfactory results in terms of monitoring and recognition performances. PMID:27983638
Ricci, Francesco; Caprio, Felice; Poscia, Alessandro; Valgimigli, Francesco; Messeri, Dimitri; Lepori, Elena; Dall'Oglio, Giorgio; Palleschi, Giuseppe; Moscone, Danila
2007-04-15
Glucose biosensors based on the use of planar screen-printed electrodes modified with an electrochemical mediator and with glucose oxidase have been optimised for their application in the continuous glucose monitoring in diabetic patients. A full study of their operative stability and temperature dependence has been accomplished, thus giving useful information for in vivo applications. The effect of dissolved oxygen concentration in the working solution was also studied in order to evaluate its effect on the linearity of the sensors. Glucose monitoring performed with serum samples was performed to evaluate the effect of matrix components on operative stability and demonstrated an efficient behaviour for 72 h of continuous monitoring. Finally, these studies led to a sensor capable of detecting glucose at concentrations as low as 0.04 mM and with a good linearity up to 2.0 mM (at 37 degrees C) with an operative stability of ca. 72 h, thus demonstrating the possible application of these sensors for continuous glucose monitoring in conjunction with a microdialysis probe. Moreover, preliminary in vivo experiments for ca. 20 h have demonstrated the feasibility of this system.
Use of case-based reasoning to enhance intensive management of patients on insulin pump therapy.
Schwartz, Frank L; Shubrook, Jay H; Marling, Cynthia R
2008-07-01
This study was conducted to develop case-based decision support software to improve glucose control in patients with type 1 diabetes mellitus (T1DM) on insulin pump therapy. While the benefits of good glucose control are well known, achieving and maintaining good glucose control remains a difficult task. Case-based decision support software may assist by recalling past problems in glucose control and their associated therapeutic adjustments. Twenty patients with T1DM on insulin pumps were enrolled in a 6-week study. Subjects performed self-glucose monitoring and provided daily logs via the Internet, tracking insulin dosages, work, sleep, exercise, meals, stress, illness, menstrual cycles, infusion set changes, pump problems, hypoglycemic episodes, and other events. Subjects wore a continuous glucose monitoring system at weeks 1, 3, and 6. Clinical data were interpreted by physicians, who explained the relationship between life events and observed glucose patterns as well as treatment rationales to knowledge engineers. Knowledge engineers built a prototypical system that contained cases of problems in glucose control together with their associated solutions. Twelve patients completed the study. Fifty cases of clinical problems and solutions were developed and stored in a case base. The prototypical system detected 12 distinct types of clinical problems. It displayed the stored problems that are most similar to the problems detected, and offered learned solutions as decision support to the physician. This software can screen large volumes of clinical data and glucose levels from patients with T1DM, identify clinical problems, and offer solutions. It has potential application in managing all forms of diabetes.
Untoro, Juliawati; Childs, Rachel; Bose, Indira; Winichagoon, Pattanee; Rudert, Christiane; Hall, Andrew; de Pee, Saskia
2017-10-01
Adequate nutrient intake is a prerequisite for achieving good nutrition status. Suboptimal complementary feeding practices are a main risk factor for stunting. The need for systematic and user-friendly tools to guide the planning, implementation, monitoring, and evaluation of dietary interventions for children aged 6-23 months has been recognized. This paper describes five tools, namely, ProPAN, Optifood, Cost of the Diet, Fill the Nutrient Gap, and Monitoring Results for Equity System that can be used in different combinations to improve situation analysis, planning, implementation, monitoring, or evaluation approaches for complementary feeding in a particular context. ProPAN helps with development of strategies and activities designed to change the behaviours of the target population. Optifood provides guidance for developing food-based recommendations. The Cost of the Diet can provide insight on economic barriers to accessing a nutritious and balanced diet. The Fill the Nutrient Gap facilitates formulation of context-specific policies and programmatic approaches to improve nutrient intake, through a multistakeholder process that uses insights from linear programming and secondary data. The Monitoring Results for Equity System helps with analysis of gaps, constraints, and determinants of complementary feeding interventions and adoption of recommended practices especially in the most vulnerable and deprived populations. These tools, and support for their use, are readily available and can be used either alone and/or complementarily throughout the programme cycle to improve infant and young child-feeding programmes at subnational and national levels. © 2017 John Wiley & Sons Ltd.
Seto, Emily; Leonard, Kevin J; Masino, Caterina; Cafazzo, Joseph A; Barnsley, Jan; Ross, Heather J
2010-11-29
Mobile phone-based remote patient monitoring systems have been proposed for heart failure management because they are relatively inexpensive and enable patients to be monitored anywhere. However, little is known about whether patients and their health care providers are willing and able to use this technology. The objective of our study was to assess the attitudes of heart failure patients and their health care providers from a heart function clinic in a large urban teaching hospital toward the use of mobile phone-based remote monitoring. A questionnaire regarding attitudes toward home monitoring and technology was administered to 100 heart failure patients (94/100 returned a completed questionnaire). Semi-structured interviews were also conducted with 20 heart failure patients and 16 clinicians to determine the perceived benefits and barriers to using mobile phone-based remote monitoring, as well as their willingness and ability to use the technology. The survey results indicated that the patients were very comfortable using mobile phones (mean rating 4.5, SD 0.6, on a five-point Likert scale), even more so than with using computers (mean 4.1, SD 1.1). The difference in comfort level between mobile phones and computers was statistically significant (P< .001). Patients were also confident in using mobile phones to view health information (mean 4.4, SD 0.9). Patients and clinicians were willing to use the system as long as several conditions were met, including providing a system that was easy to use with clear tangible benefits, maintaining good patient-provider communication, and not increasing clinical workload. Clinicians cited several barriers to implementation of such a system, including lack of remuneration for telephone interactions with patients and medicolegal implications. Patients and clinicians want to use mobile phone-based remote monitoring and believe that they would be able to use the technology. However, they have several reservations, such as potential increased clinical workload, medicolegal issues, and difficulty of use for some patients due to lack of visual acuity or manual dexterity.
Design of Deformation Monitoring System for Volcano Mitigation
NASA Astrophysics Data System (ADS)
Islamy, M. R. F.; Salam, R. A.; Munir, M. M.; Irsyam, M.; Khairurrijal
2016-08-01
Indonesia has many active volcanoes that are potentially disastrous. It needs good mitigation systems to prevent victims and to reduce casualties from potential disaster caused by volcanoes eruption. Therefore, the system to monitor the deformation of volcano was built. This system employed telemetry with the combination of Radio Frequency (RF) communications of XBEE and General Packet Radio Service (GPRS) communication of SIM900. There are two types of modules in this system, first is the coordinator as a parent and second is the node as a child. Each node was connected to coordinator forming a Wireless Sensor Network (WSN) with a star topology and it has an inclinometer based sensor, a Global Positioning System (GPS), and an XBEE module. The coordinator collects data to each node, one a time, to prevent collision data between nodes, save data to SD Card and transmit data to web server via GPRS. Inclinometer was calibrated with self-built in calibrator and tested in high temperature environment to check the durability. The GPS was tested by displaying its position in web server via Google Map Application Protocol Interface (API v.3). It was shown that the coordinator can receive and transmit data from every node to web server very well and the system works well in a high temperature environment.
Aarons, Gregory A; Sommerfeld, David H; Hecht, Debra B; Silovsky, Jane F; Chaffin, Mark J
2009-04-01
Staff retention is an ongoing challenge in mental health and community-based service organizations. Little is known about the impact of evidence-based practice implementation on the mental health and social service workforce. The present study examined the effect of evidence-based practice implementation and ongoing fidelity monitoring on staff retention in a children's services system. The study took place in the context of a statewide, regionally randomized effectiveness trial of an evidence-based intervention designed to reduce child neglect. In the study 21 teams consisting of 153 home-based service providers were followed over a 29-month period. Survival analyses revealed greater staff retention in the condition where the evidence-based practice was implemented along with ongoing fidelity monitoring presented to staff as supportive consultation. These results should help to allay concerns about staff retention when implementing evidence-based practices where there is good values-innovation fit and when fidelity monitoring is designed as an aid and support to service providers in providing a high standard of care for children and families.
Aarons, Gregory A.; Sommerfeld, David H.; Hecht, Debra B.; Silovsky, Jane F.; Chaffin, Mark J.
2009-01-01
Staff retention is an ongoing challenge in mental health and community-based service organizations. Little is known about the impact of evidence-based practice implementation on the mental health and social service workforce. The present study examined the effect of evidence-based practice implementation and ongoing fidelity monitoring on staff retention in a children’s services system. The study took place in the context of a statewide regionally randomized effectiveness trial of an evidence-based intervention designed to reduce child neglect. Twenty-one teams consisting of 153 home-based service providers were followed over a 29 month period. Survival analyses revealed greater staff retention in the condition where the evidence-based practice was implemented along with ongoing fidelity monitoring presented to staff as supportive consultation. These results should help to allay concerns about staff retention when implementing evidence-based practices where there is good values-innovation fit and when fidelity monitoring is designed as an aid and support to service providers in providing a high standard of care for children and families. PMID:19309186
NASA Astrophysics Data System (ADS)
Lee, Songhyun; Kim, Jae Gwan
2018-04-01
Continuous wave diffuse optical tomographic/spectroscopic system does not provide absolute concentrations of chromophores in tissue and monitor only the changes of chromophore concentration. Therefore, it requires a perturbation of physiological signals, such as blood flow and oxygenation. In that sense, a few groups reported that monitoring a relative hemodynamic change during a breast tissue compression or a breath-hold to a patient can provide good contrast between tumor and nontumor. However, no longitudinal study reports the utilization of a breath-hold to predict tumor response during chemotherapy. A continuous wave near-infrared spectroscopy was employed to monitor hemodynamics in rat breast tumor during a hyperoxic to normoxic inhalational gas intervention to mimic a breath-hold during tumor growth and chemotherapy. The reduced oxyhemoglobin concentration during inhalational gas intervention correlated well with tumor growth, and it responded one day earlier than the change of tumor volume after chemotherapy. In conclusion, monitoring tumor hemodynamics during a breath-hold may serve as a biomarker to predict chemotherapeutic efficacy of tumor.
Pasler, Marlies; Michel, Kilian; Marrazzo, Livia; Obenland, Michael; Pallotta, Stefania; Björnsgard, Mari; Lutterbach, Johannes
2017-09-01
The purpose of this study was to characterize a new single large-area ionization chamber, the integral quality monitor system (iRT, Germany), for online and real-time beam monitoring. Signal stability, monitor unit (MU) linearity and dose rate dependence were investigated for static and arc deliveries and compared to independent ionization chamber measurements. The dose verification capability of the transmission detector system was evaluated by comparing calculated and measured detector signals for 15 volumetric modulated arc therapy plans. The error detection sensitivity was tested by introducing MLC position and linac output errors. Deviations in dose distributions between the original and error-induced plans were compared in terms of detector signal deviation, dose-volume histogram (DVH) metrics and 2D γ-evaluation (2%/2 mm and 3%/3 mm). The detector signal is linearly dependent on linac output and shows negligible (<0.4%) dose rate dependence up to 460 MU min -1 . Signal stability is within 1% for cumulative detector output; substantial variations were observed for the segment-by-segment signal. Calculated versus measured cumulative signal deviations ranged from -0.16%-2.25%. DVH, mean 2D γ-value and detector signal evaluations showed increasing deviations with regard to the respective reference with growing MLC and dose output errors; good correlation between DVH metrics and detector signal deviation was found (e.g. PTV D mean : R 2 = 0.97). Positional MLC errors of 1 mm and errors in linac output of 2% were identified with the transmission detector system. The extensive tests performed in this investigation show that the new transmission detector provides a stable and sensitive cumulative signal output and is suitable for beam monitoring during patient treatment.
NASA Astrophysics Data System (ADS)
Chkhaidze, D.; Basilaia, G.; Elashvili, M.; Shishlov, D.; Bidzinashvili, G.
2012-12-01
Caucasus and Central Asia represents regions of high seismic activity, composing a significant part of Alpine-Himalayan continental collision zone. Natural catastrophic events cause significant damage to the infrastructure worldwide, among these approximately ninety percent of the annual loss is due to earthquakes. Monitoring of Seismic Activity in these regions and adequate assessment of Seismic Hazards represents indispensible condition for safe and stable development. Existence of critical engineering constructions in the Caucasus and Central Asia such as oil and gas pipelines, high dams and nuclear power plants dramatically raises risks associated with natural hazards and eliminates necessity of proper monitoring systems. Our initial efforts were focused on areas that we are most familiar; the geophysical community in the greater Caucuses and Central Asia experiencing many of the same problems with the monitoring equipment. As a result, during the past years GMSys2009 was develop at the Institute of Earth Sciences of Ilia State University. Equipment represents a cost-effective, multifunctional Geophysical Data Acquisition System (DAS) to monitor seismic waves propagating in the earth and related geophysical parameters. Equipment best fits local requirements concerning power management, environmental protection and functionality, the same time competing commercial units available on the market. During past several years more than 30 units were assembled and what is most important installed in Georgia, Armenia, Azerbaijan and Tajikistan. GMSys2009 utilizes standard MiniSEED data format and data transmission protocols, making it possible online waveform data sharing between the neighboring Countries in the region and international community. All the mentioned installations were technically supported by the group of engineers from the Institute of Earth Sciences, on site trainings for local personnel in Armenia, Azerbaijan and Tajikistan was provided creating a good basis for successful functioning of the equipment.
NASA Astrophysics Data System (ADS)
Pasler, Marlies; Michel, Kilian; Marrazzo, Livia; Obenland, Michael; Pallotta, Stefania; Björnsgard, Mari; Lutterbach, Johannes
2017-09-01
The purpose of this study was to characterize a new single large-area ionization chamber, the integral quality monitor system (iRT, Germany), for online and real-time beam monitoring. Signal stability, monitor unit (MU) linearity and dose rate dependence were investigated for static and arc deliveries and compared to independent ionization chamber measurements. The dose verification capability of the transmission detector system was evaluated by comparing calculated and measured detector signals for 15 volumetric modulated arc therapy plans. The error detection sensitivity was tested by introducing MLC position and linac output errors. Deviations in dose distributions between the original and error-induced plans were compared in terms of detector signal deviation, dose-volume histogram (DVH) metrics and 2D γ-evaluation (2%/2 mm and 3%/3 mm). The detector signal is linearly dependent on linac output and shows negligible (<0.4%) dose rate dependence up to 460 MU min-1. Signal stability is within 1% for cumulative detector output; substantial variations were observed for the segment-by-segment signal. Calculated versus measured cumulative signal deviations ranged from -0.16%-2.25%. DVH, mean 2D γ-value and detector signal evaluations showed increasing deviations with regard to the respective reference with growing MLC and dose output errors; good correlation between DVH metrics and detector signal deviation was found (e.g. PTV D mean: R 2 = 0.97). Positional MLC errors of 1 mm and errors in linac output of 2% were identified with the transmission detector system. The extensive tests performed in this investigation show that the new transmission detector provides a stable and sensitive cumulative signal output and is suitable for beam monitoring during patient treatment.
2017-09-01
models has been evaluated, with one good option, the Py230 cell lines, as our choice for use in future studies . We have conducted the first study ... Study of Progressive Resistance Major Task 6: dDOS fabrication Subtask 15: Design /Fabricate dDOS system and new custom dDOS probe 6-24 Dr...until year 3 of the study , based on current accrual trends with our clinical collaborators at the Boston Medical Center for different projects, the
Study of a safety margin system for powered-lift STOL aircraft
NASA Technical Reports Server (NTRS)
Heffley, R. K.; Jewell, W. F.
1978-01-01
A study was conducted to explore the feasibility of a safety margin system for powered-lift aircraft which require a backside piloting technique. The objective of the safety margin system was to present multiple safety margin criteria as a single variable which could be tracked manually or automatically and which could be monitored for the purpose of deriving safety margin status. The study involved a pilot-in-the-loop analysis of several safety margin system concepts and a simulation experiment to evaluate those concepts which showed promise of providing a good solution. A system was ultimately configured which offered reasonable compromises in controllability, status information content, and the ability to regulate the safety margin at some expense of the allowable low speed flight path envelope.
Bioelectric Signal Measuring System
NASA Astrophysics Data System (ADS)
Guadarrama-Santana, A.; Pólo-Parada, L.; García-Valenzuela, A.
2015-01-01
We describe a low noise measuring system based on interdigitated electrodes for sensing bioelectrical signals. The system registers differential voltage measurements in order of microvolts. The base noise during measurements was in nanovolts and thus, the sensing signals presented a very good signal to noise ratio. An excitation voltage of 1Vrms with 10 KHz frequency was applied to an interdigitated capacitive sensor without a material under test and to a mirror device simultaneously. The output signals of both devices was then subtracted in order to obtain an initial reference value near cero volts and reduce parasitic capacitances due to the electronics, wiring and system hardware as well. The response of the measuring system was characterized by monitoring temporal bioelectrical signals in real time of biological materials such as embryo chicken heart cells and bovine suprarenal gland cells.
NASA Astrophysics Data System (ADS)
Godavarthi, Bhavana; Nalajala, Paparao; Ganapuram, Vasavi
2017-08-01
Advanced vehicle monitoring and tracking system based on embedded Linux board and android application is designed and implemented for monitoring the school vehicle from any location A to location B at real time. The present system would make good use of new technology that based on embedded Linux namely Raspberry Pi and Smartphone android application. This system works on GPS/GPRS/GSM SIM900A. GPS finds the current location of the vehicle, GPRS sends the tracking information to the server and the GSM is used for sending alert message to vehicle’s owner mobile. This system is placed inside the vehicle whose position is to be determined on the web page and monitored at real time. There is a comparison between the current vehicle path already specified paths into the file system. Inside the raspberry pi’s file system taken from vehicle owners through android phone using android application. Means the selection of path from location A to B takes place from vehicle owner’s android application which gives more safety and secures traveling to the traveler. Hence the driver drives the vehicle only on the vehicle owner’s specified path. The driver drives the vehicle only on the vehicle owner’s specified path but if the driver drives in wrong path the message alert will be sent from this system to the vehicle owners mobile and also sent speakers alert to driver through audio jack. If the vehicles speed goes beyond the specified value of the speed, then warning message will be sent to owner mobile. This system also takes care of the traveler’s safety by using Gas leakage and Temperature sensors
Comparative analysis of three different methods for monitoring the use of green bridges by wildlife.
Gužvica, Goran; Bošnjak, Ivana; Bielen, Ana; Babić, Danijel; Radanović-Gužvica, Biserka; Šver, Lidija
2014-01-01
Green bridges are used to decrease highly negative impact of roads/highways on wildlife populations and their effectiveness is evaluated by various monitoring methods. Based on the 3-year monitoring of four Croatian green bridges, we compared the effectiveness of three indirect monitoring methods: track-pads, camera traps and active infrared (IR) trail monitoring system. The ability of the methods to detect different species and to give good estimation of number of animal crossings was analyzed. The accuracy of species detection by track-pad method was influenced by granulometric composition of track-pad material, with the best results obtained with higher percentage of silt and clay. We compared the species composition determined by track-pad and camera trap methods and found that monitoring by tracks underestimated the ratio of small canids, while camera traps underestimated the ratio of roe deer. Regarding total number of recorder events, active IR detectors recorded from 11 to 19 times more events then camera traps and app. 80% of them were not caused by animal crossings. Camera trap method underestimated the real number of total events. Therefore, an algorithm for filtration of the IR dataset was developed for approximation of the real number of crossings. Presented results are valuable for future monitoring of wildlife crossings in Croatia and elsewhere, since advantages and disadvantages of used monitoring methods are shown. In conclusion, different methods should be chosen/combined depending on the aims of the particular monitoring study.
Modelling real-time control of WWTP influent flow under data scarcity.
Kroll, Stefan; Dirckx, Geert; Donckels, Brecht M R; Van Dorpe, Mieke; Weemaes, Marjoleine; Willems, Patrick
2016-01-01
In order to comply with effluent standards, wastewater operators need to avoid hydraulic overloading of the wastewater treatment plant (WWTP), as this can result in the washout of activated sludge from secondary settling tanks. Hydraulic overloading can occur in a systematic way, for instance when sewer network connections are extended without increasing the WWTP's capacity accordingly. This study demonstrates the use of rule-based real-time control (RTC) to reduce the load to the WWTP while restricting the overall overflow volume of the sewer system to a minimum. Further, it shows the added value of RTC despite the limited availability of monitoring data and information on the catchment through a parsimonious simulation approach, using relocation of spatial system boundaries and creating required input data through reverse modelling. Focus was hereby on the accurate modelling of pump hydraulics and control. Finally, two different methods of global sensitivity analysis were employed to verify the influence of parameters of both the model and the implemented control algorithm. Both methods show the importance of good knowledge of the system properties, but that monitoring errors play a minor role.
Profile parameters of wheelset detection for high speed freight train
NASA Astrophysics Data System (ADS)
Yang, Kai; Ma, Li; Gao, Xiaorong; Wang, Li
2012-04-01
Because of freight train, in China, transports goods on railway freight line throughout the country, it does not depart from or return to engine shed during a long phase, thus we cannot monitor the quality of wheel set effectively. This paper provides a system which uses leaser and high speed camera, applies no-contact light section technology to get precise wheel set profile parameters. The paper employs clamping-track method to avoid complex railway ballast modification project. And detailed descript an improved image-tracking algorithm to extract central line from profile curve. For getting one pixel width and continuous line of the profile curve, uses local gray maximum points as direction control points to direct tracking direction. The results based on practical experiment show the system adapted to detection environment of high speed and high vibration, and it can effectively detect the wheelset geometric parameters with high accuracy. The system fills the gaps in wheel set detection for freight train in main line and has an enlightening function on monitoring the quality of wheel set.
Prospects for the use of animal cell cultures in screening of pharmaceutical substances
NASA Astrophysics Data System (ADS)
Kolesnikova, S. G.; Moiseeva, I. Y.
2017-01-01
Currently, there is a tendency to reduce the use of animals in conducting safety tests of chemical substances. Therefore, in vitro methods are a good alternative or adjunct to in vivo safety tests. This is especially important at the stage of pre-clinical drug trial. In 2004, the international standard for the principles of good laboratory practice (GLP) [1] was adopted which regulates chemicals trials in cell cultures. However, in Russia, until recently, this issue has been neglected. Research works have been scarce. In 2013, the standard for GLP principles and compliance monitoring was adopted in Russia [2]. The feasibility of using animal cell cultures as drug testing system has been proved by the experimental base and is now being introduced into practice [3].
Karunakaran, Chithra; Lahlali, Rachid; Zhu, Ning; Webb, Adam M.; Schmidt, Marina; Fransishyn, Kyle; Belev, George; Wysokinski, Tomasz; Olson, Jeremy; Cooper, David M. L.; Hallin, Emil
2015-01-01
Minimally invasive investigation of plant parts (root, stem, leaves, and flower) has good potential to elucidate the dynamics of plant growth, morphology, physiology, and root-rhizosphere interactions. Laboratory based absorption X-ray imaging and computed tomography (CT) systems are extensively used for in situ feasibility studies of plants grown in natural and artificial soil. These techniques have challenges such as low contrast between soil pore space and roots, long X-ray imaging time, and low spatial resolution. In this study, the use of synchrotron (SR) based phase contrast X-ray imaging (PCI) has been demonstrated as a minimally invasive technique for imaging plants. Above ground plant parts and roots of 10 day old canola and wheat seedlings grown in sandy clay loam soil were successfully scanned and reconstructed. Results confirmed that SR-PCI can deliver good quality images to study dynamic and real time processes such as cavitation and water-refilling in plants. The advantages of SR-PCI, effect of X-ray energy, and effective pixel size to study plant samples have been demonstrated. The use of contrast agents to monitor physiological processes in plants was also investigated and discussed. PMID:26183486
Hickey, M; Samuels, N; Randive, N; Langford, R; Kyriacou, P A
2012-12-01
A new, continuous method of monitoring splanchnic organ oxygen saturation (SpO(2)) would make the early detection of inadequate tissue oxygenation feasible, reducing the risk of hypoperfusion, severe ischaemia, and, ultimately, death. In an attempt to provide such a device, a new fibre optic based reflectance pulse oximeter probe and processing system were developed followed by an in vivo evaluation of the technology on seventeen patients undergoing elective laparotomy. Photoplethysmographic (PPG) signals of good quality and high signal-to-noise ratio were obtained from the small bowel, large bowel, liver and stomach. Simultaneous peripheral PPG signals from the finger were also obtained for comparison purposes. Analysis of the amplitudes of all acquired PPG signals indicated much larger amplitudes for those signals obtained from splanchnic organs than those obtained from the finger. Estimated SpO(2) values for splanchnic organs showed good agreement with those obtained from the finger fibre optic probe and those obtained from a commercial device. These preliminary results suggest that a miniaturized 'indwelling' fibre optic sensor may be a suitable method for pre-operative and post-operative evaluation of splanchnic organ SpO(2) and their health. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Ten good reasons why everybody can and should perform cardiac ultrasound in the ICU.
Charron, Cyril; Repessé, Xavier; Bodson, Laurent; Au, Siu-Ming; Vieillard-Baron, Antoine
2014-01-01
Critical care ultrasonography (CCUS) has been defined as an ultrasound evaluation of the heart, abdomen, pleura and lungs at the bedside by the intensivist, 24/7. Within CCUS, critical care echocardiography (CCE) is used to assess cardiac function and more generally haemodynamics. Experts in haemodynamics have published a 'consensus of 16' regarding an update on haemodynamic monitoring. They reported the ten key properties of an 'ideal' haemodynamic monitoring system, which perfectly match the ten good reasons we describe here for performing CCE in critically ill patients. Even though unfortunately no evidence-based medicine study is available to support this review, especially regarding CCE-related improvement of outcome, many clinical studies have demonstrated that CCE provides measurements of relevant, accurate, reproducible and interpretable variables, is easy to use, readily available, has a rapid response time, causes no harm, and is cost-effective. Whether it is operator-independent is obviously more debatable and is discussed in this review. All these characteristics are arguments for the extensive use of CCE by intensivists. This is why experts in the field have recommended that a basic level of CCE should be included in the training of all intensivists.
Suba, Dávid; Urbányi, Zoltán; Salgó, András
2016-10-01
Capillary electrophoresis techniques are widely used in the analytical biotechnology. Different electrophoretic techniques are very adequate tools to monitor size-and charge heterogenities of protein drugs. Method descriptions and development studies of capillary zone electrophoresis (CZE) have been described in literature. Most of them are performed based on the classical one-factor-at-time (OFAT) approach. In this study a very simple method development approach is described for capillary zone electrophoresis: a "two-phase-four-step" approach is introduced which allows a rapid, iterative method development process and can be a good platform for CZE method. In every step the current analytical target profile and an appropriate control strategy were established to monitor the current stage of development. A very good platform was established to investigate intact and digested protein samples. Commercially available monoclonal antibody was chosen as model protein for the method development study. The CZE method was qualificated after the development process and the results were presented. The analytical system stability was represented by the calculated RSD% value of area percentage and migration time of the selected peaks (<0.8% and <5%) during the intermediate precision investigation. Copyright © 2016 Elsevier B.V. All rights reserved.
Veiga, Puri; Torres, Ana Catarina; Aneiros, Fernando; Sousa-Pinto, Isabel; Troncoso, Jesús S; Rubal, Marcos
2016-09-01
Spatial variability of environmental factors and macrobenthos, using species and functional groups, was examined over the same scales (100s of cm to >100 km) in intertidal sediments of two transitional water systems. The objectives were to test if functional groups were a good species surrogate and explore the relationship between environmental variables and macrobenthos. Environmental variables, diversity and the multivariate assemblage structure showed the highest variability at the scale of 10s of km. However, abundance was more variable at 10s of m. Consistent patterns were achieved using species and functional groups therefore, these may be a good species surrogate. Total carbon, salinity and silt/clay were the strongest correlated with macrobenthic assemblages. Results are valuable for design and interpretation of future monitoring programs including detection of anthropogenic disturbances in transitional systems and propose improvements in environmental variable sampling to refine the assessment of their relationship with biological data across spatial scales. Copyright © 2016 Elsevier Ltd. All rights reserved.
Design of novel non-contact multimedia controller for disability by using visual stimulus.
Pan, Jeng-Shyang; Lo, Chi-Chun; Tsai, Shang-Ho; Lin, Bor-Shyh
2015-12-01
The design of a novel non-contact multimedia controller is proposed in this study. Nowadays, multimedia controllers are generally used by patients and nursing assistants in the hospital. Conventional multimedia controllers usually involve in manual operation or other physical movements. However, it is more difficult for the disabled patients to operate the conventional multimedia controller by themselves; they might totally depend on others. Different from other multimedia controllers, the proposed system provides a novel concept of controlling multimedia via visual stimuli, without manual operation. The disabled patients can easily operate the proposed multimedia system by focusing on the control icons of a visual stimulus device, where a commercial tablet is used as the visual stimulus device. Moreover, a wearable and wireless electroencephalogram (EEG) acquisition device is also designed and implemented to easily monitor the user's EEG signals in daily life. Finally, the proposed system has been validated. The experimental result shows that the proposed system can effectively measure and extract the EEG feature related to visual stimuli, and its information transfer rate is also good. Therefore, the proposed non-contact multimedia controller exactly provides a good prototype of novel multimedia controlling scheme. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gargallo, Ana; Arines, Justo
2014-08-01
We have adapted low cost webcams to the slit lamps objectives with the aim of improving contact lens fitting practice. With this solution we obtain good quality pictures and videos, we also recorded videos of eye examination, evaluation routines of contact lens fitting, and the final practice exam of our students. In addition, the video system increases the interactions between students because they could see what their colleagues are doing and take conscious of their mistakes, helping and correcting each others. We think that the proposed system is a low cost solution for supporting the training in contact lens fitting practice.
Berardo, Mattia; Lo Presti, Letizia
2016-07-02
In this work, a novel signal processing method is proposed to assist the Receiver Autonomous Integrity Monitoring (RAIM) module used in a receiver of Global Navigation Satellite Systems (GNSS) to improve the integrity of the estimated position. The proposed technique represents an evolution of the Multipath Distance Detector (MPDD), thanks to the introduction of a Signal Quality Index (SQI), which is both a metric able to evaluate the goodness of the signal, and a parameter used to improve the performance of the RAIM modules. Simulation results show the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Wu, Huijuan; Sun, Zhenshi; Qian, Ya; Zhang, Tao; Rao, Yunjiang
2015-07-01
A hydrostatic leak test for water pipeline with a distributed optical fiber vibration sensing (DOVS) system based on the phase-sensitive OTDR technology is studied in this paper. By monitoring one end of a common communication optical fiber cable, which is laid in the inner wall of the pipe, we can detect and locate the water leakages easily. Different apertures under different pressures are tested and it shows that the DOVS has good responses when the aperture is equal or larger than 4 mm and the inner pressure reaches 0.2 Mpa for a steel pipe with DN 91cm×EN 2cm.
Architects, unlike engineers, see solar as bread-and-butter issue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinly, D.R.
Neither the National Society of Professional Engineers nor the American Consulting Engineers Council has lobbied to increase the solar tax credits. But, promoting solar is good business. The American Institute of Architects is not in favor of tax credits for active systems, correctly perceiving the architects' main chance for fees is in passive solar design. The engineering groups have not monitored solar legislation closely, but AIA has presented testimony in favor of subsidies for passive solar energy programs, which until recently had been left out. New money that is available for passive solar systems and the attitude toward solar aremore » discussed. (MCW)« less
Optical signal monitoring in phase modulated optical fiber transmission systems
NASA Astrophysics Data System (ADS)
Zhao, Jian
Optical performance monitoring (OPM) is one of the essential functions for future high speed optical networks. Among the parameters to be monitored, chromatic dispersion (CD) is especially important since it has a significant impact on overall system performance. In this thesis effective CD monitoring approaches for phase-shift keying (PSK) based optical transmission systems are investigated. A number of monitoring schemes based on radio frequency (RF) spectrum analysis and delay-tap sampling are proposed and their performance evaluated. A method for dispersion monitoring of differential phase-shift keying (DPSK) signals based on RF power detection is studied. The RF power spectrum is found to increase with the increase of CD and decrease with polarization mode dispersion (PMD). The spectral power density dependence on CD is studied theoretically and then verified through simulations and experiments. The monitoring sensitivity for nonreturn-to-zero differential phase-shift keying (NRZ-DPSK) and return-to-zero differential phase-shift keying (RZ-DPSK) based systems can reach 80ps/nm/dB and 34ps/nm/dB respectively. The scheme enables the monitoring of differential group delay (DGD) and CD simultaneously. The monitoring sensitivity of CD and DGD can reach 56.7ps/nm/dB and 3.1ps/dB using a bandpass filter. The effects of optical signal-to-noise ratio (OSNR), DGD, fiber nonlinearity and chirp on the monitoring results are investigated. Two RF pilot tones are employed for CD monitoring of DPSK signals. Specially selected pilot tone frequencies enable good monitoring sensitivity with minimum influence on the received signals. The dynamic range exceeding 35dB and monitoring sensitivity up to 9.5ps/nm/dB are achieved. Asynchronous sampling technique is employed for CD monitoring. A signed CD monitoring method for 10Gb/s NRZ-DPSK and RZ-DPSK systems using asynchronous delay-tap sampling technique is studied. The demodulated signals suffer asymmetric waveform distortion if there is a phase error (Deltaphi) in the delay interferometer (DI) and in the presence of residual CD. Using delay-tap sampling the scatter plots can reflect this signal distortion through their asymmetric characteristics. A distance ratio (DR) is defined to represent the change of the scatter plots which is directly related to the accumulated CD. The monitoring range can be up to +/-400ps/nm and to +/-720ps/nm for 10Gb/s NRZ-DPSK and RZ-DPSK signals with 450 phase error in DI. The monitoring sensitivity reaches +/-8ps/nm and CD polarity discrimination is realized. It is found that the signal degradation is related to the increment of the absolute value of CD or phase mismatch. The effect of different polarities of phase error on CD monitoring is also analyzed. The shoulders location depends on the sign of the product DLDeltaphi. If DLDeltaphi > 0, the shoulder will appear on trailing edge else the shoulder will appear on leading edge when DLDeltaphi < 0. The analysis shows that the phase error is identical to the frequency offset of optical source so a signed frequency offset monitoring is also demonstrated. The monitoring results show that the monitoring range can reach +/-2.2GHz and the monitoring sensitivity is around 27MHz. The effect of nonlinearity, OSNR and bandwidth of the lowpass filter on the proposed monitoring method has also been studied. The signed CD monitoring for 100Gb/s carrier suppressed return-to-zero differential quadrature phase-shift keying (CSRZ-DQPSK) system based on the delay-tap sampling technology is demonstrated. The monitoring range and monitoring resolution can goes up to +/-32ps/nm and +/-8ps/nm, respectively. A signed CD and optical carrier wavelength monitoring scheme using cross-correlation method for on-off keying (00K) wavelength division multiplexing (WDM) system is proposed and demonstrated. CD monitoring sensitivity is high and can be less than 10% of the bit period. Wavelength monitoring is implemented using the proposed approach. The monitoring results show that the sensitivity can reach up to 1.37ps/GHz.
EDITORIAL: Sensors and sensing systems
NASA Astrophysics Data System (ADS)
Dewhurst, Richard; Tian, Gui Yun
2008-02-01
Sensors are very important for measurement science and technology. They serve as a vital component in new measurement techniques and instrumentation systems. Key qualities of a good sensor system are high resolution, high reliability, low cost, appropriate output for a given input (good sensitivity), rapid response time, small random error in results, and small systematic error. Linearity is also useful, but with the advent of lookup tables and software, it is not as important as it used to be. In the last several years, considerable effort around the world has been devoted to a wide range of sensors from nanoscale sensors to sensor networks. Collectively, these vast and multidisciplinary efforts are developing important technological roadmaps to futuristic sensors with new modalities, significantly enhanced effectiveness and integrated functionality (data processing, computation, decision making and communications). When properly organized, they will have important relevance to life science and security applications, e.g. the sensing and monitoring of chemical, biological, radiological and explosive threats. A special feature in this issue takes a snapshot of some recent developments that were first presented at an international conference, the 2007 IEEE International Conference on Networking, Sensing and Control (ICNSC). The conference discussed recent developments, from which a few papers have since been brought together in this special feature. Gas sensing for environmental monitoring remains a topical subject, and two papers deal with this issue. One is concerned with the exploitation of nanostructured Au-doped cobalt oxyhydroxide-based carbon monoxide sensors for fire detection at its earlier stages (Zhuiykov and Dowling), whilst another examines the role of oxygen in high temperature hydrogen sulfide detection using MISiC sensors (Weng et al). Again for environmental monitoring, another paper deals with accurate sound source localization in a reverberant environment using multiple acoustic sensors (Atmoko et al). Not only is gaseous monitoring important, there are particular difficulties when it comes to the continuous monitoring of solids by non-destructive evaluation techniques. Examples of potential solutions for specialist applications are sensors for the detection and measurement of thin dielectric layers using reflection of frequency-scanned millimetre electromagnetic waves (Bowring et al), and an electrostatic sensor for velocity measurements of pneumatically conveyed solid particles (Xu et al). For potential medical applications, position measurement of internal organs is an on-going challenge. Tracking of internal organ motion with a six degree-of-freedom MEMS sensor is discussed by Bandala and Joyce. We hope that these papers provide an insight into exciting developments that continue to take place in the field of sensors and control.
Storage element performance optimization for CMS analysis jobs
NASA Astrophysics Data System (ADS)
Behrmann, G.; Dahlblom, J.; Guldmyr, J.; Happonen, K.; Lindén, T.
2012-12-01
Tier-2 computing sites in the Worldwide Large Hadron Collider Computing Grid (WLCG) host CPU-resources (Compute Element, CE) and storage resources (Storage Element, SE). The vast amount of data that needs to processed from the Large Hadron Collider (LHC) experiments requires good and efficient use of the available resources. Having a good CPU efficiency for the end users analysis jobs requires that the performance of the storage system is able to scale with I/O requests from hundreds or even thousands of simultaneous jobs. In this presentation we report on the work on improving the SE performance at the Helsinki Institute of Physics (HIP) Tier-2 used for the Compact Muon Experiment (CMS) at the LHC. Statistics from CMS grid jobs are collected and stored in the CMS Dashboard for further analysis, which allows for easy performance monitoring by the sites and by the CMS collaboration. As part of the monitoring framework CMS uses the JobRobot which sends every four hours 100 analysis jobs to each site. CMS also uses the HammerCloud tool for site monitoring and stress testing and it has replaced the JobRobot. The performance of the analysis workflow submitted with JobRobot or HammerCloud can be used to track the performance due to site configuration changes, since the analysis workflow is kept the same for all sites and for months in time. The CPU efficiency of the JobRobot jobs at HIP was increased approximately by 50 % to more than 90 %, by tuning the SE and by improvements in the CMSSW and dCache software. The performance of the CMS analysis jobs improved significantly too. Similar work has been done on other CMS Tier-sites, since on average the CPU efficiency for CMSSW jobs has increased during 2011. Better monitoring of the SE allows faster detection of problems, so that the performance level can be kept high. The next storage upgrade at HIP consists of SAS disk enclosures which can be stress tested on demand with HammerCloud workflows, to make sure that the I/O-performance is good.
The development of daily monitoring tool in a service part manufacturing company
NASA Astrophysics Data System (ADS)
Marpaung, Seamus Tadeo; Rosyidi, Cucuk Nur
2018-02-01
Production lead time is one of the key measures to assess whether a production system is running well or not. A short lead time will lead to higher customer satisfaction and will be a solid proof that a system is well-organized. To shorten the production lead time, a good production planning and control are required. There are many obstacles which can occur at any time, for instance shortage of material and worker, or poor production scheduling. Service Parts Planning Department works with many parties from the beginning of service parts production until it is delivered to the customer. This research was conducted to find an appropriate production monitoring tool for Service Parts Planning Department, which is a control method that make problems appears to the surface and can be overcome quickly so that the production process can run normally. The tool development started with a field study to find out the production flow from start to finish, a literature review and a interview with some employees who will later use the production control tool, and the creation of a daily control that went through several modifications until finally meet the needs of the department. In this research, a production monitoring tool which is developed can be used to monitor the entire order status, the production lead time, and also serves as the records and reports for presentation.
Direct data access protocols benchmarking on DPM
NASA Astrophysics Data System (ADS)
Furano, Fabrizio; Devresse, Adrien; Keeble, Oliver; Mancinelli, Valentina
2015-12-01
The Disk Pool Manager is an example of a multi-protocol, multi-VO system for data access on the Grid that went though a considerable technical evolution in the last years. Among other features, its architecture offers the opportunity of testing its different data access frontends under exactly the same conditions, including hardware and backend software. This characteristic inspired the idea of collecting monitoring information from various testbeds in order to benchmark the behaviour of the HTTP and Xrootd protocols for the use case of data analysis, batch or interactive. A source of information is the set of continuous tests that are run towards the worldwide endpoints belonging to the DPM Collaboration, which accumulated relevant statistics in its first year of activity. On top of that, the DPM releases are based on multiple levels of automated testing that include performance benchmarks of various kinds, executed regularly every day. At the same time, the recent releases of DPM can report monitoring information about any data access protocol to the same monitoring infrastructure that is used to monitor the Xrootd deployments. Our goal is to evaluate under which circumstances the HTTP-based protocols can be good enough for batch or interactive data access. In this contribution we show and discuss the results that our test systems have collected under the circumstances that include ROOT analyses using TTreeCache and stress tests on the metadata performance.
Concepts for compact mid-IR spectroscopy in photochemistry
NASA Astrophysics Data System (ADS)
Cu-Nguyen, Phuong-Ha; Wang, Ziyu; Zappe, Hans
2016-11-01
Mid-infrared (IR) spectroscopy, typically 3 to 5 µm, is often the technology of choice to monitor the interaction between and concentration of molecules during photochemical reactions. However, classical mid-IR spectrometers are bulky, complex and expensive, making them unsuitable for use in the miniaturized microreactors increasingly being employed for chemical synthesis. We present here the concept for an ultra-miniaturized mid-IR spectrometer directly integrated onto a chemical microreactor to monitor the chemical reaction. The spectrometer is based on micro-machined Fabry-Perot resonator filters realized using pairs of Bragg mirrors to achieve a high spectral resolution. The fabrication of the optical filters is outlined and the measurement of transmittance spectra in the mid-IR range show a good agreement with theory and are thus promising candidates for a fully integrated system.
A novel digital neutron flux monitor for international thermonuclear experimental reactor
NASA Astrophysics Data System (ADS)
Xiang, ZHOU; Zihao, LIU; Chao, CHEN; Renjie, ZHU; Li, ZHAO; Lingfeng, WEI; Zejie, YIN
2018-04-01
A novel full-digital real-time neutron flux monitor (NFM) has been developed for the International Thermonuclear Experimental Reactor. A measurement range of 109 counts per second is achieved with 3 different sensitive fission chambers. The Counting mode and Campbelling mode have been combined as a means to achieve higher measurement range. The system is based on high speed as well as parallel and pipeline processing of the field programmable gate array and has the ability to upload raw-data of analog-to-digital converter in real-time through the PXIe platform. With the advantages of the measurement range, real time performance and the ability of raw-data uploading, the digital NFM has been tested in HL-2A experiments and reflected good experimental performance.
Sun, Yi; Arning, Martin; Bochmann, Frank; Börger, Jutta; Heitmann, Thomas
2018-06-01
The Occupational Safety and Health Monitoring and Assessment Tool (OSH-MAT) is a practical instrument that is currently used in the German woodworking and metalworking industries to monitor safety conditions at workplaces. The 12-item scoring system has three subscales rating technical, organizational, and personnel-related conditions in a company. Each item has a rating value ranging from 1 to 9, with higher values indicating higher standard of safety conditions. The reliability of this instrument was evaluated in a cross-sectional survey among 128 companies and its validity among 30,514 companies. The inter-rater reliability of the instrument was examined independently and simultaneously by two well-trained safety engineers. Agreement between the double ratings was quantified by the intraclass correlation coefficient and absolute agreement of the rating values. The content validity of the OSH-MAT was evaluated by quantifying the association between OSH-MAT values and 5-year average injury rates by Poisson regression analysis adjusted for the size of the companies and industrial sectors. The construct validity of OSH-MAT was examined by principle component factor analysis. Our analysis indicated good to very good inter-rater reliability (intraclass correlation coefficient = 0.64-0.74) of OSH-MAT values with an absolute agreement of between 72% and 81%. Factor analysis identified three component subscales that met exactly the structure theory of this instrument. The Poisson regression analysis demonstrated a statistically significant exposure-response relationship between OSH-MAT values and the 5-year average injury rates. These analyses indicate that OSH-MAT is a valid and reliable instrument that can be used effectively to monitor safety conditions at workplaces.
High-Resolution Time-Lapse Monitoring of Unsaturated Flow using Automated GPR Data Collection
NASA Astrophysics Data System (ADS)
Mangel, A. R.; Moysey, S. M.; Lytle, B. A.; Bradford, J. H.
2015-12-01
High-resolution ground-penetrating radar (GPR) data provide the detailed information required to image subsurface structures. Recent advances in GPR monitoring now also make it possible to study transient hydrologic processes, but high-speed data acquisition is critical for this application. We therefore highlight the capabilities of our automated system to acquire time-lapse, high-resolution multifold GPR data during infiltration of water into soils. The system design allows for fast acquisition of constant-offset (COP) and common-midpoint profiles (CMP) to monitor unsaturated flow at multiple locations. Qualitative interpretation of the unprocessed COPs can provide substantial information regarding the hydrologic response of the system, such as the complexities of patterns associated with the wetting of the soil and geophysical evidence of non-uniform propagation of a wetting front. While we find that unprocessed images are informative, we show that the spatial variability of velocity introduced by infiltration events can complicate the images and that migration of the data is an effective tool to improve interpretability of the time-lapse images. The ability of the system to collect high density CMP data also introduces the potential for improving the velocity model along with the image via reflection tomography in the post-migrated domain. We show that for both simulated and empirical time-lapse GPR profiles we can resolve a propagating wetting front in the soil that is in good agreement with the response of in-situ soil moisture measurements. The data from these experiments illustrate the importance of high-speed, high-resolution GPR data acquisition for obtaining insight about the dynamics of hydrologic events. Continuing research is aimed at improving the quantitative analysis of surface-based GPR monitoring data for identifying preferential flow in soils.
NASA Technical Reports Server (NTRS)
Sekiguchi, Chiharu
1993-01-01
In addition to health monitoring of the Japanese Payload Specialists (PS) during the flight, this investigation also focuses on the changes of cardiovascular hemodynamics during flight which will be conducted under the science collaboration with the Lower Body Negative Pressure (LBNP) Experiment of NASA. For the Japanese, this is an opportunity to examine firsthand the effects of microgravity of human physiology. We are particularly interested in the adaption process and how it relates to space motion sickness and cardiovascular deconditioning. By comparing data from our own experiment to data collected by others, we hope to understand the processes involved and find ways to avoid these problems for future Japanese astronauts onboard Space Station Freedom and other Japanese space ventures. The primary objective of this experiment is to monitor the health condition of Japanese Payload Specialists to maintain a good health status during and after space flight. The second purpose is to investigate the autonomic nervous system's response to space motion sickness. To achieve this, the function of the autonomic nervous system will be monitored using non-invasive techniques. Data obtained will be employed to evaluate the role of autonomic nervous system in space motion sickness and to predict susceptibility to space motion sickness. The third objective is evaluation of the adaption process of the cardiovascular system to microgravity. By observation of the hemodynamics using an echocardiogram we will gain insight on cardiovascular deconditioning. The last objective is to create a data base for use in the health care of Japanese astronauts by obtaining control data in experiment L-O in the SL-J mission.
Sakaguchi, Kazuhiko; Hirota, Yushi; Hashimoto, Naoko; Ogawa, Wataru; Hamaguchi, Tomoya; Matsuo, Toshihiro; Miyagawa, Jun-ichiro; Namba, Mitsuyoshi; Sato, Toshiyuki; Okada, Seiki; Tomita, Koji; Matsuhisa, Munehide; Kaneto, Hideaki; Kosugi, Keisuke; Maegawa, Hiroshi; Nakajima, Hiromu; Kashiwagi, Atsunori
2013-05-01
We developed a system for measuring glucose area under the curve (AUC) using minimally invasive interstitial fluid extraction technology (MIET). Sweat contamination during interstitial fluid glucose (IG) extraction affects the accuracy of glucose AUC measurement, because this technology uses extracted sodium ion levels as an internal standard. Therefore, we developed a sweat monitoring patch to reduce this effect and investigated its efficacy in volunteers undergoing oral glucose tolerance tests (OGTTs). Fifty diabetes mellitus inpatients and 10 healthy subjects undergoing the 75 g OGTT were included. Two sites on the forearm were pretreated with microneedle arrays, then hydrogels for interstitial fluid extraction were placed on the treated sites. Simultaneously, hydrogels for sweat monitoring were placed on untreated sites near the treated sites. Plasma glucose (PG) levels were measured every 30 min for 2 h to calculate reference AUC values. Using MIET, IG AUC was calculated from extracted glucose and sodium ion levels after attachment of the hydrogel for 2 h. Good correlation between IG AUC measurements using MIET and reference AUCs measured using PG levels was confirmed over a wide AUC range (202-610 mg/h/dl) after correction for the sweat-induced error detected by the hydrogel patches on the nonpretreated skin. Strong correlation between IG AUC and peak glucose levels indicates that glucose spikes can be easily detected by this system. We confirmed the effectiveness of a sweat monitoring patch for precise AUC measurement using MIET. This novel, easy-to-use system has potential for glucose excursion evaluation in daily clinical practice. © 2013 Diabetes Technology Society.
Sakaguchi, Kazuhiko; Hirota, Yushi; Hashimoto, Naoko; Ogawa, Wataru; Hamaguchi, Tomoya; Toshihiro, Matsuo; Miyagawa, Jun-ichiro; Namba, Mitsuyoshi; Sato, Toshiyuki; Okada, Seiki; Tomita, Koji; Matsuhisa, Munehide; Kaneto, Hideaki; Kosugi, Keisuke; Maegawa, Hiroshi; Nakajima, Hiromu; Kashiwagi, Atsunori
2013-01-01
Aims: We developed a system for measuring glucose area under the curve (AUC) using minimally invasive interstitial fluid extraction technology (MIET). Sweat contamination during interstitial fluid glucose (IG) extraction affects the accuracy of glucose AUC measurement, because this technology uses extracted sodium ion levels as an internal standard. Therefore, we developed a sweat monitoring patch to reduce this effect and investigated its efficacy in volunteers undergoing oral glucose tolerance tests (OGTTs). Materials and Methods: Fifty diabetes mellitus inpatients and 10 healthy subjects undergoing the 75 g OGTT were included. Two sites on the forearm were pretreated with microneedle arrays, then hydrogels for interstitial fluid extraction were placed on the treated sites. Simultaneously, hydrogels for sweat monitoring were placed on untreated sites near the treated sites. Plasma glucose (PG) levels were measured every 30 min for 2 h to calculate reference AUC values. Using MIET, IG AUC was calculated from extracted glucose and sodium ion levels after attachment of the hydrogel for 2 h. Results: Good correlation between IG AUC measurements using MIET and reference AUCs measured using PG levels was confirmed over a wide AUC range (202–610 mg/h/dl) after correction for the sweat-induced error detected by the hydrogel patches on the nonpretreated skin. Strong correlation between IG AUC and peak glucose levels indicates that glucose spikes can be easily detected by this system. Conclusion: We confirmed the effectiveness of a sweat monitoring patch for precise AUC measurement using MIET. This novel, easy-to-use system has potential for glucose excursion evaluation in daily clinical practice. PMID:23759401
An empirical, integrated forest biomass monitoring system
NASA Astrophysics Data System (ADS)
Kennedy, Robert E.; Ohmann, Janet; Gregory, Matt; Roberts, Heather; Yang, Zhiqiang; Bell, David M.; Kane, Van; Hughes, M. Joseph; Cohen, Warren B.; Powell, Scott; Neeti, Neeti; Larrue, Tara; Hooper, Sam; Kane, Jonathan; Miller, David L.; Perkins, James; Braaten, Justin; Seidl, Rupert
2018-02-01
The fate of live forest biomass is largely controlled by growth and disturbance processes, both natural and anthropogenic. Thus, biomass monitoring strategies must characterize both the biomass of the forests at a given point in time and the dynamic processes that change it. Here, we describe and test an empirical monitoring system designed to meet those needs. Our system uses a mix of field data, statistical modeling, remotely-sensed time-series imagery, and small-footprint lidar data to build and evaluate maps of forest biomass. It ascribes biomass change to specific change agents, and attempts to capture the impact of uncertainty in methodology. We find that: • A common image framework for biomass estimation and for change detection allows for consistent comparison of both state and change processes controlling biomass dynamics. • Regional estimates of total biomass agree well with those from plot data alone. • The system tracks biomass densities up to 450-500 Mg ha-1 with little bias, but begins underestimating true biomass as densities increase further. • Scale considerations are important. Estimates at the 30 m grain size are noisy, but agreement at broad scales is good. Further investigation to determine the appropriate scales is underway. • Uncertainty from methodological choices is evident, but much smaller than uncertainty based on choice of allometric equation used to estimate biomass from tree data. • In this forest-dominated study area, growth and loss processes largely balance in most years, with loss processes dominated by human removal through harvest. In years with substantial fire activity, however, overall biomass loss greatly outpaces growth. Taken together, our methods represent a unique combination of elements foundational to an operational landscape-scale forest biomass monitoring program.
Monitoring of computing resource utilization of the ATLAS experiment
NASA Astrophysics Data System (ADS)
Rousseau, David; Dimitrov, Gancho; Vukotic, Ilija; Aidel, Osman; Schaffer, Rd; Albrand, Solveig
2012-12-01
Due to the good performance of the LHC accelerator, the ATLAS experiment has seen higher than anticipated levels for both the event rate and the average number of interactions per bunch crossing. In order to respond to these changing requirements, the current and future usage of CPU, memory and disk resources has to be monitored, understood and acted upon. This requires data collection at a fairly fine level of granularity: the performance of each object written and each algorithm run, as well as a dozen per-job variables, are gathered for the different processing steps of Monte Carlo generation and simulation and the reconstruction of both data and Monte Carlo. We present a system to collect and visualize the data from both the online Tier-0 system and distributed grid production jobs. Around 40 GB of performance data are expected from up to 200k jobs per day, thus making performance optimization of the underlying Oracle database of utmost importance.
Wang, Dongbin; Shafer, Martin M; Schauer, James J; Sioutas, Constantinos
2015-04-01
This study presents a novel system for online, field measurement of copper (Cu) in ambient coarse (2.5-10 μm) particulate matter (PM). This new system utilizes two virtual impactors combined with a modified liquid impinger (BioSampler) to collect coarse PM directly as concentrated slurry samples. The total and water-soluble Cu concentrations are subsequently measured by a copper Ion Selective Electrode (ISE). Laboratory evaluation results indicated excellent collection efficiency (over 85%) for particles in the coarse PM size ranges. In the field evaluations, very good agreements for both total and water-soluble Cu concentrations were obtained between online ISE-based monitor measurements and those analyzed by means of inductively coupled plasma mass spectrometry (ICP-MS). Moreover, the field tests indicated that the Cu monitor could achieve near-continuous operation for at least 6 consecutive days (a time resolution of 2-4 h) without obvious shortcomings. Copyright © 2015 Elsevier Ltd. All rights reserved.
A first near real-time seismology-based landquake monitoring system.
Chao, Wei-An; Wu, Yih-Min; Zhao, Li; Chen, Hongey; Chen, Yue-Gau; Chang, Jui-Ming; Lin, Che-Min
2017-03-02
Hazards from gravity-driven instabilities on hillslope (termed 'landquake' in this study) are an important problem facing us today. Rapid detection of landquake events is crucial for hazard mitigation and emergency response. Based on the real-time broadband data in Taiwan, we have developed a near real-time landquake monitoring system, which is a fully automatic process based on waveform inversion that yields source information (e.g., location and mechanism) and identifies the landquake source by examining waveform fitness for different types of source mechanisms. This system has been successfully tested offline using seismic records during the passage of the 2009 Typhoon Morakot in Taiwan and has been in online operation during the typhoon season in 2015. In practice, certain levels of station coverage (station gap < 180°), signal-to-noise ratio (SNR ≥ 5.0), and a threshold of event size (volume >10 6 m 3 and area > 0.20 km 2 ) are required to ensure good performance (fitness > 0.6 for successful source identification) of the system, which can be readily implemented in other places in the world with real-time seismic networks and high landquake activities.
A first near real-time seismology-based landquake monitoring system
Chao, Wei-An; Wu, Yih-Min; Zhao, Li; Chen, Hongey; Chen, Yue-Gau; Chang, Jui-Ming; Lin, Che-Min
2017-01-01
Hazards from gravity-driven instabilities on hillslope (termed ‘landquake’ in this study) are an important problem facing us today. Rapid detection of landquake events is crucial for hazard mitigation and emergency response. Based on the real-time broadband data in Taiwan, we have developed a near real-time landquake monitoring system, which is a fully automatic process based on waveform inversion that yields source information (e.g., location and mechanism) and identifies the landquake source by examining waveform fitness for different types of source mechanisms. This system has been successfully tested offline using seismic records during the passage of the 2009 Typhoon Morakot in Taiwan and has been in online operation during the typhoon season in 2015. In practice, certain levels of station coverage (station gap < 180°), signal-to-noise ratio (SNR ≥ 5.0), and a threshold of event size (volume >106 m3 and area > 0.20 km2) are required to ensure good performance (fitness > 0.6 for successful source identification) of the system, which can be readily implemented in other places in the world with real-time seismic networks and high landquake activities. PMID:28252039
Sensor4PRI: A Sensor Platform for the Protection of Railway Infrastructures
Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Rubio, Bartolomé
2015-01-01
Wireless Sensor Networks constitute pervasive and distributed computing systems and are potentially one of the most important technologies of this century. They have been specifically identified as a good candidate to become an integral part of the protection of critical infrastructures. In this paper we focus on railway infrastructure protection and we present the details of a sensor platform designed to be integrated into a slab track system in order to carry out both installation and maintenance monitoring activities. In the installation phase, the platform helps operators to install the slab tracks in the right position. In the maintenance phase, the platform collects information about the structural health and behavior of the infrastructure when a train travels along it and relays the readings to a base station. The base station uses trains as data mules to upload the information to the internet. The use of a train as a data mule is especially suitable for collecting information from remote or inaccessible places which do not have a direct connection to the internet and require less network infrastructure. The overall aim of the system is to deploy a permanent economically viable monitoring system to improve the safety of railway infrastructures. PMID:25734648
Talarico, Daria; Cinti, Stefano; Arduini, Fabiana; Amine, Aziz; Moscone, Danila; Palleschi, Giuseppe
2015-07-07
An automatable flow system for the continuous and long-term monitoring of the phosphate level has been developed using an amperometric detection method based on the use of a miniaturized sensor. This method is based on the monitoring of an electroactive complex obtained by the reaction between phosphate and molybdate that is consequently reduced at the electrode surface. The use of a screen-printed electrode modified with carbon black nanoparticles (CBNPs) leads to the quantification of the complex at low potential, because CBNPs are capable of electrocatalitically enhancing the phosphomolybdate complex reduction at +125 mV versus Ag/AgCl without fouling problems. The developed system also incorporates reagents and waste storage and is connected to a portable potentiostat for rapid detection and quantification of phosphate. Main analytical parameters, such as working potential, reagent concentration, type of cell, and flow rate, were evaluated and optimized. This system was characterized by a low detection limit (6 μM). Interference studies were carried out. Good recovery percentages comprised between 89 and 131.5% were achieved in different water sources, highlighting its suitability for field measurements.
Sensor fusion methods for reducing false alarms in heart rate monitoring.
Borges, Gabriel; Brusamarello, Valner
2016-12-01
Automatic patient monitoring is an essential resource in hospitals for good health care management. While alarms caused by abnormal physiological conditions are important for the delivery of fast treatment, they can be also a source of unnecessary noise because of false alarms caused by electromagnetic interference or motion artifacts. One significant source of false alarms is related to heart rate, which is triggered when the heart rhythm of the patient is too fast or too slow. In this work, the fusion of different physiological sensors is explored in order to create a robust heart rate estimation. A set of algorithms using heart rate variability index, Bayesian inference, neural networks, fuzzy logic and majority voting is proposed to fuse the information from the electrocardiogram, arterial blood pressure and photoplethysmogram. Three kinds of information are extracted from each source, namely, heart rate variability, the heart rate difference between sensors and the spectral analysis of low and high noise of each sensor. This information is used as input to the algorithms. Twenty recordings selected from the MIMIC database were used to validate the system. The results showed that neural networks fusion had the best false alarm reduction of 92.5 %, while the Bayesian technique had a reduction of 84.3 %, fuzzy logic 80.6 %, majority voter 72.5 % and the heart rate variability index 67.5 %. Therefore, the proposed algorithms showed good performance and could be useful in bedside monitors.
Recommendation system for immunization coverage and monitoring.
Bhatti, Uzair Aslam; Huang, Mengxing; Wang, Hao; Zhang, Yu; Mehmood, Anum; Di, Wu
2018-01-02
Immunization averts an expected 2 to 3 million deaths every year from diphtheria, tetanus, pertussis (whooping cough), and measles; however, an additional 1.5 million deaths could be avoided if vaccination coverage was improved worldwide. 1 1 Data source for immunization records of 1.5 M: http://www.who.int/mediacentre/factsheets/fs378/en/ New vaccination technologies provide earlier diagnoses, personalized treatments and a wide range of other benefits for both patients and health care professionals. Childhood diseases that were commonplace less than a generation ago have become rare because of vaccines. However, 100% vaccination coverage is still the target to avoid further mortality. Governments have launched special campaigns to create an awareness of vaccination. In this paper, we have focused on data mining algorithms for big data using a collaborative approach for vaccination datasets to resolve problems with planning vaccinations in children, stocking vaccines, and tracking and monitoring non-vaccinated children appropriately. Geographical mapping of vaccination records helps to tackle red zone areas, where vaccination rates are poor, while green zone areas, where vaccination rates are good, can be monitored to enable health care staff to plan the administration of vaccines. Our recommendation algorithm assists in these processes by using deep data mining and by accessing records of other hospitals to highlight locations with lower rates of vaccination. The overall performance of the model is good. The model has been implemented in hospitals to control vaccination across the coverage area.
Vostiar, Igor; Tkac, Jan; Mandenius, Carl-Fredrik
2004-07-15
A surface plasmon resonance (SPR) biosensor was used to monitor the profiles of the heat-shock protein (DnaK) and the expression of a heterologous protein to map the dynamics of the cellular stress response in Escherichia coli. As expression system was used an E. coli strain overproducing human recombinant superoxide dismutase (rhSOD). Expression of DnaK showed complex patterns differing with strength of induction. The strong up-regulation of DnaK expression was observed in all cultivations which over-produced of rhSOD. Similar patterns were not observed in non-induced reference cultures. Differences in DnaK concentration profiles were correlated with induction strength. Presented data, carried out in shake flask and glucose limited fed-batch cultivation, show a good consistency with previously published transcriptional profiling results and provide complementary information to understand stress response related to overproduction of recombinant protein. The study also demonstrates the feasibility of using the SPR as a two channel protein array for monitoring of intracellular components.
NASA Astrophysics Data System (ADS)
Shi, Yan-ting; Liu, Jie; Wang, Peng; Zhang, Xu-nuo; Wang, Jun-qiang; Guo, Liang
2017-05-01
With the implementation of water environment management in key basins in China, the monitoring and evaluation system of basins are in urgent need of innovation and upgrading. In view of the heavy workload of existing evaluation methods and the cumbersome calculation of multi-factor weighting method, the idea of using entroy method to assess river health based on aquatic ecological function regionalization was put forward. According to the monitoring data of songhua river in the year of 2011-2015, the entropy weight method was used to calculate the weight of 9 evaluation factors of 29 monitoring sections, and the river health assessment was carried out. In the study area, the river health status of the biodiversity conservation function area (4.111 point) was good, the water conservation function area (3.371 point), the habitat maintenance functional area (3.262 point), the agricultural production maintenance functional area (3.695 point) and the urban supporting functional area (3.399 point) was light pollution.
NASA Astrophysics Data System (ADS)
Windl, Roman; Abert, Claas; Bruckner, Florian; Huber, Christian; Vogler, Christoph; Weitensfelder, Herbert; Suess, Dieter
2017-11-01
Within this work a passive and wireless magnetic sensor, to monitor linear displacements, is proposed. We exploit recent advances in 3D printing and fabricate a polymer bonded magnet with a spatially linear magnetic field component corresponding to the length of the magnet. Regulating the magnetic compound fraction during printing allows specific shaping of the magnetic field distribution. A giant magnetoresistance magnetic field sensor is combined with a radio-frequency identification tag in order to passively monitor the exerted magnetic field of the printed magnet. Due to the tailored magnetic field, a displacement of the magnet with respect to the sensor can be detected within the sub-mm regime. The sensor design provides good flexibility by controlling the 3D printing process according to application needs. Absolute displacement detection using low cost components and providing passive operation, long term stability, and longevity renders the proposed sensor system ideal for structural health monitoring applications.
Efficient implementation of neural network deinterlacing
NASA Astrophysics Data System (ADS)
Seo, Guiwon; Choi, Hyunsoo; Lee, Chulhee
2009-02-01
Interlaced scanning has been widely used in most broadcasting systems. However, there are some undesirable artifacts such as jagged patterns, flickering, and line twitters. Moreover, most recent TV monitors utilize flat panel display technologies such as LCD or PDP monitors and these monitors require progressive formats. Consequently, the conversion of interlaced video into progressive video is required in many applications and a number of deinterlacing methods have been proposed. Recently deinterlacing methods based on neural network have been proposed with good results. On the other hand, with high resolution video contents such as HDTV, the amount of video data to be processed is very large. As a result, the processing time and hardware complexity become an important issue. In this paper, we propose an efficient implementation of neural network deinterlacing using polynomial approximation of the sigmoid function. Experimental results show that these approximations provide equivalent performance with a considerable reduction of complexity. This implementation of neural network deinterlacing can be efficiently incorporated in HW implementation.
NASA Astrophysics Data System (ADS)
Jedrychowska, Agnieszka; Malecha, Karol; Cabaj, Joanna; Sołoducho, Jadwiga
2014-08-01
The aim of the research was to develop an enzymatic, optical biosensor which provides quick and convenient determination of phenolic compounds in aqueous solutions. The biosensing strategy concerns design, fabrication and testing of a miniature ceramic-based biosensor which is destined for in-situ substrate monitoring. The base of the measuring system was fabricated using low temperature co-fired ceramics (LTCC) technology. The biocatalyst - laccase- was immobilized on the thin film of poly[N-nonyl-3,6-bis(ethylenedioxythiophene)carbazole] which provided good binding of the enzyme to the substrate and positively affected on the catalytic activity of the protein. In order to evaluate properties of the designed biosensor, its response for various concentrations of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diamonnium sal (ABTS) was measured. The optical biosensor produced by presented method could find applications in many fields, i.e. for detection of phenolic compounds in food products and beverages, in industry for control of technological processes or for environmental monitoring
On eco-efficient technologies to minimize industrial water consumption
NASA Astrophysics Data System (ADS)
Amiri, Mohammad C.; Mohammadifard, Hossein; Ghaffari, Ghasem
2016-07-01
Purpose - Water scarcity will further stress on available water systems and decrease the security of water in many areas. Therefore, innovative methods to minimize industrial water usage and waste production are of paramount importance in the process of extending fresh water resources and happen to be the main life support systems in many arid regions of the world. This paper demonstrates that there are good opportunities for many industries to save water and decrease waste water in softening process by substituting traditional with echo-friendly methods. The patented puffing method is an eco-efficient and viable technology for water saving and waste reduction in lime softening process. Design/methodology/approach - Lime softening process (LSP) is a very sensitive process to chemical reactions. In addition, optimal monitoring not only results in minimizing sludge that must be disposed of but also it reduces the operating costs of water conditioning. Weakness of the current (regular) control of LSP based on chemical analysis has been demonstrated experimentally and compared with the eco-efficient puffing method. Findings - This paper demonstrates that there is a good opportunity for many industries to save water and decrease waste water in softening process by substituting traditional method with puffing method, a patented eco-efficient technology. Originality/value - Details of the required innovative works to minimize industrial water usage and waste production are outlined in this paper. Employing the novel puffing method for monitoring of lime softening process results in saving a considerable amount of water while reducing chemical sludge.
NASA Technical Reports Server (NTRS)
Thompson, D. R.; Wehmanen, O. A. (Principal Investigator)
1978-01-01
The author has identified the following significant results. The Green Number Index technique which uses LANDSAT digital data from 5X6 nautical mile sampling frames was expanded to evaluate its usefulness in detecting and monitoring vegetative water stress over the Great Plains. At known growth stages for wheat, segments were classified as drought or non drought. Good agreement was found between the 18 day remotely sensed data and a weekly ground-based crop moisture index. Operational monitoring of the 1977 U.S.S.R. and Australian wheat crops indicated drought conditions. Drought isoline maps produced by the Green Number Index technique were in good agreement with conventional sources.
Sjöstrand, Henrik; Andersson Sundén, E; Conroy, S; Ericsson, G; Gatu Johnson, M; Giacomelli, L; Gorini, G; Hellesen, C; Hjalmarsson, A; Popovichev, S; Ronchi, E; Tardocchi, M; Weiszflog, M
2009-06-01
Burning plasma experiments such as ITER and DEMO require diagnostics capable of withstanding the harsh environment generated by the intense neutron flux and to maintain stable operating conditions for times longer than present day systems. For these reasons, advanced control and monitoring (CM) systems will be necessary for the reliable operation of diagnostics. This paper describes the CM system of the upgraded magnetic proton recoil neutron spectrometer installed at the Joint European Torus focusing in particular on a technique for the stabilization of the gain of the photomultipliers coupled to the neutron detectors. The results presented here show that this technique provides good results over long time scales. The technique is of general interest for all diagnostics that employ scintillators coupled to photomultiplier tubes.
The use of a behavioral response system in the USF/NASA toxicity screening test method
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Cumming, H. J.; Packham, S. C.
1977-01-01
Relative toxicity data on the pyrolysis effluents from bisphenol A polycarbonate and wool fabric were obtained, based on visual observations of the behavior of free-moving mice and on an avoidance response behavioral paradigm of restrained rats monitored by an instrumented behavioral system. The initial experiments show an essentially 1:1 correlation between the two systems with regard to first signs of incapacitation, collapse, and death from pyrolysis effluents from polycarbonate. It is hypothesized that similarly good correlations between these two systems might exist for other materials exhibiting predominantly carbon monoxide mechanisms of intoxication. This hypothesis needs to be confirmed, however, by additional experiments. Data with wool fabric exhibited greater variability with both procedures, indicating possibly different mechanisms of intoxication for wool as compared with bisphenol A polycarbonate.
Thermal protection system (TPS) monitoring using acoustic emission
NASA Astrophysics Data System (ADS)
Hurley, D. A.; Huston, D. R.; Fletcher, D. G.; Owens, W. P.
2011-04-01
This project investigates acoustic emission (AE) as a tool for monitoring the degradation of thermal protection systems (TPS). The AE sensors are part of an array of instrumentation on an inductively coupled plasma (ICP) torch designed for testing advanced thermal protection aerospace materials used for hypervelocity vehicles. AE are generated by stresses within the material, propagate as elastic stress waves, and can be detected with sensitive instrumentation. Graphite (POCO DFP-2) is used to study gas-surface interaction during degradation of thermal protection materials. The plasma is produced by a RF magnetic field driven by a 30kW power supply at 3.5 MHz, which creates a noisy environment with large spikes when powered on or off. AE are waveguided from source to sensor by a liquid-cooled copper probe used to position the graphite sample in the plasma stream. Preliminary testing was used to set filters and thresholds on the AE detection system (Physical Acoustics PCI-2) to minimize the impact of considerable operating noise. Testing results show good correlation between AE data and testing environment, which dictates the physics and chemistry of the thermal breakdown of the sample. Current efforts for the project are expanding the dataset and developing statistical analysis tools. This study shows the potential of AE as a powerful tool for analysis of thermal protection material thermal degradations with the unique capability of real-time, in-situ monitoring.
NASA Astrophysics Data System (ADS)
Yu, Yan; Zhou, Yaping; Zhao, Xuefeng; Li, Dongsheng; Ou, Jinping
2016-04-01
As an important part of new information technology, the Internet of Things(IoT) is based on intelligent perception, recognition technology, ubiquitous computing, ubiquitous network integration, and it is known as the third wave of the development of information industry in the world after the computer and the Internet. And Smart Phones are the general term for a class of mobile phones with a separate operating system and operational memory, in which the third-party service programs including software, games, navigation, et.al, can be installed. Smart Phones, with not only sensors but also actuators, are widely used in the IoT world. As the current hot issues in the engineering area, Structural health monitoring (SHM) is also facing new problems about design ideas in the IoT environment. The development of IoT, wireless sensor network and mobile communication technology, provides a good technical platform for SHM. Based on these facts, this paper introduces a kind of new idea for Structural Health Monitoring using Smart Phones Technique. The system is described in detail, and the external sensor board based on Bluetooth interface is designed, the test based on Smart Phones is finished to validate the implementation and feasibility. The research is preliminary and more tests need to be carried out before it can be of practical use.
NASA Technical Reports Server (NTRS)
1972-01-01
Prior to beginning a 90-day test of a regenerative life support system, a need was identified for a training and certification program to qualify an operating staff for conducting the test. The staff was responsible for operating and maintaining the test facility, monitoring and ensuring crew safety, and implementing procedures to ensure effective mission performance with good data collection and analysis. The training program was designed to ensure that each operating staff member was capable of performing his assigned function and was sufficiently cross-trained to serve at certain other positions on a contingency basis. Complicating the training program were budget and schedule limitations, and the high level of sophistication of test systems.
NASA Astrophysics Data System (ADS)
Huan, Qiang; Miao, Hongchen; Li, Faxin
2018-02-01
Structural health monitoring (SHM) is of great importance for engineering structures as it may detect the early degradation and thus avoid life and financial loss. Guided wave based inspection is very useful in SHM due to its capability for long distance and wide range monitoring. The fundamental shear horizontal (SH0) wave based method should be most promising since SH0 is the unique non-dispersive wave mode in plate-like structures. In this work, a sparse array SHM system based on omnidirectional SH wave piezoelectric transducers (OSH-PT) was proposed and the multi data fusion method was used for defect inspection in a 2 mm thick aluminum plate. Firstly, the performances of three types OSH-PTs was comprehensively compared and the thickness-poled d15 mode OSH-PT used in this work was demonstrated obviously superior to the other two. Then, the signal processing method and imaging algorithm for this SHM system was presented. Finally, experiments were carried out to examine the performance of the proposed SHM system in defect localization and imaging. Results indicated that this SHM system can locate a through hole as small as 0.12λ (4 mm) in diameter (where λ is the wavelength corresponding to the central operation frequency) under frequencies from 90 to 150 kHz. It can also locate multiple defects accurately based on the baseline subtraction method. Obviously, this SHM system can detect larger areas with sparse sensors because of the adopted single mode, non-dispersive and low frequency SH0 wave which can propagate long distance with small attenuation. Considering its good performances, simple data processing and sparse array, this SH0 wave-based SHM system is expected to greatly promote the applications of guided wave inspection.
NASA Astrophysics Data System (ADS)
Xing, Shaoxu; Anakok, Isil; Zuo, Lei
2017-04-01
Accidents like Fukushima Disasters push people to improve the monitoring systems for the nuclear power plants. Thus, various types of energy harvesters are designed to power these systems and the Thermoelectric Generator (TEG) energy harvester is one of them. In order to enhance the amount of harvested power and the system efficiency, the power management stage needs to be carefully designed. In this paper, a power converter with optimized Maximum Power Point Tracking (MPPT) is proposed for the TEG Energy Harvester to power the wireless sensor network in nuclear power plant. The TEG Energy Harvester is installed on the coolant pipe of the nuclear plant and harvests energy from its heat energy while the power converter with optimized MPPT can make the TEG Energy Harvester output the maximum power, quickly response to the voltage change and provide sufficient energy for wireless sensor system to monitor the operation of the nuclear power plant. Due to the special characteristics of the Single-Ended Primary Inductor Converter (SEPIC) when it is working in the Discontinuous Inductor Current Mode (DICM) and Continuous Conduction Mode (CCM), the MPPT method presented in this paper would be able to control the converter to achieve the maximum output power in any working conditions of the TEG system with a simple circuit. The optimized MPPT algorithm will significantly reduce the cost and simplify the system as well as achieve a good performance. Experiment test results have shown that, comparing to a fixed- duty-cycle SEPIC which is specifically designed for the working on the secondary coolant loop in nuclear power plant, the optimized MPPT algorithm increased the output power by 55%.
Structural Health Monitoring of Railway Transition Zones Using Satellite Radar Data.
Wang, Haoyu; Chang, Ling; Markine, Valeri
2018-01-31
Transition zones in railway tracks are locations with considerable changes in the rail-supporting structure. Typically, they are located near engineering structures, such as bridges, culverts and tunnels. In such locations, severe differential settlements often occur due to the different material properties and structure behavior. Without timely maintenance, the differential settlement may lead to the damage of track components and loss of passenger's comfort. To ensure the safety of railway operations and reduce the maintenance costs, it is necessary to consecutively monitor the structural health condition of the transition zones in an economical manner and detect the changes at an early stage. However, using the current in situ monitoring of transition zones is hard to achieve this goal, because most in situ techniques (e.g., track-measuring coaches) are labor-consuming and usually not frequently performed (approximately twice a year in the Netherlands). To tackle the limitations of the in situ techniques, a Satellite Synthetic Aperture Radar (InSAR) system is presented in this paper, which provides a potential solution for a consecutive structural health monitoring of transition zones with bi-/tri-weekly data update and mm-level precision. To demonstrate the feasibility of the InSAR system for monitoring transition zones, a transition zone is tested. The results show that the differential settlement in the transition zone and the settlement rate can be observed and detected by the InSAR measurements. Moreover, the InSAR results are cross-validated against measurements obtained using a measuring coach and a Digital Image Correlation (DIC) device. The results of the three measuring techniques show a good correlation, which proves the applicability of InSAR for the structural health monitoring of transition zones in railway track.
Structural Health Monitoring of Railway Transition Zones Using Satellite Radar Data
Chang, Ling; Markine, Valeri
2018-01-01
Transition zones in railway tracks are locations with considerable changes in the rail-supporting structure. Typically, they are located near engineering structures, such as bridges, culverts and tunnels. In such locations, severe differential settlements often occur due to the different material properties and structure behavior. Without timely maintenance, the differential settlement may lead to the damage of track components and loss of passenger’s comfort. To ensure the safety of railway operations and reduce the maintenance costs, it is necessary to consecutively monitor the structural health condition of the transition zones in an economical manner and detect the changes at an early stage. However, using the current in situ monitoring of transition zones is hard to achieve this goal, because most in situ techniques (e.g., track-measuring coaches) are labor-consuming and usually not frequently performed (approximately twice a year in the Netherlands). To tackle the limitations of the in situ techniques, a Satellite Synthetic Aperture Radar (InSAR) system is presented in this paper, which provides a potential solution for a consecutive structural health monitoring of transition zones with bi-/tri-weekly data update and mm-level precision. To demonstrate the feasibility of the InSAR system for monitoring transition zones, a transition zone is tested. The results show that the differential settlement in the transition zone and the settlement rate can be observed and detected by the InSAR measurements. Moreover, the InSAR results are cross-validated against measurements obtained using a measuring coach and a Digital Image Correlation (DIC) device. The results of the three measuring techniques show a good correlation, which proves the applicability of InSAR for the structural health monitoring of transition zones in railway track. PMID:29385070
A Fiber Optic Probe for Monitoring Protein Aggregation, Nucleation, and Crystallization
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Suh, Kwang I.; Arabshahi, Alireza; Wilson, William W.; Bray, Terry L.; DeLucas, Lawrence J.
1996-01-01
Protein crystals are experimentally grown in hanging drops in microgravity experiments on-board the Space Shuttle orbiter. The technique of dynamic light scattering (DLS) can be used to monitor crystal growth process in hanging droplets (approx. 30 (L)) in microgravity experiments, but elaborate instrumentation and optical alignment problems have made in-situ applications difficult. In this paper we demonstrate that such experiments are now feasible. We apply a newly developed fiber optic probe to various earth and space (micro- gravity) bound protein crystallization system configurations to test its capability. These include conventional batch (cuvette or capillary) systems, hanging drop method in a six-pack hanging drop vapor diffusion apparatus (HDVDA), a modified HDVDA for temperature- induced nucleation and aggregation studies, and a newly envisioned dynamically controlled vapor diffusion system (DCVDS) configuration. Our compact system exploits the principles of DLS and offers a fast (within a few seconds) means of quantitatively and non-invasively monitoring the various growth stages of protein crystallization. In addition to DLS capability, the probe can also be used for performing single-angle static light scattering measurements. It utilizes extremely low levels of laser power (approx. few (W)) without a need of having any optical alignment and vibration isolation. The compact probe is also equipped with a miniaturized microscope for visualization of macroscopic protein crystals. This new optical diagnostic system opens up enormous opportunity for exploring new ways to grow good quality crystals suitable for x-ray crystallographic analysis and may help develop a concrete scientific basis for understanding the process of crystallization.
A neural network architecture for implementation of expert systems for real time monitoring
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.
1991-01-01
Since neural networks have the advantages of massive parallelism and simple architecture, they are good tools for implementing real time expert systems. In a rule based expert system, the antecedents of rules are in the conjunctive or disjunctive form. We constructed a multilayer feedforward type network in which neurons represent AND or OR operations of rules. Further, we developed a translator which can automatically map a given rule base into the network. Also, we proposed a new and powerful yet flexible architecture that combines the advantages of both fuzzy expert systems and neural networks. This architecture uses the fuzzy logic concepts to separate input data domains into several smaller and overlapped regions. Rule-based expert systems for time critical applications using neural networks, the automated implementation of rule-based expert systems with neural nets, and fuzzy expert systems vs. neural nets are covered.
Obermaier, Karin; Schmelzeisen-Redeker, Günther; Schoemaker, Michael; Klötzer, Hans-Martin; Kirchsteiger, Harald; Eikmeier, Heino; del Re, Luigi
2013-07-01
Even though a Clinical and Laboratory Standards Institute proposal exists on the design of studies and performance criteria for continuous glucose monitoring (CGM) systems, it has not yet led to a consistent evaluation of different systems, as no consensus has been reached on the reference method to evaluate them or on acceptance levels. As a consequence, performance assessment of CGM systems tends to be inconclusive, and a comparison of the outcome of different studies is difficult. Published information and available data (as presented in this issue of Journal of Diabetes Science and Technology by Freckmann and coauthors) are used to assess the suitability of several frequently used methods [International Organization for Standardization, continuous glucose error grid analysis, mean absolute relative deviation (MARD), precision absolute relative deviation (PARD)] when assessing performance of CGM systems in terms of accuracy and precision. The combined use of MARD and PARD seems to allow for better characterization of sensor performance. The use of different quantities for calibration and evaluation, e.g., capillary blood using a blood glucose (BG) meter versus venous blood using a laboratory measurement, introduces an additional error source. Using BG values measured in more or less large intervals as the only reference leads to a significant loss of information in comparison with the continuous sensor signal and possibly to an erroneous estimation of sensor performance during swings. Both can be improved using data from two identical CGM sensors worn by the same patient in parallel. Evaluation of CGM performance studies should follow an identical study design, including sufficient swings in glycemia. At least a part of the study participants should wear two identical CGM sensors in parallel. All data available should be used for evaluation, both by MARD and PARD, a good PARD value being a precondition to trust a good MARD value. Results should be analyzed and presented separately for clinically different categories, e.g., hypoglycemia, exercise, or night and day. © 2013 Diabetes Technology Society.
De Cremer, David
2007-02-01
The present research examined the moderating effect of the level of threshold on people's preferences for different leader types in step-level public good dilemmas. It was assumed that the primary focus of people in step-level public good dilemmas is to make sure that the group surpasses the threshold. Consequently, when the level of threshold is difficult to reach people are expected to provide more support for and cooperate with a leader that monitors and controls the contributions made toward the public good. However, if the threshold is easy to surpass people will focus more on whether the obtained public good or bonus will be distributed according to agreements, suggesting that people will provide more support to and cooperate with a leader that monitors and controls the distribution of the bonus. These predictions were confirmed across two experiments using a step-level public good paradigm with a dichotomous (Study 1) and a continuous (Study 2) contribution choice. Moreover, the results also revealed that perceptions of trust accounted, in part, for the effect of level of threshold on people's leadership preferences.
Bidmanova, Sarka; Kotlanova, Marketa; Rataj, Tomas; Damborsky, Jiri; Trtilek, Martin; Prokop, Zbynek
2016-10-15
An advanced optical biosensor was developed based on the enzymatic reaction with halogenated aliphatic hydrocarbons that is accompanied by the fluorescence change of pH indicator. The device is applicable for the detection of halogenated contaminants in water samples with pH ranging from 4 to 10 and temperature ranging from 5 to 60°C. Main advantages of the developed biosensor are small size (60×30×190mm(3)) and portability, which together with short measurement time of 1min belong to crucial attributes of analytical technique useful for routine environmental monitoring. The biosensor was successfully applied for the detection of several important halogenated pollutants under laboratory conditions, e.g., 1,2-dichloroethane, 1,2,3-trichloropropane and γ-hexachlorocyclohexane, with the limits of detection of 2.7, 1.4 and 12.1mgL(-1), respectively. The continuous monitoring was demonstrated by repetitive injection of halogenated compound into measurement solution. Consequently, field trials under environmental settings were performed. The presence of 1,2-dichloroethane (10mgL(-1)) was proved unambiguously on one of three potentially contaminated sites in Czech Republic, and the same contaminant was monitored on contaminated locality in Serbia. Equipped by Global Positioning System, the biosensor was used for creation of a precise map of contamination. Concentrations determined by biosensor and by gas chromatograph coupled with mass spectrometer exhibited the correlation coefficient of 0.92, providing a good confidence for the routine use of the biosensor system in both field screening and monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.
Schalasta, Gunnar; Börner, Anna; Speicher, Andrea; Enders, Martin
2018-03-28
Proper management of patients with chronic hepatitis B virus (HBV) infection requires monitoring of plasma or serum HBV DNA levels using a highly sensitive nucleic acid amplification test. Because commercially available assays differ in performance, we compared herein the performance of the Hologic Aptima HBV Quant assay (Aptima) to that of the Roche Cobas TaqMan HBV test for use with the high pure system (HPS/CTM). Assay performance was assessed using HBV reference panels as well as plasma and serum samples from chronically HBV-infected patients. Method correlation, analytical sensitivity, precision/reproducibility, linearity, bias and influence of genotype were evaluated. Data analysis was performed using linear regression, Deming correlation analysis and Bland-Altman analysis. Agreement between the assays for the two reference panels was good, with a difference in assay values vs. target <0.5 log. Qualitative assay results for 159 clinical samples showed good concordance (88.1%; κ=0.75; 95% confidence interval: 0.651-0.845). For the 106 samples quantitated by both assays, viral load results were highly correlated (R=0.92) and differed on average by 0.09 log, with 95.3% of the samples being within the 95% limit of agreement of the assays. Linearity for viral loads 1-7 log was excellent for both assays (R2>0.98). The two assays had similar bias and precision across the different genotypes tested at low viral loads (25-1000 IU/mL). Aptima has a performance comparable with that of HPS/CTM, making it suitable for use for HBV infection monitoring. Aptima runs on a fully automated platform (the Panther system) and therefore offers a significantly improved workflow compared with HPS/CTM.
Wang, Xuefeng
2017-01-01
This paper presents a survey on a system that uses digital image processing techniques to identify anthracnose and powdery mildew diseases of sandalwood from digital images. Our main objective is researching the most suitable identification technology for the anthracnose and powdery mildew diseases of the sandalwood leaf, which provides algorithmic support for the real-time machine judgment of the health status and disease level of sandalwood. We conducted real-time monitoring of Hainan sandalwood leaves with varying severity levels of anthracnose and powdery mildew beginning in March 2014. We used image segmentation, feature extraction and digital image classification and recognition technology to carry out a comparative experimental study for the image analysis of powdery mildew, anthracnose disease and healthy leaves in the field. Performing the actual test for a large number of diseased leaves pointed to three conclusions: (1) Distinguishing effects of BP (Back Propagation) neural network method, in all kinds of classical methods, for sandalwood leaf anthracnose and powdery mildew disease are relatively good; the size of the lesion areas were closest to the actual. (2) The differences between two diseases can be shown well by the shape feature, color feature and texture feature of the disease image. (3) Identifying and diagnosing the diseased leaves have ideal results by SVM, which is based on radial basis kernel function. The identification rate of the anthracnose and healthy leaves was 92% respectively, and that of powdery mildew was 84%. Disease identification technology lays the foundation for remote monitoring disease diagnosis, preparing for remote transmission of the disease images, which is a very good guide and reference for further research of the disease identification and diagnosis system in sandalwood and other species of trees. PMID:28749977
Wu, Chunyan; Wang, Xuefeng
2017-01-01
This paper presents a survey on a system that uses digital image processing techniques to identify anthracnose and powdery mildew diseases of sandalwood from digital images. Our main objective is researching the most suitable identification technology for the anthracnose and powdery mildew diseases of the sandalwood leaf, which provides algorithmic support for the real-time machine judgment of the health status and disease level of sandalwood. We conducted real-time monitoring of Hainan sandalwood leaves with varying severity levels of anthracnose and powdery mildew beginning in March 2014. We used image segmentation, feature extraction and digital image classification and recognition technology to carry out a comparative experimental study for the image analysis of powdery mildew, anthracnose disease and healthy leaves in the field. Performing the actual test for a large number of diseased leaves pointed to three conclusions: (1) Distinguishing effects of BP (Back Propagation) neural network method, in all kinds of classical methods, for sandalwood leaf anthracnose and powdery mildew disease are relatively good; the size of the lesion areas were closest to the actual. (2) The differences between two diseases can be shown well by the shape feature, color feature and texture feature of the disease image. (3) Identifying and diagnosing the diseased leaves have ideal results by SVM, which is based on radial basis kernel function. The identification rate of the anthracnose and healthy leaves was 92% respectively, and that of powdery mildew was 84%. Disease identification technology lays the foundation for remote monitoring disease diagnosis, preparing for remote transmission of the disease images, which is a very good guide and reference for further research of the disease identification and diagnosis system in sandalwood and other species of trees.
NASA Technical Reports Server (NTRS)
Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Valentine, James R.; Trabanino, Rudy; Webb, Johanna V.; Sauer, Richard L.
1991-01-01
A breadboard concept of a volatile organics concentrator (VOC) is manufactured and tested for optimized water-quality analysis in a space environment. The VOC system is attached to a gas chromatograph/mass spectrometer to analyze the volatile chemicals relevant to the operation of Space Station Freedom. The preliminary tests include: (1) comparisons with analyses based on direct on-column injections of standards; (2) analyses of iodinated volatile organics; (3) comparisons of nitrogen vs helium as the chromatography carrier gas; and (4) measurements of collection efficiency. The VOC can analyze EPA method-624 analytes at comparable detection using flame-ionization detection and can analyze volatile iodinated compounds. The breadboard has good reproducibility and can use nitrogen as a carrier gas; good results are noted for the collection and concentration levels and for water removal.
40 CFR 63.1250 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize... were caused by a sudden, infrequent, and unavoidable failure of air pollution control and monitoring...
40 CFR 63.1250 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize... were caused by a sudden, infrequent, and unavoidable failure of air pollution control and monitoring...
40 CFR 63.1250 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize... were caused by a sudden, infrequent, and unavoidable failure of air pollution control and monitoring...
40 CFR 63.1250 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize... were caused by a sudden, infrequent, and unavoidable failure of air pollution control and monitoring...
Monitoring of tissue optical properties using OCT: application for blood glucose analysis
NASA Astrophysics Data System (ADS)
Larin, Kirill V.; Eledrisi, Mohsen S.; Ashitkov, Taras V.; Motamedi, Massoud; Esenaliev, Rinat O.
2002-07-01
Noninvasive monitoring of tissue optical properties in real time could significantly improve diagnostics and management of various diseases. Recently we proposed to use high- resolution Optical Coherence Tomography (OCT) technique for measurement of tissue scattering coefficient at the depth of up to 1mm. Our pilot studies performed in vitro and in vivo demonstrated that measurement of tissue scattering with this technique can potentially be applied for noninvasive monitoring of blood glucose concentration. High resolution and coherent photon detection of the OCT technique allowed detection of glucose-induced changes in the scattering coefficient. In this paper we report results of in vivo studies performed in dog, New Zealand rabbits, and first human subjects. OCT system with the wavelength of 1300 nm was used in our experiments. OCT signal slope was measured and compared with actual blood glucose concentration. Bolus glucose injections and glucose clamping administrations were used in animal studies. OCT signals were recorded form human subjects during oral glucose tolerance test. Results obtained form both animal and human studies show good correlation between slope of the OCT signals and actual blood glucose concentration measured using standard glucometesr. Sensitivity and accuracy of blood glucose concentrations monitoring with the OCT is discussed. Obtained result suggest that OCT is a promising technique for noninvasive monitoring of tissue analytes including glucose.
NASA Astrophysics Data System (ADS)
Larin, Kirill V.; Ashitkov, Taras V.; Larina, Irina V.; Petrova, Irina Y.; Eledrisi, Mohsen S.; Motamedi, Massoud; Esenaliev, Rinat O.
2002-06-01
Continuous noninvasive monitoring of blood glucose concentration can improve management of Diabetes Mellitus, reduce mortality, and considerably improve quality of life of diabetic patients. Recently, we proposed to use the OCT technique for noninvasive glucose monitoring. In this paper, we tested noninvasive blood glucose monitoring with the OCT technique in phantoms, animals, and human subjects. An OCT system with the wavelength of 1300 nm was used in our experiments. Phantom studies performed on aqueous suspensions of polystyrene microspheres and milk showed 3.2% decrease of exponential slope of OCT signals when glucose concentration increased from 0 to 100 mM. Theoretical calculations based on the Mie theory of scattering support the results obtained in phantoms. Bolus glucose injections and glucose clamping experiments were performed in animals (New Zealand rabbits and Yucatan micropigs). Good correlation between changes in the OCT signal slope and actual blood glucose concentration were observed in these experiments. First studies were performed in healthy human subjects (using oral glucose tolerance tests). Dependence of the slope of the OCT signals on the actual blood glucose concentration was similar to that obtained in animal studies. Our studies suggest that the OCT technique can potentially be used for noninvasive blood glucose monitoring.
Breast screen new South wales generally demonstrates good radiologic viewing conditions.
Soh, BaoLin Pauline; Lee, Warwick; Diffey, Jennifer L; McEntee, Mark F; Kench, Peter L; Reed, Warren M; Brennan, Patrick C
2013-08-01
This study measured reading workstation monitors and the viewing environment currently available within BreastScreen New South Wales (BSNSW) centres to determine levels of adherence to national and international guidelines. Thirteen workstations from four BSNSW service centres were assessed using the American Association of Physicists in Medicine Task Group 18 Quality Control test pattern. Reading workstation monitor performance and ambient light levels when interpreting screening mammographic images were assessed using spectroradiometer CS-2000 and chroma meter CL-200. Overall, radiologic monitors within BSNSW were operating at good acceptable levels. Some non-adherence to published guidelines included the percentage difference in maximum luminance between pairs of primary monitors at individual workstations (61.5 % or 30.8 % of workstations depending on specific guidelines), maximum luminance (23.1 % of workstations), luminance non-uniformity (11.5 % of workstations) and minimum luminance (3.8 % of workstations). A number of ambient light measurements did not comply with the only available evidence-based guideline relevant to the methodology used in this study. Larger ambient light variations across sites are shown when monitors were switched off, suggesting that differences in ambient lighting between sites can be masked when a standard mammogram is displayed for photometric measurements. Overall, BSNSW demonstrated good adherence to available guidelines, although some non-compliance has been shown. Recently updated United Kingdom and Australian guidelines should help reduce confusion generated by the plethora and sometimes dated nature of currently available recommendations.
Prone position craniotomy in pregnancy without fetal heart rate monitoring.
Jacob, Jean; Alexander, Ashish; Philip, Shoba; Thomas, Anoop
2016-09-01
A pregnant patient in second trimester scheduled for posterior fossa craniotomy in prone position is a challenge for the anesthesiologist. Things to consider are physiological changes during pregnancy, non-obstetric surgery in pregnant patients, neuroanesthetic principles, effects of prone positioning, and need for fetal heart rate (FHR) monitoring. We have described the anesthetic management of this case and discussed intra-operative FHR monitoring including controversies about its role, indications, and various options available as per fetal gestational age. In our case we attempted intermittent intra-operative FHR monitoring to optimize maternal positioning and fetal oxygenation even though the fetus was pre-viable. However the attempt was abandoned due to practical difficulties with prone positioning. Patient made good neurological recovery following the procedure and delivered a healthy term baby 4 months later. Decisions regarding fetal monitoring should be individualized based on viability of the fetus and feasibility of emergency cesarean delivery. Good communication between a multidisciplinary team involving neurosurgeon, anesthesiologist, obstetrician, and neonatologist is important for a successful outcome for mother and fetus. We conclude that prone position neurosurgery can safely be carried out in a pregnant patient with pre-viable fetus without FHR monitoring. Copyright © 2016 Elsevier Inc. All rights reserved.
Microcontroller based driver alertness detection systems to detect drowsiness
NASA Astrophysics Data System (ADS)
Adenin, Hasibah; Zahari, Rahimi; Lim, Tiong Hoo
2018-04-01
The advancement of embedded system for detecting and preventing drowsiness in a vehicle is a major challenge for road traffic accident systems. To prevent drowsiness while driving, it is necessary to have an alert system that can detect a decline in driver concentration and send a signal to the driver. Studies have shown that traffc accidents usually occur when the driver is distracted while driving. In this paper, we have reviewed a number of detection systems to monitor the concentration of a car driver and propose a portable Driver Alertness Detection System (DADS) to determine the level of concentration of the driver based on pixelated coloration detection technique using facial recognition. A portable camera will be placed at the front visor to capture facial expression and the eye activities. We evaluate DADS using 26 participants and have achieved 100% detection rate with good lighting condition and a low detection rate at night.
Fake Plate Vehicle Auditing Based on Composite Constraints in Internet of Things Environment
NASA Astrophysics Data System (ADS)
Li, Shasha; Xiangji Huang, Jimmy; Tohti, Turdi
2018-03-01
Accordance to the real application demands, this paper proposes a fake plate vehicle auditing method based on composite constrains strategy, a corresponding simulated IOT (internet of things) environment was created and uses liner matrix, Base64 encryption and grid monitoring technology and puts forward a real-time detecting algorithm for fake plate vehicles. The developed real system not only shows the superiority on its speed, detection accuracy and visualization, it also be good at realizing the vehicle’s real-time position and predicting the possible traveling trajectory.
Female sterilization in Thailand: past, present and future.
Intaraprasert, S; Chaturachinda, K
1993-01-01
Female sterilization is the most effective contraception and has a very high demographic effectiveness. In the past, there have been developments in technological aspects. At present, the minilaparotomy and laparoscopic sterilization have been well developed and widely used, but the number of new acceptors is declining, and there is still a large number of unmet demands. Social action rather than technological action is needed. In the future, steps to increase the number of acceptors, are, proper management of the sterilization services, including adequate monitoring and a good surveillance system.
Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen
2016-01-01
To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm(-1) (1343.3 nm) and 7185.6 cm(-1) (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.
NASA Astrophysics Data System (ADS)
Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen
2016-01-01
To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm-1 (1343.3 nm) and 7185.6 cm-1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lijun, E-mail: lijunxu@buaa.edu.cn; Liu, Chang; Jing, Wenyang
2016-01-15
To monitor two-dimensional (2D) distributions of temperature and H{sub 2}O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H{sub 2}O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm{sup −1} (1343.3 nm) and 7185.6 cm{sup −1} (1391.67 nm), respectively. The tomographicmore » sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H{sub 2}O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H{sub 2}O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.« less
Danek, T; Protasiuk, R; Mańkowski, M; Brutkiewicz, A; Trześniewski, R; Podlińska, I; Milecka, A; Jonas, M; Danielewicz, R; Czerwiński, J
2016-06-01
In 2010 the formation of the Polish Hospitals Network of Organ Donation Coordinators, originated by Poltransplant, began. One of the goals of this project is to report all deaths in hospital ICUs in which a coordinator is posted. The aim of this strategy is to monitor donation potential, following the recruitment process of potential donors and indicating stages of that process that may be improved to increase effective recruitment. Until the end of 2014 all data were forwarded to Poltransplant as Excel files, but since January 1, 2015, reporting and data collection have been are performed using web tool www.koordynator.net. The aim of the paper is to present the essentials in functioning principles, structure, and usage of the www.koordynator.net system, its technical construction, and to display good practices (know-how) tested by 1 country, for countries such as Poland, that contend with organ insufficiency. The application www.koordynator.net allows for remote addition of individual records with information about deceased patients in hospital ICUs, the forwarding of data about potential and actual organ donors, the generation of complete reports about deceased patients in each hospital monthly, and the introduction of historical data. Introduction of a potential donation monitoring system in 209 hospitals with transplant coordinators increases the number of identified potential and effective actual donors due to self-assessment analysis. Eventually, the www.koordynator.net reporting system allowed for external evaluation by coordinators from other hospitals, regional coordinators, and Poltransplant. The system is a modern tool that improves and increases the quality system in the organ donation field (quality assurance program). Copyright © 2016 Elsevier Inc. All rights reserved.
A Biomimetic Structural Health Monitoring Approach Using Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Liu, Yingtao; Rajadas, Abhishek; Chattopadhyay, Aditi
2012-07-01
A self-sensing nanocomposite material has been developed to track the presence of damage in complex composite structures. Multiwalled carbon nanotubes are integrated with polymer matrix to develop a novel bonding material with sensing capabilities. The changes of the piezoresistance in the presence of damage are used to monitor the condition of bonded joints, where the usual bonding material is replaced by the self-sensing nanocomposite. The feasibility of this concept is investigated through experiments conducted on single-lap joints subject to monotonic tensile loading conditions. The results show that the self-sensing nanocomposite is sensitive to crack propagation within the matrix material. An acoustic emission-based sensing technique has been used to validate these results and shows good correlation with damage growth. A digital image correlation system is used to measure the shear strain field in the joint area.
NASA Astrophysics Data System (ADS)
Zhu, Yanqun; Zhou, Jinsong; He, Sheng; Cai, Xiaoshu; Hu, Changxin; Zheng, Jianming; Zhang, Le; Luo, Zhongyang; Cen, Kefa
2007-06-01
The mercury emission control approach attaches more importance. The accurate measurement of mercury speciation is a first step. Because OH method (accepted method) can't provide the real-time data and 2-week time for results attained, it's high time to seek on line mercury continuous emission monitors(Hg-CEM). Firstly, the gaseous elemental and oxidized mercury were conducted to measure using OH and CEM method under normal operation conditions of PC boiler after ESP, the results between two methods show good consistency. Secondly, through ESP, gaseous oxidized mercury decrease a little and particulate mercury reduce a little bit, but the elemental mercury is just the opposite. Besides, the WFGD system achieved to gaseous oxidized mercury removal of 53.4%, gaseous overall mercury and elemental mercury are 37.1% and 22.1%, respectively.
On the Performance of the Marginal Homogeneity Test to Detect Rater Drift.
Sgammato, Adrienne; Donoghue, John R
2018-06-01
When constructed response items are administered repeatedly, "trend scoring" can be used to test for rater drift. In trend scoring, raters rescore responses from the previous administration. Two simulation studies evaluated the utility of Stuart's Q measure of marginal homogeneity as a way of evaluating rater drift when monitoring trend scoring. In the first study, data were generated based on trend scoring tables obtained from an operational assessment. The second study tightly controlled table margins to disentangle certain features present in the empirical data. In addition to Q , the paired t test was included as a comparison, because of its widespread use in monitoring trend scoring. Sample size, number of score categories, interrater agreement, and symmetry/asymmetry of the margins were manipulated. For identical margins, both statistics had good Type I error control. For a unidirectional shift in margins, both statistics had good power. As expected, when shifts in the margins were balanced across categories, the t test had little power. Q demonstrated good power for all conditions and identified almost all items identified by the t test. Q shows substantial promise for monitoring of trend scoring.
Development of wireless sensor network for monitoring indoor air pollutant
NASA Astrophysics Data System (ADS)
Saad, Shaharil Mad; Shakaff, Ali Yeon Md; Saad, Abdul Rahman Mohd; Yusof @ Kamarudin, Azman Muhamad
2015-05-01
The air that we breathe with everyday contains variety of contaminants and particles. Some of these contaminants and particles are hazardous to human health. Most of the people don't realize that the content of air they being exposed to whether it was a good or bad air quality. The air quality whether in indoor or outdoor environment can be influenced by physical factors like dust particles, gaseous pollutants (including carbon dioxide, carbon monoxide and volatile organic compounds) and biological like molds and bacteria growth which largely depend on temperature and humidity condition of a room. These kinds of pollutants can affect human health, physical reaction, comfort or work performance. In this study, a wireless sensor network (WSN) monitoring system for monitor air pollutant in indoor environment was developed. The system was divided into three parts: web-based interface program, sensing module and a base station. The measured data was displayed on the web which is can be accessed by the user. The result shows that the overall measured parameters were meet the acceptable limit, requirement and criteria of indoor air pollution inside the building. The research can be used to improve the indoor air quality level in order to create a comfortable working and healthy environment for the occupants inside the building.
Assessment of the Indoor Odour Impact in a Naturally Ventilated Room
Eusebio, Lidia; Derudi, Marco; Capelli, Laura; Nano, Giuseppe; Sironi, Selena
2017-01-01
Indoor air quality influences people’s lives, potentially affecting their health and comfort. Nowadays, ventilation is the only technique commonly used for regulating indoor air quality. CO2 is the reference species considered in order to calculate the air exchange rates of indoor environments. Indeed, regarding air quality, the presence of pleasant or unpleasant odours can strongly influence the environmental comfort. In this paper, a case study of indoor air quality monitoring is reported. The indoor field tests were conducted measuring both CO2 concentration, using a photoacoustic multi-gas analyzer, and odour trends, using an electronic nose, in order to analyze and compare the information acquired. The indoor air monitoring campaign was run for a period of 20 working days into a university room. The work was focused on the determination of both CO2 and odour emission factors (OEF) emitted by the human activity and on the evaluation of the odour impact in a naturally ventilated room. The results highlighted that an air monitoring and recycling system based only on CO2 concentration and temperature measurements might be insufficient to ensure a good indoor air quality, whereas its performances could be improved by integrating the existing systems with an electronic nose for odour detection. PMID:28379190
Development of silicon carbide semiconductor devices for high temperature applications
NASA Technical Reports Server (NTRS)
Matus, Lawrence G.; Powell, J. Anthony; Petit, Jeremy B.
1991-01-01
The semiconducting properties of electronic grade silicon carbide crystals, such as wide energy bandgap, make it particularly attractive for high temperature applications. Applications for high temperature electronic devices include instrumentation for engines under development, engine control and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Discrete prototype SiC devices were fabricated and tested at elevated temperatures. Grown p-n junction diodes demonstrated very good rectification characteristics at 870 K. A depletion-mode metal-oxide-semiconductor field-effect transistor was also successfully fabricated and tested at 770 K. While optimization of SiC fabrication processes remain, it is believed that SiC is an enabling high temperature electronic technology.
Environmental microbial contamination in a stem cell bank.
Cobo, F; Concha, A
2007-04-01
The aim of this study was to evaluate the main environmental microbial contaminants of the clean rooms in our stem cell bank. We have measured the microbial air contamination by both passive and active air sampling and the microbial monitoring of surfaces by means of Rodac plates. The environmental monitoring tests were carried out in accordance with the guidelines of European Pharmacopeia and US Pharmacopeia. The micro-organisms were identified by means of an automated system (VITEK 2). During the monitoring, the clean rooms are continually under good manufacturing practices specifications. The most frequent contaminants were Gram-positive cocci. The main contaminants in our stem cell bank were coagulase-negative staphylococci and other opportunistic human pathogens. In order to assure the levels of potential contamination in both embryonic and adult stem cell lines, a continuous sampling of air particles and testing for viable microbiological contamination is necessary. This study is the first evaluation of the environmental contaminants in stem cell banks and can serve as initial evaluation for these establishments. The introduction of environmental monitoring programmes in the processing of stem cell lines could diminish the risk of contamination in stem cell cultures.
Micro-electromechanical film bulk acoustic sensor for plasma and whole blood coagulation monitoring.
Chen, Da; Song, Shuren; Ma, Jilong; Zhang, Zhen; Wang, Peng; Liu, Weihui; Guo, Qiuquan
2017-05-15
Monitoring blood coagulation is an important issue in the surgeries and the treatment of cardiovascular diseases. In this work, we reported a novel strategy for the blood coagulation monitoring based on a micro-electromechanical film bulk acoustic resonator. The resonator was excited by a lateral electric field and operated under the shear mode with a frequency of 1.9GHz. According to the apparent step-ladder curves of the frequency response to the change of blood viscoelasticity, the coagulation time (prothrombin time) and the coagulation kinetics were measured with the sample consumption of only 1μl. The procoagulant activity of thromboplastin and the anticoagulant effect of heparin on the blood coagulation process were illustrated exemplarily. The measured prothrombin times showed a good linear correlation with R 2 =0.99969 and a consistency with the coefficient of variation less than 5% compared with the commercial coagulometer. The proposed film bulk acoustic sensor, which has the advantages of small size, light weight, low cost, simple operation and little sample consumption, is a promising device for miniaturized, online and automated analytical system for routine diagnostics of hemostatic status and personal health monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Y Tao, S.; Zhang, X. Z.; Cai, H. W.; Li, P.; Feng, Y.; Zhang, T. C.; Li, J.; Wang, W. S.; Zhang, X. K.
2017-12-01
The pulse current method for partial discharge detection is generally applied in type testing and other off-line tests of electrical equipment at delivery. After intensive analysis of the present situation and existing problems of partial discharge detection in switch cabinets, this paper designed the circuit principle and signal extraction method for partial discharge on-line detection based on a high-voltage presence indicating systems (VPIS), established a high voltage switch cabinet partial discharge on-line detection circuit based on the pulse current method, developed background software integrated with real-time monitoring, judging and analyzing functions, carried out a real discharge simulation test on a real-type partial discharge defect simulation platform of a 10KV switch cabinet, and verified the sensitivity and validity of the high-voltage switch cabinet partial discharge on-line monitoring device based on the pulse current method. The study presented in this paper is of great significance for switch cabinet maintenance and theoretical study on pulse current method on-line detection, and has provided a good implementation method for partial discharge on-line monitoring devices for 10KV distribution network equipment.
Laser- and Multi-Spectral Monitoring of Natural Objects from UAVs
NASA Astrophysics Data System (ADS)
Reiterer, Alexander; Frey, Simon; Koch, Barbara; Stemmler, Simon; Weinacker, Holger; Hoffmann, Annemarie; Weiler, Markus; Hergarten, Stefan
2016-04-01
The paper describes the research, development and evaluation of a lightweight sensor system for UAVs. The system is composed of three main components: (1) a laser scanning module, (2) a multi-spectral camera system, and (3) a processing/storage unit. All three components are newly developed. Beside measurement precision and frequency, the low weight has been one of the challenging tasks. The current system has a total weight of about 2.5 kg and is designed as a self-contained unit (incl. storage and battery units). The main features of the system are: laser-based multi-echo 3D measurement by a wavelength of 905 nm (totally eye save), measurement range up to 200 m, measurement frequency of 40 kHz, scanning frequency of 16 Hz, relative distance accuracy of 10 mm. The system is equipped with both GNSS and IMU. Alternatively, a multi-visual-odometry system has been integrated to estimate the trajectory of the UAV by image features (based on this system a calculation of 3D-coordinates without GNSS is possible). The integrated multi-spectral camera system is based on conventional CMOS-image-chips equipped with a special sets of band-pass interference filters with a full width half maximum (FWHM) of 50 nm. Good results for calculating the normalized difference vegetation index (NDVI) and the wide dynamic range vegetation index (WDRVI) have been achieved using the band-pass interference filter-set with a FWHM of 50 nm and an exposure times between 5.000 μs and 7.000 μs. The system is currently used for monitoring of natural objects and surfaces, like forest, as well as for geo-risk analysis (landslides). By measuring 3D-geometric and multi-spectral information a reliable monitoring and interpretation of the data-set is possible. The paper gives an overview about the development steps, the system, the evaluation and first results.
NASA Astrophysics Data System (ADS)
Shutler, J. D.; Warren, M. A.; Miller, P. I.; Barciela, R.; Mahdon, R.; Land, P. E.; Edwards, K.; Wither, A.; Jonas, P.; Murdoch, N.; Roast, S. D.; Clements, O.; Kurekin, A.
2015-04-01
Coastal zones and shelf-seas are important for tourism, commercial fishing and aquaculture. As a result the importance of good water quality within these regions to support life is recognised worldwide and a number of international directives for monitoring them now exist. This paper describes the AlgaRisk water quality monitoring demonstration service that was developed and operated for the UK Environment Agency in response to the microbiological monitoring needs within the revised European Union Bathing Waters Directive. The AlgaRisk approach used satellite Earth observation to provide a near-real time monitoring of microbiological water quality and a series of nested operational models (atmospheric and hydrodynamic-ecosystem) provided a forecast capability. For the period of the demonstration service (2008-2013) all monitoring and forecast datasets were processed in near-real time on a daily basis and disseminated through a dedicated web portal, with extracted data automatically emailed to agency staff. Near-real time data processing was achieved using a series of supercomputers and an Open Grid approach. The novel web portal and java-based viewer enabled users to visualise and interrogate current and historical data. The system description, the algorithms employed and example results focussing on a case study of an incidence of the harmful algal bloom Karenia mikimotoi are presented. Recommendations and the potential exploitation of web services for future water quality monitoring services are discussed.
Giambi, C; Montaño-Remacha, C; Celentano, L Pastore; Derrough, T
2015-09-11
Rubella elimination and congenital rubella syndrome (CRS) prevention are targets for achievement by 2015 in the WHO-EURO Region. This paper describes the existing surveillance systems for CRS and rubella in pregnancy in order to critically interpret the findings in relation to the 2012 WHO-EURO surveillance guidelines. In 2012 we conducted a survey to collect information on surveillance of CRS and rubella in pregnancy in 29 EU/EEA countries. Questionnaires explored the characteristics of the surveillance systems, case definition, epidemiological investigation and follow-up of cases, reference laboratories and types of tests performed. Twenty-eight countries had surveillance systems for CRS, mostly nationwide, mandatory, passive and case-based; 23 collected information on the origin of the infection; 11 reported asymptomatic infections; 6 required zero-reporting. Case definitions varied among countries, although 24 used the EU definition. Laboratories reported cases in 18 countries. Twenty countries collected information on pregnancy within the rubella surveillance system and 5 had specific surveillance for rubella in pregnancy. Two countries did not monitor outcomes of suspected infections in pregnancy; infants with CRS were monitored in all the remaining countries; asymptomatic infected infants in 15; stillbirths and fetal deaths in 13; therapeutic and spontaneous abortions in 8 and 7. Twenty-seven countries had a national reference laboratory for CRS and rubella in pregnancy; genotyping was performed in 15. The current surveillance systems allow adequate CRS monitoring in EU. Further efforts are needed to improve their quality, including uniform case definitions, collection of information on the origin of infection, and promotion of reporting from laboratories. Follow-up of pregnant women with suspected infection should be strengthened because it is an entry point for CRS, including detection of fetal deaths, stillbirths and abortions. Laboratory capacity for confirming congenital rubella infections and infections in pregnancy is good in EU, however the use of genotyping should be encouraged. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cho, Hyun Min; Hong, Yoon Joo; Byun, Chun Sung; Hwang, Jung Joo
2016-03-01
Chest drainage systems are usually composed of chest tube and underwater-seal bottle. But this conventional system may restrict patients doing exercise and give clinicians obscure data about when to remove tubes because there is no objective indicator. Recently developed digital chest drainage systems may facilitate interpretation of the grade of air leak and make it easy for clinicians to decide when to remove chest tubes. In addition, with combination of wireless internet devices, monitoring and managing of drainage system distant from the patient is possible. Sixty patients of primary pneumothorax were included in a prospective randomized study and divided into two groups. Group I (study) consisted of digital chest drainage system while in group II (control), conventional underwater-seal chest bottle system was used. Data was collected from January, 2012 to September, 2013 in Eulji University Hospital, Daejeon, Korea. There was no difference in age, sex, smoking history and postoperative pain between two groups. But the average length of drainage was 2.2 days in group I and 3.1 days in group II (P<0.006). And more, about 90% of the patients in group I was satisfied with using new device for convenience. Digital system was beneficial on reducing the length of tube drainage by real time monitoring. It also had advantage in portability, loudness and gave more satisfaction than conventional system. Moreover, internet based digital drainage system will be a good method in thoracic telemedicine area in the near future.
Validity of a quantitative clinical measurement tool of trunk posture in idiopathic scoliosis.
Fortin, Carole; Feldman, Debbie E; Cheriet, Farida; Labelle, Hubert
2010-09-01
Concurrent validity between postural indices obtained from digital photographs (two-dimensional [2D]), surface topography imaging (three-dimensional [3D]), and radiographs. To assess the validity of a quantitative clinical postural assessment tool of the trunk based on photographs (2D) as compared to a surface topography system (3D) as well as indices calculated from radiographs. To monitor progression of scoliosis or change in posture over time in young persons with idiopathic scoliosis (IS), noninvasive and nonionizing methods are recommended. In a clinical setting, posture can be quite easily assessed by calculating key postural indices from photographs. Quantitative postural indices of 70 subjects aged 10 to 20 years old with IS (Cobb angle, 15 degrees -60 degrees) were measured from photographs and from 3D trunk surface images taken in the standing position. Shoulder, scapula, trunk list, pelvis, scoliosis, and waist angles indices were calculated with specially designed software. Frontal and sagittal Cobb angles and trunk list were also calculated on radiographs. The Pearson correlation coefficients (r) was used to estimate concurrent validity of the 2D clinical postural tool of the trunk with indices extracted from the 3D system and with those obtained from radiographs. The correlation between 2D and 3D indices was good to excellent for shoulder, pelvis, trunk list, and thoracic scoliosis (0.81>r<0.97; P<0.01) but fair to moderate for thoracic kyphosis, lumbar lordosis, and thoracolumbar or lumbar scoliosis (0.30>r<0.56; P<0.05). The correlation between 2D and radiograph spinal indices was fair to good (-0.33 to -0.80 with Cobb angles and 0.76 for trunk list; P<0.05). This tool will facilitate clinical practice by monitoring trunk posture among persons with IS. Further, it may contribute to a reduction in the use of radiographs to monitor scoliosis progression.
Low, slow, small target recognition based on spatial vision network
NASA Astrophysics Data System (ADS)
Cheng, Zhao; Guo, Pei; Qi, Xin
2018-03-01
Traditional photoelectric monitoring is monitored using a large number of identical cameras. In order to ensure the full coverage of the monitoring area, this monitoring method uses more cameras, which leads to more monitoring and repetition areas, and higher costs, resulting in more waste. In order to reduce the monitoring cost and solve the difficult problem of finding, identifying and tracking a low altitude, slow speed and small target, this paper presents spatial vision network for low-slow-small targets recognition. Based on camera imaging principle and monitoring model, spatial vision network is modeled and optimized. Simulation experiment results demonstrate that the proposed method has good performance.
Robust data enables managers to promote good practice.
Bassett, Sally; Westmore, Kathryn
2012-11-01
This is the third in a series of articles examining the components of good corporate governance. The effective and efficient use of information and sources of information is crucial for good governance. This article explores the ways in which boards and management can obtain and use information to monitor performance and promote good practice, and how boards can be assured about the quality of information on which they rely. The final article in this series will look at the role of accountability in corporate governance.
Crackdown on Attendance--The Word Is Out.
ERIC Educational Resources Information Center
DuFour, Richard
1983-01-01
Procedures successful for one school in establishing good attendance include phone calls on all unexplained absences, discipline for unexcused absences, incentives for good attendance, charting attendance patterns, and staff coordination for monitoring attendance. Increased state aid, a more positive school climate, and greater student achievement…
Early recognition of growth abnormalities permitting early intervention
USDA-ARS?s Scientific Manuscript database
Normal growth is a sign of good health. Monitoring for growth disturbances is fundamental to children's health care. Early detection and diagnosis of the causes of short stature allows management of underlying medical conditions, optimizing attainment of good health and normal adult height. This rev...
An integrated compact airborne multispectral imaging system using embedded computer
NASA Astrophysics Data System (ADS)
Zhang, Yuedong; Wang, Li; Zhang, Xuguo
2015-08-01
An integrated compact airborne multispectral imaging system using embedded computer based control system was developed for small aircraft multispectral imaging application. The multispectral imaging system integrates CMOS camera, filter wheel with eight filters, two-axis stabilized platform, miniature POS (position and orientation system) and embedded computer. The embedded computer has excellent universality and expansibility, and has advantages in volume and weight for airborne platform, so it can meet the requirements of control system of the integrated airborne multispectral imaging system. The embedded computer controls the camera parameters setting, filter wheel and stabilized platform working, image and POS data acquisition, and stores the image and data. The airborne multispectral imaging system can connect peripheral device use the ports of the embedded computer, so the system operation and the stored image data management are easy. This airborne multispectral imaging system has advantages of small volume, multi-function, and good expansibility. The imaging experiment results show that this system has potential for multispectral remote sensing in applications such as resource investigation and environmental monitoring.
Lab-on-a-chip based total-phosphorus analysis device utilizing a photocatalytic reaction
NASA Astrophysics Data System (ADS)
Jung, Dong Geon; Jung, Daewoong; Kong, Seong Ho
2018-02-01
A lab-on-a-chip (LOC) device for total phosphorus (TP) analysis was fabricated for water quality monitoring. Many commercially available TP analysis systems used to estimate water quality have good sensitivity and accuracy. However, these systems also have many disadvantages such as bulky size, complex pretreatment processes, and high cost, which limit their application. In particular, conventional TP analysis systems require an indispensable pretreatment step, in which the fluidic analyte is heated to 120 °C for 30 min to release the dissolved phosphate, because many phosphates are soluble in water at a standard temperature and pressure. In addition, this pretreatment process requires elevated pressures of up to 1.1 kg cm-2 in order to prevent the evaporation of the heated analyte. Because of these limiting conditions required by the pretreatment processes used in conventional systems, it is difficult to miniaturize TP analysis systems. In this study, we employed a photocatalytic reaction in the pretreatment process. The reaction was carried out by illuminating a photocatalytic titanium dioxide (TiO2) surface formed in a microfluidic channel with ultraviolet (UV) light. This pretreatment process does not require elevated temperatures and pressures. By applying this simplified, photocatalytic-reaction-based pretreatment process to a TP analysis system, greater degrees of freedom are conferred to the design and fabrication of LOC devices for TP monitoring. The fabricated LOC device presented in this paper was characterized by measuring the TP concentration of an unknown sample, and comparing the results with those measured by a conventional TP analysis system. The TP concentrations of the unknown sample measured by the proposed LOC device and the conventional TP analysis system were 0.018 mgP/25 mL and 0.019 mgP/25 mL, respectively. The experimental results revealed that the proposed LOC device had a performance comparable to the conventional bulky TP analysis system. Therefore, our device could be directly employed in water quality monitoring as an alternative to conventional TP analysis systems.
SmartPort: A Platform for Sensor Data Monitoring in a Seaport Based on FIWARE
Fernández, Pablo; Santana, José Miguel; Ortega, Sebastián; Trujillo, Agustín; Suárez, José Pablo; Domínguez, Conrado; Santana, Jaisiel; Sánchez, Alejandro
2016-01-01
Seaport monitoring and management is a significant research area, in which infrastructure automatically collects big data sets that lead the organization in its multiple activities. Thus, this problem is heavily related to the fields of data acquisition, transfer, storage, big data analysis and information visualization. Las Palmas de Gran Canaria port is a good example of how a seaport generates big data volumes through a network of sensors. They are placed on meteorological stations and maritime buoys, registering environmental parameters. Likewise, the Automatic Identification System (AIS) registers several dynamic parameters about the tracked vessels. However, such an amount of data is useless without a system that enables a meaningful visualization and helps make decisions. In this work, we present SmartPort, a platform that offers a distributed architecture for the collection of the port sensors’ data and a rich Internet application that allows the user to explore the geolocated data. The presented SmartPort tool is a representative, promising and inspiring approach to manage and develop a smart system. It covers a demanding need for big data analysis and visualization utilities for managing complex infrastructures, such as a seaport. PMID:27011192
Well characteristics influencing arsenic concentrations in ground water.
Erickson, Melinda L; Barnes, Randal J
2005-10-01
Naturally occurring arsenic contamination is common in ground water in the upper Midwest. Arsenic is most likely to be present in glacial drift and shallow bedrock wells that lie within the footprint of northwest provenance Late Wisconsinan glacial drift. Elevated arsenic is more common in domestic wells and in monitoring wells than it is in public water system wells. Arsenic contamination is also more prevalent in domestic wells with short screens set in proximity to an upper confining unit, such as glacial till. Public water system wells have distinctly different well-construction practices and well characteristics when compared to domestic and monitoring wells. Construction practices such as exploiting a thick, coarse aquifer and installing a long well screen yield good water quantity for public water system wells. Coincidentally, these construction practices also often yield low arsenic water. Coarse aquifer materials have less surface area for adsorbing arsenic, and thus less arsenic available for potential mobilization. Wells with long screens set at a distance from an upper confining unit are at lower risk of exposure to geochemical conditions conducive to arsenic mobilization via reductive mechanisms such as reductive dissolution of metal hydroxides and reductive desorption of arsenic.
Choi, Il; Lee, Hyunjoo; Shin, Joungdu; Kim, Hyunook
2012-01-01
Sewer odors have been a concern to citizens of the Metropolitan Seoul region, which has installed combined sewer systems (CSSs) in 86% of its area. Although a variety of odorants are released from sewers, volatile sulfur compounds (VSCs) have been recognized as major ones. A number of technologies have been proposed to monitor or control odors from sewers. One of the most popular strategies adopted for the control of sewage odor is by applying a commercial odor-reducing agent into the sewer. In this study, the effectiveness of five different commercial odor-reducing agents (i.e., an odor masking agent, an alkaline solution, two microbial agents, and a chemical oxidant) was evaluated by continuously monitoring VSCs released from the sewer with an on-line total reduced sulfur (TRS) analyzer before and after each agent was sprayed into CSSs at five different locations of the city. In short, when the effectiveness of odor treatment was tested in the sewer system using five commercial odor reducing treatments, only the chemical oxidant was good enough to reduce the odor in terms of TRS levels measured before and after the application (p < 0.01). PMID:23223148
Standardized quality-assessment system to evaluate pressure ulcer care in the nursing home.
Bates-Jensen, Barbara M; Cadogan, Mary; Jorge, Jennifer; Schnelle, John F
2003-09-01
To demonstrate reliability and feasibility of a standardized protocol to assess and score quality indicators relevant to pressure ulcer (PU) care processes in nursing homes (NHs). Descriptive. Eight NHs. One hundred ninety-one NH residents for whom the PU Resident Assessment Protocol of the Minimum Data Set was initiated. Nine quality indicators (two related to screening and prevention of PU, two focused on assessment, and five addressing management) were scored using medical record data, direct human observation, and wireless thigh monitor observation data. Feasibility and reliability of medical record, observation, and thigh monitor protocols were determined. The percentage of participants who passed each of the indicators, indicating care consistent with practice guidelines, ranged from 0% to 98% across all indicators. In general, participants in NHs passed fewer indicators and had more problems with medical record accuracy before a PU was detected (screening/prevention indicators) than they did once an ulcer was documented (assessment and management indicators). Reliability of the medical record protocol showed kappa statistics ranging from 0.689 to 1.00 and percentage agreement from 80% to 100%. Direct observation protocols yielded kappa statistics of 0.979 and 0.928. Thigh monitor protocols showed kappa statistics ranging from 0.609 to 0.842. Training was variable, with the observation protocol requiring 1 to 2 hours, medical records requiring joint review of 20 charts with average time to complete the review of 20 minutes, and the thigh monitor data requiring 1 week for training in data preparation and interpretation. The standardized quality assessment system generated scores for nine PU quality indicators with good reliability and provided explicit scoring rules that permit reproducible conclusions about PU care. The focus of the indicators on care processes that are under the control of NH staff made the protocol useful for external survey and internal quality improvement purposes, and the thigh monitor observational technology provided a method for monitoring repositioning care processes that were otherwise difficult to monitor and manage.
Development and application of a long dynamic range nitrous oxide monitoring system.
Ward, B G
1985-12-01
The laboratory and field evaluation of a nitrous oxide monitor for an extremely wide range of cumulative exposures are reviewed. The passive sampling behavior and high analyte capacity show it to be useful for short-term and full workweek exposure monitoring. The monitor has application for both area and personnel surveillance. The principal criterion is for an accurate report of exposure time of the monitor. Application of the monitor to real workplace environments--with and without a reference method--demonstrated the ability of workweek monitoring as a valuable and potentially superior way of documenting exposure stress of employees. Environmental factors such as humidity and temperature variation are shown to have acceptably small effects on both short- and long-term exposure data; barometric pressure affects the data in a predictable manner. Paired dosimeters show good agreement in the workplace environment throughout the range of 6-40 cumulative hours of exposure. In both hospital and dental operating suites, work logistics and work group relationships were readily traceable on a week-by-week basis during a continuous weekly monitoring program. Source emissions and appropriate worker and work area exposure relationships were clearly evident, with appropriate reduction of all exposures as a result of an abbreviated work schedule. The ability to effectively track employee and area exposure excursions in an integrated weekly manner leads to a whole series of new applications and concepts of industrial hygiene surveillance. Such approaches could effectively replace the speculative statistical approaches currently in use with actual data on a cost effective basis.
Automated daily quality control analysis for mammography in a multi-unit imaging center.
Sundell, Veli-Matti; Mäkelä, Teemu; Meaney, Alexander; Kaasalainen, Touko; Savolainen, Sauli
2018-01-01
Background The high requirements for mammography image quality necessitate a systematic quality assurance process. Digital imaging allows automation of the image quality analysis, which can potentially improve repeatability and objectivity compared to a visual evaluation made by the users. Purpose To develop an automatic image quality analysis software for daily mammography quality control in a multi-unit imaging center. Material and Methods An automated image quality analysis software using the discrete wavelet transform and multiresolution analysis was developed for the American College of Radiology accreditation phantom. The software was validated by analyzing 60 randomly selected phantom images from six mammography systems and 20 phantom images with different dose levels from one mammography system. The results were compared to a visual analysis made by four reviewers. Additionally, long-term image quality trends of a full-field digital mammography system and a computed radiography mammography system were investigated. Results The automated software produced feature detection levels comparable to visual analysis. The agreement was good in the case of fibers, while the software detected somewhat more microcalcifications and characteristic masses. Long-term follow-up via a quality assurance web portal demonstrated the feasibility of using the software for monitoring the performance of mammography systems in a multi-unit imaging center. Conclusion Automated image quality analysis enables monitoring the performance of digital mammography systems in an efficient, centralized manner.
Waewsak, Chaiwat; Nopharatana, Annop; Chaiprasert, Pawinee
2010-01-01
Based on the developed neural-fuzzy control system for anaerobic hybrid reactor (AHR) in wastewater treatment and biogas production, the neural network with backpropagation algorithm for prediction of the variables pH, alkalinity (Alk) and total volatile acids (TVA) at present day time t was used as input data for the fuzzy logic to calculate the influent feed flow rate that was applied to control and monitor the process response at different operations in the initial, overload influent feeding and the recovery phases. In all three phases, this neural-fuzzy control system showed great potential to control AHR in high stability and performance and quick response. Although in the overloading operation phase II with two fold calculating influent flow rate together with a two fold organic loading rate (OLR), this control system had rapid response and was sensitive to the intended overload. When the influent feeding rate was followed by the calculation of control system in the initial operation phase I and the recovery operation phase III, it was found that the neural-fuzzy control system application was capable of controlling the AHR in a good manner with the pH close to 7, TVA/Alk < 0.4 and COD removal > 80% with biogas and methane yields at 0.45 and 0.30 m3/kg COD removed.
Self-Monitors Apply for a Job: Self-Presentation and Affective Consequences.
ERIC Educational Resources Information Center
Larkin, Judith E.; Pines, Harvey A.
High and low self-monitors were given the task of applying for a position that was or was not a good fit with their personality. Subjects were 97 introductory psychology students who had previously taken the 18-item Self-Monitoring Scale (SMS). They took the SMS again--as if it were being used to decide whether they would be offered a very…
Radiation imaging with a new scintillator and a CMOS camera
NASA Astrophysics Data System (ADS)
Kurosawa, S.; Shoji, Y.; Pejchal, J.; Yokota, Y.; Yoshikawa, A.
2014-07-01
A new imaging system consisting of a high-sensitivity complementary metal-oxide semiconductor (CMOS) sensor, a microscope and a new scintillator, Ce-doped Gd3(Al,Ga)5O12 (Ce:GAGG) grown by the Czochralski process, has been developed. The noise, the dark current and the sensitivity of the CMOS camera (ORCA-Flash4.0, Hamamatsu) was revised and compared to a conventional CMOS, whose sensitivity is at the same level as that of a charge coupled device (CCD) camera. Without the scintillator, this system had a good position resolution of 2.1 ± 0.4 μm and we succeeded in obtaining the alpha-ray images using 1-mm thick Ce:GAGG crystal. This system can be applied for example to high energy X-ray beam profile monitor, etc.
[Study of post marketing safety reevaluation of shenqi fuzheng injection].
Ai, Qing-Hua; Li, Yuan-Yuan; Xie, Yan-Ming
2014-09-01
In order to promote the Shenqifuzheng injection (SQFZ) clinical medication safety, this study reevaluate on SQFZ post marketing safety study systematically. Including multi center large sample registration type safety monitoring research, the analysis based on national spontaneous reporting system data, the analysis based on the 20 national hospital information system data and literature research. Above the analysis, it suggests that SQFZ has good security. The more adverse drug reaction (ADR) as allergic reactions, mainly involved in the damage of skin, appendages and its systemic damage, serious person can appear allergic shock. ADR/E is more common in the elderly, may be related to medication (tumor) populations. Early warning analysis based on SRS data and literature research are of the view that "phlebitis" has a strong association with SQFZ used.
Cairoli, Andrea; Piovani, Duccio; Jensen, Henrik Jeldtoft
2014-12-31
We propose a new procedure to monitor and forecast the onset of transitions in high-dimensional complex systems. We describe our procedure by an application to the tangled nature model of evolutionary ecology. The quasistable configurations of the full stochastic dynamics are taken as input for a stability analysis by means of the deterministic mean-field equations. Numerical analysis of the high-dimensional stability matrix allows us to identify unstable directions associated with eigenvalues with a positive real part. The overlap of the instantaneous configuration vector of the full stochastic system with the eigenvectors of the unstable directions of the deterministic mean-field approximation is found to be a good early warning of the transitions occurring intermittently.
Semi-supervised vibration-based classification and condition monitoring of compressors
NASA Astrophysics Data System (ADS)
Potočnik, Primož; Govekar, Edvard
2017-09-01
Semi-supervised vibration-based classification and condition monitoring of the reciprocating compressors installed in refrigeration appliances is proposed in this paper. The method addresses the problem of industrial condition monitoring where prior class definitions are often not available or difficult to obtain from local experts. The proposed method combines feature extraction, principal component analysis, and statistical analysis for the extraction of initial class representatives, and compares the capability of various classification methods, including discriminant analysis (DA), neural networks (NN), support vector machines (SVM), and extreme learning machines (ELM). The use of the method is demonstrated on a case study which was based on industrially acquired vibration measurements of reciprocating compressors during the production of refrigeration appliances. The paper presents a comparative qualitative analysis of the applied classifiers, confirming the good performance of several nonlinear classifiers. If the model parameters are properly selected, then very good classification performance can be obtained from NN trained by Bayesian regularization, SVM and ELM classifiers. The method can be effectively applied for the industrial condition monitoring of compressors.
Chen, Xiaojie; Sasaki, Tatsuya; Perc, Matjaž
2015-11-24
Monitoring with implicated punishment is common in human societies to avert freeriding on common goods. But is it effective in promoting public cooperation? We show that the introduction of monitoring and implicated punishment is indeed effective, as it transforms the public goods game to a coordination game, thus rendering cooperation viable in infinite and finite well-mixed populations. We also show that the addition of within-group enforcement further promotes the evolution of public cooperation. However, although the group size in this context has nonlinear effects on collective action, an intermediate group size is least conductive to cooperative behaviour. This contradicts recent field observations, where an intermediate group size was declared optimal with the conjecture that group-size effects and within-group enforcement are responsible. Our theoretical research thus clarifies key aspects of monitoring with implicated punishment in human societies, and additionally, it reveals fundamental group-size effects that facilitate prosocial collective action.
NASA Astrophysics Data System (ADS)
Chen, Xiaojie; Sasaki, Tatsuya; Perc, Matjaž
2015-11-01
Monitoring with implicated punishment is common in human societies to avert freeriding on common goods. But is it effective in promoting public cooperation? We show that the introduction of monitoring and implicated punishment is indeed effective, as it transforms the public goods game to a coordination game, thus rendering cooperation viable in infinite and finite well-mixed populations. We also show that the addition of within-group enforcement further promotes the evolution of public cooperation. However, although the group size in this context has nonlinear effects on collective action, an intermediate group size is least conductive to cooperative behaviour. This contradicts recent field observations, where an intermediate group size was declared optimal with the conjecture that group-size effects and within-group enforcement are responsible. Our theoretical research thus clarifies key aspects of monitoring with implicated punishment in human societies, and additionally, it reveals fundamental group-size effects that facilitate prosocial collective action.
Ross, S. Lunetta; Joseph, F. Knight; Hans, W. Paerl; John, J. Streicher; Benjamin, L. Peierls; Tom, Gallo; John, G. Lyon; Thomas, H. Mace; Christopher, P. Buzzelli
2009-01-01
The monitoring of water colour parameters can provide an important diagnostic tool for the assessment of aquatic ecosystem condition. Remote sensing has long been used to effectively monitor chlorophyll concentrations in open ocean systems; however, operational monitoring in coastal and estuarine areas has been limited because of the inherent complexities of coastal systems, and the coarse spectral and spatial resolutions of available satellite systems. Data were collected using the National Aeronautics and Space Administration (NASA) Advanced Visible-Infrared Imaging Spectrometer (AVIRIS) flown at an altitude of approximately 20000 m to provide hyperspectral imagery and simulate both MEdium Resolution Imaging Spectrometer (MERIS) and Moderate Resolution Imaging Spectrometer (MODIS) data. AVIRIS data were atmospherically corrected using a radiative transfer modelling approach and analysed using band ratio and linear regression models. Regression analysis was performed with simultaneous field measurements data in the Neuse River Estuary (NRE) and Pamlico Sound on 15 May 2002. Chlorophyll a (Chl a) concentrations were optimally estimated using AVIRIS bands (9.5 nm) centred at 673.6 and 692.7 nm, resulting in a coefficient of determination (R2) of 0.98. Concentrations of Chromophoric Dissolved Organic Matter (CDOM), Total Suspended Solids (TSS) and Fixed Suspended Solids (FSS) were also estimated, resulting in coefficients of determination of R2=0.90, 0.59 and 0.64, respectively. Ratios of AVIRIS bands centred at or near those corresponding to the MERIS and MODIS sensors indicated that relatively good satellite-based estimates could potentially be derived for water colour constituents at a spatial resolution of 300 and 500 m, respectively. PMID:25937680
Summer Arctic ice concentrations and characteristics from SAR and SSM/I data
NASA Technical Reports Server (NTRS)
Comiso, Joey C.; Kwok, Ron
1993-01-01
The extent and concentration of the Summer minima provide indirect information about the long term ability of the perennial portion of the ice pack to survive the Arctic atmosphere and ocean system. Both active and passive microwave data were used with some success for monitoring the ice cover during the Summer, but they both suffer from similar problems caused by the presence of meltponding, surface wetness, flooding, and freeze/thaw cycles associated with periodic changes in surface air temperatures. A comparative analysis of ice conditions in the Arctic region using coregistered ERS-1 SAR (Synthetic Aperture Radar) and SSM/I (Special Sensor Microwave/Imager) data was made. The analysis benefits from complementary information from the two systems, the good spatial resolution of SAR data, and the good time resolution of and global coverage by SSM/I data. The results show that in many areas ice concentrations derived from SAR data are significantly different (usually higher) than those derived from passive microwave data. Additional insights about surface conditions can be inferred depending on the nature of the discrepancies.
Hazardous sign detection for safety applications in traffic monitoring
NASA Astrophysics Data System (ADS)
Benesova, Wanda; Kottman, Michal; Sidla, Oliver
2012-01-01
The transportation of hazardous goods in public streets systems can pose severe safety threats in case of accidents. One of the solutions for these problems is an automatic detection and registration of vehicles which are marked with dangerous goods signs. We present a prototype system which can detect a trained set of signs in high resolution images under real-world conditions. This paper compares two different methods for the detection: bag of visual words (BoW) procedure and our approach presented as pairs of visual words with Hough voting. The results of an extended series of experiments are provided in this paper. The experiments show that the size of visual vocabulary is crucial and can significantly affect the recognition success rate. Different code-book sizes have been evaluated for this detection task. The best result of the first method BoW was 67% successfully recognized hazardous signs, whereas the second method proposed in this paper - pairs of visual words and Hough voting - reached 94% of correctly detected signs. The experiments are designed to verify the usability of the two proposed approaches in a real-world scenario.
Human interface design using Button-type PEDOT electrode array in EIT
NASA Astrophysics Data System (ADS)
Wi, Hun; In Oh, Tong; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je
2010-04-01
Animal and human experiments using a multi-channel EIT system requires a cumbersome procedure to attach multiple electrodes. We have to ensure good contact of all electrodes and manage many lead wires during experiments. The problem becomes more severe as we increase the number of electrodes. These may limit the applicability of the imaging method in practice. Noting this technical difficulty, there have been a few trials to design human interface means such as electrode belts, helmets or rings. In this study, we developed an electrode belt for long-term monitoring of human lung ventilation. The belt includes 16 embossed electrodes which make good contact with the skin. The electrode is made by conductive polymer and metallic thread. Soft cushion and wide contact area minimize uncomfortable sensation and reduce contact impedances. The electrodes are attached to an elastic fabric belt at equal spacing. We describe details of its design and fabrication. Using the electrode belt and recently developed multi-frequency EIT system KHU Mark2, we show time-difference chest images of three human subjects during normal breathing cycles.
NASA Astrophysics Data System (ADS)
Li, Lu-Ming; Zhu, Qian; Zhang, Zhi-Guo; Cai, Zhi-Min; Liao, Zhi-Jun; Hu, Zhen-Yan
2017-04-01
In this paper, a light intensity monitoring method based on FBG is proposed. The method establishes a light intensity monitoring model with cantilever beam structure and BP neural network algorithm, which is based on fiber grating sensing technology. The accuracy of the model can meet the requirements of engineering project and it can monitor light intensity in real time. The experimental results show that the method has good stability and high sensitivity.
NASA Astrophysics Data System (ADS)
Kong, Changduk; Lim, Semyeong; Kim, Keunwoo
2013-03-01
The Neural Networks is mostly used to engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measuring performance data, and proposes a fault diagnostic system using the base performance model and artificial intelligent methods such as Fuzzy and Neural Networks. Each real engine performance model, which is named as the base performance model that can simulate a new engine performance, is inversely made using its performance test data. Therefore the condition monitoring of each engine can be more precisely carried out through comparison with measuring performance data. The proposed diagnostic system identifies firstly the faulted components using Fuzzy Logic, and then quantifies faults of the identified components using Neural Networks leaned by fault learning data base obtained from the developed base performance model. In leaning the measuring performance data of the faulted components, the FFBP (Feed Forward Back Propagation) is used. In order to user's friendly purpose, the proposed diagnostic program is coded by the GUI type using MATLAB.
NASA Astrophysics Data System (ADS)
Lareau, Etienne; Lesage, Frederic; Pouliot, Philippe; Nguyen, Dang; Le Lan, Jerome; Sawan, Mohamad
2011-09-01
Functional neuroimaging is becoming a valuable tool in cognitive research and clinical applications. The clinical context brings specific constraints that include the requirement of a high channel count to cover the whole head, high sensitivity for single event detection, and portability for long-term bedside monitoring. For epilepsy and stroke monitoring, the combination of electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS) is expected to provide useful clinical information, and efforts have been deployed to create prototypes able to simultaneously acquire both measurement modalities. However, to the best of our knowledge, existing systems lack portability, NIRS sensitivity, or have low channel count. We present a battery-powered, portable system with potentially up to 32 EEG channels, 32 NIRS light sources, and 32 detectors. Avalanche photodiodes allow for high NIRS sensitivity and the autonomy of the system is over 24 h. A reduced channel count prototype with 8 EEG channels, 8 sources, and 8 detectors was tested on phantoms. Further validation was done on five healthy adults using a visual stimulation protocol to detect local hemodynamic changes and visually evoked potentials. Results show good concordance with literature regarding functional activations and suggest sufficient performance for clinical use, provided some minor adjustments were made.
Ueda, S; Ibuki, R; Kawamura, A; Murata, S; Takahashi, T; Kimura, S; Hata, T
1994-01-01
Time-Controlled Explosion System (TES) has the time-controlled drug release property with a pre-designed lag time. The drug release from the system is initiated by destruction of the membrane. In this study, metoprolol tartrate was used as a model drug. After five types of TES with different in vitro lag times were orally administrated to dogs, plasma metoprolol concentration was monitored. There existed a good correlation between in vitro and in vivo lag time, while the extent of absorbed metoprolol decreased with prolongation of lag time. Next, the in vivo drug release behavior was directly investigated using five different colored TES with a lag time of two hours. Each TES was consecutively administrated to the fasted dogs at predetermined intervals. The amount of metoprolol released was monitored by recovering the administered TES from the gastrointestinal trace. The in vivo release profile corresponded with the in vitro one. It is demonstrated that TES can release the drug in in vivo conditions similarly to in vitro. Based on these results, the decrease of the absorption is suggested to be caused by increased hepatic first-pass metabolism of the drug due to the retarded release rate with longer lag time.
Optical coherence tomography for blood glucose monitoring through signal attenuation
NASA Astrophysics Data System (ADS)
De Pretto, Lucas R.; Yoshimura, Tania M.; Ribeiro, Martha S.; de Freitas, Anderson Z.
2016-03-01
Development of non-invasive techniques for glucose monitoring is crucial to improve glucose control and treatment adherence in patients with diabetes. Hereafter, Optical Coherence Tomography (OCT) may offer a good alternative for portable glucometers, since it uses light to probe samples. Changes in the object of interest can alter the intensity of light returning from the sample and, through it, one can estimate the sample's attenuation coefficient (μt) of light. In this work, we aimed to explore the behavior of μt of mouse's blood under increasing glucose concentrations. Different samples were prepared in four glucose concentrations using a mixture of heparinized blood, phosphate buffer saline and glucose. Blood glucose concentrations were measured with a blood glucometer, for reference. We have also prepared other samples diluting the blood in isotonic saline solution to check the effect of a higher multiple-scattering component on the ability of the technique to differentiate glucose levels based on μt. The OCT system used was a commercial Spectral Radar OCT with 930 nm central wavelength and spectral bandwidth (FWHM) of 100 nm. The system proved to be sensitive for all blood glucose concentrations tested, with good correlations with the obtained attenuation coefficients. A linear tendency was observed, with an increase in attenuation with higher values of glucose. Statistical difference was observed between all groups (p<0.001). This work opens the possibility towards a non-invasive diagnostic modality using OCT for glycemic control, which eliminates the use of analytes and/or test strips, as in the case with commercially available glucometers.
NASA Astrophysics Data System (ADS)
Wei, Wang; Chongchao, Pan; Yikai, Liang; Gang, Li
2017-11-01
With the rapid development of information technology, the scale of data center increases quickly, and the energy consumption of computer room also increases rapidly, among which, energy consumption of air conditioning cooling makes up a large proportion. How to apply new technology to reduce the energy consumption of the computer room becomes an important topic of energy saving in the current research. This paper study internet of things technology, and design a kind of green computer room environmental monitoring system. In the system, we can get the real-time environment data from the application of wireless sensor network technology, which will be showed in a creative way of three-dimensional effect. In the environment monitor, we can get the computer room assets view, temperature cloud view, humidity cloud view, microenvironment view and so on. Thus according to the condition of the microenvironment, we can adjust the air volume, temperature and humidity parameters of the air conditioning for the individual equipment cabinet to realize the precise air conditioning refrigeration. And this can reduce the energy consumption of air conditioning, as a result, the overall energy consumption of the green computer room will reduce greatly. At the same time, we apply this project in the computer center of Weihai, and after a year of test and running, we find that it took a good energy saving effect, which fully verified the effectiveness of this project on the energy conservation of the computer room.
NASA Astrophysics Data System (ADS)
Kassim, Muhammad Fuad bin; Norzali Haji Mohd, Mohd
2017-08-01
Technology is all about helping people, which created a new opportunity to take serious action in managing their health care. Moreover, Obesity continues to be a serious public health concern in the Malaysia and continuing to rise. Obesity has been a serious health concern among people. Nearly half of Malaysian people overweight. Most of dietary approach is not tracking and detecting the right calorie intake for weight loss, but currently used tools such as food diaries require users to manually record and track the food calories, making them difficult for daily use. We will be developing a new tool that counts the food intake bite by monitoring hand gesture and face jaw motion movement of caloric intake. The Bite count method showed a good significant that can lead to a successful weight loss by simply monitoring the bite taken during eating. The device used was Kinect Xbox One which used a depth camera to detect the motion on person hand and face during food intake. Previous studies showed that most of the method used to count bite device is worn type. The recent trend is now going towards non-wearable devices due to the difficulty when wearing devices and it has high false alarm ratio. The proposed system gets data from the Kinect that will be monitoring the hand and face gesture of the user while eating. Then, the gesture of hand and face data is sent to the microcontroller board to recognize and start counting bite taken by the user. The system recognizes the patterns of bite taken from user by following the algorithm of basic eating type either using hand or chopstick. This system can help people who are trying to follow a proper way to reduce overweight or eating disorders by monitoring their meal intake and controlling eating rate.
Improving Societal Benefit Areas from Applications Enhanced by the Joint Polar Satellite System
NASA Astrophysics Data System (ADS)
Goldberg, M.
2016-12-01
Applications of satellite data are paramount to transform science and technology to product and services which are used in critical decision making for societal benefits. For the satellite community, good representations of technology are the satellite sensors, while science provides the instrument calibration and derived geophysical parameters. Weather forecasting is an application of the science and technology provided by remote sensing satellites. The Joint Polar Satellite System, which includes the Suomi National Polar-orbiting Partnership (S-NPP) provides formidable science and technology to support many applications and includes support to 1) weather forecasting - data from the JPSS Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are used to forecast weather events out to 7 days - nearly 85% of all data used in weather forecasting are from polar orbiting satellites; 2) environmental monitoring -data from the JPSS Visible Infrared Imager Radiometer Suite (VIIRS) are used to monitor the environment including the health of coastal ecosystems, drought conditions, fire, smoke, dust, snow and ice, and the state of oceans, including sea surface temperature and ocean color; and 3) climate monitoring - data from JPSS instruments, including OMPS and CERES will provide continuity to climate data records established using NOAA POES and NASA Earth Observing System (EOS) satellite observations. To bridge the gap between products and applications, the JPSS Program has established a proving ground program to optimize the use of JPSS data with other data sources to improve key products and services. A number of operational and research applications will be presented along with how the data and applications support a large number of societal benefit areas of the Global Earth Observation Systems of Systems (GEOSS).
Continuous monitoring of water flow and solute transport using vadose zone monitoring technology
NASA Astrophysics Data System (ADS)
Dahan, O.
2009-04-01
Groundwater contamination is usually attributed to pollution events that initiate on land surface. These may be related to various sources such as industrial, urban or agricultural, and may appear as point or non point sources, through a single accidental event or a continuous pollution process. In all cases, groundwater pollution is a consequence of pollutant transport processes that take place in the vadose zone above the water table. Attempts to control pollution events and prevent groundwater contamination usually involve groundwater monitoring programs. This, however, can not provide any protection against contamination since pollution identification in groundwater is clear evidence that the groundwater is already polluted and contaminants have already traversed the entire vadose zone. Accordingly, an efficient monitoring program that aims at providing information that may prevent groundwater pollution has to include vadose-zone monitoring systems. Such system should provide real-time information on the hydrological and chemical properties of the percolating water and serve as an early warning system capable of detecting pollution events in their early stages before arrival of contaminants to groundwater. Recently, a vadose-zone monitoring system (VMS) was developed to allow continuous monitoring of the hydrological and chemical properties of percolating water in the deep vadose zone. The VMS includes flexible time-domain reflectometry (FTDR) probes for continuous tracking of water content profiles, and vadose-zone sampling ports (VSPs) for frequent sampling of the deep vadose pore water at multiple depths. The monitoring probes and sampling ports are installed through uncased slanted boreholes using a flexible sleeve that allows attachment of the monitoring devices to the borehole walls while achieving good contact between the sensors and the undisturbed sediment column. The system has been successfully implemented in several studies on water flow and contaminant transport in various hydrological and geological setups. These include floodwater infiltration in arid environments, land use impact on groundwater quality, and control of remediation process in a contaminated vadose zone. The data which is collected by the VMS allows direct measurements of flow velocities and fluxes in the vadose zone while continuously monitoring the chemical evolution of the percolating water. While real time information on the hydrological and chemical properties of the percolating water in the vadose is essential to prevent groundwater contamination it is also vital for any remediation actions. Remediation of polluted soils and aquifers essentially involves manipulation of surface and subsurface hydrological, physical and biochemical conditions to improve pollutant attenuation. Controlling the biochemical conditions to enhance biodegradation often includes introducing degrading microorganisms, applying electron donors or acceptors, or adding nutrients that can promote growth of the desired degrading organisms. Accordingly real time data on the hydrological and chemical properties of the vadose zone may be used to select remediation strategies and determine its efficiency on the basis of real time information.
AVHRR-based drought-observing system for monitoring the environment and socioeconomic activities
NASA Astrophysics Data System (ADS)
Kogan, F.
From all natural disaster, drought is the least understandable and the most damaging environmental phenomenon. Although in pre-satellite era, climate data were used for drought monitoring, drought specifics created problems in early drought detection start/end, monitoring its expansion/contraction, intensity and area coverage and the most important, timely estimation of the impacts on the environment and socioeconomic activities. The latest prevented to take prompt measures in mitigating negative consequences of drought for the society. Advances in remote sensing of the past ten years, contributed to the development of comprehensive drought monitoring system and numerous applications, which helped to make decisions for monitoring the environment and predicting sustainable socioeconomic activities. This paper discusses satellite-based land-surface observing system, which provides wells of information used for monitoring such unusual natural disaster as drought. This system was developed from the observations of the Advanced Very High Resolution Radiometer (AVHRR) flown on NOAA operational polar-orbiting satellites. The AVHRR data were packed into the Global Vegetation Index (GVI) product, which have served the global community since 1981. The GVI provided reflectances and indices (4 km spacial resolution) every seven days for each 16 km map cell between 75EN and 55ES covering all land ecosystems. The data includes raw and calibrated radiances in the visible, near infrared and infrared spectral bands, processed (with eliminated high frequency noise) radiances, normalized difference vegetation index (NDVI), 20-year climatology, vegetation condition indices and also products, such as vegetation health, drought, vegetation fraction, fire risk etc. In the past ten years, users around the world used this information addressing different issues of drought impacts on socioeconomic activities and responded positively to real time drought information place regularly on the following web site http://orbit-net.nesdis.noaa.gov/crad/sat/surf/vci/. Drought assessments were compared with ground observations in twenty two countries around the world and showed good results in early drought detection and monitoring its development and impacts on the environment and socioeconomic activities, for assessment of biomass/crop production losses and fire risk. In addition, the AVHRR-based products showed potential in monitoring mosquito-born epidemics, amount of water required for irrigation, and predicting ENSO impacts on productivity of land ecosystems. These applications were used in agriculture, forestry, weather models, climatology. This presentation will be illustrated with many examples of data applications and also with explanations of data structure and use.
Simon, J; Budge, K; Price, J; Goodwin, G M; Geddes, J R
2017-09-01
Remote monitoring of mood disorders may be an effective and low resource option for patient follow-up, but relevant evidence remains very limited. This study explores real-life compliance and health services impacts of mood monitoring among patients with bipolar disorder in the UK. Patients with a diagnosis of bipolar disorder who were registered users of the True Colours monitoring system for at least 12months at study assessment were included in this retrospective cohort study (n=79). Compliance was measured as the proportion of valid depression and mania scale messages received in comparison to their expected numbers over the first 12months of monitoring. Mental health service use data were extracted from case notes, costed using national unit costs, and compared 12months before (pre-TC period) and 12months after (TC period) patients' engagement with monitoring. Associations with relevant patient factors were investigated in a multiple regression model. Average compliance with monitoring was 82%. Significant increases in the annual use and costs of psychiatrist contacts and total mental health services were shown for patients newly referred to the clinic during the pre-TC period but not for long-term patients of the clinic. Psychiatric medication costs increased significantly between the pre-TC and TC periods (£235, P=0.005) unrelated to patients' referral status. Remote mood monitoring has good compliance among consenting patients with bipolar disorder. We found no associations between observed changes in mental health service costs and the introduction of monitoring except for the increase in psychiatric medication costs. Copyright © 2017 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
[Cost analysis of intraoperative neurophysiological monitoring (IOM)].
Kombos, T; Suess, O; Brock, M
2002-01-01
A number of studies demonstrate that a significant reduction of postoperative neurological deficits can be achieved by applying intraoperative neurophysiological monitoring (IOM) methods. A cost analysis of IOM is imperative considering the strained financial situation in the public health services. The calculation model presented here comprises two cost components: material and personnel. The material costs comprise consumer goods and depreciation of capital goods. The computation base was 200 IOM cases per year. Consumer goods were calculated for each IOM procedure respectively. The following constellation served as a basis for calculating personnel costs: (a) a medical technician (salary level BAT Vc) for one hour per case; (b) a resident (BAT IIa) for the entire duration of the measurement, and (c) a senior resident (BAT Ia) only for supervision. An IOM device consisting of an 8-channel preamplifier, an electrical and acoustic stimulator and special software costs 66,467 euros on the average. With an annual depreciation of 20%, the costs are 13,293 euros per year. This amounts to 66.46 euros per case for the capital goods. For reusable materials a sum of 0.75 euro; per case was calculated. Disposable materials were calculate for each procedure respectively. Total costs of 228.02 euro; per case were,s a sum of 0.75 euros per case was calculated. Disposable materials were calculate for each procedure respectively. Total costs of 228.02 euros per case were, calculated for surgery on the peripheral nervous system. They amount to 196.40 euros per case for spinal interventions and to 347.63 euros per case for more complex spinal operations. Operations in the cerebellopontine angle and brain stem cost 376.63 euros and 397.33 euros per case respectively. IOM costs amount to 328.03 euros per case for surgical management of an intracranial aneurysm and to 537.15 euros per case for functional interventions. Expenses run up to 833.63 euros per case for operations near the motor cortex and to 117.65 euros per case for intraoperative speech monitoring. Costs for inpatient medical rehabilitation have increased considerably in recent years. In view of the financial situation, it is necessary to reduce postoperative morbidity and the costs it involves. IOM leads to a reduction of morbidity. The costs for IOM calculated here justify its routine application in view of the legal and socioeconomic consequences of surgery-related neurological deficits.
Geophysics From Terrestrial Time-Variable Gravity Measurements
NASA Astrophysics Data System (ADS)
Van Camp, Michel; de Viron, Olivier; Watlet, Arnaud; Meurers, Bruno; Francis, Olivier; Caudron, Corentin
2017-12-01
In a context of global change and increasing anthropic pressure on the environment, monitoring the Earth system and its evolution has become one of the key missions of geosciences. Geodesy is the geoscience that measures the geometric shape of the Earth, its orientation in space, and gravity field. Time-variable gravity, because of its high accuracy, can be used to build an enhanced picture and understanding of the changing Earth. Ground-based gravimetry can determine the change in gravity related to the Earth rotation fluctuation, to celestial body and Earth attractions, to the mass in the direct vicinity of the instruments, and to vertical displacement of the instrument itself on the ground. In this paper, we review the geophysical questions that can be addressed by ground gravimeters used to monitor time-variable gravity. This is done in relation to the instrumental characteristics, noise sources, and good practices. We also discuss the next challenges to be met by ground gravimetry, the place that terrestrial gravimetry should hold in the Earth observation system, and perspectives and recommendations about the future of ground gravity instrumentation.
Ait Ouarabi, Mohand; Antonaci, Paola; Boubenider, Fouad; Gliozzi, Antonio S; Scalerandi, Marco
2017-01-07
Alkaline solutions, such as sodium, potassium or lithium silicates, appear to be very promising as healing agents for the development of encapsulated self-healing concretes. However, the evolution of their mechanical and acoustic properties in time has not yet been completely clarified, especially regarding their behavior and related kinetics when they are used in the form of a thin layer in contact with a hardened cement matrix. This study aims to monitor, using linear and nonlinear ultrasonic methods, the evolution of a sodium silicate solution interacting with a cement matrix in the presence of localized cracks. The ultrasonic inspection via linear methods revealed that an almost complete recovery of the elastic and acoustic properties occurred within a few days of healing. The nonlinear ultrasonic measurements contributed to provide further insight into the kinetics of the recovery due to the presence of the healing agent. A good regain of mechanical performance was ascertained through flexural tests at the end of the healing process, confirming the suitability of sodium silicate as a healing agent for self-healing cementitious systems.
From nanoparticles to large aerosols: Ultrafast measurement methods for size and concentration
NASA Astrophysics Data System (ADS)
Keck, Lothar; Spielvogel, Jürgen; Grimm, Hans
2009-05-01
A major challenge in aerosol technology is the fast measurement of number size distributions with good accuracy and size resolution. The dedicated instruments are frequently based on particle charging and electric detection. Established fast systems, however, still feature a number of shortcomings. We have developed a new instrument that constitutes of a high flow Differential Mobility Analyser (high flow DMA) and a high sensitivity Faraday Cup Electrometer (FCE). The system enables variable flow rates of up to 150 lpm, and the scan time for size distribution can be shortened considerably due to the short residence time of the particles in the DMA. Three different electrodes can be employed in order to cover a large size range. First test results demonstrate that the scan time can be reduced to less than 1 s for small particles, and that the results from the fast scans feature no significant difference to the results from established slow method. The fields of application for the new instrument comprise the precise monitoring of fast processes with nanoparticles, including monitoring of engine exhaust in automotive research.
An expert system for fault management assistance on a space sleep experiment
NASA Technical Reports Server (NTRS)
Atamer, A.; Delaney, M.; Young, L. R.
2002-01-01
The expert system, Principal Investigator-in-a-box, or [PI], was designed to assist astronauts or other operators in performing experiments outside their expertise. Currently, the software helps astronauts calibrate instruments for a Sleep and Respiration Experiment without contact with the investigator on the ground. It flew on the Space Shuttle missions STS-90 and STS-95. [PI] displays electrophysiological signals in real time, alerts astronauts via the indicator lights when a poor signal quality is detected, and advises astronauts how to restore good signal quality. Thirty subjects received training on the sleep instrumentation and the [PI] interface. A beneficial effects of [PI] and training reduced troubleshooting time. [PI] benefited subjects on the most difficult scenarios, even though its lights were not 100% accurate. Further, questionnaires showed that most subjects preferred monitoring waveforms with [PI] assistance rather than monitoring waveforms alone. This study addresses problems of complex troubleshooting and the extended time between training and execution that is common to many human operator situations on earth such as in power plant operation, and marine exploration.
[INVITED] Evaluation of process observation features for laser metal welding
NASA Astrophysics Data System (ADS)
Tenner, Felix; Klämpfl, Florian; Nagulin, Konstantin Yu.; Schmidt, Michael
2016-06-01
In the present study we show how fast the fluid dynamics change when changing the laser power for different feed rates during laser metal welding. By the use of two high-speed cameras and a data acquisition system we conclude how fast we have to image the process to measure the fluid dynamics with a very high certainty. Our experiments show that not all process features which can be measured during laser welding do represent the process behavior similarly well. Despite the good visibility of the vapor plume the monitoring of its movement is less suitable as an input signal for a closed-loop control. The features measured inside the keyhole show a good correlation with changes of process parameters. Due to its low noise, the area of the keyhole opening is well suited as an input signal for a closed-loop control of the process.
Strauss, A; Tiurbe, C; Chodnevskaja, I; Thiede, A; Timm, S; Ulrichs, K; Moskalenko, V
2008-03-01
Adult pig islet isolation has greatly improved in the past few years. Islet grafts may now be tested in large animals. Continuous Glucose Monitoring System (CGMS) was applied to diabetic Goettingen Minipigs (GMP) to improve the management of hyperglycemia and hypoglycemia and their welfare before transplantation. GMP (25-35 kg) received a minipig diet once daily. Diabetes was induced by streptozotocin (STZ; 150 mg/kg intravenous [IV]; n = 5) or by surgical pancreatectomy (PGMP; n = 3). Interstitial glucose concentration (IGC) was monitored continuously with an implanted sensor; CGMS was calibrated using conventional blood glucose tests 3-4 times per day; CGMS data were fed into the monitor memory and analyzed using CGMS software. Glucose sensors were handled accurately. Diabetes occurred 2-3 days after STZ or immediately after pancreatectomy with basal C-peptide secretion of <0.4 ng/mL (measured using intravenous glucose tolerance test) and prompt loss of body weight. Insulin substitution was necessary to keep the GMP in good condition for up to 5-6 months, with stable body weight and normal behavior. Some GMP became hypoglycemic, which was only documented by CGMS, but not by conventional glucose assays. Tight glucose control and substitution of exocrine enzymes (Creon 25,000 E/d) reduced morbidity of the PGMP, which was then comparable with that of STZ-GMP. The CGMS, developed for humans, is equally suitable for the 2 GMP diabetes models. Close-meshed glucose monitoring and insulin treatment improved the general condition of the diabetic GMP, ie, the islet graft recipients, and will thus greatly add to posttransplantation success.
Thomas, Andreas; Heinemann, Lutz; Ramírez, Araceli; Zehe, Alfred
2016-05-01
Nowadays nanotechnology has many applications in products used in various areas of daily life; however, this technology has also an option in modern medicine and pharmacy. Therefore, this technology is also an attractive option for the field of diagnosis and treatment of diabetes. Many people with diabetes measure their blood glucose levels regularly to determine the insulin dose. Ideally glucose values would be measured noninvasively (NI). However, none of all the NI approaches studied in the past decades enabled reliable NI measurements under all daily life conditions. Particularly an unfavorable signal-to-noise ratio turned out to be problematic. Based on the known physical possibilities for NI glucose monitoring the focus of this review is on nanotechnology approaches. Functional prototypes exist for some of these that showed promising results under defined laboratory conditions, indicating a good sensitivity and selectivity for glucose. On the second hand is to optimize the technological process of manufacturing. In view of the rapid progress in micro- and nanoelectronics hopefully NI glucose monitoring systems can be developed in the near future. © 2015 Diabetes Technology Society.
Rainfall estimation for real time flood monitoring using geostationary meteorological satellite data
NASA Astrophysics Data System (ADS)
Veerakachen, Watcharee; Raksapatcharawong, Mongkol
2015-09-01
Rainfall estimation by geostationary meteorological satellite data provides good spatial and temporal resolutions. This is advantageous for real time flood monitoring and warning systems. However, a rainfall estimation algorithm developed in one region needs to be adjusted for another climatic region. This work proposes computationally-efficient rainfall estimation algorithms based on an Infrared Threshold Rainfall (ITR) method calibrated with regional ground truth. Hourly rain gauge data collected from 70 stations around the Chao-Phraya river basin were used for calibration and validation of the algorithms. The algorithm inputs were derived from FY-2E satellite observations consisting of infrared and water vapor imagery. The results were compared with the Global Satellite Mapping of Precipitation (GSMaP) near real time product (GSMaP_NRT) using the probability of detection (POD), root mean square error (RMSE) and linear correlation coefficient (CC) as performance indices. Comparison with the GSMaP_NRT product for real time monitoring purpose shows that hourly rain estimates from the proposed algorithm with the error adjustment technique (ITR_EA) offers higher POD and approximately the same RMSE and CC with less data latency.
Caliendo, A M; St George, K; Kao, S Y; Allega, J; Tan, B H; LaFontaine, R; Bui, L; Rinaldo, C R
2000-06-01
The correlation between the prototype AMPLICOR CMV MONITOR test (Roche Molecular Systems), a quantitative PCR assay, and the cytomegalovirus (CMV) pp65 antigenemia assay was evaluated in transplant recipients. Sequential blood specimens were collected on 29 patients (491 specimens), the leukocyte fraction was tested by CMV antigenemia, and quantitative PCR was performed on plasma specimens. None of the 15 patients (242 specimens) who were antigenemia negative were positive for CMV DNA by PCR, and none of these patients developed active CMV disease. There were 14 antigenemia-positive patients, 8 of whom developed active CMV disease. In all patients, there was a good association between the antigenemia and PCR assays. Ganciclovir-resistant virus was isolated from three patients with active CMV disease. These three patients had persistently elevated levels of antigenemia and CMV DNA by PCR when resistance to ganciclovir developed. This standardized, quantitative CMV PCR assay on plasma has clinical utility for the diagnosis of active disease and in monitoring the response to antiviral therapy in transplant recipients.
Caliendo, Angela M.; St. George, Kirsten; Kao, Shaw-Yi; Allega, Jessica; Tan, Ban-Hock; LaFontaine, Robert; Bui, Larry; Rinaldo, Charles R.
2000-01-01
The correlation between the prototype AMPLICOR CMV MONITOR test (Roche Molecular Systems), a quantitative PCR assay, and the cytomegalovirus (CMV) pp65 antigenemia assay was evaluated in transplant recipients. Sequential blood specimens were collected on 29 patients (491 specimens), the leukocyte fraction was tested by CMV antigenemia, and quantitative PCR was performed on plasma specimens. None of the 15 patients (242 specimens) who were antigenemia negative were positive for CMV DNA by PCR, and none of these patients developed active CMV disease. There were 14 antigenemia-positive patients, 8 of whom developed active CMV disease. In all patients, there was a good association between the antigenemia and PCR assays. Ganciclovir-resistant virus was isolated from three patients with active CMV disease. These three patients had persistently elevated levels of antigenemia and CMV DNA by PCR when resistance to ganciclovir developed. This standardized, quantitative CMV PCR assay on plasma has clinical utility for the diagnosis of active disease and in monitoring the response to antiviral therapy in transplant recipients. PMID:10834964
Self-Powered Real-Time Arterial Pulse Monitoring Using Ultrathin Epidermal Piezoelectric Sensors.
Park, Dae Yong; Joe, Daniel J; Kim, Dong Hyun; Park, Hyewon; Han, Jae Hyun; Jeong, Chang Kyu; Park, Hyelim; Park, Jung Gyu; Joung, Boyoung; Lee, Keon Jae
2017-10-01
Continuous monitoring of an arterial pulse using a pressure sensor attached on the epidermis is an important technology for detecting the early onset of cardiovascular disease and assessing personal health status. Conventional pulse sensors have the capability of detecting human biosignals, but have significant drawbacks of power consumption issues that limit sustainable operation of wearable medical devices. Here, a self-powered piezoelectric pulse sensor is demonstrated to enable in vivo measurement of radial/carotid pulse signals in near-surface arteries. The inorganic piezoelectric sensor on an ultrathin plastic achieves conformal contact with the complex texture of the rugged skin, which allows to respond to the tiny pulse changes arising on the surface of epidermis. Experimental studies provide characteristics of the sensor with a sensitivity (≈0.018 kPa -1 ), response time (≈60 ms), and good mechanical stability. Wireless transmission of detected arterial pressure signals to a smart phone demonstrates the possibility of self-powered and real-time pulse monitoring system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ulate-Campos, Adriana; Tsuboyama, Melissa; Loddenkemper, Tobias
2017-12-25
Good sleep quality is essential for a child's wellbeing. Early sleep problems have been linked to the later development of emotional and behavioral disorders and can negatively impact the quality of life of the child and his or her family. Sleep-associated conditions are frequent in the pediatric population, and even more so in children with neurological problems. Monitoring devices can help to better characterize sleep efficiency and sleep quality. They can also be helpful to better characterize paroxysmal nocturnal events and differentiate between nocturnal seizures, parasomnias, and obstructive sleep apnea, each of which has a different management. Overnight ambulatory detection devices allow for a tolerable, low cost, objective assessment of sleep quality in the patient's natural environment. They can also be used as a notification system to allow for rapid recognition and prompt intervention of events like seizures. Optimal monitoring devices will be patient- and diagnosis-specific, but may include a combination of modalities such as ambulatory electroencephalograms, actigraphy, and pulse oximetry. We will summarize the current literature on ambulatory sleep devices for detecting sleep disorders in children with neurological diseases.
Options for the Development of Noninvasive Glucose Monitoring
Thomas, Andreas; Heinemann, Lutz; Ramírez, Araceli; Zehe, Alfred
2015-01-01
Nowadays nanotechnology has many applications in products used in various areas of daily life; however, this technology has also an option in modern medicine and pharmacy. Therefore, this technology is also an attractive option for the field of diagnosis and treatment of diabetes. Many people with diabetes measure their blood glucose levels regularly to determine the insulin dose. Ideally glucose values would be measured noninvasively (NI). However, none of all the NI approaches studied in the past decades enabled reliable NI measurements under all daily life conditions. Particularly an unfavorable signal-to-noise ratio turned out to be problematic. Based on the known physical possibilities for NI glucose monitoring the focus of this review is on nanotechnology approaches. Functional prototypes exist for some of these that showed promising results under defined laboratory conditions, indicating a good sensitivity and selectivity for glucose. On the second hand is to optimize the technological process of manufacturing. In view of the rapid progress in micro- and nanoelectronics hopefully NI glucose monitoring systems can be developed in the near future. PMID:26581879
Wood, Bayden R; Heraud, Philip; Stojkovic, Slobodanka; Morrison, Danielle; Beardall, John; McNaughton, Don
2005-08-01
We report the coupling of a portable Raman spectrometer to an acoustic levitation device to enable environmental monitoring and the potential taxonomic identification of microalgae. Spectra of living cells were recorded at 785 nm using a fiber-optic probe coupled to a portable Raman spectrometer. The spectra exhibit an excellent signal-to-noise ratio and clearly show bands from chlorophyll a and beta-carotene. Spectra of levitated photobleached microalgae clearly show a reduction in chlorophyll a concentration relative to beta-carotene after 10 min of exposure to a quartz halogen lamp. Spectra recorded from levitated nitrogen-limited cells also show a significant reduction in bands associated with chlorophyll a, as compared to nitrogen-replete cells. To investigate the diagnostic capability of the technique, four species of microalgae were analyzed. Good quality spectra of all four species were obtained showing varying ratios of beta-carotene to chlorophyll. The combination of an acoustic levitation device and a portable Raman spectrometer shows potential as a taxonomic and environmental monitoring tool with direct application to field studies in remote environments.
The Emerging Wireless Body Area Network on Android Smartphones: A Review
NASA Astrophysics Data System (ADS)
Puspitaningayu, P.; Widodo, A.; Yundra, E.
2018-01-01
Our society now has driven us into an era where almost everything can be digitally monitored and controlled including the human body. The growth of wireless body area network (WBAN), as a specific scope of sensor networks which mounted or attached to human body also developing rapidly. It allows people to monitor their health and several daily activities. This study is intended to review the trend of WBAN especially on Android, one of the most popular smartphone platforms. A systematic literature review is concerned to the following parameters: the purpose of the device and/or application, the type of sensors, the type of Android device, and its connectivity. Most of the studies were more concern to healthcare or medical monitoring systems: blood pressure, electro cardiograph, tremor detection, etc. On the other hand, the rest of them aimed for activity tracker, environment sensing, and epidemic control. After all, those studies shown that not only Android can be a powerful platform to process data from various sensors but also smartphones can be a good alternative to develop WBANs for medical and other daily applications.
Monitoring of Solar Radiation Intensity using Wireless Sensor Network for Plant Growing
NASA Astrophysics Data System (ADS)
Siregar, B.; Fadli, F.; Andayani, U.; Harahap, LA; Fahmi, F.
2017-01-01
Abstract— Plant growth is highly depending on the sunlight, if the consumption of sunlight is enough, it will grow well. The plant will be green because of its chlorophyll and it can perform photosynthesis at maximum; but if the plants get less sunlight, it will make the plants be yellowing. Radiation is electromagnetic waves that are good for plants, so-called visible light. In the electromagnetic wave spectrum the best wavelength range from 400-700 nm for the plant. A monitoring of sun intensity is needed in order to obtain sufficient solar radiation consumption and provide notification if there is a high radiation. In this study, several sensors and devices were combined such as photosynthetic solar radiation sensors, GSM / GPRS and waspmote as a main board or a microcontroller. The test was carried out on at least three occasions; the system has a stable radiation in the morning with an average of 505.51 micrometers. IN this study, we have successfully developed a monitoring tools for solar radiation intensity applied on plant growth by using wireless sensor network.
Replacing the AMOR with the miniDOAS in the ammonia monitoring network in the Netherlands
NASA Astrophysics Data System (ADS)
Berkhout, Augustinus J. C.; Swart, Daan P. J.; Volten, Hester; Gast, Lou F. L.; Haaima, Marty; Verboom, Hans; Stefess, Guus; Hafkenscheid, Theo; Hoogerbrugge, Ronald
2017-11-01
In this paper we present the continued development of the miniDOAS, an active differential optical absorption spectroscopy (DOAS) instrument used to measure ammonia concentrations in ambient air. The miniDOAS has been adapted for use in the Dutch National Air Quality Monitoring Network. The miniDOAS replaces the life-expired continuous-flow denuder ammonia monitor (AMOR). From September 2014 to December 2015, both instruments measured in parallel before the change from AMOR to miniDOAS was made. The instruments were deployed at six monitoring stations throughout the Netherlands. We report on the results of this intercomparison. Both instruments show a good uptime of ca. 90 %, adequate for an automatic monitoring network. Although both instruments produce 1 min values of ammonia concentrations, a direct comparison on short timescales such as minutes or hours does not give meaningful results because the AMOR response to changing ammonia concentrations is slow. Comparisons between daily and monthly values show good agreement. For monthly averages, we find a small average offset of 0.65 ± 0.28 µg m-3 and a slope of 1.034 ± 0.028, with the miniDOAS measuring slightly higher than the AMOR. The fast time resolution of the miniDOAS makes the instrument suitable not only for monitoring but also for process studies.
Monitoring inflammation (including fever) in acute brain injury.
Provencio, J Javier; Badjatia, Neeraj
2014-12-01
Inflammation is an important part of the normal physiologic response to acute brain injury (ABI). How inflammation is manifest determines if it augments or hinders the resolution of ABI. Monitoring body temperature, the cellular arm of the inflammatory cascade, and inflammatory proteins may help guide therapy. This summary will address the utility of inflammation monitoring in brain-injured adults. An electronic literature search was conducted for English language articles describing the testing, utility, and optimal methods to measure inflammation in ABI. Ninety-four articles were included in this review. Current evidence suggests that control of inflammation after ABI may hold promise for advances in good outcomes. However, our understanding of how much inflammation is good and how much is deleterious is not yet clear. Several important concepts emerge form our review. First, while continuous temperature monitoring of core body temperature is recommended, temperature pattern alone is not useful in distinguishing infectious from noninfectious fever. Second, when targeted temperature management is used, shivering should be monitored at least hourly. Finally, white blood cell levels and protein markers of inflammation may have a limited role in distinguishing infectious from noninfectious fever. Our understanding of optimal use of inflammation monitoring after ABI is limited currently but is an area of active investigation.
Research and design of portable photoelectric rotary table data-acquisition and analysis system
NASA Astrophysics Data System (ADS)
Yang, Dawei; Yang, Xiufang; Han, Junfeng; Yan, Xiaoxu
2015-02-01
Photoelectric rotary table as the main test tracking measurement platform, widely use in shooting range and aerospace fields. In the range of photoelectric tracking measurement system, in order to meet the photoelectric testing instruments and equipment of laboratory and field application demand, research and design the portable photoelectric rotary table data acquisition and analysis system, and introduces the FPGA device based on Xilinx company Virtex-4 series and its peripheral module of the system hardware design, and the software design of host computer in VC++ 6.0 programming platform and MFC package based on class libraries. The data acquisition and analysis system for data acquisition, display and storage, commission control, analysis, laboratory wave playback, transmission and fault diagnosis, and other functions into an organic whole, has the advantages of small volume, can be embedded, high speed, portable, simple operation, etc. By photoelectric tracking turntable as experimental object, carries on the system software and hardware alignment, the experimental results show that the system can realize the data acquisition, analysis and processing of photoelectric tracking equipment and control of turntable debugging good, and measurement results are accurate, reliable and good maintainability and extensibility. The research design for advancing the photoelectric tracking measurement equipment debugging for diagnosis and condition monitoring and fault analysis as well as the standardization and normalization of the interface and improve the maintainability of equipment is of great significance, and has certain innovative and practical value.
Kobau, Rosemarie; Cui, Wanjun; Zack, Matthew M
2017-07-01
Healthy People 2020, a national health promotion initiative, calls for increasing the proportion of U.S. adults who self-report good or better health. The Patient-Reported Outcomes Measurement Information System (PROMIS) Global Health Scale (GHS) was identified as a reliable and valid set of items of self-reported physical and mental health to monitor these two domains across the decade. The purpose of this study was to examine the percentage of adults with an epilepsy history who met the Healthy People 2020 target for self-reported good or better health and to compare these percentages to adults with history of other common chronic conditions. Using the 2010 National Health Interview Survey, we compared and estimated the age-standardized prevalence of reporting good or better physical and mental health among adults with five selected chronic conditions including epilepsy, diabetes, heart disease, cancer, and hypertension. We examined response patterns for physical and mental health scale among adults with these five conditions. The percentages of adults with epilepsy who reported good or better physical health (52%) or mental health (54%) were significantly below the Healthy People 2020 target estimate of 80% for both outcomes. Significantly smaller percentages of adults with an epilepsy history reported good or better physical health than adults with heart disease, cancer, or hypertension. Significantly smaller percentages of adults with an epilepsy history reported good or better mental health than adults with all other four conditions. Health and social service providers can implement and enhance existing evidence-based clinical interventions and public health programs and strategies shown to improve outcomes in epilepsy. These estimates can be used to assess improvements in the Healthy People 2020 Health-Related Quality of Life and Well-Being Objective throughout the decade. Published by Elsevier Inc.
Changes in water quality along the course of a river - Classic monitoring versus patrol monitoring
NASA Astrophysics Data System (ADS)
Absalon, Damian; Kryszczuk, Paweł; Rutkiewicz, Paweł
2017-11-01
Monitoring of water quality is a tool necessary to assess the condition of waterbodies in order to properly formulate water management plans. The paper presents the results of patrol monitoring of a 40-kilometre stretch of the Oder between Racibórz and Koźle. It has been established that patrol monitoring is a good tool for verifying the distribution of points of classic stationary monitoring, particularly in areas subject to varied human impact, where tributaries of the main river are very diversified as regards hydrochemistry. For this reason the results of operational monitoring carried out once every few years may not be reliable and the presented condition of the monitored waterbodies may be far from reality.
A Hierarchical Communication Architecture for Oceanic Surveillance Applications
Macias, Elsa; Suarez, Alvaro; Chiti, Francesco; Sacco, Andrea; Fantacci, Romano
2011-01-01
The interest in monitoring applications using underwater sensor networks has been growing in recent years. The severe communication restrictions imposed by underwater channels make that efficient monitoring be a challenging task. Though a lot of research has been conducted on underwater sensor networks, there are only few concrete applications to a real-world case study. In this work, hence, we propose a general three tier architecture leveraging low cost wireless technologies for acoustic communications between underwater sensors and standard technologies, Zigbee and Wireless Fidelity (WiFi), for water surface communications. We have selected a suitable Medium Access Control (MAC) layer, after making a comparison with some common MAC protocols. Thus the performance of the overall system in terms of Signals Discarding Rate (SDR), signalling delay at the surface gateway as well as the percentage of true detection have been evaluated by simulation, pointing out good results which give evidence in applicability’s favour. PMID:22247669
Use of the Plasma Spectrum RMS Signal for Arc-Welding Diagnostics.
Mirapeix, Jesus; Cobo, Adolfo; Fuentes, Jose; Davila, Marta; Etayo, Juan Maria; Lopez-Higuera, Jose-Miguel
2009-01-01
A new spectroscopic parameter is used in this paper for on-line arc-welding quality monitoring. Plasma spectroscopy applied to welding diagnostics has typically relied on the estimation of the plasma electronic temperature, as there is a known correlation between this parameter and the quality of the seams. However, the practical use of this parameter gives rise to some uncertainties that could provoke ambiguous results. For an efficient on-line welding monitoring system, it is essential to prevent the appearance of false alarms, as well as to detect all the possible defects. In this regard, we propose the use of the root mean square signal of the welding plasma spectra, as this parameter will be proven to exhibit a good correlation with the quality of the resulting seams. Results corresponding to several arc-welding field tests performed on Inconel and titanium specimens will be discussed and compared to non-destructive evaluation techniques.
Medical research misconduct need regulatory reforms.
Bedi, Neeraj
2014-10-01
The medical research misconduct has become a global problem. Except from countries like the USA, China, and Germany the exact figures of misconduct are not available. The research misconduct include fabricating the data, falsifying data, and plagiarism. The irresponsible research practices are publishing research data more than once, conflicts of interest is not declared, selective reporting of data and including an author who has not contributed at all and many more. About 2% of scientists have been found to admit the fabricating the data and 33% researchers were involved in irresponsible research practices. There is no formal regulatory programs available to monitor the research projects. Few developed countries like the USA, Germany, and China tried to develop programs which can monitor the medical research misconduct. There is a need to develop a regulatory system at national and institutional level to regulate the research activity to ensure that good ethical and scientific standards are practiced by medical researchers.
Use of the Plasma Spectrum RMS Signal for Arc-Welding Diagnostics
Mirapeix, Jesus; Cobo, Adolfo; Fuentes, Jose; Davila, Marta; Etayo, Juan Maria; Lopez-Higuera, Jose-Miguel
2009-01-01
A new spectroscopic parameter is used in this paper for on-line arc-welding quality monitoring. Plasma spectroscopy applied to welding diagnostics has typically relied on the estimation of the plasma electronic temperature, as there is a known correlation between this parameter and the quality of the seams. However, the practical use of this parameter gives rise to some uncertainties that could provoke ambiguous results. For an efficient on-line welding monitoring system, it is essential to prevent the appearance of false alarms, as well as to detect all the possible defects. In this regard, we propose the use of the root mean square signal of the welding plasma spectra, as this parameter will be proven to exhibit a good correlation with the quality of the resulting seams. Results corresponding to several arc-welding field tests performed on Inconel and titanium specimens will be discussed and compared to non-destructive evaluation techniques. PMID:22346696
Georgieva, A; Payne, S J; Redman, C W G
2009-12-01
The foetal heart rate (FHR) response to uterine contractions is crucial to detect foetal distress by electronic FHR monitoring during labour. We are developing a new automated system (OxSys) for decision support in labour, using the Oxford database of intrapartum FHR records. We describe here a novel technique for automated detection of uterus contractions. In addition, we present a comparison of the new method with four other computerised approaches. During training, OxSys achieved sensitivity above 95% and positive predictive value (PPV) of up to 90% for traces of good quality. During testing, OxSys achieved sensitivity = 87% and PPV = 75%. For comparison, a second clinical expert obtained sensitivity = 93% and PPV = 80%, and all other computerised approaches achieved lower values. It was concluded that the proposed method can be employed with confidence in our study on foetal health assessment in labour and future OxSys development.
NASA Astrophysics Data System (ADS)
Loschetter, Annick; Rohmer, Jérémy
2016-04-01
Standard and new generation of monitoring observations provide in almost real-time important information about the evolution of the volcanic system. These observations are used to update the model and contribute to a better hazard assessment and to support decision making concerning potential evacuation. The framework BET_EF (based on Bayesian Event Tree) developed by INGV enables dealing with the integration of information from monitoring with the prospect of decision making. Using this framework, the objectives of the present work are i. to propose a method to assess the added value of information (within the Value Of Information (VOI) theory) from monitoring; ii. to perform sensitivity analysis on the different parameters that influence the VOI from monitoring. VOI consists in assessing the possible increase in expected value provided by gathering information, for instance through monitoring. Basically, the VOI is the difference between the value with information and the value without additional information in a Cost-Benefit approach. This theory is well suited to deal with situations that can be represented in the form of a decision tree such as the BET_EF tool. Reference values and ranges of variation (for sensitivity analysis) were defined for input parameters, based on data from the MESIMEX exercise (performed at Vesuvio volcano in 2006). Complementary methods for sensitivity analyses were implemented: local, global using Sobol' indices and regional using Contribution to Sample Mean and Variance plots. The results (specific to the case considered) obtained with the different techniques are in good agreement and enable answering the following questions: i. Which characteristics of monitoring are important for early warning (reliability)? ii. How do experts' opinions influence the hazard assessment and thus the decision? Concerning the characteristics of monitoring, the more influent parameters are the means rather than the variances for the case considered. For the parameters that concern expert setting, the weight attributed to monitoring measurement ω, the mean of thresholds, the economic context and the setting of the decision threshold are very influential. The interest of applying the VOI theory (more precisely the value of imperfect information) in the BET framework was demonstrated as support for helping experts in the setting of the monitoring system or for helping managers to decide the installation of additional monitoring systems. Acknowledgments: This work was carried out in the framework of the project MEDSUV. This project is funded under the call FP7 ENV.2012.6.4-2: Long-term monitoring experiment in geologically active regions of Europe prone to natural hazards: the Supersite concept. Grant agreement n°308665.
Participatory health councils and good governance: healthy democracy in Brazil?
Kohler, Jillian Clare; Martinez, Martha Gabriela
2015-02-19
The Brazilian Government created Participatory Health Councils (PHCs) to allow citizen participation in the public health policy process. PHCs are advisory bodies that operate at all levels of government and that bring together different societal groups to monitor Brazil's health system. Today they are present in 98% of Brazilian cities, demonstrating their popularity and thus their potential to help ensure that health policies are in line with citizen preferences. Despite their expansive reach, their real impact on health policies and health outcomes for citizens is uncertain. We thus ask the following question: Do PHCs offer meaningful opportunities for open participation and influence in the public health policy process? Thirty-eight semi-structured interviews with health council members were conducted. Data from these interviews were analyzed using a qualitative interpretive content analysis approach. A quantitative analysis of PHC data from the Sistema de Acompanhamento dos Conselhos de Saude (SIACS) database was also conducted to corroborate findings from the interviews. We learned that PHCs fall short in many of the categories of good governance. Government manipulation of the agenda and leadership of the PHCs, delays in the implementation of PHC decision making, a lack of training of council members on relevant technical issues, the largely narrow interests of council members, the lack of transparency and monitoring guidelines, a lack of government support, and a lack of inclusiveness are a few examples that highlight why PHCs are not as effective as they could be. Although PHCs are intended to be inclusive and participatory, in practice they seem to have little impact on the health policymaking process in Brazil. PHCs will only be able to fulfil their mandate when we see good governance largely present. This will require a rethinking of their governance structures, processes, membership, and oversight. If change is resisted, the PHCs will remain largely limited to a good idea in theory that is disappointing in practice.
Non-intrusive torque measurement for rotating shafts using optical sensing of zebra-tapes
NASA Astrophysics Data System (ADS)
Zappalá, D.; Bezziccheri, M.; Crabtree, C. J.; Paone, N.
2018-06-01
Non-intrusive, reliable and precise torque measurement is critical to dynamic performance monitoring, control and condition monitoring of rotating mechanical systems. This paper presents a novel, contactless torque measurement system consisting of two shaft-mounted zebra tapes and two optical sensors mounted on stationary rigid supports. Unlike conventional torque measurement methods, the proposed system does not require costly embedded sensors or shaft-mounted electronics. Moreover, its non-intrusive nature, adaptable design, simple installation and low cost make it suitable for a large variety of advanced engineering applications. Torque measurement is achieved by estimating the shaft twist angle through analysis of zebra tape pulse train time shifts. This paper presents and compares two signal processing methods for torque measurement: rising edge detection and cross-correlation. The performance of the proposed system has been proven experimentally under both static and variable conditions and both processing approaches show good agreement with reference measurements from an in-line, invasive torque transducer. Measurement uncertainty has been estimated according to the ISO GUM (Guide to the expression of uncertainty in measurement). Type A analysis of experimental data has provided an expanded uncertainty relative to the system full-scale torque of ±0.30% and ±0.86% for the rising edge and cross-correlation approaches, respectively. Statistical simulations performed by the Monte Carlo method have provided, in the worst case, an expanded uncertainty of ±1.19%.
NASA Astrophysics Data System (ADS)
Kosaka, Tatsuro; Osaka, Katsuhiko; Nakakita, Satoru; Fukuda, Takehito
2003-08-01
This paper describes cure and health monitoring of glass fiber reinforced plastics (GFRP) textile composites both during a resin transfer molding (RTM) process and in loading tests. Carbon fiber reinforced plastics (CFRP) textile composites also were used for a comparative study. Fiber Bragg grating (FBG) fiber optic sensors were embedded in FRP to monitor internal strain. From the results of cure monitoring, it was found that the embedded FBG sensors were useful to know when cured resin constrained fibers. It also appeared that specimens were subjected to friction stress resulted from difference of coefficient of thermal expansion between FRP and a stainless steel mold in cooling process of RTM molding. After the molding, tensile and fatigue tests were conducted. The results of tensile tests showed that output of the embedded FBG sensors agreed well that of surface-bonded strain gauges despite deterioration of reflected spectra form the sensors. From the results of fatigue tests, the FBG sensors showed good status until 100,000 cycles when specimens had no damage. From these results, it can be concluded that embedded FBG sensors have good capability of monitoring internal strain in textile FRP both during RTM process and in service.
Continuous Risk Management: An Overview
NASA Technical Reports Server (NTRS)
Rosenberg, Linda; Hammer, Theodore F.
1999-01-01
Software risk management is important because it helps avoid disasters, rework, and overkill, but more importantly because it stimulates win-win situations. The objectives of software risk management are to identify, address, and eliminate software risk items before they become threats to success or major sources of rework. In general, good project managers are also good managers of risk. It makes good business sense for all software development projects to incorporate risk management as part of project management. The Software Assurance Technology Center (SATC) at NASA GSFC has been tasked with the responsibility for developing and teaching a systems level course for risk management that provides information on how to implement risk management. The course was developed in conjunction with the Software Engineering Institute at Carnegie Mellon University, then tailored to the NASA systems community. This is an introductory tutorial to continuous risk management based on this course. The rational for continuous risk management and how it is incorporated into project management are discussed. The risk management structure of six functions is discussed in sufficient depth for managers to understand what is involved in risk management and how it is implemented. These functions include: (1) Identify the risks in a specific format; (2) Analyze the risk probability, impact/severity, and timeframe; (3) Plan the approach; (4) Track the risk through data compilation and analysis; (5) Control and monitor the risk; (6) Communicate and document the process and decisions.
NASA Astrophysics Data System (ADS)
Vinciguerra, Sergio; Colombero, Chiara; Comina, Cesare; Ferrero, Anna Maria; Mandrone, Giuseppe; Umili, Gessica; Fiaschi, Andrea; Saccorotti, Gilberto
2014-05-01
Rock slope monitoring is a major aim in territorial risk assessment and mitigation. The high velocity that usually characterizes the failure phase of rock instabilities makes the traditional instruments based on slope deformation measurements not applicable for early warning systems. On the other hand the use of acoustic emission records has been often a good tool in underground mining for slope monitoring. Here we aim to identify the characteristic signs of impending failure, by deploying a "site specific" microseismic monitoring system on an unstable patch of the Madonna del Sasso landslide on the Italian Western Alps designed to monitor subtle changes of the mechanical properties of the medium and installed as close as possible to the source region. The initial characterization based on geomechanical and geophysical tests allowed to understand the instability mechanism and to design the monitoring systems to be placed. Stability analysis showed that the stability of the slope is due to rock bridges. Their failure progress can results in a global slope failure. Consequently the rock bridges potentially generating dynamic ruptures need to be monitored. A first array consisting of instruments provided by University of Turin, has been deployed on October 2013, consisting of 4 triaxial 4.5 Hz seismometers connected to a 12 channel data logger arranged in a 'large aperture' configuration which encompasses the entire unstable rock mass. Preliminary data indicate the occurrence of microseismic swarms with different spectral contents. Two additional geophones and 4 triaxial piezoelectric accelerometers able to operate at frequencies up to 23 KHz will be installed during summer 2014. This will allow us to develop a network capable of recording events with Mw < 0.5 and frequencies between 700 Hz and 20 kHz. Rock physical and mechanical characterization along with rock deformation laboratory experiments during which the evolution of related physical parameters under simulated conditions of stress and fluid content will be also studied and theoretical modelling will allow to come up with a full hazard assessment and test new methodologies for a much wider scale of applications within EU.
NASA Astrophysics Data System (ADS)
Boldyreff, Anton S.; Bespalov, Dmitry A.; Adzhiev, Anatoly Kh.
2017-05-01
Methods of artificial intelligence are a good solution for weather phenomena forecasting. They allow to process a large amount of diverse data. Recirculation Neural Networks is implemented in the paper for the system of thunderstorm events prediction. Large amounts of experimental data from lightning sensors and electric field mills networks are received and analyzed. The average recognition accuracy of sensor signals is calculated. It is shown that Recirculation Neural Networks is a promising solution in the forecasting of thunderstorms and weather phenomena, characterized by the high efficiency of the recognition elements of the sensor signals, allows to compress images and highlight their characteristic features for subsequent recognition.
monitoring la Soufrière de Guadeloupe phreatic system with muon tomography
NASA Astrophysics Data System (ADS)
Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d'Ars, Jean; Ianigro, Jean-Christophe; Gardien, Serge; Girerd, Claude
2015-04-01
Muon tomography is a novel geophysics imaging technique that measures the flux of cosmic muons crossing geological bodies. Its attenuation is directly related to their thickness and density. On la Soufrière de Guadeloupe volcano, we could extract tiny particle flux fluctuations from the tomography signal of long-term acquisitions (a few months). We prove that atmospheric fluctuations or solar activity, which are the usual candidates for cosmic particles time modulations, cannot explain these changes leaving the volcanic dome phreatic system as the only explanation. Moreover the temporal trends we extracted from the different observation axes of our instrument show a good spatial and temporal correlation with events occuring at the surface of the volcano.
Research of pulse signal processing based on sleep-monitoring alarm system
NASA Astrophysics Data System (ADS)
Zhang, Kaisheng; Zeng, Yuan
2009-07-01
From pulse diagnosis of Chinese herbalist doctor to the research of cardiovascular system by modem iatrology,they all have showed and proved that human pulse has a good affinity with diseases,especially cardiovascular diseases. Human pulse contains much physical information, and it will be propitious to know the human healthy state early so as to get therapy and recovery early when pulse signal is often detected and analyzed. study how to use the embedded microcontroller to transmit physiological signal from human to personal computer by infrared communication, and the normal sphygmic parameter in one's sleeping is compared with the one measured in order to judge whether one's sleeping condition is normal, finally ascertain the best control plan.
Anastassopoulou, C G; Touloumi, G; Katsoulidou, A; Hatzitheodorou, H; Pappa, M; Paraskevis, D; Lazanas, M; Gargalianos, P; Hatzakis, A
2001-01-01
HIV-1 RNA measurements from 84 plasma specimens obtained with the QUANTIPLEX HIV-1 RNA 2.0 and 3.0 (bDNA) assays (Chiron Diagnostics, Emeryville, CA) and with the AMPLICOR HIV-1 MONITOR Test, version 1.5 with ultra-sensitive specimen preparation (Roche Diagnostic Systems, Inc., Branchburg, NJ) were compared. The absolute RNA values of tested specimens differed significantly between bDNA 2.0 and bDNA 3.0 or Monitor v1.5 measurements (Wilcoxon signed-rank test P<0.001). Results generated with bDNA 3.0 or with Monitor v1.5 were approximately twofold greater than those generated with bDNA 2.0, with smaller differences at higher HIV-1 RNA levels and greater differences at RNA levels below 1000 copies per ml. Although highly correlated (r=0.92 and 0.86, respectively), viral load data generated with bDNA 2.0 and either bDNA 3.0 or Monitor v1.5 were in poor agreement. Concordant results (difference in log(10) copies per ml <0.5) were found at frequencies of 80% for bDNA 2.0 and bDNA 3.0 and only at 58.5% for bDNA 2.0 and Monitor v1.5. In contrast, bDNA 3.0 and Monitor v1.5 measurements were highly correlated (r=0.96) and in good agreement (92.7%).
Mini-FLOTAC and Kato-Katz: helminth eggs watching on the shore of Lake Victoria.
Barda, Beatrice; Zepherine, Henry; Rinaldi, Laura; Cringoli, Giuseppe; Burioni, Roberto; Clementi, Massimo; Albonico, Marco
2013-07-31
One of the challenges for monitoring helminth control programmes based on preventive chemotherapy is the lack of a copro-parasitological gold-standard method that combines good sensitivity with quantitative performance, low cost, and easy-to-learn technique.The aim of our study was to evaluate and compare, the WHO recommended quantitative diagnostic technique (Kato-Katz) and the Mini-FLOTAC. Mini-FLOTAC is an innovative method based on floatation of helminths eggs with two different solutions (FS2 and FS7) using a close system (Fill-FLOTAC) with 5% fixative. Kato-Katz was performed following WHO recommendation. The study was carried out in a rural part of Tanzania, close to Lake Victoria, where the laboratory facilities are fairly scarce, and the basic technique used in the local laboratory (direct smear) was taken as reference standard. 201 children were screened for intestinal helminths and 91% of them were found to be positive. The agreement among the three techniques was calculated with k Cohen coefficient and was fairly good (k = 0.4), although the Mini-FLOTAC results were more sensitive for hookworm (98%) with FS2, and for S.mansoni (90%) with FS7 followed by Kato-Katz (91% and 60% respectively) and direct smear (30% and 10% respectively). A good agreement was found between Mini-FLOTAC and Kato-Katz (k = 0.81) with FS7 (k = 0.76) for hookworm diagnosis and a fairly good one for S.mansoni diagnosis (k = 0.5). For both infections we had a poor agreement between the two quantitative techniques and the direct smear (k<0.3). Kato-Katz diagnosed a higher number of eggs (calculated by arithmetic mean) both for hookworm (455 vs 424 EPG) and for S.mansoni (71 vs 58 EPG) compared with the Mini-FLOTAC, but the differences were not significant (p = 0.4). Mini-FLOTAC is a promising technique, comparable and as sensitive as the Kato-Katz, which is the recommended method in intestinal helminthology for monitoring helminth control programmes. A comparative advantage of the Mini-FLOTAC is that it comprises of a closed system with preserved samples that both protects the operators and allows subsequent examination of the samples. Further studies are needed to validate the mini-FLOTAC with other quantitative techniques (McMaster) and in different settings where other soil-transmitted helminths are also endemic.
Testing the seismology-based landquake monitoring system
NASA Astrophysics Data System (ADS)
Chao, Wei-An
2016-04-01
I have developed a real-time landquake monitoring system (RLMs), which monitor large-scale landquake activities in the Taiwan using real-time seismic network of Broadband Array in Taiwan for Seismology (BATS). The RLM system applies a grid-based general source inversion (GSI) technique to obtain the preliminary source location and force mechanism. A 2-D virtual source-grid on the Taiwan Island is created with an interval of 0.2° in both latitude and longitude. The depth of each grid point is fixed on the free surface topography. A database is stored on the hard disk for the synthetics, which are obtained using Green's functions computed by the propagator matrix approach for 1-D average velocity model, at all stations from each virtual source-grid due to nine elementary source components: six elementary moment tensors and three orthogonal (north, east and vertical) single-forces. Offline RLM system was carried out for events detected in previous studies. An important aspect of the RLM system is the implementation of GSI approach for different source types (e.g., full moment tensor, double couple faulting, and explosion source) by the grid search through the 2-D virtual source to automatically identify landquake event based on the improvement in waveform fitness and evaluate the best-fit solution in the monitoring area. With this approach, not only the force mechanisms but also the event occurrence time and location can be obtained simultaneously about 6-8 min after an occurrence of an event. To improve the insufficient accuracy of GSI-determined lotion, I further conduct a landquake epicenter determination (LED) method that maximizes the coherency of the high-frequency (1-3 Hz) horizontal envelope functions to determine the final source location. With good knowledge about the source location, I perform landquake force history (LFH) inversion to investigate the source dynamics (e.g., trajectory) for the relatively large-sized landquake event. With providing aforementioned source information in real-time, the government and emergency response agencies have sufficient reaction time for rapid assessment and response to landquake hazards. Since 2016, the RLM system has operated online.
Multiple Sclerosis: Epidemiologic, Clinical, and Therapeutic Aspects.
Vidal-Jordana, Angela; Montalban, Xavier
2017-05-01
Multiple sclerosis (MS) is a chronic autoimmune and degenerative disease of the central nervous system that affects young people. MS develops in genetically susceptible individuals exposed to different unknown triggering factors. Different phenotypes are described. About 15% of patients present with a primary progressive course and 85% with a relapsing-remitting course. An increasing number of disease-modifying treatments has emerged. Although encouraging, the number of drugs challenges the neurologist because each treatment has its own risk-benefit profile. Patients should be involved in the decision-making process to ensure good treatment and safety monitoring adherence. Copyright © 2016 Elsevier Inc. All rights reserved.
Detection of elemental mercury by multimode diode laser correlation spectroscopy.
Lou, Xiutao; Somesfalean, Gabriel; Svanberg, Sune; Zhang, Zhiguo; Wu, Shaohua
2012-02-27
We demonstrate a method for elemental mercury detection based on correlation spectroscopy employing UV laser radiation generated by sum-frequency mixing of two visible multimode diode lasers. Resonance matching of the multimode UV laser is achieved in a wide wavelength range and with good tolerance for various operating conditions. Large mode-hops provide an off-resonance baseline, eliminating interferences from other gas species with broadband absorption. A sensitivity of 1 μg/m3 is obtained for a 1-m path length and 30-s integration time. The performance of the system shows promise for mercury monitoring in industrial applications.
Cho, Hyun Min; Hong, Yoon Joo; Byun, Chun Sung
2016-01-01
Background Chest drainage systems are usually composed of chest tube and underwater-seal bottle. But this conventional system may restrict patients doing exercise and give clinicians obscure data about when to remove tubes because there is no objective indicator. Recently developed digital chest drainage systems may facilitate interpretation of the grade of air leak and make it easy for clinicians to decide when to remove chest tubes. In addition, with combination of wireless internet devices, monitoring and managing of drainage system distant from the patient is possible. Methods Sixty patients of primary pneumothorax were included in a prospective randomized study and divided into two groups. Group I (study) consisted of digital chest drainage system while in group II (control), conventional underwater-seal chest bottle system was used. Data was collected from January, 2012 to September, 2013 in Eulji University Hospital, Daejeon, Korea. Results There was no difference in age, sex, smoking history and postoperative pain between two groups. But the average length of drainage was 2.2 days in group I and 3.1 days in group II (P<0.006). And more, about 90% of the patients in group I was satisfied with using new device for convenience. Conclusions Digital system was beneficial on reducing the length of tube drainage by real time monitoring. It also had advantage in portability, loudness and gave more satisfaction than conventional system. Moreover, internet based digital drainage system will be a good method in thoracic telemedicine area in the near future. PMID:27076934
NASA Astrophysics Data System (ADS)
Press, J.; Broughton, J.; Kudela, R. M.
2014-12-01
Suspended and dissolved trace elements are key determinants of water quality in estuarine and coastal waters. High concentrations of trace element pollutants in the San Francisco Bay estuary necessitate consistent and thorough monitoring to mitigate adverse effects on biological systems and the contamination of water and food resources. Although existing monitoring programs collect annual in situ samples from fixed locations, models proposed by Benoit, Kudela, & Flegal (2010) enable calculation of the water column total concentration (WCT) and the water column dissolved concentration (WCD) of 14 trace elements in the San Francisco Bay from a more frequently sampled metric—suspended solids concentration (SSC). This study tests the application of these models with SSC calculated from remote sensing data, with the aim of validating a tool for continuous synoptic monitoring of trace elements in the San Francisco Bay. Using HICO imagery, semi-analytical and empirical SSC algorithms were tested against a USGS dataset. A single-band method with statistically significant linear fit (p < 0.001) was chosen as the proxy for SSC values. The numerical models for WCT and the distribution ratio D were applied in MATLAB with terms to account for regional and seasonal effects, and results were used to calculate WCD. The modeled results were assessed against in situ data from the San Francisco Estuary Regional Monitoring Program. Quantile regression was used to evaluate model sensitivity to the distribution of regions, and outliers displaying regional aberrations were removed before robust regression was applied. Statistically significant and highly correlated results for WCT were found for 10 elements, with goodness of fit greater than or equal to that of the original models of seven elements. WCD was successfully modeled for six elements, with goodness of fit for each exceeding that of the original models. Concentrations of Arsenic, Iron, and Lead in the southern region of the Bay were found to exceed EPA water quality criteria for human health and aquatic life. The results of this study demonstrate the potential of monitoring programs using remote observation of trace element concentrations, and provide the foundation for investigation of pollutant sources and pathways over time.
Development of the infrared instrument for gas detection
NASA Astrophysics Data System (ADS)
Chen, Ching-Wei; Chen, Chia-Ray
2017-08-01
MWIR (Mid-Wave Infrared) spectroscopy shows a large potential in the current IR devices market, due to its multiple applications, such as gas detection, chemical analysis, industrial monitoring, combustion and flame characterization. It opens this technique to the fields of application, such as industrial monitoring and control, agriculture and environmental monitoring. However, a major barrier, which is the lack of affordable specific key elements such a MWIR light sources and low cost uncooled detectors, have held it back from its widespread use. In this paper an uncooled MWIR detector combined with image enhancement technique is reported. This investigation shows good results in gas leakage detection test. It also verify the functions of self-developed MWIR lens and optics. A good agreement in theoretical design and experiment give us the lessons learned for the potential application in infrared satellite technology. A brief discussions will also be presented in this paper.
Kerr, M; Stattin, H
2000-05-01
Parental monitoring has been conceptualized as tracking and surveillance but operationalized as knowledge of daily activities. This study tested the tracking and surveillance explanation of why parental knowledge is linked to better adolescent adjustment. Participants were 1,186 14-year-olds in central Sweden and their parents. The results supported and extended a reinterpretation of parental monitoring (H. Stattin & M. Kerr, in press). Across sex and informant, high parental knowledge was linked to multiple measures of good adjustment. But children's spontaneous disclosure of information explained more of these relations than parents' tracking and surveillance efforts did. Parents' control efforts were related to good adjustment only after the child's feelings of being controlled, which were linked to poor adjustment, were partialed out. The findings suggest that parents' tracking and surveillance efforts are not as effective as previously thought.
Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping
2011-01-01
In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.
Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping
2011-01-01
In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring. PMID:22346672
The natural resources of the Gulf’s coastal and marine habitats and the services they provide are essential to the regional economy and provide 17% of the Nation’s gross domestic product (GDP). Restoring these natural resources, goods and services will be important t...
Benn, Neil; Turlais, Fabrice; Clark, Victoria; Jones, Mike; Clulow, Stephen
2007-03-01
The authors describe a system for collecting usage metrics from widely distributed automation systems. An application that records and stores usage data centrally, calculates run times, and charts the data was developed. Data were collected over 20 months from at least 28 workstations. The application was used to plot bar charts of date versus run time for individual workstations, the automation in a specific laboratory, or automation of a specified type. The authors show that revised user training, redeployment of equipment, and running complimentary processes on one workstation can increase the average number of runs by up to 20-fold and run times by up to 450%. Active monitoring of usage leads to more effective use of automation. Usage data could be used to determine whether purchasing particular automation was a good investment.
Haul truck tire dynamics due to tire condition
NASA Astrophysics Data System (ADS)
Vaghar Anzabi, R.; Nobes, D. S.; Lipsett, M. G.
2012-05-01
Pneumatic tires are costly components on large off-road haul trucks used in surface mining operations. Tires are prone to damage during operation, and these events can lead to injuries to personnel, loss of equipment, and reduced productivity. Damage rates have significant variability, due to operating conditions and a range of tire fault modes. Currently, monitoring of tire condition is done by physical inspection; and the mean time between inspections is often longer than the mean time between incipient failure and functional failure of the tire. Options for new condition monitoring methods include off-board thermal imaging and camera-based optical methods for detecting abnormal deformation and surface features, as well as on-board sensors to detect tire faults during vehicle operation. Physics-based modeling of tire dynamics can provide a good understanding of the tire behavior, and give insight into observability requirements for improved monitoring systems. This paper describes a model to simulate the dynamics of haul truck tires when a fault is present to determine the effects of physical parameter changes that relate to faults. To simulate the dynamics, a lumped mass 'quarter-vehicle' model has been used to determine the response of the system to a road profile when a failure changes the original properties of the tire. The result is a model of tire vertical displacement that can be used to detect a fault, which will be tested under field conditions in time-varying conditions.
New consumer load prototype for electricity theft monitoring
NASA Astrophysics Data System (ADS)
Abdullateef, A. I.; Salami, M. J. E.; Musse, M. A.; Onasanya, M. A.; Alebiosu, M. I.
2013-12-01
Illegal connection which is direct connection to the distribution feeder and tampering of energy meter has been identified as a major process through which nefarious consumers steal electricity on low voltage distribution system. This has contributed enormously to the revenue losses incurred by the power and energy providers. A Consumer Load Prototype (CLP) is constructed and proposed in this study in order to understand the best possible pattern through which the stealing process is effected in real life power consumption. The construction of consumer load prototype will facilitate real time simulation and data collection for the monitoring and detection of electricity theft on low voltage distribution system. The prototype involves electrical design and construction of consumer loads with application of various standard regulations from Institution of Engineering and Technology (IET), formerly known as Institution of Electrical Engineers (IEE). LABVIEW platform was used for data acquisition and the data shows a good representation of the connected loads. The prototype will assist researchers and power utilities, currently facing challenges in getting real time data for the study and monitoring of electricity theft. The simulation of electricity theft in real time is one of the contributions of this prototype. Similarly, the power and energy community including students will appreciate the practical approach which the prototype provides for real time information rather than software simulation which has hitherto been used in the study of electricity theft.
NASA Astrophysics Data System (ADS)
Bauer, Jacob R.; van Beekum, Karlijn; Klaessens, John; Noordmans, Herke Jan; Boer, Christa; Hardeberg, Jon Y.; Verdaasdonk, Rudolf M.
2018-02-01
Non contact spatial resolved oxygenation measurements remain an open challenge in the biomedical field and non contact patient monitoring. Although point measurements are the clinical standard till this day, regional differences in the oxygenation will improve the quality and safety of care. Recent developments in spectral imaging resulted in spectral filter array cameras (SFA). These provide the means to acquire spatial spectral videos in real-time and allow a spatial approach to spectroscopy. In this study, the performance of a 25 channel near infrared SFA camera was studied to obtain spatial oxygenation maps of hands during an occlusion of the left upper arm in 7 healthy volunteers. For comparison a clinical oxygenation monitoring system, INVOS, was used as a reference. In case of the NIRS SFA camera, oxygenation curves were derived from 2-3 wavelength bands with a custom made fast analysis software using a basic algorithm. Dynamic oxygenation changes were determined with the NIR SFA camera and INVOS system at different regional locations of the occluded versus non-occluded hands and showed to be in good agreement. To increase the signal to noise ratio, algorithm and image acquisition were optimised. The measurement were robust to different illumination conditions with NIR light sources. This study shows that imaging of relative oxygenation changes over larger body areas is potentially possible in real time.
Evaluation of Digital PCR as a Technique for Monitoring Acute Rejection in Kidney Transplantation.
Lee, Hyeseon; Park, Young-Mi; We, Yu-Mee; Han, Duck Jong; Seo, Jung-Woo; Moon, Haena; Lee, Yu-Ho; Kim, Yang-Gyun; Moon, Ju-Young; Lee, Sang-Ho; Lee, Jong-Keuk
2017-03-01
Early detection and proper management of kidney rejection are crucial for the long-term health of a transplant recipient. Recipients are normally monitored by serum creatinine measurement and sometimes with graft biopsies. Donor-derived cell-free deoxyribonucleic acid (cfDNA) in the recipient's plasma and/or urine may be a better indicator of acute rejection. We evaluated digital PCR (dPCR) as a system for monitoring graft status using single nucleotide polymorphism (SNP)-based detection of donor DNA in plasma or urine. We compared the detection abilities of the QX200, RainDrop, and QuantStudio 3D dPCR systems. The QX200 was the most accurate and sensitive. Plasma and/or urine samples were isolated from 34 kidney recipients at multiple time points after transplantation, and analyzed by dPCR using the QX200. We found that donor DNA was almost undetectable in plasma DNA samples, whereas a high percentage of donor DNA was measured in urine DNA samples, indicating that urine is a good source of cfDNA for patient monitoring. We found that at least 24% of the highly polymorphic SNPs used to identify individuals could also identify donor cfDNA in transplant patient samples. Our results further showed that autosomal, sex-specific, and mitochondrial SNPs were suitable markers for identifying donor cfDNA. Finally, we found that donor-derived cfDNA measurement by dPCR was not sufficient to predict a patient's clinical condition. Our results indicate that donor-derived cfDNA is not an accurate predictor of kidney status in kidney transplant patients.
NASA Astrophysics Data System (ADS)
Sun, Hong; Wu, Qian-zhong
2013-09-01
In order to improve the precision of optical-electric tracking device, proposing a kind of improved optical-electric tracking device based on MEMS, in allusion to the tracking error of gyroscope senor and the random drift, According to the principles of time series analysis of random sequence, establish AR model of gyro random error based on Kalman filter algorithm, then the output signals of gyro are multiple filtered with Kalman filter. And use ARM as micro controller servo motor is controlled by fuzzy PID full closed loop control algorithm, and add advanced correction and feed-forward links to improve response lag of angle input, Free-forward can make output perfectly follow input. The function of lead compensation link is to shorten the response of input signals, so as to reduce errors. Use the wireless video monitor module and remote monitoring software (Visual Basic 6.0) to monitor servo motor state in real time, the video monitor module gathers video signals, and the wireless video module will sent these signals to upper computer, so that show the motor running state in the window of Visual Basic 6.0. At the same time, take a detailed analysis to the main error source. Through the quantitative analysis of the errors from bandwidth and gyro sensor, it makes the proportion of each error in the whole error more intuitive, consequently, decrease the error of the system. Through the simulation and experiment results shows the system has good following characteristic, and it is very valuable for engineering application.
A probabilistic dynamic energy model for ad-hoc wireless sensors network with varying topology
NASA Astrophysics Data System (ADS)
Al-Husseini, Amal
In this dissertation we investigate the behavior of Wireless Sensor Networks (WSNs) from the degree distribution and evolution perspective. In specific, we focus on implementation of a scale-free degree distribution topology for energy efficient WSNs. WSNs is an emerging technology that finds its applications in different areas such as environment monitoring, agricultural crop monitoring, forest fire monitoring, and hazardous chemical monitoring in war zones. This technology allows us to collect data without human presence or intervention. Energy conservation/efficiency is one of the major issues in prolonging the active life WSNs. Recently, many energy aware and fault tolerant topology control algorithms have been presented, but there is dearth of research focused on energy conservation/efficiency of WSNs. Therefore, we study energy efficiency and fault-tolerance in WSNs from the degree distribution and evolution perspective. Self-organization observed in natural and biological systems has been directly linked to their degree distribution. It is widely known that scale-free distribution bestows robustness, fault-tolerance, and access efficiency to system. Fascinated by these properties, we propose two complex network theoretic self-organizing models for adaptive WSNs. In particular, we focus on adopting the Barabasi and Albert scale-free model to fit into the constraints and limitations of WSNs. We developed simulation models to conduct numerical experiments and network analysis. The main objective of studying these models is to find ways to reducing energy usage of each node and balancing the overall network energy disrupted by faulty communication among nodes. The first model constructs the wireless sensor network relative to the degree (connectivity) and remaining energy of every individual node. We observed that it results in a scale-free network structure which has good fault tolerance properties in face of random node failures. The second model considers additional constraints on the maximum degree of each node as well as the energy consumption relative to degree changes. This gives more realistic results from a dynamical network perspective. It results in balanced network-wide energy consumption. The results show that networks constructed using the proposed approach have good properties for different centrality measures. The outcomes of the presented research are beneficial to building WSN control models with greater self-organization properties which leads to optimal energy consumption.
Leving, Marika T; Horemans, Henricus L D; Vegter, Riemer J K; de Groot, Sonja; Bussmann, Johannes B J; van der Woude, Lucas H V
2018-01-01
Hypoactive lifestyle contributes to the development of secondary complications and lower quality of life in wheelchair users. There is a need for objective and user-friendly physical activity monitors for wheelchair-dependent individuals in order to increase physical activity through self-monitoring, goal setting, and feedback provision. To determine the validity of Activ8 Activity Monitors to 1) distinguish two classes of activities: independent wheelchair propulsion from other non-propulsive wheelchair-related activities 2) distinguish five wheelchair-related classes of activities differing by the movement intensity level: sitting in a wheelchair (hands may be moving but wheelchair remains stationary), maneuvering, and normal, high speed or assisted wheelchair propulsion. Sixteen able-bodied individuals performed sixteen various standardized 60s-activities of daily living. Each participant was equipped with a set of two Activ8 Professional Activity Monitors, one at the right forearm and one at the right wheel. Task classification by the Active8 Monitors was validated using video recordings. For the overall agreement, sensitivity and positive predictive value, outcomes above 90% are considered excellent, between 70 and 90% good, and below 70% unsatisfactory. Division in two classes resulted in overall agreement of 82.1%, sensitivity of 77.7% and positive predictive value of 78.2%. 84.5% of total duration of all tasks was classified identically by Activ8 and based on the video material. Division in five classes resulted in overall agreement of 56.6%, sensitivity of 52.8% and positive predictive value of 51.9%. 59.8% of total duration of all tasks was classified identically by Activ8 and based on the video material. Activ8 system proved to be suitable for distinguishing between active wheelchair propulsion and other non-propulsive wheelchair-related activities. The ability of the current system and algorithms to distinguish five various wheelchair-related activities is unsatisfactory.
Horemans, Henricus L. D.; Vegter, Riemer J. K.; de Groot, Sonja; Bussmann, Johannes B. J.; van der Woude, Lucas H. V.
2018-01-01
Background Hypoactive lifestyle contributes to the development of secondary complications and lower quality of life in wheelchair users. There is a need for objective and user-friendly physical activity monitors for wheelchair-dependent individuals in order to increase physical activity through self-monitoring, goal setting, and feedback provision. Objective To determine the validity of Activ8 Activity Monitors to 1) distinguish two classes of activities: independent wheelchair propulsion from other non-propulsive wheelchair-related activities 2) distinguish five wheelchair-related classes of activities differing by the movement intensity level: sitting in a wheelchair (hands may be moving but wheelchair remains stationary), maneuvering, and normal, high speed or assisted wheelchair propulsion. Methods Sixteen able-bodied individuals performed sixteen various standardized 60s-activities of daily living. Each participant was equipped with a set of two Activ8 Professional Activity Monitors, one at the right forearm and one at the right wheel. Task classification by the Active8 Monitors was validated using video recordings. For the overall agreement, sensitivity and positive predictive value, outcomes above 90% are considered excellent, between 70 and 90% good, and below 70% unsatisfactory. Results Division in two classes resulted in overall agreement of 82.1%, sensitivity of 77.7% and positive predictive value of 78.2%. 84.5% of total duration of all tasks was classified identically by Activ8 and based on the video material. Division in five classes resulted in overall agreement of 56.6%, sensitivity of 52.8% and positive predictive value of 51.9%. 59.8% of total duration of all tasks was classified identically by Activ8 and based on the video material. Conclusions Activ8 system proved to be suitable for distinguishing between active wheelchair propulsion and other non-propulsive wheelchair-related activities. The ability of the current system and algorithms to distinguish five various wheelchair-related activities is unsatisfactory. PMID:29641582
Zhang, Jun; Zeng, Jie; Wang, Bo; Wang, Wen-juan; Liang, Da-kai; Liu, Xiao-ying
2016-03-01
Aiming at meeting the need of aluminum corrosion monitoring in aerospace field, a pre-load type fiber grating corrosion sensor based on an aluminum thin tube structure is proposed. The corrosion sensor of aluminum alloy structure in-service monitoring mechanism is studied, a theoretical model about the relation of FBG reflection spectral characteristics and aluminum thickness variation is also obtained. Optical fiber grating corrosion monitoring test system based on the capillary structure of aluminum alloy is constructed by acid-base environment. The problem of cross sensitivity of temperature and strain is solved by configuring an optical fiber grating which is not affected by strain and only sensitive to temperature inside the aluminum alloy tube. The results shows that he aluminum tube packaging design not only can sense the effects of corrosion on the mechanical properties, but also can interference shielding effect of corrosion on the tube optical fiber sensing device. With the deepening of the metal tube corrosion and aluminum alloy tube thickness gradually thinning, fiber grating reflective spectrum gradually shift to the short wavelength and the wall thickness and the grating center wavelength offset has a good monotonic relation. These characteristics can provide useful help to further research corrosion online monitoring based on optic fiber sensor.
Reconstruction of in-plane strain maps using hybrid dense sensor network composed of sensing skin
NASA Astrophysics Data System (ADS)
Downey, Austin; Laflamme, Simon; Ubertini, Filippo
2016-12-01
The authors have recently developed a soft-elastomeric capacitive (SEC)-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. Under plane stress conditions, the sensor output contains the additive measurement of the two principal strain components over the monitored surface. In applications where the evaluation of strain maps is useful, in structural health monitoring for instance, such signal must be decomposed into linear strain components along orthogonal directions. Previous work has led to an algorithm that enabled such decomposition by leveraging a dense sensor network configuration with the addition of assumed boundary conditions. Here, we significantly improve the algorithm’s accuracy by leveraging mature off-the-shelf solutions to create a hybrid dense sensor network (HDSN) to improve on the boundary condition assumptions. The system’s boundary conditions are enforced using unidirectional RSGs and assumed virtual sensors. Results from an extensive experimental investigation demonstrate the good performance of the proposed algorithm and its robustness with respect to sensors’ layout. Overall, the proposed algorithm is seen to effectively leverage the advantages of a hybrid dense network for application of the thin film sensor to reconstruct surface strain fields over large surfaces.
Fibre Bragg grating manometry catheters for in vivo monitoring of peristalsis
NASA Astrophysics Data System (ADS)
Arkwright, John W.; Underhill, Ian
2017-02-01
The human gastrointestinal tract or `gut' is one of the body's largest functional systems spanning up to 8 metres in length from beginning to end. It is formed of a series of physiologically different sections that perform the various functions required for the digestion of food, absorption of nutrients and water, and the removal of waste products. To enable the gut to perform correctly it must be able to transport digesta through each section at the appropriate rate, and any breakdown or malfunction of this transport mechanism can have severe consequences to on-going good health. Monitoring motor function deep within the gut is challenging due to the need to monitor over extended lengths with high spatial resolution. Fiber Bragg grating (FBG) manometry catheters provide a near ideal method of monitoring physiologically significant lengths of the gut in a minimally invasive fashion. Following the development by our group of the first viable FBG based manometry catheter we have undertaken a series of clinical investigations in the human esophagus, colon, stomach and small bowel. Each region presents its own technological challenge and has required a range of modifications to the basic catheter design. We present the design of these catheters and clinical results from over 100 in-vivo studies.
NASA Astrophysics Data System (ADS)
Lopez-Baeza, Ernesto
2016-07-01
In this paper, the SOMOSTA (Soil Moisture Monitoring Station) experiment on soil moisture monitoring byGlobal Navigation Satellite System Reflected signals(GNSS-R) at the Valencia Anchor Station is introduced. L-band microwaves have very good advantages in soil moisture remote sensing, for being unaffected by clouds and the atmosphere, and for the ability to penetrate vegetation. During this experimental campaign, the ESA GNSS-R Oceanpal antenna was installed on the same tower as the ESA ELBARA-II passive microwave radiometer, both measuring instruments having similar field of view. This experiment is fruitfully framed within the ESA - China Programme of Collaboration on GNSS-R. The GNSS-R instrument has an up-looking antenna for receiving direct signals from satellites, and two down-looking antennas for receiving LHCP (left-hand circular polarisation) and RHCP (right-hand circular polarisation) reflected signals from the soil surface. We could collect data from the three different antennas through the two channels of Oceanpal and, in addition, calibration could be performed to reduce the impact from the differing channels. Reflectivity was thus measured and soil moisture could be retrieved by the L- MEB (L-band Microwave Emission of the Biosphere) model considering the effect of vegetation optical thickness and soil roughness. By contrasting GNSS-R and ELBARA-II radiometer data, a negative correlation existed between reflectivity measured by GNSS-R and brightness temperature measured by the radiometer. The two parameters represent reflection and absorption of the soil. Soil moisture retrieved by both L-band remote sensing methods shows good agreement. In addition, correspondence with in-situ measurements and rainfall is also good.
Data capture by digital pen in clinical trials: a qualitative and quantitative study.
Estellat, Candice; Tubach, Florence; Costa, Yolande; Hoffmann, Isabelle; Mantz, Jean; Ravaud, Philippe
2008-05-01
To investigate the use of the digital pen (DP) system to collect data in a clinical trial. To assess the accuracy of the system in this setting. Qualitative study based on semistructured interviews and a focus group. Quantitative study comparing the DP system and a double manual data-entry system in accuracy of acquiring data by variable type (tick boxes, dates, numbers, letters). An ongoing randomised multicentric clinical trial in tertiary care in France. 27 investigators involved in the trial (anaesthetists) who did or did not include patients, 4 study monitors and the study coordinator. Six key findings emerged: 1) the DP system was easy to use; its utilisation was intuitive, even for investigators inexperienced in informatics; 2) despite its portability, the DP was not always used in front of patients; 3) the DP system did not affect patient recruitment; 4) most of the technical problems of the system occurred during setup (compatibility, password access, antivirus software); 5) the main advantage was quickness of data availability for the study coordination staff and the main hindrance was the extra time required for online verification; and 6) all investigators were ready to use the system again. The investigators had to check 16% of data obtained by the DP system during the verification step. There is no relevant difference between the number of errors for the DP and the double manual data-entry systems: 8/5022 versus 6/5022 data entries. 5 out of 8 DP-system failures were due to the intelligent character recognition system. The DP system has a good acceptability among all investigators in a clinical setting, whether they are experienced with computers or not, and a good accuracy, as compared with double manual data entry.
The web-rhetoric of companies offering home-based personal health monitoring.
Nordgren, Anders
2012-06-01
In this paper I investigate the web-rhetoric of companies offering home-based personal health monitoring to patients and elderly people. Two main rhetorical methods are found, namely a reference to practical benefits and a use of prestige words like "quality of life" and "independence". I interpret the practical benefits in terms of instrumental values and the prestige words in terms of final values. I also reconstruct the arguments on the websites in terms of six different types of argument. Finally, I articulate a general critique of the arguments, namely that the websites neglect the context of use of personal health monitoring technologies. Whether or not a technology is good depends on the use of the technology by a particular individual in a particular context. The technology is not good-or bad-in itself. I support this critique with a number of more specific arguments such as the risk for reduced personal contact. For some elderly people social contact with care providers is more valuable than the independent living made possible by remote monitoring, for others independence is more important.