Sample records for good optical performance

  1. Application of distributed optical fiber sensing technologies to the monitoring of leakage and abnormal disturbance of oil pipeline

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojun; Zhu, Xiaofei; Deng, Chi; Li, Junyi; Liu, Cheng; Yu, Wenpeng; Luo, Hui

    2017-10-01

    To improve the level of management and monitoring of leakage and abnormal disturbance of long distance oil pipeline, the distributed optical fiber temperature and vibration sensing system is employed to test the feasibility for the healthy monitoring of a domestic oil pipeline. The simulating leakage and abnormal disturbance affairs of oil pipeline are performed in the experiment. It is demonstrated that the leakage and abnormal disturbance affairs of oil pipeline can be monitored and located accurately with the distributed optical fiber sensing system, which exhibits good performance in the sensitivity, reliability, operation and maintenance etc., and shows good market application prospect.

  2. Optics ellipticity performance of an unobscured off-axis space telescope.

    PubMed

    Zeng, Fei; Zhang, Xin; Zhang, Jianping; Shi, Guangwei; Wu, Hongbo

    2014-10-20

    With the development of astronomy, more and more attention is paid to the survey of dark matter. Dark matter cannot be seen directly but can be detected by weak gravitational lensing measurement. Ellipticity is an important parameter used to define the shape of a galaxy. Galaxy ellipticity changes with weak gravitational lensing and nonideal optics. With our design of an unobscured off-axis telescope, we implement the simulation and calculation of optics ellipticity. With an accurate model of optics PSF, the characteristic of ellipticity is modeled and analyzed. It is shown that with good optical design, the full field ellipticity can be quite small. The spatial ellipticity change can be modeled by cubic interpolation with very high accuracy. We also modeled the ellipticity variance with time and analyzed the tolerance. It is shown that the unobscured off-axis telescope has good ellipticity performance and fulfills the requirement of dark matter survey.

  3. Design and Performance Investigation for the Optical Combinational Networks at High Data Rate

    NASA Astrophysics Data System (ADS)

    Tripathi, Devendra Kr.

    2017-05-01

    This article explores performance study for optical combinational designs based on nonlinear characteristics with semiconductor optical amplifier (SOA). Two configurations for optical half-adder with non-return-to-zero modulation pattern altogether with Mach-Zehnder modulator, interferometer at 50-Gbps data rate have been successfully realized. Accordingly, SUM and CARRY outputs have been concurrently executed and verified for their output waveforms. Numerical simulations for variation of data rate and key design parameters have been effectively executed outcome with optimum performance. Investigations depict overall good performance of the design in terms of the extinction factor. It also inferred that all-optical realization based on SOA is competent scheme, as it circumvents costly optoelectronic translation. This could be well supportive to erect larger complex optical combinational circuits.

  4. High resolution ultrasound and magnetic resonance imaging of the optic nerve and the optic nerve sheath: anatomic correlation and clinical importance.

    PubMed

    Steinborn, M; Fiegler, J; Kraus, V; Denne, C; Hapfelmeier, A; Wurzinger, L; Hahn, H

    2011-12-01

    We performed a cadaver study to evaluate the accuracy of measurements of the optic nerve and the optic nerve sheath for high resolution US (HRUS) and magnetic resonance imaging (MRI). Five Thiel-fixated cadaver specimens of the optic nerve were examined with HRUS and MRI. Measurements of the optic nerve and the ONSD were performed before and after the filling of the optic nerve sheath with saline solution. Statistical analysis included the calculation of the agreement of measurements and the evaluation of the intraobserver and interobserver variation. Overall a good correlation of measurement values between HRUS and MRI can be found (mean difference: 0.02-0.97 mm). The repeatability coefficient (RC) and concordance correlation coefficient (CCC) values were good to excellent for most acquisitions (RC 0.2-1.11 mm; CCC 0.684-0.949). The highest variation of measurement values was found for transbulbar sonography (RC 0.58-1.83 mm; CCC 0.615/0.608). If decisive anatomic structures are clearly depicted and the measuring points are set correctly, there is a good correlation between HRUS and MRI measurements of the optic nerve and the ONSD even on transbulbar sonography. As most of the standard and cut-off values that have been published for ultrasound are significantly lower than the results obtained with MRI, a reevaluation of sonographic ONSD measurement with correlation to MRI is necessary. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Fabrication and performance analysis of a high-coupling-efficiency and convenient-integration optical transceiver

    NASA Astrophysics Data System (ADS)

    He, Hui-min; Liu, Feng-man; Xue, Hai-yun; Wu, Peng; Song, Man-gu; Sun, Yu; Cao, Li-qiang

    2017-07-01

    An optical transceiver with a novel optical subassembly structure is proposed in this paper, which achieves high coupling efficiency and low assembly difficulty. The proposed optical transceiver consumes 0.9 W power and retains a small size of 28 mm×16 mm×3 mm. The fabrication process of the silicon substrate and the assembly process of the optical transceiver are demonstrated in details. Moreover, the optical transceiver is measured in order to verify its transmission performance. The clear eye diagrams and the low bit error rate ( BER) less than 10-13 at 10 Gbit/s per channel show good transmission characteristics of the designed optical transceiver.

  6. Optical Fiber Grating Hydrogen Sensors: A Review

    PubMed Central

    Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong

    2017-01-01

    In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed. PMID:28287499

  7. Optical Fiber Grating Hydrogen Sensors: A Review.

    PubMed

    Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong

    2017-03-12

    In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed.

  8. Multiconjugate adaptive optics for the Swedish ELT

    NASA Astrophysics Data System (ADS)

    Gontcharov, Alexander; Owner-Petersen, Mette

    2000-08-01

    The Swedish ELT is intended to be a 50 m telescope with multiconjugate adaptive optics integrated directly as a crucial part of the optical design. In this paper we discuss the effects of the distributed atmospheric turbulence with regard to the choice of optimal geometry of the telescope. Originally the basic system was foreseen to be a Gregorian with an adaptive secondary correcting adequately for nearby turbulences in both the infrared and visual regions, but if the performance degradation expected from changing the basic system to a Cassegrain keeping the adaptive secondary could be accepted, the constructional costs would be significantly reduced. In order to clarify this question, a simple analytical model describing the performance employing a single deformable mirror for adaptive correction has been developed and used for analysis. The quantitative results shown here relates to a wavelength of 2.2 micrometers and are based on the seven layer atmospheric model for the Cerro Pachon site, which is believed to be a good representative of most good astronomical sites. As a consequence of the analysis no performance degradation is expected from changing the core telescope to a Cassegrain (Ritchey- Chretien). The paper presents the layout and optical performance of the new design.

  9. Optical filters for UV to near IR space applications

    NASA Astrophysics Data System (ADS)

    Begou, T.; Krol, H.; Hecquet, Christophe; Bondet, C.; Lumeau, J.; Grèzes-Besset, C.; Lequime, M.

    2017-11-01

    We present hereafter the results on the fabrication of complex optical filters within the Institut Fresnel in close collaboration with CILAS. Bandpass optical filters dedicated to astronomy and space applications, with central wavelengths ranging from ultraviolet to near infrared, were deposited on both sides of glass substrates with performances in very good congruence with theoretical designs. For these applications, the required functions are particularly complex as they must present a very narrow bandwidth as well as a high level of rejection over a broad spectral range. In addition to those severe optical performances, insensitivity to environmental conditions is necessary. For this purpose, robust solutions with particularly stable performances have to be proposed.

  10. Enhanced electrochromic and energy storage performance in mesoporous WO3 film and its application in a bi-functional smart window.

    PubMed

    Wang, Wei-Qi; Wang, Xiu-Li; Xia, Xin-Hui; Yao, Zhu-Jun; Zhong, Yu; Tu, Jiang-Ping

    2018-05-03

    Construction of multifunctional photoelectrochemical energy devices is of great importance to energy saving. In this study, we have successfully prepared a mesoporous WO3 film on FTO glass via a facile dip-coating sol-gel method; the designed mesoporous WO3 film exhibited advantages including high transparency, good adhesion and high porosity. Also, multifunctional integrated energy storage and optical modulation ability are simultaneously achieved by the mesoporous WO3 film. Impressively, the mesoporous WO3 film exhibits a noticeable electrochromic energy storage performance with a large optical modulation up to 75.6% at 633 nm, accompanied by energy storage with a specific capacity of 75.3 mA h g-1. Furthermore, a full electrochromic energy storage window assembled with the mesoporous WO3 anode and PANI nanoparticle cathode is demonstrated with large optical modulation and good long-term stability. Our research provides a new route to realize the coincident utilization of optical-electrochemical energy.

  11. How to assess good candidate molecules for self-activated optical power limiting

    NASA Astrophysics Data System (ADS)

    Lundén, Hampus; Glimsdal, Eirik; Lindgren, Mikael; Lopes, Cesar

    2018-03-01

    Reverse saturable absorbers have shown great potential to attenuate laser radiation. Good candidate molecules and various particles have successfully been incorporated into different glass matrices, enabling the creation of self-activated filters against damaging laser radiation. Although the performance of such filters has been impressive, work is still ongoing to improve the performance in a wider range of wavelengths and pulse widths. The purpose of this tutorial is, from an optical engineering perspective, to give an understanding of the strengths and weaknesses of this class of smart materials, how relevant photophysical parameters are measured and influence system performance and comment on the pitfalls in experimental evaluation of materials. A numerical population model in combination with simple physical formulas is used to demonstrate system behavior from a performance standpoint. Geometrical reasoning shows the advantage of reverse saturable absorption over nonlinear scattering due to a fraction of scattered light being recollected by imaging system optics. The numerical population model illustrates the importance of the optical power limiting performance during the leading edge of a nanosecond pulse, which is most strongly influenced by changes in the two-photon absorption cross section and the triplet linear absorption cross section for a modeled Pt-acetylide. This tutorial not only targets optical engineers evaluating reverse saturable absorbing materials but also aims to assist researchers with a chemistry background working on optical power limiting materials. We also present photophysical data for a series of coumarins that can be useful for the determination of quantum yields and two-photon cross sections and show examples of characterization of molecules with excited triplet states.

  12. Self-healing ring-based WDM-PON

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Gan, Chaoqin; Zhu, Long

    2010-05-01

    In this paper, a survivable ring-based wavelength-division-multiplexing (WDM)-passive optical network (PON) for fiber protection is proposed. Protections for feeder fiber and distributed fiber are independent in the scheme. Optical line terminal (OLT) and optical network units (ONUs) can automatically switch to protection link when fiber failure occurs. Protection distributed fiber is not required in the scheme. Cost-effective components are used in ONUs to minimize costs of network. A simulation study is performed to demonstrate the scheme. Its result shows good performance of upstream and downstream signals.

  13. Atomistic simulations of the optical absorption of type-II CdSe/ZnTe superlattices

    PubMed Central

    2012-01-01

    We perform accurate tight binding simulations to design type-II short-period CdSe/ZnTe superlattices suited for photovoltaic applications. Absorption calculations demonstrate a very good agreement with optical results with threshold strongly depending on the chemical species near interfaces. PMID:23031315

  14. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane.

    PubMed

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-07-09

    In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.

  15. Optical Performance Of The Gemini Carbon Dioxide Laser Fusion System

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Hayden, J. J.; Liberman, I.

    1980-11-01

    The performance of the Gemini two beam carbon dioxide laser fusion system was recently upgraded by installation of optical components with improved quality in the final amplifier. A theoretical analysis was conducted in conlunction with measurements of the new performance. The analysis and experimental procedures, and results obtained are reported and compared. Good agreement was found which was within the uncertainties of the analysis and the inaccuracies of the experiments. The focal spot Strehl ratio was between 0.24 and 0.3 for both beams.

  16. Durham extremely large telescope adaptive optics simulation platform.

    PubMed

    Basden, Alastair; Butterley, Timothy; Myers, Richard; Wilson, Richard

    2007-03-01

    Adaptive optics systems are essential on all large telescopes for which image quality is important. These are complex systems with many design parameters requiring optimization before good performance can be achieved. The simulation of adaptive optics systems is therefore necessary to categorize the expected performance. We describe an adaptive optics simulation platform, developed at Durham University, which can be used to simulate adaptive optics systems on the largest proposed future extremely large telescopes as well as on current systems. This platform is modular, object oriented, and has the benefit of hardware application acceleration that can be used to improve the simulation performance, essential for ensuring that the run time of a given simulation is acceptable. The simulation platform described here can be highly parallelized using parallelization techniques suited for adaptive optics simulation, while still offering the user complete control while the simulation is running. The results from the simulation of a ground layer adaptive optics system are provided as an example to demonstrate the flexibility of this simulation platform.

  17. Investigation of improving MEMS-type VOA reliability

    NASA Astrophysics Data System (ADS)

    Hong, Seok K.; Lee, Yeong G.; Park, Moo Y.

    2003-12-01

    MEMS technologies have been applied to a lot of areas, such as optical communications, Gyroscopes and Bio-medical components and so on. In terms of the applications in the optical communication field, MEMS technologies are essential, especially, in multi dimensional optical switches and Variable Optical Attenuators(VOAs). This paper describes the process for the development of MEMS type VOAs with good optical performance and improved reliability. Generally, MEMS VOAs have been fabricated by silicon micro-machining process, precise fibre alignment and sophisticated packaging process. Because, it is composed of many structures with various materials, it is difficult to make devices reliable. We have developed MEMS type VOSs with many failure mode considerations (FMEA: Failure Mode Effect Analysis) in the initial design step, predicted critical failure factors and revised the design, and confirmed the reliability by preliminary test. These predicted failure factors were moisture, bonding strength of the wire, which wired between the MEMS chip and TO-CAN and instability of supplied signals. Statistical quality control tools (ANOVA, T-test and so on) were used to control these potential failure factors and produce optimum manufacturing conditions. To sum up, we have successfully developed reliable MEMS type VOAs with good optical performances by controlling potential failure factors and using statistical quality control tools. As a result, developed VOAs passed international reliability standards (Telcodia GR-1221-CORE).

  18. Investigation of improving MEMS-type VOA reliability

    NASA Astrophysics Data System (ADS)

    Hong, Seok K.; Lee, Yeong G.; Park, Moo Y.

    2004-01-01

    MEMS technologies have been applied to a lot of areas, such as optical communications, Gyroscopes and Bio-medical components and so on. In terms of the applications in the optical communication field, MEMS technologies are essential, especially, in multi dimensional optical switches and Variable Optical Attenuators(VOAs). This paper describes the process for the development of MEMS type VOAs with good optical performance and improved reliability. Generally, MEMS VOAs have been fabricated by silicon micro-machining process, precise fibre alignment and sophisticated packaging process. Because, it is composed of many structures with various materials, it is difficult to make devices reliable. We have developed MEMS type VOSs with many failure mode considerations (FMEA: Failure Mode Effect Analysis) in the initial design step, predicted critical failure factors and revised the design, and confirmed the reliability by preliminary test. These predicted failure factors were moisture, bonding strength of the wire, which wired between the MEMS chip and TO-CAN and instability of supplied signals. Statistical quality control tools (ANOVA, T-test and so on) were used to control these potential failure factors and produce optimum manufacturing conditions. To sum up, we have successfully developed reliable MEMS type VOAs with good optical performances by controlling potential failure factors and using statistical quality control tools. As a result, developed VOAs passed international reliability standards (Telcodia GR-1221-CORE).

  19. The effect of jitter on the performance of space coherent optical communication system with Costas loop

    NASA Astrophysics Data System (ADS)

    Li, Xin; Hong, Yifeng; Wang, Jinfang; Liu, Yang; Sun, Xun; Li, Mi

    2018-01-01

    Numerous communication techniques and optical devices successfully applied in space optical communication system indicates a good portability of it. With this good portability, typical coherent demodulation technique of Costas loop can be easily adopted in space optical communication system. As one of the components of pointing error, the effect of jitter plays an important role in the communication quality of such system. Here, we obtain the probability density functions (PDF) of different jitter degrees and explain their essential effect on the bit error rate (BER) space optical communication system. Also, under the effect of jitter, we research the bit error rate of space coherent optical communication system using Costas loop with different system parameters of transmission power, divergence angle, receiving diameter, avalanche photodiode (APD) gain, and phase deviation caused by Costas loop. Through a numerical simulation of this kind of communication system, we demonstrate the relationship between the BER and these system parameters, and some corresponding methods of system optimization are presented to enhance the communication quality.

  20. Design and realization of adaptive optical principle system without wavefront sensing

    NASA Astrophysics Data System (ADS)

    Wang, Xiaobin; Niu, Chaojun; Guo, Yaxing; Han, Xiang'e.

    2018-02-01

    In this paper, we focus on the performance improvement of the free space optical communication system and carry out the research on wavefront-sensorless adaptive optics. We use a phase only liquid crystal spatial light modulator (SLM) as the wavefront corrector. The optical intensity distribution of the distorted wavefront is detected by a CCD. We develop a wavefront controller based on ARM and a software based on the Linux operating system. The wavefront controller can control the CCD camera and the wavefront corrector. There being two SLMs in the experimental system, one simulates atmospheric turbulence and the other is used to compensate the wavefront distortion. The experimental results show that the performance quality metric (the total gray value of 25 pixels) increases from 3037 to 4863 after 200 iterations. Besides, it is demonstrated that our wavefront-sensorless adaptive optics system based on SPGD algorithm has a good performance in compensating wavefront distortion.

  1. Low-Cost High-Precision PIAA Optics for High Contrast Imaging with Exo-Planet Coronagraphs

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatham; Shaklan, Stuart B.; Pueyo, Laurent; Wilson, Daniel W.; Guyon, Olivier

    2010-01-01

    PIAA optics for high contrast imaging present challenges in manufacturing and testing due to their large surface departures from aspheric profiles at the aperture edges. With smaller form factors and consequent smaller surface deformations (<50 microns), fabrication of these mirrors with diamond turning followed by electron beam lithographic techniques becomes feasible. Though such a design reduces the system throughput to approx.50%, it still provides good performance down to 2 lambda/D inner working angle. With new achromatic focal plane mask designs, the system performance can be further improved. We report on the design, expected performance, fabrication challenges, and initial assessment of such novel PIAA optics.

  2. Unconventional High-Performance Laser Protection System Based on Dichroic Dye-Doped Cholesteric Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Wanshu; Zhang, Lanying; Liang, Xiao; Le Zhou; Xiao, Jiumei; Yu, Li; Li, Fasheng; Cao, Hui; Li, Kexuan; Yang, Zhou; Yang, Huai

    2017-02-01

    High-performance and cost-effective laser protection system is of crucial importance for the rapid advance of lasers in military and civilian fields leading to severe damages of human eyes and sensitive optical devices. However, it is crucially hindered by the angle-dependent protective effect and the complex preparation process. Here we demonstrate that angle-independence, good processibility, wavelength tunability, high optical density and good visibility can be effectuated simultaneously, by embedding dichroic anthraquinone dyes in a cholesteric liquid crystal matrix. More significantly, unconventional two-dimensional parabolic protection behavior is reported for the first time that in stark contrast to the existing protection systems, the overall parabolic protection behavior enables protective effect to increase with incident angles, hence providing omnibearing high-performance protection. The protective effect is controllable by dye concentration, LC cell thickness and CLC reflection efficiency, and the system can be made flexible enabling applications in flexible and even wearable protection devices. This research creates a promising avenue for the high-performance and cost-effective laser protection, and may foster the development of optical applications such as solar concentrators, car explosion-proof membrane, smart windows and polarizers.

  3. A Review on Spectral Amplitude Coding Optical Code Division Multiple Access

    NASA Astrophysics Data System (ADS)

    Kaur, Navpreet; Goyal, Rakesh; Rani, Monika

    2017-06-01

    This manuscript deals with analysis of Spectral Amplitude Coding Optical Code Division Multiple Access (SACOCDMA) system. The major noise source in optical CDMA is co-channel interference from other users known as multiple access interference (MAI). The system performance in terms of bit error rate (BER) degrades as a result of increased MAI. It is perceived that number of users and type of codes used for optical system directly decide the performance of system. MAI can be restricted by efficient designing of optical codes and implementing them with unique architecture to accommodate more number of users. Hence, it is a necessity to design a technique like spectral direct detection (SDD) technique with modified double weight code, which can provide better cardinality and good correlation property.

  4. Silicon photonic Mach Zehnder modulators for next-generation short-reach optical communication networks

    NASA Astrophysics Data System (ADS)

    Lacava, C.; Liu, Z.; Thomson, D.; Ke, Li; Fedeli, J. M.; Richardson, D. J.; Reed, G. T.; Petropoulos, P.

    2016-02-01

    Communication traffic grows relentlessly in today's networks, and with ever more machines connected to the network, this trend is set to continue for the foreseeable future. It is widely accepted that increasingly faster communications are required at the point of the end users, and consequently optical transmission plays a progressively greater role even in short- and medium-reach networks. Silicon photonic technologies are becoming increasingly attractive for such networks, due to their potential for low cost, energetically efficient, high-speed optical components. A representative example is the silicon-based optical modulator, which has been actively studied. Researchers have demonstrated silicon modulators in different types of structures, such as ring resonators or slow light based devices. These approaches have shown remarkably good performance in terms of modulation efficiency, however their operation could be severely affected by temperature drifts or fabrication errors. Mach-Zehnder modulators (MZM), on the other hand, show good performance and resilience to different environmental conditions. In this paper we present a CMOS-compatible compact silicon MZM. We study the application of the modulator to short-reach interconnects by realizing data modulation using some relevant advanced modulation formats, such as 4-level Pulse Amplitude Modulation (PAM-4) and Discrete Multi-Tone (DMT) modulation and compare the performance of the different systems in transmission.

  5. Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal.

    PubMed

    Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin

    2016-07-01

    A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.

  6. Fiber optic pressure sensors in skin-friction measurements

    NASA Technical Reports Server (NTRS)

    Cuomo, F. W.

    1986-01-01

    A fiber optic lever sensing technique that can be used to measure normal pressure as well as shear stresses is discussed. This method uses three unequal fibers combining small size and good sensitivity. Static measurements appear to confirm the theoretical models predicted by geometrical optics and dynamic tests performed at frequencies up to 10 kHz indicate a flat response within this frequency range. These sensors are intended for use in a low speed wind tunnel environment.

  7. Performance enhancement of Pt/TiO2/Si UV-photodetector by optimizing light trapping capability and interdigitated electrodes geometry

    NASA Astrophysics Data System (ADS)

    Bencherif, H.; Djeffal, F.; Ferhati, H.

    2016-09-01

    This paper presents a hybrid approach based on an analytical and metaheuristic investigation to study the impact of the interdigitated electrodes engineering on both speed and optical performance of an Interdigitated Metal-Semiconductor-Metal Ultraviolet Photodetector (IMSM-UV-PD). In this context, analytical models regarding the speed and optical performance have been developed and validated by experimental results, where a good agreement has been recorded. Moreover, the developed analytical models have been used as objective functions to determine the optimized design parameters, including the interdigit configuration effect, via a Multi-Objective Genetic Algorithm (MOGA). The ultimate goal of the proposed hybrid approach is to identify the optimal design parameters associated with the maximum of electrical and optical device performance. The optimized IMSM-PD not only reveals superior performance in terms of photocurrent and response time, but also illustrates higher optical reliability against the optical losses due to the active area shadowing effects. The advantages offered by the proposed design methodology suggest the possibility to overcome the most challenging problem with the communication speed and power requirements of the UV optical interconnect: high derived current and commutation speed in the UV receiver.

  8. Effects of pupil filter patterns in line-scan focal modulation microscopy

    NASA Astrophysics Data System (ADS)

    Shen, Shuhao; Pant, Shilpa; Chen, Rui; Chen, Nanguang

    2018-03-01

    Line-scan focal modulation microscopy (LSFMM) is an emerging imaging technique that affords high imaging speed and good optical sectioning at the same time. We present a systematic investigation into optimal design of the pupil filter for LSFMM in an attempt to achieve the best performance in terms of spatial resolutions, optical sectioning, and modulation depth. Scalar diffraction theory was used to compute light propagation and distribution in the system and theoretical predictions on system performance, which were then compared with experimental results.

  9. The Integration Process of Very Thin Mirror Shells with a Particular Regard to Simbol-X

    NASA Astrophysics Data System (ADS)

    Basso, S.; Pareschi, G.; Tagliaferri, G.; Mazzoleni, F.; Valtolina, R.; Citterio, O.; Conconi, P.

    2009-05-01

    The optics of Simbol-X are very thin compared to previous X-ray missions (like XMM). Therefore their shells floppy and are unable to maintain the correct shape. To avoid the deformations of their very thin X-ray optics during the integration process we adopt two stiffening rings with a good roundness. In this article the procedure used for the first three prototypes of the Simbol-X optics is presented with a description of the problems involved and with an analysis of the degradation of the performances during the integration. This analysis has been performed with the UV vertical bench measurements at INAF-OAB.

  10. Gold nanorods-silicone hybrid material films and their optical limiting property

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Qi, Yanhai; Hao, Xiongwen; Peng, Xue; Li, Dongxiang

    2015-10-01

    As a kind of new optical limiting materials, gold nanoparticles have optical limiting property owing to their optical nonlinearities induced by surface plasmon resonance (SPR). Gold nanorods (GNRs) possess transversal SPR absorption and tunable longitudinal SPR absorption in the visible and near-infrared region, so they can be used as potential optical limiting materials against tunable laser pulses. In this letter, GNRs were prepared using seed-mediated growth method and surface-modified by silica coating to obtain good dispersion in polydimethylsiloxane prepolymers. Then the silicone rubber films doped with GNRs were prepared after vulcanization, whose optical limiting property and optical nonlinearity were investigated. The silicone rubber samples doped with more GNRs were found to exhibit better optical limiting performance.

  11. Monte Carlo Simulation of Plumes Spectral Emission

    DTIC Science & Technology

    2005-06-07

    ERIM experimental data for hot cell radiance has been performed. It has been shown that NASA standard infrared optical model [3] provides good...Influence of different optical models on predicted numerical data on hot cell radiance for ERIM experimental conditions has been studied. 7...prediction (solid line) of the Hot cell radiance. NASA Standard Infrared Radiation model ; averaged rotational line structure (JLBL=0); spectral

  12. Development of Independent-type Optical CT

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsushi; Shiozawa, Daigoro; Rokunohe, Toshiaki; Kida, Junzo; Zhang, Wei

    Optical current transformers (optical CTs) have features that they can be made much smaller and lighter than conventional electromagnetic induction transformers by their simple structure, and contribute to improvement of equipment reliability because of their excellent surge resistance performance. Authors consider optical CTs to be next generation transformers, and are conducting research and development of optical CTs aiming to apply to measuring and protection in electric power systems. Specifically we developed an independent-type optical CT by utilizing basic data of optical CTs accumulated for large current characteristics, temperature characteristics, vibration resistance characteristics, and so on. In performance verification, type tests complying with IEC standards, such as short-time current tests, insulation tests, accuracy tests, and so on, showed good results. This report describes basic principle and configuration of optical CTs. After that, as basic characteristics of optical CTs, conditions and results of verification tests for dielectric breakdown characteristics of sensor fibers, large current characteristics, temperature characteristics, and vibration resistance characteristics are described. Finally, development outline of the independent-type optical CT aiming to apply to all digital substation and its type tests results are described.

  13. Electrical and optical performance of transparent conducting oxide films deposited by electrostatic spray assisted vapour deposition.

    PubMed

    Hou, Xianghui; Choy, Kwang-Leong; Liu, Jun-Peng

    2011-09-01

    Transparent conducting oxide (TCO) films have the remarkable combination of high electrical conductivity and optical transparency. There is always a strong motivation to produce TCO films with good performance at low cost. Electrostatic Spray Assisted Vapor Deposition (ESAVD), as a variant of chemical vapour deposition (CVD), is a non-vacuum and low-cost deposition method. Several types of TCO films have been deposited using ESAVD process, including indium tin oxide (ITO), antimony-doped tin oxide (ATO), and fluorine doped tin oxide (FTO). This paper reports the electrical and optical properties of TCO films produced by ESAVD methods, as well as the effects of post treatment by plasma hydrogenation on these TCO films. The possible mechanisms involved during plasma hydrogenation of TCO films are also discussed. Reduction and etching effect during plasma hydrogenation are the most important factors which determine the optical and electrical performance of TCO films.

  14. Research on conformal dome of Karman-curve shape

    NASA Astrophysics Data System (ADS)

    Zhang, Yunqiang; Chang, Jun; Niu, Yajun

    2018-01-01

    Because the conformal optical technology can obviously improve the aerodynamic performance of the infrared guidance missile, it has been studied deeply in recent years. By comparing the performance of the missiles with conformal dome and conventional missiles, the advantages of the conformal optical technology are demonstrated in the maneuverability and stealth of the missile. At present, the study of conformal optical systems focuses on ellipsoid or quadratic curve types. But in actual use, the dome using these curves is not the best choice. In this paper, the influence of different shape of the dome on aerodynamic performance, aerodynamic heating, internal space volume and other properties is discussed. The result shows infrared optical system with conformal dome of Karman-curve shape has a good application prospect, is the future direction of development. Finally, the difficult problems of conformal dome of Karman-curve shape are discussed.

  15. Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor.

    PubMed

    Spillane, S M; Pati, G S; Salit, K; Hall, M; Kumar, P; Beausoleil, R G; Shahriar, M S

    2008-06-13

    We report the observation of low-light level optical interactions in a tapered optical nanofiber (TNF) embedded in a hot rubidium vapor. The small optical mode area plays a significant role in the optical properties of the hot vapor Rb-TNF system, allowing nonlinear optical interactions with nW level powers even in the presence of transit-time dephasing rates much larger than the intrinsic linewidth. We demonstrate nonlinear absorption and V-type electromagnetically induced transparency with cw powers below 10 nW, comparable to the best results in any Rb-optical waveguide system. The good performance and flexibility of the Rb-TNF system makes it a very promising candidate for ultralow power resonant nonlinear optical applications.

  16. Electro-optical 1 x 2, 1 x N and N x N fiber-optic and free-space switching over 1.55 to 3.0 μm using a Ge-Ge(2)Sb(2)Te(5)-Ge prism structure.

    PubMed

    Hendrickson, Joshua; Soref, Richard; Sweet, Julian; Majumdar, Arka

    2015-01-12

    New device designs are proposed and theoretical simulations are performed on electro-optical routing switches in which light beams enter and exit the device either from free space or from lensed fibers. The active medium is a ~100 nm layer of phase change material (Ge(2)Sb(2)Te(5) or GeTe) that is electrically "triggered" to change its phase, giving "self-holding" behavior in each of two phases. Electrical current is supplied to that film by a pair of transparent highly doped conducting Ge prisms on both sides of the layer. For S-polarized light incident at ~80° on the film, a three-layer Fabry-Perot analysis, including dielectric loss, predicts good 1 x 2 and 2 x 2 switch performance at infrared wavelengths of 1.55, 2.1 and 3.0 μm, although the performance at 1.55 μm is degraded by material loss and prism mismatch. Proposals for in-plane and volumetric 1 x 4 and 4 x 4 switches are also presented. An unpolarized 1 x 2 switch projects good performance at mid infrared.

  17. Understanding product cost vs. performance through an in-depth system Monte Carlo analysis

    NASA Astrophysics Data System (ADS)

    Sanson, Mark C.

    2017-08-01

    The manner in which an optical system is toleranced and compensated greatly affects the cost to build it. By having a detailed understanding of different tolerance and compensation methods, the end user can decide on the balance of cost and performance. A detailed phased approach Monte Carlo analysis can be used to demonstrate the tradeoffs between cost and performance. In complex high performance optical systems, performance is fine-tuned by making adjustments to the optical systems after they are initially built. This process enables the overall best system performance, without the need for fabricating components to stringent tolerance levels that often can be outside of a fabricator's manufacturing capabilities. A good performance simulation of as built performance can interrogate different steps of the fabrication and build process. Such a simulation may aid the evaluation of whether the measured parameters are within the acceptable range of system performance at that stage of the build process. Finding errors before an optical system progresses further into the build process saves both time and money. Having the appropriate tolerances and compensation strategy tied to a specific performance level will optimize the overall product cost.

  18. Development of components for IFOG-based inertial measurement units using polymer waveguide fabrication technologies

    NASA Astrophysics Data System (ADS)

    Ashley, P. R.; Temmen, M. G.; Diffey, W. M.; Sanghadasa, M.; Bramson, M. D.

    2007-10-01

    Active and passive polymer materials have been successfully used in the development of highly accurate, compact and low cost guided-wave components: an optical transceiver and a phase modulator, for inertial measurement units (IMUs) based on the interferometric fibre optic gyroscope (IFOG) technology for precision guidance in navigation systems. High performance and low noise transceivers with high optical power and good spectral quality were fabricated using a silicon-bench architecture. Low loss phase modulators with low halfwave drive voltage (Vπ) have been fabricated with a backscatter compensated design using polarizing waveguides consisting of CLD- and FTC-type high performance electro-optic (E-O) chromophores. Gyro bias stability of less than 0.02° h-1 has been demonstrated with these guided-wave components.

  19. Study on initiative vibration absorbing technology of optics in strong disturbed environment

    NASA Astrophysics Data System (ADS)

    Jia, Si-nan; Xiong, Mu-di; Zou, Xiao-jie

    2007-12-01

    Strong disturbed environment is apt to cause irregular vibration, which seriously affects optical collimation. To improve the performance of laser beam, three-point dynamic vibration absorbing method is proposed, and laser beam initiative vibration absorbing system is designed. The maladjustment signal is detected by position sensitive device (PSD), three groups of PZT are driven to adjust optical element in real-time, so the performance of output-beam is improved. The coupling model of the system is presented. Multivariable adaptive closed-loop decoupling arithmetic is used to design three-input-three-output decoupling controller, so that high precision dynamic adjusting is realized. Experiments indicate that the system has good shock absorbing efficiency.

  20. Bidirectional fiber-IVLLC and fiber-wireless convergence system with two orthogonally polarized optical sidebands.

    PubMed

    Lu, Hai-Han; Wu, Hsiao-Wen; Li, Chung-Yi; Ho, Chun-Ming; Yang, Zih-Yi; Cheng, Ming-Te; Lu, Chang-Kai

    2017-05-01

    A bidirectional fiber-invisible laser light communication (IVLLC) and fiber-wireless convergence system with two orthogonally polarized optical sidebands for hybrid cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and experimentally demonstrated. Two optical sidebands generated by a 60-GHz MMW signal are orthogonally polarized and separated into different polarizations. These orthogonally polarized optical sidebands are delivered over a 40-km single-mode fiber (SMF) transport to effectually reduce the fiber dispersion induced by a 40-km SMF transmission and the distortion caused by the parallel polarized optical sidebands. To the best of our knowledge, this work is the first to adopt two orthogonally polarized optical sidebands in a bidirectional fiber-IVLLC and fiber-wireless convergence system to reduce fiber dispersion and distortion effectually. Good carrier-to-noise ratio, composite second order, composite triple beat, and bit error rate (BER) are achieved for downlink transmission at a 40-km SMF operation and a 100-m free-space optical (FSO) link/3-m RF wireless transmission. For up-link transmission, good BER performance is acquired over a 40-km SMF transport and a 100-m FSO link. The approach presented in this work signifies the advancements in the convergence of SMF-based backbone and optical/RF wireless-based feeder.

  1. Effect of polishing conditions on terminating optical connectors with spherical convex polished ends

    NASA Astrophysics Data System (ADS)

    Lin, Samuel I.-En

    2002-01-01

    Increased demand for fiber-optic technology has created significant growth in the sales of interconnection devices such as fiber-optic connectors, cable assemblies, and adapters. To ensure good connector performance during actual use, several process parameters related to geometric and optical characteristics of the connector must be thoroughly understood during the manufacturing stage. The experimental design has been used here to see the influence of applied pressure and time on the fiber end geometry as well as optical performance. The mathematical model is also applied to explain the phenomena of the present fiber undercut-reflectance relation. By a proper choice of polishing film grit size and processing conditions, it is possible to obtain fiber connectors with less fiber undercut and better return loss. Influences of film grit size and rubber-pad thickness on the reflectance and the fiber undercut are also presented.

  2. Exploring the imaging properties of thin lenses for cryogenic infrared cameras

    NASA Astrophysics Data System (ADS)

    Druart, Guillaume; Verdet, Sebastien; Guerineau, Nicolas; Magli, Serge; Chambon, Mathieu; Grulois, Tatiana; Matallah, Noura

    2016-05-01

    Designing a cryogenic camera is a good strategy to miniaturize and simplify an infrared camera using a cooled detector. Indeed, the integration of optics inside the cold shield allows to simply athermalize the design, guarantees a cold pupil and releases the constraint on having a high back focal length for small focal length systems. By this way, cameras made of a single lens or two lenses are viable systems with good optical features and a good stability in image correction. However it involves a relatively significant additional optical mass inside the dewar and thus increases the cool down time of the camera. ONERA is currently exploring a minimalist strategy consisting in giving an imaging function to thin optical plates that are found in conventional dewars. By this way, we could make a cryogenic camera that has the same cool down time as a traditional dewar without an imagery function. Two examples will be presented: the first one is a camera using a dual-band infrared detector made of a lens outside the dewar and a lens inside the cold shield, the later having the main optical power of the system. We were able to design a cold plano-convex lens with a thickness lower than 1mm. The second example is an evolution of a former cryogenic camera called SOIE. We replaced the cold meniscus by a plano-convex Fresnel lens with a decrease of the optical thermal mass of 66%. The performances of both cameras will be compared.

  3. Preparation and performance study of a novel liquid scintillator with mixed solvent as the matrix

    NASA Astrophysics Data System (ADS)

    Zheng, Zhanlong; Zhu, Jiayi; Luo, Xuan; Xu, Yewei; Zhang, Qianfeng; Zhang, Xing; Bi, Yutie; Zhang, Lin

    2017-04-01

    A novel liquid scintillator with the mixed solvent as the matrix was prepared for obtaining a good comprehensive performance. In this ternary liquid scintillator, the combination of 20% pseudocumene (PC) and 80% linear-alkyl benzene (LAB) by volume was chosen as the mixed solvent, and 2,5-diphenyloxazole (PPO) and 1,4-bis(2-Methylstyryl) benzene (bis-MSB) were as the primary fluor and wavelength shifter, respectively. The optimum prescription was obtained with regard to the light yield. Some characterizations based on the optimal formulation were conducted. The fluorescence emission spectra and wavelength-dependent optical attenuation length of the sample were measured by the fluorescence spectrophotometer and an UV-Vis spectrometer, respectively. The light yield was characterized by adopting the home-made optical platform device. The decay time was tested by adopting the time-correlated single photon counting (TCSPC) technique featured in high dynamic range of several orders of magnitude in light intensity. The experimental test results showed that the sample had a fairly good comprehensive performance.

  4. Multispectral optical telescope alignment testing for a cryogenic space environment

    NASA Astrophysics Data System (ADS)

    Newswander, Trent; Hooser, Preston; Champagne, James

    2016-09-01

    Multispectral space telescopes with visible to long wave infrared spectral bands provide difficult alignment challenges. The visible channels require precision in alignment and stability to provide good image quality in short wavelengths. This is most often accomplished by choosing materials with near zero thermal expansion glass or ceramic mirrors metered with carbon fiber reinforced polymer (CFRP) that are designed to have a matching thermal expansion. The IR channels are less sensitive to alignment but they often require cryogenic cooling for improved sensitivity with the reduced radiometric background. Finding efficient solutions to this difficult problem of maintaining good visible image quality at cryogenic temperatures has been explored with the building and testing of a telescope simulator. The telescope simulator is an onaxis ZERODUR® mirror, CFRP metered set of optics. Testing has been completed to accurately measure telescope optical element alignment and mirror figure changes in a cryogenic space simulated environment. Measured alignment error and mirror figure error test results are reported with a discussion of their impact on system optical performance.

  5. Optical performance of multifocal soft contact lenses via a single-pass method.

    PubMed

    Bakaraju, Ravi C; Ehrmann, Klaus; Falk, Darrin; Ho, Arthur; Papas, Eric

    2012-08-01

    A physical model eye capable of carrying soft contact lenses (CLs) was used as a platform to evaluate optical performance of several commercial multifocals (MFCLs) with high- and low-add powers and a single-vision control. Optical performance was evaluated at three pupil sizes, six target vergences, and five CL-correcting positions using a spatially filtered monochromatic (632.8 nm) light source. The various target vergences were achieved by using negative trial lenses. A photosensor in the retinal plane recorded the image point-spread that enabled the computation of visual Strehl ratios. The centration of CLs was monitored by an additional integrated en face camera. Hydration of the correcting lens was maintained using a humidity chamber and repeated instillations of rewetting saline drops. All the MFCLs reduced performance for distance but considerably improved performance along the range of distance to near target vergences, relative to the single-vision CL. Performance was dependent on add power, design, pupil, and centration of the correcting CLs. Proclear (D) design produced good performance for intermediate vision, whereas Proclear (N) design performed well at near vision (p < 0.05). AirOptix design exhibited good performance for distance and intermediate vision. PureVision design showed improved performance across the test vergences, but only for pupils ≥4 mm in diameter. Performance of Acuvue bifocal was comparable with other MFCLs, but only for pupils >4 mm in diameter. Acuvue Oasys bifocal produced performance comparable with single-vision CL for most vergences. Direct measurement of single-pass images at the retinal plane of a physical model eye used in conjunction with various MFCLs is demonstrated. This method may have utility in evaluating the relative effectiveness of commercial and prototype designs.

  6. 20-Gbps optical LiFi transport system.

    PubMed

    Ying, Cheng-Ling; Lu, Hai-Han; Li, Chung-Yi; Cheng, Chun-Jen; Peng, Peng-Chun; Ho, Wen-Jeng

    2015-07-15

    A 20-Gbps optical light-based WiFi (LiFi) transport system employing vertical-cavity surface-emitting laser (VCSEL) and external light injection technique with 16-quadrature amplitude modulation (QAM)-orthogonal frequency-division multiplexing (OFDM) modulating signal is proposed. Good bit error rate (BER) performance and clear constellation map are achieved in our proposed optical LiFi transport systems. An optical LiFi transport system, delivering 16-QAM-OFDM signal over a 6-m free-space link, with a data rate of 20 Gbps, is successfully demonstrated. Such a 20-Gbps optical LiFi transport system provides the advantage of a free-space communication link for high data rates, which can accelerate the visible laser light communication (VLLC) deployment.

  7. Theoretical and experimental investigations of optical, structural and electronic properties of the lower-dimensional hybrid [NH3-(CH2)10-NH3]ZnCl4

    NASA Astrophysics Data System (ADS)

    El Mrabet, R.; Kassou, S.; Tahiri, O.; Belaaraj, A.; Guionneau, P.

    2016-10-01

    In the current study, a combination between theoretical and experimental studies has been made for the hybrid perovskite [NH3-(CH2)10-NH3]ZnCl4. The density functional theory (DFT) was performed to investigate structural and electronic properties of the tilted compound. A local approximation (LDA) and semi-local approach (GGA) were employed. The results are obtained using, respectively, the local exchange correlation functional of Perdew-Wang 92 (PW92) and semi local functional of Perdew-Burke-Ernzerhof (PBE). The optimized cell parameters are in good agreement with the experimental results. Electronic properties have been studied through the calculation of band structures and density of state (DOS), while structural properties are investigated by geometry optimization of the cell. Fritz-Haber-Institute (FHI) pseudopotentials were employed to perform all calculations. The optical diffuse reflectance spectra was mesured and applied to deduce the refractive index ( n), the extinction coefficient ( k), the absorption coefficient (α), the real and imaginary dielectric permittivity parts (ɛr,ɛi)) and the optical band gap energy Eg. The optical band gap energy value shows good consistent with that obtained from DFT calculations and reveals the insulating behavior of the material.

  8. Polymer optical fiber tapering using hot water

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Ujihara, Hiroki; Lee, Heeyoung; Hayashi, Neisei; Nakamura, Kentaro

    2017-06-01

    We perform a pilot trial of highly convenient taper fabrication for polymer optical fibers (POFs) using hot water. A ∼380-mm-long POF taper is successfully fabricated, and its ∼150-mm-long waist has a uniform outer diameter of ∼230 µm. The shape is in good agreement with the theoretical prediction. The optical loss dependence on the strain applied to the waist shows an interesting behavior exhibiting three regimes, the origins of which are inferred by microscopic observations. We then discuss the controllability of the taper length.

  9. Characterization of a long-focal-length polycapillary optic for high-energy x-rays

    NASA Astrophysics Data System (ADS)

    Cari, Padiyar; Suparmi, -; Padiyar, Sushil D.; Gibson, Walter M.; MacDonald, Carolyn A.; Alexander, Cheryl D.; Joy, Marshall K.; Russell, Christine H.; Chen, Zewu

    2000-11-01

    Polycapillary fibers and a prototype collector for high energy x rays with a 2 m focal length have been fabricated and characterized. Measurements of a prototype collector, performed in collimating mode, show that the optic has high transmission, good uniformity, and small exit divergence. The transmission as a function of energy was analyzed using an extended single fiber geometrical optic simulation and the result shows that the simulation fits the data fairly well. Scatter transmission and contrast enhancement were measured in focusing mode using a parallel beam input.

  10. Reflection-induced linear polarization rotation and phase modulation between orthogonal waves for refractive index variation measurement.

    PubMed

    Twu, Ruey-Ching; Wang, Jhao-Sheng

    2016-04-01

    An optical phase interrogation is proposed to study reflection-induced linear polarization rotation in a common-path homodyne interferometer. This optical methodology can also be applied to the measurement of the refractive index variation of a liquid solution. The performance of the refractive index sensing structure is discussed theoretically, and the experimental results demonstrated a very good ability based on the proposed schemes. Compared with a conventional common-path heterodyne interferometer, the proposed homodyne interferometer with only a single channel reduced the usage of optic elements.

  11. Determination of LEDs degradation with entropy generation rate

    NASA Astrophysics Data System (ADS)

    Cuadras, Angel; Yao, Jiaqiang; Quilez, Marcos

    2017-10-01

    We propose a method to assess the degradation and aging of light emitting diodes (LEDs) based on irreversible entropy generation rate. We degraded several LEDs and monitored their entropy generation rate ( S ˙ ) in accelerated tests. We compared the thermoelectrical results with the optical light emission evolution during degradation. We find a good relationship between aging and S ˙ (t), because S ˙ is both related to device parameters and optical performance. We propose a threshold of S ˙ (t) as a reliable damage indicator of LED end-of-life that can avoid the need to perform optical measurements to assess optical aging. The method lays beyond the typical statistical laws for lifetime prediction provided by manufacturers. We tested different LED colors and electrical stresses to validate the electrical LED model and we analyzed the degradation mechanisms of the devices.

  12. Sol-Gel Material-Enabled Electro-Optic Polymer Modulators

    PubMed Central

    Himmelhuber, Roland; Norwood, Robert A.; Enami, Yasufumi; Peyghambarian, Nasser

    2015-01-01

    Sol-gels are an important material class, as they provide easy modification of material properties, good processability and are easy to synthesize. In general, an electro-optic (EO) modulator transforms an electrical signal into an optical signal. The incoming electrical signal is most commonly information encoded in a voltage change. This voltage change is then transformed into either a phase change or an intensity change in the light signal. The less voltage needed to drive the modulator and the lower the optical loss, the higher the link gain and, therefore, the better the performance of the modulator. In this review, we will show how sol-gels can be used to enhance the performance of electro-optic modulators by allowing for designs with low optical loss, increased poling efficiency and manipulation of the electric field used for driving the modulator. The optical loss is influenced by the propagation loss in the device, as well as the losses occurring during fiber coupling in and out of the device. In both cases, the use of sol-gel materials can be beneficial due to the wide range of available refractive indices and low optical attenuation. The influence of material properties and synthesis conditions on the device performance will be discussed. PMID:26225971

  13. [Estimation of the quality of life 8-year-old child with bilateral anophthalmia].

    PubMed

    Sredzińska-Kita, Dorota; Mrugacz, Małgorzata; Bakunowicz-Łazarczyk, Alina

    2009-01-01

    The main aim of our work was to estimate the physical and psychomotor development and the arrangement to the daily life for a 8-year-old girl with inborn bilateral anophthalmia. The basic ophthalmic, pediatric and neurological examinations were performed with additional genetic and radiological examinations. The ophthalmic and MRI examination find out the absence of the eyeballs, optic nerves, optic chiasm, optic tracts and optic radiation. Anophthalmia limits in a big grade an independent life of the child. However, currently the girl's development indicates for good intellectual abilities what is promising for future independent life and professional work.

  14. CLASSICAL AREAS OF PHENOMENOLOGY: Correcting dynamic residual aberrations of conformal optical systems using AO technology

    NASA Astrophysics Data System (ADS)

    Li, Yan; Li, Lin; Huang, Yi-Fan; Du, Bao-Lin

    2009-07-01

    This paper analyses the dynamic residual aberrations of a conformal optical system and introduces adaptive optics (AO) correction technology to this system. The image sharpening AO system is chosen as the correction scheme. Communication between MATLAB and Code V is established via ActiveX technique in computer simulation. The SPGD algorithm is operated at seven zoom positions to calculate the optimized surface shape of the deformable mirror. After comparison of performance of the corrected system with the baseline system, AO technology is proved to be a good way of correcting the dynamic residual aberration in conformal optical design.

  15. Cardinality enhancement utilizing Sequential Algorithm (SeQ) code in OCDMA system

    NASA Astrophysics Data System (ADS)

    Fazlina, C. A. S.; Rashidi, C. B. M.; Rahman, A. K.; Aljunid, S. A.

    2017-11-01

    Optical Code Division Multiple Access (OCDMA) has been important with increasing demand for high capacity and speed for communication in optical networks because of OCDMA technique high efficiency that can be achieved, hence fibre bandwidth is fully used. In this paper we will focus on Sequential Algorithm (SeQ) code with AND detection technique using Optisystem design tool. The result revealed SeQ code capable to eliminate Multiple Access Interference (MAI) and improve Bit Error Rate (BER), Phase Induced Intensity Noise (PIIN) and orthogonally between users in the system. From the results, SeQ shows good performance of BER and capable to accommodate 190 numbers of simultaneous users contrast with existing code. Thus, SeQ code have enhanced the system about 36% and 111% of FCC and DCS code. In addition, SeQ have good BER performance 10-25 at 155 Mbps in comparison with 622 Mbps, 1 Gbps and 2 Gbps bit rate. From the plot graph, 155 Mbps bit rate is suitable enough speed for FTTH and LAN networks. Resolution can be made based on the superior performance of SeQ code. Thus, these codes will give an opportunity in OCDMA system for better quality of service in an optical access network for future generation's usage

  16. Thin film concentrator panel development

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. K.

    1982-01-01

    The development and testing of a rigid panel concept that utilizes a thin film reflective surface for application to a low-cost point-focusing solar concentrator is discussed. It is shown that a thin film reflective surface is acceptable for use on solar concentrators, including 1500 F applications. Additionally, it is shown that a formed steel sheet substrate is a good choice for concentrator panels. The panel has good optical properties, acceptable forming tolerances, environmentally resistant substrate and stiffeners, and adaptability to low to mass production rates. Computer simulations of the concentrator optics were run using the selected reflector panel design. Experimentally determined values for reflector surface specularity and reflectivity along with dimensional data were used in the analysis. The simulations provided intercept factor and net energy into the aperture as a function of aperture size for different surface errors and pointing errors. Point source and Sun source optical tests were also performed.

  17. Two-dimensional wavelet transform for reliability-guided phase unwrapping in optical fringe pattern analysis.

    PubMed

    Li, Sikun; Wang, Xiangzhao; Su, Xianyu; Tang, Feng

    2012-04-20

    This paper theoretically discusses modulus of two-dimensional (2D) wavelet transform (WT) coefficients, calculated by using two frequently used 2D daughter wavelet definitions, in an optical fringe pattern analysis. The discussion shows that neither is good enough to represent the reliability of the phase data. The differences between the two frequently used 2D daughter wavelet definitions in the performance of 2D WT also are discussed. We propose a new 2D daughter wavelet definition for reliability-guided phase unwrapping of optical fringe pattern. The modulus of the advanced 2D WT coefficients, obtained by using a daughter wavelet under this new daughter wavelet definition, includes not only modulation information but also local frequency information of the deformed fringe pattern. Therefore, it can be treated as a good parameter that represents the reliability of the retrieved phase data. Computer simulation and experimentation show the validity of the proposed method.

  18. Fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes.

    PubMed

    Amaya, N; Irfan, M; Zervas, G; Nejabati, R; Simeonidou, D; Sakaguchi, J; Klaus, W; Puttnam, B J; Miyazawa, T; Awaji, Y; Wada, N; Henning, I

    2013-04-08

    We present the first elastic, space division multiplexing, and multi-granular network based on two 7-core MCF links and four programmable optical nodes able to switch traffic utilising the space, frequency and time dimensions with over 6000-fold bandwidth granularity. Results show good end-to-end performance on all channels with power penalties between 0.75 dB and 3.7 dB.

  19. Generating high-quality single droplets for optical particle characterization with an easy setup

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Ge, Baozhen; Meng, Rui

    2018-06-01

    The high-performance and micro-sized single droplet is significant for optical particle characterization. We develop a single-droplet generator (SDG) based on a piezoelectric inkjet technique with advantages of low cost and easy setup. By optimizing the pulse parameters, we achieve various size single droplets. Further investigations reveal that SDG generates single droplets of high quality, demonstrating good sphericity, monodispersity and a stable length of several millimeters.

  20. Chiral Nucleon-Nucleus Potentials at N3LO

    NASA Astrophysics Data System (ADS)

    Finelli, Paolo; Vorabbi, Matteo; Giusti, Carlotta

    2018-03-01

    Elastic scattering is probably one of the most relevant tools to study nuclear interactions. In this contribution we study the domain of applicability of microscopic two-body chiral potentials in the construction of an optical potential. A microscopic complex optical potential is derived and tested performing calculations on 16O at different energies. Good agreement with empirical data is obtained if a Lippmann-Schwinger cutoff at relatively high energies (above 500 MeV) is employed.

  1. Theoretical model for design and analysis of protectional eyewear.

    PubMed

    Zelzer, B; Speck, A; Langenbucher, A; Eppig, T

    2013-05-01

    Protectional eyewear has to fulfill both mechanical and optical stress tests. To pass those optical tests the surfaces of safety spectacles have to be optimized to minimize optical aberrations. Starting with the surface data of three measured safety spectacles, a theoretical spectacle model (four spherical surfaces) is recalculated first and then optimized while keeping the front surface unchanged. Next to spherical power, astigmatic power and prism imbalance we used the wavefront error (five different viewing directions) to simulate the optical performance and to optimize the safety spectacle geometries. All surfaces were spherical (maximum global deviation 'peak-to-valley' between the measured surface and the best-fit sphere: 0.132mm). Except the spherical power of the model Axcont (-0.07m(-1)) all simulated optical performance before optimization was better than the limits defined by standards. The optimization reduced the wavefront error by 1% to 0.150 λ (Windor/Infield), by 63% to 0.194 λ (Axcont/Bolle) and by 55% to 0.199 λ (2720/3M) without dropping below the measured thickness. The simulated optical performance of spectacle designs could be improved when using a smart optimization. A good optical design counteracts degradation by parameter variation throughout the manufacturing process. Copyright © 2013. Published by Elsevier GmbH.

  2. An easy packaging hybrid optical element in grating based WDM application

    NASA Astrophysics Data System (ADS)

    Lan, Hsiao-Chin; Cheng, Chao-Chia; Wang, Chih-Ming; Chang, Jenq-Yang

    2005-08-01

    We developed a new optical element which integrates an off-axis diffractive grating and an on-axis refractive lens surface in a prism. With this optical element, the alignment tolerance can be improved by manufacturing technology of the grating based WDM device and is practicable for mass production. An 100-GHz 16-channel DWDM device which includes this optical element has been designed. Ray tracing and beam propagation method (BPM) simulations showed good performance on the insertion loss of 2.91+/-0.53dB and the adjacent cross talk of 58.02dB. The tolerance discussion for this DWDM device shows that this optical element could be practically achieved by either injection molding or the hot embossing method.

  3. Optics design for J-TEXT ECE imaging with field curvature adjustment lens.

    PubMed

    Zhu, Y; Zhao, Z; Liu, W D; Xie, J; Hu, X; Muscatello, C M; Domier, C W; Luhmann, N C; Chen, M; Ren, X; Tobias, B J; Zhuang, G; Yang, Z

    2014-11-01

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas. Of particular importance has been microwave electron cyclotron emission imaging (ECEI) for imaging Te fluctuations. Key to the success of ECEI is a large Gaussian optics system constituting a major portion of the focusing of the microwave radiation from the plasma to the detector array. Both the spatial resolution and observation range are dependent upon the imaging optics system performance. In particular, it is critical that the field curvature on the image plane is reduced to decrease crosstalk between vertical channels. The receiver optics systems for two ECEI on the J-TEXT device have been designed to ameliorate these problems and provide good performance with additional field curvature adjustment lenses with a meniscus shape to correct the aberrations from several spherical surfaces.

  4. Electrospun amplified fiber optics.

    PubMed

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  5. One-shot calculation of temperature-dependent optical spectra and phonon-induced band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Zacharias, Marios; Giustino, Feliciano

    Electron-phonon interactions are of fundamental importance in the study of the optical properties of solids at finite temperatures. Here we present a new first-principles computational technique based on the Williams-Lax theory for performing predictive calculations of the optical spectra, including quantum zero-point renormalization and indirect absorption. The calculation of the Williams-Lax optical spectra is computationally challenging, as it involves the sampling over all possible nuclear quantum states. We develop an efficient computational strategy for performing ''one-shot'' finite-temperature calculations. These require only a single optimal configuration of the atomic positions. We demonstrate our methodology for the case of Si, C, and GaAs, yielding absorption coefficients in good agreement with experiment. This work opens the way for systematic calculations of optical spectra at finite temperature. This work was supported by the UK EPSRC (EP/J009857/1 and EP/M020517/) and the Leverhulme Trust (RL-2012-001), and the Graphene Flagship (EU-FP7-604391).

  6. Effect of annealing over optoelectronic properties of graphene based transparent electrodes

    NASA Astrophysics Data System (ADS)

    Yadav, Shriniwas; Kaur, Inderpreet

    2016-04-01

    Graphene, an atom-thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σdc/σopt) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.

  7. Experimental multiplexing of quantum key distribution with classical optical communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liu-Jun; Chen, Luo-Kan; Ju, Lei

    2015-02-23

    We demonstrate the realization of quantum key distribution (QKD) when combined with classical optical communication, and synchronous signals within a single optical fiber. In the experiment, the classical communication sources use Fabry-Pérot (FP) lasers, which are implemented extensively in optical access networks. To perform QKD, multistage band-stop filtering techniques are developed, and a wavelength-division multiplexing scheme is designed for the multi-longitudinal-mode FP lasers. We have managed to maintain sufficient isolation among the quantum channel, the synchronous channel and the classical channels to guarantee good QKD performance. Finally, the quantum bit error rate remains below a level of 2% across themore » entire practical application range. The proposed multiplexing scheme can ensure low classical light loss, and enables QKD over fiber lengths of up to 45 km simultaneously when the fibers are populated with bidirectional FP laser communications. Our demonstration paves the way for application of QKD to current optical access networks, where FP lasers are widely used by the end users.« less

  8. Sensitivity and specificity of monochromatic photography of the ocular fundus in differentiating optic nerve head drusen and optic disc oedema: optic disc drusen and oedema.

    PubMed

    Gili, Pablo; Flores-Rodríguez, Patricia; Yangüela, Julio; Orduña-Azcona, Javier; Martín-Ríos, María Dolores

    2013-03-01

    Evaluation of the efficacy of monochromatic photography of the ocular fundus in differentiating optic nerve head drusen (ONHD) and optic disc oedema (ODE). Sixty-six patients with ONHD, 31 patients with ODE and 70 healthy subjects were studied. Colour and monochromatic fundus photography with different filters (green, red and autofluorescence) were performed. The results were analysed blindly by two observers. The sensitivity, specificity and interobserver agreement (k) of each test were assessed. Colour photography offers 65.5 % sensitivity and 100 % specificity for the diagnosis of ONHD. Monochromatic photography improves sensitivity and specificity and provides similar results: green filter (71.20 % sensitivity, 96.70 % specificity), red filter (80.30 % sensitivity, 96.80 % specificity), and autofluorescence technique (87.8 % sensitivity, 100 % specificity). The interobserver agreement was good with all techniques used: autofluorescence (k = 0.957), green filter (k = 0.897), red filter (k = 0.818) and colour (k = 0.809). Monochromatic fundus photography permits ONHD and ODE to be differentiated, with good sensitivity and very high specificity. The best results were obtained with autofluorescence and red filter study.

  9. Fibre optic gyroscopes for space use

    NASA Astrophysics Data System (ADS)

    Faussot, Nicolas; Cottreau, Yann; Hardy, Guillaume; Simonpietri, Pascal; Gaiffe, Thierry

    2017-11-01

    Among the technologies available for gyroscopes usable in space, the Fibre Optic Gyroscope (FOG) technology appears to be the most suitable: no moving parts, very good lifetime, low power consumption, very low random walk, arbitrarily low angular resolution and very good behaviour in radiations and vacuum. Benefiting from more than ten years of experience with this technology, Ixsea (formerly the Navigation Division of Photonetics) is developing space FOG under both CNES and ESA contracts since many years. In the 1996-1998 period, two space FOG demonstrators in the 0,01°/h class were manufactured, including an optical head (optic and optoelectronic part) designed for space use and a standard ground electronics. Beyond the demonstration of the specified FOG performances, the behaviour of the optical head has been validated for use in typical space environment: vibrations, shocks, radiations (up to 50 krad) and thermal vacuum. Since the beginning of 1999, Ixsea is developing a space electronics in order to manufacture two complete space FOG. The first one entered in qualification in October. The second one will be delivered beginning of next year, it will be used in a CNES attitude measurement experiment (MAGI) onboard the FrenchBrazilian Microsatellite (FBM) partly dedicated to technology evaluation.

  10. Planar junctionless phototransistor: A potential high-performance and low-cost device for optical-communications

    NASA Astrophysics Data System (ADS)

    Ferhati, H.; Djeffal, F.

    2017-12-01

    In this paper, a new junctionless optical controlled field effect transistor (JL-OCFET) and its comprehensive theoretical model is proposed to achieve high optical performance and low cost fabrication process. Exhaustive study of the device characteristics and comparison between the proposed junctionless design and the conventional inversion mode structure (IM-OCFET) for similar dimensions are performed. Our investigation reveals that the proposed design exhibits an outstanding capability to be an alternative to the IM-OCFET due to the high performance and the weak signal detection benefit offered by this design. Moreover, the developed analytical expressions are exploited to formulate the objective functions to optimize the device performance using Genetic Algorithms (GAs) approach. The optimized JL-OCFET not only demonstrates good performance in terms of derived drain current and responsivity, but also exhibits superior signal to noise ratio, low power consumption, high-sensitivity, high ION/IOFF ratio and high-detectivity as compared to the conventional IM-OCFET counterpart. These characteristics make the optimized JL-OCFET potentially suitable for developing low cost and ultrasensitive photodetectors for high-performance and low cost inter-chips data communication applications.

  11. Performance of optical biosensor using alcohol oxidase enzyme for formaldehyde detection

    NASA Astrophysics Data System (ADS)

    Sari, A. P.; Rachim, A.; Nurlely, Fauzia, V.

    2017-07-01

    The recent issue in the world is the long exposure of formaldehyde which is can increase the risk of human health, therefore, that is very important to develop a device and method that can be optimized to detect the formaldehyde elements accurately, have a long lifetime and can be fabricated and produced in large quantities. A new and simple prepared optical biosensor for detection of formaldehyde in aqueous solutions using alcohol oxidase (AOX) enzyme was successfully fabricated. The poly-n-butyl acrylic-co-N-acryloxysuccinimide (nBA-NAS) membranes containing chromoionophore ETH5294 were used for immobilization of alcohol oxidase enzyme (AOX). Biosensor response was based on the colour change of chromoionophore as a result of enzymatic oxidation of formaldehyde and correlated with the detection concentration of formaldehyde. The performance of biosensor parameters were measured through the optical absorption value using UV-Vis spectrophotometer including the repeatability, reproducibility, selectivity and lifetime. The results showed that the prepared biosensor has good repeatability (RSD = 1.9 %) and good reproducibility (RSD = 2.1 %). The biosensor was selective formaldehyde with no disturbance by methanol, ethanol, and acetaldehyde, and also stable before 49 days and decrease by 41.77 % after 49 days.

  12. Coupled thermo-elastic and optical performance analyses of a reflective baffle for the BepiColombo laser altimeter (BELA) receiver

    NASA Astrophysics Data System (ADS)

    Heesel, E.; Weigel, T.; Lochmatter, P.; Rugi Grond, E.

    2017-11-01

    For the BepiColombo mission, the extreme thermal environment around Mercury requires good heat shields for the instruments. The BepiColombo Laser altimeter (BELA) Receiver will be equipped with a specular reflective baffle in order to limit the solar power impact. The design uses a Stavroudis geometry with alternating elliptical and hyperbolic vanes to reflect radiation at angles >38° back into space. The thermal loads on the baffle lead to deformations, and the resulting changes in the optical performance can be modeled by ray-tracing. Conventional interfaces, such as Zernike surface fitting, fail to provide a proper import of the mechanical distortions into optical models. We have studied alternative models such as free form surface representations and compared them to a simple modeling approach with straight segments. The performance merit is presented in terms of the power rejection ratio and the absence of specular stray-light.

  13. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection

    NASA Astrophysics Data System (ADS)

    Yao, B. C.; Wu, Y.; Yu, C. B.; He, J. R.; Rao, Y. J.; Gong, Y.; Fu, F.; Chen, Y. F.; Li, Y. R.

    2016-03-01

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel ‘FRET on Fiber’ concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based ‘FRET on fiber’ configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated ‘FRET on Fiber’ sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response

  14. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection

    PubMed Central

    Yao, B. C.; Wu, Y.; Yu, C. B.; He, J. R.; Rao, Y. J.; Gong, Y.; Fu, F.; Chen, Y. F.; Li, Y. R.

    2016-01-01

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel ‘FRET on Fiber’ concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based ‘FRET on fiber’ configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated ‘FRET on Fiber’ sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response PMID:27010752

  15. Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation.

    PubMed

    Calafiore, Giuseppe; Koshelev, Alexander; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-09-16

    Integration of complex photonic structures onto optical fiber facets enables powerful platforms with unprecedented optical functionalities. Conventional nanofabrication technologies, however, do not permit viable integration of complex photonic devices onto optical fibers owing to their low throughput and high cost. In this paper we report the fabrication of a three-dimensional structure achieved by direct nanoimprint lithography on the facet of an optical fiber. Nanoimprint processes and tools were specifically developed to enable a high lithographic accuracy and coaxial alignment of the optical device with respect to the fiber core. To demonstrate the capability of this new approach, a 3D beam splitter has been designed, imprinted and optically characterized. Scanning electron microscopy and optical measurements confirmed the good lithographic capabilities of the proposed approach as well as the desired optical performance of the imprinted structure. The inexpensive solution presented here should enable advancements in areas such as integrated optics and sensing, achieving enhanced portability and versatility of fiber optic components.

  16. Pathogen detection using evanescent-wave fiber optic biosensor

    NASA Astrophysics Data System (ADS)

    Ferreira, Aldo P.; Werneck, Marcelo M.; Ribeiro, R. M.; Lins, U. G.

    1999-07-01

    This paper describes a real time optical biosensor that utilizes the evanescent field technique for monitoring microorganisms in hospital environment. The biosensor monitors interactions between the analytic (bacteria) and the evanescent field of an optical fiber passing through the culture media where the bacteria grows. The objective is to monitor atmospheres in hospital areas for the Staphylococcus aureus and Streptococcus pneumonia. The results lead us the conclusion that this kind of sensor presents quick response, good performance, easy of construction and low cost. We expect that the sensor will be of great help in controlling the hospital environment.

  17. Very high repetition-rate electro-optical cavity-dumped Nd: YVO4 laser with optics and dynamics stabilities

    NASA Astrophysics Data System (ADS)

    Liu, Xuesong; Shi, Zhaohui; Huang, Yutao; Fan, Zhongwei; Yu, Jin; Zhang, Jing; Hou, Liqun

    2015-02-01

    In this paper, a very high repetition-rate, short-pulse, electro-optical cavity-dumped Nd: YVO4 laser is experimentally and theoretically investigated. The laser performance is optimized from two aspects. Firstly, the laser resonator is designed for a good thermal stability under large pump power fluctuation through optics methods. Secondly, dynamics simulation as well as experiments verifies that cavity dumping at very high repetition rate has better stability than medium/high repetition rate. At 30 W, 880 nm pump power, up to 500 kHz, constant 5 ns, stable 1064 nm fundamental-mode laser pulses can be obtained with 10 W average output power.

  18. A Fresnel zone plate collimator: potential and aberrations

    NASA Astrophysics Data System (ADS)

    Menz, Benedikt; Bräuninger, Heinrich; Burwitz, Vadim; Hartner, Gisela; Predehl, Peter

    2015-09-01

    A collimator, that parallelizes an X-ray beam, provides a significant improvement of the metrology to characterize X-ray optics for space instruments at MPE's PANTER X-ray test facility. A Fresnel zone plate was selected as a collimating optic, as it meets a good angular resolution < 0.1n combined with a large active area > 10 cm2. Such an optic is ideally suited to illuminate Silicon Pore Optic (SPO) modules as proposed for ATHENA. This paper provides the theoretic description of such a Fresnel zone plate especially considering resolution and efficiency. Based on the theoretic results the collimator setup performance is analyzed and requirements for fabrication and alignment are calculated.

  19. Fiber optic, Fabry-Perot high temperature sensor

    NASA Technical Reports Server (NTRS)

    James, K.; Quick, B.

    1984-01-01

    A digital, fiber optic temperature sensor using a variable Fabry-Perot cavity as the sensor element was analyzed, designed, fabricated, and tested. The fiber transmitted cavity reflection spectra is dispersed then converted from an optical signal to electrical information by a charged coupled device (CCD). A microprocessor-based color demodulation system converts the wavelength information to temperature. This general sensor concept not only utilizes an all-optical means of parameter sensing and transmitting, but also exploits microprocessor technology for automated control, calibration, and enhanced performance. The complete temperature sensor system was evaluated in the laboratory. Results show that the Fabry-Perot temperature sensor has good resolution (0.5% of full seale), high accuracy, and potential high temperature ( 1000 C) applications.

  20. Utilization of optical emission endpoint in photomask dry etch processing

    NASA Astrophysics Data System (ADS)

    Faure, Thomas B.; Huynh, Cuc; Lercel, Michael J.; Smith, Adam; Wagner, Thomas

    2002-03-01

    Use of accurate and repeatable endpoint detection during dry etch processing of photomask is very important for obtaining good mask mean-to-target and CD uniformity performance. It was found that the typical laser reflectivity endpoint detecting system used on photomask dry etch systems had several key limitations that caused unnecessary scrap and non-optimum image size performance. Consequently, work to develop and implement use of a more robust optical emission endpoint detection system for chrome dry etch processing of photomask was performed. Initial feasibility studies showed that the emission technique was sensitive enough to monitor pattern loadings on contact and via level masks down to 3 percent pattern coverage. Additional work was performed to further improve this to 1 percent pattern coverage by optimizing the endpoint detection parameters. Comparison studies of mask mean-to-target performance and CD uniformity were performed with the use of optical emission endpoint versus laser endpoint for masks built using TOK IP3600 and ZEP 7000 resist systems. It was found that an improvement in mean-to-target performance and CD uniformity was realized on several types of production masks. In addition, part-to-part endpoint time repeatability was found to be significantly improved with the use of optical emission endpoint.

  1. Experimental test of an online ion-optics optimizer

    NASA Astrophysics Data System (ADS)

    Amthor, A. M.; Schillaci, Z. M.; Morrissey, D. J.; Portillo, M.; Schwarz, S.; Steiner, M.; Sumithrarachchi, Ch.

    2018-07-01

    A technique has been developed and tested to automatically adjust multiple electrostatic or magnetic multipoles on an ion optical beam line - according to a defined optimization algorithm - until an optimal tune is found. This approach simplifies the process of determining high-performance optical tunes, satisfying a given set of optical properties, for an ion optical system. The optimization approach is based on the particle swarm method and is entirely model independent, thus the success of the optimization does not depend on the accuracy of an extant ion optical model of the system to be optimized. Initial test runs of a first order optimization of a low-energy (<60 keV) all-electrostatic beamline at the NSCL show reliable convergence of nine quadrupole degrees of freedom to well-performing tunes within a reasonable number of trial solutions, roughly 500, with full beam optimization run times of roughly two hours. Improved tunes were found both for quasi-local optimizations and for quasi-global optimizations, indicating a good ability of the optimizer to find a solution with or without a well defined set of initial multipole settings.

  2. Optical recognition of statistical patterns

    NASA Astrophysics Data System (ADS)

    Lee, S. H.

    1981-12-01

    Optical implementation of the Fukunaga-Koontz transform (FKT) and the Least-Squares Linear Mapping Technique (LSLMT) is described. The FKT is a linear transformation which performs image feature extraction for a two-class image classification problem. The LSLMT performs a transform from large dimensional feature space to small dimensional decision space for separating multiple image classes by maximizing the interclass differences while minimizing the intraclass variations. The FKT and the LSLMT were optically implemented by utilizing a coded phase optical processor. The transform was used for classifying birds and fish. After the F-K basis functions were calculated, those most useful for classification were incorporated into a computer generated hologram. The output of the optical processor, consisting of the squared magnitude of the F-K coefficients, was detected by a T.V. camera, digitized, and fed into a micro-computer for classification. A simple linear classifier based on only two F-K coefficients was able to separate the images into two classes, indicating that the F-K transform had chosen good features. Two advantages of optically implementing the FKT and LSLMT are parallel and real time processing.

  3. Optical recognition of statistical patterns

    NASA Technical Reports Server (NTRS)

    Lee, S. H.

    1981-01-01

    Optical implementation of the Fukunaga-Koontz transform (FKT) and the Least-Squares Linear Mapping Technique (LSLMT) is described. The FKT is a linear transformation which performs image feature extraction for a two-class image classification problem. The LSLMT performs a transform from large dimensional feature space to small dimensional decision space for separating multiple image classes by maximizing the interclass differences while minimizing the intraclass variations. The FKT and the LSLMT were optically implemented by utilizing a coded phase optical processor. The transform was used for classifying birds and fish. After the F-K basis functions were calculated, those most useful for classification were incorporated into a computer generated hologram. The output of the optical processor, consisting of the squared magnitude of the F-K coefficients, was detected by a T.V. camera, digitized, and fed into a micro-computer for classification. A simple linear classifier based on only two F-K coefficients was able to separate the images into two classes, indicating that the F-K transform had chosen good features. Two advantages of optically implementing the FKT and LSLMT are parallel and real time processing.

  4. Improved high-intensity microwave discharge lamp for atomic resonance absorption and fluorescence spectrometry.

    PubMed

    Lifshitz, A; Skinner, G B; Wood, D R

    1978-09-01

    An unusually good combination of high intensity and narrow line has been achieved in a microwave discharge lamp by placing the optical window in the center of the microwave cavity. Construction details and performance characteristics are described.

  5. Electromagnetic backscattering by corner reflectors

    NASA Technical Reports Server (NTRS)

    Balanis, C. A.; Griesser, T.

    1986-01-01

    The Geometrical Theory of Diffraction (GTD), which supplements Geometric Optics (GO), and the Physical Theory of Diffraction (PTD), which supplements Physical Optics (PO), are used to predict the backscatter cross sections of dihedral corner reflectors which have right, obtuse, or acute included angles. These theories allow individual backscattering mechanisms of the dihedral corner reflectors to be identified and provide good agreement with experimental results in the azimuthal plane. The advantages and disadvantages of the geometrical and physical theories are discussed in terms of their accuracy, usefulness, and complexity. Numerous comparisons of analytical results with experimental data are presented. While physical optics alone is more accurate and more useful than geometrical optics alone, the combination of geometrical optics and geometrical diffraction seems to out perform physical optics and physical diffraction when compared with experimental data, especially for acute angle dihedral corner reflectors.

  6. Radiation stability of visible and near-infrared optical and magneto-optical properties of terbium gallium garnet crystals.

    PubMed

    Geist, Brian; Ronningen, Reginald; Stolz, Andreas; Bollen, Georg; Kochergin, Vladimir

    2015-04-01

    Perspectives of terbium gallium garnet, Tb₃Ga₅O₁₂ (TGG), for the use of radiation-resistant high magnetic field sensing are studied. Long-term radiation stability of the TGG crystals was analyzed by comparing the optical and magneto-optical properties of a radiation-exposed TGG crystal (equivalent neutron dose 6.3×10¹³ n/cm²) to the properties of TGG control samples. Simulations were also performed to predict radiation damage mechanisms in the TGG crystal. Radiation-induced increase in the absorbance at shorter wavelengths was observed as well as a reduction in the Faraday effect while no degradation of magneto-optical effect was observed when at wavelengths above 600 nm. This suggests that TGG crystal would be a good candidate for use in magneto-optical radiation-resistant magnetic field sensors.

  7. 1060-nm VCSEL-based parallel-optical modules for optical interconnects

    NASA Astrophysics Data System (ADS)

    Nishimura, N.; Nagashima, K.; Kise, T.; Rizky, A. F.; Uemura, T.; Nekado, Y.; Ishikawa, Y.; Nasu, H.

    2015-03-01

    The capability of mounting a parallel-optical module onto a PCB through solder-reflow process contributes to reduce the number of piece parts, simplify its assembly process, and minimize a foot print for both AOC and on-board applications. We introduce solder-reflow-capable parallel-optical modules employing 1060-nm InGaAs/GaAs VCSEL which leads to the advantages of realizing wider modulation bandwidth, longer transmission distance, and higher reliability. We demonstrate 4-channel parallel optical link performance operated at a bit stream of 28 Gb/s 231-1 PRBS for each channel and transmitted through a 50-μm-core MMF beyond 500 m. We also introduce a new mounting technology of paralleloptical module to realize maintaining good coupling and robust electrical connection during solder-reflow process between an optical module and a polymer-waveguide-embedded PCB.

  8. Full-duplex radio over fiber link with colorless source-free base station based on single sideband optical mm-wave signal with polarization rotated optical carrier

    NASA Astrophysics Data System (ADS)

    Ma, Jianxin

    2016-07-01

    A full-duplex radio-over fiber (RoF) link scheme based on single sideband (SSB) optical millimeter (mm)-wave signal with polarization-rotated optical carrier is proposed to realize the source-free colorless base station (BS), in which a polarization beam splitter (PBS) is used to abstract part of the optical carrier for conveying the uplink data. Since the optical carrier for the uplink does not bear the downlink signal, no cross-talk from the downlink contaminates the uplink signal. The simulation results demonstrate that both down- and up-links maintain good performance. The mm-wave signal distribution network based on the proposed full duplex fiber link scheme can use the uniform source-free colorless BSs, which makes the access system very simpler.

  9. Design of a digital, ultra-broadband electro-optic switch for reconfigurable optical networks-on-chip.

    PubMed

    Van Campenhout, Joris; Green, William M J; Vlasov, Yurii A

    2009-12-21

    We present a novel design for a noise-tolerant, ultra-broadband electro-optic switch, based on a Mach-Zehnder lattice (MZL) interferometer. We analyze the switch performance through rigorous optical simulations, for devices implemented in silicon-on-insulator with carrier-injection-based phase shifters. We show that such a MZL switch can be designed to have a step-like switching response, resulting in improved tolerance to drive-voltage noise and temperature variations as compared to a single-stage Mach-Zehnder switch. Furthermore, we show that degradation in switching crosstalk and insertion loss due to free-carrier absorption can be largely overcome by a MZL switch design. Finally, MZL switches can be designed for having an ultra-wide, temperature-insensitive optical bandwidth of more than 250 nm. The proposed device shows good potential as a broadband optical switch in reconfigurable optical networks-on-chip.

  10. Second-order optical effects in several pyrazolo-quinoline derivatives

    NASA Astrophysics Data System (ADS)

    Makowska-Janusik, M.; Gondek, E.; Kityk, I. V.; Wisła, J.; Sanetra, J.; Danel, A.

    2004-11-01

    Using optical poling of several pyazolo-quinoline (PAQ) derivatives we have found an existence of sufficiently high second order optical susceptibility at wavelength 1.76 μm varying in the range 0.9-2.8 pm/V. The performed quantum chemical simulations of the UV-absorption for isolated, solvated and incorporated into the polymethacrylate (PMMA) polymer films have shown that the PM3 method is the best among the semi-empirical ones to simulate the optical properties. The calculations of the hyperpolarizabilites have shown a good correlation with experimentally measured susceptibilities obtained from the optical poling. We have found that experimental susceptibility depends on linear molecular polarizability and photoinducing changes of the molecular dipole moment. It is clearly seen for the PAQ4-PAQ6 molecules possessing halogen atoms with relatively large polarizabilities.

  11. Performance improvement of long-range surface plasmon structure for use in an all-optical switch

    NASA Astrophysics Data System (ADS)

    Jandaghian, Ali; Lotfalian, Ali; Kouhkan, Mohsen; Mohajerani, Ezeddin

    2017-12-01

    This paper presents important parameters in performance of long-range surface plasmon (LRSP) structure (SF4/PVA/silver/PMMA-DR1) that are improved. We select poly(vinyl alcohol) (PVA) as the first dielectric layer due to its water solubility and good optical properties. The thickness of PVA and silver layers is optimized by transfer matrix method based on Fresnel equations. Surface morphologies of PVA and silver surfaces are analyzed by AFM imaging due to their important role in the performance of an LRSP structure. Furthermore, the sensitivity of an all-optical switch based on plasmon is investigated. In order to compare the sensitivity of LRSP and conventional surface plasmon (SP) structures in switching mode, full wide of half maximum, resonance angles, and pump powers of both structures are measured by a custom-made optical setup based on angular interrogation with a precision of 0.01 deg. Finally, we conclude that for creating equal signal levels in both samples, the required pump power for LRSP structure was about three times less than that for conventional SP; thus, these results led to power savings in optical switches.

  12. High performance architecture design for large scale fibre-optic sensor arrays using distributed EDFAs and hybrid TDM/DWDM

    NASA Astrophysics Data System (ADS)

    Liao, Yi; Austin, Ed; Nash, Philip J.; Kingsley, Stuart A.; Richardson, David J.

    2013-09-01

    A distributed amplified dense wavelength division multiplexing (DWDM) array architecture is presented for interferometric fibre-optic sensor array systems. This architecture employs a distributed erbium-doped fibre amplifier (EDFA) scheme to decrease the array insertion loss, and employs time division multiplexing (TDM) at each wavelength to increase the number of sensors that can be supported. The first experimental demonstration of this system is reported including results which show the potential for multiplexing and interrogating up to 4096 sensors using a single telemetry fibre pair with good system performance. The number can be increased to 8192 by using dual pump sources.

  13. Flexible ultraviolet photodetectors based on ZnO-SnO2 heterojunction nanowire arrays

    NASA Astrophysics Data System (ADS)

    Lou, Zheng; Yang, Xiaoli; Chen, Haoran; Liang, Zhongzhu

    2018-02-01

    A ZnO-SnO2 nanowires (NWs) array, as a metal oxide semiconductor, was successfully synthesized by a near-field electrospinning method for the applications as high performance ultraviolet photodetectors. Ultraviolet photodetectors based on a single nanowire exhibited excellent photoresponse properties to 300 nm ultraviolet light illumination including ultrahigh I on/I off ratios (up to 103), good stability and reproducibility because of the separation between photo-generated electron-hole pairs. Moreover, the NWs array shows an enhanced photosensing performance. Flexible photodetectors on the PI substrates with similar tendency properties were also fabricated. In addition, under various bending curvatures and cycles, the as-fabricated flexible photodetectors revealed mechanical flexibility and good stable electrical properties, showing that they have the potential for applications in future flexible photoelectron devices. Project supported by the National Science Foundation of China (No. 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine and Physics, Chinese Academy of Sciences.

  14. Optical diagnosis of cervical cancer by intrinsic mode functions

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sabyasachi; Pratiher, Sawon; Pratiher, Souvik; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.

    2017-03-01

    In this paper, we make use of the empirical mode decomposition (EMD) to discriminate the cervical cancer tissues from normal ones based on elastic scattering spectroscopy. The phase space has been reconstructed through decomposing the optical signal into a finite set of bandlimited signals known as intrinsic mode functions (IMFs). It has been shown that the area measure of the analytic IMFs provides a good discrimination performance. Simulation results validate the efficacy of the IMFs followed by SVM based classification.

  15. Fiber optic humidity sensor based on the graphene oxide/PVA composite film

    NASA Astrophysics Data System (ADS)

    Wang, Youqing; Shen, Changyu; Lou, Weimin; Shentu, Fengying

    2016-08-01

    Fiber optic humidity sensor based on an in-fiber Mach-Zehnder interferometer (MZI) coated with graphene oxide (GO)/PVA composite film was investigated. The MZI is constructed of two waist-enlarged tapers. The length between two waist-enlarged tapers is 20 mm. By comparing the experiment results of MZI coated with different GO/PVA composite films, composite film formed by the ratio of 0.3 g PVA mixed with 10 ml GO dispersion shows a better performance of relative humidity sensing. By using the molecular structure model of the composited GO/PVA, the operation mechanism between GO/PVA composite film and water molecules was illustrated. The sensitivity of 0.193 dB/%RH with a linear correlation coefficient of 99.1% and good stability under the relative humidity range of 25-80% was obtained. Temperature effect on the proposed fiber optic humidity sensor was also considered and analyzed. According to the repetitive experimental results, the proposed humidity sensor shows a good repeatability.

  16. Growth mechanism and optical properties of aligned hexagonal ZnO nanoprisms synthesized by noncatalytic thermal evaporation.

    PubMed

    Umar, Ahmad; Karunagaran, B; Kim, S H; Suh, E-K; Hahn, Y B

    2008-05-19

    Vertically aligned perfectly hexagonal-shaped ZnO nanoprisms have been grown on a Si(100) substrate via a noncatalytic thermal evaporation process by using metallic zinc powder in the presence of oxygen gas. The as-grown nanoprisms consist of ultra smooth Zn-terminated (0001) facets bounded with the {0110} surfaces. The as-synthesized products are single-crystalline with the wurtzite hexagonal phase and grown along the [0001] direction, as confirmed from the detailed structural investigations. The presence of a sharp and strong nonpolar optical phonon high-E2 mode at 437 cm(-1) in the Raman scattering spectrum further confirms good crystallinity and wurtzite hexagonal phase for the as-grown products. The as-grown nanoprisms exhibit a strong near-band-edge emission with a very weak deep-level emission in the room-temperature and low-temperature photoluminescence measurements, confirming good optical properties for the deposited products. Moreover, systematic time-dependent experiments were also performed to determine the growth process of the grown vertically aligned nanoprisms.

  17. HIGH-k GATE DIELECTRIC: AMORPHOUS Ta/La2O3 FILMS GROWN ON Si AT LOW PRESSURE

    NASA Astrophysics Data System (ADS)

    Bahari, Ali; Khorshidi, Zahra

    2014-09-01

    In the present study, Ta/La2O3 films (La2O3 doped with Ta2O5) as a gate dielectric were prepared using a sol-gel method at low pressure. Ta/La2O3 film has some hopeful properties as a gate dielectric of logic device. The structure and morphology of Ta/La2O3 films were studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrical properties of films were performed using capacitance-voltage (C-V) and current density-voltage (J-V) measurements. The optical bandgap of samples was studied by UV-visible optical absorbance measurement. The optical bandgap, Eopt, is determined from the absorbance spectra. The obtained results show that Ta/La2O3 film as a good gate dielectric has amorphous structure, good thermal stability, high dielectric constant (≈ 25), low leakage current and wide bandgap (≈ 4.7 eV).

  18. Low temperature and UV curable sol-gel coatings for long lasting optical fiber biosensors

    NASA Astrophysics Data System (ADS)

    Otaduy, D.; Villar, A.; Gomez-Herrero, E.; Goitandia, A. M.; Gorritxategi, E.; Quintana, I.

    2010-04-01

    The use of optical fibers as sensing element is increasing in clinical, pharmaceutical and industrial applications. Excellent light delivery, long interaction length, low cost and ability not only to excite the target molecules but also to capture the emitted light from the targets are the hallmarks of optical fiber as biosensors. In biosensors based on fiber optics the interaction with the analyte can occur within an element of the optical fiber. One of the techniques for this kind of biosensors is to remove the fiber optic cladding and substitute it for biological coatings that will interact with the parameter to sensorize. The deposition of these layers can be made by sol-gel technology. The sol-gel technology is being increasingly used mainly due to the high versatility to tailor their optical features. Incorporation of suitable chemical and biochemical sensing agents have allowed determining pH, gases, and biochemical species, among others. Nonetheless, the relatively high processing temperatures and short lifetime values mean severe drawbacks for a successful exploitation of sol-gel based coated optical fibres. With regard to the latter, herein we present the design, preparation and characterization of novel sol-gel coated optical fibres. Low temperature and UV curable coating formulations were optimized to achieve a good adhesion and optical performance. The UV photopolymerizable formulation was comprised by glycidoxypropyltrimethoxysilane (GLYMO), Tetraethylorthosilicate (TEOS) and an initiator. While the thermoset coating was prepared by using 3-aminopropyltrimethoxysilane, GLYMO, and TEOS as main reagents. Both curable sol-gel coated fibres were analysed by FTIR, SEM and optical characterization. Furthermore, in the present work a new technique for silica cladding removal has been developed by ultra-short pulses laser processing, getting good dimensional accuracy and surface integrity.

  19. The effect of laser ablation parameters on optical limiting properties of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Gursoy, Irmak; Yaglioglu, Halime Gul

    2017-09-01

    This paper presents the effect of laser ablation parameters on optical limiting properties of silver nanoparticles. The current applications of lasers such as range finding, guidance, detection, illumination and designation have increased the potential of damaging optical imaging systems or eyes temporary or permanently. The applications of lasers introduce risks for sensors or eyes, when laser power is higher than damage threshold of the detection system. There are some ways to protect these systems such as neutral density (nd) filters, shutters, etc. However, these limiters reduce the total amount of light that gets into the system. Also, response time of these limiters may not be fast enough to prevent damage and cause precipitation in performance due to deprivation of transmission or contrast. Therefore, optical limiting filters are needed that is transparent for low laser intensities and limit or block the high laser intensities. Metal nanoparticles are good candidates for such optical limiting filters for ns pulsed lasers or CW lasers due to their high damage thresholds. In this study we investigated the optical limiting performances of silver nanoparticles produced by laser ablation technique. A high purity silver target immersed in pure water was ablated with a Nd:YAG nanosecond laser at 532 nm. The effect of altering laser power and ablation time on laser ablation efficiency of nanoparticles was investigated experimentally and optimum values were specified. Open aperture Zscan experiment was used to investigate the effect of laser ablation parameters on the optical limiting performances of silver nanoparticles in pure water. It was found that longer ablation time decreases the optical limiting threshold. These results are useful for silver nanoparticles solutions to obtain high performance optical limiters.

  20. Optical/thermal analysis methodology for a space-qualifiable RTP furnace

    NASA Technical Reports Server (NTRS)

    Bugby, D.; Dardarian, S.; Cole, E.

    1993-01-01

    A methodology to predict the coupled optical/thermal performance of a reflective cavity heating system was developed and a laboratory test to verify the method was carried out. The procedure was utilized to design a rapid thermal processing (RTP) furnace for the Robot-Operated Material Processing in Space (ROMPS) Program which is a planned STS HH-G canister experiment involving robotics and material processing in microgravity. The laboratory test employed a tungsten-halogen reflector/lamp to heat thin, p-type silicon wafers. Measurements instrumentation consisted of 5-mil Pt/Pt-Rh thermocouples and an optical pyrometer. The predicted results, utilizing an optical ray-tracing program and a lumped-capacitance thermal analyzer, showed good agreement with the measured data for temperatures exceeding 1300 C.

  1. Strain induced optical properties of BaReO3

    NASA Astrophysics Data System (ADS)

    Kumavat, Sandip R.; Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh

    2018-05-01

    Here, we have performed strain induce optical properties of BaReO3 by using density functional theory (DFT). We noticed that after applying intrinsic and extrinsic strain to the BaReO3, it shows the metallic behavior. We also studied optical properties, which show good activity in the ultraviolet region. The results show that after applying intrinsic and extrinsic strain to BaReO3 the absorption peaks are shifted towards the high UV region of the spectrum. Thus, we concluded that, BaReO3 material with extrinsic strain can be useful for high frequency UV device and optoelectronic devices.

  2. Research of hydroelectric generating set low-frequency vibration monitoring system based on optical fiber sensing

    NASA Astrophysics Data System (ADS)

    Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang

    2017-10-01

    In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.

  3. A Polymer Optical Fiber Fuel Level Sensor: Application to Paramotoring and Powered Paragliding

    PubMed Central

    Montero, David Sánchez; Lallana, Pedro Contreras; Vázquez, Carmen

    2012-01-01

    A low-cost intensity-based polymer optical fiber (POF) sensor for fuel level measurements in paramotoring and powered paragliding is presented, exploiting the advantages of the optical fiber sensing technology. Experimental results demonstrate that the best option can be performed by stripping the fiber at the desired discrete points to measure the fuel level as well as with a gauge-shape fiber bending. The prototype has a good linearity, better than 4% full scale (F.S.), and sensitivity around 0.5 V per bend are obtained. Hysteresis due to residual fluid at the sensing points is found to be less than 9% F.S. PMID:22778637

  4. Improved optical flow motion estimation for digital image stabilization

    NASA Astrophysics Data System (ADS)

    Lai, Lijun; Xu, Zhiyong; Zhang, Xuyao

    2015-11-01

    Optical flow is the instantaneous motion vector at each pixel in the image frame at a time instant. The gradient-based approach for optical flow computation can't work well when the video motion is too large. To alleviate such problem, we incorporate this algorithm into a pyramid multi-resolution coarse-to-fine search strategy. Using pyramid strategy to obtain multi-resolution images; Using iterative relationship from the highest level to the lowest level to obtain inter-frames' affine parameters; Subsequence frames compensate back to the first frame to obtain stabilized sequence. The experiment results demonstrate that the promoted method has good performance in global motion estimation.

  5. Picometre displacement measurements using a differential Fabry-Perot optical interferometer and an x-ray interferometer

    NASA Astrophysics Data System (ADS)

    Çelik, Mehmet; Hamid, Ramiz; Kuetgens, Ulrich; Yacoot, Andrew

    2012-08-01

    X-ray interferometry is emerging as an important tool for dimensional nanometrology both for sub-nanometre measurement and displacement. It has been used to verify the performance of the next generation of displacement measuring optical interferometers within the European Metrology Research Programme project NANOTRACE. Within this project a more detailed set of comparison measurements between the x-ray interferometer and a dual channel Fabry-Perot optical interferometer (DFPI) have been made to demonstrate the capabilities of both instruments for picometre displacement metrology. The results show good agreement between the two instruments, although some minor differences of less than 5 pm have been observed.

  6. Statistical and temporal irradiance fluctuations modeling for a ground-to-geostationary satellite optical link.

    PubMed

    Camboulives, A-R; Velluet, M-T; Poulenard, S; Saint-Antonin, L; Michau, V

    2018-02-01

    An optical communication link performance between the ground and a geostationary satellite can be impaired by scintillation, beam wandering, and beam spreading due to its propagation through atmospheric turbulence. These effects on the link performance can be mitigated by tracking and error correction codes coupled with interleaving. Precise numerical tools capable of describing the irradiance fluctuations statistically and of creating an irradiance time series are needed to characterize the benefits of these techniques and optimize them. The wave optics propagation methods have proven their capability of modeling the effects of atmospheric turbulence on a beam, but these are known to be computationally intensive. We present an analytical-numerical model which provides good results on the probability density functions of irradiance fluctuations as well as a time series with an important saving of time and computational resources.

  7. Colovesical fistula causing an uncommon reason for failure of computed tomography colonography: a case report.

    PubMed

    Neroladaki, Angeliki; Breguet, Romain; Botsikas, Diomidis; Terraz, Sylvain; Becker, Christoph D; Montet, Xavier

    2012-07-23

    Computed tomography colonography, or virtual colonoscopy, is a good alternative to optical colonoscopy. However, suboptimal patient preparation or colon distension may reduce the diagnostic accuracy of this imaging technique. We report the case of an 83-year-old Caucasian woman who presented with a five-month history of pneumaturia and fecaluria and an acute episode of macrohematuria, leading to a high clinical suspicion of a colovesical fistula. The fistula was confirmed by standard contrast-enhanced computed tomography. Optical colonoscopy was performed to exclude the presence of an underlying colonic neoplasm. Since optical colonoscopy was incomplete, computed tomography colonography was performed, but also failed due to inadequate colon distension. The insufflated air directly accumulated within the bladder via the large fistula. Clinicians should consider colovesical fistula as a potential reason for computed tomography colonography failure.

  8. Wavelength-encoded tomography based on optical temporal Fourier transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chi; Wong, Kenneth K. Y., E-mail: kywong@eee.hku.hk

    We propose and demonstrate a technique called wavelength-encoded tomography (WET) for non-invasive optical cross-sectional imaging, particularly beneficial in biological system. The WET utilizes time-lens to perform the optical Fourier transform, and the time-to-wavelength conversion generates a wavelength-encoded image of optical scattering from internal microstructures, analogous to the interferometery-based imaging such as optical coherence tomography. Optical Fourier transform, in principle, comes with twice as good axial resolution over the electrical Fourier transform, and will greatly simplify the digital signal processing after the data acquisition. As a proof-of-principle demonstration, a 150 -μm (ideally 36 μm) resolution is achieved based on a 7.5-nm bandwidth swept-pump,more » using a conventional optical spectrum analyzer. This approach can potentially achieve up to 100-MHz or even higher frame rate with some proven ultrafast spectrum analyzer. We believe that this technique is innovative towards the next-generation ultrafast optical tomographic imaging application.« less

  9. Influence of material and haptic design on the mechanical stability of intraocular lenses by means of finite-element modeling.

    PubMed

    Remón, Laura; Siedlecki, Damian; Cabeza-Gil, Iulen; Calvo, Begoña

    2018-03-01

    Intraocular lenses (IOLs) are used in the cataract treatment for surgical replacement of the opacified crystalline lens. Before being implanted they have to pass the strict quality control to guarantee a good biomechanical stability inside the capsular bag, avoiding the rotation, and to provide a good optical quality. The goal of this study was to investigate the influence of the material and haptic design on the behavior of the IOLs under dynamic compression condition. For this purpose, the strain-stress characteristics of the hydrophobic and hydrophilic materials were estimated experimentally. Next, these data were used as the input for a finite-element model (FEM) to analyze the stability of different IOL haptic designs, according to the procedure described by the ISO standards. Finally, the simulations of the effect of IOL tilt and decentration on the optical performance were performed in an eye model using a ray-tracing software. The results suggest the major importance of the haptic design rather than the material on the postoperative behavior of an IOL. FEM appears to be a powerful tool for numerical studies of the biomechanical properties of IOLs and it allows one to help in the design phase to the manufacturers. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface.

    PubMed

    Liu, Gui-Dong; Zhai, Xiang; Xia, Sheng-Xuan; Lin, Qi; Zhao, Chu-Jun; Wang, Ling-Ling

    2017-10-16

    In this paper, we demonstrate the combination of a dielectric metasurface with a graphene layer to realize a high performance toroidal resonance based optical modulator. The dielectric metasurface consists of two mirrored asymmetric silicon split-ring resonators (ASSRRs) that can support strong toroidal dipolar resonance with narrow line width (~0.77 nm) and high quality (Q)-factor (~1702) and contrast ratio (~100%). Numerical simulation results show that the transmission amplitude of the toroidal dipolar resonance can be efficiently modulated by varying the Fermi energy EF when the graphene layer is integrated with the dielectric metasurface, and a max transmission coefficient difference up to 78% is achieved indicating that the proposed hybrid graphene/dielectric metasurface shows good performance as an optical modulator. The effects of the asymmetry degree of the ASSRRs on the toroidal dipolar resonance are studied and the efficiency of the transmission amplitude modulation of graphene is also investigated. Our results may also provide potential applications in optical filter and bio-chemical sensing.

  11. Evaluation of the platelet counting by Abbott CELL-DYN SAPPHIRE haematology analyser compared with flow cytometry.

    PubMed

    Grimaldi, E; Del Vecchio, L; Scopacasa, F; Lo Pardo, C; Capone, F; Pariante, S; Scalia, G; De Caterina, M

    2009-04-01

    The Abbot Cell-Dyn Sapphire is a new generation haematology analyser. The system uses optical/fluorescence flow cytometry in combination with electronic impedance to produce a full blood count. Optical and impedance are the default methods for platelet counting while automated CD61-immunoplatelet analysis can be run as selectable test. The aim of this study was to determine the platelet count performance of the three counting methods available on the instrument and to compare the results with those provided by Becton Dickinson FACSCalibur flow cytometer used as reference method. A lipid interference experiment was also performed. Linearity, carryover and precision were good, and satisfactory agreement with reference method was found for the impedance, optical and CD61-immunoplatelet analysis, although this latter provided the closest results in comparison with flow cytometry. In the lipid interference experiment, a moderate inaccuracy of optical and immunoplatelet counts was observed starting from a very high lipid value.

  12. Opto-mechanical design and development of a 460mm diffractive transmissive telescope

    NASA Astrophysics Data System (ADS)

    Qi, Bo; Wang, Lihua; Cui, Zhangang; Bian, Jiang; Xiang, Sihua; Ma, Haotong; Fan, Bin

    2018-01-01

    Using lightweight, replicated diffractive optics, we can construct extremely large aperture telescopes in space.The transmissive primary significantly reduces the sensitivities to out of plane motion as compared to reflective systems while reducing the manufacturing time and costs. This paper focuses on the design, fabrication and ground demonstration of a 460mm diffractive transmissive telescope the primary F/# is 6, optical field of view is 0.2° imagine bandwidth is 486nm 656nm.The design method of diffractive optical system was verified, the ability to capture a high-quality image using diffractive telescope collection optics was tested.The results show that the limit resolution is 94lp/mm, the diffractive system has a good imagine performance with broad bandwidths. This technology is particularly promising as a means to achieve extremely large optical primaries from compact, lightweight packages.

  13. Foveated optics

    NASA Astrophysics Data System (ADS)

    Bryant, Kyle R.

    2016-05-01

    Foveated imaging can deliver two different resolutions on a single focal plane, which might inexpensively allow more capability for military systems. The following design study results provide starting examples, lessons learned, and helpful setup equations and pointers to aid the lens designer in any foveated lens design effort. Our goal is to put robust sensor in a small package with no moving parts, but still be able to perform some of the functions of a sensor in a moving gimbal. All of the elegant solutions are out (for various reasons). This study is an attempt to see if lens designs can solve this problem and realize some gains in performance versus cost for airborne sensors. We determined a series of design concepts to simultaneously deliver wide field of view and high foveal resolution without scanning or gimbals. Separate sensors for each field of view are easy and relatively inexpensive, but lead to bulky detectors and electronics. Folding and beam-combining of separate optical channels reduces sensor footprint, but induces image inversions and reduced transmission. Entirely common optics provide good resolution, but cannot provide a significant magnification increase in the foveal region. Offsetting the foveal region from the wide field center may not be physically realizable, but may be required for some applications. The design study revealed good general guidance for foveated optics designs with a cold stop. Key lessons learned involve managing distortion, telecentric imagers, matching image inversions and numerical apertures between channels, reimaging lenses, and creating clean resolution zone splits near internal focal planes.

  14. Performance comparison of a fiber optic communication system based on optical OFDM and an optical OFDM-MIMO with Alamouti code by using numerical simulations

    NASA Astrophysics Data System (ADS)

    Serpa-Imbett, C. M.; Marín-Alfonso, J.; Gómez-Santamaría, C.; Betancur-Agudelo, L.; Amaya-Fernández, F.

    2013-12-01

    Space division multiplexing in multicore fibers is one of the most promise technologies in order to support transmissions of next-generation peta-to-exaflop-scale supercomputers and mega data centers, owing to advantages in terms of costs and space saving of the new optical fibers with multiple cores. Additionally, multicore fibers allow photonic signal processing in optical communication systems, taking advantage of the mode coupling phenomena. In this work, we numerically have simulated an optical MIMO-OFDM (multiple-input multiple-output orthogonal frequency division multiplexing) by using the coded Alamouti to be transmitted through a twin-core fiber with low coupling. Furthermore, an optical OFDM is transmitted through a core of a singlemode fiber, using pilot-aided channel estimation. We compare the transmission performance in the twin-core fiber and in the singlemode fiber taking into account numerical results of the bit-error rate, considering linear propagation, and Gaussian noise through an optical fiber link. We carry out an optical fiber transmission of OFDM frames using 8 PSK and 16 QAM, with bit rates values of 130 Gb/s and 170 Gb/s, respectively. We obtain a penalty around 4 dB for the 8 PSK transmissions, after 100 km of linear fiber optic propagation for both singlemode and twin core fiber. We obtain a penalty around 6 dB for the 16 QAM transmissions, with linear propagation after 100 km of optical fiber. The transmission in a two-core fiber by using Alamouti coded OFDM-MIMO exhibits a better performance, offering a good alternative in the mitigation of fiber impairments, allowing to expand Alamouti coded in multichannel systems spatially multiplexed in multicore fibers.

  15. Radio-over-fiber system with octuple frequency optical millimeter-wave signal generation using dual-parallel Mach-Zehnder modulator based on four-wave mixing in semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Zhou, Hui; Zeng, Yuting; Chen, Ming; Shen, Yunlong

    2018-03-01

    We have proposed a scheme of radio-over-fiber (RoF) system employing a dual-parallel Mach-Zehnder modulator (DP-MZM) based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA). In this scheme, the pump and the signal are generated by properly adjusting the direct current bias, modulation index of the DP-MZM, and the phase difference between the sub-MZMs. Because of the pump and the signal deriving from the same optical wave, the polarization states of the two lightwaves are copolarized. The single-pump FWM is polarization insensitive. After FWM and optical filtering, the optical millimeter-wave with octuple frequency is generated. About 40-GHz RoF system with a 2.5-Gbit / s signal is implemented by numerical simulation; the result shows that it has a good performance after the signal is transmitted over 40-km single-mode fiber. Then, the effects of the SOA's injection current and the carrier-to-sideband ratio on the system performance are discussed by simulation, and the optimum value for the system is obtained.

  16. Method to adjust multilayer film stress induced deformation of optics

    DOEpatents

    Spiller, Eberhard A.; Mirkarimi, Paul B.; Montcalm, Claude; Bajt, Sasa; Folta, James A.

    2000-01-01

    Stress compensating systems that reduces/compensates stress in a multilayer without loss in reflectivity, while reducing total film thickness compared to the earlier buffer-layer approach. The stress free multilayer systems contain multilayer systems with two different material combinations of opposite stress, where both systems give good reflectivity at the design wavelengths. The main advantage of the multilayer system design is that stress reduction does not require the deposition of any additional layers, as in the buffer layer approach. If the optical performance of the two systems at the design wavelength differ, the system with the poorer performance is deposited first, and then the system with better performance last, thus forming the top of the multilayer system. The components for the stress reducing layer are chosen among materials that have opposite stress to that of the preferred multilayer reflecting stack and simultaneously have optical constants that allow one to get good reflectivity at the design wavelength. For a wavelength of 13.4 nm, the wavelength presently used for extreme ultraviolet (EUV) lithography, Si and Be have practically the same optical constants, but the Mo/Si multilayer has opposite stress than the Mo/Be multilayer. Multilayer systems of these materials have practically identical reflectivity curves. For example, stress free multilayers can be formed on a substrate using Mo/Be multilayers in the bottom of the stack and Mo/Si multilayers at the top of the stack, with the switch-over point selected to obtain zero stress. In this multilayer system, the switch-over point is at about the half point of the total thickness of the stack, and for the Mo/Be--Mo/Si system, there may be 25 deposition periods Mo/Be to 20 deposition periods Mo/Si.

  17. Slanted-edge MTF testing for establishing focus alignment at infinite conjugate of space optical systems with gravity sag effects

    NASA Astrophysics Data System (ADS)

    Newswander, T.; Riesland, David W.; Miles, Duane; Reinhart, Lennon

    2017-09-01

    For space optical systems that image extended scenes such as earth-viewing systems, modulation transfer function (MTF) test data is directly applicable to system optical resolution. For many missions, it is the most direct metric for establishing the best focus of the instrument. Additionally, MTF test products can be combined to predict overall imaging performance. For fixed focus instruments, finding the best focus during ground testing is critical to achieving good imaging performance. The ground testing should account for the full-imaging system, operational parameters, and operational environment. Testing the full-imaging system removes uncertainty caused by breaking configurations and the combination of multiple subassembly test results. For earth viewing, the imaging system needs to be tested at infinite conjugate. Operational environment test conditions should include temperature and vacuum. Optical MTF testing in the presence of operational vibration and gravity release is less straightforward and may not be possible on the ground. Gravity effects are mitigated by testing in multiple orientations. Many space telescope systems are designed and built to have optimum performance in a gravity-free environment. These systems can have imaging performance that is dominated by aberration including astigmatism. This paper discusses how the slanted edge MTF test is applied to determine the best focus of a space optical telescope in ground testing accounting for gravity sag effects. Actual optical system test results and conclusions are presented.

  18. Characterization of 193-nm resists for optical mask manufacturing

    NASA Astrophysics Data System (ADS)

    Fosshaug, Hans; Paulsson, Adisa; Berzinsh, Uldis; Magnusson, Helena

    2004-12-01

    The push for smaller linewidths and tighter critical dimension (CD) budgets forced manufacturers of optical pattern generators to move from traditional i-line to deep ultraviolet (DUV) resist processing. Entering the DUV area was not without pain. The process conditions, especially exposure times of a few hours, put very tough demands on the resist material itself. However, today 248nm laser writers are fully operating using a resist process that exhibits the requested resolution, CD uniformity and environmental stability. The continuous demands of CD performance made Micronic to investigate suitable resist candidate materials for the next generation optical writer using 193nm excimer laser exposure. This paper reports on resist benchmarking of one commercial as well as several newly developed resists. The resists were investigated using a wafer scanner. The data obtained illustrate the current performance of 193nm photoresists, and further demonstrate that despite good progress in resist formulation optimization, the status is still a bit from the required lithographic performance.

  19. Hypothesis on human eye perceiving optical spectrum rather than an image

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Szu, Harold

    2015-05-01

    It is a common knowledge that we see the world because our eyes can perceive an optical image. A digital camera seems a good example of simulating the eye imaging system. However, the signal sensing and imaging on human retina is very complicated. There are at least five layers (of neurons) along the signal pathway: photoreceptors (cones and rods), bipolar, horizontal, amacrine and ganglion cells. To sense an optical image, it seems that photoreceptors (as sensors) plus ganglion cells (converting to electrical signals for transmission) are good enough. Image sensing does not require ununiformed distribution of photoreceptors like fovea. There are some challenging questions, for example, why don't we feel the "blind spots" (never fibers exiting the eyes)? Similar situation happens to glaucoma patients who do not feel their vision loss until 50% or more nerves died. Now our hypothesis is that human retina initially senses optical (i.e., Fourier) spectrum rather than optical image. Due to the symmetric property of Fourier spectrum the signal loss from a blind spot or the dead nerves (for glaucoma patients) can be recovered. Eye logarithmic response to input light intensity much likes displaying Fourier magnitude. The optics and structures of human eyes satisfy the needs of optical Fourier spectrum sampling. It is unsure that where and how inverse Fourier transform is performed in human vision system to obtain an optical image. Phase retrieval technique in compressive sensing domain enables image reconstruction even without phase inputs. The spectrum-based imaging system can potentially tolerate up to 50% of bad sensors (pixels), adapt to large dynamic range (with logarithmic response), etc.

  20. Monolithically mode division multiplexing photonic integrated circuit for large-capacity optical interconnection.

    PubMed

    Chen, Guanyu; Yu, Yu; Zhang, Xinliang

    2016-08-01

    We propose and fabricate an on-chip mode division multiplexed (MDM) photonic interconnection system. Such a monolithically photonic integrated circuit (PIC) is composed of a grating coupler, two micro-ring modulators, mode multiplexer/demultiplexer, and two germanium photodetectors. The signals' generation, multiplexing, transmission, demultiplexing, and detection are successfully demonstrated on the same chip. Twenty Gb/s MDM signals are successfully processed with clear and open eye diagrams, validating the feasibility of the proposed circuit. The measured power penalties show a good performance of the MDM link. The proposed on-chip MDM system can be potentially used for large-capacity optical interconnection in future high-performance computers and big data centers.

  1. Construction of a small and lightweight hyperspectral imaging system

    NASA Astrophysics Data System (ADS)

    Vogel, Britta; Hünniger, Dirk; Bastian, Georg

    2014-05-01

    The analysis of the reflected sunlight offers great opportunity to gain information about the environment, including vegetation and soil. In the case of plants the wavelength ratio of the reflected light usually undergoes a change if the state of growth or state of health changes. So the measurement of the reflected light allows drawing conclusions about the state of, amongst others, vegetation. Using a hyperspectral imaging system for data acquisition leads to a large dataset, which can be evaluated with respect to several different questions to obtain various information by one measurement. Based on commercially available plain optical components we developed a small and lightweight hyperspectral imaging system within the INTERREG IV A-Project SMART INSPECTORS. The project SMART INSPECTORS [Smart Aerial Test Rigs with Infrared Spectrometers and Radar] deals with the fusion of airborne visible and infrared imaging remote sensing instruments and wireless sensor networks for precision agriculture and environmental research. A high performance camera was required in terms of good signal, good wavelength resolution and good spatial resolution, while severe constraints of size, proportions and mass had to be met due to the intended use on small unmanned aerial vehicles. The detector was chosen to operate without additional cooling. The refractive and focusing optical components were identified by supporting works with an optical raytracing software and a self-developed program. We present details of design and construction of our camera system, test results to confirm the optical simulation predictions as well as our first measurements.

  2. High-resolution handheld rigid endomicroscope based on full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Benoit a la Guillaume, Emilie; Martins, Franck; Boccara, Claude; Harms, Fabrice

    2016-02-01

    Full-field optical coherence tomography (FF-OCT) is a powerful tool for nondestructive assessment of biological tissue, i.e., for the structural examination of tissue in depth at a cellular resolution. Mostly known as a microscopy device for ex vivo analysis, FF-OCT has also been adapted to endoscopy setups since it shows good potential for in situ cancer diagnosis and biopsy guidance. Nevertheless, all the attempts to perform endoscopic FF-OCT imaging did not go beyond lab setups. We describe here, to the best of our knowledge, the first handheld FF-OCT endoscope based on a tandem interferometry assembly using incoherent illumination. A common-path passive imaging interferometer at the tip of an optical probe makes it robust and insensitive to environmental perturbations, and a low finesse Fabry-Perot processing interferometer guarantees a compact system. A good resolution (2.7 μm transverse and 6 μm axial) is maintained through the long distance, small diameter relay optics of the probe, and a good signal-to-noise ratio is achieved in a limited 100 ms acquisition time. High-resolution images and a movie of a rat brain slice have been recorded by moving the contact endoscope over the surface of the sample, allowing for tissue microscopic exploration at 20 μm under the surface. These promising ex vivo results open new perspectives for in vivo imaging of biological tissue, in particular, in the field of cancer and surgical margin assessment.

  3. Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter.

    PubMed

    Zhuang, Leimeng; Khan, Muhammad Rezaul; Beeker, Willem; Leinse, Arne; Heideman, René; Roeloffzen, Chris

    2012-11-19

    We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.

  4. Link Power Budget and Traffict QoS Performance Analysis of Gygabit Passive Optical Network

    NASA Astrophysics Data System (ADS)

    Ubaidillah, A.; Alfita, R.; Toyyibah

    2018-01-01

    Data service of telecommunication network is needed widely in the world; therefore extra wide bandwidth must be provided. For this case, PT. Telekomunikasi Tbk. applies GPON (Gigabit Passive Optical Network) as optical fibre based on telecommunication network system. GPON is a point to a multipoint technology of FTTx (Fiber to The x) that transmits information signals to the subscriber over optical fibre. In GPON trunking system, from OLT (Optical Line Terminal), the network is split to many ONT (Optical Network Terminal) of the subscribers, so it causes path loss and attenuation. In this research, the GPON performance is measured from the link power budget system and the Quality of Service (QoS) of the traffic. And the observation result shows that the link power budget system of this GPON is in good condition. The link power budget values from the mathematical calculation and direct measurement are satisfy the ITU-T G984 Class B standard, that the power level must be between -8 dBm to -27 dBm. While from the traffic performance, the observation result shows that the network resource utility of the subscribers of the observed area is not optimum. The mean of subscriber utility rate is 27.985 bps for upstream and 79.687 bps for downstream. While maximally, It should be 60.800 bps for upstream and 486.400 bps for downstream.

  5. Performance Enhancement Of A Low Cost Multimode Fiber Optic Rotation Sensor

    NASA Astrophysics Data System (ADS)

    Fredricks, Ronald J.; Johnson, Dean R.

    1989-02-01

    Several fiber optic Sagnac interferometers employing multimode fiber of both high and ffedimiNrrumbers and simple LED light sources, have been designed and built by the authors over the past two years. New results showing improved performance fran that reported at the August '87 SPIE are given in this paper. The ratios of maximum unambiguous rate signal to random 3a drift signal are now in the range 50-150 a performance enhancement of between 4 and 10. We have found that a step index ring rather than a grajled Index one is necess for good driftperformance and that best results are obtained when all the other ring elements (PZT coary il and I/O slitter are also fabricated fram step index fiber. The 3a drifts in our 200 meter 10 cm diameter breadboards, in particular, are around 1°/sec. Using high V number fiber (100 pm/0.29 NA) no static mode mixers are required to desensitize this relatively short sense coil fram environmental pertubations. With unambiguous maxi rum rates on the order of ±200°/sec using simple detection of the MT fundamental signal the performance of these breadboard systems is now as good or better than many law cost "Coriolis" type rate sensors on the market.

  6. A Fiber-Optic Coupled Telescope for Water Vapor DIAL Receivers

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Lonn, Frederick

    1998-01-01

    A fiber-optic coupled telescope of low complexity was constructed and tested. The major loss mechanisms of the optical system have been characterized. Light collected by the receiver mirror is focused onto an optical fiber, and the output of the fiber is filtered by an interference filter and then focused onto an APD detector. This system was used in lidar field measurements with a 532-nm Nd:YAG laser beam. The results were encouraging. A numerical model used for calculation of the expected return signal agreed with the lidar return signal obtained. The assembled system was easy to align and operate and weighed about 8 kg for a 30 cm (12") mirror system. This weight is low enough to allow mounting of the fiber-optic telescope receiver system in a UAV. Furthermore, the good agreement between the numerical lidar model and the performance of the actual receiver system, suggests that this model may be used for estimation of the performance of this and other lidar systems in the future. Such telescopes are relatively easy to construct and align. The fiber optic cable allows easy placement of the optical detector in any position. These telescope systems should find widespread use in aircraft and space home DIAL water vapor receiver systems.

  7. Good imaging with very fast paraboloidal primaries - An optical solution and some applications. [performance improvement of astronomical telescopes

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.; Woolf, N. J.; Epps, N. W.

    1982-01-01

    Attention is given to the imaging performance improvement obtainable in telescopes with fast parabolic primaries by means of two-mirror correctors of the Paul-Baker type. Images with 80 percent of the energy concentrated within 0.2 arcsec are projected for an f/1 primary relaying to an f/2 final focus, over a 1 deg-diameter field. It is noted that the mechanical structure and enclosure of a large telescope built with these fast optics should be significantly smaller and less expensive than those for conventional optics. The application of the Paul-Baker corrector system is explored for such diverse telescope types as those employing six off-axis primary mirrors, UV astronomy telescopes with no chromatic aberration, a low emissivity IR astronomy instrument with an off-axis f/1 parent primary mirror part, and thin rectangular aperture telescopes which are useful for spectroscopy and photometry.

  8. Stokes space modulation format classification based on non-iterative clustering algorithm for coherent optical receivers.

    PubMed

    Mai, Xiaofeng; Liu, Jie; Wu, Xiong; Zhang, Qun; Guo, Changjian; Yang, Yanfu; Li, Zhaohui

    2017-02-06

    A Stokes-space modulation format classification (MFC) technique is proposed for coherent optical receivers by using a non-iterative clustering algorithm. In the clustering algorithm, two simple parameters are calculated to help find the density peaks of the data points in Stokes space and no iteration is required. Correct MFC can be realized in numerical simulations among PM-QPSK, PM-8QAM, PM-16QAM, PM-32QAM and PM-64QAM signals within practical optical signal-to-noise ratio (OSNR) ranges. The performance of the proposed MFC algorithm is also compared with those of other schemes based on clustering algorithms. The simulation results show that good classification performance can be achieved using the proposed MFC scheme with moderate time complexity. Proof-of-concept experiments are finally implemented to demonstrate MFC among PM-QPSK/16QAM/64QAM signals, which confirm the feasibility of our proposed MFC scheme.

  9. Analysis and demonstration of vibration waveform reconstruction in distributed optical fiber vibration sensing system

    NASA Astrophysics Data System (ADS)

    Zhu, Hui; Shan, Xuekang; Sun, Xiaohan

    2017-10-01

    A method for reconstructing the vibration waveform from the optical time-domain backscattering pulses in the distributed optical fiber sensing system (DOFSS) is proposed, which allows for extracting and recovering the external vibration signal from the tested pulses by analog signal processing, so that can obtain vibration location and waveform simultaneously. We establish the response model of DOFSS to the external vibration and analyze the effects of system parameters on the operational performance. The main parts of the DOFSS are optimized, including delay fiber length and wavelength, to improve the sensitivity of the system. The experimental system is set up and the vibration amplitudes and reconstructed waveforms are fit well with the original driving signal. The experimental results demonstrate that the performance of vibration waveform reconstruction is good with SNR of 15 dB whenever the external vibrations with different intensities and frequencies exert on the sensing fiber.

  10. Human brain activity with functional NIR optical imager

    NASA Astrophysics Data System (ADS)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  11. Optical modeling based on mean free path calculations for quantum dot phosphors applied to optoelectronic devices.

    PubMed

    Shin, Min-Ho; Kim, Hyo-Jun; Kim, Young-Joo

    2017-02-20

    We proposed an optical simulation model for the quantum dot (QD) nanophosphor based on the mean free path concept to understand precisely the optical performance of optoelectronic devices. A measurement methodology was also developed to get the desired optical characteristics such as the mean free path and absorption spectra for QD nanophosphors which are to be incorporated into the simulation. The simulation results for QD-based white LED and OLED displays show good agreement with the experimental values from the fabricated devices in terms of spectral power distribution, chromaticity coordinate, CCT, and CRI. The proposed simulation model and measurement methodology can be applied easily to the design of lots of optoelectronics devices using QD nanophosphors to obtain high efficiency and the desired color characteristics.

  12. Information verification and encryption based on phase retrieval with sparsity constraints and optical inference

    NASA Astrophysics Data System (ADS)

    Zhong, Shenlu; Li, Mengjiao; Tang, Xiajie; He, Weiqing; Wang, Xiaogang

    2017-01-01

    A novel optical information verification and encryption method is proposed based on inference principle and phase retrieval with sparsity constraints. In this method, a target image is encrypted into two phase-only masks (POMs), which comprise sparse phase data used for verification. Both of the two POMs need to be authenticated before being applied for decrypting. The target image can be optically reconstructed when the two authenticated POMs are Fourier transformed and convolved by the correct decryption key, which is also generated in encryption process. No holographic scheme is involved in the proposed optical verification and encryption system and there is also no problem of information disclosure in the two authenticable POMs. Numerical simulation results demonstrate the validity and good performance of this new proposed method.

  13. Application-oriented integrated control center (AICC) for heterogeneous optical networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Zhang, Jie; Cao, Xuping; Wang, Dajiang; Wu, Koubo; Cai, Yinxiang; Gu, Wanyi

    2011-12-01

    Various broad bandwidth services have being swallowing the bandwidth resource of optical networks, such as the data center application and cloud computation. There are still some challenges for future optical networks although the available bandwidth is increasing with the development of transmission technologies. The relationship between upper application layer and lower network resource layer is necessary to be researched further. In order to improve the efficiency of network resources and capability of service provisioning, heterogeneous optical networks resource can be abstracted as unified Application Programming Interfaces (APIs) which can be open to various upper applications through Application-oriented Integrated Control Center (AICC) proposed in the paper. A novel Openflow-based unified control architecture is proposed for the optimization of cross layer resources. Numeric results show good performance of AICC through simulation experiments.

  14. Humidity Sensor Based on Bragg Gratings Developed on the End Facet of an Optical Fiber by Sputtering of One Single Material.

    PubMed

    Ascorbe, Joaquin; Corres, Jesus M; Arregui, Francisco J; Matias, Ignacio R

    2017-04-29

    The refractive index of sputtered indium oxide nanocoatings has been altered just by changing the sputtering parameters, such as pressure. These induced changes have been exploited for the generation of a grating on the end facet of an optical fiber towards the development of wavelength-modulated optical fiber humidity sensors. A theoretical analysis has also been performed in order to study the different parameters involved in the fabrication of this optical structure and how they would affect the sensitivity of these devices. Experimental and theoretical results are in good agreement. A sensitivity of 150 pm/%RH was obtained for relative humidity changes from 20% to 60%. This kind of humidity sensors shows a maximum hysteresis of 1.3% relative humidity.

  15. Scalable UWB photonic generator based on the combination of doublet pulses.

    PubMed

    Moreno, Vanessa; Rius, Manuel; Mora, José; Muriel, Miguel A; Capmany, José

    2014-06-30

    We propose and experimentally demonstrate a scalable and reconfigurable optical scheme to generate high order UWB pulses. Firstly, various ultra wideband doublets are created through a process of phase-to-intensity conversion by means of a phase modulation and a dispersive media. In a second stage, doublets are combined in an optical processing unit that allows the reconfiguration of UWB high order pulses. Experimental results both in time and frequency domains are presented showing good performance related to the fractional bandwidth and spectral efficiency parameters.

  16. Vortex algebra by multiply cascaded four-wave mixing of femtosecond optical beams.

    PubMed

    Hansinger, Peter; Maleshkov, Georgi; Garanovich, Ivan L; Skryabin, Dmitry V; Neshev, Dragomir N; Dreischuh, Alexander; Paulus, Gerhard G

    2014-05-05

    Experiments performed with different vortex pump beams show for the first time the algebra of the vortex topological charge cascade, that evolves in the process of nonlinear wave mixing of optical vortex beams in Kerr media due to competition of four-wave mixing with self-and cross-phase modulation. This leads to the coherent generation of complex singular beams within a spectral bandwidth larger than 200nm. Our experimental results are in good agreement with frequency-domain numerical calculations that describe the newly generated spectral satellites.

  17. Polar-interferometry: what can be learnt from the IOTA/IONIC experiment

    NASA Astrophysics Data System (ADS)

    Le Bouquin, Jean-Baptiste; Rousselet-Perraut, Karine; Berger, Jean-Philippe; Herwats, Emilie; Benisty, Myriam; Absil, Olivier; Defrere, Denis; Monnier, John; Traub, Wesley

    2008-07-01

    We report the first near-IR polar-interferometric observations, performed at the IOTA array using its integrated optics combiner IONIC. Fringes have been obtained on calibration stars and resolved late-type giants. Optical modeling of the array and dedicated laboratory measures allowed us to confirm the good accuracy obtained on the calibrated polarized visibilities and closure phases. However, no evidences for polarimetric features at high angular resolution have been detected. The simulations and the results presented here open several perspectives for polar-interferometry, especially in the context of fibered, single-mode combiners.

  18. High-performance 193-nm photoresist materials based on ROMA polymers: sub-90-nm contact hole application with resist reflow

    NASA Astrophysics Data System (ADS)

    Joo, Hyun S.; Seo, Dong C.; Kim, Chang M.; Lim, Young T.; Cho, Seong D.; Lee, Jong B.; Song, Ji Y.; Kim, Kyoung M.; Park, Joo H.; Jung, Jae Chang; Shin, Ki S.; Bok, Cheol Kyu; Moon, Seung C.

    2004-05-01

    There are numerous methods being explored by lithographers to achieve the patterning of sub-90nm contact hole features. Regarding optical impact on contact imaging, various optical extension techniques such as assist features, focus drilling, phase shift masks, and off-axis illumination are being employed to improve the aerial image. One possible option for improving of the process window in contact hole patterning is resist reflow. We have already reported the resist using a ring opened polymer of maleic anhydride unit(ROMA) during the past two years in this conference. It has several good properties such as UV transmittance, PED stability, solubility and storage stability. The resist using ROMA polymer as a matrix resin showed a good lithographic performance at C/H pattern and one of the best characteristics in a ROMA polymer is the property of thermal shrinkage. It has a specific glass transition temperature(Tg) each polymers, so they made a applying of resist reflow technique to print sub-90nm C/H possible. Recently, we have researched about advanced ROMA polymer(ROMA II), which is composed of cycloolefine derivatives with existing ROMA type polymer(ROMA I), for dry etch resistance increasing, high resolution, and good thermal shrinkage property. In this paper, we will present the structure, thermal shrinkage properties, Tg control, material properties for ROMA II polymer and will show characteristics, the lithographic performance for iso and dense C/H applications of the resist using ROMA II polymer. In addition, we will discuss resist reflow data gained at C/H profile of sub-90nm sizes, which has good process window.

  19. Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations.

    PubMed

    Kahnert, Michael; Nousiainen, Timo; Lindqvist, Hannakaisa; Ebert, Martin

    2012-04-23

    Light scattering by light absorbing carbon (LAC) aggregates encapsulated into sulfate shells is computed by use of the discrete dipole method. Computations are performed for a UV, visible, and IR wavelength, different particle sizes, and volume fractions. Reference computations are compared to three classes of simplified model particles that have been proposed for climate modeling purposes. Neither model matches the reference results sufficiently well. Remarkably, more realistic core-shell geometries fall behind homogeneous mixture models. An extended model based on a core-shell-shell geometry is proposed and tested. Good agreement is found for total optical cross sections and the asymmetry parameter. © 2012 Optical Society of America

  20. Imaging performance of a normal incidence soft X-ray telescope

    NASA Technical Reports Server (NTRS)

    Henry, J. P.; Spiller, E.; Weisskopf, M.

    1982-01-01

    Measurements are presented of the imaging performance of a normal incidence spherical soft X-ray mirror at BK-alpha (67.6 A). The reflector was a 124-layer coating consisting of alternating Re-W alloy and C layers with a protective C overcoat 34 A thick deposited on a Zerodur substrate. Measurements made at an angle of 1.5 deg off axis with the prototype of the Einstein Observatory high resolution imager reveal the resolution of the mirror to be about 1 arcsec FWHM, with 50% of the reflected power within the detector field of 512 arcsec contained within a diameter of 5 arcsec. The data demonstrate the practicality and potential good performance of normal-incidence soft X-ray optics, and show that the scattering performances of such devices may be as good or better than the best grazing incidence devices.

  1. Optical functional performance of the osteo-odonto-keratoprosthesis.

    PubMed

    Lee, Richard M H; Ong, Gek L; Lam, Fook Chang; White, Joy; Crook, David; Liu, Christopher S C; Hull, Chris C

    2014-10-01

    The aim of this study was to evaluate optical and visual functional performance of the osteo-odonto-keratoprosthesis (OOKP). Optical design and analysis was performed with customized optical design software. Nine patients with implanted OOKP devices and 9 age-matched control patients were assessed. Contrast sensitivity was assessed and glare effect was measured with a brightness acuity test. All OOKP patients underwent kinetic Goldmann perimetry and wavefront aberrometry and completed the National Eye Institute Visual Function Questionnaire-25 (NEI VFQ-25). Optical analysis showed that the optical cylinder is near diffraction-limited. A reduction in median visual acuity (VA) with increasing glare settings was observed from 0.04 logMAR (without glare) to 0.20 logMAR (with glare at "high" setting) and significantly reduced statistically when compared with the control group at all levels of glare (P < 0.05). Contrast sensitivity was significantly reduced when compared with age-matched controls at medium and high spatial frequencies (P < 0.05). Median Goldmann perimetry was 65 degrees (interquartile range, 64-74 degrees; V-4e isopters) and 69 degrees excluding 2 glaucomatous subjects. Several vision-related NEI VFQ-25 subscales correlated significantly with VA at various brightness acuity test levels and contrast sensitivity at medium spatial frequencies, including dependency, general vision, near activities and distance activities. The OOKP optical cylinder provides patients with a good level of VA that is significantly reduced by glare. We have shown in vivo that updates to the optical cylinder design have improved the patient's field of view. Reduction of glare and refinement of cylinder alignment methods may further improve visual function and patient satisfaction.

  2. Optics measurement and correction for the Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Shen, Xiaozhe

    The quality of beam optics is of great importance for the performance of a high energy accelerator like the Relativistic Heavy Ion Collider (RHIC). The turn-by-turn (TBT) beam position monitor (BPM) data can be used to derive beam optics. However, the accuracy of the derived beam optics is often limited by the performance and imperfections of instruments as well as measurement methods and conditions. Therefore, a robust and model-independent data analysis method is highly desired to extract noise-free information from TBT BPM data. As a robust signal-processing technique, an independent component analysis (ICA) algorithm called second order blind identification (SOBI) has been proven to be particularly efficient in extracting physical beam signals from TBT BPM data even in the presence of instrument's noise and error. We applied the SOBI ICA algorithm to RHIC during the 2013 polarized proton operation to extract accurate linear optics from TBT BPM data of AC dipole driven coherent beam oscillation. From the same data, a first systematic estimation of RHIC BPM noise performance was also obtained by the SOBI ICA algorithm, and showed a good agreement with the RHIC BPM configurations. Based on the accurate linear optics measurement, a beta-beat response matrix correction method and a scheme of using horizontal closed orbit bumps at sextupoles for arc beta-beat correction were successfully applied to reach a record-low beam optics error at RHIC. This thesis presents principles of the SOBI ICA algorithm and theory as well as experimental results of optics measurement and correction at RHIC.

  3. Comparative study on different types of segmented micro deformable mirrors

    NASA Astrophysics Data System (ADS)

    Qiao, Dayong; Yuan, Weizheng; Li, Kaicheng; Li, Xiaoying; Rao, Fubo

    2006-02-01

    In an adaptive-optical (AO) system, the wavefront of optical beam can be corrected with deformable mirror (DM). Based on MicroElectroMechanical System (MEMS) technology, segmented micro deformable mirrors can be built with denser actuator spacing than continuous face-sheet designs and have been widely researched. But the influence of the segment structure has not been thoroughly discussed until now. In this paper, the design, performance and fabrication of several micromachined, segmented deformable mirror for AO were investigated. The wavefront distorted by atmospheric turbulence was simulated in the frame of Kolmogorov turbulence model. Position function was used to describe the surfaces of the micro deformable mirrors in working state. The performances of deformable mirrors featuring square, brick, hexagonal and ring segment structures were evaluated in criteria of phase fitting error, the Strehl ratio after wavefront correction and the design considerations. Then the micro fabrication process and mask layout were designed and the fabrication of micro deformable mirrors was implemented. The results show that the micro deformable mirror with ring segments performs the best, but it is very difficult in terms of layout design. The micro deformable mirrors with square and brick segments are easy to design, but their performances are not good. The micro deformable mirror with hexagonal segments has not only good performance in terms of phase fitting error, the Strehl ratio and actuation voltage, but also no overwhelming difficulty in layout design.

  4. Development of a wireless crop growth monitor based on optical principle

    NASA Astrophysics Data System (ADS)

    Li, Xihua; Li, Minzan; Cui, Di

    2008-12-01

    In order to detect the plant's nitrogen content in real-time, a wireless crop growth monitor is developed. It is made up of a sensor and a controller. The sensor consists of an optical part and a circuit part. The optical part is made up of 4 optical channels and 4 photo-detectors. 2 channels receive the sunlight and the other 2 receive the reflected light from the crop canopy. The intensity of sunlight and the reflected light is measured at the wavebands of 610 nm and 1220 nm respectively. The circuit part is made up of power supply unit, 4 amplifiers and a wireless module. The controller has functions such as keyboard input, LCD display, data storage, data upload and so on. Both hardware and software are introduced in this report. Calibration tests show that the optical part has a high accuracy and the wireless transmission also has a good performance.

  5. Optical properties of boron-group (V) hexagonal nanowires: DFT investigation

    NASA Astrophysics Data System (ADS)

    Santhibhushan, B.; Soni, Mahesh; Srivastava, Anurag

    2017-07-01

    The paper presents structural, electronic and optical properties of boron-group V hexagonal nanowires (h-NW) within the framework of density functional theory. The h-NW of boron-group V compounds with an analogous diameter of 12 Å have been designed in (1 1 1) plane. Stability analysis performed through formation energies reveal that, the stability of these structures decreases with increasing atomic number of the group V element. The band nature predicts that these nanowires are good electrical conductors. Optical behaviour of the nanowires has been analysed through absorption coefficient, reflectivity, refractive index, optical conductivity and electron energy loss spectrum (EELS), that are computed from the frequency-dependent complex dielectric function. The analysis reveals high reactivity of BP and BAs h-NWs to the incident light especially in the IR and visible ranges, and the optical transparency of BN h-NW in the visible and UV ranges.

  6. Linear and passive silicon optical isolator

    PubMed Central

    Wang, Chen; Zhong, Xiao-Lan; Li, Zhi-Yuan

    2012-01-01

    On-chip optical isolation plays a key role in optical communications and computing based on silicon integrated photonic structures and has attracted great attentions for long years. Recently there have appeared hot controversies upon whether isolation of light can be realized via linear and passive photonic structures. Here we demonstrate optical isolation of infrared light in purely linear and passive silicon photonic structures. Both numerical simulations and experimental measurements show that the round-trip transmissivity of in-plane infrared light across a silicon photonic crystal slab heterojunction diode could be two orders of magnitudes smaller than the forward transmissivity at around 1,550 nm with a bandwidth of about 50 nm, indicating good performance of optical isolation. The occurrence of in-plane light isolation is attributed to the information dissipation due to off-plane and side-way scattering and selective modal conversion in the multiple-channel structure and has no conflict with the reciprocal principle. PMID:22993699

  7. A broadband transformation-optics metasurface lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Xiang; Xiang Jiang, Wei; Feng Ma, Hui

    2014-04-14

    We present a transformational metasurface Luneburg lens based on the quasi-conformal mapping method, which has weakly anisotropic constitutive parameters. We design the metasurface lens using inhomogeneous artificial structures to realize the required surface refractive indexes. The transformational metasurface Luneburg lens is fabricated and the measurement results demonstrate very good performance in controlling the radiated surface waves.

  8. Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti:Sapphire crystal

    NASA Astrophysics Data System (ADS)

    Ren, Yingying; Zhang, Limu; Xing, Hongguang; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng

    2018-07-01

    Highly-compact devices capable of beam splitting are intriguing for a broad range of photonic applications. In this work, we report on the fabrication of optical waveguide splitters with rectangular cladding geometry in a Ti:Sapphire crystal by femtosecond laser inscription. Y-splitters are fabricated with 30 μm × 15 μm and 50 μm × 25 μm input ends, corresponding to two 15 μm × 15 μm and 25 μm × 25 μm output ends, respectively. The full branching angle θ between the two output arms are changing from 0.5° to 2°. The performances of the splitters are characterized at 632.8 nm and 1064 nm, showing very good properties including symmetrical output ends, single-mode guidance, equalized splitting ratios, all-angle-polarization light transmission and intact luminescence features in the waveguide cores. The realization of these waveguide splitters with good performances demonstrates the potential of such promising devices in complex monolithic photonic circuits and active optical devices such as miniature tunable lasers.

  9. Distributed photothermal spectroscopy in microstructured optical fibers: towards high-resolution mapping of gas presence over long distances.

    PubMed

    Garcia-Ruiz, Andres; Pastor-Graells, Juan; Martins, Hugo F; Tow, Kenny Hey; Thévenaz, Luc; Martin-Lopez, Sonia; Gonzalez-Herraez, Miguel

    2017-02-06

    Chemical sensing using optical fibers is often challenging, as it is generally difficult to achieve strong interaction between the guided light and the analyte at the wavelength of interest for performing the detection. Despite this difficulty, many schemes exist (and can be found in the literature) for point chemical fiber sensors. However, the challenge increases even further when it comes to performing fully distributed chemical sensing. In this case, the optical signal which interacts with the analyte is typically also the signal that has to travel to and from the interrogator: for a good sensitivity, the light should interact strongly with the analyte, leading inevitably to an increased loss and a reduced range. Few works in the literature actually provide demonstrations of truly distributed chemical sensing and, although there have been several attempts to realize these sensors (e.g. based on special fiber coatings), the vast majority of these attempts has failed to reach widespread use due to several reasons, among them: lack of sensitivity or selectivity, lack of range or resolution, cross sensitivity to temperature or strain, or need to work at specific wavelengths where fiber instrumentation becomes extremely expensive or unavailable. In this work we provide a preliminary demonstration of the possibility of achieving distributed detection of gas presence with spectroscopic selectivity, high spatial resolution, potential for long range measurements and feasibility of having most of the interrogator system working at conventional telecom wavelengths. For a full exploitation of this concept, new fibers (or more likely, fiber bundles) should be developed capable of guiding specific wavelengths in the IR (corresponding to gas absorption wavelengths) with good overlap with the analyte while also having a solid core with good transmission behavior at 1.55 μm, and good thermal coupling between the two guiding structures.

  10. Design considerations for a compact infrared airborne imager to meet alignment and assembly requirements

    NASA Astrophysics Data System (ADS)

    Spencer, Harvey

    2002-09-01

    Helicopter mounted optical systems require compact packaging, good image performance (approaching the diffraction-limit), and must survive and operate in a rugged shock and thermal environment. The always-present requirement for low weight in an airborne sensor is paramount when considering the optical configuration. In addition, the usual list of optical requirements which must be satisfied within narrow tolerances, including field-of-view, vignetting, boresight, stray light rejection, and transmittance drive the optical design. It must be determined early in the engineering process which internal optical alignment adjustment provisions must be included, which may be included, and which will have to be omitted, since adding alignment features often conflicts with the requirement for optical component stability during operation and of course adds weight. When the system is to be modular and mates with another optical system, a telescope designed by different contractor in this case, additional alignment requirements between the two systems must be specified and agreed upon. Final delivered cost is certainly critical and "touch labor" assembly time must be determined and controlled. A clear plan for the alignment and assembly steps must be devised before the optical design can even begin to ensure that an arrangement of optical components amenable to adjustment is reached. The optical specification document should be written contemporaneously with the alignment plan to insure compatibility. The optics decisions that led to the success of this project are described and the final optical design is presented. A description of some unique pupil alignment adjustments, never performed by us in the infrared, is described.

  11. Polymer stabilized liquid crystals: Topology-mediated electro-optical behavior and applications

    NASA Astrophysics Data System (ADS)

    Weng, Libo

    There has been a wide range of liquid crystal polymer composites that vary in polymer concentration from as little as 3 wt.% (polymer stabilized liquid crystal) to as high as 60 wt.% (polymer dispersed liquid crystals). In this dissertation, an approach of surface polymerization based on a low reactive monomer concentration about 1 wt.% is studied in various liquid crystal operation modes. The first part of dissertation describes the development of a vertical alignment (VA) mode with surface polymer stabilization, and the effects of structure-performance relationship of reactive monomers (RMs) and polymerization conditions on the electro-optical behaviors of the liquid crystal device has been explored. The polymer topography plays an important role in modifying and enhancing the electro-optical performance of stabilized liquid crystal alignment. The enabling surface-pinned polymer stabilized vertical alignment (PSVA) approach has led to the development of high-performance and fast-switching displays with controllable pretilt angle, increase in surface anchoring energy, high optical contrast and fast response time. The second part of the dissertation explores a PSVA mode with in-plane switching (IPS) and its application for high-efficiency and fast-switching phase gratings. The diffraction patterns and the electro-optical behaviors including diffraction efficiency and response time are characterized. The diffraction grating mechanism and performance have been validated by computer simulation. Finally, the advantages of surface polymerization approach such as good optical contrast and fast response time have been applied to the fringe-field switching (FFS) system. The concentration of reactive monomer on the electro-optical behavior of the FFS cells is optimized. The outstanding electro-optical results and mechanism of increase in surface anchoring strength are corroborated by the director field simulation. The density and topology of nanoscale polymer protrusions are analyzed and confirmed by morphological study. The developed high-performance polymer-stabilized fringe-field-switching (PS-FFS) could open new types of device applications.

  12. First-principle calculations of structural, electronic, optical, elastic and thermal properties of MgXAs2 (X=Si, Ge) compounds

    NASA Astrophysics Data System (ADS)

    Cheddadi, S.; Boubendira, K.; Meradji, H.; Ghemid, S.; Hassan, F. El Haj; Lakel, S.; Khenata, R.

    2017-12-01

    First-principle calculations on the structural, electronic, optical, elastic and thermal properties of the chalcopyrite MgXAs2 (X=Si, Ge) have been performed within the density functional theory (DFT) using the full-potential linearized augmented plane wave (FP-LAPW) method. The obtained equilibrium structural parameters are in good agreement with the available experimental data and theoretical results. The calculated band structures reveal a direct energy band gap for the interested compounds. The predicted band gaps using the modified Becke-Johnson (mBJ) exchange approximation are in fairly good agreement with the experimental data. The optical constants such as the dielectric function, refractive index, and the extinction coefficient are calculated and analysed. The independent elastic parameters namely, C_{11}, C_{12}, C_{13}, C_{33}, C_{44} and C_{66 } are evaluated. The effects of temperature and pressure on some macroscopic properties of MgSiAs2 and MgGeAs2 are predicted using the quasiharmonic Debye model in which the lattice vibrations are taken into account.

  13. Solution for testing large high-power laser lenses having long focal length (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fappani, Denis; IDE, Monique

    2017-05-01

    Many high power laser facilities are in operation all around the world and include various tight optical components such as large focussing lenses. Such lenses exhibit generally long focal lengths which induces some issues for their optical testing during manufacturing and inspection. Indeed, their transmitted wave fronts need to be very accurate and interferometric testing is the baseline to achieve that. But, it is always a problem to manage simultaneously long testing distances and fine accuracies in such interferometry testing. Taking example of the large focusing lenses produced for the Orion experimentation at AWE (UK), the presentation will describe which kind of testing method has been developed to demonstrate simultaneously good performances with sufficiently good repeatability and absolute accuracy. Special emphasis will be made onto the optical manufacturing issues and interferometric testing solutions. Some ZEMAX results presenting the test set-up and the calibration method will be presented as well. The presentation will conclude with a brief overview of the existing "state of the art" at Thales SESO for these technologies.

  14. Micromachined structures for vertical microelectrooptical devices on InP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seassal, C.; Leclercq, J.L.; Letartre, X.

    1996-12-31

    The authors presented a microstructuring method in order to fabricate tunable vertical resonant cavity optical devices. PL characterizations were performed on a test structure in order to evaluate the effect of the cavity thickness on the peak characteristics. Modeling of the mechanical, electrostatic, and optical behavior of the device, PL simulation were performed, and showed a good agreement with the experiments. This is a first preliminary validation of InP-based MOEMS for further realization of tunable wavelength-selective passive filters, or photodiodes and lasers by incorporating active region within the cavity. Micro-reflectivity measurements with a spatial resolution of 20 {micro}m are underwaymore » in their group, in order to measure directly the resonance shift and spectral linewidth.« less

  15. Development of side-chain NLO polymer materials with high electro-optic activity and long-term stability

    NASA Astrophysics Data System (ADS)

    Huang, Diyun; Parker, Timothy; Guan, Hann Wen; Cong, Shuxin; Jin, Danliang; Dinu, Raluca; Chen, Baoquan; Tolstedt, Don; Wolf, Nick; Condon, Stephen

    2005-01-01

    The electro-optic coefficient and long-term dipole alignment stability are two major factors in the development of high performance NLO materials for the application of high-speed EO devices. We have developed a high performance non-linear organic chromophore and incorporated it into a crosslinkable side-chain polyimide system. The polymer was synthesized through stepwise grafting of the crosslinker followed by the chromophore onto the polyimide backbone via esterification. Different chromophore loading levels were achieved by adjusting the crosslinker/chromophore feeding ratio. The polyimides films were contact-poled with second-harmonic generation monitoring. A large EO coefficient value was obtained and good long-term thermal stability at 85°C was observed.

  16. Performance of Al2O3:C optically stimulated luminescence dosimeters for clinical radiation therapy applications.

    PubMed

    Hu, B; Wang, Y; Zealey, W

    2009-12-01

    A commercial Optical Stimulated Luminescence (OSL) dosimetry system developed by Landauer was tested to analyse the possibility of using OSL dosimetry for external beam radiotherapy planning checks. Experiments were performed to determine signal sensitivity, dose response range, beam type/energy dependency, reproducibility and linearity. Optical annealing processes to test OSL material reusability were also studied. In each case the measurements were converted into absorbed dose. The experimental results show that OSL dosimetry provides a wide dose response range, good linearity and reproducibility for the doses up to 800cGy. The OSL output is linear with dose up to 600cGy range showing a maximum deviation from linearity of 2.0% for the doses above 600cGy. The standard deviation in response of 20 dosimeters was 3.0%. After optical annealing using incandescent light, the readout intensity decreased by approximately 98% in the first 30 minutes. The readout intensity, I, decreased after repeated optical annealing as a power law, given by I infinity t (-1.3). This study concludes that OSL dosimetry can provide an alternative dosimetry technique for use in in-vivo dosimetry if rigorous measurement protocols are established.

  17. Electrical and Optical Characteristics of Undoped and Se-Doped Bi2S3 Transistors

    NASA Astrophysics Data System (ADS)

    Kilcoyne, Colin; Alsaqqa, Ali; Rahman, Ajara A.; Whittaker-Brooks, Luisa; Sambandamurthy, G.

    Semiconducting chalcogenides have been drawing increased attention due to their interesting physical properties, especially in low dimensional structures. Bi2S3 has demonstrated a high optical absorption coefficient, a large bulk mobility, small bandgap, high Seebeck coefficient, and low thermal conductivity. These properties make it a good candidate for optical, electric and thermoelectric applications. However, control over the electrical properties for enhanced thermoelectric performance and optical applications is desired. We present electrical transport and optical properties from individual nanowire and few-layer transistors of single crystalline undoped and Se-doped Bi2S3-xSex. All devices exhibit n-type semiconducting behavior and the ON/OFF ratio, mobility, and conductivity noise behavior are studied as functions of dopant concentration, temperature, and charge carrier density in different conduction regimes. The roles of dopant driven scattering mechanisms and mobility/carrier density fluctuations will be discussed. The potential for this series of materials as optical and electrical switches will be presented. NSF DMR.

  18. Towards Optical Partial Discharge Detection with Micro Silicon Photomultipliers

    PubMed Central

    Ren, Ming; Song, Bo; Dong, Ming

    2017-01-01

    Optical detection is reliable in intrinsically characterizing partial discharges (PDs). Because of the great volume and high-level power supply of the optical devices that can satisfy the requirements in photosensitivity, optical PD detection can merely be used in laboratory studies. To promote the practical application of the optical approach in an actual power apparatus, a silicon photomultiplier (SiPM)-based PD sensor is introduced in this paper, and its basic properties, which include the sensitivity, pulse resolution, correlation with PD severity, and electromagnetic (EM) interference immunity, are experimentally evaluated. The stochastic phase-resolved PD pattern (PRPD) for three typical insulation defects are obtained by SiPM PD detector and are compared with those obtained using a high-frequency current transformer (HFCT) and a vacuum photomultiplier tube (PMT). Because of its good performances in the above aspects and its additional advantages, such as the small size, low power supply, and low cost, SiPM offers great potential in practical optical PD monitoring. PMID:29125544

  19. Towards Optical Partial Discharge Detection with Micro Silicon Photomultipliers.

    PubMed

    Ren, Ming; Zhou, Jierui; Song, Bo; Zhang, Chongxing; Dong, Ming; Albarracín, Ricardo

    2017-11-10

    Optical detection is reliable in intrinsically characterizing partial discharges (PDs). Because of the great volume and high-level power supply of the optical devices that can satisfy the requirements in photosensitivity, optical PD detection can merely be used in laboratory studies. To promote the practical application of the optical approach in an actual power apparatus, a silicon photomultiplier (SiPM)-based PD sensor is introduced in this paper, and its basic properties, which include the sensitivity, pulse resolution, correlation with PD severity, and electromagnetic (EM) interference immunity, are experimentally evaluated. The stochastic phase-resolved PD pattern (PRPD) for three typical insulation defects are obtained by SiPM PD detector and are compared with those obtained using a high-frequency current transformer (HFCT) and a vacuum photomultiplier tube (PMT). Because of its good performances in the above aspects and its additional advantages, such as the small size, low power supply, and low cost, SiPM offers great potential in practical optical PD monitoring.

  20. Development of self-sensing BFRP bars with distributed optic fiber sensors

    NASA Astrophysics Data System (ADS)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Shen, Sheng; Wu, Gang; Hong, Wan

    2009-03-01

    In this paper, a new type of self-sensing basalt fiber reinforced polymer (BFRP) bars is developed with using the Brillouin scattering-based distributed optic fiber sensing technique. During the fabrication, optic fiber without buffer and sheath as a core is firstly reinforced through braiding around mechanically dry continuous basalt fiber sheath in order to survive the pulling-shoving process of manufacturing the BFRP bars. The optic fiber with dry basalt fiber sheath as a core embedded further in the BFRP bars will be impregnated well with epoxy resin during the pulling-shoving process. The bond between the optic fiber and the basalt fiber sheath as well as between the basalt fiber sheath and the FRP bar can be controlled and ensured. Therefore, the measuring error due to the slippage between the optic fiber core and the coating can be improved. Moreover, epoxy resin of the segments, where the connection of optic fibers will be performed, is uncured by isolating heat from these parts of the bar during the manufacture. Consequently, the optic fiber in these segments of the bar can be easily taken out, and the connection between optic fibers can be smoothly carried out. Finally, a series of experiments are performed to study the sensing and mechanical properties of the propose BFRP bars. The experimental results show that the self-sensing BFRP bar is characterized by not only excellent accuracy, repeatability and linearity for strain measuring but also good mechanical property.

  1. Dual FOV infrared lens design with the laser common aperture optics

    NASA Astrophysics Data System (ADS)

    Chang, Wei-jun; Zhang, Xuan-zhi; Luan, Ya-dong; Zhang, Bo

    2015-02-01

    With the demand of autonomous precision guidance of air defense missile, the system scheme of the IR imaging/Ladar dual-mode seeker with a common aperture was proposed, and the optical system used in was designed. The system had a common receiving aperture, and its structure was very compact, so it could meet the requirement for the miniaturization of the seeker. Besides, it also could meet the demands of a wide field of view for searching target, and the demands for accurately recognizing and tracking the target at the same time. In order to increase the narrow FOV tracking performance, the dual FOV infrared optical used the zooming mode which some components flip in or out the optical system to firm the target signal. The dual FOV optics are divided into the zooming part, with dual variable focal length, and the reimaging part which was chosen in such a way to minimize the objective lens while maintaining 100% cold shield efficiency. The final infrared optics including 4°×3°(NFOV) and 16°×12°(WFOV) was designed. The NFOV lens composed of two common IR/Ladar lens, three relay lens, a beam splitter and two reflective fold mirrors, while WFOV lens increased two lens such as Germanium and Silicon. The common IR/Ladar lens ZnS and ZnSe could refractive the IR optics and Laser optics. The beam splitter which refractived IR optics and reflected Laser optics was located in the middle of Germanium and Silicon. The designed optical system had good image quality, and fulfilled the performance requirement of seeker system.

  2. Comparison of optic area measurement using fundus photography and optical coherence tomography between optic nerve head drusen and control subjects.

    PubMed

    Flores-Rodríguez, Patricia; Gili, Pablo; Martín-Ríos, María Dolores; Grifol-Clar, Eulalia

    2013-03-01

    To compare optic disc area measurement between optic nerve head drusen (ONHD) and control subjects using fundus photography, time-domain optical coherence tomography (TD-OCT) and spectral-domain optical coherence tomography (SD-OCT). We also made a comparison between each of the three techniques. We performed our study on 66 eyes (66 patients) with ONHD and 70 healthy control subjects (70 controls) with colour ocular fundus photography at 20º (Zeiss FF 450 IR plus), TD-OCT (Stratus OCT) with the Fast Optic Disc protocol and SD-OCT (Cirrus OCT) with the Optic Disc Cube 200 × 200 protocol for measurement of the optic disc area. The measurements were made by two observers and in each measurement a correction of the image magnification factor was performed. Measurement comparison using the Student's t-test/Mann-Whitney U test, the intraclass correlation coefficient, Pearson/Spearman rank correlation coefficient and the Bland-Altman plot was performed in the statistical analysis. Mean and standard deviation (SD) of the optic disc area in ONHD and in controls was 2.38 (0.54) mm(2) and 2.54 (0.42) mm(2), respectively with fundus photography; 2.01 (0.56) mm(2) and 1.66 (0.37) mm(2), respectively with TD-OCT, and 2.03 (0.49) mm(2) and 1.75 (0.38) mm(2), respectively with SD-OCT. In ONHD and controls, repeatability of optic disc area measurement was excellent with fundus photography and optical coherence tomography (TD-OCT and SD-OCT), but with a low degree of agreement between both techniques. Optic disc area measurement is smaller in ONHD compared to healthy subjects with fundus photography, unlike time-domain and spectral-domain optical coherence tomography in which the reverse is true. Both techniques offer good repeatability, but a low degree of correlation and agreement, which means that optic disc area measurement is not interchangeable or comparable between techniques. Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  3. Analysis of roll-stamped light guide plate fabricated with laser-ablated stamper

    NASA Astrophysics Data System (ADS)

    Na, Hyunjun; Hong, Seokkwan; Kim, Jongsun; Hwang, Jeongho; Joo, Byungyun; Yoon, Kyunghwan; Kang, Jeongjin

    2017-12-01

    LGP (light guide plate) is one of the major components of LCD (liquid crystal display), and it makes surface illumination for LCD backlit. LGP is a transparent plastic plate usually produced by injection molding process. On the back of LGP there are micron size patterns for extraction of light. Recently a roll-stamping process has achieved the high mass productivity of thinner LGPs. In order to fabricate optical patterns on LGPs, a fabricating tool called as a stamper is used. Micro patterns on metallic stampers are made by several micro machining processes such as chemical etching, LIGA-reflow, and laser ablation. In this study, a roll-stamping process by using a laser ablated metallic stamper was dealt with in consideration of the compatibility with the roll-stamping process. LGP fabricating tests were performed using a roll-stamping process with four different roll pressures. Pattern shapes on the stamper fabricated by laser ablation and transcription ratios of the roll-stamping process were analyzed, and LGP luminance was evaluated. Based on the evaluation, optical simulation model for LGP was made and simulation accuracy was evaluated. Simulation results showed good agreements with optical performance of LGPs in the brightness and uniformity. It was also shown that the roll-stamped LGP has the possibility of better optical performance than the conventional injection molded LGP. It was also shown that the roll-stamped LGP with the laser ablated stamper is potential to have better optical performance than the conventional injection molded LGP.

  4. Automated boundary detection of the optic disc and layer segmentation of the peripapillary retina in volumetric structural and angiographic optical coherence tomography.

    PubMed

    Zang, Pengxiao; Gao, Simon S; Hwang, Thomas S; Flaxel, Christina J; Wilson, David J; Morrison, John C; Huang, David; Li, Dengwang; Jia, Yali

    2017-03-01

    To improve optic disc boundary detection and peripapillary retinal layer segmentation, we propose an automated approach for structural and angiographic optical coherence tomography. The algorithm was performed on radial cross-sectional B-scans. The disc boundary was detected by searching for the position of Bruch's membrane opening, and retinal layer boundaries were detected using a dynamic programming-based graph search algorithm on each B-scan without the disc region. A comparison of the disc boundary using our method with that determined by manual delineation showed good accuracy, with an average Dice similarity coefficient ≥0.90 in healthy eyes and eyes with diabetic retinopathy and glaucoma. The layer segmentation accuracy in the same cases was on average less than one pixel (3.13 μm).

  5. Automated boundary detection of the optic disc and layer segmentation of the peripapillary retina in volumetric structural and angiographic optical coherence tomography

    PubMed Central

    Zang, Pengxiao; Gao, Simon S.; Hwang, Thomas S.; Flaxel, Christina J.; Wilson, David J.; Morrison, John C.; Huang, David; Li, Dengwang; Jia, Yali

    2017-01-01

    To improve optic disc boundary detection and peripapillary retinal layer segmentation, we propose an automated approach for structural and angiographic optical coherence tomography. The algorithm was performed on radial cross-sectional B-scans. The disc boundary was detected by searching for the position of Bruch’s membrane opening, and retinal layer boundaries were detected using a dynamic programming-based graph search algorithm on each B-scan without the disc region. A comparison of the disc boundary using our method with that determined by manual delineation showed good accuracy, with an average Dice similarity coefficient ≥0.90 in healthy eyes and eyes with diabetic retinopathy and glaucoma. The layer segmentation accuracy in the same cases was on average less than one pixel (3.13 μm). PMID:28663830

  6. Characterization of the dental pulp using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kauffman, C. M. F.; Carvalho, M. T.; Araujo, R. E.; Freitas, A. Z.; Zezell, D. M.; Gomes, A. S. L.

    2006-02-01

    The inner structure of teeth, i.e. the root canal anatomy, is very complex. However a good knowledge of endodontic architecture is the first step towards successful endodontic treatment. Optical coherence tomography (OCT) is a powerful technique to generate images of hard and soft tissue. Its images show dependency on the optical properties of the tissue under analysis. Changes in the scattering and absorption of tissues can be observed through the OCT images. In this work, we used optical coherence tomography to perform in vitro studies of the inner structure of the first molar of albino rats (Rattus norvegicus). Focusing on the pulp chamber and in the root canal, we compare the images generated with the OCT technique to the histology. We are analyzing the feasibility of OCT to help on the diagnostic of endodontic diseases.

  7. Ship Detection in Optical Satellite Image Based on RX Method and PCAnet

    NASA Astrophysics Data System (ADS)

    Shao, Xiu; Li, Huali; Lin, Hui; Kang, Xudong; Lu, Ting

    2017-12-01

    In this paper, we present a novel method for ship detection in optical satellite image based on the ReedXiaoli (RX) method and the principal component analysis network (PCAnet). The proposed method consists of the following three steps. First, the spatially adjacent pixels in optical image are arranged into a vector, transforming the optical image into a 3D cube image. By taking this process, the contextual information of the spatially adjacent pixels can be integrated to magnify the discrimination between ship and background. Second, the RX anomaly detection method is adopted to preliminarily extract ship candidates from the produced 3D cube image. Finally, real ships are further confirmed among ship candidates by applying the PCAnet and the support vector machine (SVM). Specifically, the PCAnet is a simple deep learning network which is exploited to perform feature extraction, and the SVM is applied to achieve feature pooling and decision making. Experimental results demonstrate that our approach is effective in discriminating between ships and false alarms, and has a good ship detection performance.

  8. Spectrophotometric evaluation of optical performances of polarizing technologies for smart window applications

    NASA Astrophysics Data System (ADS)

    Levati, N.; Vitali, L.; Fustinoni, D.; Niro, A.

    2014-11-01

    In recent years, window-integrated solar protection systems are used and studied as a promising energy saving technology, both for cold and hot climates. In particular, smart windows, whose optical proprieties in the solar wavelength range can somehow be controlled, show interesting results, especially in reducing the air conditioning power consumption. With the improvement of nanolithography techniques as well as with the possibility of designing polarization intervals, coupled polarizing films show a good potential as a dynamic and wavelength-selective shading technology. In this paper, UV-Vis-NIR spectrophotometric measurements are carried out on two polarizing technologies, Polaroid crystalline polarizer and Wire Grid broadband polarizer, in single- and double- film layout, to evaluate their optical performances, i.e. spectral transmittance, reflectance and absorptivity. The solar radiation glazing factors, according to the standard UNI EN 410, are calculated. The measured data are also analyzed in detail to emphasize the optical peculiarities of the materials under study that do not stand out from the standard parameters, as well as the specific problems that arise in spectrophotometric evaluations of polarizing films.

  9. Potential of optical spectral transmission measurements for joint inflammation measurements in rheumatoid arthritis patients

    NASA Astrophysics Data System (ADS)

    Meier, A. J. Louise; Rensen, Wouter H. J.; de Bokx, Pieter K.; de Nijs, Ron N. J.

    2012-08-01

    Frequent monitoring of rheumatoid arthritis (RA) patients enables timely treatment adjustments and improved outcomes. Currently this is not feasible due to a shortage of rheumatologists. An optical spectral transmission device is presented for objective assessment of joint inflammation in RA patients, while improving diagnostic accuracy and clinical workflow. A cross-sectional, nonrandomized observational study was performed with this device. In the study, 77 proximal interphalangeal (PIP) joints in 67 patients have been analyzed. Inflammation of these PIP joints was also assessed by a rheumatologist with a score varying from 1 (not inflamed) to 5 (severely inflamed). Out of 77 measurements, 27 were performed in moderate to strongly inflamed PIP joints. Comparison between the clinical assessment and an optical measurement showed a correlation coefficient r=0.63, p<0.001, 95% CI [0.47, 0.75], and a ROC curve (AUC=0.88) that shows a relative good specificity and sensitivity. Optical spectral transmission measurements in a single joint correlate with clinical assessment of joint inflammation, and therefore might be useful in monitoring joint inflammation in RA patients.

  10. Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Pires, Layla; Demidov, Valentin; Vitkin, I. Alex; Bagnato, Vanderlei; Kurachi, Cristina; Wilson, Brian C.

    2016-08-01

    Melanoma is the most aggressive type of skin cancer, with significant risk of fatality. Due to its pigmentation, light-based imaging and treatment techniques are limited to near the tumor surface, which is inadequate, for example, to evaluate the microvascular density that is associated with prognosis. White-light diffuse reflectance spectroscopy (DRS) and near-infrared optical coherence tomography (OCT) were used to evaluate the effect of a topically applied optical clearing agent (OCA) in melanoma in vivo and to image the microvascular network. DRS was performed using a contact fiber optic probe in the range from 450 to 650 nm. OCT imaging was performed using a swept-source system at 1310 nm. The OCT image data were processed using speckle variance and depth-encoded algorithms. Diffuse reflectance signals decreased with clearing, dropping by ˜90% after 45 min. OCT was able to image the microvasculature in the pigmented melanoma tissue with good spatial resolution up to a depth of ˜300 μm without the use of OCA; improved contrast resolution was achieved with optical clearing to a depth of ˜750 μm in tumor. These findings are relevant to potential clinical applications in melanoma, such as assessing prognosis and treatment responses. Optical clearing may also facilitate the use of light-based treatments such as photodynamic therapy.

  11. Feasibility of an endotracheal tube-mounted camera for percutaneous dilatational tracheostomy.

    PubMed

    Grensemann, J; Eichler, L; Hopf, S; Jarczak, D; Simon, M; Kluge, S

    2017-07-01

    Percutaneous dilatational tracheostomy (PDT) in critically ill patients is often led by optical guidance with a bronchoscope. This is not without its disadvantages. Therefore, we aimed to study the feasibility of a recently introduced endotracheal tube-mounted camera (VivaSight™-SL, ET View, Misgav, Israel) in the guidance of PDT. We studied 10 critically ill patients who received PDT with a VivaSight-SL tube that was inserted prior to tracheostomy for optical guidance. Visualization of the tracheal structures (i.e., identification and monitoring of the thyroid, cricoid, and tracheal cartilage and the posterior wall) and the quality of ventilation (before puncture and during the tracheostomy) were rated on four-point Likert scales. Respiratory variables were recorded, and blood gases were sampled before the interventions, before the puncture and before the insertion of the tracheal cannula. Visualization of the tracheal landmarks was rated as 'very good' or 'good' in all but one case. Monitoring during the puncture and dilatation was also rated as 'very good' or 'good' in all but one. In the cases that were rated 'difficult', the visualization and monitoring of the posterior wall of the trachea were the main concerns. No changes in the respiratory variables or blood gases occurred between the puncture and the insertion of the tracheal cannula. Percutaneous dilatational tracheostomy with optical guidance from a tube-mounted camera is feasible. Further studies comparing the camera tube with bronchoscopy as the standard approach should be performed. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  12. Dynamic Fatigue of a Titanium Silicate Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Nettles, Alan T.; Cagle, Holly A.; Smith, W. Scott (Technical Monitor)

    2002-01-01

    A dynamic fatigue study was performed on a Titanium Silicate Glass in order to assess its susceptibility to delayed failure. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for optical elements made from this material. The material has reasonably good resistance (N=23 to stress corrosion in ambient conditions).

  13. Dish concentrators for solar thermal energy - Status and technology development

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1981-01-01

    Comparisons are presented of point-focusing, or 'dish' solar concentrator system features, development status, and performance levels demonstrated to date. In addition to the requirements of good optical efficiency and high geometric concentration ratios, the most important future consideration in solar thermal energy dish concentrator design will be the reduction of installed and lifetime costs, as well as the materials and labor costs of production. It is determined that technology development initiatives are needed in such areas as optical materials, design wind speeds and wind loads, structural configuration and materials resistance to prolonged exposure, and the maintenance of optical surfaces. The testing of complete concentrator systems, with energy-converting receivers and controls, is also necessary. Both reflector and Fresnel lens concentrator systems are considered.

  14. DFT calculations of electronic and optical properties of SrS with LDA, GGA and mGGA functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Shatendra, E-mail: shatendra@gmai.com; Sharma, Jyotsna; Sharma, Yogita

    2016-05-06

    The theoretical investigations of electronic and optical properties of SrS are made using the first principle DFT calculations. The calculations are performed for the local-density approximation (LDA), generalized gradient approximation (GGA) and for an alternative form of GGA i.e. metaGGA for both rock salt type (B1, Fm3m) and cesium chloride (B2, Pm3m) structures. The band structure, density of states and optical spectra are calculated under various available functional. The calculations with LDA and GGA functional underestimate the values of band gaps with all functional, however the values with mGGA show reasonably good agreement with experimental and those calculated by usingmore » other methods.« less

  15. Stabilized high-accuracy correction of ocular aberrations with liquid crystal on silicon spatial light modulator in adaptive optics retinal imaging system.

    PubMed

    Huang, Hongxin; Inoue, Takashi; Tanaka, Hiroshi

    2011-08-01

    We studied the long-term optical performance of an adaptive optics scanning laser ophthalmoscope that uses a liquid crystal on silicon spatial light modulator to correct ocular aberrations. The system achieved good compensation of aberrations while acquiring images of fine retinal structures, excepting during sudden eye movements. The residual wavefront aberrations collected over several minutes in several situations were statistically analyzed. The mean values of the root-mean-square residual wavefront errors were 23-30 nm, and for around 91-94% of the effective time the errors were below the Marechal criterion for diffraction limited imaging. The ability to axially shift the imaging plane to different retinal depths was also demonstrated.

  16. Processing and error compensation of diffractive optical element

    NASA Astrophysics Data System (ADS)

    Zhang, Yunlong; Wang, Zhibin; Zhang, Feng; Qin, Hui; Li, Junqi; Mai, Yuying

    2014-09-01

    Diffractive optical element (DOE) shows high diffraction efficiency and good dispersion performance, which makes the optical system becoming light-weight and more miniature. In this paper, the design, processing, testing, compensation of DOE are discussed, especially the analyzing of compensation technology which based on the analyzing the DOE measurement date from Taylor Hobson PGI 1250. In this method, the relationship between shadowing effect with diamond tool and processing accuracy are analyzed. According to verification processing on the Taylor Hobson NANOFORM 250 lathe, the results indicate that the PV reaches 0.539 micron, the surface roughness reaches 4nm, the step position error is smaller than λ /10 and the step height error is less than 0.23 micron after compensation processing one time.

  17. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Study of thermooptic distortions of a Nd:YVO4 active element at different methods of its mounting

    NASA Astrophysics Data System (ADS)

    Kijko, V. V.; Ofitserov, Evgenii N.

    2006-05-01

    Thermooptic distortions of the active element of an axially diode-pumped Nd:YVO4 solid-state laser are studied at different methods of its mounting. The study was performed by the Hartmann method. A mathematical model for calculating the optical power of a thermal lens produced in the crystal upon pumping is developed and verified experimentally. It is shown that the optical power of a thermal lens produced upon axial pumping of the convectively cooled active element sealed off in a copper heat sink is half the optical power observed upon convective cooling of the active element without heat sink. The experimental and theoretical results are in good agreement.

  18. The mechanical, optoelectronic and thermoelectric properties of NiYSn (Y = Zr and Hf) alloys

    NASA Astrophysics Data System (ADS)

    Hamioud, Farida; Mubarak, A. A.

    2017-09-01

    First-principle calculations are performed using DFT as implemented in Wien2k code to compute the mechanical, electronic, optical and thermoelectric properties of NiYSn (Y = Zr and Hf) alloys. The computed lattice constants, bulk modulus and cohesive energy of these alloys at 0 K and 0 GPa are performed. NiZrSn and NiHfSn are found to be anisotropic and elastically stable. Furthermore, both alloys are confirmed to be thermodynamically stable by the calculated values of the standard enthalpy of formation. The Young’s and shear moduli values show that NiZrSn seems to be stiffer than NiHfSn. The optical properties are performed using the dielectric function. Some beneficial optoelectronic applications are found as exposed in the optical spectra. Moreover, the alloys are classified as good insulators for solar heating. The thermoelectric properties as a function of temperature are computed utilizing BoltzTrap code. The major charge carriers are found to be electrons and the alloys are classified as p-type doping alloys.

  19. Optical Properties of a Quantum Dot-Ring System Grown Using Droplet Epitaxy.

    PubMed

    Linares-García, Gabriel; Meza-Montes, Lilia; Stinaff, Eric; Alsolamy, S M; Ware, M E; Mazur, Y I; Wang, Z M; Lee, Jihoon; Salamo, G J

    2016-12-01

    Electronic and optical properties of InAs/GaAs nanostructures grown by the droplet epitaxy method are studied. Carrier states were determined by k · p theory including effects of strain and In gradient concentration for a model geometry. Wavefunctions are highly localized in the dots. Coulomb and exchange interactions are studied and we found the system is in the strong confinement regime. Microphotoluminescence spectra and lifetimes were calculated and compared with measurements performed on a set of quantum rings in a single sample. Some features of spectra are in good agreement.

  20. Iterative tailoring of optical quantum states with homodyne measurements.

    PubMed

    Etesse, Jean; Kanseri, Bhaskar; Tualle-Brouri, Rosa

    2014-12-01

    As they can travel long distances, free space optical quantum states are good candidates for carrying information in quantum information technology protocols. These states, however, are often complex to produce and require protocols whose success probability drops quickly with an increase of the mean photon number. Here we propose a new protocol for the generation and growth of arbitrary states, based on one by one coherent adjunctions of the simple state superposition α|0〉 + β|1〉. Due to the nature of the protocol, which allows for the use of quantum memories, it can lead to high performances.

  1. Classification of remotely sensed data using OCR-inspired neural network techniques. [Optical Character Recognition

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.

    1992-01-01

    Neural networks have been applied to classifications of remotely sensed data with some success. To improve the performance of this approach, an examination was made of how neural networks are applied to the optical character recognition (OCR) of handwritten digits and letters. A three-layer, feedforward network, along with techniques adopted from OCR, was used to classify Landsat-4 Thematic Mapper data. Good results were obtained. To overcome the difficulties that are characteristic of remote sensing applications and to attain significant improvements in classification accuracy, a special network architecture may be required.

  2. Joint CPT and N resonance in compact atomic time standards

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Hohensee, Michael; Xiao, Yanhong; Phillips, David; Walsworth, Ron

    2008-05-01

    Currently development efforts towards small, low power atomic time standards use current-modulated VCSELs to generate phase-coherent optical sidebands that interrogate the hyperfine structure of alkali atoms such as rubidium. We describe and use a modified four-level quantum optics model to study the optimal operating regime of the joint CPT- and N-resonance clock. Resonant and non-resonant light shifts as well as modulation comb detuning effects play a key role in determining the optimal operating point of such clocks. We further show that our model is in good agreement with experimental tests performed using Rb-87 vapor cells.

  3. Optical and electrical properties of p-type transparent conducting CuAlO2 thin film synthesized by reactive radio frequency magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Saha, B.; Thapa, R.; Jana, S.; Chattopadhyay, K. K.

    2010-10-01

    Thin films of p-type transparent conducting CuAlO2 have been synthesized through reactive radio frequency magnetron sputtering on silicon and glass substrates at substrate temperature 300°C. Reactive sputtering of a target fabricated from Cu and Al powder (1:1.5) was performed in Ar+O2 atmosphere. The deposition parameters were optimized to obtain phase pure, good quality CuAlO2 thin films. The films were characterized by studying their structural, morphological, optical and electrical properties.

  4. Bidirectional fiber-wireless and fiber-VLLC transmission system based on an OEO-based BLS and a RSOA.

    PubMed

    Lu, Hai-Han; Li, Chung-Yi; Lu, Ting-Chien; Wu, Chang-Jen; Chu, Chien-An; Shiva, Ajay; Mochii, Takao

    2016-02-01

    A bidirectional fiber-wireless and fiber-visible-laser-light-communication (VLLC) transmission system based on an optoelectronic oscillator (OEO)-based broadband light source (BLS) and a reflective semiconductor optical amplifier (RSOA) is proposed and experimentally demonstrated. Through an in-depth observation of such bidirectional fiber-wireless and fiber-VLLC transmission systems, good bit error rate performances are obtained over a 40 km single-mode fiber and a 10 m RF/optical wireless transport. Such a bidirectional fiber-wireless and fiber-VLLC transmission system is an attractive option for providing broadband integrated services.

  5. Proposal of an innovative benchmark for comparison of the performance of contactless digitizers

    NASA Astrophysics Data System (ADS)

    Iuliano, Luca; Minetola, Paolo; Salmi, Alessandro

    2010-10-01

    Thanks to the improving performances of 3D optical scanners, in terms of accuracy and repeatability, reverse engineering applications have extended from CAD model design or reconstruction to quality control. Today, contactless digitizing devices constitute a good alternative to coordinate measuring machines (CMMs) for the inspection of certain parts. The German guideline VDI/VDE 2634 is the only reference to evaluate whether 3D optical measuring systems comply with the declared or required performance specifications. Nevertheless it is difficult to compare the performance of different scanners referring to such a guideline. An adequate novel benchmark is proposed in this paper: focusing on the inspection of production tools (moulds), the innovative test piece was designed using common geometries and free-form surfaces. The reference part is intended to be employed for the evaluation of the performance of several contactless digitizing devices in computer-aided inspection, considering dimensional and geometrical tolerances as well as other quantitative and qualitative criteria.

  6. Radio over fiber transceiver employing phase modulation of an optical broadband source.

    PubMed

    Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José

    2010-10-11

    This paper proposes a low-cost RoF transceiver for multichannel SCM/WDM signal distribution suitable for future broadband access networks. The transceiver is based on the phase modulation of an optical broadband source centered at third transmission window. Prior to phase modulation the optical broadband source output signal is launched into a Mach-Zehnder interferometer structure, as key device enabling radio signals propagation over the optical link. Furthermore, an optical CWDM is employed to create a multichannel scenario by performing the spectral slicing of the modulated optical signal into a number of channels each one conveying the information from the central office to different base stations. The operation range is up to 20 GHz with a modulation bandwidth around of 500 MHz. Experimental results of the transmission of SCM QPSK and 64-QAM data through 20 Km of SMF exhibit good EVM results in the operative range determined by the phase-to-intensity conversion process. The proposed approach shows a great suitability for WDM networks based on RoF signal transport and also represents a cost-effective solution for passive optical networks.

  7. Self-assembly micro optical filter

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.

  8. Investigations of structural defects, crystalline perfection, metallic impurity concentration and optical quality of flat-top KDP crystal

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Verma, Sunil; Singh, Yeshpal; Bartwal, K. S.; Tiwari, M. K.; Lodha, G. S.; Bhagavannarayana, G.

    2015-08-01

    KDP crystal grown using flat-top technique has been characterized using X-ray and optical techniques with the aim of correlating the defects structure and impurity concentration in the crystal with its optical properties. Crystallographic defects were investigated using X-ray topography revealing linear and arc like chains of dislocations and to conclude that defects do not originate from the flat-top part of the crystal. Etching was performed to quantify dislocation defects density. The crystalline perfection of the crystal was found to be high as the FWHM of the rocking curves measured at several locations was consistently low 6-9 arc s. The concentration of Fe metallic impurity quantified using X-ray fluorescence technique was approximately 5 times lower in the flat-top part which falls in pyramidal growth sector as compared to the region near to the seed which lies in prismatic sector. The spectrophotometric characterization for plates cut normal to different crystallographic directions in the flat-top potassium dihydrogen phosphate (FT-KDP) crystal was performed to understand the influence of metallic impurity distribution and growth sectors on the optical transmittance. The transmittance of the FT-KDP crystal at 1064 nm and its higher harmonics (2nd, 3rd, 4th and 5th) was determined from the measured spectra and the lower transmission in the UV region was attributed to increased absorption by Fe metallic impurity at these wavelengths. The results are in agreement with the results obtained using X-ray fluorescence and X-ray topography. Birefringence and Mach-Zehnder interferometry show that except for the region near to the seed crystal the optical homogeneity of the entire crystal was good. The laser-induced damage threshold (LDT) values are in the range 2.4-3.9 GW/cm2. The LDT of the plate taken from the flat-top region is higher than that from the bottom of the crystal, indicating that the flat-top technique has good optical quality and is comparable to those reported using rapid growth technique. The results indicate that the structural defects, crystalline quality and impurity concentration have a correlation with the optical properties of the FT-KDP crystal.

  9. Fiber Optic Microswitch For Industrial Use

    NASA Astrophysics Data System (ADS)

    Desforges, F. X.; Jeunhomme, L. B.; Graindorge, Ph.; LeBoudec, G.

    1988-03-01

    Process control instrumentation is a large potential market for fiber optic sensors and particulary for fiber optic microswitches. Use of such devices brings a lot of advantages such as lighter cables, E.M. immunity, intrinsic security due to optical measurement, no grounding problems and so on. However, commercially available fiber optic microswitches exhibit high insertion losses as well as non optimal mechanical design. In fact, these drawbacks are due to operation principles which are based on a mobile shutter displaced between two fibers. The fiber optic microswitch we present here, has been specially designed for harsh environments (oil industry). The patented operation principle uses only one fiber placed in front of a retroreflecting material by the mean of a fiber optic connector. The use of this retroreflector material allows an important reduction of the position tolerances required in two fibers devices, as well as easier fabrication and potential mass production of the optical microswitch. Moreover, such a configuration yields good performances in term of reflection coefficient leading to large dynamic range and consequently large distances (up to 250 m) between the optical microswitch and its optoelectronic instrument. Optomechanical design of the microswitch as well as electronic design of the optoelectronic instrument will be examined and discussed.

  10. Influences of optical-spectrum errors on excess relative intensity noise in a fiber-optic gyroscope

    NASA Astrophysics Data System (ADS)

    Zheng, Yue; Zhang, Chunxi; Li, Lijing

    2018-03-01

    The excess relative intensity noise (RIN) generated from broadband sources degrades the angular-random-walk performance of a fiber-optic gyroscope dramatically. Many methods have been proposed and managed to suppress the excess RIN. However, the properties of the excess RIN under the influences of different optical errors in the fiber-optic gyroscope have not been systematically investigated. Therefore, it is difficult for the existing RIN-suppression methods to achieve the optimal results in practice. In this work, the influences of different optical-spectrum errors on the power spectral density of the excess RIN are theoretically analyzed. In particular, the properties of the excess RIN affected by the raised-cosine-type ripples in the optical spectrum are elaborately investigated. Experimental measurements of the excess RIN corresponding to different optical-spectrum errors are in good agreement with our theoretical analysis, demonstrating its validity. This work provides a comprehensive understanding of the properties of the excess RIN under the influences of different optical-spectrum errors. Potentially, it can be utilized to optimize the configurations of the existing RIN-suppression methods by accurately evaluating the power spectral density of the excess RIN.

  11. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method.

    PubMed

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  12. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    PubMed Central

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring. PMID:22346672

  13. Next generation smart window display using transparent organic display and light blocking screen.

    PubMed

    Kim, Gyeong Woo; Lampande, Raju; Choe, Dong Cheol; Ko, Ik Jang; Park, Jin Hwan; Pode, Ramchandra; Kwon, Jang Hyuk

    2018-04-02

    Transparent organic light emitting diodes (TOLED) have widespread applications in the next-generation display devices particularly in the large size transparent window and interactive displays. Herein, we report high performance and stable attractive smart window displays using facile process. Advanced smart window display is realized by integrating the high performance light blocking screen and highly transparent white OLED panel. The full smart window display reveals a maximum transmittance as high as 64.2% at the wavelength of 600 nm and extremely good along with tunable ambient contrast ratio (171.94:1) compared to that of normal TOLED (4.54:1). Furthermore, the performance decisive light blocking screen has demonstrated an excellent optical and electrical characteristics such as i) high transmittance (85.56% at 562nm) at light-penetrating state, ii) superior absorbance (2.30 at 562nm) in light interrupting mode, iii) high optical contrast (85.50 at 562 nm), iv) high optical stability for more than 25,000 cycle of driving, v) fast switching time of 1.9 sec, and vi) low driving voltage of 1.7 V. The experimental results of smart window display are also validated using optical simulation. The proposed smart window display technology allows us to adjust the intensity of daylight entering the system quickly and conveniently.

  14. Illumination analysis of LAPAN's IR micro bolometer

    NASA Astrophysics Data System (ADS)

    Bustanul, A.; Irwan, P.; Andi M., T.

    2016-10-01

    We have since 2 years ago been doing a research in term of an IR Micrometer Bolometer which aims to fulfill our office, LAPAN, desire to put it as one of payloads into LAPAN's next micro satellite project, either at LAPAN A4 or at LAPAN A5. Due to the lack of experience on the subject, everything had been initiated by spectral radiance analysis adjusted by catastrophes sources in Indonesia, mainly wild fire (forest fire) and active volcano. Based on the result of the appropriate spectral radiance wavelength, 3.8 - 4 μm, and field of view (FOV), we, then, went through the further analysis, optical analysis. Focusing in illumination matter, the process was done by using Zemax software. Optical pass Interference and Stray light were two things that become our concern throughout the work. They could also be an evaluation of the performance optimization of illumination analysis of our optical design. The results, graphs, show that our design performance is close diffraction limited and the image blur of the geometrical produced by Lapan's IR Micro Bolometer lenses is in the pixel area range. Therefore, our optical design performance is relatively good and will produce image with high quality. In this paper, the Illumination analysis and process of LAPAN's Infra Red (IR) Micro Bolometer is presented.

  15. Structural, electronic, optical and thermoelectric investigations of antiperovskites A3SnO (A = Ca, Sr, Ba) using density functional theory

    NASA Astrophysics Data System (ADS)

    Hassan, M.; Shahid, A.; Mahmood, Q.

    2018-02-01

    Density functional theory study of the structural, electrical, optical and thermoelectric behaviors of very less investigated anti-perovskites A3SnO (A = Ca, Sr, Ba) is performed with FP-LAPW technique. The A3SnO exhibit narrow direct band gap, in contrast to the wide indirect band gap of the respective perovskites. Hence, indirect to direct band gap transformation can be realized by the structural transition from perovskite to anti-perovskite. The p-p hybridization between A and O states result in the covalent bonding. The transparency and maximum reflectivity to the certain energies, and the verification of the Penn's model indicate potential optical device applications. Thermoelectric behaviors computed within 200-800 K depict that Ca3SnO exhibits good thermoelectric performance than Ba3SnO and Sr3SnO, and all three operate at their best at 800 K suggesting high temperature thermoelectric device applications.

  16. Preliminary optical design of the stereo channel of the imaging system simbiosys for the BepiColombo ESA mission

    NASA Astrophysics Data System (ADS)

    Da Deppo, Vania; Naletto, Giampiero; Cremonese, Gabriele; Debei, Stefano; Flamini, Enrico

    2017-11-01

    The paper describes the optical design and performance budget of a novel catadioptric instrument chosen as baseline for the Stereo Channel (STC) of the imaging system SIMBIOSYS for the BepiColombo ESA mission to Mercury. The main scientific objective is the 3D global mapping of the entire surface of Mercury with a scale factor of 50 m per pixel at periherm in four different spectral bands. The system consists of two twin cameras looking at +/-20° from nadir and sharing some components, such as the relay element in front of the detector and the detector itself. The field of view of each channel is 4° x 4° with a scale factor of 23''/pixel. The system guarantees good optical performance with Ensquared Energy of the order of 80% in one pixel. For the straylight suppression, an intermediate field stop is foreseen, which gives the possibility to design an efficient baffling system.

  17. Image Quality Analysis and Optical Performance Requirement for Micromirror-Based Lissajous Scanning Displays

    PubMed Central

    Du, Weiqi; Zhang, Gaofei; Ye, Liangchen

    2016-01-01

    Micromirror-based scanning displays have been the focus of a variety of applications. Lissajous scanning displays have advantages in terms of power consumption; however, the image quality is not good enough. The main reason for this is the varying size and the contrast ratio of pixels at different positions of the image. In this paper, the Lissajous scanning trajectory is analyzed and a new method based on the diamond pixel is introduced to Lissajous displays. The optical performance of micromirrors is discussed. A display system demonstrator is built, and tests of resolution and contrast ratio are conducted. The test results show that the new Lissajous scanning method can be used in displays by using diamond pixels and image quality remains stable at different positions. PMID:27187390

  18. Image Quality Analysis and Optical Performance Requirement for Micromirror-Based Lissajous Scanning Displays.

    PubMed

    Du, Weiqi; Zhang, Gaofei; Ye, Liangchen

    2016-05-11

    Micromirror-based scanning displays have been the focus of a variety of applications. Lissajous scanning displays have advantages in terms of power consumption; however, the image quality is not good enough. The main reason for this is the varying size and the contrast ratio of pixels at different positions of the image. In this paper, the Lissajous scanning trajectory is analyzed and a new method based on the diamond pixel is introduced to Lissajous displays. The optical performance of micromirrors is discussed. A display system demonstrator is built, and tests of resolution and contrast ratio are conducted. The test results show that the new Lissajous scanning method can be used in displays by using diamond pixels and image quality remains stable at different positions.

  19. Metrology for Fuel Cell Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stocker, Michael; Stanfield, Eric

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. Themore » objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.« less

  20. Fast auto-focus scheme based on optical defocus fitting model

    NASA Astrophysics Data System (ADS)

    Wang, Yeru; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting; Cen, Min

    2018-04-01

    An optical defocus fitting model-based (ODFM) auto-focus scheme is proposed. Considering the basic optical defocus principle, the optical defocus fitting model is derived to approximate the potential-focus position. By this accurate modelling, the proposed auto-focus scheme can make the stepping motor approach the focal plane more accurately and rapidly. Two fitting positions are first determined for an arbitrary initial stepping motor position. Three images (initial image and two fitting images) at these positions are then collected to estimate the potential-focus position based on the proposed ODFM method. Around the estimated potential-focus position, two reference images are recorded. The auto-focus procedure is then completed by processing these two reference images and the potential-focus image to confirm the in-focus position using a contrast based method. Experimental results prove that the proposed scheme can complete auto-focus within only 5 to 7 steps with good performance even under low-light condition.

  1. Theoretical investigation of the structural, elastic, electronic and optical properties of the ternary indium sulfide layered structures AInS2 (A = K, Rb and Cs)

    NASA Astrophysics Data System (ADS)

    Bouchenafa, M.; Sidoumou, M.; Halit, M.; Benmakhlouf, A.; Bouhemadou, A.; Maabed, S.; Bentabet, A.; Bin-Omran, S.

    2018-02-01

    Ab initio calculations were performed to investigate the structural, elastic, electronic and optical properties of the ternary layered systems AInS2 (A = K, Rb and Cs). The calculated structural parameters are in good agreement with the existing experimental data. Analysis of the electronic band structure shows that the three studied materials are direct band-gap semiconductors. Density of states, charge transfers and charge density distribution maps were computed and analyzed. Numerical estimations of the elastic moduli and their related properties for single-crystal and polycrystalline aggregates were predicted. The optical properties were calculated for incident radiation polarized along the [100], [010] and [001] crystallographic directions. The studied materials exhibit a noticeable anisotropic behaviour in the elastic and optical properties, which is expected due to the symmetry and the layered nature of these compounds.

  2. Development of a Single-Pass Amplifier for an Optical Stochastic Cooling Proof-of-Principle Experiment at Fermilab's IOTA Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andorf, M. B.; Lebedev, V. A.; Piot, P.

    2015-06-01

    Optical stochastic cooling (OSC) is a method of beam cooling which is expected to provide cooling rates orders of magnitude larger than ordinary stochastic cooling. Light from an undulator (the pickup) is amplified and fed back onto the particle beam via another undulator (the kicker). Fermilab is currently exploring a possible proof-of-principle experiment of the OSC at the integrable-optics test accelerator (IOTA) ring. To implement effective OSC a good correction of phase distortions in the entire band of the optical amplifier is required. In this contribution we present progress in experimental characterization of phase distortions associated to a Titanium Sapphiremore » crystal laser-gain medium (a possible candidate gain medium for the OSC experiment to be performed at IOTA). We also discuss a possible option for a mid-IR amplifier« less

  3. Good vibrations: Controlling light with sound (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Eggleton, Benjamin J.; Choudhary, Amol

    2016-10-01

    One of the surprises of nonlinear optics, is that light may interact strongly with sound. Intense laser light literally "shakes" the glass in optical fibres, exciting acoustic waves (sound) in the fibre. Under the right conditions, it leads to a positive feedback loop between light and sound termed "Stimulated Brillouin Scattering," or simply SBS. This nonlinear interaction can amplify or filter light waves with extreme precision in frequency which makes it uniquely suited to solve key problems in the fields of defence, biomedicine, wireless communications, spectroscopy and imaging. We have achieved the first demonstration of SBS in compact chip-scale structures, carefully designed so that the optical fields and the acoustic fields are simultaneously confined and guided. This new platform has opened a range of new functionalities that are being applied in communications and defence with breathtaking performance and compactness. My talk will introduce this new field and review our progress and achievements, including silicon based optical phononic processor.

  4. Comparative Study of Neural Network Frameworks for the Next Generation of Adaptive Optics Systems.

    PubMed

    González-Gutiérrez, Carlos; Santos, Jesús Daniel; Martínez-Zarzuela, Mario; Basden, Alistair G; Osborn, James; Díaz-Pernas, Francisco Javier; De Cos Juez, Francisco Javier

    2017-06-02

    Many of the next generation of adaptive optics systems on large and extremely large telescopes require tomographic techniques in order to correct for atmospheric turbulence over a large field of view. Multi-object adaptive optics is one such technique. In this paper, different implementations of a tomographic reconstructor based on a machine learning architecture named "CARMEN" are presented. Basic concepts of adaptive optics are introduced first, with a short explanation of three different control systems used on real telescopes and the sensors utilised. The operation of the reconstructor, along with the three neural network frameworks used, and the developed CUDA code are detailed. Changes to the size of the reconstructor influence the training and execution time of the neural network. The native CUDA code turns out to be the best choice for all the systems, although some of the other frameworks offer good performance under certain circumstances.

  5. A novel pH optical sensor using methyl orange based on triacetylcellulose membranes as support.

    PubMed

    Hosseini, Mohammad; Heydari, Rouhollah; Alimoradi, Mohammad

    2014-07-15

    A novel pH optical sensor based on triacetylcellulose membrane as solid support was developed by using immobilization of methyl orange indicator. The prepared optical sensor was fixed into a flow cell for on-line pH monitoring. Variables affecting sensor performance, such as pH of dye bonding to triacetylcellulose membrane and dye concentration have been fully evaluated and optimized. The calibration curve showed good behavior and precision (RSD<0.4%) in the pH range of 4.0-12.0. No significant variation was observed on sensor response with increasing the ionic strength in the range of 0.0-0.5M of sodium chloride. Determination of pH by using the proposed optical sensor is on-line, quick, inexpensive, selective and sensitive in the pH range of 4.0-12.0. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Comparative Study of Neural Network Frameworks for the Next Generation of Adaptive Optics Systems

    PubMed Central

    González-Gutiérrez, Carlos; Santos, Jesús Daniel; Martínez-Zarzuela, Mario; Basden, Alistair G.; Osborn, James; Díaz-Pernas, Francisco Javier; De Cos Juez, Francisco Javier

    2017-01-01

    Many of the next generation of adaptive optics systems on large and extremely large telescopes require tomographic techniques in order to correct for atmospheric turbulence over a large field of view. Multi-object adaptive optics is one such technique. In this paper, different implementations of a tomographic reconstructor based on a machine learning architecture named “CARMEN” are presented. Basic concepts of adaptive optics are introduced first, with a short explanation of three different control systems used on real telescopes and the sensors utilised. The operation of the reconstructor, along with the three neural network frameworks used, and the developed CUDA code are detailed. Changes to the size of the reconstructor influence the training and execution time of the neural network. The native CUDA code turns out to be the best choice for all the systems, although some of the other frameworks offer good performance under certain circumstances. PMID:28574426

  7. Dual-tone optical vector millimeter wave signal generated by frequency-nonupling the radio frequency 16-star quadrature-amplitude-modulation signal

    NASA Astrophysics Data System (ADS)

    Wu, Tonggen; Ma, Jianxin

    2017-12-01

    This paper proposes an original scheme to generate the photonic dual-tone optical millimeter wave (MMW) carrying the 16-star quadrature-amplitude-modulation (QAM) signal via an optical phase modulator (PM) and an interleaver with adaptive photonic frequency-nonupling without phase precoding. To enable the generated optical vector MMW signal to resist the power fading effect caused by the fiber chromatic dispersion, the modulated -5th- and +4th-order sidebands are selected from the output of the PM, which is driven by the precoding 16-star QAM signal. The modulation index of the PM is optimized to gain the maximum opto-electrical conversion efficiency. A radio over fiber link is built by simulation, and the simulated constellations and the bit error rate graph demonstrate that the frequency-nonupling 16-star QAM MMW signal has good transmission performance. The simulation results agree well with our theoretical results.

  8. Centroid measurement error of CMOS detector in the presence of detector noise for inter-satellite optical communications

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhou, Shihong; Ma, Jing; Tan, Liying; Shen, Tao

    2013-08-01

    CMOS is a good candidate tracking detector for satellite optical communications systems with outstanding feature of sub-window for the development of APS (Active Pixel Sensor) technology. For inter-satellite optical communications it is critical to estimate the direction of incident laser beam precisely by measuring the centroid position of incident beam spot. The presence of detector noise results in measurement error, which degrades the tracking performance of systems. In this research, the measurement error of CMOS is derived taking consideration of detector noise. It is shown that the measurement error depends on pixel noise, size of the tracking sub-window (pixels number), intensity of incident laser beam, relative size of beam spot. The influences of these factors are analyzed by numerical simulation. We hope the results obtained in this research will be helpful in the design of CMOS detector satellite optical communications systems.

  9. Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knauer, J. P.; Betti, R.; Bradley, D. K.

    2000-01-01

    The results from a series of single-mode, Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5x10{sup 14} W/cm{sup 2}. Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600 {mu}m diam region defined bymore » the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83-124] of the growth of 20, 31, and 60 {mu}m wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile. (c) 2000 American Institute of Physics.« less

  10. Automatic tracking of red blood cells in micro channels using OpenCV

    NASA Astrophysics Data System (ADS)

    Rodrigues, Vânia; Rodrigues, Pedro J.; Pereira, Ana I.; Lima, Rui

    2013-10-01

    The present study aims to developan automatic method able to track red blood cells (RBCs) trajectories flowing through a microchannel using the Open Source Computer Vision (OpenCV). The developed method is based on optical flux calculation assisted by the maximization of the template-matching product. The experimental results show a good functional performance of this method.

  11. Results of Skylab experiment T00-2, manual navigation sightings

    NASA Technical Reports Server (NTRS)

    Randle, R. J.

    1976-01-01

    An analysis of navigation data collected using a hand-held space sextant on the second and third manned Skylab missions was presented. From performance data and astronaut comments it was determined that: (1) the space sextant, the sighting station, and the sighting techniques require modification; (2) the sighting window must be of good optical quality; (3) astronaut performance was stable over long mission time; and (4) sightings made with a hand-held sextant were accurate and precise enough for reliable interplanetary manual navigation.

  12. Optically stimulated Al2O3:C luminescence dosimeters for teletherapy: Hp(10) performance evaluation.

    PubMed

    Hashim, S; Musa, Y; Ghoshal, S K; Ahmad, N E; Hashim, I H; Yusop, M; Bradley, D A; Kadir, A B A

    2018-05-01

    The performance of optically stimulated luminescence dosimeters (OSLDs, Al 2 O 3 :C) was evaluated in terms of the operational quantity of H P (10) in Co-60 external beam teletherapy unit. The reproducibility, signal depletion, and dose linearity of each dosimeter was investigated. For ten repeated readouts, each dosimeter exposed to 50mSv was found to be reproducible below 1.9 ± 3% from the mean value, indicating good reader stability. Meanwhile, an average signal reduction of 0.5% per readout was found. The dose response revealed a good linearity within the dose range of 5-50mSv having nearly perfect regression line with R 2 equals 0.9992. The accuracy of the measured doses were evaluated in terms of operational quantity H P (10), wherein the trumpet curve method was used respecting the 1990 International Commission on Radiological Protection (ICRP) standard. The accuracy of the overall measurements from all dosimeters was discerned to be within the trumpet curve and devoid of outlier. It is established that the achieved OSL Al 2 O 3 :C dosimeters are greatly reliable for equivalent dose assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The mid-IR silicon photonics sensor platform (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kimerling, Lionel; Hu, Juejun; Agarwal, Anuradha M.

    2017-02-01

    Advances in integrated silicon photonics are enabling highly connected sensor networks that offer sensitivity, selectivity and pattern recognition. Cost, performance and the evolution path of the so-called `Internet of Things' will gate the proliferation of these networks. The wavelength spectral range of 3-8um, commonly known as the mid-IR, is critical to specificity for sensors that identify materials by detection of local vibrational modes, reflectivity and thermal emission. For ubiquitous sensing applications in this regime, the sensors must move from premium to commodity level manufacturing volumes and cost. Scaling performance/cost is critically dependent on establishing a minimum set of platform attributes for point, wearable, and physical sensing. Optical sensors are ideal for non-invasive applications. Optical sensor device physics involves evanescent or intra-cavity structures for applied to concentration, interrogation and photo-catalysis functions. The ultimate utility of a platform is dependent on sample delivery/presentation modalities; system reset, recalibration and maintenance capabilities; and sensitivity and selectivity performance. The attributes and performance of a unified Glass-on-Silicon platform has shown good prospects for heterogeneous integration on materials and devices using a low cost process flow. Integrated, single mode, silicon photonic platforms offer significant performance and cost advantages, but they require discovery and qualification of new materials and process integration schemes for the mid-IR. Waveguide integrated light sources based on rare earth dopants and Ge-pumped frequency combs have promise. Optical resonators and waveguide spirals can enhance sensitivity. PbTe materials are among the best choices for a standard, waveguide integrated photodetector. Chalcogenide glasses are capable of transmitting mid-IR signals with high transparency. Integrated sensor case studies of i) high sensitivity analyte detection in solution; ii) gas sensing in air and iii) on-chip spectrometry provide good insight into the tradeoffs being made en route to ubiquitous sensor deployment in an Internet of Things.

  14. Design of tracking and detecting lens system by diffractive optical method

    NASA Astrophysics Data System (ADS)

    Yang, Jiang; Qi, Bo; Ren, Ge; Zhou, Jianwei

    2016-10-01

    Many target-tracking applications require an optical system to acquire the target for tracking and identification. This paper describes a new detecting optical system that can provide automatic flying object detecting, tracking and measuring in visible band. The main feature of the detecting lens system is the combination of diffractive optics with traditional lens design by a technique was invented by Schupmann. Diffractive lens has great potential for developing the larger aperture and lightweight lens. First, the optical system scheme was described. Then the Schupmann achromatic principle with diffractive lens and corrective optics is introduced. According to the technical features and requirements of the optical imaging system for detecting and tracking, we designed a lens system with flat surface Fresnel lens and cancels the optical system chromatic aberration by another flat surface Fresnel lens with effective focal length of 1980mm, an F-Number of F/9.9 and a field of view of 2ωω = 14.2', spatial resolution of 46 lp/mm and a working wavelength range of 0.6 0.85um. At last, the system is compact and easy to fabricate and assembly, the diffuse spot size and MTF function and other analysis provide good performance.

  15. 4 channel × 10 Gb/s bidirectional optical subassembly using silicon optical bench with precise passive optical alignment.

    PubMed

    Kang, Eun Kyu; Lee, Yong Woo; Ravindran, Sooraj; Lee, Jun Ki; Choi, Hee Ju; Ju, Gun Wu; Min, Jung Wook; Song, Young Min; Sohn, Ik-Bu; Lee, Yong Tak

    2016-05-16

    We demonstrate an advanced structure for optical interconnect consisting of 4 channel × 10 Gb/s bidirectional optical subassembly (BOSA) formed using silicon optical bench (SiOB) with tapered fiber guiding holes (TFGHs) for precise and passive optical alignment of vertical-cavity surface-emitting laser (VCSEL)-to-multi mode fiber (MMF) and MMF-to-photodiode (PD). The co-planar waveguide (CPW) transmission line (Tline) was formed on the backside of silicon substrate to reduce the insertion loss of electrical data signal. The 4 channel VCSEL and PD array are attached at the end of CPW Tline using a flip-chip bonder and solder pad. The 12-channel ribbon fiber is simply inserted into the TFGHs of SiOB and is passively aligned to the VCSEL and PD in which no additional coupling optics are required. The fabricated BOSA shows high coupling efficiency and good performance with the clearly open eye patterns and a very low bit error rate of less than 10-12 order at a data rate of 10 Gb/s with a PRBS pattern of 231-1.

  16. Comparative study of the retinal nerve fibre layer thickness performed with optical coherence tomography and GDx scanning laser polarimetry in patients with primary open-angle glaucoma.

    PubMed

    Wasyluk, Jaromir T; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona

    2012-03-01

    We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18-70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in µm) differ significantly between GDx and all OCT devices. Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients.

  17. Isoelectric Bovine Serum Albumin: Robust Blocking Agent for Enhanced Performance in Optical-Fiber Based DNA Sensing.

    PubMed

    Wang, Ruoyu; Zhou, Xiaohong; Zhu, Xiyu; Yang, Chao; Liu, Lanhua; Shi, Hanchang

    2017-02-24

    Surface blocking is a well-known process for reducing unwanted nonspecific adsorption in sensor fabrication, especially important in the emerging field where DNA/RNA applied. Bovine serum albumin (BSA) is one of the most popular blocking agents with an isoelectric point at pH 4.6. Although it is widely recognized that the adsorption of a blocking agent is strongly affected by its net charge and the maximum adsorption is often observed under its isoelectric form, BSA has long been perfunctorily used for blocking merely in neutral solution, showing poor blocking performances in the optical-fiber evanescent wave (OFEW) based sensing toward DNA target. To meet this challenge, we first put forward the view that isoelectric BSA (iep-BSA) has the best blocking performance and use an OFEW sensor platform to demonstrate this concept. An optical-fiber was covalently modified with amino-DNA, and further coupled with the optical system to detect fluorophore labeled complementary DNA within the evanescent field. A dramatic improvement in the reusability of this DNA modified sensing surface was achieved with 120 stable detection cycles, which ensured accurate quantitative bioassay. As expected, the iep-BSA blocked OFEW system showed enhanced sensing performance toward target DNA with a detection limit of 125 pM. To the best of our knowledge, this is the highest number of regeneration cycles ever reported for a DNA immobilized optical-fiber surface. This study can also serve as a good reference and provide important implications for developing similar DNA-directed surface biosensors.

  18. Optical simulations of laser focusing for optimization of laser betatron

    NASA Astrophysics Data System (ADS)

    Stanke, L.; Thakur, A.; Šmíd, M.; Gu, Y. J.; Falk, K.

    2017-05-01

    This work presents optical simulations that are used to design a betatron driven by a short-pulse laser based on the Laser Wakefield Acceleration (LWFA) concept. These simulations explore how the optical setup and its components influence the performance of the betatron. The impact of phase irregularities induced by optical elements is investigated. In order to obtain a good estimate of the future performance of this design a combination of two distinct techniques are used - Field Tracing for optical simulations employing a combination of the Zemax and VirtualLab computational platforms for the laser beam propagation and focusing with the given optical system and particle-in-cell simulation (PIC) for simulating the short-pulse laser interaction with a gas target. The result of the optical simulations serves as an input for the PIC simulations. Application of Field Tracing in combination with the PIC for the purposes of high power laser facility introduces the new application for VirtualLab Fusion. Based on the result of these simulations an alternative design with a hole in the final folding mirror coupled with a spherical focusing mirror is considered in favour of more commonly used off-axis parabola focusing setup. Results are demonstrating, that the decrease of the irradiance due to the presence of the central hole in the folding mirror is negligible (9.69× 1019 W/cm2 for the case without the hole vs. 9.73× 1019 W/cm2 for the case with hole). However, decrease caused by the surface irregularities (surface RMS λ/4 , λ/20 and λ/40 ) is more significant and leads to the poor performance of particle production.

  19. Pixelized Device Control Actuators for Large Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J.; Bird, Ross W.; Shea, Brian; Chen, Peter

    2009-01-01

    A fully integrated, compact, adaptive space optic mirror assembly has been developed, incorporating new advances in ultralight, high-performance composite mirrors. The composite mirrors use Q-switch matrix architecture-based pixelized control (PMN-PT) actuators, which achieve high-performance, large adaptive optic capability, while reducing the weight of present adaptive optic systems. The self-contained, fully assembled, 11x11x4-in. (approx.= 28x28x10-cm) unit integrates a very-high-performance 8-in. (approx.=20-cm) optic, and has 8-kHz true bandwidth. The assembled unit weighs less than 15 pounds (=6.8 kg), including all mechanical assemblies, power electronics, control electronics, drive electronics, face sheet, wiring, and cabling. It requires just three wires to be attached (power, ground, and signal) for full-function systems integration, and uses a steel-frame and epoxied electronics. The three main innovations are: 1. Ultralightweight composite optics: A new replication method for fabrication of very thin composite 20-cm-diameter laminate face sheets with good as-fabricated optical figure was developed. The approach is a new mandrel resin surface deposition onto previously fabricated thin composite laminates. 2. Matrix (regenerative) power topology: Waveform correction can be achieved across an entire face sheet at 6 kHz, even for large actuator counts. In practice, it was found to be better to develop a quadrant drive, that is, four quadrants of 169 actuators behind the face sheet. Each quadrant has a single, small, regenerative power supply driving all 169 actuators at 8 kHz in effective parallel. 3. Q-switch drive architecture: The Q-switch innovation is at the heart of the matrix architecture, and allows for a very fast current draw into a desired actuator element in 120 counts of a MHz clock without any actuator coupling.

  20. Fiber-Optic Sensor-Based Remote Acoustic Emission Measurement in a 1000 °C Environment.

    PubMed

    Yu, Fengming; Okabe, Yoji

    2017-12-14

    Recently, the authors have proposed a remote acoustic emission (AE) measurement configuration using a sensitive fiber-optic Bragg grating (FBG) sensor. In the configuration, the FBG sensor was remotely bonded on a plate, and an optical fiber was used as the waveguide to propagate AE waves from the adhesive point to the sensor. The previous work (Yu et al., Smart Materials and Structures 25 (10), 105,033 (2016)) has clarified the sensing principle behind the special remote measurement system that enables accurate remote sensing of AE signals. Since the silica-glass optical fibers have a high heat-resistance exceeding 1000 °C, this work presents a preliminary high-temperature AE detection method by using the optical fiber-based ultrasonic waveguide to propagate the AE from a high-temperature environment to a room-temperature environment, in which the FBG sensor could function as the receiver of the guided wave. As a result, the novel measurement configuration successfully achieved highly sensitive and stable AE detection in an alumina plate at elevated temperatures in the 100 °C to 1000 °C range. Due to its good performance, this detection method will be potentially useful for the non-destructive testing that can be performed in high-temperature environments to evaluate the microscopic damage in heat-resistant materials.

  1. Determination of nonlinear optical properties by time resolved Z-scan in Nd-doped phosphate glass

    NASA Astrophysics Data System (ADS)

    de Souza, J. M.; de Lima, W. J.; Pilla, V.; Andrade, A. A.; Dantas, N. O.; Messias, D. N.

    2017-02-01

    In this work, we have used a Ti3+:Safira laser tuned at 803nm to performed time-resolved measurements using the Z-scan technique to characterize the nonlinear optical properties of phosphate glasses. The glass matrices, labeled PAN (P2O5-Al2O3-Na2CO3) and PANK (P2O5-Al2O3- Na2O-K2O), were doped with increasing Nd3+ concentration, ranging from 0.5 to 5 wt%. For both systems, we have seen that the optical nonlinearity has a linear dependence with the doping ion concentration. Therefore, we propose a new approach to obtain the parameters Δα and Δσ. All results obtained are in good agreement with others found in the literature.

  2. Surface Wave Cloak from Graded Refractive Index Nanocomposites

    PubMed Central

    La Spada, L.; McManus, T. M.; Dyke, A.; Haq, S.; Zhang, L.; Cheng, Q.; Hao, Y.

    2016-01-01

    Recently, a great deal of interest has been re-emerged on the possibility to manipulate surface waves, in particular, towards the THz and optical regime. Both concepts of Transformation Optics (TO) and metamaterials have been regarded as one of key enablers for such applications in applied electromagnetics. In this paper, we experimentally demonstrate for the first time a dielectric surface wave cloak from engineered gradient index materials to illustrate the possibility of using nanocomposites to control surface wave propagation through advanced additive manufacturing. The device is designed analytically and validated through numerical simulations and measurements, showing good agreement and performance as an effective surface wave cloak. The underlying design approach has much wider applications, which span from microwave to optics for the control of surface plasmon polaritons (SPPs) and radiation of nanoantennas. PMID:27416815

  3. Dry-Deposited Transparent Carbon Nanotube Film as Front Electrode in Colloidal Quantum Dot Solar Cells.

    PubMed

    Zhang, Xiaoliang; Aitola, Kerttu; Hägglund, Carl; Kaskela, Antti; Johansson, Malin B; Sveinbjörnsson, Kári; Kauppinen, Esko I; Johansson, Erik M J

    2017-01-20

    Single-walled carbon nanotubes (SWCNTs) show great potential as an alternative material for front electrodes in photovoltaic applications, especially for flexible devices. In this work, a press-transferred transparent SWCNT film was utilized as front electrode for colloidal quantum dot solar cells (CQDSCs). The solar cells were fabricated on both glass and flexible substrates, and maximum power conversion efficiencies of 5.5 and 5.6 %, respectively, were achieved, which corresponds to 90 and 92 % of an indium-doped tin oxide (ITO)-based device (6.1 %). The SWCNTs are therefore a very good alternative to the ITO-based electrodes especially for flexible solar cells. The optical electric field distribution and optical losses within the devices were simulated theoretically and the results agree with the experimental results. With the optical simulations that were performed it may also be possible to enhance the photovoltaic performance of SWCNT-based solar cells even further by optimizing the device configuration or by using additional optical active layers, thus reducing light reflection of the device and increasing light absorption in the quantum dot layer. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. [Posterior vitrectomy with gas endotamponade and retinal laser therapy in treatment of patients with macular complications of the optic disc pit].

    PubMed

    Cywiński, Adam; Kałużny, Jakub; Ferda, Daniela; Piwońska-Lobermajer, Anna

    2015-01-01

    Retrospective evaluation of functional and anatomical treatment outcomes in patients with macular cornplications of optic disc pit. 9 patients (eyes) underwent central posterior vitrectomy in conjunction with posterior vitreous detachment, retinal laser therapy to the optic disc pit area and endotamponade with expansile gas. It was followed by the patient's forced positioning (recommended for a few days especially at night), which ended the treatment protocol. Improved anatomical relationships, accompanied by functional improvement were achieved in each reported case. The resolution of macular lesions was slow, lasting even for several months. Too long delay in performing the surgery (over 5 months since the onset of visual impairment) was associated with the development of retinal complications, mainly macular hole formation, most likely caused by the long-term ischemia. The central posterior vitrectomy combined with posterior vitreous detachment, laser therapy, andd expansile gas tamponade offers good outcomes in patients with retinal complications of optic disc pit. Surgery performed shortly after the onset of visual dysfunction gives the best functional outcomes. Restoration of normal anatomical relationships is a long-term process. In some cases, though, these abnormalities may not resolve completely.

  5. High capacity aerodynamic air bearing (HCAB) for laser scanning applications

    NASA Astrophysics Data System (ADS)

    Coleman, Sean M.

    2005-08-01

    A high capacity aerodynamic air bearing (HCAB) has been developed for the laser scanning market. The need for increasing accuracies in the prepress and print plate-making market is causing a shift from ball bearing to air bearing scanners. Aerostatic air bearings are a good option to meet this demand for better performance however, these bearings tend to be expensive and require an additional air supply, filtering and drying system. Commercially available aerodynamic bearings have been typically limited to small mirrors, on the order of 3.5" diameter and less than 0.5" thick. A large optical facet, hence a larger mirror, is required to generate the high number of pixels needed for this type of application. The larger optic necessitated the development of a high capacity 'self-generating' or aerodynamic air bearing that would meet the needs of the optical scanning market. Its capacity is rated up to 6.0" diameter and 1.0" thick optics. The performance of an aerodynamic air bearing is better than a ball bearing and similar to an aerostatic air bearing. It retains the low costs while eliminating the need for ancillary equipment required by an aerostatic bearing.

  6. Preliminary calibration results of the wide angle camera of the imaging instrument OSIRIS for the Rosetta mission

    NASA Astrophysics Data System (ADS)

    Da Deppo, V.; Naletto, G.; Nicolosi, P.; Zambolin, P.; De Cecco, M.; Debei, S.; Parzianello, G.; Ramous, P.; Zaccariotto, M.; Fornasier, S.; Verani, S.; Thomas, N.; Barthol, P.; Hviid, S. F.; Sebastian, I.; Meller, R.; Sierks, H.; Keller, H. U.; Barbieri, C.; Angrilli, F.; Lamy, P.; Rodrigo, R.; Rickman, H.; Wenzel, K. P.

    2017-11-01

    Rosetta is one of the cornerstone missions of the European Space Agency for having a rendezvous with the comet 67P/Churyumov-Gerasimenko in 2014. The imaging instrument on board the satellite is OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System), a cooperation among several European institutes, which consists of two cameras: a Narrow (NAC) and a Wide Angle Camera (WAC). The WAC optical design is an innovative one: it adopts an all reflecting, unvignetted and unobstructed two mirror configuration which allows to cover a 12° × 12° field of view with an F/5.6 aperture and gives a nominal contrast ratio of about 10-4. The flight model of this camera has been successfully integrated and tested in our laboratories, and finally has been integrated on the satellite which is now waiting to be launched in February 2004. In this paper we are going to describe the optical characteristics of the camera, and to summarize the results so far obtained with the preliminary calibration data. The analysis of the optical performance of this model shows a good agreement between theoretical performance and experimental results.

  7. Developing optic technologies in Belarus

    NASA Astrophysics Data System (ADS)

    Rubanov, Alexander S.; Shkadarevich, Alexei P.

    2001-03-01

    In this work we give a retrospective analysis of the development of optical technologies in Belarus. In the post-war period a great scientific and technological potential has been built up in this sphere, highly skilled specialist have been trained and prestigious scientific and technical schools have appeared. Belarusian multiprofile optical industry is noticed to be capable of producing not only the materials and equipment for optical production but also optical goods of the highest level of complication. The characteristics of cosmic photoequipment, photogrammetric and cinetheodolite techniques, a variety of laser devices and optical goods for civic purposes are given as an example. The instances demonstrating the realization of unique optical projects are considered as well. High quality of Belarusian optical production makes it be much in demand in Russia, Japan, USA, Germany, France, China, Korea, Sweden, Spain, England, United Arab Emirates and other countries.

  8. Broadband polarization-independent and low-profile optically transparent metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Li, Long; Xi, Rui; Liu, Haixia; Lv, Zhiyong

    2018-05-01

    A transparent metamaterial absorber with simultaneously high optical transparency and broadband microwave absorption is presented in this paper. Consisting of a two-layer soda-lime glass substrate and three-layer patch-shaped indium tin oxide (ITO) films, the proposed absorber has advantages of broadband absorption with an absorptivity higher than 85% in the range from 6.1 to 22.1 GHz, good polarization insensitiveness, a high transparency, a low profile, and wide-incident-angle stability. A prototype of the proposed absorber is fabricated and experimentally measured to demonstrate its excellent performance. The measured results agree well with the theoretical design and numerical simulations.

  9. Versatile light-emitting-diode-based spectral response measurement system for photovoltaic device characterization.

    PubMed

    Hamadani, Behrang H; Roller, John; Dougherty, Brian; Yoon, Howard W

    2012-07-01

    An absolute differential spectral response measurement system for solar cells is presented. The system couples an array of light emitting diodes with an optical waveguide to provide large area illumination. Two unique yet complementary measurement methods were developed and tested with the same measurement apparatus. Good agreement was observed between the two methods based on testing of a variety of solar cells. The first method is a lock-in technique that can be performed over a broad pulse frequency range. The second method is based on synchronous multifrequency optical excitation and electrical detection. An innovative scheme for providing light bias during each measurement method is discussed.

  10. Reconfigurable radio-over-fiber system based on optical switch and tunable filter

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Yin, Rui; Ji, Wei; Sun, Kai; Zhang, Shicheng

    2017-09-01

    As the best candidate for wireless-access networks, radio-over-fiber (RoF) technology can carry a variety of business. It is necessary to provide differentiated services for different users, so the network needs to produce signals with different modulation formats and different frequencies. A reconfigurable RoF system based on a switch and tunable optical filter that can realize modulation format conversion and multiple frequency signal switching functions is designed. It has a good performance in terms of bit error rate and an eye diagram. The design can help to use radio frequency resources efficiently and make dynamic bandwidth resources controllable.

  11. Optical design of a street lamp based on dual-module chip-on-board LED arrays.

    PubMed

    Ge, Aiming; Cai, Jinlin; Chen, Dehua; Shu, Hongyun; Qiu, Peng; Wang, Junwei; Zhu, Ling

    2014-09-01

    We design and propose a compact street lamp based on dual-module chip-on-board LED. The street lamp is composed of six faceted reflectors. It can direct the luminous flux and form uniform illumination on the target area, and it effectively reduces power consumption. We have conducted both simulations and prototype measurements. The test results show good optical performance in that the uniformity of luminance reaches 0.58 for LED lamp zigzag arrangements and 0.60 for LED lamp double-side arrangements. The average luminance can fulfill the requirements in Chinese road lighting Standard CJJ45-2006.

  12. Gain-clamped semiconductor optical amplifiers based on compensating light: Theoretical model and performance analysis

    NASA Astrophysics Data System (ADS)

    Jia, Xin-Hong; Wu, Zheng-Mao; Xia, Guang-Qiong

    2006-12-01

    It is well known that the gain-clamped semiconductor optical amplifier (GC-SOA) based on lasing effect is subject to transmission rate restriction because of relaxation oscillation. The GC-SOA based on compensating effect between signal light and amplified spontaneous emission by combined SOA and fiber Bragg grating (FBG) can be used to overcome this problem. In this paper, the theoretical model on GC-SOA based on compensating light has been constructed. The numerical simulations demonstrate that good gain and noise figure characteristics can be realized by selecting reasonably the FBG insertion position, the peak reflectivity of FBG and the biasing current of GC-SOA.

  13. Ultrathin Single‐Crystalline Boron Nanosheets for Enhanced Electro‐Optical Performances

    PubMed Central

    Xu, Junqi; Chang, Yangyang; Gan, Lin; Ma, Ying

    2015-01-01

    Large‐scale single‐crystalline ultrathin boron nanosheets (UBNSs, ≈10 nm) are fabricated through an effective vapor–solid process via thermal decomposition of diborane. The UBNSs have obvious advantages over thicker boron nanomaterials in many aspects. Specifically, the UBNSs demonstrate excellent field emission performances with a low turn‐on field, E to, of 3.60 V μm−1 and a good stability. Further, the dependence of (turn‐on field) E to/(threshold field) E thr and effective work function, Φ e, on temperature is investigated and the possible mechanism of temperature‐dependent field emission phenomenon has been discussed. Moreover, electronic transport in a single UBNS reveals it to be an intrinsic p‐type semiconductor behavior with carrier mobility about 1.26 × 10−1 cm2 V−1 s−1, which is the best data in reported works. Interestingly, a multiconductive mechanism coexisting phenomenon has been explored based on the study of temperature‐dependent conductivity behavior of the UBNSs. Besides, the photodetector device fabricated from single‐crystalline UBNS demonstrates good sensitivity, reliable stability, and fast response, obviously superior to other reported boron nanomaterials. Such superior electronic‐optical performances are originated from the high quality of single crystal and large specific surface area of the UBNSs, suggesting the potential applications of the UBNSs in field‐emitters, interconnects, integrated circuits, and optoelectronic devices. PMID:27980947

  14. Filters for soft X-ray solar telescopes

    NASA Technical Reports Server (NTRS)

    Spiller, Eberhard; Grebe, Kurt; Golub, Leon

    1990-01-01

    Soft X-ray telescopes require filters that block visible and infrared light and have good soft X-ray transmission. The optical properties of possible materials are discussed, and the fabrication and testing methods for the filters used in a 10-inch normal incidence telescope for 63 A are described. The best performances in the 44-114-A wavelength range are obtained with foils of carbon and rhodium.

  15. Structure, spectroscopic properties and laser performance of Nd:YNbO4 at 1066 nm

    NASA Astrophysics Data System (ADS)

    Ding, Shoujun; Peng, Fang; Zhang, Qingli; Luo, Jianqiao; Liu, Wenpeng; Sun, Dunlu; Dou, Renqin; Sun, Guihua

    2016-12-01

    We have demonstrated continuous wave (CW) laser operation of Nd:YNbO4 crystal at 1066 nm for the first time. A maximum output power of 1.12 W with the incident power of 5.0 W is successfully achieved corresponding to an optical-to-optical conversion efficiency of 22.4% and a slope efficiency of 24.0%. The large absorption cross section (8.7 × 10-20 cm2) and wide absorption band (6 nm) at around 808 nm indicates the good pumping efficiency by laser diodes (LD). The small emission cross section (29 × 10-20 cm2) and relative long lifetime of the 4F3/2 → 4I11/2 transition indicates good energy storage capacity of Nd:YNbO4. Moreover, the raw materials of Nd:YNbO4 are stable, thus, it can grow high-quality and large-size by Czochralski (CZ) method. Therefore the Nd:YNbO4 crystal is a potentially new laser material suitable for LD pumping.

  16. LAI inversion from optical reflectance using a neural network trained with a multiple scattering model

    NASA Technical Reports Server (NTRS)

    Smith, James A.

    1992-01-01

    The inversion of the leaf area index (LAI) canopy parameter from optical spectral reflectance measurements is obtained using a backpropagation artificial neural network trained using input-output pairs generated by a multiple scattering reflectance model. The problem of LAI estimation over sparse canopies (LAI < 1.0) with varying soil reflectance backgrounds is particularly difficult. Standard multiple regression methods applied to canopies within a single homogeneous soil type yield good results but perform unacceptably when applied across soil boundaries, resulting in absolute percentage errors of >1000 percent for low LAI. Minimization methods applied to merit functions constructed from differences between measured reflectances and predicted reflectances using multiple-scattering models are unacceptably sensitive to a good initial guess for the desired parameter. In contrast, the neural network reported generally yields absolute percentage errors of <30 percent when weighting coefficients trained on one soil type were applied to predicted canopy reflectance at a different soil background.

  17. Flexible fabrication of biomimetic compound eye array via two-step thermal reflow of simply pre-modeled hierarchic microstructures

    NASA Astrophysics Data System (ADS)

    Huang, Shengzhou; Li, Mujun; Shen, Lianguan; Qiu, Jinfeng; Zhou, Youquan

    2017-06-01

    A flexible fabrication method for the biomimetic compound eye (BCE) array is proposed. In this method, a triple-layer sandwich-like coating configuration was introduced, and the required hierarchic microstructures are formed with a simple single-scan exposure in maskless digital lithography. Taking advantage of the difference of glass transition point (Tg) between photoresists of each layer, the pre-formed hierarchic microstructures are in turn reflowed to the curved substrate and the BCE ommatidia in a two-step thermal reflow process. To avoid affecting the spherical substrate formed in the first thermal reflow, a non-contact strategy was proposed in the second reflow process. The measurement results were in good agreement with the designed BCE profiles. Results also showed that the fabricated BCE had good performances in optical test. The presented method is flexible, convenient, low-cost and can easily adapt to the fabrications of other optical elements with hierarchic microstructures.

  18. Ion beam figuring of CVD silicon carbide mirrors

    NASA Astrophysics Data System (ADS)

    Gailly, P.; Collette, J.-P.; Fleury Frenette, K.; Jamar, C.

    2017-11-01

    Optical and structural elements made of silicon carbide are increasingly found in space instruments. Chemical vapor deposited silicon carbide (CVD-SiC) is used as a reflective coating on SiC optics in reason of its good behavior under polishing. The advantage of applying ion beam figuring (IBF) to CVD-SiC over other surface figure-improving techniques is discussed herein. The results of an IBF sequence performed at the Centre Spatial de Liège on a 100 mm CVD-SiC mirror are reported. The process allowed to reduce the mirror surface errors from 243 nm to 13 nm rms . Beside the surface figure, roughness is another critical feature to consider in order to preserve the optical quality of CVD-SiC . Thus, experiments focusing on the evolution of roughness were performed in various ion beam etching conditions. The roughness of samples etched at different depths down to 3 ≠m was determined with an optical profilometer. These measurements emphasize the importance of selecting the right combination of gas and beam energy to keep roughness at a low level. Kaufman-type ion sources are generally used to perform IBF but the performance of an end-Hall ion source in figuring CVD-SiC mirrors was also evaluated in this study. In order to do so, ion beam etching profiles obtained with the end-Hall source on CVD-SiC were measured and used as a basis for IBF simulations.

  19. The formation and optical properties of planar waveguide in laser crystal Nd:YGG by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Jiao, Yang; Guan, Jing; Fu, Gang

    2017-10-01

    As one kind of prominent laser crystal, Nd:Y3Ga5O12 (Nd:YGG) crystal has outstanding performance on laser excitation at multi-wavelength which have shown promising applications in optical communication field. In addition, Nd:YGG crystal has potential applications in medical field due to its ability of emit the laser at 1110 nm. Optical waveguide structure with high quality could improve the efficiency of laser emission. In this work, we fabricated the optical planar waveguide on Nd:YGG crystal by medium mass ion implantation which was convinced an effective method to realize a waveguide structure with superior optical properties. The sample is implanted by C ions at energy of 5.0 MeV with the fluence of 1 × 1015 ions/cm2. We researched the optical propagation properties in the Nd:YGG waveguide by end-face coupling and prism coupling method. The Nd ions fluorescent properties are obtained by a confocal micro-luminescence measurement. The fluorescent properties of Nd ions obtained good reservation after C ion implantation. Our work has reference value for the application of Nd:YGG crystal in the field of optical communication.

  20. A good performance watermarking LDPC code used in high-speed optical fiber communication system

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbo; Li, Chao; Zhang, Xiaoguang; Xi, Lixia; Tang, Xianfeng; He, Wenxue

    2015-07-01

    A watermarking LDPC code, which is a strategy designed to improve the performance of the traditional LDPC code, was introduced. By inserting some pre-defined watermarking bits into original LDPC code, we can obtain a more correct estimation about the noise level in the fiber channel. Then we use them to modify the probability distribution function (PDF) used in the initial process of belief propagation (BP) decoding algorithm. This algorithm was tested in a 128 Gb/s PDM-DQPSK optical communication system and results showed that the watermarking LDPC code had a better tolerances to polarization mode dispersion (PMD) and nonlinearity than that of traditional LDPC code. Also, by losing about 2.4% of redundancy for watermarking bits, the decoding efficiency of the watermarking LDPC code is about twice of the traditional one.

  1. Tunable nano-scale graphene-based devices in mid-infrared wavelengths composed of cylindrical resonators

    NASA Astrophysics Data System (ADS)

    Asgari, Somayyeh; Ghattan Kashani, Zahra; Granpayeh, Nosrat

    2018-04-01

    The performances of three optical devices including a refractive index sensor, a power splitter, and a 4-channel multi/demultiplexer based on graphene cylindrical resonators are proposed, analyzed, and simulated numerically by using the finite-difference time-domain method. The proposed sensor operates on the principle of the shift in resonance wavelength with a change in the refractive index of dielectric materials. The sensor sensitivity has been numerically derived. In addition, the performances of the power splitter and the multi/demultiplexer based on the variation of the resonance wavelengths of cylindrical resonator have been thoroughly investigated. The simulation results are in good agreement with the theoretical ones. Our studies demonstrate that the graphene based ultra-compact, nano-scale devices can be improved to be used as photonic integrated devices, optical switching, and logic gates.

  2. Estimating Forest Aboveground Biomass by Combining Optical and SAR Data: A Case Study in Genhe, Inner Mongolia, China

    PubMed Central

    Shao, Zhenfeng; Zhang, Linjing

    2016-01-01

    Estimation of forest aboveground biomass is critical for regional carbon policies and sustainable forest management. Passive optical remote sensing and active microwave remote sensing both play an important role in the monitoring of forest biomass. However, optical spectral reflectance is saturated in relatively dense vegetation areas, and microwave backscattering is significantly influenced by the underlying soil when the vegetation coverage is low. Both of these conditions decrease the estimation accuracy of forest biomass. A new optical and microwave integrated vegetation index (VI) was proposed based on observations from both field experiments and satellite (Landsat 8 Operational Land Imager (OLI) and RADARSAT-2) data. According to the difference in interaction between the multispectral reflectance and microwave backscattering signatures with biomass, the combined VI (COVI) was designed using the weighted optical optimized soil-adjusted vegetation index (OSAVI) and microwave horizontally transmitted and vertically received signal (HV) to overcome the disadvantages of both data types. The performance of the COVI was evaluated by comparison with those of the sole optical data, Synthetic Aperture Radar (SAR) data, and the simple combination of independent optical and SAR variables. The most accurate performance was obtained by the models based on the COVI and optical and microwave optimal variables excluding OSAVI and HV, in combination with a random forest algorithm and the largest number of reference samples. The results also revealed that the predictive accuracy depended highly on the statistical method and the number of sample units. The validation indicated that this integrated method of determining the new VI is a good synergistic way to combine both optical and microwave information for the accurate estimation of forest biomass. PMID:27338378

  3. Diffusion tensor imaging of the optic tracts in multiple sclerosis: association with retinal thinning and visual disability.

    PubMed

    Dasenbrock, Hormuzdiyar H; Smith, Seth A; Ozturk, Arzu; Farrell, Sheena K; Calabresi, Peter A; Reich, Daniel S

    2011-04-01

    Visual disability is common in multiple sclerosis, but its relationship to abnormalities of the optic tracts remains unknown. Because they are only rarely affected by lesions, the optic tracts may represent a good model for assessing the imaging properties of normal-appearing white matter in multiple sclerosis. Whole-brain diffusion tensor imaging was performed on 34 individuals with multiple sclerosis and 26 healthy volunteers. The optic tracts were reconstructed by tractography, and tract-specific diffusion indices were quantified. In the multiple-sclerosis group, peripapillary retinal nerve-fiber-layer thickness and total macular volume were measured by optical coherence tomography, and visual acuity at 100%, 2.5%, and 1.25% contrast was examined. After adjusting for age and sex, optic-tract mean and perpendicular diffusivity were higher (P=.002) in multiple sclerosis. Lower optic-tract fractional anisotropy was correlated with retinal nerve-fiber-layer thinning (r=.51, P=.003) and total-macular-volume reduction (r=.59, P=.002). However, optic-tract diffusion indices were not specifically correlated with visual acuity or with their counterparts in the optic radiation. Optic-tract diffusion abnormalities are associated with retinal damage, suggesting that both may be related to optic-nerve injury, but do not appear to contribute strongly to visual disability in multiple sclerosis. Copyright © 2010 by the American Society of Neuroimaging.

  4. Diffusion Tensor Imaging of the Optic Tracts in Multiple Sclerosis: Association with Retinal Thinning and Visual Disability

    PubMed Central

    Dasenbrock, Hormuzdiyar H.; Smith, Seth A.; Ozturk, Arzu; Farrell, Sheena K.; Calabresi, Peter A.; Reich, Daniel S.

    2009-01-01

    Background and purpose Visual disability is common in multiple sclerosis, but its relationship to abnormalities of the optic tracts remains unknown. Because they are only rarely affected by lesions, the optic tracts may represent a good model for assessing the imaging properties of normal-appearing white matter in multiple sclerosis. Methods Whole-brain diffusion tensor imaging was performed on 34 individuals with multiple sclerosis and 26 healthy volunteers. The optic tracts were reconstructed by tractography, and tract-specific diffusion indices were quantified. In the multiple-sclerosis group, peripapillary retinal nerve-fiber-layer thickness and total macular volume were measured by optical coherence tomography, and visual acuity at 100%, 2.5%, and 1.25% contrast was examined. Results After adjusting for age and sex, optic-tract mean and perpendicular diffusivity were higher (p=0.002) in multiple sclerosis. Lower optic-tract fractional anisotropy was correlated with retinal nerve-fiber-layer thinning (r=0.51, p=0.003) and total-macular-volume reduction (r=0.59, p=0.002). However, optic-tract diffusion indices were not specifically correlated with visual acuity or with their counterparts in the optic radiation. Conclusions Optic-tract diffusion abnormalities are associated with retinal damage, suggesting that both may be related to optic-nerve injury, but do not appear to contribute strongly to visual disability in multiple sclerosis. PMID:20331501

  5. Anti-reflection coatings on large area glass sheets

    NASA Technical Reports Server (NTRS)

    Pastirik, E.

    1980-01-01

    Antireflective coatings which may be suitable for use on the covers of photovoltaic solar modules can be easily produced by a dipping process. The coatings are applied to glass by drawing sheets of glass vertically out of dilute aqueous sodium silicate solutions at a constant speed, allowing the adherent liquid film to dry, then exposing the dried film to concentrated sulfuric acid, followed by a water rinse and dry. The process produces coatings of good optical performance (96.7 percent peak transmission at 0.540 mu M wavelength) combined with excellent stain and soil resistance, and good resistance to abrasion. The process is reproduceable and easily controlled.

  6. Low-loss optical waveguides in β-BBO crystal fabricated by femtosecond-laser writing

    NASA Astrophysics Data System (ADS)

    Li, Ziqi; Cheng, Chen; Romero, Carolina; Lu, Qingming; Vázquez de Aldana, Javier Rodríguez; Chen, Feng

    2017-11-01

    We report on the fabrication and characterization of β-BBO depressed cladding waveguides fabricated by femtosecond-laser writing with no significant changes in the waveguide lattice microstructure. The waveguiding properties and the propagation losses of the cladding structures are investigated, showing good transmission properties at wavelengths of 400 and 800 nm along TM polarization. The minimum propagation losses are measured to be as low as 0.19 dB/cm at wavelength of 800 nm. The well-preserved waveguide lattice microstructure and good guiding performances with low propagation losses suggest the potential applications of the cladding waveguides in β-BBO crystal as novel integrated photonic devices.

  7. Bright color optical switching device by polymer network liquid crystal with a specular reflector.

    PubMed

    Lee, Gae Hwang; Hwang, Kyu Young; Jang, Jae Eun; Jin, Yong Wan; Lee, Sang Yoon; Jung, Jae Eun

    2011-07-04

    The color optical switching device by polymer network liquid crystal (PNLC) with color filter on a specular reflector shows excellent performance; white reflectance of 22%, color gamut of 32%, and contrast ratio up to 50:1 in reflective mode measurement. The view-angle dependence of the reflectance can be adjusted by changing the PNLC thickness. The color chromaticity shown by the device is close to the limit value of color filters, and its value nearly remains with respect to the operating voltage. These optical properties of the device can be explained from the prediction based on multiple interactions between the light and the droplets of liquid crystal. The high reflectance, vivid color image, and moderate responds time allow the PNLC device to drive good color moving image. It can widely extend the applications of the reflective device.

  8. Ultra-wide-range measurements of thin-film filter optical density over the visible and near-infrared spectrum.

    PubMed

    Lequime, Michel; Liukaityte, Simona; Zerrad, Myriam; Amra, Claude

    2015-10-05

    We present the improved structure and operating principle of a spectrophotometric mean that allows us for the recording of the transmittance of a thin-film filter over an ultra-wide range of optical densities (from 0 to 11) between 400 and 1000 nm. The operation of this apparatus is based on the combined use of a high power supercontinuum laser source, a tunable volume hologram filter, a standard monochromator and a scientific grade CCD camera. The experimentally recorded noise floor is in good accordance with the optical density values given by the theoretical approach. A demonstration of the sensitivity gain provided by this new set-up with respect to standard spectrophotometric means is performed via the characterization of various types of filters (band-pass, long-pass, short-pass, and notch).

  9. Comparative study of the retinal nerve fibre layer thickness performed with optical coherence tomography and GDx scanning laser polarimetry in patients with primary open-angle glaucoma

    PubMed Central

    Wasyluk, Jaromir T.; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona

    2012-01-01

    Summary Background We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Material/Methods Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18–70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. Results The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in μm) differ significantly between GDx and all OCT devices. Conclusions Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients. PMID:22367131

  10. Optical performance of W/B4C multilayer mirror in the soft x-ray region

    NASA Astrophysics Data System (ADS)

    Pradhan, P. C.; Majhi, A.; Nayak, M.

    2018-03-01

    W/B4C x-ray multilayers (MLs) with 300 layer pairs and a period in the range of d = 2-1.6 nm are fabricated and investigated for the x-ray optical element in the soft x-ray regime. The structural analyses of the MLs are carried out by using hard x-ray reflectivity (HXR) measurements at 8.047 keV. Well-defined successive higher order Bragg peaks (up to 3rd order) in HXR data collected up to glancing incidence angles of ˜9° reveal a good quality of the periodic structure. The ML mirrors have an average interface width of ˜0.35 nm and have a compressive residual stress of ˜0.183 GPa and 0. 827 GPa for d = 1.62 nm and d = 1.98 nm, respectively. MLs maintain structural stability over a long time, with a slight increase in interface widths of the W layers by 0.1 nm due to self-diffusion. Soft x-ray reflectivity (SXR) performances are evaluated in the energy range of 650 to 1500 eV. At energy ˜ 1489 eV, measured reflectivities (energy resolution, ΔE) are ˜ 10% (19 eV) and 4.5% (13 eV) at glancing incident angles of 12.07° and 15° for MLs having periods of 1.98 nm and 1.62 nm, respectively. The optical performance from 1600 eV to 4500 eV is theoretically analysed by considering the measured structural parameters. The structure-stress-optical performance is correlated on the basis of the mechanism of film growth. The implications of W/B4C MLs are discussed, particularly with respect to the development of ML optics with high spectral selectivity and reflectance for soft x-ray instruments.

  11. Optimizing ITO for incorporation into multilayer thin film stacks for visible and NIR applications

    NASA Astrophysics Data System (ADS)

    Roschuk, Tyler; Taddeo, David; Levita, Zachary; Morrish, Alan; Brown, Douglas

    2017-05-01

    Indium Tin Oxide, ITO, is the industry standard for transparent conductive coatings. As such, the common metrics for characterizing ITO performance are its transmission and conductivity/resistivity (or sheet resistance). In spite of its recurrent use in a broad range of technological applications, the performance of ITO itself is highly variable, depending on the method of deposition and chamber conditions, and a single well defined set of properties does not exist. This poses particular challenges for the incorporation of ITO in complex optical multilayer stacks while trying to maintain electronic performance. Complicating matters further, ITO suffers increased absorption losses in the NIR - making the ability to incorporate ITO into anti-reflective stacks crucial to optimizing overall optical performance when ITO is used in real world applications. In this work, we discuss the use of ITO in multilayer thin film stacks for applications from the visible to the NIR. In the NIR, we discuss methods to analyze and fine tune the film properties to account for, and minimize, losses due to absorption and to optimize the overall transmission of the multilayer stacks. The ability to obtain high transmission while maintaining good electrical properties, specifically low resistivity, is demonstrated. Trade-offs between transmission and conductivity with variation of process parameters are discussed in light of optimizing the performance of the final optical stack and not just with consideration to the ITO film itself.

  12. Component and Technology Development for Advanced Liquid Metal Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Mark

    2017-01-30

    The following report details the significant developments to Sodium Fast Reactor (SFR) technologies made throughout the course of this funding. This report will begin with an overview of the sodium loop and the improvements made over the course of this research to make it a more advanced and capable facility. These improvements have much to do with oxygen control and diagnostics. Thus a detailed report of advancements with respect to the cold trap, plugging meter, vanadium equilibration loop, and electrochemical oxygen sensor is included. Further analysis of the university’s moving magnet pump was performed and included in a section ofmore » this report. A continuous electrical resistance based level sensor was built and tested in the sodium with favorable results. Materials testing was done on diffusion bonded samples of metal and the results are presented here as well. A significant portion of this work went into the development of optical fiber temperature sensors which could be deployed in an SFR environment. Thus, a section of this report presents the work done to develop an encapsulation method for these fibers inside of a stainless steel capillary tube. High temperature testing was then done on the optical fiber ex situ in a furnace. Thermal response time was also explored with the optical fiber temperature sensors. Finally these optical fibers were deployed successfully in a sodium environment for data acquisition. As a test of the sodium deployable optical fiber temperature sensors they were installed in a sub-loop of the sodium facility which was constructed to promote the thermal striping effect in sodium. The optical fibers performed exceptionally well, yielding unprecedented 2 dimensional temperature profiles with good temporal resolution. Finally, this thermal striping loop was used to perform cross correlation velocimetry successfully over a wide range of flow rates.« less

  13. WDM hybrid microoptical transceiver with Bragg volume grating

    NASA Astrophysics Data System (ADS)

    Jeřábek, Vitezslav; Armas, Julio; Mareš, David; Prajzler, Václav

    2012-02-01

    The paper presents the design, simulation and construction results of the wavelength division multiplex bidirectional transceiver module (WDM transceiver) for the passive optical network (PON) of a fiber to the home (FTTH) topology network. WDM transceiver uses a microoptical hybrid integration technology with volume holographic Bragg grating triplex filter -VHGT and a collimation lenses imagine system for wavelength multiplexing/ demultiplexing. This transmission type VHGT filter has high diffraction angle, very low insertion loses and optical crosstalk, which guide to very good technical parameters of transceiver module. WDM transceiver has been constructed using system of a four micromodules in the new circle topology. The optical micromodule with VHGT filter and collimation and decollimation lenses, two optoelectronics microwave receiver micromodules for receiving download information (internet and digital TV signals) and optoelectronic transmitter micromodule for transmitting upload information. In the paper is presented the optical analysis of the optical imagine system by ray-transfer matrix. We compute and measure VHGT characteristics such as diffraction angle, diffraction efficiency and diffraction crosstalk of the optical system for 1310, 1490 and 1550 nm wavelength radiation. For the design of optoelectronic receiver micromodule was used the low signal electrical equivalent circuit for the dynamic performance signal analysis. In the paper is presented the planar form WDM transceiver with polymer optical waveguides and two stage interference demultiplexing optical filter as well.

  14. WDM hybrid microoptical transceiver with Bragg volume grating

    NASA Astrophysics Data System (ADS)

    Jeřábek, Vitezslav; Armas, Julio; Mareš, David; Prajzler, Václav

    2011-09-01

    The paper presents the design, simulation and construction results of the wavelength division multiplex bidirectional transceiver module (WDM transceiver) for the passive optical network (PON) of a fiber to the home (FTTH) topology network. WDM transceiver uses a microoptical hybrid integration technology with volume holographic Bragg grating triplex filter -VHGT and a collimation lenses imagine system for wavelength multiplexing/ demultiplexing. This transmission type VHGT filter has high diffraction angle, very low insertion loses and optical crosstalk, which guide to very good technical parameters of transceiver module. WDM transceiver has been constructed using system of a four micromodules in the new circle topology. The optical micromodule with VHGT filter and collimation and decollimation lenses, two optoelectronics microwave receiver micromodules for receiving download information (internet and digital TV signals) and optoelectronic transmitter micromodule for transmitting upload information. In the paper is presented the optical analysis of the optical imagine system by ray-transfer matrix. We compute and measure VHGT characteristics such as diffraction angle, diffraction efficiency and diffraction crosstalk of the optical system for 1310, 1490 and 1550 nm wavelength radiation. For the design of optoelectronic receiver micromodule was used the low signal electrical equivalent circuit for the dynamic performance signal analysis. In the paper is presented the planar form WDM transceiver with polymer optical waveguides and two stage interference demultiplexing optical filter as well.

  15. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection.

    PubMed

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-07-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications.

  16. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection

    PubMed Central

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-01-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications. PMID:26203382

  17. Bidirectional fiber-wireless and fiber-IVLLC integrated system based on polarization-orthogonal modulation scheme.

    PubMed

    Lu, Hai-Han; Li, Chung-Yi; Chen, Hwan-Wei; Ho, Chun-Ming; Cheng, Ming-Te; Huang, Sheng-Jhe; Yang, Zih-Yi; Lin, Xin-Yao

    2016-07-25

    A bidirectional fiber-wireless and fiber-invisible laser light communication (IVLLC) integrated system that employs polarization-orthogonal modulation scheme for hybrid cable television (CATV)/microwave (MW)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and demonstrated. To our knowledge, it is the first one that adopts a polarization-orthogonal modulation scheme in a bidirectional fiber-wireless and fiber-IVLLC integrated system with hybrid CATV/MW/MMW/BB signal. For downlink transmission, carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) perform well over 40-km single-mode fiber (SMF) and 10-m RF/50-m optical wireless transport scenarios. For uplink transmission, good BER performance is obtained over 40-km SMF and 50-m optical wireless transport scenario. Such a bidirectional fiber-wireless and fiber-IVLLC integrated system for hybrid CATV/MW/MMW/BB signal transmission will be an attractive alternative for providing broadband integrated services, including CATV, Internet, and telecommunication services. It is shown to be a prominent one to present the advancements for the convergence of fiber backbone and RF/optical wireless feeder.

  18. GAUSSIAN BEAM LASER RESONATOR PROGRAM

    NASA Technical Reports Server (NTRS)

    Cross, P. L.

    1994-01-01

    In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.

  19. Optomechanical design of a buckling cavity in a low-cost high-performance ferruleless field-installable single-mode fiber connector

    NASA Astrophysics Data System (ADS)

    Ebraert, Evert; Van Erps, Jürgen; Beri, Stefano; Watté, Jan; Thienpont, Hugo

    2014-10-01

    To boost the deployment of fiber-to-the-home networks in order to meet the ever-increasing demand for bandwidth, there is a strong need for single-mode fiber (SMF) connectors which combine low insertion loss with field installability. Shifting from ferrule-based to ferruleless connectors can reduce average insertion losses appreciably and minimize modal noise interference. We propose a ferruleless connector and adaptor in which physical contact between two inline fibers is ensured by at least one fiber being in a buckled state. To this end, we design a buckling cavity in which the SMF can buckle in a controlled way to ensure good optical performance as well as mechanical stability. This design is based on both mechanical and optical considerations. Finite element analysis suggests that mechanically a minimal buckling cavity length of 17 mm is required, while the height of the cavity should be chosen such that the buckled SMF is not mechanically confined to ensure buckling in a first-order mode. The optical bending loss in the buckled SMF is calculated using a fully vectorial mode solver, showing that a minimal buckling cavity length of 20 mm is necessary to keep the excess optical loss from bending below 0.1 dB. Both our optical and mechanical simulation results are experimentally verified.

  20. Optical and nanomechanical study of anti-scratch layers on polycarbonate lenses

    NASA Astrophysics Data System (ADS)

    Charitidis, C.; Laskarakis, A.; Kassavetis, S.; Gravalidis, C.; Logothetidis, S.

    2004-07-01

    In recent years, as the optical-electronic industry developed, polymeric materials were gradually increasing in importance. Polycarbonate (PC) is a good candidate for eyewear applications due to its low weight and transparency. In the case of PC lenses, the deposition of anti-scratch (AS) coatings on the polymer surface is essential for the improvement of the mechanical behavior of the lens. In this work, we present a detailed investigation of the optical and nanomechanical properties of a PC based optical lens and coated by an AS coating as a protective overcoat. The study of the effect of the AS coating on the optical response of the PC lens has been performed by the use of Spectroscopic Ellipsometry (SE) in the IR spectral region, where the characteristic features corresponding to the different bonding configuration of the PC lens and the AS coating were studied. Also, the nanomechanical study of the PC lens, before and after the deposition of the AS coating, performed by nanoindentation measurements revealed the significant enhancement of the mechanical response of the AS/PC lens. More specifically, the AS/PC lens is characterized by enhanced values of hardness and elastic modulus. Finally, the use of AS coating has found to lead to a better scratch resistance and to the reduction of the coefficient of friction (μ) of the PC lens.

  1. Testing of a Fiber Optic Wear, Erosion and Regression Sensor

    NASA Technical Reports Server (NTRS)

    Korman, Valentin; Polzin, Kurt A.

    2011-01-01

    The nature of the physical processes and harsh environments associated with erosion and wear in propulsion environments makes their measurement and real-time rate quantification difficult. A fiber optic sensor capable of determining the wear (regression, erosion, ablation) associated with these environments has been developed and tested in a number of different applications to validate the technique. The sensor consists of two fiber optics that have differing attenuation coefficients and transmit light to detectors. The ratio of the two measured intensities can be correlated to the lengths of the fiber optic lines, and if the fibers and the host parent material in which they are embedded wear at the same rate the remaining length of fiber provides a real-time measure of the wear process. Testing in several disparate situations has been performed, with the data exhibiting excellent qualitative agreement with the theoretical description of the process and when a separate calibrated regression measurement is available good quantitative agreement is obtained as well. The light collected by the fibers can also be used to optically obtain the spectra and measure the internal temperature of the wear layer.

  2. Response of optically stimulated luminescence dosimeters subjected to X-rays in diagnostic energy range

    NASA Astrophysics Data System (ADS)

    Musa, Y.; Hashim, S.; Karim, M. K. A.; Bakar, K. A.; Ang, W. C.; Salehhon, N.

    2017-05-01

    The use of optically stimulated luminescence (OSL) for dosimetry applications has recently increased considerably due to availability of commercial OSL dosimeters (nanoDots) for clinical use. The OSL dosimeter has a great potential to be used in clinical dosimetry because of its prevailing advantages in both handling and application. However, utilising nanoDot OSLDs for dose measurement in diagnostic radiology can only be guaranteed when the performance and characteristics of the dosimeters are apposite. In the present work, we examined the response of commercially available nanoDot OSLD (Al2O3:C) subjected to X-rays in general radiography. The nanoDots response with respect to reproducibility, dose linearity and signal depletion were analysed using microStar reader (Landauer, Inc., Glenwood, IL). Irradiations were performed free-in-air using 70, 80 and 120 kV tube voltages and tube currents ranging from 10 - 100 mAs. The results showed that the nanoDots exhibit good linearity and reproducibility when subjected to diagnostic X-rays, with coefficient of variations (CV) ranging between 2.3% to 3.5% representing a good reproducibility. The results also indicated average of 1% signal reduction per readout. Hence, the nanoDots showed a promising potential for dose measurement in general X-ray procedure.

  3. Influence of material and haptic design on the mechanical stability of intraocular lenses by means of finite-element modeling

    NASA Astrophysics Data System (ADS)

    Remón, Laura; Siedlecki, Damian; Cabeza-Gil, Iulen; Calvo, Begoña

    2018-03-01

    Intraocular lenses (IOLs) are used in the cataract treatment for surgical replacement of the opacified crystalline lens. Before being implanted they have to pass the strict quality control to guarantee a good biomechanical stability inside the capsular bag, avoiding the rotation, and to provide a good optical quality. The goal of this study was to investigate the influence of the material and haptic design on the behavior of the IOLs under dynamic compression condition. For this purpose, the strain-stress characteristics of the hydrophobic and hydrophilic materials were estimated experimentally. Next, these data were used as the input for a finite-element model (FEM) to analyze the stability of different IOL haptic designs, according to the procedure described by the ISO standards. Finally, the simulations of the effect of IOL tilt and decentration on the optical performance were performed in an eye model using a ray-tracing software. The results suggest the major importance of the haptic design rather than the material on the postoperative behavior of an IOL. FEM appears to be a powerful tool for numerical studies of the biomechanical properties of IOLs and it allows one to help in the design phase to the manufacturers.

  4. Characterization of the ELIMED prototype permanent magnet quadrupole system

    NASA Astrophysics Data System (ADS)

    Russo, A. D.; Schillaci, F.; Pommarel, L.; Romano, F.; Amato, A.; Amico, A. G.; Calanna, A.; Cirrone, G. A. P.; Costa, M.; Cuttone, G.; Amato, C.; De Luca, G.; Flacco, F. A.; Gallo, G.; Giove, D.; Grmek, A.; La Rosa, G.; Leanza, R.; Maggiore, M.; Malka, V.; Milluzzo, G.; Petringa, G.; Pipek, J.; Scuderi, V.; Vauzour, B.; Zappalà, E.

    2017-01-01

    The system described in this work is meant to be a prototype of a more performing one that will be installed at ELI-Beamlines in Prague for the collection of ions produced after the interaction Laser-target, [1]. It has been realized by the researchers of INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) and SIGMAPHI, a French company, using a system of Permanent Magnet Quadrupoles (PMQs), [2]. The final system that will be installed in Prague is designed for protons and carbons up to 60 MeV/u, around 10 times more than the energies involved in the present work. The prototype, shown in this work, has been tested in collaboration with the SAPHIR experimental facility group at LOA (Laboratoire d'Optique Appliqueé) in Paris using a 200 TW Ti:Sapphire laser system. The purpose of this work is to validate the design and the performances of this large and compact bore system and to characterize the beam produced after the interaction laser-target and its features. Moreover, the optics simulations have been compared with a real beam shape on a GAFChromic film. The procedure used during the experimental campaign and the most relevant results are reported here demonstrating a good agreement with the simulations and a good control on the beam optics.

  5. Study on internal to surface fingerprint correlation using optical coherence tomography and internal fingerprint extraction

    NASA Astrophysics Data System (ADS)

    Darlow, Luke Nicholas; Connan, James

    2015-11-01

    Surface fingerprint scanners are limited to a two-dimensional representation of the fingerprint topography, and thus, are vulnerable to fingerprint damage, distortion, and counterfeiting. Optical coherence tomography (OCT) scanners are able to image (in three dimensions) the internal structure of the fingertip skin. Techniques for obtaining the internal fingerprint from OCT scans have since been developed. This research presents an internal fingerprint extraction algorithm designed to extract high-quality internal fingerprints from touchless OCT fingertip scans. Furthermore, it serves as a correlation study between surface and internal fingerprints. Provided the scanned region contains sufficient fingerprint information, correlation to the surface topography is shown to be good (74% have true matches). The cross-correlation of internal fingerprints (96% have true matches) is substantial that internal fingerprints can constitute a fingerprint database. The internal fingerprints' performance was also compared to the performance of cropped surface counterparts, to eliminate bias owing to information level present, showing that the internal fingerprints' performance is superior 63.6% of the time.

  6. Probing optimal measurement configuration for optical scatterometry by the multi-objective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Xiuguo; Gu, Honggang; Jiang, Hao; Zhang, Chuanwei; Liu, Shiyuan

    2018-04-01

    Measurement configuration optimization (MCO) is a ubiquitous and important issue in optical scatterometry, whose aim is to probe the optimal combination of measurement conditions, such as wavelength, incidence angle, azimuthal angle, and/or polarization directions, to achieve a higher measurement precision for a given measuring instrument. In this paper, the MCO problem is investigated and formulated as a multi-objective optimization problem, which is then solved by the multi-objective genetic algorithm (MOGA). The case study on the Mueller matrix scatterometry for the measurement of a Si grating verifies the feasibility of the MOGA in handling the MCO problem in optical scatterometry by making a comparison with the Monte Carlo simulations. Experiments performed at the achieved optimal measurement configuration also show good agreement between the measured and calculated best-fit Mueller matrix spectra. The proposed MCO method based on MOGA is expected to provide a more general and practical means to solve the MCO problem in the state-of-the-art optical scatterometry.

  7. Phase-based, high spatial resolution and distributed, static and dynamic strain sensing using Brillouin dynamic gratings in optical fibers.

    PubMed

    Bergman, Arik; Langer, Tomi; Tur, Moshe

    2017-03-06

    A novel technique combining Brillouin phase-shift measurements with Brillouin dynamic gratings (BDGs) reflectometry in polarization-maintaining fibers is presented here for the first time. While a direct measurement of the optical phase in standard BDG setups is impractical due to non-local phase contributions, their detrimental effect is reduced by ~4 orders of magnitude through the coherent addition of Stokes and anti-Stokes reflections from two counter-propagating BDGs in the fiber. The technique advantageously combines the high-spatial-resolution of BDGs reflectometry with the increased tolerance to optical power fluctuations of phasorial measurements, to enhance the performance of fiber-optic strain sensors. We demonstrate a distributed measurement (20cm spatial-resolution) of both static and dynamic (5kHz of vibrations at a sampling rate of 1MHz) strain fields acting on the fiber, in good agreement with theory and (for the static case) with the results of commercial reflectometers.

  8. Optically controlled low-power on-off mode resonant tunneling oscillator with a heterojunction phototransistor switch.

    PubMed

    Lee, Kiwon; Park, Jaehong; Lee, Jooseok; Yang, Kyounghoon

    2015-03-15

    We report an optically controlled low-power on-off mode oscillator based on a resonant tunneling diode (RTD) that is monolithically integrated with a heterojunction phototransistor (HPT) optical switch. In order to achieve a low-power operation at a wavelength of 1.55 μm an InP-based quantum-effect tunneling diode is used for microwave signal generation based on a unique negative differential conductance (NDC) characteristic of the RTD at a low applied voltage. In addition, the high-gain HPT is used for converting incident optical data to an electrical data signal. The fabricated on-off mode oscillator shows a low-power consumption of 5 mW and a high-data-rate of 1  Gb/s at an oscillation frequency of 4.7 GHz. A good energy efficiency of 5  pJ/bit has been obtained due to the low DC power consumption along with high-data-rate performance of the RTD-based optoelectronic integration scheme.

  9. Preparation and characterization of a poly (1, 4-phenylenevinylene) derivative-based hybrid thin film nanocomposites with enhanced performance

    NASA Astrophysics Data System (ADS)

    Belhaj, Marwa; Jemmeli, Dhouha; Dridi, Cherif; Ben Salem, Balkiss; Jaballah, Najmeddine; Majdoub, Mustapha; Yatskiv, Roman; Grym, Jan

    2018-05-01

    In this study, a poly (1, 4-phenylenevinylene) derivative (PPV-C6) was synthesized via Gilch polycondensation, and its electrochemical and optical characteristics were determined by cyclic voltammetry analysis, ultraviolet-visible, and photoluminescence spectroscopy. The polymer exhibited semiconductor behavior with an optical band gap of about 2.02 eV. Thin-film hybrid nanocomposites were prepared based on PPV-C6 with a large range of concentrations of sol-gel synthesized surfactant-free ZnO nanoparticles (n-ZnO). We investigated the photophysical properties of nanocomposites with different weight ratios of n-ZnO. The optical absorption spectra of PPV-C6: n-ZnO nanocomposites exhibited moderate variation in terms of the optical band gap energy with respect to the pristine polymer. Photoluminescence spectra indicated that the optimum n-ZnO concentration was about 50 wt% to achieve photoluminescence quenching, which corresponded to the most homogeneous surface and efficient charge transfer due to optimal exciton dissociation. We established good correlations between the investigated properties.

  10. Advances in Optical Fiber-Based Faraday Rotation Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, A D; McHale, G B; Goerz, D A

    2009-07-27

    In the past two years, we have used optical fiber-based Faraday Rotation Diagnostics (FRDs) to measure pulsed currents on several dozen capacitively driven and explosively driven pulsed power experiments. We have made simplifications to the necessary hardware for quadrature-encoded polarization analysis, including development of an all-fiber analysis scheme. We have developed a numerical model that is useful for predicting and quantifying deviations from the ideal diagnostic response. We have developed a method of analyzing quadrature-encoded FRD data that is simple to perform and offers numerous advantages over several existing methods. When comparison has been possible, we have seen good agreementmore » with our FRDs and other current sensors.« less

  11. Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode.

    PubMed

    Yeh, Chien-Hung; Shih, Fu Y; Wang, Chia H; Chow, Chi W; Chi, Sien

    2008-01-07

    We propose and experimentally demonstrate a continuous wave (CW) tunable-wavelength fiber laser using self-seeding Fabry-Perot laser diode (FP-LD) without optical amplifier inside gain cavity. By employing a tunable bandpass filter (TBF) and a fiber reflected mirror (FRM) within a gain cavity, the fiber laser can lase a single-longitudinal wavelength due to the self-seeding operation. The proposed tunable wavelength laser has a good performance of the output power (> -15 dBm) and optical side-mode suppression ratio (> 40 dB) in the wavelength tuning range of 1533.75 to 1560.95 nm. In addition, the output stabilities of the fiber laser are also investigated.

  12. Structural, optical, and electrical properties of Ni-doped ZnO nanorod arrays prepared via sonicated sol-gel immersion method

    NASA Astrophysics Data System (ADS)

    Ismail, A. S.; Mamat, M. H.; Malek, M. F.; Saidi, S. A.; Yusoff, M. M.; Mohamed, R.; Sin, N. D. Md; Suriani, A. B.; Rusop, M.

    2018-05-01

    Nickel (Ni)-doped zinc oxide (ZnO) nanorod array films were synthesised using sonicated sol-gel immersion method. The FESEM images showed that the Ni-doped ZnO nanorod arrays possess hexagonal shape with average diameter about 120 nm and thickness about 1.10 µm. The Ni-doped ZnO nanorod arrays possess better transmittance properties with 3.27 eV of optical band gap energy and 40 meV of urbach energy. The current-voltage (I-V) measurement indicated that the conductivity of ZnO film slightly improved with Ni-doping. The doped film displayed good humidity sensing performance with sensitivity of 1.21.

  13. Nanoparticle detection using dual-phase interferometry

    PubMed Central

    Deutsch, Bradley; Beams, Ryan; Novotny, Lukas

    2013-01-01

    Detection and identification of nanoparticles is of growing interest in atmospheric monitoring, medicine and semiconductor manufacturing. While elastic light scattering with interferometric detection provides good sensitivity to single particles, active optical components prevent scalability realistic sizes for deployment in the field or clinic. Here we report on a simple phase-sensitive nanoparticle detection scheme with no active optical elements. Two measurements are taken simultaneously, allowing amplitude and phase to be decoupled. We demonstrate detection of 25 nm Au particles in liquid in Δt ~ 1 ms with a signal-to-noise ratio of 37. Such performance makes it possible to detect nanoscale contaminants or larger proteins in real time without the need of artificial labeling. PMID:20830181

  14. Optically transparent FTO-free cathode for dye-sensitized solar cells.

    PubMed

    Kavan, Ladislav; Liska, Paul; Zakeeruddin, Shaik M; Grätzel, Michael

    2014-12-24

    The woven fabric containing electrochemically platinized tungsten wire is an affordable flexible cathode for liquid-junction dye-sensitized solar cells with the I3(-)/I(-) redox mediator and electrolyte solution consisting of ionic liquids and propionitrile. The fabric-based electrode outperforms the thermally platinized FTO in serial ohmic resistance and charge-transfer resistance for triiodide reduction, and it offers comparable or better optical transparency in the visible and particularly in the near-IR spectral region. The electrode exhibits good stability during electrochemical loading and storage at open circuit. The dye-sensitized solar cells with a C101-sensitized titania photoanode and either Pt-W/PEN or Pt-FTO cathodes show a comparable performance.

  15. Highly stable multi-wavelength erbium-doped fiber linear laser based on modal interference

    NASA Astrophysics Data System (ADS)

    Herrera-Piad, L. A.; Jauregui-Vazquez, D.; Lopez-Dieguez, Y.; Estudillo-Ayala, J. M.; Hernandez-Garcia, J. C.; Sierra-Hernandez, J. M.; Bianchetti, M.; Rojas-Laguna, R.

    2018-03-01

    We report a linear fiber laser cavity based on an all-fiber Fabry-Perot interferometer and bi-tapered optical fiber for multi-wavelength emission generation. Curvature and strain are used to operate the laser system and the number of lines as well, the emission regions are stronger related to the physical effect applied, due to the phase alteration between the multiple fiber optic modes involved. The original laser emissions present zero wavelength variations, minimal power fluctuations and small spacing mode (1 nm). Additionally, a nonlinear fiber was employed trying to improve the performance of the multiple lasing lines. This system offers a low implementation cost, compactness and good laser parameters.

  16. Numerical modelling of surface plasmonic polaritons

    NASA Astrophysics Data System (ADS)

    Mansoor, Riyadh; AL-Khursan, Amin Habbeb

    2018-06-01

    Extending optoelectronics into the nano-regime seems problematic due to the relatively long wavelengths of light. The conversion of light into plasmons is a possible way to overcome this problem. Plasmon's wavelengths are much shorter than that of light which enables the propagation of signals in small size components. In this paper, a 3D simulation of surface plasmon polariton (SPP) excitation is performed. The Finite integration technique was used to solve Maxwell's equations in the dielectric-metal interface. The results show how the surface plasmon polariton was generated at the grating assisted dielectric-metal interface. SPP is a good candidate for signal confinement in small size optoelectronics which allow high density optical integrated circuits in all optical networks.

  17. Technological innovations for a sustainable business model in the semiconductor industry

    NASA Astrophysics Data System (ADS)

    Levinson, Harry J.

    2014-09-01

    Increasing costs of wafer processing, particularly for lithographic processes, have made it increasingly difficult to achieve simultaneous reductions in cost-per-function and area per device. Multiple patterning techniques have made possible the fabrication of circuit layouts below the resolution limit of single optical exposures but have led to significant increases in the costs of patterning. Innovative techniques, such as self-aligned double patterning (SADP) have enabled good device performance when using less expensive patterning equipment. Other innovations have directly reduced the cost of manufacturing. A number of technical challenges must be overcome to enable a return to single-exposure patterning using short wavelength optical techniques, such as EUV patterning.

  18. Characteristics of the annular beam using a single axicon and a pair of lens

    NASA Astrophysics Data System (ADS)

    Ji, Ke; Lei, Ming; Yao, Baoli; Yan, Shaohui; Yang, Yanlong; Li, Ze; Dan, Dan; Menke, Neimule

    2012-10-01

    In optical trapping, annular beam as a kind of hollow beam is used to increase the axial trapping efficiency as well as the trapping stability. In this paper, a method for producing an annular beam by a system consisting of a single axicon and a pair of lens is proposed. The generated beam was also used as the optical tweezers. We use the geometrical optics to describe the propagation of light in the system. The calculated intensity distribution in three-dimensional space after the system shows a good agreement with the experimental results. The advantages of this method are simplicity of operation, good stability, and high transmittance, having possible applications in fields like optical microscopic, optical manipulation and electronic acceleration, etc.

  19. Structural, electronic and optical properties of LiNbO3 using GGA-PBE and TB-mBJ functionals: A DFT study

    NASA Astrophysics Data System (ADS)

    Arshad Javid, M.; Khan, Zafar Ullah; Mehmood, Zahid; Nabi, Azeem; Hussain, Fayyaz; Imran, M.; Nadeem, Muhammad; Anjum, Naeem

    2018-06-01

    In the present work, first-principles calculations were performed to obtain the structural, electronic and optical properties of lithium niobate crystal using two exchange-correlation functionals (GGA-PBE and TB-mBJ). The calculated structural parameters were very close to the experimental values. TB-mBJ functional was found to be good when compared to LDA and GGA functionals in case of bandgap energy of 3.715 eV of lithium niobate. It was observed that the upper valence and lower conduction bands consist mainly the O-2p and Nb-4d states, respectively. Furthermore, calculations for real and imaginary parts of frequency-dependent dielectric function 𝜀(ω) of lithium niobate crystal were performed using TD-DFT method. The ordinary refractive index no(ω), extraordinary refractive index ne(ω), its birefringence and absorption peaks in imaginary dielectric function 𝜀2(ω) were also calculated.

  20. Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support.

    PubMed

    Lin, Xiaoyang; Liu, Peng; Wei, Yang; Li, Qunqing; Wang, Jiaping; Wu, Yang; Feng, Chen; Zhang, Lina; Fan, Shoushan; Jiang, Kaili

    2013-01-01

    Graphene, exhibiting superior mechanical, thermal, optical and electronic properties, has attracted great interest. Considering it being one-atom-thick, and the reduced mechanical strength at grain boundaries, the fabrication of large-area suspended chemical vapour deposition graphene remains a challenge. Here we report the fabrication of an ultra-thin free-standing carbon nanotube/graphene hybrid film, inspired by the vein-membrane structure found in nature. Such a square-centimetre-sized hybrid film can realize the overlaying of large-area single-layer chemical vapour deposition graphene on to a porous vein-like carbon nanotube network. The vein-membrane-like hybrid film, with graphene suspended on the carbon nanotube meshes, possesses excellent mechanical performance, optical transparency and good electrical conductivity. The ultra-thin hybrid film features an electron transparency close to 90%, which makes it an ideal gate electrode in vacuum electronics and a high-performance sample support in transmission electron microscopy.

  1. Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software

    NASA Astrophysics Data System (ADS)

    Murray, Ian B.; Densmore, Victor; Bora, Vaibhav; Pieratt, Matthew W.; Hibbard, Douglas L.; Milster, Tom D.

    2011-06-01

    Coatings of various metalized patterns are used for heating and electromagnetic interference (EMI) shielding applications. Previous work has focused on macro differences between different types of grids, and has shown good correlation between measurements and analyses of grid diffraction. To advance this work, we have utilized the University of Arizona's OptiScan software, which has been optimized for this application by using the Babinet Principle. When operating on an appropriate computer system, this algorithm produces results hundreds of times faster than standard Fourier-based methods, and allows realistic cases to be modeled for the first time. By using previously published derivations by Exotic Electro-Optics, we compare diffraction performance of repeating and randomized grid patterns with equivalent sheet resistance using numerical performance metrics. Grid patterns of each type are printed on optical substrates and measured energy is compared against modeled energy.

  2. Reverse process of usual optical analysis of boson-exchange superconductors: impurity effects on s- and d-wave superconductors.

    PubMed

    Hwang, Jungseek

    2015-03-04

    We performed a reverse process of the usual optical data analysis of boson-exchange superconductors. We calculated the optical self-energy from two (MMP and MMP+peak) input model electron-boson spectral density functions using Allen's formula for one normal and two (s- and d-wave) superconducting cases. We obtained the optical constants including the optical conductivity and the dynamic dielectric function from the optical self-energy using an extended Drude model, and finally calculated the reflectance spectrum. Furthermore, to investigate impurity effects on optical quantities we added various levels of impurities (from the clean to the dirty limit) in the optical self-energy and performed the same reverse process to obtain the optical conductivity, the dielectric function, and reflectance. From these optical constants obtained from the reverse process we extracted the impurity-dependent superfluid densities for two superconducting cases using two independent methods (the Ferrel-Glover-Tinkham sum rule and the extrapolation to zero frequency of -ϵ1(ω)ω(2)); we found that a certain level of impurities is necessary to get a good agreement on results obtained by the two methods. We observed that impurities give similar effects on various optical constants of s- and d-wave superconductors; the greater the impurities the more distinct the gap feature and the lower the superfluid density. However, the s-wave superconductor gives the superconducting gap feature more clearly than the d-wave superconductor because in the d-wave superconductors the optical quantities are averaged over the anisotropic Fermi surface. Our results supply helpful information to see how characteristic features of the electron-boson spectral function and the s- and d-wave superconducting gaps appear in various optical constants including raw reflectance spectrum. Our study may help with a thorough understanding of the usual optical analysis process. Further systematic study of experimental data collected at various conditions using the optical analysis process will help to reveal the origin of the mediated boson in the boson-exchange superconductors.

  3. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.

    PubMed

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-11-09

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.

  4. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique

    PubMed Central

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2016-01-01

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865

  5. Protection of Conductive and Non-conductive Advanced Polymer-based Paints from Highly Aggressive Oxidative Environments

    NASA Technical Reports Server (NTRS)

    Gudimenko, Y.; Ng, R.; Iskanderova, Z.; Kleiman, J.; Grigorevsky, A.; Kiseleva, L.; Finckenor, M.; Edwards, D.

    2005-01-01

    Research has been continued to further improve the space durability of conductive and non-conductive polymer-based paints and of conductive thermal control paints for space applications. Efforts have been made to enhance the space durability and stability of functional Characteristics in ground-based space environment imitating conditions, using specially developed surface modification treatment. The results of surface modification of new conductive paints, including the ground-based testing in aggressive oxidative environments, such as atomic oxygen/UV and oxygen plasma, and performance evaluation are presented. Functional properties and performance characteristics, such as thermal optical properties (differential solar absorptance and thermal emittance representing the thermal optical performance of thermal control paints) and surface resistivity characteristics of pristine, surface modified, and tested materials were verified. Extensive surface analysis studies have been performed using complementary surface analyses including SEM/EDS and XPS. Test results revealed that the successfully treated materials exhibit reduced mass loss and no surface morphology change, thus indicating good protection from the severe oxidative environment. It was demonstrated that the developed surface modification treatment could be applied successfully to charge dissipative and conductive paints.

  6. High performance VO2 thin films fabricated by room-temperature reactive magnetron sputtering and rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Zhan, Yongjun; Xiao, Xiudi; Lu, Yuan; Cao, Ziyi; Cheng, Haoliang; Shi, Jifu; Xu, Gang

    2017-10-01

    The VOx thin films are successfully prepared on glass substrate by reactive magnetron sputtering at room-temperature, and subsequently annealed by rapid thermal annealing system in N2 from 0.5Pa to 10000Pa. The effects of annealing pressure on the optical performance and phase transition temperature (Tc) of VOx thin films are systematically investigated. The results show that the VOx thin films exhibit good performance with Tlum of 28.17%, ΔTsol of 12.69%, and Tc of 42. The annealing pressure had an obvious influence on the grain size, which can be attributed to light scattering effects by gas molecule. Compared with oxygen vacancy defects, the grain size plays a decisive role in the regulation of Tc. The restricting the growth of grain can be reduced the Tc, and a little deterioration effect on optical performance can be observed. In addition, the method in this paper not only depressed the Tc, but also simplified the process and improved efficiency, which will provide guidance for the preparation and application of VOx thin films.

  7. Analysis of Optical CDMA Signal Transmission: Capacity Limits and Simulation Results

    NASA Astrophysics Data System (ADS)

    Garba, Aminata A.; Yim, Raymond M. H.; Bajcsy, Jan; Chen, Lawrence R.

    2005-12-01

    We present performance limits of the optical code-division multiple-access (OCDMA) networks. In particular, we evaluate the information-theoretical capacity of the OCDMA transmission when single-user detection (SUD) is used by the receiver. First, we model the OCDMA transmission as a discrete memoryless channel, evaluate its capacity when binary modulation is used in the interference-limited (noiseless) case, and extend this analysis to the case when additive white Gaussian noise (AWGN) is corrupting the received signals. Next, we analyze the benefits of using nonbinary signaling for increasing the throughput of optical CDMA transmission. It turns out that up to a fourfold increase in the network throughput can be achieved with practical numbers of modulation levels in comparison to the traditionally considered binary case. Finally, we present BER simulation results for channel coded binary and[InlineEquation not available: see fulltext.]-ary OCDMA transmission systems. In particular, we apply turbo codes concatenated with Reed-Solomon codes so that up to several hundred concurrent optical CDMA users can be supported at low target bit error rates. We observe that unlike conventional OCDMA systems, turbo-empowered OCDMA can allow overloading (more active users than is the length of the spreading sequences) with good bit error rate system performance.

  8. Glass Solder Approach for Robust, Low-Loss, Fiber-to-Waveguide Coupling

    NASA Technical Reports Server (NTRS)

    McNeil, Shirley; Battle, Philip; Hawthorne, Todd; Lower, John; Wiley, Robert; Clark, Brett

    2012-01-01

    The key advantages of this approach include the fact that the index of interface glass (such as Pb glass n = 1.66) greatly reduces Fresnel losses at the fiber-to-waveguide interface, resulting in lower optical losses. A contiguous structure cannot be misaligned and readily lends itself for use on aircraft or space operation. The epoxy-free, fiber-to-waveguide interface provides an optically pure, sealed interface for low-loss, highpower coupling. Proof of concept of this approach has included successful attachment of the low-melting-temperature glass to the x-y plane of the crystal, successful attachment of the low-meltingtemperature glass to the end face of a standard SMF (single-mode fiber), and successful attachment of a wetted lowmelting- temperature glass SMF to the end face of a KTP crystal. There are many photonic components on the market whose performance and robustness could benefit from this coupling approach once fully developed. It can be used in a variety of fibercoupled waveguide-based components, such as frequency conversion modules, and amplitude and phase modulators. A robust, epoxy-free, contiguous optical interface lends itself to components that require low-loss, high-optical-power handling capability, and good performance in adverse environments such as flight or space operation.

  9. Simulation and evaluation of phase noise for optical amplification using semiconductor optical amplifiers in DPSK applications

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi

    2008-01-01

    A thorough simulation and evaluation of phase noise for optical amplification using semiconductor optical amplifier (SOA) is very important for predicting its performance in differential phase-shift keyed (DPSK) applications. In this paper, standard deviation and probability distribution of differential phase noise at the SOA output are obtained from the statistics of simulated differential phase noise. By using a full-wave model of SOA, the noise performance in the entire operation range can be investigated. It is shown that nonlinear phase noise substantially contributes to the total phase noise in case of a noisy signal amplified by a saturated SOA and the nonlinear contribution is larger with shorter SOA carrier lifetime. It is also shown that Gaussian distribution can be useful as a good approximation of the total differential phase noise statistics in the whole operation range. Power penalty due to differential phase noise is evaluated using a semi-analytical probability density function (PDF) of receiver noise. Obvious increase of power penalty at high signal input powers can be found for low input OSNR, which is due to both the large nonlinear differential phase noise and the dependence of BER vs. receiving power curvature on differential phase noise standard deviation.

  10. Multifocal multiphoton microscopy with adaptive optical correction

    NASA Astrophysics Data System (ADS)

    Coelho, Simao; Poland, Simon; Krstajic, Nikola; Li, David; Monypenny, James; Walker, Richard; Tyndall, David; Ng, Tony; Henderson, Robert; Ameer-Beg, Simon

    2013-02-01

    Fluorescence lifetime imaging microscopy (FLIM) is a well established approach for measuring dynamic signalling events inside living cells, including detection of protein-protein interactions. The improvement in optical penetration of infrared light compared with linear excitation due to Rayleigh scattering and low absorption have provided imaging depths of up to 1mm in brain tissue but significant image degradation occurs as samples distort (aberrate) the infrared excitation beam. Multiphoton time-correlated single photon counting (TCSPC) FLIM is a method for obtaining functional, high resolution images of biological structures. In order to achieve good statistical accuracy TCSPC typically requires long acquisition times. We report the development of a multifocal multiphoton microscope (MMM), titled MegaFLI. Beam parallelization performed via a 3D Gerchberg-Saxton (GS) algorithm using a Spatial Light Modulator (SLM), increases TCSPC count rate proportional to the number of beamlets produced. A weighted 3D GS algorithm is employed to improve homogeneity. An added benefit is the implementation of flexible and adaptive optical correction. Adaptive optics performed by means of Zernike polynomials are used to correct for system induced aberrations. Here we present results with significant improvement in throughput obtained using a novel complementary metal-oxide-semiconductor (CMOS) 1024 pixel single-photon avalanche diode (SPAD) array, opening the way to truly high-throughput FLIM.

  11. Preparation and performance of broadband antireflective sub-wavelength structures on Ge substrate

    NASA Astrophysics Data System (ADS)

    Shen, Xiang-Wei; Liu, Zheng-Tang; Li, Yang-Ping; Lu, Hong-Cheng; Xu, Qi-Yuan; Liu, Wen-Ting

    2009-01-01

    Sub-wavelength structures (SWS) were prepared on Ge substrates through photolithography and reactive ion etching (RIE) technology for broadband antireflective purposes in the long wave infrared (LWIR) waveband of 8-12 μm. Topography of the etched patterns was observed using high resolution optical microscope and atomic force microscope (AFM). Infrared transmission performance of the SWS was investigated by Fourier transform infrared (FTIR) spectrometer. Results show that the etched patterns were of high uniformity and fidelity, the SWS exhibited a good broadband antireflective performance with the increment of the average transmittance which is over 8-12 μm up to 8%.

  12. High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets

    PubMed Central

    Chen, Tao; Peng, Huisheng; Durstock, Michael; Dai, Liming

    2014-01-01

    By using highly aligned carbon nanotube (CNT) sheets of excellent optical transmittance and mechanical stretchability as both the current collector and active electrode, high-performance transparent and stretchable all-solid supercapacitors with a good stability were developed. A transmittance up to 75% at the wavelength of 550 nm was achieved for a supercapacitor made from a cross-over assembly of two single-layer CNT sheets. The transparent supercapacitor has a specific capacitance of 7.3 F g−1 and can be biaxially stretched up to 30% strain without any obvious change in electrochemical performance even over hundreds stretching cycles. PMID:24402400

  13. All-optical fiber anemometer based on laser heated fiber Bragg gratings.

    PubMed

    Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Cho, L H; Lu, Chao

    2011-05-23

    A fiber-optic anemometer based on fiber Bragg gratings (FBGs) is presented. A short section of cobalt-doped fiber was utilized to make a fiber-based "hot wire" for wind speed measurement. Fiber Bragg gratings (FBGs) were fabricated in the cobalt-doped fiber using 193 nm laser pulses to serve as localized temperature sensors. A miniature all-optical fiber anemometer is constructed by using two FBGs to determine the dynamic thermal equilibrium between the laser heating and air flow cooling through monitoring the FBGs' central wavelengths. It was demonstrated that the sensitivity of the sensor can be adjusted through the power of pump laser or the coating on the FBG. Experimental results reveal that the proposed FBG-based anemometer exhibits very good performance for wind speed measurement. The resolution of the FBG-based anemometer is about 0.012 m/s for wind speed range between 2.0 m/s and 8.0 m/s.

  14. LASER METHODS IN BIOLOGY: Optical anisotropy of fibrous biological tissues: analysis of the influence of structural properties

    NASA Astrophysics Data System (ADS)

    Zimnyakov, D. A.; Sinichkin, Yu P.; Ushakova, O. V.

    2007-08-01

    The results of theoretical analysis of the optical anisotropy of multiply scattering fibrillar biological tissues based on the model of an effective anisotropic medium are compared with the experimental in vivo birefringence data for the rat derma obtained earlier in spectral polarisation measurements of rat skin samples in the visible region. The disordered system of parallel dielectric cylinders embedded into an isotropic dielectric medium was considered as a model medium. Simulations were performed taking into account the influence of a partial mutual disordering of the bundles of collagen and elastin fibres in derma on birefringence in samples. The theoretical optical anisotropy averaged over the spectral interval 550-650 nm for the model medium with parameters corresponding to the structural parameters of derma is in good agreement with the results of spectral polarisation measurements of skin samples in the corresponding wavelength range.

  15. DFT-BASED AB INITIO STUDY OF THE ELECTRONIC AND OPTICAL PROPERTIES OF CESIUM BASED FLUORO-PEROVSKITE CsMF3 (M = Ca AND Sr)

    NASA Astrophysics Data System (ADS)

    Harmel, M.; Khachai, H.; Ameri, M.; Khenata, R.; Baki, N.; Haddou, A.; Abbar, B.; UǦUR, Ş.; Omran, S. Bin; Soyalp, F.

    2012-12-01

    Density functional theory (DFT) is performed to study the structural, electronic and optical properties of cubic fluoroperovskite AMF3 (A = Cs; M = Ca and Sr) compounds. The calculations are based on the total-energy calculations within the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated by local density approximation (LDA) and generalized gradient approximation (GGA). The structural properties, including lattice constants, bulk modulus and their pressure derivatives are in very good agreement with the available experimental and theoretical data. The calculations of the electronic band structure, density of states and charge density reveal that compounds are both ionic insulators. The optical properties (namely: the real and the imaginary parts of the dielectric function ɛ(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 40.0 eV.

  16. Extreme AO coronagraphy laboratory demonstration in the context of SPHERE

    NASA Astrophysics Data System (ADS)

    Martinez, P.; Aller Carpentier, E.; Kasper, M.

    2010-10-01

    The exoplanetary science through direct imaging and spectroscopy will largely expand with the very soon raise of new instruments at the VLT (SPHERE), Gemini (GPI), and Subaru (HiCIAO) observatories. All these ground-based adaptive optics instruments include extremely high performance adaptive optics (XAO) system, advanced starlight cancellation techniques (e.g. coronagraphy), and speckle calibration techniques (e.g. spectral, angular, or polarimetry). In this context we report laboratory results obtained with the High-Order Test bench (HOT), the adaptive optics facility at the European Southern Observatory headquarters. Under 0.5 arcsec dynamical seeing, efficiently corrected by an XAO system delivering H-band Strehl ratio above 90%, we discuss contrast levels obtained with an apodized pupil Lyot coronagraph using differential imaging techniques (spectral and polarimetric). Accounting for system differences (e.g. deformable mirror actuator number), we demonstrate a good agreement between experimental results and expectations for SPHERE, or GPI, while we already met HiCIAO contrast goals.

  17. White LED visible light communication technology research

    NASA Astrophysics Data System (ADS)

    Yang, Chao

    2017-03-01

    Visible light communication is a new type of wireless optical communication technology. White LED to the success of development, the LED lighting technology is facing a new revolution. Because the LED has high sensitivity, modulation, the advantages of good performance, large transmission power, can make it in light transmission light signal at the same time. Use white LED light-emitting characteristics, on the modulation signals to the visible light transmission, can constitute a LED visible light communication system. We built a small visible optical communication system. The system composition and structure has certain value in the field of practical application, and we also research the key technology of transmitters and receivers, the key problem has been resolved. By studying on the optical and LED the characteristics of a high speed modulation driving circuit and a high sensitive receiving circuit was designed. And information transmission through the single chip microcomputer test, a preliminary verification has realized the data transmission function.

  18. Energy gaps, valence and conduction charge densities and optical properties of GaAs1‑xPx

    NASA Astrophysics Data System (ADS)

    Al-Hagan, O. A.; Algarni, H.; Bouarissa, N.; Alhuwaymel, T. F.; Ajmal Khan, M.

    2018-04-01

    The electronic structure and its derived valence and conduction charge distributions along with the optical properties of zinc-blende GaAs1‑xPx ternary alloys have been studied. The calculations are performed using a pseudopotential approach under the virtual crystal approximation (VCA) which takes into account the compositional disorder effect. Our findings are found to be generally in good accord with experiment. The composition dependence of direct and indirect bandgaps showed a clear bandgap bowing. The nature of the gap is found to depend on phosphorous content. The bonding and ionicity of the material of interest have been examined in terms of the anti-symmetric gap and charge densities. The variation in the optical constants versus phosphorous concentration has been discussed. The present investigation may give a useful applications in infrared and visible spectrum light emitters.

  19. Analysis of rocket flight stability based on optical image measurement

    NASA Astrophysics Data System (ADS)

    Cui, Shuhua; Liu, Junhu; Shen, Si; Wang, Min; Liu, Jun

    2018-02-01

    Based on the abundant optical image measurement data from the optical measurement information, this paper puts forward the method of evaluating the rocket flight stability performance by using the measurement data of the characteristics of the carrier rocket in imaging. On the basis of the method of measuring the characteristics of the carrier rocket, the attitude parameters of the rocket body in the coordinate system are calculated by using the measurements data of multiple high-speed television sets, and then the parameters are transferred to the rocket body attack angle and it is assessed whether the rocket has a good flight stability flying with a small attack angle. The measurement method and the mathematical algorithm steps through the data processing test, where you can intuitively observe the rocket flight stability state, and also can visually identify the guidance system or failure analysis.

  20. Modeling of Semiconductor Optical Amplifier Gain Characteristics for Amplification and Switching

    NASA Astrophysics Data System (ADS)

    Mahad, Farah Diana; Sahmah, Abu; Supa'at, M.; Idrus, Sevia Mahdaliza; Forsyth, David

    2011-05-01

    The Semiconductor Optical Amplifier (SOA) is presently commonly used as a booster or pre-amplifier in some communication networks. However, SOAs are also a strong candidate for utilization as multi-functional elements in future all-optical switching, regeneration and also wavelength conversion schemes. With this in mind, the purpose of this paper is to simulate the performance of the SOA for improved amplification and switching functions. The SOA is modeled and simulated using OptSim software. In order to verify the simulated results, a MATLAB mathematical model is also used to aid the design of the SOA. Using the model, the gain difference between simulated and mathematical results in the unsaturated region is <1dB. The mathematical analysis is in good agreement with the simulation result, with only a small offset due to inherent software limitations in matching the gain dynamics of the SOA.

  1. Spacecraft angular velocity estimation algorithm for star tracker based on optical flow techniques

    NASA Astrophysics Data System (ADS)

    Tang, Yujie; Li, Jian; Wang, Gangyi

    2018-02-01

    An integrated navigation system often uses the traditional gyro and star tracker for high precision navigation with the shortcomings of large volume, heavy weight and high-cost. With the development of autonomous navigation for deep space and small spacecraft, star tracker has been gradually used for attitude calculation and angular velocity measurement directly. At the same time, with the dynamic imaging requirements of remote sensing satellites and other imaging satellites, how to measure the angular velocity in the dynamic situation to improve the accuracy of the star tracker is the hotspot of future research. We propose the approach to measure angular rate with a nongyro and improve the dynamic performance of the star tracker. First, the star extraction algorithm based on morphology is used to extract the star region, and the stars in the two images are matched according to the method of angular distance voting. The calculation of the displacement of the star image is measured by the improved optical flow method. Finally, the triaxial angular velocity of the star tracker is calculated by the star vector using the least squares method. The method has the advantages of fast matching speed, strong antinoise ability, and good dynamic performance. The triaxial angular velocity of star tracker can be obtained accurately with these methods. So, the star tracker can achieve better tracking performance and dynamic attitude positioning accuracy to lay a good foundation for the wide application of various satellites and complex space missions.

  2. High-performance single-crystalline arsenic-doped indium oxide nanowires for transparent thin-film transistors and active matrix organic light-emitting diode displays.

    PubMed

    Chen, Po-Chiang; Shen, Guozhen; Chen, Haitian; Ha, Young-geun; Wu, Chao; Sukcharoenchoke, Saowalak; Fu, Yue; Liu, Jun; Facchetti, Antonio; Marks, Tobin J; Thompson, Mark E; Zhou, Chongwu

    2009-11-24

    We report high-performance arsenic (As)-doped indium oxide (In(2)O(3)) nanowires for transparent electronics, including their implementation in transparent thin-film transistors (TTFTs) and transparent active-matrix organic light-emitting diode (AMOLED) displays. The As-doped In(2)O(3) nanowires were synthesized using a laser ablation process and then fabricated into TTFTs with indium-tin oxide (ITO) as the source, drain, and gate electrodes. The nanowire TTFTs on glass substrates exhibit very high device mobilities (approximately 1490 cm(2) V(-1) s(-1)), current on/off ratios (5.7 x 10(6)), steep subthreshold slopes (88 mV/dec), and a saturation current of 60 microA for a single nanowire. By using a self-assembled nanodielectric (SAND) as the gate dielectric, the device mobilities and saturation current can be further improved up to 2560 cm(2) V(-1) s(-1) and 160 microA, respectively. All devices exhibit good optical transparency (approximately 81% on average) in the visible spectral range. In addition, the nanowire TTFTs were utilized to control green OLEDs with varied intensities. Furthermore, a fully integrated seven-segment AMOLED display was fabricated with a good transparency of 40% and with each pixel controlled by two nanowire transistors. This work demonstrates that the performance enhancement possible by combining nanowire doping and self-assembled nanodielectrics enables silicon-free electronic circuitry for low power consumption, optically transparent, high-frequency devices assembled near room temperature.

  3. Doppler optical coherence tomography of retinal circulation.

    PubMed

    Tan, Ou; Wang, Yimin; Konduru, Ranjith K; Zhang, Xinbo; Sadda, SriniVas R; Huang, David

    2012-09-18

    Noncontact retinal blood flow measurements are performed with a Fourier domain optical coherence tomography (OCT) system using a circumpapillary double circular scan (CDCS) that scans around the optic nerve head at 3.40 mm and 3.75 mm diameters. The double concentric circles are performed 6 times consecutively over 2 sec. The CDCS scan is saved with Doppler shift information from which flow can be calculated. The standard clinical protocol calls for 3 CDCS scans made with the OCT beam passing through the superonasal edge of the pupil and 3 CDCS scan through the inferonal pupil. This double-angle protocol ensures that acceptable Doppler angle is obtained on each retinal branch vessel in at least 1 scan. The CDCS scan data, a 3-dimensional volumetric OCT scan of the optic disc scan, and a color photograph of the optic disc are used together to obtain retinal blood flow measurement on an eye. We have developed a blood flow measurement software called "Doppler optical coherence tomography of retinal circulation" (DOCTORC). This semi-automated software is used to measure total retinal blood flow, vessel cross section area, and average blood velocity. The flow of each vessel is calculated from the Doppler shift in the vessel cross-sectional area and the Doppler angle between the vessel and the OCT beam. Total retinal blood flow measurement is summed from the veins around the optic disc. The results obtained at our Doppler OCT reading center showed good reproducibility between graders and methods (<10%). Total retinal blood flow could be useful in the management of glaucoma, other retinal diseases, and retinal diseases. In glaucoma patients, OCT retinal blood flow measurement was highly correlated with visual field loss (R(2)>0.57 with visual field pattern deviation). Doppler OCT is a new method to perform rapid, noncontact, and repeatable measurement of total retinal blood flow using widely available Fourier-domain OCT instrumentation. This new technology may improve the practicality of making these measurements in clinical studies and routine clinical practice.

  4. The performance of hematite nanostructures in different humidity levels

    NASA Astrophysics Data System (ADS)

    Ahmad, W. R. W.; Mamat, M. H.; Zoolfakar, A. S.; Khusaimi, Z.; Yusof, M. M.; Ismail, A. S.; Saidi, S. A.; Rusop, M.

    2018-05-01

    In this study, hematite (α-Fe2O3) nanostructure were prepared in Schott vials on fluorine-doped tin oxide (FTO) coated glass substrate using the sonicated immersion method in aqueous solution with ferric chloride FeCl3ṡ6H2O as a precursor and urea NH2-CONH2 as a stabilizer. The samples were characterized for different level of humidity conditions within range 40% to 90% RH. Based on the results obtained, the hematite nanostructure exhibited good optical properties and virtuous sensor response with high sensitivity. The fabricated hematite nanostructure has revealed a good potential for humidity sensor application based on the results obtained under different levels of humidity.

  5. Detection of CO emission in Hydra 1 cluster galaxies

    NASA Technical Reports Server (NTRS)

    Huchtmeier, W. K.

    1990-01-01

    A survey of bright Hydra cluster spiral galaxies for the CO(1-0) transition at 115 GHz was performed with the 15m Swedish-ESO submillimeter telescope (SEST). Five out of 15 galaxies observed have been detected in the CO(1-0) line. The largest spiral galaxy in the cluster, NGC 3312, got more CO than any spiral of the Virgo cluster. This Sa-type galaxy is optically largely distorted and disrupted on one side. It is a good candidate for ram pressure stripping while passing through the cluster's central region. A comparison with global CO properties of Virgo cluster spirals shows a relatively good agreement with the detected Hydra cluster galaxies.

  6. A novel fluorescent retrograde neural tracer: cholera toxin B conjugated carbon dots

    NASA Astrophysics Data System (ADS)

    Zhou, Nan; Hao, Zeyu; Zhao, Xiaohuan; Maharjan, Suraj; Zhu, Shoujun; Song, Yubin; Yang, Bai; Lu, Laijin

    2015-09-01

    The retrograde neuroanatomical tracing method is a key technique to study the complex interconnections of the nervous system. Traditional tracers have several drawbacks, including time-consuming immunohistochemical or immunofluorescent staining procedures, rapid fluorescence quenching and low fluorescence intensity. Carbon dots (CDs) have been widely used as a fluorescent bio-probe due to their ultrasmall size, excellent optical properties, chemical stability, biocompatibility and low toxicity. Herein, we develop a novel fluorescent neural tracer: cholera toxin B-carbon dot conjugates (CTB-CDs). It can be taken up and retrogradely transported by neurons in the peripheral nervous system of rats. Our results show that CTB-CDs possess high photoluminescence intensity, good optical stability, a long shelf-life and non-toxicity. Tracing with CTB-CDs is a direct and more economical way of performing retrograde labelling experiments. Therefore, CTB-CDs are reliable fluorescent retrograde tracers.The retrograde neuroanatomical tracing method is a key technique to study the complex interconnections of the nervous system. Traditional tracers have several drawbacks, including time-consuming immunohistochemical or immunofluorescent staining procedures, rapid fluorescence quenching and low fluorescence intensity. Carbon dots (CDs) have been widely used as a fluorescent bio-probe due to their ultrasmall size, excellent optical properties, chemical stability, biocompatibility and low toxicity. Herein, we develop a novel fluorescent neural tracer: cholera toxin B-carbon dot conjugates (CTB-CDs). It can be taken up and retrogradely transported by neurons in the peripheral nervous system of rats. Our results show that CTB-CDs possess high photoluminescence intensity, good optical stability, a long shelf-life and non-toxicity. Tracing with CTB-CDs is a direct and more economical way of performing retrograde labelling experiments. Therefore, CTB-CDs are reliable fluorescent retrograde tracers. Electronic supplementary information (ESI) available: PL spectra of CTB; absorption spectra of dialysate; fluorescence signal and immunohistochemical staining of CTB-CDs in L4 DRG. See DOI: 10.1039/c5nr04361a

  7. Storage media pipelining: Making good use of fine-grained media

    NASA Technical Reports Server (NTRS)

    Vanmeter, Rodney

    1993-01-01

    This paper proposes a new high-performance paradigm for accessing removable media such as tapes and especially magneto-optical disks. In high-performance computing the striping of data across multiple devices is a common means of improving data transfer rates. Striping has been used very successfully for fixed magnetic disks improving overall system reliability as well as throughput. It has also been proposed as a solution for providing improved bandwidth for tape and magneto-optical subsystems. However, striping of removable media has shortcomings, particularly in the areas of latency to data and restricted system configurations, and is suitable primarily for very large I/Os. We propose that for fine-grained media, an alternative access method, media pipelining, may be used to provide high bandwidth for large requests while retaining the flexibility to support concurrent small requests and different system configurations. Its principal drawback is high buffering requirements in the host computer or file server. This paper discusses the possible organization of such a system including the hardware conditions under which it may be effective, and the flexibility of configuration. Its expected performance is discussed under varying workloads including large single I/O's and numerous smaller ones. Finally, a specific system incorporating a high-transfer-rate magneto-optical disk drive and autochanger is discussed.

  8. Discrimination Between Child and Adult Forms Using Radar Frequency Signature Analysis

    DTIC Science & Technology

    2013-03-14

    Distances. This sensor poses no risk to human subjects or persons operating the equipment. The 88 th Medical Group Bio -Environmental Safety...method of remotely characterizing human activity. Unlike optical sensors , radar systems need not rely upon line-of-sight or good weather to perform well...and in monitoring vital signs through chemical or bio - logical protection suits. These military applications have seen research as early as the mid

  9. High-Gain AlxGa1-xAs/GaAs Transistors For Neural Networks

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Hoon; Lin, Steven H.

    1991-01-01

    High-gain AlxGa1-xAs/GaAs npn double heterojunction bipolar transistors developed for use as phototransistors in optoelectronic integrated circuits, especially in artificial neural networks. Transistors perform both photodetection and saturating-amplification functions of neurons. Good candidates for such application because structurally compatible with laser diodes and light-emitting diodes, detect light, and provide high current gain needed to compensate for losses in holographic optical elements.

  10. Toroidal Variable-Line-Space Gratings: The Good, the Bad and The Ugly

    NASA Technical Reports Server (NTRS)

    West, Edward A.; Kobayashi, Ken; Cirtain, Jonathan; Gary, Allen; Davis, John; Reader, Joseph

    2009-01-01

    Toroidal variable-line-space (VLS) gratings are an important factor in the design of an efficient VUV solar telescope that will measure the CIV (155nm) and MgII (280nm) emissions lines in the Sun's transition region. In 1983 Kita and Harada described spherical VLS gratings but the technology to commercially fabricate these devices is a recent development, especially for toroidal surfaces. This paper will describe why this technology is important in the development of the Solar Ultraviolet Magnetograph Investigation (SUMI) sounding rocket program (the good), the delays due to the conversion between the TVLS grating design and the optical fabrication (the bad), and finally the optical testing, alignment and tolerancing of the gratings (the ugly). The Solar Ultraviolet Magnetograph Investigation, SUMI, has been reported in several papers since this program began in 2000. The emphasis of this paper is to describe SUMI's Toroidal Variable-Line-Space (TVLS) gratings. These gratings help SUMI meet its scientific goals which require both high spectral resolution and high optical efficiency for magnetic field measurements in the vacuum ultraviolet wavelength band of the solar spectrum (the good). Unfortunately, the technology readiness level of these gratings has made their implementation difficult, especially for a sounding rocket payload (the bad). Therefore, this paper emphasizes the problems and solutions that were developed to use these gratings in SUMI (the ugly). Section 2 contains a short review of the scientific goals of SUMI and why this mission is important in the understanding of the 3D structure of the magnetic field on the Sun. The flight hardware that makes up the SUMI payload is described in Section 3 with emphasis on those components that affect the TVLS gratings. Section 4 emphasizes the alignment, testing and optical modeling that were developed to optimize the performance of these gratings.

  11. Enabling aqueous processing for crack-free thick electrodes

    DOE PAGES

    Du, Zhijia; Rollag, K. M.; Li, J.; ...

    2017-04-14

    Aqueous processing of thick electrodes for Li-ion cells promises to increase energy density due to increased volume fraction of active materials, and to reduce cost due to the elimination of the toxic solvents. Here in this paper this work reports the processing and characterization of aqueous processed electrodes with high areal loading and associated full pouch cell performance. Cracking of the electrode coatings becomes a critical issue for aqueous processing of the positive electrode as areal loading increases above 20–25 mg/cm 2 (~4 mAh/cm 2). Crack initiation and propagation, which was observed during drying via optical microscopy, is related tomore » the build-up of capillary pressure during the drying process. The surface tension of water was reduced by the addition of isopropyl alcohol (IPA), which led to improved wettability and decreased capillary pressure during drying. The critical thickness (areal loading) without cracking increased gradually with increasing IPA content. The electrochemical performance was evaluated in pouch cells. Electrodes processed with water/IPA (80/20 wt%) mixture exhibited good structural integrity with good rate performance and cycling performance.« less

  12. Stability of a pH-sensitive polymer matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Northrup, M.A.; Langry, K.; Angel, S.M.

    1990-03-01

    A ratiometric pH-sensitive fluorescent dye (hydroxypyrenetrisulfonic acid) was covalently attached to an acrylamide polymer. These pH-sensitive copolymers were either covalently bonded to the end of an optical fiber or polymerized into separate gels. Long-term, accelerated aging studies were performed on the fibers and gels in 43{degree}C distilled H{sub 2}O. The fiber-immobilized optrodes gave good pH responses for up to 2 months. The pH-sensitive gels were physically attached to optical fibers and gave very good pH responses for over one year. These physically immobilized, one-year-old, pH-sensitive copolymers provided optrodes with linear pH responses between pH 6 and 8 and resolution greatermore » than 0.25 pH unit. A simple photostability experiment on these optrodes showed that they were very photostable. The results of this study indicate that pH-sensitive copolymers in a simple optrode design can be employed as pH sensors with useful lifetimes exceeding one year. 11 refs., 6 figs.« less

  13. A Low-Cost Optical Remote Sensing Application for Glacier Deformation Monitoring in an Alpine Environment

    PubMed Central

    Giordan, Daniele; Allasia, Paolo; Dematteis, Niccolò; Dell’Anese, Federico; Vagliasindi, Marco; Motta, Elena

    2016-01-01

    In this work, we present the results of a low-cost optical monitoring station designed for monitoring the kinematics of glaciers in an Alpine environment. We developed a complete hardware/software data acquisition and processing chain that automatically acquires, stores and co-registers images. The system was installed in September 2013 to monitor the evolution of the Planpincieux glacier, within the open-air laboratory of the Grandes Jorasses, Mont Blanc massif (NW Italy), and collected data with an hourly frequency. The acquisition equipment consists of a high-resolution DSLR camera operating in the visible band. The data are processed with a Pixel Offset algorithm based on normalized cross-correlation, to estimate the deformation of the observed glacier. We propose a method for the pixel-to-metric conversion and present the results of the projection on the mean slope of the glacier. The method performances are compared with measurements obtained by GB-SAR, and exhibit good agreement. The system provides good support for the analysis of the glacier evolution and allows the creation of daily displacement maps. PMID:27775652

  14. A Low-Cost Optical Remote Sensing Application for Glacier Deformation Monitoring in an Alpine Environment.

    PubMed

    Giordan, Daniele; Allasia, Paolo; Dematteis, Niccolò; Dell'Anese, Federico; Vagliasindi, Marco; Motta, Elena

    2016-10-21

    In this work, we present the results of a low-cost optical monitoring station designed for monitoring the kinematics of glaciers in an Alpine environment. We developed a complete hardware/software data acquisition and processing chain that automatically acquires, stores and co-registers images. The system was installed in September 2013 to monitor the evolution of the Planpincieux glacier, within the open-air laboratory of the Grandes Jorasses, Mont Blanc massif (NW Italy), and collected data with an hourly frequency. The acquisition equipment consists of a high-resolution DSLR camera operating in the visible band. The data are processed with a Pixel Offset algorithm based on normalized cross-correlation, to estimate the deformation of the observed glacier. We propose a method for the pixel-to-metric conversion and present the results of the projection on the mean slope of the glacier. The method performances are compared with measurements obtained by GB-SAR, and exhibit good agreement. The system provides good support for the analysis of the glacier evolution and allows the creation of daily displacement maps.

  15. Room temperature preparation of fluorescent starch nanoparticles from starch-dopamine conjugates and their biological applications.

    PubMed

    Shi, Yingge; Xu, Dazhuang; Liu, Meiying; Fu, Lihua; Wan, Qing; Mao, Liucheng; Dai, Yanfeng; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2018-01-01

    Fluorescent organic nanoparticles (FONs) have been regarded as the promising candidates for biomedical applications owing to their well adjustment of chemical structure and optical properties and good biological properties. However, the preparation of FONs from the natural derived polymers has been rarely reported thus far. In current work, we reported a novel strategy for preparation of FONs based on the self-polymerization of starch-dopamine conjugates and polyethyleneimine in rather mild experimental conditions, including air atmosphere, aqueous solution, absent catalysts and at room temperature. The morphology, chemical structure and optical properties of the resultant starch-based FONs were investigated by different characterization techniques. Biological evaluation results demonstrated that these starch-based FONs possess good biocompatibility and fluorescent imaging performance. More importantly, the novel strategy might also be extended for the preparation of many other carbohydrate polymers based FONs with different structure and functions. Therefore, this work opens a new avenue for the preparation and biomedical applications of luminescent carbohydrate polymers. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The New LOTIS Test Facility

    NASA Technical Reports Server (NTRS)

    Bell, R. M.; Cuzner, G.; Eugeni, C.; Hutchison, S. B.; Merrick, A. J.; Robins, G. C.; Bailey, S. H.; Ceurden, B.; Hagen, J.; Kenagy, K.; hide

    2008-01-01

    The Large Optical Test and Integration Site (LOTIS) at the Lockheed Martin Space Systems Company in Sunnyvale, CA is designed for the verification and testing of optical systems. The facility consists of an 88 foot temperature stabilized vacuum chamber that also functions as a class 10k vertical flow cleanroom. Many problems were encountered in the design and construction phases. The industry capability to build large chambers is very weak. Through many delays and extra engineering efforts, the final product is very good. With 11 Thermal Conditioning Units and precision RTD s, temperature is uniform and stable within 1oF, providing an ideal environment for precision optical testing. Within this chamber and atop an advanced micro-g vibration-isolation bench is the 6.5 meter diameter LOTIS Collimator and Scene Generator, LOTIS alignment and support equipment. The optical payloads are also placed on the vibration bench in the chamber for testing. This optical system is designed to operate in both air and vacuum, providing test imagery in an adaptable suite of visible/near infrared (VNIR) and midwave infrared (MWIR) point sources, and combined bandwidth visible-through-MWIR point sources, for testing of large aperture optical payloads. The heart of the system is the LOTIS Collimator, a 6.5m f/15 telescope, which projects scenes with wavefront errors <85 nm rms out to a 0.75 mrad field of view (FOV). Using field lenses, performance can be extended to a maximum field of view of 3.2 mrad. The LOTIS Collimator incorporates an extensive integrated wavefront sensing and control system to verify the performance of the system.

  17. Automated Inspection of Defects in Optical Fiber Connector End Face Using Novel Morphology Approaches.

    PubMed

    Mei, Shuang; Wang, Yudan; Wen, Guojun; Hu, Yang

    2018-05-03

    Increasing deployment of optical fiber networks and the need for reliable high bandwidth make the task of inspecting optical fiber connector end faces a crucial process that must not be neglected. Traditional end face inspections are usually performed by manual visual methods, which are low in efficiency and poor in precision for long-term industrial applications. More seriously, the inspection results cannot be quantified for subsequent analysis. Aiming at the characteristics of typical defects in the inspection process for optical fiber end faces, we propose a novel method, “difference of min-max ranking filtering” (DO2MR), for detection of region-based defects, e.g., dirt, oil, contamination, pits, and chips, and a special model, a “linear enhancement inspector” (LEI), for the detection of scratches. The DO2MR is a morphology method that intends to determine whether a pixel belongs to a defective region by comparing the difference of gray values of pixels in the neighborhood around the pixel. The LEI is also a morphology method that is designed to search for scratches at different orientations with a special linear detector. These two approaches can be easily integrated into optical inspection equipment for automatic quality verification. As far as we know, this is the first time that complete defect detection methods for optical fiber end faces are available in the literature. Experimental results demonstrate that the proposed DO2MR and LEI models yield good comprehensive performance with high precision and accepted recall rates, and the image-level detection accuracies reach 96.0 and 89.3%, respectively.

  18. Fabrication of 8×8 MMI optical coupler in BK7 by ion-exchange

    NASA Astrophysics Data System (ADS)

    Li, Xia; Li, Xi-Hua; Zhou, Qiang; Jiang, Xiao-Qing; Yang, Jian-Yi; Wang, Ming-Hua

    2005-01-01

    The planar waveguide optical couplers are of prime importance in optical communication and optical signal processing system. Comparing with the optical fiber coupler (OFC) which fabricated by fused biconical taper technology, the planar waveguide couplers are more compact size, lower loss, better uniformity, easier manufacture and integration. Multimode interference (MMI) couplers have many advantages, such as compact size, wavelength and polarization insensitivity, fabrication tolerances and low loss, etc., which concentrate more and more attention. Conventional MMI devices are based on the uniform index waveguides. When the number of input/output waveguides becomes larger, the intrinsic propagation constant error, which will cause bad uniformity of output power, can"t be neglected. In fact, most waveguide devices are graded-index. With the enhanced compatibility of MMI coupler, the performance can be improved at the same time. Prior study shows that graded-index MMI couplers reach the best performance under certain index contrast. Among many available materials, glass is chosen to be the substrate of the coupler, because of its good features, such as low loss, ease fabrication, cheap cost, and so on. In this paper, an 8×8 MMI optical coupler is designed based on the principle of graded-index MMI. The coupler is composed of a waveguide, which is designed to support a large number of modes, and several access (usually single-mode) waveguides, which are used to launch light into and recover light from that multimode waveguide. The total length of the device is less than 3.5 centimeter, including S-bends which lead the multiple images to the output of the device with the spacing D=250μm to make the device fiber compatible. In this paper, we describe an experimental realization of the 8×8 graded-index MMI optical coupler and the measurement of its performance with the testing laser of the wavelength of 1.55μm. The device is fabricated by ion-exchange on BK7 glass substrate. During the ion-exchange process, a melting mixture of AgNO3 : (KNO3 : NaNO3) (molar ratio, 0.001:1) is used at 350~380°C for different times (range from 8 to 18 hours) to fabricate the coupler. The experimental results show that the performance of the optical coupler is quite promising. For instance, while launching light from No.5 waveguide, the uniformity of the device is approximately 0.72dB. Optimization of design and fabrication is going on to improve the total performance of the optical coupler.

  19. Scientific Performance Analysis of the SYZ Telescope Design versus the RC Telescope Design

    NASA Astrophysics Data System (ADS)

    Ma, Donglin; Cai, Zheng

    2018-02-01

    Recently, Su et al. propose an innovative design, referred as the “SYZ” design, for China’s new project of a 12 m optical-infrared telescope. The SYZ telescope design consists of three aspheric mirrors with non-zero power, including a relay mirror below the primary mirror. SYZ design yields a good imaging quality and has a relatively flat field curvature at Nasmyth focus. To evaluate the science-compatibility of this three-mirror telescope, in this paper, we thoroughly compare the performance of SYZ design with that of Ritchey–Chrétien (RC) design, a conventional two-mirror telescope design. Further, we propose the Observing Information Throughput (OIT) as a metric for quantitatively evaluating the telescopes’ science performance. We find that although a SYZ telescope yields a superb imaging quality over a large field of view, a two-mirror (RC) telescope design holds a higher overall throughput, a better diffraction-limited imaging quality in the central field of view (FOV < 5‧) which is better for the performance of extreme Adaptive Optics (AO), and a generally better scientific performance with a higher OIT value. D. Ma & Z. Cai contributed equally to this paper.

  20. Composite panel development at JPL

    NASA Technical Reports Server (NTRS)

    Mcelroy, Paul; Helms, Rich

    1988-01-01

    Parametric computer studies can be use in a cost effective manner to determine optimized composite mirror panel designs. An InterDisciplinary computer Model (IDM) was created to aid in the development of high precision reflector panels for LDR. The materials properties, thermal responses, structural geometries, and radio/optical precision are synergistically analyzed for specific panel designs. Promising panels designs are fabricated and tested so that comparison with panel test results can be used to verify performance prediction models and accommodate design refinement. The iterative approach of computer design and model refinement with performance testing and materials optimization has shown good results for LDR panels.

  1. Rectangular-cladding silicon slot waveguide with improved nonlinear performance

    NASA Astrophysics Data System (ADS)

    Huang, Zengzhi; Huang, Qingzhong; Wang, Yi; Xia, Jinsong

    2018-04-01

    Silicon slot waveguides have great potential in hybrid silicon integration to realize nonlinear optical applications. We propose a rectangular-cladding hybrid silicon slot waveguide. Simulation result shows that, with a rectangular-cladding, the slot waveguide can be formed by narrower silicon strips, so the two-photon absorption (TPA) loss in silicon is decreased. When the cladding material is a nonlinear polymer, the calculated TPA figure of merit (FOMTPA) is 4.4, close to the value of bulk nonlinear polymer of 5.0. This value confirms the good nonlinear performance of rectangular-cladding silicon slot waveguides.

  2. Optical vortices with starlight

    NASA Astrophysics Data System (ADS)

    Anzolin, G.; Tamburini, F.; Bianchini, A.; Umbriaco, G.; Barbieri, C.

    2008-09-01

    Aims: In this paper we present our first observations at the Asiago 122 cm telescope of ℓ = 1 optical vortices generated with starlight beams. Methods: We used a fork-hologram blazed at the first diffraction order as a phase modifying device. The multiple system Rasalgethi (α Herculis) in white light and the single star Arcturus (α Bootis) through a 300 Å bandpass were observed using a fast CCD camera. In the first case we could adopt the Lucky Imaging approach to partially correct for seeing effects. Results: For both stars, the optical vortices could be clearly detected above the smearing caused by the mediocre seeing conditions. The profiles of the optical vortices produced by the beams of the two main components of the α Her system are consistent with numerically simulated on-axis and off-axis optical vortices. The optical vortices produced by α Boo can also be reproduced by numerical simulations. Our experiments confirm that the ratio between the intensity peaks of an optical vortex can be extremely sensitive to off-axis displacements of the beam. Conclusions: Our results give insights for future astronomical applications of optical vortices both for space telescopes and ground-based telescopes with good seeing conditions and adaptive optics devices. The properties of optical vortices can be used to perform high precision astrometry and tip/tilt correction of the isoplanatic field. We are now designing a ℓ = 2 optical vortex coronagraph around a continuous spiral phase plate. We also point out that optical vortices could find extremely interesting applications also in the infrared and radio wavelengths.

  3. A multiwavelength study of Swift GRB 060111B constraining the origin of its prompt optical emission

    NASA Astrophysics Data System (ADS)

    Stratta, G.; Pozanenko, A.; Atteia, J.-L.; Klotz, A.; Basa, S.; Gendre, B.; Verrecchia, F.; Boër, M.; Cutini, S.; Henze, M.; Holland, S.; Ibrahimov, M.; Ienna, F.; Khamitov, I.; Klose, S.; Rumyantsev, V.; Biryukov, V.; Sharapov, D.; Vachier, F.; Arnouts, S.; Perley, D. A.

    2009-09-01

    Context: The detection of bright optical emission measured with good temporal resolution during the prompt phase of GRB 060111Bmakes this GRB a rare event that is especially useful for constraining theories of the prompt emission. Aims: For this reason an extended multi-wavelength campaign was performed to further constrain the physical interpretation of the observations. Methods: In this work, we present the results obtained from our multi-wavelength campaign, as well as from the public Swift/BAT, XRT, and UVOT data. Results: We identified the host galaxy at R˜25 mag from deep R-band exposures taken 5 months after the trigger. Its featureless spectrum and brightness, as well as the non-detection of any associated supernova 16 days after the trigger, enabled us to constrain the distance scale of GRB 060111B11 within 0.4≤ z ≤3 in the most conservative case. The host galaxy spectral continuum is best fit with a redshift of z˜2, and other independent estimates converge to z˜1-2. From the analysis of the early afterglow SED, we find that non-negligible host galaxy dust extinction, in addition to the Galactic one, affects the observed flux in the optical regime. The extinction-corrected optical-to-gamma-ray SED during the prompt emission shows a flux density ratio Fγ/F_opt=10-2-10-4 with spectral index βγ,opt > βγ, strongly suggesting a separate origin of the optical and gamma-ray components. This result is supported by the lack of correlated behavior in the prompt emission light curves observed in the two energy domains. The temporal properties of the prompt optical emission observed during GRB 060111B11 and their similarities to other rapidly-observed events favor interpretation of this optical light as radiation from the reverse shock. Observations are in good agreement with theoretical expectations for a thick shell limit in slow cooling regime. The expected peak flux is consistent with the observed one corrected for the host extinction, likely indicating that the starting time of the TAROT observations is very near to or coincident with the peak time. The estimated fireball initial Lorentz factor is Γ≥260-360 at z=1-2, similar to the Lorentz factors obtained from other GRBs. GRB 060111B11 is a rare case of a GRB with both a bright, well-observed optical counterpart and a “canonical” early X-ray light curve, thus providing a good test case of the reverse shock emission mechanism in both energy ranges. Based on observations performed with: TAROT at the Calern observatory. The Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. CFHT, which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the CNRS of France, and the University of Hawaii. The 2.6 m Shajn telescope at the Crimean Astrophysical Observatory. Some of the data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  4. Design of a delayed XOR phase detector for an optical phase-locked loop toward high-speed coherent laser communication.

    PubMed

    Liu, Yang; Tong, Shoufeng; Chang, Shuai; Song, Yansong; Dong, Yan; Zhao, Xin; An, Zhe; Yu, Fuwan

    2018-05-10

    Optical phase-locked loops are an effective detection method in high-speed and long-distance laser communication. Although this method can detect weak signal light and maintain a small bit error rate, it is difficult to perform because identifying the phase difference between the signal light and the local oscillator accurately has always been a technical challenge. Thus, a series of studies is conducted to address this issue. First, a delayed exclusive or gate (XOR) phase detector with multi-level loop compound control is proposed. Then, a 50 ps delay line and relative signal-to-noise ratio control at 15 dB are produced through theoretical derivation and simulation. Thereafter, a phase discrimination module is designed on a 15  cm×5  cm printed circuit board board. Finally, the experiment platform is built for verification. Experimental results show that the phase discrimination range is -1.1 to 1.1 GHz, and the gain is 0.82 mV/MHz. Three times the standard deviation, that is, 0.064 V, is observed between the test and theoretical values. The accuracy of phase detection is better than 0.07 V, which meets the design standards. A coherent carrier recovery test system is established. The delayed XOR gate has good performance in this system. When the communication rate is 5 Gbps, the system realizes a bit error rate of 1.55×10 -8 when the optical power of the signal is -40.4  dBm. When the communication rate is increased to 10 Gbps, the detection sensitivity drops to -39.5  dBm and still shows good performance in high-speed communications. This work provides a reference for future high-speed coherent homodyne detection in space. Ideas for the next phase of this study are presented at the end of this paper.

  5. Single MoO3 nanoribbon waveguides: good building blocks as elements and interconnects for nanophotonic applications

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Wu, Guoqing; Gu, Fuxing; Zeng, Heping

    2015-11-01

    Exploring new nanowaveguide materials and structures is of great scientific interest and technological significance for optical and photonic applications. In this work, high-quality single-crystal MoO3 nanoribbons (NRs) are synthesized and used for optical guiding. External light sources are efficiently launched into the single MoO3 NRs using silica fiber tapers. It is found that single MoO3 NRs are as good nanowaveguides with loss optical losses (typically less than 0.1 dB/μm) and broadband optical guiding in the visible/near-infrared region. Single MoO3 NRs have good Raman gains that are comparable to those of semiconductor nanowaveguides, but the second harmonic generation efficiencies are about 4 orders less than those of semiconductor nanowaveguides. And also no any third-order nonlinear optical effects are observed at high pump power. A hybrid Fabry-Pérot cavity containing an active CdSe nanowire and a passive MoO3 NR is also demonstrated, and the ability of coupling light from other active nanostructures and fluorescent liquid solutions has been further demonstrated. These optical properties make single MoO3 NRs attractive building blocks as elements and interconnects in miniaturized photonic circuitries and devices.

  6. Optical tomography for flow visualization of the density field around a revolving helicopter rotor blade

    NASA Technical Reports Server (NTRS)

    Snyder, R.; Hesselink, L.

    1984-01-01

    In this paper, a tomographic procedure for reconstructing the density field around a helicopter rotor blade tip from remote optical line-of-sight measurements is discussed. Numerical model studies have been carried out to investigate the influence of the number of available views, limited width viewing, and ray bending on the reconstruction. Performance is measured in terms of the mean-square error. It is found that very good reconstructions can be obtained using only a small number of views even when the width of view is smaller than the spatial extent of the object. An iterative procedure is used to correct for ray bending due to refraction associated with the sharp density gradients (shocks).

  7. Design and characterization of a wearable macrobending fiber optic sensor for human joint angle determination

    NASA Astrophysics Data System (ADS)

    Silva, Ana S.; Catarino, André; Correia, Miguel V.; Frazão, Orlando

    2013-12-01

    The work presented here describes the development and characterization of intensity fiber optic sensor integrated in a specifically designed piece of garment to measure elbow flexion. The sensing head is based on macrobending incorporated in the garment, and the increase of curvature number was studied in order to investigate which scheme provided a good result in terms of sensitivity and repeatability. Results showed the configuration that assured a higher sensitivity (0.644 dBm/deg) and better repeatability was the one with four loops. Ultimately, this sensor can be used for rehabilitation purposes to monitor human joint angles, namely, elbow flexion on stroke survivors while performing the reach functional task, which is the most common upper-limb human gesture.

  8. GaSbBi/GaSb quantum-well and wire laser diodes

    NASA Astrophysics Data System (ADS)

    Ridene, Said

    2018-06-01

    In this work, we present detailed theoretical studies of the optical gain spectra and the emission wavelength of GaSb1-xBix/GaSb and traditional GaAs1-xBix/GaAs dilute-bismide quantum wells and wires (QWs, QWRs) focusing on comparison between their performances. It is found that the optical gain and the emission wavelength of the GaSb-based QW and QWRs lasers would be considerably greater than that of the GaAs-based QW lasers and QWRs for the same QW-, QWR-width, Bi-content and carrier density. The theoretical results were found to be in good agreement with available experimental data, especially for the emission wavelength given by GaSb-based QW laser diodes.

  9. Controle des proprietes des couches optiques par bombardement ionique

    NASA Astrophysics Data System (ADS)

    Marushka, Viktor

    The manufacture of optical coatings presents many challenges such as the control over the film properties and microstructure, the optimization for the production of thin films with high quality, and the research on new materials. Ion-assisted evaporation is one of the principal methods used for the fabrication of optical coatings as a response to these challenges. It allows for good process control, and it permits us to predict and put on an industrial scale the deposition process by considering the direct and quantitative relation between the energies of the incident ions, and the performance of the deposited materials. This work is devoted to the study of the effect of ion bombardment on the microstructure and properties of optical thin films of silicon dioxide and titanium dioxide, which are widely used in optical interference filters, in particular with the use of a Hall effect ion source. These studies include a systematic evaluation of the mechanical and optical properties and of the density of thin films using different complementary techniques - the Quartz Crystal Microbalance, Rutherford Backscattering Spectroscopy, and Infrared Variable Angle Spectroscopic Ellipsometry among others. Different approaches (Spectroscopic Ellipsometry and Infrared Ellipsometry, the measurement of mechanical stress) have been used to evaluate the amount of water in thin films. The results on the density of films and the presence of water in the films obtained by the different methods are in good agreement. It was found that the critical energy values giving rise to dense and stable optical coatings of silicon dioxide and titanium dioxide are 25 eV/atom and 45 eV/atom, respectively. Moreover, this work presents the methodology developed to determine the ion current density distribution on the surface of a substrate holder of a dome shape for different positions relative to the ion source. The proposed analysis can be used as an effective tool for the construction of an industrial reactor and for its appropriate optimization.

  10. In-flight evaluation of an optical head motion tracker III

    NASA Astrophysics Data System (ADS)

    Tawada, Kazuho; Okamoto, Masakazu

    2011-06-01

    We have presented a new approach for Optical HMT (Head Motion Tracker) past years [1]-[4]. In existing Magnetic HMT, it is inevitable to conduct pre-mapping in order to obtain sufficient accuracy because of magnetic field's distortion caused by metallic material around HMT, such as cockpit and helmet. Optical HMT is commonly known as mapping-free tracker; however, it has some disadvantages on accuracy, stability against sunlight conditions, in terms of comparison with Magnetic HMT. We had succeeded to develop new HMT system, which can overcome particular disadvantages by integration with two area cameras, optical markers, image processing techniques and inertial sensors with simple algorithm in laboratory level environment (2008). We have also reported some experimental results conducted in flight test, which proved good accuracy even in the sunlight condition (2009). We have also reported some experimental results conducted in flight test, which proved good performance even in the night flight (2010). Shimadzu Corp. and JAXA (Japan Aerospace Exploration Agency) are conducting joint research named SAVERH (Situation Awareness and Visual Enhancer for Rescue Helicopter) [2]-[4] that aims at inventing method of presenting suitable information to the pilot to support search and rescue missions by helicopters. The HMT system has been evaluated through a series of flight evaluation in SAVERH and demonstrated the operation concept. In this report, we show result of the final evaluation of the HMD system through 12 flights including night flight. Also, those evaluation was done by integrated HMT system that was newly developed for the tests in this year.

  11. Capacity of optical communications over a lossy bosonic channel with a receiver employing the most general coherent electro-optic feedback control

    NASA Astrophysics Data System (ADS)

    Chung, Hye Won; Guha, Saikat; Zheng, Lizhong

    2017-07-01

    We study the problem of designing optical receivers to discriminate between multiple coherent states using coherent processing receivers—i.e., one that uses arbitrary coherent feedback control and quantum-noise-limited direct detection—which was shown by Dolinar to achieve the minimum error probability in discriminating any two coherent states. We first derive and reinterpret Dolinar's binary-hypothesis minimum-probability-of-error receiver as the one that optimizes the information efficiency at each time instant, based on recursive Bayesian updates within the receiver. Using this viewpoint, we propose a natural generalization of Dolinar's receiver design to discriminate M coherent states, each of which could now be a codeword, i.e., a sequence of N coherent states, each drawn from a modulation alphabet. We analyze the channel capacity of the pure-loss optical channel with a general coherent-processing receiver in the low-photon number regime and compare it with the capacity achievable with direct detection and the Holevo limit (achieving the latter would require a quantum joint-detection receiver). We show compelling evidence that despite the optimal performance of Dolinar's receiver for the binary coherent-state hypothesis test (either in error probability or mutual information), the asymptotic communication rate achievable by such a coherent-processing receiver is only as good as direct detection. This suggests that in the infinitely long codeword limit, all potential benefits of coherent processing at the receiver can be obtained by designing a good code and direct detection, with no feedback within the receiver.

  12. Design guidelines for high dimensional stability of CFRP optical bench

    NASA Astrophysics Data System (ADS)

    Desnoyers, Nichola; Boucher, Marc-André; Goyette, Philippe

    2013-09-01

    In carbon fiber reinforced plastic (CFRP) optomechanical structures, particularly when embodying reflective optics, angular stability is critical. Angular stability or warping stability is greatly affected by moisture absorption and thermal gradients. Unfortunately, it is impossible to achieve the perfect laminate and there will always be manufacturing errors in trying to reach a quasi-iso laminate. Some errors, such as those related to the angular position of each ply and the facesheet parallelism (for a bench) can be easily monitored in order to control the stability more adequately. This paper presents warping experiments and finite-element analyses (FEA) obtained from typical optomechanical sandwich structures. Experiments were done using a thermal vacuum chamber to cycle the structures from -40°C to 50°C. Moisture desorption tests were also performed for a number of specific configurations. The selected composite material for the study is the unidirectional prepreg from Tencate M55J/TC410. M55J is a high modulus fiber and TC410 is a new-generation cyanate ester designed for dimensionally stable optical benches. In the studied cases, the main contributors were found to be: the ply angular errors, laminate in-plane parallelism (between 0° ply direction of both facesheets), fiber volume fraction tolerance and joints. Final results show that some tested configurations demonstrated good warping stability. FEA and measurements are in good agreement despite the fact that some defects or fabrication errors remain unpredictable. Design guidelines to maximize the warping stability by taking into account the main dimensional stability contributors, the bench geometry and the optical mount interface are then proposed.

  13. Ablation Behavior of Plasma-Sprayed La1-xSrxTiO3+δ Coating Irradiated by High-Intensity Continuous Laser.

    PubMed

    Zhu, Jinpeng; Ma, Zhuang; Gao, Yinjun; Gao, Lihong; Pervak, Vladimir; Wang, Lijun; Wei, Chenghua; Wang, Fuchi

    2017-10-11

    Laser protection for optical components, particularly those in high-power laser systems, has been a major concern. La 1-x Sr x TiO 3+δ with its good optical and thermal properties can be potentially applied as a high-temperature optical protective coating or high-reflectivity material for optical components. However, the high-power laser ablation behavior of plasma-sprayed La 1-x Sr x TiO 3+δ (x = 0.1) coatings has rarely been investigated. Thus, in this study, laser irradiation experiments were performed to study the effect of high-intensity continuous laser on the ablation behavior of the La 1-x Sr x TiO 3+δ coating. The results show that the La 1-x Sr x TiO 3+δ coating undergoes three ablation stages during laser irradiation: coating oxidation, formation and growth of new structures (columnar and dendritic crystals), and mechanical failure. A finite-element simulation was also conducted to explore the mechanism of the ablation damage to the La 1-x Sr x TiO 3+δ coating and provided a good understanding of the ablation behavior. The apparent ablation characteristics are attributed to the different temperature gradients determined by the reflectivity and thermal diffusivity of the La 1-x Sr x TiO 3+δ coating material, which are critical factors for improving the antilaser ablation property. Now, the stainless steel substrate deposited by it can effectively work as a protective shield layer against ablation by laser irradiation.

  14. Full area covered 3D profile measurement of special-shaped optics based on a new prototype non-contact profiler

    NASA Astrophysics Data System (ADS)

    Du, Hui-Lin; Zhou, Zhao-Zhong; Sun, Ze-Qing; Ju, Bing-Feng; Xu, Shaoning; Sun, Anyu

    2017-06-01

    A new prototype non-contact profiler based on surface tracking has been specially developed. Surface tracking is carried out by a specially designed dual stage probe system with the aid of a four-Degree Of Freedom high-precision motion platform. The dual stage probe system keeps a short-range optical probe constantly tracking the surface by a self-developed voice coil motor servo, by which a wide measuring range of up to 10 mm is realized. The system performance evaluation including resolution, repeatability, and scanning speed proved the good capability of the new prototype non-contact profiler. To realize a full area covered 3D profile measurement of special-shaped optics within one scanning procedure, a signal intensity monitor integrated in the surface tracking controller is specially developed. In the experiment, a snip-single-corner-rectangular-shaped freeform surface was successfully measured over full area by the new non-contact profiler. This work provides an effective solution for 3D profile measurement of special-shaped optical surfaces over full reflecting area. Experimental results demonstrate that the proposed measuring system is of great significance in quality evaluation of optical surfaces.

  15. Intermodulation and harmonic distortion in slow light Microwave Photonic phase shifters based on Coherent Population Oscillations in SOAs.

    PubMed

    Gasulla, Ivana; Sancho, Juan; Capmany, José; Lloret, Juan; Sales, Salvador

    2010-12-06

    We theoretically and experimentally evaluate the propagation, generation and amplification of signal, harmonic and intermodulation distortion terms inside a Semiconductor Optical Amplifier (SOA) under Coherent Population Oscillation (CPO) regime. For that purpose, we present a general optical field model, valid for any arbitrarily-spaced radiofrequency tones, which is necessary to correctly describe the operation of CPO based slow light Microwave Photonic phase shifters which comprise an electrooptic modulator and a SOA followed by an optical filter and supplements another recently published for true time delay operation based on the propagation of optical intensities. The phase shifter performance has been evaluated in terms of the nonlinear distortion up to 3rd order, for a modulating signal constituted of two tones, in function of the electrooptic modulator input RF power and the SOA input optical power, obtaining a very good agreement between theoretical and experimental results. A complete theoretical spectral analysis is also presented which shows that under small signal operation conditions, the 3rd order intermodulation products at 2Ω1 + Ω2 and 2Ω2 + Ω1 experience a power dip/phase transition characteristic of the fundamental tones phase shifting operation.

  16. Subsurface defects of fused silica optics and laser induced damage at 351 nm.

    PubMed

    Hongjie, Liu; Jin, Huang; Fengrui, Wang; Xinda, Zhou; Xin, Ye; Xiaoyan, Zhou; Laixi, Sun; Xiaodong, Jiang; Zhan, Sui; Wanguo, Zheng

    2013-05-20

    Many kinds of subsurface defects are always present together in the subsurface of fused silica optics. It is imperfect that only one kind of defects is isolated to investigate its impact on laser damage. Therefore it is necessary to investigate the impact of subsurface defects on laser induced damage of fused silica optics with a comprehensive vision. In this work, we choose the fused silica samples manufactured by different vendors to characterize subsurface defects and measure laser induced damage. Contamination defects, subsurface damage (SSD), optical-thermal absorption and hardness of fused silica surface are characterized with time-of-flight secondary ion mass spectrometry (TOF-SIMS), fluorescence microscopy, photo-thermal common-path interferometer and fully automatic micro-hardness tester respectively. Laser induced damage threshold and damage density are measured by 351 nm nanosecond pulse laser. The correlations existing between defects and laser induced damage are analyzed. The results show that Cerium element and SSD both have a good correlation with laser-induced damage thresholds and damage density. Research results evaluate process technology of fused silica optics in China at present. Furthermore, the results can provide technique support for improving laser induced damage performance of fused silica.

  17. Full area covered 3D profile measurement of special-shaped optics based on a new prototype non-contact profiler.

    PubMed

    Du, Hui-Lin; Zhou, Zhao-Zhong; Sun, Ze-Qing; Ju, Bing-Feng; Xu, Shaoning; Sun, Anyu

    2017-06-01

    A new prototype non-contact profiler based on surface tracking has been specially developed. Surface tracking is carried out by a specially designed dual stage probe system with the aid of a four-Degree Of Freedom high-precision motion platform. The dual stage probe system keeps a short-range optical probe constantly tracking the surface by a self-developed voice coil motor servo, by which a wide measuring range of up to 10 mm is realized. The system performance evaluation including resolution, repeatability, and scanning speed proved the good capability of the new prototype non-contact profiler. To realize a full area covered 3D profile measurement of special-shaped optics within one scanning procedure, a signal intensity monitor integrated in the surface tracking controller is specially developed. In the experiment, a snip-single-corner-rectangular-shaped freeform surface was successfully measured over full area by the new non-contact profiler. This work provides an effective solution for 3D profile measurement of special-shaped optical surfaces over full reflecting area. Experimental results demonstrate that the proposed measuring system is of great significance in quality evaluation of optical surfaces.

  18. Lattice Thermal Conductivity of Ultra High Temperature Ceramics ZrB2 and HfB2 from Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Murray, Daw S.; Bauschlicher, Charles W., Jr.

    2011-01-01

    Atomistic Green-Kubo simulations are performed to evaluate the lattice thermal conductivity for single crystals of the ultra high temperature ceramics ZrB2 and HfB2 for a range of temperatures. Recently developed interatomic potentials are used for these simulations. Heat current correlation functions show rapid oscillations which can be identified with mixed metal-Boron optical phonon modes. Agreement with available experimental data is good.

  19. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission

    NASA Astrophysics Data System (ADS)

    Li, Tao; Deng, Fu-Guo

    2015-10-01

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication.

  20. Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.

    2008-09-15

    The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly amore » factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.« less

  1. Adjustable repetition-rate multiplication of optical pulses using fractional temporal Talbot effect with preceded binary intensity modulation

    NASA Astrophysics Data System (ADS)

    Xie, Qijie; Zheng, Bofang; Shu, Chester

    2017-05-01

    We demonstrate a simple approach for adjustable multiplication of optical pulses in a fiber using the temporal Talbot effect. Binary electrical patterns are used to control the multiplication factor in our approach. The input 10 GHz picosecond pulses are pedestal-free and are shaped directly from a CW laser. The pulses are then intensity modulated by different sets of binary patterns prior to entering a fiber of fixed dispersion. Tunable repetition-rate multiplication by different factors of 2, 4, and 8 have been achieved and up to 80 GHz pulse train has been experimentally generated. We also evaluate numerically the influence of the extinction ratio of the intensity modulator on the performance of the multiplied pulse train. In addition, the impact of the modulator bias on the uniformity of the output pulses has also been analyzed through simulation and experiment and a good agreement is reached. Last, we perform numerical simulation on the RF spectral characteristics of the output pulses. The insensitivity of the signal-to-subharmonic noise ratio (SSNR) to the laser linewidth shows that our multiplication scheme is highly tolerant to the incoherence of the input optical pulses.

  2. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission.

    PubMed

    Li, Tao; Deng, Fu-Guo

    2015-10-27

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication.

  3. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission

    PubMed Central

    Li, Tao; Deng, Fu-Guo

    2015-01-01

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication. PMID:26502993

  4. Identification of Active Galactic Nuclei through HST optical variability in the GOODS South field

    NASA Astrophysics Data System (ADS)

    Pouliasis, Ektoras; Georgantopoulos; Bonanos, A.; HCV Team

    2016-08-01

    This work aims to identify AGN in the GOODS South deep field through optical variability. This method can easily identify low-luminosity AGN. In particular, we use images in the z-band obtained from the Hubble Space Telescope with the ACS/WFC camera over 5 epochs separated by ~45 days. Aperture photometry has been performed using SExtractor to extract the lightcurves. Several variability indices, such as the median absolute deviation, excess variance, and sigma were applied to automatically identify the variable sources. After removing artifacts, stars and supernovae from the variable selected sample and keeping only those sources with known photometric or spectroscopic redshift, the optical variability was compared to variability in other wavelengths (X-rays, mid-IR, radio). This multi-wavelength study provides important constraints on the structure and the properties of the AGN and their relation to their hosts. This work is a part of the validation of the Hubble Catalog of Variables (HCV) project, which has been launched at the National Observatory of Athens by ESA, and aims to identify all sources (pointlike and extended) showing variability, based on the Hubble Source Catalog (HSC, Whitmore et al. 2015). The HSC version 1 was released in February 2015 and includes 80 million sources imaged with the WFPC2, ACS/WFC, WFC3/UVIS and WFC3/IR cameras.

  5. A polymer-based Fabry-Perot filter integrated with 3-D MEMS structures

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Polymers have been considered as one of the most versatile materials in making optical devices for communication and sensor applications. They provide good optical transparency to form filters, lenses and many optical components with ease of fabrication. They are scalable and compatible in dimensions with requirements in optics and can be fabricated on inorganic substrates, such as silicon and quartz. Recent polymer synthesis also made great progresses on conductive and nonlinear polymers, opening opportunities for new applications. In this paper, we discussed hybrid-material integration of polymers on silicon-based microelectromechanical system (MEMS) devices. The motivation is to combine the advantages of demonstrated silicon-based MEMS actuators and excellent optical performance of polymers. We demonstrated the idea with a polymer-based out-of-plane Fabry-Perot filter that can be self-assembled by scratch drive actuators. We utilized a fabrication foundry service, MUMPS (Multi-User MEMS Process), to demonstrate the feasibility and flexibility of integration. The polysilicon, used as the structural material for construction of 3-D framework and actuators, has high absorption in the visible and near infrared ranges. Therefore, previous efforts using a polysilicon layer as optical interfaces suffer from high losses. We applied the organic compound materials on the silicon-based framework within the optical signal propagation path to form the optical interfaces. In this paper, we have shown low losses in the optical signal processing and feasibility of building a thin-film Fabry-Perot filter. We discussed the optical filter designs, mechanical design, actuation mechanism, fabrication issues, optical measurements, and results.

  6. Dual-Wavelength Sensitized Photopolymer for Holographic Data Storage

    NASA Astrophysics Data System (ADS)

    Tao, Shiquan; Zhao, Yuxia; Wan, Yuhong; Zhai, Qianli; Liu, Pengfei; Wang, Dayong; Wu, Feipeng

    2010-08-01

    Novel photopolymers for holographic storage were investigated by combining acrylate monomers and/or vinyl monomers as recording media and liquid epoxy resins plus an amine harder as binder. In order to improve the holographic performances of the material at blue-green wavelength band two novel dyes were used as sensitizer. The methods of evaluating the holographic performances of the material, including the shrinkage and noise characteristics, are described in detail. Preliminary experiments show that samples with optimized composite have good holographic performances, and it is possible to record dual-wavelength hologram simultaneously in this photopolymer by sharing the same optical system, thus the storage density and data rate can be doubly increased.

  7. Optoelectronic frequency discriminated phase tuning technology and its applications

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru; Chang, Yung-Cheng

    2000-07-01

    By using a phase-tunable optoelectronic phase-locked loop, we are able to continuously change the phase as well as the delay-time of optically distributed microwave clock signals or optical pulse train. The advantages of the proposed technique include such as wide-band operation up to 20GHz, wide-range tuning up to 640 degrees, high tuning resolution of <6x10-2 degree/mV, ultra-low short-term phase fluctuation and drive of 4.7x10-2 degree and 3.4x10- 3 degree/min, good linearity with acceptable deviations, and frequency-independent transferred function with slope of nearly 90 degrees/volt, etc. The novel optoelectronic phase shifter is performed by using a DC-voltage controlled, optoelectronic-mixer-based, frequency-down-converted digital phase-locked-loop. The maximum delay-time is continuously tunable up to 3.9 ns for optical pulses repeated at 500 MHz from a gain-switched laser diode. This corresponds to a delay responsivity of about 0.54 ps/mV. The using of the OEPS as being an optoelectronic delay-time controller for optical pulses is demonstrated with temporal resolution of <0.2 ps. Electro-optic sampling of high-frequency microwave signals by using the in-situ delay-time-tunable pulsed laser as a novel optical probe is primarily reported.

  8. Integrated optical modulator manipulating the polarization and rotation handedness of Orbital Angular Momentum states.

    PubMed

    Mousavi, S Faezeh; Nouroozi, Rahman; Vallone, Giuseppe; Villoresi, Paolo

    2017-06-19

    Recent studies demonstrated that the optical channels encoded by Orbital Angular Momentum (OAM) are capable candidates for improving the next generation of communication systems. OAM states can enhance the capacity and security of high-dimensional communication channels in both classical and quantum regimes based on optical fibre and free space. Hence, fast and precise control of the beams encoded by OAM can provide their commercial applications in the compatible communication networks. Integrated optical devices are good miniaturized options to perform this issue. This paper proposes a numerically verified integrated high-frequency electro-optical modulator for manipulation of the guided modes encoded in both OAM and polarization states. The proposed modulator is designed as an electro-optically active Lithium Niobate (LN) core photonic wire with silica as its cladding in a LN on Insulator (LNOI) configuration. It consists of two successive parts; a phase shifter to reverse the rotation handedness of the input OAM state and a polarization converter to change the horizontally polarized OAM state to the vertically polarized one. It is shown that all four possible output polarization-OAM encoded states can be achieved with only 6 V and 7 V applied voltages to the electrodes in the two parts of the modulator.

  9. Detection-gap-independent optical sensor design using divergence-beam-controlled slit lasers for wearable devices

    NASA Astrophysics Data System (ADS)

    Yoon, Young Zoon; Kim, Hyochul; Park, Yeonsang; Kim, Jineun; Lee, Min Kyung; Kim, Un Jeong; Roh, Young-Geun; Hwang, Sung Woo

    2016-09-01

    Wearable devices often employ optical sensors, such as photoplethysmography sensors, for detecting heart rates or other biochemical factors. Pulse waveforms, rather than simply detecting heartbeats, can clarify arterial conditions. However, most optical sensor designs require close skin contact to reduce power consumption while obtaining good quality signals without distortion. We have designed a detection-gap-independent optical sensor array using divergence-beam-controlled slit lasers and distributed photodiodes in a pulse-detection device wearable over the wrist's radial artery. It achieves high biosignal quality and low power consumption. The top surface of a vertical-cavity surface-emitting laser of 850 nm wavelength was covered by Au film with an open slit of width between 500 nm and 1500 nm, which generated laser emissions across a large divergence angle along an axis orthogonal to the slit direction. The sensing coverage of the slit laser diode (LD) marks a 50% improvement over nonslit LD sensor coverage. The slit LD sensor consumes 100% more input power than the nonslit LD sensor to obtain similar optical output power. The slit laser sensor showed intermediate performance between LD and light-emitting diode sensors. Thus, designing sensors with multiple-slit LD arrays can provide useful and convenient ways for incorporating optical sensors in wrist-wearable devices.

  10. Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Wang, Yihong; Aguirre, Aaron D.; Tsai, Tsung-Han; Cohen, David W.; Connolly, James L.; Fujimoto, James G.

    2010-01-01

    We evaluate the feasibility of optical coherence tomography (OCT) and optical coherence microscopy (OCM) for imaging of benign and malignant thyroid lesions ex vivo using intrinsic optical contrast. 34 thyroid gland specimens are imaged from 17 patients, covering a spectrum of pathology ranging from normal thyroid to benign disease/neoplasms (multinodular colloid goiter, Hashimoto's thyroiditis, and follicular adenoma) and malignant thyroid tumors (papillary carcinoma and medullary carcinoma). Imaging is performed using an integrated OCT and OCM system, with <4 μm axial resolution (OCT and OCM), and 14 μm (OCT) and <2 μm (OCM) transverse resolution. The system allows seamless switching between low and high magnifications in a way similar to traditional microscopy. Good correspondence is observed between optical images and histological sections. Characteristic features that suggest malignant lesions, such as complex papillary architecture, microfollicules, psammomatous calcifications, or replacement of normal follicular architecture with sheets/nests of tumor cells, can be identified from OCT and OCM images and are clearly differentiable from normal or benign thyroid tissues. With further development of needle-based imaging probes, OCT and OCM could be promising techniques to use for the screening of thyroid nodules and to improve the diagnostic specificity of fine needle aspiration evaluation.

  11. BPSK optical mm-wave signal generation by septupling frequency via a single optical phase modulator

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Ma, Jianxin

    2016-09-01

    In this paper, we have proposed a novel and simple scheme to generate the BPSK optical millimeter wave (MMW) signal with frequency septupling by using an optical phase modulator (PM) and a wavelength selective switch (WSS). In this scheme, the PM is driven by a radio frequency (RF) BPSK signal at the optimized modulation index of 4.89 to assure the 4th and 3rd-order sidebands have equal amplitudes. An wavelength selective switch (WSS) is used to abstract the -4th and +3rd-order sidebands from the spectrum generated by RF BPSK signal modulating the lightwave to form the BPSK optical MMW signal with frequency septupling the driving RF signal. In these two tones, only the +3rd-order sideband bears the BPSK signal while the -4th-order sideband is unmodulated since the phase information is canceled by the even times multiplication of the phase of BPSK signal. The MMW signal can avoid the pulse walk-off effect and the amplitude fading effect caused by the fiber chromatic dispersion. By adjusting the modulation index to assure the two tones have equal amplitude, the generated optical MMW signal has the maximal opto-electrical conversion efficiency and good transmission performance.

  12. Non-enzymatic glucose detection based on phenylboronic acid modified optical fibers

    NASA Astrophysics Data System (ADS)

    Sun, Xiaolan; Li, Nana; Zhou, Bin; Zhao, Wei; Liu, Liyuan; Huang, Chao; Ma, Longfei; Kost, Alan R.

    2018-06-01

    A non-enzymatic, sensitive glucose sensor was fabricated based on an evanescent wave absorbing optical fiber probe. The optical fiber sensor was functionalized by fixing a poly (phenylboronic acid) (polyPBA) film onto the conical region of the single mode fiber. The reflected light intensity of the polyPBA-functionalized fiber sensor increased proportionally with glucose concentration in the range of 0-60 mM, and the sensor showed good reproducibility and stability. The developed sensor possessed a high sensitivity of 0.1787%/mM and good linearity. The measurement of glucose concentration in human serum was also demonstrated.

  13. Effects of Rapid Thermal Annealing on the Structural, Electrical, and Optical Properties of Zr-Doped ZnO Thin Films Grown by Atomic Layer Deposition.

    PubMed

    Wu, Jingjin; Zhao, Yinchao; Zhao, Ce Zhou; Yang, Li; Lu, Qifeng; Zhang, Qian; Smith, Jeremy; Zhao, Yongming

    2016-08-13

    The 4 at. % zirconium-doped zinc oxide (ZnO:Zr) films grown by atomic layer deposition (ALD) were annealed at various temperatures ranging from 350 to 950 °C. The structural, electrical, and optical properties of rapid thermal annealing (RTA) treated ZnO:Zr films have been evaluated to find out the stability limit. It was found that the grain size increased at 350 °C and decreased between 350 and 850 °C, while creeping up again at 850 °C. UV-vis characterization shows that the optical band gap shifts towards larger wavelengths. The Hall measurement shows that the resistivity almost keeps constant at low annealing temperatures, and increases rapidly after treatment at 750 °C due to the effect of both the carrier concentration and the Hall mobility. The best annealing temperature is found in the range of 350-550 °C. The ZnO:Zr film-coated glass substrates show good optical and electrical performance up to 550 °C during superstrate thin film solar cell deposition.

  14. Effects of Rapid Thermal Annealing on the Structural, Electrical, and Optical Properties of Zr-Doped ZnO Thin Films Grown by Atomic Layer Deposition

    PubMed Central

    Wu, Jingjin; Zhao, Yinchao; Zhao, Ce Zhou; Yang, Li; Lu, Qifeng; Zhang, Qian; Smith, Jeremy; Zhao, Yongming

    2016-01-01

    The 4 at. % zirconium-doped zinc oxide (ZnO:Zr) films grown by atomic layer deposition (ALD) were annealed at various temperatures ranging from 350 to 950 °C. The structural, electrical, and optical properties of rapid thermal annealing (RTA) treated ZnO:Zr films have been evaluated to find out the stability limit. It was found that the grain size increased at 350 °C and decreased between 350 and 850 °C, while creeping up again at 850 °C. UV–vis characterization shows that the optical band gap shifts towards larger wavelengths. The Hall measurement shows that the resistivity almost keeps constant at low annealing temperatures, and increases rapidly after treatment at 750 °C due to the effect of both the carrier concentration and the Hall mobility. The best annealing temperature is found in the range of 350–550 °C. The ZnO:Zr film-coated glass substrates show good optical and electrical performance up to 550 °C during superstrate thin film solar cell deposition. PMID:28773816

  15. Tuning electro-optic susceptibity via strain engineering in artificial PZT multilayer films for high-performance broadband modulator

    NASA Astrophysics Data System (ADS)

    Zhu, Minmin; Du, Zehui; Li, Hongling; Chen, Bensong; Jing, Lin; Tay, Roland Ying Jie; Lin, Jinjun; Tsang, Siu Hon; Teo, Edwin Hang Tong

    2017-12-01

    A series of Pb(Zr1-xTix)O3 multilayer films alternatively stacked by Pb(Zr0.52Ti0.48)O3 and Pb(Zr0.35Ti0.65)O3 layers have been deposited on corning glass by magnetron sputtering. The films demonstrate pure perovskite structure and good crystallinity. A large tetragonality (c/a) of ∼1.061 and a shift of ∼0.08 eV for optical bandgap were investigated at layer engineered films. In addition, these samples exhibited a wild tunable electro-optic behavior from tens to ∼250.2 pm/V, as well as fast switching time of down to a few microseconds. The giant EO coefficient was attribute the strain-polarization coupling effect and also comparable to that of epitaxial (001) single crystal PZT thin films. The combination of high transparency, large EO effect, fast switching time, and huge phase transition temperature in PZT-based thin films show the potential on electro-optics from laser to information telecommunication.

  16. Verification of the windings axial clamping forces for high voltage power transformers by using passively mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Şchiopu, IonuÅ£ Romeo; ǎgulinescu, Andrei, Dr; Iordǎnescu, Raluca; Marinescu, Andrei

    2015-02-01

    The current paper describes an optoelectronic method for direct monitoring of the axial clamping forces both in static and in dynamic duty. As advantages of this method we can state that it can be applied both to new and refurbished transformers without performing constructive changes or affecting in any way the transformer safety in operation. For monitoring the axial clamping forces for high-voltage (HV) power transformers, we use an optical fiber that we integrate into the laser cavity of a passively mode-locked fiber laser (PMFL). To each axial clamp corresponds a solitonic optical spectrum that is changed at the periodical passing of the fundamental soliton pulse through the sensitive fiber inside the transformer. Moreover, as a specific characteristic, the laser stability is unique for each set of axial clamping forces. Other important advantages of using an optical fiber as compared to the classical approach in which electronic sensors are used consist in the good reliability and insulator properties of the optical fiber, avoiding any risk of fire or damage of the transformer.

  17. Application of Taguchi approach to optimize the sol-gel process of the quaternary Cu2ZnSnS4 with good optical properties

    NASA Astrophysics Data System (ADS)

    Nkuissi Tchognia, Joël Hervé; Hartiti, Bouchaib; Ridah, Abderraouf; Ndjaka, Jean-Marie; Thevenin, Philippe

    2016-07-01

    Present research deals with the optimal deposition parameters configuration for the synthesis of Cu2ZnSnS4 (CZTS) thin films using the sol-gel method associated to spin coating on ordinary glass substrates without sulfurization. The Taguchi design with a L9 (34) orthogonal array, a signal-to-noise (S/N) ratio and an analysis of variance (ANOVA) are used to optimize the performance characteristic (optical band gap) of CZTS thin films. Four deposition parameters called factors namely the annealing temperature, the annealing time, the ratios Cu/(Zn + Sn) and Zn/Sn were chosen. To conduct the tests using the Taguchi method, three levels were chosen for each factor. The effects of the deposition parameters on structural and optical properties are studied. The determination of the most significant factors of the deposition process on optical properties of as-prepared films is also done. The results showed that the significant parameters are Zn/Sn ratio and the annealing temperature by applying the Taguchi method.

  18. Simulation-based investigation of the generality of Lyzenga's multispectral bathymetry formula in Case-1 coral reef water

    NASA Astrophysics Data System (ADS)

    Manessa, Masita Dwi Mandini; Kanno, Ariyo; Sagawa, Tatsuyuki; Sekine, Masahiko; Nurdin, Nurjannah

    2018-01-01

    Lyzenga's multispectral bathymetry formula has attracted considerable interest due to its simplicity. However, there has been little discussion of the effect that variation in optical conditions and bottom types-which commonly appears in coral reef environments-has on this formula's results. The present paper evaluates Lyzenga's multispectral bathymetry formula for a variety of optical conditions and bottom types. A noiseless dataset of above-water remote sensing reflectance from WorldView-2 images over Case-1 shallow coral reef water is simulated using a radiative transfer model. The simulation-based assessment shows that Lyzenga's formula performs robustly, with adequate generality and good accuracy, under a range of conditions. As expected, the influence of bottom type on depth estimation accuracy is far greater than the influence of other optical parameters, i.e., chlorophyll-a concentration and solar zenith angle. Further, based on the simulation dataset, Lyzenga's formula estimates depth when the bottom type is unknown almost as accurately as when the bottom type is known. This study provides a better understanding of Lyzenga's multispectral bathymetry formula under various optical conditions and bottom types.

  19. Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers.

    PubMed

    Xing, Jun; Liu, Xin Feng; Zhang, Qing; Ha, Son Tung; Yuan, Yan Wen; Shen, Chao; Sum, Tze Chien; Xiong, Qihua

    2015-07-08

    Semiconductor nanowires have received considerable attention in the past decade driven by both unprecedented physics derived from the quantum size effect and strong isotropy and advanced applications as potential building blocks for nanoscale electronics and optoelectronic devices. Recently, organic-inorganic hybrid perovskites have been shown to exhibit high optical absorption coefficient, optimal direct band gap, and long electron/hole diffusion lengths, leading to high-performance photovoltaic devices. Herein, we present the vapor phase synthesis free-standing CH3NH3PbI3, CH3NH3PbBr3, and CH3NH3PbIxCl3(-x) perovskite nanowires with high crystallinity. These rectangular cross-sectional perovskite nanowires have good optical properties and long electron hole diffusion length, which ensure adequate gain and efficient optical feedback. Indeed, we have demonstrated optical-pumped room-temperature CH3NH3PbI3 nanowire lasers with near-infrared wavelength of 777 nm, low threshold of 11 μJ/cm(2), and a quality factor as high as 405. Our research advocates the promise of optoelectronic devices based on organic-inorganic perovskite nanowires.

  20. Design and implementation of the modified signed digit multiplication routine on a ternary optical computer.

    PubMed

    Xu, Qun; Wang, Xianchao; Xu, Chao

    2017-06-01

    Multiplication with traditional electronic computers is faced with a low calculating accuracy and a long computation time delay. To overcome these problems, the modified signed digit (MSD) multiplication routine is established based on the MSD system and the carry-free adder. Also, its parallel algorithm and optimization techniques are studied in detail. With the help of a ternary optical computer's characteristics, the structured data processor is designed especially for the multiplication routine. Several ternary optical operators are constructed to perform M transformations and summations in parallel, which has accelerated the iterative process of multiplication. In particular, the routine allocates data bits of the ternary optical processor based on digits of multiplication input, so the accuracy of the calculation results can always satisfy the users. Finally, the routine is verified by simulation experiments, and the results are in full compliance with the expectations. Compared with an electronic computer, the MSD multiplication routine is not only good at dealing with large-value data and high-precision arithmetic, but also maintains lower power consumption and fewer calculating delays.

  1. Evaluation of a new optic-enabled portable X-ray fluorescence spectrometry instrument for measuring toxic metals/metalloids in consumer goods and cultural products

    NASA Astrophysics Data System (ADS)

    Guimarães, Diana; Praamsma, Meredith L.; Parsons, Patrick J.

    2016-08-01

    X-ray fluorescence spectrometry (XRF) is a rapid, non-destructive multi-elemental analytical technique used for determining elemental contents ranging from percent down to the μg/g level. Although detection limits are much higher for XRF compared to other laboratory-based methods, such as inductively coupled plasma mass spectrometry (ICP-MS), ICP-optical emission spectrometry (OES) and atomic absorption spectrometry (AAS), its portability and ease of use make it a valuable tool, especially for field-based studies. A growing necessity to monitor human exposure to toxic metals and metalloids in consumer goods, cultural products, foods and other sample types while performing the analysis in situ has led to several important developments in portable XRF technology. In this study, a new portable XRF analyzer based on the use of doubly curved crystal optics (HD Mobile®) was evaluated for detecting toxic elements in foods, medicines, cosmetics and spices used in many Asian communities. Two models of the HD Mobile® (a pre-production and a final production unit) were investigated. Performance parameters including accuracy, precision and detection limits were characterized in a laboratory setting using certified reference materials (CRMs) and standard solutions. Bias estimates for key elements of public health significance such as As, Cd, Hg and Pb ranged from - 10% to 11% for the pre-production, and - 14% to 16% for the final production model. Five archived public health samples including herbal medicine products, ethnic spices and cosmetic products were analyzed using both XRF instruments. There was good agreement between the pre-production and final production models for the four key elements, such that the data were judged to be fit-for-purpose for the majority of samples analyzed. Detection of the four key elements of interest using the HD Mobile® was confirmed using archived samples for which ICP-OES data were available based on digested sample materials. The HD Mobile® XRF units were shown to be suitable for rapid screening of samples likely to be encountered in field based studies.

  2. Optical communication with semiconductor laser diodes

    NASA Technical Reports Server (NTRS)

    Davidson, F.

    1988-01-01

    Slot timing recovery in a direct detection optical PPM communication system can be achieved by processing the photodetector waveform with a nonlinear device whose output forms the input to a phase lock group. The choice of a simple transition detector as the nonlinearity is shown to give satisfactory synchronization performance. The rms phase error of the recovered slot clock and the effect of slot timing jitter on the bit error probability were directly measured. The experimental system consisted of an AlGaAs laser diode (lambda = 834 nm) and a silicon avalanche photodiode (APD) photodetector and used Q=4 PPM signaling operated at a source data rate of 25 megabits/second. The mathematical model developed to characterize system performance is shown to be in good agreement with actual performance measurements. The use of the recovered slot clock in the receiver resulted in no degradation in receiver sensitivity compared to a system with perfect slot timing. The system achieved a bit error probability of 10 to the minus 6 power at received signal energies corresponding to an average of less than 60 detected photons per information bit.

  3. Characterization Of Improved Binary Phase-Only Filters In A Real-Time Coherent Optical Correlation System

    NASA Astrophysics Data System (ADS)

    Flannery, D.; Keller, P.; Cartwright, S.; Loomis, J.

    1987-06-01

    Attractive correlation system performance potential is possible using magneto-optic spatial light modulators (SLM) to implement binary phase-only reference filters at high rates, provided the correlation performance of such reduced-information-content filters is adequate for the application. In the case studied here, the desired filter impulse response is a rectangular shape, which cannot be achieved with the usual binary phase-only filter formulation. The correlation application problem is described and techniques for synthesizing improved filter impulse response are considered. A compromise solution involves the cascading of a fixed amplitude-only weighting mask with the binary phase-only SLM. Based on simulations presented, this approach provides improved impulse responses and good correlation performance, while retaining the critical feature of real-time variations of the size, shape, and orientation of the rectangle by electronic programming of the phase pattern in the SLM. Simulations indicate that, for at least one very challenging input scene clutter situation, these filters provide higher correlation signal-to-noise than does "ideal" correlation, i.e. using a perfect rectangle filter response.

  4. The application of phase grating to CLM technology for the sub-65nm node optical lithography

    NASA Astrophysics Data System (ADS)

    Yoon, Gi-Sung; Kim, Sung-Hyuck; Park, Ji-Soong; Choi, Sun-Young; Jeon, Chan-Uk; Shin, In-Kyun; Choi, Sung-Woon; Han, Woo-Sung

    2005-06-01

    As a promising technology for sub-65nm node optical lithography, CLM(Chrome-Less Mask) technology among RETs(Resolution Enhancement Techniques) for low k1 has been researched worldwide in recent years. CLM has several advantages, such as relatively simple manufacturing process and competitive performance compared to phase-edge PSM's. For the low-k1 lithography, we have researched CLM technique as a good solution especially for sub-65nm node. As a step for developing the sub-65nm node optical lithography, we have applied CLM technology in 80nm-node lithography with mesa and trench method. From the analysis of the CLM technology in the 80nm lithography, we found that there is the optimal shutter size for best performance in the technique, the increment of wafer ADI CD varied with pattern's pitch, and a limitation in patterning various shapes and size by OPC dead-zone - OPC dead-zone in CLM technique is the specific region of shutter size that dose not make the wafer CD increased more than a specific size. And also small patterns are easily broken, while fabricating the CLM mask in mesa method. Generally, trench method has better optical performance than mesa. These issues have so far restricted the application of CLM technology to a small field. We approached these issues with 3-D topographic simulation tool and found that the issues could be overcome by applying phase grating in trench-type CLM. With the simulation data, we made some test masks which had many kinds of patterns with many different conditions and analyzed their performance through AIMS fab 193 and exposure on wafer. Finally, we have developed the CLM technology which is free of OPC dead-zone and pattern broken in fabrication process. Therefore, we can apply the CLM technique into sub-65nm node optical lithography including logic devices.

  5. Adipocyte property evaluation with photoacoustic spectrum analysis: a feasibility study on human tissues

    NASA Astrophysics Data System (ADS)

    Cao, Meng; Zhu, Yunhao; O'Rourke, Robert; Wang, Huaideng; Yuan, Jie; Cheng, Qian; Xu, Guan; Wang, Xueding; Carson, Paul

    2017-03-01

    Photoacoustic spectrum analysis (PASA) offers potential advantages in identifying optically absorbing microstructures in biological tissues. Working at high ultrasound frequency, PASA is capable of identifying the morphological features of cells based on their intrinsic optical absorption. Adipocyte size is correlated with metabolic disease risk in the form of diabetes mellitus, thus it can be adopted as a pathology predictor to evaluate the condition of obese patient, and can be helpful for assessing the patient response to bariatric surgery. In order to acquire adipocyte size, usually adipose tissue biopsy is performed and histopathology analysis is conducted. The whole procedure is not well tolerated by patients, and is also labor and cost intensive. An unmet need is to quantify and predict adipocyte size in a mild and more efficient way. This work aims at studying the feasibility to analyze the adipocyte size of human fat tissue using the method of PASA. PA measurements were performed at the optical wavelength of 1210 nm where lipid has strong optical absorption, enabling the study of adipocyte without need of staining. Both simulation and ex vivo experiments have been completed. Good correlation between the quantified photoacoustic spectral parameter slope and the average adipocyte size obtained by the gold-standard histology has been established. This initial study suggests the potential opportunity of applying PASA to future clinical management of obesity.

  6. Gibbsian segregating alloys driven by thermal and concentration gradients: A potential grazing collector optics used in EUV lithography

    NASA Astrophysics Data System (ADS)

    Qiu, Huatan

    A critical issue for EUV lithography is the minimization of collector degradation from intense plasma erosion and debris deposition. Reflectivity and lifetime of the collector optics will be heavily dependent on surface chemistry interactions between fuels and various mirror materials, in addition to high-energy ion and neutral particle erosion effects. An innovative Gibbsian segregation (GS) concept has been developed for being a self-healing, erosion-resistant collector optics. A Mo-Au GS alloy is developed on silicon using a DC dual-magnetron co-sputtering system in order for enhanced surface roughness properties, erosion resistance, and self-healing characteristics to maintain reflectivity over a longer period of mirror lifetime. A thin Au segregating layer will be maintained through segregation during exposure, even though overall erosion is taking place. The reflective material, Mo, underneath the segregating layer will be protected by this sacrificial layer which is lost due to preferential sputtering. The two dominant driving forces, thermal (temperature) and surface concentration gradient (surface removal flux), are the focus of this work. Both theoretical and experimental efforts have been performed to prove the effectiveness of the GS alloy used as EUV collection optics, and to elucidate the underlying physics behind it. The segregation diffusion, surface balance, erosion, and in-situ reflectivity will be investigated both qualitatively and quantitatively. Results show strong enhancement effect of temperature on GS performance, while only a weak effect of surface removal rate on GS performance. When equilibrium between GS and erosion is reached, the surface smoothness could be self-healed and reflectivity could be maintained at an equilibrium level, instead of continuously dropping down to an unacceptable level as conventional optic mirrors behave. GS process also shows good erosion resistance. The effectiveness of GS alloy as EUV mirror is dependent on the temperature and surface removal rate. The Mo-Au GS alloy could be effective at elevated temperature as the potential grazing mirror as EUV collector optics.

  7. On optimal designs of transparent WDM networks with 1 + 1 protection leveraged by all-optical XOR network coding schemes

    NASA Astrophysics Data System (ADS)

    Dao, Thanh Hai

    2018-01-01

    Network coding techniques are seen as the new dimension to improve the network performances thanks to the capability of utilizing network resources more efficiently. Indeed, the application of network coding to the realm of failure recovery in optical networks has been marking a major departure from traditional protection schemes as it could potentially achieve both rapid recovery and capacity improvement, challenging the prevailing wisdom of trading capacity efficiency for speed recovery and vice versa. In this context, the maturing of all-optical XOR technologies appears as a good match to the necessity of a more efficient protection in transparent optical networks. In addressing this opportunity, we propose to use a practical all-optical XOR network coding to leverage the conventional 1 + 1 optical path protection in transparent WDM optical networks. The network coding-assisted protection solution combines protection flows of two demands sharing the same destination node in supportive conditions, paving the way for reducing the backup capacity. A novel mathematical model taking into account the operation of new protection scheme for optimal network designs is formulated as the integer linear programming. Numerical results based on extensive simulations on realistic topologies, COST239 and NSFNET networks, are presented to highlight the benefits of our proposal compared to the conventional approach in terms of wavelength resources efficiency and network throughput.

  8. Optical modeling of volcanic ash particles using ellipsoids

    NASA Astrophysics Data System (ADS)

    Merikallio, Sini; Muñoz, Olga; Sundström, Anu-Maija; Virtanen, Timo H.; Horttanainen, Matti; de Leeuw, Gerrit; Nousiainen, Timo

    2015-05-01

    The single-scattering properties of volcanic ash particles are modeled here by using ellipsoidal shapes. Ellipsoids are expected to improve the accuracy of the retrieval of aerosol properties using remote sensing techniques, which are currently often based on oversimplified assumptions of spherical ash particles. Measurements of the single-scattering optical properties of ash particles from several volcanoes across the globe, including previously unpublished measurements from the Eyjafjallajökull and Puyehue volcanoes, are used to assess the performance of the ellipsoidal particle models. These comparisons between the measurements and the ellipsoidal particle model include consideration of the whole scattering matrix, as well as sensitivity studies on the point of view of the Advanced Along Track Scanning Radiometer (AATSR) instrument. AATSR, which flew on the ENVISAT satellite, offers two viewing directions but no information on polarization, so usually only the phase function is relevant for interpreting its measurements. As expected, ensembles of ellipsoids are able to reproduce the observed scattering matrix more faithfully than spheres. Performance of ellipsoid ensembles depends on the distribution of particle shapes, which we tried to optimize. No single specific shape distribution could be found that would perform superiorly in all situations, but all of the best-fit ellipsoidal distributions, as well as the additionally tested equiprobable distribution, improved greatly over the performance of spheres. We conclude that an equiprobable shape distribution of ellipsoidal model particles is a relatively good, yet enticingly simple, approach for modeling volcanic ash single-scattering optical properties.

  9. The development of high-performance alkali-hybrid polarized He 3 targets for electron scattering

    DOE PAGES

    Singh, Jaideep T.; Dolph, Peter A.M.; Tobias, William Al; ...

    2015-05-01

    We present the development of high-performance polarized ³He targets for use in electron scattering experiments that utilize the technique of alkali-hybrid spin-exchange optical pumping. We include data obtained during the characterization of 24 separate target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. The results presented here document dramatic improvement in the performance of polarized ³He targets, as well as the target properties and operating parameters that made those improvements possible. Included in our measurements were determinations of the so-called X-factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable ³He polarization to well under 100%. The presence of this spin-relaxation mechanism was clearly evident in our data. We also present results from a simulation of the alkali-hydrid spin-exchange optical pumping process that was developed to provide guidance in the design of these targets. Good agreement with actual performance was obtained by including details such as off-resonant optical pumping. Now benchmarked against experimental data, the simulation is useful for the design of future targets. Included in our results is a measurement of the K- ³He spin-exchange rate coefficientmore » $$k^\\mathrm{K}_\\mathrm{se} = \\left ( 7.46 \\pm 0.62 \\right )\\!\\times\\!10^{-20}\\ \\mathrm{cm^3/s}$$ over the temperature range 503 K to 563 K.« less

  10. The Optical Depth Sensor (ODS) for Mars atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2015-10-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in both Martian and Earth environments. The principal goal of ODS is to carry out the opacity due to the Martian dust as well as to characterize the high altitude clouds at twilight, crucial parameters in understanding of Martian meteorology. The instrument was initially designed for the failed MARS96 Russian mission, and also was included in the payload of several other missions [1]. Until recently, it was selected (NASA/ESA AO) in the payload of the atmospheric package DREAMS onboard the MARS 2016 mission. But following a decision of the CNES, it is no more included in the payload. In order to study the performance of ODS under a wide range of conditions as well as its capable to provide daily measurements of both dust optical thickness and high altitude clouds properties, the instrument has participated in different terrestrial campaigns. A good performance of ODS prototype (Figure 1) on cirrus clouds detection and in dust opacity estimation was previously archived in Africa during 2004-2005 and in Brasil from 2012 to nowadays. Moreover, a campaign in the arctic is expected before 2016 where fifteen ODSs will be part of an integrated observing system over the Arctic Ocean, allowing test the ODS performance in extreme conditions. In this presentation we present main principle of the retrieval, the instrumental concept, the result of the tests performed and the principal objectives of ODS in Mars.

  11. Optical Depth Sensor (ODS) for the measurement of dust and clouds properties in the Mars atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2014-04-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in both Martian and Earth environments. The principal goal of ODS is to carry out the opacity due to the Martian dust as well as to characterize the high altitude clouds at twilight, crucial parameters in understanding of Martian meteorology. The instrument was initially designed for the failed MARS96 Russian mission, and also was included in the payload of several other missions [1]. Until recently, it was selected (NASA/ESA AO) in the payload of the atmospheric package DREAMS onboard the MARS 2016 mission. But following a decision of the CNES, it is no more included in the payload. In order to study the performance of ODS under a wide range of conditions as well as its capable to provide daily measurements of both dust optical thickness and high altitude clouds properties, the instrument has participated in different terrestrial campaigns. A good performance of ODS prototype (Figure 1) on cirrus clouds detection and in dust opacity estimation was previously archived in Africa during 2004-2005 and in Brasil from 2012 to nowadays. Moreover, a campaign in the arctic is expected before 2016 where fifteen ODSs will be part of an integrated observing system over the Arctic Ocean, allowing test the ODS performance in extreme conditions. In this presentation we present main principle of the retrieval, the instrumental concept, the result of the tests performed and the principal objectives of ODS in Mars.

  12. The Optical Depth Sensor (ODS) for Mars atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2013-09-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in the martian atmosphere. The principal goal of ODS is to carry out the opacity due to the Martian dust as well as to characterize the high altitude clouds at twilight, crucial parameters in understanding of Martian meteorology. The instrument was initially designed for the failed MARS96 Russian mission, and also was included in the payload of several other missions [1]. Until recently, it was selected (NASA/ESA AO) in the payload of the atmospheric package DREAMS onboard the MARS 2016 mission. But following a decision of the CNES, it is no more included in the payload. In order to study the performance of ODS under a wide range of conditions as well as its capable to provide daily measurements of both dust optical thickness and high altitude clouds, the instrument has participated in different terrestrial campaigns. A good performance of ODS prototype (Figure 1) on cirrus clouds detection and in dust opacity estimation was previously archived in Africa during 2004-2005 and in Brasil from 2012 to nowadays. Moreover, a campaign in the arctic is expected before 2016 where fifteen ODSs will be part of an integrated observing system over the Arctic Ocean, allowing test the ODS performance in extreme conditions. In this presentation we present main principle of the retrieval, the instrumental concept, the result of the tests performed and the principal objectives of ODS in Mars.

  13. Development of high-performance alkali-hybrid polarized 3He targets for electron scattering

    NASA Astrophysics Data System (ADS)

    Singh, Jaideep T.; Dolph, P. A. M.; Tobias, W. A.; Averett, T. D.; Kelleher, A.; Mooney, K. E.; Nelyubin, V. V.; Wang, Yunxiao; Zheng, Yuan; Cates, G. D.

    2015-05-01

    Background: Polarized 3He targets have been used as effective polarized neutron targets for electron scattering experiments for over twenty years. Over the last ten years, the effective luminosity of polarized 3He targets based on spin-exchange optical pumping has increased by over an order of magnitude. This has come about because of improvements in commercially-available lasers and an improved understanding of the physics behind the polarization process. Purpose: We present the development of high-performance polarized 3He targets for use in electron scattering experiments. Improvements in the performance of polarized 3He targets, target properties, and operating parameters are documented. Methods: We utilize the technique of alkali-hybrid spin-exchange optical pumping to polarize the 3He targets. Spectrally narrowed diode lasers used for the optical pumping greatly improved the performance. A simulation of the alkali-hybrid spin-exchange optical pumping process was developed to provide guidance in the design of the targets. Data was collected during the characterization of 24 separate glass target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. Results: From the data obtained we made determinations of the so-called X -factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable 3He polarization to well under 100%. The presence of the X -factor spin-relaxation mechanism was clearly evident in our data. Good agreement between the simulation and the actual target performance was obtained by including details such as off-resonant optical pumping. Included in our results is a measurement of the K -3He spin-exchange rate coefficient kseK=(7.46 ±0.62 ) ×10-20cm3/s over the temperature range 503 K to 563 K. Conclusions: In order to achieve high performance under the operating conditions described in this paper, the K to Rb alkali vapor density ratio should be about 5 ±2 and the line width of the optical pumping lasers should be no more than 0.3 nm. Our measurements of the X -factors under these conditions seem to indicate the 3He polarization is limited to ≈90 %. The simulation results, now benchmarked against experimental data, are useful for the design of future targets. Further work is required to better understand the temperature dependence of the X -factor spin-relaxation mechanism and the limitations of our optical pumping simulation.

  14. Grain-size considerations for optoelectronic multistage interconnection networks.

    PubMed

    Krishnamoorthy, A V; Marchand, P J; Kiamilev, F E; Esener, S C

    1992-09-10

    This paper investigates, at the system level, the performance-cost trade-off between optical and electronic interconnects in an optoelectronic interconnection network. The specific system considered is a packet-switched, free-space optoelectronic shuffle-exchange multistage interconnection network (MIN). System bandwidth is used as the performance measure, while system area, system power, and system volume constitute the cost measures. A detailed design and analysis of a two-dimensional (2-D) optoelectronic shuffle-exchange routing network with variable grain size K is presented. The architecture permits the conventional 2 x 2 switches or grains to be generalized to larger K x K grain sizes by replacing optical interconnects with electronic wires without affecting the functionality of the system. Thus the system consists of log(k) N optoelectronic stages interconnected with free-space K-shuffles. When K = N, the MIN consists of a single electronic stage with optical input-output. The system design use an effi ient 2-D VLSI layout and a single diffractive optical element between stages to provide the 2-D K-shuffle interconnection. Results indicate that there is an optimum range of grain sizes that provides the best performance per cost. For the specific VLSI/GaAs multiple quantum well technology and system architecture considered, grain sizes larger than 256 x 256 result in a reduced performance, while grain sizes smaller than 16 x 16 have a high cost. For a network with 4096 channels, the useful range of grain sizes corresponds to approximately 250-400 electronic transistors per optical input-output channel. The effect of varying certain technology parameters such as the number of hologram phase levels, the modulator driving voltage, the minimum detectable power, and VLSI minimum feature size on the optimum grain-size system is studied. For instance, results show that using four phase levels for the interconnection hologram is a good compromise for the cost functions mentioned above. As VLSI minimum feature sizes decrease, the optimum grain size increases, whereas, if optical interconnect performance in terms of the detector power or modulator driving voltage requirements improves, the optimum grain size may be reduced. Finally, several architectural modifications to the system, such as K x K contention-free switches and sorting networks, are investigated and optimized for grain size. Results indicate that system bandwidth can be increased, but at the price of reduced performance/cost. The optoelectronic MIN architectures considered thus provide a broad range of performance/cost alternatives and offer a superior performance over purely electronic MIN's.

  15. Successfully using optical components and systems in novel ways during educational outreach programs for K-12 grades

    NASA Astrophysics Data System (ADS)

    Silberman, Donn

    2006-08-01

    Much work has been done in efforts to reach students in the K-12 grades to encourage them to learn about optics and related sciences and technologies. One goal of these efforts is to develop the future optical scientists and engineers to carry on the work of this and related societies. One main obstacle is to create low costs novel and effective hands-on optical components and systems for these students to use and from which to get excited. Students at different grade levels and abilities are receptive to different kinds of components and systems and this must be taken into account when preparing for outreach programs. There are, however, some guiding principles which can be used throughout the various levels, including making sure the components and systems are good examples and not marginal. Small telescopes or microscopes that use poor quality optics which provide poor quality images do more to discourage young students from going into the sciences than if they never had the experience at all. Some examples of both poor and good quality optical components and systems that will be described and demonstrated include: lenses, telescopes, microscopes, diffraction gratings, Kaleidoscopes, Fresnel Lenses, polarization filters and liquid crystals. The figures in this paper are in color and best viewed on-line or printed with a good color printer.

  16. Realization of 10 GHz minus 30dB on-chip micro-optical links with Si-Ge RF bi-polar technology

    NASA Astrophysics Data System (ADS)

    Ogudo, Kingsley A.; Snyman, Lukas W.; Polleux, Jean-Luc; Viana, Carlos; Tegegne, Zerihun

    2014-06-01

    Si Avalanche based LEDs technology has been developed in the 650 -850nm wavelength regime [1, 2]. Correspondingly, small micro-dimensioned detectors with pW/μm2 sensitivity have been developed for the same wavelength range utilizing Si-Ge detector technology with detection efficiencies of up to 0.85, and with a transition frequencies of up to 80 GHz [3] A series of on-chip optical links of 50 micron length, utilizing 650 - 850 nm propagation wavelength have been designed and realized, utilizing a Si Ge radio frequency bipolar process. Micron dimensioned optical sources, waveguides and detectors were all integrated on the same chip to form a complete optical link on-chip. Avalanche based Si LEDs (Si Av LEDs), Schottky contacting, TEOS densification strategies, silicon nitride based waveguides, and state of the art Si-Ge bipolar detector technologies were used as key design strategies. Best performances show optical coupling from source to detector of up to 10GHz and - 40dBm total optical link budget loss with a potential transition frequency coupling of up to 40GHz utilizing Si Ge based LEDs. The technology is particularly suitable for application as on-chip optical links, optical MEMS and MOEMS, as well as for optical interconnects utilizing low loss, side surface, waveguide- to-optical fiber coupling. Most particularly is one of our designed waveguide which have a good core axis alignment with the optical source and yield 10GHz -30dB on-chip micro-optical links as shown in Fig 9 (c). The technology as developed has been appropriately IP protected.

  17. High-aggregate-capacity visible light communication links using stacked multimode polymer waveguides and micro-pixelated LED arrays

    NASA Astrophysics Data System (ADS)

    Bamiedakis, N.; McKendry, J. J. D.; Xie, E.; Gu, E.; Dawson, M. D.; Penty, R. V.; White, I. H.

    2018-02-01

    In recent years, light emitting diodes (LEDs) have gained renewed interest for use in visible light communication links (VLC) owing to their potential use as both high-quality power-efficient illumination sources as well as low-cost optical transmitters in free-space and guided-wave links. Applications that can benefit from their use include optical wireless systems (LiFi and Internet of Things), in-home and automotive networks, optical USBs and short-reach low-cost optical interconnects. However, VLC links suffer from the limited LED bandwidth (typically 100 MHz). As a result, a combination of novel LED devices, advanced modulation formats and multiplexing methods are employed to overcome this limitation and achieve high-speed (>1 Gb/s) data transmission over such links. In this work, we present recent advances in the formation of high-aggregate-capacity low cost guided wave VLC links using stacked polymer multimode waveguides and matching micro-pixelated LED (μLED) arrays. μLEDs have been shown to exhibit larger bandwidths (>200 MHz) than conventional broad-area LEDs and can be formed in large array configurations, while multimode polymer waveguides enable the formation of low-cost optical links onto standard PCBs. Here, three- and four-layered stacks of multimode waveguides, as well as matching GaN μLED arrays, are fabricated in order to generate high-density yet low-cost optical interconnects. Different waveguide topologies are implemented and are investigated in terms of loss and crosstalk performance. The initial results presented herein demonstrate good intrinsic crosstalk performance and indicate the potential to achieve >= 0.5 Tb/s/mm2 aggregate interconnection capacity using this low-cost technology.

  18. Structure-Function Analysis of Nonarteritic Anterior Ischemic Optic Neuropathy and Age-Related Differences in Outcome.

    PubMed

    Sun, Ming-Hui; Liao, Yaping Joyce

    2017-09-01

    The optic nerve head is vulnerable to ischemia leading to anterior ischemic optic neuropathy (AION), the most common acute optic neuropathy in those older than 50 years of age. We performed a cross-sectional study of 55 nonarteritic anterior ischemic optic neuropathy (NAION) eyes in 34 patients to assess clinical outcome and perform structure-function correlations. The peak age of NAION onset was between 50 and 55 years. Sixty-seven percent of patients presented with their first event between the ages of 40 and 60 years, and 32% presented at ≤50 years. Those with NAION onset at age ≤50 years did not have significantly better visual outcome per logMAR visual acuity, automated perimetric mean deviation (PMD) or optical coherence tomography (OCT) measurements. Kaplan-Meier survival curve and multivariate Cox proportional regression analysis showed that age >50 years at NAION onset was associated with greater risk of second eye involvement, with hazard ratio of 20. Older age at onset was significantly correlated with greater thinning of the ganglion cell complex (GCC) (P = 0.022) but not with logMAR visual acuity, PMD, or thinning of retinal nerve fiber layer (RNFL). Using area under receiver operating characteristic curve analyses, we found that thinning of RNFL and GCC was best able to predict visual outcome, and that mean RNFL thickness >65 μm or macular GCC thickness >55 μm significantly correlated with good visual field outcome. We showed that NAION onset at age >50 years had a greater risk of second eye involvement. Patients with OCT mean RNFL thickness >65 μm and mean macular ganglion cell complex thickness >55 μm had better visual outcomes.

  19. The effect of ionic Co presence on the structural, optical and photocatalytic properties of modified cobalt-titanate nanotubes.

    PubMed

    Barrocas, B; Silvestre, A J; Rolo, A G; Monteiro, O C

    2016-07-21

    With the aim of producing materials with enhanced optical and photocatalytic properties, titanate nanotubes (TNTs) modified by cobalt doping (Co-TNT) and by Na(+)→ Co ion-exchange (TNT/Co) were successfully prepared by a hydrothermal method. The influence of the doping level and of the cobalt position in the TNT crystalline structure was studied. Although no perceptible influence of the cobalt ion position on the morphology of the prepared titanate nanotubes was observed, the optical behaviour of the cobalt modified samples is clearly dependent on the cobalt ions either substituting the Ti(4+) ions in the TiO6 octahedra building blocks of the TNT structure (doped samples) or replacing the Na(+) ions between the TiO6 interlayers (ion-exchange samples). The catalytic ability of these materials on pollutant photodegradation was investigated. First, the evaluation of hydroxyl radical formation using the terephthalic acid as a probe was performed. Afterwards, phenol, naphthol yellow S and brilliant green were used as model pollutants. Anticipating real world situations, photocatalytic experiments were performed using solutions combining these pollutants. The results show that the Co modified TNT materials (Co-TNT and TNT/Co) are good catalysts, the photocatalytic performance being dependent on the Co/Ti ratio and on the structural metal location. The Co(1%)-TNT doped sample was the best photocatalyst for all the degradation processes studied.

  20. Note: a 4 ns hardware photon correlator based on a general-purpose field-programmable gate array development board implemented in a compact setup for fluorescence correlation spectroscopy.

    PubMed

    Kalinin, Stanislav; Kühnemuth, Ralf; Vardanyan, Hayk; Seidel, Claus A M

    2012-09-01

    We present a fast hardware photon correlator implemented in a field-programmable gate array (FPGA) combined with a compact confocal fluorescence setup. The correlator has two independent units with a time resolution of 4 ns while utilizing less than 15% of a low-end FPGA. The device directly accepts transistor-transistor logic (TTL) signals from two photon counting detectors and calculates two auto- or cross-correlation curves in real time. Test measurements demonstrate that the performance of our correlator is comparable with the current generation of commercial devices. The sensitivity of the optical setup is identical or even superior to current commercial devices. The FPGA design and the optical setup both allow for a straightforward extension to multi-color applications. This inexpensive and compact solution with a very good performance can serve as a versatile platform for uses in education, applied sciences, and basic research.

  1. Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber

    NASA Astrophysics Data System (ADS)

    Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe

    2015-01-01

    In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices.

  2. Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber.

    PubMed

    Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe

    2015-01-12

    In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices.

  3. Si3 AlP: A New Promising Material for Solar Cell Absorber

    NASA Astrophysics Data System (ADS)

    Yang, Jihui; Zhai, Yingteng; Liu, Hengrui; Xiang, Hongjun; Gong, Xingao; Wei, Suhuai

    2014-03-01

    First-principles calculations are performed to study the structural and optoelectronic properties of the newly synthesized nonisovalent and lattice-matched (Si2)0.6(AlP)0.4 alloy [T. Watkins et al., J. Am. Chem. Soc. 2011, 133, 16212.] The most stable structure of Si3AlP is a superlattice along the <111>direction with separated AlP and Si layers, which has a similar optical absorption spectrum to silicon. The ordered C1c1-Si3AlP is found to be the most stable one among all the structures with -AlPSi3- motifs, in agreement with the experimental suggestions. We predict that C1c1-Si3AlP has good optical properties, i.e., it has a larger fundamental band gap and a smaller direct band gap than Si, thus it has much higher absorption in the visible light region, making it a promising candidate for improving the performance of the existing Si-based solar cells.

  4. The performance studies of DKDP crystals grown by a rapid horizontal growth method

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoyi; Qi, Hongji; Wang, Bin; Wang, Hu; Chen, Duanyang; Shao, Jianda

    2018-04-01

    A deuterated potassium dihydrogen phosphate (DKDP) crystal with about 70% deuterium level was grown by a rapid horizontal growth method with independent design equipment, which includes a continuous filtration system. The cooling program during crystal growth was designed according to a self-developed software to catch the size of growing crystal in real time. The crystal structure, optical performance and laser induced damage threshold (LIDT) of this DKDP crystal were investigated in this paper. The deuterium concentration of the crystal was confirmed by the neutron diffraction technique, which was effective and available in determining a complete range of deuteration level. The dielectric property was measured to evaluate the perfection of the lattice. The transmittance and LIDT were carried out further to evaluate the optical and functional properties of this DKDP crystal grown in the rapid horizontal growth technique. All of the detailed characterization for DKDP figured out that the 70% deuterated KDP crystal grown in this way had relatively good qualities.

  5. A Dual Polarized Quasi-Optical SIS Mixer at 550-GHz

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Miller, David; LeDuc, Henry G.; Zmuidzinas, Jonas

    2000-01-01

    We describe the design, fabrication, and the performance of a low-noise dual-polarized quasi-optical superconductor insulator superconductor (SIS) mixer at 550 GHz. The mixer utilizes a novel cross-slot antenna on a hyperhemispherical substrate lens, two junction tuning circuits, niobium trilayer junctions, and an IF circuit containing a lumped element 180 deg hybrid. The antenna consists of an orthogonal pair of twin-slot antennas, and has four feed points, two for each polarization. Each feed point is coupled to a two-junction SIS mixer. The 180 deg IF hybrid is implemented using a lumped element/microstrip circuit located inside the mixer block. Fourier transform spectrometer (FTS) measurements of the mixer frequency response show good agreement with computer simulations. The measured co-polarized and cross-polarized patterns for both polarizations also agree with the theoretical predictions. The noise performance of the dual-polarized mixer is excellent, giving uncorrected receiver noise temperature of better than 115 K (DSB) at 528 GHz for both the polarizations.

  6. Removal of central obscuration and spiders for coronagraphy

    NASA Astrophysics Data System (ADS)

    Abe, L.; Nishikawa, J.; Murakami, N.; Tamura, M.

    2006-06-01

    We present a method to remove the central obscuration and spiders, or any kind of geometry inside a telescope pupil. The technique relies on the combination of a first focal plane diffracting mask, and a complex amplitude pupil mask. In this combination, the central obscuration and eventual spider arms patterns in the re-imaged pupil (after the diffracting mask) are filled with coherent light. Adding an appropriate complex amplitude pupil mask allows virtually any kind of pupil shaping (in both amplitude and/or phase). We show that the obtained output pupil can feed a high efficiency coronagraph (any kind) with a very reasonable overall throughput and good performance even when considering pointing errors. In this paper, we specifically assess the performance of this technique when using apodized entrance pupils. This technique is relevant for ground based telescopes foreseeing the advent of higher order (so called ExAO) adaptive optics systems providing very high Strehl ratios. Some feasibility points are also discussed. adaptive optics systems providing very high Strehl ratios. Some feasibility points are also discussed.

  7. Quantum phase transition modulation in an atomtronic Mott switch

    NASA Astrophysics Data System (ADS)

    McLain, Marie A.; Carr, Lincoln D.

    2018-07-01

    Mott insulators provide stable quantum states and long coherence times due to small number fluctuations, making them good candidates for quantum memory and atomic circuits. We propose a proof-of-principle for a 1D Mott switch using an ultracold Bose gas and optical lattice. With time-evolving block decimation simulations—efficient matrix product state methods—we design a means for transient parameter characterization via a local excitation for ease of engineering into more complex atomtronics. We perform the switch operation by tuning the intensity of the optical lattice, and thus the interaction strength through a conductance transition due to the confined modifications of the ‘wedding cake’ Mott structure. We demonstrate the time-dependence of Fock state transmission and fidelity of the excitation as a means of tuning up the device in a double well and as a measure of noise performance. Two-point correlations via the g (2) measure provide additional information regarding superfluid fragments on the Mott insulating background due to the confinement of the potential.

  8. Note: A 4 ns hardware photon correlator based on a general-purpose field-programmable gate array development board implemented in a compact setup for fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kalinin, Stanislav; Kühnemuth, Ralf; Vardanyan, Hayk; Seidel, Claus A. M.

    2012-09-01

    We present a fast hardware photon correlator implemented in a field-programmable gate array (FPGA) combined with a compact confocal fluorescence setup. The correlator has two independent units with a time resolution of 4 ns while utilizing less than 15% of a low-end FPGA. The device directly accepts transistor-transistor logic (TTL) signals from two photon counting detectors and calculates two auto- or cross-correlation curves in real time. Test measurements demonstrate that the performance of our correlator is comparable with the current generation of commercial devices. The sensitivity of the optical setup is identical or even superior to current commercial devices. The FPGA design and the optical setup both allow for a straightforward extension to multi-color applications. This inexpensive and compact solution with a very good performance can serve as a versatile platform for uses in education, applied sciences, and basic research.

  9. Optimization of the excitation light sheet in selective plane illumination microscopy

    PubMed Central

    Gao, Liang

    2015-01-01

    Selective plane illumination microscopy (SPIM) allows rapid 3D live fluorescence imaging on biological specimens with high 3D spatial resolution, good optical sectioning capability and minimal photobleaching and phototoxic effect. SPIM gains its advantage by confining the excitation light near the detection focal plane, and its performance is determined by the ability to create a thin, large and uniform excitation light sheet. Several methods have been developed to create such an excitation light sheet for SPIM. However, each method has its own strengths and weaknesses, and tradeoffs must be made among different aspects in SPIM imaging. In this work, we present a strategy to select the excitation light sheet among the latest SPIM techniques, and to optimize its geometry based on spatial resolution, field of view, optical sectioning capability, and the sample to be imaged. Besides the light sheets discussed in this work, the proposed strategy is also applicable to estimate the SPIM performance using other excitation light sheets. PMID:25798312

  10. Plasmon coupled Fabry-Perot lasing enhancement in graphene/ZnO hybrid microcavity.

    PubMed

    Li, Jitao; Jiang, Mingming; Xu, Chunxiang; Wang, Yueyue; Lin, Yi; Lu, Junfeng; Shi, Zengliang

    2015-03-19

    The response of graphene surface plasmon (SP) in the ultraviolet (UV) region and the realization of short-wavelength semiconductor lasers not only are two hot research areas of great academic and practical significance, but also are two important issues lacked of good understanding. In this work, a hybrid Fabry-Perot (F-P) microcavity, comprising of monolayer graphene covered ZnO microbelt, was constructed to investigate the fundamental physics of graphene SP and the functional extension of ZnO UV lasing. Through the coupling between graphene SP modes and conventional optical microcavity modes of ZnO, improved F-P lasing performance was realized, including the lowered lasing threshold, the improved lasing quality and the remarkably enhanced lasing intensity. The underlying mechanism of the improved lasing performance was proposed based on theoretical simulation and experimental characterization. The results are helpful to design new types of optic and photoelectronic devices based on SP coupling in graphene/semiconductor hybrid structures.

  11. Very long stripe-filters for a multispectral detector

    NASA Astrophysics Data System (ADS)

    Laubier, D.; Mercier Ythier, Renaud

    2017-11-01

    In order to simplify instrument design, a new linear area CCD sensor has been developed under CNES responsibility. This detector has four lines 6000 13-μm square pixels long with four stripe filters, one in front of each of them. The detector itself was manufactured and mounted by ATMEL, and the filters were made by SAGEM/REOSC. Assembly was done in two ways, one by ATMEL, the other by SESO. CNES was responsible for the overall design and mechanical/optical interfaces. This paper reports the optical part of this work, including filters placement strategy and line spacing. It will be shown how these two features are closely linked to straylight performance. First, a trade-off study was conducted between several concepts: the results of this study will be presented, as well as the filter design and manufacturing results. They show good transmission and excellent rejection. Final performance of the complete prototypes has been measured, and it will be compared to theoretical models.

  12. Plasmon coupled Fabry-Perot lasing enhancement in graphene/ZnO hybrid microcavity

    PubMed Central

    Li, Jitao; Jiang, Mingming; Xu, Chunxiang; Wang, Yueyue; Lin, Yi; Lu, Junfeng; Shi, Zengliang

    2015-01-01

    The response of graphene surface plasmon (SP) in the ultraviolet (UV) region and the realization of short-wavelength semiconductor lasers not only are two hot research areas of great academic and practical significance, but also are two important issues lacked of good understanding. In this work, a hybrid Fabry-Perot (F-P) microcavity, comprising of monolayer graphene covered ZnO microbelt, was constructed to investigate the fundamental physics of graphene SP and the functional extension of ZnO UV lasing. Through the coupling between graphene SP modes and conventional optical microcavity modes of ZnO, improved F-P lasing performance was realized, including the lowered lasing threshold, the improved lasing quality and the remarkably enhanced lasing intensity. The underlying mechanism of the improved lasing performance was proposed based on theoretical simulation and experimental characterization. The results are helpful to design new types of optic and photoelectronic devices based on SP coupling in graphene/semiconductor hybrid structures. PMID:25786359

  13. Study of optical design of Blu-ray pickup head system with a liquid crystal element.

    PubMed

    Fang, Yi-Chin; Yen, Chih-Ta; Hsu, Jui-Hsin

    2014-10-10

    This paper proposes a newly developed optical design and an active compensation method for a Blu-ray pickup head system with a liquid crystal (LC) element. Different from traditional pickup lens design, this new optical design delivers performance as good as the conventional one but has more room for tolerance control, which plays a role in antishaking devices, such as portable Blu-ray players. A hole-pattern electrode and LC optics with external voltage input were employed to generate a symmetric nonuniform electrical field in the LC layer that directs LC molecules into the appropriate gradient refractive index distribution, resulting in the convergence or divergence of specific light beams. LC optics deliver fast and, most importantly, active compensation through optical design when errors occur. Simulations and tolerance analysis were conducted using Code V software, including various tolerance analyses, such as defocus, tilt, and decenter, and their related compensations. Two distinct Blu-ray pickup head system designs were examined in this study. In traditional Blu-ray pickup head system designs, the aperture stop is always set on objective lenses. In the study, the aperture stop is on the LC lens as a newly developed lens. The results revealed that an optical design with aperture stop set on the LC lens as an active compensation device successfully eliminated up to 57% of coma aberration compared with traditional optical designs so that this pickup head lens design will have more space for tolerance control.

  14. Machining approach of freeform optics on infrared materials via ultra-precision turning.

    PubMed

    Li, Zexiao; Fang, Fengzhou; Chen, Jinjin; Zhang, Xiaodong

    2017-02-06

    Optical freeform surfaces are of great advantage in excellent optical performance and integrated alignment features. It has wide applications in illumination, imaging and non-imaging, etc. Machining freeform surfaces on infrared (IR) materials with ultra-precision finish is difficult due to its brittle nature. Fast tool servo (FTS) assisted diamond turning is a powerful technique for the realization of freeform optics on brittle materials due to its features of high spindle speed and high cutting speed. However it has difficulties with large slope angles and large rise-and-falls in the sagittal direction. In order to overcome this defect, the balance of the machining quality on the freeform surface and the brittle nature in IR materials should be realized. This paper presents the design of a near-rotational freeform surface (NRFS) with a low non-rotational degree (NRD) to constraint the variation of traditional freeform optics to solve this issue. In NRFS, the separation of the surface results in a rotational part and a residual part denoted as a non-rotational surface (NRS). Machining NRFS on germanium is operated by FTS diamond turning. Characteristics of the surface indicate that the optical finish of the freeform surface has been achieved. The modulation transfer function (MTF) of the freeform optics shows a good agreement to the design expectation. Images of the final optical system confirm that the fabricating strategy is of high efficiency and high quality. Challenges and prospects are discussed to provide guidance of future work.

  15. Modified-hybrid optical neural network filter for multiple object recognition within cluttered scenes

    NASA Astrophysics Data System (ADS)

    Kypraios, Ioannis; Young, Rupert C. D.; Chatwin, Chris R.

    2009-08-01

    Motivated by the non-linear interpolation and generalization abilities of the hybrid optical neural network filter between the reference and non-reference images of the true-class object we designed the modifiedhybrid optical neural network filter. We applied an optical mask to the hybrid optical neural network's filter input. The mask was built with the constant weight connections of a randomly chosen image included in the training set. The resulted design of the modified-hybrid optical neural network filter is optimized for performing best in cluttered scenes of the true-class object. Due to the shift invariance properties inherited by its correlator unit the filter can accommodate multiple objects of the same class to be detected within an input cluttered image. Additionally, the architecture of the neural network unit of the general hybrid optical neural network filter allows the recognition of multiple objects of different classes within the input cluttered image by modifying the output layer of the unit. We test the modified-hybrid optical neural network filter for multiple objects of the same and of different classes' recognition within cluttered input images and video sequences of cluttered scenes. The filter is shown to exhibit with a single pass over the input data simultaneously out-of-plane rotation, shift invariance and good clutter tolerance. It is able to successfully detect and classify correctly the true-class objects within background clutter for which there has been no previous training.

  16. Improved high operating temperature MCT MWIR modules

    NASA Astrophysics Data System (ADS)

    Lutz, H.; Breiter, R.; Figgemeier, H.; Schallenberg, T.; Schirmacher, W.; Wollrab, R.

    2014-06-01

    High operating temperature (HOT) IR-detectors are a key factor to size, weight and power (SWaP) reduced IR-systems. Such systems are essential to provide infantrymen with low-weight handheld systems with increased battery lifetimes or most compact clip-on weapon sights in combination with high electro-optical performance offered by cooled IR-technology. AIM's MCT standard n-on-p technology with vacancy doping has been optimized over many years resulting in MWIR-detectors with excellent electro-optical performance up to operating temperatures of ~120K. In the last years the effort has been intensified to improve this standard technology by introducing extrinsic doping with Gold as an acceptor. As a consequence the dark current could considerably be suppressed and allows for operation at ~140K with good e/o performance. More detailed investigations showed that limitation for HOT > 140K is explained by consequences from rising dark current rather than from defective pixel level. Recently, several crucial parameters were identified showing great promise for further optimization of HOT-performance. Among those, p-type concentration could successfully be reduced from the mid 1016 / cm3 to the lower 1015/ cm3 range. Since AIM is one of the leading manufacturers of split linear cryocoolers, an increase in operating temperature will directly lead to IR-modules with improved SWaP characteristics by making use of the miniature members of its SX cooler family with single piston and balancer technology. The paper will present recent progress in the development of HOT MWIR-detector arrays at AIM and show electro-optical performance data in comparison to focal plane arrays produced in the standard technology.

  17. Study of oxygen scavenging PET-based films activated by water

    NASA Astrophysics Data System (ADS)

    Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana

    2016-05-01

    In this work an active barrier system consisting of a thin and transparent film based on polyethylene terephthalate (PET) was studied. Dynamic oxygen absorption measurements were performed at different values of relative humidity and temperature, pointing out that humidity is a key factor in activating the oxidation of the polymer sample. Moreover, the thermal and optical properties of the films were investigated and a good correlation was found between the crystallinity increase and the consequent transparency reduction occurring after the oxygen absorption.

  18. Design of redundant array of independent DVD libraries based on iSCSI

    NASA Astrophysics Data System (ADS)

    Chen, Yupeng; Pan, Longfa

    2003-04-01

    This paper presents a new approach to realize the redundant array of independent DVD libraries (RAID-LoIP) by using the iSCSI technology and traditional RAID algorithms. Our design reaches the high performance of optical storage system with following features: large storage size, highly accessing rate, random access, long distance of DVD libraries, block I/O storage, long storage life. Our RAID-LoIP system can be a good solution for broadcasting media asset storage system.

  19. Measurements of Vorticity Vectors in Couette Flow with the Vorticity Optical Probe

    DTIC Science & Technology

    1991-05-01

    Web 1981). The three components of the vorticity vector are measured, any two of them quite accurately. Multipoint measurement arrangements have been...the distribution of trajectory lengths is given by POrN ) rN O<rN<R. fwio-R R -rN where R is the angular measure of the detector radius. (The random...orticitv were performed deep within the viscous sublaver v 2.3). .At y < 10. the fluctuating vortici, ,tatistics show good agreement with the simulatins of

  20. Dynamic fatigue of a lithia-alumina-silica glass-ceramic

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.

    1990-01-01

    A dynamic fatigue study was performed on a Li2O-Al2O3-SiO2 glass-ceramic in order to assess its susceptibility to delayed failure. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for optical elements made from this material. The material has reasonably good resistance (N = 20) to stress corrosion in ambient conditions. Analysis also indicated the elements should survive applied stresses incurred during grinding and polishing operations.

  1. ALTIUS: a spaceborne AOTF-based UV-VIS-NIR hyperspectral imager for atmospheric remote sensing

    NASA Astrophysics Data System (ADS)

    Dekemper, Emmanuel; Fussen, Didier; Van Opstal, Bert; Vanhamel, Jurgen; Pieroux, Didier; Vanhellemont, Filip; Mateshvili, Nina; Franssens, Ghislain; Voloshinov, Vitaly; Janssen, Christof; Elandaloussi, Hadj

    2014-10-01

    Since the recent losses of several atmospheric instruments with good vertical sampling capabilities (SAGE II, SAGE III, GOMOS, SCIAMACHY,. . . ), the scientific community is left with very few sounders delivering concentration pro les of key atmospheric species for understanding atmospheric processes and monitoring the radiative balance of the Earth. The situation is so critical that at the horizon 2020, less than five such instruments will be on duty (most probably only 2 or 3), whereas their number topped at more than 15 in the years 2000. In parallel, recent inter-comparison exercises among the climate chemistry models (CCM) and instrument datasets have shown large differences in vertical distribution of constituents (SPARC CCMVal and Data Initiative), stressing the need for more vertically-resolved and accurate data at all latitudes. In this frame, the Belgian Institute for Space Aeronomy (IASB-BIRA) proposed a gap-filler small mission called ALTIUS (Atmospheric Limb Tracker for the Investigation of the Upcoming Stratosphere), which is currently in preliminary design phase (phase B according to ESA standards). Taking advantage of the good performances of the PROBA platform (PRoject for On-Board Autonomy) in terms of pointing precision and accuracy, on-board processing ressources, and agility, the ALTIUS concept relies on a hyperspectral imager observing limb-scattered radiance and solar/stellar occultations every orbit. The objective is twofold: the imaging feature allows to better assess the tangent height of the sounded air masses (through easier star tracker information validation by scene details recognition), while its spectral capabilities will be good enough to exploit the characteristic signatures of many molecular absorption cross-sections (O3, NO2, CH4, H2O, aerosols,...). The payload will be divided in three independent optical channels, associated to separated spectral ranges (UV: 250- 450 nm, VIS: 440-800 nm, NIR: 900-1800 nm). This approach also offers better risk mitigation in case of failure in one channel. In each channel, the spectral filter will be an acousto-optical tunable filter (AOTF). Such devices offer reasonable étendue with good spectral resolution and excellent robustness and compactness. TeO2-based AOTF's have already been used in space missions towards Mars and Venus (MEX and VEX, ESA). While such TeO2 crystals are common in VIS-NIR applications, they are not transparent below 350 nm. Recent progress towards UV AOTF's have been made with the advent of KDP-based filters. Through collaboration with the Moscow State University (MSU), several experiments were conducted on a KDP AOTF and gave confidence on this material. Here, we present the general concept of ALTIUS and its optical design with particular attention on the AOTF. Several results obtained with optical breadboards for the UV and VIS ranges will be exposed, such as the O3 and NO2 absorption cross-section measurements, or spectral images. These results illustrate the spectral and optical performances to be expected from an AOTF-based hyperspectral imager. Their implications for ALTIUS will be discussed

  2. Constraints on Smoke Injection Height, Source Strength, and Transports from MISR and MODIS

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Petrenko, Mariya; Val Martin, Maria; Chin, Mian

    2014-01-01

    The AeroCom BB (Biomass Burning) Experiment AOD (Aerosol Optical Depth) motivation: We have a substantial set of satellite wildfire plume AOD snapshots and injection heights to help calibrate model/inventory performance; We are 1) adding more fire source-strength cases 2) using MISR to improve the AOD constrains and 3) adding 2008 global injection heights; We selected GFED3-daily due to good overall source strength performance, but any inventory can be tested; Joint effort to test multiple, global models, to draw robust BB injection height and emission strength conclusions. We provide satellite-based injection height and smoke plume AOD climatologies.

  3. Meso-Decorated Switching-Knot Gels

    NASA Astrophysics Data System (ADS)

    Gong, Jin; Sawamura, Kensuke; Makino, Masato; Kabir, M. H.; Furukawa, Hidemitsu

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry .In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals. The strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  4. Determination of in-flight AVIRIS spectral, radiometric, spatial and signal-to-noise characteristics using atmospheric and surface measurements from the vicinity of the rare-earth-bearing carbonatite at Mountain Pass, California

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Vane, Gregg; Conel, James E.

    1988-01-01

    An assessment of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) performance was made for a flight over Mountain Pass, California, July 30, 1987. The flight data were reduced to reflectance using an empirical algorithm which compensates for solar, atmospheric and instrument factors. AVIRIS data in conjunction with surface and atmospheric measurements acquired concurrently were used to develop an improved spectral calibration. An accurate in-flight radiometric calibration was also performed using the LOWTRAN 7 radiative transfer code together with measured surface reflectance and atmospheric optical depths. A direct comparison with coincident Thematic Mapper imagery of Mountain Pass was used to demonstrate the high spatial resolution and good geometric performance of AVIRIS. The in-flight instrument noise was independently determined with two methods which showed good agreement. A signal-to-noise ratio was calculated using data from a uniform playa. This ratio was scaled to the AVIRIS reference radiance model, which provided a basis for comparison with laboratory and other in-flight signal-to-noise determinations.

  5. The ATLAS tile calorimeter performance at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calkins, R.

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. Due to the very good muon signal to noise ratio it assists the spectrometer in the identification and reconstruction of muons. TileCal is built of steel and scintillating tiles coupled to optical fibers and read out by photomultipliers. The calorimeter is equipped with systems that allow to monitor and to calibrate each stage of the read out system exploiting different signal sources: laser light, charge injection andmore » a radioactive source. The performance of the calorimeter has been measured and monitored using calibration data, random triggered data, cosmic muons and more importantly LHC collision events. The results presented here assess the absolute energy scale calibration precision, the energy and timing uniformity and the synchronization precision. The ensemble of the results demonstrates a very good understanding of the performance of the Tile Calorimeter that is proved to be well within the design expectations. (authors)« less

  6. An electromagnetic/electrostatic dual cathode system for electron beam instruments

    NASA Technical Reports Server (NTRS)

    Bradley, J. G.; Conley, J. M.; Wittry, D. B.; Albee, A. L.

    1986-01-01

    A method of providing cathode redundancy which consists of two fixed cathodes and uses electromagnetic and/or electrostatic fields to direct the electron beam to the electron optical axis is presented, with application to the cathode system of the Scanning Electron Microscope and Particle Analyzer proposed for NASA's Mariner Mark II Comet Rendezvous/Asteroid Flyby projected for the 1990s. The symmetric double deflection system chosen has the optical property that the image of the effective electron source is formed above the magnet assembly near the apparent position of the effective source, and it makes the transverse positions of the electron sources independent of the electron beam energy. Good performance of the system is found, with the sample imaging resolution being the same as for the single-axis cathode.

  7. UW Imaging of Seismic-Physical-Models in Air Using Fiber-Optic Fabry-Perot Interferometer.

    PubMed

    Rong, Qiangzhou; Hao, Yongxin; Zhou, Ruixiang; Yin, Xunli; Shao, Zhihua; Liang, Lei; Qiao, Xueguang

    2017-02-17

    A fiber-optic Fabry-Perot interferometer (FPI) has been proposed and demonstrated for the ultrasound wave (UW) imaging of seismic-physical models. The sensor probe comprises a single mode fiber (SMF) that is inserted into a ceramic tube terminated by an ultra-thin gold film. The probe performs with an excellent UW sensitivity thanks to the nanolayer gold film, and thus is capable of detecting a weak UW in air medium. Furthermore, the compact sensor is a symmetrical structure so that it presents a good directionality in the UW detection. The spectral band-side filter technique is used for UW interrogation. After scanning the models using the sensing probe in air, the two-dimensional (2D) images of four physical models are reconstructed.

  8. In vivo automated quantification of quality of apples during storage using optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Srivastava, Vishal; Dalal, Devjyoti; Kumar, Anuj; Prakash, Surya; Dalal, Krishna

    2018-06-01

    Moisture content is an important feature of fruits and vegetables. As 80% of apple content is water, so decreasing the moisture content will degrade the quality of apples (Golden Delicious). The computational and texture features of the apples were extracted from optical coherence tomography (OCT) images. A support vector machine with a Gaussian kernel model was used to perform automated classification. To evaluate the quality of wax coated apples during storage in vivo, our proposed method opens up the possibility of fully automated quantitative analysis based on the morphological features of apples. Our results demonstrate that the analysis of the computational and texture features of OCT images may be a good non-destructive method for the assessment of the quality of apples.

  9. D-Shaped Polarization Maintaining Fiber Sensor for Strain and Temperature Monitoring.

    PubMed

    Qazi, Hummad Habib; Mohammad, Abu Bakar; Ahmad, Harith; Zulkifli, Mohd Zamani

    2016-09-15

    A D-shaped polarization-maintaining fiber (PMF) as fiber optic sensor for the simultaneous monitoring of strain and the surrounding temperature is presented. A mechanical end and edge polishing system with aluminum oxide polishing film is utilized to perform sequential polishing on one side (lengthwise) of the PMF in order to fabricate a D-shaped cross-section. Experimental results show that the proposed sensor has high sensitivity of 46 pm/µε and 130 pm/°C for strain and temperature, respectively, which is significantly higher than other recently reported work (mainly from 2013) related to fiber optic sensors. The easy fabrication method, high sensitivity, and good linearity make this sensing device applicable in various applications such as health monitoring and spatial analysis of engineering structures.

  10. Cysteine optical sensing with an up-conversion host and two chemosensors derived from rhodamine: Construction, characterization and performance

    NASA Astrophysics Data System (ADS)

    Lin, Chen; Zhigang, Fang

    2017-03-01

    This paper focused on two rhodamine chemosensors for cysteine optical sensing. To minimize their photobleaching caused by excitation light, up-conversion NaYF4:Yb3 +/Er3 + nanocrystals were prepared and used as excitation host. Photophysical measurement on this host and the two chemosensors suggested that chemosensor absorption matched well with host emission. An efficient energy transfer between them was discussed and confirmed by their spectral analysis and emission lifetime comparison. Job's plot suggested that our chemosensors followed a simple recognition mechanism towards cysteine with binding stoichiometry of 1:1. Both chemosensors showed emission "off-on" effect triggered by cysteine and good photostability. Linear working curves with maximum sensitivity of 2.61 were obtained. S substituent was positive to improve selectivity.

  11. Gas Sensor Based on Photonic Crystal Fibres in the 2ν3 and ν2 + 2ν3 Vibrational Bands of Methane

    PubMed Central

    Cubillas, Ana M.; Lazaro, Jose M.; Conde, Olga M.; Petrovich, Marco N.; Lopez-Higuera, Jose M.

    2009-01-01

    In this work, methane detection is performed on the 2ν3 and ν2 + 2ν3 absorption bands in the Near-Infrared (NIR) wavelength region using an all-fibre optical sensor. Hollow-core photonic bandgap fibres (HC-PBFs) are employed as gas cells due to their compactness, good integrability in optical systems and feasibility of long interaction lengths with gases. Sensing in the 2ν3 band of methane is demonstrated to achieve a detection limit one order of magnitude better than that of the ν2 + 2ν3 band. Finally, the filling time of a HC-PBF is demonstrated to be dependent on the fibre length and geometry. PMID:22454584

  12. D-Shaped Polarization Maintaining Fiber Sensor for Strain and Temperature Monitoring

    PubMed Central

    Qazi, Hummad Habib; Mohammad, Abu Bakar; Ahmad, Harith; Zulkifli, Mohd Zamani

    2016-01-01

    A D-shaped polarization-maintaining fiber (PMF) as fiber optic sensor for the simultaneous monitoring of strain and the surrounding temperature is presented. A mechanical end and edge polishing system with aluminum oxide polishing film is utilized to perform sequential polishing on one side (lengthwise) of the PMF in order to fabricate a D-shaped cross-section. Experimental results show that the proposed sensor has high sensitivity of 46 pm/µε and 130 pm/°C for strain and temperature, respectively, which is significantly higher than other recently reported work (mainly from 2013) related to fiber optic sensors. The easy fabrication method, high sensitivity, and good linearity make this sensing device applicable in various applications such as health monitoring and spatial analysis of engineering structures. PMID:27649195

  13. Detection of tunnel excavation using fiber optic reflectometry: experimental validation

    NASA Astrophysics Data System (ADS)

    Linker, Raphael; Klar, Assaf

    2013-06-01

    Cross-border smuggling tunnels enable unmonitored movement of people and goods, and pose a severe threat to homeland security. In recent years, we have been working on the development of a system based on fiber- optic Brillouin time domain reflectometry (BOTDR) for detecting tunnel excavation. In two previous SPIE publications we have reported the initial development of the system as well as its validation using small-scale experiments. This paper reports, for the first time, results of full-scale experiments and discusses the system performance. The results confirm that distributed measurement of strain profiles in fiber cables buried at shallow depth enable detection of tunnel excavation, and by proper data processing, these measurements enable precise localization of the tunnel, as well as reasonable estimation of its depth.

  14. On-chip switch for reconfigurable mode-multiplexing optical network.

    PubMed

    Sun, Chunlei; Yu, Yu; Chen, Guanyu; Zhang, Xinliang

    2016-09-19

    The switching and routing is essential for an advanced and reconfigurable optical network, and great efforts have been done for traditional single-mode system. We propose and demonstrate an on-chip switch compatible with mode-division multiplexing system. By controlling the induced phase difference, the functionalities of dynamically routing data channels can be achieved. The proposed switch is experimentally demonstrated with low insertion loss of ~1 dB and high extinction ratio of ~20 dB over the C-band for OFF-ON switchover. For further demonstration, the non-return-to-zero on-off keying signals at 10 Gb/s carried on the two spatial modes are successfully processed. Open and clear eye diagrams can be observed and the bit error rate measurements indicate a good data routing performance.

  15. Tilted Fiber Bragg Grating photowritten in microstructured optical fiber for improved refractive index measurement.

    PubMed

    Phan Huy, Minh Châu; Laffont, Guillaume; Dewynter, Véronique; Ferdinand, Pierre; Labonté, Laurent; Pagnoux, Dominique; Roy, Philippe; Blanc, Wilfried; Dussardier, Bernard

    2006-10-30

    We report what we believe to be the first Tilted short-period Fiber Bragg Grating photowritten in a microstructured optical fiber for refractive index measurement. We investigate the spectral sensitivity of Tilted Fiber Bragg Grating to refractive index liquid inserted into the holes of a multimode microstructured fiber. We measure the wavelength shift of the first four modes experimentally observed when calibrated oils are inserted into the fiber holes, and thus we determine the refractive index resolution for each of these modes. Moreover, a cross comparison between experimental and simulation results of a modal analysis is performed. Two simulation tools are used, respectively based on the localized functions method and on a finite element method. All results are in very good agreement.

  16. Semiclassical theory of sub-Doppler forces in an asymmetric magneto-optical trap with unequal laser detunings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Heung-Ryoul; Jhe, Wonho

    We present a semiclassical theory of the sub-Doppler forces in an asymmetric magneto-optical trap where the trap-laser frequencies are unequal to one another. To solve the optical Bloch equations, which contain explicit time dependence, unlike in the symmetric case of equal laser detunings, we have developed a convenient and efficient method to calculate the atomic forces at various oscillating frequencies for each atomic density matrix element. In particular, the theory provides a qualitative understanding of the array of sub-Doppler traps (SDTs) recently observed in such an asymmetric trap. We find that the distances between SDTs are proportional to the relativemore » detuning differences, in good agreement with experimental results. The theory presented here can be applied to a dynamic system with multiple laser frequencies involved; the number of coupled equations to solve is much reduced and the resulting numerical calculation can be performed rather simply and efficiently.« less

  17. Acute optic neuritis

    PubMed Central

    Galetta, Steven L.; Villoslada, Pablo; Levin, Netta; Shindler, Kenneth; Ishikawa, Hiroshi; Parr, Edward; Cadavid, Diego

    2015-01-01

    Idiopathic demyelinating optic neuritis (ON) most commonly presents as acute unilateral vision loss and eye pain and is frequently associated with multiple sclerosis. Although emphasis is often placed on the good recovery of high-contrast visual acuity, persistent deficits are frequently observed in other aspects of vision, including contrast sensitivity, visual field testing, color vision, motion perception, and vision-related quality of life. Persistent and profound structural and functional changes are often revealed by imaging and electrophysiologic techniques, including optical coherence tomography, visual-evoked potentials, and nonconventional MRI. These abnormalities can impair patients' abilities to perform daily activities (e.g., driving, working) so they have important implications for patients' quality of life. In this article, we review the sequelae from ON, including clinical, structural, and functional changes and their interrelationships. The unmet needs in each of these areas are considered and the progress made toward meeting those needs is examined. Finally, we provide an overview of past and present investigational approaches for disease modification in ON. PMID:26236761

  18. Stochastic parallel gradient descent based adaptive optics used for a high contrast imaging coronagraph

    NASA Astrophysics Data System (ADS)

    Dong, Bing; Ren, De-Qing; Zhang, Xi

    2011-08-01

    An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartmann-Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph to improve the contrast. The LCA can modulate the incoming light to generate a pupil apodization mask of any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10-3 to 10-4.5 at an angular distance of 2λ/D after being corrected by SPGD based AO.

  19. Modeling and prediction of relaxation of polar order in high-activity nonlinear optical polymers

    NASA Astrophysics Data System (ADS)

    Guenthner, Andrew J.; Lindsay, Geoffrey A.; Wright, Michael E.; Fallis, Stephen; Ashley, Paul R.; Sanghadasa, Mohan

    2007-09-01

    Mach-Zehnder optical modulators were fabricated using the CLD and FTC chromophores in polymer-on-silicon optical waveguides. Up to 17 months of oven-ageing stability are reported for the poled polymer films. Modulators containing an FTC-polyimide had the best over all aging performance. To model and extrapolate the ageing data, a relaxation correlation function attributed to A. K. Jonscher was compared to the well-established stretched exponential correlation function. Both models gave a good fit to the data. The Jonscher model predicted a slower relaxation rate in the out years. Analysis showed that collecting data for a longer period relative to the relaxation time was more important for generating useful predictions than the precision with which individual model parameters could be estimated. Thus from a practical standpoint, time-temperature superposition must be assumed in order to generate meaningful predictions. For this purpose, Arrhenius-type expressions were found to relate the model time constants to the ageing temperatures.

  20. Interferometric system based on swept source-optical coherence tomography scheme applied to the measurement of distances of industrial interest

    NASA Astrophysics Data System (ADS)

    Morel, Eneas N.; Russo, Nélida A.; Torga, Jorge R.; Duchowicz, Ricardo

    2016-01-01

    We used an interferometric technique based on typical optical coherence tomography (OCT) schemes for measuring distances of industrial interest. The system employed as a light source a tunable erbium-doped fiber laser of ˜20-pm bandwidth with a tuning range between 1520 and 1570 nm. It has a sufficiently long coherence length to enable long depth range imaging. A set of fiber Bragg gratings was used as a self-calibration method, which has the advantage of being a passive system that requires no additional electronic devices. The proposed configuration and the coherence length of the laser enlarge the range of maximum distances that can be measured with the common OCT configuration, maintaining a good axial resolution. A measuring range slightly >17 cm was determined. The system performance was evaluated by studying the repeatability and axial resolution of the results when the same optical path difference was measured. Additionally, the thickness of a semitransparent medium was also measured.

  1. Optical colour image watermarking based on phase-truncated linear canonical transform and image decomposition

    NASA Astrophysics Data System (ADS)

    Su, Yonggang; Tang, Chen; Li, Biyuan; Lei, Zhenkun

    2018-05-01

    This paper presents a novel optical colour image watermarking scheme based on phase-truncated linear canonical transform (PT-LCT) and image decomposition (ID). In this proposed scheme, a PT-LCT-based asymmetric cryptography is designed to encode the colour watermark into a noise-like pattern, and an ID-based multilevel embedding method is constructed to embed the encoded colour watermark into a colour host image. The PT-LCT-based asymmetric cryptography, which can be optically implemented by double random phase encoding with a quadratic phase system, can provide a higher security to resist various common cryptographic attacks. And the ID-based multilevel embedding method, which can be digitally implemented by a computer, can make the information of the colour watermark disperse better in the colour host image. The proposed colour image watermarking scheme possesses high security and can achieve a higher robustness while preserving the watermark’s invisibility. The good performance of the proposed scheme has been demonstrated by extensive experiments and comparison with other relevant schemes.

  2. Prediction of meat spectral patterns based on optical properties and concentrations of the major constituents.

    PubMed

    ElMasry, Gamal; Nakauchi, Shigeki

    2016-03-01

    A simulation method for approximating spectral signatures of minced meat samples was developed depending on concentrations and optical properties of the major chemical constituents. Minced beef samples of different compositions scanned on a near-infrared spectroscopy and on a hyperspectral imaging system were examined. Chemical composition determined heuristically and optical properties collected from authenticated references were simulated to approximate samples' spectral signatures. In short-wave infrared range, the resulting spectrum equals the sum of the absorption of three individual absorbers, that is, water, protein, and fat. By assuming homogeneous distributions of the main chromophores in the mince samples, the obtained absorption spectra are found to be a linear combination of the absorption spectra of the major chromophores present in the sample. Results revealed that developed models were good enough to derive spectral signatures of minced meat samples with a reasonable level of robustness of a high agreement index value more than 0.90 and ratio of performance to deviation more than 1.4.

  3. Light emitting fabric technologies for photodynamic therapy.

    PubMed

    Mordon, Serge; Cochrane, Cédric; Tylcz, Jean Baptiste; Betrouni, Nacim; Mortier, Laurent; Koncar, Vladan

    2015-03-01

    Photodynamic therapy (PDT) is considered to be a promising method for treating various types of cancer. A homogeneous and reproducible illumination during clinical PDT plays a determinant role in preventing under- or over-treatment. The development of flexible light sources would considerably improve the homogeneity of light delivery. The integration of optical fiber into flexible structures could offer an interesting alternative. This paper aims to describe different methods proposed to develop Side Emitting Optical Fibers (SEOF), and how these SEOF can be integrated in a flexible structure to improve light illumination of the skin during PDT. Four main techniques can be described: (i) light blanket integrating side-glowing optical fibers, (ii) light emitting panel composed of SEOF obtained by micro-perforations of the cladding, (iii) embroidery-based light emitting fabric, and (iv) woven-based light emitting fabric. Woven-based light emitting fabrics give the best performances: higher fluence rate, best homogeneity of light delivery, good flexibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Effect of hydrogen addition on soot formation in an ethylene/air premixed flame

    NASA Astrophysics Data System (ADS)

    De Iuliis, S.; Maffi, S.; Migliorini, F.; Cignoli, F.; Zizak, G.

    2012-03-01

    The effect of hydrogen addition to fuel in soot formation and growth mechanisms is investigated in a rich ethylene/air premixed flame. To this purpose, three-angle scattering and extinction measurements are carried out in flames with different hydrogen contents. By applying the Rayleigh-Debye-Gans theory and the fractal-like description, soot concentration and morphology, with the evaluation of radius of gyration, volume-mean diameter and primary particle diameter are retrieved. To derive fractal parameters such as fractal dimension and fractal prefactor to be used for optical measurements, sampling technique and TEM analysis are performed. In addition, data concerning soot morphology obtained from TEM analysis are compared with the optical results. A good agreement in the value of the primary particle diameter between optical and ex-situ measurements is found. Significant effects of hydrogen addition are detected and presented in this work. In particular, hydrogen addition to fuel is responsible for a reduction in soot concentration, radius of gyration and primary particle diameter.

  5. Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode

    NASA Astrophysics Data System (ADS)

    Rerucha, Simon; Yacoot, Andrew; Pham, Tuan M.; Cizek, Martin; Hucl, Vaclav; Lazar, Josef; Cip, Ondrej

    2017-04-01

    We demonstrated that an iodine stabilized distributed Bragg reflector (DBR) diode based laser system lasing at a wavelength in close proximity to λ =633 nm could be used as an alternative laser source to the helium-neon lasers in both scientific and industrial metrology. This yields additional advantages besides the optical frequency stability and coherence: inherent traceability, wider optical frequency tuning range, higher output power and high frequency modulation capability. We experimentally investigated the characteristics of the laser source in two major steps: first using a wavelength meter referenced to a frequency comb controlled with a hydrogen maser and then on an interferometric optical bench testbed where we compared the performance of the laser system with that of a traditional frequency stabilized He-Ne laser. The results indicate that DBR diode laser system provides a good laser source for applications in dimensional (nano)metrology, especially in conjunction with novel interferometric detection methods exploiting high frequency modulation or multiaxis measurement systems.

  6. Measuring the Refractive Index of a Laser-Plasma Optical System

    NASA Astrophysics Data System (ADS)

    Turnbull, D.; Goyon, C.; Pollock, B. B.; Mariscal, D.; Divol, L.; Ross, J. S.; Patankar, S.; Kemp, G. E.; Moody, J. D.; Michel, P. A.

    2016-10-01

    We report the first complete set of measurements of a laser-plasma optical system's refractive index, as seen by an independent probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive-index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for cross-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstration of a laser-plasma polarizer with 85% to 87% extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Underwater superoleophobicity, anti-oil and ultra-broadband enhanced absorption of metallic surfaces produced by a femtosecond laser inspired by fish and chameleons

    NASA Astrophysics Data System (ADS)

    Yin, K.; Song, Y. X.; Dong, X. R.; Wang, C.; Duan, J. A.

    2016-11-01

    Reported here is the bio-inspired and robust function of underwater superoleophobic, anti-oil metallic surfaces with ultra-broadband enhanced optical absorption obtained through femtosecond laser micromachining. Three distinct surface structures are fabricated using a wide variety of processing parameters. Underwater superoleophobic and anti-oil surfaces containing coral-like microstructures with nanoparticles and mount-like microstructures are achieved. These properties of the as-prepared surfaces exhibit good chemical stability when exposed to various types of oils and when immersed in water with a wide range of pH values. Moreover, coral-like microstructures with nanoparticle surfaces show strongly enhanced optical absorption over a broadband wavelength range from 0.2-25 μm. The potential mechanism for the excellent performance of the coral-like microstructures with a nanoparticle surface is also discussed. This multifunctional surface has potential applications in military submarines, amphibious military aircraft and tanks, and underwater anti-oil optical counter-reconnaissance devices.

  8. Hollow optical fiber induced solar cells with optical energy storage and conversion.

    PubMed

    Ding, Jie; Zhao, Yuanyuan; Duan, Jialong; Duan, Yanyan; Tang, Qunwei

    2017-11-09

    Hollow optical fiber induced dye-sensitized solar cells are made by twisting Ti wire/N719-TiO 2 nanotube photoanodes and Ti wire/Pt (CoSe, Pt 3 Ni) counter electrodes, yielding a maximized efficiency of 0.7% and good stability. Arising from optical energy storage ability, the solar cells can generate electricity without laser illumination.

  9. Effects of nanomaterial saturable absorption on gain-guide soliton in a positive group-dispersion fiber laser: Simulations and experiments

    NASA Astrophysics Data System (ADS)

    Du, Tuanjie; Wan, Xiaojiao; Yang, Runhua; Li, Weiwei; Ruan, Qiujun; Chen, Nan; Luo, Zhengqian

    2018-01-01

    In recent years, several kinds of nanomaterials have been discovered, and successfully used as saturable absorbers (SAs) for passively mode-locked fiber lasers. However, it is found that most of nanomaterials-based SAs cannot stably generate gain-guide solitons in positive group-dispersion fiber lasers, which is urgently expected to fully understand the inherent reasons. In this paper, we numerically and experimentally investigate the effects of nanomaterial saturable absorption (e.g. modulation depth and saturation optical power) on gain-guide soliton in positive group-dispersion Er3+-doped fiber laser (PGD-EDFL). By numerically solving the Ginzburg-Landau equation, the evolutions of both the mode-locked optical spectrum and pulse duration as a function of modulation depth and saturation optical power are analyzed, respectively. In experiment, we firstly prepare five nanomaterial SAs with the similar insertion loss, which have the different modulation depth from 1.80% to 23.36%, and the different saturation optical power from 8.8 to 536 W. We then perform the experimental comparison by incorporating the five SAs in a same PGD-EDFL cavity, respectively. The experimental results are in good agreement with the numerical ones. Our result reveals that: (1) a low modulation depth cannot support the formation of gain-guide soliton, (2) as the modulation depth increases, the spectral bandwidth of gain-guide soliton increases, the pulse duration decreases and the pulse chirp becomes large, (3) the saturation optical power has the weak influences on the gain-guide soliton performances.

  10. Optical modulation from an electro-optic polymer based hybrid Fabry-Perot etalon using transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Gan, Haiyong; Zhang, Hongxi; DeRose, Christopher T.; Norwood, Robert A.; Fallahi, Mahmoud; Luo, Jingdong; Jen, Alex K.-Y.; Liu, Boyang; Ho, Seng-Tiong; Peyghambarian, Nasser

    2007-02-01

    Fabry-Perot etalons using electro-optic (EO) organic materials can be used for devices such as tunable filters and spatial light modulators (SLM's) for wavelength division multiplexing (WDM) communication systems 1-5 and ultrafast imaging systems. For these applications the SLM's need to have: (i) low insertion loss, (ii) high speed operation, and (iii) large modulation depth with low drive voltage. Recently, there have been three developments which together can enhance the SLM performance to a higher level. First, low loss distributed Bragg reflector (DBR) mirrors are now used in SLM's to replace thin metal mirrors, resulting in reduced transmission loss, high reflectivity (>99%) and high finesse. Second, EO polymer materials have shown excellent properties for wide bandwidth optical modulation for information technology due to their fabrication flexibility, compatibility with high speed operation, and large EO coefficients at telecommunication wavelengths. For instance, the EO polymer AJL8/APC (AJL8: nonlinear optical chromophore, and APC: amorphous polycarbonate has recently been incorporated into waveguide modulators and achieved good performance for optical modulation. Finally, very low loss transparent conducting oxide (TCO) electrodes have drawn increasing attention for applications in optoelectronic devices. Here we will address how the low loss indium oxide (In IIO 3) electrodes with an absorption coefficient ~1000/cm and conductivity ~204 S/cm can help improve the modulation performance of EO polymer Fabry-Pérot étalons using the advanced electro-optic (EO) polymer material (AJL8/APC). A hybrid etalon structure with one highly conductive indium tin oxide (ITO) electrode outside the etalon cavity and one low-absorption In IIO 3 electrode inside etalon cavity has been demonstrated. High finesse (~234), improved effective applied voltage ratio (~0.25), and low insertion loss (~4 dB) have been obtained. A 10 dB isolation ratio and ~10% modulation depth at 200 kHz with only 5 V applied voltage have been achieved. These results indicate that such etalons are very promising candidates for ultrafast spatial light modulation in information technology.

  11. Radiation imaging with optically read out GEM-based detectors

    NASA Astrophysics Data System (ADS)

    Brunbauer, F. M.; Lupberger, M.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.

    2018-02-01

    Modern imaging sensors allow for high granularity optical readout of radiation detectors such as MicroPattern Gaseous Detectors (MPGDs). Taking advantage of the high signal amplification factors achievable by MPGD technologies such as Gaseous Electron Multipliers (GEMs), highly sensitive detectors can be realised and employing gas mixtures with strong scintillation yield in the visible wavelength regime, optical readout of such detectors can provide high-resolution event representations. Applications from X-ray imaging to fluoroscopy and tomography profit from the good spatial resolution of optical readout and the possibility to obtain images without the need for extensive reconstruction. Sensitivity to low-energy X-rays and energy resolution permit energy resolved imaging and material distinction in X-ray fluorescence measurements. Additionally, the low material budget of gaseous detectors and the possibility to couple scintillation light to imaging sensors via fibres or mirrors makes optically read out GEMs an ideal candidate for beam monitoring detectors in high energy physics as well as radiotherapy. We present applications and achievements of optically read out GEM-based detectors including high spatial resolution imaging and X-ray fluorescence measurements as an alternative readout approach for MPGDs. A detector concept for low intensity applications such as X-ray crystallography, which maximises detection efficiency with a thick conversion region but mitigates parallax-induced broadening is presented and beam monitoring capabilities of optical readout are explored. Augmenting high resolution 2D projections of particle tracks obtained with optical readout with timing information from fast photon detectors or transparent anodes for charge readout, 3D reconstruction of particle trajectories can be performed and permits the realisation of optically read out time projection chambers. Combining readily available high performance imaging sensors with compatible scintillating gases and the strong signal amplification factors achieved by MPGDs makes optical readout an attractive alternative to the common concept of electronic readout of radiation detectors. Outstanding signal-to-noise ratios and robustness against electronic noise allow unprecedented imaging capabilities for various applications in fields ranging from high energy physics to medical instrumentation.

  12. Clinical outcomes and predictive factors related to good outcomes in plasma exchange in severe attack of NMOSD and long extensive transverse myelitis: Case series and review of the literature.

    PubMed

    Aungsumart, Saharat; Apiwattanakul, Metha

    2017-04-01

    To investigate the predictive factors associated with good outcomes of plasma exchange in severe attacks through neuromyelitis optica spectrum disorder (NMOSD) and long extensive transverse myelitis (LETM). In addition, to review the literature of predictive factors associated with the good outcomes of plasma exchange in central nervous system inflammatory demyelinating diseases (CNS IDDs). Retrospective study in 27 episodes of severe acute attacks myelitis and optic neuritis in 24 patients, including 20 patients with NMOSD seropositive, 1 patient with NMOSD seronegative and 3 patients with LETM. Plasma exchange was performed, reflecting poor responses to high-dose intravenous methylprednisolone (IVMP) therapy. The outcomes of the present study were the functional outcome improvements at 6 months after plasma exchange. The predictive factors of good outcomes after plasma exchange were determined in this cohort, and additional factors reported in the literature were reviewed. Plasma exchange was performed in 16 spinal cord attacks and 11 attacks of optic neuritis. Twenty patients were female (83%). The median age of the patients at the time of plasma exchange was 41 years old. The median disease duration was 0.6 years. The AQP4-IgG status was positive in 20 patients (83%). Plasma exchange following IVMP therapy led to a significant improvement in 81% of the cases after 6 months of follow up. A baseline Expanded Disability Status Scale (EDSS) score ≤6 before the attack was associated with significant improvement at 6 months (p=0.02, OR 58.33, 95%CI 1.92-1770). In addition, we reviewed the evidence for factors associated with good outcomes of plasma exchange in CNS IDDs, classified according to pre-plasma exchange, post-plasma exchange, and radiological features. Plasma exchange following IVMP therapy is effective as a treatment for patients experiencing a severe attack of NMOSD or LETM. The factors associated with good outcomes after plasma exchange in CNS IDDs are reviewed in the literature. We classified 3 different aspects, including pre-plasma exchange factors, based on minimal disability at baseline, preserved reflexes, early initiation, and short disease duration; post plasma exchange factors, including early improvement or lower disability at last follow up; and radiographic factors, for which the presence of active gadolinium lesions and the absence of spinal cord atrophy seem to be good outcomes for plasmapheresis. Copyright © 2017. Published by Elsevier B.V.

  13. Comparison of performance of high-power mid-IR QCL modules in actively and passively cooled mode

    NASA Astrophysics Data System (ADS)

    Münzhuber, F.; Denzel, H.; Tholl, H. D.

    2017-10-01

    We report on the effects of active and passive cooling on the performance of high power mid-IR QCL modules (λ ≈ 3.9 μm) in quasi-cw mode. In active cooling mode, a thermo-electrical cooler attached with its hot side to a heat sink of constant temperature, a local thermometer in close proximity to the QCL chip (epi-down mounted) as well as a control unit has been used for temperature control of the QCL submount. In contrast, the passive cooling was performed by attaching the QCL module solely to the heat sink. Electro-optical light-current- (L-I-) curves are measured in a quasi-cw mode, from which efficiencies can be deduced. Waiving of the active cooling elements results in a drop of the maximum intensity of less than 5 %, compared to the case wherein the temperature of the submount is stabilized to the temperature of the heat sink. The application of a model of electro-optical performance to the data shows good agreement and captures the relevant observations. We further determine the heat resistance of the module and demonstrate that the system performance is not limited by the packaging of the module, but rather by the heat dissipation on the QCL chip itself.

  14. Full duplex fiber link for alternative wired and wireless access based on SSB optical millimeter-wave with 4-PAM signal

    NASA Astrophysics Data System (ADS)

    Ma, Jianxin; Zhang, Junjie

    2015-03-01

    A novel full-duplex fiber-wireless link based on single sideband (SSB) optical millimeter (mm)-wave with 10 Gbit/s 4-pulse amplitude modulation (PAM) signal is proposed to provide alternative wired and 40 GHz wireless accesses for the user terminals. The SSB optical mm-wave with 4-PAM signal consists of two tones: one bears the 4-PAM signal and the other is unmodulated with high power. After transmission over the fiber to the hybrid optical network unit (HONU), the SSB optical mm-wave signal can be decomposed by fiber Bragg gratings (FBGs) as the SSB optical mm-wave signal with reduced carrier-to-sideband ratio (the baseband 4-PAM optical signal) and the uplink optical carrier for the wireless (wired) access. This makes the HONU free from the laser source. For the uplink, since the wireless access signal is converted to the baseband by power detection, both the transmitter in the HONU and the receiver in optical line terminal (OLT) are co-shared for both wireless and wired accesses, which makes the full duplex link much simpler. In our scheme, the optical electrical field of the square-root increment level 4-PAM signal assures an equal level spacing receiving for both the downlink wired and wireless accesses. Since the downlink wireless signal is down-converted to the baseband by power detection, RF local oscillator is unnecessary. To confirm the feasibility of our proposed scheme, a simulation full duplex link with 40 GHz SSB optical mm-wave with 10 Gbit/s 4-PAM signal is built. The simulation results show that both down- and up-links for either wired or wireless access can keep good performance even if the link length of the SSMF is extended to 40 km.

  15. Measuring Viscoelastic Deformation with an Optical Mouse

    ERIC Educational Resources Information Center

    Ng, T. W.

    2004-01-01

    The feasibility of using an optical mouse to track the viscoelastic deformation of low-density polyethylene films that have a fixed attached load is presented. It is seen that using an optical mouse and with rudimentary experiment paraphernalia and arrangement, it is possible to get good measurements of viscoelastic deformation.

  16. Silver nanoprisms/silicone hybrid rubber materials and their optical limiting property to femtosecond laser

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Liu, Miao; Jiang, Nengkai; Wang, Chunlei; Lin, Weihong; Li, Dongxiang

    2017-08-01

    Optical limiters against femtosecond laser are essential for eye and sensor protection in optical processing system with femtosecond laser as light source. Anisotropic Ag nanoparticles are expected to develop into optical limiting materials for femtosecond laser pulses. Herein, silver nanoprisms are prepared and coated by silica layer, which are then doped into silicone rubber to obtain hybrid rubber sheets. The silver nanoprisms/silicone hybrid rubber sheets exhibit good optical limiting property to femtosecond laser mainly due to nonlinear optical absorption.

  17. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation

    DOE PAGES

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; ...

    2016-05-30

    In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO 2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO 2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO 2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO 2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat fluxmore » profiles on the receiver and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.« less

  18. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua

    In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO 2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO 2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO 2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO 2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat fluxmore » profiles on the receiver and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.« less

  19. Initial system design method for non-rotationally symmetric systems based on Gaussian brackets and Nodal aberration theory.

    PubMed

    Zhong, Yi; Gross, Herbert

    2017-05-01

    Freeform surfaces play important roles in improving the imaging performance of off-axis optical systems. However, for some systems with high requirements in specifications, the structure of the freeform surfaces could be very complicated and the number of freeform surfaces could be large. That brings challenges in fabrication and increases the cost. Therefore, to achieve a good initial system with minimum aberrations and reasonable structure before implementing freeform surfaces is essential for optical designers. The already existing initial system design methods are limited to certain types of systems. A universal tool or method to achieve a good initial system efficiently is very important. In this paper, based on the Nodal aberration theory and the system design method using Gaussian Brackets, the initial system design method is extended from rotationally symmetric systems to general non-rotationally symmetric systems. The design steps are introduced and on this basis, two off-axis three-mirror systems are pre-designed using spherical shape surfaces. The primary aberrations are minimized using the nonlinear least-squares solver. This work provides insight and guidance for initial system design of off-axis mirror systems.

  20. A novel hybrid algorithm for the design of the phase diffractive optical elements for beam shaping

    NASA Astrophysics Data System (ADS)

    Jiang, Wenbo; Wang, Jun; Dong, Xiucheng

    2013-02-01

    In this paper, a novel hybrid algorithm for the design of a phase diffractive optical elements (PDOE) is proposed. It combines the genetic algorithm (GA) with the transformable scale BFGS (Broyden, Fletcher, Goldfarb, Shanno) algorithm, the penalty function was used in the cost function definition. The novel hybrid algorithm has the global merits of the genetic algorithm as well as the local improvement capabilities of the transformable scale BFGS algorithm. We designed the PDOE using the conventional simulated annealing algorithm and the novel hybrid algorithm. To compare the performance of two algorithms, three indexes of the diffractive efficiency, uniformity error and the signal-to-noise ratio are considered in numerical simulation. The results show that the novel hybrid algorithm has good convergence property and good stability. As an application example, the PDOE was used for the Gaussian beam shaping; high diffractive efficiency, low uniformity error and high signal-to-noise were obtained. The PDOE can be used for high quality beam shaping such as inertial confinement fusion (ICF), excimer laser lithography, fiber coupling laser diode array, laser welding, etc. It shows wide application value.

  1. Operation and postirradiation examination of ORR capsule OF-2: accelerated testing of HTGR fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiegs, T.N.; Thoms, K.R.

    1979-03-01

    Irradiation capsule OF-2 was a test of High-Temperature Gas-Cooled Reactor fuel types under accelerated irradiation conditions in the Oak Ridge Research Reactor. The results showed good irradiation performance of Triso-coated weak-acid-resin fissile particles and Biso-coated fertile particles. These particles had been coated by a fritted gas distributor in the 0.13-m-diam furnace. Fast-neutron damage (E > 0.18 MeV) and matrix-particle interaction caused the outer pyrocarbon coating on the Triso-coated particles to fail. Such failure depended on the optical anisotropy, density, and open porosity of the outer pyrocarbon coating, as well as on the coke yield of the matrix. Irradiation of specimensmore » with values outside prescribed limits for these properties increased the failure rate of their outer pyrocarbon coating. Good irradiation performance was observed for weak-acid-resin particles with conversions in the range from 15 to 75% UC/sub 2/.« less

  2. Synergistic estimation of surface parameters from jointly using optical and microwave observations in EOLDAS

    NASA Astrophysics Data System (ADS)

    Timmermans, Joris; Gomez-Dans, Jose; Lewis, Philip; Loew, Alexander; Schlenz, Florian

    2017-04-01

    The large amount of remote sensing data nowadays available provides a huge potential for monitoring crop development, drought conditions and water efficiency. This potential however not been realized yet because algorithms for land surface parameter retrieval mostly use data from only a single sensor. Consequently products that combine different low-level observations from different sensors are hard to find. The lack of synergistic retrieval is caused because it is easier to focus on single sensor types/footprints and temporal observation times, than to find a way to compensate for differences. Different sensor types (microwave/optical) require different radiative transfer (RT) models and also require consistency between the models to have any impact on the retrieval of soil moisture by a microwave instrument. Varying spatial footprints require first proper collocation of the data before one can scale between different resolutions. Considering these problems, merging optical and microwave observations have not been performed yet. The goal of this research was to investigate the potential of integrating optical and microwave RT models within the Earth Observation Land Data Assimilation System (EOLDAS) synergistically to derive biophysical parameters. This system uses a Bayesian data assimilation approach together with observation operators such as the PROSAIL model to estimate land surface parameters. For the purpose of enabling the system to integrate passive microwave radiation (from an ELBARRA II passive microwave radiometer), the Community Microwave Emission Model (CMEM) RT-model, was integrated within the EOLDAS system. In order to quantify the potential, a variety of land surface parameters was chosen to be retrieved from the system, in particular variables that a) impact only optical RT (such as leaf water content and leaf dry matter), b) only impact the microwave RT (such as soil moisture and soil temperature), and c) Leaf Area Index (LAI) that impacts both optical and microwave RT. The results show a high potential when both optical and microwave are used independently. Using only RapidEye only with SAIL RT model, LAI was estimated with R=0.68 with p=0.09, although estimating leaf water content and dry matter showed lower correlations |R|<0.4. The results for retrieving soil temperature and leaf area index retrievals using only (passive microwave) Elbarra-II observations were good with respectively R=[0.85, 0.79], P=[0.0, 0.0], when focusing on dry-spells (of at least 9 days) only the results respectively [R=0.73, and P=0.0], and R=0.89 and R=0.77 for respectively the trend and anomalies. Synergistically using optical and microwave shows also a good potential. This scenario shows that absolute errors improved (with RMSE=1.22 and S=0.89), but with degrading correlations (R=0.59 and P=0.04); the sparse optical observations only improved part of the temporal domain. However in general the synergistic retrieval showed good potential; microwave data provides better information concerning the overall trend of the retrieved LAI due to the regular acquisitions, while optical data provides better information concerning the absolute values of the LAI.

  3. Experimental (FTIR, Raman, UV-visible and PL) and theoretical (DFT and TDDFT) studies on bis(8-hydroxyquinolinium) tetrachlorocobaltate(II) compound

    NASA Astrophysics Data System (ADS)

    Chaouachi, Soumaya; Elleuch, Slim; Hamdi, Besma; Zouari, Ridha

    2016-12-01

    The purpose of this paper is to present the chemical preparation, crystal structure, vibrational study and optical features for new organic-inorganic compound [C9H8NO]2CoCl4 abbreviated [8-HQ]2CoCl4. The structural study by X-ray diffraction prove that this compound crystallize in a monoclinic unit-cell with space group C2/c (point group 2/m = C2h). It is built of tetrahedra [CoCl4]2- anions and (C9H8NO)+ cations in the 1/2 ratio. The crystal structure is stabilized by network three-dimensional of Nsbnd H⋯Cl, Nsbnd H⋯O, Osbnd H⋯Cl, Csbnd H⋯Cl hydrogen bonds, and offset π-π stacking interactions. Also, the Hirshfeld Surface projections and Fingerprint plots were elucidated the relative contribution of the type, nature and explore the H⋯Cl, C⋯H, C⋯C, C⋯N, H⋯O intermolecular contacts in the crystal in a visual manner. Furthermore, vibrational analysis of the structural groups in the compound was carried out by both Fourier transforms infrared (FT-IR) and Raman spectra. The spectral data are complemented by good information at the region characteristic of metal-ligand, which evidences coordination through the compound. The optical properties of the crystal were studied by using optical absorption UV-visible and photoluminescence (PL) spectroscopy studies. Theoretical calculations were performed using density functional theory (DFT) at (DFT/B3LYP/LanL2DZ) level in the aim of aiding in studying structural, vibrational and optical properties of the investigated compound. Good relationship consistency is found between the experimental and theoretical studies. Inspection of the optical properties has lead to confirm the exhibition of a green photoluminescence and the occurrence of charge transfer phenomenon in this material.

  4. ARGALI: an automatic cup-to-disc ratio measurement system for glaucoma detection and AnaLysIs framework

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wong, D. W. K.; Lim, J. H.; Li, H.; Tan, N. M.; Wong, T. Y.

    2009-02-01

    Glaucoma is an irreversible ocular disease leading to permanent blindness. However, early detection can be effective in slowing or halting the progression of the disease. Physiologically, glaucoma progression is quantified by increased excavation of the optic cup. This progression can be quantified in retinal fundus images via the optic cup to disc ratio (CDR), since in increased glaucomatous neuropathy, the relative size of the optic cup to the optic disc is increased. The ARGALI framework constitutes of various segmentation approaches employing level set, color intensity thresholds and ellipse fitting for the extraction of the optic cup and disc from retinal images as preliminary steps. Following this, different combinations of the obtained results are then utilized to calculate the corresponding CDR values. The individual results are subsequently fused using a neural network. The learning function of the neural network is trained with a set of 100 retinal images For testing, a separate set 40 images is then used to compare the obtained CDR against a clinically graded CDR, and it is shown that the neural network-based result performs better than the individual components, with 96% of the results within intra-observer variability. The results indicate good promise for the further development of ARGALI as a tool for the early detection of glaucoma.

  5. Technology optimization techniques for multicomponent optical band-pass filter manufacturing

    NASA Astrophysics Data System (ADS)

    Baranov, Yuri P.; Gryaznov, Georgiy M.; Rodionov, Andrey Y.; Obrezkov, Andrey V.; Medvedev, Roman V.; Chivanov, Alexey N.

    2016-04-01

    Narrowband optical devices (like IR-sensing devices, celestial navigation systems, solar-blind UV-systems and many others) are one of the most fast-growing areas in optical manufacturing. However, signal strength in this type of applications is quite low and performance of devices depends on attenuation level of wavelengths out of operating range. Modern detectors (photodiodes, matrix detectors, photomultiplier tubes and others) usually do not have required selectivity or have higher sensitivity to background spectrum at worst. Manufacturing of a single component band-pass filter with high attenuation level of wavelength is resource-intensive task. Sometimes it's not possible to find solution for this problem using existing technologies. Different types of filters have technology variations of transmittance profile shape due to various production factors. At the same time there are multiple tasks with strict requirements for background spectrum attenuation in narrowband optical devices. For example, in solar-blind UV-system wavelengths above 290-300 nm must be attenuated by 180dB. In this paper techniques of multi-component optical band-pass filters assembly from multiple single elements with technology variations of transmittance profile shape for optimal signal-tonoise ratio (SNR) were proposed. Relationships between signal-to-noise ratio and different characteristics of transmittance profile shape were shown. Obtained practical results were in rather good agreement with our calculations.

  6. Gamma-Ray Focusing Optics for Small Animal Imaging

    NASA Technical Reports Server (NTRS)

    Pivovaroff, M. J.; Barber, W. C.; Craig, W. W.; Hasegawa, B. H.; Ramsey, B. D.; Taylor, C.

    2004-01-01

    There is a well-established need for high-resolution radionuclide imaging techniques that provide non-invasive measurement of physiological function in small animals. We, therefore, have begun developing a small animal radionuclide imaging system using grazing incidence mirrors to focus low-energy gamma-rays emitted by I-125, and other radionuclides. Our initial prototype optic, fabricated from thermally-formed glass, demonstrated a resolution of 1500 microns, consistent with the performance predicted by detailed simulations. More recently, we have begun constructing mirrors using a replication technique that reduces low spatial frequency errors in the mirror surface, greatly improving the resolution. Each technique offers particular advantages: e.g., multilayer coatings are easily deposited on glass, while superior resolution is possible with replicated optics. Scaling the results from our prototype optics, which only have a few nested shells, to system where the lens has a full complement of several tens of nested shells, a sensitivity of approx. 1 cps/micro Ci is possible, with the exact number dependent on system magnification and radionuclide species. (Higher levels of efficiency can be obtained with multi-optic imaging systems.) The gamma-ray lens will achieve a resolution as good as 100 microns, independent of the final sensitivity. The combination of high spatial resolution and modest sensitivity will enable in vivo single photon emission imaging studies in small animals.

  7. Optically Levitated Targets as a Source for High Brightness X-rays and a Platform for Mass-Limited Laser-interaction Experiments

    NASA Astrophysics Data System (ADS)

    Giltrap, Samuel; Stuart, Nick; Robinson, Tim; Armstrong, Chris; Hicks, George; Eardley, Sam; Gumbrell, Ed; Smith, Roland

    2016-10-01

    Here we report on the development of an optical levitation based x-ray and proton source, motivated by the requirement for a debris free, high spatial resolution, and low EMP source for x-ray radiography and proton production. Research at Imperial College has led to the development of a feedback controlled optical levitation trap which is capable of holding both solid (Glass beads) and liquid (silicon based oil) micro-targets ( 3-10um). The optical levitation trap has been successfully fielded in a high-intensity laser interaction experiment at Imperial College London and at the Vulcan Petawatt Laser system at the Rutherford Appleton Laboratory (RAL). Here we report on the results from that RAL run including; an x-ray source size of 10-15um with very good spherical symmetry when compared to wire targets, secondly very low EMP signal from isolated levitated targets (9 times less RF signal than a comparable wire target). At Imperial College we were also able to record an x-ray energy spectrum which produced an electron temperature of 0.48KeV, and performed interferometry of a shock evolving into a blast wave off an optically levitated droplet which allowed us to infer the electron density within the shock front.

  8. A novel optical millimeter-wave signal generation approach to overcome chromatic dispersion

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Jiang, Wei; Tan, Qinggui; Zhu, Zhongbo; Liu, Feng

    2014-06-01

    In this paper, a novel frequency octupling approach for optical millimeter-wave signal generation to overcome chromatic dispersion is proposed and demonstrated. The frequency octupling mm-wave with the baseband signal carried only by -4th order sideband is generated by properly adjusting a series of parameters, which are the modulation constant, the gain of baseband signal, the direct current bias and the different phase of the modulation arms. As the optical millimeter-wave signal is transmitted along the fiber, there is no time shift caused by chromatic dispersion. Theoretical analyses and simulated results show that when the optical mm-wave carrying 2.5 Gbps baseband signal transmits a distance of over 110 km, the eye diagram still keeps open and clear. The power penalty is about 0.4 dB after the optical signal transmits over 40 km. In additions, given the +4th order sideband carries no data, a full-duplex RoF link based on wavelength reuse is built for the uplink. The bidirectional 2.5 Gbps baseband signal could successfully transmit over 40 km with about 0.8 dB power penalty in the simulation. Both theoretical analyses and simulation results show that the full-duplex RoF link has good performance.

  9. Development of microchannel plate x-ray optics

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip; Chen, Andrew

    1994-01-01

    The goal of this research program was to develop a novel technique for focusing x-rays based on the optical system of a lobster's eye. A lobster eye employs many closely packed reflecting surfaces arranged within a spherical or cylindrical shell. These optics have two unique properties: they have unlimited fields of view and can be manufactured via replication of identical structures. Because the angular resolution is given by the ratio of the size of the individual optical elements to the focal length, optical elements with sizes on the order of one hundred microns are required to achieve good angular resolution with a compact telescope. We employed anisotropic etching of single crystal silicon wafers for the fabrication of micron-scale optical elements. This technique, commonly referred to as silicon micromachining, is based on silicon fabrication techniques developed by the microelectronics industry. An anisotropic etchant is a chemical which etches certain silicon crystal planes much more rapidly than others. Using wafers in which the slowly etched crystal planes are aligned perpendicularly to the wafer surface, it is possible to etch a pattern completely through a wafer with very little distortion. Our optics consist of rectangular pores etched completely through group of zone axes (110) oriented silicon wafers. The larger surfaces of the pores (the mirror elements) were aligned with the group of zone axes (111) planes of the crystal perpendicular to the wafer surface. We have succeeded in producing silicon lenses with a geometry suitable for 1-d focusing x-ray optics. These lenses have an aspect ratio (40:1) suitable for x-ray reflection and have very good optical surface alignment. We have developed a number of process refinements which improved the quality of the lens geometry and the repeatability of the etch process. A significant progress was made in obtaining good optical surface quality. The RMS roughness was decreased from 110 A for our initial lenses to 30 A in the final lenses. A further factor of three improvement in surface quality is required for the production of efficient x-ray optics. In addition to the silicon fabrication, an x-ray beam line was constructed at Columbia for testing the optics.

  10. Application of smart BFRP bars with distributed fiber optic sensors into concrete structures

    NASA Astrophysics Data System (ADS)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Zhao, Lihua; Song, Shiwei

    2010-04-01

    In this paper, the self-sensing and mechanical properties of concrete structures strengthened with a novel type of smart basalt fiber reinforced polymer (BFRP) bars were experimentally studied, wherein the sensing element is Brillouin scattering-based distributed optical fiber sensing technique. First, one of the smart bars was applied to strengthen a 2m concrete beam under a 4-points static loading manner in the laboratory. During the experiment, the bar can measure the inner strain changes and monitor the randomly distributed cracks well. With the distributed strain information along the bar, the distributed deformation of the beam can be calculated, and the structural health can be monitored and evaluated as well. Then, two smart bars with a length of about 70m were embedded into a concrete airfield pavement reinforced by long BFRP bars. In the field test, all the optical fiber sensors in the smart bars survived the whole concrete casting process and worked well. From the measured data, the concrete cracks along the pavement length can be easily monitored. The experimental results also confirmed that the bars can strengthen the structures especially after the yielding of steel bars. All the results confirm that this new type of smart BFRP bars show not only good sensing performance but also mechanical performance in the concrete structures.

  11. Monitoring of tissue optical properties using OCT: application for blood glucose analysis

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Eledrisi, Mohsen S.; Ashitkov, Taras V.; Motamedi, Massoud; Esenaliev, Rinat O.

    2002-07-01

    Noninvasive monitoring of tissue optical properties in real time could significantly improve diagnostics and management of various diseases. Recently we proposed to use high- resolution Optical Coherence Tomography (OCT) technique for measurement of tissue scattering coefficient at the depth of up to 1mm. Our pilot studies performed in vitro and in vivo demonstrated that measurement of tissue scattering with this technique can potentially be applied for noninvasive monitoring of blood glucose concentration. High resolution and coherent photon detection of the OCT technique allowed detection of glucose-induced changes in the scattering coefficient. In this paper we report results of in vivo studies performed in dog, New Zealand rabbits, and first human subjects. OCT system with the wavelength of 1300 nm was used in our experiments. OCT signal slope was measured and compared with actual blood glucose concentration. Bolus glucose injections and glucose clamping administrations were used in animal studies. OCT signals were recorded form human subjects during oral glucose tolerance test. Results obtained form both animal and human studies show good correlation between slope of the OCT signals and actual blood glucose concentration measured using standard glucometesr. Sensitivity and accuracy of blood glucose concentrations monitoring with the OCT is discussed. Obtained result suggest that OCT is a promising technique for noninvasive monitoring of tissue analytes including glucose.

  12. 1 million-Q optomechanical microdisk resonators for sensing with very large scale integration

    NASA Astrophysics Data System (ADS)

    Hermouet, M.; Sansa, M.; Banniard, L.; Fafin, A.; Gely, M.; Allain, P. E.; Santos, E. Gil; Favero, I.; Alava, T.; Jourdan, G.; Hentz, S.

    2018-02-01

    Cavity optomechanics have become a promising route towards the development of ultrasensitive sensors for a wide range of applications including mass, chemical and biological sensing. In this study, we demonstrate the potential of Very Large Scale Integration (VLSI) with state-of-the-art low-loss performance silicon optomechanical microdisks for sensing applications. We report microdisks exhibiting optical Whispering Gallery Modes (WGM) with 1 million quality factors, yielding high displacement sensitivity and strong coupling between optical WGMs and in-plane mechanical Radial Breathing Modes (RBM). Such high-Q microdisks with mechanical resonance frequencies in the 102 MHz range were fabricated on 200 mm wafers with Variable Shape Electron Beam lithography. Benefiting from ultrasensitive readout, their Brownian motion could be resolved with good Signal-to-Noise ratio at ambient pressure, as well as in liquid, despite high frequency operation and large fluidic damping: the mechanical quality factor reduced from few 103 in air to 10's in liquid, and the mechanical resonance frequency shifted down by a few percent. Proceeding one step further, we performed an all-optical operation of the resonators in air using a pump-probe scheme. Our results show our VLSI process is a viable approach for the next generation of sensors operating in vacuum, gas or liquid phase.

  13. Distance measurement based on light field geometry and ray tracing.

    PubMed

    Chen, Yanqin; Jin, Xin; Dai, Qionghai

    2017-01-09

    In this paper, we propose a geometric optical model to measure the distances of object planes in a light field image. The proposed geometric optical model is composed of two sub-models based on ray tracing: object space model and image space model. The two theoretic sub-models are derived on account of on-axis point light sources. In object space model, light rays propagate into the main lens and refract inside it following the refraction theorem. In image space model, light rays exit from emission positions on the main lens and subsequently impinge on the image sensor with different imaging diameters. The relationships between imaging diameters of objects and their corresponding emission positions on the main lens are investigated through utilizing refocusing and similar triangle principle. By combining the two sub-models together and tracing light rays back to the object space, the relationships between objects' imaging diameters and corresponding distances of object planes are figured out. The performance of the proposed geometric optical model is compared with existing approaches using different configurations of hand-held plenoptic 1.0 cameras and real experiments are conducted using a preliminary imaging system. Results demonstrate that the proposed model can outperform existing approaches in terms of accuracy and exhibits good performance at general imaging range.

  14. Electrical properties of thin film transistors with zinc tin oxide channel layer

    NASA Astrophysics Data System (ADS)

    Hong, Seunghwan; Oh, Gyujin; Kim, Eun Kyu

    2017-10-01

    We have investigated thin film transistors (TFTs) with zinc tin oxide (ZTO) channel layer fabricated by using an ultra-high vacuum radio frequency sputter. ZTO thin films were grown at room temperature by co-sputtering of ZnO and SnO2, which applied power for SnO2 target was varied from 15 W to 90 W under a fixed sputtering power of 70 W for ZnO target. A post-annealing treatment to improve the film quality was done at temperature ranges from 300 to 600 °C by using the electrical furnace. The ZTO thin films showed good electrical and optical properties such as Hall mobility of more than 9 cm2/V·s, specific resistivity of about 2 × 102 Ω·cm, and optical transmittance of 85% in visible light region by optical bandgap of 3.3 eV. The ZTO-TFT with an excellent performance of channel mobility of 19.1 cm2/V·s and on-off ratio ( I on / I off ) of 104 was obtained from the films grown with SnO2 target power of 25 W and post-annealed at 450 °C. This result showed that ZTO film is promising on application to a high performance transparent TFTs.

  15. Extraordinary Effects in Quasi-Periodic Gold Nanocavities: Enhanced Transmission and Polarization Control of Cavity Modes.

    PubMed

    Dhama, Rakesh; Caligiuri, Vincenzo; Petti, Lucia; Rashed, Alireza R; Rippa, Massimo; Lento, Raffaella; Termine, Roberto; Caglayan, Humeyra; De Luca, Antonio

    2018-01-23

    Plasmonic quasi-periodic structures are well-known to exhibit several surprising phenomena with respect to their periodic counterparts, due to their long-range order and higher rotational symmetry. Thanks to their specific geometrical arrangement, plasmonic quasi-crystals offer unique possibilities in tailoring the coupling and propagation of surface plasmons through their lattice, a scenario in which a plethora of fascinating phenomena can take place. In this paper we investigate the extraordinary transmission phenomenon occurring in specifically patterned Thue-Morse nanocavities, demonstrating noticeable enhanced transmission, directly revealed by near-field optical experiments, performed by means of a scanning near-field optical microscope (SNOM). SNOM further provides an intuitive picture of confined plasmon modes inside the nanocavities and confirms that localization of plasmon modes is based on size and depth of nanocavities, while cross talk between close cavities via propagating plasmons holds the polarization response of patterned quasi-crystals. Our performed numerical simulations are in good agreement with the experimental results. Thus, the control on cavity size and incident polarization can be used to alter the intensity and spatial properties of confined cavity modes in such structures, which can be exploited in order to design a plasmonic device with customized optical properties and desired functionalities, to be used for several applications in quantum plasmonics.

  16. Optical frequency comb generation with high tone-to-noise ratio for large-capacity wavelength division multiplexed passive optical network

    NASA Astrophysics Data System (ADS)

    Ullah, Rahat; Liu, Bo; Zhang, Qi; Tian, Qinghua; Tian, Feng; Qu, Zhaowei; Yan, Cheng; Khan, Muhammad Saad; Ahmad, Ibrar; Xin, Xiangjun

    2015-11-01

    We propose a technique for the generation of optical frequency comb from a single source, which reduces the costs of optical access networks. Two Mach-Zehnder modulators are cascaded with one phase modulator driven by radiofrequency signals. With 10-GHz frequency spacing, the generated 40 optical multicarriers have good tone-to-noise ratio with least excursions in their comb lines. The laser array at the optical line terminal of the conventional wavelength division multiplexed passive optical network (WDM-PON) system has been replaced with optical frequency comb generator (OFCG), which may result in cost-effective optical line terminal (OLT) supporting a large-capacity WDM-PON system. Of 40 carriers generated, each carrier carries 10 Gbps data based on differential phase-shift keying. Four hundred Gbps multiplexed data from all channels are successfully transmitted through a fiber span of 25 km with negligible power penalties. Part of the downlink signal is used in uplink transmission at optical network unit where intensity-modulated on-off keying is deployed for remodulation. Theoretical analysis of the proposed WDM-PON system based on OFCG are in good agreement with simulation results. The metrics considered for the analysis of the proposed OFCG in a WDM-PON system are power penalties of the full-duplex transmission, eye diagrams, and bit error rate.

  17. Two different ways for waveguides and optoelectronics components on top of C-MOS

    NASA Astrophysics Data System (ADS)

    Fedeli, J. M.; Jeannot, S.; Kostrzewa, M.; Di Cioccio, L.; Jousseaume, V.; Orobtchouk, R.; Maury, P.; Zussy, M.

    2006-02-01

    While fabrication of photonic components at the wafer level is a long standing goal of integrated optics, new applications such as optical interconnects are introducing new challenges for waveguides and optoelectronic component fabrication. Indeed, global interconnects are expected to face severe limitations in the near future. To face this problem, optical links on top of a CMOS circuits could be an alternative. The critical points to perform an optical link on a chip are firstly the realization of compact passive optical distribution and secondly the report of optoelectronic components for the sources and detectors. This paper presents two different approaches for the integration of both waveguides and optoelectronic components. In a first "total bonding" approach, waveguides have been elaborated using classical "Silicon On Insulators" technology and then reported using molecular bonding on top off Si wafers. The S0I substrate was then chemically etched, after what InP dies were moleculary bonded on top of the waveguides. With this approach, optical components with low loses and a good equilibrium are demonsrated. Using molecular bonding, InP dies were reported with no degradation of the optoelectronic properties of the films. In a second approach, using PECVD silicon nitride or amorphous silicon coupled to PECVD silicon oxide, basic optical components are demonstrated. This low temperature technology is compatible with a microelectronic Back End process, allowing an integration of the waveguides directly on top of CMOS circuits. InP dies can then be bonded on top of the waveguides.

  18. Sources of noise in magneto-optical readout

    NASA Technical Reports Server (NTRS)

    Mansuripur, M.

    1991-01-01

    The various sources of noise which are often encountered in magneto-optical readout systems are analyzed. Although the focus is on magneto-optics, most sources of noise are common among the various optical recording systems and one can easily adapt the results to other media and systems. A description of the magneto-optical readout system under consideration is given, and the standard methods and the relevant terminology of signal and noise measurement are described. The characteristics of thermal noise, which originates in the electronic circuitry of the readout system, are described. The most fundamental of all sources of noise, the shot noise, is considered, and a detailed account of its statistical properties is given. Shot noise, which is due to random fluctuations in photon arrival times, is an ever-present noise in optical detection. Since the performance of magneto-optical recording devices in use today is approaching the limit imposed by the shot noise, it is important that the reader have a good grasp of this particular source of noise. A model for the laser noise is described, and measurement results which yield numerical values for the strength of the laser power fluctuations are presented. Spatial variations of the disk reflectivity and random depolarization phenomena also contribute to the overall level of noise in readout; these and related issues are treated. Numerical simulation results describing some of the more frequently encountered sources of noise which accompany the recorded waveform itself, namely, jitter noise and signal-amplitude fluctuation noise are presented.

  19. CARMENES in SPIE 2014. Building a fibre link for CARMENES

    NASA Astrophysics Data System (ADS)

    Stürmer, J.; Stahl, O.; Schwab, C.; Seifert, W.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.; Caballero, J. A.

    2014-07-01

    Optical fibres have successfully been used to couple high-resolution spectrographs to telescopes for many years. As they allow the instrument to be placed in a stable and isolated location, they decouple the spectrograph from environmental influences. Fibres also provide a substantial increase in stability of the input illumination of the spectrograph, which makes them a key optical element of the two high-resolution spectrographs of CARMENES. The optical properties of appropriate fibres are investigated, especially their scrambling and focal ratio degradation (FRD) behaviour. In the laboratory the output illumination of various fibres is characterized and different methods to increase the scrambling of the fibre link are tested and compared. In particular, a combination of fibres with different core shapes shows a very good scrambling performance. The near-field (NF) shows an extremely low sensitivity to the exact coupling conditions of the fibre. However, small changes in the far-field (FF) can still be seen. Related optical simulations of the stability performance of the two spectrographs are presented. The simulations focus on the influence of the non-perfect illumination stabilization in the far-field of the fibre on the radial velocity stability of the spectrographs. We use ZEMAX models of the spectrographs to simulate how the barycentres of the spots move depending on the FF illumination pattern and therefore how the radial velocity is affected by a variation of the spectrograph illumination. This method allows to establish a quantitative link between the results of the measurements of the optical properties of fibres on the one hand and the radial velocity precision on the other. The results provide a strong indication that 1ms?1 precision can be reached using a circular-octagonal fibre link even without the use of an optical double scrambler, which has successfully been used in other high-resolution spectrographs. Given the typical throughput of an optical double scrambler of about 75% to 85 %, our solution allows for a substantially higher throughput of the system.

  20. Synthesis and performance of Zn-Ni-P thin films

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Constantin, I.; Ghita, M.; Constantin, V.; Miculescu, F.; Popescu, A. M.

    2015-03-01

    The electroplating of Zn-Ni-P thin film alloys from a sulfate bath containing phosphoric and phosphorous acid was investigated. The bath composition and the deposition parameters were optimized through Hull cell experiments, and the optimum experimental conditions were determined (pH = 2, temperature = 298-313 K, zinc sulfate concentration = 30 g·L-1, EDTA concentration = 15 g·L-1, and current density, = ,1.0-2.0 A·dm-2). The SEM analysis of the coating deposited from the optimum bath revealed fine-grained deposits of the alloy in the presence of EDTA. Optical microscopy analysis indicated an electrodeposited thin film with uniform thickness and good adhesion to the steel substrate. The good adherence of the coatings was also demonstrated by the scratch tests that were performed, with a maximum determined value of 25 N for the critical load. Corrosion resistance tests revealed good protection of the steel substrate by the obtained Zn-Ni-P coatings, with values up to 85.89% for samples with Ni contents higher than 76%. The surface analysis of the thin film samples before and after corrosion was performed by X-ray photoelectron spectroscopy (XPS). Project support by the Partnership Romanian Research Program (PNCDI2), CORZIFILM Project nr.72-221/2008-2011 and “EU (ERDF) and Romanian Government” that allowed for acquisition of the research infrastructure under POS-CEEO 2.2.1 project INFRANANOCHEM-Nr.19/01.03.2009.

  1. Nonlinear optical studies on 1,3-disubstituent chalcones doped polymer films

    NASA Astrophysics Data System (ADS)

    Poornesh, P.; Shettigar, Seetharam; Umesh, G.; Manjunatha, K. B.; Prakash Kamath, K.; Sarojini, B. K.; Narayana, B.

    2009-04-01

    We report the measurements of the third-order nonlinear optical properties of recently synthesized and characterized two different 1,3-disubstituent chalcones doped PMMA films, with the prospective of reaching a good compromise between processability and high nonlinear optical properties. The measurements were done using nanosecond Z-scan at 532 nm. The Z-scan spectra reveal a large negative nonlinear refraction coefficient n2 of the order 10 -11 esu and the molecular two photon absorption cross section is 10 -46 cm 4 s/photon. The doped films exhibit good optical power limiting property under nanosecond regime and the two photon absorption (TPA) is the dominating process leading to the nonlinear behavior. The improvement in the nonlinear properties has been observed when methylenedioxy group is replaced by dimethoxy group due to increase in conjugation length. The observed nonlinear parameters of chalcone derivatives doped PMMA film is comparable with stilbazolieum derivatives, a well-known class of optical materials for photonics and biophotonics applications, which suggests that, these moieties have potential for the application of all-optical limiting and switching devices.

  2. [Spectral characteristics of refractive index based on nanocoated optical fiber F-P sensor].

    PubMed

    Jiang, Ming-Shun; Li, Qiu-Shun; Sui, Qing-Mei; Jia, Lei; Peng, Peng

    2013-01-01

    An optical fiber Fabry-Perot (F-P) interferometer end surface was modified using layer-by-layer assembly and chemical covalent cross linking method, and the refractive index (RI) response characteristics of coated optical fiber F-P sensor were experimentally studied. Poly diallyldimethylammonium chloride (PDDA) and sodium polystyrene sulfonate (PSS) were chosen as nano-film materials. With the numbers of layers increasing, the reflection spectral contrast of optical fiber F-P sensor presents from high to low, then to high regularity. And the reflection spectral contrast has good temperature stability. The reflection spectra of the optical F-P sensor coated with 20 bilayers for a series of concentration of sucrose and inorganic solution were measured. Experimental results show that the inflection point extends from 1.457 to 1.462 3, and the reflection spectral contrast sensitivity to low RI material and high RI material is 24.53 and 3.60 dB x RI(-1), respectively, with good linearity. The results demonstrate that the functional coated optical F-P sensor provides a new method for biology and chemical material test.

  3. Low-cost fused taper polymer optical fiber (LFT-POF) splitters for environmental and home-networking solution

    NASA Astrophysics Data System (ADS)

    Supian, L. S.; Ab-Rahman, Mohammad Syuhaimi; Harun, Mohd Hazwan; Gunab, Hadi; Sulaiman, Malik; Naim, Nani Fadzlina

    2017-08-01

    In visible optical communication over the multimode PMMA fibers, the overall cost of optical network can be reduced by deploying economical splitters for distributing the optical data signals from a point to multipoint in transmission network. The low-cost splitters shall have two main characteristics; good uniformity and high power efficiency. The most cost-effective and environmental friendly optical splitter having those characteristics have been developed. The device material is 100% purely based on the multimode step-index PMMA Polymer Optical Fiber (POF). The region which all fibers merged as single fiber is called as fused-taper POF. This ensures that all fibers are melted and fused properly. The results for uniformity and power efficiency of all splitters have been revealed by injecting red LED transmitter with 650 nm wavelength into input port while each end of output fibers measured by optical power meter. Final analysis shows our fused-taper splitter has low excess loss 0.53 dB and each of the output port has low insertion loss, which the average value is below 7 dB. In addition, the splitter has good uniformity that is 32:37:31% in which it is suitably used for demultiplexer fabrication.

  4. Diagnostic capability of spectral-domain optical coherence tomography for glaucoma.

    PubMed

    Wu, Huijuan; de Boer, Johannes F; Chen, Teresa C

    2012-05-01

    To determine the diagnostic capability of spectral-domain optical coherence tomography in glaucoma patients with visual field defects. Prospective, cross-sectional study. Participants were recruited from a university hospital clinic. One eye of 85 normal subjects and 61 glaucoma patients with average visual field mean deviation of -9.61 ± 8.76 dB was selected randomly for the study. A subgroup of the glaucoma patients with early visual field defects was calculated separately. Spectralis optical coherence tomography (Heidelberg Engineering, Inc) circular scans were performed to obtain peripapillary retinal nerve fiber layer (RNFL) thicknesses. The RNFL diagnostic parameters based on the normative database were used alone or in combination for identifying glaucomatous RNFL thinning. To evaluate diagnostic performance, calculations included areas under the receiver operating characteristic curve, sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio. Overall RNFL thickness had the highest area under the receiver operating characteristic curve values: 0.952 for all patients and 0.895 for the early glaucoma subgroup. For all patients, the highest sensitivity (98.4%; 95% confidence interval, 96.3% to 100%) was achieved by using 2 criteria: ≥ 1 RNFL sectors being abnormal at the < 5% level and overall classification of borderline or outside normal limits, with specificities of 88.9% (95% confidence interval, 84.0% to 94.0%) and 87.1% (95% confidence interval, 81.6% to 92.5%), respectively, for these 2 criteria. Statistical parameters for evaluating the diagnostic performance of the Spectralis spectral-domain optical coherence tomography were good for early perimetric glaucoma and were excellent for moderately advanced perimetric glaucoma. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. A Deep Learning Approach to Digitally Stain Optical Coherence Tomography Images of the Optic Nerve Head.

    PubMed

    Devalla, Sripad Krishna; Chin, Khai Sing; Mari, Jean-Martial; Tun, Tin A; Strouthidis, Nicholas G; Aung, Tin; Thiéry, Alexandre H; Girard, Michaël J A

    2018-01-01

    To develop a deep learning approach to digitally stain optical coherence tomography (OCT) images of the optic nerve head (ONH). A horizontal B-scan was acquired through the center of the ONH using OCT (Spectralis) for one eye of each of 100 subjects (40 healthy and 60 glaucoma). All images were enhanced using adaptive compensation. A custom deep learning network was then designed and trained with the compensated images to digitally stain (i.e., highlight) six tissue layers of the ONH. The accuracy of our algorithm was assessed (against manual segmentations) using the dice coefficient, sensitivity, specificity, intersection over union (IU), and accuracy. We studied the effect of compensation, number of training images, and performance comparison between glaucoma and healthy subjects. For images it had not yet assessed, our algorithm was able to digitally stain the retinal nerve fiber layer + prelamina, the RPE, all other retinal layers, the choroid, and the peripapillary sclera and lamina cribrosa. For all tissues, the dice coefficient, sensitivity, specificity, IU, and accuracy (mean) were 0.84 ± 0.03, 0.92 ± 0.03, 0.99 ± 0.00, 0.89 ± 0.03, and 0.94 ± 0.02, respectively. Our algorithm performed significantly better when compensated images were used for training (P < 0.001). Besides offering a good reliability, digital staining also performed well on OCT images of both glaucoma and healthy individuals. Our deep learning algorithm can simultaneously stain the neural and connective tissues of the ONH, offering a framework to automatically measure multiple key structural parameters of the ONH that may be critical to improve glaucoma management.

  6. Compact Si-based asymmetric MZI waveguide on SOI as a thermo-optical switch

    NASA Astrophysics Data System (ADS)

    Rizal, C. S.; Niraula, B.

    2018-03-01

    A compact low power consuming asymmetric MZI based optical modulator with fast response time has been proposed on SOI platform. The geometrical and performance characteristics were analyzed in depth and optimized using coupled mode analysis and FDTD simulation tools, respectively. It was tested with and without implementation of thermo-optic (TO) effect. The device showed good frequency modulating characteristics when tested without the implementation of the TO effect. The fabricated device showed quality factor, Q ≈ 10,000, and this value is comparable to the Q of the device simulated with 25% transmission loss, showing FSR of 0.195 nm, FWHM ≈ 0.16 nm, and ER of 13 dB. With TO effect, it showed temperature sensitivity of 0.01 nm/°C and FSR of 0.19 nm. With the heater length of 4.18 mm, the device required 0.26 mW per π shift power with a switching voltage of 0.309 V, response time of 10 μ, and figure-of-merit of 2.6 mW μs. All of these characteristics make this device highly attractive for use in integrated Si photonics network as optical switch and wavelength modulator.

  7. Linearization of an annular image by using a diffractive optic

    NASA Technical Reports Server (NTRS)

    Matthys, Donald R.

    1996-01-01

    The goal for this project is to develop the algorithms for fracturing the zones defined by the mapping transformation, and to actually produce the binary optic in an appropriate setup. In 1984 a side-viewing panoramic viewing system was patented, consisting of a single piece of glass with spherical surfaces which produces a 360 degree view of the region surrounding the lens which extends about 25 degrees in front of and 20 degrees behind the lens. The system not only produces images of good quality, it is also afocal, i.e., images stay in focus for objects located right next to the lens as well as those located far from the lens. The lens produced a panoramic view in an annular shaped image, and so the lens was called a PAL (panoramic annular lens). When applying traditional measurements to PAL images, it is found advantageous to linearize the annular image. This can easily be done with a computer and such a linearized image can be produced within about 40 seconds on current microcomputers. However, this process requires a frame-grabber and a computer, and is not real-time. Therefore, it was decided to try to perform this linearization optically by using a diffractive optic.

  8. Development and Testing of a Post-Installable Deepwater Monitoring System Using Fiber-Optic Sensors

    NASA Technical Reports Server (NTRS)

    Seaman, Calvin H.; Brower, David V.; Le, Suy Q.; Tang, Henry H.

    2015-01-01

    This paper addresses the design and development of a fiber-optic monitoring system that can be deployed on existing deepwater risers and flowlines; and provides a summary of test article fabrication and the subsequent laboratory testing performed at the National Aeronautics and Space Administration-Johnson Space Center (NASA-JSC). A major challenge of a post-installed instrumentation system is to ensure adequate coupling between the instruments and the riser or flowline of interest. This work investigates the sensor coupling for pipelines that are suspended in a water column (from topside platform to seabed) using a fiber-optic sensor clamp and subsea bonding adhesive. The study involved the design, fabrication, and test of several prototype clamps that contained fiber-optic sensors. A mold was produced by NASA using 3-D printing methods that allowed the casting of polyurethane clamp test articles to accommodate 4-inch and 8-inch diameter pipes. The prototype clamps were installed with a subsea adhesive in a "wet" environment and then tested in the NASA Structures Test Laboratory (STL). The tension, compression, and bending test data showed that the prototype sensor clamps achieved good structural coupling, and could provide high quality strain measurement for active monitoring.

  9. Energy dependence of nonlocal optical potentials

    NASA Astrophysics Data System (ADS)

    Lovell, A. E.; Bacq, P.-L.; Capel, P.; Nunes, F. M.; Titus, L. J.

    2017-11-01

    Recently, a variety of studies have shown the importance of including nonlocality in the description of reactions. The goal of this work is to revisit the phenomenological approach to determining nonlocal optical potentials from elastic scattering. We perform a χ2 analysis of neutron elastic scattering data off 40Ca, 90Zr, and 208Pb at energies E ≈5 -40 MeV, assuming a Perey and Buck [Nucl. Phys. 32, 353 (1962), 10.1016/0029-5582(62)90345-0] or Tian et al. [Int. J. Mod. Phys. E 24, 1550006 (2015), 10.1142/S0218301315500068] nonlocal form for the optical potential. We introduce energy and asymmetry dependencies in the imaginary part of the potential and refit the data to obtain a global parametrization. Independently of the starting point in the minimization procedure, an energy dependence in the imaginary depth is required for a good description of the data across the included energy range. We present two parametrizations, both of which represent an improvement over the original potentials for the fitted nuclei as well as for other nuclei not included in our fit. Our results show that, even when including the standard Gaussian nonlocality in optical potentials, a significant energy dependence is required to describe elastic-scattering data.

  10. Performance of laser guide star adaptive optics at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S.S.; An, J.; Avicola, K.

    1995-07-19

    A sodium-layer laser guide star adaptive optics system has been developed at Lawrence Livermore National Laboratory (LLNL) for use on the 3-meter Shane telescope at Lick Observatory. The system is based on a 127-actuator continuous-surface deformable mirror, a Hartmann wavefront sensor equipped with a fast-framing low-noise CCD camera, and a pulsed solid-state-pumped dye laser tuned to the atomic sodium resonance line at 589 nm. The adaptive optics system has been tested on the Shane telescope using natural reference stars yielding up to a factor of 12 increase in image peak intensity and a factor of 6.5 reduction in image fullmore » width at half maximum (FWHM). The results are consistent with theoretical expectations. The laser guide star system has been installed and operated on the Shane telescope yielding a beam with 22 W average power at 589 nm. Based on experimental data, this laser should generate an 8th magnitude guide star at this site, and the integrated laser guide star adaptive optics system should produce images with Strehl ratios of 0.4 at 2.2 {mu}m in median seeing and 0.7 at 2.2 {mu}m in good seeing.« less

  11. Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomography: a pilot study

    NASA Astrophysics Data System (ADS)

    He, Ruoyu; Wei, Huajiang; Gu, Huimin; Zhu, Zhengguo; Zhang, Yuqing; Guo, Xiao; Cai, Tiantian

    2012-10-01

    Recently, the capability of optical coherence tomography (OCT) has been demonstrated for noninvasive blood glucose monitoring. In this work, we investigate the administration of chemical agents onto human skin tissue to increase the transparency of the surface of the skin, as a means of improving the capability of OCT imaging for clinically relevant applications. Eight groups of experiments were proposed, in which different optical clearing agents (OCA) were used. The results indicate that, when properly used, some OCAs perform well in promoting the capability of OCT for noninvasive blood glucose monitoring. Among the four kinds of OCA we used, 50% v/v glycerol solute turns out to be the best enhancer. Compared with the results of the experiments in which no OCA was used, when 50% glycerol was applied onto the human skin topically, the correlation coefficient between the OCT signal slope (OCTSS) and blood glucose concentration (BGC) was improved by 7.1% on average, and the lag time between changes in the OCTSS and BGC was cut by 8 min on average. The results of 10 w/v mannitol were also good, but not as pronounced.

  12. Structural Health Monitoring Using Textile Reinforcement Structures with Integrated Optical Fiber Sensors

    PubMed Central

    Bremer, Kort; Weigand, Frank; Zheng, Yulong; Alwis, Lourdes Shanika; Helbig, Reinhard; Roth, Bernhard

    2017-01-01

    Optical fiber-based sensors “embedded” in functionalized carbon structures (FCSs) and textile net structures (TNSs) based on alkaline-resistant glass are introduced for the purpose of structural health monitoring (SHM) of concrete-based structures. The design aims to monitor common SHM parameters such as strain and cracks while at the same time acting as a structural strengthening mechanism. The sensor performances of the two systems are characterized in situ using Mach-Zehnder interferometric (MZI) and optical attenuation measurement techniques, respectively. For this purpose, different FCS samples were subjected to varying elongation using a tensile testing machine by carefully incrementing the applied force, and good correlation between the applied force and measured length change was observed. For crack detection, the functionalized TNSs were embedded into a concrete block which was then exposed to varying load using the three-point flexural test until destruction. Promising results were observed, identifying that the location of the crack can be determined using the conventional optical time domain reflectometry (OTDR) technique. The embedded sensors thus evaluated show the value of the dual achievement of the schemes proposed in obtaining strain/crack measurement while being utilized as strengthening agents as well. PMID:28208636

  13. Fabrication and characterization study of ZnTe/n-Si heterojunction solar cell application

    NASA Astrophysics Data System (ADS)

    AlMaiyaly, BushraK H.; Hussein, Bushra H.; Shaban, Auday H.

    2018-05-01

    Different thicknesses (150 250 and 350) ±20 nm has been deposited on the glass substrate and nSi wafer to fabricate ZnTe/n-Si heterojunction solar cell by vacuum evaporation technique Structural optical electrical and photovoltaic properties are investigated for the samples. The structural characteristics studied via X ray analyses indicated that the films are polycrystalline besides having a cubic (zinc blende) structure also average diameter and surface roughness calculated from AFM images The optical measurements of the deposited films were performed in different thicknesses to determine the transmission spectrum as a function of incident wavelength in the range of wavelength (4001000) nm and the optical energy gap calculated from the optical absorption spectra was found to reduse with thickness The IV characteristic at (dark and illuminated) and CV measurement for ZnTe/n-Si heterojunction shows the good rectifying behaviour under dark condition. The measurements of opencircuit voltage (VOC) short-circuit current density (JSC) fill factor (FF) and quantum fficiencies of the ZnTe/n-Si heterojunction are calculated for all samples The results of these studies are presented and discussed in this paper.

  14. Optimization of ferroelectric liquid crystal optically addressed spatial light modulator performance

    NASA Astrophysics Data System (ADS)

    Perennes, Frederic; Crossland, William A.

    1997-08-01

    The switching mechanisms of ferroelectric liquid crystal optically addressed spatial light modulators (OASLMs) using a photosensitive structure made of an intrinsic amorphous silicon layer sandwiched in between an indium tin oxide coated glass sheet and a reflective metal layer are reviewed. Devices based on photoconductor and photodiode layers are briefly reviewed and attention is focused on pixelated metal mirror devices, which offer fast switching and good optical characteristics with the same sensitivity range as the photodiode OASLMs. They are particularly suitable for high frame rate SLMs with intense read beams. Optimum drive conditions for this type of device are considered. An equivalent electrical circuit is proposed for the photosensitive structure and the voltage drop across the liquid crystal layer is investigated and related to the optical response of the device. Experimental work is carried out to demonstrate the validity of our equivalent circuit. We show that the synchronization of a light source with the case pulse enables the OASLM to work at frame rates of a few kilohertz. We also demonstrate that the exact synchronization of the write light source with the write pulse enhances the potential memory of the device.

  15. Integrated nonlinear optical imaging microscope for on-axis crystal detection and centering at a synchrotron beamline

    PubMed Central

    Madden, Jeremy T.; Toth, Scott J.; Dettmar, Christopher M.; Newman, Justin A.; Oglesbee, Robert A.; Hedderich, Hartmut G.; Everly, R. Michael; Becker, Michael; Ronau, Judith A.; Buchanan, Susan K.; Cherezov, Vadim; Morrow, Marie E.; Xu, Shenglan; Ferguson, Dale; Makarov, Oleg; Das, Chittaranjan; Fischetti, Robert; Simpson, Garth J.

    2013-01-01

    Nonlinear optical (NLO) instrumentation has been integrated with synchrotron X-ray diffraction (XRD) for combined single-platform analysis, initially targeting applications for automated crystal centering. Second-harmonic-generation microscopy and two-photon-excited ultraviolet fluorescence microscopy were evaluated for crystal detection and assessed by X-ray raster scanning. Two optical designs were constructed and characterized; one positioned downstream of the sample and one integrated into the upstream optical path of the diffractometer. Both instruments enabled protein crystal identification with integration times between 80 and 150 µs per pixel, representing a ∼103–104-fold reduction in the per-pixel exposure time relative to X-ray raster scanning. Quantitative centering and analysis of phenylalanine hydroxylase from Chromobacterium violaceum cPAH, Trichinella spiralis deubiquitinating enzyme TsUCH37, human κ-opioid receptor complex kOR-T4L produced in lipidic cubic phase (LCP), intimin prepared in LCP, and α-cellulose samples were performed by collecting multiple NLO images. The crystalline samples were characterized by single-crystal diffraction patterns, while α-cellulose was characterized by fiber diffraction. Good agreement was observed between the sample positions identified by NLO and XRD raster measurements for all samples studied. PMID:23765294

  16. The Central Bright Spot Sign: A Potential New MR Imaging Sign for the Early Diagnosis of Anterior Ischemic Optic Neuropathy due to Giant Cell Arteritis.

    PubMed

    Remond, P; Attyé, A; Lecler, A; Lamalle, L; Boudiaf, N; Aptel, F; Krainik, A; Chiquet, C

    2017-07-01

    A rapid identification of the etiology of anterior ischemic optic neuropathy is crucial because it determines therapeutic management. Our aim was to assess MR imaging to study the optic nerve head in patients referred with anterior ischemic optic neuropathy, due to either giant cell arteritis or the nonarteritic form of the disease, compared with healthy subjects. Fifteen patients with giant cell arteritis-related anterior ischemic optic neuropathy and 15 patients with nonarteritic anterior ischemic optic neuropathy from 2 medical centers were prospectively included in our study between August 2015 and May 2016. Fifteen healthy subjects and patients had undergone contrast-enhanced, flow-compensated, 3D T1-weighted MR imaging. The bright spot sign was defined as optic nerve head enhancement with a 3-grade ranking system. Two radiologists and 1 ophthalmologist independently performed blinded evaluations of MR imaging sequences with this scale. Statistical analysis included interobserver agreement. MR imaging scores were significantly higher in patients with giant cell arteritis-related anterior ischemic optic neuropathy than in patients with nonarteritic anterior ischemic optic neuropathy ( P ≤ .05). All patients with giant cell arteritis-related anterior ischemic optic neuropathy (15/15) and 7/15 patients with nonarteritic anterior ischemic optic neuropathy presented with the bright spot sign. No healthy subjects exhibited enhancement of the anterior part of the optic nerve. There was a significant relationship between the side of the bright spot and the side of the anterior ischemic optic neuropathy ( P ≤ .001). Interreader agreement was good for observers (κ = 0.815). Here, we provide evidence of a new MR imaging sign that identifies the acute stage of giant cell arteritis-related anterior ischemic optic neuropathy; patients without this central bright spot sign always had a nonarteritic pathophysiology and therefore did not require emergency corticosteroid therapy. © 2017 by American Journal of Neuroradiology.

  17. Ultra-precise micro-motion stage for optical scanning test

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Zhang, Jianhuan; Jiang, Nan

    2009-05-01

    This study aims at the application of optical sensing technology in a 2D flexible hinge test stage. Optical fiber sensor which is manufactured taking advantage of the various unique properties of optical fiber, such as good electric insulation properties, resistance of electromagnetic disturbance, sparkless property and availability in flammable and explosive environment, has lots of good properties, such as high accuracy and wide dynamic range, repeatable, etc. and is applied in 2D flexible hinge stage driven by PZT. Several micro-bending structures are designed utilizing the characteristics of the flexible hinge stage. And through experiments, the optimal micro-bending tooth structure and the scope of displacement sensor trip under this optimal micro-bending tooth structure are derived. These experiments demonstrate that the application of optical fiber displacement sensor in 2D flexible hinge stage driven by PZT substantially broadens the dynamic testing range and improves the sensitivity of this apparatus. Driving accuracy and positioning stability are enhanced as well. [1,2

  18. Synthesis, spectroscopic characterization, X-ray structure and DFT studies on 2,6-bis(1-benzyl-1H-benzo[d]imidazol-2-yl)pyridine

    NASA Astrophysics Data System (ADS)

    İnkaya, Ersin; Günnaz, Salih; Özdemir, Namık; Dayan, Osman; Dinçer, Muharrem; Çetinkaya, Bekir

    2013-02-01

    The title molecule, 2,6-bis(1-benzyl-1H-benzo[d]imidazol-2-yl)pyridine (C33H25N5), was synthesized and characterized by elemental analysis, FT-IR spectroscopy, one- and two-dimensional NMR spectroscopies, and single-crystal X-ray diffraction. In addition, the molecular geometry, vibrational frequencies and gauge-independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the title compound in the ground state have been calculated using the density functional theory at the B3LYP/6-311G(d,p) level, and compared with the experimental data. The complete assignments of all vibrational modes were performed by potential energy distributions using VEDA 4 program. The geometrical parameters of the optimized structure are in good agreement with the X-ray crystallographic data, and the theoretical vibrational frequencies and GIAO 1H and 13C NMR chemical shifts show good agreement with experimental values. Besides, molecular electrostatic potential (MEP) distribution, frontier molecular orbitals (FMO) and non-linear optical properties of the title compound were investigated by theoretical calculations at the B3LYP/6-311G(d,p) level. The linear polarizabilities and first hyper polarizabilities of the molecule indicate that the compound is a good candidate of nonlinear optical materials. The thermodynamic properties of the compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures.

  19. Characterization of the ELIMED Permanent Magnets Quadrupole system prototype with laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Pommarel, L.; Romano, F.; Cuttone, G.; Costa, M.; Giove, D.; Maggiore, M.; Russo, A. D.; Scuderi, V.; Malka, V.; Vauzour, B.; Flacco, A.; Cirrone, G. A. P.

    2016-07-01

    Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. In the actual ion acceleration scheme, energy and angular spread of the laser-driven beams are the main limiting factors for beam applications and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of Permanent Magnet Quadrupoles (PMQs) has been realized [2] by INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) researchers, in collaboration with SIGMAPHI company in France, to be used as a collection and pre-selection system for laser driven proton beams. This system is meant to be a prototype to a more performing one [3] to be installed at ELI-Beamlines for the collection of ions. The final system is designed for protons and carbons up to 60 MeV/u. In order to validate the design and the performances of this large bore, compact, high gradient magnetic system prototype an experimental campaign have been carried out, in collaboration with the group of the SAPHIR experimental facility at LOA (Laboratoire d'Optique Appliquée) in Paris using a 200 TW Ti:Sapphire laser system. During this campaign a deep study of the quadrupole system optics has been performed, comparing the results with the simulation codes used to determine the setup of the PMQ system and to track protons with realistic TNSA-like divergence and spectrum. Experimental and simulation results are good agreement, demonstrating the possibility to have a good control on the magnet optics. The procedure used during the experimental campaign and the most relevant results are reported here.

  20. Time domain diffuse optical spectroscopy: In vivo quantification of collagen in breast tissue

    NASA Astrophysics Data System (ADS)

    Taroni, Paola; Pifferi, Antonio; Quarto, Giovanna; Farina, Andrea; Ieva, Francesca; Paganoni, Anna Maria; Abbate, Francesca; Cassano, Enrico; Cubeddu, Rinaldo

    2015-05-01

    Time-resolved diffuse optical spectroscopy provides non-invasively the optical characterization of highly diffusive media, such as biological tissues. Light pulses are injected into the tissue and the effects of light propagation on re-emitted pulses are interpreted with the diffusion theory to assess simultaneously tissue absorption and reduced scattering coefficients. Performing spectral measurements, information on tissue composition and structure is derived applying the Beer law to the measured absorption and an empiric approximation to Mie theory to the reduced scattering. The absorption properties of collagen powder were preliminarily measured in the range of 600-1100 nm using a laboratory set-up for broadband time-resolved diffuse optical spectroscopy. Optical projection images were subsequently acquired in compressed breast geometry on 218 subjects, either healthy or bearing breast lesions, using a portable instrument for optical mammography that operates at 7 wavelengths selected in the range 635-1060 nm. For all subjects, tissue composition was estimated in terms of oxy- and deoxy-hemoglobin, water, lipids, and collagen. Information on tissue microscopic structure was also derived. Good correlation was obtained between mammographic breast density (a strong risk factor for breast cancer) and an optical index based on collagen content and scattering power (that accounts mostly for tissue collagen). Logistic regression applied to all optically derived parameters showed that subjects at high risk for developing breast cancer for their high breast density can effectively be identified based on collagen content and scattering parameters. Tissue composition assessed in breast lesions with a perturbative approach indicated that collagen and hemoglobin content are significantly higher in malignant lesions than in benign ones.

  1. Preparing cuprous oxide nanomaterials by electrochemical method for non-enzymatic glucose biosensor

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Thuy; Huy, Bui The; Hwang, Seo-Young; Vuong, Nguyen Minh; Pham, Quoc-Thai; Nghia, Nguyen Ngoc; Kirtland, Aaron; Lee, Yong-Ill

    2018-05-01

    Cuprous oxide (Cu2O) nanostructure has been synthesized using an electrochemical method with a two-electrode system. Cu foils were used as electrodes and NH2(OH) was utilized as the reducing agent. The effects of pH and applied voltages on the morphology of the product were investigated. The morphology and optical properties of Cu2O particles were characterized using scanning electron microscopy, x-ray diffraction, and diffuse reflectance spectra. The synthesized Cu2O nanostructures that formed in the vicinity of the anode at 2 V and pH = 11 showed high uniform distribution, small size, and good electrochemical sensing. These Cu2O nanoparticles were coated on an Indium tin oxide substrate and applied to detect non-enzyme glucose as excellent biosensors. The non-enzyme glucose biosensors exhibited good performance with high response, good selectivity, wide linear detection range, and a low detection limit at 0.4 μM. Synthesized Cu2O nanostructures are potential materials for a non-enzyme glucose biosensor.

  2. Preparing cuprous oxide nanomaterials by electrochemical method for non-enzymatic glucose biosensor.

    PubMed

    Nguyen, Thu-Thuy; Huy, Bui The; Hwang, Seo-Young; Vuong, Nguyen Minh; Pham, Quoc-Thai; Nghia, Nguyen Ngoc; Kirtland, Aaron; Lee, Yong-Ill

    2018-05-18

    Cuprous oxide (Cu 2 O) nanostructure has been synthesized using an electrochemical method with a two-electrode system. Cu foils were used as electrodes and NH 2 (OH) was utilized as the reducing agent. The effects of pH and applied voltages on the morphology of the product were investigated. The morphology and optical properties of Cu 2 O particles were characterized using scanning electron microscopy, x-ray diffraction, and diffuse reflectance spectra. The synthesized Cu 2 O nanostructures that formed in the vicinity of the anode at 2 V and pH = 11 showed high uniform distribution, small size, and good electrochemical sensing. These Cu 2 O nanoparticles were coated on an Indium tin oxide substrate and applied to detect non-enzyme glucose as excellent biosensors. The non-enzyme glucose biosensors exhibited good performance with high response, good selectivity, wide linear detection range, and a low detection limit at 0.4 μM. Synthesized Cu 2 O nanostructures are potential materials for a non-enzyme glucose biosensor.

  3. Heterodyne Interferometry with a Scanning Optical Microscope.

    NASA Astrophysics Data System (ADS)

    Hobbs, Philip Charles Danby

    The design and implementation of a confocal optical microscope which functions as an electronically scanned heterodyne interferometer are described. Theoretical models based on Fourier optics for general samples and on exact series solution of the scalar Helmholtz equation for a class of trench structures are developed and compared with experimental data. Good agreement is obtained. The associated data acquisition system, also described, enables the system to measure both the amplitude (to 12 bits) and the phase (to 0.1^circ) of a returned optical beam, at a continuous rate of 30,000 points per second. The microscope system uses a wide-band tellurium dioxide acousto-optic cell for electronic scanning, frequency shifting, and beam splitting/combining. It uses a stationary reference beam on the sample for vibration cancellation, which results in a system of great vibration immunity. It can measure relief ranging from a few tenths of a micron down to a few Angstroms, and line widths down to well below 0.4 micron, using light of 0.5 micron wavelength. Angstrom resolution can be achieved in a single full-speed scan, without special vibration isolation equipment, providing that folding mirrors are avoided. A signal processing algorithm based on Fourier deconvolution is presented; it takes advantage of the extra bandwidth of a confocal system and the availability of both amplitude and phase, to improve the lateral resolution by approximately a factor of two. Experimental results are shown, which demonstrate phase edge resolution (10%-90%) of 0.45 lambda (raw data), and 0.18 lambda (after filtering), in excellent agreement with the Fourier optics prediction. The exact scalar theory calculates the response of the microscope as it scans over an infinitely long rectangular trench in a plane boundary on which Dirichlet boundary conditions apply. An expansion in cavity modes inside the trench is used to match the field and its derivatives across the mouth of the trench to get the self-consistent solution. A listing is appended of a program for an HP personal computer which performs the simulation in 1 to 5 minutes' running time for most cases. The trench theory is compared with the Fourier theory and with experimental results for actual metal trenches, with good results.

  4. Applicability of geometrical optics to in-plane liquid-crystal configurations.

    PubMed

    Sluijter, M; Xu, M; Urbach, H P; de Boer, D K G

    2010-02-15

    We study the applicability of geometrical optics to inhomogeneous dielectric nongyrotropic optically anisotropic media typically found in in-plane liquid-crystal configurations with refractive indices n(o)=1.5 and n(e)=1.7. To this end, we compare the results of advanced ray- and wave-optics simulations of the propagation of an incident plane wave to a special anisotropic configuration. Based on the results, we conclude that for a good agreement between ray and wave optics, a maximum change in optical properties should occur over a distance of at least 20 wavelengths.

  5. Nondestructive distributed measurement of supercontinuum generation along highly nonlinear optical fibers.

    PubMed

    Hontinfinde, Régis; Coulibaly, Saliya; Megret, Patrice; Taki, Majid; Wuilpart, Marc

    2017-05-01

    Supercontinuum generation (SCG) in optical fibers arises from the spectral broadening of an intense light, which results from the interplay of both linear and nonlinear optical effects. In this Letter, a nondestructive optical time domain reflectometry method is proposed for the first time, to the best of our knowledge, to measure the spatial (longitudinal) evolution of the SC induced along an optical fiber. The method was experimentally tested on highly nonlinear fibers. The experimental results are in a good agreement with the optical spectra measured at the fiber outputs.

  6. Experimental research on thermal conductive fillers for CCD module in space borne optical remote sensor

    NASA Astrophysics Data System (ADS)

    Zeng, Yi; Han, Xue-bing; Yang, Dong-shang; Gui, Li-jia; Zhao, Xiao-xiang; Si, Fu-qi

    2016-03-01

    A space-borne differential optical absorption spectrometer is a high precision aerospace optical remote sensor. It obtains the hyper-spectral,high spatial resolution radiation information by using the spectrometer with CCD(Charge Coupled Device)array detectors. Since a few CCDs are used as the key detector, the performance of the entire instrument is greatly affected by working condition of CCDs. The temperature of CCD modules has a great impact on the instrument measurement accuracy. It requires strict temperature control. The selection of the thermal conductive filler sticking CCD to the radiator is important in the CCD thermal design. Besides,due tothe complex and compact structure, it needs to take into account the anti-pollution of the optical system. Therefore, it puts forward high requirements on the selection of the conductive filler. In this paper, according to the structure characteristics of the CCD modules and the distribution of heat consumption, the thermal analysis tool I-DEAS/TMG is utilized to compute and simulate the temperature level of the CCD modules, while filling in thermal grease and thermal pad respectively. The temperature distribution of CCD heat dissipation in typical operating conditions is obtained. In addition, the heat balance test was carried out under the condition of two kinds of thermal conductive fillers. The thermal control of CCD was tested under various conditions, and the results were compared with the results of thermal analysis. The results show that there are some differences in thermal performance between the two kinds of thermal conductive fillers. Although they both can meet the thermal performance requirements of the instrument, either would be chosen taking account of other conditions and requirements such as anti-pollution and insulation. The content and results of this paper will be a good reference for the thermal design of the CCD in the aerospace optical payload.

  7. Coding metasurface for broadband microwave scattering reduction with optical transparency.

    PubMed

    Chen, Ke; Cui, Li; Feng, Yijun; Zhao, Junming; Jiang, Tian; Zhu, Bo

    2017-03-06

    Metasurfaces have promised great possibilities in full control of the electromagnetic wavefront by spatially manipulating the phase characteristics across the interface. Here, we report a scheme to realize broadband backward scattering reduction through diffusion-like microwave reflection by utilizing a flexible indium-tin-oxide (ITO)-based ultrathin coding metasurface (less than 0.1 wavelength thick) with high optical transparence. The diffusion-like scattering is caused by the destructive interference of the scattered far-field electromagnetic wave, which is further attributed to the randomly distributed reflection phases on the metasurface composed of pre-designed meta-atoms arranged with a computer-generated pseudorandom coding sequence. Both simulation and measurement on fabricated prototype sample have been carried out to validate its performance, demonstrating a polarization-independent broadband (nearly from 8 GHz to 15 GHz) 10 dB scattering reduction with good oblique performance. The excellent performances can also be preserved to conformal cases when the flexible metasurface is uniformly wrapped around a metallic cylinder. The proposed metasurface may create new opportunities to tailor the exotic microwave scattering features with simultaneously high transmittance in visible frequencies, which could provide crucial benefits in many practical uses, such as window and solar panel applications.

  8. On phaser-based processing of impulse radio UWB over fiber systems employing SOA

    NASA Astrophysics Data System (ADS)

    Taki, H.; Azou, S.; Hamie, A.; Al Housseini, A.; Alaeddine, A.; Sharaiha, A.

    2017-07-01

    In this study, we adopt a phaser-based processing to enhance the performance of impulse radio over fiber system utilizing SOA. The amplifier has been placed at a distance in the optical link, so as to extend the coverage area of proposed transceiver. Operating in the linear or saturation region for SOA, adds ASE noise or strong nonlinearities acting on the propagated pulses, respectively. Both lead to a degradation in the power efficiency and bit error rate performance. By applying up and down analog chirping technique, we have reduced the ASE power and nonlinearity simultaneously. Based on the 5th Gaussian pulse and Abraha's combination of doublets, a significant improvement has been achieved at extremely low and high input powers entering the amplifier (<-15 dBm and 0 dBm), recording a very good bit error rate performance and power efficiency. Better signal quality was observed after photo-detector, due to the fact that waveforms with lower frequency components are less affected by SOA nonlinearity. Our scheme has proved to be effective for 1 Gbps OOK and 0.5 Gbps PPM transmissions, while reaching a distance of 160 km in the optical fiber.

  9. The MetOp second generation 3MI instrument

    NASA Astrophysics Data System (ADS)

    Manolis, Ilias; Grabarnik, Semen; Caron, Jérôme; Bézy, Jean-Loup; Loiselet, Marc; Betto, Maurizio; Barré, Hubert; Mason, Graeme; Meynart, Roland

    2013-10-01

    The MetOp-SG programme is a joint Programme of EUMETSAT and ESA. ESA develops the prototype MetOp-SG satellites (including associated instruments) and procures, on behalf of EUMETSAT, the recurrent satellites (and associated instruments). Two parallel, competitive phase A/B1 studies for MetOp Second Generation (MetOp-SG) have been concluded in May 2013. The implementation phases (B2/C/D/E) are planned to start the first quarter of 2014. ESA is responsible for instrument design of six missions, namely Microwave Sounding Mission (MWS), Scatterometer mission (SCA), Radio Occultation mission (RO), Microwave Imaging mission (MWI), Ice Cloud Imager (ICI) and Multi-viewing, Multi-channel, Multi-polarisation imaging mission (3MI). The paper will present the main performances of the 3MI instrument and will highlight the performance improvements with respect to its heritage derived by the POLDER instrument, such as number of spectral channels and spectral range coverage, swath and ground spatial resolution. The engineering of some key performance requirements (multi-viewing, polarisation sensitivity, straylight etc.) will also be discussed. The results of the feasibility studies will be presented together with the programmatics for the instrument development. Several pre-development activities have been initiated to retire highest risks and to demonstrate the ultimate performances of the 3MI optics. The scope, objectives and current status of those activities will be presented. Key technologies involved in the 3MI instrument design and implementation are considered to be: the optical design featuring aspheric optics, the implementation of broadband Anti Reflection coatings featuring low polarisation and low de-phasing properties, the development and qualification of polarisers with acceptable performances as well as spectral filters with good uniformities over a large clear aperture.

  10. A Magnifying Glass for Virtual Imaging of Subwavelength Resolution by Transformation Optics.

    PubMed

    Sun, Fei; Guo, Shuwei; Liu, Yichao; He, Sailing

    2018-06-14

    Traditional magnifying glasses can give magnified virtual images with diffraction-limited resolution, that is, detailed information is lost. Here, a novel magnifying glass by transformation optics, referred to as a "superresolution magnifying glass" (SMG) is designed, which can produce magnified virtual images with a predetermined magnification factor and resolve subwavelength details (i.e., light sources with subwavelength distances can be resolved). Based on theoretical calculations and reductions, a metallic plate structure to produce the reduced SMG in microwave frequencies, which gives good performance verified by both numerical simulations and experimental results, is proposed and realized. The function of SMG is to create a superresolution virtual image, unlike traditional superresolution imaging devices that create real images. The proposed SMG will create a new branch of superresolution imaging technology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Phase aided 3D imaging and modeling: dedicated systems and case studies

    NASA Astrophysics Data System (ADS)

    Yin, Yongkai; He, Dong; Liu, Zeyi; Liu, Xiaoli; Peng, Xiang

    2014-05-01

    Dedicated prototype systems for 3D imaging and modeling (3DIM) are presented. The 3D imaging systems are based on the principle of phase-aided active stereo, which have been developed in our laboratory over the past few years. The reported 3D imaging prototypes range from single 3D sensor to a kind of optical measurement network composed of multiple node 3D-sensors. To enable these 3D imaging systems, we briefly discuss the corresponding calibration techniques for both single sensor and multi-sensor optical measurement network, allowing good performance of the 3DIM prototype systems in terms of measurement accuracy and repeatability. Furthermore, two case studies including the generation of high quality color model of movable cultural heritage and photo booth from body scanning are presented to demonstrate our approach.

  12. Theoretical and experimental studies of turbo product code with time diversity in free space optical communication.

    PubMed

    Han, Yaoqiang; Dang, Anhong; Ren, Yongxiong; Tang, Junxiong; Guo, Hong

    2010-12-20

    In free space optical communication (FSOC) systems, channel fading caused by atmospheric turbulence degrades the system performance seriously. However, channel coding combined with diversity techniques can be exploited to mitigate channel fading. In this paper, based on the experimental study of the channel fading effects, we propose to use turbo product code (TPC) as the channel coding scheme, which features good resistance to burst errors and no error floor. However, only channel coding cannot cope with burst errors caused by channel fading, interleaving is also used. We investigate the efficiency of interleaving for different interleaving depths, and then the optimum interleaving depth for TPC is also determined. Finally, an experimental study of TPC with interleaving is demonstrated, and we show that TPC with interleaving can significantly mitigate channel fading in FSOC systems.

  13. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link

    NASA Astrophysics Data System (ADS)

    Anguita, Jaime A.; Neifeld, Mark A.; Vasic, Bane V.

    2008-05-01

    A multichannel free-space optical (FSO) communication system based on orbital angular momentum (OAM)-carrying beams is studied. We numerically analyze the effects of atmospheric turbulence on the system and find that turbulence induces attenuation and crosstalk among channels. Based on a model in which the constituent channels are binary symmetric and crosstalk is a Gaussian noise source, we find optimal sets of OAM states at each turbulence condition studied and determine the aggregate capacity of the multichannel system at those conditions. OAM-multiplexed FSO systems that operate in the weak turbulence regime are found to offer good performance. We verify that the aggregate capacity decreases as the turbulence increases. A per-channel bit-error rate evaluation is presented to show the uneven effects of crosstalk on the constituent channels.

  14. Optical properties of stanene

    NASA Astrophysics Data System (ADS)

    Pratap Chaudhary, Raghvendra; Saxena, Sumit; Shukla, Shobha

    2016-12-01

    Successful synthesis of graphene has created a runaway effect in the exploration of other similar two-dimensional materials. These materials are important as they provide large surface areas and have led to the exploration of new physical phenomena. Even though graphene has exotic electronic properties, its spin-orbit coupling is very weak. Tin, being one of the heaviest elements in this group, is expected to have enhanced spin-orbit coupling in addition to other exotic properties of graphene. Here we report optical signatures of free standing stanene obtained using UV-vis absorption spectroscopy. Raman measurements were performed on a transmission electron microscope (TEM) grid. Interlayer spacing, phonon frequencies and the imaginary part of the complex dielectric function obtained using first principles methods are in good agreement with the experimental data. Occurrence of parallel bands suggests the possibility of the presence of excitonic effects in stanene.

  15. The secondary mirror concept for the European Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Cayrel, Marc; Bonnet, Henri; Ciattaglia, Emanuela; Esselborn, Michael; Koch, Franz; Kurlandczyk, Herve; Pettazzi, Lorenzo; Rakich, Andrew; Sedghi, Babak

    2014-07-01

    The E-ELT is an active and adaptive 39-m telescope, with an anastigmat optical solution (5 mirrors including two flats), currently being developed by the European Southern Observatory (ESO). The convex 4-metre-class secondary mirror (M2) is a thin Zerodur meniscus passively supported by an 18 point axial whiffletree. A warping harness system allows to correct low order deformations of the M2 Mirror. Laterally the mirror is supported on 12 points along the periphery by pneumatic jacks. Due to its high optical sensitivity and the telescope gravity deflections, the M2 unit needs to allow repositioning the mirror during observation. Considering its exposed position 30m above the primary, the M2 unit has to provide good wind rejection. The M2 concept is described and major performance characteristics are presented.

  16. Fiber-Optic Pressure Sensor With Dynamic Demodulation Developed

    NASA Technical Reports Server (NTRS)

    Lekki, John D.

    2002-01-01

    Researchers at the NASA Glenn Research Center developed in-house a method to detect pressure fluctuations using a fiber-optic sensor and dynamic signal processing. This work was in support of the Intelligent Systems Controls and Operations project under NASA's Information Technology Base Research Program. We constructed an optical pressure sensor by attaching a fiber-optic Bragg grating to a flexible membrane and then adhering the membrane to one end of a small cylinder. The other end of the cylinder was left open and exposed to pressure variations from a pulsed air jet. These pressure variations flexed the membrane, inducing a strain in the fiber-optic grating. This strain was read out optically with a dynamic spectrometer to record changes in the wavelength of light reflected from the grating. The dynamic spectrometer was built in-house to detect very small wavelength shifts induced by the pressure fluctuations. The spectrometer is an unbalanced interferometer specifically designed for maximum sensitivity to wavelength shifts. An optimum pathlength difference, which was determined empirically, resulted in a 14-percent sensitivity improvement over theoretically predicted path-length differences. This difference is suspected to be from uncertainty about the spectral power difference of the signal reflected from the Bragg grating. The figure shows the output of the dynamic spectrometer as the sensor was exposed to a nominally 2-kPa peak-to-peak square-wave pressure fluctuation. Good tracking, sensitivity, and signal-to-noise ratios are evident even though the sensor was constructed as a proof-of-concept and was not optimized in any way. Therefore the fiber-optic Bragg grating, which is normally considered a good candidate as a strain or temperature sensor, also has been shown to be a good candidate for a dynamic pressure sensor.

  17. Gasoline Combustion Fundamentals DOE FY17 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekoto, Isaac W.

    Advanced automotive gasoline engines that leverage a combination of reduced heat transfer, throttling, and mechanical losses; shorter combustion durations; and higher compression and mixture specific heat ratios are needed to meet aggressive DOE VTP fuel economy and pollutant emission targets. Central challenges include poor combustion stability at low-power conditions when large amounts of charge dilution are introduced and high sensitivity of conventional inductive coil ignition systems to elevated charge motion and density for boosted high-load operation. For conventional spark ignited operation, novel low-temperature plasma (LTP) or pre-chamber based ignition systems can improve dilution tolerances while maintaining good performance characteristics atmore » elevated charge densities. Moreover, these igniters can improve the control of advanced compression ignition (ACI) strategies for gasoline at low to moderate loads. The overarching research objective of the Gasoline Combustion Fundamentals project is to investigate phenomenological aspects related to enhanced ignition. The objective is accomplished through targeted experiments performed in a single-cylinder optically accessible research engine or an in-house developed optically accessible spark calorimeter (OASC). In situ optical diagnostics and ex situ gas sampling measurements are performed to elucidate important details of ignition and combustion processes. Measurements are further used to develop and validate complementary high-fidelity ignition simulations. The primary project audience is automotive manufacturers, Tier 1 suppliers, and technology startups—close cooperation has resulted in the development and execution of project objectives that address crucial mid- to long-range research challenges.« less

  18. Spectral imaging as a potential tool for optical sentinel lymph node biopsies

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Jack D.; Hoy, Paul R.; Rutt, Harvey N.

    2011-07-01

    Sentinel Lymph Node Biopsy (SLNB) is an increasingly standard procedure to help oncologists accurately stage cancers. It is performed as an alternative to full axillary lymph node dissection in breast cancer patients, reducing the risk of longterm health problems associated with lymph node removal. Intraoperative analysis is currently performed using touchprint cytology, which can introduce significant delay into the procedure. Spectral imaging is forming a multi-plane image where reflected intensities from a number of spectral bands are recorded at each pixel in the spatial plane. We investigate the possibility of using spectral imaging to assess sentinel lymph nodes of breast cancer patients with a view to eventually developing an optical technique that could significantly reduce the time required to perform this procedure. We investigate previously reported spectra of normal and metastatic tissue in the visible and near infrared region, using them as the basis of dummy spectral images. We analyse these images using the spectral angle map (SAM), a tool routinely used in other fields where spectral imaging is prevalent. We simulate random noise in these images in order to determine whether the SAM can discriminate between normal and metastatic pixels as the quality of the images deteriorates. We show that even in cases where noise levels are up to 20% of the maximum signal, the spectral angle map can distinguish healthy pixels from metastatic. We believe that this makes spectral imaging a good candidate for further study in the development of an optical SLNB.

  19. Network coding multiuser scheme for indoor visible light communications

    NASA Astrophysics Data System (ADS)

    Zhang, Jiankun; Dang, Anhong

    2017-12-01

    Visible light communication (VLC) is a unique alternative for indoor data transfer and developing beyond point-to-point. However, for realizing high-capacity networks, VLC is facing challenges including the constrained bandwidth of the optical access point and random occlusion. A network coding scheme for VLC (NC-VLC) is proposed, with increased throughput and system robustness. Based on the Lambertian illumination model, theoretical decoding failure probability of the multiuser NC-VLC system is derived, and the impact of the system parameters on the performance is analyzed. Experiments demonstrate the proposed scheme successfully in the indoor multiuser scenario. These results indicate that the NC-VLC system shows a good performance under the link loss and random occlusion.

  20. High-Performance, Solution-Processed Quantum Dot Light-Emitting Field-Effect Transistors with a Scandium-Incorporated Indium Oxide Semiconductor.

    PubMed

    He, Penghui; Jiang, Congbiao; Lan, Linfeng; Sun, Sheng; Li, Yizhi; Gao, Peixiong; Zhang, Peng; Dai, Xingqiang; Wang, Jian; Peng, Junbiao; Cao, Yong

    2018-05-22

    Light-emitting field-effect transistors (LEFETs) have attained great attention due to their special characteristics of both the switching capacity and the electroluminescence capacity. However, high-performance LEFETs with high mobility, high brightness, and high efficiency have not been realized due to the difficulty in developing high electron and hole mobility materials with suitable band structures. In this paper, quantum dot hybrid LEFETs (QD-HLEFETs) combining high-luminous-efficiency quantum dots (QDs) and a solution-processed scandium-incorporated indium oxide (Sc:In 2 O 3 ) semiconductor were demonstrated. The red QD-HLEFET showed high electrical and optical performance with an electron mobility of 0.8 cm 2 V -1 s -1 , a maximum brightness of 13 400 cd/m 2 , and a maximum external quantum efficiency of 8.7%. The high performance of the QD-HLEFET is attributed to the good energy band matching between Sc:In 2 O 3 and QDs and the balanced hole and electron injection (less exciton nonradiative recombination). In addition, incorporation of Sc into In 2 O 3 can suppress the oxygen vacancy and free carrier generation and brings about excellent current and optical modulation (the on/off current ratio is 10 5 and the on/off brightness ratio is 10 6 ).

Top